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Abstract

This thesis presents two investigations in two parts:

I Azimuth-elevation bivariate direction finding using a higher-order “figure-8”

sensor and an isotropic sensor.

A “p-u probe” (a.k.a. a “p-v probe”) comprises one pressure-sensor (which

is isotropic) and one uni-axial particle-velocity sensor (which has a “figure-

8” bi-directional spatial directivity). This p-u probe may be generalized, by

allowing the figure-8 bi-directional sensor to have a higher order of directivity.

This “higher-order p-v probe” has not previously been investigated anywhere

in the open literature (to the best knowledge of the present authors). For

such a sensing system, this work is first (1) to develop closed-form eigen-based

signal-processing algorithms for azimuth-elevation direction finding; (2) to

analytically derive the associated Cramér-Rao lower bounds (CRB), which is

expressed explicitly in terms of the two constituent sensors’ spatial geometry

and in terms of the figure-8 sensor’s directivity order; (3) to verify (via Monte

Carlo simulations) the proposed direction-of-arrival estimators’ efficacy and

closeness to the Cramér-Rao lower bounds. Here, the two constituent sensors

of higher-order p-v probe may be spatially displaced.
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II Leptokurtic probability density modeling of roadway sound-levels measured at

different floors of a high-rise building.

The tails of roadway sound-level distributions decay slower than the tails

of the Gaussian distribution. This highlights the need to instead use lep-

tokurtic distributions in modeling. To gain new insights into the roadway

sound-level distribution, this work is first in the open literature (1) to try out

a wide range of well-known leptokurtic probability-density functions of two,

three and four parameters, and ranks their goodness-of-fit to sound-pressure-

level data measured at a high-rise building in Hong Kong, overlooking the

roadway vehicular traffic; (2) to check if a probability density (scalar) met-

ric (i.e. variance, skewness, excess-kurtosis, third central-moment, fourth

central moment, fourth cumulant, and peakedness) is a “sufficient statistic”

to explain the goodness-of-fit ranks of a candidate probability density func-

tion; (3) to analyze the statistical distributions of roadway sound-level data

empirically-measured at different days and different vertical locations of a

high-rise building.
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Part I

Azimuth-elevation bivariate
direction finding using a

higher-order figure-8 sensor and
an isotropic sensor
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In part I, a non-collocated “p-v probe” of higher order for direction-of-arrival

estimation is described [1].

Contribution: This work presents general-order non-collocated p-v probe 1

as an alternative to existing sensing systems, like the “v-v probe” [2], or the tri-

axial velocity sensor [3, 4], or the four-component acoustic vector-sensor (AVS)

consisting of a tri-axial velocity sensor and a collocating pressure-sensor [5, 6, 7].

The use of a pressure sensor (instead of additional “figure-8” sensor/s) may simplify

the hardware and any calibration.

Chapter 1 introduces the non-collocated “higher-order p-v probe”.

1The term non-collocated means that the constituent pressure sensor and the figure-8 sensor
are not mathematically assumed to be located at the same spatial coordinates.

2



Chapter 1

Introduction

1.1 Non-collocated “higher-order p-v probe”

The p-v probe is an acoustical sensing system that comprises

(a) an isotropic pressure-sensor, and

(b) a uni-axial 1 particle-velocity 2 sensor, whose gain-response is bi-directional

3 , like a figure-8, i.e. cos(γ) in mathematical form, where γ represents the

angle of impinging signal from the directional sensor’s axis. Such a uni-axial

particle-velocity sensor measures one Cartesian component of the acoustical

wavefield’s particle velocity vector.

1Uni-axial means that the sensor has a single imaginary line along which the gain response
of the sensor is oriented.

2Particle velocity here is referring to the velocity of air particles when the sound wave is
transmitted.

3Bi-directional means the sensor is designed to receive signals from two opposite directions.
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For a listing of the key literature on p-v probes and their physical shapes, please

refer to [8].

A single sensor array like the higher-order p-u probe has been used in the open

literature for closed-form eigen-based direction-of-arrival estimation [9, 10, 11, 12].

For instance, [13] has used one pressure sensor and three high order velocity

sensors located at the origin but orthogonal to each other. The paper presents the

three velocity sensor in a vector with unit power as:

a
def
=
[
{sin θ cosφ}k , {sin θ sinφ}k , {cos θ}k , 1

]T
(1.1)

where k is the order of velocity sensor’s direction cosine and the fourth row repre-

sents the isotropic pressure sensor. The author’s eigen-based parameter estimation

calculates the steering vector that is unknown to a complex factor c. That esti-

mated steering vector received at the sensor array is:

â
def
= [âx, ây, âz, âp]

T ≈ c a(kx,ky ,kz ,1) (1.2)

where kε refers to the order of velocity sensors with ε ∈ x, y, z. The estimated

arrival angles are then formulated with the help of equations (1.3) and (1.4).

θ̂ = cos−1

[∣∣∣∣∣
(
âz
âp

)1/kz
∣∣∣∣∣ sgn

(
<
(
âz
âp

))]
(1.3)

φ̂ = sgn

[∣∣∣∣∣
(
ây
âp

)1/ky
∣∣∣∣∣ sgn

(
<
(
ây
âp

))]
cos−1

[
csc(θ̂)

∣∣∣∣∣
(
âx
âp

)1/kx
∣∣∣∣∣

sgn

(
<
(
âx
âp

))] (1.4)
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In equations (1.3) and (1.4), k = {1, 3, 5, ...}. Similarly, [14] has used a pressure

sensor and three spatially spread first order velocity sensors oriented along the

axis they lie on and has derived the closed form solutions of (θ, φ) using the array

manifold given in (1.5) and depicted in figure 1.1.

a
def
=
[
sin θ cosφ ej

2π∆px
λ

sin θ cos(φ), sin θ sinφ ej
2π∆py
λ

sin θ sinφ, cos θ ej
2π∆pz
λ

cos θ, 1
]T

(1.5)

Figure 1.1: One pressure sensor and 3 non-collocated
velocity sensors creating pyramid kind of configuration [14].

Similarly, high directional velocity sensors have been described and explored

in [15, 16, 17, 18]. To approximate the arrival angles of an acoustic signal through

the velocity vector sensor, both numerical and closed form solutions are obtained

(e.g., see [19, 8, 13]).

5



This work generalizes the customary p-v probe, by allowing the figure-8 sensor

to have any arbitrarily higher (positive integer) order k of directivity. The name

“higher-order p-v probe” is coined for the p-v probe with high-order gain response

for its constituent figure-8 sensor (mathematically as cosk(γ), k ∈W).

Figure 1.2: Gain response of a kth-order figure-8 sensor.

1.2 Higher-order “figure-8” sensor

1.2.1 Gain response

Gain response refers to the directivity gain, which measures the difference in

the response of a sensor or a sensor array to the signals impinging from different

directions. The “figure-8” gain response can be achieved by an acoustic sensor

measuring the gradient of the sound pressure. The first-order gradient of sound

pressure is proportional to the sensor’s gain response i.e., cos(θ). The second-order

gradient corresponds to the square of sensor’s gain response i.e., cos2(θ), and so
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on. With increasing value of k, in the gain response of the higher-order figure-8

sensor cosk(γ), the lobes of figure-8 sensor becomes more sharper or more narrowly

directional (see Figure 1.2) [15, Chapter 8]. Among the three Cartesian axes, if a

kth-order figure-8 sensor is:

• Oriented along the x-axis, its gain response equals [sin(θ) cos(φ)]k. Here,

θ ∈ [0, π] represents the polar angle (a.k.a. the zenith angle), and φ ∈ [0, 2π)

denotes the azimuth angle measured from the positive x-axis (see Figure

1.3).

• Oriented along the y-axis, the gain response becomes [sin(θ) sin(φ)]k.

• Oriented along the z-axis, the gain response becomes cosk(θ).

1.2.2 Hardware implementations

There has been a number of hardware implementations of higher-order pressure

gradient sensors to achieve the figure-8 bi-directional gain response. Second-order

figure-8 bi-directional acoustic sensors have been implemented in hardware in [20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Third-order ones have been implemented

in hardware in [23, 29, 16] page. Fifth-order ones have been implemented in

hardware in [32]. Other higher-order ones have been implemented in hardware

in [23, 29]. These hardware implementations of second-order or higher-order p-v

probes, dating over from 1942 to 2008, show that second-order/“higher-order p-

v probes” are established yet current sensing systems with continuing practical

relevance.
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Figure 1.3: An acoustic source impinging from (θ, φ) angles of arrival with reference
to a ”p-v probe”.

1.3 Nine configurations of higher-order p-v probe

Specifically, suppose that the isotropic sensor (i.e. a pressure-sensor) is located

at the origin. Also, assume that the figure-8 sensor lies on one of the three Rect-

angular axes as well as is oriented in parallel to one of the Cartesian axes. Then,

there would be 9 distinct combinations of the figure-8 sensor’s location and axial

orientation. Please see Figure 1.4. Figure 1.4(a), for example, corresponds to a

pressure sensor at the Cartesian origin, with a figure-8 directional sensor at the

Cartesian position of (∆x, 0, 0) but orienting along the x-axis. Figure 1.4(b), in

contrast, has the figure-8 directional sensor at the Cartesian position of (0,∆y, 0)

but still orienting along the x-axis.

Chapter 2 explains the proposed direction-of-arrival estimator using the non-

collocated higher-order p-v probe. Therein, the new eigen-based closed-form di-

rection finding algorithm is discussed. Next, the Monte Carlo simulations show

8



the proposed estimators’ (statistical) efficiency. In the end, Part I (Chapters 1 –

2) is concluded as the paragraph numbered (Part I) in the conclusion chapter.

Figure 1.4: The nine configurations of higher-order p-v probe under investigation.
The shaded configurations cannot facilitate bivariate azimuth-elevation direction-
of-arrival estimation. Please see Chapter 2.
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Chapter 2

Closed-form direction-of-arrival
estimation of the higher-order p-v
probe

Section 1.3 showed nine configurations of the non-collocated higher-order p-v

probe. In this chapter, for each of these 9 configurations at any specific sensor-order

k, Section 2.1 will define their array manifold. Section 2.2 will derive a new closed-

form estimator of the incident source’s azimuth-elevation bivariate direction-of-

arrival (or, for 3 of the 9 array configurations, will explain why such an estimator is

mathematically impossible), Section 2.3 will analytically derive the corresponding

Cramér-Rao lower bound, in a simple mathematical form that is explicitly in terms

of the array geometry and explicitly in terms of sensor order k. Section 2.4 will then

present Monte Carlo simulations of the proposed estimator, showing its closeness

to the derived Cramér-Rao lower bound.
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2.1 The array manifold vector of the generalized

p-u probe’s nine configurations under inves-

tigation

The 2 × 1 array manifold of any location/orientation configuration of Figure

1.4 is mathematically denoted as

a
(ε)
P,Vζ

(θ, φ) =

 1

ηk1 e
j2π∆ε

λ
η2

 , (2.1)

The first entry refers to the isotropic sensor at the Cartesian origin, whereas the

second entry corresponds to the figure-8 directional sensor placed away from the

Cartesian origin. Here, the superscript ε ∈ {x, y, z} identifies the Rectangular axis

on which the higher-order figure-8 sensor lies, the subscript ζ ∈ {x, y, z} indicates

the direction of higher-order figure-8 sensor, and

η1 :=


cos(θ), if ζ = z;

sin(φ) sin(θ), if ζ = y;

cos(φ) sin(θ), if ζ = x.

η2 :=


cos(θ), if ε = z;

sin(φ) sin(θ), if ε = y;

cos(φ) sin(θ), if ε = x.

The first entry’s magnitude equals unity, on account of the pressure-sensor’s

isotropicity. It has no complex phase, because of its location at the Cartesian ori-

gin, hence no spatial phase factor. The second entry’s magnitude of ηk1 corresponds
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to the kth-order figure-8 gain pattern oriented along the ζ Cartesian coordinate.

The second entry’s complex phase ej2π
∆ε
λ
η2 represents a spatial phase factor for the

figure-8 sensor’s location of ∆ε ≈ 0 out on the ε Cartesian coordinate. The sign of

the real-valued scalar η1 specifies the hemisphere from which the source impinges.

E.g. at ζ = z, sgn(η1) = sgn(cos(θ)) > 0 would mean that the source impinges

from the upper hemisphere, whereas sgn(η1) = sgn(cos(θ)) < 0 means the lower

hemisphere. Here, sgn(·) denotes the signum function.

Figure 1.4’s nine location/orientation configurations’ array manifolds are pre-

sented in Table 2.1.

Table 2.1: The array manifold for various configurations of kth-order p-u probe.
(Please see Equation (2.1).)

configuration (a): configuration (b): configuration (c):

a
(x)
P,Vx

(θ, φ) =

 1

uk ej2π
∆x
λ
u

 a
(y)
P,Vx

(θ, φ) =

 1

uk ej2π
∆y
λ
v

 a
(z)
P,Vx

(θ, φ) =

 1

uk ej2π
∆z
λ
w


configuration (d): configuration (e): configuration (f):

a
(x)
P,Vy

(θ, φ) =

 1

vk ej2π
∆x
λ
u

 a
(y)
P,Vy

(θ, φ) =

 1

vk ej2π
∆y
λ
v

 a
(z)
P,Vy

(θ, φ) =

 1

vk ej2π
∆z
λ
w


configuration (g): configuration (h): configuration (i):

a
(x)
P,Vz

(θ, φ) =

 1

wk ej2π
∆x
λ
u

 a
(y)
P,Vz

(θ, φ) =

 1

wk ej2π
∆y
λ
v

 a
(z)
P,Vz

(θ, φ) =

 1

wk ej2π
∆z
λ
w


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These nine array manifolds are functionally inter-related:

(b)↔ (d) : a
(x)
P,Vy

(θ, φ) = a
(y)
P,Vx

(
θ,
π

2
− φ
)
, (2.2)

(c)↔ (f) : a
(z)
P,Vx

(θ, φ) = a
(z)
P,Vy

(
θ,
π

2
− φ
)
, (2.3)

(g)↔ (h) : a
(y)
P,Vz

(θ, φ) = a
(x)
P,Vz

(
θ,
π

2
− φ
)
, (2.4)

(e)↔ (a) : a
(y)
P,Vy

(θ, φ) = a
(x)
P,Vx

(
θ,
π

2
− φ
)
, (2.5)

(i)↔ (a)↔ (e) : a
(z)
P,Vz

(θ, φ) = a
(x)
P,Vx

(π
2
− θ, 0

)
, (2.6)

= a
(y)
P,Vy

(π
2
− θ, π

2

)
. (2.7)

Lastly, if the locations of two component-sensors are interchanged, the resulting

array manifold is obtainable from the old one by a complex conjugation, then a

multiplication by ej2π
∆ε
λ
η2 .

2.2 Eigen-based closed-form estimation of the azimuth-

elevation direction-of-arrival

Eigen-based direction-of-arrival estimation involves an intermediate algorith-

mic step, wherein the incident signal’s steering vector is approximated maximally

to an undefined c (a complex number). This undefined c occurs from the data-

covariance matrix after being passed through the eigen-decomposition step. (Sup-

pose e equals eigenvector of the data correlation matrix, then ce must also be a

valid eigenvector ∀c 6= 0.) That is, available to subsequent algorithmic steps is a

steering-vector estimate, â
(ε)
P,Vζ
≈ c a

(ε)
P,Vζ

(θ, φ). 1

1 Suppose a signal s(t) reaches the p-u probe, but becomes corrupted additively by the p-u
probe’s thermal noise-vector n(t). The p-u probe’s measurement then equals to a 2 × 1 data

13



(In the ideal case of no noise or an infinite number of time samples, this ap-

proximation would become equality.) Hence, the problem is how to estimate θ and

φ, given â
(ε)
P,Vζ

, for each of the 9 configurations in Figure 1.4 and Table 2.1, with k

being any natural number that is prior known.

The unknown scalar c may be eliminated as follows, on account of (2.1):

[
â

(ε)
P,Vζ

]
2[

â
(ε)
P,Vζ

]
1

= ηk1 e
j2π∆ε

λ
η2 , (2.8)

with [·]j denoting jth vector element.

For any prior known ∆ε ∈
(
0, λ

2

]
, 2 Equation (2.8) leads to

η̂1 =

∣∣∣∣∣∣
[
â

(ε)
P,Vζ

]
2[

â
(ε)
P,Vζ

]
1

∣∣∣∣∣∣
1/k

sgn(η1), (2.9)

η̂2 =
λ

2π∆ε

6

sgn(η1)

[
â

(ε)
P,Vζ

]
2[

â
(ε)
P,Vζ

]
1

 . (2.10)

If ∆ε >
λ
2
, the spatial phase factor ej

2π∆ε
λ

η2 has no one-to-one mapping with η2;

hence, Equations (2.9) and (2.10) cannot distinctively estimate both the azimuth

vector of z(tm) = s(tm)a + n(tm) at the mth time sample. From M such time samples, a data

correlation matrix of Ĉ =
∑M
m=1 z(tm)[z(tm)]H is formed, where the superscript H symbolizes

the Hermitian operator. Suppose further that {s(t)} and {n(t)} are each temporally stationary

and not cross-correlated between them. Then, Ĉ ≈ C = MPsaa
H+MPnI, where Ps denotes the

power of the incident signal, a symbolizes the impinging source’s steering vector, Pn refers to the
thermal noise power at each component-sensor, and I signifies a 2×2 identity matrix. This 2×2
matrix Ĉ is Hermitian, and asymptotically approaches C as M → ∞. The asymptotic Ĉ has
a principal eigenvector equal to ca, where c is some complex-valued scalar that is algebraically
independent of a.

2 If ∆ε = 0 (i.e. if the two sensors are collocated at one point in space), η2 cannot be estimated
in (2.10), even though η1 may still be estimated via (2.9).
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and elevation angles. Still, the extended-aperture procedure can be utilized to

determine the situations with ∆ε beyond λ/2. [33, 34, 35, 36].

From the above η̂1 and η̂2, the closed-form estimates θ̂ and φ̂ are specified in

tables A.1 to A.3 of Appendix A, for ε 6= ζ.

There, due to sgn (η1) and due to the cyclic ambiguities of inverse trigonometric

functions inherent in η1 and η2, θ̂ and φ̂ can be unambiguous for only a tetarto-

sphere (i.e. a quarter of a sphere). For configuration (b), the necessary prior

knowledge is whether θ ∈
[
0, π

2

)
or θ ∈

[
π
2
, π
)

(i.e. upper vs. lower hemisphere)

and whether u > 0 or u < 0 (i.e. front vs. back hemisphere). For configuration

(c), the necessary prior knowledge is whether φ ∈ [0, π) or φ ∈ [π, 2π) (i.e. right

vs. left hemisphere) and whether u > 0 or u < 0 (i.e. front vs. back hemisphere).

For configuration (d), the necessary prior knowledge is whether θ ∈
[
0, π

2

)
or

θ ∈
[
π
2
, π
)

(i.e. upper vs. lower hemisphere) and whether v > 0 or v < 0 (i.e.

right vs. left hemisphere). For configuration (f), the necessary prior knowledge is

whether φ ∈
[
−π

2
, π

2

)
or φ ∈

[
π
2
, 3π

2

)
(i.e. front vs. back hemisphere) and whether

v > 0 or v < 0 (i.e. right vs. left hemisphere). For configuration (g), the necessary

prior knowledge is whether φ ∈ [0, π) or φ ∈ [π, 2π) (i.e. right vs. left hemisphere)

and whether w > 0 or w < 0 (i.e. upper vs. lower hemisphere). For configuration

(h), the necessary prior knowledge is whether φ ∈
[
−π

2
, π

2

)
or φ ∈

[
π
2
, 3π

2

)
(i.e.

front vs. back hemisphere) and whether w > 0 or w < 0 (i.e. upper vs. lower

hemisphere).

At θ = 0, π, the impinging signal has none of its energy projected onto the x-y

plane; hence, φ̂ would be impossible by any estimator.

If η1 = η2, or equivalently if ε = ζ (as in configurations (a) and (e) and (i)),

the system of Equations in (2.9) and (2.10) would be indeterminable, because the
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right sides of (2.9) and (2.10) would be equal, thereby offering only one constraint

for two unknowns.

If the two sensors’ have their locations switched: The array manifold’s mul-

tiplicative factor
(
ej2π

∆ε
λ
η2

)
will be absorbed into the eigen-composition c, hence

poses no change to the estimation formulas there. The array manifold’s complex

conjugation would result simply in a sign change at the appropriate places of each

estimator.

2.3 The Cramèr-Rao bound for the kth-order p-

v probe in various configurations

The Cramér-Rao bound (CRB) lower-bounds the error variance obtainable

from any unbiased estimator, given the statistical model that connects the observed

data to the unknown parameter being estimated. To focus on the directivity order

k and on the spatial configuration, the following analysis will use a simple statistical

model for the incident signal and for the corrupting noise. This analysis could be

readily extended to more complicated signal/noise scenarios.

To focus on higher-order p-v probe and its various configurations, model the

incident signal as a pure-tone

s(t) =
√
Ps e

j(ωt+ϕ), (2.11)

where Ps denotes the signal power and ϕ the initial phase, both deterministic but

allowed to be unknown. Let there be additive noise, modeled as Gaussian, zero-
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mean, statistically uncorrelated over time and across the two component-sensors,

with an unknown power of Pn.

At the mth time instant of t = mTs (where Ts denotes the time-sampling

period), the p-u probe provides a 2× 1 data vector of

z̃(mTs) = a s(mTs) + ñ(mTs), ∀m = 1, 2, · · · ,M. (2.12)

Assumed as prior known are ω, ∆ε, and λ.

This statistical data model has five real-valued scalar unknowns: θ, φ, Ps,

Pn, ϕ. Hence, the resulting Fisher information matrix (FIM) is 5 × 5 in size.

The corresponding Cramér-Rao bounds are derived (using Section 8.2.3.1 of [37])

and stated in Table B.1 of Appendix B. Therein, for example, the superscript

in CRB
(a)
θ (θ, φ) refers to configuration (a), whereas the subscript θ identifies the

to-be-estimated parameter whose Cramér-Rao bound is symbolized.

Figures 2.1 to 2.6 plot the Cramér-Rao bounds at various values of the sensor-

order k, for the six configurations that allow bivariate azimuth-elevation direction-

of-arrival estimation. The figures show that the accuracy achievable by the gen-

eralized p-v probe reduces near the infinite Cramér-Rao bounds as the order of

figure-8 sensor increases. The remaining three configurations, shaded in Figure 1.4

and Table 2.1, would not allow such bivariate direction finding, for reasons already

explained at the end of Section 2.2.

