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Abstract

Recently quantum computing becomes more and more popular and realizable, and

tensor is an effective method in quantum computing. This thesis is devoted to

studying structured tensors and providing several quantum algorithms. Three topics

are included:

1. introducing a new subclass of Hankel tensors and verifying their properties;

2. designing two quantum algorithms for higher order singular value decomposi-

tion;

3. presenting two quantum algorithms for polynomial optimization.

For the first topic, a subclass of Hankel tensors called basic positive semi-definite

(PSD) Hankel tensors is introduced, and the purpose is to find some low-rank basic

PSD non-strong Hankel tensors. It is shown that rank-1 even order strong Hankel

tensors are equivalent to rank-1 basic PSD Hankel tensors, and all even order strong

Hankel tensors with rank larger than 1 can be expressed as the sum of rank-1 basic

PSD Hankel tensors. Thus, the study of non-strong PSD Hankel tensors is reduced

to the study of basic PSD Hankel tensors with rank larger than 1. It is proved that (i)

there are no rank-2 basic PSD Hankel tensors, (ii) rank-3 basic PSD Hankel tensors

with dimension no less than 3 do not exist. Furthermore, an example of basic PSD

Hankel tensor whose rank equals 3 or 4 is provided.

For the second topic, higher order singular value decomposition (HOSVD) is
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studied, as it is a vital method for analyzing big data in multilinear algebra and ma-

chine learning. We present two quantum algorithms for HOSVD. The methods allow

one to decompose a tensor into a core tensor containing tensor singular values and

some unitary matrices by quantum computers. Compared to the classical HOSVD

algorithm, our quantum algorithms provide an exponential speedup. Furthermore,

a hybrid quantum-classical algorithm of HOSVD model applied in recommendation

systems is introduced.

For the last topic, the quantum version of Barzilai-Borwein (BB) gradient method

is proposed and applied to polynomial optimization with a unit norm constraint.

It is known that gradient methods are widely used in optimization and machine

learning problems. However, standard gradient descent method usually converges

very slowly while BB gradient method overcomes this obstacle with nearly no more

cost. Our quantum algorithms scale polylogarithmically in the dimension of solution

vector. Compared with the classical counterpart, our quantum methods provide an

exponential speedup, and succeed to find the optimal value in fewer iterations than

the existing quantum gradient methods.
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Õpfpnqq Opfpnqq times a polylogarithmic factor

xix



�k k-mode tensor-matrix multiplication

� or x�, �y inner product

� outer product

b Kronecker product

xx



Chapter 1

Introduction

1.1 Background

Quantum computing has caught more people’s eyes in the recent years, as classi-

cal computing is reaching its limit. Quantum computing uses quantum-mechanical

phenomena for computation, such as superposition and entanglement. The device

that performs such computation is called the quantum computer. Last year, Google

invented a 53-qubit quantum computer and claimed that it outperforms the cur-

rent best supercomputer when running random quantum circuits, which is named

as “quantum supremacy” or “quantum advantage” [3]. This milestone will speed up

the development of quantum computing.

As the quantum physicists are working on setting up the quantum computers,

theoretical research on quantum algorithms and programming is also being con-

ducted. The concept of quantum computing was proposed in the early 1980s. In 1982,

the famous theoretical physicist, Richard Feynman, claimed that the real world is

quantum-mechanical. He pointed out that a quantum computer may simulate things

that a classical computer could not [26]. In 1994, Peter Shor designed a quantum

algorithm for factoring integers, which is exponentially faster than the corresponding

classical algorithm [70]. This algorithm is able to break the current cryptography

system if the large-scale quantum computer is built. Shor’s algorithm made scientists
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convinced that quantum computing has a great potential. In 1996, Grover developed

a quantum algorithm that searches an unstructured database for an entry quadrati-

cally faster than the classical counterparts [30]. In 2009, the HHL algorithm, named

after Harrow, Hassidim and Lloyd, solves a linear system exponentially faster than

the classical counterpart. During the last decade, many quantum machine learning

[10] algorithms are proposed, such as quantum support vector machine [65], quantum

Boltzmann machine [2] and etc.

Quantum algorithms are usually implemented by quantum circuits, which are

based on quantum bits and logic gates. All the quantum bits and logic gates can

be considered as tensors, thus composing a tensor network. Tensor network is a

graphical representation of tensors, and it is an efficient method to simulate quan-

tum circuits, which is applied by many researchers such as IBM and Google teams

[57, 3]. Besides that, a multipartite quantum state corresponds to a tensor (or hy-

permatrix). Therefore, the entanglement of a multipartite quantum state is studied

by the spectral properties of tensors [34, 35, 63].

In this thesis, I focus on the quantum algorithms related to tensors. Two quan-

tum algorithms for higher order singular value decomposition are proposed, and two

quantum algorithms for BB gradient method are designed for polynomial optimiza-

tions. Also, a subclass of Hankel tensors is introduced to study the property of

structured tensors.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, some concepts in quantum computing, the definitions and mul-

tiplications related to tensors are introduced. Moreover, some well-known tensor

decompositions and tensor networks are illustrated.
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In Chapter 3, we discuss the quantum operations on tensors. The data structure

of tensors with quantum access is proposed. Then, the quantum matrix unfolding is

designed.

In Chapter 4, Hankel tensors are first introduced. Then, the definition of basic

positive semi-definite (PSD) Hankel tensor is proposed and the relationships between

strong Hankel tensors and basic PSD Hankel tensors are also given. After that, it is

proved that within mth-order n-dimensional PSD Hankel tensors, rank-2 basic PSD

Hankel tensors do not exist. Moreover, the existence of rank-3 basic PSD Hankel

tensors whose dimensions are not smaller than 3 is disproved. Finally, a 4th-order

2-dimensional basic PSD Hankel tensor whose rank is 3 or 4 is presented.

In Chapter 5, the definition and properties of higher order singular value de-

composition (HOSVD) are introduced. Two quantum higher order singular value

decomposition algorithms are presented, and the computational complexity is dis-

cussed then. After that, we give an application of HOSVD model on quantum rec-

ommendation systems. At last, we summarize the results and compare the quantum

HOSVD algorithm with the classical counterpart.

In Chapter 6, the classical Barzilai-Borwein (BB) gradient method is introduced,

and the detailed polynomial optimization problem is stated. After that, two kinds

of quantum BB gradient methods are described. Then, the convergence and compu-

tational complexity are discussed, and the numerical results are listed and compared

with the quantum standard gradient descent method. Eventually, the quantum BB

algorithms are confronted with the classical counterparts.

In the last chapter, conclusions and some future work are discussed.
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Chapter 2

Preliminaries

2.1 Quantum Computing

In this section, some concepts in quantum computing are introduced, which can

be found in [51].

Definition 2.1. (Quantum state)

The state space of a quantum system is a Hilbert space. The system is completely

described by its state vector, which is a unit vector in the Hilbert space.

Definition 2.2. (Quantum bit (Qubit))

The state space is C2 with basis vectors

�
1
0

�
� |0y ,

�
0
1

�
� |1y . (2.1)

An arbitrary state vector is given by

|ψy � α |0y � β |1y , |α|2 � |β|2 � 1. (2.2)

Quantum states are represented by Dirac notation (or called bra-ket notation).

The conjugate transpose of ket |ψy, denoted by xψ|, is a row vector.

The ket |ψy is a pure state. A quantum system may also be in a mixed state,
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usually characterized by the density matrix

ρ �
M�1̧

j�0

pj |ψjy xψj| , pj ¡ 0,
¸
j

pj � 1. (2.3)

The density matrix is positive semi-definite and its trace is 1.

Definition 2.3. (Composite system)

The state space of the composite system, composed of subsystems A and B, is the

tensor product Hilbert space HA bHB. If the state vectors of A and B are |ψAy and

|ψBy respectively, then the state vector of the composite system is

|ψAy b |ψBy � |ψAψBy , (2.4)

where tensor product b refers to Kronecker product.

An entangled state is a state which cannot be written as a product state

|ψAy b |ψBy.
A quantum circuit consists of qubits and logic gates. Quantum logic gates are

local unitary operations that act on a small number of qubits. A unitary operator is

a bounded linear operator U : H Ñ H on a Hilbert space H that satisfies U:U �
UU: � I, where U: is the conjugate transpose of U.

Definition 2.4. (Quantum measurement)

Quantum measurements are described by a collection tMmu of measurement opera-

tors. The index m refers to the measurement outcome that may occur in the experi-

ment.

If the state of the quantum system is |ψy before the measurement, then the

probability that result m occurs is

ppmq � xψ|M:
mMm |ψy , (2.5)
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and the state of the system immediately after measurement is

Mm |ψya
ppmq . (2.6)

The operators satisfy the completeness condition:
°
m M:

mMm � I.

Definition 2.5. (Partial trace)

Suppose there is a bipartite system, whose state is described by a density operator ρ.

The reduced density operator for the first subsystem is defined by

ρ1 � tr2pρq, (2.7)

where tr2 is a map of operators known as the partial trace over the second subsystem.

The partial trace is defined as

tr2 p|a1y xa2| b |b1y xb2|q � |a1y xa2| trp|b1y xb2|q

� xb2|b1y |a1y xa2| , (2.8)

where |a1y and |a2y are two states in the first subsystem, |b1y and |b2y are two states

in the second subsystem.

Recall that discrete Fourier transform (DFT) takes as input a vector of complex

numbers, x0, . . . , xN�1 where the length N of the vector is a fixed parameter. It

outputs a vector of complex numbers y0, . . . , yN�1, defined by

yk � 1?
N

N�1̧

j�0

e2πijk{Nxj. (2.9)

The quantum Fourier transform is exactly the same transformation and presented in

the following lemma.

Lemma 2.1. The quantum Fourier transform (QFT) on an orthonormal basis

t|0y , |1y , � � � , |N � 1yu is defined to be a linear operator with the following action on
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the basis states,

|jy Ñ 1?
N

N�1̧

k�0

e2πijk{N |ky . (2.10)

By the above two equations, we have

N�1̧

j�0

xj |jy Ñ
N�1̧

k�0

yk |ky . (2.11)

Denote N � 2n. For n bits, the complexity of DFT is Opn2nq, while that of QFT is

only Opn2q, so that QFT provides an exponential speedup.

2.2 Definitions and Multiplications of Tensors

A tensor (or hypermatrix) is a multi-array. The definition and the multiplications

related to tensors are given in this section. More details can be found in [62, 61].

Definition 2.6. An mth-order tensor A � pai1���imq P FI1�I2�����Im is a multi-array

of Πm
j�1Ij entries, where ij P rIjs for j P rms and F is a field. pI1, I2, . . . , Imq is the

dimension of A.

The entries can be also represented as A pi1, i2, . . . , imq. When I1 � I2 � � � � �
Im � n, A is called an mth-order n-dimensional tensor. Usually, we consider real and

complex tensors, i.e., F � R or C. Denote the set of all the real (complex) mth-order

n-dimensional tensors TR
m,npTC

m,nq.
For any tensor A P TR

m,n, if its entries ai1���im ’s are invariant under any permutation

of its indices, then A is called a symmetric tensor. Let the set of all the real

symmetric mth-order n-dimensional tensors be Sm,n.

For A P Sm,n and x P Rn, we have a homogeneous polynomial fpxq of n variables

and degree m,

fpxq � A � x�m :� Axm �
¸

i1,��� ,imPrns
ai1���imxi1 � � � xim . (2.12)
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Note that there is a one-to-one correspondence between homogeneous polynomials

and symmetric tensors.

Definition 2.7. For even order tensor A P Sm,n, if fpxq ¥ 0 for all x P Rn, then the

homogeneous polynomial fpxq and symmetric tensor A are called positive semi-

definite (PSD). If fpxq ¡ 0 for all nonzero x P Rn, then fpxq and A are called

positive definite (PD).

Definition 2.8. Given a tensor A P CI1�I2�����Im and a matrix B P CJk�Ik , their

k-mode tensor-matrix multiplication

pA�k Bqi1i2���ik�1jkik�1���im �
Iķ

ik�1

ai1i2���ik�1ikik�1���im bjkik (2.13)

produces an I1 � I2 � � � � � Ik�1 � Jk � Ik�1 � � � � � Im tensor.

Definition 2.9. The outer product of two tensors A � pai1���imq P CI1�I2�����Im

and B � pbim�1���ipq P CIm�1�����Ip, denoted as A�B, is pai1���imbim�1���ipq P CI1�I2�����Ip.

Definition 2.10. The inner product of two tensors A,B P CI1�I2�����Im, denoted

as A � B or xA,By, is defined as

A � B �
I1̧

i1�1

� � �
Im̧

im�1

a�i1i2���imbi1i2���im , (2.14)

where � is the conjugate.

Definition 2.11. The induced norm
?
A �A is called the Frobenius norm of A, de-

noted as }A}F . The l1-norm of the tensor A is defined as }A}1 �
I1̧

i1�1

� � �
Im̧

im�1

|ai1i2���im |.
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2.3 Tensor Decompositions and Tensor Networks

It is known that matrices can be expressed as a sum of rank-1 matrices by singu-

lar value decomposition (SVD). The singular values are the principal components of

the matrix, and we can compress the matrix by eliminating several smallest singular

values. Due to the complex structure of tensors, there do not exist such powerful

decompositions as matrix SVD. In the following, some well-known tensor decompo-

sitions modified from SVD are introduced.

Definition 2.12. (CP Decomposition) [14, 32]

For any tensor A P RI1�I2�����Im, it has a tensor rank decomposition or CANDE-

COMP/PARAFAC (CP) decomposition that it may be represented with a suitably

large r as a linear combination of r rank-1 tensors:

A �
ŗ

k�1

αkv
1
k � � � � � vmk , (2.15)

with each αk P R, vik P Rn, for i � 1, ...,m.

We usually use r to define the rank of tensor A.

If A is a symmetric tensor, then we have the following symmetric CP decompo-

sition

A �
ŗ

k�1

ak vk � � � � � vklooooomooooon
m

�
ŗ

k�1

akv
�m
k . (2.16)

Accordingly, the minimum of r is the symmetric rank of A.

Definition 2.13. (Tensor-train Decomposition) [55]

For tensor A P CI1�I2�����Im, by tensor-train (TT-) decomposition the entries can be

approximated by a series of matrices

Api1, i2, . . . , imq � G1pi1qG2pi2q � � �Gmpimq, (2.17)
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where Gkpikq is an rk�1 � rk matrix, and the boundaries r0 � rm � 1.

Actually, the matrix Gkpikq is a third-order tensor G, then the decomposition is

rewritten as

A pi1, i2, . . . , imq �
¸

α0,...,αm�1,αm

G1 pα0, i1, α1qG2 pα1, i2, α2q � � �Gm pαm�1, im, αmq ,

(2.18)

where Gk is an rk�1�Ik�rk tensor. The values rk, k P rm�1s are called the TT-rank

or bond dimension.

Tensor-train decomposition is a powerful tool for quantum mechanics, since its

structure resembles a pure quantum state of several particles. It is also named as

matrix product state (MPS), and a multipartite quantum state can be written in the

following form:

|Ψy �
¸

i1,i2,...,im

tr rG1pi1qG2pi2q � � �Gmpimqs |i1i2 � � � imy . (2.19)

Definition 2.14. (Tucker Decomposition) [78]

For tensor A P CI1�I2�����Im, if there exist matrices Xpkq � rxpkq
1 x

pkq
2 � � �xpkq

Ik
s P CIk�Ik

with }xpkq
ik
} � 1 for k P rms and ik P rIks such that

A � S �1 Xp1q �2 Xp2q �3 � � � �m Xpmq, (2.20)

then (2.20) is said to be a Tucker decomposition of A, and S � psi1i2���imq is called

the core tensor of A.

