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Abstract 

The manufacturing industry is one of the main contributors to greenhouse gas emissions and 

the consumption of natural resources. With an increasing demand for high technological 

products nowadays, the natural resource consumptions from ultra-precision machining (UPM) 

predictively go up and therefore sustainable machining has become progressively important in 

terms of reducing the induced negative environmental issues. On the other hand, sustainability 

includes three dimensions: economic sustainability, environmental sustainability, and social 

sustainability. However, the complicated interactive connections among the sustainable items 

of these three dimensions regarding UPM cause infeasibilities and difficulties to execute 

sustainable UPM practically. Up to now, it still lacks studies about the solutions or 

measurement for resolving interactive relationships between sustainable items of UPM. 

Therefore, it is necessary to develop a model to evaluate the sustainable UPM parameters 

considering their connections. In this study, the influential parameters of sustainable machining 

and their interactive relationships were identified. Several centrality metrics of social network 

analysis (SNA) were utilized to evaluate the role of each parameter from a systemic view. 

What’s more, the calculation results of centrality metrics can be utilized as the feature data of 

some parameters to predict the feature of other parameters by using machine learning 

algorithms. By these steps, the SNA - machine learning model can be established for 

sustainable parameters investigation. Moreover, with the information from the obtained main 

metrics results, some managerial implications for improving the sustainability level of the UPM 

process were raised. In this study, it is the first time the SNA method was introduced in the 

research area of sustainable manufacturing and UPM. And the unsupervised learning approach 

was also applied firstly to classify the centrality metrics results. Moreover, the roles and 

importance of sustainable manufacturing and UPM parameters have been evaluated to help 

companies to achieve optimal settings of them. By using link prediction metrics of SNA, the 
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potential values of the undiscussed relationship between two sustainable machining factors in 

previous studies can be discovered to support the researchers to do the topic selection. 

In the previous research on sustainable manufacturing, only a few factors were studied to find 

out their impacts on the overall sustainability level. It still lacks a study that can analyze the 

importance of various sustainable machining parameters in the same model with considering 

their influencing relationships. In this work, by using the method of SNA, this research gap can 

be resolved. Based on the evaluation of sustainable manufacturing factors, it was found that 

cutting quality is the parameter with the highest value of the centrality index, which is the 

overall measurement of centrality. It indicates that cutting quality should be considered as the 

key factor in the manufacturing system. In the case study of the UPM optimal setting, Material 

recovery was discovered as the UPM parameter which has the highest betweenness result, 

which shows that it performs as a gatekeeper to collect the impacts from the upstream UPM 

nodes and can be observed before getting machining outcomes. Thus, it plays a key role as one 

significant indicator for researchers to obtain optimized UPM output.  

Besides, the influencing relationships among the sustainable machining parameters were 

selected based on relevant literature. As these relationships are performed as the “edges” in the 

SNA model, two non-adjacent nodes mean that their relationship is not discovered in current 

literature. In this work, the link prediction metrics were used to find out the probability of the 

existence of the hidden relationships between these two parameters. Therefore, this work can 

determine the undiscussed latent relationships among sustainable machining parameters with 

high potential values to be investigated. Thus, this work provides a reference for developing 

more research topics in the sustainable machining area. 
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Chapter 1 Introduction 

 

Due to the technological progress in industry and the growth of the population, environmental 

issues have become one of the main challenges for human beings. In 2000, the energy 

consumption causing CO2 equivalent emissions counted around 64% of the greenhouse gas 

emissions (Stern, 2006). Among the CO2 emissions, around 24 % and 14 % of CO2 emissions 

were caused by power generations and the manufacturing industry respectively. Thus, the 

energy used in manufacturing needs to be cut back in order to reduce CO2 emissions and 

therefore sustainable machining gets more and more attention. The measurement of 

sustainability includes three dimensions: economic dimension, environmental dimension, and 

social dimension. And each aspect also consists of various factors (parameters) that have 

complicated influencing relationships with each other (Vinodh, Ramesh, & Arun, 2016). This 

situation is one of the main causes of the difficulty to achieve and improve sustainability in 

manufacturing industries. Therefore, analyzing these influencing relationships among the 

parameters of sustainable manufacturing enables us to achieve a better understanding of the 

roles of each parameter.  

Ultra-precision machining (UPM) is one of the advanced material processing technologies. 

Nowadays, ultra-precision products with nanometric-level surface roughness experience an 

increasing demand today. And the UPM process is one of the important and effective methods 

for manufacturing the components which can satisfy this demand. It has been widely used to 

produce ultra-precision objects such as medical equipment and lens, etc. And it can obtain the 

achievable level of the components’ surface in the level of fewer than 1 nano and surface 

roughness at a level of less than 10 nano (Azulay, 2014). The resolution of the produced surface 

of UPM is less than 10 nano, whose surface level and form accuracy is 1000 times accurate 

compared with conventional machining. Though UPM has an extremely high capability of 
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producing high-precision products with mirror surface finishing, the complex processing 

principle causes difficulties in practice. The nano-level surface production can be influenced 

by a lot of UPM parameters, and even some small changes in the UPM parameters could 

influence the optimal setting of machining. And it involves a large number of UPM parameters 

to achieve the optimal conditions of UPM setting and high sustainability.  

 

1.1. Research gap 

However, in previous work, there are still some research gaps in the area of sustainable 

manufacturing and UPM: 

1. It still lacks the study about the sustainable manufacturing and UPM factors from the 

view of a whole system to evaluate the role and importance of each parameter by taking 

account of the interactive relationships among them.  

2. It lacks the method to discover the potential value of undiscussed relationships between 

parameters of sustainable UPM. 

3. Previous studies also lack a method to classify these parameters based on their 

importance to provide an overall concept of the centrality distribution.  

 

1.2. Project objectives 

To resolve the research gap mentioned in the above part, this project has three main objectives: 

1. Study the role and importance of sustainable machining parameters considering their 

complicated influencing relationships.  

2. Find the hidden relationships among sustainable machining parameters with high 

potential to be investigated to discover new potential topics and trends for the research 

area of sustainable UPM. 

3. Classify the parameters based on the similarity of the role and importance in the 
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network of sustainable manufacturing and UPM to provide an overall concept of the 

importance distribution of the parameters. 

 

1.3. Overview of Research Methodology 

The whole working flow of the research methodology in this project was summarized in Figure 

1. Firstly, the parameters of sustainable manufacturing and UPM can be identified from the 

literature. Moreover, influencing relationships are summarized in a matrix, which is called the 

adjacency matrix (McCulloh, Armstrong, & Johnson, 2013). Several types of graphs can be 

used to describe different social network models. According to the direction of the edges, they 

can be classified as undirected and directed graphs (Oliveira & Gama, 2012). According to the 

work of Zhou, Yip, Ren, and To (2020), the examples of directional networks and 

nondirectional networks and their adjacency matrices are shown in Figure 2. In this matrix, let 

𝑎𝑖𝑗 be the value of the element in row 𝑖 and column 𝑗. For the directional network, if 𝑎𝑖𝑗 = 1, 

it means the factor on the left-hand side (factor 𝑖) can influence the factor on the right-hand 

side (factor 𝑗); while if 𝑎𝑖𝑗 = 0 means the factor 𝑖 cannot influence the factor 𝑗. For a non-

directional network, 𝑎𝑖𝑗 = 1 representing the presence of an edge between factor 𝑖 and 𝑗; and 

𝑎𝑖𝑗 = 0 means the absence of an edge between node pair (𝑖, 𝑗). Therefore, in a directional 

network, the adjacency matrix may not be symmetric. But all the adjacency matrices of the 

non-directional networks are symmetric, which means 𝑎𝑖𝑗 = 𝑎𝑗𝑖 (Oliveira & Gama, 2012). As 

the influencing relationships among sustainable UPM factors have directions in this study, the 

SNA model will be constructed as a directional network in this work.  
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Figure 1 The working flow of the methodology 

 



5 

 

 

Figure 2 The illustration of the directional network, nondirectional network, and their 

adjacency matrix (Zhou et al., 2020) 

 

After finishing the data collection, the parameters and relationships can be considered as the 

“node” and “edge” to construct a social network, which is a technology to discover the hidden 

pattern, structure in a system consisting of nodes and edges (Ryberg & Christiansen, 2008). 

After that, the social network can be evaluated in three levels: node level, edge level, and 

network level. The node-level analysis can utilize some metrics to measure the centrality of 

each node in this network, such as in-degree and out-degree. By doing so, the role and 

importance of the parameters of sustainable manufacturing or UPM could be measured. Then, 
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the purpose of the edge-level analysis is to find out the probability of two non-adjacent nodes 

being linked together in the future. The link prediction metrics include the common neighbors, 

Jaccard coefficient, resource allocation, and so on. By utilizing them, the likelihood of linkages 

between the parameters can be recognized. It can assist the researchers to find out the valuable 

topics that have not been discussed in the previous study. The network-level analysis refers to 

the process to analyze the density and other features of the SNA network, which can provide 

researchers an overall concept of the whole research area. And one case study is not necessary 

to include all of these three levels of SNA analysis. The researcher can select supportive 

analysis partially from them according to the needs of the study. 

Based on the SNA analysis results, the metrics results can be utilized as the raw data to be input 

into the unsupervised learning method such as k-means and principal components analysis 

(PCA) to do classification. It can help the researchers obtain the distribution and clustering of 

the parameters according to the similarity of centrality metrics results. By utilizing the k-means 

algorithm, the nodes are clustered according to the distance among them. It can minimize the 

internal distance of the parameters and maximize the external distance between the clusters. 

 

1.4. Project significance 

In this study, the new evaluation method was developed by using SNA and unsupervised 

learning algorithms. The SNA method was firstly applied in the sociology area to represent 

relationships between actors in a social setting and link prediction after it has been proposed. 

And it provides an efficient tool for various areas, such as supply chain management and 

knowledge management, to solve problems involving multiple stakeholders. By utilizing it, the 

roles of each parameter of sustainable manufacturing and UPM can be identified clearly, which 

can provide a guideline for researchers to find the optimal settings of UPM. And the inspiration 

from the influencing relationships among these parameters can be used to shows the potential 
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values of undiscussed topics in the research area of sustainable manufacturing and UPM. 

Moreover, these results can provide a reference for researchers to determine the priority of 

different undiscussed topics as their future research.  

 

1.5. Project organization 

Besides the introduction, previous studies about sustainable machining, ultra-precision 

machining,  the SNA method, and unsupervised method were reviewed and discussed in 

chapter 2; then, the details of the SNA and unsupervised learning methods were introduced in 

chapter 3; after that, two case studies are evaluated and discussed in chapter 4; finally, the 

conclusion was given in chapter 5. 
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Chapter 2 Literature review 

 

This chapter consists of three parts: the previous studies about the application of SNA and some 

machine learning algorithms were discussed firstly; subsequently, the main methods used in 

relevant studies of sustainable machining and UPM were also reviewed in this chapter. 

 

2.1. Social network analysis (SNA) 

A social network is the pattern of linkages or relationships that exists among the parameters or 

nodes of a social system equipped with the mathematics foundation of graph theory 

(Wasserman & Faust, 1994). SNA has been applied to study social media data such as Tweeter 

(Cheong & Cheong, 2011) and information flow (Dekker, 2002). It also has been adopted to 

analyze disease transmissions such as HIV (Friedman, Neaigus, Jose, Curtis, & Des Jarlais, 

1998) and even organized crime (McIllwain, 1999). More recently, researchers have also 

applied SNA in the knowledge management area, like human resource development (HRD), as 

well as knowledge mapping studies (Chan & Liebowitz, 2006). In the study of Zhong, Geng, 

Liu, Gao, and Chen (2016), the citation network of academic papers about natural resource 

accounting was constructed (shown in Figure 3). Besides that, SNA played a key role in the 

researches related to supply chain management (Wichmann & Kaufmann, 2016). Buccafurri, 

Fotia, Lax, and Saraswat (2016) applied SNA to do a case analysis of securing organizations 

against information leakage.  
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Figure 3 The academic collaborative network among the top 20 countries. (Zhong et al., 

2016) 

 

Within recent three years, the potential of SNA has been discovered in more problems and 

scenarios. For instance, some researchers have used SNA to identify the spread clusters of 

COVID-19 according to the inflection point (IP) and the spread pattern (Yie, Chien, Yeh, Chou, 

& Su, 2021). By using this model, three clusters from Eastern Asia and Europe to America 

were separated. Moreover, the most critical success factors have been identified based on the 

SNA method in the project management process (Nunes & Abreu, 2020). The centrality metrics 

were utilized to compare the email communication networks in the successful projects and 

unsuccessful projects. Besides, the SNA method has also been applied in the interdependence 
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and relationship structure of the supply chain members (Han, Caldwell, & Ghadge, 2020). 

However, it still lacks studies of sustainable machining and ultra-precision machining by using 

the SNA approach currently.  

 

 

2.2. Unsupervised learning algorithms 

Unsupervised learning is a branch of machine learning which can achieve an outcome 

according to input without feedback or label from its environment (Suominen & Toivanen, 

2016). While the supervised learning method can directly learn how to predict the correct 

results based on the label of training data. Unsupervised learning provides the approach which 

allows the algorithm to recognize patterns in the raw data. It contains a series of algorithms 

such as PCA and k-means and has a lot of real-life applications, including signal processing, 

natural language processing, image processing, and financial time series (D. Kumar, Rai, & 

Kumar, 2010). For instance, Kusuma and Chua (2011) have proposed an effective image 

classification method based on PCA. And the example of classification by this method is shown 

in Figure 4. However, as the best knowledge of the author, unsupervised learning methods 

have not been applied in the research area of sustainable UPM. 

