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Abstract

Recently quantum computing becomes more and more popular and realizable, and
tensor is an effective method in quantum computing. This thesis is devoted to
studying structured tensors and providing several quantum algorithms. Three topics

are included:
1. introducing a new subclass of Hankel tensors and verifying their properties;

2. designing two quantum algorithms for higher order singular value decomposi-

tion;
3. presenting two quantum algorithms for polynomial optimization.

For the first topic, a subclass of Hankel tensors called basic positive semi-definite
(PSD) Hankel tensors is introduced, and the purpose is to find some low-rank basic
PSD non-strong Hankel tensors. It is shown that rank-1 even order strong Hankel
tensors are equivalent to rank-1 basic PSD Hankel tensors, and all even order strong
Hankel tensors with rank larger than 1 can be expressed as the sum of rank-1 basic
PSD Hankel tensors. Thus, the study of non-strong PSD Hankel tensors is reduced
to the study of basic PSD Hankel tensors with rank larger than 1. It is proved that (i)
there are no rank-2 basic PSD Hankel tensors, (ii) rank-3 basic PSD Hankel tensors
with dimension no less than 3 do not exist. Furthermore, an example of basic PSD
Hankel tensor whose rank equals 3 or 4 is provided.

For the second topic, higher order singular value decomposition (HOSVD) is



studied, as it is a vital method for analyzing big data in multilinear algebra and ma-
chine learning. We present two quantum algorithms for HOSVD. The methods allow
one to decompose a tensor into a core tensor containing tensor singular values and
some unitary matrices by quantum computers. Compared to the classical HOSVD
algorithm, our quantum algorithms provide an exponential speedup. Furthermore,
a hybrid quantum-classical algorithm of HOSVD model applied in recommendation
systems is introduced.

For the last topic, the quantum version of Barzilai-Borwein (BB) gradient method
is proposed and applied to polynomial optimization with a unit norm constraint.
It is known that gradient methods are widely used in optimization and machine
learning problems. However, standard gradient descent method usually converges
very slowly while BB gradient method overcomes this obstacle with nearly no more
cost. Our quantum algorithms scale polylogarithmically in the dimension of solution
vector. Compared with the classical counterpart, our quantum methods provide an
exponential speedup, and succeed to find the optimal value in fewer iterations than

the existing quantum gradient methods.
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Chapter 1

Introduction

1.1 Background

Quantum computing has caught more people’s eyes in the recent years, as classi-
cal computing is reaching its limit. Quantum computing uses quantum-mechanical
phenomena for computation, such as superposition and entanglement. The device
that performs such computation is called the quantum computer. Last year, Google
invented a 53-qubit quantum computer and claimed that it outperforms the cur-
rent best supercomputer when running random quantum circuits, which is named
as “quantum supremacy” or “quantum advantage” [3]. This milestone will speed up
the development of quantum computing.

As the quantum physicists are working on setting up the quantum computers,
theoretical research on quantum algorithms and programming is also being con-
ducted. The concept of quantum computing was proposed in the early 1980s. In 1982,
the famous theoretical physicist, Richard Feynman, claimed that the real world is
quantum-mechanical. He pointed out that a quantum computer may simulate things
that a classical computer could not [26]. In 1994, Peter Shor designed a quantum
algorithm for factoring integers, which is exponentially faster than the corresponding
classical algorithm [70]. This algorithm is able to break the current cryptography

system if the large-scale quantum computer is built. Shor’s algorithm made scientists



convinced that quantum computing has a great potential. In 1996, Grover developed
a quantum algorithm that searches an unstructured database for an entry quadrati-
cally faster than the classical counterparts [30]. In 2009, the HHL algorithm, named
after Harrow, Hassidim and Lloyd, solves a linear system exponentially faster than
the classical counterpart. During the last decade, many quantum machine learning
[10] algorithms are proposed, such as quantum support vector machine [65], quantum
Boltzmann machine [2] and etc.

Quantum algorithms are usually implemented by quantum circuits, which are
based on quantum bits and logic gates. All the quantum bits and logic gates can
be considered as tensors, thus composing a tensor network. Tensor network is a
graphical representation of tensors, and it is an efficient method to simulate quan-
tum circuits, which is applied by many researchers such as IBM and Google teams
[57, 3]. Besides that, a multipartite quantum state corresponds to a tensor (or hy-
permatrix). Therefore, the entanglement of a multipartite quantum state is studied
by the spectral properties of tensors [34, 35, 63].

In this thesis, I focus on the quantum algorithms related to tensors. Two quan-
tum algorithms for higher order singular value decomposition are proposed, and two
quantum algorithms for BB gradient method are designed for polynomial optimiza-
tions. Also, a subclass of Hankel tensors is introduced to study the property of

structured tensors.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows.
In Chapter 2, some concepts in quantum computing, the definitions and mul-
tiplications related to tensors are introduced. Moreover, some well-known tensor

decompositions and tensor networks are illustrated.



In Chapter 3, we discuss the quantum operations on tensors. The data structure
of tensors with quantum access is proposed. Then, the quantum matrix unfolding is
designed.

In Chapter 4, Hankel tensors are first introduced. Then, the definition of basic
positive semi-definite (PSD) Hankel tensor is proposed and the relationships between
strong Hankel tensors and basic PSD Hankel tensors are also given. After that, it is
proved that within mth-order n-dimensional PSD Hankel tensors, rank-2 basic PSD
Hankel tensors do not exist. Moreover, the existence of rank-3 basic PSD Hankel
tensors whose dimensions are not smaller than 3 is disproved. Finally, a 4th-order
2-dimensional basic PSD Hankel tensor whose rank is 3 or 4 is presented.

In Chapter 5, the definition and properties of higher order singular value de-
composition (HOSVD) are introduced. Two quantum higher order singular value
decomposition algorithms are presented, and the computational complexity is dis-
cussed then. After that, we give an application of HOSVD model on quantum rec-
ommendation systems. At last, we summarize the results and compare the quantum
HOSVD algorithm with the classical counterpart.

In Chapter 6, the classical Barzilai-Borwein (BB) gradient method is introduced,
and the detailed polynomial optimization problem is stated. After that, two kinds
of quantum BB gradient methods are described. Then, the convergence and compu-
tational complexity are discussed, and the numerical results are listed and compared
with the quantum standard gradient descent method. Eventually, the quantum BB
algorithms are confronted with the classical counterparts.

In the last chapter, conclusions and some future work are discussed.






Chapter 2

Preliminaries

2.1 Quantum Computing

In this section, some concepts in quantum computing are introduced, which can

be found in [51].

Definition 2.1. (Quantum state)
The state space of a quantum system is a Hilbert space. The system is completely

described by its state vector, which is a unit vector in the Hilbert space.

Definition 2.2. (Quantum bit (Qubit))

The state space is C? with basis vectors

HELCERHEL 21

An arbitrary state vector is given by

[y =al0)+BI1), ol +]8]° =1 (2.2)

Quantum states are represented by Dirac notation (or called bra-ket notation).
The conjugate transpose of ket [¢)), denoted by (4|, is a row vector.

The ket |1 is a pure state. A quantum system may also be in a mixed state,



usually characterized by the density matrix

M-1
p= Y pilpyl, p>0, >pi=1 (2.3)
=0 :

J

The density matrix is positive semi-definite and its trace is 1.

Definition 2.3. (Composite system)
The state space of the composite system, composed of subsystems A and B, is the
tensor product Hilbert space Hy ® Hp. If the state vectors of A and B are |1p4) and

|Yp) respectively, then the state vector of the composite system is

[Ya) ®¥B) = [Yavs) (2.4)
where tensor product ® refers to Kronecker product.

An entangled state is a state which cannot be written as a product state
[Va) ®[¢p).

A quantum circuit consists of qubits and logic gates. Quantum logic gates are
local unitary operations that act on a small number of qubits. A unitary operator is
a bounded linear operator U : H — H on a Hilbert space H that satisfies UTU =

UUT =1, where U' is the conjugate transpose of U.

Definition 2.4. (Quantum measurement)
Quantum measurements are described by a collection {M,,} of measurement opera-
tors. The index m refers to the measurement outcome that may occur in the experi-

ment.

If the state of the quantum system is [¢)) before the measurement, then the

probability that result m occurs is

p(m) = (Y| M M,, |1, (2.5)
6



and the state of the system immediately after measurement is

M., [¢)

. 2.6
p(m) -

The operators satisfy the completeness condition: Y, M/ M,, = L.

Definition 2.5. (Partial trace)
Suppose there is a bipartite system, whose state is described by a density operator p.

The reduced density operator for the first subsystem is defined by

p1 = tra(p), (2.7)

where try 1s a map of operators known as the partial trace over the second subsystem.

The partial trace is defined as
try (a1 {az| & |b1)<ba|) = |a1) {az| tr(|b1)<be|)
= (ba[b1) [a1)<az|, (2.8)

where |ay) and |ay) are two states in the first subsystem, |b1y and |by) are two states

in the second subsystem.

Recall that discrete Fourier transform (DFT) takes as input a vector of complex
numbers, xg,...,xy_1 where the length N of the vector is a fixed parameter. It

outputs a vector of complex numbers yq, ..., yny_1, defined by

ﬂ\

N—
Z 27r1]k/N (29)

The quantum Fourier transform is exactly the same transformation and presented in

the following lemma.

Lemma 2.1. The quantum Fourier transform (QFT) on an orthonormal basis
{105, [1),--- [N — 1)} is defined to be a linear operator with the following action on

7



the basis states,
1 Nl
i) = —= D, eI ). (2.10)
VN k=0

By the above two equations, we have

N—1 N—-1
Dailiy = >y lky. (2.11)
j=0 k=0

Denote N = 2". For n bits, the complexity of DFT is O(n2"), while that of QFT is

only O(n?), so that QFT provides an exponential speedup.

2.2 Definitions and Multiplications of Tensors

A tensor (or hypermatrix) is a multi-array. The definition and the multiplications

related to tensors are given in this section. More details can be found in [62, 61].

Definition 2.6. An mth-order tensor A = (a;,..;, ) € F>2xIm s q multi-array
of U7\ I; entries, where ij € [I;] for j € [m] and F is a field. (I, 1y, ..., L) is the

dimension of A.

The entries can be also represented as A (iy, i2,...,%4y,). When I} = I = --- =
I, = n, Ais called an mth-order n-dimensional tensor. Usually, we consider real and
complex tensors, i.e., F = R or C. Denote the set of all the real (complex) mth-order
n-dimensional tensors Ty (5 ).

For any tensor A € TX ifits entries a;,..;,,’s are invariant under any permutation

Uz
of its indices, then A is called a symmetric tensor. Let the set of all the real
symmetric mth-order n-dimensional tensors be Sy, .

For A€ S,,, and x € R", we have a homogeneous polynomial f(x) of n variables

and degree m,

f(x)=A-x"":= AxX™ = Z Wiy ooy Tiy ** * T - (2.12)



Note that there is a one-to-one correspondence between homogeneous polynomials

and symmetric tensors.

Definition 2.7. For even order tensor A€ Sy, ., if f(x) =0 for allx € R, then the
homogeneous polynomial f(x) and symmetric tensor A are called positive semi-
definite (PSD). If f(x) > 0 for all nonzero x € R™, then f(x) and A are called
positive definite (PD).

Definition 2.8. Given a tensor A € Ch>x2x>xIm and q matriz B € C**!* their

k-mode tensor-matrix multiplication

Iy,
(‘A Xk B)i1i2"'ik—1jkik+1'"im = Z Qg ig_1igigr1im bjkik (2'13)
ir=1
produces an Iy x Iy x -+ x Iy X Ji X Iy q X -+ x I, tensor.

Definition 2.9. The outer product of two tensors A = (a;,..;, ) € Chxl2xxIm

and B = (b ) € Clm+rxIo denoted as AoB, is (a;,...;,,b ) g Chixlzx—xlp,

i1 Tp i1 -ip

Definition 2.10. The inner product of two tensors A, B € Clv*2xxIm = denoted

as A-B or (A, B), is defined as

n I
A-B= Z Z A3 i Divigeriin s (2.14)

i1=1 im=1
where = 1s the conjugate.

Definition 2.11. The induced norm /A - A is called the Frobenius norm of A, de-

I I
noted as | Al|p. The ly-norm of the tensor A is defined as | A, = Z e Z |@iyigei,, |-
=1 i1



2.3 Tensor Decompositions and Tensor Networks

It is known that matrices can be expressed as a sum of rank-1 matrices by singu-
lar value decomposition (SVD). The singular values are the principal components of
the matrix, and we can compress the matrix by eliminating several smallest singular
values. Due to the complex structure of tensors, there do not exist such powerful
decompositions as matrix SVD. In the following, some well-known tensor decompo-

sitions modified from SVD are introduced.

Definition 2.12. (CP Decomposition) [14, 32]
For any tensor A € RIvI2xxIm "4t has q tensor rank decomposition or CANDE-
COMP/PARAFAC (CP) decomposition that it may be represented with a suitably

large v as a linear combination of r rank-1 tensors:
T
A=Y avio-ovp, (2.15)
k=1

with each a € R, vi e R™, fori=1,...m.

We usually use r to define the rank of tensor A.
If A is a symmetric tensor, then we have the following symmetric CP decompo-

sition

A= Z A VL O+ 0VE = Z agvy™. (2.16)

;__v___/

Accordingly, the minimum of r is the symmetric rank of A.

Definition 2.13. (Tensor-train Decomposition) [55]
For tensor A € ClvxzxxIm by tensor-train (TT-) decomposition the entries can be

approximated by a series of matrices

Aliy,ig, .. i) = G1(i1)Ga(iz) - - G (im), (2.17)

10



where Gy(iy) is an r_1 X v, matriz, and the boundaries ro = r,, = 1.

Actually, the matrix Gy/(ix) is a third-order tensor G, then the decomposition is
rewritten as

A(il,iz,---,im) = Z G, (040>i17041)92 (a17i2,042)"'gm (amflaimaam)a

03y 1,0

(2.18)

where Gy, is an 11 x I X 1y, tensor. The values ry, k € [m —1] are called the TT-rank
or bond dimension.