2.3.1 Inter-relationships among various configurations’ Cramér-
Rao bounds

Because the various configurations’ array manifolds are functionally inter-related

as in Equations (2.2)-(2.7), their corresponding Cramér-Rao bounds are also cor-
17



respondingly inter-related as follows:

(b)↔ (d) : CRB
(b)
× (θ, φ) = CRB

(d)
×

(
θ,
π

2
− φ
)
, (2.13)

(c)↔ (f) : CRB
(c)
× (θ, φ) = CRB

(f)
×

(
θ,
π

2
− φ
)
, (2.14)

(g)↔ (h) : CRB
(g)
× (θ, φ) = CRB

(h)
×

(
θ,
π

2
− φ
)
, (2.15)

(e)↔ (a) : CRB
(e)
× (θ, φ) = CRB

(a)
×

(
θ,
π

2
− φ
)
, (2.16)

with the subscript × ∈ {θ, φ}.
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Figure 2.1: Configuration (b): CRB

of θ
[
CRB

(b)
θ (θ, φ)

]
for various or-

ders (k) of figure-8 sensor.

Figure 2.2: Configuration (b): CRB

of φ
[
CRB

(b)
φ (θ, φ)

]
for various or-

ders (k) of figure-8 sensor.
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Figure 2.3: Configuration (c): CRB

of θ
[
CRB

(c)
θ (θ, φ)

]
for various or-

ders (k) of figure-8 sensor.

Figure 2.4: Configuration (c): CRB

of φ
[
CRB

(c)
φ (θ, φ)

]
for various or-

ders (k) of figure-8 sensor.
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Figure 2.5: Configuration (g): CRB

of θ
[
CRB

(g)
θ (θ, φ)

]
for various or-

ders (k) of figure-8 sensor.

Figure 2.6: Configuration (g): CRB

of φ
[
CRB

(g)
φ (θ, φ)

]
for various or-

ders (k) of figure-8 sensor.
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2.3.2 Symmetries in each Cramér-Rao bound

Each Cramér-Rao bound is

(i) symmetric with respect to θ = 90◦ over θ ∈ [0◦, 180◦],

(ii) symmetric with respect to φ = 0◦ over φ ∈ [−90◦, 90◦],

(iii) symmetric with respect to φ = 90◦ over φ ∈ [0◦, 180◦],

(iv) symmetric with respect to φ = 180◦ over φ ∈ [90◦, 270◦], and

(v) symmetric with respect to φ = 270◦ over φ ∈ [180◦, 360◦].

These symmetries arise mathematically in every Cramér-Rao bound expression

due to the even powers to which the trigonometric functions are raised. Physically

speaking, these symmetries exist because the figure-8 sensor’s gain response (a)

has a longitudinal cross-section that is 360◦ rotationally invariant with regard to

the figure-8 sensor’s axis, and (b) has two lobes that are left/right symmetric to

each other. Please see Figure 2.7.

Figure 2.7: Symmetries in the figure-8 sensor’s gain response.
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2.3.3 To compare across the various configurations in Fig-
ure 1.4 and Table 2.1

To compare across various configurations by their direction-finding precision:

Figures 2.8-2.10 plot the Cramér-Rao bound’s cumulative histogram, which reveals

the percentage of all possible incident direction-of-arrival from the two-dimensional

support region of {θ ∈ [0, π]} ∪ {φ ∈ [0, 2π)}, at which the corresponding configu-

ration can estimate better than or equal to the precision specified by the abscissa.

Figure 2.8 is for sensor-order k = 1, Figure 2.9 for k = 2, and Figure 2.10 for

k = 3. Each figure compares all 6 configurations (i.e. all those that allow bivariate

direction finding); nonetheless, the identities in (2.13)-(2.15) imply only 3 distinct

cumulative histogram curves for each of Figures 2.8-2.10. These cumulative his-

tograms are computed here using spatially uniform sampling over the unit-sphere’s

surface ∀(θ, φ), i.e. a equal number of uniformly spaced samples per any unit area

on the unit-sphere’s surface. [38] The number of spatial samples equals 1.5 mil-

lion over the spherical surface. Recall that the Cramér-Rao bound represents the

hypothetically best precision obtainable in estimating the direction-of-arrival: the

smaller the Cramér-Rao bound the better, hence the higher the cumulative his-

togram the better.

Some qualitative observations on CRB
(·)
θ (θ, φ) :

1) Configurations (b) and (d)’s CRB
(b)
θ (θ, φ) = CRB

(d)
θ (θ, φ) are worse than the

other configurations’ CRB
(·)
θ (θ, φ). This is intuitively reasonable, because

these 2 configurations

(i) orient the figure-8 directional sensor to yield no θ-directivity, and

(ii) space the two component-sensors to yield no vertical aperture.
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2) Configurations (g)’s and (h)’s cumulative histogram is crossed over by that

of configurations (c) and (f), as the abscissa gets sufficiently large. More-

over, this cross-over abscissa drops, as the directivity order k increases. The

explanation is as follows: Configurations (c) and (f) provide an inter-sensor

spatial aperture along the vertical, but no vertical directivity exists in its

figure-8 sensor. In contrast, configurations (g) and (h) offer vertical direc-

tivity but no vertical aperture. Figures 2.8-2.10 indicate that a λ
2

vertical

aperture is more important than the vertical directivity, to attain a very

low Cramér-Rao bound for selected (θ, φ) sectors. However, this advantage

diminishes, as the directivity order k increases, when configurations (c) and

(f) become decisively better than configurations (g) and (h). Configurations

(c) and (f) provide a horizontal directivity, but no horizontal aperture. In

contrast, configurations (g) and (h) offer no horizontal directivity but a hor-

izontal aperture. As discussed above, the figure-8 sensor directivity is more

important to attain the lowest Cramér-Rao bound for selected (θ, φ) sectors.

A sufficiently high k could dominate any lack of aperture.

Some qualitative observations on CRB
(·)
φ (θ, φ) :

3) For CRB
(·)
φ (θ, φ), configurations (b) and (d) are better than the other config-

urations. This is also intuitively reasonable, because these two configurations

(i) orient the figure-8 directional sensor to maximize φ-directivity, as well

as

(ii) space the two component-sensors to give maximum horizontal inter-

sensor aperture.
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4) Configurations (g) and (h)’s cumulative histogram crosses over that of con-

figurations (c) and (f), as the abscissa gets sufficiently large. Moreover, this

cross-over abscissa drops, as the directivity order k increases. The explana-

tion is exactly same as that under point 2) above.

5) The Cramér-Rao bounds would be unaffected by any switch of the two

component-sensors’ locations.

Lastly:

6) The four-component acoustic vector-sensor (AVS), comprising a tri-axial

velocity-sensor and a collocating pressure-sensor, offers better Cramér-Rao

bounds, than any of the high-order p-u probes. This is unsurprising, because

the acoustic vector-sensor has more component-sensors.
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Figure 2.8: Cumulative histograms to compare the 6 configurations with the figure-
8 sensor at order k = 1, versus the customary four-component acoustic vector-
sensor (AVS).

Figure 2.9: Cumulative histograms to compare the 6 configurations with the figure-
8 sensor at order k = 2, versus the customary four-component acoustic vector-
sensor (AVS).

Figure 2.10: Cumulative histograms to compare the 6 configurations with the
figure-8 sensor at order k = 3, versus the customary four-component acoustic
vector-sensor (AVS).
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2.4 Monte Carlo simulations of the estimators

proposed in Section 2.2

This section presents Monte Carlo simulations of the estimator proposed in

Section 2.2 for configuration (b), as an illustrative example. These simulations

show the estimator’s efficacy, with an estimation error variance very close to the

Cramér-Rao bound derived in Section 2.3.

The statistical data model of Section 2.3 is retained here. Moreover, ∆ε

λ
= 1

2
,

ω = 1885 radians/second, and ϕ = 0.

Figures 2.11-2.14 compare configuration (b)’s estimators in the second row of

Table A.1 of Appendix A, against the corresponding Cramér-Rao bounds in the

second row of Table B.1 of Appendix B. Each icon on each figure represent 1000

independent Monte Carlo trials. These figures unanimously verify the proposed

estimator’s efficacy and closeness to the Cramér-Rao bounds. Figures 2.15-2.18 do

the same for configuration (c)’s estimators in the third row of Table A.1, against

the corresponding Cramér-Rao bounds in the third row of Table B.1.

Figures 2.11-2.12 and 2.15-2.16 show that the Cramér-Rao bounds decrease

(i.e. improve) as the SNR increases for k = 1, 2, 3, as would be expected. Figures

2.13-2.14 and 2.17-2.18 show that the Cramér-Rao bounds also decrease as the

inter-sensor spacing ∆ε increases (and thus the array aperture is enlarged) for

k = 1, 2, 3, as also would be expected.
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Figure 2.11: Configuration (b): The pro-

posed θ̂’s RMSE versus

√
CRB

(b)
θ (θ, φ),

at various sensor-orders k.

Figure 2.12: Configuration (b): The pro-

posed φ̂’s RMSE versus
√

CRB
(b)
φ (θ, φ),

at various sensor-orders k.
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Figure 2.13: Configuration (b):
The proposed θ̂’s RMSE and√

CRB
(b)
θ (θ, φ) versus sensor’s sepa-

ration ∆y/λ, at various sensor-orders
k.

Figure 2.14: Configuration
(b): The proposed φ̂’s RMSE

and
√

CRB
(b)
φ (θ, φ) versus sensor’s

separation ∆y/λ, at various sensor-
orders k.
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Figure 2.15: Configuration (c): The pro-

posed θ̂’s RMSE versus

√
CRB

(c)
θ (θ, φ), at

various sensor-orders k.

Figure 2.16: Configuration (c): The pro-

posed φ̂’s RMSE versus
√

CRB
(c)
φ (θ, φ),

at various sensor-orders k.
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Figure 2.17: Configuration (c):
The proposed θ̂’s RMSE and√

CRB
(c)
θ (θ, φ) versus sensor’s sepa-

ration ∆z/λ, at various sensor-orders
k.

Figure 2.18: Configuration (c):
The proposed φ̂’s RMSE and√

CRB
(c)
φ (θ, φ) versus sensor’s sepa-

ration ∆z/λ, at various sensor-orders
k.
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Part II

Leptokurtic probability density
modeling of roadway sound-levels
measured at a high-rise building
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Part II of this thesis explores various leptokurtic probability density models for

gaining new insights into the roadway sound-level distribution.

Contribution: Previous work [39, 40] indicate that roadway sound-level is

leptokurtically distributed i.e. the fourth standardized moment (kurtosis) of the

probability density exceeds that of a Gaussian distribution. Various leptokurtic

probability densities will be tried out to fit several roadway sound-level datasets.

Part II contains three chapters:

Chapter 4 discusses the statistical background:

(i) the Jarque-Bera test to test a dataset on Gaussianity versus leptokurticity;

(ii) the candidate leptokurtic PDFs to be subsequently fit to the empirical datasets;

(iii) the goodness-of-fit assessment metric;

(iv) the statistical moments and “peakedness” (for quantifying the PDF shapes)

as possible scalar metrics to predict a PDF’s goodness-of-fit.

Chapter 5 discusses the empirical measurement environment and apparatus.

This chapter analyzes two datasets collected at exactly the same location of a

same high-rise building overlooking a roadway but on two different days, to see

variability in the sound-level statistics.

Chapter 6 is analogous to Chapter 5, but now the data was collected on two

different floors of the same building, to see how the sound-level statistics would

vary as the roadway sound propagates up a high-rise building.
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2.5 Link between Part I and Part II

Direction finding using the higher-order p-u probe (Part I) assumes white Gaus-

sian noise. While estimating the direction-of-arrival using a sensing system like the

higher-order p-u probe in a roadway noise environment, the white Gaussian noise

assumption may not be appropriate because the equivalent sound pressure-level

data is leptokurtic [39, 41]. As Part II of this thesis is a probabilistic modeling

approach of a roadway noise environment, therefore, Part II’s methodology can

be used to study the distributions other than Gaussian. This may then provide a

more real-world noise scenario for Monte Carlo simulations of Part I.

Part I assumes a point source that is not moving; environment with no rever-

beration; an impinging signal that is pure-tone and originates from the far-field.

However, in Part II’s real-world measurements, all these assumptions are violated.

Therefore, the technique of Part I cannot readily be employed for direction finding

of moving vehicles in the roadway environment of Part II.
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Chapter 3

Literature review

Roadside vehicular traffic sound (or roadway sound) is a major contributor to

environmental (acoustic) noises in urban areas. Roadway sounds adversely affect

human health and the quality of life; those effects have been ongoing topics of

research [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Roadway sound-level

has been investigated [56, 57, 42] for decades.

3.1 Significance of roadway sound-level’s PDF

modeling

Sound-level distribution helps to characterize its environment’s “noise climate”

[58, 41, 59, 60, 61] and “traffic noise index” [40, 44, 55], both of which well predict

human annoyance [44, 45, 61]. Their definitions are as follows:

noise climate = LA10,T − LA90,T , (3.1)
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traffic noise index = 4 (LA10,T − LA90,T ) + LA90,T − 30, (3.2)

where T is the time duration and LAp,T is the (1 − p)th percentile of A-weighted

sound pressure level data averaged over T . As both noise climate and traffic noise

index are the function of percentile levels of A-weighted sound pressure level and as

the percentile levels are different for different probability density functions, there-

fore, finding a more appropriate probability density function would help in better

estimating the noise climate and traffic noise index. The leptokurtic distributions

are more ”peaked” near the center as compared to the Gaussian distribution. This

means that both the noise climate and traffic noise index would be estimated higher

than its actual value if Gaussian distribution is used. For the details about the

A-weighted sound pressure level, please see Section 4.1.

[62] mentions the use of roadway sound-level models by

• highway engineers, to verify if their plans would stay within the permitted

ceilings of traffic noise, and whether/what noise-abatement strategies would

be needed.

• architectural acousticians, in designing buildings and offices next to major

highways, in order to make them more habitable and conducive to work.

• acoustic specialists, to specify government policies for environmental noise

reduction and regulations. These include developing noise maps and action

plans.
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3.2 Roadway sounds measured at a high-rise build-

ing

High-rise buildings (commercial or residential) are ubiquitous in the world’s

metropolises, especially those in East Asia. There, roads are urban canyons, boxed

in on both sides by cement cliffs, which are formed by the walls of high-rise build-

ings. As the roadside sounds reverberate up these cement cliffs, the sound levels

change.

Many studies have been conducted on roadway sound data measured at a high-

rise building. For example,

(a) [55] measures roadway sound-level data at 24 independent high-rise buildings

in Hong Kong, each for more than 24 hours. [55] then finds that arbitrar-

ily chosen 30-minute period suffice to characterize the noise climate in the

“evening” time (19:00 – 21:00) within +/-3 dB, for 85% of the cases.

(b) [63] profiles the roadway sound vertically along the height of a high-rise

building. The sound energy is reported to increase from ground level up to

the 9th floor and then to monotonically decrease.

(c) [61] conducts more than 270 roadway sound-level measurements from various

high-rise buildings in Hong Kong, and concludes that the “intensity ratio”

(Equation (1) of [64]) of roadway sound follows a “log–tanh” distribution.

(d) Other studies are [46, 65, 66, 67, 68, 69]. However, these studies do not

model the roadway sound-level distribution.
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3.3 Earlier probability distribution models

Table 3.1 surveys the open literature in empirical based modeling of roadway

sound-level probability distribution. In contrast, for non-empirical models based

on a priori theoretical conjectures, see Appendix C. 1 All these references together

offer only the following elementary insights:

(a) [70] concludes that the PDF of Leq measured at roadside “looks” Gaus-

sian. However, this claim is not tested statistically and was only for the

sound-levels occurring between the 10th percentile and 90th percentile of

the (percentage) time distribution.

(b) Subsequent papers [39, 40, 71, 72, 73, 74, 75, 76] refute the above claim of

Gaussianity. [39] concludes the Leq to be leptokurtic i.e., the PDF’s kurtosis

exceeds that of Gaussian distribution.

(c) [40, 61, 71, 77, 78] use the Pearson distribution family on LAeq but these

studies do not consider other leptokurtic distributions.

Hence, there has not yet been any systematic testing of leptokurtic PDFs to

fit roadway sound-level data. This thesis is thus first in the open literature to

comprehensively fit many leptokurtic PDFs to roadway sound-level data, to the

best of the author’s knowledge.

1Some studies measure the roadway sound as “equivalent sound pressure level” Leq or “A-
weighted equivalent sound pressure level” LAeq.
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Table 3.1: Earlier probability distribution models of roadway sound-level.

Ref.
Model based

on what?

Verification

by Empirical

data?

2 Traffic flow 3
CDF or

PDF?

4 Comments

[70]∗∗
Empirical

data
Yes (roadside) Freely flowing PDF

PDF looks Gaussian between 10th

and 90th percentile.

[41]
Empirical

data
Yes (roadside) Freely flowing PDF No model proposed but refutes Gaussian PDF.

[40]∗∗
Empirical

data
Yes (high-rise) Any PDF

Used Pearson distribution family, Gaussian,

extreme value, exponential, rectangular,

logistic, Laplace, gamma, inverse-Gaussian,

Poisson, Weibull.

[61]
Empirical

data
Yes (high-rise) Any Both

Used Log-tanh, Weibull, Pearson type-III

of sound intensity ratio.

[77]∗∗
Empirical

data
Yes (high-rise) Any PDF Used Pearson family.

[78]∗∗
Empirical

data
Yes (high-rise) Any PDF Used Pearson family.

[71]∗∗
Empirical

data
Yes (high-rise) Any PDF Used Pearson family.

∗ used time-equivalent sound pressure level data Leq.

∗∗ used A-weighted time-equivalent sound pressure level data LAeq.

For the definitions of Leq and LAeq, please see Section 4.1.

2 If a study presents empirical data to support its model, the column titled ‘Verification by
Empirical data?’ would so indicate while specifying the location of the microphone (whether the
microphone was placed on roadside or up a high-rise building outside its fac̀ade).

3 The column titled ‘Traffic flow’ describes whether free- or interrupted-flow of vehicles (cat-
egorized in [40]) is observed due to the traffic conditions such as traffic signals, traffic jam, etc.

4 The column titled ‘CDF or PDF?’ mentions if the respective papers use the Cumulative
Distribution Function (CDF) or Probability Density Function (PDF) or both.
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Chapter 4

Various statistical tests to
subsequently analyze the
empirical data

This chapter is organized as follows:

Section 4.1 will explain the acoustic unit representing the sound-level. Section

4.2 will explain the Jarque–Bera test to verify the conclusion of earlier papers

that the probability distribution of roadway sound-level is non-Gaussian. Section

4.3 will list leptokurtic PDFs to be used in subsequent chapters to model em-

pirical data. Section 4.4 will specify the statistical metrics to assess any PDF

model’s goodness-of-fit. Section 4.5 will explore whether the statistical moment or

“peakedness” could predict any PDF model’s goodness-of-fit.
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4.1 Data metric

The data metric is in terms of the T -equivalent A-weighted sound pressure level

LAeq,T
1, where T is the time period of one data sample and is set to one second.

The LAeq,T calculation from the sound pressure data has the following steps

(which is done by the sound level meter):

1. For our case, the sound pressure data at the microphone is measured at a

sampling frequency of 51,200 Hz.

2. Compute the spectrum of data over 1 second and divide it into one-third

octave bands.

3. Compute RMS power of the 1/3 octave bands denote it as LRMS. (Say, we

have 30 bands, so the length of LRMS vector is 30.)

4. Add A-weights to LRMS. Denote it as LA.RMS (length of LA.RMS vector is 30.)

5. Logarithmically add all 30 elements of LA.RMS, which is LAeq,1s.

LAeq,T together with the noise climate [see Equation (3.1)], and the traffic

noise index [see Equation (3.2)] are associated with the subjective human response

to a noisy environment [44, 45, 49]. [50] suggests the use of LAeq,T for roadway

sound-level measurements. Studies conducted in Hong Kong for roadway sound-

level measurement have also used LAeq,T as their acoustic-noise descriptor [40, 55,

1 Human ears do not have flat spectral response in the audible range (20Hz to 20KHz). [79]
experimentally calculated the “equal-loudness contours” for the first time by applying weights
to the frequency spectrum in audible range in order to quantify the subjective human response
to different acoustic-noise events. Different types of weightings exist known as A-, B-, C-, and
D-weighting but the most commonly employed is the A-weighting as it is commissioned by the
international standard IEC 61672 for use in the sound-level meters [80].
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68, 64]. Also, the environmental protection department of Hong Kong assesses the

environmental (acoustic) noise in terms of LAeq,T [81]. The unit of LAeq,T is decibel

denoted as dB(A), where (A) is used to highlight that the data is A-weighted.

4.2 Jarque-Bera test to verify the dataset’s non-

Gaussianity

The Jarque-Bera test decides if a dataset follows the Gaussian distribution, by

examining the data’s sample skewness and sample kurtosis against the third and

fourth standardized moments of Gaussian distribution.

First, define the third standardized moment also known as “Pearson’s moment

coefficient of skewness” or simply “skewness”, for a random variable X as

γ1 = E

[(
X − µ
σ

)3
]
, (4.1)

where µ is the mean and σ2 is the variance of X. Also, define the fourth standard-

ized moment (or the “kurtosis”) as

γ2 = E

[(
X − µ
σ

)4
]
. (4.2)

Incidentally, γ1 = 0 and γ2 = 3 for the Gaussian distribution. A leptokurtic PDF

has heavier tails than the Gaussian PDF i.e., the tail/s of a leptokurtic PDF with

kurtosis greater than 3 decays slower than the tail/s of the Gaussian PDF with

the kurtosis equal to 3.
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The above γ1 and γ2 may be estimated from a dataset {x1, x2, . . . , xN}, via the

sample skewness γ̂1 and sample kurtosis γ̂2:

γ̂1 :=
1
N

∑N
n=1 (xn − x̄)3[

1
N

∑N
n=1 (xn − x̄)2

]3/2
, (4.3)

γ̂2 :=
1
N

∑N
n=1 (xn − x̄)4[

1
N

∑N
n=1 (xn − x̄)2

]2 , (4.4)

where N denotes the total number of data samples and

x̄ =
1

N

N∑
n=1

xn. (4.5)

The Jarque-Bera test measures how closely a dataset’s sample skewness and

sample kurtosis are to 0 and 3, respectively. 2 The Jarque-Bera test statistic is

JB = N

(
γ̂2

1

6
+

(γ̂2 − 3)2

24

)
. (4.6)

The test statistic JB is asymptotically chi-squared distributed with 2 degrees-

of-freedom under the assumption that the data realizes Gaussian random variable.

Define χ2
α(2) to denote the (100× α) percentile of a chi-squared distribution with

two degrees-of-freedom at a specified significance level of α. 3 α equals 0.05 and

0.01 for the 95% and 99% confidence levels, respectively.