If we remain the first rk columns of Xpkq, i.e., Xpkq � rxpkq
1 x

pkq
2 � � �xpkq

rk s P CIk�rk ,

then core tensor S P Cr1�r2�����rm . This is called the truncated Tucker Decomposition

[43].

Definition 2.15. (Hierarchical Tucker Decomposition) [31]

The tensor A P CI1�I2�����Im is decomposed into a multi-layer of tensors through
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Hierarchical Tucker (HT) decomposition by

φ1,j,γ �
r0̧

α�1

a1,j,γ
α x0,2j�1,α � x0,2j,α

...

φl,j,γ �
rl�1̧

α�1

al,j,γα φl�1,2j�1,αloooomoooon
order 2l�1

�φl�1,2j,αloomoon
order 2l�1

...

φL�1,j,γ �
rL�2̧

α�1

aL�1,j,γ
α φL�2,2j�1,αloooomoooon

order m
4

�φL�2,2j,αlooomooon
order m

4

A �
rL�1̧

α�1

aLα φ
L�1,1,αloomoon

order m
2

�φL�1,2,αloomoon
order m

2

,

(2.21)

where tx0,j,γujPrms,γPrr0s are the assembling vectors in the first layer, the intermediate

weights
 
al,j,γ P Rrl�1

(
lPrL�1s,jPrN{2ls,γPrrls, the weights in the final layer taL P RrL�1u

and
 
φl,j,γ

(
lPrL�1s,jPrm{2ls,γPrrls are 2lth-order tensors.

It is proved in [19] that a deep neural network corresponds to a HT decomposition,

and a HT decomposition of polynomial size is able to express a CP decomposition

with exponential size.

For A P TR
m,n, assume r � maxk rk, then the number of parameters we use to

approximate the original tensor by the above tensor decompositions is given in Table

2.1.

Tensor networks (TNs) represent a high order tensor as interconnected lower

order tensors. It is a direct way to realize tensor decompositions in the form of

tensor networks. The basic TN notations and some famous tensor networks are

given in Fig. 2.1 and Fig. 2.2 [18].

12



Tensor decomposition The number of parameters
CP Opmnrq

truncated Tucker Oprm �mnrq
TT Opmnr2q
HT Opmnr �mr2q

Table 2.1: The space complexity of tensor decompositions.

Figure 2.1: Basic tensor network notations.

Figure 2.2: Some examples of tensor networks.
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Chapter 3

Quantum Tensor Operations

In this chapter, some quantum operations on tensors are given, and these operations

will be applied in the quantum algorithms in Chapters 5 & 6.

3.1 Quantum Data Structure of Tensors

A normalized vector x � px1, x2, . . . , xnqJ P Rn can be loaded into a quantum

register by an oracle named quantum random access memory (qRAM) [29]:

x ÞÑ |xy �
n�1̧

i�0

xi�1 |iy (3.1)

with preparation time Oplog nq. Note that in quantum computing the indices usually

count from 0. The operation of qRAM is non-trivial to implement. A necessary

condition to realize a quantum exponential speedup is the operation running in time

at most polylogarithmic in n.

Similarly, a tensor A P TR
m,n can be accessed by the following multipartite state

|Ψy �
n�1̧

i1,i2,...,im�0

ai1i2���im |i1i2 � � � imy , (3.2)

where ik � 0, . . . , n � 1 for k P rms. This procedure can be achieved in time

Opm log nq.
15



A possible realization of qRAM is the data structure designed by Kerenidis and

Prakash in [58, 39], which is a classical data structure with quantum access. The

information is stored classically, but it can be accessed in quantum superposition. In

the following, we first introduce the tree data structure for matrices and then extend

this data structure to both real and complex mth-order tensors.

Lemma 3.1. (Tree data structure for matrices) [39]

Consider a matrix A � paijq P RI1�I2 with ω nonzero entries. Let Ai be its i-th

row of A, and Â � 1
}A}F r}A0}2, }A1}2, � � � , }AI1�1}2sJ . There exists a data structure

storing the matrix A in Opωlog2pI1I2qq space such that a quantum algorithm having

access to the data structure can perform the mapping

UP : |iy |0y Ñ |iy |Aiy � 1

}Ai}2

I2�1̧

j�0

aij |iy |jy

for i � 0, � � � , I1 � 1;

UQ : |0y |jy Ñ |Ây |jy � 1

}A}F
I1�1̧

i�0

}Ai}2 |iy |jy

for j � 0, � � � , I2 � 1 (3.3)

in time OppolylogpI1I2qq.

In simple terms, there exists a unitary operator UA that prepares A by

UAp|0ylog I1 |0ylog I2q � 1

}A}F
¸
i,j

aij |iy |jy (3.4)

in OppolylogpI1I2qq time.

Denote Y �
�

0 �i
i 0

�
and Rypθq � e�iθY{2 � cos

θ

2
I�i sin

θ

2
Y �

�
cos θ

2
� sin θ

2

sin θ
2

cos θ
2

�
.

For example, for a 4-dimensional vector in the data structure as follows to be pre-

pared as a 2-qubit state

|ϕy � 0.4 |00y � 0.4 |01y � 0.8 |10y � 0.2 |11y ,
16



1

0.68

0.04

+

0.64

+

0.32

0.16

+

0.16

+

two rotations are necessary to be performed on the initial state |00y, the first rotation

is �
Ryp2 arccos

?
0.32q b I

	
|0y |0y � p

?
0.32 |0y �

?
0.68 |1yq |0y . (3.5)

Then, the second rotation is�
|0y x0| bRy

�π
2

	
� |1y x1| bRy

�
2 arccos

c
0.64

0.68

��
p
?

0.32 |0y �
?

0.68 |1yq |0y

�0.4 |00y � 0.4 |01y � 0.8 |10y � 0.2 |11y . (3.6)

Theorem 3.1. (Tree data structure for tensors)

For a tensor A P RpCqI1�I2�����Im, there exists a data structure for storing A with

quantum access in time OppolylogpI1I2 � � � Imqq.

Proof. We prepare a series of unitary operators and append an ancilla |0y at the

17



front when applying every operator

Um : |0y Ñ |φmy � 1

}A}F
Im�1¸
im�0

}Ap:, . . . , :, imq}F |imy

Um�1 : |0y |φmy Ñ |φm�1y

� 1

}A}F
Im�1�1¸
im�1�0

Im�1¸
im�0

}Ap:, . . . , :, im�1, imq}F
}Ap:, . . . , :, imq}F }Ap:, . . . , :, imq}F |im�1y |imy

� 1

}A}F
Im�1�1¸
im�1�0

Im�1¸
im�0

}Ap:, . . . , :, im�1, imq}F |im�1y |imy

...

U1 : |0y |φ2y Ñ |φ1y � 1

}A}F
I1�1̧

i1�0

� � �
Im�1¸
im�0

ai1���im |i1y � � � |imy . (3.7)

Basically, the data structure consists of several binary trees named as B
pkq
i , i �

0, . . . , Ik � 1, k P rms. The top root stores the Frobenius norm of A. The root of

each B
pkq
i stores the value }Ap:, . . . , :, ik�1, . . . , imq}2

F for k P rm � 1s and the weight

of an interior node is just the sum of the weights of its children. The leaf nodes

at the bottom store the weights a2
i1i2���im and its sign sgnpai1i2���imq for real tensors.

For complex tensors, there is one more layer of binary trees for storing the real and

imaginary parts of a complex entry ai1i2���im and their signs. Therefore, one more

qubit is required for storing a complex tensor, and the extra time is Op1q so we

can omit it. If a quantum algorithm has access to this data structure, a series of

controlled rotations are applied on the initial state in time Oprlog I1s � � � rlog Imsq.
We consider it as OppolylogpI1I2 � � � Imqq.

For demonstration, the graph illustrations of the data structure for a real and

complex 2 � 2 � 2 tensor are given in Fig. 3.1 and 3.2 respectively.
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}A}2
F � 1

}Ap:, :, 1q}2
F

...

}Ap:, :, 0q}2
F

}Ap:, 1, 0q}2
2

Ap1, 1, 0q2

sgnpAp1, 1, 0qq
Ap0, 1, 0q2

sgnpAp0, 1, 0qq

}Ap:, 0, 0q}2
2

Ap1, 0, 0q2

sgnpAp1, 0, 0qq
Ap0, 0, 0q2

sgnpAp0, 0, 0qq

Figure 3.1: The data structure for a real 2 � 2 � 2 tensor.

}A}2
F � 1

...
}Ap:, :, 0q}2

F

}Ap:, 1, 0q}2
2

...

}Ap:, 0, 0q}2
2

|Ap1, 0, 0q|2

ImpAp1, 0, 0qq2

sgnpImpAp1, 0, 0qqq
RepAp1, 0, 0qq2

sgnpRepAp1, 0, 0qqq

|Ap0, 0, 0q|2

ImpAp0, 0, 0qq2

sgnpImpAp0, 0, 0qqq
RepAp0, 0, 0qq2

sgnpRepAp0, 0, 0qqq

Figure 3.2: The data structure for a complex 2 � 2 � 2 tensor.

3.2 Quantum Matrix Unfolding

In the following, the matrix unfolding which transforms a tensor to a matrix is

introduced, and the quantum operations to perform matrix unfolding are described.

Definition 3.1. For an mth-order tensor A P CI1�I2�����Im, the mode-k matrix

unfolding Apkq P CIk�pΠj�kIjq contains the element ai1���im at the position with row

number ik and column number

pik�1 � 1qIk�2Ik�3 � � � ImI1I2 � � � Ik�1 � pik�2 � 1qIk�3Ik�4 � � � ImI1I2 � � � Ik�1 � � � �

�pim � 1qI1I2 � � � Ik�1 � pi1 � 1qI2I3 � � � Ik�1 � pi2 � 1qI3I4 � � � Ik�1 � � � � � ik�1.

By the above construction, the rank of Apkq is at most Ik. Clearly, the elements of

tensor A and unfolding matrix Apkq have a one-to-one correspondence to each other.
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The quantum unfolding matrix Apkq �
�
a
1pkq
ikjk

	
can be processed by a SWAP

operator U
pkq
SP :

n�1̧

i1,i2,...,im�0

ai1i2���im |i1i2 � � � imy

U
pkq
SPÝÑ

n�1̧

i1,i2,...,im�0

ai1i2���im |ikik�1 � � � imi1 � � � ik�1y

�
n�1̧

ik�0

nm�1�1¸
jk�0

a
1pkq
ikjk

|ikjky , (3.8)

where |jky � |ik�1 � � � imi1 � � � ik�1y. For example, for a 2� 2� 2 tensor A, the entries

correspond to those of mode-3 unfolding matrix Ap3q by

a000 |000y Ñ a
1p3q
00 |00y

a010 |010y Ñ a
1p3q
01 |01y

... (3.9)

a101 |101y Ñ a
1p3q
12 |12y

a111 |111y Ñ a
1p3q
13 |13y .

The corresponding SWAP operator is U
p3q
SP � pSWAP b IqpI b SWAPq, where I

is a 2 � 2 identity matrix, and SWAP is the well-known 4 � 4 SWAP operator

SWAP � °1
j,`�0 |`yxj| b |jyx`|. The circuit of the above operations and tensor input

is given in Fig. 3.3. Except for mode-1 unfolding which does not require SWAP

operations, other mode-k unfoldings require m � 1 SWAP operations. Combined

with the complexity of input, the total complexity is still Opm log nq.
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Figure 3.3: The quantum circuit to perform mode-3 matrix unfolding of a 2� 2� 2
tensor. The unitary operator UA is the one for preparing tensor A.
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Chapter 4

Basic PSD Hankel Tensors

4.1 Introduction

The concept of Hankel tensors was first introduced by Luque and Thibon [48]

to our best knowledge. Papy, De Lathauwer, and Van Huffel [56] initially employed

Hankel tensors in the harmonic retrieval problem, which is at the heart of many signal

processing problems. Hankel tensors have been widely applied in signal processing

[4, 12, 15, 24], automatic control [71], and geophysics [54, 77]. Particularly, the

positive semi-definiteness of Hankel tensors can be a criterion for the solvability of

multidimensional moment problems [8, 44, 60].

It was proved by D. Hilbert [33] that for homogeneous polynomials, only in the

following three cases, a positive semi-definite (PSD) polynomial is definitely a sum-

of-squares (SOS) polynomial: 1) n � 2; 2) m � 2; 3) m � 4 and n � 3, where m

is the degree of the polynomial and n is the number of variables. Hilbert proved

that in all the other possible combinations of n and even m, there are PSD non-SOS

(short for PNS as in [17]) homogeneous polynomials. The most well-known PNS

homogeneous polynomial is the Motzkin function [49] with m � 6 and n � 3. A

homogeneous polynomial is uniquely corresponding to a symmetric tensor [62], and

a Hankel tensor is clearly a symmetric tensor.

In [59], it was showed that an mth-order n-dimensional tensor is a Hankel tensor
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if and only if it has a Vandermonde decomposition. Two classes of PSD Hankel

tensors were identified: even order strong Hankel tensors and even order complete

Hankel tensors. It was proved in [46] that complete Hankel tensors are strong Hankel

tensors, and even order strong Hankel tensors are SOS tensors. There were also

some examples of SOS Hankel tensors and PSD Hankel tensors which are not strong

Hankel tensors. Thus, a question was raised in [46]: Are all PSD Hankel tensors SOS

tensors? If there are no PNS Hankel tensors, the problem for determining a given

even order Hankel tensor is PSD or not can be answered by solving a semi-definite

linear programming problem. The problem raised by the above question is called

the Hilbert-Hankel problem, which is the first one of three open problems on Hankel

tensors [73].

Generalized anti-circulant tensors [45] were studied, which are one special class of

Hankel tensors. The necessary and sufficient conditions for positive semi-definiteness

of even order generalized anti-circulant tensors in some cases were given, and the

tensors are strong Hankel tensors and SOS tensors in these cases. An inheritance

property was established in [59] for strong Hankel tensors, and this property was

then extended to general Hankel tensors in [25], which means that if a lower-order

Hankel tensor is positive semi-definite (or positive definite, or negative semi-definite,

or negative definite, or SOS), then its associated higher-order Hankel tensor with the

same generating vector, where the higher order is a multiple of the lower order, is

also positive semi-definite (or positive definite, or negative semi-definite, or negative

definite, or SOS, respectively). In addition, the SOS decomposition of strong Hankel

tensors was also given in [25]. Other discussions about PSD Hankel tensors, SOS

Hankel tensors and PNS Hankel tensors and some regions where PNS Hankel tensors

do not exist were given in [16]. More properties of the above tensors are introduced in

Chapter 5 of [62]. An algorithm for computing Vandermonde rank decompositions

for all Hankel tensors was given in [50] and it was also proved that for a generic
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Hankel tensor of order even or three, the CP rank, symmetric rank, border rank,

symmetric border rank and Vandermonde rank are all the same.