 



11 

 

 

Figure 4 The example of image classification by using the PCA-based method (Kusuma & 

Chua, 2011) 

 

2.2.1. K-means algorithm 

For data classification, k-means is one of the simple unsupervised learning algorithms suitable 

for dealing with small data size (Kotsiantis & Pintelas, 2004). The working principle of this 

method is clustering the data based on the distance among them (Panda, Sahu, Jena, & 
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Chattopadhyay, 2012). And it shows the ability to find the patterns of clustering in multiple 

disciplines. For instance, A real-time system of sensor data for IoT has been built up with an 

illustration of geographical partitioning by Hromic et al. (2015). And Murray, Agard, and 

Barajas (2015) presented a system based on k-means to forecast the supply chain demand by 

classifying the customers according to their demand behaviors. What’s more, Alsayat and El-

Sayed (2016) have established a framework to study human social behavior by utilizing k-

means to analyze the large-scale social media data in real-time. Besides, a recommendation 

approach utilizing k-means and genetic algorithms has been proposed to online customers’ 

needs and utilize the Internet as a promotion platform more effectively (K.-j. Kim & Ahn, 

2008). Also, G. Liu, Yang, Hao, and Zhang (2018) have proposed an energy efficiency 

assessment method of industry sectors in China according to k-means and the process was 

shown in Figure 5. In this study, the k-means method is the first time to be utilized to classify 

the sustainable manufacturing parameters based on the SNA metrics results similarity. It can 

privdes a overall concept of the centrality distribution. 
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Figure 5 The approach of energy efficiency assessment model by G. Liu et al. (2018) 

 

2.2.2. Principal components analysis 

Principal component analysis (PCA) is a multivariate method that evaluates a data set in which 

the original data are represented by a few new orthogonal variables (Abdi & Williams, 2010). 

The target of it is to remain the most important dimensions from the raw data by representing 

it as a collection of few orthogonal variables and to discover the pattern of similarity of the 

original data (Tipping & Bishop, 1999). The calculation speed is faster compared with other 

dimension reduction technology like Linear Discriminant Analysis (LDA), which make it 

become a widely used method to reduce data size and saving storage resources without losing 

too much useful information by reducing high similarity dimensions. And it is also the main 
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method to assistant data visulation because only 2 or 3 dimensional data can be ploted in a 

figure. 

PCA has been applied in various disciplines to reduce dimensions, remove noises, and develop 

a new index. For example, A. Kumar and Goyal (2013) have developed an air quality index to 

predict the pollutant dispersion in urban areas based on Artificial neural networks (ANN) and 

PCA. And PCA has also been used to investigate the barriers to the development status of 

SMEs in South Africa by Olawale and Garwe (2010). Moreover, an alternative decision model 

to exam the relative performance of suppliers has been developed based on PCA (Petroni & 

Braglia, 2000). It can help retailers exam supplier performance to select the suppliers which 

meet their requirements in terms of multiple performance criteria. Besides, shen How and Lam 

(2018) have built up an optimization approach by combining PCA with the analytic hierarchy 

process (AHP) to conduct sustainability evaluation of the biomass supply chain (the workflow 

is in Figure 6). In this study, PCA can help to reduce the dimensions of centrality metrics result 

to make the distributions of factors can be visulatized in 2-D figures. 
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Figure 6 The sustainability assessment model based on PCA and AHP (shen How & 

Lam, 2018) 

 

In the research area of sustainable manufacturing, PCA also shows its potential to assess the 

sustainability level (Jiang et al., 2018). A three-dimension sustainability assessment method 

has been proposed to measure the companies’ performance (Jiang et al., 2018). And PCA has 

also enabled a new life cycle assessment method for ensuring sustainable manufacture (Vinodh, 
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Ruben, & Asokan, 2016). T. Li, Zhang, Yuan, Liu, and Fan (2012) used PCA to conduct 

industry and academic surveys to obtain firsthand information on sustainability indicators. And 

a co-efficiency indicator in New Zealand was proposed based on PCA (Jollands, Lermit, & 

Patterson, 2004). 

 

2.3. Sustainable manufacturing 

Manufacturing refers to all the activities in the whole process from the raw material collection 

to the transformation process of the final product until sold to the customer, so it includes all 

the various types of services and products relative to the value chain (Garetti & Taisch, 2012). 

The importance of manufacturing to human society has been high in many regions. For 

example, the European Commission has reported that the manufacturing sector accounts for 

around 23% of the GDP in the EU, and 71% of jobs opportunity (Manufuture, 2004). Therefore, 

there is no doubt the manufacturing sector performs a key role in the three dimensions of 

sustainability (shown in Figure 7). And sustainable manufacturing becomes an increasingly 

important research area with the remarkable attention of both researchers and corporate. 

As defined by Alting and Jøgensen (1993), sustainable manufacturing includes the 

management of the entire life cycle including designing, production, delivery to the disposal 

phase. It includes resource consumption and pollution reduction. Another dimension of 

sustainability is the social aspect. Gutowski (2007) reported four contributors including 

population, GDP per energy consumption, energy per capita, and the carbon intensity of energy 

to explain the causes of CO2 emissions.  

The revolution towards sustainable manufacturing should consider different related aspects in 

terms of economics, society, and people, in which this concept can form one of the essential 

sustainability frameworks: triple bottom line (TBL). TBL comprises three components which 

are social equity, economy, and environment. TBL has been widely regarded as a framework 
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for evaluating the sustainability level (Richardson & Henriques, 2013). These three dimensions 

need to be considered in the evaluation of sustainable manufacturing (S. Lee, Geum, Lee, & 

Park, 2012). Based on the concept of TBL, sustainable manufacturing parameters in this study 

are grouped into three communities: economic community, environmental community, and 

social community. 

 

 

Figure 7 The three pillars of sustainability (Garetti & Taisch, 2012) 

 

As the population grows, the demand for high-tech goods raises fast, and manufacturing 

productivity needs to be improved to fulfill the requirement (Westkämper, Alting, & Arndt, 

2001). For factories, an increasing demand is a good signal of business expansion. However, 

the growth in demand could lead to more natural resource consumption. And the optimization 

of machining operations has been studied to minimized energy consumption (Rajemi, 

Mativenga, & Aramcharoen, 2010). Moreover, Rashid, Asif, Krajnik, and Nicolescu (2013) 
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have proposed a new model of Resource Conservative Manufacturing (ResCoM) by studying 

the closed-loop systems of manufacturing companies. The updated concept of the 

manufacturing system with material flows is shown in Figure 8.  

 

 

Figure 8 Modified manufacturing system with material flows (Rashid et al., 2013) 

 

Some contributing factors of sustainable manufacturing have been studied by some researchers 

(Rosen & Kishawy, 2012), and a total of seven contributors has been identified in their study 

(as shown in Figure 9).  However, the impacts of these factors on each other have not been 

investigated further in this study, which many leads to the difficulty to achieve the target of 

sustainable manufacturing. And the multiple dimensions system method has been developed 

to measure the sustainability level of the production process by C. Yuan, Zhai, and Dornfeld 

(2012). Based on this approach, a case study about semiconductor manufacturing has been 

conducted to illustrate how to improve its sustainability performance by using this system. 
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However, it does not include the upstream and downstream environmental impact assessment 

for the waste emission.  

 

 

Figure 9 Key contributing factors to sustainable manufacturing (Rosen & Kishawy, 2012) 

 

Recently, data-driven optimization methods have also been applied to improve the 

sustainability level in the manufacturing sector. For example, a manufacturing equipment 

service model was proposed to optimize the manufacturing schedule dynamically which is 

shown in Figure 10. This system can be driven by real-time energy consumption and 
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production data to sustainable scheduling optimization (Xu, Shao, Yao, Zhou, & Pham, 2016). 

But as mentioned by the authors, this scheduling system only considers limited parameters of 

sustainable manufacturing. Moreover, a decision-making model based on the dynamic 

programming method has been proposed to achieve industrial energy optimization. However, 

the relationships among the parameters were not evaluated in that study. 
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Figure 10 The manufacturing equipment service model 

 

With the development of data mining technology, machine learning algorithms show their 

potential in the research area of sustainable manufacturing to do prediction and classification. 

To do the quality prediction of the rolling mill, supervised learning, as well as the unsupervised 

learning methods, have been utilized to identify the operational patterns by Lieber, Stolpe, 

Konrad, Deuse, and Morik (2013). And machine learning also enables cost savings, time 

savings, increased quality in manufacturing by predicting and managing human behavior (du 

Preez & Oosthuizen, 2019). Besides, a text mining approach was utilized to analyze the current 

research about sustainable manufacturing (Bhanot, Rao, & Deshmukh, 2016). Based on it, the 

critical issues for implementing sustainable manufacturing could be identified. 

 

2.4. Ultra-precision machining  

For the UPM process, surface topology is produced from the transformation between the UPM 

tool to the surface of raw material, and it consists of complex interactive relationships of 

workpiece deformations, which can be mainly denominated by the combining impact from 

UPM parameters. This complex impact of the parameters influences each other and is hard to 

be analyzed according to one single parameter. Thus, the interactive relationships among each 

parameter need to be identified, to evaluate the surface quality in terms of the machining 

process with the characteristics of the movement of machine tools. 

Recently, a lot of studies have been done which focus on the evaluation of the impact of the 

UPM factors on surface accuracy. And the common UPM parameters consists of cutting 

condition, tool wear (Wada et al., 1980) tool geometry (C. F. Cheung & W. B. Lee, 2000), 

material properties (H. Wang, To, Chan, Cheung, & Lee, 2010b), machining system vibration 

(Takasu, Masuda, Nishiguchi, & Kobayashi, 1985), and tooltip vibration (H. Wang, To, Chan, 
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Cheung, & Lee, 2010a). Tool geometry could remarkably influence chip formation, tool wear, 

surface roughness, and heat generation, etc. as shown in Figure 11, its impacts have been a 

key focus for studying cutting operation (Dogra, Sharma, & Dureja, 2011). Tool geometry 

includes radius of tool nose as well as tool profile, and commonly surface roughness can be 

reduced while the radius of tool nose raises. Nonetheless, the impact of other parameters 

associated with the parameter of tool geometry, which may lead to fast decisions of this 

parameter setting becomes extremely hard. What’s more, material characteristics is another 

parameter with complex influencing relationships in UPM. It has remarkable impacts on 

surface generations in machining process as each type of material has the unique property 

influencing mchining, and it can also cause reversed effects under some working conditions to 

upstream UPM parameters. And tooltip vibration is one kind of vibration which can influence 

surface forming process. Its working mechanism is complicated and has been evaluated by 

researchers in a long period. And these material parameters do not individually transfer their 

impact on surface generation process. For UPM, their impacts are combined with each other 

as the perivous work reported, thus, a model with network structure with all relationships 

among parameters need to be constructed to provide a clear and effective strategy to conduct 

the machining. 
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Figure 11 The effect of tool geometry on performance parameters in turning (Dogra et 

al., 2011) 

 

The complexity of achieving optimal conditions of UPM may raise with the number of 

machining factors that involve the selection of tolerance allocation in machining processes (X. 

Zhang, Wang, Chen, & Huang, 2018). And a model-based simulation approach for the surface 

forming process has been developed by (SJ Zhang, To, Zhu, & Zhang, 2016). And The process 

of the simulation system is shown in Figure 12. 
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Figure 12 The process of the model-based simulation system (SJ Zhang et al., 2016) 

 

Besides that, because of high machining costs and unstable machining environments during 

UPM, a lot of optimization methods are rarely utilized to detect the optimal processing 

condition during UPM. Conversely, conceptual modeling and simulation are frequently applied 

to study the optimal UPM parameters and conditions during the machining process. C. Cheung 

and W. Lee (2000) developed a computational simulation method that can consider the 

machining parameters to obtain the required surface generation during the ultra-precision 

turning. As presented in Figure 13, an influencing road map from the effect of material on 

surface roughness has been proposed after studied the causes of surface roughness (SJ Zhang, 

To, Wang, & Zhu, 2015). It illustrated an influencing path involves a lot of different UPM 

parameters such as cutting force and material removal rate. And Cheng, Cheung, Lee, To, and 

Kong (2008) developed a conceptual model for the evaluation of nano-level surface forming 



25 

 

in milling. and the method can forecast the surface roughness of the final product and achieve 

the optimal condition when considering different UPM strategies. The simulation method has 

been utilized to study UPM commonly as the high machining costs caused in real-world 

experiments. But the simulation methods have been conducted with quite a lot of assumptions 

that are only available for the specific case, so they need to be updated if some small changes 

in the UPM process happen, and it can affect the forecasting result of the methods. Moreover, 

some numerical methods were also been applied to reduce or simplify of a few assumptions. 

Though the methods can be utilized to evaluate more significant parameters including the stress 

of material flow, the forecasting process still can underestimate the impacts of several certain 

machining parameters. Therefore, an influencing network consists of main UPM parameters 

need to be developed to offer an entire picture of relationship map showing the dependency, 

and it can provide the guidelines on how to set those parameters with consideration of the 

dependencies before starting the machining, and reducing the processing costs and computing 

time in the real-world system. 

 

 

Figure 13 The roadmap of the impact of material on surface roughness (SJ Zhang et al., 

2015) 
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Currently, the UPM optimization methods are normally including an orthogonal experiment 

and gray relational analysis combined with the Taguchi method. It is helpful to be adopted in 

situations involving various inputs, uncertainty, and discrete data in experimental design (Yu, 

Zhang, Yu, Yang, & Sun, 2019). Nonetheless, there is a specific drawback of this method, in 

which the calculation method rarely relies on the input. For UPM, some machining parameters 

are commonly presented in descriptive ways. Two examples are tool wear and chip formation, 

which are normally shown in descriptive forms to analyze the machining principles. Thus, these 

parameters can not be evaluated by applying the statistical method including the gray relational 

analysis. And the Taguchi method utilizes statistical models considering the evaluation of 

variance, while the parameters in the experiments can be recognized as the essential parameters 

leading to declines in machining performance. The main focus of the Taguchi method is the 

significance of the parameters in the overall designing flow. Thus, the parameters need to be 

identified before utilizing the Taguchi method. And then, a set of experiments with different 

values of parameters to show the influences on the performance are conducted. Thus, 

researchers need to find out the necessary parameters of the machining which may influence 

the expected experimental result. It indicates that the researchers are required to know the 

selection of the involved parameters in advance. Because of that, the model with a network 

structure using SNA can perform as an instruction for researchers to prepare themselves with 

the machining factors before a large number of experiments are made. Traditional optimization 

methods utilized in UPM have their advantages, and this project can offer new insight into 

applying the SNA method to equip the optimization approach.  