2 The Jarque-Bera test is implemented in the package tseries version 0.10-35 of the R software
[82].

3 (100× α) % = 100− CL%, where CL stands for confidence level.
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If JB > χ2
α(2), the dataset is statistically decided as non-Gaussian, with a

significance level α. χ2
0.05(2) = 5.99; χ2

0.01(2) = 9.21. 4

The “p-value” corresponding to JB is

p-value = 1− Fχ2(2) (JB) , (4.7)

where Fχ2(2) (.) is the cumulative distribution function of a chi-squared distribution

with two degrees-of-freedom conditioned on the data being a Gaussian realization.

5 If p-value < α, the data is not a Gaussian realization at the statistical significance

of α. Setting α smaller (confidence level larger) means more unlikeliness to reject

that the data is a realization of Gaussian random variable.

4.3 Leptokurtic probability density functions as

candidate models of roadway sound-level

Many well-known PDFs have a kurtosis above 3. The common ones are given

in Appendices D, E, and F.

Appendix D lists the candidate PDFs with two parameters. Appendix E lists

the candidate PDFs with three parameters. Appendix F lists the candidate PDFs

with four parameters. Appendix G relates the 2-parameter, 3-parameter, and

4-parameter PDFs in a diagram.

A PDF can have parameter with respect to the density’s “location”, “scale”,

and “shape”.

4 These values of χ2
α(2) are taken from the chi-squared distribution table e.g. [83, Table A.3].

5 The p-value for a specified JB value can be seen from [83, Table A.3]. It can also be
calculated in R software using the function ‘pchisq’ of the package ‘stats’ version 3.3.1 [84].
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(1) “Location” refers to any shift of the density along the abscissa, thereby

affecting the mean, the median, and the mode.

(2) “Scale” refers to the spread of the density affecting the variance.

(3) “Shape” refers to the density’s skewness and/or density’s kurtosis, thus af-

fecting the asymmetry and/or the tailedness.

A density’s any parameter could influence more than one of the above three prop-

erties of “location”, “scale”, and “shape”. For instance, the “degrees-of-freedom”

parameter of “student’s t” distribution controls the spread as well as the shape.

More parameters in a PDF would increase that PDF’s flexibility to fit a dataset.

PDFs with only one parameter would likely be inadequate to fully model roadway

sound-level, which is leptokurtic in shape, skewed, and non-zero in mean/median/mode.

On the other hand, PDFs with four parameters may likely be adequate (or more

than adequate) [85], as, four parameters could already control the first four statis-

tical moments of a PDF.

Chapters 5 and 6 will conduct comprehensive comparisons among established

leptokurtic PDFs of two parameters, of three parameters, or of four-parameters

in terms of their goodness-of-fit to roadway sound-level datasets. Many of these

PDFs belong to one or more of the following distribution families:

(A) The Pearson distribution family [86, 87] is used in [40, 77, 78, 71] for

roadway sound-level analysis. This family has twelve specific probability

distributions that are named as Pearson type I up to type XII.

(B) The generalized hyperbolic distribution family has “semi-heavy” tails

[88]. It was first proposed for modeling wind-blown sand and has been used
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in financial risk management and analysis. The special cases include general-

ized hyperbolic skewed student t distribution, variance gamma distribution,

hyperbolic distribution, and generalized inverse Gaussian distribution.

(C) The generalized beta distribution family [89] includes leptokurtic PDFs

of log-logistic, Fisk, Burr, and inverse Burr distributions. It has been used

in modeling stock returns and the distribution of income.

(D) The exponential generalized beta distribution family [89] includes

many leptokurtic distributions such as logistic, Gumbel, exponential distri-

butions. It has been used to model hydrology, equity risks, and abnormal

network-traffic in information technology.

(E) The skewed generalized t distribution family is proposed by [90] to

accommodate the heavy tails and skewness in financial data. Its special

cases are the generalized t distribution [91], the skewed t distribution [92],

and the skewed generalized error distribution.

4.4 Metrics on various PDFs’ goodness-of-fit to

the datasets

To assess a PDF’s goodness-of-fit to any dataset, the following procedure/metric

will be used in Chapters 5–6:

1. (Maximum likelihood estimation of the PDF parameters) [93, sec-

tion 1.2.1] Collect the parameters of a PDF f(.) as entries in a vector of θ.

For that particular PDF, the best-fitting value θ̂ of θ may be estimated via
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maximum likelihood estimation (MLE):

θ̂ := arg max
θ∈Θ

N∑
n=1

ln (f (xn|θ)) . (4.8)

2. (Log-likelihood function) [93, section 1.2.2] The goodness-of-fit of the

above θ̂ may be measured by the this likelihood function,

L
(
θ̂|x
)

:=
N∑
n=1

ln[f(xn|θ̂)]. (4.9)

The larger the above metric, the better is the fit.

3. (Akaike information criterion (AIC)) Different PDFs have a differ-

ent number (pi) of parameters. To account for this difference in assessing

the goodness-of-fit, the metric of AIC [94, 93, 95, 96, 97] modifies the log-

likelihood function of (4.9) as follows:

AICi := 2pi − 2 Li
(
θ̂|x
)
, (4.10)

PDF with more number of parameters is penalized by AIC. The smaller the

AIC; the better is the ith PDF’s fitting.

4. (AIC difference) [93, section 2.6] To focus on the difference in the

goodness-of-fit among competing PDFs, define the ith PDF’s “AIC differ-

ence”:

∆
(AIC)
i := AICi − AICmin, (4.11)
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where AICmin := min{AICi,∀i}. The larger ∆
(AIC)
i is, the worst is the ith

PDF’s fit to the dataset under consideration.

[93] states the following rule of thumb to interpret ∆
(AIC)
i , repeated in Table

4.1.

Table 4.1: The rule of thumb interpretation of ∆
(AIC)
i [93].

∆
(AIC)
i Empirical support of the ith PDF

0 – 2 Substantial

4 – 7 Noticeably less

> 10 Essentially none

5. (Relative likelihood) To further accentuate the various PDF’s goodness-

of-fit , define the “relative likelihood” [93, section 2.8], [98]:

L(rel) (fi|x) ∝ exp

(
−1

2
∆

(AIC)
i

)
, (4.12)

where the ∝ symbolizes “is proportional to”. This relative likelihood lies

in [0, 1]. The best-fitting model (corresponding to the lowest AIC value) is

assigned a relative likelihood value of 1.
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4.5 Moments and “peakedness” — as a PDF’s

“sufficient statistics” of goodness-of-fit?

Could one or two scalar metrics (instead of the entire probability density func-

tion) provide a “sufficient statistic” 6 to predict that PDF’s goodness-of-fit to a

dataset of roadway sound-levels?

The moments and “peakedness” each characterize the shape of a PDF. Various

moments or peakedness of PDFs are each plotted against ∆
(AIC)
i (shown later in

Sections 5.7, 6.6) in order to try to see if any of these PDF scalars have any quasi-

monotonic relationship with the goodness-of-fit metric of ∆
(AIC)
i . That is, if any

of these scalars monotonically increases with ∆
(AIC)
i , then that single scalar may

suffice as a predictor of the PDF’s goodness-of-fit. A test of monotonicity is given

in Section 4.5.1. The candidate scalars are discussed below.

Statistical moments: The first (raw) moment µ is the mean of the PDF

that describes its location. The mean value decreases with increasing distance of

the microphone location from the roadway. The second central-moment, µ2, is the

variance. The third- and fourth central-moments are used to define the skewness

(Equation (4.1)) and kurtosis (Equation (4.2)) as

γ1 =
µ3

(µ2)3/2
, (4.13)

γ2 =
µ4

(µ2)2
, (4.14)

6 “Suffient statistic” (in statistics) refers to a statistic (say t) that is enough for the underlying
parameter vector θ of the dataset {z1, z2, . . . , zI} i.e. Pr (z |t, θ) = Pr (z |t). [99]
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where µ3 = third central-moment, and µ4 = fourth central-moment.

Skewness computes the asymmetry of a PDF while kurtosis quantifies the

“tailedness” of a probability distribution. The term “excess-kurtosis” is the kur-

tosis minus three. Leptokurtic distribution functions have excess-kurtosis greater

than zero.

Cumulants are an alternative set of measures for characterizing the shape of

a probability distribution. The first cumulant is the first raw moment; the second

cumulant is equal to the second central-moment; the third cumulant is equal to

the third central moment; the fourth or higher cumulants are different than the

fourth or higher central-moments.

“Peakedness” of a probability distribution (“frequency curve in the neigh-

borhood of the mean” [100, 101]) is not quantified by any of the above mentioned

moments or cumulants. Kurtosis does not describe peakedness of a probability

distribution [100, 101, 102]. The references [101, 103, 104, 105] give a measure of

peakedness of a random variable, where peakedness P of a random variable X at

point a is defined as

Pa(h) = P (|X − a| ≤ h), h ≥ 0. (4.15)

where a is sample mode of a dataset i.e., peakedness of each PDF is calculated

at the sample mode of each dataset because unimodal histogram is peaked at the

mode of dataset. If a random variable X is relatively more peaked than another
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random variable Y , then the distribution function of X is also relatively more

peaked than the distribution function of Y [103, 104, 105]. h can be any positive

value. Here, h = 1 dB(A) for all PDFs.

The expressions of each PDF’s moments can be found in its reference, as given

in Appendices D, E, and F.

4.5.1 Monotonicity test in the scatter plots of ∆
(AIC)
i vs the

PDFs’ moments/peakedness

The Spearman’s rank correlation coefficient [106] assesses the extent of any

monotonic relationship between two variables. In this thesis, one variable is ∆
(AIC)
i

and the other variable yi is any entry of the following list:

(1) µ
(params)
2i

(ith PDF’s variance or second central-moment),

(2) γ
(params)
1i

(ith PDF’s skewness or third standardized-moment),

(3) γ
(params)
ei (ith PDF’s excess-kurtosis i.e. kurtosis minus three),

(4) µ
(params)
3i

(ith PDF’s third central-moment),

(5) µ
(params)
4i

(ith PDF’s fourth central-moment),

(6) κ
(params)
4i

(ith PDF’s fourth cumulant),

(7) P(params)
i (ith PDF’s peakedness),

(8) |µ(params)
2i

− µ̂(data)
2 | (absolute deviation of ith PDF’s variance from dataset’s

variance),
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(9) |γ(params)
1i

− γ̂(data)
1 | (absolute deviation of ith PDF’s skewness from dataset’s

skewness),

(10) |γ(params)
ei − γ̂

(data)
e | (absolute deviation of ith PDF’s excess-kurtosis from

dataset’s excess-kurtosis),

(11) |µ(params)
3i

− µ̂
(data)
3 |, (absolute deviation of ith PDF’s third central-moment

from dataset’s third central-moment),

(12) |µ(params)
4i

− µ̂(data)
4 | (absolute deviation of ith PDF’s fourth central-moment

from dataset’s fourth central-moment),

(13) |κ(params)
4i

− κ̂
(data)
4 | (absolute deviation of ith PDF’s fourth cumulant from

dataset’s fourth cumulant),

(14) |P(params)
i −P̂(data)| (absolute deviation of ith PDF’s peakedness from dataset’s

peakedness).

In the above list, the superscript “(params)” shows the number of parameters of

PDFs and the superscript “(data)” is a dataset identifier i.e.

(params) :=


(ii), for 2-parameter PDFs;

(iii), for 3-parameter PDFs;

(iv), for 4-parameter PDFs.

(4.16)

(data) :=



(uppA), for 37/F dataset (a);

(uppB), for 37/F dataset (b);

(midA), for 19/F dataset;

(midB), for 25/F dataset.
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For the dataset identifiers “37/F dataset (a)” and “37/F dataset (b)”, refer to

Chapter 5. For the dataset identifiers “19/F dataset” and “25/F dataset”, refer

to Chapter 6.

The following will define the Spearman’s rank correlation coefficient ρ̂∆,y be-

tween {∆(AIC)
i ,∀ i = 1, 2, · · · , I} and {yi,∀ i = 1, 2, · · · , I}. Suppose there are

altogether I candidate PDFs. Order the entries in {∆(AIC)
i , ∀ i = 1, 2, · · · , I} in

ascending order, such that r
(∆)
i represents the rank of the ith PDF. Similarly, order

the entries {yi,∀ i = 1, 2, · · · , I}, such that r
(y)
i represents the corresponding rank

of the ith PDF. Define

di := r
(∆)
i − r(y)

i . (4.17)

Then, the Spearman’s rank correlation coefficient ρ∆,y between {∆(AIC)
i ,∀ i =

1, 2, · · · , I} and {yi,∀ i = 1, 2, · · · , I} is estimated as

ρ̂∆,y := 1− 6

I(I2 − 1)

I∑
i=1

d2
i . (4.18)

It holds that ρ̂∆,y ∈ [−1,+1], where +1 means a perfect monotonically increasing

relationship, whereas −1 means a perfect monotonically decreasing relationship. A

perfectly monotonically increasing relation has any two 2-dimensional coordinate

values {xi, yi} and {xj, yj}, such that (xi − xj) and (yi − yj) are of same sign.

The above defined ρ̂∆,y may be used as follows to decide if {∆(AIC)
i ,∀ i =

1, 2, · · · , I} and {yi,∀ i = 1, 2, · · · , I} have any monotonic relationship.
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Define the test statistic

t := ρ̂∆,y

√
I − 2

1− (ρ̂∆,y)
2 . (4.19)

The test statistic t, conditioned on a monotonic relationship between the two

random variables, is “student’s t” distributed with the degrees-of-freedom equal

to (I − 2) [107]. Further, define

p-value :=


2 F(student) (t) , if t < 0;

2
{

1− F(student) (t)
}
, if t > 0.

(4.20)

In the above, F(student) (.) denotes the cumulative distribution function of a stu-

dent’s t-distribution with (I − 2) degrees-of-freedom conditioned on a monotonic

relationship between the two random variables. Lastly, the above p-value may be

compared against a preset threshold of α:

(A) The two random variables are not monotonically related, if p-value > α;

(B) The two random variables are monotonically related, if p-value < α.

Setting α smaller (confidence level larger) means more unlikeliness or more

strictness to accept the monotonic relationship between the two random variables.

The commonly used values for α are 0.01 and 0.05.

54



Chapter 5

How the roadway sound-level
distribution varies with the day of
measurement?

This chapter will analyze two datasets collected at the same location on the

same floor (the 37th-floor) of one high-rise building overlooking a highway, but

on two different days. This analysis will show how much the roadway sound-level

distribution could vary with the date of measurement, even if the circumstantial

setting remains the same.

Section 5.1 will introduce the measurements’ urban setting. Section 5.2 will

describe the measurement apparatus. Section 5.3 will statistically show that the

datasets are leptokurtic. Section 5.4 will fit the list of candidate PDFs of Appen-

dices D – F to the datasets. Section 5.5 explains the interrelationships among the

best-fitting 2-, 3-, and 4-parameter PDFs. Section 5.7 investigates if a single scalar

could be enough to statistically predict a PDF’s goodness-of-fit.
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5.1 Measurement environment

The datasets were measured in the neighborhood shown in Figure 5.1. A high-

way, shown running left/right in Figure 5.1, is the “West Kowloon Corridor”, which

extends for 4.2km and is located in Hong Kong [108]. On this highway, vehicular

traffic flowed freely and bidirectionally along a four-lane divided highway, elevated

above surface streets, bordered on one side by high-rise residential buildings, but

open on the other side. The roadway sound of West Kowloon Corridor has been

found in [109] to be the major acoustic-noise source to Wing Cheong Estate.

No traffic signal existed for over 1 km from the Wing Cheong Estate. Hence,

no non-stationarity is caused by the intermittent traffic because a nearby traffic

signal causes cyclic trend in the mean of LAeq,1sec data due to variation in the

number of vehicles passing by the microphone.

On the 37th-floor of a 40-floor high-rise building [110] within this Wing Cheong

Estate, a microphone was hanged about a meter outside the building fac̀ade, as

shown in Figure 5.2. This high-rise building was 30 meters horizontally aside from

the highway. The microphone was 106 meters from the elevated highway. The

time windows of the measured data are reported in Table 5.1. Both days were

work days, not public holidays [111, 112]. Hence, the measurements were taken

during the evening rush hours. 1

1 More than 1 hour measurement could be enough for estimating the noise climate of “evening”
time (19:00 – 21:00) [113]). For instance, [55] examines 24 datasets (more than 24-hours each)
measured at various high-rise buildings and observes that more than 85% of arbitrarily chosen 30-
minute contiguous datasets in “evening” time predict the overall noise climate of the “evening”
time within the accuracy of +/-3 dB(A).
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Table 5.1: The 37th-floor datasets’ measurement windows.

Dataset Date Weekday Time of the day Duration Sample size

37/F dataset (a) January 19, 2015 Monday 18:29:43 - 20:29:41 1:59:58 5399

37/F dataset (b) May 27, 2014 Tuesday 17:37:24 - 19:19:04 1:41:40 4488

5.2 Data acquisition

The measurements used a Brüel & Kjaer sound-level meter type 2250, with

a type 4189 microphone, at a sensitivity of about 50 milli-Volts/Pascal. The

microphone was connected to the sound-level meter with a wire extension. The

loss due to the wire extension was managed by Brüel & Kjaer calibrator type

4231. The sound-level meter automatically logged the data as LAeq,1sec which was

retrieved by Brüel & Kjaer software of ‘evaluator type 7820’.

There was no rain; the wind speed was less than 5 meters/second [61], and the

microphone was covered with a wind shield.

Non-vehicular loud events are manually identified and excised from the datasets.

Each non-vehicular loud event contains a distinctively audible sound in audio files

and that is distinctively visible on the LAeq,1sec time-series chart (because of the

larger LAeq,1sec values). Such non-vehicular loud events include ambulance sirens,

horns, someone adjusting the microphone, hammering, and other construction

noises. Not excised is the vehicular sounds of loud trucks, cars, or motorcycles.

57



Figure 5.1: Google Earth’s 3D-viewer snapshot, showing the measurement’s phys-
ical environment and the microphone’s 37th-floor location.
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Figure 5.2: The microphone was positioned about one meter outside the building
fac̀ade. A 1.5-meter stick provided mechanical support to the microphone, with
the other end of the stick supported by a tripod. A Bruel and Kjaer windscreen
covered the microphone.

5.3 Leptokurtosis in the datasets

Table 5.2 reports the Jarque-Bera test results, the sample skewness, and the

sample kurtosis. Therein, the large positive JB and the small p-values conclude

that the datasets are realizations of a non-Gaussian random phenomenon. The

p-values of less than 2.2× 10−16 rejects the Gaussian realization of the datasets at

a confidence level above 99 %. Table 5.2 also confirms the findings of [39], which

concludes that the PDF of its roadside Leq data is leptokurtic and skewed.

The normalized histograms of the 37th-floor datasets are shown in Figure 5.3.

The sample skewness and sample kurtosis show the data as skewed to the right

with heavy tails. The right tails of both normalized histograms are heavier than
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the left tails. This is due to the occasional occurrence of very loud vehicular

sounds, which produce outliers in the histograms.

Table 5.2: The sample skewness γ̂1, sample kurtosis γ̂2, JB test statistic, and
p-values from the Jarque-Bera test applied on the two datasets of Table 5.1.

Data γ̂1 γ̂2 JB p-value

37/F dataset (a) 0.85 9.22 9349 < 2.2× 10−16

37/F dataset (b) 1.31 12.1 16790 < 2.2× 10−16

(a) 37/F dataset (a) (b) 37/F dataset (b)

Figure 5.3: Normalized histograms of the datasets, showing a skewness unequal to
zero and a kurtosis exceeding 3.

5.4 Various PDF models’ goodness-of-fit

The 2-parameter PDFs (listed in Appendix D) have their ∆
(AIC)
i goodness-of-fit

compared in Table 5.3. The best-fitting PDF is T2 (student’s t-distribution having
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two parameters i.e. degrees-of-freedom parameter (b) and location parameter (a))

with its ∆
(AIC)
i equal to zero. The PDF expression of T2 (in terms of a and b) is

given in Table D.1. T2 is the only PDF with ∆
(AIC)
i < 2 (see Table 4.1). T2 is

symmetric and its degrees-of-freedom parameter (b) controls the kurtosis (which

is 6
b−4

) as well as the variance (which is 1
1−2/b

).

Table 5.4 ranks the various 3-parameter PDFs by ∆
(AIC)
i . Here, the only PDF

with ∆
(AIC)
i < 2 is symT3 (non-standardized student’s t-distribution). symT3 is

the only existing generalization of T2 in the 3-parameter PDFs with a location, a

scale, and a degrees-of-freedom parameter.

Table 5.5 ranks various 4-parameter PDFs according to their ∆
(AIC)
i values. The

37/F dataset (a) is best-fit by sT4 (skewed t distribution) and the 37/F dataset (b)

is best-fit by ghsT4 (generalized hyperbolic skewed student t distribution). gT4

(generalized t distribution) has ∆
(AIC)
i < 2 for 37/F dataset (b), hence well-fitted

(according to Table 4.1).
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Table 5.3: ∆
(AIC)
i of 2-parameter PDFs fitted to the 37/F dataset (a) and 37/F

dataset (b).

37/F dataset (a) 37/F dataset (b)

Goodness-of-fit rank,

r
(∆)
i

PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 T2 0 T2 0

2 HS 6.67 LLg 50.35

3 LLg 23.65 HS 58.79

4 Lg 35.98 Lg 76.62

5 Lp 157.82 Lp 208.77

6 IG 564.85 IG 557.19

7 nT 574.33 LN 585.81

8 LN 587.99 IGs 586.76

9 IGs 589.11 G 617.15

10 G 614.5 nT 661.37

11 Rc 673.66 Rc 683.31

12 N 673.68 N 683.32

13 LC 1239.35 Gb 987.54

14 Cy 1239.93 LC 1114.39

15 Gb 1337.17 Cy 1114.72

16 PLg 3165.33 PLg 3215.5

17 sGo 3237.64 sGo 3747.31

18 W 4084.86 W 4268.83

19 sCS 8899.52 Go 6444.92

20 L 13926.66 sCS 9030.2

21 nCS 17330.93 L 13976.75

22 Go 34565.13 nCS 16204.28
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Table 5.4: ∆
(AIC)
i of 3-parameter PDFs fitted to the 37/F dataset (a) and 37/F

dataset (b).

