






Abstract 
 

 II

 

Abstract 
 

Combining the characteristics of distributed computing and mobile computing, mobile 

agent (MA) becomes a new computing model and has a great potential of being used in 

many areas. For MA to be widely deployed, one of the primary concerns is fault tolerance. 

So far, there is a lack of a systematic approach to developing fault tolerant MA systems. In 

this research, we target at developing a framework and its associated algorithms for 

providing fault tolerance in an MA system. The framework is based on a hierarchical 

system architecture consisting of six layers: local fault tolerance support, reliable MA 

migration, reliable message delivery, fault tolerant MA execution, MA group, and 

application-level fault tolerance. For these layers, algorithms based on the following 

mechanisms are developed: (1) Failure detection, (2) Checkpointing, (3) Primary backup, 

(4) MA transaction. 

 

Failure detection caters for the local fault tolerance support layer. We identify the problems 

with the popular heartbeat failure detector (HBFD) and show that it is unfeasible for a 

large scale network environment. We then propose a new approach to implementing FD, 

called notification-based FD (NTFD). Instead of sending heartbeat messages periodically 

as HBFD does, NTFD sends failure notification messages only when the failure of a 

process is detected locally. Comparing with HBFD, NTFD achieves higher efficiency and 

scalability, guarantees 100% accuracy and provides a much lower probability of false 

detection. We also propose the design of a hybrid FD which combines the advantages of 

HBFD and NTFD. 

 

Checkpointing and primary-backup mechanisms provide support at the reliable MA 

migration and fault tolerant MA execution layers. With respect to the checkpointing-based 
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approach, we first design three checkpoint placement algorithms for MA systems. We also 

design communication induced checkpointing (CIC) based algorithm for MA systems, 

which is well integrated with the independent checkpointing for reliable MA migration. 

For the primary-backup based approach, we propose efficient algorithms (RMAA and 

AMAA) for fault tolerant execution of MA by introducing parallel processing, which 

reduces the overhead and improves the execution speed dramatically.  

 

MA transaction enforces the tasks in an MA application to be executed in a transactional 

way, maintaining the system consistency during the abort process of a failed MA, the 

re-execution of non-idempotent operations, and the execution of a group of MAs. Different 

from most existing works, which are theoretical studies on how to model and implement 

MA transactions, we propose a realistic solution which integrates MA transactions with the 

real execution environment of MAs. We adopt a two-level nested transaction model for 

MA transactions. Based on this model, system architecture and algorithms for transactional 

execution of single MA and multiple MAs using different commitment models are 

designed. We also propose two path-pushing style deadlock detection algorithms to detect 

the possible deadlock in MA transactions.  

 

In summary, this thesis makes the following contributions: (1) A framework for providing 

fault tolerance in an MA system. (2) New approaches (NTFD and Hybrid FD) to 

implementing FD. (3) Checkpoint placement algorithms and CIC based algorithms for MA 

systems. (4) Efficient backup-based algorithms (RMAA and AMAA) for fault tolerant MA 

executions. (5) Models and mechanisms for MA transactions, with the support for 

deadlock prevention and deadlock detection. 

 

Keywords: Mobile agent; Fault tolerance; Failure detector; Checkpointing; 

Primary-backup; Transaction. 
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Chapter 1 

Introduction 
 

The objectives of this research are to investigate the issues of fault tolerance support in 

mobile agent (MA) systems and to develop a systematic framework for designing a fault 

tolerant MA system. This chapter provides an introduction to some basic concepts related 

to MA systems and explains the motivations for this research firstly. Then we describe our 

proposed framework and algorithms designed to achieve fault tolerance in MA systems. 

Finally we summarizes the contribution of this research work and outlines the organization 

of this thesis. 

 

1.1 Basic Concepts of MA Systems 
 

A Mobile Agent (MA) is a program that can migrate from host to host in a network of 

heterogeneous computer systems to execute tasks specified by the agent’s owner. 

Characteristics of MAs include mobility, autonomy, asynchrony, encapsulation of 

protocols, adaptability, and support for mobile computing (disconnected operations). As 

indicated in [CHD95], while none of the individual advantages of MAs is overwhelmingly 

strong, their aggregate advantages are overwhelmingly strong. Combining the 

characteristics of distributed computing and mobile computing, MA provides an alternative 

and complementary way to solve problems in a networked environment that fits more 

naturally with the real world than traditional approaches. The use of MAs offers three 

particular benefits. First, because an MA can package a conversation and dispatches itself 

to a destination host, thus taking the advantages of being in the same site as the peer, 

interacting with the peer locally, and autonomously making decisions, an MA-enabled 
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algorithm can reduce remote communications and make use of the most up-to-date system 

information for decision-making. Second, MA can encapsulate protocols and can be 

dynamically dispatched, allowing us to design a proactive and scalable program adaptive 

to the current system configuration and state. Third, MA can support disconnected 

operations by carrying out tasks for a mobile user temporarily disconnected from the 

network. After being dispatched, the MAs can operate independently, asynchronously and 

autonomously. 

 

MA can be employed in many different applications, including information searching and 

filtering, network management, mobile communication, e-commerce, negotiation, and 

parallel processing [CHD95, HAG98, HIL97, SIL97, DAS99, XU00a]. It also has been 

found especially suitable for structuring network and distributed services that require 

intensive remote real-time interactions [FUN99, XU99, CAO01a]. Furthermore, strategies 

are proposed for using a collection of cooperating MAs as a means for maintaining 

inter-site relationships to solve various problems including dynamic, peer-to-peer 

networking and distributed coordination [MIN99, SCH97, CAO01b]. 

 

Underlying Operating Environment (A Host/Server) 

Mobile Agent Platform  Resources 

Figure 1.1 Place, MA platform and Host/Server 

Place 

Mobile Agent 

An MA cannot carry out its execution without the help of the systems it running on. An 

MA Platform (MAP) manages the lifecycle of MAs, supporting agent creation, 

interpretation, execution, migration, and termination, as well as location tracking, 
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communication and management. It also provides a gateway through which agents can 

access resources available at a host. MA ID is a unique value and it is required for 

identification, management operations, and locating. MAP, host and related resources form 

a place for MAs, which is a context in which an MA executes. Figure 1.1 illustrates the 

relationships between the MA, place, MAP and host. 

 

Figure 1.2 Mobile Agent System 

Host 

MAP R 

Place 2 Place N

Itinerary 

Host 

MAP R

Host 

MAP R 

Place 1 

Networking 
environment 

Internet/WNA/ 
LAN 

Proprietary 
Network

An MA system (Figure 1.2) can contain one or more places and a place can host one or 

more MAs. Since each MA platform will be associated with a host or server and form a 

place for MAs, we hereafter make no distinction between place, MA platform, server and 

host. There are two ways to determine order in which an MA visits places: static and 

dynamic. The static visiting order is predefined in an itinerary which is stored in an MA. 

The dynamic visiting order has no predefined itinerary. The next place to be visited is 

determined by an MA according to the execution context on the current place. Figure 1.2 

also illustrates the running environment for an MA. A group of hosts are connected by 

communication networks, which can be Internet/WAN, LAN or proprietary networks. The 

communication networks can provides various degrees of QoS.  
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Many platforms, languages and toolkits exist to develop MA code [GRR01, WAN99]. 

Until recently, MA systems were developed primarily on script languages like Tcl 

[GRR95], Telescript [WHI94], and Tacoma [JOH95]. The latest proliferation of MA 

technology is mostly a result of the popularity of Java. The Java virtual machine and its 

dynamic class loading model, coupled with several other Java features, most importantly 

serialization, remote method invocation, and reflection, facilitate the construction of first 

class MA systems. Many systems have been developed, most notably including Aglet 

[LAN98], Ajanta [TRI99], Concordia [WAN97], D’Agent [GRR98], Mole [STR98], 

Odyssey [WHI94], and Voyage [OBJ]. MA systems that provide Web connectivity have 

also been developed, allowing Web servers to host MAs [FUN99]. In our research work, 

we test and evaluate our proposed algorithms and software prototype using Naplet [NAP], 

a flexible, Java-compliant MA system developed by us. 

 

1.2 Fault tolerance in MA Systems 
 

It has been agreed that MAs are essential for structuring and coordinating distributed 

applications running in the error prone environment of open and distributed networking 

systems [CHD95, LAN99, CAO01a]. Many potential applications such as e-commerce, 

systems management, and active messaging [STR00] require MA systems to be able to 

tolerate some failures in order to provide a better quality of service. This makes fault 

tolerance a key issue in designing an MA system, with the goal being to guarantee that the 

execution of MA can be recovered and continue once a failure occurs.  

 

The particular characteristics of MAs as mentioned in Section 1.1, however, pose new 

challenges for fault tolerant computing. The challenges lie on two aspects. Firstly, 

traditional fault tolerance approaches in conventional distributed systems are neither 

directly applicable nor sufficient for MA scenarios because their models are for stationary 
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processes and focus only on maintaining their states at local sites. However, MAs travel 

over a network along predefined or dynamically determined itinerary, bring their states and 

data with them, and are asynchronous and autonomous. Therefore, the following features 

which distinguish MAs from processes in conventional distributed systems should be 

considered in the design of the fault tolerant algorithms for MA systems. (1) Mobility: An 

MA may travel a large network and visit a large number of hosts, resulting in a very long 

execution period; message delivery for MA is also significantly different. (2) Autonomy: 

An MA may decide and change its activities dynamically, all by itself. (3) Encapsulation of 

protocols: An MA may carry protocol related information during its migration, which may 

bring convenience for the algorithm design. Secondly, existing works on fault tolerance in 

MA computing treat various fault tolerant issues in isolation and there is a lack of 

systematic approach to designing fault tolerant MA systems. This research is motivated by 

these observations and seeks to develop a systematic framework for providing fault 

tolerance support to MAs. New and integrated methods are needed to provide fault 

tolerance support at various levels of an MA system.  

 

Before we develop the system architecture for a fault tolerant framework, we must analyze 

the MA systems and clarify what kind of failure we should tolerate. As shown in Figure 

1.2, an MA system consists of MAs, places and networks. All of them can suffer failures. 

In this research, we focus on the fault tolerance for the execution of MAs. As to the fault 

tolerance of places and networks, plenty of solutions have already been proposed, such as 

the backup servers and redundant links or routes. Therefore, we assume the failed host or 

communication link will recover later, or can be substituted by their backups, so as to 

provide a workable infrastructure for the execution of MAs. However, the failures of 

places and networks will affect MAs. For example, if a host failed, all the contents 

(including the running MAs) in its RAM will be lost. As a result, eliminating these 
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affections is our concern. To have a better understanding of the fault tolerance for the 

execution of MAs, we firstly investigate the computing model of MAs. 

The computing model for an MA is illustrated in Figure 1.3. Failures that can happen in the 

operations of an MA include: (1) Failures in message passing: Messages exchanged 

between MAs may be delayed, duplicated or lost; (2) Failures during the migration of an 

MA: an MA can be lost or damaged while migrating between hosts due to host failure or 

various network failures; (3) Failures during the execution on a host: an MA can fail 

during its execution on a host for a number of reasons, for example the crash of the MA 

itself or the failure of a host.  
 

Multiple MA 
Single MA 

Migration Execution 
on Host 
(idempotent) 

Message 
Passing 

Predefined Itinerary 

Dynamical Itinerary

Space for the design of fault 
tolerance algorithms  

MA Operations 

MA Migration Style

MA Operation Mode 

Figure 1.3 MA Computing Model 

Execution 
on Host 
(Non-idempotent)

Necessary element 

Alternative element 
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In distributed systems, to get a better grasp on how serious a failure actually is, failures are 

classified into a hierarchy of increasing difficulty level, which includes (1) crash failure 

(fail-stop): a processor fails by stopping to respond starting from a single point in time; (2) 

send-omission failure: a processor fails either by stopping forever, or by forgetting to send 

some of its messages; (3) general-omission failure: a processor fails either by stopping 

forever, or by dropping messages to be sent or to be received; (4) timing failure: messages 
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may arrive too early or too late or are lost, or processor crashes; and (5) arbitrary failure 

(Byzantine failure): processor can behave in whatever way it likes. In this research, we 

consider the failure during the migration of an MA to be the general-omission failure and 

the failure during the execution of an MA to be the crash failure. Depending on the 

different system models, the failure of message passing can be either send-omission failure, 

general-omission failure or timing failure.  

 

In the following section, we describe in greater detail the requirements on fault tolerance 

support that an MA system must satisfy, describe a hierarchical architecture (framework) 

for designing system or fault tolerance support, and describe the components of the 

proposed system.  

 

1.3 A Framework for Designing Fault Tolerant MA Systems 
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Figure 1.4 Hierarchical Architecture 
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The framework for providing fault tolerance in an MA system that is described in this 

section is based on a hierarchical system architecture consisting of six layers (Figure 1.4). 

It is a generic architecture model wherein each separate layer is devoted to a different 

function. In this respect it is novel. Figure 1.4 illustrates our proposal. The functions of a 

layer are built on top of the lower layers. 

 

1.3.1 Local Fault Tolerance Support 

 

The bottom layer of the proposed framework provides local support for fault tolerance and 

support for the algorithms in the upper layers. This bottom layer undertakes two main tasks. 

First, it uses checkpointing to guarantee the persistence of states associated with MAs. 

Checkpointing stores the state and data of an MA into stable storage and recovers the MA 

if it fails. For example, in the event of an emergency shutdown, the system may implicitly 

checkpoint all locally existing agents [PEI97]. Similarly, to avoid the loss of migrating 

agents that might occur as a result of a network link failure or host crash, the agent is 

checkpointed to a stable storage before being dispatching itself to a new site and this 

checkpoint is retained until the agent arrives at the new site. The second task of the bottom 

layer is to provide a failure detection mechanism on the local MA platform. Normally, 

fault tolerance mechanisms are triggered when a failure is detected but currently available 

systems provide little support for MA failure detection. In this thesis, we present a new 

failure detection mechanism which is especially feasible and efficient for MA systems.  

 

1.3.2 Reliable MA Migration 

 

Above local fault tolerant support is the reliable MA migration layer. This layer is 

responsible for ensuring the safe migration of an MA from the current host to a new host. 

This layer provides a transport service that guarantees reliable migration. The functionality 
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of this layer depends on the services provided by the bottom layer and the communication 

networks. We have mentioned that checkpointing can provide support for reliable 

migration.  

 

1.3.3 Reliable Message Delivery 

 

This layer keeps track of the movement of MAs and ensures that a message destined for an 

agent will be safely delivered to it. Most of the available MA systems support remote agent 

communications but few take fault tolerance into account. In this area there are two 

primary issues: tracking the location of MAs and delivering messages to them. Most 

existing MA message communication facilities rely on one of two approaches: a central 

home server approach or a forwarding pointer based approach. Neither can guarantee 

reliable message delivery without synchronization between the message-relay objects and 

the MAs. Based on our previous work on a flexible and adaptive mailbox-based 

communication scheme [FEN01], we have developed protocols for fault tolerant message 

delivery that are also efficient [CAO04b, CAO05]. The mailbox-based scheme allows 

decoupling between the mailbox and its owner agent, providing abstractions by separating 

different concerns in tolerating agent migration faults and message passing faults.  

 

1.3.4 Fault Tolerant MA Execution 

 

The main purpose of this layer is to guarantee the livingness of the MA during its 

execution. To do this we can adopt three types of fault tolerance technologies: replication, 

checkpointing, and primary-backup. Replication based approaches have been well and 

widely studied, which require both the MA and the MA platform to be replicated and 

execute several MAs simultaneously for the same task. The biggest advantage of 

replication based approaches is that the execution of an MA based application will not be 
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blocked even if some replicated MAs fail. However, maintaining the consistency of the 

replicated MAs is costly.  

 

In this thesis, we focus on the checkpointing and primary-backup based approaches. 

Checkpointing based approaches rely on the checkpoints made by the bottom layer. Once a 

failure is detected, the saved checkpoint will be incarnated as a new MA so as to continue 

the execution. Primary-backup based approaches must maintain one or several backups for 

the working MA. The working MA and the backup will each detect if the other fails and 

create a new MA to replace the failed one. Both checkpointing and primary-backup rely on 

the failure detection mechanism provided by the bottom layer. A common problem for 

checkpointing and primary-backup based approaches is how to maintain the property of 

exactly once execution during the recovery. As we know, an operation can be classified as 

either an idempotent or non-idempotent operation. Idempotent operations such as reading 

an entry from a database can be carried out many times without changing the system’s 

status. No inconsistency is introduced into the system. Non-idempotent operations, 

however, such as the operation of withdrawing money from a bank, will change the status 

of the system. If a process fails during the execution of a non-idempotent operation, it is 

not possible to simply redo it because to do so would produce an inconsistent result. 

Therefore, to prevent such inconsistencies is one of our main tasks. In this thesis, we 

preserve the consistency during recovery by MA transaction.  

 

1.3.5 MA Group 

 

The MA group layer supports cooperation between MAs by providing means for reliable 

group communications [MAC01] and transactional execution. One widely used mechanism 

for supporting reliable and consistent execution of collections of cooperating processes in 

distributed systems is the process group. The MA group similarly provides fault tolerant 
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message delivery and guarantees consistency for a collection of cooperating MAs. The MA 

group concept, however, must also deal with the issue of the mobility of a group’s member 

agents. Although the concept of mobility group has been proposed, no realistic algorithms 

and protocols have yet been developed. Based on our work on reliable multicast protocols, 

MA multicast communications and a mailbox-based message delivery scheme, we have 

developed reliable multicast protocol for MAs [CAO04b, CAO05]. In this thesis, we 

continue to seek algorithms and protocols for transactional execution for an MA group. 

 

1.3.6 Application-level Fault Tolerance 

 

This layer is the highest layer in the hierarchy. This layer builds its own application 

dependent fault tolerance schemes using the mechanisms provided at the underlying 

system layers. The fault tolerance mechanisms in this layer depend on the specific 

applications so they cannot be generalized to all the applications. Since this research work 

aims to seek system level fault tolerance approaches, we will not design algorithms for a 

specific application. However, during our research work we did notice that some of our 

proposed algorithms were particularly efficient and suitable for a class of applications. For 

example, some algorithms are especially efficient for applications whose operations are all 

idempotent. So as not to ignore the background and context of different types of 

applications and to provide some guidance for the design of the algorithms, we thus 

classify the applications as either operation-idempotent applications or as 

operation-non-idempotent applications. 

 

1.4 Contributions of the thesis 

In this section, we describe our contributions in this thesis, which consists of several 

groups of algorithms designed for the fault tolerance of MA systems. Before the design of 

the algorithms, we have identified the following four issues as essential for our framework:  
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 Efficient primary-backup based algorithms for fault tolerant MA execution 

 Integrated checkpointing-based algorithms for fault tolerant MA execution 

 Efficient and scalable failure detection mechanism 

 MA Transaction 

Figure 1.5 Relations among the Issues 

Primary-backup 
Approaches

Checkpointing 
Approaches 

MA Transaction 

Failure Detector 

Provide support during recovery

Provide failure detection 

MA ApplicationsProvide ACID support  

Provide Fault Tolerance 

Provide failure detection 

 

HBFD 

Checkpointing Interval 

NTFD

Hybrid FD

Rear-G RMAA AMAA Basic-CIC DMP-CIC 

Figure 1.6 Our Proposed Algorithms for the Framework 

Compensation 
Procedures 

MM CM Host-WFS MA-WFG 

Open Commitment Close Commitment

Adaptive Commitment Protocol 

Single MA Transactional execution 

Multiple MA Transactional execution 

Independent Checkpointing 

M
A

 Transaction 

C
heckpointing A

pproaches 

Prim
ary-backup 

A
pproaches 

Failure 
D

etector 

 



CHAPTER 1 Introduction 
 

 13

The colored ovals in Figure 1.5 show how these issues are related. Checkpointing and 

primary-backup techniques are two widely adopted fault tolerant schemes for the fault 

tolerance of MAs. Failure detector is a building block providing the failure detection 

service for both checkpointing and primary-backup based algorithms. MA transaction 

guarantees the system consistency for the two schemes during their recovery and the ACID 

[GRJ93] properties for MA based applications. Corresponding algorithms have been 

proposed for each of these issues. They are arranged into four blocks in Figure 1.6, and 

each block corresponds exactly to one issue. We describe these issues and our designed 

algorithms in the following subsections. 
 

1.4.1 Primary-backup based Algorithms for Fault Tolerant MA 

Execution 

 

Primary-backup is a popular scheme for the MA fault tolerance [JOH95, TAO00, KOM02, 

PEA03, PLE03]. In our research work, we focus on how to make it more efficient. The 

basic idea of the primary-backup based approaches is to maintain some backups of the 

working MA. The working MA and the backup will each detect the failure of the other 

through FDs. Once a failure is detected, a new MA is created by the living working MA or 

backup to replace the failed one. Existing primary-backup schemes have shortcomings. 

The first is the overheads caused by the backups. The backups do nothing except 

monitoring and keeping synchronization with the working MA, which increases the 

system’s overhead and dramatically slows down the execution speed. The second problem 

comes from the failure detection mechanism (heartbeat based FD: HBFD) adopted in 

existing works. HBFD requires that the peers keep on exchanging the heartbeat messages. 

This characteristic not only incurs message costs and causes false detection, but also needs 

modification to cater for the MA environment, because HBFD cannot work properly due to 

no message can be delivered during the period of migration for an MA (we call this period 
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the dumb period). To solve these problems, parallel processing is introduced in our newly 

propose primary-backup based algorithms (RMAA and AMAA). This reduces the system’s 

overheads and improves the system’s performance. We also design the handover 

procedures to solve the dumb period problem. Our newly proposed notification based FD 

(NTFD) is integrated with RMAA and AMAA to reduce the message cost and the false 

detection caused by HBFD. 

 

1.4.2 Checkpointing-based Algorithms for Fault Tolerant MA Execution 

 

Checkpointing is an operation in which the real-time execution state of a process is saved 

to stable storage [DAV69]. When an MA fails, it need not restart from the beginning but 

from the latest checkpoint. It is naturally to adopt checkpointing in MA systems: 

serializing an MA for the migration to the next host effectively constructs a checkpoint. 

Different checkpointing libraries have been developed for various platforms [PLA95, 

SIV98]. Considering our MA platform is a Java based system, we employ the serialization 

mechanism provided by Java to construct the checkpointing primitives.  

 

Checkpointing in MA system has some similar features as the process migration via 

checkpointing, but they are different in several aspects. Basically, process migration aims 

to balance the workload among a group of hosts (usually in a LAN), while an MA can 

travel a very large area and retrieval/update the information on the visited hosts. The 

migration of a process happens during or before the execution of the process and is 

triggered by a central or distributed algorithm (i.e., load balance algorithm), while an MA 

fully controls its migration along an itinerary and its migration starts after it finishes its 

execution on a host. Therefore, it is necessary to redesign the checkpointing based 

algorithms in MA systems.  
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For checkpointing-based approaches, independent checkpointing is a popular solution to 

keep the persistent state of an MA. However, checkpointing involves high costly I/O 

operations, so how to achieve a good trade-off between the checkpointing cost and system 

performance is a critical issue. Excessive checkpointing would result in the performance 

degradation during normal operation. On the contrary, deficient checkpointing would incur 

expensive recovery cost upon a failure. There has been much research on how to determine 

the optimal checkpointing interval [YOU74, MAN75, GEL78, GEL79, TAN84, SHI87, 

NIC90, PAG01], which is referred to as the checkpoint placement problem if the optimal 

checkpointing interval cannot be achieved. Equidistant and equicost are the two 

well-known checkpointing strategies. The equidistant strategy considers a deterministic 

productive time between two neighboring checkpoints, while the equicost strategy allows a 

checkpoint to be made when the expected re-execution cost is equal to the checkpointing 

cost. With the occurrence of failures following a Poisson process, these strategies become 

identical and will result in the optimal checkpointing interval [TAN84] in conventional 

systems. Currently, for MA systems, there is no work done on how to determine a proper 

checkpointing interval for an MA and no study on how the above two strategies can be 

applied. In this research, we firstly analyze the behaviours of an MA system. Based on the 

analysis, we find that it can be modelled as a homogeneous discrete-parameter Markov 

chain, which is different from the models used in conventional systems. Therefore, the 

analytic methods and corresponding results for conventional systems cannot be adopted 

directly for an MA system. Based on our proposed model, we study the equidistant and 

equicost checkpointing strategies and propose three checkpoint placement algorithms for 

MA systems. Through simulations we evaluate the performance of our proposed 

algorithms and the result shows that the equicost strategy based algorithm is most suitable 

for an MA system. 
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If an MA group is concerned, independent checkpointing may suffer the domino effects. 