 

2.4.1. Data-driven optimization method for UPM 

According to the study of Kucukoglu, Atici-Ulusu, Gunduz, and Tokcalar (2018), a deep neural 

network (DNN), which is developed according to the working principle of neuron cells has 
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also been applied to optimize the UPM parameters (as shown in Figure 14). It achieves great 

success in many targets including classification, prediction, and a certain range of accuracy 

(Kucukoglu et al., 2018). However, it also has some limitations, such as long training time and 

power consumption. To solve these issues, a dendritic neuron algorithm has been developed 

with the consideration of the nonlinearity of synapses, which provides an efficient method for 

concrete problems. And, the methods in the dendritic neuron model consist of particle swarm 

optimization, evolutionary strategy, genetic algorithm (Gao et al., 2018). The outputs achieved 

from the dendritic neuron algorithm are described to be accurate. Authors adopt a big bang-big 

crunch optimization method coupled with particle swarm optimization to reduce the negative 

impact of the problem of the large raw data size, where the hybrid optimization method can 

transform the overall approach into a feed-forward training process (J. Wang & Kumbasar, 

2019). Additionally, network-based analysis is commonly utilized in projects to study 

machining systems. For instance, a networked method was proposed to evaluate advanced 

manufacturing systems based on a literature review (Y. Li, Tao, Cheng, Zhang, & Nee, 2017). 

Some scientific papers were used to find out the current research gaps and utilized them to 

construct a complex network of machining parameters to shows the potential research chances 

in this area in further study. What’s more, Chankov, Hütt, and Bendul (2018) studied the 

synchronous stability of the network in a machining system according to the feature of the 

network. It was the first time the synchronization-oriented design of the machining process 

concerning the structure characteristics was adopted. Besides, it was presented the reliability 

assessment of machining processes with various production lines according to the machining 

network (Y.-K. Lin & Chang, 2013). They utilized the graphical approach to transform the 

production system into a complex network to discover the general machining paths in this 

process. It shows that academic attention on network-based method is increased remarkably. 
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Figure 14 The ANN structure for the digital assembly glove (Kucukoglu et al., 2018) 

 

2.5. Summary of literature review 

From the current literature, it shows the applications of SNA and unsupervised learning 

methods in the sustainable UPM area remain insufficient. It still lacks studies of sustainable 

machining and ultra-precision machining by using the SNA approach in current research work. 

The interactive relationships among the sustainable manufacturing factors are still a research 

gap to be fulfilled. In this work, the SNA-unsupervised learning model was proposed for the 

first time to improve the research area of sustainable UPM. 
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Chapter 3 Methodology 

 

As shown in Figure 15, the overall methodology in this project consists of four levels: node-

level analysis, edge level analysis, network-level analysis, and classification unsupervised 

learning. The first three levels belong to the method of social network analysis (SNA) and the 

third level is unsupervised learning. This section has two main parts: the social network 

centrality metrics were presented in section 3.1, and the deep learning method was introduced 

in section 3.2. 

 

 

Figure 15 The structure of the three-level SNA-ML model 

 

3.1. Social network analysis centrality metrics 

The centrality metrics drawn from graph theory seek to represent and analyze the patterns of 

nodes and relationships in networks (Pavlopoulos et al., 2011). As mentioned by Clemente, 

Martins, Wong, Kalamaras, and Mendes (2015), centrality metrics are measurements of 

Classification

Network level 
analysis

Edge level analysis

Node level analysis
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importance and power. And there are four most common metrics in SNA were chosen: degree, 

betweenness, closeness, and eigenvector. The definition and description of these centrality 

metrics are summarized in Table 1. The centrality metrics were ulized as the node-level 

analysis because they can evalute the roles and importance of each parameters. 

 

Table 1 the definition and description of centrality metrics 

Centrality 

metrics 

Definition Description Comparison 

between directional and 

non-directional networks 

In-degree 

centrality 

The number of incoming 

edges pointing to one node 

divided by the possible 

maximum number of edges. 

Measure the degree of 

nodes influencing a given node 

(Y. Kim, Choi, Yan, & Dooley, 

2011). 

Non-directional 

networks only have the 

degree centrality as the 

number of incoming edges 

is equal to the outgoing 

edges. 

Out-degree 

centrality 

The number of outgoing 

edges starting from one node 

divided by the possible 

maximum number of edges 

(Zhou et al., 2020). 

Measure the degree of 

nodes influenced by a given 

node (Y. Kim et al., 2011). 

Non-directional 

networks only have degree 

centrality as the number of 

incoming edges is equal to 

the outgoing edges. 

Betweenness 

centrality 

The number of shortest 

paths between a pair of non-

adjacent nodes where a node lies 

(Y. Kim et al., 2011). 

Measure the ability to 

“control” the shortest path in a 

network. 

In a non-directional 

network, betweenness 

centrality is normalized by 

2(𝑔 − 1)(𝑔 − 2); while it 

is normalized by (𝑔 −

1)(𝑔 − 2) in a directional 

network. And 𝑔 is the 

total number of nodes. 

Closeness 

centrality 

Reciprocal of the distance 

between a given node to all other 

nodes (Y. Kim et al., 2011). 

An index of “center” in a 

network according to the 

distance. 

In a directional network, 

the shortest path’s 

distance from 𝑛𝑖 to 𝑛𝑗  

may not equal to that from  

𝑛𝑗  to 𝑛𝑖, there may be 

more than one shortest 

path between 𝑛𝑖 and 𝑛𝑗 . 

Eigenvector 

centrality 

Centrality based on the 

level of connectedness of a 

node’s connections, taking the 

Measure the connectivity 

of a node according to its 

neighbors’ connectivity. 

It has the same 

concept in both directional 

and non-directional 

networks 
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whole network structure into 

account. 

Centrality 

Index 

A weighted average of the 

above metrics by scaling all other 

metrics’ results. 

A scaler of other centrality 

metrics. 

It has the same 

concept in both directional 

and non-directional 

networks 

 

 

3.1.1. Degree distribution 

Degree centrality is a measure of immediate relationships only (Lusher, Koskinen, & Robins, 

2013). In a non-directional network, the degree of a node is the number of edges accident to it. 

As for the directional networks, the in-degree of a node is the number of edges pointing to the 

node while the out-degree is the number of outgoing edges starting from the node. In a 

directional network, the in-degree centrality 𝐶𝐼(𝑛𝑖) and out-degree centrality 𝐶𝑂(𝑛𝑖) of  𝑛𝑖 are 

calculated by the number of direct edges of 𝑛𝑖. These metrics are defined as below (Shaw, 

1954): 

𝐶𝐼(𝑛𝑖) =
∑ 𝑥𝑗𝑖𝑗

𝑔−1
  (1) 

𝐶𝑂(𝑛𝑖) =
∑ 𝑥𝑖𝑗𝑗

𝑔−1
   (2) 

where 𝑥𝑖𝑗 is the number of edge from 𝑛𝑖 and 𝑛𝑗 while 
jix  is the number of edge from 𝑛𝑗 to 𝑛𝑖, 

which can only be 0 or 1. And 𝑔 is the total number of nodes. Therefore, the possible maximum 

number of edges of 𝑛𝑖 is 𝑔 − 1. In non-directional network, the number of links started from 𝑛𝑖  

to 𝑛𝑗  is equal to the number of links from 𝑛𝑗  to 𝑛𝑖. Therefore, the degree centrality in a non-

directional network is defined as below:  

𝐶𝑑(𝑛𝑖) =
∑ 𝑥𝑗𝑖𝑗

𝑔−1
=

∑ 𝑥𝑖𝑗𝑗

𝑔−1
  (3) 
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It is the most basic measurement of the centrality based on the direct relationships with other 

nodes comparing with other centrality metrics. However, it cannot consider the indirect 

relationships among nodes. 

 

3.1.2. Betweenness centrality 

Betweenness is a metric according to the chance that a vertex distributes on the shortest path 

(which is called geodesic) between other nodes in the network (Newman, 2005). Normally, 

this metric is calculated according to the fraction of geodesic between two vertices that pass 

through the target vertex. Thus, it can indicate the ability to control the communications within 

the network. The betweenness centrality of  𝑛𝑖w as expressed as (Freeman, 1977): 

 

𝐶𝐵(𝑛𝑖) = ∑
𝑔𝑗𝑘(𝑛𝑖)

𝑔𝑗𝑘
𝑗<𝑘   (4) 

 

where 𝑔𝑗𝑘 is the total number of shortest paths between 𝑛𝑗  and 𝑛𝑘. And 𝑔𝑗𝑘(𝑛𝑖) is the number 

of these shortest paths through 𝑛𝑖. In a directional network, it is normalized into the range from 

0 to 1 by: 

 

𝐶𝐵′(𝑛𝑖) =
𝐶𝐵(𝑛𝑖)

(𝑔−1)(𝑔−2)
   (5) 

However, in a non-directional network, betweenness centrality is normalized by 2(𝑔 − 1)(𝑔 −

2): 

𝐶𝐵′(𝑛𝑖) =
𝐶𝐵(𝑛𝑖)

2(𝑔−1)(𝑔−2)
 (6) 

Betweenness value can measure the capability of “gatekeeping” of specific factors for the other 

factors (Yip, To, & Zhou, 2020). The factors with high betweenness scores perform as hubs 

and transport the impacts through the SNA network. If the parameters with high betweenness 
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scores are removed, the paths of impacts are stoped and not able to come to downstream UPM 

parameters smoothly. This metric measures the centrality from the view of the impacts on the 

connectivity of the whole network, which does not focus on the direct relationships with the 

neighbors of the node compared with degree distribution. 

 

3.1.3. Closeness centrality 

Closeness measures how close a node is to all other nodes in a network (Zhao, Lui, Towsley, 

& Guan, 2014). In a directional network, the shortest path’s distance from 𝑛𝑖 to 𝑛𝑗  may not 

equal to that from  𝑛𝑗  to 𝑛𝑖, there may be more than one shortest path between 𝑛𝑖 and 𝑛𝑗 . Thus, 

the determination of the geodesic between a pair of factors is necessary as several paths from 

𝑛𝑗  to 𝑛𝑖. The closeness can be calculated as : 

   

𝐶𝐶(𝑛𝑖) = [∑ 𝑑(𝑛𝑖, 𝑛𝑗)
𝑔
𝑗=1 ]−1  (7) 

 

where 𝑖 ≠ 𝑗, and 𝑔 is the number of vertices in the network. Therefore, ∑ 𝑑(𝑛𝑖, 𝑛𝑗)
𝑔
𝑗=1  is the 

total distance from 𝑛𝑖 to all other nodes. The closeness centrality measures the centrality from 

the view of the total distance of the “information flow” from one node to all other nodes, which 

is not being considered in other metrics. 

In this study, closeness shows the ability of parameters to influence the overall performances 

in the view of a whole system. It indicates that the machining parameters with high closeness 

value could lead to important impacts on the system performance. And the nodes with a shorter 

overall path to other nodes can be regarded as the main concern to achieve the target of 

performance. This accessibility could increase the capability to obtain specific aims, for 
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instance, achieving high machining quality and removal rates, make it possible to achieve fewer 

machining costs. 

 

3.1.4. Eigenvector centrality 

Eigenvector centrality is a metric of centrality considering the connectivity of the node's 

neighbors (Ruhnau, 2000). The eigenvector centrality of 𝑛𝑖 was expressed as below: 

 

𝐶𝐸(𝑛𝑖) =
1

𝜆
∑ 𝑛𝑗𝑛𝑗∈𝑀(𝑛𝑖)   (8) 

 

where 𝑀(𝑛𝑖) is the collection of the neighbors of 𝑛𝑖 , while 𝜆 is the largest eigenvalue of the 

adjacency matrix. The main idea behind eigenvector centrality is that the importance of a node 

is larger if this node is linked to more important vertices (Perra & Fortunato, 2008). That 

indicates the parameters with high eigenvector score performs as the “bridge” of other nodes 

in the sustainable UPM network. Compared with other metrics, eigenvector centrality can take 

into account the connectivity of the node's neighbors. 

 

3.1.5. Centrality index 

To provide an overall measurement, all the centrality metrics result can be normalized into the 

range 0 to 1 firstly by the below equation: 

𝑐𝑖𝑗 =
𝑐𝑖𝑗

(0)
−𝑐𝑗,𝑚𝑖𝑛

(0)

𝑐
𝑗,𝑚𝑎𝑥
(0)

−𝑐
𝑗,𝑚𝑖𝑛
(0)   (9) 

where 𝑐𝑖𝑗
(0)

 and 𝑐𝑖𝑗 and are the sequences before and after the data normalization; 𝑖 = 1,2, … , 𝑚 

and 𝑗 = 1,2, … , 𝑛, where 𝑚 and 𝑛 stands for the number of parameters and the number of 

metrics; thus, 𝑐𝑗,𝑚𝑖𝑛
(0)

 and 𝑐𝑗,𝑚𝑎𝑥
(0)

 represent the minimum and maximum of the results of metric 
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𝑗. Then, the normalized metrics results can be summed up to get the overall measurement called 

“centrality index”. 