37/F dataset (a) 37/F dataset (b)

Goodness-of-fit rank,

r
(∆)
i

PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 symT3 0 symT3 0

2 sTK 21.8 sTK 25.73

3 gLg3 67.68 Brxii 40.74

4 Briii 72.43 gLg2 51.17

5 Dg 72.43 Briii 52.82

6 Brxii 85.19 Dg 52.82

7 sLLg 85.52 sLLg 66.67

8 gLg1 94.82 gLg1 66.72

9 gLg2 98.12 gLg3 74.12

10 gLg4 144.43 gLg4 116.12

11 XP 167.62 XG 149.42

12 sLp 202.58 XP 187.6

13 XG 300.97 sLp 221.88

14 pLg3 350.85 IG3 379.14

15 IG3 549.16 Dv 397.12

16 G3 579.71 BS 414.28

17 Dv 591.78 G3 437.44

18 sIGs 651.7 pLg3 452.29

19 BS 654.31 SN 548.68

20 F3 683.57 sIGs 608.94

21 SN 697.75 BP3 647.57

22 Rc3 736.22 GEV 690.28

23 Pii 736.34 Rc3 693.47

24 GEV 965.87 Pii 702.38

25 BP3 1003.08 sGo3 1006.32

26 W3 1206.83 sCy 1130.55

27 sCy 1263.17 W3 1552.69

28 sGo3 1399.86 Go3 4135.56

29 Go3 3613.64 F3 14757.41
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Table 5.5: ∆
(AIC)
i of 4-parameter PDFs fitted to the 37/F dataset (a) and 37/F

dataset (b).

37/F dataset (a) 37/F dataset (b)

Goodness-of-fit rank,

r
(∆)
i

PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 sT4 0 ghst4 0

2 gT4 12.29 gT4 0.72

3 Piv 15.78 gTK4 15.45

4 ghst4 27.68 sT4 21.8

5 JSu 31.79 JSu 30.82

6 gTK4 50.15 NIG 55.35

7 NIG 67.68 gBP4 63.87

8 gBP4 70.76 Piv 64.67

9 glg44 91.22 glg44 75.33

10 Hy 102.14 Hy 91.34

11 VG 126.38 VG 122.15

12 SGED 174.89 SGED 173.65

13 Pvi 580.27 Pvi 463.36

14 Pi 708.3 Pi 468.42
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5.5 The best-fitting 2-, 3-, and 4-parameter PDFs

are theoretically interrelated

The 2-parameter, 3-parameter, and 4-parameter PDFs with ∆
(AIC)
i < 2 are re-

lated theoretically. Please see Figure 5.4. By introducing a scale parameter to T2,

symT3 is obtained. Introducing skewness parameter of the generalized hyperbolic

family (GH family) to symT3 [114], one gets ghsT4 (generalized hyperbolic skewed

student’s t-distribution). Introducing a kurtosis-controlling parameter of skewed

generalized t (SGT) distribution family, symT3 is generalized to gT4 (generalized

t distribution). Introducing the skewness parameter of the SGT family to symT3,

one gets sT4 (skewed t distribution), which belongs to the SGT family.

65



Figure 5.4: The best-fitting (according to Table 4.1) 2-, 3-, and 4-parameter PDFs to 37th-floor datasets. All
generalize the standard student’s t-distribution.
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The 37/F dataset (b) has heavier tail on the right and higher kurtosis than the

37/F dataset (a). This is due to more occurrences of very-loud vehicular sounds

in the 37/F dataset (b) than the 37/F dataset (a). ghsT4 is the only member of

the GH family that has one heavy tail such that

fghsT4 ∼ k1 |x|−d/2−1, when c > 0 and x→ +∞, (5.1)

and one lighter tail such that

fghsT4 ∼ k1 |x|−d/2−1exp (−2 |c x|) , when c > 0 and x→ −∞, (5.2)

where fghsT4 represents the PDF of ghsT4, c is the skewness parameter, d is the

kurtosis-controlling parameter, and k1 is a constant [114, 115].

[92] introduces the skewed t distribution (sT4) of the SGT distribution family

with the intention of adding a skewness parameter to symT3. sT4 indeed fits

better than the generalized t distribution (gT4) of the SGT family [91] for 37/F

dataset (a). However, gT4 fits the 37/F dataset (b) better than the sT4. gT4

generalizes symT3 with an extra parameter that affects the kurtosis/tailedness of

symT3; hence, gT4 can model tail behaviors better than sT4 [91].

5.6 The trade-off between the goodness-of-fit and

the number of parameters of PDFs

The AIC of 2-, 3-, and 4-parameter PDFs are considered together in terms of

their AIC differences (Equation 4.11) in Table 5.6. Focusing on the better-fitting
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PDFs, the 4-parameter PDFs rank higher than the 3-parameter PDFs; and the

3-parameter PDFs rank higher than the 2-parameter PDFs.

Table 5.6: ∆
(AIC)
i of the best-fitting PDFs from Tables 5.3, 5.4, 5.5. Despite the

AIC penalty for the number of parameters, the 4-parameter PDFs’ goodness-of-fit
are ranked higher than the 3-parameter and 2-parameter PDFs for the 37th-floor
datasets.

37/F dataset (a) 37/F dataset (b)

Goodness-of-fit rank PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 sT4 0 ghst4 0

2 gT4 12.29 gT4 0.72

3 Piv 15.78 gTK4 15.45

4 symT3 26.45 sT4 21.8

5 ghst4 27.68 symT3 24.24

6 JSu 31.79 JSu 30.82

7 sTK 48.26 T2 40.97

8 gTK4 50.15 sTK 49.97

9 NIG 67.68 NIG 55.35

10 gBP4 70.76 gBP4 63.87

11 T2 87.03 Piv 64.67

12 glg44 91.22 Brxii 64.98

13 HS 93.71 glg44 75.33

14 gLg3 94.14 gLg2 75.41

15 Briii 98.89 Briii 77.06

16 LLg 110.69 sLLg 90.91

17 Brxii 111.65 gLg1 90.96

18 sLLg 111.98 LLg 91.32

19 gLg1 121.27 Hy 91.34

20 Lg 123.02 gLg3 98.36
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5.7 Moments and peakedness — as a PDF’s suf-

ficient statistics of goodness-of-fit?

This section investigates if a single scalar (like a moment or peakedness) instead

of the entire PDF can suffice to predict a PDF’s goodness-of-fit. Various PDF’s

scalars (listed as (1) to (14) in Section 4.5.1 and based on each candidate PDF’s

fitted parameter values) are plotted individually against ∆
(AIC)
i in Figures 5.5 -

5.10 and Figures H.1 - H.6. The Spearman’s rank correlation coefficient assesses

the monotonicity. The results of this test for 37th-floor datasets are given in Table

5.7. This table only reports the most promising candidate sufficient statistics.

The scalar metrics that do not have significant monotonic trend are reported in

Appendix H.

From Table 5.7, at the significance level α of 0.01,

(i) the variance and the peakedness of the 2-parameter PDFs are monotonically

related to their goodness-of-fit ranks.

(ii) the 3-parameter PDFs’ peakedness is monotonically related to the goodness-

of-fit ranks.

(iii) the 4-parameter PDFs’ excess-kurtosis is monotonically related to the goodness-

of-fit ranks.
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Table 5.7: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test
for 37th-floor datasets. The corresponding scatter graphs for 37/F dataset (a) are
shown in Figures 5.5-5.7. The corresponding scatter graphs for 37/F dataset (b)
are shown in Figures 5.8-5.10. See Section 4.5.1 for the symbols used in this table.

Ordinate, y;
37/F dataset (a)

ρ̂∆,y (p-value)

37/F dataset (b)

ρ̂∆,y (p-value)

2-parameter PDFs

µ
(ii)
2i

0.701 (0.007) 0.804 (0)

|µ(ii)
2i
− µ̂(data)

2 | 0.809 (0) 0.782 (0.001)

P(ii)
i -0.825 (0) -0.881 (0)

|P(ii)
i − P̂(data)| 0.772 (0) 0.894 (0)

3-parameter PDFs
P(iii)
i -0.727 (0) -0.883 (0)

|P(iii)
i − P̂(data)| 0.743 (0) 0.911 (0)

4-parameter PDFs
γ

(iv)
ei -0.964 (0) -0.855 (0.002)

|γ(iv)
ei − γ̂

(data)
e | 0.612 (0.066) 0.855 (0.002)
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) P(params)
i (d) |P(params)

i − P̂(data)|

Figure 5.5: (37/F dataset (a)) The scatter plots show a monotonic trend at α =
0.01 for the 2-parameter PDFs. Each point in the scatter plots compounds to a
PDF. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from dataset’s
variance, (c) PDF’s peakedness, (d) Absolute deviation of PDFs’ peakedness from
dataset’s peakedness.

(a) P(params)
i (b) |P(params)

i − P̂(data)|

Figure 5.6: (37/F dataset (a)) The scatter plots show a monotonic trend at α =
0.01 for the 3-parameter PDFs. Each point in the scatter plots compounds to a
PDF. (a) PDF’s peakedness, (b) Absolute deviation of PDFs’ peakedness from
dataset’s peakedness.
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(a) γ
(params)
ei (b) |γ(params)

ei − γ̂(data)e |

Figure 5.7: (37/F dataset (a)) The scatter plots show a monotonic trend at α =
0.01 for the 4-parameter PDFs. Each point in the scatter plots compounds to a
PDF. (a) PDF’s excess-kurtosis, (b) Absolute deviation of PDFs’ excess-kurtosis
from dataset’s excess-kurtosis.
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) P(params)
i (d) |P(params)

i − P̂(data)|

Figure 5.8: (37/F dataset (b)) The scatter plots show a monotonic trend at
α = 0.01 for the 2-parameter PDFs. (a) PDFs’ variance, (b) Absolute deviation
of PDFs’ variance from dataset’s variance, (c) PDF’s peakedness, (d) Absolute
deviation of PDFs’ peakedness from dataset’s peakedness.

(a) P(params)
i (b) |P(params)

i − P̂(data)|

Figure 5.9: (37/F dataset (b)) The scatter plots show a monotonic trend at α =
0.01 for the 3-parameter PDFs. (a) PDF’s peakedness, (b) Absolute deviation of
PDFs’ peakedness from dataset’s peakedness.
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(a) γ
(params)
ei (b) |γ(params)

ei − γ̂(data)e |

Figure 5.10: (37/F dataset (b)) The scatter plots show a monotonic trend at
α = 0.01 for the 4-parameter PDFs. (a) PDF’s excess-kurtosis, (b) Absolute
deviation of PDFs’ excess-kurtosis from dataset’s excess-kurtosis.
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Chapter 6

How the roadway sound-level
distribution varies with the
microphone’s floor-level in the
high-rise building?

This chapter will compare two datasets, collected on different floors of a same

high-rise building (same as that in Chapter 5), to see how the microphone’s floor

level would affect the sound-level distribution.

Section 6.1 will describe the floor locations where the measurements were taken.

Section 6.2 will statistically show that the datasets are leptokurtic. Section 6.3 will

fit the datasets to the various PDFs in Appendices D to F. Section 6.4 analyzes

the interrelationships of those 2-, 3-, and 4-parameter PDFs with best goodness-

of-fit ranks. Section 6.6 investigates if a single scalar can be enough to predict the

PDF’s goodness-of-fit.
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6.1 The floor locations

The measurement procedure and apparatus were same as described in Sections

5.1-5.2. Measurements were taken at the 19th- and 25th-floors of the same Wing

Cheong Estate where Chapter 5’s 37th-floor datasets were measured.

Again, the non-vehicular distinctively-heard sounds are excised (as described

in Section 5.2) Table 6.1 gives the time windows of data measured at the 19th- and

25th-floor of Wing Cheong Estate. The measurements were done at rush hours.

At the 19th-floor, the microphone was 57.4 meters above the roadway. At the

25th-floor, it was 73.6 meters. Please see Figure 6.1. The microphone was hanged

about 1 meter outside the building fac̀ade. Note that the 19/F dataset and 37/F

dataset (b) are simultaneously measured at the different vertical locations of the

same high-rise building.

Table 6.1: The 19th- and 25th-floor datasets’ measurement windows.

Data Date Weekday Time of the day Duration Sample size

19/F dataset May 27, 2014 Tuesday 18:05:31 – 19:16:20 1:10:49 4234

25/F dataset March 28, 2014 Friday 17:51:10 – 19:26:24 1:35:14 5603

76



Figure 6.1: Google Earth’s 3D-viewer snapshot, showing the measurement’s phys-
ical environment and the microphone’s 19th- and 25th-floors’ location.
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6.2 19/F and 25/F datasets had thinner tails

than the 37th-floor datasets

Sample skewness and sample kurtosis of the datasets of 19th- and 25th-floors

are given in Table 6.2, along with the Jarque-Bera test results. The test statistic

JB concludes (with a confidence level of 99%) that the dataset is not a realization

of Gaussian random entity. The data is slightly skewed to the left and the tails of

the normalized histograms are heavier than that of the Gaussian distribution, but

less heavily than the 37th-floor datasets. The normalized histograms of both the

19th- and 25th-floors datasets are shown in Figure 6.2. This confirms the findings

of [39], which concludes that the PDF of its roadside Leq data is leptokurtic and

skewed.

Table 6.2: The sample skewness γ̂1, sample kurtosis γ̂2, JB test statistic, and
p-values from the Jarque-Bera test applied on the two datasets of Table 6.1.

Data γ̂1 γ̂2 JB p-value

19/F dataset -0.39 4.75 645.35 < 2.2× 10−16

25/F dataset -0.13 4.9 858.84 < 2.2× 10−16
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(a) 19/F dataset (b) 25/F dataset

Figure 6.2: Normalized histograms of 19th-floor and 25th-floor datasets, with skew-
ness unequal to zero and kurtosis exceeding 3.

6.3 Ranking of PDFs by ∆
(AIC)
i for the 19/F and

25/F datasets

The 2-parameter, 3-parameter, and 4-parameter PDFs are fitted to the 19/F

and 25/F datasets and are ranked by their increasing ∆
(AIC)
i .

Table 6.3 reports the 2-parameter PDFs sorted according to increasing ∆
(AIC)
i

values. Lg (logistic distribution a.k.a. sech-squared distribution (‘sech’ stands for

secant-hyperbolic)) is the best-fitting PDF for both the 19th- and the 25th-floor

datasets. Lg and HS (hyperbolic secant distribution) are the best-fitting PDFs for

both datasets. LLg (log-logistic distribution) is the third best-fitting PDF among

the 2-parameter PDFs. If a random variable X is distributed as Lg(a, b), then the

random variable Y = exp(X) is distributed as LLg(ea, 1/b).
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Table 6.3: ∆
(AIC)
i of 2-parameter PDFs fitted to the 19th- and 25th-floor datasets.

19/F dataset 25/F dataset

Goodness-of-fit rank,

r
(∆)
i

PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 Lg 0 Lg 0

2 HS 2.32 HS 17.91

3 LLg 22.13 LLg 19.78

4 Lp 110.9 Lp 211.62

5 N 191.65 T2 236.44

6 Rc 191.66 N 265.64

7 T2 192.18 Rc 265.64

8 G 220.34 G 281.89

9 LN 236.28 LN 292.34

10 IGs 236.66 IGs 292.81

11 nT 245.78 nT 296.62

12 IG 253.74 IG 304.7

13 PLg 610.98 PLg 1312.42

14 W 763.43 LC 1477.45

15 LC 1056.43 Cy 1478.1

16 Cy 1056.91 W 1683.47

17 Gb 1850.21 Gb 1999.77

18 Go 2638.92 sGo 3175.39

19 sGo 3074.11 Go 4506.5

20 sCS 6547.94 sCS 8679.82

21 nCS 12974.84 nCS 17298.37

22 L 14543.73 L 18133.26
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Table 6.4 ranks the 3-parameter PDFs. Briii (inverse Burr or Dagum distri-

bution) is the best-fitting PDF, followed by gLg1 (skew-logistic distribution) for

both the 19/F and the 25/F datasets. Briii covers wider range of skewness and

kurtosis values than Brxii (Burr or Singh-Maddala distribution) [116, 117].

Table 6.5 ranks the 4-parameter PDFs. For the 19/F dataset, the fitted PDFs

with ∆
(AIC)
i < 2 are VG (variance gamma distribution), Hy (hyperbolic distribu-

tion), gBP4 (generalized beta prime distribution), glg44 (exponential generalized

beta of the second type), and NIG (normal inverse Gaussian distribution). And

sT4 (skewed t distribution) has ∆
(AIC)
i = 3.24. sT4 is the only 4-parameter PDF

with ∆
(AIC)
i < 2 for the 25/F dataset.
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Table 6.4: ∆
(AIC)
i of 3-parameter PDFs fitted to the 19th- and 25th-floor datasets.

19/F dataset 25/F dataset

Goodness-of-fit rank,

r
(∆)
i

PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 Briii 0 Briii 0

2 gLg1 0.26 gLg1 5.08

3 gLg2 9.72 Brxii 15.14

4 gLg4 11.83 gLg2 15.26

5 Brxii 13.08 gLg4 22.43

6 sTK 36.96 symT3 30.55

7 gLg3 37.86 sTK 35.88

8 symT3 38.21 gLg3 39.54

9 XP 51.2 sLLg 64.53

10 sLLg 67.32 XP 82.53

11 sLp 114.7 sLp 209.46

12 pLg3 160.27 pLg3 225.25

13 SN 182.55 XG 282.96

14 XG 234.36 SN 283.78

15 Pii 234.37 Rc3 307.79

16 Rc3 234.38 Pii 307.88

17 BS 246.82 BS 314.96

18 G3 258.55 IG3 336.81

19 IG3 269.43 F3 339.43

20 sIGs 281.45 sIGs 339.74

21 W3 344.9 G3 413.69

22 Dv 686.26 W3 629.36

23 GEV 719.35 Dv 708.78

24 Go3 909.65 GEV 926.14

25 sCy 1067.44 sCy 1476.67

26 BP3 1675.37 BP3 1633.07

27 sGo3 1892.95 Go3 1883.87

28 F3 15979.64 sGo3 2042.13
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Table 6.5: ∆
(AIC)
i of 4-parameter PDFs fitted to the 19th- and 25th-floor datasets.

19/F dataset 25/F dataset

Goodness-of-fit rank,

r
(∆)
i

PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 VG 0 sT4 0

2 Hy 0.01 Piv 10.87

3 gBP4 0.9 JSu 10.93

4 glg44 1.08 gBP4 14.09

5 NIG 1.27 NIG 18.41

6 JSu 2.43 glg44 19.05

7 sT4 3.24 ghst4 20.25

8 Piv 5.18 Hy 21.62

9 gTK4 6.6 VG 28.28

10 ghst4 7.46 gTK4 32.35

11 SGED 7.78 gT4 42.73

12 gT4 37.69 SGED 57.29

13 Pvi 254.5 Pvi 337.79

14 Pi 611.27 Pi 6330.2

6.4 Theoretical interrelationship of the best-fitting

2-, 3-, and 4-parameter PDFs

This section theoretically interrelates the best-fitting 2-parameter, 3-parameter,

and 4-parameter PDFs. Please see Figure 6.3. Therein, Lg (logistic distribution)
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can be generalized to gLg1 (skewed logistic distribution) by an additional shape

parameter that controls the skewness and kurtosis together [118]. Briii (inverse

Burr distribution) covers the Lg’s point on skewness-kurtosis plot [116]; 1 so, Lg’s

skewness and kurtosis can also be modeled by Briii by adjusting the Briii’s one

scale and two shape parameters. Briii is a limiting case of gBP4 (generalized beta

prime distribution) and is obtained by evaluating the shape parameter of gBP4

(i.e. ς3) to one. gLg1 can be generalized to gLg44 (generalized logisitic distribution

type IV a.k.a. exponential generalized beta of the second kind) by introducing the

shape parameter δ2 of the exponential generalized beta (EGB) distribution family.

Among the three shape parameters of the GH family (Figure 6.3), one is the

skewness parameter and the other two control the kurtosis. The SGT family also

has one skewness parameter and two kurtosis controlling parameters. The GB

family has three classes: the generalized beta of first kind (GB1), the generalized

beta of second kind (also called the generalized beta prime distribution – gBP4),

and the beta (B) distribution. Beta distribution is also called the Pearson type

I distribution, which is in the list of 4-parameter PDFs, but is not a good fit to

the datasets. The special cases of gBP4 (i.e. Briii, LLg, Brxii, etc.) have bet-

ter goodness-of-fit ranks than the special cases of GB1 and B (i.e. non-central

chi-squared distribution, log normal distribution, gamma distribution). The expo-

nential generalized beta (EGB) distribution family has two special distributions:

generalized exponentials (EGB1) and generalized logistics (EGB2) ??. The gen-

eralized logistics have higher goodness-of-fit ranks.

1 The skewness-kurtosis plot [117] is a plot of squared-skewness vs kurtosis. This plot visual-
izes the range of skewness and kurtosis that a PDF can fit. For instance, the Gaussian distribution
is located at the coordinate (0,3) of the skewness-kurtosis plot. The student’s t-distribution is
represented by the line (0,y), where y > 3.
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Figure 6.3: The best-fitting (according to Table 4.1) 2-, 3-, and 4-parameter PDFs to 19/F and 25/F datasets.
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6.5 The trade-off between the goodness-of-fit and

the number of parameters of PDFs

Table 6.6 ranks the 2-, 3-, and 4-parameter PDFs by their ∆
(AIC)
i , showing 20

best-fitting 2, 3, and 4 parameter PDFs.

The 19/F dataset is better fitted (according to Table 4.1) by the 3-parameter

PDFs (i.e. Briii, gLg1) and the 4-parameter PDFs (i.e. VG, Hy, gBP4, glg44,

NIG). Note that the 19/F dataset is least leptokurtic among all datasets of this

thesis. The 25/F dataset is best-fitted by the 4-parameter PDFs (i.e. sT4, Piv,

JSu) followed by the 3-parameter Briii.
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Table 6.6: ∆
(AIC)
i of the best-fitting PDFs of Tables 6.3, 6.4, 6.5.

19/F dataset 25/F dataset

Goodness-of-fit rank PDF ∆
(AIC)
i PDF ∆

(AIC)
i

1 Briii 0 sT4 0

2 gLg1 0.26 Piv 10.87

3 VG 0.26 JSu 10.93

4 Hy 0.27 Briii 12.81

5 gBP4 1.16 gBP4 14.09

6 glg44 1.34 gLg1 17.89

7 NIG 1.53 NIG 18.41

8 JSu 2.69 glg44 19.05

9 sT4 3.5 ghst4 20.25

10 Piv 5.44 Hy 21.62

11 gTK4 6.86 Brxii 27.95

12 ghst4 7.72 gLg2 28.07

13 SGED 8.04 VG 28.28

14 gLg2 9.72 gTK4 32.35

15 gLg4 11.83 gLg4 35.24

16 Brxii 13.08 gT4 42.73

17 sTK 36.96 symT3 43.36

18 gLg3 37.86 sTK 48.69

19 gT4 37.95 gLg3 52.36

20 symT3 38.21 Lg 52.96
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6.6 Moments and peakedness — as a PDF’s suf-

ficient statistics of goodness-of-fit?

Can one scalar (i.e. a sufficient statistic) instead of the entire PDF be statis-

tically sufficient to predict a PDF’s goodness-of-fit?