Tensor-train decomposition is a powerful tool for quantum mechanics, since its

structure resembles a pure quantum state of several particles. It is also named as

matrix product state (MPS), and a multipartite quantum state can be written in the

following form:

[0y = > t0[Gain)Galia) - - G (i) finiz -+ i) - (2.19)

11,82, ytm
Definition 2.14. (Tucker Decomposition) [78]
For tensor A € Clv<lx=xIn if there exist matrices X = [x$x{) .. -x%:)] e Clrxlx

with HXE,I:)H =1 for k € [m] and iy € [I;] such that
A=8x; XU %y XO x50 x,, X0 (2.20)

then (2.20) is said to be a Tucker decomposition of A, and S = (Si,iy..i,,) 15 called

the core tensor of A.

If we remain the first r;, columns of X*), ie., X*) = [ng)xgk) . -x&i)] e Clexrk,
then core tensor § € C™*"2**"m Thjg is called the truncated Tucker Decomposition

[43].

Definition 2.15. (Hierarchical Tucker Decomposition) [31]
The tensor A € ChxI2x=xIm s decomposed into a multi-layer of tensors through

11



Hierarchical Tucker (HT) decomposition by

o
(bl:.j:’y — Z aL],’YXOQJ*La o) X0>2j7a
07

a=1
ri—1
l,j,’y_Z Liy 11—12j—1,c 1—1,25,a
= Cl
s T i
order 2(—1 order 2l 1
(2.21)
rL—2
¢L—1,j,7 _ L 1,]7¢L 2,25— laO¢L 2,25,
1 —— e
“ order 7 order

rL—
L 1,1,a L—1.2,«
Z ol

———

m m
order = order =

where {x%7 7} are the assembling vectors in the first layer, the intermediate

m],v€[ro]

weights {a Y e Rt , the weights in the final layer {a¥ € R™-1}

}le L—1],j€[N /24 ~e[r

and {¢lyj7’y}ZE[L_I],je[m/QZ];ye[rl] are 2'th-order tensors.

It is proved in [19] that a deep neural network corresponds to a HT decomposition,
and a HT decomposition of polynomial size is able to express a CP decomposition

with exponential size.

For A € TR

s aSSume r = maxj 7k, then the number of parameters we use to

approximate the original tensor by the above tensor decompositions is given in Table
2.1.

Tensor networks (TNs) represent a high order tensor as interconnected lower
order tensors. It is a direct way to realize tensor decompositions in the form of
tensor networks. The basic TN notations and some famous tensor networks are
given in Fig. 2.1 and Fig. 2.2 [18].

12



Tensor decomposition | The number of parameters
CP O(mnr)
truncated Tucker O(r™ + mnr)
TT O(mnr?)
HT O(mnr + mr?)

Table 2.1: The space complexity of tensor decompositions.

Scalar Vector Matrix
a a J
= —ol [ Ay
0=0 I[/|=0 jo 18
Diagonal Orthogonal
Tensor Tensor Tensor

I R S
3 ] A [ R AR
1, h R R

Figure 2.1: Basic tensor network notations.

Figure 2.2: Some examples of tensor networks.
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Chapter 3

Quantum Tensor Operations

In this chapter, some quantum operations on tensors are given, and these operations

will be applied in the quantum algorithms in Chapters 5 & 6.

3.1 Quantum Data Structure of Tensors

T

A normalized vector x = (z1,29,...,2,) € R™ can be loaded into a quantum

register by an oracle named quantum random access memory (qRAM) [29]:

x o ) = 3 ot 1) (3.1)

with preparation time O(logn). Note that in quantum computing the indices usually
count from 0. The operation of qRAM is non-trivial to implement. A necessary
condition to realize a quantum exponential speedup is the operation running in time
at most polylogarithmic in n.

Similarly, a tensor A € Tﬁ,‘in can be accessed by the following multipartite state

n—1

|\I/> = Z Qiyig- i |Z.1Z.2 T Zm>’ (32>

i1 1i2smmmrin =0
where i, = 0,...,n — 1 for k € [m]. This procedure can be achieved in time
O(mlogn).

15



A possible realization of qRAM is the data structure designed by Kerenidis and
Prakash in [58, 39], which is a classical data structure with quantum access. The
information is stored classically, but it can be accessed in quantum superposition. In
the following, we first introduce the tree data structure for matrices and then extend

this data structure to both real and complex mth-order tensors.

Lemma 3.1. (Tree data structure for matrices) [39]

Consider a matriz A = (a;;) € RV with w nonzero entries. Let A; be its i-th

row of A, and A = ||A1HF [|Ao]2. |Adll, -« |Ar_1ll2] - There exists a data structure

storing the matriz A in O(wlog?®(I,15)) space such that a quantum algorithm having

access to the data structure can perform the mapping

. . 1=
Up : [ip]0) — i) |A;) = Al Z aij |1y 17)
7 §=0

for 1=0,---,1 —1;

I1—-1

Uo: 1) = IA)13) = a7 3, I4da 115>

for 7=0,---,I,—1 (3.3)
in time O(polylog(1115)).

In simple terms, there exists a unitary operator U 4 that prepares A by

1

Ua(|0y™ ™ Joy=™) = MZ% 215 (3.4)

in O(polylog(/113)) time.

0 [

. 0 0 coss —sing
_ ey _ oy U 5
] andR,(0) =e cos 2I isin 2Y [ sin§ cos !

—i

Denote Y = [ 0
1 0

For example, for a 4-dimensional vector in the data structure as follows to be pre-

pared as a 2-qubit state

) = 04|00 + 0.4 |01) + 0.8 |10) + 0.2 |11),
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/\
0.32 0.68
VoSN

two rotations are necessary to be performed on the initial state |00), the first rotation
is

(Ry(2 arccos v/0.32) ® I) 05|05 = (v/0.32]0) + v0.68]1)) 0. (3.5)

Then, the second rotation is
m 0.64
<|0> (O|®R, (5) +1){1|®R, (2 Arccos 4 /m» (+/0.3210) + +/0.68 1)) |0
=0.4100) + 0.4]01) + 0.8 |10) + 0.2 |11 ). (3.6)

Theorem 3.1. (Tree data structure for tensors)
For a tensor A € R(C)lv>l2xxIm there exists a data structure for storing A with

quantum access in time O(polylog(I11s -+ I,,)).

Proof. We prepare a series of unitary operators and append an ancilla |0) at the

17



front when applying every operator

In—1
U, 1[0) = o) = A DUIAG, - i) |7 lim)
[
-1 |0> |¢m> - |¢m71>
Im—1—-11,—1
1 " X ”"4(77 alm lalm)HF
- A ) 7 Zm /Lm
AT, 2, 20 TAC ale Gl lines) i)
Iyy1-11,-1
‘AH Z Z ”"4 ] :aim—laim)”F |@m—1>|2m>

~1=0 im,=0

I1—1 Im—1

Uy :(0) ) — [¢1) = Do Dy i i) fim) (3.7)
HAH

11=0 im =0

Basically, the data structure consists of several binary trees named as Bi(k), 1

0,...,Ix — 1,k € [m]. The top root stores the Frobenius norm of A. The root of
each Bi(k) stores the value |A(:, ..., iks1,- -, im)||% for k € [m — 1] and the weight
of an interior node is just the sum of the weights of its children. The leaf nodes

at the bottom store the weights a? and its sign sgn(a;,q,...i,,) for real tensors.

Wiz im
For complex tensors, there is one more layer of binary trees for storing the real and
imaginary parts of a complex entry a;,;,...,, and their signs. Therefore, one more
qubit is required for storing a complex tensor, and the extra time is O(1) so we
can omit it. If a quantum algorithm has access to this data structure, a series of

controlled rotations are applied on the initial state in time O([log ] - - [log I,]).
We consider it as O(polylog(I11s -+ I,)). O

For demonstration, the graph illustrations of the data structure for a real and

complex 2 x 2 x 2 tensor are given in Fig. 3.1 and 3.2 respectively.
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|7 =1

,/ 
JAG, 2, 0) [ JAG,: D
. T :
JA(:,0,0)[3 JA(:,1,0)[3
/\ /\

A(0,0,0)? A(1,0,0)? A(0,1,0)? A(1,1,0)?
sgn(A(0,0,0)) sgn(A(1,0,0)) sgn(A(0,1,0)) sgn(A(1,1,0))

Figure 3.1: The data structure for a real 2 x 2 x 2 tensor.

A3 = 1
weonm
Weook  lacwo
w0ior  Jadeor |
/\ /\

Re(A(0,0,0))? Im(.A(0,0,0))? Re(A(1,0,0))? Im(A(1,0,0))?
sgn(Re(A(0,0,0))) sgn(Im(.A(0,0,0))) sgn(Re(A(1,0,0))) sgn(Im(.A(1,0,0)))

Figure 3.2: The data structure for a complex 2 x 2 x 2 tensor.

3.2 Quantum Matrix Unfolding

In the following, the matrix unfolding which transforms a tensor to a matrix is

introduced, and the quantum operations to perform matrix unfolding are described.

Definition 3.1. For an mth-order tensor A € Chvf2xxIm  the mode-k matrix
unfolding A®) e Clexi2els) contains the element Qj,..i,, at the position with row
number i, and column number
(ips1 — Digaolpss - LDy - Tyey + (iheo — Vdpgsdpqa - LDy do -+ - Dy + -+
+ (i — VD)L Ty + (ig — D odg - Ijq + (g — V) I3ly - I 4 -+ - + g1
By the above construction, the rank of A® is at most I;;. Clearly, the elements of

tensor A and unfolding matrix A®*) have a one-to-one correspondence to each other.
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1(k)
TkJk

The quantum unfolding matrix A®) = (a

(k)

operator Ugp:

Ai1igmipm, ilig s Zm>

Wiy, |Zk2k+1 R 2 X5

n—1nm-1-1
1k
-5
i,=0 Jr=0

ikJk

likJk)

) can be processed by a SWAP

i)

(3.8)

where |ji) = |iks1 - Imi1 -+ - ig_1). For example, for a 2 x 2 x 2 tensor A, the entries

correspond to those of mode-3 unfolding matrix A® by

(3

00 [000) — ap) |00)

(3

010 [010) — al |01)

(3

a101 [101) — @S 12)

13
13

ayn [111) — /P |13) .

The corresponding SWAP operator is U(s:;) = (SWAP

(3.9)

® I)(I ® SWAP), where I

is a 2 x 2 identity matrix, and SWAP is the well-known 4 x 4 SWAP operator

SWAP = Z;,z:o || ® |7){|. The circuit of the above operations and tensor input

is given in Fig. 3.3. Except for mode-1 unfolding which does not require SWAP

operations, other mode-k unfoldings require m — 1 SWAP operations. Combined

with the complexity of input, the total complexity is still O(mlogn).
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i1) = |0) —
i9) = [0) U4
i3) = 0) —

Figure 3.3: The quantum circuit to perform mode-3 matrix unfolding of a 2 x 2 x 2
tensor. The unitary operator U 4 is the one for preparing tensor A.
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Chapter 4

Basic PSD Hankel Tensors

4.1 Introduction

The concept of Hankel tensors was first introduced by Luque and Thibon [48]
to our best knowledge. Papy, De Lathauwer, and Van Huffel [56] initially employed
Hankel tensors in the harmonic retrieval problem, which is at the heart of many signal
processing problems. Hankel tensors have been widely applied in signal processing
[4, 12, 15, 24], automatic control [71], and geophysics [54, 77]. Particularly, the
positive semi-definiteness of Hankel tensors can be a criterion for the solvability of
multidimensional moment problems [8, 44, 60].

It was proved by D. Hilbert [33] that for homogeneous polynomials, only in the
following three cases, a positive semi-definite (PSD) polynomial is definitely a sum-
of-squares (SOS) polynomial: 1) n = 2; 2) m = 2; 3) m = 4 and n = 3, where m
is the degree of the polynomial and n is the number of variables. Hilbert proved
that in all the other possible combinations of n and even m, there are PSD non-SOS
(short for PNS as in [17]) homogeneous polynomials. The most well-known PNS
homogeneous polynomial is the Motzkin function [49] with m = 6 and n = 3. A
homogeneous polynomial is uniquely corresponding to a symmetric tensor [62], and
a Hankel tensor is clearly a symmetric tensor.

In [59], it was showed that an mth-order n-dimensional tensor is a Hankel tensor
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if and only if it has a Vandermonde decomposition. Two classes of PSD Hankel
tensors were identified: even order strong Hankel tensors and even order complete
Hankel tensors. It was proved in [46] that complete Hankel tensors are strong Hankel
tensors, and even order strong Hankel tensors are SOS tensors. There were also
some examples of SOS Hankel tensors and PSD Hankel tensors which are not strong
Hankel tensors. Thus, a question was raised in [46]: Are all PSD Hankel tensors SOS
tensors? If there are no PNS Hankel tensors, the problem for determining a given
even order Hankel tensor is PSD or not can be answered by solving a semi-definite
linear programming problem. The problem raised by the above question is called
the Hilbert-Hankel problem, which is the first one of three open problems on Hankel
tensors [73].

Generalized anti-circulant tensors [45] were studied, which are one special class of
Hankel tensors. The necessary and sufficient conditions for positive semi-definiteness
of even order generalized anti-circulant tensors in some cases were given, and the
tensors are strong Hankel tensors and SOS tensors in these cases. An inheritance
property was established in [59] for strong Hankel tensors, and this property was
then extended to general Hankel tensors in [25], which means that if a lower-order
Hankel tensor is positive semi-definite (or positive definite, or negative semi-definite,
or negative definite, or SOS), then its associated higher-order Hankel tensor with the
same generating vector, where the higher order is a multiple of the lower order, is
also positive semi-definite (or positive definite, or negative semi-definite, or negative
definite, or SOS, respectively). In addition, the SOS decomposition of strong Hankel
tensors was also given in [25]. Other discussions about PSD Hankel tensors, SOS
Hankel tensors and PNS Hankel tensors and some regions where PNS Hankel tensors
do not exist were given in [16]. More properties of the above tensors are introduced in
Chapter 5 of [62]. An algorithm for computing Vandermonde rank decompositions
for all Hankel tensors was given in [50] and it was also proved that for a generic
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Hankel tensor of order even or three, the CP rank, symmetric rank, border rank,
symmetric border rank and Vandermonde rank are all the same.