Ding, Qi, and Wei [25] proved that a Hankel tensor is a strong Hankel tensor

if and only if it admits a Vandermonde decomposition with positive coefficients or

an augmented Vandermonde decomposition with positive coefficients. Thus, the

decomposition of strong Hankel tensors has been settled. However, still little is

known for non-strong Hankel tensors. Some non-strong PSD Hankel tensors were

characterized in [80], yet a systematic investigation on non-strong Hankel tensors

needs to be conducted.

Here we continue to study positive semi-definite Hankel tensors that are not

strong. A new subclass of Hankel tensors called basic PSD Hankel tensors is intro-

duced. We show that a rank-1 even order Hankel tensor is a strong Hankel tensor

if and only if it is a basic PSD Hankel tensor, and even order strong Hankel tensors

with rank higher than 1 can be represented as the sum of rank-1 basic PSD Hankel

tensors. Therefore, the study of non-strong PSD Hankel tensors is converted to the

study of basic PSD Hankel tensors with rank ¡ 1. The properties of basic PSD

Hankel tensors and decomposition of non-basic PSD Hankel tensors will help us find

solutions to the three open problems on Hankel tensors in further research, since all

of the open problems are in the context of PSD Hankel tensors.

4.2 Preliminaries

Definition 4.1. (Hankel tensor) [46, 59]

Let v � pv1, � � � , vpn�1qm�1qJ. Define A � pai1���imq P Sm,n by

ai1���im � vi1�����im�m�1, (4.1)

for i1, � � � , im P rns. Then A is called a Hankel tensor and v is called the generating

vector of A.
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If A is a Hankel tensor, then homogeneous polynomial fpxq � Axm is called a

Hankel polynomial. Let A � paijq be an
Q
pn�1qm�2

2

U
�
Q
pn�1qm�2

2

U
matrix with aij �

vi�j�1, where v
2r pn�1qm

2 s is an additional number which can be arbitrarily selected

when pn�1qm is odd. Such A is called a Hankel matrix, associated with the Hankel

tensor A. When pn � 1qm is even, the associated Hankel matrix is unique. Recall

from [59] that A is called a strong Hankel tensor if there exists an associated

Hankel matrix A which is positive semi-definite. Let gpyq � yJAy, where y ��
y1, � � � , y pn�1qm�2

2

	J
and A is an associated Hankel matrix of A. Then, A is a strong

Hankel tensor if and only if g is PSD for at least one associated Hankel matrix A of

A.

In [25], it is proved that if v�m is a rank-1 Hankel tensor, then v � αp1, ξ, � � � , ξn�1qJ

or αen � αp0, 0, � � � , 0, 1qJ, here vectors p1, ξ, � � � , ξn�1qJ and en are called Vander-

monde vectors.

Lemma 4.1. Let A be an mth-order n-dimensional Hankel tensor and the rank of

its associated Hankel matrix be r. A is a strong Hankel tensor if and only if it admits

a Vandermonde decomposition with positive coefficients:

A �
ŗ

k�1

αkv
�m
k , (4.2)

αk ¡ 0, vk are Vandermonde vectors.

Also, there are many PSD Hankel tensors that are not strong Hankel tensors. For

instance, consider the Hankel tensors A generated by v �
�
v0, 0, � � � , 0, v pn�1qm

2
, 0, � � � , 0, vpn�1qm

	J
where n is odd. Such Hankel tensors are called truncated Hankel tensors in [80].

If v �
�
v0, 0, � � � , 0, v pn�1qm

2
, 0, � � � , 0, vpn�1qm

	J
where n is odd, then fpxq and gpyq
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have a simple form

fpxq � v0x
m
1 � vpn�1qmxmn

�v pn�1qm
2

¸!�
m
t1

��
m�t1
t2

� � � � �m�t1�t2�����tn�2

tn�1

�
xt11 x

t2
2 � � � xm�t1�t2�����tn�1

n

: pn� 1qt1 � pn� 2qt2 � � � � � tn�1 � pn�1qm
2

)
,

(4.3)

and

gpyq � v0y
2
1�vpn�1qmy2

pn�1qm�2
2

�v pn�1qm
2

�
y2
pn�1qm

4
�1
�
¸
i�j

!
yiyj : i� j � pn�1qm

2
� 2

)�
.

(4.4)

Since we are only concerned about PSD Hankel tensors, we may assume that v0, v pn�1qm
2

,

and vpn�1qm are all nonnegative. If v pn�1qm
2

� 0, then the truncated Hankel tensor A

is a strong Hankel tensor, and furthermore an SOS Hankel tensor if m is even. If

v pn�1qm
2

¡ 0, then A is not a strong Hankel tensor [80].

4.3 Basic PSD Hankel Tensors

Definition 4.2. (Basic PSD Hankel tensor)

Let A be an mth-order n-dimensional PSD Hankel tensor and its rank be r. Then

A is called a basic PSD Hankel tensor, if there is no nonzero PSD Hankel tensor B

with rankpBq   r such that A� B is PSD.

From the definition, we can derive the following lemma straightforwardly.

Lemma 4.2. Given that A is a rank-1 even order Hankel tensor, A is a strong

Hankel tensor if and only if A is a basic PSD Hankel tensor.
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Proof. This lemma can be easily derived from the Vandermonde decomposition of

strong Hankel tensors.

Theorem 4.1. All even order strong Hankel tensors with rank larger than 1 are not

basic PSD Hankel tensors.

Proof. Assume that an even order strong Hankel tensor A with rank r ¥ 2 is basic,

then from (4.2), A � °r
k�1 αkv

�m
k , αk ¡ 0, vk are Vandermonde vectors. Let B �

α1v
�m
1 , then B is a positive semi-definite Hankel tensor, while A� B is still positive

semi-definite, which is a contradiction.

Corollary 4.1. All even order strong Hankel tensors with rank larger than 1 can be

expressed as the sum of rank-1 basic PSD Hankel tensors.

Clearly, PSD non-strong Hankel tensors with rank larger than 1 do exist. For

example [80], for PSD truncated Hankel tensor A when v pn�1qm
2

¡ 0, consider vector

ȳ � ei � ej where i � j � pn�1qm
2

� 2, i � j and i � 1 or pn�1qm�2
2

. We see that

gpȳq � �2v pn�1qm
2

  0, hence A is not a strong Hankel tensor. Therefore basic PSD

Hankel tensors with rank larger than 1 also exist. What we concern is the smallest

symmetric rank of non-strong basic PSD Hankel tensors.

Lemma 4.3. If PSD Hankel tensor A has the following Vandermonde decomposition

A �
ŗ

k�1

αkv
�m
k ,

where vk P Rn are mutually distinct Vandermonde vectors, r ¤ n, then αk ¡ 0,

k � 1, 2, � � � , r. Thus, A is a strong Hankel tensor.

Proof. A can be also expressed as

A � D�1 VJ �2 VJ � � � �m VJ,
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where D is a diagonal tensor with diagonal entries α1, α2, � � � , αr and matrix V �
pv1,v2, � � � ,vrq is of full column rank. Without loss of generality, assume that α1   0,

then there exists a unique x satisfying VJx � e1 such that fpxq � Axm � Dem1 �
α1   0, which is a contradiction to the positive semi-definiteness of A. Therefore we

have all αk ¥ 0 for k � 1, 2, � � � , r, thus A is a strong Hankel tensor.

4.4 Rank-2 Basic PSD Hankel Tensors

We begin with the rank-2 case and we shall shortly see that there are no rank-

2 basic PSD Hankel tensors. For mth-order n-dimensional PSD Hankel tensor A,

m ¥ 4, if A is basic and its rank is 2, then it has the following form

A � αx�m � βy�m, (4.5)

where α, β � 0, x � px1, x2, ..., xnqJ P Rn, y � py1, y2, ..., ynqJ P Rn, x � y. As A is

positive semi-definite, at least one of α and β is positive. Without loss of generality,

assume β � 1, i.e.,

A � αx�m � y�m.

Theorem 4.2. Rank-2 basic PSD Hankel tensors do not exist.

Proof. If n � 2, from Lemma 2, A is not a basic PSD Hankel tensor. If n ¥ 3, we

classify the decomposition into the next four cases.

Case 1. x � p1, x2, x3, � � � , xnqJ,y � p1, y2, y3, � � � , ynqJ.
From the definition of Hankel tensors, a11...122 � a11...13, then

αpx2
2 � x3q � y3 � y2

2. (4.6)

(a) If x2
2 � x3 and y2

2 � y3, then similarly we have αxipx2
2 � x3q � yipy3 � y2

2q
for 2 ¤ i ¤ n. By dividing this equation by (4.6) on both sides, we get xi � yi for

2 ¤ i ¤ n, hence x � y, the rank of A is actually 1, which is a contradiction.
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(b) If x2
2 � x3, then y2

2 � y3. According to the definition of Hankel tensors, we

have $&
%

αxm�3
1 x3

2 � ym�3
1 y3

2 � αxm�2
1 x4 � ym�2

1 y4,
αxm�1

1 x5 � ym�1
1 y5 � αxm�2

1 x2x4 � ym�2
1 y2y4,

αxm�2
1 x2

3 � ym�2
1 y2

3 � αxm�1
1 x5 � ym�1

1 y5.

Processing these equations, we have αpx4
2�x5q � x2y4�x2y

3
2�y5�y2y4 � y5�y4

2. Thus

x2 � y2 or y4 � y3
2. If x2 � y2, then x3 � y3 and α � 1, hence x4 � y4, ..., xn � yn,

x � y, the rank of A is 1, which is a contradiction. If y4 � y3
2, then y5 � y4

2, ...,

yn � yn�1
2 , and x4 � y3

2, ..., xn � xn�1
2 , x and y are both Vandermonde vectors. By

Lemma 2, it is a contradiction.

Case 2. x � p1, x2, x3, � � � , xnqJ,y � p0, � � � , 0, 1, yk�1, � � � , ynqJ, 2 ¤ k ¤ n.

If k � n, i.e., y � en, xj � xj�1
2 for 2 ¤ j ¤ n, it is a Vandermonde de-

composition, which is a contradiction. If 2 ¤ k ¤ n � 1, obviously xj � xj�1
2

for 2 ¤ j ¤ n, then (i) αxmk � ymk � αx
m
2
k�1x

m
2
k�1 � y

m
2
k�1y

m
2
k�1 for m is even, (ii)

αxmk � ymk � αx
m�1

2
k�1 xkx

m�1
2

k�1 � y
m�1

2
k�1 yky

m�1
2

k�1 for m is odd, i.e., αxmk � 1 � αxmk , which

is also a contradiction.

Case 3. x � p0, � � � , 0, 1, xk�1, � � � , xnqJ,y � p0, � � � , 0, 1, yl�1, � � � , ynqJ, 2 ¤ k ¤
n, 2 ¤ l ¤ n� 1, k � l.

Without loss of generality, assume k ¡ l. We have (i) αxmk � ymk � αx
m
2
k�1x

m
2
k�1 �

y
m
2
k�1y

m
2
k�1 for m is even, (ii) αxmk � ymk � αx

m�1
2

k�1 xkx
m�1

2
k�1 � y

m�1
2

k�1 yky
m�1

2
k�1 for m is odd,

i.e., α � 0, which is a contradiction.

Case 4. x � p0, � � � , 0, 1, xk�1, � � � , xnqJ,y � p0, � � � , 0, 1, yk�1, � � � , ynqJ, 2 ¤
k ¤ n.

If k � n, the rank of A is 1, which is a contradiction. If 2 ¤ k ¤ n � 1,
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we have (i) αxmk � ymk � αx
m
2
k�1x

m
2
k�1 � y

m
2
k�1y

m
2
k�1 for m is even, (ii) αxmk � ymk �

αx
m�1

2
k�1 xkx

m�1
2

k�1 � y
m�1

2
k�1 yky

m�1
2

k�1 for m is odd. From both situations we get α � �1,

then (i) αxm�1
k xk�1 � ym�1

k yk�1 � αx
m
2
�1

k�1 xkx
m
2
k�1 � y

m
2
�1

k�1 yky
m
2
k�1 for m is even, (ii)

αxm�1
k xk�1 � ym�1

k yk�1 � αx
m�1

2
k�1 x

m�1
2

k�1 � y
m�1

2
k�1 y

m�1
2

k�1 for m is odd. Thus xk�1 � yk�1,

..., xn � yn, i.e., A � 0, which is a contradiction.

4.5 Rank-3 Basic PSD Hankel Tensors

For an mth-order n-dimensional PSD Hankel tensor A, m ¥ 4, n ¥ 3, if A is a

basic PSD Hankel tensor and its rank is 3, then it can be expressed as

A � αx�m � βy�m � γz�m, (4.7)

where α, β, γ � 0, x � px1, x2, ..., xnqJ P Rn, y � py1, y2, ..., ynqJ P Rn, z �
pz1, z2, ..., znqJ P Rn, x,y, z are mutually distinct. Similar to the previous chap-

ter, at least one of α, β and γ is positive. Without loss of generality, let γ � 1,

then

A � αx�m � βy�m � z�m.

Theorem 4.3. Rank-3 basic PSD Hankel tensors with dimension no less than 3 do

not exist.

Proof. The decomposition can be classified into the next four cases.

Case 1. x � p1, x2, x3, � � � , xnqJ,y � p1, y2, y3, � � � , ynqJ, z � p1, z2, z3, � � � , znqJ.
Similar to the rank-2 situation, from the definition of Hankel tensors, αxm�2

1 x2
2 �

βym�2
1 y2

2 � zm�2
1 z2

2 � αxm�1
1 x3 � βym�1

1 y3 � zm�1
1 z3, so

z3 � z2
2 � αpx2

2 � x3q � βpy2
2 � y3q. (4.8)

Similarly, we have

"
αx3

2 � βy3
2 � z3

2 � αx2x3 � βy2y3 � z2z3,
αx4

2 � βy4
2 � z4

2 � αx2
2x3 � βy2

2y3 � z2
2z3.
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By substituting (4.8) into the above equations, we obtain

αpx2 � z2qpx2
2 � x3q � �βpy2 � z2qpy2

2 � y3q, (4.9)

αpx2
2 � z2

2qpx2
2 � x3q � �βpy2

2 � z2
2qpy2

2 � y3q. (4.10)

Next, we discuss whether the factors in equation (4.9) are zero or not, and classify

it into the next four situations (a) � (d).

(a) x2 � z2, y2 � z2, x2
2 � x3, y2

2 � y3.

Divide (4.10) by (4.9) on both sides, we get x2 � y2. Then, similarly αpxk �
zkqpx2

2 � x3q � �βpyk � zkqpy2
2 � y3q for 3 ¤ k ¤ n, hence x � y, which is a contra-

diction.

(b) x2 � z2, y2 � z2.

For x3, y3, z3, we have

αpz3 � x3qpx2
2 � x3q � �βpy3 � z3qpy2

2 � y3q, (4.11)

αpz2
3 � x2

3qpx2
2 � x3q � �βpy2

3 � z2
3qpy2

2 � y3q. (4.12)

We get two similar equations about x3, y3, z3, and also discuss the factors in situ-

ations (i) � (iv). (i) If x3 � z3, y3 � z3, x2
2 � x3, y2

2 � y3, let (4.12) divided by

(4.11), we get x3 � y3. (ii) If x3 � z3, y3 � z3, obviously x3 � y3. (iii) If x3 � x2
2,

y3 � y2
2, we obtain x3 � y3, because x2 � y2. (iv) If x3 � z3, y3 � y2

2 (or y3 � z3,

x3 � x2
2), substitute the two equations into (4.8), we have x3 � x2

2 � y2
2 � y3. Then

x3 � y3 � z3 for (i) � (iv). Similarly, we can prove xk � yk for 4 ¤ k ¤ n, hence

x � y, which is a contradiction.