To explore this issue, the following will use the Spearman’s rank correlation

coefficient (Section 4.5.1), which statistically decides if the ith PDF’s any scalar

metric is monotonically related to ∆
(AIC)
i . The list of such candidate sufficient

statistics have been given as (1) to (14) in Section 4.5). These are plotted individ-

ually against ∆
(AIC)
i in Figures 6.4 - 6.7 and Figures I.1 - I.6. The Spearman’s rank

correlation significance test results are reported in Table 6.7 for the most promis-

ing candidate sufficient statistics. The scalar metrics that do not have significant

monotonic trend are stated in Appendix I.

In Table 6.7, at the significance level α of 0.01,

(i) the variance and peakedness of the 2-parameter PDFs are monotonically

related to their goodness-of-fit ranks. This is the same as observed for 37th-

floor datasets (Section 5.7).

(ii) the peakedness of 3-parameter PDFs are monotonically related to their goodness-

of-fit ranks. This is the same as observed for 37th-floor datasets.

(iii) the fitted shapes of 4-parameter PDFs are not distinguished by any single

candidate sufficient statistic. It is unlike the 37th-floor datasets where the

excess-kurtosis has the monotonic relationship. The difference is that the

37th-floor datasets have heavier tails than the 19/F and 25/F datasets.
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Table 6.7: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test for
19/F and 25/F datasets. The corresponding scatter graphs for 19/F dataset are
shown in Figures 6.4 and 6.5. The corresponding scatter graphs for 25/F dataset
are shown in Figures 6.6 and 6.6. See Section 4.5.1 for the symbols used in this
table.

Ordinate, y
19/F dataset

ρ̂∆,y (p-value)

25/F dataset

ρ̂∆,y (p-value)

2-parameter PDFs

µ
(params)
2i

0.764 (0.001) 0.746 (0.002)

|µ(params)
2i

− µ̂(data)
2 | 0.703 (0.003) 0.691 (0.004)

P(params)
i -0.754 (0) -0.781 (0)

|P(params)
i − P̂(data)| 0.77 (0) 0.766 (0)

3-parameter PDFs
P(params)
i -0.777 (0) -0.73 (0)

|P(params)
i − P̂(data)| 0.906 (0) 0.874 (0)

4-parameter PDFs None.
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) P(params)
i (d) |P(params)

i − P̂(data)|

Figure 6.4: (19/F dataset) The scatter plots show a monotonic trend at α = 0.01
for the 2-parameter PDFs. Each point in the scatter plots compounds to a PDF. (a)
PDFs’ variance, (b) Absolute deviation of PDFs’ variance from dataset’s variance,
(c) PDF’s peakedness, (d) Absolute deviation of PDFs’ peakedness from dataset’s
peakedness.

(a) P(params)
i (b) |P(params)

i − P̂(data)|

Figure 6.5: (19/F dataset) The scatter plots show a monotonic trend at α = 0.01
for the 3-parameter PDFs. Each point in the scatter plots compounds to a PDF.
(a) PDF’s peakedness, (b) Absolute deviation of PDFs’ peakedness from dataset’s
peakedness.

90



(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) P(params)
i (d) |P(params)

i − P̂(data)|

Figure 6.6: (25/F dataset) The scatter plots show a monotonic trend at α = 0.01
for the 2-parameter PDFs. Each point in the scatter plots compounds to a PDF. (a)
PDFs’ variance, (b) Absolute deviation of PDFs’ variance from dataset’s variance,
(c) PDF’s peakedness, (d) Absolute deviation of PDFs’ peakedness from dataset’s
peakedness.

(a) P(params)
i (b) |P(params)

i − P̂(data)|

Figure 6.7: (25/F dataset) The scatter plots show a monotonic trend at α = 0.01
for the 3-parameter PDFs. (a) PDF’s peakedness, (b) Absolute deviation of PDFs’
peakedness from dataset’s peakedness.
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Chapter 7

Conclusion

Two broad investigations have been covered in two parts of this thesis:

7.1 Part I

New eigen-based direction-finding signal-processing algorithms are advanced

in closed form in Part I (Chapters 1 and 2) of this thesis. These algorithms, de-

veloped here for a single generalized p-u pair, could be used for a multiple-pair

array, thereby relaxing the support-region restrictions. Deterministic Cramér-Rao

bound analysis compares these various configurations by their relative precision

for direction finding, at various orders of sensor directivity. Comparing between

the customary p-u probe and the high-order generalization here: the latter’s array

manifold has a power of k, which fundamentally changes the obtainable Cramér-

Rao bound, in ways that are analyzed in Section 2.3.3’s observations 1) to 6):

If azimuthal resolution is somewhat (but not categorically) more (less) important
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than the elevational resolution, use a high-order figure-8 sensor in a horizontal

(vertical) orientation but in vertical (horizontal) displacement from the omnidirec-

tional pressure-sensor. If the azimuthal resolution is categorically more important

than the elevational resolution, use Configurations (b) and (d). Besides the figure-

8 sensor, other directional sensors could be investigated by the interested reader,

e.g. the “cardioids” [119] or the “hypioids” [120].

7.2 Part II

New insights into the roadway sound-level distribution are explored by ranking

various 2-, 3-, and 4-parameter leptokurtic probability density functions in terms

of their goodness-of-fit to the roadway sound-level datasets measured on different

days and at vertically different floors of a high-rise building. Chapter 4 explains

the parameter estimation algorithm of the candidate PDFs and the goodness-of-fit

ranking with respect to the Akaike information criterion (AIC) differences.

Chapter 5 discusses how the two datasets measured at the same location (37th-

floor of a high-rise building) on two different days were different: The skewness

and kurtosis of one dataset is smaller than the other dataset because less number

of the occasionally-very-loud-vehicular sounds occurred during the measurement

of the former dataset (see Table 5.2). However, for both of these heavy-tailed

datasets,

1. the 4-parameter PDFs are more suitable to fit the distributions as they have

better goodness-of-fit ranks than the 3- and 2-parameter PDFs. And
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2. the generalizations of the student’s t distribution (i.e. the skewed general-

ized t distribution family and the generalized-hyperbolic skewed student t

distribution) are preferable over the other leptokurtic PDFs because of their

best-fitting ranks.

Chapter 6 analyzes how the roadway sound level distribution of the datasets

measured at vertically different floors (i.e. 19th- and 25th-floors) of the same high-

rise building (as that in Chapter 5) were different: The 19/F dataset and 37/F

dataset (b) are measured simultaneously but 19/F dataset has thinner tails (see

Tables 6.2 and 5.2). The 3- and 4-parameter PDFs of generalized hyperbolic distri-

bution, generalized beta of the second kind, and generalized logistic distributions

have best-fitted the thinner-tailed 19/F dataset.

For all the heavy- and thinner-tailed datasets discussed in Chapters 5 and 6, a

promising sufficient statistic to predict the goodness-of-fit (at 99% confidence level)

of a 2-parameter or 3-parameter PDF is the peakedness (Section 4.5) of PDF. The

excess-kurtosis is a promising sufficient statistic for a 4-parameter PDF in case

of heavy-tailed (i.e. 37th-floor) datasets but not for the thinner-tailed (19/F and

25/F) datasets.

7.3 Future extension

7.3.1 Part I

The methodology of Part I can be used for other sensor arrays: The p-u probe

has a figure-8 sensor that can be changed to a sensor with different gain pattern

such as the uni-axial cardioid sensor. The unidirectional cardioid sensor of sec-
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ond order (implemented using a pressure gradient) is commercially available i.e.

Sankens CSR-2, CMS-10, CS-3E, and RCA Type BK-10A. An advantage of using

the unidirectional sensor instead of the bidirectional figure-8 sensor would be in

the reduction of the unambiguous region. Furthermore, to ensure unambiguity

from the second hemisphere, a half-cardioid sensor is also commercially available

i.e. Shure BETA 91A.

7.3.2 Part II

The methodology of Part II may be used for instantaneous sound pressure

data. The advantage of finding a probabilistic model for sound pressure data is

in employing a more appropriate model for Monte Carlo simulations of direction

finding in Part I. The analysis of leptokurtic distribution modeling can readily

be extended to other environments and a more comprehensive analysis can be

performed by collecting data from multiple environments with high-rise buildings.

The impact of occasionally very-loud vehicles in an environment prone to it can

be further explored by using different generalizations of Student’s t distribution

especially the generalized hyperbolic skewed Student t. This may be achieved by

deriving the close-form expressions of the percentile levels of LAeq data, such as

performed in [76].
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Appendix A

The closed-form estimators’
equations of the nine spatial
configurations of the higher-order
p-v probe

This appendix lists the derived closed-form equations of the estimators pro-

posed in Chapter 2.
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Table A.1: Closed-form estimates (θ̂, φ̂) of the azimuth-elevation bivariate
direction-of-arrival, for configurations (a)-(c).

#
figure-8 sensor’s

location

figure-8 sensor’s

orientation
(θ̂, φ̂)

(a) (∆x, 0, 0) x-axis θ̂, φ̂ underivable.

(b) (0,∆y, 0) x-axis

θ̂ =


arcsin

 sgn(u)

cos(φ̂)

∣∣∣∣∣
[
â

(y)
P,Vx

]
2[

â
(y)
P,Vx

]
1

∣∣∣∣∣
1/k
 , if θ ∈ [0, π2 );

π − arcsin

 sgn(u)

cos(φ̂)

∣∣∣∣∣
[
â

(y)
P,Vx

]
2[

â
(y)
P,Vx

]
1

∣∣∣∣∣
1/k
 , if θ ∈ [π2 , π).

φ̂ =


arctan

 1
2π

λ
∆y
6

(
sgn(u)

[
â

(y)
P,Vx

]
2[

â
(y)
P,Vx

]
1

)∣∣∣∣∣
[
â

(y)
P,Vx

]
1[

â
(y)
P,Vx

]
2

∣∣∣∣∣
1/k


+π
2 [|sgn (u)| − sgn (u)] .

(c) (0, 0,∆z) x-axis

θ̂ = arccos

(
1

2π
λ

∆z
6

(
sgn(u)

[
â

(z)
P,Vx

]
2[

â
(z)
P,Vx

]
1

))
.

φ̂ =


arccos

 1
sin (θ̂)

∣∣∣∣∣
[
â

(z)
P,Vx

]
2[

â
(z)
P,Vx

]
1

∣∣∣∣∣
1/k

sgn(u)

 , if φ ∈ [0, π);

2π − arccos

 1
sin (θ̂)

∣∣∣∣∣
[
â

(z)
P,Vx

]
2[

â
(z)
P,Vx

]
1

∣∣∣∣∣
1/k

sgn(u)

 , if φ ∈ [π, 2π).
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Table A.2: Closed-form estimates (θ̂, φ̂) of the azimuth-elevation bivariate
direction-of-arrival, for configurations (d)-(f).

#
figure-8 sensor’s

location

figure-8 sensor’s

orientation
(θ̂, φ̂)

(d) (∆x, 0, 0) y-axis

θ̂ =


arcsin

 sgn(v)

sin(φ̂)

∣∣∣∣∣
[
â

(x)
P,Vy

]
2[

â
(x)
P,Vy

]
1

∣∣∣∣∣
1/k
 , if θ ∈ [0, π2 );

π − arcsin

 sgn(v)

sin(φ̂)

∣∣∣∣∣
[
â

(x)
P,Vy

]
2[

â
(x)
P,Vy

]
1

∣∣∣∣∣
1/k
 , if θ ∈ [π2 , π).

φ̂ =


arctan

2π∆x
λ

{
6

(
sgn(v)

[
â

(x)
P,Vy

]
2[

â
(x)
P,Vy

]
1

)}−1 ∣∣∣∣∣
[
â

(x)
P,Vy

]
2[

â
(x)
P,Vy

]
1

∣∣∣∣∣
1/k


+π
2 [|sgn (u)| − sgn (u)] .

(e) (0,∆y, 0) y-axis θ̂, φ̂ underivable.

(f) (0, 0,∆z) y-axis

θ̂ = arccos

(
1

2π
λ

∆z
6

(
sgn(v)

[
â

(z)
P,Vy

]
2[

â
(z)
P,Vy

]
1

))
.

φ̂ =



arcsin

 1
sin(θ̂)

∣∣∣∣∣
[
â

(z)
P,Vy

]
2[

â
(z)
P,Vy

]
1

∣∣∣∣∣
1/k

sgn(v)


+π (|sgn(v)| − sgn(v)) , if φ ∈ [−π

2 ,
π
2 );

π − arcsin

 1
sin(θ̂)

∣∣∣∣∣
[
â

(z)
P,Vy

]
2[

â
(z)
P,Vy

]
1

∣∣∣∣∣
1/k

sgn(v)

 , if φ ∈ [π2 ,
3π
2 ).
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Table A.3: Closed-form estimates (θ̂, φ̂) of the azimuth-elevation bivariate
direction-of-arrival, for configurations (g)-(i).

#
figure-8 sensor’s

location

figure-8 sensor’s

orientation
(θ̂, φ̂)

(g) (∆x, 0, 0) z-axis

θ̂ = arccos

sgn(w)

∣∣∣∣∣
[
â

(x)
P,Vz

]
2[

â
(x)
P,Vz

]
1

∣∣∣∣∣
1/k
 .

φ̂ =



arccos

(
1

2π
λ

∆x

1
sin(θ̂)

6

(
sgn(w)

[
â

(x)
P,Vz

]
2[

â
(x)
P,Vz

]
1

))
, if φ ∈ [0, π);

2π − arccos

(
1

2π
λ

∆x

1
sin(θ̂)

6

(
sgn(w)

[
â

(x)
P,Vz

]
2[

â
(x)
P,Vz

]
1

))
, if φ ∈ [π, 2π).

(h) (0,∆y, 0) z-axis

φ̂ =



arcsin

(
1

2π
λ

∆y

1
sin(θ̂)

6

(
sgn(w)

[
â

(y)
P,Vz

]
2[

â
(y)
P,Vz

]
1

))
, if φ ∈ [−π

2 ,
π
2 );

2π − arcsin

(
1

2π
λ

∆y

1
sin(θ̂)

6

(
sgn(w)

[
â

(y)
P,Vz

]
2[

â
(y)
P,Vz

]
1

))
, if φ ∈ [π2 ,

3π
2 ).

θ̂ = arccos

∣∣∣∣∣
[
â

(y)
P,Vz

]
2[

â
(y)
P,Vz

]
1

∣∣∣∣∣
1/k

sgn(w)

 .

(i) (0, 0,∆z) z-axis
θ̂ =



arccos
(
|t|1/k

)
,

when
∣∣∣|t|1/k − 1

2π
λ

∆z
6 (t)

∣∣∣ <
∣∣∣− |t|1/k − 1

2π
λ

∆z
6 (−t)

∣∣∣ ;

arccos
(
− |t|1/k

)
,

when
∣∣∣|t|1/k − 1

2π
λ

∆z
6 (t)

∣∣∣ >
∣∣∣− |t|1/k − 1

2π
λ

∆z
6 (−t)

∣∣∣ .
φ̂ underivable

In Table A.3, t =

[
â

(z)
P,Vz

]
2[

â
(z)
P,Vz

]
1

.
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Appendix B

Closed-form Cramèr-Rao bound
expressions for higher-order p-v
probe direction-finding

This appendix lists the Cramèr-Rao bound expressions of the estimators pro-

posed in Chapter 2.
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Table B.1: Cramér-Rao bounds for the generalized p-u probe’s nine configurations.
Here, ∆̃ := 2π∆ε

λ
.

Configuration 2M Ps
Pn

CRB
(·)
θ (θ, φ) 2M Ps

Pn
CRB

(·)
φ (θ, φ)

(a) Vx at (∆x, 0, 0) ∞ ∞

(b) Vx at (0,∆y, 0)
[cos2 k(φ) sin2 k(θ)+1] [∆̃2 cos4(φ) sin2(θ)+k2 sin2(φ)]

∆̃2 k2 cos2 k(φ) cos2(θ) sin2 k(θ)

cos2−2 k(φ) [cos2 k(φ) sin2 k(θ)+1] [∆̃2 sin2(θ) sin2(φ)+k2]
∆̃2 k2 sin2 k+2(θ)

(c) Vx at (0, 0,∆z)
1+cos2 k(φ) sin2 k(θ)

∆̃2 cos2 k(φ) sin2 k+2(θ)

cos2−2 k(φ) [cos2 k(φ) sin2 k(θ)+1] [∆̃2 sin4(θ)+k2 cos2(θ)]
∆̃2 k2 sin2 k+4(θ) sin2(φ)

(d) Vy at (∆x, 0, 0)
[sin2 k(φ) sin2 k(θ)+1] [∆̃2 sin4(φ) sin2(θ)+k2 cos2(φ)]

∆̃2 k2 sin2 k(φ) sin2 k(θ) cos2(θ)

sin2−2 k(φ) [sin2 k(φ) sin2 k(θ)+1] [∆̃2 sin2(θ) cos2(φ)+k2]
∆̃2 k2 sin2 k+2(θ)

(e) Vy at (0,∆y, 0) ∞ ∞

(f) Vy at (0, 0,∆z)
1+sin2 k(φ) sin2 k(θ)

∆̃2 sin2 k(φ) sin2 k+2(θ)

sin2−2 k(φ) [sin2 k(φ) sin2 k(θ)+1] [∆̃2 sin4(θ)+k2 cos2(θ)]
∆̃2 k2 sin2 k+4(θ) cos2(φ)

(g) Vz at (∆x, 0, 0)
cos2−2 k(θ) [cos2 k(θ)+1]

k2 cos2(θ)

[cos2 k(θ)+1] [∆̃2 cos2(φ) cos4(θ)+k2 sin2(θ)]
∆̃2 k2 cos2 k(θ) sin2(φ) sin4(θ)

(h) Vz at (0,∆y, 0)
cos2−2 k(θ) [cos2 k(θ)+1]

k2 cos2(θ)

[cos2 k(θ)+1] [∆̃2 sin2(φ) cos4(θ)+k2 sin2(θ)]
∆̃2 k2 cos2(φ) cos2 k(θ) sin4(θ)

(i) Vz at (0, 0,∆z)
cos2−2 k(θ) [cos2 k(θ)+1]
sin2(θ) [∆̃2 cos2(θ)+k2]

∞
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Appendix C

Non-empirical but theoretically
conjectured distribution models
of roadway sound-level

This appendix surveys the open literature for those probability density models

of roadway sound-level that are based on theoretical conjectures. Please see Table

C.1.
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Table C.1: Earlier probability distribution models of roadway sound.

Ref.

Verification

by Empirical

data?

Traffic flow
CDF or

PDF?
Comments

[72]∗ No NA Both PDF looks non-Gaussian & asymmetric.

[121] No Freely flowing PDF
PDF is based on

normalized sound intensity data.

[74]∗ No Freely flowing Neither PDF is “nearly” Gaussian.

[75]∗ No Freely flowing PDF PDF is not symmetric.

[122] No Interrupted Both
Used Gram-Charlier series type A for

sound intensity ratio.

[123] Yes (roadside) Freely flowing Both
Conclusion: Roadway sound-level intensity ratio is

gamma distributed.

[73]∗ Yes (roadside) Freely flowing CDF Conclusion: CDF is Gaussian but skewed.

[59]∗ Yes (roadside) Interrupted CDF Used Gaussian CDF.

[124]∗ Yes (roadside) Freely flowing PDF
Used Poisson distribution on the number

of passing-by vehicles.

[125]∗ Yes (roadside) Interrupted Both

[60] Yes (roadside) Any Both
Used Gram-Charlier series type A for

sound energy data.

[39]∗ Yes (roadside) Any Both Conclusion: PDF = leptokurtic.

[76]∗ Yes (roadside) Interrupted Both
Used a weighted sum of two

Gaussian PDFs.

∗ used equivalent sound pressure level data Leq.

∗∗ used A-weighted equivalent sound pressure level data LAeq.
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Appendix D

List of 2-parameter PDFs fitted
to the empirical data

Table D.1 lists PDFs with two parameters (a, b) fitted to the empirical data.

Table D.1: The 2-parameter PDFs fitted to the empirical data.

PDF PDF Expression Reference

Gaussian distribution (N)
1√

2πb2
e−

(x−a)2

2b2 , b2 > 0.
Equation (13.1)

of [85]

Logistic distribution a.k.a.

sech-square(d) distribution (Lg)

exp(−x−ab )
b(1+exp(−x−ab ))

2 = 1
4b

sech2
(
x−a
2b

)
, b > 0.

Chapter 22, Equation (2)

of [126]

Hyperbolic secant

distribution (HS)

1
2b
. 1

cosh(π x−a2b )
, b > 0. Equation (1.12) of [127]

Log-logistic distribution (LLg) (b/a)(x/a)b−1

{1+(x/a)b}2 , a > 0, b > 0. Equation (1.1) of [128]

Table D.1 continues on the next page.
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Continuation of Table D.1.

Non-central t distribution (nT)

b
b
2 exp

(
− ba2

2(x2+b)

)
√
πΓ( b

2
)2
b−1

2 (x2+b)
b+1

2

∫∞
0
xb exp

(
−1

2

(
x− ax√

x2+b

)2
)
dx,

b > 0.

Page 77 of [129]

Location family with standard

student’s t distribution (T2)

Γ( b+1
2

)

Γ( b
2

)
√
πb

(
1 + 1

b
(x− a)2)− b+1

2 , b > 0.
Page 507 of [130] with

σ = 1.

Log normal distribution (LN) 1
x
· 1
b
√

2π
exp

(
− (lnx−a)2

2b2

)
, b > 0. Equation (14.3) of [126]

Laplace distribution (Lp) 1
2b

exp
(
− |x−a|

b

)
, b > 0.

Chapter 23, Equation (1)

of [126]

Rice distribution (Rc) x
b2

exp
(
−(x2+a2)

2b2

)
I0

(
xa
b2

)
, a ≥ 0, b ≥ 0. First equation of [131]

Gamma distribution (G) baxa−1e−bx

Γ(a)
, x > 0, a > 0, b > 0. Equation (17.23) of [85]

Inverse gamma distribution (IG) ba

Γ(a)
x−a−1 exp

(
− b
x

)
, x > 0, a > 0, b > 0. Equation (11) of [132]

Inverse Gaussian distribution

(IGs)

[
b

2πx3

]1/2
exp

{
−b(x−a)2

2a2x

}
, x > 0, a > 0, b > 0. Equation (15.4a) of [85]

Paralogistic distribution (PLg) a2(x/b)a

x[1+(x/b)a]a+1 , x > 0, a > 0, b > 0 Section A.2.3.4 of [133]

Weibull distribution (W)


a
b

(
x
b

)a−1
e−(x/b)a x ≥ 0,

0 x < 0,

, a > 0, b > 0. Equation (4-43) of [134]

Cauchy distribution (Cy) 1
πb

[
b2

(x−a)2+b2

]
, b > 0.