Ding, Qi, and Wei [25] proved that a Hankel tensor is a strong Hankel tensor
if and only if it admits a Vandermonde decomposition with positive coefficients or
an augmented Vandermonde decomposition with positive coefficients. Thus, the
decomposition of strong Hankel tensors has been settled. However, still little is
known for non-strong Hankel tensors. Some non-strong PSD Hankel tensors were
characterized in [80], yet a systematic investigation on non-strong Hankel tensors
needs to be conducted.

Here we continue to study positive semi-definite Hankel tensors that are not
strong. A new subclass of Hankel tensors called basic PSD Hankel tensors is intro-
duced. We show that a rank-1 even order Hankel tensor is a strong Hankel tensor
if and only if it is a basic PSD Hankel tensor, and even order strong Hankel tensors
with rank higher than 1 can be represented as the sum of rank-1 basic PSD Hankel
tensors. Therefore, the study of non-strong PSD Hankel tensors is converted to the
study of basic PSD Hankel tensors with rank > 1. The properties of basic PSD
Hankel tensors and decomposition of non-basic PSD Hankel tensors will help us find
solutions to the three open problems on Hankel tensors in further research, since all

of the open problems are in the context of PSD Hankel tensors.

4.2 Preliminaries

Definition 4.1. (Hankel tensor) [46, 59
Let v = (vq,- - ,v(n,l)mH)T. Define A = (a;,...i,,) € Sm.n by
iy iy, = Vit tip—m—+1s (41)

foriy, -+ iy € [n]. Then A is called a Hankel tensor and v is called the generating
vector of A.
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If A is a Hankel tensor, then homogeneous polynomial f(x) = Ax™ is called a

Hankel polynomial. Let A = (a;;) be an [(”_1%””2] X [(n_lgm”] matrix with a;; =

Vi+j—1, Where vg[(nle)m] is an additional number which can be arbitrarily selected

when (n—1)m is odd. Such A is called a Hankel matrix, associated with the Hankel
tensor A. When (n — 1)m is even, the associated Hankel matrix is unique. Recall
from [59] that A is called a strong Hankel tensor if there exists an associated
Hankel matrix A which is positive semi-definite. Let g(y) = y'Ay, where y =
T
(yh e ,y(nfl)erQ) and A is an associated Hankel matrix of A. Then, A is a strong
2

Hankel tensor if and only if g is PSD for at least one associated Hankel matrix A of
A.

In [25], it is proved that if v°™ is a rank-1 Hankel tensor, then v = «(1,&,--- ;&) T
or ae, = a(0,0,---,0,1)T, here vectors (1,&, -, 1)T and e, are called Vander-

monde vectors.

Lemma 4.1. Let A be an mth-order n-dimensional Hankel tensor and the rank of
its associated Hankel matriz be r. A is a strong Hankel tensor if and only if it admits

a Vandermonde decomposition with positive coefficients:
A= apvym, (4.2)

ar > 0, vi are Vandermonde vectors.

Also, there are many PSD Hankel tensors that are not strong Hankel tensors. For
-
instance, consider the Hankel tensors A generated by v = (vo, 0,---,0,Vm-1)m,0,---,0, U(nfl)m)
2

where n is odd. Such Hankel tensors are called truncated Hankel tensors in [80].

.
Ifv= (vg,O, e 0, V(n1ym, 0, - - ,O,v(n,l)m) where n is odd, then f(x) and g(y)
2
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have a simple form

J(x) = v’ + vpn_1yme,
+U(n721)m Z {(ZL) (m;tl) o (mftl7§iji-~—tn—2)xtllx;2 gt

c(n— Dt 4 (n— 2ty + o+t = —<"*21>m} ,

(4.3)

and

. . n—1)m
g(Y) = voy%"i_v(nfl)my%nflgmm ‘H)w <y%n41)m+1 + § {yiyj )= ( 2) + 2}) .
i#j

(4.4)

Since we are only concerned about PSD Hankel tensors, we may assume that vg, v m-1)m,
2

and v(;,—1)p, are all nonnegative. If v(-ym = 0, then the truncated Hankel tensor A
2

is a strong Hankel tensor, and furthermore an SOS Hankel tensor if m is even. If

Vin-nm > 0, then A is not a strong Hankel tensor [80].
2

4.3 Basic PSD Hankel Tensors

Definition 4.2. (Basic PSD Hankel tensor)

Let A be an mth-order n-dimensional PSD Hankel tensor and its rank be r. Then
A is called a basic PSD Hankel tensor, if there is no nonzero PSD Hankel tensor B
with rank(B) < r such that A — B is PSD.

From the definition, we can derive the following lemma straightforwardly.

Lemma 4.2. Given that A is a rank-1 even order Hankel tensor, A is a strong

Hankel tensor if and only if A is a basic PSD Hankel tensor.
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Proof. This lemma can be easily derived from the Vandermonde decomposition of

strong Hankel tensors. O]

Theorem 4.1. All even order strong Hankel tensors with rank larger than 1 are not

basic PSD Hankel tensors.

Proof. Assume that an even order strong Hankel tensor A with rank r > 2 is basic,
then from (4.2), A = Y, | avi™, a) > 0, v are Vandermonde vectors. Let B =
a1 vs™, then B is a positive semi-definite Hankel tensor, while A — B is still positive

semi-definite, which is a contradiction. O

Corollary 4.1. All even order strong Hankel tensors with rank larger than 1 can be

expressed as the sum of rank-1 basic PSD Hankel tensors.

Clearly, PSD non-strong Hankel tensors with rank larger than 1 do exist. For
example [80], for PSD truncated Hankel tensor A when vum-1ym > 0, consider vector
2

y =€ —e; where i +j = @+2,i7ﬁjandi;«élor w We see that
9(¥) = —20m-1m < 0, hence A is not a strong Hankel tensor. Therefore basic PSD
2

Hankel tensors with rank larger than 1 also exist. What we concern is the smallest

symmetric rank of non-strong basic PSD Hankel tensors.

Lemma 4.3. If PSD Hankel tensor A has the following Vandermonde decomposition
A= Z apvy™,
k=1
where v, € R™ are mutually distinct Vandermonde vectors, r < n, then ap > 0,

k=1,2,---.r. Thus, A is a strong Hankel tensor.

Proof. A can be also expressed as

A=Dx; VI x, V... x, VT,
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where D is a diagonal tensor with diagonal entries aq,as, -+, a, and matrix V =
(vy,va, -+, v,)is of full column rank. Without loss of generality, assume that o; < 0,
then there exists a unique x satisfying V'x = e; such that f(x) = Ax™ = De]* =
a1 < 0, which is a contradiction to the positive semi-definiteness of A. Therefore we

have all o = 0 for k = 1,2,---,r, thus A is a strong Hankel tensor. O

4.4 Rank-2 Basic PSD Hankel Tensors

We begin with the rank-2 case and we shall shortly see that there are no rank-
2 basic PSD Hankel tensors. For mth-order n-dimensional PSD Hankel tensor A,

m = 4, if A is basic and its rank is 2, then it has the following form
A = ax®™ + By°™, (4.5)

where o, 3 # 0, x = (11,22, ..., ) € RNy = (Y1,Y2, .., Yn) €ER", x #£y. As A is
positive semi-definite, at least one of v and [ is positive. Without loss of generality,
assume [ =1, i.e.,

A — axom + yOm‘
Theorem 4.2. Rank-2 basic PSD Hankel tensors do not exist.

Proof. If n = 2, from Lemma 2, A is not a basic PSD Hankel tensor. If n > 3, we
classify the decomposition into the next four cases.
Case 1. x = (173727 T3y 7xn)T7y = (17 Y2,Y3, 7yn)T'

From the definition of Hankel tensors, a1 129 = a11..13, then

a(z; — 73) = Y3 — ¥ (4.6)

(a) If 22 # x3 and y3 # y3, then similarly we have az;(z3 — z3) = y;(ys — y3)
for 2 < ¢ < n. By dividing this equation by (4.6) on both sides, we get x; = y; for
2 < i < n, hence x =y, the rank of A is actually 1, which is a contradiction.
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(b) If 22 = x3, then y5 = y3. According to the definition of Hankel tensors, we

have
m—3,.3 m—3,3 __ m—2 m—2
ary Tyt Yy Yy =oary “Tat Y Ty,

m—1 m—1 m—2 m—2
axry Ts+ Y, Y5 = Qxy] TX2Ty + Y “Y2Ya4,

m—2_.2 m—2_ 2 m—1 m—1
ary “xz+y; Ty =ary Ts+Yp Ys.

Processing these equations, we have a/(25—x5) = Toys—Toys +ys—Yoys = ys—ya. Thus
To = yy or Yy = ys. If x9 = 9o, then x5 = y3 and a = 1, hence x4 = Yy, ..., Ty = Yn,
x =y, the rank of A is 1, which is a contradiction. If y4 = y3, then y5 = 5, ...,

Yo =yy 't and x4 = 43, ..., z, = 25 ', x and y are both Vandermonde vectors. By

Lemma 2, it is a contradiction.

Case 2. x = (].,LUQ,J}?,,"' 7mn)—r7y: (07 7071ayk+1a"' 7yn)T7 2<k<n

If £k =mn,ie,y = e, x; = xéfl for 2 < j < n, it is a Vandermonde de-

composition, which is a contradiction. If 2 < k < n — 1, obviously z; = xj[l
for 2 < j < n, then (i) az]’ + y;' = oz v, + Y2y, for m is even, (ii)

m—1 m—1 m—1 m—1

m moo__ 2 2 2 2 3 ] m — m 3
axy’ + Yt = ax? mprg o+ y 2 eyl for mois odd, e, axp + 1 = axj’, which

is also a contradiction.

N

Case 3. x = (07 ,0,1,$k+1,"' 7xn)T7y: (07 707173/l+17"' 73/n)T,2<k

n2<l<n—1k#L

Without loss of generality, assume k > [. We have (i) oz}’ + yi* = ax2 22, +

m m m—1 m—1 m—1 m—1

2 2 3 H m mo_ 2 2 2 2 -
Y Y for mis even, (ii) axl® + yi' = ax, 2 wpx, 2y + Yply YkYepsy for mis odd,

i.e., « = 0, which is a contradiction.

Case 4. x = (07 7071>$k+1>"' 7xn)T7y = (07 70717yk+1>"' 7yn)T7 2 <
k <n.

If £ = n, the rank of A is 1, which is a contradiction. If 2 < k < n — 1,
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- moyam . T T .z : T mog.m

we have (i) ax]' + yi' = ax? 22, + Yoyl for m is even, (i) aal + y* =
m—1 m—1 m—1 m—1 . . .

ar,® 1wyl + Yty Ukyy, for mois odd. From both situations we get a = —1,

m m m

. m—1 m—1 _ 51 2 21 % : N
then (i) o' g1 + Yo'~ Yk = o)y Tpwly + Y2 Yyl for mois even, (ii)

m—1 m+1 m—1 m+1

m—1 m—1 e e e .
axy T Tper H YL Ykt = ot xl + 2yl for mois odd. Thus xpyq = Yrg,

very Ty = Yp, 1.e., A = 0, which is a contradiction. ]

4.5 Rank-3 Basic PSD Hankel Tensors

For an mth-order n-dimensional PSD Hankel tensor A, m >4, n > 3, if Ais a

basic PSD Hankel tensor and its rank is 3, then it can be expressed as
A = ax® + By + yz°", (4.7)

where o, 8,7 # 0, x = (v1,29,....,2,)" € R", y = (y1,902,...,0n)" € R*, z =
(21,22, .., 2n) € R™ x,y,z are mutually distinct. Similar to the previous chap-
ter, at least one of «, § and 7 is positive. Without loss of generality, let v = 1,
then

A = ax®™ + fy°" + z°™.
Theorem 4.3. Rank-3 basic PSD Hankel tensors with dimension no less than 3 do

not exist.

Proof. The decomposition can be classified into the next four cases.
Case 1. x = (17*1'27 T3y 7wn)Tay = (17 Y2,Y3, 7yn)T7Z = (17 Ry %3, 7Zn)T'
Similar to the rank-2 situation, from the definition of Hankel tensors, oz 2x3 +

m—2, 2 m—2_2 __ m—1 m—1 m—1
By “ys + 21" %25 = ax x4+ Byt ys + 20 23, so

23— 25 = oz — x3) + By5 — ys)- (4.8)

Similarly, we have

x4+ Bys + 25 = axers + fyays + 2223,
axy + Byy + 25 = axirs + Bysys + 232s.

31



By substituting (4.8) into the above equations, we obtain
awy — 20) (a5 — w3) = —B(y2 — 22)(y5 — v3), (4.9)

a(ry — 23) (x5 — x3) = —B(ys — 23) (Y5 — vs). (4.10)

Next, we discuss whether the factors in equation (4.9) are zero or not, and classify

it into the next four situations (a) ~ (d).

(a) Ty # 29, Yo # 22, T # T3, Y5 # Ys.
Divide (4.10) by (4.9) on both sides, we get x5 = yo. Then, similarly a(xy —
21) (23 — 13) = —B(yr — 21) (y3 — y3) for 3 < k < n, hence x = y, which is a contra-

diction.

(b) T = 22, Y2 = 22.