(c) x2
2 � x3, y2 � z2.
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(i) If y2
2 � y3, we have αx2

2�βy2
2 � y2

2 � αx3� y3� z3, hence βpy2
2 � y3q � z3� y2

2.

Also, for 3 ¤ i ¤ n, βyipy2
2 � y3q � zipz3 � y2

2q, hence we get y3 � z3, ..., yn � zn, i.e.,

y � z. Thus, the rank is 2, which is a contradiction. (ii) If y2
2 � y3, we will find x is

a Vandermonde vector, then by (b) of Case 1 in the previous chapter, y and z are

also Vandermonde vectors. The situation is similar for y2
2 � y3, x2 � z2.

(d) x2
2 � x3, y2

2 � y3.

It is included in (b) and (c) if at least one of x2 � z2 and y2 � z2 is satisfied.

So we discuss x2 � z2 and y2 � z2 here. Obviously z3 � z2
2 , if n � 3, x, y and z

are all Vandermonde vectors. If n ¥ 3, then from the definition of Hankel tensors,

a11...14 � a11...1222, which implies

αx4 � βy4 � z4 � αx3
2 � βy3

2 � z3
2 . (4.13)

From a11...124 � a11...1223 and a11...134 � a11...1233, we have the following two equations

"
αx2x4 � βy2y4 � z2z4 � αx2

2x3 � βy2
2y3 � z2

2z3,
αx3x4 � βy3y4 � z3z4 � αx2x

2
3 � βy2y

2
3 � z2z

2
3 .

Substitute (4.13) into the above equations and we have

αpx2 � z2qpx3
2 � x4q � βpy2 � z2qpy3

2 � y4q � 0, (4.14)

αpx2
2 � z2

2qpx3
2 � x4q � βpy2

2 � z2
2qpy3

2 � y4q � 0. (4.15)

(i) If x3
2 � x4, y3

2 � y4, then divide (4.15) by (4.14), we have x2 � y2, hence x3 � y3.

Similarly αpxk � zkqpx3
2 � x4q � βpyk � zkqpy3

2 � y4q � 0 and αpx2
k � z2

kqpx3
2 � x4q �

βpy2
k � z2

kqpy3
2 � y4q � 0 for 4 ¤ k ¤ n. We get xk � yk � zk or xk � yk, thus x � y,

which is a contradiction. (ii) If x3
2 � x4, y3

2 � y4, obviously z4 � z3
2 , then repeat

(d) for x4
2 � x5, y4

2 � y5, ..., xn�1
2 � xn, yn�1

2 � yn, and we find x � y, which is a

contradiction, or x,y, z are Vandermonde vectors.
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Case 2. x � p1, x2, x3, � � � , xnqJ,y � p1, y2, y3, � � � , ynqJ, z � p0, � � � , 0, 1, zk�1, � � � , znqJ,

2 ¤ k ¤ n.

If k � n, i.e., z � en, then similar to the first case of rank 2, x and y are Van-

dermonde vectors, and z is also a Vandermonde vector. If 2 ¤ k ¤ n � 1, x and y

are Vandermonde vectors, then αxmk �βymk �1 � αxmk �βymk , which is a contradiction.

Case 3. x � p1, x2, x3, � � � , xnqJ,y � p0, � � � , 0, 1, yk�1, � � � , ynqJ,

z � p0, � � � , 0, 1, zl�1, � � � , znqJ, 2 ¤ k ¤ n� 1, 2 ¤ l ¤ n, k � l.

From the definition of Hankel tensors, αxm�1
1 xi�1 � βym�1

1 yi�1 � zm�1
1 zi�1 �

αxm�2
1 x2xi � βym�1

1 yi � zm�1
1 zi for i � 2, 3, ..., n � 1. Since y1 � z1 � 0, we have

xi�1 � x2xi, hence x is a Vandermonde vector. Without loss of generality, assume

k   l, we have (i) αxmk � β � αx
m
2
k�1x

m
2
k�1 for m is even, (ii) αxmk � β � αx

m�1
2

k�1 xkx
m�1

2
k�1

for m is odd, i.e., β � 0, which is a contradiction.

Case 4. x � p0, � � � , 0, 1, xj�1, � � � , xnqJ,y � p0, � � � , 0, 1, yk�1, � � � , ynqJ,

z � p0, � � � , 0, 1, zl�1, � � � , znqJ, 2 ¤ j, k, l ¤ n, l ¤ k ¤ j.

If j   k ¤ l, then α � 0, which is a contradiction.

If j � k   l, the situation is the same as Case 4 of rank 2, which is a contradiction.

If j � k � l, obviously j, k, l cannot be n, 2 ¤ j � k � l ¤ n � 1. As (i)

αxmk �βymk �zmk � αx
m
2
k�1x

m
2
k�1�βy

m
2
k�1y

m
2
k�1�z

m
2
k�1z

m
2
k�1 for m is even, (ii) αxmk �βymk �

zmk � αx
m�1

2
k�1 xkx

m�1
2

k�1 � βy
m�1

2
k�1 yky

m�1
2

k�1 � z
m�1

2
k�1 zkz

m�1
2

k�1 for m is odd, we have

$''&
''%

α � β � 1 � 0,
αxk � βyk � zk � 0,
αx2

k � βy2
k � z2

k � 0,
αx3

k � βy3
k � z3

k � 0.
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Then "
αxkpxk � zkq � βykpyk � zkq � 0,
αxkpx2

k � z2
kq � βykpy2

k � z2
kq � 0.

(i) If xk � 0, yk � zk, we get β � �1, α � 0, which is a contradiction. (ii) If

yk � 0, xk � zk, then similar to (i), β � 0, which is also a contradiction. (iii) If

xk, yk � 0, xk � zk, yk � zk, from xk � zk � yk � zk, we get xk � yk. (iv) Assume

xk � yk � 0. (v) Assume xk � yk � zk. From (iii) to (v), we all get xk � yk. If we

continue checking xk�1, ..., xn, we will find x � y, or α � 0, or β � 0, all situations

cause contradictions.

Up till now, we have proved if there exists a rank-3 basic PSD Hankel tensor

A with dimension no less than 3, x,y, z are mutually distinct Vandermonde vec-

tors. However, by Lemma 2, r � 3 ¤ n, A is a strong Hankel tensor, which is a

contradiction.

Therefore, we put forward the following theorem.

Theorem 4.4. For any non-basic PSD Hankel tensor A with rankpAq ¥ 2, n ¥ 3,

A can be expressed as

A �
ŗ

k�1

αkBk, (4.16)

where r P N, Bk are basic PSD Hankel tensors with rankpBkq ¥ 4 or rankpBkq � 1.

This theorem can be proved by Theorem 2 and 3 straightforwardly.

4.6 An Example of Basic PSD Hankel Tensors

with Rank Higher than 2

We shall present an example of basic PSD Hankel tensors in this section with

rank ¡ 2. Consider the following example. Let A be a 4th-order 2-dimensional
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Hankel tensor generated by v � �
1, 0,�1

3
, 0, 1

�J
. For x � px1, x2qJ P R2, the Hankel

polynomial fApxq � Ax4 � x4
1�2x2

1x
2
2�x4

2 � px2
1�x2

2q2 ¥ 0. However, the associated

Hankel matrix

A �
�
� 1 0 �1

3

0 �1
3

0
�1

3
0 1

�


is apparently not positive semi-definite since there is a negative entry on its diagonal.

Therefore, A is a PSD Hankel tensor, but not a strong Hankel tensor. Furthermore,

A has a following decomposition that

A � 4

3

�
1
0


�4

� 1

6

�
1
1


�4

� 1

6

�
1
�1


�4

� 4

3

�
0
1


�4

,

thus rankpAq ¤ 4.

Next we prove that A is a basic PSD Hankel tensor. Assume A is not basic,

then there exist two PSD Hankel tensors B and C such that A � B � C and for

any vector x P R2, the Hankel polynomial fApxq � fBpxq � fCpxq � px2
1 � x2

2q2, and

fBpxq, fCpxq ¥ 0. If fBpxq does not have the factors x1 � x2 or x1 � x2, then take

x1 � �x2, and we have fBpxq ¡ 0, fCpxq � 0 � fBpxq   0, which is a contradiction.

If both x1 � x2 and x1 � x2 are the factors of fBpxq, then by D. Hilbert [33], for

2-dimensional homogeneous polynomials, a PSD polynomial is definitely an SOS

polynomial, hence fBpxq � αpx2
1 � x2

2q2, α ¡ 0, tensor B is proportional to A, which

is a contradiction.

Therefore, we have found a basic PSD Hankel tensor whose rank equals 3, which

implies that basic PSD Hankel tensor with rank ¡ 2 does exist. To verify whether this

tensor is exactly rank 4, we use Tensorlab toolbox in Matlab software to decompose

this symmetric tensor. After running 1000 times, the minimum error (calculated by

the Frobenius norm of tensor A minus the recombinated tensor) of finding the rank-3

decomposition is about 10�3 while that of find the rank-4 decomposition is around
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10�17. Therefore, there is a high probability that the rank of this tensor is exactly 4.

4.7 Conclusions and Conjectures

We have introduced a new subclass of Hankel tensors called basic PSD Hankel

tensors. It is proved that for mth-order n-dimensional positive semi-definite Hankel

tensors, there are no rank-2 basic PSD Hankel tensors. Moreover, rank-3 basic PSD

Hankel tensors with dimension no less than 3 do not exist, either.

In the previous section, an example is given to show the existence of a basic PSD

Hankel tensor with rank ¥ 3. It is thus reasonable to conject the existence of other

basic PSD Hankel tensors. The critical truncated Hankel tensor A in [80] may also be

a basic PSD Hankel tensor. A is a sixth-order three-dimensional PSD truncated Han-

kel tensor, and the elements of its generating vector pv0, 0, � � � , 0, v6, 0, � � � , 0, v12qJ

satisfy
?
v0v12 � p560 � 70

?
70qv6.

For a rank-3 PSD Hankel tensor with n � 2, we cannot prove or disprove it is a

basic PSD Hankel tensor. Therefore, we put forward a conjecture that 2-dimensional

rank-3 basic PSD Hankel tensors do not exist and the rank of tensor A in the given

example in Section 6 is 4.
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Chapter 5

Quantum Higher Order Singular

Value Decomposition

5.1 Introduction

Higher order singular value decomposition is a specific orthogonal Tucker decom-

position, and can be considered as an extension of SVD from matrices to tensors.

Classical HOSVD has been well studied, see, e.g., De Lathauwer, De Moor, and Van-

dewalle in 2000 [23], and it has been successfully applied to signal processing [53]

and pattern recognition [79] problems. Furthermore, HOSVD has shown its strong

power in quantum chemistry, especially in the second order Møller Plesset perturba-

tion theory calculations [6]. In addition, HOSVD is used in [84] to derive the output

m photon state of a quantum linear passive system which is driven by an m photon

input state; more specifically, the wave function of the output is expressed in terms

of the HOSVD of the input wave function.

Since HOSVD deals with high dimensional data, it has been put into practice in

some machine learning methods. For example, it has been successfully applied in

recommendation systems [38, 74]. In [68], HOSVD representation for neural networks

is proposed. By applying HOSVD the parameter-varying system can be expressed

in a tensor product form by locally tuned neural network models. Additionally in
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[41], HOSVD is applied for compressing convolutional neural networks (CNN).

In this chapter, we propose the quantum higher order singular value decomposi-

tion (Q-HOSVD) algorithm. This is the first quantum algorithm concerning tensor

decompositions. Our Q-HOSVD algorithms are based upon the quantum matrix

singular value decomposition algorithm [67], quantum singular value estimation [39],

and several other quantum computing techniques. The input can be a tensor of any

order and dimension. By our Q-HOSVD algorithms, it is possible to perform singu-

lar value decomposition on tensors exponentially faster than classical algorithms. It

can be directly applied to quantum machine learning algorithms, and may help solve

computationally challenging problems arising in quantum mechanics and chemistry.

5.2 Definition and Properties

Definition 5.1. [23] For A P CI1�I2�����Im, the higher order singular value de-

composition (HOSVD) is defined as

A � S �1 Up1q �2 Up2q �3 � � � �m Upmq, (5.1)

where the k-mode singular matrix Upkq �
�
u
pkq
1 u

pkq
2 � � �upkq

Ik

�
is a complex unitary

Ik � Ik matrix, the core tensor S P CI1�I2�����Im.

The core tensor S and its subtensors Sik�α, of which the kth index is fixed to

α P rIks, have the following properties.

(i) all-orthogonality:

Two subtensors Sik�α and Sik�β are orthogonal for k � 1, 2, � � � ,m:

Sik�α � Sik�β � 0 when α � β, (5.2)

(ii) ordering:
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Figure 5.1: Block diagram of the HOSVD for a third-order tensor. The full lines
indicate the full HOSVD in (5.1). The dashed lines and the small block in S indicate
the truncated HOSVD.

Similar to the matrix case, the tensor singular values are defined as the Frobe-

nius norms of the pm� 1qth-order subtensors of the core tensor S:

σpkqα � }Sik�α}F , (5.3)

for k P rms and α P rIks. Furthermore, these tensor singular values have the following

ordering property

σ
pkq
1 ¥ σ

pkq
2 ¥ � � � ¥ σ

pkq
Ik

¥ 0 (5.4)

for k P rms. The block diagram of the HOSVD for a third-order tensor A P CI1�I2�I3

is described in Fig. 5.1. When m � 2, i.e., A is a matrix, the HOSVD is degenerated

to the well-known matrix SVD.

Upkq is calculated through the SVD of unfolding matrix Apkq, where matrix un-

folding is defined in Chapter 3. If A is a symmetric tensor, i.e., A P Sm,n, then all

Up1q,Up2q, � � � ,Upmq are the same unitary matrices. Thus, we calculate the SVD of

unfolding matrices only once instead of m times, and the decomposition is converted

to

A � S �1 U�2 U�3 � � � �m U. (5.5)

HOSVD performs orthogonal coordinate transformations for a higher-order ten-

sor. Here, the unitary matrix Upkq is also called the k-mode factor matrix and
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Figure 5.2: The tensor network notation of HOSVD.

considered as the principal components in kth mode. Moreover, the entries of the

core tensor S show the level of interaction among different components.

The tensor network notation of HOSVD is depicted in Fig. 5.2. It is known that

a tensor corresponds to a multipartite quantum state. Any local unitary transforma-

tion on the original tensor can be considered as the local unitary transformation on

the corresponding singular matrices, which is vital and useful in quantum computa-

tion. The core tensor and singular matrices can also be considered as the two layers

in the neural network, with local operations in the first layer and global operations

in the second layer.