 

3.2. Social network analysis linkage prediction metrics 

To find some hidden linkages among different parameters, several technologies were 

introduced in this section, including common neighbors, Jaccard coefficient, resource 

allocation, Adamic-Adar Index, Pref. attachment, community common neighbor, community 

resource allocation. With the comparison of centrality metrics, edge-level analysis analyze the 

network from the view of the relationships among the sustainable manufacturing and UPM 

factors. It can help to detect the non-adjacent factor pairs that have a high potential to be linked 

in the future. 

 

3.2.1. Common neighbors 

The common neighbor is a metric to predict the linkage between two nodes according to the 

number of their common adjacent nodes (F. Tan, Xia, & Zhu, 2014). the common neighbor 

between in  and 
jn  is calculated by: 

𝑐𝑛(𝑛𝑖 , 𝑛𝑗) = |𝑁(𝑛𝑖) ∩ 𝑁(𝑛𝑗)|  (10) 

 

where 𝑁(𝑛𝑖) and 𝑁(𝑛𝑗) are the collections of the neighbors of 𝑛𝑖 and 𝑛𝑗 . It is the most basic 

measure of the chance that two nodes be linked in the future. It is developed from the fact that 

people who have more common friends have a higher probability to know each other. 

In the study of sustainable machining, it can be utilized to measure the probability that two 

parameters have a hidden relationship. If a pair of nodes have a high common neighbors score, 

it may be valuable to be explored. 
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3.2.2. Jaccard coefficient 

Jaccard coefficient is a measurement developed based on the common neighbors (Barbour, 

Graves, Plafkin, Wisseman, & Bradley, 1992). The Jaccard coefficient is expressed as: 

 

𝑗𝑐(𝑛𝑖 , 𝑛𝑗) =
|𝑁(𝑛𝑖)∩𝑁(𝑛𝑗)|

|𝑁(𝑛𝑖)∪𝑁(𝑛𝑗)|
   (11) 

  

where |𝑁(𝑛𝑖) ∪ 𝑁(𝑛𝑗)| is the total number of neighbors of 𝑛𝑖 and 𝑛𝑗 . It measures the chance 

based on comparing the percentage of common neighbors in the total number of their 

neighbors. If common neighbors count low percentages of neighbors, these two nodes may 

have less chance to be linked through the number of common neighbors is large. 

 

3.2.3. Resource allocation 

Resource allocation is a metric based on the share of one unit of “resource” that a node can 

send to another node through a middle node. It was proposed based on the resource flow. The 

resource allocation is formulated as (De et al., 2011): 

 

𝑗𝑐(𝑛𝑖 , 𝑛𝑗) = ∑
1

|𝑁(𝑛𝑘)|𝑛𝑘∈𝑁(𝑛𝑖)∩𝑁(𝑛𝑗)    (12) 

 

where 𝑁(𝑛𝑘) is the collection of the neighbors of 𝑛𝑘. As shown in Figure 16, if node 𝑘 has 𝑛 

neighbors, when 𝑛𝑖  sends 1 “resource” to 𝑛𝑗  through 𝑛𝑘 , then 𝑛𝑘  distributes the resource 

equally to every neighbor of it. Therefore, the 𝑛𝑗  can only receive 1/𝑛 unit from 𝑛𝑖 through 

node 𝑘. In this study, this metric can measure the hidden relationship between two parameters 

based on the share of flow capacity in the whole network. 
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Figure 16 Resource allocation model 

 

3.2.4. Adamic-Adar Index 

The Adamic-Adar index is similar to resource allocation, but it has a log function in its 

denominator (Bliss, Frank, Danforth, & Dodds, 2014). The formula of Adamic- Adar index is 

expressed: 

 

𝑎𝑎𝑖(𝑛𝑖 , 𝑛𝑗) = ∑
1

log (|𝑁(𝑛𝑘)|)𝑛𝑘∈𝑁(𝑛𝑖)∩𝑁(𝑛𝑗)    (13) 

 

According to the experiment, this index can give a better performance between the actual mail 

network and predicted linkages. Therefore, It was used to be one metric to predict the 

relationships among parameters in this study. 
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3.2.5. Preferential Attachment 

According to some studies (Alamsyah, 2014), the nodes with a high degree get more neighbors. 

Therefore, the preferential attachment can be calculated as: 

 

𝑝𝑎(𝑛𝑖 , 𝑛𝑗) = |𝑁(𝑛𝑖)||𝑁(𝑛𝑗)|  (14) 

 

where |𝑁(𝑛𝑖)| and |𝑁(𝑛𝑗)|  are the number of neighbors of 𝑛𝑖 and 𝑛𝑗 . It is proposed based on 

that the two people with a large number of friends have a higher chance to be introduced.  

 

3.2.6. Community common neighbors 

Some measures consider the community structure of the link prediction. Assume two nodes in 

the network belong to different communities (sets of nodes). Pairs of nodes who belong to the 

same community and have many common neighbors in their community are likely to form an 

edge. The community common neighbor defined by Soundarajan and Hopcroft (2012): 

 

𝑐𝑐𝑛(𝑛𝑖 , 𝑛𝑗) = |𝑁(𝑛𝑖) ∩ 𝑁(𝑛𝑗)| + ∑ 𝑓(𝑛𝑘)𝑛𝑘∈𝑁(𝑛𝑖)∩𝑁(𝑛𝑗)   (15) 

 

where 𝑓(𝑛𝑘) = {
1, 𝑛𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑎𝑠 𝑛𝑖 𝑎𝑛𝑑 𝑛𝑗  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, which could give a bonus for 

a common neighbor in the same community. As the example shown in Figure 17, node A, B, 

C, D form community 1 and the nodes E, F, G, H, I form community 2. The community 

common neighbor value between node A and node C is 2+2=4 as both community common 

neighbors and A, C belongs to community 1. And community common neighbor value between 

node E and node I is equal to 1+1=2. 
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Figure 17 The community common neighbor example 

 

3.2.7. Community Resource Allocation 

The community resource allocation is developed based on resource allocation, but it only 

considers the nodes in the same community (Afolabi, Dadlani, & Kim, 2012). And it  is 

calculated as: 

 

𝑐𝑐𝑛(𝑛𝑖 , 𝑛𝑗) = ∑
𝑓(𝑛𝑘)

|𝑁(𝑛𝑘)|𝑛𝑘∈𝑁(𝑛𝑖)∩𝑁(𝑛𝑗)    (16) 
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For the example shown in Figure 16, the community resource allocation between node A and 

node C is calculated as below: 

 

1 1 2
( , )

3 3 3
cra A C = + =  

 

Node A and C have two common neighbors in the same community, which are nodes B and D. 

And nodes B and D have three neighbors. Therefore, community resource allocation is 

1 1 2

3 3 3
+ = . 

 

3.3. Network-level analysis metrics 

The network-level analysis metrics are presented in this section, which includes centralization 

and density of a network. The definition and description of the network-level analysis metrics 

were summarized in sections. Compared with node-level analysis and edge-level analysis, the 

network-level analysis metrics focus on the overall structure of the whole network. Thus, the 

SNA approach including three types of metrics can evaluate the sustainable manufacturing and 

UPM parameters from the individual factor aspect, relationship aspect as well as integral 

structure aspect. In this way, this model can provide a comprehensive analysis of the problems 

of sustainable UPM involving multiple parameters and complicated inter-relationships. 

 

3.3.1. Centralization in SNA method 

Centralization 𝐶𝐷 is calculated according to the maximum 𝐶𝐷(𝑛∗) and its formula is shown 

below: 

 

𝐶𝐷 =
∑ [𝐶𝐷(𝑛∗)−𝐶𝐷(𝑛𝑖)]

𝑔
𝑖=1

𝑚𝑎𝑥 ∑ [𝐶𝐷(𝑛∗−𝐶𝐷(𝑛𝑖)]
𝑔
𝑖=1

  (17) 
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where the total number of nodes is g, and the denominator is (𝑔 − 1)(𝑔 − 2). The value of 𝐶𝐷 

is 1 if the parameters are connected to all other factors, thus, other factors can only reach other 

nodes through a specific one. The value of 𝐶𝐷 will be 0 if the degrees of all vertices in this 

network are equal. In this study, centralization indicates the ability that can be exercised by the 

core parameters over other parameters. 

 

3.3.2. Density in SNA method 

The density is measured by the number of nodes and the degree of interdependency among 

other nodes in a network. In this study, a raised number of parameters means that more 

parameters are required to deal with in the manufacturing, so the optimization is hard to conduct 

effectively due to the interactive relationships caused by other parameters. Besides, more 

linkages in a network reflect a higher chance of barriers in evaluating the parameters, leading 

to more challenging in cooperation among every parameter. For instance, for a parameter with 

more than one upstream node, the parameter makes large impacts on aligning with the upstream 

machining parameters compared to the parameters with only one upstream parameter in the 

network. 

 

3.4. Unsupervised learning method 

Unsupervised learning refers to a kind of machine learning algorithm, including k-means and 

Principle components analysis (PCA), to classify unlabeled data. In this study, k-means can be 

used for classifying the machining parameters according to the similarity of the centrality 

metrics and PCA can reduce the dimension to plot the classification result. In this study, the 

metrics result of the node-level analysis is a small dataset that can help to classify the 

sustainable UPM factors to provide an overall view of the centrality distribution. According to 
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the research of Soni and Patel (2017), the K-means algorithm can perform efficiently in a small 

dataset for classification problems compared with other machine learning algorithms like 

Support Vector Machine (SVM). Therefore, it is selected in this study to classify the 

sustainable manufacturing and UPM parameters. After getting the clustering results, the 

dimensions of metrics results should be reduced to 2 or 3 dimensions to visualize the clusters. 

As mentioned by Onat, Kucukvar, and Afshar (2019), PCA has been used commonly as a 

dimension reduction technique in literature. In this study, the metrics result of sustainable 

manufacturing and UPM parameters have more than 3 dimensions. Therefore, PCA was 

suitable to reduce metrics results to 2 or 3 dimensions before plotting the classification results.  

 

3.4.1. K-means algorithm 

And similarly, it can also be utilized to clustering the relationships among the parameters. As 

the data size is small, k-means is the most suitable method to do the classification. The process 

of this algorithm is shown in Figure 18. 
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Figure 18 The main process of the k-means algorithm 

 

However, before utilizing this method, the value of k, which stands for the number of clusters 

should be determined first. In order to do so, two measurements can be used based on the main 

purposed of classification, including the sum of square error (SSE) and the silhouette 

coefficient. Normally, a “good” classification means the internal distances among the points in 

the same clusters should be minimized and the external distances between different clusters 

should be maximized. Therefore, SSE and the silhouette coefficient are the indicators of the 

internal and external distances. To find the suitable value of k, different values of k can be tried 

and run k-means algorithm once for each k, for example, 2 to 9. By observing the decreasing 

rate of SSE, it can be found that starting from a certain value of k, the rate becomes very small. 

If the silhouette coefficient for this k is also close to the maximum value, this k can be chosen 

as the number of clusters. From the classification according to the centrality metrics results, 

Select k centers
randomly

Calculate the distances 
and do classification 

Update the centers

repeat the process until 
the centers do not change
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the whole distribution of the parameters can be presented. And it can provide a reference for 

topics selection, importance evaluation, and so on. 

 

3.4.2. Principal components analysis 

The PCA algorithm can find the direction with the most variance and adjust the axis by using 

the linear combinations of each dimension (Roweis, 1998). And it consists of 5 main steps as 

shown in Figure 19. And the working principle of PCA was illustrated in Figure 20. It is 

widely to be utilized to reduce the dimension of data without losing too much information 

(Metsalu & Vilo, 2015). 

 

 

Figure 19 The steps of the PCA algorithm 
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Figure 20 An illustration of the working principle of PCA (Park, Egilmez, & Kucukvar, 

2015) 

 

According to the work of Lu, Chang, Hwang, and Chung (2009), The details of the calculation 

are described below: 

 

1. Normalizing raw data. 

To make the data in all dimensions distributed in the same range, the raw data needs to be 

normalized by the below equation: 

 

𝑥𝑖𝑗 =
𝑥𝑖𝑗

(0)
−𝑥𝑗,𝑚𝑖𝑛

(0)

𝑥
𝑗,𝑚𝑎𝑥
(0)

−𝑥
𝑗,𝑚𝑖𝑛
(0)   (18) 

 

where 𝑥𝑖𝑗
(0)

 and 𝑥𝑖𝑗 and are the data in dimension 𝑗 before and after the data normalization; 𝑖 =

1,2, … , 𝑚  and 𝑗 = 1,2, … , 𝑛 , where 𝑚  and 𝑛  is the number of rows and the number of 



46 

 

dimensions; thus, 𝑥𝑗,𝑚𝑖𝑛
(0)

 and 𝑥𝑗,𝑚𝑎𝑥
(0)

 are the minimum and maximum of the data in dimension 

𝑗.  

 

2. Computing the correlation coefficient matrix 

The correlation coefficient matrix is calculated as below: 

 

𝑅𝑗𝑙 = (
𝐶𝑜𝑣(𝑥𝑖𝑗,𝑥𝑖𝑙)

𝜎(𝑥𝑖𝑗)×𝜎(𝑥𝑖𝑙)
)   𝑗, 𝑙 = 1,2, … , 𝑛  (19) 

 

where 𝐶𝑜𝑣(𝑥𝑖𝑗, 𝑥𝑖𝑙) is the covariance of data in dimension 𝑗 and 𝑙; while 𝜎(𝑥𝑖𝑗) and 𝜎(𝑥𝑖𝑙) are 

the SD of data in dimensions 𝑗 and 𝑙. 