For x3,y3, 23, we have
a(zz — x3) (x5 — 3) = —B(ys — 2) (Y5 — us), (4.11)

alzy — x3)(w) — w3) = —B(ys — 23) (42 — ¥s)- (4.12)
We get two similar equations about 3, ys, 23, and also discuss the factors in situ-
ations (i) ~ (iv). (i) If @3 # 23, y3 # 23, T35 # T3, Y2 # Y3, let (4.12) divided by
(4.11), we get w3 = y3. (ii) If 23 = 23, y3 = 23, obviously x3 = yz. (iii) If 23 = 22,
Y3 = Y3, we obtain x3 = y3, because Ty = yo. (iv) If 23 = 23, y3 = y5 (or y3 = 23,
T3 = x3), substitute the two equations into (4.8), we have x3 = 23 = y3 = y3. Then
x3 = y3 = z3 for (i) ~ (iv). Similarly, we can prove zy = y; for 4 < k < n, hence

x =y, which is a contradiction.

(c) $§ = T3, Y2 = 22.
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(i) If y2 # y3, we have ax3 + By3 +y3 = axs + y3 + 23, hence B(ys —y3) = 23 —y3.
Also, for 3 < i < n, By;(y3 —y3) = z;(23 —y3), hence we get ys = 23, ..., Yn = 2p, i.€.,
y = z. Thus, the rank is 2, which is a contradiction. (ii) If y2 = y3, we will find x is
a Vandermonde vector, then by (b) of Case 1 in the previous chapter, y and z are

also Vandermonde vectors. The situation is similar for y5 = y3, 15 = 29.

(d) 23 = 23, Y3 = ¥s.

It is included in (b) and (c) if at least one of xy = 23 and y, = 25 is satisfied.
So we discuss Ty # 29 and y, # 29 here. Obviously 23 = 22, if n = 3, x, y and z
are all Vandermonde vectors. If n > 3, then from the definition of Hankel tensors,

a11..14 = a11..1222, Which implies
_ 3 3 3 4.1
ary + Bys + 24 = axy + Pys + 25 (4.13)
From a11..124 = A11...1223 and ai11...134 = Q11...1233, WE have the fOHOWiIlg two equations

axoTy + BYaYs + 2224 = 04$§£B3 + 5?43?/3 + 2’323,
Qx3Ty + Bysys + 2324 = Q23 + Byayd + 2222

Substitute (4.13) into the above equations and we have
afws — 2) (w3 — 24) + B(y2 — 22) (Y — ya) = 0, (4.14)

g — z3) (w3 — xa) + By — %) (Y — ya) = 0. (4.15)

(i) If 23 # x4, y3 # y4, then divide (4.15) by (4.14), we have xy = ys, hence x5 = ys.

Similarly a(zy — z;) (3 — z4) + Blyr — 2)(y5 — y4) = 0 and a(z? — 22) (a3 — x4) +
Byz — 22)(ys —ya) = 0 for 4 < k < n. We get o = yp = 2, or T3, = Y, thus x =y,
which is a contradiction. (ii) If 23 = x4, y5 = ya, obviously 24 = z3, then repeat
(d) for x4 = x5, ys = Y5, ..., 5 ' = 2, Y4 ' = yn, and we find x = y, which is a

contradiction, or x,y,z are Vandermonde vectors.
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Case2. x= (1,20,73, -+, 2,) , ¥y = (L2, Y3, - ,yn) 2= (0,--+,0,1, 2kg1, -, 2n) |,
2<k<n.

If £k =n,ie., z = e,, then similar to the first case of rank 2, x and y are Van-
dermonde vectors, and z is also a Vandermonde vector. If 2 <k <n—1,xand y

are Vandermonde vectors, then ax'+Sy'+1 = ax}'+ By;", which is a contradiction.

Case 3. x = (1,19, 23, ,2,) ,y = (0, ,0, L, yps1, - ,Un) |,
z=(0,-,0,1,241,,2),2<k<n—-12<l<nk=#l

From the definition of Hankel tensors, axz’ 'z, 1 + By 'y + 2"tz =
Oz:ET_QQCQIi + ﬁy{n_lyi —+ Z{”_lzi for i = 2,3,...,n— 1. Since y; = z; = 0, we have

i1 = Tax;, hence x is a Vandermonde vector. Without loss of generality, assume

m—1 m—1

m m
. m _ ) 2 : s m — 2 2
k <1, we have (i) o]’ + 8 = oz x;,, for m is even, (ii) oz}’ + 8 = oz, 22,2y

for m is odd, i.e., 8 = 0, which is a contradiction.

Case 4. x = (07 70717'Tj+17"' 7'rn)T7y: (07 70717yk}+17"' 7yn)T7

Z:(()?"' 7071>Zl+17"' ,Zn)T,Qéj,k’,lén,lék

N

7.
If j < k <1, then a = 0, which is a contradiction.
If 7 = k < [, the situation is the same as Case 4 of rank 2, which is a contradiction.

If j =k =1, obviously j,k,l cannot be n, 2 < j =k =1 <n—1As (i

x4+ Byt 4+ 2 = axl a2 + Byl vt 240 for miis even, (i) aal + By +

m—1 m—1 m—1 m—1 m—1 m—1

mo __ 2 2 2 2 2 2 3
ot = a2 mwy o+ By ikt + 20 ez sy for mois odd, we have

a+p+1=0,

arg + Byr + 21, = 0,
&xi-l—ﬁy;%—i-z,%:O,
axy + Byp + =z = 0.
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Then

{ arp(zy — 26) + Byr(ye — 21) = 0,
axp(zy — zi) + Byr(yi — 21) = 0.

(i) If &, = 0,yx, = zx, we get f = —1, @ = 0, which is a contradiction. (ii) If
Y = 0,xx = 2z, then similar to (i), § = 0, which is also a contradiction. (iii) If
T, Yk # 0,2 # 2, Yp # 2k, from xp + 2zp = Yy + 2k, we get x = yg. (iv) Assume
Tp = yr = 0. (v) Assume zy, = y, = 2. From (iii) to (v), we all get xp = yi. If we
continue checking 1, ..., x,, we will find x =y, or « = 0, or § = 0, all situations

cause contradictions.

Up till now, we have proved if there exists a rank-3 basic PSD Hankel tensor
A with dimension no less than 3, x,y,z are mutually distinct Vandermonde vec-
tors. However, by Lemma 2, r = 3 < n, A is a strong Hankel tensor, which is a

contradiction. O]
Therefore, we put forward the following theorem.

Theorem 4.4. For any non-basic PSD Hankel tensor A with rank(A) = 2, n > 3,

A can be expressed as

.A = Z akB;w (416)
k=1

where r € N, By, are basic PSD Hankel tensors with rank(By) = 4 or rank(By) = 1.

This theorem can be proved by Theorem 2 and 3 straightforwardly.

4.6 An Example of Basic PSD Hankel Tensors
with Rank Higher than 2

We shall present an example of basic PSD Hankel tensors in this section with
rank > 2. Consider the following example. Let A be a 4th-order 2-dimensional
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Hankel tensor generated by v = (1,0, —1,0, 1)T. For x = (71, 73)" € R? the Hankel

polynomial f4(x) = Ax? = 21 —22323 + 23 = (23 —23)* > 0. However, the associated

Hankel matrix
1 0o -
A= 0 -
0

1
3
0
1

W=

1
3
is apparently not positive semi-definite since there is a negative entry on its diagonal.
Therefore, A is a PSD Hankel tensor, but not a strong Hankel tensor. Furthermore,

A has a following decomposition that

A:é(1>o4_1<1)04_1<1)04—’_%(0)04
3\ 0 6\ 1 6\ —1 3\ 1 ’
thus rank(A) < 4.

Next we prove that A is a basic PSD Hankel tensor. Assume A is not basic,
then there exist two PSD Hankel tensors B and C such that A = B + C and for
any vector x € R?, the Hankel polynomial f4(x) = fs(x) + fe(x) = (22 — 22)?, and
f5(x), fe(x) = 0. If fz(x) does not have the factors x; + x5 or x; — xo, then take
xr1 = +x9, and we have fp(x) > 0, fe(x) = 0 — fg(x) < 0, which is a contradiction.
If both 21 4+ x9 and 27 — x9 are the factors of fz(x), then by D. Hilbert [33], for
2-dimensional homogeneous polynomials, a PSD polynomial is definitely an SOS
polynomial, hence fz(x) = a(z? — 23)?, o > 0, tensor B is proportional to A, which
is a contradiction.

Therefore, we have found a basic PSD Hankel tensor whose rank equals 3, which
implies that basic PSD Hankel tensor with rank > 2 does exist. To verify whether this
tensor is exactly rank 4, we use Tensorlab toolbox in Matlab software to decompose
this symmetric tensor. After running 1000 times, the minimum error (calculated by
the Frobenius norm of tensor A minus the recombinated tensor) of finding the rank-3

decomposition is about 10~% while that of find the rank-4 decomposition is around
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10717, Therefore, there is a high probability that the rank of this tensor is exactly 4.

4.7 Conclusions and Conjectures

We have introduced a new subclass of Hankel tensors called basic PSD Hankel
tensors. It is proved that for mth-order n-dimensional positive semi-definite Hankel
tensors, there are no rank-2 basic PSD Hankel tensors. Moreover, rank-3 basic PSD
Hankel tensors with dimension no less than 3 do not exist, either.

In the previous section, an example is given to show the existence of a basic PSD
Hankel tensor with rank > 3. It is thus reasonable to conject the existence of other
basic PSD Hankel tensors. The critical truncated Hankel tensor A in [80] may also be
a basic PSD Hankel tensor. A is a sixth-order three-dimensional PSD truncated Han-
kel tensor, and the elements of its generating vector (vg,0,---,0,vg,0,-++,0,v12)"
satisfy \/vov12 = (560 + 704/70)vg.

For a rank-3 PSD Hankel tensor with n = 2, we cannot prove or disprove it is a
basic PSD Hankel tensor. Therefore, we put forward a conjecture that 2-dimensional
rank-3 basic PSD Hankel tensors do not exist and the rank of tensor A in the given

example in Section 6 is 4.
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Chapter 5

Quantum Higher Order Singular
Value Decomposition

5.1 Introduction

Higher order singular value decomposition is a specific orthogonal Tucker decom-
position, and can be considered as an extension of SVD from matrices to tensors.
Classical HOSVD has been well studied, see, e.g., De Lathauwer, De Moor, and Van-
dewalle in 2000 [23], and it has been successfully applied to signal processing [53]
and pattern recognition [79] problems. Furthermore, HOSVD has shown its strong
power in quantum chemistry, especially in the second order Mgller Plesset perturba-
tion theory calculations [6]. In addition, HOSVD is used in [84] to derive the output
m photon state of a quantum linear passive system which is driven by an m photon
input state; more specifically, the wave function of the output is expressed in terms
of the HOSVD of the input wave function.

Since HOSVD deals with high dimensional data, it has been put into practice in
some machine learning methods. For example, it has been successfully applied in
recommendation systems [38, 74]. In [68], HOSVD representation for neural networks
is proposed. By applying HOSVD the parameter-varying system can be expressed

in a tensor product form by locally tuned neural network models. Additionally in
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[41], HOSVD is applied for compressing convolutional neural networks (CNN).

In this chapter, we propose the quantum higher order singular value decomposi-
tion (Q-HOSVD) algorithm. This is the first quantum algorithm concerning tensor
decompositions. Our Q-HOSVD algorithms are based upon the quantum matrix
singular value decomposition algorithm [67], quantum singular value estimation [39],
and several other quantum computing techniques. The input can be a tensor of any
order and dimension. By our Q-HOSVD algorithms, it is possible to perform singu-
lar value decomposition on tensors exponentially faster than classical algorithms. It
can be directly applied to quantum machine learning algorithms, and may help solve

computationally challenging problems arising in quantum mechanics and chemistry.

5.2 Definition and Properties

Definition 5.1. [23] For A € Cl2xxIm _the higher order singular value de-
composition (HOSVD) is defined as

A=8x; U x, U? x50 %, UM, (5.1)
where the k-mode singular matriz UK = [ugk)ugk) . --u(/z)] 1s a complex unitary

I, x I, matriz, the core tensor S € ChxT2x-xIm

The core tensor § and its subtensors S;,—,, of which the kth index is fixed to
« € [Ix], have the following properties.
(i) all-orthogonality:

Two subtensors S;, —, and S;, _g are orthogonal for k =1,2,--- ,m:
Sip=a - Si,=3 =0  when « #j, (5.2)

(ii) ordering:
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A U S

Figure 5.1: Block diagram of the HOSVD for a third-order tensor. The full lines
indicate the full HOSVD in (5.1). The dashed lines and the small block in S indicate
the truncated HOSVD.

Similar to the matrix case, the tensor singular values are defined as the Frobe-

nius norms of the (m — 1)th-order subtensors of the core tensor S:
ol = |Si=alr, (5:3)

for k € [m] and « € [I]. Furthermore, these tensor singular values have the following

ordering property
AR RIS (5.4)

for k € [m]. The block diagram of the HOSVD for a third-order tensor A € Ch*/2x1s
is described in Fig. 5.1. When m = 2, i.e., A is a matrix, the HOSVD is degenerated
to the well-known matrix SVD.

U® is calculated through the SVD of unfolding matrix A®), where matrix un-
folding is defined in Chapter 3. If A is a symmetric tensor, i.e., A € S, ,, then all
UD, U@ ... UM are the same unitary matrices. Thus, we calculate the SVD of
unfolding matrices only once instead of m times, and the decomposition is converted
to

A=8x,UxyU x3---x,, U. (5.5)

HOSVD performs orthogonal coordinate transformations for a higher-order ten-
sor. Here, the unitary matrix U® is also called the k-mode factor matrix and
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Figure 5.2: The tensor network notation of HOSVD.

considered as the principal components in kth mode. Moreover, the entries of the
core tensor S show the level of interaction among different components.

The tensor network notation of HOSVD is depicted in Fig. 5.2. It is known that
a tensor corresponds to a multipartite quantum state. Any local unitary transforma-
tion on the original tensor can be considered as the local unitary transformation on
the corresponding singular matrices, which is vital and useful in quantum computa-
tion. The core tensor and singular matrices can also be considered as the two layers
in the neural network, with local operations in the first layer and global operations
in the second layer.