Chapter 16,

Equation (16.1)of [85]

Log Cauchy distribution (LCy) 1
xπ

[
b

(lnx−a)2+b2

]
, b > 0. Page 86 of [135]

Gumbel distribution (Gb) exp
[
−
{
x−a
b

+ exp
(
−x−a

b

)}]
, b > 0. Equation (6.21) of [136]

Gompertz distribution (Go) baeaebx exp
(
−aebx

)
, b > 0. Equation (2) of [137]

Shifted Gompertz distribution

(sGo)
be−bxe−ae

−bx [
1 + a

(
1− e−bx

)]
, x ≥ 0, a ≥ 0, b ≥ 0. Equation (2) of [138]

Non-central chi-squared

distribution (nCS)

1
2
e−(x+a)/2

(
x
a

)b/4−1/2
Ib/2−1(

√
ax), x ≥ 0, a > 0, b > 0. Chapter 28 of [85]

Scaled inverse chi-squared

distribution (sCS)

(ba/2)a/2

Γ(a/2)

exp[−ab2x ]
x1+a/2 , x > 0, a > 0, b > 0. Page 480 of [139]

Levy distribution (L)
√

b
2π

e
− b

2(x−a)

(x−a)3/2 , x ≥ a, b > 0. Page 5 of [140]

In Table D.1, Γ(.) = gamma function, and I×(.) = modified Bessel function of

the first kind with × order.
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Appendix E

List of 3-parameter PDFs fitted
to the empirical data

Table E.1 lists PDFs with three parameters (a, b, c) fitted to the empirical data.

Table E.1: The 3-parameter PDFs fitted to the empirical data. If any 2-parameter
PDF represents a special case of a 3-parameter PDF, it is linked by an arrow in
Figure G.1 of Appendix G.

PDF PDF Expression Reference

Skew normal distribution

(SN)

2

b
√

2π
e−

(x−a)2

2b2

∫ c(x−ab )

−∞
e−

t2

2 dt,

b > 0.

Equation (4.2) of [141]

Non-standardized

Student’s t-distribution

(symT3)

Γ( c+1
2

)

Γ( c
2

)
√
πcb

(
1 + 1

c

(
x−a
b

)2
)− c+1

2
,

b > 0, c > 0.
Page 507 of [130]

Table E.1 continues on the next page.
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Continuation of Table E.1.

Birnbaum–Saunders

distribution (BS)

√
x−a
b

+
√

b
x−a

2c(x−a)
φ

(√
x−a
b
−
√

b
x−a

c

)
,

x > a; c, b > 0.

Equation (2.2) of [142]

Burr distribution a.k.a.

Singh-Maddala

distribution (Brxii)

ca
b

(
x
b

)c−1 [
1 +

(
x
b

)c]−a−1
,

x, a, b, c > 0.
Equation (4) of [116]

Generalized logistic

distribution type-I a.k.a.

skewed logistic

distribution (gLg1)

c e
−(x−ab )

b

(
1+e

−(x−ab )
)c+1 , b, c > 0.

Table 9.1.1 of [143]

Generalized logistic

distribution type II

(gLg2)

ce
−c(x−ab )

(1+e
−(x−ab ))c+1

, b, c > 0. Table 9.1.1 of [143]

Generalized logistic

distribution type III

(gLg3)

1
β(c,c)

e
−c(x−ab )

(1+e
−(x−ab ))2α

, b, c > 0. Table 9.1.1 of [143]

Location family with

standard generalized logistic

distribution type IV

(gLg4)

1
β(b,c)

e−c(x−a)

(1+e−(x−a))b+c
, b, c > 0. Table 9.1.1 of [143]

Shifted log-logistic

distribution (sLLg)

(1+
c(x−a)

b )
−(1/c+1)

b

[
1+(1+

c(x−a)
b )

−1/c
]2 , 1 + c(x− a)/b > 0. [144]

Pearson type V (IG3)

|b|c
Γ(c)
|x− a|−c−1e−(b/(x−a)),

b
x−a > 0, b 6= 0, c > 0.

Page 21 of [145]

Exponential Gaussian

distribution (XG)

c
2
e
c
2

(2a+cb2−2x) erfc
(
a+cb2−x√

2b

)
,

b, c > 0.
Equation (1) of [146]

Exponential power

distribution (XP)

c
2bΓ(1/c)

e−(|x−a|/b)c , b, c > 0. Equation (2) of [147]

Table E.1 continues on the next page.
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Continuation of Table E.1.

Generalized extreme

value distribution

(GEV)

1
b
t(x)c+1e−t(x), b > 0

where t(x) =


(1 + c(x−a

b
))−1/c if c 6= 0

e−(x−a)/b if c = 0

.
Equation (2) of [148]

Davis distribution (Dv)

bc(x− a)−1−c(
e

b
x−a − 1

)
Γ(c)ζ(c)

,

x > a; a, b, c > 0.

Equation (7.10) of [149]

Symmetric Tukey lambda

distribution (sTK)

Closed-form does not exist. 1

The quantile function is:

Q(x) = a+ 1
b

[
xc−1
c
− (1−x)c−1

c

]
, b > 0.

Equation (1.6) of [150]

Location family with

standard Beta prime

distribution (BP3)

(x−b)a−1(1+(x−b))−a−c
β(a,c)

, x, a, b, c > 0.
Chapter 24, Equation (28)

of [126]

Location family with

standard Gompertz

distribution (Go3)

baeaeb(x−c) exp
(
−aeb(x−c)

)
, b > 0. Equation (2) of [137]

Non-central F-

distribution (F3)

∞∑
k=0

e−a/2(a/2)k

β( c2 ,
b
2

+k)k!

(
b
c

) b
2

+k ( c
c+bx

) b+c
2

+k
xb/2−1+k,

x, b, c > 0.

Equation (2.19) of [151]

Pearson type III

distribution a.k.a.

location family with

standard gamma

distribution (G3)

1
|b|cΓ(c)

|x− a|c−1e−(x−a)/b,

a > 0, b 6= 0, x−a
b
≥ 0.

Page 14 of [145]

Table E.1 continues on the next page.

1 The package gld (version 2.4.1 of the R software) numerically solves PDF from the quantile
function of the symmetric Tukey lambda distribution.
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Continuation of Table E.1.

Location family with

standard Rice

distribution (Rc3)

(x−c)
b2

exp
(
−((x−c)2+a2)

2b2

)
I0

(
xa
b2

)
,

a ≥ 0, b ≥ 0.
First equation of [131]

Location family with

standard shifted Gompertz

distribution (sGo3)

be−bxe−ae
−bx [

1 + a
(
1− e−bx

)]
,

x ≥ 0, a ≥ 0, b ≥ 0.
Equation (2) of [138]

Location family with

standard Weibull

distribution (W3)


a
b

(
x−c
b

)a−1
e−((x−c)/b)a x ≥ c,

0 x < c,

, a > 0, b > 0. Equation (4-43) of [134]

Location family with

standard paralogistic

distribution (pLg3)

a2((x−c)/b)a

(x−c)[1+((x−c)/b)a]a+1 , x > c, a > 0, b > 0. Section A.2.3.4 of [133]

Skewed Cauchy

distribution (sCy)

1

bπ(
|x−a|2

b2(c sign(x−a)+1)2
+1)

, b > 0,−1 < c < 1 Page 22 of [152]

Skewed Laplace

distribution (sLp3)

e
−|x−a+m|

vb(1+c sign(x−a+m))

2vb
, b > 0,−1 < c < 1.

For values of m,v, see page 14 of [152]
Page 14 of [152].

Pearson type II

distribution (Pii)

Γ(2c)
Γ(c)2

((
x−a
b

) (
1− x−a

b

))c−1
, x−a

b
> 0; b, c > 0. Section 17 of [86]

Scale family with

standard inverse Gaussian

distribution (sIGs)

[
bc

2πx3

]1/2
exp

{
−b(x

c
−a)2

2a2 x
c

}
, x > 0, a > 0, b > 0. Equation (15.4a) of [85]

Inverse Burr distribution

a.k.a. Dagum distribution

(Briii)

ac

x

(
(x
b
)ac(

(x
b
)a + 1

)c+1

)
, x, a, b, c > 0. Equation (22) of [116]

In Table E.1, β(.) = beta function, Γ(.) = gamma function, ζ(.) = Reimann

zeta function, I×(.) = modified Bessel function of the first kind of order × , and

sign(.) = signum function.
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Appendix F

List of 4-parameter PDFs fitted
to the empirical data

Table F.1 lists PDFs with four parameters (a, b, c, d) fitted to the empirical

data.
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Table F.1: The 4-parameter PDFs fitted to the empirical data. If any 3-parameter
PDF represents a special case of a 4-parameter PDF, it is linked by an arrow in
Figure G.1 of Appendix G.

PDF PDF Expression Reference

Exponential generalized

beta of the second kind

a.k.a. location-scale

family with standard

generalized logistic

distribution type IV (glg44)

1
d β(b,c)

e
−c((x−ad ))

(1+e
−((x−ad )))b+c

, b, c, d > 0. Table 9.1.1 of [143]

Generalized hyperbolic

skewed student t (ghsT4)

2
1−d

2 bd|c|
d+1

2 K d+1
2

(√
c2(b2+(x−a)2)

)
exp(c(x−a))

Γ( d2)
√
π(b2+(x−a)2)

d+1
2

,

b > 0, d > 2

Equation (8) of [115]

Variance gamma

distribution (VG)

(
√
d2−b2)

2c
|x−a|c−1/2Kc−1/2(d|x−a|)
√
πΓ(c)(2d)c−1/2 eb(x−a),

c > 0.
Equation (1.14) of [114]

Hyperbolic distribution

(Hy)

(
√
d2−c2)

2bdK1(b(
√
d2−c2))

e−d
√
b2+(x−a)2+c(x−a),

b > 0, |c|< d
Page 14 of [114]

Normal Inverse Gaussian

distribution (NIG)

bdK1

(
d
√
b2+(x−a)2

)
π
√
b2+(x−a)2

eb(
√
d2−c2)+c(x−a),

b > 0, |c|< d.
Page 14 of [114]

Pearson distribution

type I (Pi)

Γ(c+d)
Γ(c)Γ(d)

(
x−a
b

)c−1 (
1− x−a

b

)d−1
,

c, d > 0, 0 < x−a
b
< 1.

Page 11 of [145]

Pearson distribution

type IV (Piv)

|Γ(c+d/2i)
Γ(c) |

2

b β(c−1/2,1/2)

[
1 +

(
x−a
b

)2
]−c

e−d tan−1(x−ab ),

b > 0, c > 1/2, d 6= 0.
Page 16 of [145]

Pearson distribution

type VI (Pvi)

Γ(c+d)
|b|Γ(c)Γ(d)

(
x−a
b

)c−1 (
1 + x−a

b

)−c−d
,

b 6= 0, c, d > 0, x−a
b
> 0.

Page 23 of [145]

Skewed generalized

error distribution (SGED)

de
−(

|x−a+m|
vb(1+c sign(x−a+m))

)d

2vbΓ(1/d)
, b, d > 0; − 1 < c < 1.

For values of m, v, see page 8 of [152]
Page 8 of [152]

Generalized t distribution

(gT4)

c

2vbd1/cβ( 1
c
,d)(
|x−a|c
d(vb)c

+1)
1
c+d

, b, c, d > 0.

For value of v, see page 10 of [152]
Page 10 of [152].

Table F.1 continues on the next page.
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Continuation of Table F.1.

Skewed t distribution

(sT4)

Γ( 1
2

+d)

vb(πd)1/2Γ(d)(
|x−a+m|2

d(vb)2(c sign(x−a+m)+1)2
+1)

1
2 +d

,

b, d > 0;−1 < c < 1.

For values of m, v, see page 12 of [152]

Page 12 of [152]

Generalized beta prime

distribution a.k.a. generalized

beta distribution of second

kind (gBP4)

|a|yac−1

bapβ(c,d)(1+(y/b)a)c+d
, b, c, d > 0. Equation (2.12) of [89]

Generalized lambda

distribution a.k.a.

Tukey-Lambda distribution

a.k.a. asymmetric lambda

distribution (gTK4)

Closed-form does not exist. 1

The quantile function is:

Q(x) = a+ 1
b

[
xc−1
c
− (1−x)d−1

d

]
, b > 0.

Equation (1.6) of [150]

Johnson’s SU distribution (JSu)

d

b
√

2π

1√
1 +

(
x−a
b

)2
e−

1
2(c+d sinh−1(x−ab ))

2

,

b, d > 0.

Equation (33) of [153]

In Table F.1, β(.) = beta function, Γ(.) = gamma function, K×(.) = modified

Bessel function of the second kind of order ×, sign(.) = signum function.

1 The package gld (version 2.4.1 of the R software) numerically solves PDF from the quantile
function of the symmetric Tukey lambda distribution.
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Appendix G

The interrelationships of
2-parameter, 3-parameter, and
4-parameter PDFs

Generalizations of the 2-parameter PDFs to the 3-parameter PDFs and gener-

alization of the 3-parameter PDFs to the 4-parameter PDFs are shown in Figure

G.1. The 4-parameter PDFs possess all parameters of the 3-parameter PDFs, con-

nected by the arrow, plus one additional parameter. And the 3-parameter PDFs

contain all parameters of the 2-parameter PDFs, connected by the arrow, plus one

additional parameter.
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Figure G.1: The interrelationship tree diagram of the 2-, 3-, and 4-parameter PDFs.
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Appendix H

(37th-floor datasets) Scatter-plots

of ∆
(AIC)
i vs y (Section 4.5.1) with

no monotonic trend

This appendix shows the results of Spearman’s rank correlation significance

test of ∆
(AIC)
i vs y (Section 4.5.1) with no significant monotonic trend at α = 0.01:

Section H.1 for 2-parameter PDFs, Section H.2 for 3-parameter PDFs, and Section

H.3 for 4-parameter PDFs.
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H.1 For 2-parameter PDFs

Table H.1: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test.
The corresponding scatter graphs for 37/F dataset (a) are shown in Figure H.1.
The corresponding scatter graphs for 37/F dataset (b) are shown in Figure H.2.
See Section 4.5.1 for the symbols used in this table.

Ordinate, y
37/F dataset (a)

ρ̂∆,y (p-value)

37/F dataset (b)

ρ̂∆,y (p-value)

γ
(params)
1i

0.481 (0.059) 0.475 (0.063)

|γ(params)
1i

− γ̂(data)
1 | -0.397 (0.128) -0.418 (0.107)

γ
(params)
ei 0.095 (0.75) -0.171 (0.541)

|γ(params)
ei − γ̂(data)

e | -0.095 (0.75) 0.171 (0.541)

µ
(params)
3i

0.232 (0.426) 0.389 (0.152)

|µ(params)
3i

− µ̂(data)
3 | 0.714 (0.002) 0.731 (0.001)

µ
(params)
4i

0.127 (0.733) 0.055 (0.881)

|µ(params)
4i

− µ̂(data)
4 | 0.629 (0.014) 0.718 (0.002)

κ
(params)
4i

0.018 (0.973) -0.036 (0.924)

|κ(params)
4i

− κ̂(data)
4 | 0.532 (0.044) 0.491 (0.056)
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(a) γ
(params)
1i

(b) |γ(params)
1i

− γ̂(data)1 |

(c) γ
(params)
ei (d) |γ(params)

ei − γ̂(data)e |

(e) µ
(params)
3i

(f) |µ(params)
3i

− µ̂(data)
3 |

Sub-figures continue on the next page.
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(g) µ
(params)
4i

(h) |µ(params)
4i

− µ̂(data)
4 |

(i) κ
(params)
4i

(j) |κ(params)
4i

− κ̂(data)4 |

Figure H.1: (37/F dataset (a)) The scatter plots with no monotonic trend at
α = 0.01. (a) PDFs’ skewness, (b) Absolute deviation of PDFs’ skewness from
dataset’s skewness, (c) PDF’s excess-kurtosis, (d) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis. (e) PDFs’ third central-moment,
(f) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (g) PDFs’ fourth central-moment, (h) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (i) PDFs’ fourth cumulant,
(j) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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(a) γ
(params)
1i

(b) |γ(params)
1i

− γ̂(data)1 |

(c) γ
(params)
ei (d) |γ(params)

ei − γ̂(data)e |

(e) µ
(params)
3i

(f) |µ(params)
3i

− µ̂(data)
3 |

Sub-figures continue on the next page.
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(g) µ
(params)
4i

(h) |µ(params)
4i

− µ̂(data)
4 |

(i) κ
(params)
4i

(j) |κ(params)
4i

− κ̂(data)4 |

Figure H.2: (37/F dataset (b)) The scatter plots with no monotonic trend at
α = 0.01. (a) PDFs’ skewness, (b) Absolute deviation of PDFs’ skewness from
dataset’s skewness, (c) PDF’s excess-kurtosis, (d) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis. (e) PDFs’ third central-moment,
(f) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (g) PDFs’ fourth central-moment, (h) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (i) PDFs’ fourth cumulant,
(j) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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H.2 For 3-parameter PDFs

Table H.2: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test.
The corresponding scatter graphs for 37/F dataset (a) are shown in Figure H.3.
The corresponding scatter graphs for 37/F dataset (b) are shown in Figure H.4.
See Section 4.5.1 for the symbols used in this table.

Ordinate, y
37/F dataset (a)

ρ̂∆,y (p-value)

37/F dataset (b)

ρ̂∆,y (p-value)

µ
(iii)
2i

0.339 (0.098) 0.38 (0.056)

|µ(iii)
2i
− µ̂(data)

2 | 0.119 (0.578) -0.018 (0.933)

γ
(params)
1i

0.67 (0) 0.228 (0.283)

|γ(params)
1i

− γ̂(data)
1 | -0.637 (0.001) -0.228 (0.283)

γ
(params)
ei -0.341 (0.141) -0.392 (0.08)

|γ(params)
ei − γ̂(data)

e | 0.321 (0.156) 0.405 (0.07)

µ
(params)
3i

0.679 (0) 0.2 (0.337)

|µ(params)
3i

− µ̂(data)
3 | -0.437 (0.033) 0.012 (0.956)

µ
(params)
4i

-0.116 (0.607) -0.217 (0.306)

|µ(params)
4i

− µ̂(data)
4 | 0.106 (0.621) 0.208 (0.316)

κ
(params)
4i

-0.358 (0.111) -0.505 (0.015)

|κ(params)
4i

− κ̂(data)
4 | 0.347 (0.097) 0.452 (0.025)
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) γ
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(g) µ
(params)
3i

(h) |µ(params)
3i

− µ̂(data)
3 |

(i) µ
(params)
4i

(j) |µ(params)
4i

− µ̂(data)
4 |

(k) κ
(params)
4i

(l) |κ(params)
4i

− κ̂(data)4 |

Figure H.3: (37/F dataset (a)) The scatter plots with no monotonic trend at
α = 0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from
dataset’s variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness
from dataset’s skewness, (e) PDF’s excess-kurtosis, (f) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis. (g) PDFs’ third central-moment,
(h) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (i) PDFs’ fourth central-moment, (j) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (k) PDFs’ fourth cumulant,
(l) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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(a) µ
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2 |

(c) γ
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(g) µ
(params)
3i

(h) |µ(params)
3i

− µ̂(data)
3 |

(i) µ
(params)
4i

(j) |µ(params)
4i

− µ̂(data)
4 |

(k) κ
(params)
4i

(l) |κ(params)
4i

− κ̂(data)4 |

Figure H.4: (37/F dataset (b)) The scatter plots with no monotonic trend at
α = 0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from
dataset’s variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness
from dataset’s skewness, (e) PDF’s excess-kurtosis, (f) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis. (g) PDFs’ third central-moment,
(h) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (i) PDFs’ fourth central-moment, (j) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (k) PDFs’ fourth cumulant,
(l) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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H.3 For 4-parameter PDFs

Table H.3: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test.
The corresponding scatter graphs for 37/F dataset (a) are shown in Figure H.5.
The corresponding scatter graphs for 37/F dataset (b) are shown in Figure H.6.
See Section 4.5.1 for the symbols used in this table.

Ordinate, y
37/F dataset (a)

ρ̂∆,y (p-value)

37/F dataset (b)

ρ̂∆,y (p-value)

µ
(iv)
2i

-0.077 (0.807) 0.055 (0.863)

|µ(iv)
2i
− µ̂(data)

2 | 0.363 (0.224) 0.231 (0.448)

γ
(params)
1i

0.505 (0.081) -0.242 (0.426)

|γ(params)
1i

− γ̂(data)
1 | -0.505 (0.081) -0.187 (0.541)

µ
(params)
3i

0.478 (0.101) -0.121 (0.696)

|µ(params)
3i

− µ̂(data)
3 | -0.478 (0.101) -0.308 (0.306)

µ
(params)
4i

-0.624 (0.06) -0.252 (0.43)

|µ(params)
4i

− µ̂(data)
4 | 0.469 (0.127) 0.252 (0.43)

κ
(params)
4i

-0.633 (0.076) -0.308 (0.331)

|κ(params)
4i

− κ̂(data)
4 | 0.357 (0.256) 0.308 (0.331)

P(iv)
i -0.2 (0.492) -0.662 (0.012)

|P(iv)
i − P̂(data)| 0.2 (0.492) -0.147 (0.616)
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(a) µ
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2 |

(c) γ
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3 |
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(g) µ
(params)
4i

(h) |µ(params)
4i

− µ̂(data)
4 |

(i) κ
(params)
4i

(j) |κ(params)
4i

− κ̂(data)4 |

(k) P(params)
i (l) |P(params)

i − P̂(data)|

Figure H.5: (37/F dataset (a)) The scatter plots with no monotonic trend at
α = 0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from
dataset’s variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness
from dataset’s skewness, (e) PDFs’ third central-moment, (f) Absolute deviation
of PDFs’ third central-moment from dataset’s third central-moment, (g) PDFs’
fourth central-moment, (h) Absolute deviation of PDFs’ fourth central-moment
from dataset’s fourth central-moment, (i) PDFs’ fourth cumulant, (j) Absolute
deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant. (k) PDFs’
peakedness, (l) Absolute deviation of PDFs’ peakedness from dataset’s peakedness.
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) γ
(params)
1i

(d) |γ(params)
1i

− γ̂(data)1 |

(e) µ
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3i
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3i
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3 |
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(g) µ
(params)
4i

(h) |µ(params)
4i

− µ̂(data)
4 |

(i) κ
(params)
4i

(j) |κ(params)
4i

− κ̂(data)4 |

(k) P(params)
i (l) |P(params)

i − P̂(data)|

Figure H.6: (37/F dataset (b)) The scatter plots with no monotonic trend at
α = 0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from
dataset’s variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness
from dataset’s skewness, (e) PDFs’ third central-moment, (f) Absolute deviation
of PDFs’ third central-moment from dataset’s third central-moment, (g) PDFs’
fourth central-moment, (h) Absolute deviation of PDFs’ fourth central-moment
from dataset’s fourth central-moment, (i) PDFs’ fourth cumulant, (j) Absolute
deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant. (k) PDFs’
peakedness, (l) Absolute deviation of PDFs’ peakedness from dataset’s peakedness.
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Appendix I

(19/F and 25/F datasets)

Scatter-plots of ∆
(AIC)
i vs y

(Section 4.5.1) with no monotonic
trend

This appendix shows the results of Spearman’s rank correlation significance

test of ∆
(AIC)
i vs y (Section 4.5.1) with no significant monotonic trend at α = 0.01:

Section I.1 for 2-parameter PDFs, Section I.2 for 3-parameter PDFs, and Section

I.3 for 4-parameter PDFs.
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I.1 For 2-parameter PDFs

Table I.1: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test.
The corresponding scatter graphs for 19/F dataset are shown in Figure I.1. The
corresponding scatter graphs for 25/F dataset are shown in Figure I.2. See Section
4.5.1 for the symbols used in this table.