We introduce communication induced checkpointing (CIC) in MA systems. CIC has been 

proven to be a flexible, efficient and scalable scheme. We propose a deferred message 

processing CIC algorithm (DM-CIC) to support the recovery of a group of MAs. DM-CIC 

algorithm not only establishes the consistent recovery lines efficiently but also integrates 

well with the independent checkpointing for reliable MA migration.  

 

1.4.3 Efficient and Scalable Failure Detection Mechanisms 

 

Failure detection mechanism is basic to fault tolerance. Failure detector (FD) is an 

important component of the bottom layer of our framework. On the one hand, the fault 

tolerance mechanisms are triggered when a failure is detected; on the other hand, if an FD 

reports a false error, it will produce the duplicate computation. Therefore, an accurate and 

quick failure detection service is highly desirable. However, the running environment (e.g. 

Internet or LAN) of an MA is characterized by asynchrony (no bound on the process 

execution speed or message delay) and this makes it impossible to detect precisely whether 

a remote MA has failed or has just been very slow. Consequently, we can provide the 

failure detection service at only a certain level of quality. Recent years have seen many 

studies on the QoS and corresponding implementations of FDs [BER03, CHE02, BER02, 

GUP01, REN98, FAL05]. The QoS metrics include accuracy, quickness, efficiency and 

scalability. The accuracy of an FD refers to how well an FD provides accurate failure 

information. The quickness reflects the speed of an FD for failure detection. High 

efficiency requires the FDs to have low overheads. Finally, scalability is desirable for the 

large deployment of FDs in distributed systems. 

 

Heartbeat-based failure detectors (HBFD) are widely used in existing works. The reasons 

for the popularity of HBFD are that its model and implementation are simple and it 
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preserves the strong completeness property. But HBFD can operate well only under certain 

conditions: (1) clocks are synchronized between the monitored process and the FD or the 

clock shift is bounded; (2) the heartbeat message should be delivered to the FD within a 

fixed period of time. For the first requirement, even if it is not unrealistic to deploy a clock 

synchronizing network, the cost could be very high. The second requirement actually 

implies that a synchronized system is required, which can not be achieved in an 

asynchronous distributed system. The problems with current HBFD implementations 

motivate us to design an alternative approach to implementing FDs. The model used in 

existing works considered a process and its local running environment as a single entity. In 

our research, we consider a more general model where the processes (MA) and the hosts 

on which the processes are running are separated, and an FD is installed on each host to 

monitor the processes on that host. This model covers the existing single entity model as a 

special case but allows us to propose different methods for implementing FDs. All the 

results of QoS study on FD in the literature are also applicable in the general model. 

The alternative method we proposed uses a notification based approach (NTFD). NTFD 

works by letting the FD installed on the host send notification messages to the interested 

entities once a failure of the local process (MA) is detected. It has the following features: 

(1) Efficiency: message cost is low. (2) Scalability: message cost (network load) increases 

linearly with the number of process failures, no matter how many processes and FDs are 

involved. (3) Accuracy: once a failure notification message is sent out, the monitored 

process is really failed. NTFD will not make false detection. (4) Simplicity and easy to 

implement: No synchronized clocks are needed and NTFD can be implemented by using 

on-the-shelf hardware or software components. However, one problem with NTFD is that 

it cannot maintain the completeness property if the notification message cannot reach the 

target processes, whereas HBFD can preserve the completeness property well. Considering 

the advantages and disadvantages of the NTFD and HBFD approaches, we propose a 
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hybrid approach in which notifications are incorporated in heartbeat mechanism to 

improve the overall performance. 

 

1.4.4 Models and Mechanisms for MA Transactions 

 

MA transaction allows the transactional execution for the tasks carried out by a single MA 

and multiple MAs so as to guarantee the Atomicity, Consistency, Isolation, and Durability 

(ACID) properties [GRJ93] for the tasks. Atomicity enforces that all operations of a 

transaction must be done or none of them. Consistency guarantees that a system is 

transformed from a consistent state to another one. Isolation ensures that each transaction 

execution be isolated even though transactions are executed concurrently. Durability is the 

condition stating that once a transaction commits, its effects on the system are durable. For 

an MA system, consistency is necessary to maintain a global consistent state for the 

rollback procedure for a failed MA; atomicity can help one or a group of MAs either finish 

all of the assigned tasks or none of them; isolation supports multiple MAs to execute in the 

same MA system in a serialized way, and durability makes the final committed computing 

results available. Therefore, MA transaction can preserve the system consistency during 

the abort process of a failed MA and provide support for the re-execution of 

non-idempotent operations, and the execution of a group of MAs.  

 

Existing work on MA transactions pays more attention on the theoretical discussions of 

MA transactions, such as the ACID properties, open/close transaction models [SIL97, 

SHE01, PLE03]. Few works consider the issues such as the system architecture (model) 

and performance evaluation when to implement MA transaction in a real MA execution 

environment. For an MA application which needs MA transaction support, normally the 

system below the MA platform already provides the local transaction support. Such 

transaction support mechanisms have been studied extensively for decades and have been 
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widely deployed, especially in centralized or distributed database management systems 

(DBMS). Hereafter we refer to the systems that already provide support for transactions as 

the base transaction systems. Most base transaction systems support Client/Server 

computing model. MA as a new computing model converts the repetitive remote 

communications between clients and servers into local operations by encoding the tasks of 

the client side into an MA and launching the MA to the server side, so as to improve the 

efficiency of base transaction systems dramatically. From above analysis we can draw a 

conclusion that an MA transaction should be deployed in the context of base transaction 

systems so as to integrate with these de-facto technologies. Accordingly, our MA 

transaction model is based on the support of base transaction systems, where the MA 

system acts as an upper layer and has no substaintial differences from other applications 

running on the base transaction systems. 

In an MA transaction, the MA may travel in a large network and visit different base 

transaction systems that have different interfaces and provide different services, which 

implies that the execution time of an MA can be very long. On another hand, two phase 

locking (2PL) is a popular concurrency control protocol and can guarantee the strict 

isolation between different transactions. Long execution time plus 2PL can easily produce 

deadlock. To date there has been no study evaluating the probability of the occurrence of 

deadlock, and the deadlock prevention or detection in MA transactions. With these 

problems in mind, we propose a system model and architecture for MA transactions which 

integrates the base transaction systems. We also design an adaptive commitment model 

with algorithms for the transactional execution of both single and multiple MAs. Through 

simulations we evaluate the probabilities of deadlock occurrence and the impact of 

deadlock on the performance of MA transactions. We then propose algorithms for 

deadlock prevention and algorithms for deadlock detection (Host-WFS, MA-WFG).  
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1.4.5 Summary 

 

In summary, we have developed the following framework, algorithms and software 

packages for the fault tolerance of MA systems. 

 

1. A framework for providing fault tolerance in an MA system, which is based on 

hierarchical system architecture consisting of six layers.  

 

2. A new approach to implement FD: notification based FD (NTFD). Compared with 

HBFD, NTFD exhibits a much higher probability of achieving a better balance 

between completeness and accuracy properties. We also propose the design of a hybrid 

FD which combines the advantages of HBFD and NTFD. 

 

3. New efficient primary-backup based algorithms (RMAA and AMAA) for the execution 

of MAs have been proposed. Failure detection service which is specially designed for 

MAs has been integrated into these algorithms. 

 

4. Three checkpoint placement algorithms for the independent checkpointing of single 

MA. Basic-CIC algorithm (Basic-CIC) and deferred message processing CIC 

(DM-CIC) algorithm are proposed. 

 

5. New model and mechanisms for MA transactions. Algorithms for transactional 

execution of single MA and multiple MAs using different commitment models have 

been developed. Deadlock prevention and deadlock detection have been studied and an 

efficient deadlock detection algorithm has been presented. The simulation results show 
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our newly designed deadlock detection algorithm is particularly efficient for MA 

transactional execution. 

 

1.5 Structure of the Thesis 
 

This chapter introduces the background, motivation and contributions of this research, 

explains the layers of the hierarchical architecture in our proposed framework, and the 

algorithms designed for this framework. The remaining chapters of the thesis are organized 

as follows. 

 

Chapter 2 briefly presents the literature review of the relevant topics and provides some 

necessary preliminary knowledge of failure detection mechanism, fault tolerance 

techniques (replication, checkpointing, and primary-backup) and transaction processing.  

 

Chapter 3 presents the FD techniques. We first prove HBFD is unfeasible for large scale 

network environments and then propose a new approach (NTFD) to implementing the FD 

based on a general model for FD. We also analyze the trade-off of achieving QoS of FD 

with the results showing that NTFD has a much higher probability of achieving a better 

balance between completeness and accuracy, yet provides a much lower probability of 

false queries with lower system cost. Based on this analysis, we propose the design of a 

hybrid FD which combines the advantages of HBFD and NTFD. Since the FDs we 

discussed in this chapter are general FDs and not only cater for MA systems, we introduce 

it before other techniques. In Chapter 4, we will introduce the integration of failure 

detection service with MA systems. 

 

Chapter 4 presents our proposed efficient primary-backup based algorithms for fault 

tolerant MA execution (RMAA and AMAA). We also integrate the failure detection 



CHAPTER 1 Introduction 
 

 22

services with our algorithms. A handover procedure is designed for FDs to deal with the 

mobility of MAs. 

 

Chapter 5 presents two set of checkpointing-based algorithms. One set of algorithms aim to 

determine the checkpoint placement for the independent checkpointing of a single MA. 

The other set of algorithms provide consistent checkpointing mechanism for a group of 

MAs.  

 

Chapter 6 provides the models and mechanisms for MA transactions. We analyze the 

realistic execution environment of MAs and propose algorithms for transactional execution 

of single and multiple MAs. Through simulations, we study the probability of the 

occurrence of deadlocks and the impact of deadlocks on the MA systems. We propose 

deadlock prevention algorithms but mainly focus on deadlock detection algorithms. 

Related simulations are performed to evaluate the performance our proposed algorithms. 

Chapter 7 gives the conclusions and a discussion of future works. 
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Chapter 2 

Literature Review 
 

In this chapter, we provide a literature review for the previous works on fault tolerance of 

MA systems, beginning each section by outlining some basic concepts. The organization of 

this chapter is as follows. Firstly, a brief overview is given in Section 2.1. Section 2.2 

describes checkpointing based approaches. Section 2.3 describes replication based 

approaches. Section 2.4 describes primary-backup based approaches. Section 2.5 

introduces failure detection as a building block for the fault tolerance of MA systems. 

Section 2.6 presents a review for MA transactions. Finally, Section 2.7 summarizes this 

chapter. 

 

2.1 Overview 
 

Checkpointing, replication, primary-backup, failure detection mechanism and transaction 

are the primary techniques for the design of fault tolerance in conventional distributed 

systems. These techniques can also be applied to the fault tolerance of MA systems, but the 

special characteristics of MAs (mobility, autonomy, asynchrony, encapsulation of 

protocols, adaptability, etc.) must be considered. Many existing works have proposed fault 

tolerance algorithms for MA systems based on these techniques. Two survey papers 

[PLE04, QUW05] have summarized existing works from different viewpoints. In [PLE04], 

authors focus on the replication and MA transaction techniques. In [QUW05], authors 

classify the existing works into two categories according to the two widely used techniques 

in MA systems: checkpointing and replication.  
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In this chapter, we classify previous work on the design of fault tolerance in MA systems 

according to whether they have dealt with the three widely used fault tolerance techniques, 

checkpointing, replication and primary-backup, or whether they deal with the two 

infrastructure functionalities that support fault tolerance techniques, failure detection, and 

MA transaction. Among them, failure detection for MA systems has gained little 

concentration. In most previous work, failure detection is usually simply a matter of 

sending “I am alive” or Ping messages, which incurs a high message cost and is in any 

case unreliable. To propose a new approach to implementing failure detection, we make a 

literature review for the failure detection techniques in traditional system. In the following 

sections, we will review the previous works which had adopted each of these techniques. 

 

2.2 Checkpointing based Approaches 
 

A checkpoint is the copy of an MA’s code and state stored on stable storage. Normally, an 

MA system periodically saves checkpoints for the MAs. When the failure of an MA is 

detected by the system, it will recover the MA by rolling back to its last checkpoint. Make 

a checkpoint is easy in MA system: serializing an MA for the migration to the next host 

effectively constructs a checkpoint. Since nearly all existing MA platforms are Java based, 

accordingly nearly all the existing works adopt Java serialization techniques to make 

checkpoints. Existing works on checkpointing schemes focus on three issues: (1) what kind 

of checkpointing techniques they use, (2) what kinds of failures they tolerate and (3) how 

to deal with consistency during the recovery. This thesis also considers a less-studied issue, 

that of how to determine checkpoint placement in MA systems. Since to our knowledge 

there has been to date no work dealing with this, in the following sections we shall provide 

some basic background to the topic, reviewing how this problem is dealt with in 

conventional systems. We begin by describing some commonly used checkpointing 

techniques. 
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2.2.1 Concepts and Definitions  

 

There has been considerable research in the area of checkpointing, for example, as it 

applies to scientific calculation and distributed systems. Checkpointing can be classified as 

application transparent or application non-transparent, depending on whether the making 

of a checkpoint requires the intervention of the application or of the programmer. In 

application transparent checkpointing, the system automatically takes checkpoints and 

automatically recovers from failures. Obviously, this approach has the advantage of 

relieving programmers of some complex programming tasks. In this research, we discuss 

only application transparent checkpointing. Note too, that unless otherwise stated, the term 

“checkpointing” will hereafter denote only application transparent checkpointing. In the 

following, we describe three commonly used transparent checkpointing schemes: 

Independent, Coordinated, and Communication-induced.  

 

1) Checkpointing Schemes 

 

[ELN02] classified checkpointing techniques as being either independent (or 

uncoordinated), coordinated, or communication-induced. Independent checkpointing is the 

simplest of these schemes. It allows processes to take checkpoints periodically without any 

coordination with other processes. Independent checkpointing, however, suffers from the 

domino effect [RAN75]. That is, if it is used in a group of processes that communicate by 

messages. The messages can induce inter-process dependencies during failure-free 

operation. Upon a failure of one or more processes in a system, these dependencies may 

force some of the processes that did not fail to rollback, creating what is commonly called 

rollback propagation. Rollback propagation may extend back to the initial state of the 

computation, causing the loss of all the work performed before a failure.  
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In order to avoid the domino effect, [CHY85] proposed coordinated checkpointing in 

which processes send checkpoint coordination messages in order to synchronize their 

checkpointing activities. In this way, a globally consistent set of checkpoints is always 

maintained in the system. Coordinated checkpointing involves high message overheads. 

This makes it unsuitable for mobile computing systems with networks containing low 

bandwidth wireless channels. A further disadvantage of coordinated checkpointing is that 

process execution may have to be suspended during coordination, resulting in performance 

degradation.  

 

Another checkpointing scheme to overcome the domino effect is communication-induced 

checkpointing (CIC), which has been proposed in [RUS80]. In CIC, processes make two 

kinds of checkpoints, basic and forced. Basic checkpoint is a kind of independent 

checkpoint, so there is no coordination for this type of checkpoint. Forced checkpoint is 

made to maintain the consistency recovery line. Instead of exchanging coordination 

messages to coordinate the checkpoints like coordinated checkpointing, CIC piggybacks 

protocol specific information in application messages. Processes use the piggybacked 

information to decide whether a forced checkpoint should be taken or not.  

 

Compare with the independent and coordinated checkpointing, CIC has several advantages. 

Firstly, communication-induced checkpointing is intuitively believed to be scalable since it 

does not require the processes to participate in a global checkpoint. However, in [ALV99], 

through several experiments for a class of compute intensive distributed applications made 

by author, they got conclusions that CIC does not scale well as the number of processes 

increases. The occurrence of forced checkpoints at random points within the execution due 

to communication messages makes it very difficult to predict the required amount of stable 

storage for a particular application run. Also, this unpredictability affects the policy for 

placing basic checkpoints and makes communication-induced protocols cumbersome to 
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use in practice. Furthermore, the study shows that the benefit of autonomy in allowing 

processes to take basic checkpoints at their convenience does not seem to hold. In all 

experiments, a process takes at least twice as many forced checkpoints as basic, 

autonomous ones. Secondly CIC scheme allows processes themselves make decision to 

take checkpoints. Therefore the process can choose the right time to make the checkpoints. 

Obviously, this characteristic provides the autonomy and flexibility. For example, system 

or processes can choose the time to save checkpoint when the images of the processes are 

small [LIC90, PLA95]. This also makes it possible to integrate with other algorithms in a 

system which adopted other checkpointing schemes. The hierarchical architecture of our 

framework also makes it possible to save overheads by integrating the algorithms in 

different layers so as to reduce the number of forced checkpoints. We will discuss a case of 

integration in Chapter 5. 

 

2) Definitions 

 

Here we provide some necessary definitions and theories for checkpointing, which have 

been widely accepted by existing works [RAN75, RUS80, CHY85, LIC90, ALV99]. We 

will focus more on CIC because CIC has several advantages. 

 

Definition 2.1 Recovery line: Upon a failure, the system is restored to the most recent 

consistent set of checkpoints, which form a recovery line. 

 

Definition 2.2 Basic checkpoints: A process may take a basic checkpoint any time during 

the execution. The basic checkpoints of different processes are not coordinated to form a 

global consistent checkpoint. 
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Definition 2.3 Forced checkpoints: To guard against the domino effect, a CIC protocol 

piggybacks protocol specific information to application messages that processes exchange. 

Each process examines the information and occasionally is forced to take a checkpoint 

according to the protocol.  

 

Figure 2.1 Checkpoints in a distributed computing environment 
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Definition 2.4 Useless checkpoints: A useless checkpoint of a process is one that will 

never be part of a global consistent state. In Figure 2.1, checkpoint C2,2 is an example of a 

useless checkpoint. Useless checkpoints are not desirable because they do not contribute to 

the recovery of the system from failures, but they consume resources and cause 

performance overhead. 

 

Definition 2.5 Checkpoint interval: A checkpoint interval is the sequence of events 

between two consecutive checkpoints in the execution of a process. 

 

Definition 2.6 Z-paths: A Z-path (zigzag path) is a special sequence of messages that 

connects two checkpoints. Let  denote Lamport’s happen-before relation [LAM78]. 

Given two basic checkpoints Ci,m and Cj,n, a Z-path exists between Ci,m and Cj,n if and only 

if one of the following two conditions holds: 
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∀

1. m < n and i = j; or 

2. There exists a sequence of messages [m0, m1,…, mz], z > 0, such that: 

a) Ci,m  sendi(m0); 

b) l < z, either deliverk(ml) and sendk(ml+1) are in the same checkpoint interval, 

or deliverk(ml)  sendk(ml+1); and 

c) deliverj(mz)  Cj,n where sendi and deliveri are communication events 

executed by process pi. In Figure 2.1, [m1, m2] and [m1, m3] are examples of 

Z-paths. 

 

Definition 2.7 Z-cycles: A Z-cycle is a Z-path that begins and ends with the same 

checkpoint. In Figure 2.1, the Z-path [m4, m1, m3] is a Z-cycle that involves checkpoint C2,2. 

 

Z-cycle is important for CIC. In [NET95], authors proved that a checkpoint is useless if 

and only if it is part of a Z-cycle. Therefore, if we can guarantee that there is no Z-cycle in 

a distributed system, then there is no useless checkpoint, which means the domino effect 

can be avoided. According to the methods to preventing the Z-cycle, CIC protocols can be 

classified model-based and index-based protocols. Model-based CIC protocols aim to 

prevent the formation of specific checkpoint and communication patterns that may lead to 

the creation of a Z-cycle. Therefore a model is needed to detect the possibility that such 

patterns could be forming in the system. The MRS model proposed in [RUS80] requires all 

message-receiving events precede all message-sending events within every checkpoint 

interval. Another model in [BAR81] forces the process to take a checkpoint before every 

message sending event. In the contrast, index-based CIC protocols eliminate the useless 

checkpoint by making the forced checkpoint according to the piggybacked information in 

application messages. In [BRI84], a typical index-based CIC algorithm has been proposed. 

We will discuss CIC algorithm in details in Chapter 5.  
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In the following sections, we first review checkpointing schemes on MA systems according to 

the type of checkpointing scheme that they have adopted and review the types of failures 

that these schemes tolerate. We then discuss previous work on checkpoint placement. 

 

2.2.2 Independent Checkpointing 

 

Independent checkpointing is the simplest type of checkpointing scheme and has been used 

to guarantee the persistence of state associated with MAs. Independent checkpointing has 

two main goals: First, it seeks to guarantee reliable migration. It does this by checkpointing 

the agent to stable storage before dispatching an MA to a new host. This copy is kept until 

the agent arrives at the new host. Second, it seeks to tolerate agent crash on a host. It does 

this by checkpointing a replica MA into stable storage upon its arrival at each host or 

during its execution on the host. These two approaches have been adopted in many works 

[STR98b, JOH99, SIL00, MOH00, SIV00, WU01, PAR02, CHN03] as well as in some 

MA systems. Concordia [WAN97] utilizes proxy objects and a persistent object store to 

insulate applications from system or network failures. However, the task of checkpointing 

and recovery of MAs is left to the programmer. Ara [PEI97] and Aglets [LAN98] offer a 

similar means for an MA system to create a checkpoint, which is stored on some persistent 

media (e.g. disk). Independent checkpointing is easy to implement. However, the domino 

effect greatly constrains its usage in environments where the MA has interactions with 

others, i.e., the multiple MAs cooperation applications. 

 

In order to remove the domino effect, message logging has been used in tandem with 

independent checkpointing. [PAL00] used receiver based logging to log messages so as to 

ensure they could be regenerated during the re-execution phase. The advantage claimed for 

receiver based logging against sender based logging is faster recovery. Another claimed 

advantage is that recovery and pruning of the message log can be done autonomously, 
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without interaction with other user agents. But how to implement the recovery was not 

described. [LYU03] adopted the similar idea. The focus of these two works is on the 

replication scheme, with the role of checkpointing being that of an assistant scheme. 

Another independent checkpointing strategy that is assisted by a message logging scheme 

is found in [OSM04], although the authors call this checkpointing scheme a 

communication pair independent checkpointing strategy.  

 

2.2.3 Coordinated Checkpointing 

 

Another way to restrict the influence of failures to the other agents in the same 

communication group is to use coordinated checkpointing or communication-induced 

checkpointing. In coordinated checkpointing, a coordinator initiates all the group members 

to start the checkpointing process. This coordinates message passing so as to produce a 

consistent system snapshot. In [DAL98], a checkpoint manager (CM) monitors all the 

agents inside a cluster of machines. The CM, which is assumed to be very reliable, is 

responsible for keeping track of the agents and for restarting the agents when there is a 

node failure. Although the authors did not describe in detail how to make coordinated 

checkpoints, they did provide architecture for centralized checkpointing coordination. The 

main problem with this approach is the fact that the CM is a single point of failure, and 

message cost for a centralized way could also be very high.  

 

[GEN00] presents a detailed coordinated checkpointing procedure in which one particular 

checkpoint server acts as a checkpoint coordinator. Each process maintains one permanent 

checkpoint, belonging to the most recent consistent checkpoint. During each run of the 

protocol, each process takes a tentative checkpoint, which replaces the permanent one only 

if the protocol terminates successfully. The coordinator process starts a new consistent 

checkpoint by taking a tentative checkpoint, and broadcasting an Initiate message. Upon 



CHAPTER 2 Literature Review 
 

 32

receiving an Initiate message, a process takes a tentative checkpoint. It sends a cpTaken 

message to the coordinator. When the coordinator (root) process receives a cpTaken 

message from all processes (its children), the coordinator (root) broadcasts a Commit 

message (to its children). When a process receives a Commit message, it makes its 

tentative checkpoint permanent and discards its previous permanent checkpoint. 