In HOSVD, the columns of U®) have been sorted such that the jth column ug-k)

corresponds to the jth largest nonzero singular value of A®). Then, we can similarly
define the truncated (or compact) HOSVD [75]. For k € [m], we remain the
first 7, columns of U® then U® e C»*". Finally, the core tensor S is of size
71 X Ty X -+ Xy, and the tuple of numbers (71,79, ,7,) is called a multilinear
rank. The block diagram of the truncated HOSVD for a third-order tensor is depicted
in Fig. 5.1. This truncation is widely used in big data problems. Since the data
may be sparse or low-rank, we can take the value of r, such that r, « I. Denote
T = MaXpe[m] 'k, and I = maxye[m) fx. The total number of entries reduces from 1™

tor™ 4+ mlir.
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5.3 Q-HOSVD Algorithm 1

In this section, we present our first Q-HOSVD algorithm.

Algorithm 1 Quantum Higher Order Singular Value Decomposition (Q-HOSVD)
Input: Ae ClvxIm ¢ |b)
Output: S, UM U . UM
1. Load A into qRAM, and initialize |0) |1 |b).
for k=1,...,m do
2. Implement gPCA by the SWAP operator S(;).
3. Apply phase estimation to obtain

0= 3065 15/ N . (5.6

4. Perform measurement on |\;/N) and extract |i;) to compose U®).
end for
5.8« A x; UD %, U ... %, UM

Several techniques and subroutines are applied in Algorithm 1. First, tensor A
to be decomposed is loaded into the quantum register by qRAM. For a fixed k, we

design a SWAP operator S(;) based on matrix unfolding and Hermitian extension,

and harness it to apply qPCA. After that, we initialize the state |0)|I)|b), where

1) = \/LN Zé\;l |(>, and |b) could be any state and considered as a superposition of

eigenstates of A®)  then apply phase estimation on it to obtain the state |¢)) which
is a superposition state composed of eigenvalues and eigenstates. Then, if we hope to
obtain the core tensor S, quantum measurement is performed to reconstruct the sin-
gular matrices. Finally, S is calculated by the quantum tensor-matrix multiplication
among tensor A and the singular matrices.

In the following sections, we explain the implementation of Algorithm 1 step by
step. Without loss of generality, we assume |A|p =1and [} = I, =--- = I,, = n.

For Step 1, tensor A can be accessed by qRAM or the tree structure in Chapter
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For Step 2, denote N = n + n™!. Since A® = <a2§k)) e C™™ " is not a

Hermitian matrix, we consider the following extended matrix

- 0o AW®
(k) .
S R

n—1nm-1_-1 ( )
"k . . "k . .
=N > @™ i) G+ nl + @) L + ) il
ir=0 jp=0

n—1

= Z Uiyigei 1) (kg1 == Gy -+ Ip1 + 1
11,8250yt =0

+ aim_,im |’ik+1 s Zle s ik—l + TL> <Zk| s (57)

where |i,y € CV is the i;-th computational basis. Note that ij runs from 0 to n — 1.
Then A® is an N x N Hermitian matrix. For Hermitian matrices, the singular
values are the absolute value of eigenvalues, so phase estimation [51] can be used to
apply the singular value decomposition. Let r = rank(A®). Since rank(A®) < n,
r < 2n.

For the Hermitian matrix A®, we define a SWAP-like operator SE;) e CN?xN?

based on the entries of A®):

N-1

k AR ]
st = STAR H e 0G|
0,j=0
n—1nm"1-1 k)
=20 X L my Gl @i G+l + ), 1) G+l @ L + ) i

n—I1
= Z Qivig. iy [Tkt "+ Il v+ G + 1) (g @ Jig) (g1 Gy -+ lg—1 + 1
01,6200 yim =0

+ @irigoim ik Cpg1 -+ iy - g1 + 1| @ |1 - - iy -+ - g1 + 1y (gl
(5.8)

This operator is one-sparse in a quadratically bigger space, i.e., there is no more than
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one non-zero entry in every row and column, and its entries are efficiently computable.

—iSi.f)At .

Therefore, the matrix exponentiation e is efficiently implemented [9].

The SWAP-like operator (5.8) combines the mode-k unfolding (3.8) and Hermi-
tian extension (5.7), since they are all related to SWAP operations. It only requires
access to the entries of original tensor A.

For simplicity, in the following we use A to represent A®*) when k is fixed. Let

p1 and py be two distinct density matrices, where p; = [1)(1].

Lemma 5.1. [47] By quantum principal component analysis (¢qPCA), the unitary

e INAY s simulated using S ; through

tl"l{e_iSAAtpl ® p2eiSAAt} ~ e—i%At}@ei%At' (59)

Let €y be the trace norm of the error term O(A#?) in (5.9). For s steps, the

2

max

resulting error is €; = seg < 2s|A|2, At?, where |Allmax = max;, ;. |ai..i, |- The

simulated time is t = sAt. Then,

€1 t 2
— < 2lAl7 -] . 1
! <ol (1) (5.10)
Thus,
t2
s=0 (—Afm) (5.11)
€1

steps are required to simulate e iNAt if €1 and t are fixed.

Since we have assumed |A|r = 1, then |A|max = O(1). Hence, s = O(t*/ey).
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Applying the output in equation (5.9) again in the second register, we obtain

try {e‘iS/‘Atpl ® (m - i%[x&? pa] + O(Alg)) 6iSAAt}

. . At i ~ i
:trl{e_lsA_Atpl ® pQQISAAt} o iwtrl{G_ISAAt(Pl ® [A, p2])61SAAt} + O(AtQ)

AL~ AL ~
=p2 — i [A, po] —imtr{p @ [A, o]} + O(At?)
2At  ~

Thus, by continuously using k copies of p; we can simulate e~ (A/NkAL

For Step 3, we use the quantum phase estimation algorithm to estimate the
i(A/N)

eigenvalues of e~ At First, we give a lemma explaining phase estimation.

Lemma 5.2. [42] Let U be an n x n unitary operator, with eigenvectors |v;) and
eigenvalues €™ for 0; € [0,1), i.e. we have U |v;) = e*% |v;) forj =0,1,...,n—1.
For a precision parameter € > 0, there exists a quantum phase estimation algorithm
that runs in time O(T(U)logn/e) and with probability 1 — 1/poly(n) maps a state
b) = Z;.:é ajlvjy to the state Z;‘;Ol ajlv;)|0;) such that ; € 0; € for all j =
0,1,...,n—1.

Theorem 5.1. For the input |0Y |1 |b), by applying gPCA in Lemma 5.1 and phase

r—1
estimation in Lemma 5.2, the superposition state (5.6) |¢) = 2 B |\j/NY i) is
=0

obtained, where |\;/N) is the estimated eigenvalue of A/N encoded in basis qubits.

Proof. Given an initial quantum state

05¥1T) [b) = 100~ -- Q) |T) [b) (5.13)

with d = O(Jlog(1/e2)]) control qubits, where |b) is the superposition of eigenvectors
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|i;) corresponding to \;:
N-1 N-1
=2 Bilay, 16 =1, (5.14)
=0 =0

€9 is the accuracy for approximating the eigenvalues. Let po = [b)(b|. We first apply
Hadamard operators to the first register, then the state (5.13) becomes
1S -
T3 ;0 1O 1) 16, (5.15)
whose density matrix has the following form
2¢ 1

1
5 D10 @n@p (5.16)
£=0

Then we multiply 32251 [0 (£|® (e75444)¢ and 32721 |0) (0| @ (€8421)! to both sides
of (5.16) to obtain

241

ST ® (67542 py @ pa(eS421)1) . (5.17)

Note that d = O(|log(1/e5)]), after applying the operator 2¢ times, the accumulation
error is O(1/ey). Next, we perform a partial trace to the second register using (5.9)

resulting in

2’121 N ((eiﬁAtYﬂz (eigm)e) | (518)

After that, we apply the phase estimation algorithm in Lemma 5.2 to obtain the

estimated eigenvalues of A/N, since

A Nt A
eTNA by = YT Be TN A i)
=0

N-1 . A
= > BN [y (5.19)
j=0
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At last, we implement the inverse quantum Fourier transform [51] and remove the

first register, the final state (5.6)
r—1 B
[y = > B I\/NY |y
j=0

is obtained, where |\;/N) is the estimated eigenvalue of A/N encoded in basis qubits.
The corresponding eigenvector |i;) is proportional to (u;; £v;) € CV, where u; and
v; are the left and right singular vectors of A, and the norm of each subvector u;

and v; is 1/ v/2, independent of their respective lengths n and n™ . O

For Step 4, since A is of size n xn™™!| A has at most n singular values {o;}. Asa
result, A has at most 2n nonzero eigenvalues :\j € {£o;}. Next, we measure the first
register of state (5.6) in the computational basis {|0),--- ,|2¢ — 1)}, all eigenpairs
I\;/N>|ii;> are obtained with probability |8;|?. Discarding the first register and
projecting |@;) onto the u; part by using projection operators P, = Y"~'[i) (i| and
P, = Y70 (i result in Ju;) with probability (fi;u;,0) = L. Then, the

singular matrix U is calculated by
U=l (520)
j=1

Repeating measurements with the initial state |[b) = |0),|1),---,|n — 1) and apply-
ing amplitude amplification [1], we can obtain all the singular vectors in Ty = O(n%/?)
times with probability close to 1. Thus, the singular matrix U®) is reconstructed.

For Step 5, after we get all U® for k = 1,2,...,m, in this step we calculate the
core tensor S:

S=Ax, UO 5, U®" x ... x, UM (5.21)

Here, the calculation is accelerated by the quantum tensor-matrix multiplication,

which is similar to the quantum matrix multiplication algorithm by swap test [69].
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We may calculate A xy U®' through the following state

1 n—1 . 3
A TO®] 7 > TUS ol Ay iy ot |2 A iy [T
11yl — 15Tk stk g 1see -, tm =0

|7:17 e 7ik—17jk7 Z.k-i-la e 7Zm> |O> + |0>L )
(5.22)

where | A;..i,_eip i) 15 an n-level quantum state (i.e., n-dimensional vector) if
Ty b1, Thils - - -, by are all fixed.

By (5.22), the success probability is

n—1

k k
> PO 131 A oo B At smi i [US00 /(LA U 12)

il7---7ik—1ajk7ik+17---77:m:0

U™z
:HAXQk - HQF' (5.23)
[ATEIO®E

Note that unitary matrices preserve norms, and we have assumed that |A|r = 1,

therefore

| A %, UB|p = |A|p = 1. (5.24)

Thus, after post-selecting |0), the state (5.22) becomes

n—1

k k
Yy = D NS o A sinri 2y yoigsind U

Ulyeesllo— 1,0k bk 4150 0m =0

|i17"' aikflvjk7ik+la"' 7Zm> (525)

|\If(k)> corresponds to the tensor A x, U(k)f, whose amplitudes are exactly the entries
of tensor A x;, U®",
After applying amplitude amplification [1], the computational complexity is

|A] £ [[ US| )
€3] A x, UB' |

0, (%) =0 (*/—ﬁ) (5.26)

€3 €3
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to accuracy es.
Repeating the multiplication between A and Uu® for k = 1,2,...,m, we obtain

the final state
n—1

|\Ilf> = Z Sj1-jm |j17 Tt 7jm>7 (527)

jl’“wjm:O

corresponding to the core tensor S. The total complexity is O (%ﬁ)

Without loss of generality, we can regard the accuracy of matrix exponentiation,
phase estimation and tensor-matrix multiplication as the same value, i.e. €, = €3 =

5.4 Q-HOSVD Algorithm 2

For Algorithm 1 to be efficiently implemented, the unfolding matrices are required
to be low-rank. This result is analyzed in the next section for complexity analysis.
However, in some cases the input may not have such good structure. In this section
we propose an alternative quantum HOSVD algorithm which is based on quantum
singular value estimation (QSVE) [39]. In this method, the input is a general matrix,
not required to be sparse, low-rank or well-conditioned.

Recall that in Chapter 3, a tree data structure with quantum access is introduced
in Lemma 3.1, where the quantum states are efficiently prepared corresponding to
the rows and columns of matrices. Based on this data structure, a fast quantum
algorithm to perform singular value estimation stated in Lemma 5.3 is designed.

For a matrix A € CV*™2_in the data structure,

Up= 3 DGO Ug= D IBDOIGL  (529)

It has been shown in Section 3.1 that Up and Ug are implemented through R,
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rotation operators. Then they can be expressed as

Ni1—-1

Up= Y i@,
1=0

No—1

Ug= > Uil = U@Ly, (5.29)

J=0

where U; [0) = |[A) fori = 0,...,N;—1, and U, |0) = |A), U; and U, are composed
of rotation operators.

Define two isometries P € CMN2*N and Q € CN1N2xN2 related to Up and Ug:

Ni—1 No—1

P= Y DAL Q= Y AU (5:30)

It can be proved that PTP = Iy, Q'Q = Iy,, 2PP' — I, , is unitary and it can
be efficiently implemented in time O(polylog(/N1N3)) in the form of Up and Uy.
Actually,

PP — Iy, n, = 2> Ji) [Ay) (i (A — Iy, ,

= UpGpUL, (5.31)

where Gp := 23, [i)|0) (i| (O] — Iy, n, is a reflection. Similarly, 2QQ" — Iy, n, =

UoGoU), where G =23, |05 ) (0] (j] = Iny .
Now denote

W = (QPPT - INlNQ)(QQQT - IN1N2)
= UpGpULUqgGqUY, (5.32)
All the factors are unitary operators. The eigenvalue of W is €% such that

0@' g;

(5) ~ Al (5:33)

where o; is the singular value of A. Then, W is used for phase estimation to obtain

the singular values. The result of QSVE is summarized in the following lemma:
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Lemma 5.3. (Quantum singular value estimation) [39]

Let A € RNvN2 stored in the data structure stated in Lemma 3.1, and the sin-
gular value decomposition of A can be written as A = Y50 oy Jug) {ve|, where r =
min(Ny, Ny). Let € > 0 be the precision parameter. Then the quantum singular value
estimation runs in O(polylog(N1N2)/€) and achieves Y, i |vi)|0) — > Bi vy [7:),

and |7; — 0;| < €|A|r for all i with probability at least 1 — 1/poly(Ny).