 

3. Finding the eigenvalue and eigenvectors: 

The eigenvalues and eigenvectors are computed from the correlation coefficient matrix by the 

following formula: 

 

(𝑅 − 𝜆𝑘𝐼𝑚)𝑉𝑖𝑘 = 0 (20) 

 

where 𝜆𝑘 is the eigenvalue of the correlation coefficient matrix; and 𝑉𝑖𝑘 = [𝑣𝑘1 𝑣𝑘2 … 𝑣𝑘𝑛]𝑇 is 

the eigenvector corresponding to the eigenvalue 𝜆𝑘.  

 

4. Calculating the principal components: 

Firstly, it needs to rank the eigenvalue 𝜆𝑘 in descending orders, the corresponding principal 

component  can be calculated by this equation: 
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𝑌𝑚𝑘 = ∑ 𝑥𝑚𝑖
𝑛
𝑖=1 ∙ 𝑉𝑖𝑘  (21) 

 

where 𝛾𝑚1  is the first principal component because it is corresponding to the largest 

eigenvalue, and 𝛾𝑚𝑘 is called the 𝑘th principal component.  

 

5. Selecting principal components: 

An equation called the explained variation ratio is developed to measure the percentage of one 

principal component accounts for: 

 

𝑟𝑘 =
𝜆𝑘

∑ 𝜆𝑖
𝑛
𝑖=1

, 𝑖 = 1,2, … , 𝑛  (22) 

 

where the 𝑟𝑘 is the explained variation ratio of 𝑘th principal component.  

In this study, the PCA algorithm was used to treat the centrality metrics results to reduce the 

5-dimension data to 2-dimension data. In this way, the classification results by k-means can be 

presented more directly to do further analysis.  
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Chapter 4 Results and discussion 

 

To illustrate the applications of this model, two case studies have been conducted in this 

chapter. In the first case study, some main general sustainable manufacturing parameters have 

been selected based on the TBL. Then, the node-level analysis and edge-level analysis, as well 

as the unsupervised learning method, were utilized to provide an overall concept of the roles 

of sustainable manufacturing parameters. In the second case study, the model was utilized to 

help to solve a more specific problem in the sustainable manufacturing field: how to achieve 

optimal conditions of the UPM process. As the UPM process involves complicated interaction 

among the UPM parameters, this situation causes a lot of barriers to obtain the optimal settings. 

The SNA model in this project provides an effective tool to shows the guideline for researchers 

to study the optimal conditions. These two case studies show the ability of this SNA-

unsupervised learning method to evaluate the roles of parameters in complicated sustainable 

manufacturing scenarios. It offers a powerful tool to represent, analyze, and uncover the 

features of parameters and their relationships in sustainable manufacturing. 

The definition, description, and interpretation in sustainable manufacturing and UPM of the 

centrality metrics, link prediction metrics, and network-level analysis metrics were shown in 

Table 2, Table 3, and Table 4 respectively. 

 

Table 2 Centrality metrics and their interpretations in sustainable parameters analysis 

Centrality 

metrics 

Definition Description Interpretation  

In-degree 

centrality 

It can measure how 

many other factors 

which have 

The factor with a high 

value of in-degree 

centrality indicates it 

Machining factors be 

influenced (Yip et al., 

2020) 
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impacts on a 

specific sustainable 

manufacturing 

factor 

can receive more 

influences from other 

parameters. 

Out-degree 

centrality 

It can measure the 

number of other 

factors that can be 

influenced by one 

specific sustainable 

manufacturing 

factor. 

Sustainable 

manufacturing factor 

with high out-degree 

centrality has more 

ability to distribute its 

influences across other 

machining factors 

Machining factors 

influence others (Yip et 

al., 2020). 

Betweenness 

centrality 

The number of the 

shortest path 

between a pair of 

non-adjacent 

sustainable 

manufacturing 

factors where the 

target factor can 

control (lies in). 

To mediate the 

influences among the 

sustainable machining 

factors, perform as the 

“gateway” to transfer 

the knowledge in other 

disciplines. 

Machining factors lie 

between a pair of non-

adjacent parameters (Yip 

et al., 2020). 

Closeness 

centrality 

The measurement 

according to the 

distance from a 

certain sustainable 

manufacturing 

The ability to reach 

and change the system 

performances by 

modifying the 

sustainable 

parameters could affect 

manufacturing 

performances without 

relying on other 
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factor to all other 

factors 

manufacturing factors 

with high closeness 

parameters (Yip et al., 

2020) 

Eigenvector 

centrality 

Centrality taking 

the whole network 

structure into 

account (Ruhnau, 

2000). 

Measure the 

connectivity of 

sustainable 

manufacturing 

parameters according 

to its neighbors’ 

connectivity. 

The measurement of 

factors’ influences 

according to their 

neighbors’ influences in a 

sustainable UPM network 

 

Table 3 Link prediction metrics in sustainable machining parameters analysis 

Link prediction 

metrics 

Definition Description 

Common neighbor (F. 

Tan et al., 2014) 

A metric to predict the 

likelihood of two non-

adjacent factors to be 

linked based on their 

common neighbors 

The metric from the fact that 

people who have more common 

friends have a higher chance to 

know each other. 

Jaccard coefficient 

(Niwattanakul, 

Singthongchai, 

Naenudorn, & 

Wanapu, 2013) 

A measurement of possible 

linkages by normalizing 

common neighbors. 

It measures the chance of potential 

linkage based on the number of 

common neighbors and their total 

neighbors 
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Resource Allocation 

(Harberger, 1995) 

A metric based on the share 

of a “resource” that a 

sustainable manufacturing 

factor can send to another 

through a middle factor. 

It was developed and inspired by 

the process of resource flow by 

adding the node degree 

information of the common 

neighbors (S. Liu, Ji, Liu, & Bai, 

2017). 

Adamic-Adar index 

(Lü, Jin, & Zhou, 

2009) 

Based on the resource 

allocation, but using a log 

denominator. 

It is found to get better prediction 

performance in the MIT email 

network (Adamic & Adar, 2003). 

Preferential 

attachment (Newman, 

2001) 

A metric based on the 

importance of the factors’ 

neighbor.  

It is proposed based on the fact that 

the two famous people have a 

higher probability to be connected. 

And this metric requires less 

information than all the others, but 

it considers less about the structure 

(Zeng, 2016). 

Community common 

neighbors (Yang, Hu, 

& Zhang, 2016) 

A metric considers the 

community structure based 

on common neighbors. 

Compared with the common 

neighbor index, it gives a bonus to 

the common neighbor in the same 

community 

Community resource 

allocation (Krzysik, 

1979) 

A metric is calculated by 

summing up the number of 

common neighbors in the 

same community divided 

It has a similar concept to resource 

allocation, but only considering the 

nodes in the same community. 
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by the number of common 

neighbors. 

 

Table 4 Network level metrics in sustainable machining parameters analysis (Yip et al., 

2020) 

Metrics Definition Description 

Centralization The measurement of core 

factors to transfer their 

influences to the system 

performance. 

The machining performances/ 

outcomes are influenced by few 

machining factors (Yip et al., 

2020). 

Density The number of sustainable 

manufacturing and UPM 

factors in a network that has 

already established a 

relationship with other factors. 

Low efficiency in adjusting 

machining factors in the 

optimization of the process at the 

network level due to a large 

amount of noise involved from the 

upstream parameters to the system 

outcomes. 

 

 

4.1. Case study 1 

According to several previous works (Bhanot, Rao, & Deshmukh, 2015; Yip & To, 2018), the 

interactive relationships among 16 parameters of sustainable manufacturing are identified. 

These 16 parameters can be divided into the economic dimension (shown in Table 5), 

environmental dimension (shown in Table 6), and social dimension (shown in Table 7) based 

on the TBL. In addition, the inter-relationships are summarized in an adjacent matrix shown in 
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Table 8. In this table, “1” means the left-hand side parameter has an impact on the top right-

hand side parameter. And “0” means the left-hand side parameter has no impact on the top 

right-hand side parameter. This matrix data were input into the IPython Jupyter notebook to do 

the programming of SNA. The programming is shown in the Appendix. 

 

Table 5 Economic parameters in sustainable manufacturing analysis 

No. Parameter Description 

1 Production Cost 

(PC) 

• Consists of various types of costs caused during the 

machining process including equipment costs, land or 

renting costs, energy costs, as well as labor costs, and 

so on. 

• Multiple parameters have an impact on the production 

cost, such as cutting quality and process management 

(Proietti et al., 2016). 

2 Cutting Quality 

(CQ) 

• Quality requirements are regarded as one of the most 

significant qualities needed for the final product 

(Correa, Bielza, & Pamies-Teixeira, 2009). 

• The cutting quality has a large influence on production 

costs. For example, if the cutting standards are set to be 

extremely high, it will lead to higher standards of 

surface roughness, tool capability, labor skills, and 

higher machine expenses (Bhattacharya, Das, 

Majumder, & Batish, 2009). 

3 Production Rate 

(PR) 

• Relevant to material removal rate and machining 

conditions including the feeding rate, depth of cut, and 
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cutting speed also has a lot of influence on the economic 

dimension of machining processes (Debnath, Reddy, & 

Yi, 2016). 

• It requires selecting the optimal setting of machining 

variables to improve the material removal rate (J. Lin & 

Lin, 2002). 

4 Process 

Management 

(PM) 

• It refers to various methods to discover, model, analyze, 

measure, improve, optimize, and automate business 

processes (Camargo, Dumas, & González-Rojas, 2020) 

• It was found that process management has impacts on 

resource consumption like water, energy (Peng, 

Kellens, Tang, Chen, & Chen, 2018). 

5 Profit (PT) • Several factors have an impact on product profit, 

including the machining cost and the selling price 

(Alsyouf, 2007).  

• The suppliers normally utilize the “high quality, high 

price” policy (Yip & To, 2018). 

 

Table 6 Environmental parameters in sustainable manufacturing analysis 

No. Parameter Description 

1 Water Intensity 

(WI) 

• It refers to the consumption of water in the 

manufacturing processes. The water is utilized directly 

or indirectly for cooling, heating, or washing (Sanders 

& Webber, 2012). 
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• It is significant to replan the amount of water used for 

machining processes, if no, it could lead to damage to 

the ecosystem (Scheren, Zanting, & Lemmens, 2000). 

• Water conservation methods including recycling the 

used water for some other functions by cleaning it 

should be adopted (Willis, Stewart, Panuwatwanich, 

Williams, & Hollingsworth, 2011). 

2 Energy Intensity 

(EI) 

• It refers to the consumption of energy per unit of final 

products during the machining processes. And it is a 

measurement of the energy inefficiency of 

manufacturing activities (Filleti, Silva, da Silva, & 

Ometto, 2017). 

• High energy intensity also leads to running out of non-

renewable resources, emissions of GHGs, and 

ecosystem damage (Paramati, Sinha, & Dogan, 2017). 

• It is a critical problem for manufacturing companies 

because even if the energy intensity of the world’s 

manufacturing activities is continuously increasing, the 

amount of demand is still rising faster (Zheng et al., 

2018). 

3 Materials (ML) • Material is a significant parameter of process planning 

consists of hazardous materials, chemicals, raw 

materials, material composition, packaging reusability, 

and so on. 
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• It is advised to find out suitable “kinds of materials” 

which can reduce the negative influences on the 

environmental aspect (P. Tan, Liu, Shao, & Ni, 2017). 

• It has been mentioned that material has a direct impact 

on cutting quality, production cost, and several 

parameters (Yip et al., 2020). 

4 Waste 

Management 

(WM) 

• It was defined as the activities and actions to manage 

waste from its inception to its final disposal (LaGrega, 

Buckingham, & Evans, 2010). 

• It requires taking account of the concepts of “reuse, 

recovery, and recycle” for all kinds of wastes caused by 

manufacturing activities (Choudhury, 2017). 

5 Environmental 

Regulations 

(ER) 

• Consider the large necessity to establish a process to set 

up the environmental regulations and laws for the 

companies (B. Yuan, Ren, & Chen, 2017). 

• Set up standards for sustainability analysis requiring 

considering the approach, strategies, and outcomes in 

the manufacturing industries (Abdul-Rashid, 

Sakundarini, Ghazilla, & Thurasamy, 2017). 

6 Tool Life (TL) • Tool life is defined as the time period between two 

successive grinding of tools and two successive 

replacement of tools (Sahin, 2009). 

• Tool life is one of the main factors influencing energy 

consumption in the machining process (Yip & To, 
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2018). 

 

Table 7 Social parameters in sustainable manufacturing analysis 

No. Parameter Description 

1 Worker Health 

(WH) 

• It refers to the employees’ health condition with 

consideration of the pollution released and wastes 

generated from machining processes, which can 

influence the exposed labor (Huang & Badurdeen, 

2018). 

• It was reported that more attention and training should 

be paid to improve worker health by both industry and 

academia (Schneider, Das, Kirsch, Linke, & Aurich, 

2019). 

2 Worker Safety 

(WS) 

• It is widely classified into operational safety and 

personnel safety. 

• Operational safety focuses on the amount of human 

involvement in the manufacturing process and the 

protecting precautions offered against unpredicted 

accidents (Maurino, Reason, Johnston, & Lee, 2017). 

• Personnel safety focuses on compliance with and the 

suitable implementation of safety regulations (Yiu, 

Sze, & Chan, 2018). 

• It is found that primary prevention plays a key role in 

environmental protection and worker health and safety 



58 

 

(Armenti, Moure-Eraso, Slatin, & Geiser, 2011). 

3 Labour 

Relations (LR) 

• It refers to the relationship between employers and 

employees in the industry (Streeck, 1987). 

• It can be affected by working duration, workload, 

organization culture, and local employment, and so on 

(Zhang and Haapala, 2012). 