 

2.2.4 Checkpoint Placement 

 

Determining the optimal checkpointing interval (the optimal checkpoint placement scheme) 

has been studied for a long time. Most works focus on the uniprocessor systems [YOU74, 

MAN75, GEL78, GEL79, TAN84, SHI87, NIC90, PAG01]. They use execution time as 

the basic metric to evaluate the optimal checkpointing interval, and adopt the equidistant or 

equicost checkpointing strategies. A common assumption is that the normal execution time 

of the target program without checkpointing is known in advance.  

 

In [YOU74], author proposed a first-order approximation to the optimum checkpoint 

interval. The author assumed a system in which a failure is detected as soon as it occurs, 

the checkpointing interval is fixed, the checkpointing time is constant, and no failures 

occur during error recovery. In addition to these assumptions, the author adopted the 

equidistant strategy and assumed that the occurrence of failures are essentially random (a 

Poisson process), with the failure rate λ. Then the mean time Tf between failures is Tf = 

1/λ, and the density function P(x) for the time interval of length x between failures is 

given by P(x) =λe-λx. This failure assumption has been used by most of the papers 

[GEL78, GEL79, WON96, ZIV97, CXY03].  

 

In [TAN84], the authors relaxed the above assumptions in three ways: by considering 

general failure distributions, by allowing checkpointing intervals to depend on the 
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reprocessing time and the failure distribution, and by allowing failures to occur during 

checkpointing and error recovery. They first discussed the equidistant checkpointing 

strategy and found that the system availability resulting from using the strategy depended 

only on the mean of the failure distribution. Then, the equicost strategy was introduced 

which is a failure-dependent and reprocessing-independent checkpointing strategy. For 

Weibull failure distributions, the authors showed that the equicost strategy achieved higher 

system availability than the equidistant strategy.  

 

Instead of using the execution time as a metric, in [ZIV97], the authors presented an online 

algorithm for the placement of checkpoints. This algorithm keeps track of the size of the 

state of a program and a checkpoint is made when it is small. 

 

Solutions have also been developed for parallel and distributed systems [WON96, PLA98] 

and mobile computing systems [CXY03]. In [WON96, PLA98], the optimal checkpointing 

interval in synchronous checkpointing for multiple processes is considered based on a 

mean failure time. In [CXY03], the authors derived an approximation to the optimal 

message number interval between checkpoints. In mobile computing environments, as part 

of the total application execution time, messages passing time is affected by link 

bandwidth, making it difficult to predict the execution time of a program. Therefore, to 

determine the checkpoint placement the authors utilized the received computational 

message number. It is assumed that the inter-failure time is exponentially distributed. 

 

A common characteristic of all of these works is that, in the system model, the execution of 

the programs to be checkpointed is continuous and has a long execution period, and a 

uniform failure rate during the entire execution of the program is known in advance. In our 

study of MA systems, however, the execution of an MA is discrete in time because the MA 

executes for a while at a host, and then stops execution to migrate to another host. Such an 
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execution model looks similar to a continuously executing process with high fail-stop rate, 

but the two models are essentially different. The failure of a continuously executing 

process is totally unpredictable, while the migration of an MA is fully controlled by the 

MA. This results in a quite different system model which required new solutions which 

will be described in detail in Chapter 5. 

 

2.3 Replication based Approaches 
 

Although checkpointing ensures that the MA will not lost, its requirements of stable 

storage together with the high cost of I/O operation, and especially the possibility of 

blocking make it unacceptable for some applications. This has led to research into 

alternative approaches to achieving fault tolerance. Instead of storing the snapshot of an 

MA into stable storage like checkpointing, replication approaches replicate the agent and 

the place (hosts or servers providing the same services). There have been a number of 

works based on this approach [ROT98, SIL98, PLE00, PLE01, PLE03]. In [PLE01], the 

authors classify these works as either spatial-replication-based (SRB) or 

temporal-replication-based (TRB) approaches. SRB approaches send the replicas of the 

agents to a set of places at the next stage. TRB approaches attempt an agent execution in 

one place. If the execution fails, the agent is sent to another place. In [PLE03], the same 

authors offer another classification: the commit-after-stage and commit-at-dest approaches. 

Commit-after-stage approaches make the modifications at the agent and the place 

permanent and visible to other agents during or immediately after every execution stage. In 

contrast, commit-at-dest approaches generally commit the modifications only at the end of 

the entire agent execution.  

 

The distinctive advantage of replication based approaches is that it guarantees the 

unblocking of the execution of an MA. The idea is intuitive: servers are replicated, so there 
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is more than one MA platform. MA is also replicated and each replica is sent to a 

replicated server and executes the task on it. Therefore, if one server crashes, other servers 

and MAs can still finish the execution. An obvious problem of this, however, is how to 

guarantee exactly-once execution. Existing works solve this problem using transaction and 

consensus.  

 

Transaction processing is adopted in [ROT98] and [SIL98]. In [ROT98], exactly-one 

execution is guaranteed by applying a voting protocol and distributed transaction. A 

transactional message queue mechanism ensures that the following three operations 

executing on a place constitute a transaction: a place (1) retrieves an MA from its input 

queue; (2) executes the agent; (3) sends the agent to the places at the next stage. The 

transaction can only be committed (made permanent) by the place which has received a 

majority of votes. However, according to [PLE00], this solution can produce blocking if a 

failure occurs during the leader election. For example: the leader fails immediately after its 

election but before committing the transaction. As the leader can no longer resign by itself 

and thus no other leader can be elected to commit its transaction, the execution of MA is 

blocked. This could be a problem, but the transaction processing monitor (TPM) is able to 

monitor the failure of the leader and this would trigger a new round of elections.  

 

In [SIL98], another leader election algorithm and 3PC were proposed as a way of 

improving the algorithm in [ROT98]. However, as this particular combination of leader 

election and transaction model may lead to a violation of the exactly-once property, it 

relies on a so-called distributed context database to prevent more than one concurrent 

leader, thereby enforcing the exactly-once property. In this approach, the commit decision 

is made in collaboration with the distributed context database, a leader election protocol, 

and the 3PC. The use of the combination of transaction and leader election to model 
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fault-tolerant MA execution imposes a rather high maintenance cost on the distributed 

context database and introduces a higher latency. 

 

Instead of using transaction, consensus is employed in [PLE00, PLE01, PLE03]. In these 

works, fault tolerant and exactly-once MA execution are modeled as a sequence of 

agreement problems (denoted by AgrPbn, n≥0). At every stage Si the following operations 

are performed: (1) one (or potentially multiple) place executes the agent; (2) all replica 

agents running on the set of places Mi of stage Si reach an agreement on the computation 

result; (3) finally the agreed agent is broadcasted to all the places at the next stage. 

Operations (1) and (2) are carried out by Deferred Initial Value Consensus (DIV) 

algorithm. DIV consensus algorithm assumes that a majority of participants does not fail, 

which is the first building block of the FATOMAS system. An example in [PLE03] can 

help us understand these two steps. Suppose the execution of an MA spans four stages 

(from S0 to S3). Note that at stage S2, place p0 fails, which causes p1 to take over the 

execution. Solving an agreement problem leads all places in M2 to agree on p1 as the place 

that has executed the agent. This would be of particular importance if p0 had been 

erroneously suspected by the other places in M2. Finally, (3) is an instance of the reliable 

broadcast problem of reliably forwarding the agent to the next stage. A simple protocol is 

that every place in Mi broadcasts the result to every place in Mi+1. However, this incurs 

significant overhead, so only a majority of the places in Mi broadcast to all places in Mi+1. 

As DIV consensus assumes that a majority of places in Mi do not fail, it is ensured that at 

least one place actually sends the agent. Traditional reliable broadcast protocols assume a 

1-to-m communication scheme where one process broadcasts a message to m destination 

processes. In this case an r-to-m communication schema is needed: r senders have the 

same message to reliably broadcast to m destinations.  
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From above discussion we can see that although replication based approaches can provide 

the non-blocking execution environment for MAs, the cost is very high: replicated servers 

are needed; transaction or consensus algorithm is necessary. 

 

2.4 Primary-backup based Approaches 
 

While replicated servers are sometimes not available, there are no limits on MA backups. 

Backup MA is used in primary-backup based approaches to safeguard the failure of the 

working MA. The backup MA follows the working MA along the itinerary. Once a failure 

of the working MA is detected, a new working MA is created by the backup MA to replace 

the failed one. Note the backup in the primary-backup approach is not like the replica in 

the replication approach, where the replica simultaneously carries out the same task on the 

replicated server as the working MA. Normally backup MA will not perform the same 

work as the working MA, and its task is just to safeguard the failure of the working MA. 

 

Most of the primary-backup based algorithms in the literature are based on the same 

rear-guard model. A working MA is followed by one or several backups, called the 

rearguard agents [JOH95]. If the working MA fails, the rearguard agent will continue the 

job for the failed MA. However, no implementation is described in [JOH95]. Later works 

made improvement on and reported implementations of this model. In [JOH99], the 

authors implemented their idea of the rearguard agent on their TACOMA MA platform. In 

addition to the rearguard agent, checkpointing provided by TACOMA is also adopted in 

[JOH99] to guarantee the persistent state of an MA. Reliable failure detection and reliable 

broadcast are needed to detect the failures and deliver messages between the backup MAs 

and the working MA.  
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It is not necessary for the name of the backup MA to be that of the rearguard agent. 

Another work [LYU03] which stems from [JOH99] refers to the rearguard agent as the 

witness agent. An improvement is that [LYU03] gives up the reliable broadcast and uses 

peer-to-peer communication in order to reduce costs. In [TAO00], the authors presented a 

“sliding window” mechanism. Before each migration of an MA, a specific number of 

backups of the MA are created lest it collapses or disappears. It can be said that agent 

backups simply play the role of rearguard agents. The size of the window is adjustable and 

determines the number of backups used. [KOM02] uses a “surrogate” agent, which is just 

another name for the rearguard agent. An MA will leave a surrogate on each host it visits. 

Once a surrogate learns that the working MA has failed, it will recreate an agent to 

continue the job. A mobile shadow scheme is proposed in [PEA03] which employs a pair 

of backup MAs, the master and the shadow. [PLE03] proposes a pipeline model in which a 

backup agent follows a working agent and runs on a witness place. Again, the shadow and 

the witness agent are acting as rearguard agents.  

 

The rearguard agent is limited in that it only guards the failure status of the working MA, 

and maintains consistency with the working MA in order to continue the work should the 

working MA fail. It is possible to improve the system performance by letting the backup 

MA undertake tasks that can be done concurrently with the working agent. In [CAO03], 

the authors improve the system execution speed by using two reverse MAs to execute in 

parallel in reverse itinerary. In [QIH03], two MAs executing in reverse itinerary to speed 

up execution and improve fault tolerance. The first of these works however focuses on 

achieving load balance and the second on improving sensor network’s performance. 

Neither addresses the issue of fault tolerant execution of MAs.  

 

In summary, although the rear-guard algorithm provides fault tolerance for an MA system, 

it is not efficient. Also, conventional heartbeat-style failure detectors are costly and also 
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introduce the problem of false detections. All of these problems will adversely affect the 

system performance. In addition to these problems, another crucial consideration is that 

many data retrieval applications such as network management demand fast data collection. 

Data submitted late usually is not useful, and can even be harmful to the system, so it is an 

important requirement of fault tolerance algorithms that they be efficient. 

 

2.5 Failure Detection Techniques 
 

As we mentioned in Section 1.4.3, failure detection, or FD, is a building block for the fault 

tolerant execution of MAs. As such, it appears in nearly all the algorithms or schemes 

discussed above. An FD with good QoS is highly desirable. In this section, we review the 

existing works on the QoS of FDs, beginning with some preliminary background.  

 

2.5.1 Properties and QoS of FDs 

 

1) Properties of FD 

 

Chandra and Toueg proposed the concept of unreliable failure detector, which is 

characterized by the completeness and accuracy properties [CHA96]. The accuracy 

property restricts the mistakes a failure detector can make, while completeness represents 

the capacity of suspecting an actually crashed process. To be more specifically, there are 

two completeness properties: 

 

• Strong Completeness: Eventually every crashed process is permanently suspected by 

every correct process; 

• Weak Completeness: Eventually every crashed process is permanently suspected by 

some correct process; 
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And four accuracy properties: 

• Strong Accuracy: No process is suspected before it crashes; 

• Weak Accuracy: Some correct process is never suspected; 

• Eventual Strong Accuracy: There is a time after which correct processes are not 

suspected by any correct process; 

• Eventual Weak Accuracy: There is a time after which some correct process is never 

suspected by any correct process; 

 

Table 2.1 shows these two sets of properties, which produce eight combinations. They 

classify FDs into different classes.  

 

Table 2.1 TFD Classes in [CHA96] 
 

Accuracy 
Completeness 

Strong Weak Eventual Strong Eventual Weak 

Strong Perfect P Strong S Eventual Perfect ◊P Eventual  Strong ◊S 

Weak Q Weak W ◊Q Eventual  ◊W 

 

2) QoS Specifications for HBFD 

 

Paper [CHE02] is a representative work for the QoS specifications and analysis of 

heartbeat-style FD (HBFD). A basic HBFD algorithm in [CHE02] is described as follows. 

At regular time intervals (η time units), process p sends heartbeat messages m1, m2, m3, . . . 

to another process q. Let σi be the sending time of message mi. q has a sequence of 

receiving time points τ1 < τ2 < τ3 < . . . τi obtained by shifting the sending time σi forward 

by δ time units (τi = σi+δ), where δ is a fixed parameter of the algorithm. Time points τi, 

together with the arrival times of the heartbeat messages, are used to determine the output 

of the failure detector at q. Consider the time period [τi, τi+1). At time τi, the failure detector 
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at q checks whether q has received some message mj with j ≥ i. If so, the failure detector 

trusts p in the period [τi, τi+1). Otherwise, it starts suspecting p at time τi. Hereafter we call 

this algorithm as the basic-HBFD algorithm. 

 

Figure 2.2 Three scenarios of the failure detector output [CHE02] 

(1) (2) (3) 

 

Figure 2.2 shows the three scenarios of the outputs of the basic-HBFD. Among them, (2) 

shows the T-transition, where the output of FD changes from suspect to trust. In contrast, 

an S-transition occurs when the output changes from trust to suspect. Before configure the 

parameters for basic-HBFD, authors of [CHE02] proposed QoS metrics for FD. We 

consider five metrics. The first one measures the speed of a failure detector. It is defined 

with respect to the runs in which p crashes. The rest are used to specify the accuracy of an 

FD. 

 

Detection Time (TD): Informally, TD is the time that elapses from p’s crash to the time 

when q starts suspecting p permanently. More precisely, TD is a random variable 

representing the time that elapses from the time that p crashes to the time when the final 

S-transition occurs and there are no transitions afterwards. If there is no such final 

S-transition, then TD = ∞; if such an S-transition occurs before p crashes, then TD = 0. 
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Mistake Recurrence Time (TMR): This metric measures the time between two consecutive 

mistakes. More precisely, TMR is a random variable representing the time that elapses from 

an S-transition to the next one. If no new S-transition occurs, then TMR = ∞. 

 

Mistake duration (TM): This metric measures the time it takes the failure detector to 

correct a mistake. More precisely, TM is a random variable representing the time that 

elapses from an S-transition to the next T-transition. If no S-transition occurs, then TM = 0; 

if no T-transition occurs after an S-transition, then TM = ∞. 

 

Average Mistake Rate (λM): It measures the rate at which a failure detector makes mistakes, 

i.e., it is the average number of S-transitions per time unit. This metric is important to 

long-lived applications such as group membership and cluster management, where each 

mistake (each S-transition) results in a costly interrupt. 

 

Query Accuracy Probability (PA): This is the probability that the failure detector’s output 

is correct at a random time. This metric is important to applications that interact with the 

failure detector by querying it at random times.  

 

3) The Equations between QoS Metrics and Network Behaviour 

 

The networking model of HBFD [CHE02] assumes that processes p and q are connected 

by a link that does not duplicate messages, but may delay or drop messages. Note that the 

link here represents an end-to-end connection and does not necessarily correspond to a 

physical link. The message loss and message delay behavior of any message sent through 

the link is probabilistic, and is characterized by the following two parameters: (1) message 

loss probability PL, which is the probability that a message is dropped by the link; (2) 

message delay time D, which is a random variable with range (0, ∞) representing the delay 
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from the time a message is sent to the time it is received, under the condition that the 

message is not dropped by the link. The expected value E(D) and the variance V(D) of D is 

finite. Processes p and q have access to their own local clocks. For simplicity, in [CHE02], 

no clock drift is assumed. 

 

For basic-HBFD, we assume that the heartbeat messages satisfy the following message 

independence properties: (1) the message loss and message delay behavior of any message 

sent by p is independent of whether or when p crashes later; and (2) there exists a known 

constant ∆ such that the message loss and message delay behaviors of any two messages 

sent at least ∆ time units apart are independent. We assume that the inter-sending time η is 

chosen such that η ≥ ∆, so that all heartbeat messages have independent delay and loss 

behaviors. Let τ0 = 0, and τi, i ≥ 1, the following definitions and propositions are used in 

the equations proposed by [CHE02], and they are all with respect to failure-free runs. 

 

Definition 1 

(1) For any i ≥ 1, let k be the smallest integer such that for all j ≥ i + k, mj is sent at or after 

time τi.  

(2) For any i ≥ 1, let pj(x) be the probability that q does not receive message mi+j by time τi 

+ x, for every j ≥ 0 and every x ≥ 0; let p0 = p0(0). 

(3) For any i ≥ 2, let q0 be the probability that q receives message mi−1 before time τi. 

(4) For any i ≥ 1, let u(x) be the probability that q suspects p at time τi + x, for every x� [0, 

η). 

(5) For any i ≥ 2, let pS be the probability that an S-transition occurs at time τi. 

 

Proposition 1 

(1) k = δ/η. 

(2) For all j ≥ 0 and for all x ≥ 0, pj(x) = pL + (1 − pL)Pr(D>δ+x−jη). 
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(3) q0 = (1 − pL)Pr(D < δ + η). 

(4) For all x�[0, η), u(x) = p0(x) p1(x)… pk(x). 

(5) pS = q0 · u(0). 

 

Equations 

The FD implemented by basic-HBFD has the following properties: 

(1) TD ≤ δ + η.  

If p0 > 0 and q0 > 0 (the non-degenerated case), then we have:  

(2) E(TMR) = 1/λM = η/ pS

(3) E(TMR) = (1- PA)* E(TMR) = (1/PA)*  ∫
η

0
)( dxxu

(4) PA =1-(1/η)  ∫
η

0
)( dxxu

If p0 = 0 or q0 = 0 (the degenerated case), then we have: in failure-free runs, (1) if p0 = 0, 

then with probability one q trusts p forever after time τ1; (2) if q0 = 0, then with probability 

one q suspects p forever. 

 

From these equations, we can derive many useful properties of the QoS of the FD: (1) 

When δ increases, the detection time increases linearly; (2) When η decreases, the network 

bandwidth used by the failure detector increases linearly. Therefore, with a small (linear) 

increase in the detection time or in the network cost, we can get a large (exponential) 

increase in the accuracy of the new failure detector. 

 

2.5.2 Implementation of FDs 

 

In [CHE02], the considerations of the FD implementation include: (1) How fast the failure 

detector detects actual failures and (2) How well it avoids false detections. HBFDs with 

different QoS properties (Detection time, Mistake recurrence time, Mistake duration) have 
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been implemented to satisfy these considerations. But the authors did not consider the 

scalability and message cost of the FDs. 

 

A severe problem with HBFD is its poor scalability due to the high message cost. On the 

other hand, we can not reduce the message exchange frequency if a quick failure detection 

capability is required. In order to reduce the message cost and improve the scalability, 

people adopt Gossip protocol in HBFDs [REN98, WAS03]. In a group of FDs, each FD 

maintains a list of its known FDs. Every Tgossip seconds, each FD increments its own 

heartbeat counter and selects another FD randomly to send its list to. For a monitored 

process, each time only one heartbeat message is sent out no matter how many FDs need 

the process’ heartbeat message. So the heartbeat flows are reduced dramatically and a 

better scalability is achieved. However, the heartbeat messages from a source process may 

be forwarded by many intermediate FDs before it reaches the destination FD. This may 

generate a large variation of the end-to-end message delays. It therefore can not guarantee 

the accuracy and also can have a very long detection time. Another constraint is that 

membership information needs to be maintained between the FDs. 

 

In [GUP01], the failure detection service is organized in a hierarchical structure to support 

large-scale applications. It consists of two levels: local and global, mapped upon the 

network topology. The system is composed of local groups mapped upon a LAN, bound 

together by a global group. Each group is a detection space, which means that every group 

member watches on all the other members of its group. Every local group elects exactly 

one leader which will participate in the global group. The leader will summarize the 

heartbeat messages from its group and exchange the summarized messages among the 

leaders so as to reduce the message overhead. However, it adds the cost to construct the 

groups and elect the leader. 
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2.6 MA Transactions 
 

Transaction is a basic technique for providing fault tolerant MA execution. It has the 

particular advantage of being able to guarantee the properties of Atomicity, Consistency, 

Isolation, and Durability (ACID), which not only provide the rollback mechanism for 

non-idempotent operations, but also directly support the upper layer MA applications 

which require the ACID properties. Existing works on MA transaction have focused either 

on using transaction to achieve fault tolerance or on implementing transaction so as to 

provide ACID services for MA based applications (i.e., e-commerce and network 

management). The works related to these two aspects will be reviewed in the following 

two subsections.  Since few works to date have discussed the problem of deadlock in MA 

transaction, at the end of this section, we provide a literature review of deadlock detection 

in distributed system.  

 

2.6.1 Transactions as an MA Fault Tolerance Mechanism 

 

Transaction processing is adopted in [ROT98] and [SIL98] to help ensure that exactly-one 

execution is guaranteed. We have discussed these two works in the earlier discussion of the 

replication-based approach. These two works use transaction to guarantee the atomicity 

and consistency of the system. In [VOG97, VOG97b], distributed transaction processing is 

implemented to guarantee the migration of MAs and preserve the exactly-once execution 

property. The transaction semantic for the agent migration avoids the duplication of an 

agent as well as its loss. In case of error situations or host crashes, the recovery and 

rollback mechanisms provided by the transaction allow a reliable and consistent 

resumption of the agent transport. However, these works did not mention how to 

implement MA transaction.  
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In [PLE03], the authors discuss two schemes for undoing agent actions, the pessimistic and 

the optimistic execution. Pessimistic execution executes each stage of the agent’s 

tentatively, making modifications permanent only when it is guaranteed that the agent 

neither crashes nor is erroneously suspected. In this situation modifications can be undone 

simply by flushing them out. Pessimistic execution will lock the accessed data items until 

the MA has finished executing all of its tasks along the itinerary. Other agents can access a 

locked data item only once the agent holding the lock has committed (i.e., made permanent) 

its modifications. Optimistic execution immediately makes its modifications to the place 

permanent and visible to other agents and does not lock data for long periods. However, 

this can make the task of undoing modifications more complex because other agents may 

have read the modified data. One response to this problem is that of the compensating 

transaction [GRJ81, GAR87]. Compensating transactions undo transactions semantically 

and allow modifications to the data to be committed immediately. If they need to be 

aborted later, only the compensating transaction need be run. Generally, pessimistic 

execution is based on the use of a close sub-transaction model and optimistic execution is 

based on the use of an open sub-transaction model.  

 

2.6.2 Implementation of MA Transactions 

 

Work to date on the implementations of MA transactions still stay on the stage of 

theoretical discussions. Some works focus on how to maintain the ACID properties, the 

support of open or close transaction model, etc. Some works have discussed only MA 

transaction within existing distributed transaction standards and implementations.  