The circuit of QSVE on a single matrix is shown in Fig. 5.3. In Fig. 5.3, Ug |b)
is an superposition of eigenstates of W. The second register has t qubits, indicating
that the accuracy is 2%, and j takes the value of 20,2 ... 2! respectively. Uy,
maps the eigenvalues of W to the singular values of A through equation (5.33). The
output is the superposition state of estimated singular values and the corresponding
right singular vectors. Since in HOSVD we aim to obtain the left singular vectors,
we can obtain the left singular vectors |u§k)> of A% from the right singular vectors of
its conjugate transpose A®" Thus, we perform the QSVE on the unfolding matrix
A®' The Q-HOSVD algorithm based on QSVE is given in Algorithm 2.

Algorithm 2 Q-HOSVD by QSVE
Input: Ae ChvxIm ¢ |b)
Output: S, UM UG . ,U(m)

1. Prepare the initial state — Z 1b) 10> k).

2. Implement the controlled k: QSVE by the last register to obtain the superposi-

tion state
m—1r—1

[y = f SN BI uMy [F k). (5.34)

k=0 i=0
3. Post-select k and perform measurement on |El(-k)> and extract |u§k)> to compose
Uk,
4.8 — Ax; UD 5, UO" gy, UM,

Algorithm 2 is similar to Algorithm 1, but we do not need to apply phase esti-
mation on the extended Hermitian matrices.

52



b) - Uq W U

0) —+—H l FTT — Uy —

Figure 5.3: Circuit of QSVE on a matrix A.

For Step 1, we prepare the initial state

o) = f Z 1) 0) | . (5.35)

where the first register could be any state and always expressed as a superposition of
singular vectors, the second register stores the estimated singular values after phase
estimation, and the last register is the index for mode-k unfolding.

For Step 2, assume that the tensor A is mth-order n-dimensional for simplicity.
Recall that for fixed k, |jx) = |ikt1 - mi1---ik—1) as the same in (3.8), where
g = 0,...,n™"t — 1. Denote |Aj,) be the tube |Aj .i, jeip,;iny- Different from
Algorithm 1, we directly prepare the mode-k unfolding matrix through the unitary

operators Ugf) and Ug ) as in Lemma 3.1 according to the mode of unfolding:

o 1 n—1
k _ . .
UR i) [0) — |y [Ay,) = TA T, 2 Giisein i) lix)
Jll2 5 =0
for j,=0,---,n™ "t —1;
1 nm—1l_1
UG’ 0l = A [ = 7= 2 IAalelio) i)
Jk=0
for i =0,---,n—1. (5.36)

By this way, the above two operators are prepared in time O(m polylogn), corre-

sponding to A®" Then we implement the controlled-£ singular value estimation in
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parallel by applying the operator Y7 W*) @ |k) (k| on the initial state |¢)). Fi-
nally, we undo the phase estimation and apply the inverse of operator Ugf), obtaining

the state (5.34)
1 "EO ) (0 )
V) = — Z Z B sy 158y k)
m k=0 =0

For the last two steps, similar to the Steps 4 and 5 in Algorithm 1, we can make

measurements and obtain the singular matrices and core tensor.

5.5 Complexity Analysis

For simplicity, we assume the input is an mth-order n-dimensional tensor.

For the first Q-HOSVD algorithm, the computational complexity mainly comes
from data access, matrix exponential simulation and phase estimation. The data
input time is O(m polylogn). At a simulation time ¢, only the eigenvalues of A® /N
with |\;|/N = Q(1/t) matter [67], and the eigenvalues smaller than e are omitted.
Note that A® is an n x ™! matrix. For a fixed k, let the number of these
eigenvalues be r < 2n, then by

{ tr{ég/‘]\/ﬂ} = Z;;(l) X?/NQ = Q(T/ﬁ)v (5.37)
tr{A7/N?} < tr{A?/N?} = |A[L/N? < |A[;

max’

we find that the rank of the effectively simulated matrix is r = O(|A|?,.t%). By

(5.11), there are O (t*||A|?../€) steps required to simulate e iR, where A max =
O(1), and 1/e can be chosen as O(polylogn). To make this algorithm efficient,
t = O(polylogn), then the rank r = O(polylogn), i.e. the matrices have to be
low-rank. Thus, the time to implement phase estimation is O(polylogn - log(n)/e).
Therefore, the total computational complexity of obtaining (5.6) is O(m?polylogn).

For the second Q-HOSVD algorithm, for each unfolding the time to access the

data structure is O(m polylogn), and the time to implement QSVE is O(m polylogn/e),
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so the total complexity of obtaining (5.34) is O(m?3polylogn). Furthermore, there are
no requirement for the structure of the input tensor.

Usually, in practical problems, m « n. Thus, we can omit the order m, and the
algorithm runs polylogarithmically in the dimensions.

If we want to obtain the singular matrices and core tensor explicitly in the quan-
tum register, we need to make measurements on the states (5.6) and (5.34), and
reconstruct singular matrices and finally calculate the core tensor by quantum tensor
matrix multiplication, the complexities are O(m3n?polylogn) and O(m*n*polylogn)

respectively.

5.6 Application on Recommendation Systems

In [74], the authors make use of HOSVD for tag recommendations. Given an
initial third-order tensor with usage data triplets (user, item, tag), they implement
HOSVD and do truncations to obtain the core tensor and reconstructed tensor with
smaller dimensions. Then, based on the entries of the reconstructed tensor, the tags
are recommended to users. We have carried out the similar SVD and truncation
operations in [81] by another tensor decomposition called t-svd.

In this section, we introduce a hybrid quantum-classical recommendation method
for context-aware collaborative filtering (CF) based on tensor factorization (TF),
named as multiverse recommendation [38]. TF is an extension of matrix factor-
ization (MF) to multiple dimensions. HOSVD is chosen as our TF approach to
analyze the recommendation systems, due to its relevance among the different cat-
egories. Given the known preference tensor, we use HOSVD model to find out the
missing information. This problem is well-known as the completion problem in rec-
ommendation systems [72]. Our contribution is designing a hybrid quantum-classical

recommendation algorithm to accelerate this process.
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Context has been universally acknowledged as an important factor for analyzing
recommendation systems. A pair (user, item) is extended to a triplet (user, item,
context) or even larger multiplets, where context denotes the factor that may in-
fluence a user’s preference on a specified item, e.g. time, location, and we consider
the interactions among them. Generally, any number of contexts can be added to
this recommendation system, and the correlation is described by a relevance score

function f,¢ as follows:
frs : User x Item x Context; x --- x Contexty

—> Relevance Score (5.38)

with ¢ different contexts, so that the total number of dimensions is ¢ + 2. Thus, we
can use a tensor with order m = /+2 to express the set of relevance scores, and utilize
HOSVD model to describe it. Such methods are widely applied in recommendation
systems like Netflix prize problems [7] and so on.

Denote the given preference tensor Y € {0, -, 5}1>/2xxIm containing the ob-
served ratings ranging from 1 to 5, and value 0 indicates that the item has not been
rated yet. The aim is to find out such missing values and give a good recommenda-
tion to users. Denote the factor matrices U € RIixd M e Rf2xd2 C) ¢ Rlk+2xdi+2
for k = 1,...,0. Then, § € Rixd2x=xdn  Teot d = |dy,do, - ,d,,]", and d =
MaxXje[m] d;-

To obtain the recommendations based on HOSVD, we design a loss function
and optimize over it. The loss function is characterized as L(T(#),)), where 6 is
the model parameter, i.e., 6 := (S,U,M,C",C? ... CY). Denote a set D :=
{(i1,72, " yim) | Yirig-i,, > 0} an observation history, and K := |D| the number of

observed ratings. The total loss function is defined as

1
L(T(e), y) = ||SH1 Z { (tilig“'im) yiliz“'im) y (539)
(

i1=i27---7im)eD
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which only applies on the observed values in ). Function [(¢,y) is a pointwise loss
function, that can be based on I, norm, e.g., I(t,y) = (t — y)?/2, or other types of
distance measure. By adding a regularization term to avoid overfitting, we establish

the objective function

J(0) := L(T(9),Y) + Q(0) (5.40)
with trivial regularizers
¢
Q0) = MIU[F + X M|E + D M| CP7 + As[S|7- (5.41)
k=1

Usually, the parameters of matrices can be chosen as the same value, i.e., Ay = Ay =
cee= A, =0 A

We optimize these matrices and the core tensor by stochastic gradient descent
(SGD) method [11]. SGD randomly picks a sample at one time and perform gra-
dient descent. It usually compares with batch gradient descent (BGD) which runs
over all the samples each iteration. BGD converges globally in every step but it is
computationally prohibitive for our problem. The cost of SGD is low, but it usually
converges in a local minimum. For big data problems, SGD often converges without
running over all the samples. The whole tensor completion algorithm based on the

HOSVD model is given in Algorithm 3.
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Algorithm 3 Tensor Completion by HOSVD
Input: YV,d,n, A\, s
Output: S, U,M,Cc®, ... Cc®

Initialize U, M,C1), ... | C¥ S with small values, 7 with all zeros.

while (i1,142,...,i,) € D do

tivigi,, =S X1 Uje Xo My, X3 CZ(;.) X4 X, Ci(i),

Uije «— Uie =AU 0 — 00y, L (Eisigeings Yirioein)
MZ'Q. «— MZ‘Q. — T]/\MZ'Q. — 7751\/[1.2.l (ti1i2...im, yi1i2...im)

C(l) <« C(l) _ n)\c(l) — nacgé).l (ti1i2~-'im7 yil’iz“'im)

igo 3@ 3@

¢

S «— 8 —nAsS —nosl (tilig---im> yi1i2~~~im)
end while

: l l
<« Cl(m). — 77>\Cl(m). — n&cgz)'l (ti1i2...im, yz-m...im)

Algorithm 3 can be considered as a training method by SGD. After we obtain

the factor matrices and core tensor, 7 is computed explicitly by
T=8x;UxosMx3C" x,.--x,,C" (5.42)

as an approximation of the preference tensor ) and we give recommendations to
users according to the entries of T .

This algorithm is a hybrid quantum-classical algorithm. The computation of
gradients is accelerated by some quantum subroutines, and the rest procedures are
performed by classical computers. The gradients are, e.g.,

©

ime?

(5.43)

anl‘l (ti1i2“-im7 yili2'“im) = 5t l (tili2"'im7 yi1i2“-im) S X9 Migo Xg o Xy C

i1ig-im

14
83[ (ti1i2~-'im7 yil’iz“'im) = atili?__iml (ti1i2-~~im7 yiliz“'im) Uho o Migo o-+-0 Cl(m)‘ (544)

For gradient (5.43), &, U(tiyigeing s Yirig-in,) 1S & simple function, if the loss func-

i1ig-im

tion takes [y norm, then 0,/(t,y) = t —y. Define g(U;,.) = S xo M4 X3+ ch@

Tme”

The entry g;(U;,.) is equivalent to

Silzj . (Mizi O +«++0 Cz(f;)o) = 81'1:]' . Z, (545)
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the inner product of two (m — 1)th order tensors. By quantum matrix multiplication
algorithm [69], the outer product of two vectors |a) and |b) can be performed in time

O(|a|||b||3polylogn/eslla o b|%) = O(polylogn/e,) to accuracy e, which holds for
(0

im®

classical vectors. Thus, we can perform the quantum outer product M;,, 0---0C

in time O(polylogn/es). The resulting state is

1 n—1

12,13, 4m =0

|2) =
|2]F

Next, we load the subtensor &;,_; into the quantum register as

1 n—1

|5> = m Z Sjigigerim |Z2> |23> T |"m> (5'47>
11=]

12,13,-,4m =0

Then, we can construct the following superposition state:

1
|61) = 7§(|+> ) +1=)12))
=siné |0y |uy + cos @ |1) |v) (5.48)

with cos = 4/(1 —{s|z))/2. Then, by applying quantum amplitude estimation

algorithm [13], we can obtain h such that

1 —
‘—§S|Z> — h‘ <es (5.49)

in time O(mlogd/e;). Therefore, |S;,—;|r|Z]r(1 — 2h) gives a 2¢5|S;,—||lr| Z| -
approximate of g(U;,.). Then, if we take ¢ = 2¢5|S;,=;|r|Z|Fr, we can obtain the
value of g;(U;,.) in time O(mlog d||S;, ;| r|| 2| r/€) to accuracy e. Since the gradient
g has d entries, and we have to repeat the above procedure for all the singular
matrices, then the total complexity of matrix optimization is O(Km?2dpolylogd).
Compared to the corresponding classical algorithm which takes O(Kmd™) classical
calculations, our quantum algorithm is exponentially faster. To calculate the core
tensor S, we can directly use the classical computation, the complexity is O(Kd™).
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Chapter 6

Quantum Barzilai-Borwein

Gradient Method

6.1 Introduction

Optimization is an important tool in analyzing data. Gradient descent method
and Newton’s method are the two most commonly used optimization algorithms.
Standard gradient descent method is a first-order iterative algorithm for finding
a local minimum (or maximum) of a function. This method is simple, but usually
converges slowly. Furthermore, for ill-conditioned case in the sense that the condition
number of the Hessian matrix is very large, the progress is extremely slow. Newton'’s
method is a second-order algorithm, which converges quadratically with fewer steps
than gradient descent method. However, it is very time-consuming in calculating
the inverse of the Hessian matrix. Research has been done for long time on how to
balance the computational cost and convergence speed. In 1988, Barzilai and Borwein
found a linear method that significantly outperforms the standard gradient descent
method with nearly no extra cost. The only difference between their method and the
standard one is the choice of step sizes. They designed two specific step sizes and the
algorithm is proved to converge Q-superlinearly for convex quadratic functions [64].