Ordinate, y
19/F dataset

ρ̂∆,y (p-value)

25/F dataset

ρ̂∆,y (p-value)

γ
(params)
1i

0.537 (0.039) 0.531 (0.034)

|γ(params)
1i

− γ̂(data)
1 | 0.829 (0) 0.794 (0)

γ
(params)
ei 0.09 (0.762) 0.086 (0.773)

|γ(params)
ei − γ̂(data)

e | -0.037 (0.904) -0.081 (0.785)

µ
(params)
3i

0.373 (0.209) 0.371 (0.192)

|µ(params)
3i

− µ̂(data)
3 | 0.926 (0) 0.925 (0)

µ
(params)
4i

-0.017 (0.982) -0.017 (0.982)

|µ(params)
4i

− µ̂(data)
4 | 0.857 (0) 0.857 (0)

κ
(params)
4i

-0.017 (0.982) 0.248 (0.492)

|κ(params)
4i

− κ̂(data)
4 | 0.857 (0) 0.846 (0)
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(a) γ
(params)
1i

(b) |γ(params)
1i

− γ̂(data)1 |

(c) γ
(params)
ei (d) |γ(params)

ei − γ̂(data)e |

(e) µ
(params)
3i

(f) |µ(params)
3i

− µ̂(data)
3 |
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(g) µ
(params)
4i

(h) |µ(params)
4i

− µ̂(data)
4 |

(i) κ
(params)
4i

(j) |κ(params)
4i

− κ̂(data)4 |

Figure I.1: (19/F dataset) The scatter plots with no monotonic trend at α = 0.01.
(a) PDFs’ skewness, (b) Absolute deviation of PDFs’ skewness from dataset’s skew-
ness, (c) PDF’s excess-kurtosis, (d) Absolute deviation of PDFs’ excess-kurtosis
from dataset’s excess-kurtosis. (e) PDFs’ third central-moment, (f) Absolute de-
viation of PDFs’ third central-moment from dataset’s third central-moment, (g)
PDFs’ fourth central-moment, (h) Absolute deviation of PDFs’ fourth central-
moment from dataset’s fourth central-moment, (i) PDFs’ fourth cumulant, (j)
Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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(a) γ
(params)
1i

(b) |γ(params)
1i

− γ̂(data)1 |

(c) γ
(params)
ei (d) |γ(params)

ei − γ̂(data)e |

(e) µ
(params)
3i

(f) |µ(params)
3i

− µ̂(data)
3 |
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(g) µ
(params)
4i

(h) |µ(params)
4i

− µ̂(data)
4 |

(i) κ
(params)
4i

(j) |κ(params)
4i

− κ̂(data)4 |

Figure I.2: (25/F dataset) The scatter plots with no monotonic trend at α = 0.01.
(a) PDFs’ skewness, (b) Absolute deviation of PDFs’ skewness from dataset’s skew-
ness, (c) PDF’s excess-kurtosis, (d) Absolute deviation of PDFs’ excess-kurtosis
from dataset’s excess-kurtosis. (e) PDFs’ third central-moment, (f) Absolute de-
viation of PDFs’ third central-moment from dataset’s third central-moment, (g)
PDFs’ fourth central-moment, (h) Absolute deviation of PDFs’ fourth central-
moment from dataset’s fourth central-moment, (i) PDFs’ fourth cumulant, (j)
Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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I.2 For 3-parameter PDFs

Table I.2: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test.
The corresponding scatter graphs for 19/F dataset are shown in Figure I.3. The
corresponding scatter graphs for 25/F dataset are shown in Figure I.4. See Section
4.5.1 for the symbols used in this table.

Ordinate, y
19/F dataset

ρ̂∆,y (p-value)

25/F dataset

ρ̂∆,y (p-value)

µ
(iii)
2i

0.234 (0.25) 0.393 (0.053)

|µ(iii)
2i
− µ̂(data)

2 | 0.359 (0.078) 0.208 (0.328)

γ
(params)
1i

0.608 (0.002) 0.66 (0)

|γ(params)
1i

− γ̂(data)
1 | 0.589 (0.002) 0.531 (0.008)

γ
(params)
ei -0.188 (0.426) -0.203 (0.389)

|γ(params)
ei − γ̂(data)

e | 0.47 (0.033) 0.401 (0.072)

µ
(params)
3i

0.647 (0) 0.633 (0.001)

|µ(params)
3i

− µ̂(data)
3 | 0.657 (0) 0.601 (0.002)

µ
(params)
4i

-0.362 (0.089) -0.292 (0.187)

|µ(params)
4i

− µ̂(data)
4 | 0.338 (0.098) 0.233 (0.272)

κ
(params)
4i

-0.654 (0.001) -0.401 (0.059)

|κ(params)
4i

− κ̂(data)
4 | 0.582 (0.003) 0.503 (0.013)

137



(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) γ
(params)
1i

(d) |γ(params)
1i

− γ̂(data)1 |

(e) γ
(params)
ei (f) |γ(params)

ei − γ̂(data)e |
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(g) µ
(params)
3i

(h) |µ(params)
3i

− µ̂(data)
3 |

(i) µ
(params)
4i

(j) |µ(params)
4i

− µ̂(data)
4 |

(k) κ
(params)
4i

(l) |κ(params)
4i

− κ̂(data)4 |

Figure I.3: (19/F dataset) The scatter plots with no monotonic trend at α =
0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from dataset’s
variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness from
dataset’s skewness, (e) PDF’s excess-kurtosis, (f) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis. (g) PDFs’ third central-moment,
(h) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (i) PDFs’ fourth central-moment, (j) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (k) PDFs’ fourth cumulant,
(l) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) γ
(params)
1i

(d) |γ(params)
1i

− γ̂(data)1 |

(e) γ
(params)
ei (f) |γ(params)

ei − γ̂(data)e |
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(g) µ
(params)
3i

(h) |µ(params)
3i

− µ̂(data)
3 |

(i) µ
(params)
4i

(j) |µ(params)
4i

− µ̂(data)
4 |

(k) κ
(params)
4i

(l) |κ(params)
4i

− κ̂(data)4 |

Figure I.4: (25/F dataset) The scatter plots with no monotonic trend at α =
0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from dataset’s
variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness from
dataset’s skewness, (e) PDF’s excess-kurtosis, (f) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis. (g) PDFs’ third central-moment,
(h) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (i) PDFs’ fourth central-moment, (j) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (k) PDFs’ fourth cumulant,
(l) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
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I.3 For 4-parameter PDFs

Table I.3: ρ̂∆,y and p-value of the Spearman’s rank correlation significance test.
The corresponding scatter graphs for 19/F dataset are shown in Figure I.5. The
corresponding scatter graphs for 25/F dataset are shown in Figure I.6. See Section
4.5.1 for the symbols used in this table.

Ordinate, y
19/F dataset

ρ̂∆,y (p-value)

25/F dataset

ρ̂∆,y (p-value)

µ
(iii)
2i

0.489 (0.093) 0 (1)

|µ(iii)
2i
− µ̂(data)

2 | 0.588 (0.038) 0.341 (0.255)

γ
(params)
1i

0.363 (0.224) 0.83 (0.001)

|γ(params)
1i

− γ̂(data)
1 | 0.945 (0) -0.385 (0.196)

γ
(params)
ei -0.035 (0.921) -0.396 (0.182)

|γ(params)
ei − γ̂(data)

e | 0.58 (0.052) 0.022 (0.949)

µ
(params)
3i

0.352 (0.239) 0.819 (0.001)

|µ(params)
3i

− µ̂(data)
3 | 0.962 (0) -0.357 (0.232)

µ
(params)
4i

-0.209 (0.493) -0.448 (0.147)

|µ(params)
4i

− µ̂(data)
4 | 0.643 (0.021) 0.511 (0.078)

κ
(params)
4i

-0.242 (0.426) -0.455 (0.14)

|κ(params)
4i

− κ̂(data)
4 | 0.681 (0.013) 0.484 (0.097)

P(iv)
i -0.6 (0.026) -0.068 (0.82)

|P(iv)
i − P̂(data)| 0.6 (0.026) 0.305 (0.288)
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) γ
(params)
1i

(d) |γ(params)
1i

− γ̂(data)1 |

(e) γ
(params)
ei (f) |γ(params)

ei − γ̂(data)e |

(g) µ
(params)
3i

(h) |µ(params)
3i

− µ̂(data)
3 |

Sub-figures continue on the next page.
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(i) µ
(params)
4i

(j) |µ(params)
4i

− µ̂(data)
4 |

(k) κ
(params)
4i

(l) |κ(params)
4i

− κ̂(data)4 |

(m) P(params)
i (n) |P(params)

i − P̂(data)|

Figure I.5: (19/F dataset) The scatter plots with no monotonic trend at α =
0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from dataset’s
variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness from
dataset’s skewness, (e) PDFs’ excess-kurtosis, (f) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis, (g) PDFs’ third central-moment,
(h) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (i) PDFs’ fourth central-moment, (j) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (k) PDFs’ fourth cumulant,
(l) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
(m) PDFs’ peakedness, (n) Absolute deviation of PDFs’ peakedness from dataset’s
peakedness.
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(a) µ
(params)
2i

(b) |µ(params)
2i

− µ̂(data)
2 |

(c) γ
(params)
1i

(d) |γ(params)
1i

− γ̂(data)1 |

(e) γ
(params)
ei (f) |γ(params)

ei − γ̂(data)e |

(g) µ
(params)
3i

(h) |µ(params)
3i

− µ̂(data)
3 |
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(i) µ
(params)
4i

(j) |µ(params)
4i

− µ̂(data)
4 |

(k) κ
(params)
4i

(l) |κ(params)
4i

− κ̂(data)4 |

(m) P(params)
i (n) |P(params)

i − P̂(data)|

Figure I.6: (25/F dataset) The scatter plots with no monotonic trend at α =
0.01. (a) PDFs’ variance, (b) Absolute deviation of PDFs’ variance from dataset’s
variance, (c) PDFs’ skewness, (d) Absolute deviation of PDFs’ skewness from
dataset’s skewness, (e) PDFs’ excess-kurtosis, (f) Absolute deviation of PDFs’
excess-kurtosis from dataset’s excess-kurtosis, (g) PDFs’ third central-moment,
(h) Absolute deviation of PDFs’ third central-moment from dataset’s third central-
moment, (i) PDFs’ fourth central-moment, (j) Absolute deviation of PDFs’ fourth
central-moment from dataset’s fourth central-moment, (k) PDFs’ fourth cumulant,
(l) Absolute deviation of PDFs’ fourth cumulant from dataset’s fourth cumulant.
(m) PDFs’ peakedness, (n) Absolute deviation of PDFs’ peakedness from dataset’s
peakedness.
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Appendix J

Mathematical expressions of each
PDFs’ each scalar

This appendix provides the mathematical expressions of each PDFs’ each scalar

(listed as (1) to (6) in Section 4.5.1). These scalar metrics are mathematically

interrelated [154]:

γ1 =
µ3

(µ2)3/2
; (J.1)

γe =
µ4

(µ2)2
− 3; (J.2)

κ4 = µ4 − 3µ2
2. (J.3)
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The central moments are related to the “raw moments” (“moments taken about

zero”), µ′j, j = 1, 2, 3, 4, as below [154]:

µ2 = µ′2 − µ′1
2

; (J.4)

µ3 = µ′3 − 3µ′1µ
′
2 + 2µ′1

3
; (J.5)

µ4 = µ′4 − 4µ′1µ
′
3 + 6µ′1

2
µ′2 − 3µ′1

4
. (J.6)

Equations (J.1) – (J.6) can be used to calculate all candidate scalar metrics if

(A) the first four raw moments, µ′j, j = 1, 2, 3, 4, are given only.

(B) the variance (second central-moment) µ2, the skewness γ1, and the excess-

kurtosis γe are given only.

(C) the variance, the third central-moment µ3, and the fourth central-moment

µ4 are given only.

For calculating peakedness of all candidate PDFs, see Equation 4.15.

(2-parameter PDFs)

Gaussian distribution (N)

µ2 = b2; µ3 = 0; µ4 = 3b4; (J.7)

γ1 = γe = 0; κ4 = 0. (J.8)
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Logistic distribution (Lg) [126, Chapter 22, Section 4]

µ2 =
b2π2

3
; µ3 = 0; µ4 = 0.467 b4π4; (J.9)

γ1 = 0; γe = 1.2; κ4 = 0.134 b4π4. (J.10)

Hyperbolic secant distribution (HS) [127, Section 1.3]

µ2 =
b2π2

4
; µ3 = 0; µ4 = 0.3125 b4π4; (J.11)

γ1 = 0; γe = 2; κ4 = 0.1245 b4π4. (J.12)

Log-logistic distribution (LLg) [133, Section A.2.3.3]

µ2 =
2πa2

b
csc

(
2π

b

)
− π2a2

b2
csc
(π
b

)2

, b > 2; (J.13)

µ3 =
2π3a3

b3
csc
(π
b

)3

− 6π2a3

b2
csc
(π
b

)
csc

(
2π

b

)
+

3πa3

b
csc

(
3π

b

)
, b > 3;

(J.14)

µ4 = −3π4a4

b4
csc
(π
b

)4

+
12π3a4

b3
csc
(π
b

)2

csc

(
2π

b

)
−12π2a4

b2
csc
(π
b

)
csc

(
3π

b

)
+

4πa4

b
csc

(
4π

b

)
, b > 4.

(J.15)
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Non-central t distribution (nT) [155, Page 466]

µ′k =


(
b
2

) k
2

Γ( b−k2 )
Γ( b2)

exp
(
−a2

2

)
dk

dak
exp

(
a2

2

)
, if b > k;

does not exist, if b ≤ k.

(J.16)

Location family with standard student’s t distribution (T2) [156]

µ2 =



b
b−2

, if b > 2;

∞, if 1 < b ≤ 2;

undefined, if b ≤ 1.

(J.17)

µ3 = 0, if b > 3. (J.18)

µ4 =
b2
(

6
b−4

+ 3
)

(b− 2)2 , if b > 4. (J.19)

γ1 =


0, if b > 3;

undefined, if b ≤ 3.

(J.20)

γe =



6
b−4

, if b > 4;

∞, if 2 < b ≤ 4;

undefined, if b ≤ 2.

(J.21)

κ4 =
6 b2

(b− 2)2 (b− 4)
, if b > 4. (J.22)
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Log-normal distribution (LN) [133, Section A.5.1.1]

µ2 = eb
2 − eb

2+2 a. (J.23)

γ1 =
√

eb2−1
(

eb
2

+ 2
)
. (J.24)

γe = 3 e2 b2 + 2 e3 b2 + e4 b2 − 6. (J.25)

µ3 =
√

eb2−1
(

eb
2 − eb

2+2 a
) 3

2
(

eb
2

+ 2
)
. (J.26)

µ4 =
(

eb
2 − eb

2+2 a
)2 (

3 e2 b2 + 2 e3 b2 + e4 b2 − 3
)
. (J.27)

κ4 =
(

eb
2 − eb

2+2 a
)2 (

3 e2 b2 + 2 e3 b2 + e4 b2 − 3
)
− 3

(
eb

2 − eb
2+2 a

)2

. (J.28)

Laplace distribution (Lp) [157]

µ2 = 2 b2; µ3 = 0; µ4 = 12 b2; (J.29)

γ1 = 0; γe = 3; κ4 = 6 b2. (J.30)

Rice distribution (Rc) [158]

µ
′

k = bk2k/2 Γ(1+k/2) 1F1(−k/2; 1;−a2/2b2). (J.31)

where

1F1(−k/2; 1;−a2/2b2) =
∞∑
n=0

(−k/2)(n) (−a2/2b2)
n

1(n)n!
(J.32)
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is the confluent hypergeometric function a.k.a. the Kummer function (of the first

kind) [159, Eq. 13.2.2]. In Equation (J.32), ×(n) is the “rising factorial”:

×(n) = ×(×+ 1)(×+ 2) · · · (×+ n− 1) .

Gamma distribution (G) [160]

µ2 =
a

b2
; µ3 =

2
(
a
b2

) 3
2

√
a

; µ4 =
3 a (a+ 2)

b4
; (J.33)

γ1 =
2√
a

; γe =
6

a
; κ4 =

6 a

b4
. (J.34)

Inverse gamma distribution (IG) [133, Section A.3.2.2]

µ2 =
b2

(a− 1)2(a− 2)
, for a > 2. (J.35)

µ3 =

4
√
a− 2

(
b2

((a−1)2 (a−2))

) 3
2

a− 3
, for a > 3. (J.36)

µ4 =
b4
(

30 a−66
(a−3) (a−4)

+ 3
)

(a− 1)4 (a− 2)2 , for a > 4. (J.37)

γ1 =
4
√
a− 2

a− 3
, for a > 3. (J.38)

γe =
30 a− 66

(a− 3)(a− 4)
, for a > 4. (J.39)

κ4 =
6 b4 (5 a− 11)

(a− 1)4 (a− 2)2 (a2 − 7 a+ 12)
, for a > 4. (J.40)
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Inverse Gaussian distribution (IGs) [161]

µ2 =
a3

b
. (J.41)

µ3 = 3

√
a

b

(
a3

b

) 3
2

. (J.42)

µ4 =
3 a6 (5 a+ b)

b3
. (J.43)

γ1 = 3
(a
b

)1/2

. (J.44)

γe =
15a

b
. (J.45)

κ4 =
15 a7

b3
. (J.46)

Paralogistic distribution (PLg) [133, Appendix A.2.3.4]

µ′k =
bkΓ (1 + k/a) Γ (a− k/a)

Γ (a)
, −a < k < a2. (J.47)
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Weibull distribution (W) [133, Section A.3.2.3]

µ2 = b2

[
Γ

(
1 +

2

a

)
−
(

Γ

(
1 +

1

a

))2
]

(J.48)

µ3 = 2 b3 Γ

(
1

a
+ 1

)3

− 3 Γ

(
2

a
+ 1

)
b3 Γ

(
1

a
+ 1

)
+ Γ

(
3

a
+ 1

)
b3 (J.49)

µ4 = −3 b4 Γ

(
1

a
+ 1

)4

+ 6 Γ

(
2

a
+ 1

)
b4 Γ

(
1

a
+ 1

)2

−4 Γ

(
3

a
+ 1

)
b4 Γ

(
1

a
+ 1

)
+ Γ

(
4

a
+ 1

)
b4

(J.50)

γ1 =
Γ
(
1 + 3

a

)
b3 − 3µσ2 − µ3

σ3
(J.51)

γe =
b4Γ(1 + 4

a
)− 4γ1σ

3µ− 6µ2σ2 − µ4

σ4
− 3 (J.52)

κ4 = −b4

(
6 Γ

(
1

a
+ 1

)4

− 12 Γ

(
1

a
+ 1

)2

Γ

(
2

a
+ 1

)

+4 Γ

(
3

a
+ 1

)
Γ

(
1

a
+ 1

)
+ 3 Γ

(
2

a
+ 1

)2

− Γ

(
4

a
+ 1

)) (J.53)

where µ is mean, and σ2 is the variance.

Cauchy distribution (Cy) [162] All moments are undefined.

Log Cauchy distribution (LCy) [163, Page 443] All moments are un-

defined.
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Gumbel distribution (Gb) [164]

µ2 =
π2b2

6
(J.54)

µ3 = 2.4 b3 (J.55)

µ4 = 14.6 b4 (J.56)

γ1 = 1.14 (J.57)

γe = 2.4 (J.58)

κ4 = 6.5 b4 (J.59)

Gompertz distribution (Go) [137, 165]

µ2 ≈ 2

b2
ea/b

−ab 3F3

1, 1, 1

2, 2, 2;
;
a

b

+
1

2

[
π2

6
+
(
γ + ln

(a
b

))2
]

−
[

1

b
ea/b

(a
b
− ln

(a
b

)
− γ
)]2

(J.60)

γ1 ≈


4.15a0.3 − 5b0.49 − 1.48a+ 4.31b− 4.96ab, if a > 0;

−12
√

6
π3 ζ(3), if a ≈ 0.

(J.61)

γe ≈


−0.75 + 34.13a0.253 + 20b0.311 − 53.51(ab)0.14, if a > 0;

12
5
, if a ≈ 0.

(J.62)

where γ = 0.57722 is the Euler-Mascheroni constant, pFq

a1, ..., ap

b1, ..., bq;
; z

 symbolizes

the generalized hypergeometric function.
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Shifted Gompertz distribution (sGo) [138]

µ2 =
1

b2

[(
1 +

1

a

)∫ a

0

e−T log2(T )dT − 1

a

∫ a

0

Te−T log2 TdT

−
{(

1 +
1

a

)∫ a

0

e−T log(T )dT − 1

a

∫ a

0

Te−T log TdT

}2
] (J.63)

µ2 ≈ π√
(6)b

, if a > 50 (J.64)

γ1 ≈


2 if a < 0.1

1.139 if a > 50

(J.65)

γe ≈


6 if a < 0.1

2.4 if a > 50

(J.66)

where T := ae−bx. For 37/F dataset (a), a = 8.9 × 1011; For 37/F dataset (b),

a = 1.69×1012; For 19/F dataset, a = 3.42×1010; For 25/F dataset, a = 7.59×1011.