 

In [STR00], a mechanism for the application-initiated partial rollback of the agent 

execution is presented for providing the exactly-once execution of MAs. The rollback 

mechanism uses compensation operations to roll back the effects of the agent execution on 



CHAPTER 2 Literature Review 
 

 48

the resources and uses a mixture of physical logging and compensation operations to roll 

back the state of the agent. The introduction of different types of compensation operations 

allows performance improvements during the agent rollback. In [SIL97], the authors 

analyzed the requirements of MA transaction and proposed an MA transactional execution 

model based on open nested transaction. A single agent migrates from site to site to 

execute assigned tasks. Each local sub-transaction may commit or abort. If a local 

sub-transaction commits, the MA will migrate to the next site and start a new 

sub-transaction. If any sub-transaction aborts, the whole MA transaction will abort. Since 

the previous sub-transactions have already committed, compensation is needed. The 

authors later introduced the fault tolerance support for their MA transaction model, so as to 

increase the rate of commitment in [SIL00]. A similar MA transaction model is adopted in 

[PLE02]. Authors also introduced fault tolerance mechanisms based on MA platform 

redundancy. The idea is that, instead of sending the MA from one place (platform) to 

another, the MA is replicated and sent to a set of places at the same time. This allows the 

set of replicated MAs to proceed with the transaction notwithstanding the failures of some 

MA systems. An agreement protocol is proposed to prevent possible multiple executions of 

the agent code. The agreement protocol requires all MAs to reach an agreement that only 

one MA can commit its execution results. In the approach proposed in [SHE01], authors 

introduced the parallel transactions which run over different itineraries but with the same 

destination. The computing results will be combined at the destination. For realistic 

applications, however, it is hard to identify and execute parallel transactions. The 

implementation of this approach depends on the available resources and the server settings. 

 

Several works have been reported on supporting MA transaction within existing distributed 

transaction standards. [VOG98] presents an extension of the OMG-OTS model with 

multiple MAs. This model uses the transaction model proposed in [SIL97] to guarantee 

ACID. OTS services are used to help the MA monitor the resources and observe the 
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resources in a preparation phase so as to minimize the probability of aborts and 

rollback/compensation, which is the major problem in open nested transactions. Although 

they chiefly aim to provide fault tolerance for MAs, some works also provide the 

implementations. In [ROT98], the implementation is based on conventional transaction 

technology used in X/Open DTP and CORBA OTS. DPT is also adopted in [VOG97]. It is 

true that MA transactions share some characteristics with distributed transactions. But 

normally, the platforms that support the distributed transaction model (DPT/XA; 

OTS/COBRA; JTS/JTA) are only deployed within one organization, such as within a 

company. In an MA transactional execution, the MA may migrate across several 

organizations/companies, and the hosts visited by the MA can host a centralized database 

system or a distributed database system that supports a distributed transaction model. MA 

transaction cannot only rely on these standard models. Therefore, a more general system 

model is needed. Such a model is proposed in this research and will be described in 

Chapter 6. 

 

2.6.3 Deadlock Detection 

 

Deadlock may occur during the transactional execution of MAs. A deadlock is a situation 

in which subsets of MAs are waiting for some other MAs to release resources. No progress 

is possible, unless this situation is broken. Four necessary conditions must hold for the 

occurrence of a deadlock: Mutual exclusion, Non-preemption, Hold-and-wait and Circular 

wait. Deadlock handling can be divided into three types: Deadlock prevention, Deadlock 

avoidance and Deadlock detection and resolution. We mainly focus on the deadlock 

detection in our research. Distributed deadlock detection algorithms can be classified into 

four categories: Path-Pushing (WFG-based) [OBE82, ASH02], Edge-Chasing 

(Probe-based) [CHY82, MIT84], Diffusing Computation [CHY83] and Global State 
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Detection [BRA83]. The former two types of algorithms are widely adopted in database 

and distributed systems.  

 

Path-pushing algorithms maintain an explicit Wait-for-Graph (WFG). A WFG consist of a 

set of processes {P1, P2,…, Pn} as the node set. An edge (Pi, Pj) exists in the graph if and 

only if Pi is waiting for a resource held by Pj. Each site periodically builds a local WFG by 

collecting its local wait dependencies, then searches for a cycle in the WFG and tries to 

resolve these cycles. After that every site sends its local WFG to its neighboring sites. Each 

site updates its local WFG by inserting wait dependency received, and detects cycles in the 

updated WFG. The updated WFG is passed along to neighboring sites again. This 

procedure will repeat until some sites finally detect the deadlock or announce the absence 

of deadlock. The most famous algorithm in this category is Obermarck’s algorithm 

[OBE82] implemented in System R*. In a newly proposed algorithm targeting at handling 

deadlocks in MA systems [ASH02], a “Detection Agent” is dispatched to all resources held 

by its target “Consumer Agent” for collecting deadlock information. The gathered 

information is finally returned to the “Shadow Agent” which is responsible for monitoring 

that Consumer Agent and detecting deadlock cycles. 

 

Instead of explicitly building the WFG, Edge-chasing algorithms send a special probing 

message to detect deadlocks. A process (initiator) sends probes to processes holding the 

locks it is waiting for. A process receiving a probe message forwards it to all the processes 

it is waiting for. The probe message contains information to identify the initiator. If the 

initiator receives a probe sent by itself, it can announces a deadlock because the probe must 

have traveled a cycle. This idea was originally proposed in [CHY82] with the correctness 

proof presented in [KSH91]. Similarly in the algorithm of [MIT84], a probe consists of a 

single number that uniquely identifies the initiator. The probe travels along the edges in the 

opposite direction of global WFG. When it returns to its initiator, a deadlock is detected. 
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Making use of the mobility and data encapsulation of MA, in [CAO04], authors proposed a 

novel algorithm which adopts the ideas of both Path-pushing type and Edge-chasing. It is 

based on WFG and MAs are working like the probes. A framework, called MAEDD (MA 

Enabled Deadlock Detection), for distributed deadlock detection using MAs is proposed. 

In MAEDD, MAs are dispatched to collect and analyze deadlock information distributed 

over the network sites, detect deadlock cycles in the system, and then resolve the 

deadlocks.  

 

2.7 Summary 
 

In this chapter, we first classified fault tolerance techniques adopted in MA systems and 

then used this classification to review related works. For the convenience of readers, we 

also presented some fundamental concepts related to these techniques.  

 

In summary, we compared the three well-known fault tolerance approaches adopted in MA 

systems, checkpointing, replication and primary-backup. Checkpointing is a popular 

scheme for the fault tolerance of MA systems. It is simple to make checkpoints in Java 

based MA systems, and also reduced communication costs compared with replication 

based schemes. However, there are difficulties associated with checkpointing. First, it 

depends on stable storage. As we know, the I/O operation (i.e. hard disk I/O) is costly. 

Some devices even have no stable storage available, such as some switches, or mobile 

devices like PDAs or smart phones, so checkpointing is not applicable. Second, in the 

event of an agent server crash the checkpoint is unavailable for an unknown time period 

until the agent server recovers, which results in blocking of the execution of the MA. Third, 

while excessive checkpointing degrades performance, insufficient checkpointing risks 

expensive recovery overheads. It is important to make a good judgment as to the frequency 

of checkpointing. Finally, if the operations that MAs have finished are idempotent, the 
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system can recover from the latest recovery line. However, if the operations are 

non-idempotent, the system cannot simply recover, but must also remove the effects 

associated with the failed agent. 

 

Replication-based approaches have the advantage of being non-blocking but they are not 

absolutely non-blocking. For example, we can imagine a situation in which all the links 

from Si to Sj are broken or all the places that hold MA ai have crashed: in such a case, the 

execution of the MA will be blocked. But such catastrophic failures are rare and 

replication-based approaches can cover for most failures and guarantee non-blocking with 

a very high probability. Once again, however, there is a tradeoff: the maintenance of 

replicated servers and the implementation of complicated algorithms such as consensus, 

leader election and reliable broadcast to support the exactly-once property. This all makes 

replication-based approaches complicated and this is why all the replication-based 

approaches in the literature have been proposed only for single MA scenarios.  

 

In [KIM02, PAR02], authors evaluate the performance of independent checkpointing 

approach and replication approach. Their conclusion is that checkpointing approach 

exhibits a very stable performance. Blocking time is the only factor affecting 

checkpointing approach. In contrast, many factors can greatly affect replication approach: 

failure rate, network delay, agent working time on a place, and the number of replicas. By 

selecting proper values for these factors, the system can achieve a desirable performance. 

Otherwise the replication approach can be a burden to the system. Compared with 

checkpointing approach, replication approach incurs much higher overhead during normal 

execution.  

 

Primary-backup based approaches make a tradeoff between replication-based approaches 

and checkpointing-based approaches. Neither server replication, nor stable storage is 
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required. However, the primary-backup based approach does require an accurate failure 

detection mechanism. Otherwise, false suspicions would lead to duplicate executions, 

which is unacceptable in non-idempotent operations. There are two ways to solve this 

problem. One is to seek better failure detectors. The other way is to undo the 

non-idempotent operations performed by the failed agent, which can be done through the 

transactional execution of MAs.  
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Chapter 3 

Notification based Approach to 

Implementing Failure Detectors 
 

In this chapter, we introduce our proposed notification based approach to implementing 

failure detectors and present the performance comparison between NTFD and HBFD. This 

chapter is organized as follows. Section 3.1 presents the problems of HBFD and our 

motivations. In Section 3.2, we propose a general system model for the design of failure 

detectors. Based on the general system model, we propose NTFD and its enhancement in 

Section 3.3. Section 3.4 presents the analysis and comparison of the performance between 

NTFD and HBFD. A hybrid FD is proposed in Section 3.5. We summarize this chapter in 

Section 3.6. Please be noted that our proposed FD is a general FD and it is applicable to all 

types of processes in distributed systems. MA is a type of process when it is executing on a 

host. Therefore, MA can also be monitored by the FDs proposed in this chapter. 

 

3.1 Motivations 
 

HBFD works by periodically exchanging heartbeat messages between the FDs. According 

to [CHE02], we have to maintain a certain frequency of the message exchanging if we 

want to provide desired failure detection latency. However, high frequency of message 

exchanging will increase the message overhead. Therefore, the message cost and the QoS 

requirements of HBFD are conflict. Besides this problem, other problems with HBFD will 

be discussed in the following subsections. 
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3.1.1 Synchronization 

 

Let us analyze the commonly used HBFD algorithm -- basic-HBFD (Chapter 2 Section 

2.5.1). At process q, τi = σi+δ, that is to say τi is set according to σi, the sending time of mi 

at p. This can only be achieved if synchronized clocks exist between p and q. To 

circumvent this requirement, a modified algorithm is proposed in [CHE02] which lets q 

obtain τi by estimating the expected arrival time of the heartbeat message. As we know, in 

an asynchronous system like Internet, we can not always make an accurate estimation of 

the expected arriving time of a message. Therefore, HBFD can make false detections. 

Although we can ignore this problem if the clock drift is small within a short period, we 

can not ignore it if HBFD needs to run for a long period as required in many systems. The 

solution is to make the clocks synchronized or use some algorithms to bypass it, but it 

either costs too much or loses the accuracy of failure detection. 

 

3.1.2 The Impact of Heartbeat Messages 

 

Based on the assumption that the network behaviour follows some probabilistic 

distribution, authors of paper [CHE02] construct FDs that can guarantee the accuracy 

property in probabilistic meaning. However, the problems are:  

 

(1) We don’t know exactly the probabilities of message loss and message delay, so the 

only way is to estimate them.  

 

(2) The probabilities of message loss or delay may change due to the change of network 

traffic workload. This problem is more obvious in a mobile computing environment. For 

example, an HBFD monitors a process on a mobile unit. Due to the random mobility of a 
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mobile unit, the behaviours of the messages are hard to estimate. A solution is to keep 

reevaluating the probabilities of message behaviours, but it is costly.  

 

(3) A severe problem is that HBFD itself can change the behaviour of messages in a 

network. To explain this problem, we study a typical execution environment of FD shown 

in Figure 3.1. Several LANs are connected by routers. In LAN1 there are several HBFDs 

monitoring the processes in LAN2, LAN3 and LAN4. Processes been monitored send 

heartbeat messages to HBFDs and all the messages will be forwarded by the customer edge 

routers and the central router. From the view of message processing, a router can be 

viewed as a queue. We assume that the queue is an M/M/1 queue.  
 

LAN1
Central Router 

Figure 3.1 Running Environment of HBFD 

Process 

LAN4

LAN3

LAN2

Figure 3.2 Queue Model 

HBFD 

Heartbeat message flow  

Customer edge router 

λ3 λ2

λ1μ1μ2μ3

The message queue model for the running environment of HBFDs is illustrated in Figure 

3.2. A heartbeat message is forwarded by two customer edge routers and one central router. 

So there are three queues in Figure 3.2. We use queuing theory to analyze the influence to 
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the network behaviour caused by HBFDs. For each M/M/1 queue in Figure 3.2, let λ 

denote the message arriving rate and μ denote the message processing rate. The expected 

message processing time E[T] (from the moment a message enters the first queue to the 

moment it leaves the last queue) is given by equation (1):  
 

E[T] =           (1) ∑
=

−
n

i
ii

1

)/(1 λμ

Equation (1) shows that if λ increases, the message processing time will increase, and 

consequently the message delay will increase. Let Dinit be the initial message delay for an 

HBFD. Based on Dinit, the running configuration of the HBFDs can be calculated 

according to [CHE02] and then exchange of heartbeat messages starts. The exchange of 

heartbeat messages will increase the message delay and Dinit will be no longer applicable. 

It is true that one HBFD will have only trivial impact on the message delay of the system, 

and we can also make compensation for it in advance. But if too many HBFDs are 

operating in the system, too many heartbeat messages will be generated in the system and 

the influence to the message delay can no longer be ignored. Although we can add a safety 

margin [BER02] to Dinit, the added message delay can still possibly exceed the safety 

margin. Another solution is to reevaluate the message delay from time to time, but it is too 

costly. HBFD’s accuracy property depends on the stability of the network behaviour, but 

the fatal problem is that HBFD itself (especially the HBFDs deployed in large scale) can 

change the behaviour of the network. 

 

3.1.3 Our Motivations 

 

The problems with current HBFD implementations motivate us to design an alternative 

approach to implementing FD. It has the following desired features:  
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 Efficiency: Message cost is low.  

 Scalability: Message cost (network load) increases linearly with the number of 

process failures, no matter how many processes and FDs are involved.  

 Accuracy: The output will not oscillate between the suspicious or trust status of a 

monitored process.  

 Simplicity and easy to implement: No synchronized clocks are needed and the FD 

can be implemented by using on-the-shelf hardware or software components.  

 

To achieve such an FD, we firstly propose a new system model for FDs which is 

particularly suitable for MA systems.  

 

3.2 System Model 
 

 

Process FD 

Collect failure Info. 

Figure 3.3 General FD Model 
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Nearly all the existing works are based on the conventional FD model that considers a 

process and its local running environment as a single entity. In practice, however, failure 

detection is usually provided by the system. FDs are independent module/threads and 

separated from the user processes. For example, the Linux kernel 2.4.x provides watchdog 

drivers that include software watchdogs and drivers for hardware watchdog. In MA 

systems, MA is running in an environment provided by MA platform. Catering for these 
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scenarios, as shown in Figure 3.3, we propose a general model where the failure detection 

service is separated from the monitored processes and provided by independent FD 

modules. FD collects the failure information of the processes being monitored on the same 

host and communicates with FDs on other hosts.   

 

The running environment of FD is a distributed system consisting of a finite set of N hosts 

(N>1). On each host, there are some running processes. Processes on the same host can 

communicate with each other (intra-host communication) by using shared memory or 

messages. On each host, there is a clock referenced by all the local processes. We assume 

that the intra-host communication is synchronized and reliable so that FD will not make 

false failure detection for a process within a host. The hosts are connected by unreliable 

links. Processes on different hosts communicate with each other (inter-host communication) 

through message passing. Messages can be delayed or lost. There is no global 

synchronization mechanism and there is no bound on the clock drift among all the clocks. 

So the system is a pure asynchronous system. However, we assume that message delay and 

message loss follow some probabilistic distributions. The hosts or processes can fail only 

by crash (prematurely halting).  

 

This general model covers the existing single entity model as a special case when the 

monitored process and the FD module are combined. However, the model also allows us to 

propose different approaches to implement FDs. As described later, the failure of the 

underlying host and the FD module can be handled by using replication or backup 

techniques.  

 

3.3 Notification-based FD (NTFD) 
 



CHAPTER 3 Notification based Approach to Implementing Failure Detectors 
 

 60

The problems with HBFD motivate us to propose an alternative approach, called 

notification based FD (NTFD), to implementing FDs based on our newly proposed system 

model. Since the problems are caused by the unstable network behaviour and the 

periodically exchanged messages, the NTFD approach avoids them by locally detecting the 

failures of the processes being monitored on the same host. Once a failure is detected, 

NTFD sends notification messages to the interested receivers. 

 

3.3.1 The Design of NTFD 
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Figure 3.4 shows the system structure of NTFD. Each NTFD maintains a registration table 

(Figure 3.5) for all the processes that it is monitoring. Each process can make a registration 

in the registration table to get the failure status of other processes. For example, in Figure 

3.4, PA makes a registration on NTFDB to get the failure status of PB. NTFDB detects the 

failures of PB through local failure detection mechanisms. Once NTFDB detects that PB 

failed, it sends notifications to PA and all processes registered for the failure status of PB. 

 

Each process been monitored occupies an entry of the registration table. In Figure 3.4, PB 

occupies one entry in the registration table of NTFDB. Other processes’ IDs will be 
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attached to this entry if they make a registration for the failure status of PB. So PA’s ID is 

attached to the entry for PB. 

 

The registration procedure has three steps: (1) PA asks for the failure detection service from 

local NTFDA. Within the service request description, PA provides the address of the target 

process PB and other optional information like the number of notification messages that 

should be sent to PA, etc; (2) NTFDA accepts the request of PA and composes a registration 

message and then sends it to NTFDB; (3) Once received the registration message, NTFDB 

will allocate a new entry in its registration table for PB if it is the first registration message 

for PB. Otherwise, NTFDB just appends the ID of PA to the entry for PB.  

 

The deregistration procedure also has three steps: (1) PA asks for the deregistration service 

(stop monitoring the failure of PB) from NTFDA; (2) NTFDA sends a deregistration 

message to NTFDB; (3) When the deregistration message arrived, NTFDB searches the 

entry for PB and removes the ID of PA from that entry. 

 

3.3.2 The Implementation of NTFD 

 

Since NTFD and its monitored processes reside on the same host, the failure can be 

detected at machine instruction level, code module level, process level or system level. In 

this thesis, as an example, we use the watchdog technique to detect local failures at process 

level (Figure 3.5). Watchdog is a variation of heartbeat-based FD but it uses the shared 

memory to increase or decrease the heartbeat (HB) counter, so there is no message passing 

between the monitored processes and the watchdog process.  
 

 



CHAPTER 3 Notification based Approach to Implementing Failure Detectors 
 

 62

Figure 3.5 The Watchdog and Registration Table of NTFD 
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NTFD regularly decreases the HB counters in its registration table (The first column of the 

registration table is expanded to hold the HB counter). The monitored processes are 

designed to reset their HB counters at particular points in their execution cycle. If NTFD 

discovers that a HB counter has reached a certain threshold during its decrementing 

operation, it signals an error and then sends the notification message to the processes 

according to the registration table. In our model, all the processes within a host are 

synchronized. According to the discussion on the QoS of HBFD in [CHE02], there is no 

false detection of HBFD under a synchronized system. Therefore, NTFD will not make a 

false detection within a host. 

 

A NTFD can be a software module and run on system level (kernel process) or user level 

(user process), and it can also be a hardware unit installed in the host. Watchdog is easy to 

build with the off-the-shelf software or hardware. For example, the Linux kernel 2.4.x 

includes watchdog drivers for software watchdog and drivers for several types of hardware 

watchdog boards. The algorithm in pseudo-code format for executing NTFD is illustrated 

in Algorithm 3.1. 
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//Struct of Registration table  
struct regItem 
{ int PorcID; 
   int HBcounter; 
   struct registedProc * Pointer; 
   struct regItem * next;  
} 

// Struct of registedProc 
struct registedProc 
{int procID; 
struct registedProc * next;  

} 

// Assert Failure for a failed Process. Its ID is failure.ID; 
registedProc = regTable.getRegistedProc(failure.ID) 
while (procID = registedProc.hasNext() ) 
          { sendNotificationTo (ProcID); 
          } 
 

//The Watchdog Process 
while (proc = regTable.Process.hasNext() ) 
         {proc.HBcounter --; 
           if (proc.HBcounter < 0) 
              AssertFailure(proc.ID); 
        } 

//A Process renews its HB counter 
if (watchdog = askWatchdog() != NULL) 
     watchdog.renewHBcounter(Proc. ProcessID); 
else 

PrintError(); 

Algorithm 3.1 NTFD 
 
//A NTFD gets a Request Msg for the failure detection service  
if (msg = getMsg() = = “failureStatusRequest” ) 
   { if ( watchdog = askWatchdog() = = NULL) 
          watchdog = OS.createWatchdog(); 
      watchdog.Add(msg.ProcessID); 
    } 

 

3.3.3 Advantages and Disadvantages of NTFD 

 

NTFD solves the problems with HBFD described in Section 3.1. First, HBFD and the 

monitored processes reside on different hosts and reference different clocks, causing the 

synchronization problem. However, NTFD and the monitored processes reside on the same 

host and reference the same clock, so no synchronization is needed. Second, when a failure 

is detected by NTFD, NTFD will send the failure notification messages to the registered 

processes on the remote hosts. Therefore, the message cost only increases linearly with the 
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number of failed processes. Comparing with the periodical message exchange in HBFD, 

NTFD is much more efficient and has much less influence on the network traffic. Unlike 

HBFD approach, message delay will not cause false detection in NTFD, but only affect the 

failure detection time. These features not only solve the problems with HBFD, but also 

make NTFD scalable. 

 

However, one problem with NTFD is that the remote process can not be informed of the 

failure, if the notification message is lost or the NTFD (or host) fails. This results in the 

loss of the completeness property. For the loss of notification message, we can reduce the 

message loss probability by using the send-and-retry method to send multiple notification 

messages. The multiple notification messages can be transmitted through different source 

routed routes in order to make the messages independent from each other. Hereafter, we 

assume that the notification messages are independent. For the failure of NTFD, we can 

build a self-restart FD to solve this problem [HUA95]. Finally, in order to solve the 

problem of host failure, we propose enhanced NTFD at the next section. 

 

3.3.4 NTFD-E: An Enhancement to NTFD 

 

NTFD-E is an enhanced version of NTFD for handling host failures. Once the host failed a 

separate backup NTFD is needed to send out the notification messages. The separate 

backup NTFD runs on a hardware board with a CPU and a networking interface. The 

hardware board is installed close to the host and monitors the host through proprietary 

connection, e.g. COM port. Now with the hardware price continuously dropping, such a 

hardware board only costs us tens of dollars and one such hardware board can also be 

shared by several local hosts. If the host is configured with a backup system/host, the 

backup NTFD can also run on the backup system/host.  
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Figure 3.6 shows the scenario of NTFD-E. Each host is configured with a separate 

hardware module which provides the running environment for a backup NTFD. Except the 

backup NTFD, all other configurations are the same as the NTFD system. Backup NTFD 

has a copy of the registration table. Its task is to detect the host failure (i.e., using the 

traditional heartbeat algorithm). Once a failure is detected, the backup NTFD will send out 

the notification messages to all the registered processes in its registration table. NTFD will 

collect the working status of backup NTFD. If backup NTFD failed, NTFD will try to 

restart it or report this failure to the administrator. 

 

It is possible that the host and the backup NTFD fail at the same time so that no 

notification message could be sent out. But the probability is very low. Another problem 

with NTFD-E is the same as NTFD: although we can reduce the probability of loss of the 

completeness to a very low level by sending multiple notification messages for one failure, 

there still exists the probability that all the failure notification messages are lost and 

therefore the completeness property cannot be preserved. As we know, it is an unsolvable 

problem in an asynchronous distributed system. The conclusion is that NTFD and NTFD-E 

can only preserve completeness property in probabilistic meaning, while HBFD can 



CHAPTER 3 Notification based Approach to Implementing Failure Detectors 
 

 66

maintain the accuracy property in probabilistic meaning. It is necessary to make a 

comparison between these two approaches. 