• For the situation nowadays, this problem has not been 

paid adequate attention by most manufacturing 

companies while it performs a key role to achieve 

social sustainability (Amui, Jabbour, de Sousa Jabbour, 

& Kannan, 2017). 

4 Training and 

Education (TR) 

• It can benefit the workers to improve the work and life 

quality, and it can also help the companies to reach their 

strategic goals. 

• It can benefit the employees, and managers in 

improving working skills which can bring increased 

efficiency through updates in the manufacturing 

processes on time (Reid & Sanders, 2019). 

• It performs a key role in achieving companies' 

sustainability level by involving in such problems 

through appropriate training of workers, and managers 

(Chandra, 2009). 

5 Customer 

satisfaction (CS) 

• It is defined as the measurement that determines how 

happy customers are with a company's products, 
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services, and capabilities (Fečiková, 2004). 

• Customer satisfaction highly depends on product 

quality. The top two determinants of overall customer 

satisfaction are the perceived quality and value of 

customers (Yip & To, 2018).  

 

Table 8 Interactive relationship among the sustainable manufacturing factors 

 PC CQ PR PM PT WI EI ML WM ER TL WH WS LR TR CS 

PC 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 

CQ 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 

PR 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 

PM 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WI 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

EI 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 

ML 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 

WM 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 

ER 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 

TL 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

WH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WS 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

LR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

CS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

The parameters and relationships would be imported into Python to construct a network of 

sustainable manufacturing parameters as the nodes and edges. After that, the centrality metrics 

and link prediction metrics can be calculated. Then, the metrics result can be normalized into 
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the range from 0 to 1 to avoid the overall result is dominated by several extreme values. By 

summing up the normalized metrics results, the overall measurements of the centrality and link 

prediction can be achieved to do the node-level and edge-level analysis. And the centrality 

metrics results perform as the raw data of the unsupervised learning algorithm to classify the 

sustainable manufacturing parameters. 

 

4.1.1. Centrality metrics analysis 

The calculation results of centrality metrics are shown in Table 9. And the visualization of the 

SNA network is shown in Figure 21. 

 

Table 9 Calculation result of centrality metrics 

Parameter In degree 

centrality 

Out degree 

centrality 

Betweenness 

centrality 

Closeness 

centrality 

Eigenvector 

centrality 

Centrality 

Index 

Rank 

CQ 0.667 0.867 0.174 0.672 0.342 5.000 1 

PM 0.533 0.800 0.047 0.576 0.325 3.801 2 

EI 0.600 0.600 0.040 0.621 0.315 3.667 3 

ML 0.467 0.800 0.027 0.538 0.293 3.434 4 

PC 0.467 0.667 0.030 0.538 0.294 3.300 5 

ER 0.467 0.533 0.030 0.538 0.273 3.082 6 

PR 0.400 0.667 0.020 0.504 0.260 2.994 7 

WH 0.533 0.000 0.000 0.600 0.335 2.672 8 

WM 0.400 0.400 0.004 0.504 0.246 2.551 9 

WS 0.400 0.200 0.001 0.504 0.251 2.320 10 

TR 0.333 0.133 0.002 0.475 0.216 2.002 11 

WI 0.267 0.267 0.002 0.448 0.174 1.894 12 

LR 0.267 0.000 0.000 0.480 0.174 1.623 13 

PT 0.200 0.000 0.000 0.457 0.133 1.368 14 

CS 0.067 0.000 0.000 0.400 0.049 0.838 15 
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TL 0.000 0.133 0.000 0.000 0.000 0.154 16 

 

 

 

Figure 21 The visualization of the sustainable manufacturing network 

 

According to Table 9, cutting quality and energy intensity are the top two factors with the 

highest in-degree value in the sustainable machining analysis. It means these two factors 

perform as collectors in the sustainable machining concept. This result shows cutting quality 

is one of the most complicated factors to manage in a sustainable machining process. Cutting 
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quality is determined by ten other sustainable machining parameters, such as production cost 

and environmental regulations. When cutting quality increases, manufacturers need to improve 

the production cost to upgrade tools.  

This result shows cutting quality is a key factor in sustainable machining improvement. The 

high in-degree centrality value shows the tradeoffs need to be balanced among cutting quality, 

production cost, tool life as well as other parameters to improve the sustainable level and 

cutting quality. 

According to Table 9, cutting quality, process management, and materials have the highest 

out-degree centrality values which are 0.867, 0.8, and 0.8. This result shows cutting quality is 

the “influencer” in the sustainable machining network. The cutting quality has a direct impact 

on worker health, water intensity, waste management, and other parameters. And this impact 

could bring a complicated chain reaction to the whole machining process.  

Cutting quality, process management, and energy intensity have the highest betweenness 

centrality values, which are 0.174, 0.047, and 0.04. It shows that the cutting quality, process 

management, and energy intensity perform as the bridges of influences from upstream factors 

to downstream factors. This result indicates that making controlling the process of cutting is 

complicated and important for the whole system. These three parameters are the gateway for 

the factors of system-level to transform their impact on sustainable machining factors. 

According to the result of closeness centrality, cutting quality, energy intensity and worker 

health have the highest value, which is 0.672, 0.621 and 0.6, which imply that these factors 

perform as the “controller” among the sustainable machining process and has a most direct 

impact on the whole system’s performance. That indicates energy, quality, and workers can 

control the integrated effectiveness and sustainability of the machining system by delivering 

its impact to all downstream factors through the shortest path. Thus, when designing or 
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modifying the machining system, it requires strategic analysis of the influence of energy, 

worker, and cutting quality firstly. 

Cutting quality, worker health, and process management have the highest eigenvector centrality 

scores, which are 0.342, 0.335, and 0.325. It indicates that these three factors have the highest 

importance when considering its neighbors’ importance and perform as the “connector” of the 

influences among important factors in this sustainable machining system. 

Among all sustainable machining parameters, the top four parameters with the highest average 

value are cutting quality, process management, energy intensity, and material. The top two 

factors belong to the economic aspect and the other two belong to the environmental dimension. 

It indicates that the key aspect of sustainable machining is the economic dimension. 

According to Table 9, the node of cutting quality has the highest value of the centrality index, 

which is 5. As there are only five centrality metrics and each of them has been normalized into 

the range from 0 to 1, the upper bound of the centrality index is 5. Therefore, cutting quality 

has the highest value for every centrality metric. This result implies that cutting quality is the 

most influencing factor in the sustainable manufacturing network. It shows the cutting quality, 

which belongs to the economic dimension, is still the main concern of the overall 

manufacturing performance.  

 

4.1.2. Link prediction analysis 

The link prediction metrics were calculated by considering the network as an undirected 

network. And the calculation result is shown in Table 10. 

 

Table 10 Calculation result of link prediction metrics 
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Non-

edge 

common 

neighbors 

Jaccard 

coefficient 

resource 

allocation 

Adamic 

Adar 

index 

preferential 

attachment 

community 

common 

neighbors 

community 

resource 

allocation 

LP 

index 

Rank 

(ER, 

PR) 

9 0.818 1.021 4.129 100 9 0 5.935 1 

(WH, 

WI) 

7 0.875 0.672 2.983 56 7 0 4.487 2 

(PR, 

WM) 

6 0.545 0.597 2.596 70 6 0 3.864 3 

(PC, 

WM) 

6 0.5 0.554 2.516 77 6 0 3.822 4 

(WH, 

WS) 

6 0.75 0.548 2.508 48 6 0 3.804 6 

(CQ, 

WS) 

6 0.429 0.548 2.508 84 6 0 3.804 6 

(PC, 

WI) 

6 0.500 0.529 2.469 77 6 0 3.786 7 

(WH, 

TR) 

6 0.75 0.529 2.469 48 6 0 3.776 8 

(EI, 

TR) 

6 0.546 0.529 2.469 66 6 0 3.726 9 

(TR, 

WS) 

5 0.714 0.458 2.090 36 5 0 3.229 10 

(WI', 

WS) 

5 0.625 0.458 2.090 42 5 0 3.188 11 

(TR, 

WI) 

5 0.625 0.438 2.052 42 5 0 3.160 12 

(PT, 

PM) 

3 0.250 0.246 1.198 36 5 0.162 3.052 13 
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(PT, 

PR) 

3 0.300 0.246 1.198 30 5 0.162 3.048 14 

(LR, 

TR) 

4 0.667 0.346 1.633 24 4 0 2.609 15 

(WM, 

WS) 

4 0.444 0.358 1.656 42 4 0 2.556 16 

(TR, 

WM) 

4 0.444 0.338 1.618 42 4 0 2.528 17 

(LR, 

WH) 

4 0.500 0.346 1.633 32 4 0 2.500 18 

(LR, 

ML) 

4 0.333 0.346 1.633 48 4 0 2.473 19 

(EI, 

LR) 

4 0.364 0.346 1.633 44 4 0 2.467 20 

(LR, 

WS) 

3 0.429 0.274 1.254 24 3 0 1.953 21 

(PT, 

TR) 

3 0.500 0.246 1.198 18 3 0 1.932 22 

(TL, 

WI) 

2 0.286 0.162 0.796 14 3 0.091 1.916 24 

(TL, 

WM) 

2 0.286 0.162 0.796 14 3 0.091 1.916 24 

(LR, 

WI) 

3 0.375 0.255 1.216 28 3 0 1.904 25 

(LR, 

ER) 

3 0.272727 0.246 1.199 40 3 0 1.897 26 

(TL, 

ML) 

2 0.166667 0.162 0.796 24 3 0.091 1.882 27 
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(TL, 

ER) 

2 0.200 0.162 0.796 20 3 0.091 1.880 28 

(PT, 

WH) 

3 0.375 0.246 1.198 24 3 0 1.851 29 

(ER, 

PT) 

3 0.300 0.246 1.198 30 3 0 1.826 30 

(EI, 

PT) 

3 0.273 0.246 1.199 33 3 0 1.826 31 

(LR, 

PT) 

2 0.400 0.162 0.796 12 2 0 1.355 32 

(LR, 

WM) 

2 0.222 0.155 0.781 28 2 0 1.305 33 

(PT, 

WS) 

2 0.286 0.174 0.819 18 2 0 1.303 34 

(PT, 

WM) 

2 0.250 0.155 0.781 21 2 0 1.265 36 

(PT, 

WI) 

2 0.250 0.155 0.781 21 2 0 1.265 36 

(TL, 

WH) 

2 0.250 0.162 0.796 16 2 0 1.225 37 

(TL, 

PM) 

2 0.167 0.162 0.796 24 2 0 1.211 38 

(TL, 

PR) 

2 0.200 0.162 0.796 20 2 0 1.208 39 

(TL, 

PC) 

2 0.182 0.162 0.796 22 2 0 1.208 40 

(CS, 

TL) 

1 0.500 0.071 0.379 2 1 0 0.955 41 



67 

 

(CS, 

PT) 

1 0.333 0.071 0.379 3 1 0 0.775 42 

(TL, 

PT) 

1 0.250 0.071 0.379 6 1 0 0.710 43 

(CS, 

LR) 

1 0.250 0.071 0.379 4 1 0 0.690 44 

(TL, 

WS) 

1 0.143 0.091 0.417 12 1 0 0.678 45 

(TL, 

LR) 

1 0.200 0.071 0.379 8 1 0 0.674 46 

(TL, 

TR) 

1 0.143 0.071 0.379 12 1 0 0.649 47 

(CS, 

TR) 

1 0.167 0.071 0.379 6 1 0 0.615 48 

(CS, 

WI) 

1 0.143 0.071 0.379 7 1 0 0.598 50 

(CS, 

WM) 

1 0.143 0.071 0.379 7 1 0 0.598 50 

(CS, 

WH) 

1 0.125 0.071 0.379 8 1 0 0.588 51 

(CS, 

ML) 

1 0.083 0.071 0.379 12 1 0 0.581 53 

(CS, 

PM) 

1 0.083 0.071 0.379 12 1 0 0.581 53 

(CS, 

ER) 

1 0.100 0.071 0.379 10 1 0 0.580 55 

(CS, 

PR) 

1 0.100 0.071 0.379 10 1 0 0.580 55 
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(CS, 

PC) 

1 0.091 0.071 0.379 11 1 0 0.580 57 

(EI, 

CS) 

1 0.091 0.071 0.379 11 1 0 0.580 57 

(CS, 

WS) 

0 0.000 0.000 0.000 6 0 0 0.041 58 

 

According to Table 10, it shows the relationship between environmental regulations and 

production rate has the highest common neighbor value, which is 9. That means these two 

parameters have more interactive relationships with the same other parameters. If the 

relationships among them can be investigated in the future, the whole network can be denser, 

which means the area of sustainable manufacturing can get a better understanding. By studying 

the impact of Environmental Regulations on production rate, lawmakers can propose and 

update the environmental law to minimize the negative impact on the production rate when 

protecting the environment and saving natural resources.  

According to Table 10, the relationship between worker health and water intensity has the 

highest Jaccard coefficient, which means they have the highest percentage of common 

neighbors among all the relationships which have not been studied. This result shows the value 

of the indirect relationship between these two parameters. It indicates that the studies about the 

relationships among worker health and water intensity and their common neighbor can bring 

some inspiration about the environmental and social aspects. For example, waste management 

has impacts on both worker health and water intensity, it can be considered as a key factor in 

reducing water consumption and improving employee's working conditions.  

From Table 10, the relationship between environmental regulations and production rate has 

the highest score of resource allocation and Adamic-Adar index, which are 1.02 and 4.13. It 

indicates that the study about the influencing relationship between these two parameters can 



69 

 

help to control the influences flow from the upstream parameters and downstream parameters. 

After that, by modifying the environmental regulations, the downstream parameters of 

production rete such as water intensity and worker safety can be changed. It shows that the 

interactive relationship between environmental regulations and production rate is highly 

important for improving resource consumption and workers’ benefit. 