Hence, µ2 = π√
(6)b

, γ1 = 1.139, and γe = 2.4. See Table 1 of [138] for more

numerical values of γ1 and γe against different values of a.
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Non-central chi-squared distribution (nCS) [166]

µ2 = 2(b+ 2a) (J.67)

µ3 = 8(b+ 3a) (J.68)

µ4 = 12(b+ 2a)2 + 48(b+ 4a) (J.69)

γ1 =
23/2(b+ 3a)

(b+ 2a)3/2
(J.70)

γe =
12(b+ 4a)

(b+ 2a)2
(J.71)

κ4 = 23(3)! (b+ 3a) (J.72)

Scaled inverse chi-squared distribution (sCS) [167]

µ2 =
2a2b2

(a− 2)2(a− 4)
, for a > 4 (J.73)

γ1 =
4

a− 6

√
2(a− 4), for a > 6 (J.74)

γe =
12(5a− 22)

(a− 6)(a− 8)
, for a > 8 (J.75)

Levy distribution (L) [168] All moments are infinite.
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(3-parameter PDFs)

Skew normal distribution (SN) [168]

µ2 = b2

(
1− 2δ2

π

)
, where δ =

c√
1 + c2

(J.76)

γ1 =
4− π

2

(
δ
√

2/π
)3

(1− 2δ2/π)3/2
(J.77)

γe = 2(π − 3)

(
δ
√

2/π
)4

(1− 2δ2/π)2
(J.78)

Non-standardized Student’s t-distribution (symT3) [169, Page 17]

µ2 =



b2c
c−2

, if c > 2;

∞, if 1 < c ≤ 2;

undefined, if c ≤ 1.

(J.79)

µ3 = 0, if c > 3. (J.80)

µ4 =
b4c2

(
6
c−4

+ 3
)

(c− 2)2 , if c > 4. (J.81)

γ1 =


0, if c > 3;

undefined, if c ≤ 3.

(J.82)
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γe =



6
c−4

, if c > 4;

∞, if 2 < c ≤ 4;

undefined, if c ≤ 2.

(J.83)

κ4 =
6 b4 c2

(c− 2)2 (c− 4)
, if c > 4. (J.84)

Birnbaum-Saunders distribution (BS) [142, Page 323]

µ2 = (cb)2(1 +
5c2

4
) (J.85)

γ1 =
4c(11c2 + 6)

(5c2 + 4)
3
2

(J.86)

γe = 3 +
6c2(93c2 + 41)

(5c2 + 4)2
(J.87)

Burr distribution a.k.a. Singh-Maddala distribution (Brxii) [169,

Page 25],[116, Eq. (5)]

µ2 = −g2
1 + g2, where gr = a β

(
ca− r
c

,
c+ r

c

)
(J.88)

γ1 =
2g3

1 − 3g1g2 + g3

(−g2
1 + g2)

3/2 (J.89)

γe =
−3g4

1 + 6g2
1g2 − 4g1g3 + g4

(−g2
1 + g2)

2 − 3 (J.90)
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Generalized logistic distribution type-I a.k.a. skewed logistic distri-

bution (gLg1) [143, Section 9.2]

µ2 = b2
[
ψ(1)(c) + ψ(1)(1)

]
(J.91)

µ3 = ψ(2)(c)− ψ(2)(1) (J.92)

µ4 = ψ(3)(c) + ψ(3)(1) (J.93)

γ1 =
ψ(2)(c)− ψ(2)(1)

[ψ(1)(c) + ψ(1)(1)]
3/2 (J.94)

γe =
ψ(3)(c) + ψ(3)(1)

[ψ(1)(c) + ψ(1)(1)]
2 − 3 (J.95)

κ4 = ψ(3)(c) + ψ(3)(1)− 3b2
[
ψ(1)(c) + ψ(1)(1)

]
(J.96)

Generalized logistic distribution type II (gLg2) [143, Section 9.2]

µ2 = b2
[
ψ(1)(c) + ψ(1)(1)

]
(J.97)

µ3 = ψ(2)(1)− ψ(2)(c) (J.98)

µ4 = ψ(3)(c) + ψ(3)(1) (J.99)

γ1 =
ψ(2)(1)− ψ(2)(c)

[ψ(1)(c) + ψ(1)(1)]
3/2 (J.100)

γe =
ψ(3)(c) + ψ(3)(1)

[ψ(1)(c) + ψ(1)(1)]
2 − 3 (J.101)

κ4 = ψ(3)(c) + ψ(3)(1)− 3b2
[
ψ(1)(c) + ψ(1)(1)

]
(J.102)
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Generalized logistic distribution type III (gLg3) [143, Section 9.2]

µ2 = 2 b2ψ(1)(c) (J.103)

µ3 = 0 (J.104)

µ4 = ψ(3)(c) (J.105)

γ1 = 0 (J.106)

γe =
ψ(3)(c)

[2ψ(1)(c)]2
− 3 (J.107)

κ4 = ψ(3)(c)− 3[2ψ(1)(c)]2 (J.108)

Location family with standard generalized logistic distribution type

IV (gLg4) [143, Section 9.2]

µ2 = ψ(1)(b) + ψ(1)(c) (J.109)

µ3 = ψ(2)(b)− ψ(2)(c) (J.110)

µ4 = ψ(3)(b) + ψ(3)(c) (J.111)

γ1 =
ψ(2)(b)− ψ(2)(c)

[ψ(1)(b) + ψ(1)(c)]
3/2 (J.112)

γe =
ψ(3)(b) + ψ(3)(c)

[ψ(1)(b) + ψ(1)(c)]
2 − 3 (J.113)

κ4 = ψ(3)(b) + ψ(3)(c)− 3
[
ψ(1)(b) + ψ(1)(c)

]
(J.114)
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Shifted log-logistic distribution (sLLg) [170, Pages 630–631]

µ2 = b2π

c

[
2 csc

(
2π

c

)
− π

c
csc2

(π
c

)]
, for c > 2 (J.115)

γ1 =
3 csc

(
3π
c

)
− 6π

c
csc
(

2π
c

)
csc(π

c
) + 2

(
π
c

)2
csc3

(
π
c

)√
π
c

[
2 csc

(
2π
c

)
− π

c
csc2(π

c
)
]3/2 , for c > 3 (J.116)

γe =

4 csc( 4π
c )− 12π

c
csc( 3π

c
) csc(π

c
)

+12(πc )
2

csc( 2π
c

) csc2(π
c

)−3(πc )
3

csc4(π
c

)

π
c

[
2 csc

(
2π
c

)
− π

c
csc2(π

c
)
]2 − 3, for c > 4 (J.117)

Pearson type V (IG3) [171, Page 83], [133, Section A.3.2.2]

µ2 =
b2

(c− 1)2(c− 2)
(J.118)

γ1 =
4
√
c− 3

c− 4
, c > 3 (J.119)

γe =
30c− 96

(c− 4)(c− 5)
, c > 4 (J.120)
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Exponentially modified Gaussian distribution (XG) [146, Page 1734]

µ2 = 1 +
1

b2c2
(J.121)

µ3 =
2

b3c3
(J.122)

µ4 = 3

(
1 +

2

b2c2
+

3

c4b4

)
(J.123)

γ1 =
2

b3c3

(
1 +

1

b2c2

)−3/2

(J.124)

γe =
3
(
1 + 2

b2c2
+ 3

c4b4

)(
1 + 1

b2c2

)2 − 3 (J.125)

κ4 = 3

(
1 +

2

b2c2
+

3

c4b4

)
− 3

[
1 +

1

b2c2

]2

(J.126)

Exponential power distribution (XP) [172]

µ2 =
b2Γ(3/c)

Γ(1/c)
(J.127)

γ1 = 0 (J.128)

γe =
Γ(5/c)Γ(1/c)

Γ(3/c)2
− 3 (J.129)
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Generalized extreme value distribution (GEV) [148, Page 5]

µ2 =


b2 (g2 − g2

1)/c2 if c 6= 0, c < 1
2
,

b2 π2

6
if c = 0,

∞ if c ≥ 1
2
.

(J.130)

γ1 =


sgn(c)

g3−3g2g1+2g3
1

(g2−g2
1)3/2 if c 6= 0, c < 1

3
,

12
√

6 ζ(3)
π3 if c = 0,

∞ if c ≥ 1
3
.

(J.131)

γe =



g4−4g3g1−3g2
2+12g2g2

1−6g4
1

(g2−g2
1)2 if c 6= 0, c < 1

4
,

12
5

if c = 0,

∞ if c ≥ 1
4
.

(J.132)

Here, gk = Γ(1− kc).

Davis distribution (Dv) [149, Eq. (7.11)]

µk =
bkΓ(c− k)ζ(c− k)

Γ(c)ζ(c)
(J.133)

where ζ(·) represents the Riemann Zeta function.
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Tukey lambda distribution (sTK) [173, Page 79]

µ2 =


2
c2

(
1

1+2c
− Γ(c+1)2

Γ(2c+2)

)
if c > −1/2;

π2

3
, if c = 0.

(J.134)

γ1 = 0, c > −1/3 (J.135)

γe =


(2c+1)2

2(4c+1)

g2
2(3g2

2−4g1g3+g4)
g4(g2

1−g2)
2 − 3,, if c > −1/4;

1.2, if c = 0.

(J.136)

Here, gk = Γ(kc+ 1).

Location family with standard Beta prime distribution (BP3) [174,

Page 29], [175]

µ′k =
k∑
i=0

(
k

i

)
bk−i

β(a+ i, c− i)
β(a, c)

(J.137)

Location family with standard Gompertz distribution (Go3) [137,

165, 175]

µ′k =
k∑
i=0

(
k

i

)
ck−i

i

bi
ea/b

∫ ∞
1

(lnx)i−1 x−1e−
ax
b d

(a
b

)
(J.138)

Non-central F-distribution (F3) [126, Chapter 30]

µ′k =
(c
b

)k Γ
(

1
2
b+ k

)
Γ
(

1
2
c− k

)
Γ
(

1
2
b
)

Γ
(

1
2
c
) k∑

j=0

(
r

j

)
Γ
(

1
2
k
)

Γ
(

1
2
k + j

) (1

2
ab

)j
. (J.139)
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Pearson type III distribution a.k.a. location family with standard

gamma distribution (G3) [176]

µ2 = b2c (J.140)

µ3 =
2 (b2 c)

3
2

√
c

(J.141)

µ4 = 3 b4 c (c+ 2) (J.142)

γ1 =
2√
c

(J.143)

γe =
6

c
(J.144)

κ4 = 6 b4 c (J.145)

Location family with standard Rice distribution (Rc3) [158, 175]

µ
′

k =
k∑
i=0

(
k

i

)
ck−ibi2i/2 Γ(1+i/2) 1F1(−i/2; 1;−a2/2b2). (J.146)
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Location family with standard shifted Gompertz distribution (sGo3)

[138]

µ2 =
1

b2

[(
1 +

1

a

)∫ a

0

e−T log2(T )dT − 1

a

∫ a

0

Te−T log2 TdT

−
{(

1 +
1

a

)∫ a

0

e−T log(T )dT − 1

a

∫ a

0

Te−T log TdT

}2
] (J.147)

µ2 ≈ π√
(6)b

, if a > 50 (J.148)

γ1 ≈


2 if a < 0.1

1.139 if a > 50

(J.149)

γe ≈


6 if a < 0.1

2.4 if a > 50

(J.150)

where T := ae−bx. For 37/F dataset (a), a = 217; For 37/F dataset (b), a = 428;

For 19/F dataset, a = 463; For 25/F dataset, a = 232. Hence, µ2 = π√
(6)b

,

γ1 = 1.139, and γe = 2.4. See Table 1 of [138] for more numerical values of γ1 and

γe against different values of a.

Location family with standard Weibull distribution (W3) [133, Sec-

tion A.3.2.3], [175]

µ′k =
k∑
i=0

(
k

i

)
ck−ibiΓ

(
1 +

i

a

)
. (J.151)
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Location family with standard paralogistic distribution (pLg3) [133,

Appendix A.2.3.4], [175]

µ′k =
k∑
i=0

(
k

i

)
ck−i

biΓ (1 + i/a) Γ (a− i/a)

Γ (a)
, −a < i < a2. (J.152)

Skewed Cauchy distribution (sCy) [152, Page 22] Moments are unde-

fined.

Skewed Laplace distribution (sLp3) [152, Page 14]

µ2 = b2 (J.153)

µ3 = 4(vb)3 c(3 + c2) (J.154)

µ4 = 24(vb)4 (1 + 4c2 + c4) (J.155)

γ1 = 4v3 c(3 + c2) (J.156)

γe = 24v4 (1 + 4c2 + c4) (J.157)

κ4 = 24(vb)4 (1 + 4c2 + c4)− 3b4 (J.158)

where v = [2(1 + c2)]
−1/2

.
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Pearson type II distribution (Pii) [171, Pages 68–69]

µ2 =
b2

2c+ 1
(J.159)

γ1 = 0 (J.160)

γe =
−6

2c+ 3
(J.161)

Scale family with standard inverse Gaussian distribution (sIGs) [161]

µ′k = ckeb/a
√

2b

π
ak−1/2K1/2−k

(
b

a

)
(J.162)

where K·(×) symbolizes the modified Bessel function of the second kind.

Inverse Burr distribution a.k.a. Dagum distribution (Briii) [177,

Eq. (6.7)]

µ′k =
bk β (c+ k/a, 1− k/a)

β (c, 1)
, if − ac < k < a. (J.163)
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(4-parameter PDFs)

Exponential generalized beta of the second kind a.k.a. location-scale

family with standard generalized logistic distribution type IV (glg44)

The raw moments without the location parameter a and scale parameter d are

given below [143]:

m′0 = 1

m′1 =
[
ψ(0)(b)− ψ(0)(c)

]
m′2 =

[
ψ(1)(b) + ψ(1)(c)

]
+
[
ψ(0)(b)− ψ(0)(c)

]2
m′3 =

[
ψ(2)(b)− ψ(2)(c)

]
+ 3m′1m

′
2 − 2m′1

3

m′4 =
[
ψ(3)(b) + ψ(3)(c)

]
+ 4m′1m

′
3 − 6m′1

2
m′2 + 3m′1

4

Then, the raw moments of glg44 are [175]:

µ′k =
k∑
i=0

(
k

i

)
ak−idim′i (J.164)
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Generalized hyperbolic skewed student t (ghsT4) [115]

µ′1 = c+
cb2

d− 2

µ2 =
2β2b4

(d− 2)2(d− 4)
+

b2

d− 2
(J.165)

µ′3 = c3 +
b2 (3c2c+ 3ν)

d− 2
+
b4 (3β + 3cc2)

(d− 2)(d− 4)
+

b6c3

(d− 2)(d− 4)(d− 6)

µ′4 = c4 +
b2 (6c2c+ 4c3c)

d− 2
+
b4 (3 + 12cc+ 6c2c2)

(d− 2)(d− 4)

+
b6 (6β2 + 4cc3)

(d− 2)(d− 4)(d− 6)
+

b8c4

(d− 2)(d− 4)(d− 6)(d− 8)

γ1 =
µ′3 − 3µ′1µ

′
2 + 2µ′1

3

(µ2)3/2
(J.166)

γe =
µ′4 − 4µ′1µ

′
3 + 6µ′1

2µ′2 − 3µ′1
4

(µ2)2
(J.167)

Variance gamma distribution (VG) [114, Page 22]

µ2 =
2c

d2 − b2
+

4cb2

(d2 − b2)2 (J.168)

γ1 = (µ2)−3/2

(
12cb

(d2 − b2)2 +
16cb3

(d2 − b2)3

)
(J.169)

γe = (µ2)−2 12c

(d2 − b2)2

(
(4c+ 8)b4

(d2 − b2)2 +
(4c+ 8)b2

(d2 − b2)
+ c+ 1

)
− 3 (J.170)
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Hyperbolic distribution (Hy) [114, Page 15]

µ2 =
b2

ζ

K2(ζ)

K1(ζ)
+
c2b4

ζ2

(
K3(ζ)

K1(ζ)
− K2

2(ζ)

K2
1(ζ)

)
(J.171)

γ1 = µ2
−3/2

[
c3b6

ζ3

(
K4(ζ)

K1(ζ)
− 3K3(ζ)K2(ζ)

K2
1(ζ)

+
2K3

2(ζ)

K3
1(ζ)

)
+

3cb4

ζ2

(
K3(ζ)

K1(ζ)
− K2

2(ζ)

K2
1(ζ)

)] (J.172)

γe = µ2
2

[
c4b8

ζ4

(
K5(ζ)

K1(ζ)
− 4K4(ζ)K2(ζ)

K2
1(ζ)

+
6K3(ζ)K2

2(ζ)

K3
1(ζ)

− 3K4
2(ζ)

K4
1(ζ)

)
+
b6c2

ζ3

(
6K4(ζ)

K1(ζ)
− 12K3(ζ)K2(ζ)

K2
1(ζ)

+
6K3

2(ζ)

K3
1(ζ)

)
+

3b4

ζ2

K3(ζ)

K1(ζ)

]
− 3

(J.173)

where K× denotes the modified Bessel function of the second kind, and

ζ = b
√
d2 − c2.

Normal Inverse Gaussian distribution (NIG) [178, Eqs. (34)–(37)]

µ2 =
b2d2

(d2 − c2)3/2 (J.174)

γ1 =
3c

d
√
b(
√
d2 − c2)

(J.175)

γe =
3(1 + 4c2/d2)[
b(
√
d2 − c2)

] (J.176)
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Pearson distribution type I (Pi) [171, Pages 69]

µ2 =
b2cd

(c+ d)2(c+ d+ 1)
(J.177)

γ1 =
2 (d− c)

√
c+ d+ 1

(c+ d+ 2)
√
cd

(J.178)

γe =
6[(c− d)2(c+ d+ 1)− cd(c+ d+ 2)]

cd(c+ d+ 2)(c+ d+ 3)
(J.179)

Pearson distribution type IV (Piv) [179, Page 4]

µ2 =
b2

4(c− 1)2(2c− 3)

(
4(c− 1)2 + ν2

)
, for c > 3/2 (J.180)

γ1 =
−2d

(c− 2)

√
2c− 2

(2c− 1)2 + d2
, for c > 2 (J.181)

γe =
6 (c− 1)

[
(2c+ 5)

[
(2c− 1)2 + d2

]
− 8 (2c− 1)2]

(2c− 3) (2c− 4)
[
(2c− 1)2 + d2

] , for c > 5/2

(J.182)

Pearson distribution type VI (Pvi) [171, Chapter 12]

µ′k =
k∑
i=0

(
k

i

)
ak−ibk

β(c+ i, d− i)
β(c, d)

, if − c < k < d. (J.183)

Skewed generalized error distribution (SGED) [152, Pages 8–9]

µk =
k∑
r=0

(
k

r

)[
(1 + c)r+1 + (−1)r (1− c)r+1] (−c)k−r

(
(vb)k

2r−k+1

)[
Γ(2

d
)k−rΓ

(
r+1
d

)
Γ
(

1
d

)k+1−r

]
(J.184)
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where

v =

√
πΓ(1

d
)

π(1 + 3c2)Γ(3
d
)− 16

1
d c2Γ(1

2
+ 1

d
)2Γ(1

d
)

Generalized t distribution (gT4) [152, Pages 10–11]

µ2 = b2 (J.185)

γ1 = 0, cd > 3 (J.186)

γe =
2 β
(

5
c
, d− 4

c

)
β
(
d, 1

c

)
β
(

3
c
, d− 2

c

)2 − 3, cd > 4 (J.187)

Skewed t distribution (sT4) [152, Pages 12–13]

µk =
k∑
r=0

(
k

r

)[
(1 + c)r+1 + (−1)r (1− c)r+1] (−c)k−r

(
(vb)kdk/2

2r−k+1

)
[
β
(
r+1

2
, d− r

2

)
β
(
1, d− 1

2

)k−r
β
(

1
2
, d
)k−r+1

] (J.188)

where

v =
1

d1/2

√
(3c2 + 1)( 1

2d−2
)− 4c2

π

(
Γ(d− 1

2
)

Γ(d)

)2

Generalized beta prime distribution a.k.a. generalized beta distri-

bution of second kind (gBP4) [180, Page 38]

µ′k =
bhB(c+ h/a, d− h/a)

B(c, d)
(J.189)
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Generalized lambda distribution a.k.a. asymmetric lambda distribu-

tion (gTK4) [181, Pages 96-97]

µ′1 =



(−1)4

c(c+1)
+ (−1)3

d(d+1)
, c 6= 0, d 6= 0, c 6= d;

(−1)kc
c+1

, c 6= 0, d = 0;

0, c = d.

(J.190)

µ′2 =



1
c2(2c+1)

− 2β(c+1,d+1)
cd

+ 1
d2(2d+1)

, c 6= 0, d 6= 0;

(2c3+c2−c−1)
c(c+1)(2c+1)

+ 2(E+ψ(1)(c+2))
c(c+1)

, c 6= 0, d = 0;

π2

3
, c = d = 0.

(J.191)

µ′3 =



(−1)4

c3(3c+1)
− 3(−1)4β(c+1,2d+1)

cd2 + (−1)3

d3(3d+1)
, c 6= 0, d 6= 0, c 6= d;

3(−1)4(12c5+10c4−4c3−c2+4c+1)
c2(c+1)(2c+1)(3c+1)

− 3(−1)4(E+ψ(1)(c+2))
c2(c+1)

+
3(−1)4

[
π2

6
+(E+ψ(1)(c+2))

2
−ψ(1)(c+2)

]
c(c+1)

, c 6= 0, d = 0;

0, c = d.

(J.192)

(J.193)
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µ′4 =



1
c4(4c+1)

− 4β(3c+1,d+1)
c3d

+ 6β(2c+1,2d+1)
c2d2

−4β(c+1,3d+1)
cd3 + 1

d4(4d+1)
, c 6= 0, d 6= 0;

4(144c7+156c6−18c5−24c4+7c3−11c2−7c−1)
c3(c+1)(2c+1)(3c+1)(4c+1)

+
12(E+ψ(1)(3c+2))

c3(c+1)
− 12(E+ψ(1)(2c+2))

c3(2c+1)

+
4(E+ψ(1)(3c+2))

c3(3c+1)
−

12
[
π2

6
+(E+ψ(1)(c+2))

2
−ψ(1)(c+2)

]
c2(c+1)

+
6
[
π2

6
+(E+ψ(1)(2c+2))

2
−ψ(1)(2c+2)

]
c2(2c+1)

+

4

 3

(
π2

6 −ψ
(1)(c+2)

)
(E+ψ(1)(c+2))

+(E+ψ(1)(c+2))
3
+2ζ(3)+ψ(2)(c+2)


c(c+1)

, c 6= 0, d = 0;

7π4

15
, c = d = 0.

(J.194)

where E symbolizes the Euler’s constant and ψ(x)(·) represents the polygamma

function.

Note that the kth raw moment of gTK4 exists iff c > − 1
k

and d > − 1
k
.

Johnson’s SU distribution (JSu) [153, Eq. (37)]

µ2 =
b2

2
(ω − 1) (ω cosh(2Ω + 1)) (J.195)

µ3 = −b
3

4

√
ω(ω − 1)2 [ω(ω + 2) sinh(3Ω) + 3 sinh(Ω)] (J.196)

µ4 =
b4

8
(ω − 1)2

[
ω2
(
ω4 + 2ω3 + 3ω2 − 3

)
cosh(4Ω)

+4ω2(ω + 2) cosh(2Ω) + 3(2ω + 1)
] (J.197)

where ω = ed
−2

and Ω = c/d.
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