 

3.4 Performance Comparisons between HBFD and NTFD 
 

To evaluate the performance of the two types of FD implementations, we adopt the same 

set of parameters used in [CHE02] for HBFD. The parameters are listed in Table 3.1. 

 
Table 3.1 Parameter Table 

 

Parameter Description 

δ A fixed interval for HBFD to get the fresh point τi. τi = σi+δ (refer Section 3.1). 

η The heartbeat messages inter-sending time; fixed to be 1 (second) 

k k =┌δ/η┐  

PL Message loss probability. Message non-loss probability is PNL (= 1-PL) 

D or TD Message delay time; PD(D ≤ x) = 1 − e−x/E(D) (x ≥ 0) 

E(D) Average message delay time; set to be 0.02 (second); a small value compared withη 

fH Host failure probability; 0.001 if not specified. fH can impact NTFD’s completeness 

 

We compare NTFD/-E (hereafter we use NTFD/-E to denote both NTFD and NTFD-E) 

and HBFD on how well they preserve the two properties of FD, the QoS metrics like 

quickness and efficiency, and our newly proposed metric: the probability of false report 

(PFR). For NTFD/-E, as mentioned in Section 3.3, we assume that NTFD/-E will not make 

false detection within a host. The failure detection time of HBFD is: δ ≤ TD ≤ δ+η

[CHE02]. Within a host we can set η and δ to be μs level. Comparing with the value of η 

and δ (several ms or s) in a network environment, we ignore NTFD/-E’s failure detection 

time within a host. 
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3.4.1 Completeness/Accuracy Properties  

 

Any crashed process will stop sending heartbeat messages and then HBFD can claim a 

failure. Therefore, HBFD can preserve the strong completeness property. But HBFD can 

not maintain even the weak accuracy property because HBFD can make the false detection 

to every process due to message loss or delay. On the contrary, NTFD/-E can maintain the 

strong accuracy because if a failure notification message for a process is received, the 

process must have failed. However, NTFD/-E cannot preserve even the weak completeness 

due to host failure (for NTFD) or the loss of all the notification messages.  

 

For most applications, a preferred FD should preserve both the accuracy and completeness 

properties with a high probability. In order to make a comparison between HBFD and 

NTFD/-E, we assume that there are 2*N processes and N FDs in a system. Among the 2*N 

processes, we assume N processes work well and N processes failed, in order to check how 

well HBFDs maintain the accuracy property for the N living processes (as shown in Figure 

3.8) and to evaluate how well NTFD/-Es guarantee the completeness property for the failed 

N processes (as shown in Figure 3.7).  

 

For NTFD/-E, if a process failed, we assume that K notification messages are sent out to 

each registered process. For NTFD, we assume that the host failure probability fH is 0.001. 

For HBFD, we check how well it maintains the accuracy property during the period of K 

heartbeat messages. We assume that an HBFD will claim a process failure if it cannot 

receive the heartbeat message within t time unit.  
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Figure 3.7 The Scenario of NTFDs when N Processes Failed 
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Figure 3.8 The Scenario of HBFDs for Monitoring N Living Processes 
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Table 3.2 Expressions to Calculate Completeness (C) and Accuracy (A) Properties 
 

 NTFD-E (send K msgs) NTFD (send K msgs) HBFD 

Strong {[1- (PL)K]N}N {(1- fH ) [1-(PL)K]N}N  100% 
C 

Weak {[1- (PL)K]N}n  (0<n≤N) {(1- fH ) [1-(PL)K]N}n  (0<n≤N) 100% 

Strong 100% 100% [(1-PL)Pr(D<t)]NKN

A 
Weak 100% 100% 1- {1 - [(1-PL)Pr(D< t)]NK}N 

 

For NTFD-E to maintain strong completeness, it requires that at least one notification 

message from each failed process reach all NTFD-Es. For weak completeness, all 

NTFD-Es should receive at least one notification messages from some failed process. 
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Comparing with NTFD-E, NTFD must consider the influence caused by the host failure. 

For our assumed system, the probabilities of maintaining two properties of FD for 

NTFD/-E and HBFD are listed in Table 3.2. 

 

For the weak accuracy property of N HBFDs, [(1-PL)Pr(D< t)]NK is the probability that one 

living process is not suspected by all the N HBFDs and {1 - [(1-PL)Pr(D< t)]NK} is the 

probability that one living process is suspected by one or more HBFDs of the N HBFDs, 

while {1 - [(1-PL)Pr(D< t)]NK}N is the probability that all the living processes are suspected 

by one or more HBFDs of the N HBFDs. Therefore, the probability that some correct 

process is never suspected is: 1- {1 - [(1-PL)Pr(D< t)]NK}N (refer Table 3.2). 

 

In order to show the difference clearly, we plot the probability expressions of Table 3.2 in 

Figures 3.9/3.10/3.11/3.12 with the following settings: N=10 (there are 20 processes and 10 

FDs in a system: 10 processes work well while 10 processes failed); K=10; n=1. 
 

Figure 3.9 The Probability of Maintaining NTFD-E’s  
Completeness with fH=0.001 

Figure 3.10 The Probability of Maintaining NTFD’s  
Completeness with fH=0.001 
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Figure 3.12 Comparison of the Probability of 
Maintaining FD’s Properties 

Figure 3.11 The Probability of Maintaining HBFD’s Accuracy 
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Figures 3.9 and 3.10 show the capabilities of NTFD-E and NTFD to maintain the 

completeness according to the expressions in Table 3.2. The capabilities are only affected 

by the probability of message loss: PL. We assume that PL ranges from 0.01 to 1. From 

Figure 3.9, we can see that NTFD-E has strong capability to maintain strong/weak 

completeness. Figure 3.10 shows that the capability of NTFD to maintain the weak 

completeness is similar to NTFD-E, but it is weak in maintaining strong completeness 

comparing with NTFD-E due to the possible host failure. 

 

Figure 3.11 shows the capability of HBFD to maintain the accuracy property with a 

spectrum of message delay probabilities (Pr(D<t) ranges from 0.9 to 0.999) and a static 

message loss probability (PL = 0.001). From the results we can see that HBFD can 

maintain weak accuracy well when the probability of (D<t) is greater than 0.99. But it is 

nearly impossible to maintain the strong accuracy no matter how much the probability of 

(D<t) is. In Figure 3.12, we plot the probability for HBFD to maintain the accuracy 

property with different message loss probabilities (from 0.001 to 0.9) and a fixed message 

delay probability (Pr(D<t) = 0.001). Figure 3.12 shows that HBFD can maintain the weak 

accuracy well only when PL <0.01, and it is difficult to maintain the strong accuracy. For 

comparison, we also plot the capability of NTFD/-E to maintain completeness in Figure 
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3.12. We can see that NTFD/-E have a much higher probability to maintain completeness 

than the capability of HBFD to maintain accuracy. 

 

3.4.2 Efficiency, Quickness and Probability of False Report (PFR) 

 

The capability to maintain the completeness and accuracy properties is not enough to show 

all the advantages or disadvantages of NTFD/-E and HBFD. For example, the system 

overhead caused by different FDs is obviously different: HBFD keeps on sending heartbeat 

messages, while NTFD/-E only sends failure notification messages upon the failure of the 

monitored processes. Due to the different failure notifying mechanisms, failure detection 

time is also different. In this section, we compare the performance of FDs in efficiency 

(system overhead), quickness (failure detection time) and our newly defined metric: 

probability of false report (PFR). 

 

1) Efficiency and Quickness 

 

For an HBFD serving for a process which needs other n processes’ failure status, the 

number of message exchanged within its execution duration is: 

 
Ti: The execution duration of Process i  

n: The number of monitored processes Nmsg =  )/(
1

η∑
=

n

i
iT

η: heartbeat messages inter-sending time (Table 3.1).  

(2)

 

Equation (2) shows that the message cost of HBFD is linear with the execution duration of 

each monitored process.  

 

Under the same scenario, the message cost of a NTFD or NTFD-E can be calculated by 

equation (3), which shows the message cost of NTFD/-E is linear with the number of failed 
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processes, which is much less than HBFD. Therefore, NTFD/-E are much more efficient 

on the message cost than HBFD. 

 
k: number of notification messages for a failed process 

Nmsg = k * F 
F: The number of failed process. (0≤F<n) 

(3)

 

Figure 3.13 Failure Detection Time of NTFD Figure 3.14 Failure Detection Time of NTFD-E
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For NTFD, suppose k failure notification messages are sent out for a failed process to a 

registered process, the number of expected arrived messages is Nk = k*(1-PL)*(1-fH). For n 

arrived failure notification messages, the probability distribution function for the first 

arrived message is Fmin(x) = 1- e−nx/E(D). Therefore, for k notification messages, the 

expected arriving time of the first arrived message is Ek(D)=E(D)/[ k*(1-PL)*(1-fH)], which 

is the failure detection time of NTFD (TD_NTFD). If we remove the impact of host failure, 

we get the failure detection time for NTFD-E: TD_NTFD-E =E(D)/[k*(1-PL)]. Figure 3.13 and 

Figure 3.14 plot the failure detection time of NTFD and NTFD-E with following settings: k 

ranges from 10 to 1000, E(D) = 0.02s, fH = 0.001, PL =0.001. 

 

For HBFD, the expected failure detection time is: TD=η/2+δ [CHE02]. The expression 

shows that the failure detection time of HBFD is bounded and increases linearly with δ and

η. In Internet environment, normally,η is set to be 1 second and δ can be the expected 
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delay of the heartbeat messages [CHE02], which makes TD of HBFD much longer than TD 

of NTFD/-E. Please be noted that we cannot set η too small; otherwise the false 

detection of HBFD will be very high. 

 

2) The PFR (Probability of False Report) 

 

From the users’ point of view, the most important thing is whether the detection results of 

an FD are correct or not. Therefore, we define a new metric: Probability of False Report 

(PFR). PFR means that when a user queries an FD for the status of a process, the result 

reported by the FD is wrong.  

 

PFR can be calculated by dividing the total period which an FD gives wrong detection 

results by the entire execution time (T) of the FD. We assume that the MTBF (Mean Time 

Between Failures) of a host is 30 days (= 259200 seconds) and the MTBF of a process is 1 

day (= 86400 seconds). Suppose the reliabilities of the hosts and the processes follow the 

exponential distribution: Fx(T) = 1-e-T/m. m is MTBF; x can be h (host) or p (process). 

Within the system’s execution time T, the probability of a host failure occurring at or 

before t is: Fh(t) =1 – e-t/m =1 - e-t/259200 ; the probability of a process failure occurring at or 

before t is: Fp(t) = 1 – e-t/m = 1 - e-t/86400 . We assume that Fp(t) includes the possible 

process crash caused by host failures. Hereafter, we calculate the PFR for each type of FDs 

and plot their average PFR within the different execution durations which range from T = 

50 to T = 1600 (seconds).  

 

2.1) The PFR of NTFD/-E 
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Message delay and messages loss cause the false detection of NTFD-E. We already 

considered these two factors in TD_NTFD-E. Therefore, the PFR of NTFD-E can be calculated 

by: PFRNTFD-E = Fp(T)* TD_NTFD-E /T.  

 

In addition to the message delay and messages loss, host failure affects the PFR of NTFD 

severely: if a host failed, the query result will be false permanently. Therefore, two 

conditions may result in the PFR of NTFD. One condition is that the process failed before 

the host fails and the notification messages have been sent out. The other condition is that 

the process does not fail while the host fails and results in permanent false report. PFR of 

NTFD can be got by summing up the results of these two conditions. For simplicity, we 

calculate an approximate PFR of NTFD. The approximate PFR is greater than the real PFR 

of NTFD, and it is enough to illustrate the performance of NTFD. At time t of a NTFD’s 

execution duration, the corresponding PFR can be calculated by the following expression:  

 

Fp(T)*TD_NTFD/T+ (T-t)/T* ))()((lim
0

tFttF hht
−Δ+

→Δ
. 

 

The first part Fp(T) *TD_NTFD/T computes the part of PFR due to the process failure. Please 

be note that since here the system already holds that the host does not fail, TD_NTFD equals 

to TD_NTFD-E in this part. (T-t)/T approximates the part that the process works well but the 

host fails at t and results in permanent false report. Since t ranges from 0 to T, we should 

sum them up. Therefore, we get NTFD’s PFR in equation (4). 

 

PFRNTFD =Fp(T) *TD_NTFD/T+          (4) dttFTtT h
T

)(*]/)[( '

0∫ −
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Figure 3.15 PFR of NTFD-E Figure 3.16 PFR of NTFD 
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In order to make a clear comparison, we draw the PFR of NTFD/-E in Figures 3.15 and 

3.16. Compare the two figures we can see that the PFR of NTFD-E is much lower than that 

of NTFD, because the host crash can cause permanent false report for NTFD.  

 

2.2) The PFR of HBFD 

 

Firstly, we describe a special phenomenon of HBFD which does not exist in NTFD/-E. The 

phenomenon is that HBFD will make false detection even though the monitored process 

works well. The PFR under the process failure-free condition (PFRno_f) equals to (1-PA). PA 

is the query accuracy probability of HBFD proposed in [CHE02]. PFRno_f can be calculated 

by equation (5) and it is plotted in Figure 3.17. Figure 3.17 shows that PFRno_f always 

decreases with δ increasing. 

 

PFRno_f = (1-PA) = (1/η) * ∫
η
μ

0
)( dxx   

= (1/η) * ∫ −+>−+Π
=

η
ηδ

0 0
))()1(( dxjxDPPP rLL

k

j
             (5) 
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Figure 3.17 PFR of HBFD with Different δ under Failure-free Condition 
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However, process or host can crash and the failure can only be detected after the period of 

failure detection time: TD. During TD, HBFD cannot assert the failure so as to cause the 

false report. Combining PFRno_f, the PFR of HBFD can be calculated by equation (6). 

 

PFR= ∗++∗∫
T

fno tPFRDIVtT
0 _ ]*))[(()/1( δη tdtttFtF ppt

ΔΔ−−
→Δ

/))()((lim
0

= F∫ ++∗
T

fno tPFRDIVtT
0 _ *]*))[(()/1( δη ’

p(t)dt                (6) 
 

In order to visualize the comparison, we plot the PFR of HBFD calculated by equation (6). 

To simplify the calculation of equation (6), here and hereafter, we adopt the average value 

of (t DIV η), which is ranging within (0, η), to be η/2. Figure 3.18 illustrates that the PFR 

of HBFD decreases with δ increasing within 0<δ<1. When δ increases to 1 (which makes 

k=1), the PFR decreases sharply because at this point HBFD makes false detection only 

when two consequence heartbeat messages are lost or delayed. But from the point δ=1, the 
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PFR begins to increase. Figure 3.18 cannot reflect this trend due to the too large scale. We 

show this tendency in Figure 3.19. The reason is that from δ=1, PFRno_f is not the main 

factor affecting the overall PFR. Failure detection time (TD≤δ+η) becomes the main 

factor affecting the PFR of HBFD. With δ increasing, the longer TD makes the PFR of 

HBFD increase. 
 

Figure 3.19 PFR of HBFD with 1<δ<3 Figure 3.18 PFR of HBFD with 0<δ<3 
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3.5 A Hybrid Approach to Designing Failure Detector  
 

From Figure 3.17 we can see that with δ increasing, the PFR of HBFD under failure-free 

condition always decreases due to the less impact of message loss and delay. That is a 

good property and especially valuable in the Internet environment where the probabilities 

of message delay and loss are difficult to predict.  

 

However, if the failures of processes or hosts are concerned, the PFR of HBFD will not 

always decrease and it depends on the parameter δ. The PFR of HBFD decreases only 

when δ is small (0<δ<1). After δ increases to a specific value (in our case, after δ reaches 

1), the PFR of HBFD stops decreasing and begins to increase, because the increasing 

failure detection time becomes the main factor to affect PFR (Figure 3.19). 
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Above analysis tells us that to improve HBFD’s PFR, we must reduce the failure detection 

time of HBFD when δ is increasing. However, it is impossible for HBFD, because the 

failure detection time of HBFD has a linear relation with δ (TD≤δ+η). Section 3.4 tells us 

that the failure detection time of NTFD is determined by the fastest failure notification 

message, which can be much shorter than the failure detection time of HBFD. This 

characteristic helps us build hybrid FD to reduce the PFR of HBFD. 

 

In hybrid FD, the failure notification mechanism of NTFD is incorporated into HBFD. All 

the operations of hybrid FD are the same as HBFD except the failure notification 

mechanism. There are two criteria for hybrid FD to assert a failure. One is the same as 

HBFD. Another criterion is that when a failure notification message arrives, hybrid FD 

will assert a failure. In hybrid FD, we increase δ to reduce the impact of message loss and 

delay, while failure notification mechanism helps us achieve quick failure detection. The 

PFR of hybrid FD can be calculated by equation (7). 

 

PFR= ∫ ++<∗
T

TtTPT */]*)2/([ ληδ tdtttFtF ppt
Δ−−

→Δ
/))()((lim

0
 

+ ∫ +>∗+
T

Dr TTPDIVt
0

*/)]2/())[(( ηδδη tdtttFtF ppt
Δ− − Δ

→Δ
/))()((lim

0
   (7)  

 

Figure 3.20 shows that the PFR of hybrid FD with different δ. Compare Figure 3.20 with 

Figures 3.18 and 3.19 we can see that hybrid FD not only reduces its PFR greatly, but also 

keeps stable (The PFR will not increase with δ increasing). These improvements are 

achieved by the short failure detection time provided by the failure notification mechanism 

of NTFD. 
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Figure 3.20 PFR of Hybrid FD 
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3.6 Summary  
 

In this chapter, we proposed a new approach to implementing FDs, called NTFD, based on 

our newly proposed a general system model. Performance analysis shows that NTFD has 

advantages on all the QoS aspects except the completeness property. The biggest 

advantage of NTFD is that it can preserve the strong accuracy property, which is valuable 

for many applications. Based on the analysis of trade-offs in achieving QoS of FDs, we 

proposed a hybrid FD which combines the advantages of both the NTFD and HBFD 

approaches.  
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Chapter 4 

Efficient Primary-Backup based 

Algorithms 
 

In this chapter, we introduce our proposed efficient primary-backup based algorithms for 

the fault tolerant execution of MAs. This chapter is arranged as follows. Section 4.1 

presents the system model. Section 4.2 describes our proposed efficient primary-backup 

based algorithms. In Section 4.3, two types of failure detectors are integrated with our 

proposed primary-backup based algorithms. Section 4.4 presents the performance analysis 

for our proposed algorithms. The analysis results are validated by simulations. Section 4.5 

summarizes this chapter. In Appendix, we give a sample implementation for ours proposed 

algorithms in a Java based MA system.  

 

4.1 System model 
 

In this chapter, we consider the system model of an MA system that consists of one or 

several independent MAs and a group of hosts. The independent MAs do not communicate 

with each other, and each MA executes and migrates along a predefined or self-initiated 

itinerary. With a self-initiated itinerary, the MA only knows the first host it will visit and 

the following hosts will be determined by the execution results on previous hosts, whereas 

the agent knows all the hosts it will visit with a predefined itinerary. The hosts are 

connected by the communication links and the links are not reliable. An MA launched by a 

user is called the working MA. A working MA can have one or several backups. The 

backups of a working MA will monitor the failure status of the working MA through FDs. 

MAs can communicate with the FDs by message passing. We assume that the messages 
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from FDs can be delayed or duplicated, but they will be delivered to the destination 

eventually.  

 

For simplicity, we assume all the operations executed by the MAs are idempotent, so the 

exactly once execution property is not necessary to be considered in this chapter. For non- 

idempotent operations, transaction support is needed to maintain the system consistency 

during recovery. We will introduce MA transaction in Chapter 6.  

 

4.2 Efficient Primary-backup Based MA Fault Tolerance Algorithms 
 

The main idea to improve the efficiency of primary-backup based algorithms is to 

introduce parallel processing between the working MA and its backups. According to 

whether the MA’s itinerary is predefined or not, we propose two primary-backup based 

algorithms, namely Reverse MAs Algorithm (RMAA) and Alternate MAs Algorithm 

(AMAA). 

 

4.2.1 RMAA  

 

RMAA is well suited for MA applications with a predefined itinerary and no requirement 

on the host visiting sequence. One typical example is information retrieval. In RMAA, the 

original predefined itinerary is the forward itinerary, while the reverse itinerary is an 

itinerary that reverses the sequence of hosts in the forward itinerary. There are two MAs in 

RMAA. One is called the Forward MA (FMA) which will visit hosts according to the 

forward itinerary, and another is called the Reverse MA (RMA) which will visit hosts 

according to the reverse itinerary. In this section, unless otherwise stated, we only discuss 

one pair of MAs: FMA and RMA.  
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Figure 4.1 illustrates the RMAA scheme. The pair of MAs (FMA and RMA) is dispatched 

by the MA platform at the user side simultaneously. They execute concurrently along their 

own itineraries until they reach the two neighboring hosts (e.g., Host 2 and Host 3 in 

Figure 4.1), which indicates that all the hosts on the itinerary have been visited. The two 

MAs will then return to the MA platform on the user side.  
 

FD 

Host3

Host4 

Host1

Host2

Hello

User 

Figure 4.2 Landing Procedure 

Migration

Ok/No

Hello

Checking 

Host B 

Enter Queue 

Figure 4.1 The Execution of RMAA 

Host A 

Hello

 

In order to prevent the failure of both MAs due to the failure of a host, the two MAs are 

not allowed to land on the same host. For this purpose, a landing procedure is needed 

(Figure 4.2). The two MAs send the coordination message “Hello” before migrate to the 

next host. The “Hello” message is put into a queue on the MA platform of the next host, 

which is to ensure that the host only accepts one MA with the earlier “Hello” in the pair of 

MAs. An MA can migrate to the host only if it has received an “Ok” message as response 

from the host. If both MAs send the “Hello” message to the host simultaneously, the host 

will receive both of them. But in the queue, one will precede another. For the sender of the 

later “Hello” message, the MA platform will reply it with a “No” message. When the MA 

receives a “No” message, it knows that another MA is already on the neighboring host. So 

it will go back to the user host. The MA which got the “OK” message will return user host 

too after it finishes its execution.  
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Figure 4.4 Itinerary Partition  
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Figure 4.3 Failure Handling of RMAA 
 

Same with the rear-guard algorithm, we assume that the FMA and RMA will not fail at the 

same time. During the execution of the pair of MAs in RMAA, one MA may fail during its 

execution or migration. The failure detector will detect the failure and inform another MA, 

and the living MA will generate a new MA to replace the failed MA (Figure 4.3). For this 

purpose, FMA and RMA should keep each other’s computing results (this is the same with 

rear-guard algorithm). A distinguishing advantage of the RMAA algorithm is that it can 

handle the itinerary partition due to a link failure. In Figure 4.4, the itinerary is partitioned 

into two separated sections. It is obviously that the pair of MAs can finish their tasks if 

they will not fail.  

 

RMAA can be implemented at the system level in a way transparent to the application 

programmer. What the programmer needs to do is just to provide the MA’s task and 

itinerary to RMAA. RMAA will create FMA and RMA to finish the users’ task. The 

algorithm in pseudo-code format for executing RMAA is illustrated in Algorithm 4.1.  

 

The RMAA scheme can be easily extended to accommodate n (n ≥ 1) pairs of MAs to 

speed up the execution in large-scale networks. The original itinerary can be separated into 

n sections, and on each section RMAA is executed. 
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//After the cloned MA lands on the host, it will check the reported ma is really failed or not. 
if (ma1.check(failureMA_id) = = ReallyFailed) //if the reported ma really failed, its job will be   
  ma1.resumeFailedma();                 //continued.  