From Table 10, it can be found that the relationship between environmental regulations and 

production rate has the highest score of preferential attachment, which is equal to 100. As 

preferential attachment is measured by multiplying the degree of the two vertices, both these 

two factors have a high degree, which presents high importance and centrality. This result 

indicates that the study about the relationship between environmental regulations and 

production rates can help to improve the network’s integration and increasing the 

controllability of the whole researcher area.  

For the result of community common neighbors, the relationship between environmental 

regulations and production rate still has the highest score, which is equal to the value of 

common neighbors. As environmental regulations and production rate belongs to different 

communities, no bonus was given to the relationship between them. 

Among the relationship between parameters in the same community, the relationship between 

profit and process management and the relationship between profit and production rate has the 

highest value, which is 5. It means these two linkages perform as the local bridges inside the 

economic community. By studying these two relationships, the optimal condition of the 

economic dimension of sustainable manufacturing can be achieved easily.  

According to Table 10, the relationship between profit and process management and the 

relationship between profit and production rate has the highest community resource allocation 

value, which is 0.1623. Thus, these two hidden linkages need to be investigated to gain a more 

clear concept about the influencing paths among the economic parameters in this SNA network. 
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Therefore, these two linkages perform as the local hub of influencing in the economic 

community.  

From Table 10, the relationship between environmental regulations and production rate has 

the highest LP index, which is 5.935. Thus, this linkage is considered as the most significant 

hidden relationship in the sustainable manufacturing network with the highest potential value 

to investigate. For a manufacturing company, it needs to balance its social responsibility and 

production rate under environmental regulations and laws. For researchers, by modeling the 

impacts of environmental regulations on production rate, a better planning method to improve 

sustainability could be proposed. 

 

4.1.3. Classification of parameters 

By checking the SSE and silhouette coefficient, it was found that starting from 4, the declining 

rate of SSE value becomes slow (as shown in Figure 22). Therefore, the value of 𝑘 is set as 4, 

which means the parameters should be classified into 4 groups. Then, by running the k-means 

algorithm, the sustainable manufacturing factors were clustered as shown in Table 11. From 

the correlations among the centrality results (shown in Figure 23), some metrics have a 

considerably high correlation, which means high similarity. For example, the eigenvector 

centrality and in-degree centrality correlate 0.98. Therefore, the PCA method can be utilized 

to reduce the dimension of the data effectively. In this way, the centrality metrics data can be 

reduced from 5 dimensions to 2 dimensions without losing too much information. By doing so, 

the classification can be visualized in a 2-dimension figure (as shown in Figure 24). 
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Figure 22 SSE and Silhouette coefficient of the k-means algorithm 
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Figure 23 The correlation heatmap of the centrality metrics 
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Figure 24 The sustainable manufacturing parameters before and after the classification 

(cluster 1,2,3,4 are represented by green, red, yellow, and blue) 

 

Table 11 The classification results of sustainable manufacturing parameters 

Parameters Centrality Index Clusters 

CQ 5.000 4 

PM 3.801 1 

EI 3.667 1 
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ML 3.434 1 

PC 3.300 1 

ER 3.082 1 

PR 2.994 1 

WH 2.672 2 

WM 2.551 2 

WS 2.320 2 

TR 2.002 2 

WI 1.894 2 

LR 1.623 2 

PT 1.368 2 

CS 0.838 3 

TL 0.154 3 

 

From Table 11, it shows that cluster 4 only includes one parameter which is cutting quality. 

And it can be found its centrality index ranking in the first place, which is 5 and much higher 

than the parameter with the second-highest value. It indicates that cutting quality is the core 

factor with the highest importance. It is the key consideration when establishing a sustainable 

manufacturing system. Besides that, six factors including process management and energy 

intensity belong to cluster 1. Their centrality index values are distributed in the range from 2.99 

to 3.80. these factors also have quite high centrality values. All the factors in clusters 4 and 1 

belong to the economic and environmental dimensions, which shows the economic and 

environmental parameters are still the main concern. Therefore, researchers could pay more 

attention to the study of the social aspect of sustainable manufacturing. Moreover, for the 

companies that need to build up or modify their manufacturing system to improve the 
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sustainability level, they should evaluate the impacts of the parameters in clusters 1 and 4 

firstly. 

 

4.1.4. Summary of case study 1 

Sustainable manufacturing attracts increasing attention from academia nowadays. To achieve 

higher sustainability in the manufacturing process, the parameters involved and the 

complicated influences among them need to be considered. Thus, this situation leads to 

difficulties to improve the sustainability level. To help to eliminate these difficulties, the 

method of SNA was utilized to conduct the node-level and edge-level analysis. In this case 

study, the main parameters (factors) of sustainable manufacturing and the influencing 

relationships among them were selected from the literature. Then, the sustainable 

manufacturing network was established by considering the parameters as nodes and 

relationships as edges. After that, the centrality metrics and link prediction metrics were 

utilized to analyze the roles of the parameters and the potential value of the hidden 

relationships. And these results can offer some guidelines to build up a sustainable 

manufacturing system for companies and the direction of finding new research topics for 

researchers. After that, the centrality metrics result was used as the raw data of the k-means 

algorithm to classify parameters. By calculating the SSE and Silhouette Coefficient, it is 

determined that four is the appropriate number of clusters. According to the classification 

result, an overall picture of the centrality distribution of sustainable manufacturing can be 

given. The main findings of this case study are summarized below: 

1. Cutting quality is the parameter with the highest value of the centrality index, which is 

the overall measurement of centrality. It indicates that cutting quality should be 

considered as the key factor in the manufacturing system. The manufacturing 

companies should evaluate the impact on it before change any setting of other variables. 
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2. The relationship between environmental regulations and production rate has the highest 

link prediction index, which means this relationship has the highest potential value to 

be investigated by the researchers in the future study. 

3. The sustainable manufacturing parameters can be classified into four clusters by using 

the k-means method. And the parameters in clusters 1 and 4 have high centrality. 

Therefore, these parameters should be treated as the main considerations when 

designing a new manufacturing system.  

This chapter illustrates the application of node-level analysis and network-level analysis of this 

SNA method in UPM to provide a guideline for researchers to obtain optimal settings. 

 

4.2. Case study 2 

A systematic literature review was conducted and data from the PolyU SKL laboratory was 

obtained as the raw data in this section. The method uses the relevant scientific literature and 

experimental data to ensure the transparency and reliability of the raw data. In this project, the 

SNA method was used to conduct the evaluation and present the analysis result. To collect the 

data of UPM parameters from papers, influencing relationships among the parameters of 

literature in detail were also needs to be identified. In this project, the relevant previous work 

was found by some keywords in the electronic scientific databases of several scientific 

publishers, and these electronic databases mostly belong to Elsevier. And then, the literature 

was filtered based on the knowledge of the researchers. Finally, specific literature was chosen 

to develop the network. The machining parameters are defined as the nodes and edges in the 

UPM network. And the linkages among each node were added according to the relationship 

among the parameters. 

The UPM parameters are represented by the vertices in the UPM network, and they can be 

presented as the row in the adjacent matrix. Two vertices are linked if there is an influencing 
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relationship between them. And in this case, the UPM network is a directed one as the 

influencing relationship from one parameter to another has a direction. After the data of the 

UPM network is collected, it would be imported into MS Nodexl which can do the visualization 

of the UPM network and calculate the metric of different levels. The MS NodeXL is equipped 

with the functions of collecting data from Facebook and Twitter. It is a useful tool to do SNA 

metrics computation. 

The network-level metrics results were summarized in Table 12. And network visualization 

was shown in Figure 25. While the SNA results of the node-level analysis, as well as network-

level analysis, were summarized in Table 13 and Figure 26. The parameter “material” in 

Figure 25 stands for the workpiece materials, instead of tools’. The tool used in UPM 

commonly is diamond, which is normally utilized to produce high-quality products with a 

nano-level surface (SJ Zhang et al., 2016). In the research area of UPM, the common material 

of the tool is a single-crystal diamond because of its excellent characteristics, such as high 

hardness, and relevant strong resistance to wear (Zong et al., 2010). Thus, because the tool for 

UPM is normally diamond in the research as well as the manufacturing industry, the tool 

material is considered as fixed and does not input as a parameter in this work. 

 

Table 12 The results in the network-level analysis. 

Network-level metrics Results 

Graph Type Directional 

Nodes 13 

Edges 60 

Maximum Edges in the Connected 

Component 

78 

Average Distance of the Shortest Path 1.195266 
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Density 0.378205 

 

 

 

Figure 25 UPM network consists of different UPM parameters 

 

Table 13 Centrality metrics of UPM factors 

UPM factors In-Degree Out-

Degree 

Betweenness 

Centrality 

Closeness 

Centrality 

Degree 

Centrality 

Depth of Cut 0 8 2.252 0.063 0.074 

Chip Formation 10 0 4.421 0.071 0.089 

Surface Roughness 9 0 6.888 0.067 0.077 

Tool Wear 9 5 5.421 0.077 0.097 

Spindle speed 1 6 0.750 0.059 0.068 
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Material removal rate 2 4 0.786 0.056 0.057 

Material recovery 7 4 7.288 0.077 0.095 

Cutting Temperature 8 4 6.288 0.071 0.088 

Cutting Force 7 5 5.602 0.071 0.088 

Feedrate 0 8 1.567 0.063 0.076 

Vibration 6 5 4.486 0.071 0.090 

Material 0 6 0.000 0.056 0.061 

Tool Geomertry 0 4 0.250 0.050 0.039 

 

 

 

Figure 26 Distribution of centrality metrics of UPM factors 
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4.2.1. Node-level analysis 

4.2.1.1. In-degree 

From Figure 26, the parameters that have the top three in-degree values are chip formation, 

tool wear, as well as surface roughness, and they are 10, 9, and 9. And they are the machining 

parameters that can be affected by most of the other UPM parameters in the UPM network. 

Any minor modification in other UPM parameters individually in the machining operation 

could influence them significantly, thus, they can be considered as an independent study topic 

for optimization of machining condiction. Surface roughness and tool wear are regarded as 

normal targets and provide the index of the UPM final product, therefore, they are the 

parameters that obtain the impact from other UPM parameters. Chip formation is another UPM 

index that can reflect the rightness of the setting of the UPM parameter (Shaojian Zhang, Guo, 

Xiong, & To, 2020). Because tool wear and surface roughness are different types of chip shape 

changes, thus, chip formation has higher in-degree them. It shows that without the constructed 

SNA network, the important role of chip formation has been underrated. The continuous chips 

formed in the UPM could be the signals collecting the impacts from upstream UPM parameters 

to the downstream parameters. 

 

4.2.1.2. Out-degree 

The value of the out-degree of each factor is summarized in Error! Reference source not 

found.. The factors that have the largest out-degree value include cutting depth as well as feed 

rate, and their out-degree are both 8. Therefore, they can be considered as the influencers which 

can influence the other UPM parameters in the networks the most. Any minor changes of them 

individually can lead to a large impact on other UPM parameters in UPM dramatically. Thus, 

they are always regarded as dominating factors in the conceptual modeling discussed in the 
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literature about optimization due to their large influential abilities. Depth of cut, feed rate, as 

well as spindle speed is the UPM factors that are adjusted relying on a lot of other machining 

parameters including surface roughness, and worked materials, etc. These three UPM factors 

(depth of cut, feed rate, and spindle speed) can be considered as equally significant as they are 

at the same level in the UPM network, but only the depth of cut and feed rate were found with 

the highest out-degree score beside spindle speed. And the role of the spindle speed could be 

overestimated without the model of the SNA. The centrality metric results provide the 

guideline of the priority of managing UPM variables in the production planning stage. 

 

4.2.1.3. Betweenness centrality 

From Figure 26, the parameter that has the largest value of betweenness is material recovery. 

The nano-level surface machining is considered as a complex process because of the combined 

effects of elastic recovery and plastic deformation of the product. Unsimilar to conventional 

machining, the parameter of material has a large impact on the material removal process as the 

depth of cut is normally smaller than the grain size of the workpiece in the UPM process 

(Furukawa & Moronuki, 1988). If the cutting process is conducted on a necessarily small depth 

of cut and feed rate, the principle of machining would turn to single-crystal cutting (W. Lee & 

Zhou, 1993). Undercutting at the point-shaped edge with small cutting depth, burnishing and 

material recovery necessarily occur. Thus, swelling as well as material recovery are two special 

characteristics of UPM. The fact that material recovery has the highest betweenness score 

reflects the uniqueness of its property, which can be considered as the major gate to the 

performance indicators: surface roughness, which performs as the main and dominating 

parameter which can influence the surface roughness directly. It can be found the majority of 

upstream UPM parameters need to transfer their impact by influencing material recovery to 

change the factor of surface roughness. If the connection to the gatekeeper is stopped, the 
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upstream UPM parameters can not deliver the impacts or information to the downstream UPM 

parameters. Besides that, another result showed by the betweenness metric is that the parameter 

of material that dominates the degree of material recovery of the produced surface can be one 

of the mediators to facilitate the UPM outcomes across multidisciplinary paths.  

The unique characteristics of “gatekeeper” for the problematic material recovery in machining 

offer opportunities to seek development from other disciplines. No matter how the upstream 

UPM parameters are changed, their impacts should be transferred to the gatekeeper (material 

recovery) to access the final performance. Thus, these new methods integrating with 

knowledge of other disciplines can focus on the study of material recovery effect, in this way, 

the positive impacts can be effective in a shorter path. If the designed methods concentrate on 

other UPM parameters, the positive influences are scaled and normalized by other UPM 

parameters distributed in the upstream, or, the modification of the UPM factor does not enable 

to achieve in the optimal setting as there are a few downstream UPM parameters, and they are 

influenced by the chain effects, which leads to a lot of unwanted impacts and recompensing 

the advantages of novel methods. 