This method is named as two-point step size gradient method [5], and also known as
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the BB gradient method. After the BB gradient method is proposed, many follow
up works spread this method to a broader area. Now it has been successfully applied
in several areas, such as compressed sensing [27], support vector machine in machine
learning [20], image processing [82], stochastic linear complementarity problems [36]
and etc.

Quantum optimization is an indispensable part of quantum machine learning
theory. However, so far there are only a few quantum optimization algorithms. In
2017, quantum gradient descent and Newton’s method for constrained polynomial
optimization [66] are raised based on the HHL algorithm. The objective function is
an even order polynomial. The authors consider the coefficients as a huge matrix
and then decompose it into a sum of tensor products among smaller matrices. The
iteration functions of the gradient descent method and Newton’s method are ob-
tained by using several quantum techniques. In contrast to the classical counterpart,
for each iteration of the quantum methods, multiple copies of the current step are
consumed to proceed to the next step. Thus, the above quantum algorithms scale
exponentially in the number of iterations. The authors think that it is acceptable in
cases when the optimal solution is reached in only a few steps. If this condition is
satisfied, the runtimes of the two quantum optimization algorithms are O(polylogN),
where N is the number of variables. They offer an exponential speedup over their
classical counterparts. In [40], the authors introduce a quantum gradient descent
method requiring time linear to the number of iterations when the gradient is an
affine function.

Inspired by [66], we propose the quantum Barzilai-Borwein gradient methods, and
apply them to polynomial optimization with a unit norm constraint. We reformulate
the coefficients of the objective function as a tensor, and use tensor decompositions
to simplify the calculations. Our quantum methods run polylogarithmically in the
dimension of the solution state, and provide exponential improvements over the
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classical counterpart.

6.2 Problem Statement

The objective function we want to minimize is a polynomial of order m defined

over x € RV,

N

f(X) = Z Qg Lig * Ly s (61)

i1y =1
with N™ coefficients a;,..;,, € R and x = (21, ...,xy) . The coefficients aj,..;,, com-

pose an mth-order N-dimensional tensor. From equation (2.12), we know that the

objective function can be rewritten as the inner product between A and x™:
f(x) = Ax™. (6.2)
Without loss of generality, we assume ||Al|p = 1.

If A is not symmetric, we may symmetrize A with respect to all modes so that
A is symmetric with respect to any permutation of indices. By this symmetrization,
we have

f(x) = AX™ = Ax™. (6.3)
Since A can always be symmetrized in this optimization problem, we assume in the
following A is a symmetric tensor.

Recall that the symmetric tensor can be decomposed by symmetric CP decompo-
sition and symmetric HOSVD through equations (2.16) and (5.5). Therefore, for CP
decomposition, the gradient of the objective function (6.1) at point x can be written
as

V)= Z a;m(v;x)" v, =m Z a; (v, x)"?v;v)x = mDx, (6.4)
j=1 J=1

where D is a function of x, while for HOSVD,
D =mU'(S, (Ux)" Hx', (6.5)
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where § and U are the core tensor and the singular matrix for symmetric HOSVD
respectively. Note that (S, (Ux)™™ 1) is a column vector.

Since later we propose to represent vectors x as quantum states, the quantum
algorithm naturally produces normalized vectors with x'x = 1. The problem we

solve is thus,

minimize f(x) = Ax™
(6.6)
subject to x'x =1,
or in quantum form
min‘ir;aize F(x). (6.7)
This is a polynomial optimization problem constrained under a unit sphere.
For the quadratic case, i.e. m = 2, the objective function is simplified as
1+
f(x) = 5% Ax, (6.8)

where A is symmetric. The gradient V f(x) = Ax.

6.3 Quantum BB Gradient Algorithms

Gradient descent is a first-order iterative optimization algorithm for finding a
minimum of a function. For classical gradient descent method, let f : RY — R be
the objective function. Given the initial point x¢, one finds a minimum by searching

along the negative of the gradient iteratively at the current point
Xk+1 = X — TVf(Xk), (69)

where 7 > 0 is the step size or learning rate in machine learning. For the standard
gradient descent method, the step sizes can be found via line search satisfying Wolfe

conditions [83]. However, the standard gradient descent method does not perform
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efficiently when the condition number is large. Thus, the BB gradient descent method
is designed in [5], where the step size of every iteration depends on the gradient and
point of current step and last step.

For the quantum BB method, the coefficient tensor, points, and gradients are

stored in the quantum register, and the iteration function (6.9) becomes

) o () = 7 [ V£ (0 ) (6.10)

with a normalization factor. Here, the points and gradients are expressed as quantum
states. In this section, we show how this quantum iteration function is performed.

First, we introduce the data input oracle in the following.

6.3.1 Data Input

The tensor A can be accessed by qRAM, or specifically, the tree data structure,
which is introduced in Chapter 3. The initial guess |X) can be an arbitrary quantum
state, e.g., we can set |xo) as |0) in the computational basis. Since the choice of initial
states greatly affects the convergence point and speed, we may choose a set of initial
states and apply the BB gradient descent method simultaneously, then there is a
high probability that the global minima is reached. For example, the set of initial

states is defined as

5

Al N O Sy
N ;) |(%0)i) |0y = N ;) DIDF (6.11)

we start the initial guesses from different modes |0),|1),...,|N — 1) stored in the
first register, and the second register stores the index ¢ which refers to the i-th initial

state.
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6.3.2 BB Step Sizes

Now assume we are at the kth step and have prepared multiple copies of the
current solution |x;) to an accuracy €, > 0. We would like to propagate a single
copy of |xi) to an improved |x41). The improved copy will be prepared to accuracy
€x+1 = O(ex + Tkep, ), where ep, is the accuracy of D in kth step.

Denote Vf(x) = Dxy, sp—1 = X — X1 and yp—1 = Vf(xx) — Vf(xp-1).
Hessian matrix H satisfies Hsp 1 = yx_1. The goal of BB gradient method is to
approximate H by using 71;1:[, so that (Tgll)sk_l ~ yi_1. Then, the problem is

transferred to the following two least-square problem
o1
T = arg mﬁm EHﬁsk,l —vie 1% (6.12)

and

1 _
T = arg mﬁm §||sk,1 — Bty (6.13)

Solving these two problems, we obtain two BB step sizes

2
7LBB _ —”TS’H”‘Z , (6.14)
‘Skflykfl‘

SBB _ ‘3;13%—1‘

S . (6.15)
[ye-1lls

Note that 788 > 7588 due to Cauchy-Schwarz Inequality, thus ‘L’ and ‘S’ refer to
‘Large’ and ‘Small’ respectively.
Combining the above two BB step sizes, the following alternative BB (ABB) step

size and adaptive BB (ADBB) step size are designed.

LBB :
ABB _ | T k is even, (6.16)
k BBk is odd, '
SBB
SBB  if T
TADBB _ Ty ) if 7_ji_,BB < R, K€ (07 1)7 (6 17)
k = . .
BB otherwise.
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Writing the solution vectors as quantum states, we have

LLBB _ 2 — 20/ xp-1) (6.18)
* | (k| = K1) (D [xk) = D |xi-1)) |
and
smn _ (Gl =G ) (D) =Dy )| 6.19)
ID %) = D fx1) |
In particular, for the quadratic objective function (6.8),
2—-2 _
BB = IRy, . (6.20)
| Ax) — i A1) = (K1 [Afx) + Xt [Afxg—1)|
sep _|<Kk[Axp) — (XiAlxp—1) — (K- |Axp) + (Ki—1 |A[xp-1)| (6.21)

,SBB _ .
‘ (k| A2[xp) — (x| A2[xp—1) — X1 | A |3 + (Xppmr | A2 [x41)
In this case, BB step sizes only depend on the current and last states. Note that

x|Alx) = tr{Ap} = tr{pA}, where p = |x)(x|.

6.3.3 Quantum BB Gradient Method

Let m = 2p. The full operator D = Y} ax(v,x)™ ?v;v, in the form of CP
j=1

decomposition (6.4) can be reproduced by a quantum operator that is equivalent to
D = try_,_o{p°?"V A}, (6.22)

where p is the corresponding density matrix.

To implement the multiplication with operator D [x) = |V f(x)) used for the
quantum gradient descent step, matrix exponentiation eP? |x) adapting the quan-
tum principal component analysis (QPCA) procedure [47] and subsequent phase es-
timation [51] are adopted. qPCA enables us to use multiple copies of a quantum
system with density matrix p to construct the unitary transformation e . Since
D depends on the current state, we cannot directly exponentiate it. Instead we
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exponentiate the tensor A by using multiple copies of p = |x){x| for a short time

At.

Theorem 6.1. By qPCA, the following operation is performed

tl“l._.m_g{@_iAAt pop eiAAt} _ e—iDAtpeiDAt + O(Atz) (623)
Proof.
trl._,m,g{efiAAt pop ei.AAt}
=t11_ o (I — 1AAL) pP(I + iAAL)} + O(AF)
= trl._,m,g{pof’ — iApOpAt + lpOpAAt} + O(Atz)
=pFitry m of—Ap? + pP A}AL + O(AL?),
where
try m_o{Ap?} = Z aj(vjT )" hvix (6.24)
j=1
and
K
try m_o{p? A} = Z a; (XTVj)m’IXVJ-T. (6.25)
j=1
Thus,

tr) e AN PP AN = g Z aj (—=(v/x)" vx " + (xTv)" xv]) At+O(AF).

j=1
(6.26)
Also,
¢~IDAG ) DA
= (I - iDAt)p(I + iDAt) + O(At?)
= p —iDpAt +ipDAt + O(At?)
=p+i Z aj (—=(v;x)" vx 4+ (xTvy)" kv ) At + O(AF). (6.27)

j=1
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O

Next, we implement the multiplication D |x) = |V f(x)) via phase estimation.
The phase estimation algorithm is performed to estimate the unknown value 6 to a

27if

finite level of precision, where U |p) = > |}, 0 < 6 < 1, which means €™ and |¢)

are an eigenpair of a unitary operator U. The quantum phase estimation procedure
uses two registers. The first register contains d qubits initially in the state |0), where
d decides the number of digits we wish to estimate for #. The second register begins
in the state |¢), and contains as many qubits as is necessary to store |p).

In phase estimation, a multi-qubit register with d = O([log(1/€3)]) control qubits
is used for forming an eigenvalue register. In this manner, for £ = 0,1,...,2% —1, we
can prepare (e P2 p (ePAY) by (6.23). Finally, we implement the inverse quantum
Fourier transform, the result of the phase estimation algorithm is a quantum state

proportional to

228 (D)) (D)) (6.28)

where |x) = > 8; |u;(D)) is the original state |x) written in the eigenbasis {|u;(D))}
of D, and |A;(D)) is an additional register representing the corresponding eigenvalue
in basis states |0) or |1).

Assume the gradient method is at the kth step, then we start from an initial state
|tho) which is prepared easily, after phase estimation, conditional rotation, several
measurements and etc., the iteration function (6.29) is derived. The details are

given in the following theorem and proof.

Theorem 6.2. Given access to tensor A and the state of the kth step |xx) to accuracy

0 < e, <1, we can obtain the next state |xx.1)y by the iteration function

ind = o (o) — 7 V7 (00 ) (6:29)

k+1
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to accuracy €1 = O(Tiep,, + €x), where Ciyq is the normalization factor with value

Cl%-i—l =1- 2Tk <Xk| D |Xk> + T]? <Xk| D2 |Xk>.
Proof. We prepare the state
[tgy = (cos @ |0) —isin@ |1)) |xx), (6.30)

where 6 is an external parameter. The eigenstates of D are given by |u;(D)) and
the eigenvalues by \;(D). After the conditional phase estimation which is specified

in Chapter 5 on |1) in the first register, we obtain

[¢1) = cos 0]0) |xx) |0) —isind |1>Z Bj lu; (D)) [A;(D)), (6.31)

where 3; = (u;(D)|x)). Now perform a rotation on |\;(D)), uncompute the eigen-

value, and apply a ox operator on the third register to arrive at the state

[1hs) = cos 010 [x) | 1)— 1sm€|1>26] ;D)) (/1= (CpA;(D))2[0)+Cp Ay (D) 1 ).

(6.32)
We choose a constant Cp = O(1/kp), where kp is the condition number of D. A

measurement of the ancilla in |1) arrives at

sy = \/%D(cose 0) [xi) — isin |1>; Co D)5 (D)), (633)

which is the desired state

i) = (0080 10Y x> — iCpsind [1)D |xk>). (6.34)

1
vV Pp
Therefore, we can multiply the operator D to |x;) conditioned on the ancilla being

in state |1) to obtain |1)4). The success probability is given by

Pp = cos® § + C3,sin® 0 (x;| D* |x;) . (6.35)
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We measure the state (6.34) in the basis |yes) = \/Li(|0> + i]1)) and |noy =

\%(i |0> + |1)). Measuring the ‘yes’ basis state results in the quantum system being

in a state
1

[Xps1) = ————
\/2Pp PE

Since the BB steps are calculated by (6.18) or (6.19), we choose # such that

(COSH |y — Cpsinf D |Xk>) (6.36)

1
cosf = sin 6 Tk

VIF@CE T Oy /It ()20

which leads to the following iteration function (6.29) with C7, | = 1—27; (xx| D [x))+

(6.37)

72 (x| D? |x;). The total probability of obtaining this state successfully is given by

1
Pppead — 5(0052 0 + C3,sin® 6 (x| D* [x;)). (6.38)

yes

To successfully obtain the state |xj41), we need to repeat O(1/1/PpP52%) times by

using amplitude amplification [1]. O

Now that we have the iteration function (6.29), then we repeat the iterations
starting from £ = 0,1, ... until the stopping criteria is satisfied. Finally, we obtain
the desired state, denoted as |xr).