//a RMAA object and provide the Task and Itinerary to the RMAA object.  
1. RMAA rmaa = new RMAA (Itinerary, Task); //RMAA creates 2 members: a FMA and a RMA; 
2. rmaa.Launch(); //FMA and RMA are launched; 
//FMA and RMA execute the same code in parallel. We only describe FMA’s execution.  
3. if (rmaa.FMA.tryMigration() = = OK) //will not encounter RMA 
    {rmaa.FMA.migration(); //migrate to next host 
     result = rmaa.FMA.Task.start();   
     rmaa.FMA.synchronize(result); //synchronize the computing result for failure handling.    
     goto 3; //Finish the execution on current host, then try to go to next host. 
  }else  //will encounter RMA if migrate to the next host. So FMA returns home. 
    rmaa.FMA.returnHome();  
 
// Pseudocode for the MA failure handling. Suppose ma gets a message from failure detector. 
if (msg = ma.getmessage() = = MA_Failure) //get asynchronous message from failure detector 
   ma1 = ma.clone();  //this ma will clone a new ma according to the failed ma’s infomation. 
   ma1.migration(msg.host, failureMA_id); //the cloned ma migrates to the host. 
 

//RMAA is a class which implements all the functions of RMAA algorithm. User just needs to create 

Algorithm 4.1 RMAA 
 

 

4.2.2 AMAA 

 

A predefined itinerary is necessary for RMAA. But one of the fundamental features for 

MA is its autonomy, which allows an MA to dynamically determine the next host to visit 

without a predefined itinerary. RMAA is not applicable under such a context while the 

rear-guard algorithm can still work. But the rear-guard algorithm is not efficient. Therefore, 

an efficient algorithm which can determine it itinerary dynamically is desirable.  

 

For an MA application without predefined itinerary, an agent needs to compute the next 

stop before every migration. Accordingly, we divide an MA’s operations into two sections 

(Figure 4.5): CalNextStopOps contains all the necessary operations that have to be done in 

order to get the next stop; RestOps includes the rest operations. The border between these 
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two sections can be different in different applications. Some applications can determine the 

next stop in the first few steps; some get it later.  
 

Figure 4.5 An MA’s Operations 
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Figure 4.6 The Execution of AMAA  
 

AMAA involves two MAs. One MA which is on the head is called the Leading MA 

(LMA); the other MA which is behind the LMA is called the Slave MA (SMA). The two 

MAs should arrange their operations into the two sections as shown in Figure 4.5. Figure 

4.6 shows the execution process of AMAA. The MA platform on the user’s host launches 

two MAs. One lands on the first stop and becomes LMA. The other waiting on the user 

side becomes SMA. When the LMA has worked out the next stop, it sends a message to 

the SMA. SMA then migrates to the next stop and becomes the new LMA to start its 

execution. The former LMA becomes SMA now. When the new LMA determines the next 

stop, it sends a message to SMA. Now the SMA may or may not finish the RestOps. When 

SMA finishes the RestOps, it will migrate to the next stop. The process will continue until 

the task is finished. As we can see, LMA and SMA execute at alternative hosts in the 

network. 

 

Same with the rear-guard algorithm and RMAA, the failure detector will inform the 

failures of MAs, and the living MA will generate a new MA to replace the failed MA. 

However, different from RMAA, AMAA can not handle the itinerary partition. AMAA 

can also be implemented at the system level. Users need not provide the itinerary, but the 
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task is required to separate into two sections as we described. Algorithm 4.2 illustrates the 

pseudo-code for AMAA 

 

AMAA can be easily extended to involve n (n ≥ 2) MAs. Among the n MAs, One acts as 

the LMA. The rest n-1 MAs form a sequence of SMAs. When the LMA determines the 

next stop, it informs the last SMA. The last SMA migrates to the next stop and becomes 

the LMA. Previous LMA becomes the first SMA of the sequence of SMAs. 
 

 

// Pseudocode for the MA failure handling in AMAA is the same with RMAA. 

//a AMAA object and provides the Task to the RMAA object. 
1. AMAA ma[ ] = new AMAA (Task); //AMAA creates 2 members: an LMA and a SMA; 
2. NextHost = FirstHost; ma[0].end = false; ma[1].end = false; //Initiation;  
3. ma[0].goto 4; ma[1].goto 9; //ma[0] is current LMA and ma[1] is current SMA. 
//ma[0] and ma[1] share the same code from 4 to 9. In the following, “ma” can be ma[0] or ma[1]. 
4. ma.migration(NextHost);  
5. NextHost = ma.Task. CalNextStopOps();  
6. if (NextHost ≠ NULL) 
    ma.informSMA(NextHost); //After the current SMA get this message, it will migrate   
  else               // to next host and becomes the new LMA. This ma becomes the new RMA. 
    {ma.informSMA(NULL); //No next host, so inform SMA to return home. 
     end = true; //This mark will make LMA return home     
    } 
7. result = ma.Task. RestOps(); //Finish the rest operations.  
8. ma.synchronize(result); //synchronize the computing result 
9. if (end = = ture) //No next host. 
    ma.returnHome(); 
  else if (ma.getNextHost() ≠ NULL) //SMA get the next host which is sent by LMA 
       {goto 3;                 //SMA will migrate to the next host.  
       } else  //No next host 
         ma.returnHome(); //it is time to go home. 

//AMAA is a class which implements all the functions of AMAA algorithm. User just needs to create 

Algorithm 4.2 AMAA 
 

 

4.3 Failure Detection Mechanisms in MA Systems 
 

The function of failure detection is a fundamental requirement for primary-backup based 

fault tolerance algorithms and HBFDs are widely implemented in realistic systems. But as 
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mentioned in previous chapters, problems of HBFDs include the false detection, high 

message cost, and the dumb period for MA applications. In the following subsections, we 

propose the handover procedure for the problem of dumb period, and for the false 

detection and message overheads of HBFD, we introduce our newly proposed NTFD for 

MA systems. 

 

4.3.1 HBFD in MA Systems  

 

Figure 4.7 shows the HBFDs in an MA system. Each HBFD keeps collecting the status of 

the monitored MA in a predefined frequency on the same host. For each piece of collected 

status information, HBFD will construct a heartbeat message and send it to the interested 

HBFDs recorded in the registration table.  
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Figure 4.7 HBFD in MA System
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For example, in Figure 4.7, MAA makes a registration in the registration tables of HBFDA. 

A complete registration table is shown in Figure 4.9. The registration procedure has three 

steps: (1) MAA asks for the failure detection service from the local HBFD: HBFDA. Within 

the service request description, MAA nominates its backup MA’s ID and address (MAB, 

HostB). (2) When HBFDA received the registration request, it will allocate a new entry in 
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its registration table for MAA. The service requestor (MAA) will be put in the first column 

of this row. The backup MA’s ID and address will be put in the following columns of the 

entry. Then HBFDA sends the request to HBFDB on HostB. (3) When HBFDB receives the 

request, it starts to receive the heartbeat messages sent from HBFDA to detect the failure of 

MAA.  

 

Before an MA migrates to a new host, it will make a deregistration on the current host. The 

deregistration procedure also has three steps: (1) MAA sends a deregistration request (stop 

monitoring the failure of MAA) to HBFDA. (2) HBFDA will traverse the registration table 

to find the entry for MAA ID and delete it. Then HBFDA sends the request to HBFDB. (3) 

When HBFDB receives the request, it stops receiving the heartbeat messages sent from 

HBFDA.  

 

In Figure 4.7, MAA periodically updates its status on HBFDA and HBFDA sends these 

collected updates in the heartbeat messages to HBFDB. If MAA failed, the updating 

operation will stop. So there is no heartbeat message to HBFDB and HBFDB will assert a 

failure. The frequency of the updates and the heartbeat message can impact the QoS of the 

HBFD. For the implementation of an HBFD with certain degrees of QoS, please refer to 

[CHE02].  

 

For the problem of dumb period, a handover procedure is needed. A simple solution is 

simply provided by the registration and deregistration procedures: before an MA starts 

migration, it makes a deregistration, the remote HBFD stops the failure detection 

operations. The problem for this scheme is that, if the MA is lost during migration, the 

HBFD can not detect it. An enhanced scheme is based on reliable MA migration. When an 

MA starts a migration, it sends its clone to the next host and waits until the clone landing 

on the next host. During the migration process, the waiting MA can keep sending heartbeat 
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TFD is an alternative approach to implementing failure detector with 100% accuracy and 

messages to the HBFD. After the clone lands on the new host, it informs the waiting MA 

which will then hand over the task of heartbeat message exchanging to the clone. Through 

this scheme, the dumb period problem can be solved and the HBFD can keep working on 

the monitoring task. 

 

False detection is an inherent problem of HBFDs. What we can do is to add a checking 

procedure. When a new MA is generated to replace the failed MA, the new MA should 

check the status of the failed MA. If the new MA finds a false detection, it will kill itself to 

avoid the duplicated execution. For the message overheads caused by HBFDs, we can not 

reduce it only through decreasing the frequency of heartbeat messages exchanging, if we 

want to maintain quick failure detection. According to [CHE02], decreasing the frequency 

of heartbeat message exchanging will make the time of failure detection longer. These two 

problems can be solved by our newly proposed NTFD in Chapter 3. 

 

4.3.2 NTFD in MA Systems 
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Figure 4.8 NTFD in MA System

HostA

HostB

MAA

MAB

Registration  
table on NTFDA

MA 
Platform

MA 
Platform 

MAB MAA

MAA MAB

MA been 
Monitored 

Backup MA

N

very low message cost. For NTFD, the underlying failure detection mechanism on an MA 

platform will detect the failure status of local MAs, and once a failure is detected, a failure 
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notification will be sent to the backup. Figure 4.8 shows the NTFD in an MA system. In 

NTFD approach, all the MAs running on an MA platform will be monitored by a NTFD 

running on the host.  

 

Each NTFD maintains a registration table for the MAs that it is monitoring. Each MA will 

make a registration to record the address of its backup MA. For example, in Figure 4.8, 

MAA and MAB are each other’s backup and they are monitored by NTFDA and NTFDB 

respectively. MAA makes a registration in the registration table of NTFDA and nominates 

MAB as its backup MA. MAB does the same procedure on NTFDB except that its backup 

MA is MAA. Before an MA migrates to a new host, it will deregister at the current host. 

The registration procedure and the deregistration procedure are similar. Figure 4.9 shows a 

complete registration table. 
 

Figure 4.9 Registration Table for FDs in MA System
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NTFD also has the dumb period problem, so it needs the same handover procedure as in 

HBFD. But comparing with HBFD, NTFD is more efficient and scalable, and can 

guarantee the strong accuracy property. However, a problem for NTFD is that it can not 

guarantee the completeness property as well as by HBFD, because the backup MA can not 

acknowledge the failure if the failure notification message is lost. However, sometimes the 

accuracy property is more important. For example, in RMAA or AMAA, if one MA failed 

and the backup MA does not know the failure, the backup MA may finish the task by itself 
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if it will not fail. But if HBFD makes a false detection, the backup MA may cause the 

duplicated operations, which is unacceptable in some applications like the e-commerce. In 

Chapter 3, we have concluded that the overall performance of NTFD is better than HBFD.  

 

4.4 Performance Analyses and Evaluations 
 

In this section, we first make an analytic analysis on the execution time for the different 

primary-backup based fault tolerant MA execution algorithms, and then describe the result 

of our simulation study. 

 

4.4.1 Analysis on Execution Time and Message Cost 

 

 
Figure 4.10 Execution Time Comparisons 
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In the following discussion, we assume that the execution time T on each host for an MA is 

the same. N is the number of hosts. The time for an MA to migrate from the current host to 

the next stop is Tm. TTask_exe is the total execution time for each algorithm. For rear-guard 

algorithm, when the working MA starts a migration, it will inform the rear guard MA to 

follow it. We assume that the time needed for this operation is Tinform. In RMAA, Tlanding is 
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the time needed by the landing procedure. In AMAA, like the rear-guard algorithm, Tinform 

is the time needed by the operation of LMA informing SMA of the next stop, and 

according to Figure 4.5, we assume that the time taken by each CalNextStopOps is 

TCalNextStopOps; the time taken by each RestOps is TRestOps. It is obviously that T = 

TCalNextStopOps+TRestOps. For simplicity, we do not consider the cost of synchronization 

messages, because they are needed by all of our discussed algorithms. 
 

For the rear-guard algorithm, the whole task is finished by the single working MA and no 

parallel processing is involved (Figure 4.10). So we have: TTask_exe = N(T+Tm+ Tinform). For 

RMAA, the FMA and RMA execute in parallel, so ideally the execution time is: TTask_exe = 

N(T+Tm+Tlanding)/2. AMAA allows partial parallelism in MA execution, and its execution 

time depends on how much job is done in parallel. From Figure 4.10, we can figure out 

how to compute the execution time for AMAA as shown in Formula (1) and (2).  
 

N (Tm+ TCalNextStopOps + Tinform)+ TRestOps   TRestOps < Tm+ TCalNextStopOps + Tinform    (1) 
 
 
(N+1)(Tm+ T + Tinform)                TRestOps ≥ Tm+ TCalNextStopOps + Tinform      (2) ⎪

⎩

⎪
⎨

⎧
=exeTaskT _

 

The parameter TRestOps determines the degree of parallism that can be achieved. If we can 

increase the TRestOps, the execution time of AMAA will be reduced. However, the reduction 

in the execution time is bounded that the total time will be no less than 

(N+1)(Tm+T+Tinform)/2, if TRestOps is greater than Tm+TCalNextStopOps+Tinform. We define this 

TRestOps as the AMAA critical value. For AMAA involving n MAs, it is easy to see that the 

task execution time will be (N+1)(Tm+T+Tinform)/n,(2≤ n ≤ N, TRestOps ≥ Tm+TCalNextStopOps 

+Tinform). 
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Theoretical Execution Time (N hosts) Message cost (N hosts) 
Algorithm Itinerary 

Execution 

Mode 2MAs nMAs (n>2) 2MAs nMAs (n>2)

RearGMA  Self-initiate Non-parallel  N(T+ Tm + Tinform) N(T+ Tm + Tinform) 2N 2N*N 

RMMA Predefined Full-parallel N(T+ Tm+ Tlanding)/2 N(T+ Tm+ Tlanding)/n   2N 2N 

AMAA Self-initiate Partial-paral. (N+1)(Tm +T+ Tinform)/2 (N+1)(Tm +T+ Tinform)/n N 2N/n 

Table 4.1 Execution Mode, Execution Time and Message Cost Comparisons 

 

Table 4.1 summarizes the execution modes, execution time and message cost for all the 

algorithms discussed in this chapter. Note that for AMAA in Table 4.1, we assume that 

TRestOps is set as the critical value. We can see that RMAA can provide the fastest execution 

speed (Tinform is almost the same with Tlanding). But RMAA needs a predefined itinerary and 

also requires the system to allow a random hosts accessing sequence. These requirements 

make RMAA inflexible. AMAA has the same degree of flexibility as the rear-guard 

algorithm, but its execution time can only be shortened if the next stop can be calculated 

quickly (then TRestOps will becomes bigger). If AMAA can only determine the next stop at 

the last step of its operation (TRestOps = 0), the execution time will be the same as the 

rear-guard algorithm: TTask_exe = N(Tm+ TCalNextStopOps+Tinform)+TRestOps = N(Tm+T+Tinform). 

But normally the TRestOps will not be zero, because an MA has to perform some routing 

operations on a host at last, such as deregistration, release resources, etc. So we can always 

gain the partial parallelism so as to shorten the execution time. The results in Table 4.1 are 

just the theoretical values. In practice, the real execution time will be longer due to various 

overheads. We will compare the realistic execution time in the simulation. 

 

The message cost of the algorithms mainly includes the coordination message cost for the 

synchronization and for informing the next stop, which is illustrated in Table 4.1. Please 

note that the message cost in Table 4.1 does not consider the message cost caused by 

failure detector, because failure detection is a kind of service provided by the platform in 
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our system. We will consider the message cost caused by failure detector in simulation 

study. 

 

4.4.2 Simulation Results 

 

In order to compare the realistic execution time in a real environment, we performed 

simulations of the Rear-Guard algorithm (RearG), RMAA and AMAA on the Naplet MA 

platform [Nap]. For simplicity, we only implement two MAs in each algorithm. The 

simulations are carried out on a PC with Pentium 4 CPU (2.5GHz), 256MB RAM. The 

software environment is: Window XP, Java version 1.4, and Naplet MA platform. Five 

Naplet MA platforms are installed on the PC and we simulated the algorithms with the MA 

travelling 15, 25, 35, 45, 55, 65, 75, 85, 95, 105 nodes respectively using different failure 

detection services (HBFD and NTFD). The number of MA failures is set to be 1/20 of the 

total number of hosts that have been visited and the failures are uniformly distributed along 

its itinerary, which indicates that for every 20 hosts, there is one failure occurring. The 

exchange frequency of the heartbeat messages is 5 messages per second. For AMAA, we 

set the TRestOps to be its critical value, which means that an MA will send out the next stop 

message in the middle of its execution.  
 

Figure 4.11 Execution Time with HBFD Figure 4.12 Execution Time with NTFD 
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From the simulation results in Figure 4.11 and 4.12, we can see that the execution time of 

RMAA and AMAA takes about half of the rear-guard algorithm’s execution time. But 

AMAA is a little slower than RMAA due to the partial parallelism and the synchronization 

cost such as informing of the next stop. Comparing Figure 4.11 and 4.12 we can see that 

using different failure detectors will not make much difference in the algorithms’ execution 

time. This is because the interface between a monitored MA and HBFD is almost the same 

as the interface between a monitored MA and NTFD in our implementation, which results 

in the similar execution time for an algorithm using different failure detector.  
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Figure 4.13 Message Cost Comparison 
 

However, different types of failure detectors make big differences on the message cost. 

Figure 4.13 shows that the messages cost increases much more quickly with HBFD. That is 

because the heartbeat messages cost is in direct proportion to the execution time and takes 

up the most part of the exchanged messages during MA’s execution. Longer execution 

time will cause more heartbeat messages. But the message cost caused by NTFD becomes 

very low, because NTFD’s message cost has no relation with the execution time but is in 

proportion to the times of MA failure. Under NTFD, the message cost mostly depends on 

the fault tolerant algorithms’ own message cost (Table 4.1). That is why in Figure 4.13, the 
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message costs of Rear guard MA and AMAA are nearly overlapped, because their own 

message costs are all 2N.  

 

4.5 Summary 
 

In this chapter, we firstly proposed two efficient primary-backup based algorithms for fault 

tolerant MA execution. The algorithms allow for parallel processing and provide tolerance 

of MA failure. Then we discussed the failure detection techniques for primary-backup 

based MA fault tolerance algorithms. We introduce our proposed NTFD in MA systems. 

Analytic and simulation results show that the proposed algorithms can improve system’s 

execution speed dramatically. 

 

Appedix: Implementation in a Java Based MA System 
 

/*************************************************** 
A Genaral MA(G-MA) class. It has the basic functions for an MA 
***************************************************/ 
pulic abstract class GenaralMA 
{  

public GenaralMA ( Itinerary iti, Tasks t) {…} 
public void MigrateToNext (Addr addr) {…} 
public void LandOn () {…} 
public void ProcessingMsg (Message msg) {…} 

} 
 
//Implementation of RMAA 
//RMAA is independent of MA platform. RMAA is a class which implements all the functions of  
//RMAA algorithm. User just needs to create a RMAA object and provides the Task and Itinerary to the 
//RMAA object.  
 
/******************************************** 
 RMAA_MA class 
********************************************/ 
pulic class RMAA_MA extends GenaralMA 
{  
RMAA_MA peerMA; 
State state ; 
public RMAA_MA(Itinerary iti, Tasks t) 
     { 
       super(iti, t); 
}  
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public void AssignPeerMA(RMAA_MA, peer) 
{ 
       peerMA = peer ; 
}  
 
public void MigrateToNext(Boolean fixfailure, Addr addr) 
{ 
 if (fixfailure == ture) 
{ 
super.MigrateToNext(addr); //call G-MA’s migration process 
state = fixfailure; 
} 
 else 
   { 

 if (CkMeeting() != Yes)  //check the meeting event 
      {result = sync(peerMA.ID); //synchronize the computing //results 

super.MigrateToNext();  //call G-MA’s migration process 
} 
 else 
      BackHome();  //if the MAs meet, both MAs return home. 
} 
} 
 
public void LandOn ()  
{//After the cloned ma lands on the host, it will check the reported ma is really failed or not. 
      if (state == fixfailure AND Check(peerMA) = = ReallyFailed ) 
        {flush();  //if the reported ma really failed, its job will be continued 
         resume(); 
        } 
      else 
      super.LandOn(); 
} 
 
public void ProcessingMsg (Message msg)  
{ 
 if (msg = = MA_Failure) //get asynchronous message from failure detector 
           {ma = clone(result);  //Clone a new ma according to the failed ma’s infomation. 
            ma. MigrateToNext (true, msg.addr); //the cloned ma migrates to the host. 
           } 
} 
} 
 
/******************************************** 
 RMAA class 
********************************************/ 
pulic class RMAA 
{ 
  RMAA_MA fma, rma; 

public RMAA(Itinerary iti, Tasks t) 
  { 
       iti = getForwardIti(); 

fma = new RMAA_MA(iti, t); 
iti = getReverseIti(); 

       rma = new RMAA_MA(iti, t); 
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      fma.AssignPeerMA(rma) ; 
       rma.AssignPeerMA(fma) ; 

}  
 
public Launch() 
   { 
    fma. MigrateToNext (); 
    rma. MigrateToNext (); 

} 
} 
 
/******************************************** 
 Using RMAA class in user applications 
********************************************/ 
1. RMAA rmaa = new RMAA (Itinerary, Task); //RMAA creates two members: a FMA and a RMA; 
2. rmaa.Launch(); //FMA and RMA are launched; 
 
//Implementation of AMAA 
//AMAA is independent of MA platform. AMAA is a class which implements all the functions of  
//AMAA algorithm. User just needs to create a AMAA object and provides the Task and Itinerary to the 
//AMAA object.  
 
/******************************************** 
 AMAA_MA class 
********************************************/ 
pulic class AMAA_MA extends GenaralMA 
{ 
AMAA_MA peerMA; 
State state ; 
public AMAA_MA(iti, Tasks t) 
     { 
       super(iti, t); 
}  
 
public void AssignPeerMA(AMAA_MA, peer) 
     { 
       peerMA = peer ; 
}  
 
 
public void MigrateToNext(Boolean fixfailure, Addr addr) 
{ 
 if (fixfailure == ture) 

{ 
super.MigrateToNext(addr); //call G-MA’s migration process 
state = fixfailure; 

} 
 else 
   { 

 if (CkMeeting() != Yes)  //check the meeting event 
      {result = sync(peerMA.ID); //synchronize the computing results 

super.MigrateToNext();  //call GenaralMA’s migration process 
} 

else 
      BackHome();  //if the MAs meet, both MAs return home. 
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} 
} 
 
public void LandOn ()  
{//After the cloned ma lands on the host, it will check the reported ma is really failed or not. 
      if (state == fixfailure AND Check(peerMA) = = ReallyFailed ) 
        {flush();  //if the reported ma really failed, its job will be continued 
         resume(); 
        } 
      else 
      super.LandOn(); 
} 
 
public void ProcessingMsg (Message msg)  
{ 
 if (msg = = MA_Failure) //get asynchronous message from failure detector 
           {ma = clone(result);  //Clone a new ma according to the failed ma’s infomation. 
            ma. MigrateToNext (true, msg.addr); //the cloned ma migrates to the host. 
           } 
        } 
 
public void NotifyNextStop() 

     { 
      msg = new Message(NextStop, peerMA); 

 SendMsg(msg); 
} 

 
public void waitNotification(Message msg) 

{ 
 NextStopAddr = msg.addr; 
} 

} 
 
/******************************************** 
AMAA class 
********************************************/ 
pulic class AMAA 
{ 
  AMAA_MA lma, sma; 
 

public AMAA(Addr First_host_addr, Tasks t) 
     { 
       lma = new AMAA_MA(First_host_addr, t); 
       sma = new AMAA_MA(null, t); 

lma.AssignPeerMA(sma) ; 
       sma.AssignPeerMA(lma) ; 

}  
 

public Launch() 
     { 

    lma. MigrateToNext (); 
      rma. waitNotification(); 

} 
} 
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/******************************************** 
 Using AMAA class in user applications 
********************************************/ 
1. AMAA amaa = new AMAA (NULL, Task); //AMAA creates two members: a FMA and a RMA; 
2. amaa.Launch(); //LMA and SMA are launched; 
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Chapter 5 

Checkpointing-based Algorithms 
 

In this chapter, we aim to solve two problems with checkpointing-based algorithms for the 

fault tolerance of MA systems: (1) Determining the checkpoint placement for independent 

checkpointing and (2) Checkpointing-based algorithm for MA group. For the first problem, 

we introduce our proposed checkpoint placement algorithms, and for the second problem, 

we present our proposed communication induced checkpointing (CIC) based algorithms. 