In HOSVD, the columns of Upkq have been sorted such that the jth column u
pkq
j

corresponds to the jth largest nonzero singular value of Apkq. Then, we can similarly

define the truncated (or compact) HOSVD [75]. For k P rms, we remain the

first rk columns of Upkq, then Upkq P CIk�rk . Finally, the core tensor S is of size

r1 � r2 � � � � � rm, and the tuple of numbers pr1, r2, � � � , rmq is called a multilinear

rank. The block diagram of the truncated HOSVD for a third-order tensor is depicted

in Fig. 5.1. This truncation is widely used in big data problems. Since the data

may be sparse or low-rank, we can take the value of rk such that rk ! Ik. Denote

r � maxkPrms rk, and I � maxkPrms Ik. The total number of entries reduces from Im

to rm �mIr.
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5.3 Q-HOSVD Algorithm 1

In this section, we present our first Q-HOSVD algorithm.

Algorithm 1 Quantum Higher Order Singular Value Decomposition (Q-HOSVD)

Input: A P CI1�����Im , ε, |by
Output: S,Up1q,Up2q, . . . ,Upmq

1. Load A into qRAM, and initialize |0y |~1y |by.
for k � 1, . . . ,m do

2. Implement qPCA by the SWAP operator S
pkq
Ã

.
3. Apply phase estimation to obtain

|ψy �
r�1̧

j�0

βj |λ̃j{Ny |ũjy . (5.6)

4. Perform measurement on |λ̃j{Ny and extract |ũjy to compose Upkq.
end for
5. S Ð A�1 Up1q: �2 Up2q: �3 � � � �m Upmq: .

Several techniques and subroutines are applied in Algorithm 1. First, tensor A

to be decomposed is loaded into the quantum register by qRAM. For a fixed k, we

design a SWAP operator S
pkq
Ã

based on matrix unfolding and Hermitian extension,

and harness it to apply qPCA. After that, we initialize the state |0y |~1y |by, where

|~1y � 1?
N

°N�1
`�0 |`y, and |by could be any state and considered as a superposition of

eigenstates of Ãpkq, then apply phase estimation on it to obtain the state |ψy which

is a superposition state composed of eigenvalues and eigenstates. Then, if we hope to

obtain the core tensor S, quantum measurement is performed to reconstruct the sin-

gular matrices. Finally, S is calculated by the quantum tensor-matrix multiplication

among tensor A and the singular matrices.

In the following sections, we explain the implementation of Algorithm 1 step by

step. Without loss of generality, we assume }A}F � 1 and I1 � I2 � � � � � Im � n.

For Step 1, tensor A can be accessed by qRAM or the tree structure in Chapter
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3.

For Step 2, denote N � n � nm�1. Since Apkq �
�
a
1pkq
ij

	
P Cn�nm�1

is not a

Hermitian matrix, we consider the following extended matrix

Ãpkq :�
�

0 Apkq

Apkq: 0

�

�
n�1̧

ik�0

nm�1�1¸
jk�0

a
1pkq
ikjk

|iky xjk � n| � a
1pkq
ikjk

|jk � ny xik|

�
n�1̧

i1,i2,...,im�0

ai1i2���im |iky xik�1 � � � imi1 � � � ik�1 � n|

� ai1i2...im |ik�1 � � � imi1 � � � ik�1 � ny xik| , (5.7)

where |iky P CN is the ik-th computational basis. Note that ik runs from 0 to n� 1.

Then Ãpkq is an N � N Hermitian matrix. For Hermitian matrices, the singular

values are the absolute value of eigenvalues, so phase estimation [51] can be used to

apply the singular value decomposition. Let r � rankpÃpkqq. Since rankpApkqq ¤ n,

r ¤ 2n.

For the Hermitian matrix Ãpkq, we define a SWAP-like operator S
pkq
Ã

P CN2�N2

based on the entries of Ãpkq:

S
pkq
Ã

:�
N�1̧

`,j�0

Ã
pkq
`j |jy x`| b |`y xj|

�
n�1̧

ik�0

nm�1�1¸
jk�0

a
1pkq
ikjk

|jk � ny xik| b |iky xjk � n| � a
1pkq
ikjk

|jky xjk � n| b |jk � ny xik|

�
n�1̧

i1,i2,...,im�0

ai1i2...im |ik�1 � � � imi1 � � � ik�1 � ny xik| b |iky xik�1 � � � imi1 � � � ik�1 � n|

� ai1i2...im |iky xik�1 � � � imi1 � � � ik�1 � n| b |ik�1 � � � imi1 � � � ik�1 � ny xik| .
(5.8)

This operator is one-sparse in a quadratically bigger space, i.e., there is no more than
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one non-zero entry in every row and column, and its entries are efficiently computable.

Therefore, the matrix exponentiation e�iS
pkq

Ã
∆t is efficiently implemented [9].

The SWAP-like operator (5.8) combines the mode-k unfolding (3.8) and Hermi-

tian extension (5.7), since they are all related to SWAP operations. It only requires

access to the entries of original tensor A.

For simplicity, in the following we use A to represent Apkq when k is fixed. Let

ρ1 and ρ2 be two distinct density matrices, where ρ1 � |~1y x~1|.

Lemma 5.1. [47] By quantum principal component analysis (qPCA), the unitary

e�i Ã
N

∆t is simulated using SÃ through

tr1te�iSÃ∆tρ1 b ρ2e
iSÃ∆tu � e�i Ã

N
∆tρ2e

i Ã
N

∆t. (5.9)

Let ε0 be the trace norm of the error term Op∆t2q in (5.9). For s steps, the

resulting error is ε1 � sε0 ¤ 2s}A}2
max∆t2, where }A}max � maxi1,...,im |ai1���im |. The

simulated time is t � s∆t. Then,

ε1
s
¤ 2}A}2

max

�
t

s


2

. (5.10)

Thus,

s � O

�
t2

ε1
}A}2

max



(5.11)

steps are required to simulate e�i Ã
N

∆t if ε1 and t are fixed.

Since we have assumed }A}F � 1, then }A}max � Op1q. Hence, s � Opt2{ε1q.
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Applying the output in equation (5.9) again in the second register, we obtain

tr1

"
e�iSÃ∆tρ1 b

�
ρ2 � i

∆t

N
rÃ, ρ2s �Op∆t2q



eiSÃ∆t

*

�tr1te�iSÃ∆tρ1 b ρ2e
iSÃ∆tu � i

∆t

N
tr1te�iSÃ∆tpρ1 b rÃ, ρ2sqeiSÃ∆tu �Op∆t2q

�ρ2 � i
∆t

N
rÃ, ρ2s � i

∆t

N
tr1tρ1 b rÃ, ρ2su �Op∆t2q

�ρ2 � i
2∆t

N
rÃ, ρ2s �Op∆t2q. (5.12)

Thus, by continuously using k copies of ρ1 we can simulate e�ipÃ{Nqk∆t.

For Step 3, we use the quantum phase estimation algorithm to estimate the

eigenvalues of e�ipÃ{Nq∆t. First, we give a lemma explaining phase estimation.

Lemma 5.2. [42] Let U be an n � n unitary operator, with eigenvectors |vjy and

eigenvalues e2πiθj for θj P r0, 1q, i.e. we have U |vjy � e2πiθj |vjy for j � 0, 1, . . . , n�1.

For a precision parameter ε ¡ 0, there exists a quantum phase estimation algorithm

that runs in time OpT pUq log n{εq and with probability 1 � 1{polypnq maps a state

|by � °n�1
j�0 αj |vjy to the state

°n�1
j�0 αj |vjy

��θ̄jD such that θ̄j P θj � ε for all j �
0, 1, . . . , n� 1.

Theorem 5.1. For the input |0ybd |~1y |by, by applying qPCA in Lemma 5.1 and phase

estimation in Lemma 5.2, the superposition state (5.6) |ψy �
r�1̧

j�0

βj |λ̃j{Ny |ũjy is

obtained, where |λ̃j{Ny is the estimated eigenvalue of Ã{N encoded in basis qubits.

Proof. Given an initial quantum state

|0ybd |~1y |by � |00 � � � 0loomoon
d

y |~1y |by (5.13)

with d � Oprlogp1{ε2qsq control qubits, where |by is the superposition of eigenvectors
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|ũjy corresponding to λ̃j:

|by �
N�1̧

j�0

βj |ũjy ,
N�1̧

j�0

|βj|2 � 1, (5.14)

ε2 is the accuracy for approximating the eigenvalues. Let ρ2 � |by xb|. We first apply

Hadamard operators to the first register, then the state (5.13) becomes

1?
2d

2d�1̧

`�0

|`y |~1y |by , (5.15)

whose density matrix has the following form

1

2d

2d�1̧

`�0

|`y x`| b ρ1 b ρ2. (5.16)

Then we multiply
°2d�1
`�0 |`y x`| b pe�iSA∆tq` and

°2d�1
`�0 |`y x`| b peiSA∆tq` to both sides

of (5.16) to obtain

2d�1̧

`�0

|`y x`| b �pe�iSA∆tq`ρ1 b ρ2peiSA∆tq`� . (5.17)

Note that d � Oprlogp1{ε2qsq, after applying the operator 2d times, the accumulation

error is Op1{ε2q. Next, we perform a partial trace to the second register using (5.9)

resulting in

2d�1̧

`�0

|`y x`| b
��

e�i Ã
N

∆t
	`
ρ2

�
ei Ã

N
∆t
	`


. (5.18)

After that, we apply the phase estimation algorithm in Lemma 5.2 to obtain the

estimated eigenvalues of Ã{N , since

e�i Ã
N

∆t |by �
N�1̧

j�0

βje
�i Ã

N
∆t |ũjy

�
N�1̧

j�0

βje
�iλjp ÃN q∆t |ũjy . (5.19)
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At last, we implement the inverse quantum Fourier transform [51] and remove the

first register, the final state (5.6)

|ψy �
r�1̧

j�0

βj |λ̃j{Ny |ũjy

is obtained, where |λ̃j{Ny is the estimated eigenvalue of Ã{N encoded in basis qubits.

The corresponding eigenvector |ũjy is proportional to puj;�vjq P CN , where uj and

vj are the left and right singular vectors of Ã, and the norm of each subvector uj

and vj is 1{?2, independent of their respective lengths n and nm�1.

For Step 4, since A is of size n�nm�1, A has at most n singular values tσju. As a

result, Ã has at most 2n nonzero eigenvalues λ̃j P t�σju. Next, we measure the first

register of state (5.6) in the computational basis t|0y , � � � , |2d � 1yu, all eigenpairs

|λ̃j{Ny |ũjy are obtained with probability |βj|2. Discarding the first register and

projecting |ũjy onto the uj part by using projection operators Pu �
°n�1
i�0 |iy xi| and

Pv � °nm�1�n�1
i�n |iy xi| result in |ujy with probability xũj|uj, 0y � 1

2
. Then, the

singular matrix U is calculated by

U �
ņ

j�1

|ujy xj| . (5.20)

Repeating measurements with the initial state |by � |0y , |1y , � � � , |n� 1y and apply-

ing amplitude amplification [1], we can obtain all the singular vectors in TU � Opn3{2q
times with probability close to 1. Thus, the singular matrix Upkq is reconstructed.

For Step 5, after we get all Upkq for k � 1, 2, . . . ,m, in this step we calculate the

core tensor S:

S � A�1 Up1q: �2 Up2q: �3 � � � �m Upmq: . (5.21)

Here, the calculation is accelerated by the quantum tensor-matrix multiplication,

which is similar to the quantum matrix multiplication algorithm by swap test [69].
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We may calculate A�k Upkq: through the following state

1

}A}F }Upkq}F
n�1̧

i1,...,ik�1,jk,ik�1,...,im�0

}Upkq
jk}2}Ai1���ik�1ik�1���im}2xAi1���ik�1ik�1���im |Upkq

jky

|i1, � � � , ik�1, jk, ik�1, � � � , imy |0y � |0yK ,
(5.22)

where |Ai1���ik�1ik�1���imy is an n-level quantum state (i.e., n-dimensional vector) if

i1, . . . , ik�1, ik�1, . . . , im are all fixed.

By (5.22), the success probability is

n�1̧

i1,...,ik�1,jk,ik�1,...,im�0

}Upkq
jk}2

2}Ai1���ik�1ik�1���im}2
2xAi1���ik�1ik�1���im |Upkq

jky2
M�}A}2

F }Upkq}2
F

�

�}A�k Upkq:}2
F

}A}2
F }Upkq}2

F

. (5.23)

Note that unitary matrices preserve norms, and we have assumed that }A}F � 1,

therefore

}A�k Upkq:}F � }A}F � 1. (5.24)

Thus, after post-selecting |0y, the state (5.22) becomes

|Ψpkqy :�
n�1̧

i1,...,ik�1,jk,ik�1,...,im�0

}Upkq
jk}2}Ai1���ik�1ik�1���im}2xAi1���ik�1ik�1���im |Upkq

jky

|i1, � � � , ik�1, jk, ik�1, � � � , imy . (5.25)

|Ψpkqy corresponds to the tensor A�kUpkq: , whose amplitudes are exactly the entries

of tensor A�k Upkq: .

After applying amplitude amplification [1], the computational complexity is

TM � Õ

� }A}F }Upkq}F
ε3}A�k Upkq:}F




� Õ

�}Upkq}F
ε3



� Õ

�?
n

ε3



(5.26)
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to accuracy ε3.

Repeating the multiplication between A and Upkq: for k � 1, 2, . . . ,m, we obtain

the final state

|Ψfy �
n�1̧

j1,...,jm�0

sj1���jm |j1, � � � , jmy , (5.27)

corresponding to the core tensor S. The total complexity is Õ
�
m
?
n

ε3

	
.

Without loss of generality, we can regard the accuracy of matrix exponentiation,

phase estimation and tensor-matrix multiplication as the same value, i.e. ε1 � ε2 �
ε3 �: ε.

5.4 Q-HOSVD Algorithm 2

For Algorithm 1 to be efficiently implemented, the unfolding matrices are required

to be low-rank. This result is analyzed in the next section for complexity analysis.

However, in some cases the input may not have such good structure. In this section

we propose an alternative quantum HOSVD algorithm which is based on quantum

singular value estimation (QSVE) [39]. In this method, the input is a general matrix,

not required to be sparse, low-rank or well-conditioned.

Recall that in Chapter 3, a tree data structure with quantum access is introduced

in Lemma 3.1, where the quantum states are efficiently prepared corresponding to

the rows and columns of matrices. Based on this data structure, a fast quantum

algorithm to perform singular value estimation stated in Lemma 5.3 is designed.

For a matrix A P CN1�N2 , in the data structure,

UP �
N1�1¸
i�0

|iy |Aiy xi| x0| , UQ �
N2�1¸
j�0

|Ây |jy x0| xj| . (5.28)

It has been shown in Section 3.1 that UP and UQ are implemented through Ry
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rotation operators. Then they can be expressed as

UP �
N1�1¸
i�0

|iy xi| bUi,

UQ �
N2�1¸
j�0

Uq b |jy xj| � Uq b IN2 , (5.29)

where Ui |0y � |Aiy for i � 0, . . . , N1�1, and Uq |0y � |Ãy, Ui and Uq are composed

of rotation operators.

Define two isometries P P CN1N2�N1 and Q P CN1N2�N2 related to UP and UQ:

P �
N1�1¸
i�0

|iy |Aiy xi| , Q �
N2�1¸
j�0

|Ây |jy xj| . (5.30)

It can be proved that P:P � IN1 ,Q
:Q � IN2 , 2PP: � IN1N2 is unitary and it can

be efficiently implemented in time OppolylogpN1N2qq in the form of UP and UQ.