If we start from different initial states simultaneously as (6.11), we apply the
iteration function on (6.11) in parallel, then the final state is \/LNZ?LBI (x1) |2).
Post-selecting ¢ in the second register, we get the ¢-th final state. Furthermore, it is
highly possible that there exists a global minimum in these final states.

In conclusion, we put forward the quantum Barzilai-Borwein gradient algorithm:
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Algorithm 4 Quantum Barzilai-Borwein (QBB) Gradient Method
Input: A, |x¢), 70,0 <e< 1,k=1
Output: |xr)

1. |x1) is calculated by standard gradient descent method with 7.
I |||xk) — |xk_1)|| < €, stop. Set T = k.

3. For k = 1, 7 is computed by formulae (6.18) or (6.19).

4. Calculate %311y = = (|xx) — 7 |V f(xx))) by Theorem 6.2.

Cr+1

5. k =k + 1, return to Step 2.

[\

To reach the optimal state, we need to perform the iteration several times. For
the kth step, the state |xz) proceeds to |Xjy1) probabilistically. Due to the no-
cloning property, if the iteration fails at a certain stage, the algorithm has to restart
at the initial state. Thus, the whole algorithm scales exponentially in the number of

iterations.

6.3.4 Quantum Feasible BB-like Method

In [37], a feasible BB-like method for solving problem (6.6) under the quadratic
case, i.e., (6.8) is proposed, where A € RV*Y is a symmetric matrix. The feasible
set 0 = {x:x"x=1,xeR"} is a special case of Stiefel manifold. In quantum
computing, |x) is an n-qubit quantum state, where N = 2". Thus, the constraint of
problem (6.6) is naturally satisfied.

Let the Lagrange function
1
L(x,\) = §XTAX — Ax'x. (6.39)

Suppose x is a local minimizer of problem (6.8). Then x satisfies the first-order
optimality condition dxL(x,\) = Ax — Ax. Set the lagrange multiplier A = xZAxk,

and denote g (x) = Axy, — (xLAx;)%p.
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Given |xg),
v = leel gy = A fxi) — Gl Alxi) [xi)
= (A = xp|Alxi)T) |xi)
= (A — tr(App)I) [xx)

—: Dxp). (6.40)

Note that D is not unitary and depends on the current state |xy ).

Let Y(7,x) be the general curve defined in [37] and given as follows

Y(Ta |X>) = a(Tv |X>) |X> - ﬁ(T7 |X>)gL7 (641>
where
1 —a?r? HgLH2 2ar
o) = e P e (6

and a is a predetermined constant in (0, 1).

Then, the iteration function (6.41) becomes

(1 — a?r? 5
Y(Tk,Xk) CL Tk H H |2Xk> aTk”gk || |gk>
1+ a7 gf|’
1 — o272 |gt|?) 90mD
_ (= g [x) — 2a7 |xk>7 6.1
1+ a7 |gf|’
where
LLBB _ 2(1 — (xp-1]x1))
k |(Xpo—1 [ X | A — (K| A xp—1) — (Kppm1 | A Xk + (Xp [ X1 ) Xpom1 | A Xp—1 )]
(6.44)
or

_spB _ |1k | Afxi) — (X A1) — 1| A i) + XX 1) K1 | A1)
k [(A = (xul Alxi) [x) — (A = (Kot | Alxi—1)) [xe-1)]

bl

(6.45)
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which can be derived by equations (6.18)-(6.19) and (6.43).

By (6.31), after conditional phase estimation, we obtain

[¢) = cos 00) [xx)|0) — isin 6 |1>Zﬁj |u; (A)) [A;(A)), (6.46)

the next step is to extract the \;(A). We know that A = UAUT, then
D= A —tr(Ap)I = U (A — tr(Ap)T) UT, (6.47)

1.e.

A(D) = AMA) — tr(Apy). (6.48)
After calculating tr(Apyg), then by conditional rotation, we have

[9) = cos 010) [xy) —isin® |1>Z Bi(AMA) = tr(Apy)) [u;(A))

= cos 0 |0) |x;y —isiné |1>Z BiAD) [u;(D)). (6.49)

Then, we show how we obtain the iteration function of quantum feasible BB-like

method. We prepare the state

|tho) = (cos @ |0) —isinf 1)) |x), (6.50)

where 6 is an external parameter. It is inferred above that the eigenpairs of D have
such relations with those of A: A(D) = A(A) — tr(Ap;) and |u;(D)) = |u;(A)).

After the conditional phase estimation by QSVE, we obtain:

[¥1) = cos010) x4 [0) — isind |1>Z Bi lui(A)) [A;(A)), (6.51)

where f3; = (uj(A)|xg). Now we first perform a conditional rotation of another

ancilla, then apply another rotation according to the value of tr(Apy), finally un-

74



compute the eigenvalue register to arrive at the state

|1hg) =cos 0 |0)|xx)|1) — isinb |1>Zﬁj lu; (A

(/1 (CaOy (8) = (A0 )+ Ca0,(A) = tr(A ) |1>)

= cos910) [x,)y[1) — isin8]1) ) 3, [u; (D) (\/1— (Ca\;(D))2]0) + Cay(D )|1>).

(6.52)

We choose a constant Cy = O(1/k4), where ry is the condition number of A. A

measurement of the ancilla in |1) arrives at

iha) = \/%(0089 0w~ im0 D) T C45,0,(D) D)), (653)

which is the desired state

|1hy) = (cos@ |0) %,y —1Cssinf |[1)D |xk>> (6.54)

ﬁ

Therefore, we can multiply the operator D to |x;) conditioned on the ancilla being

in state |1) to obtain |1)4). The success probability is given by
Pp = cos? 0 + C? sin? 0 (x;,| D? |x) = cos? 0§ + C% sin? 0||gF||>. (6.55)
We measure the state (6.54) in the basis |yes) = \/ii(|0> +1i|1)) and |noy =

\%(i |0> + |1)). Measuring the ‘yes’ basis state results in the quantum system being

in a state

|Xp 1) = ;(COSQ |x) — Casind D |Xk>) (6.56)

2Pp P
Since the BB steps are calculated by (6.44) or (6.45), we choose 6 such that

1 —a’7? H LH2 2a7;,/Cs

, sinf =

cosf =

- le?) + eamc
(6.57)
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which leads to the following iteration function

1
|Xp 1) = ) ((1 a’7; ||gr H |xx) — 2a7,D |Xk>) (6.58)

grad

with Cgf;dl = 1+ a’7? HgLH The probability of obtaining this state through a

successful ‘yes’ measurement is given by

(1+ a*rf 1
erad _ i let|') : - (6.59)
2(1 - a?r} gk |")? + 827 |gf|* 2
The total probability of measuring |1) and |yes) is
1 (1-a°7¢|gf (2
P P}%ersad - ( CL Tk Hg H aTk Hgk’ H (660)
2 (1- a7} gkl ) (2am,/Ca)?
Assume ||[A|r = 1, since A is a symmetric matrix,
N N
D N(A) =) ol (A) = |AE = 1. (6.61)
i=1 i=1
Therefore, [Apax(A)| < 1, we can take Cy as 1. The probability becomes
Lt gt]*) + (20 |gt])’
1 ( —a’r g ) + (2a7; |85
Pppgd = —. : (6.62)

yes 9
(1 cr I 1) + (2am)?

Thus, we propose the following quantum feasible BB-like method

Algorithm 5 Quantum Feasible BB-like (QFBB) Method
Input: A, x0,k=0,70>0,0<e«1,0<0<1,0<d<1,0<ax<1
Output: |xr)
1. |x1) is calculated by standard gradient descent method with 7.
2. 1 || — xx-1)ll < €, stop.
3. For k > 1, 7 is computed by formulae (6.44) or (6.45).
4. Calculate |xg41) = Y (7%, |Xx)) by formulae (6.41) and (6.42).
5. k=k+ 1. Go to Step 1.
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6.4 Analysis

6.4.1 Two Classes of Convergence Rates

In this section, we introduce some concepts for our convergence analysis in the

next section. The definitions below can be found in [52].

Definition 6.1. Quotient-Linear (Q-linear)
Let {xy} be a sequence in R that converges to x*. Then the convergence is called

Q-linear if there exists r € (0,1) such that

i1 = 27 (6.63)

g —a*]
for all k sufficiently large.

Definition 6.2. Quotient-Superlinear (Q-superlinear)
Let {xy} be a sequence in R that converges to x*. Then the convergence is called
Q-superlinear if

lim e =2 (6.64)
k- |z) — ¥

Definition 6.3. Root-Linear (R-linear)

Let {xy} be a sequence in R that converges to x*. Then the convergence is called
R-linear if there exists a sequence {vg} with vy, = 0 for all k, {vx} converges Q-linearly
to 0, and

|z, — 2| < vy (6.65)

for all k.

Definition 6.4. Root-Superlinear (R-superlinear)

Convergence is R-superlinear if {vy} converges Q-superlinearly to 0.

7



Note that root convergence is concerned only with the overall rate of decrease of
the error while quotient convergence requires the error to decrease at each iteration
of the algorithm. Thus, Q-convergence is a stronger form of convergence than R-

convergence, and R-convergence implies (Q-convergence.

6.4.2 Convergence Analysis

For any-dimensional strictly convex quadratic function, it is proved that either
g = 0 for some finite k, or the sequence {|gx||} converges to zero R-linearly [22].

In particular, if f(x) is a strictly quadratic convex function with 2 variables, i.e.,
m = 2, n = 2, the gradient method with BB step size (6.18) almost always converges
R-superlinearly that

gl < CA=(V2" (6.66)

holds asymptotically, where A = o1(H)/o2(H), H is a symmetric positive definite
matrix, C' is a constant independent of k.

Furthermore, it is proved in [21] that the BB gradients satisfy

hm mln { ||gk?+1H , ||gk+2H’ Hgk“i‘gH } — 07 (667)
ko lgkll " g1l gkl

which means that the BB method has a Q-superlinear convergence step in at most
three consecutive steps.

It is proved by Raydan [64] that the BB method is globally convergent for any n
if the objective function is a convex quadratic. However, for m > 2, no superlinear
convergence results have been established for the BB method, though numerical
results indicate quite offen that the BB method converges superlinearly.

For the problem with normalization constraint, the local superlinear convergence
is ensured for feasible BB-like methods for the two-dimensional case. There is also a

counter-example showing that the algorithms may cycle or stop at a non-stationary
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point. To ensure the global convergence, an adaptive non-monotone line search with

an improved line search is adopted in [37].

6.4.3 Computational Complexity

For the quantum BB algorithm, the computational complexity mainly comes from
data input and phase estimation which are both polylogarithmic in N. Thus, the
overall computational complexity is O(polylogN), as long as the number of itera-
tions 7' is small. Actually, the algorithm runs exponentially in 7', because in every
iteration, there is a probability for the algorithm to proceed to the next step. Thus,
if the BB algorithm fails in any step, we have to reperform the iterations from the

initial state.

6.5 Numerical Experiments

In this part, we compare four quantum optimization methods under the quadratic
case: (i) quantum gradient descent (QGD) method [66], (ii) quantum Newton’s
(QNT) method [66], (iii) quantum BB gradient descent (QBB) method Algorithm
4, (iv) quantum feasible BB-like gradient (QFBB) method Algorithm 5.

R100%100 411 the methods succeed to find the optimal

For a random matrix A €
solution. QGD and QNT need to run around 1000 times to get the optimal solution,
and the success probability in every step is around 0.25-0.3. QBB runs about 200
times, and the success probability is roughly ascending, and stable at around 0.2.
QFBB uses only 55 times, but the success probability is quite small, around 0.05-
0.2, and even some could be very small. As a whole, the total success probability
(calculated by the product of the success probability in every step) of QFBB is higher
than the other three methods.

For a matrix A € R®>*® with a large condition number 200, QGD and QWT

run 2000 times, while QBB and QFBB consume only 30 times. The total success
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probability of QBB and QFBB is higher than QGD and QNT.

6.6 Summary

We have introduced the quantum version of the Barzilai-Borwein gradient method.
Contrast to the standard gradient method whose step sizes are predetermined, the
step sizes of BB methods depend on the current and last points and gradients. Our
quantum methods consider an iterative constrained polynomial optimization in the
quantum computing framework, where the solution vectors in iterations are quantum
states. The first quantum BB method directly replaces the predetermined step sizes
with BB step sizes, and projects the solution state onto the unit sphere in every
iteration. We use qPCA to implement the gradient matrix. The second method is a
quantum feasible BB-like method for the quadratic case, which searches the optimal
solution along the unit sphere.

For the computational complexity, it is known that the running time of classical
BB gradient method is O(NV), where N is the number of variables of the objective
function, while for the quantum version, if the quantum BB gradient method is able
to find good solutions in a few iterations, it runs in O(polylog/N). Thus, the quantum
BB gradient method provides exponential speedups over the classical counterpart.
By the numerical experiments, contrast to the quantum gradient descent method in
[66], our quantum BB gradient methods find the optimal value in fewer iterations,

and the total success probability is higher.
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Chapter 7

Conclusions and Suggestions for
Future Research

This thesis introduces some quantum operations on tensors, and provides a subclass
of Hankel tensors, two quantum algorithms for higher order singular value decompo-
sition, and quantum Barzilai-Borwein gradient methods. The quantum algorithms
related to tensors may be used for research on the multipartite quantum system.
Also, they can be applied as subroutines in quantum machine learning methods.
Once quantum computers of a certain scale are constructed, our quantum algorithms
will come into play.

For the future work, I hope to continue working on algorithms related to quantum
and tensors. Tensor network is an effective way to run the quantum circuits as in
[57, 3]. Maybe quantum algorithms combined with neural networks will be a new
research direction. Also, recently quantum-inspired classical algorithms become very
popular, since such algorithms run in the same level of complexity related to the
dimensions compared to the pure quantum counterparts [76, 28]. Whether quantum-
inspired algorithms could perform as fast as pure quantum algorithms remains to be

explored.
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