For simplicity, in this chapter we assume all the operations executed by the MAs are 

idempotent, so the property of exactly once execution is not necessary to be considered. 

For non-idempotent operations, transaction support is needed to maintain the system 

consistency during recovery. We will introduce MA transaction in Chapter 6. This chapter 

is arranged as follows. Section 5.1 describes our proposed three checkpoint placement 

algorithms and related simulations. Section 5.2 describes our newly designed CIC based 

algorithms for MA group, which includes a basic CIC algorithm (Basic-CIC) and a 

deferred message processing algorithm (DM-CIC). Section 5.3 summarizes this chapter.  

 

5.1 Checkpoint Placement Algorithms for MA System 
 

Many checkpoint placement algorithms have been proposed for conventional computer 

systems. However, there is no work done on how to determine a proper checkpoint 

placement for an MA and no study on how the two widely used strategies (equidistant and 

equicost) can be applied. Algorithms for checkpoint placement in conventional computer 

systems cannot be ported directly to MA systems because the system model of the MA 

system is different from that of conventional systems. In an MA system, the MA carries 
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out its assigned tasks on the hosts along its itinerary. The tasks are separated by the 

migration operations. Within each migration operation, the MA terminates its execution on 

the previous host and prepares for the migration. The preparation includes releasing the 

allocated resources (stack, memory) and packing the code and data sections of the MA into 

an image. Then the image will be transmitted to the next host. When the next host receives 

the image, it will perform system defined checking (i.e., CRC checking) to guarantee that 

the image is not damaged during the transmission, and incarnate the image to a new MA if 

the image passes the checking. The new MA will continue the execution on this new host. 

Since the MA is executing on a new host, the execution environment is totally new and has 

no any relation with the previous host; the stack and memory for this agent is reestablished. 

Therefore, we can claim that the failure of the MA on the current host is independent with 

its failure on the previous host. This characteristic corresponds exactly to the Markov chain 

property. Consequently, the execution of an MA in an MA system can be modelled as a 

discrete-parameter Markov chain. In the following subsections, we first define this model, 

and then propose checkpoint placement algorithms for MA systems.  

 

5.1.1 System Model 

 

We consider an MA system model where a single MA executes and migrates along a 

predefined or self-initiated itinerary. With a predefined itinerary, the agent knows all the 

hosts that it will visit, while with a self-initiated itinerary, the agent only knows the first 

host it will visit and the following hosts are determined by the execution results on the 

previous host. The itinerary consists of N hosts, Host0, Host1,…, HostN-1, and a home node, 

Home. Home launches the MA to Host0 reliably, so we consider that the MA starts its 

execution on Host0.  
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We assume that an MA can take an independent checkpoint right after it lands on a host 

and before starts its execution. It cannot take a checkpoint during its execution on a host. 

After the agent finishes its execution on a host, it will migrate to the next host according to 

the itinerary. This process will continue until all the hosts have been visited. During the 

migration, only the code and data (computing results) of an MA on previous host will be 

transmitted to the next host. On the new host or during the recovery process from a 

checkpoint, the MA is incarnated and its execution environment is reconstructed. Based on 

these observations, we assume that all the failures of an MA are independent from each 

other. Accordingly, the execution of an MA is modelled as a discrete-parameter Markov 

Chain.  

 

For simplicity, we assume that the stationary transition probabilities of this Markov Chain 

are fixed. Therefore, it is a homogeneous discrete-parameter Markov Chain. Let I be the 

state space and T be the parameter space, both are finite and discrete.   

 

I = {0, 1, 2, …N+1}, N>1. 

T = {0, 1, 2, …}. 
 

Ps0

Pf0 

1 2 0 3 4 5 6 N …..

Figure 5.1 State Transition Graph 
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Figure 5.1 illustrates the state transition graph for an MA’s execution. In state space I, state 

i (0≤i≤N-1) denotes the Execution State of an MA on Hosti. Failure may happen during 

the execution and migration of the MA with probability Pfi on Hosti. Pfi is independent 

from each other. A failure is detected immediately and the agent recovers and starts the 
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re-execution from the latest checkpoint with probability 1. Such a failure-recovery process 

is called a failure-recovery round, which may happen Xi times on Hosti. Xi is a random 

variable and its distribution is listed in Table 5.1.  
 

Table 5.1 Distribution Table of Xi

Xi 0 1 2 3 … N … 

p 1- Pfi Pfi (Pfi)2 (Pfi)3 … (Pfi)n … 

 

The probability of successfully finishing the execution on the current host and landing on a 

new host is Psi (Psi =1-Pfi). Psi is independent from each other. The last state N+1 is the 

Returnee State, which means that the MA has returned home. In Returnee State, we 

assume that the MA is able to recover under the user’s control with probability 1, no matter 

what failure occurs. 

 

The purpose of a checkpoint placement algorithm is to determine the proper (or optimal) 

checkpointing interval so as to reduce (or minimize) the system cost, which consists of the 

cost of making checkpoints and the cost of recovery when failures happen. The recovery 

cost includes the cost of incarnating the new MAs from the checkpoints and the 

re-execution cost. Table 5.2 shows the notions for the various types of cost in this model.  
 

Table 5.2 Various Types of Cost 

Parameter Description 

Csys Overall system cost 

Ci Recovery cost for one failure-recovery round on Hosti

Ccp the cost of making a checkpoint 

CI the cost of incarnating an MA from a checkpoint 

Ei the cost of the execution on Hosti

CXi the re-execution cost on Hosti
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Ccp is the cost to store a checkpoint on disk while CI is the cost to read a checkpoint from 

the disk. Although the direction of the data flow is different, the cost is similar: both of 

them can be evaluated by the cost of I/O operations and have no relation with specific 

applications. However, Ei is related with the specific application on Hosti because different 

application has different execution cost. Therefore, we assume that Ccp and CI are known in 

advance. Ei is provided by the MA platform of Hosti. Pfi is also maintained by the MA 

platform of Hosti. An MA does not know Ei and Pfi before it retrieves them from the MA 

platform of Hosti. 

 

5.1.2 Methodology 

 

The algorithms proposed in the next sections are based on the equidistant and equicost 

checkpointing strategies. The principle of these checkpointing strategies is to seek a better 

balance between the expected recovery cost and the checkpointing cost. An optimal 

checkpointing interval can be achieved in conventional systems if the failure rate is the 

same during the entire execution duration of a program. Similarly, we can also get the 

optimal checkpointing interval for an MA if all the failure rates Pfi are the same. Otherwise 

we cannot get the optimal checkpointing interval.  

 

In our model, checkpointing cost Ccp is known in advance, so we just need to derive the 

expected recovery cost within a checkpointing interval to seek the balance between Ccp and 

recovery cost. In following, we firstly determine the optimal checkpointing interval for an 

MA under an ideal condition (all the Pfi are the same), and then using the result to derive 

heuristics for designing checkpoint placement algorithms in a realistic MA system, where 

Pfi are independent in nature. 

 

5.1.3 Expected Recovery Cost within a Checkpointing Interval 
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Figure 5.2 The Calculation of System Cost in a Checkpointing Interval 
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With the reference to Figure 5.2, suppose an agent takes a checkpoint on Hosti before it 

initiates its execution, and the agent takes its next checkpoint on Hosti+n+1. The checkpoint 

interval is defined as the number of hosts between Hosti and Hosti+n (including Hosti and 

Hosti+n). The probability of the MA failure on Hosti is Pfi, and the number of 

failure-recovery rounds is Xi with its distribution listed in Table 5.1. The expected number 

of failure-recovery rounds (Ri) is given by Equation 1: 

 

Ri = E(Xi) = = Pr

r
fiPr )(

1
∑
∞

=

∗ fi/(1-Pfi)2      (0≤i≤N-1)    (1) 

 

The recovery cost Ci on Hosti consists of the incarnation cost CI and the re-execution cost 

Cxi, which refers to the cost of the execution starting from the checkpointing point to the 

failure point. Since the failure point is evenly distributed in the duration of an MA’s 

execution on a host (as shown in Figure 5.2), the expected re-execution cost in one 

failure-recovery round is given by Equation 2. 

 

E(CXi) = E∫ =
iE

iEdxx
0

)/( ∫ =
iE

i xdxE
0

)/1( i/2     (2) 
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Accordingly, the expected recovery cost on Hosti is:  

 

E(Ci) = Ri*(CI+ Ei/2)     (3) 

 

For a failure-recovery round on Hosti+1, since the recovery should start from Hosti, the 

expected recovery cost on Hosti+1 is: E(Ci+1)= Ri+1*(CI+Ei+Ei+1/2) and the expected 

recovery cost on Hosti+n is: E(Ci+n) = Ri+n*(CI+Ei+…+Ei+n/2).  

 

Since the failures are independent, the total expected recovery cost for the checkpoint 

interval illustrated in Figure 5.2 is given by Equation 4 below (Ci,i+n denotes the total 

expected recovery cost from Hosti to Hosti+n): 

 

E(Ci,i+n) = E( )=    (4) ∑
=

+

n

k
kiC

0
∑
=

+

n

k
kiCE

0

)(

 

Together with the cost for the checkpointing and execution cost within this interval, the 

overall system cost can be calculated by Equation 5: 

 

Csys = Ccp+E(Ci,i+n)+(n+1)Ei = Ccp+ +(n+1)E)(
0
∑
=

+

n

k
kiCE i   (5) 

 

5.1.4 Optimal Checkpointing Interval under an Ideal Condition 

 

If the cost of checkpointing and the failure rate are fixed during the execution of a program, 

the optimal placement strategy would be to place the checkpoints in fixed equidistant 

intervals [TAN84, ZIV97]. In our model, Ccp is fixed, but Pfi are different from each other 

(the same to Ei). To derive the heuristic rules for checkpoint placement algorithms in a 

realistic MA system where Pfi are independent in nature, we first consider an ideal 

condition: all the Pfi and Ei are the same. 
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Figure 5.3 The Expect Cost in a Checkpointing Interval  
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Fixing Pfi makes the MA system to have a fixed failure rate. Having Ei with the same value 

on all the hosts makes the intervals equidistant if each interval contains the same number 

of hosts. Since we do not consider checkpointing in the middle of an MA’s execution on a 

host, as shown in Figure 5.3, the granularity of the checkpointing interval is one host. To 

determine the optimal interval, we assume that an interval contains x hosts. Then the 

expected total system cost is calculated as follows: 

 
Csys = (H/x)[x*CI +(RE+(x-1)RE)(x-1)/2+xER/2+Ccp]+H*E   (x=1,2,3,…N) 

=(H/x)[x*CI+x2RE/2+Ccp]+H*E = H*CI+xHRE/2+HCcp/x+H*E     (6) 

 

To get x that produces minimal value for Equation (6), we consider that x is continuous as 

shown in Figure 5.4. Then we can get x by derivative. 

 

Csys’= REH/2 - CcpH/x2 
       (7) 

Csys’’= 2 CcpH/x2              
  (8) 
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Figure 5.4 Different System Cost under Different Checkpointing Interval  
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Since Csys’’>0, Csys has the minimal value. Let Csys’=0, we can get the value of x to make 

Csys minimal.  

 

Csys’= REH/2 - CcpH/x2=0 

 x= RECcp /2           (10) 

 

With the optimal x derived from Equation 10, the cost of the expected total re-execution 

cost in an interval (Figure 5.3) can be calculated using Equation 11 below.  

 

∑
=

x

i
XiC

1
= (RE+(x-1)RE)(x-1)/2+xER/2= Ccp    (11) 

 

Equation 10 implies that the optimal checkpointing interval is only related with Ccp , R and 

E, and has nothing to do with CI. Equation 11 tells us that within an optimal checkpointing 

interval, the expected total re-execution cost (variable part in Figure 5.3) equals exactly to 

Ccp. The implications can be used as heuristic rules in designing checkpoint placement 

algorithm based on the equicost strategy. However, notice that Equation 11 is gotten under 

the assumption that x is continuous, but x is actually discrete. Therefore, the optimal value 
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should be the integer that is neighboring x. In Figure 5.4, the optimal interval should be 

“3” or “4”. We must determine the optimal interval by checking which value leads to a 

smaller result of Equation 6. 

 

5.1.5 Checkpoint Placement Algorithms 

 

In a real MA system, the failure rates cannot be the same on all the hosts and links, so we 

need to design algorithms working in general conditions. From the analysis in Section 

5.1.4, we propose three checkpoint placement algorithms. 

 

Algorithm 5.1: Equidistant with failure rate estimation: before an MA starts its travelling, 

it estimates a uniform failure rate for the MA system and decides the checkpointing 

interval by using Equation 10 in Section 5.1.4. The estimation can be made by using all the 

Pfi collected from the MA platforms on each host. The pseudo-code of these algorithms is 

shown in the following box. 
 

Algorithm 5.1: Equidistant with failure rate estimation (pseudo-code format) 
 
itinerary= MA.GetItinerary(); // Itinerary should be predefined {Host1; Host2; … HostH};  
Pf[ ] = MA.GetFailureProbability(itinerary); //Collecting probabilities from each host; 
AvrPf = MA.AveragePf(Pf[ ]);            // Eastimating average failure rate; 
R= AvrPf /Power(1- AvrPf);              //Get R according Equation 1; 
 
OptInterval_float = Sqrt(Ccp/R*E); //calculate the checkpointing interval according to Equation 10; 
OptInterval_Ceiling=Ceiling(OptInterval_float); //Get two neighboring integer; 
OptInterval_Floor=Floor(OptInterval_float); 
 
OptC= OptInterval_Ceiling*H*R*E/2+H*Ccp/OptInterval_Ceiling //Calculate the system cost  
OptF= OptInterval_Floor*H*R*E/2+H*Ccp/OptInterval_Floor    // according to Equation 6; 
 
if (OptC< OptF)   //the integer that leads to smaller cost becomes the checkpointing interval; 
  OptInterval= OptInterval_Ceiling; 
else 
  OptInterval= OptInterval_Floor; 
 
MA.Context.CpInterval= OptInterval; //MA will carry the interval can do checkpointing 
MA.Migration(itinerary);           // every “OptInterval” hosts. 
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In Algorithm 5.1, to collect Pfi from all the hosts along the itinerary, a predefined itinerary 

is needed. Since we require only an estimated average failure rate, the interval obtained 

here is only an approximate optimal interval. 

 

Algorithm 5.2: Equidistant by enumeration: before an MA start its travelling, it collects all 

the Pfi maintained by the MA platforms on the hosts, and enumerate the results of Equation 

6 with the value of x from 1 to H to get the x that leads to the smallest result.  

Algorithm 5.2: Equidistant by enumeration (pseudo-code format) 
 
itinerary= MA.GetItinerary(); // Itinerary should be predefined { Host1; Host2; …HostH};  
Pf[ ] = MA.GetFailureProbability(itinerary); //Collecting failure probabilities from each host; 
 
for i=1 to itinerary.NumberOfHosts //Calculate R according Equation 1 

    R[i]=Pf[i]/Power(1- Pf[i]); 
    RC[i]=E* R[i];           //RC[i] is the re-execution cost on a single host i; 
end 
 
for interval=1 to itinerary.NumberOfHosts //Enumerate the system cost with each interval; 

    TC=Ccp; // Initiate the total cost: A checkpoint will be made at the first host of an interval; 
    accumulateC=0; // Temporary variable to record the re-execution cost within an interval; 
    currentC=0;  //Temp variable to count current cost with “index” number of host has passed; 
    index=1; //Temporary variable to record how many host has passed; 
  
    for host=1 to itinerary.NumberOfHosts 
        for i=1 to index  //this loop count the re-execution cost if failure happen on this host; 
           accumulateC=accumulateC+RC[host-i+1]; 
       end 

        currentC = currentC + accumulateC; 
        if (index==interval)  //Passed hosts equals to the interval, a checkpointing is made; 
            TC=TC+Ccp+currentC; //and then count the system cost; 
            accumulateC=0;  //Restore the temporary variable; 
            currentC=0;   //Restore the temporary variable; 
            index=1;    //Restore the temporary variable; 
        else 
            index=index+1; //Still not reach the interval boarder 
        end 
    end 
    if (index<interval)   //reach the tail of the itinerary; 
       TC =TC+currentC; 
    end 
    allresults[interval]=TC;  
end  
OptInterval = MiniIndex(allresults[]); //the minimal value’s index is the checkpointing interval; 
 
MA.Context.CpInterval= OptInterval; //MA will carry the interval can do checkpointing 
MA.Migration(itinerary);           // every “OptInterval” hosts.  
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In Algorithm 5.2, a predefined itinerary also is necessary for the Pfi collection. All the 

possible intervals will be tried to get the best equidistant interval. Obviously, Algorithm 1 

cannot give a better equidistant interval than Algorithm 2, but the time complexity of 

Algorithm 1 (O(1)) is much lower then that of Algorithm 2 (O(H2)).  

 

Algorithm 5.3: Equicost: MA calculates the variable part (Cvar) of the re-execution cost 

before its execution on each host. A checkpoint is made when Cvar is equal to Ccp or greater 

than Ccp (according to the heuristic rules described in Section 5.1.4).  

Algorithm 5.3: Equicost (pseudo-code format) 
 
//MA initiation at home node; 
MA.context={Ccp, E, FirstHost=TRUE, TC=0, accumulateC=0, currentC=0, index=1}; // 
MA.Launch(firsthost); // 
 
//Landing Procedure. Checkpointing is made in this procedure; 
if (MA.FirstHost== TRUE) 
  TC=Ccp; //A checkpoint will be made at the first host in an interval; 
  MA.FirstHost== FALSE; 
end 
Pf=MAP.getPf();    //Pf is maintained by the MA platform on a host; 
R=Pf/Power(1- Pf);  //Calculate R according Equation 1 
RC[index]=E*R;       //RC[i] is the re-execution cost on a single host i; 
 
for i=1 to index      //this loop for the re-execution cost if failure happen on this host; 
  accumulateC=accumulateC+RC[i]; 
end  
 
currentC = currentC + accumulateC; //the re-execution cost for current past hosts; 
 
if (currentC>=Ccp) // if the re-execution cost for past hosts equals or exceeds Ccp, a checkpoint is 
made; 

TC=TC+Ccp+currentC; //record the system cost 
  accumulateC=0; //Restore the temporary variable; 
  currentC=0; //Restore the temporary variable; 
  index=1; //Restore the temporary variable; 
else 
  index=index+1;  //Still not reach the interval boarder 
  if (ReturnedHome=TRUE)  //reach the tail of the itinerary; 
    TC=TC+currentC; 
end 
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Compare with Algorithms 5.1 and 5.2, the big advantage of Algorithm 5.3 is that it does 

not require a pre-defined itinerary. The decision on checkpointing is made during the 

execution of an MA. As we know, a most prevailing characteristic of MA is the autonomy, 

which allows an MA to determine its itinerary dynamically. Algorithm 5.3 has no 

constraint for MA to maintain this characteristic. 

 

5.1.6 Performance Evaluation using Simulations 

 

We need to evaluate the performance of the three proposed algorithms to find out which 

algorithm is the best in the sense that achieves the lowest system cost. Since we do not 

assume any distribution for the occurrences of failures on the hosts, there is no suitable 

way to make an analytic analysis. Therefore, we have carried out simulations to simulate 

the three algorithms using the Markov model shown in Figure 5.2 so as to evaluate the 

performance of the algorithms. 

 

In our simulations, we consider an MA system with 100 hosts. On each host, the failure 

probability Pfi is a random number ranging from 0 to 1. We adopt a uniform unit for the 

system cost, which can be the execution time or some other metrics. We assume Ccp≥1, 

E≥1 and CI= Ccp. The execution cost E can be less than Ccp if MA’s tasks on hosts are 

short and have no I/O operations; otherwise E is larger than Ccp. Since the cost of the 

constant part (Figure 5.3) is the same for all the three algorithms, we only compare their 

differences on the variable part Cvar. The results shown in the following figures are 

obtained with Ccp set to 2 and the execution cost E ranging from 1 to 20. For each cost 

metric, the same simulation is performed 100 times to get an average value for the 

checkpointing interval and the variable part Cvar.  
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Figures 5.5, 5.6 and 5.7 illustrate the average checkpointing interval and the corresponding 

variable part cost for the three algorithms under different failure probability ranges. A 

general tendency observed is that, with the failure probability decreasing, the 

checkpointing interval will become bigger. In terms of the system cost, Algorithm 5.2 

(equidistant by enumeration) gives the best performance, while Algorithm 5.1 (equidistant 

with failure rate estimation) is always the worst. Algorithm 5.3 (equicost) leads to similar 

system cost with Algorithm 5.2, but it is much more flexible and suitable for an MA 

system as we discussed at the end of the last section.  
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5.2 CIC based Checkpointing Algorithms for MA Systems 
 

If a group of MAs are concerned, independent checkpointing can not be applicable due to 

the domino effect. As we mentioned, CIC has been proven to be a flexible and efficient 

checkpointing scheme to prevent the domino effect, while allows each process to decide 

when to make checkpoint by itself. Up to now, we still can not find its application in MA 

systems. This motivates us to introduce CIC for the execution of MA group.  

 

5.2.1 System Model 

 

We consider an MA system consists of a group of cooperating MAs which form an MA 

group. In this MA group, each group member (a single MA) has a global unique group ID 

and MA ID. Each group member executes and migrates along a predefined or self-initiated 

itinerary. Group members may crash during its execution and migration. However, we 

assume that the underlying execution environment of MAs will not crash, which can be 

guaranteed by many existing local fault tolerant technique such as primary-backup system. 

To guarantee MA’s reliable migration or prevent the possible crash, we assume that each 
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MA can take an independent checkpoint before its migration. After the agent finishes its 

execution on a host, it will migrate to the next host according to the itinerary. This process 

will continue until all the hosts have been visited.  

 

Group members communicate by message passing. Application messages can be delayed, 

replicated or lost. However, we assume that the messages to request the recovery of the 

group of MA will not lost, which will be guaranteed by the transport layer of an MA 

system. For simplicity, we assume that all the operations executed by the MAs are 

idempotent, so the exactly once execution property is not necessary to be considered in this 

paper. For non-idempotent operations, MA transaction support is needed to maintain the 

system consistency during recovery (please refer Chapter 6). 

 

5.2.2 A Typical CIC Algorithm and Related Theorem 

 

In [BRI84], a typical index-based CIC algorithm has been proposed. The algorithm 

assumes that each process pi maintains a logical clock lci which functions as pi’s 

checkpoint timestamp. The timestamp is an integer variable with initial value 0 and is 

incremented as followings: 

 

1. lci increases by 1 whenever pi takes a basic checkpoint. 

2. pi piggybacks on every message m it sends a copy of the current value of lci. We denote 

the piggybacked value as m.lc. 

3. Whenever pi receives a message m, it compares lci with m.lc. If m.lc > lci, then pi sets 

lci to the value of m.lc and takes a forced checkpoint before processing the message. 

The set of checkpoints having the same timestamps in different processes is guaranteed to 

be a consistent state.  
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In [NET95], authors proposed and proved the following theorem (for z-cycle, please refer 

Section 2.2.1, Chapter 2): 

 

Theorem 5.1 (Consistency): A set of checkpoints S, where each is from a different process, 

can belong to the same consistent global snapshot if and only if no checkpoint in S has a 

zigzag path to any other checkpoint (including itself) in S (falls in a z-cycle).  