 

4.2.1.4. Closeness centrality 

From Figure 26, tool wear and material recovery are the two factors with the top two closeness 

scores, and their closeness value is both 0.77. This result reflects these UPM parameters can 

reach the impacts to the UPM performance and the shortest path to having significant impacts 

on the UPM outputs. And the tool wear’s result of the closeness metric reflects that it has the 

most direct impact on surface integrity. Thus, to obtain great surface finishing, the UPM 

parameter with the priority that needs to be considered early is tool wear, thus, the method to 

reduce tool wear is a hot academic topic. Similarly, material recovery also gets the largest 

closeness score, which means it has the shortest influencing path to impact the UPM 
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performance. And it performs as the navigator to reach and gather influences from the upstream 

UPM parameters and can provide the integrating function to the UPM performance. Besides 

that, it is the only UPM parameter with the highest scores of betweenness as well as closeness 

metrics. It reflects the value of putting efforts to study this parameter can improve the UPM 

performances. 

As the material recovery has the highest closeness and betweenness value in the UPM network. 

Therefore, it can be considered as the gatekeeper, which can receive the influences from 

upstream parameters and distribute the influences to downstream parameters (Yip et al., 2020). 

It can provide more opportunities to apply interdisciplinary knowledge in the UPM areas to 

improve machining performance. For example, Yip and To (2017) have applied a magnetic 

field in the cutting process to resolve material recovery of titanium alloys, which belongs 

physic field. This experiment shows the approach to utilize the advantage of the gatekeeper 

role of material recovery in the UPM network. 

 

4.2.2. Network-level analysis 

4.2.2.1. Degree centralization 

For network-level analysis, all of the metric results are evaluated aggregately. If some metric 

result is dominantly high compared with others, there should be a certain UPM parameter that 

can dominate other UPM parameters. The UPM performances are affected by the parameters 

with a high degree centralization score. According to Figure 26, there is no UPM parameter 

with an extremely high degree centralization score. A network with high centralization has one 

limitation, which is the effectiveness to optimize parameters is not high, the reason is that the 

chain effect among different parameters is high. Thus, more investigation needs to be 

conducted to transform the impacts from upstream to downstream UPM parameters. On the 
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other hand, high centralization can also bring some benefits to the network just like high 

stability. And that stands for a large ability to avoid the uncertainty caused by the outside. 

 

4.2.2.2. Network density 

According to Table 12, the density of this network is 0.378, which indicates that the number 

of potential parameters that have established a linkage to others counts only around 0.378. And 

the average distance of the shortest path in this network is 1.195. Because this network has 13 

nodes in total, the number of 1.195/ vertex is considerably high as every UPM parameter can 

get an adequate path to transfer impacts on other UPM parameters as well as the system 

performance. If a network has an extremely large density score in practical situations may cause 

various problems because the factors could have too many ways of accessing the other factors, 

any adjustment in a certain parameter can lead to instability for the system. What’s more, 

checking the source of influences will become extremely hard as there are too many 

possibilities. In this study, the density of the UPM network has a middle-level value, which 

reflects an assessable control of the machining process. 

 

4.2.3. Validation and application 1: Experimental setup precedence design 

As reported by Su, Jia, Niu, and Bi (2017), depth of cut has a significant impact on chips 

formation and surface quality through a complicated reaction with other UPM parameters 

including material, tool geometry. It makes the influence of depth of cut on chip formation one 

of the difficulties to measure in UPM research. From the metrics results shown in Table 13, 

all of the depth of cut, material, and tool geometry have zero in-degree value. It means that the 

settings of these parameters get little impact from other factors. On the other hand, depth of cut 

and material also have considerably high out-degree scores, which are 8 and 6 respectively. 

This result indicates that depth of cut and other factors with zero in-degree value and high out-
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degree values can be considered in the earliest stage when determining the experimental setup 

precedence. In this way, the order of experimental setup for the machining parameters can be 

decided according to the in-degree and out-degree results.  

 

4.2.4. Validation and application 2: surface roughness reduction 

Surface roughness is the main target and the indicator of the machining performance of UPM 

outcomes, therefore, various relevant parameters have been optimized for minimizing surface 

roughness. However, this situation causes underestimation of the dominating factor of surface 

quality. For example, as mentioned by S. Wang, To, and Cheung (2012), the influence of the 

workpiece material on surface roughness was ignored by some previous studies especially the 

modeling of surface generation (Cheng et al., 2008). And in this project, surface roughness was 

also reported as one of the parameters with the highest in-degree, which means it is the main 

receiver of complicated influences from downstream factors. Therefore, in order to reduce 

surface roughness effiectively, the influencing map of experimental setup for the machining 

parameters should be provided for the modeling process of UPM so that important parameters 

are not ignored.  

Besides that, the influencing map could also help to build up more complicated experiments 

for researchers. For example, some researchers have designed experiments to investigate the 

impacts of different parameters, such as federate and surface roughness reduction (Q. Lin, Liu, 

Zhu, Chen, & Zhou, 2020). Based on the influencing path shown in Figure 25, more 

parameters can be considered as variables, like the depth of cut, in the experiment design stage. 

In this way, this work can provide more ideas for the variables of experiments of surface 

roughness reduction. Moreover, it also provides a guideline for manufacturing companies if 

they want to improve their cutting quality by changing parameters setting. 
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4.2.5. Summary of case study 2 

UPM is a cutting-edge technology to produce components with nanometer-level and complex 

geometry. As a lot of UPM parameters with complex influencing relationships are involved in 

the machining process, it is considerably hard to obtain the optimal machining conditions. 

Besides that, a high tool wear rate can cause various experimental costs in the machining 

process. Thus, the whole picture of UPM composing of the detailed relationships of major 

UPM parameters need to be formed, it offers the instruction for the researchers to avoid missing 

important parameters in experimental design and setup. It is the first time that the SNA method 

was applied to the UPM area to establish the network structure in this project. Based on the 

UPM network, a detailed evaluation was conducted according to the SNA metrics relevant to 

a collection of UPM parameters. An overall figure of the impact relationships among the UPM 

parameters was exploded based on the calculation results. Moreover, the UPM strategies 

concentrating on the different properties with applications were also presented. The main 

findings in this section are summarized below: 

1. The UPM parameters which have the top in-degree centrality include chip formation, 

surface roughness, and tool wear. It shows they are more sensitive to the changes from 

other parameters. Besides, the top parameters with the highest out-degree score are the 

depth of cut and feed rate. These two factors should be considered as the parameters 

which can deliver the most influence to other UPM factors in the SNA model. 

2. Material recovery is the UPM parameter that has the highest betweenness result. This 

result shows that it performs as a gatekeeper to collect the impacts from the upstream 

UPM nodes and can be observed before getting machining outcomes. Thus, it plays a 

key role as one significant indicator for researchers to obtain optimized UPM output. 

3. What’s more, material recovery is the UPM parameter which has the top closeness score. 

Thus, it is strongly suggested for these downstream UPM parameters to be paid 
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particular attention and further investigation because it has the shortest influence path 

to the final UPM outputs.  

4. The density and centralization of the SNA analysis offer the whole picture of the UPM 

parameters model. In this project, No UPM parameter was found with a relevantly high 

score in centralization. It indicates that no UPM parameter has extremely high impacts 

on the other UPM parameters and denominates UPM performance.  
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Chapter 5. Conclusion and further study 

 

5.1. Conclusion 

As mentioned in section 1, the influencing relationships of the sustainable parameters on each 

other have not been investigated, which may lead to difficulties to reach the target of 

sustainable manufacturing. Similarly, the process of UPM has a complicated mechanism of 

surface generation, which causes the optimal condition hard to achieve. In previous work, it 

still lacks the investigation on the sustainable manufacturing and UPM parameters focusing on 

the influencing relationships among them to evaluate their role and importance. 

To fill these research gaps, this project established a method by combining social network 

analysis and unsupervised learning approaches to evaluate the relationships among sustainable 

manufacturing and UPM parameters. Firstly, the parameters and their interactive relationships 

were identified from previous studies and considered as the nodes and edges to construct the 

SNA network. Then, some SNA technologies, including centrality metrics and link prediction 

metrics, were utilized to do node-level analysis, edge-level analysis, as well as network-level 

analysis. After that, the unsupervised learning method can be used based on the metrics 

calculation results to classify the parameters to provide the overall picture of the distribution 

of centralities. By utilizing this approach, two case studies have been conducted. 

For the first case study, a total of 16 sustainable manufacturing parameters and their interactive 

connections were identified and analyzed. Then, there were three main findings discovered 

from the results in this case study. Firstly, cutting quality need to be considered as the key 

factor for the overall sustainable level in the manufacturing system as it has the highest 

centrality index. Secondly, the relationship between environmental regulations and production 

rate should be investigated in future studies based on the link prediction metrics. And 

sustainable manufacturing parameters can be classified into four clusters by using the k-means 
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method according to the similarity of centralities. So the parameters in the two clusters with 

high centralities, such as cutting quality and product cost, should be considered first when 

designing a new manufacturing system. 

For the case study of optimal conditions in UPM, a total of 13 UPM parameters were identified 

and evaluated by using the node-level analysis and network-level analysis. Based on that, there 

were several findings of the optimal machining setting. For example, the UPM parameters in 

the machining process with the highest in-degree were identified through SNA, which are chip 

formation, tool wear, and surface roughness. It means that they are the parameters that can 

gather the most influences from other UPM factors. For the network-level analysis, no UPM 

parameter has a relevantly high score in centralization, which means that no UPM parameter 

denominates UPM performances.  

All in all, there are three main contributions from the study. It is the first time to introduce the 

SNA method in the research areas of sustainable manufacturing and UPM. And the 

unsupervised learning approach was also applied firstly to classify the centrality metrics results 

to shows the distribution of the factors based on their importance. Finally, the roles and 

importance of sustainable manufacturing and UPM parameters have been evaluated to support 

companies to achieve optimal settings in operations. 

 

5.2. Research and managerial implications 

Based on the analysis results, the below research and managerial implications are suggested: 

1. Based on case study 1, it was found that environmental regulations and production rate 

has the highest link prediction index. Currently, the relationships between 

environmental regulations and agricultural production have been investigated by some 

economists (de Waroux et al., 2019). Therefore, it is suggested that more economists 

can develop more research projects to study the impact of environmental regulations 

on the manufacturing production rate to understand the economic aspects of 

sustainable manufacturing. 
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2. Cutting quality and process management are the top two sustainable manufacturing 

factors with the highest centrality values. According to the research of (Rodriguez-

Zurrunero, Utrilla, Rozas, & Araujo, 2019), new technology like IoT can improve the 

efficiency of process management. Thus, the manufacturing companies may establish 

a real-time tracking process management system based on the IoT method. 

3. This work is the application of unsupervised learning in sustainable manufacturing and 

the UPM area. As pointed by Tayal, Solanki, and Singh (2020), machine learning in 

the field of sustainable manufacturing is in the initial stages and remains in the 

theoretical aspect. Therefore, discovering more application scenarios of machine 

learning and big data in SM research is a new research direction with high potential 

value. 

 

5.3. Limitation and Further study 

Besides the contributions, there are also several limitations in this project. Firstly, text mining 

technology is not applied to achieve an automatic selection of the parameters or keywords from 

a scale of literature. Besides, in this study, the node-level analysis was focused while the edge-

level analysis played the role of assistant. 

Therefore, a new study can be conducted to investigate the relationships among the parameters 

by using the link prediction metrics. For example, the topic discovery model based on machine 

learning and SNA has been applied in multiple disciplines studies like geographical topics 

(Yin, Cao, Han, Zhai, & Huang, 2011), which has not been used in the sustainable 

manufacturing field. Therefore, the link prediction metrics can be applied to uncover the hidden 

value and patterns of the undiscussed relationships of two-parameter topics in the future. 

What’s more, a text mining model can also be developed by utilizing natural language 

processing (NLP) technology like the Latent Dirichlet allocation (LDA) to evaluate the relevant 

literature and discover the hidden topics in the research area of sustainable manufacturing. Is a 

statistical model to discovering the latent "topics" distribution that occurs in a collection of 
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documents (Cho, 2019). By using this method to evaluate the literature in different periods, the 

main themes and developing trends can be discovered.  
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Appendix: Python code for case study 1 

 

Part 1: Node level analysis 

 

 

Figure 27 Create the sustainable manufacturing direct graph 

 

 

Figure 28 Check graph information 
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Figure 29 Visualisation of the graph 
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Figure 30 Calculation of the in-degree centrality and out-degree centrality 
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Figure 31 Calculation of the betweenness and closeness centrality 
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Figure 32 Calculation of eigenvector centrality and save the metrics results in one data frame 
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Figure 33 Transfrom dataframe to array 
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Figure 34 Normalization of centrality metrics 
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Figure 35 Calculation of centrality index 
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Figure 36 Rank the parameters based on the centrality index and save results 

 

Part 2: Edge level analysis 
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Figure 37 Create the non-directional graph and assign communities of TBL 

 

 

 

Figure 38 Check the graph information and visualization 
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Figure 39 Calculation of link prediction metrics 
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Figure 40 Normalize the metrics results 

 

 

Figure 41 Rank the edges according to the Link Prediction index 

 

Part 3: k-means 

 

 

Figure 42 Transform the array to the data frame 
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Figure 43 Check the correlation matrix 
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Figure 44 Calculation of the SSE 
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Figure 45 Calculation of the Silhouette Coefficient 
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Figure 46 Combine the SSE and Silhouette Coefficient 

 

 

Figure 47 Set k value be 4 and run k-means 
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Part 4: Dimension reduction and plot 

 

 

Figure 48 Run PCA to reduce the dimensions of centrality metrics results 

 

 

Figure 49 Plot the classification result in 2D figure 
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Figure 50 Save the figure and calculation results 
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