Actually,

2PP: � IN1N2 � 2
¸
i

|iy |Aiy xi| xAi| � IN1N2

� UPGPU:
P , (5.31)

where GP :� 2
°
i |iy |0y xi| x0| � IN1N2 is a reflection. Similarly, 2QQ: � IN1N2 �

UQGQU:
Q, where GQ :� 2

°
j |0y |jy x0| xj| � IN1N2 .

Now denote

W � p2PP: � IN1N2qp2QQ: � IN1N2q

� UPGPU:
PUQGQU:

Q. (5.32)

All the factors are unitary operators. The eigenvalue of W is eiθi such that

cos

�
θi
2



� σi
}A}F , (5.33)

where σi is the singular value of A. Then, W is used for phase estimation to obtain

the singular values. The result of QSVE is summarized in the following lemma:
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Lemma 5.3. (Quantum singular value estimation) [39]

Let A P RN1�N2 stored in the data structure stated in Lemma 3.1, and the sin-

gular value decomposition of A can be written as A � °r�1
`�0 σ` |u`y xv`|, where r �

minpN1, N2q. Let ε ¡ 0 be the precision parameter. Then the quantum singular value

estimation runs in OppolylogpN1N2q{εq and achieves
°
i βi |viy |0y ÞÑ

°
i βi |viy |σiy ,

and |σi � σi| ¤ ε}A}F for all i with probability at least 1 � 1{polypN2q.

The circuit of QSVE on a single matrix is shown in Fig. 5.3. In Fig. 5.3, UQ |by
is an superposition of eigenstates of W. The second register has t qubits, indicating

that the accuracy is 2�t, and j takes the value of 20, 21, . . . , 2t�1 respectively. Uf

maps the eigenvalues of W to the singular values of A through equation (5.33). The

output is the superposition state of estimated singular values and the corresponding

right singular vectors. Since in HOSVD we aim to obtain the left singular vectors,

we can obtain the left singular vectors |upkqi y of Apkq from the right singular vectors of

its conjugate transpose Apkq: . Thus, we perform the QSVE on the unfolding matrix

Apkq: . The Q-HOSVD algorithm based on QSVE is given in Algorithm 2.

Algorithm 2 Q-HOSVD by QSVE

Input: A P CI1�����Im , ε, |by
Output: S,Up1q,Up2q, . . . ,Upmq

1. Prepare the initial state
1?
m

m�1̧

k�0

|by |0y |ky .
2. Implement the controlled-k QSVE by the last register to obtain the superposi-
tion state

|ψy � 1?
m

m�1̧

k�0

r�1̧

i�0

β
pkq
i |upkqi y |σpkqi y |ky . (5.34)

3. Post-select k and perform measurement on |σpkqi y and extract |upkqi y to compose
Upkq.
4. S Ð A�1 Up1q: �2 Up2q: �3 � � � �m Upmq: .

Algorithm 2 is similar to Algorithm 1, but we do not need to apply phase esti-

mation on the extended Hermitian matrices.
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Figure 5.3: Circuit of QSVE on a matrix A.

For Step 1, we prepare the initial state

|ψ0y � 1?
m

m�1̧

k�0

|by |0y |ky , (5.35)

where the first register could be any state and always expressed as a superposition of

singular vectors, the second register stores the estimated singular values after phase

estimation, and the last register is the index for mode-k unfolding.

For Step 2, assume that the tensor A is mth-order n-dimensional for simplicity.

Recall that for fixed k, |jky � |ik�1 � � � imi1 � � � ik�1y as the same in (3.8), where

jk � 0, . . . , nm�1 � 1. Denote |Ajky be the tube |Ai1���ik�1ik�1���imy. Different from

Algorithm 1, we directly prepare the mode-k unfolding matrix through the unitary

operators U
pkq
P and U

pkq
Q as in Lemma 3.1 according to the mode of unfolding:

U
pkq
P : |jky |0y Ñ |jky |Ajky �

1

}Ajk}2

n�1̧

ik�0

ai1i2���im |jky |iky

for jk � 0, � � � , nm�1 � 1;

U
pkq
Q : |0y |iky Ñ |Âky |iky � 1

}A}F
nm�1�1¸
jk�0

}Ajk}2 |jky |iky

for ik � 0, � � � , n� 1. (5.36)

By this way, the above two operators are prepared in time Opm polylognq, corre-

sponding to Apkq: . Then we implement the controlled-k singular value estimation in
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parallel by applying the operator
°m�1
k�0 Wpkq b |ky xk| on the initial state |ψ0y. Fi-

nally, we undo the phase estimation and apply the inverse of operator U
pkq
P , obtaining

the state (5.34)

|ψy � 1?
m

m�1̧

k�0

r�1̧

i�0

β
pkq
i |upkqi y |σpkqi y |ky .

For the last two steps, similar to the Steps 4 and 5 in Algorithm 1, we can make

measurements and obtain the singular matrices and core tensor.

5.5 Complexity Analysis

For simplicity, we assume the input is an mth-order n-dimensional tensor.

For the first Q-HOSVD algorithm, the computational complexity mainly comes

from data access, matrix exponential simulation and phase estimation. The data

input time is Opm polylognq. At a simulation time t, only the eigenvalues of Ãpkq{N
with |λ̃j|{N � Ωp1{tq matter [67], and the eigenvalues smaller than ε are omitted.

Note that Apkq is an n � nm�1 matrix. For a fixed k, let the number of these

eigenvalues be r ¤ 2n, then by

"
trtÃ2

r{N2u � °r�1
j�0 λ̃

2
j{N2 � Ωpr{t2q,

trtÃ2
r{N2u ¤ trtÃ2{N2u � }Ã}2

F {N2 ¤ }A}2
max,

(5.37)

we find that the rank of the effectively simulated matrix is r � Op}A}2
maxt

2q. By

(5.11), there are O pt2}A}2
max{εq steps required to simulate e�i Ã

N
t, where }A}max �

Op1q, and 1{ε can be chosen as Oppolylognq. To make this algorithm efficient,

t � Oppolylognq, then the rank r � Oppolylognq, i.e. the matrices have to be

low-rank. Thus, the time to implement phase estimation is Oppolylogn � logpnq{εq.
Therefore, the total computational complexity of obtaining (5.6) is Opm2polylognq.

For the second Q-HOSVD algorithm, for each unfolding the time to access the

data structure isOpm polylognq, and the time to implement QSVE isOpm polylogn{εq,
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so the total complexity of obtaining (5.34) is Opm3polylognq. Furthermore, there are

no requirement for the structure of the input tensor.

Usually, in practical problems, m ! n. Thus, we can omit the order m, and the

algorithm runs polylogarithmically in the dimensions.

If we want to obtain the singular matrices and core tensor explicitly in the quan-

tum register, we need to make measurements on the states (5.6) and (5.34), and

reconstruct singular matrices and finally calculate the core tensor by quantum tensor

matrix multiplication, the complexities are Opm3n2polylognq and Opm4n2polylognq
respectively.

5.6 Application on Recommendation Systems

In [74], the authors make use of HOSVD for tag recommendations. Given an

initial third-order tensor with usage data triplets (user, item, tag), they implement

HOSVD and do truncations to obtain the core tensor and reconstructed tensor with

smaller dimensions. Then, based on the entries of the reconstructed tensor, the tags

are recommended to users. We have carried out the similar SVD and truncation

operations in [81] by another tensor decomposition called t-svd.

In this section, we introduce a hybrid quantum-classical recommendation method

for context-aware collaborative filtering (CF) based on tensor factorization (TF),

named as multiverse recommendation [38]. TF is an extension of matrix factor-

ization (MF) to multiple dimensions. HOSVD is chosen as our TF approach to

analyze the recommendation systems, due to its relevance among the different cat-

egories. Given the known preference tensor, we use HOSVD model to find out the

missing information. This problem is well-known as the completion problem in rec-

ommendation systems [72]. Our contribution is designing a hybrid quantum-classical

recommendation algorithm to accelerate this process.
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Context has been universally acknowledged as an important factor for analyzing

recommendation systems. A pair (user, item) is extended to a triplet (user, item,

context) or even larger multiplets, where context denotes the factor that may in-

fluence a user’s preference on a specified item, e.g. time, location, and we consider

the interactions among them. Generally, any number of contexts can be added to

this recommendation system, and the correlation is described by a relevance score

function frs as follows:

frs : User � Item � Context1 � � � � � Context`

ÝÑ Relevance Score (5.38)

with ` different contexts, so that the total number of dimensions is `� 2. Thus, we

can use a tensor with order m � `�2 to express the set of relevance scores, and utilize

HOSVD model to describe it. Such methods are widely applied in recommendation

systems like Netflix prize problems [7] and so on.

Denote the given preference tensor Y P t0, � � � , 5uI1�I2�����Im containing the ob-

served ratings ranging from 1 to 5, and value 0 indicates that the item has not been

rated yet. The aim is to find out such missing values and give a good recommenda-

tion to users. Denote the factor matrices U P RI1�d1 , M P RI2�d2 , Cpkq P RIk�2�dk�2 ,

for k � 1, . . . , `. Then, S P Rd1�d2�����dm . Let d � rd1, d2, � � � , dmsJ, and d �
maxjPrms dj.

To obtain the recommendations based on HOSVD, we design a loss function

and optimize over it. The loss function is characterized as LpT pθq,Yq, where θ is

the model parameter, i.e., θ :� pS,U,M, Cp1q, Cp2q, � � � , Cp`qq. Denote a set D :�
tpi1, i2, � � � , imq | yi1i2���im ¡ 0u an observation history, and K :� |D| the number of

observed ratings. The total loss function is defined as

LpT pθq,Yq :� 1

}S}1

¸
pi1,i2,...,imqPD

l pti1i2���im , yi1i2���imq , (5.39)
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which only applies on the observed values in Y . Function lpt, yq is a pointwise loss

function, that can be based on l2 norm, e.g., lpt, yq � pt � yq2{2, or other types of

distance measure. By adding a regularization term to avoid overfitting, we establish

the objective function

Jpθq :� LpT pθq,Yq � Ωpθq (5.40)

with trivial regularizers

Ωpθq � λ1}U}2
F � λ2}M}2

F �
`̧

k�1

λk�2}Cpkq}2
F � λS}S}2

F . (5.41)

Usually, the parameters of matrices can be chosen as the same value, i.e., λ1 � λ2 �
� � � � λm �: λ.

We optimize these matrices and the core tensor by stochastic gradient descent

(SGD) method [11]. SGD randomly picks a sample at one time and perform gra-

dient descent. It usually compares with batch gradient descent (BGD) which runs

over all the samples each iteration. BGD converges globally in every step but it is

computationally prohibitive for our problem. The cost of SGD is low, but it usually

converges in a local minimum. For big data problems, SGD often converges without

running over all the samples. The whole tensor completion algorithm based on the

HOSVD model is given in Algorithm 3.
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Algorithm 3 Tensor Completion by HOSVD

Input: Y ,d, η, λ, λS
Output: S,U,M, Cp1q, � � � , Cp`q

Initialize U,M, Cp1q, � � � , Cp`q,S with small values, T with all zeros.
while pi1, i2, . . . , imq P D do

ti1i2���im � S �1 Ui1 �2 Mi2 �3 Cp1qi3 �4 � � � �m Cp`qim
Ui1 ÐÝ Ui1 � ηλUi1 � ηBUi1

l pti1i2���im , yi1i2���imq
Mi2 ÐÝ Mi2 � ηλMi2 � ηBMi2

l pti1i2���im , yi1i2���imq
Cp1qi3 ÐÝ Cp1qi3 � ηλCp1qi3 � ηBCp1qi3

l pti1i2���im , yi1i2���imq
...

Cp`qim ÐÝ Cp`qim � ηλCp`qim � ηBCp`qim
l pti1i2���im , yi1i2���imq

S ÐÝ S � ηλSS � ηBS l pti1i2���im , yi1i2���imq
end while

Algorithm 3 can be considered as a training method by SGD. After we obtain

the factor matrices and core tensor, T is computed explicitly by

T � S �1 U�2 M�3 Cp1q �4 � � � �m Cp`q (5.42)

as an approximation of the preference tensor Y and we give recommendations to

users according to the entries of T .

This algorithm is a hybrid quantum-classical algorithm. The computation of

gradients is accelerated by some quantum subroutines, and the rest procedures are

performed by classical computers. The gradients are, e.g.,

BUi1
l pti1i2���im , yi1i2���imq � Bti1i2���im l pti1i2���im , yi1i2���imqS �2 Mi2 �3 � � � �m Cp`qim,

(5.43)

BS l pti1i2���im , yi1i2���imq � Bti1i2���im l pti1i2���im , yi1i2���imqUi1 �Mi2 � � � � � Cp`qim. (5.44)

For gradient (5.43), Bti1i2���im l pti1i2���im , yi1i2���imq is a simple function, if the loss func-

tion takes l2 norm, then Btlpt, yq � t� y. Define gpUi1q � S �2 Mi2�3 � � � �m Cp`qim.

The entry gjpUi1q is equivalent to

Si1�j � pMi2 � � � � � Cp`qimq �: Si1�j � Z, (5.45)
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the inner product of two pm�1qth order tensors. By quantum matrix multiplication

algorithm [69], the outer product of two vectors |ay and |by can be performed in time

Op}a}3
F }b}3

Fpolylogn{ε4}a � b}3
F q � Oppolylogn{ε4q to accuracy ε4, which holds for

classical vectors. Thus, we can perform the quantum outer product Mi2 � � � � � Cp`qim

in time Oppolylogn{ε4q. The resulting state is

|zy � 1

}Z}F
n�1̧

i2,i3,...,im�0

zi2i3���im |i2y |i3y � � � |imy . (5.46)

Next, we load the subtensor Si1�j into the quantum register as

|sy � 1

}Si1�j}F
n�1̧

i2,i3,...,im�0

sji2i3���im |i2y |i3y � � � |imy . (5.47)

Then, we can construct the following superposition state:

|φ1y � 1?
2
p|�y |sy � |�y |zyq

� sin θ |0y |uy � cos θ |1y |vy (5.48)

with cos θ � ap1 � xs|zyq{2. Then, by applying quantum amplitude estimation

algorithm [13], we can obtain h such that

����1 � xs|zy
2

� h

���� ¤ ε5 (5.49)

in time Opm log d{ε5q. Therefore, }Si1�j}F }Z}F p1 � 2hq gives a 2ε5}Si1�j}F }Z}F -

approximate of gpUi1q. Then, if we take ε � 2ε5}Si1�j}F }Z}F , we can obtain the

value of gjpUi1q in time Opm log d}Si1�j}F }Z}F {εq to accuracy ε. Since the gradient

g has d entries, and we have to repeat the above procedure for all the singular

matrices, then the total complexity of matrix optimization is OpKm2dpolylogdq.
Compared to the corresponding classical algorithm which takes OpKmdmq classical

calculations, our quantum algorithm is exponentially faster. To calculate the core

tensor S, we can directly use the classical computation, the complexity is OpKdmq.
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Chapter 6

Quantum Barzilai-Borwein

Gradient Method

6.1 Introduction

Optimization is an important tool in analyzing data. Gradient descent method

and Newton’s method are the two most commonly used optimization algorithms.

Standard gradient descent method is a first-order iterative algorithm for finding

a local minimum (or maximum) of a function. This method is simple, but usually

converges slowly. Furthermore, for ill-conditioned case in the sense that the condition

number of the Hessian matrix is very large, the progress is extremely slow. Newton’s

method is a second-order algorithm, which converges quadratically with fewer steps

than gradient descent method. However, it is very time-consuming in calculating

the inverse of the Hessian matrix. Research has been done for long time on how to

balance the computational cost and convergence speed. In 1988, Barzilai and Borwein

found a linear method that significantly outperforms the standard gradient descent

method with nearly no extra cost. The only difference between their method and the

standard one is the choice of step sizes. They designed two specific step sizes and the

algorithm is proved to converge Q-superlinearly for convex quadratic functions [64].

This method is named as two-point step size gradient method [5], and also known as
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the BB gradient method. After the BB gradient method is proposed, many follow

up works spread this method to a broader area. Now it has been successfully applied

in several areas, such as compressed sensing [27], support vector machine in machine

learning [20], image processing [82], stochastic linear complementarity problems [36]

and etc.

Quantum optimization is an indispensable part of quantum machine learning

theory. However, so far there are only a few quantum optimization algorithms. In

2017, quantum gradient descent and Newton’s method for constrained polynomial

optimization [66] are raised based on the HHL algorithm. The objective function is

an even order polynomial. The authors consider the coefficients as a huge matrix

and then decompose it into a sum of tensor products among smaller matrices. The

iteration functions of the gradient descent method and Newton’s method are ob-

tained by using several quantum techniques. In contrast to the classical counterpart,

for each iteration of the quantum methods, multiple copies of the current step are

consumed to proceed to the next step. Thus, the above quantum algorithms scale

exponentially in the number of iterations. The authors think that it is acceptable in

cases when the optimal solution is reached in only a few steps. If this condition is

satisfied, the runtimes of the two quantum optimization algorithms are OppolylogNq,
where N is the number of variables. They offer an exponential speedup over their

classical counterparts. In [40], the authors introduce a quantum gradient descent

method requiring time linear to the number of iterations when the gradient is an

affine function.

Inspired by [66], we propose the quantum Barzilai-Borwein gradient methods, and

apply them to polynomial optimization with a unit norm constraint. We reformulate

the coefficients of the objective function as a tensor, and use tensor decompositions

to simplify the calculations. Our quantum methods run polylogarithmically in the

dimension of the solution state, and provide exponential improvements over the
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classical counterpart.

6.2 Problem Statement

The objective function we want to minimize is a polynomial of order m defined

over x P RN ,

fpxq �
Ņ

i1,...,im�1

ai1���imxi1 � � � xim , (6.1)

with Nm coefficients ai1���im P R and x � px1, ..., xNqJ. The coefficients ai1���im com-

pose an mth-order N -dimensional tensor. From equation (2.12), we know that the

objective function can be rewritten as the inner product between A and xm:

fpxq � Axm. (6.2)

Without loss of generality, we assume }A}F � 1.

If A is not symmetric, we may symmetrize A with respect to all modes so that

Ā is symmetric with respect to any permutation of indices. By this symmetrization,

we have

fpxq � Axm � Āxm. (6.3)

Since A can always be symmetrized in this optimization problem, we assume in the

following A is a symmetric tensor.

Recall that the symmetric tensor can be decomposed by symmetric CP decompo-

sition and symmetric HOSVD through equations (2.16) and (5.5). Therefore, for CP

decomposition, the gradient of the objective function (6.1) at point x can be written

as

∇fpxq �
ŗ

j�1

αjmpvJ
j xqm�1vj � m

ŗ

j�1

αjpvJ
j xqm�2vjv

J
j x �: mDx, (6.4)

where D is a function of x, while for HOSVD,

D � mUJxS, pUxqm�1yxJ, (6.5)
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where S and U are the core tensor and the singular matrix for symmetric HOSVD

respectively. Note that xS, pUxqm�1y is a column vector.

Since later we propose to represent vectors x as quantum states, the quantum

algorithm naturally produces normalized vectors with xJx � 1. The problem we

solve is thus,

minimize
x

fpxq � Axm

subject to xJx � 1,

(6.6)

or in quantum form

minimize
|xy

fp|xyq. (6.7)

This is a polynomial optimization problem constrained under a unit sphere.

For the quadratic case, i.e. m � 2, the objective function is simplified as

fpxq � 1

2
xJAx, (6.8)

where A is symmetric. The gradient ∇fpxq � Ax.

6.3 Quantum BB Gradient Algorithms

Gradient descent is a first-order iterative optimization algorithm for finding a

minimum of a function. For classical gradient descent method, let f : RN Ñ R be

the objective function. Given the initial point x0, one finds a minimum by searching

along the negative of the gradient iteratively at the current point

xk�1 � xk � τ∇fpxkq, (6.9)

where τ ¡ 0 is the step size or learning rate in machine learning. For the standard

gradient descent method, the step sizes can be found via line search satisfying Wolfe

conditions [83]. However, the standard gradient descent method does not perform
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efficiently when the condition number is large. Thus, the BB gradient descent method

is designed in [5], where the step size of every iteration depends on the gradient and

point of current step and last step.

For the quantum BB method, the coefficient tensor, points, and gradients are

stored in the quantum register, and the iteration function (6.9) becomes

|xk�1y9
�
|xky � τk |∇fpxkqy

	
(6.10)

with a normalization factor. Here, the points and gradients are expressed as quantum

states. In this section, we show how this quantum iteration function is performed.

First, we introduce the data input oracle in the following.

6.3.1 Data Input

The tensor A can be accessed by qRAM, or specifically, the tree data structure,

which is introduced in Chapter 3. The initial guess |x0y can be an arbitrary quantum

state, e.g., we can set |x0y as |0y in the computational basis. Since the choice of initial

states greatly affects the convergence point and speed, we may choose a set of initial

states and apply the BB gradient descent method simultaneously, then there is a

high probability that the global minima is reached. For example, the set of initial

states is defined as

1?
N

N�1̧

i�0

|px0qiy |iy :� 1?
N

N�1̧

i�0

|iy |iy , (6.11)

we start the initial guesses from different modes |0y , |1y , . . . , |N � 1y stored in the

first register, and the second register stores the index i which refers to the i-th initial

state.
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6.3.2 BB Step Sizes

Now assume we are at the kth step and have prepared multiple copies of the

current solution |xky to an accuracy εk ¡ 0. We would like to propagate a single

copy of |xky to an improved |xk�1y. The improved copy will be prepared to accuracy

εk�1 � Opεk � τkεDk
q, where εDk

is the accuracy of D in kth step.

Denote ∇fpxkq � D xk, sk�1 � xk � xk�1 and yk�1 � ∇fpxkq � ∇fpxk�1q.
Hessian matrix H satisfies H sk�1 � yk�1. The goal of BB gradient method is to

approximate H by using τ�1
k I, so that pτ�1

k Iqsk�1 � yk�1. Then, the problem is

transferred to the following two least-square problem

τk � arg min
β

1

2
}βsk�1 � yk�1}2, (6.12)

and

τk � arg min
β

1

2
}sk�1 � β�1yk�1}2. (6.13)

Solving these two problems, we obtain two BB step sizes

τLBB
k � }sk�1}2

2��sJk�1yk�1

�� , (6.14)

τSBB
k �

��sJk�1yk�1

��
}yk�1}2

2

. (6.15)

Note that τLBB
k ¥ τSBB

k due to Cauchy-Schwarz Inequality, thus ‘L’ and ‘S’ refer to

‘Large’ and ‘Small’ respectively.

Combining the above two BB step sizes, the following alternative BB (ABB) step

size and adaptive BB (ADBB) step size are designed.

τABB
k �

"
τLBB
k , k is even,
τSBB
k , k is odd,

(6.16)

τADBB
k �

#
τSBB
k , if

τSBB
k

τLBB
k

  κ, κ P p0, 1q,
τLBB
k , otherwise.

(6.17)
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Writing the solution vectors as quantum states, we have

τLBB
k � 2 � 2xxk|xk�1y

| pxxk| � xxk�1|q pD |xky �D |xk�1yq | , (6.18)

and

τSBB
k � | pxxk| � xxk�1|q pD |xky �D |xk�1yq |

}D |xky �D |xk�1y }2
. (6.19)

In particular, for the quadratic objective function (6.8),

τLBB
k � 2 � 2xxk|xk�1y

|xxk|A|xky � xxk|A|xk�1y � xxk�1|A|xky � xxk�1|A|xk�1y| , (6.20)

τSBB
k � |xxk|A|xky � xxk|A|xk�1y � xxk�1|A|xky � xxk�1|A|xk�1y|

xxk|A2|xky � xxk|A2|xk�1y � xxk�1|A2|xky � xxk�1|A2|xk�1y . (6.21)

In this case, BB step sizes only depend on the current and last states. Note that

xx|A|xy � trtAρu � trtρAu, where ρ � |xy xx|.

6.3.3 Quantum BB Gradient Method

Let m � 2p. The full operator D �
r°
j�1

αkpvJ
j xqm�2vjv

J
j in the form of CP

decomposition (6.4) can be reproduced by a quantum operator that is equivalent to

D � tr1...m�2tρ�pp�1qAu, (6.22)

where ρ is the corresponding density matrix.

To implement the multiplication with operator D |xy � |∇fpxqy used for the

quantum gradient descent step, matrix exponentiation eiD∆t |xy adapting the quan-

tum principal component analysis (qPCA) procedure [47] and subsequent phase es-

timation [51] are adopted. qPCA enables us to use multiple copies of a quantum

system with density matrix ρ to construct the unitary transformation e�iρt. Since

D depends on the current state, we cannot directly exponentiate it. Instead we
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exponentiate the tensor A by using multiple copies of ρ � |xy xx| for a short time

∆t.

Theorem 6.1. By qPCA, the following operation is performed

tr1...m�2te�iA∆t ρ�p eiA∆tu � e�iD∆t ρ eiD∆t �Op∆t2q. (6.23)

Proof.

tr1...m�2te�iA∆t ρ�p eiA∆tu

� tr1...m�2tpI� iA∆tqρ�ppI� iA∆tqu �Op∆t2q

� tr1...m�2tρ�p � iAρ�p∆t� iρ�pA∆tu �Op∆t2q

� ρ� i tr1...m�2t�Aρ�p � ρ�pAu∆t�Op∆t2q,

where

tr1...m�2tAρ�pu �
ŗ

j�1

αjpvJ
j xqm�1vjx

J, (6.24)

and

tr1...m�2tρ�pAu �
Ķ

j�1

αjpxJvjqm�1xvJ
j . (6.25)

Thus,

tr1...m�2te�iA∆t ρ�p eiA∆tu � ρ�i
ŗ

j�1

αj
��pvJ

j xqm�1vjx
J � pxJvjqm�1xvJ

j

�
∆t�Op∆t2q.

(6.26)

Also,

e�iD∆t ρ eiD∆t

�pI� iD∆tqρpI� iD∆tq �Op∆t2q

� ρ� iDρ∆t� iρD∆t�Op∆t2q

� ρ� i
ŗ

j�1

αj
��pvJ

j xqm�1vjx
J � pxJvjqm�1xvJ

j

�
∆t�Op∆t2q. (6.27)
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Next, we implement the multiplication D |xy � |∇fpxqy via phase estimation.

The phase estimation algorithm is performed to estimate the unknown value θ to a

finite level of precision, where U |ϕy � e2πiθ |ϕy, 0 ¤ θ   1, which means e2πiθ and |ϕy
are an eigenpair of a unitary operator U. The quantum phase estimation procedure

uses two registers. The first register contains d qubits initially in the state |0y, where

d decides the number of digits we wish to estimate for θ. The second register begins

in the state |ϕy, and contains as many qubits as is necessary to store |ϕy.
In phase estimation, a multi-qubit register with d � Oprlogp1{ε2qsq control qubits

is used for forming an eigenvalue register. In this manner, for ` � 0, 1, . . . , 2d� 1, we

can prepare pe�iD∆tq` ρ peiD∆tq` by (6.23). Finally, we implement the inverse quantum

Fourier transform, the result of the phase estimation algorithm is a quantum state

proportional to ¸
j

βj |λjpDqy |ujpDqy , (6.28)

where |xy � °
j βj |ujpDqy is the original state |xy written in the eigenbasis t|ujpDqyu

of D, and |λjpDqy is an additional register representing the corresponding eigenvalue

in basis states |0y or |1y.
Assume the gradient method is at the kth step, then we start from an initial state

|ψ0y which is prepared easily, after phase estimation, conditional rotation, several

measurements and etc., the iteration function (6.29) is derived. The details are

given in the following theorem and proof.

Theorem 6.2. Given access to tensor A and the state of the kth step |xky to accuracy

0   εk   1, we can obtain the next state |xk�1y by the iteration function

|xk�1y � 1

Ck�1

�
|xky � τk |∇fpxkqy

	
(6.29)
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to accuracy εk�1 � OpτkεDk
� εkq, where Ck�1 is the normalization factor with value

C2
k�1 � 1 � 2τk xxk|D |xky � τ 2

k xxk|D2 |xky.

Proof. We prepare the state

|ψ0y � pcos θ |0y � i sin θ |1yq |xky , (6.30)

where θ is an external parameter. The eigenstates of D are given by |ujpDqy and

the eigenvalues by λjpDq. After the conditional phase estimation which is specified

in Chapter 5 on |1y in the first register, we obtain

|ψ1y � cos θ |0y |xky |0y � i sin θ |1y
¸
j

βj |ujpDqy |λjpDqy , (6.31)

where βj � xujpDq|xky. Now perform a rotation on |λjpDqy, uncompute the eigen-

value, and apply a σX operator on the third register to arrive at the state

|ψ2y � cos θ |0y |xky |1y�i sin θ |1y
¸
j

βj |ujpDqy
�b

1 � pCDλjpDqq2 |0y�CDλjpDq |1y
	
.

(6.32)

We choose a constant CD � Op1{κDq, where κD is the condition number of D. A

measurement of the ancilla in |1y arrives at

|ψ3y � 1?
PD

�
cos θ |0y |xky � i sin θ |1y

¸
j

CDλjpDqβj |ujpDqy
	
, (6.33)

which is the desired state

|ψ4y � 1?
PD

�
cos θ |0y |xky � iCD sin θ |1yD |xky

	
. (6.34)

Therefore, we can multiply the operator D to |xky conditioned on the ancilla being

in state |1y to obtain |ψ4y. The success probability is given by

PD � cos2 θ � C2
D sin2 θ xxk|D2 |xky . (6.35)
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We measure the state (6.34) in the basis |yesy � 1?
2
p|0y � i |1yq and |noy �

1?
2
pi |0y � |1yq. Measuring the ‘yes’ basis state results in the quantum system being

in a state

|xk�1y � 1b
2PDP

grad
yes

�
cos θ |xky � CD sin θD |xky

	
. (6.36)

Since the BB steps are calculated by (6.18) or (6.19), we choose θ such that

cos θ � 1a
1 � pτkq2{C2

D

, sin θ � τk

CD
a

1 � pτkq2{C2
D

, (6.37)

which leads to the following iteration function (6.29) with C2
k�1 � 1�2τk xxk|D |xky�

τ 2
k xxk|D2 |xky. The total probability of obtaining this state successfully is given by

PDP
grad
yes � 1

2
pcos2 θ � C2

D sin2 θ xxk|D2 |xkyq. (6.38)

To successfully obtain the state |xk�1y, we need to repeat Op
b

1{PDP grad
yes q times by

using amplitude amplification [1].

Now that we have the iteration function (6.29), then we repeat the iterations

starting from k � 0, 1, ... until the stopping criteria is satisfied. Finally, we obtain

the desired state, denoted as |xT y.
If we start from different initial states simultaneously as (6.11), we apply the

iteration function on (6.11) in parallel, then the final state is 1?
N

°N�1
i�0 |pxkqiy |iy.

Post-selecting i in the second register, we get the i-th final state. Furthermore, it is

highly possible that there exists a global minimum in these final states.

In conclusion, we put forward the quantum Barzilai-Borwein gradient algorithm:
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Algorithm 4 Quantum Barzilai-Borwein (QBB) Gradient Method

Input: A, |x0y , τ0, 0   ε ! 1, k � 1
Output: |xT y

1. |x1y is calculated by standard gradient descent method with τ0.
2. If }|xky � |xk�1y} ¤ ε, stop. Set T � k.
3. For k ¥ 1, τk is computed by formulae (6.18) or (6.19).
4. Calculate |xk�1y � 1

Ck�1
p|xky � τk |∇fpxkqyq by Theorem 6.2.

5. k � k � 1, return to Step 2.

To reach the optimal state, we need to perform the iteration several times. For

the kth step, the state |xky proceeds to |xk�1y probabilistically. Due to the no-

cloning property, if the iteration fails at a certain stage, the algorithm has to restart

at the initial state. Thus, the whole algorithm scales exponentially in the number of

iterations.

6.3.4 Quantum Feasible BB-like Method

In [37], a feasible BB-like method for solving problem (6.6) under the quadratic

case, i.e., (6.8) is proposed, where A P RN�N is a symmetric matrix. The feasible

set Ω �  
x : xJx � 1,x P RN

(
is a special case of Stiefel manifold. In quantum

computing, |xy is an n-qubit quantum state, where N � 2n. Thus, the constraint of

problem (6.6) is naturally satisfied.

Let the Lagrange function

Lpx, λq � 1

2
x:Ax� λx:x. (6.39)

Suppose x is a local minimizer of problem (6.8). Then x satisfies the first-order

optimality condition BxLpx, λq � Ax� λx. Set the lagrange multiplier λ � x:
kAxk,

and denote gLk pxq � Axk � px:
kAxkqxk.
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Given |xky,
gLk � }gLk } |gLk y � A |xky � xxk|A|xky |xky

� pA� xxk|A|xkyIq |xky

� pA� trpAρkqIq |xky

�: D |xky . (6.40)

Note that D is not unitary and depends on the current state |xky.
Let Y pτ,xq be the general curve defined in [37] and given as follows

Y pτ, |xyq � αpτ, |xyq |xy � βpτ, |xyqgL, (6.41)

where

αpτ, |xyq � 1 � a2τ 2
��gL��2

1 � a2τ 2 }gL}2 , βpτ, |xyq � 2aτ

1 � a2τ 2 }gL}2 , (6.42)

and a is a predetermined constant in p0, 1q.
Then, the iteration function (6.41) becomes

Y pτk,xkq �
p1 � a2τ 2

k

��gLk ��2q |xky � 2aτk}gLk } |gLk y
1 � a2τ 2

k }gLk }2

� p1 � a2τ 2
k

��gLk ��2q |xky � 2aτkD |xky
1 � a2τ 2

k }gLk }2 , (6.43)

where

τLBB
k � 2p1 � xxk�1|xkyq

|xxk�1|xkyxxk|A|xky � xxk|A|xk�1y � xxk�1|A|xky � xxk|xk�1yxxk�1|A|xk�1y| ,

(6.44)

or

τSBB
k � |xxk�1|xkyxxk|A|xky � xxk|A|xk�1y � xxk�1|A|xky � xxk|xk�1yxxk�1|A|xk�1y|

}pA� xxk|A|xkyq |xky � pA� xxk�1|A|xk�1yq |xk�1y}2 ,

(6.45)
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which can be derived by equations (6.18)-(6.19) and (6.43).

By (6.31), after conditional phase estimation, we obtain

|ψy � cos θ |0y |xky |0y � i sin θ |1y
¸
j

βj |ujpAqy |λjpAqy , (6.46)

the next step is to extract the λjpAq. We know that A � UΛU:, then

D � A� trpAρkqI � U pΛ � trpAρkqIqU:, (6.47)

i.e.

λpDq � λpAq � trpAρkq. (6.48)

After calculating trpAρkq, then by conditional rotation, we have

|ψy � cos θ |0y |xky � i sin θ |1y
¸
j

βjpλpAq � trpAρkqq |ujpAqy

� cos θ |0y |xky � i sin θ |1y
¸
j

βjλpDq |ujpDqy . (6.49)

Then, we show how we obtain the iteration function of quantum feasible BB-like

method. We prepare the state

|ψ0y � pcos θ |0y � i sin θ |1yq |xky , (6.50)

where θ is an external parameter. It is inferred above that the eigenpairs of D have

such relations with those of A: λpDq � λpAq � trpAρkq and |ujpDqy � |ujpAqy.
After the conditional phase estimation by QSVE, we obtain:

|ψ1y � cos θ |0y |xky |0y � i sin θ |1y
¸
j

βj |ujpAqy |λjpAqy , (6.51)

where βj � xujpAq|xky. Now we first perform a conditional rotation of another

ancilla, then apply another rotation according to the value of trpAρkq, finally un-

74



compute the eigenvalue register to arrive at the state

|ψ2y � cos θ |0y |xky |1y � i sin θ |1y
¸
j

βj |ujpAqy

�b
1 � pCApλjpAq � trpAρkqq2 |0y � CApλjpAq � trpAρkqq |1y




� cos θ |0y |xky |1y � i sin θ |1y
¸
j

βj |ujpDqy
�b

1 � pCAλjpDqq2 |0y � CAλjpDq |1y


.

(6.52)

We choose a constant CA � Op1{κAq, where κA is the condition number of A. A

measurement of the ancilla in |1y arrives at

|ψ3y � 1?
PD

�
cos θ |0y |xky � i sin θ |1y

¸
j

CAβjλjpDq |ujpDqy
	
, (6.53)

which is the desired state

|ψ4y � 1?
PD

�
cos θ |0y |xky � iCA sin θ |1yD |xky

	
. (6.54)

Therefore, we can multiply the operator D to |xky conditioned on the ancilla being

in state |1y to obtain |ψ4y. The success probability is given by

PD � cos2 θ � C2
A sin2 θ xxk|D2 |xky � cos2 θ � C2

A sin2 θ}gLk }2. (6.55)

We measure the state (6.54) in the basis |yesy � 1?
2
p|0y � i |1yq and |noy �

1?
2
pi |0y � |1yq. Measuring the ‘yes’ basis state results in the quantum system being

in a state

|xk�1y � 1b
2PDP

grad
yes

�
cos θ |xky � CA sin θD |xky

	
. (6.56)

Since the BB steps are calculated by (6.44) or (6.45), we choose θ such that

cos θ � 1 � a2τ 2
k

��gLk ��2c�
1 � a2τ 2

k }gLk }2
	2

� p2aτkq2{C2
A

, sin θ � 2aτk{CAc�
1 � a2τ 2

k }gLk }2
	2

� p2aτkq2{C2
A

,

(6.57)
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which leads to the following iteration function

|xk�1y � 1

C
pk�1q
grad

�
p1 � a2τ 2

k

��gLk ��2q |xky � 2aτkD |xky
	
. (6.58)

with C
pk�1q
grad � 1 � a2τ 2

k

��gLk ��2
. The probability of obtaining this state through a

successful ‘yes’ measurement is given by

P grad
yes � p1 � a2τ 2

k

��gLk ��2q2
2p1 � a2τ 2

k }gLk }2q2 � 8a2τ 2
k }gLk }2 �

1

2
. (6.59)

The total probability of measuring |1y and |yesy is

PDP
grad
yes � 1

2
� p1 � a2τ 2

k

��gLk ��2q2 � p2aτk
��gLk ��q2

p1 � a2τ 2
k }gLk }2q2 � p2aτk{CAq2

. (6.60)

Assume }A}F � 1, since A is a symmetric matrix,

Ņ

i�1

λ2
i pAq �

Ņ

i�1

σ2
i pAq � }A}2

F � 1. (6.61)

Therefore, |λmaxpAq| ¤ 1, we can take CA as 1. The probability becomes

PDP
grad
yes � 1

2
�

�
1 � a2τ 2

k

��gLk ��2
	2

� �
2aτk

��gLk ���2

�
1 � a2τ 2

k }gLk }2
	2

� p2aτkq2
. (6.62)

Thus, we propose the following quantum feasible BB-like method

Algorithm 5 Quantum Feasible BB-like (QFBB) Method

Input: A,x0, k � 0, τ0 ¡ 0, 0   ε ! 1, 0   σ   1, 0   δ   1, 0   a   1
Output: |xT y

1. |x1y is calculated by standard gradient descent method with τ0.
2. If }|xky � |xk�1y} ¤ ε, stop.
3. For k ¥ 1, τk is computed by formulae (6.44) or (6.45).
4. Calculate |xk�1y � Y pτk, |xkyq by formulae (6.41) and (6.42).
5. k � k � 1. Go to Step 1.
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6.4 Analysis

6.4.1 Two Classes of Convergence Rates

In this section, we introduce some concepts for our convergence analysis in the

next section. The definitions below can be found in [52].

Definition 6.1. Quotient-Linear (Q-linear)

Let txku be a sequence in R that converges to x�. Then the convergence is called

Q-linear if there exists r P p0, 1q such that

|xk�1 � x�|
|xk � x�| ¤ r (6.63)

for all k sufficiently large.

Definition 6.2. Quotient-Superlinear (Q-superlinear)

Let txku be a sequence in R that converges to x�. Then the convergence is called

Q-superlinear if

lim
kÑ8

|xk�1 � x�|
|xk � x�| � 0. (6.64)

Definition 6.3. Root-Linear (R-linear)

Let txku be a sequence in R that converges to x�. Then the convergence is called

R-linear if there exists a sequence tvku with vk ¥ 0 for all k, tvku converges Q-linearly

to 0, and

|xk � x�| ¤ vk (6.65)

for all k.

Definition 6.4. Root-Superlinear (R-superlinear)

Convergence is R-superlinear if tvku converges Q-superlinearly to 0.
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Note that root convergence is concerned only with the overall rate of decrease of

the error while quotient convergence requires the error to decrease at each iteration

of the algorithm. Thus, Q-convergence is a stronger form of convergence than R-

convergence, and R-convergence implies Q-convergence.

6.4.2 Convergence Analysis

For any-dimensional strictly convex quadratic function, it is proved that either

gk � 0 for some finite k, or the sequence t}gk}u converges to zero R-linearly [22].

In particular, if fpxq is a strictly quadratic convex function with 2 variables, i.e.,

m � 2, n � 2, the gradient method with BB step size (6.18) almost always converges

R-superlinearly that

}gk} ¤ Cλ�p
?

2qk (6.66)

holds asymptotically, where λ � σ1pHq{σ2pHq, H is a symmetric positive definite

matrix, C is a constant independent of k.

Furthermore, it is proved in [21] that the BB gradients satisfy

lim
kÑ8

min

"}gk�1}
}gk} ,

}gk�2}
}gk�1} ,

}gk�3}
}gk�2}

*
� 0, (6.67)

which means that the BB method has a Q-superlinear convergence step in at most

three consecutive steps.

It is proved by Raydan [64] that the BB method is globally convergent for any n

if the objective function is a convex quadratic. However, for m ¡ 2, no superlinear

convergence results have been established for the BB method, though numerical

results indicate quite offen that the BB method converges superlinearly.

For the problem with normalization constraint, the local superlinear convergence

is ensured for feasible BB-like methods for the two-dimensional case. There is also a

counter-example showing that the algorithms may cycle or stop at a non-stationary
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point. To ensure the global convergence, an adaptive non-monotone line search with

an improved line search is adopted in [37].

6.4.3 Computational Complexity

For the quantum BB algorithm, the computational complexity mainly comes from

data input and phase estimation which are both polylogarithmic in N . Thus, the

overall computational complexity is OppolylogNq, as long as the number of itera-

tions T is small. Actually, the algorithm runs exponentially in T , because in every

iteration, there is a probability for the algorithm to proceed to the next step. Thus,

if the BB algorithm fails in any step, we have to reperform the iterations from the

initial state.

6.5 Numerical Experiments

In this part, we compare four quantum optimization methods under the quadratic

case: (i) quantum gradient descent (QGD) method [66], (ii) quantum Newton’s

(QNT) method [66], (iii) quantum BB gradient descent (QBB) method Algorithm

4, (iv) quantum feasible BB-like gradient (QFBB) method Algorithm 5.

For a random matrix A P R100�100, all the methods succeed to find the optimal

solution. QGD and QNT need to run around 1000 times to get the optimal solution,

and the success probability in every step is around 0.25-0.3. QBB runs about 200

times, and the success probability is roughly ascending, and stable at around 0.2.

QFBB uses only 55 times, but the success probability is quite small, around 0.05-

0.2, and even some could be very small. As a whole, the total success probability

(calculated by the product of the success probability in every step) of QFBB is higher

than the other three methods.

For a matrix A P R5�5 with a large condition number 200, QGD and QWT

run 2000 times, while QBB and QFBB consume only 30 times. The total success
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probability of QBB and QFBB is higher than QGD and QNT.

6.6 Summary

We have introduced the quantum version of the Barzilai-Borwein gradient method.

Contrast to the standard gradient method whose step sizes are predetermined, the

step sizes of BB methods depend on the current and last points and gradients. Our

quantum methods consider an iterative constrained polynomial optimization in the

quantum computing framework, where the solution vectors in iterations are quantum

states. The first quantum BB method directly replaces the predetermined step sizes

with BB step sizes, and projects the solution state onto the unit sphere in every

iteration. We use qPCA to implement the gradient matrix. The second method is a

quantum feasible BB-like method for the quadratic case, which searches the optimal

solution along the unit sphere.

For the computational complexity, it is known that the running time of classical

BB gradient method is OpNq, where N is the number of variables of the objective

function, while for the quantum version, if the quantum BB gradient method is able

to find good solutions in a few iterations, it runs in OppolylogNq. Thus, the quantum

BB gradient method provides exponential speedups over the classical counterpart.

By the numerical experiments, contrast to the quantum gradient descent method in

[66], our quantum BB gradient methods find the optimal value in fewer iterations,

and the total success probability is higher.
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Chapter 7

Conclusions and Suggestions for

Future Research

This thesis introduces some quantum operations on tensors, and provides a subclass

of Hankel tensors, two quantum algorithms for higher order singular value decompo-

sition, and quantum Barzilai-Borwein gradient methods. The quantum algorithms

related to tensors may be used for research on the multipartite quantum system.

Also, they can be applied as subroutines in quantum machine learning methods.

Once quantum computers of a certain scale are constructed, our quantum algorithms

will come into play.

For the future work, I hope to continue working on algorithms related to quantum

and tensors. Tensor network is an effective way to run the quantum circuits as in

[57, 3]. Maybe quantum algorithms combined with neural networks will be a new

research direction. Also, recently quantum-inspired classical algorithms become very

popular, since such algorithms run in the same level of complexity related to the

dimensions compared to the pure quantum counterparts [76, 28]. Whether quantum-

inspired algorithms could perform as fast as pure quantum algorithms remains to be

explored.
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