 

Therefore, if we can guarantee that there is no Z-cycle in a distributed system, then we can 

always find a set of consistent checkpoints, which means the domino effect can be avoided.  

 

We adopt this typical index-based CIC algorithm and integrate it with the existing 

algorithms in MA systems, such as the independent checkpointing which is to guarantee 

the reliable migration for MAs. In addition to the integration, we make an important 

improvement for our proposed CIC algorithm for MA system, which adopt the deferred 

message processing. This improvement produces a new algorithm: DM-CIC. DM-CIC can 

avoid the forced checkpoint so as to get a better trade-off on the system performance.  

 

5.2.3 Basic-CIC Algorithm for MA Systems 

 

Basic-CIC algorithm directly applies the traditional CIC algorithm to MA systems except 

that the MA platform will assist to make the checkpoints. Basic-CIC algorithm is described 

in Algorithm 5.4.  

 

In Basic-CIC, each MA maintains a logical clock (LC) and it is initiated to be 0. Basic 

checkpoint is made by MA according to a predefined frequency (defined in each MA). 

Before a basic checkpoint is made, LC is increased by 1 and the basic checkpoint is tagged 

with LC. The value of LC is piggybacked in every message sent out by MA. We denote the 
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piggybacked LC as M_LC. When an MA receives a message, if M_LC > LC, then sets LC 

to be the value of M_LC and takes a forced checkpoint tagged with LC before processing 

the message. 

 

Failure detector helps to detect the failures. If an MA failed, it will be detected by the FD 

installed in the MA systems and the corresponding MAP will be informed. Then the MAP 

will trigger the recovery process which will inform all the MAs in this group to rollback to 

the set of checkpoints having the same timestamp (LC). The following Theorem 5.2 shows 

that Basic-CIC can build up a consistent global snapshot.  
 

Algorithm 5.4: Basic-CIC 
 
//Procedure 1: MA initiated and launched; 
MA.LC=0;                    // logical clock is initiated to be 0 
MA.Launch(firsthost); // 
 
// Procedure 2:Execution on a host; 
MA.Exe();            //MA executes on current host 
MA.LC= MA.LC+1;  // LC is increased by 1  
MA.MakeCP(MA.LC);    //A basic checkpoint is made and tagged by LC. 
 
// Procedure 3:Message processing: SendMsg(); 
Msg = CreateMsg (msgbody, MA.LC); //all messages should be tagged by LC 
SendMsg(Msg);  
 
// Procedure 4:Message processing: GetMsg(); 
Msg = GetMsg (); //Get a message from the system 
if (Msg.msgbody == “RollBack”)  
    RollBackTo(Msg.LC); 
else 

MA.ProcessingMsg(Msg.msgbody); //MA handle the message; 
M_LC= Msg.LC;                         //Get the piggybacked logical clock; 
if (M_LC > MA.LC)                   //if piggybacked logical clock greater than local clock; 
   { MA.LC=M_LC;                    //Update local clock; 

MA.MakeCP(M_LC);           //a forced CP is made; 
   } 
 
// Procedure 5:A failure of MA is detected 
Msg = CreateMsg (“RollBack”, MA.LC); //rollback to the CP with timestamp LC 
MAP.SendToAllMembers(Msg);  // 
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Theorem 5.2 (Consistency): In Basic-CIC, a set of checkpoints S, where each is from a 

different MA is guaranteed to be a consistent state if they have the same timestamp.  

 

Proof: The proof is by contradiction. Assume that a set of checkpoints S created in 

Basic-CIC, each from a different MA, has the same timestamp t but is not a consistent state. 

Then in S, there must be at lest one checkpoint CPz which is involved in a z-cycle. Then, 

there are two cases: the rest of the checkpoints S’ (S’=S-CPz !=Φ) are either on the left side 

of the z-cycle or on the right side.  

Case 1. If there is one checkpoint CPl on the left side, then CPl happens before CPz: 

CPl CPz. Since the timestamp is monotonically increasing, the timestamp of the 

checkpoints made before CPz by the same MA should be smaller then the 

timestamp of CPz. Under such a scenario, according to Procedure 4, a forced 

checkpoint CPf with timestamp t should be made before CPz. Therefore, the 

timestamp of CPz should be greater than t, which contradicts with the assumption.  

Case 2. If there is one checkpoint CPr on the right side, then CPz happens before CPr: 

CPz CPr. Since the timestamp is monotonically increasing, the timestamp of the 

checkpoints made before CPz by the same MA should be smaller then the 

timestamp of CPr. Under such a scenario, according to Procedure 4, a forced 

checkpoint CPf with timestamp t should be made before CPr. Therefore, the 

timestamp of CPr should be greater than t, which contradicts with our assumption.  

Therefore, our assumption does not hold. The theorem holds. 

 

According to the Basic-CIC algorithm, basic checkpoint is made by MA according to a 

predefined frequency. However, as we mentioned, an advantage of CIC is that it can 

prevent the domino effect while allowing processes considerable autonomy in deciding 

when to take basic checkpoints. An efficient implementation of CIC must therefore adopt a 

checkpointing policy that exploits this autonomy and translates it into a benefit. In general, 
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a good understanding of the application and of the execution environment is required. 

Specifically, for MA systems, we must exploit their characteristics. With these 

characteristics, we try to find how to benefit from the autonomy of CIC.  
 

Figure 5.8 Reliable Migration of MA
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Figure 5.9 Basic-CIC Integrated with Reliable Migration 
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From the literature review (Section 2.2.2 of Chapter 2) we know that independent 

checkpointing is widely adopted in MA systems to provide reliable migration for MAs, 

where a checkpoint will be made before each migration operation. Figure 5.8 shows the 

scenario of reliable migration algorithm. Independent checkpointing scheme is adopted 

since the reliable migration is usually in terms of a single MA. If we can integrate the 

Basic-CIC algorithm and the reliable migration algorithm to let the independent checkpoint 

act as the basic checkpoint of Basic-CIC, we can save the operations to make basic 

checkpoints for Basic-CIC, so as to make the whole MA system more efficient. Figure 5.9 

illustrates the integration of these two algorithms, where the checkpoints for reliable 

migration act as the basic checkpoints in Basic-CIC algorithm. 
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It is easy to implement such an integration. We only need to modify the Procedure 2 of 

Algorithm 5.4 and let each MA make basic checkpoint according to the frequency defined 

by the algorithm of reliable migration. Through this integration, an independent algorithm 

for reliable migration is not necessary. Basic-CIC will take the role to guarantee the 

reliable migration for each MA.  

 

Even there is no independent checkpointing implemented for each single MA in an MA 

system, we can still benefit from CIC. Since CIC allows processes themselves to choose 

the right time to make the checkpoints, each member in an MA group can make the basic 

checkpoints at the right time: before the migration. At that moment, an MA will be 

serialized for the migration, which effectively constructs a checkpoint. 

 

However, we still have one problem. Although we let the checkpoints for reliable 

migration act as the basic checkpoints in the Basic-CIC algorithm, we still need to make 

the possible force checkpoints during an MA’s execution on a host. As shown in Figure 5.9, 

an MA may receive a message during its execution on a host, which will result in a forced 

checkpoint to be made and interrupt the MA’s execution temporarily. Such interruption 

will affect the performance of the MA application severely if an MA will travel a large 

number of hosts. At next section, we try to improve the Basic-CIC algorithm by making 

further exploiting the characteristic of MA systems.  

 

5.2.4 Deferred Message Processing based CIC (DM-CIC) 

 

In an MA system, due to the mobility of MAs, messages are delivered in a purely 

asynchronous manner. A typical message delivery scheme is the forwarding point. Each 

MA leaves a point on each MAP it has visited to point to the next MAP that it has migrated 

to. Normally, a message destined to this MA will be sent to the home of this MA firstly, 
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and then follows the points to chase the MA. Based on the workload of the MA and the 

networks’ QoS, the message can catch up the MA earlier or later. For the MA, if the 

message is not a strictly coordinated message (i.e., an MA does not have to receive it on a 

particular host), usually it is not important to receive the message earlier or later, on 

current host or on the next host. Considering this characteristic, we can avoid the forced 

checkpoint by deferring the processing of the message until a basic checkpoint is made.  

Figure 5.10 Deferred Message Processing based CIC (DM-CIC) 
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Figure 5.10 illustrates the scenario of the deferred message processing and Algorithm 5.5 

shows the procedures of DM-CIC. In Figure 5.10, when MA1 receives a message M.1 and a 

forced checkpoint should be made according to CIC, instead of making a force checkpoint, 

MA1 only accepts message M.1 and does not process it. The received message which can 

result in a forced checkpoint is stored in the MA’s associated mailbox (an MA’s associated 

mailbox is a buffer in an MA). The received message will not be processed (that is to say: 

deferred) until MA1 makes a basic checkpoints and lands on a new host. Through this way, 

we merge the basic checkpoint and the force checkpoint, but the price is that the messages 

which can result in a forced checkpoint can not be processed immediately when they reach 

the MA. 
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Algorithm 5.5: DM-CIC 
 
//Procedure 1: MA initiated and launched; 
MA.LC=0;                    // logical clock is initiated to be 0 
MA.Mbox=NILL;               // Mailbox is initiated to be empty 
MA.Launch(firsthost); // 
 
// Procedure 2:Execution on a host; 
if (MA.Mbox.PreviousHostMsg!=NILL) 

MA.ProcessingMsg(MA.Mbox.PreviousHostMsg);   //Process the stored previous host messages 
MA.Exe();                                     //MA executes on current host 
MA.LC= MAX(MA.LC+1,MAX( MA.Mbox.PreviousHostMsg));    // LC is increased by 1  
MA.MakeCP(MA.LC);                  //A basic checkpoint is made and tagged by LC. 
 
// Procedure 3:Message processing: SendMsg(); 
Msg = CreateMsg (msgbody, MA.LC);     //all messages should be tagged by LC 
SendMsg(Msg);  
 
// Procedure 4:Message processing: GetMsg(); 
Msg = GetMsg (); //Get a message from the system 
if (Msg.msgbody == “RollBack”)  
    RollBackTo(Msg.LC); 
else  

M_LC= Msg.LC;                     //Get the piggybacked logical clock; 
if (M_LC > MA.LC)                   //if piggybacked logical clock greater than local clock;  

MA.Mbox.Store(Msg);               //MA store the message in its mailbox; 
else 
     MA.ProcessingMsg(Msg); 

 
// Procedure 5:A failure of MA is detected 
Msg = CreateMsg (“RollBack”, MA.LC);    //rollback to the CP with timestamp LC 
MAP.SendToAllMembers(Msg);   

 

 

The main differences between Basic-CIC and DM-CIC lie at Procedures 2 and 4.  In 

Procedure 4, when the piggybacked logical clock greater than the local clock, instead of 

making a forced checkpoint like Basic-CIC, the message will be stored in the mailbox. In 

Procedure 2, the stored message will be processed before the execution of an MA on a new 

host. The following theorem shows that DM-CIC can build up a consistent global 

snapshot. 

 

Theorem 5.3 (Consistency): In DM-CIC, a set of checkpoints S, where each is from a 

different MA is guaranteed to be a consistent state if they have the same timestamp.  
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Proof: The proof is by contradiction. Assume that a set of checkpoints S created in 

DM-CIC, each from a different MA, has the same timestamp t but is not a consistent state. 

Then in S, there must be at lest one checkpoint CPz which is involved in a z-cycle C. Then, 

there are two cases: the rest of the checkpoints S’ (S’=S-CPz !=Φ) are either on the left side 

of the z-cycle or on the right side.  

Case 1. If there is one checkpoint CPl on the left side, then CPl happens before CPz: 

CPl CPz. According to Procedures 2 and 4 of DM-CIC, the received message 

(forming the z-cycle C) on the left side of CPz will not be processed before CPz, 

and the processing will be deferred after CPz. So the z-cycle C is broken and does 

not exist.  

Case 2. If there is one checkpoint CPr on the right side, then CPz happens before CPr: 

CPz CPr. According to Procedures 2 and 4 of DM-CIC, the received message 

(forming the z-cycle C) on the left side of CPr will not be processed before CPr, 

and the processing will be deferred after CPr. So the z-cycle C is broken and does 

not exist. 

Therefore the z-cycle C does not exist and our assumption does not hold. The theorem 

holds. 

 

The advantage of DM-CIC is very clear: forced checkpoint has been avoided, so as to 

saves the system’s execution time. However, the advantage is achieved on the price of 

sacrificing the messages’ real-time processing. In the next section, we evaluate the 

performance of DM-CIC and Basic-CIC thought simulation. 

 

5.2.5 Performance Evaluation using Simulations 

 

In our simulation, we consider the behaviour of an MA which belongs to a group of MAs 

(=20). The group of MAs communicates by message passing. The MA will migrate in a 
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network which consists of 100 hosts. Three metrics are adopted to evaluate the 

performance of Basic-CIC and DM-CIC: the time of the delayed message processing, the 

whole execution time of an MA and the time for the system recovery.  

 

We decompose an MA’s execution into three procedures: task execution (Texe=50ms), 

checkpointing (Tcp=10ms), and migration (Tmg=10ms). An MA can process messages 

during Texe, while the message processing will be blocked during Tcp and Tmg. Since only 

the messages causing the forced checkpoint can impact the performance of the CIC 

algorithms, we only consider such messages in our simulations. We assume these messages 

are sent and received randomly (following the exponential distribution) during the running 

of MAs’ execution. The recovery time for a forced checkpoint (Trf=10ms) and a basic 

checkpoint (Trb=2ms) is different, because a basic checkpoint is under the prepared state 

for migration, while forced checkpoint is make during MA’s execution, and all the system 

contexts have to be stored.  

 

In order to get better average simulation results, we execute each condition 5000 times 

with the same settings. To make a clear comparison, we also implement an algorithm that 

does not make forced checkpoint: when there is a message which can cause forced 

checkpoint coming in, the algorithm just ignores it.     
 

 
Figure 5.11 The Delayed Message Processing
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Figure 5.11 illustrates the time of the delayed processing for each message which can cause 

forced checkpoint. In DM-CIC, all the processing for the messages which can cause forced 

checkpoint will be delayed, but the delay is stable. Basic-CIC performs well when few 

messages arrive. But its performance degrades sharply when more messages come in, 

because the too many operations for forced checkpointing will block the message 

processing dramatically. The operations of forced checkpointing also prolong the MA’s 

whole execution time in Basic-CIC, which is shown in Figure 5.12. However, due to avoid 

the forced checkpoint, the execution time of DM-CIC is exactly the same with the 

algorithm without forced checkpointing. Therefore, in Figure 5.12, they are overlapped.  

Figure 5.13 The System Recovery Time 
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Figure 5.13 illustrates the simulation results for the time of the system recovery. It is clear 

that Basic-CIC costs more time to recover the system to a consistent state than DM-CIC, 

because the time to resume a forced checkpoint is longer than a basic checkpoint. For 

Basic-CIC, another phenomenon is that the time to recover the system becomes longer 

with more forced checkpoints made in the system, because more forced checkpoints are 

involved in the recovery process. On the contrary, the recovery time for DM-CIC is always 

stable since only basic checkpoints are involved. 
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5.3 Summary 
 

An MA system has a different system model from conventional computer systems in 

solving the checkpoint placement problem. In this chapter, we have proposed to model the 

problem for MA systems using the homogeneous discrete-parameter Markov chain. Based 

on this model and two widely adopted checkpointing strategies, we designed three 

checkpoint placement algorithms for MA systems. Through simulations we found out that 

the algorithm based on equicost checkpointing strategy achieved the best trade-off between 

checkpointing cost, system performance, and flexibility. We also introduced CIC for MA 

group, which is proved to be a flexible, efficient and scalable checkpointing scheme among 

the other schemes. DM-CIC has been designed to integrate with the independent 

checkpointing scheme for reliable MA migration. 
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Chapter 6 

Mobile Agent Transaction 
 

In this chapter, we describe the design and evaluation of our proposed architecture and 

algorithms for MA transactions. The chapter is organized as follows. Section 6.1 defines 

the system model for MA transaction and proposes the corresponding system architecture. 

Section 6.2 introduces algorithms for the transactional execution of both single MA and 

multiple MA applications. Section 6.3 addresses the issue of handling distributed deadlock 

in MA transactions. Section 6.4 provides a summary of this chapter. 

 

6.1 System Model and Architecture 
 

In this section, we firstly define a two-level nested transaction model for MA transaction 

based on the analysis of a realistic MA execution environment. Using the model, we 

develop the system architecture for the implementation of MA transactions. 

 

6.1.1 System Model 

 

An MA transaction can be modeled as a two-level nested transaction. The MA itself 

controls the top-level transaction which involves functionalities such as reliable migration, 

distributed deadlock detection, and commitment protocols. Nested within the top-level 

transaction are the lower-level transactions, called subtransactions which are supported by 

the base transaction systems. Each MA transaction is assigned a global unique identifier, 

called a transaction ID. Each MA also has a unique global MA ID.  
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The execution environment of an MA transaction involves a collection of servers/hosts 

identified as Si (i=1, …, n). Each server is deployed with a base transaction system, which 

supports functionalities such as locking (2PL, Timestamp Ordering Protocol, Optimistic 

Protocol), local deadlock detection, logging/shadow file, and recovery. Task descriptions 

are encoded in a single MA or a group of MAs. The MA migrates between the servers 

according to a predefined or self-initiated itinerary. Once an MA lands on a server Si, it 

starts its execution and initiates a subtransaction according to the predefined task 

description. On a server there is no difference between an MA initiated subtransaction and 

other transactions. When the subtransaction is ready to commit, the MA can choose to 

either commit it immediately or wait until all the subtransactions are ready to commit, in 

line with the relevant commitment model adopted by the top-level transaction.  

 

We define the information related to the transaction in an MA as the MA’s transaction 

context, which includes the itinerary of the MA, MA ID, transaction ID, and intermediate 

states/computing results. Since the failures of the server and the MA platform can be 

handled by the traditional backup-based fault tolerance techniques, we assume that the 

server and the MA platform will not fail. However, an MA may crash during its execution 

and migration. Also, messages may be delayed but we assume that a message will 

ultimately be delivered to its destination. 

 

6.1.2 System Architecture 

 

The architecture of MA transaction corresponds to the two-level nested transaction model 

in that it consists of two layers: a base transaction layer and an MA transaction layer 

(Figure 6.1), which respectively manage the low-level transactions and the top-level 

transactions. Base transaction systems constitute the base transaction layer, which provides 

the support for subtransactions executed on the local host. On he other hand, the MA 
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system governs the MA transaction layer. Its functionalities include initiating a 

subtransaction on each server according to the itinerary, managing the commitment process, 

concurrency control (resource allocation management and distributed deadlock detection), 

and adapting the transaction support primitives of base transaction systems, such as the 

“transaction_begin, transaction_end, commit, abort” etc., to a set of uniform primitives for 

the MA transaction layer. The following describes the base transaction layer, MA 

transaction layer, MA transaction context, and failure detector. 
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1) Base Transaction Layer 

 

As shown in Figure 6.1, we model the base transaction layer as two sub-layers. The lower 

layer is the Source Data sub-layer. Source data can be an ordinary file, a table, some 

simple database (i.e. ACCESS), or other structured data, such as MIB. This sub-layer 

provides access only to the source data and does not provide transaction support. The 
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upper sub-layer is the Base Transaction Support sub-layer, which provides APIs for 

manipulating source data transactionally. The transaction supports include local 

concurrency control mechanisms (2PL, Timestamp Ordering Protocol, Optimistic 

Protocol), logging/shadow file, and commit/abort subtransactions. 

 

2) MA Transaction Layer 

 

The MA transaction layer is implemented within the MA platform which is on top of the 

base transaction systems (Figure 6.1). From the viewpoint of the base transaction systems, 

the MA transaction layer has no difference from other applications running on top of the 

base transaction systems. The advantage of this architecture is that the base transaction 

systems do not need to be modified. MA transaction layer can be separated into two 

sub-layers. One is the Adaptation sub-layer which adapts the transaction support primitives 

of different base transaction systems to a uniform set of primitives for the upper sub-layer. 

The other is the MA Transaction Management sub-layer which, with the help of the set of 

uniform primitives, allows MA transactions to be initiated, committed or aborted. MA 

Transaction Management sub-layer contains two software modules: the Transaction 

Processing Monitor (TPM) and the Resources Manager (RM), which cooperate to control 

the top-level transaction.  

 

The TPM manages the commitment process to preserve the Atomic and Duration 

properties for top-level transaction. Its management tasks include:  

(1) Managing the execution context of MA transaction. This includes storing the MA’s 

transaction context such as the Transaction ID and itinerary.  

(2) Managing the states of uncommitted subtransactions. Should there be an incoming 

commitment command, the TPM will process the command and commit the corresponding 

subtransaction.  
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(3) Participating in the commitment process. In an MA transaction that adopts the close 

commitment model, each TPM will act as a participant when the top-level transaction is 

committed.  
 

Table 6.1 Locking Table 
 

Resource 
ID 

Holder’s 
Transaction ID 

Waiter’s 
Transaction ID 

Registered 
Event  

Extendable 
area 

001 MA1 MA2 TO / Release  

 

The RM is responsible for the concurrency control that guarantees the Consistency and 

Isolation properties for MA transaction. One popular and representative concurrency 

control algorithm is two phase locking (2PL). 2PL is used as the concurrency protocol in 

our system. However, in our proposed architecture, it is easy to replace 2PL with some 

other algorithms since concurrency control is implemented in the RM, which is designed as 

a separate module. In order to detect possible distributed deadlocks produced by 2PL, the 

RM maintains a locking table, shown in Table 6.1, which provides the necessary 

information for deadlock detection algorithms. 

 

3) MA Transaction Context 

 

A special characteristic of MA transactions is that an MA is able to carry information as it 

travels. As mentioned before, we refer to this information related to MA transactions as the 

MA transaction context. This context typically includes the following information  

(1) Transaction ID: A unique transaction identifier that differentiates between MA 

transactions.  

(2) Itinerary: This implies a sequence of servers involved in the MA transaction.  

(3) Commitment model: The owner of the MA can specify the commitment model for an 

MA transaction and store it in the MA transaction context. The MA transaction context 
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will be stored in the TPM when an MA lands on a server to help a TPM complete its 

management tasks.  

 

4) Failure Detector 

 

Normally, MAs will migrate between several servers and initiate subtransactions on each 

server. If the close commitment model is adopted, the subtransaction on the first server it 

visits must wait until the MA finishes the subtransaction on the last server it visits. Before 

the MA transaction is committed, however, two kinds of failures may occur: the failure of 

the MA and the failure of the uncommitted subtransaction. A failure detector will detect 

such failures. In the case of an MA failure, the failure detector detects it and informs the 

TPM. The TPM can then carry out some predefined operations to handle this event. In the 

case of the failure of an uncommitted subtransaction (i.e., victim of deadlock resolving), 

the failure detector will directly inform the MA of this failure. The failure detector is a 

configurable, self-restarted software module executing on the same host as the MA 

Platform. If the host does not crash, the failure detector is always available. The failure 

detector can adopt the widely used heartbeat based failure detector [CHE02] or our own 

newly proposed notification based failure detector [YAN06]. 

 

6.2 The Execution of MA Transaction  
 

In this section, we firstly introduce the two MA execution modes and the three MA 

commitment models. Then, we propose algorithms of MA’s transactional execution under 

different execution mode and using different commitment models.  

 

6.2.1 MA Execution Modes 
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The MA has two execution modes: Single MA (SMA) and Multiple MAs (MMA). In SMA, 

only one MA is launched to carry out a user assigned task. In contrast, MMA dispatches 

more than one MA. Accordingly, MA transaction can be classified as either single MA 

transactional execution (SMA Transaction) or multiple MA transactional execution (MMA 

Transaction). The advantage of MMA is that launching multiple MAs will speed up the 

execution of MA transactions, but at the same time MMA will consume more resources 

than SMA and require additional cooperation and coordination. For example, in the 

commitment process, MMA requires a coordinator while SMA, which dispatches just one 

MA, does not. 

 

6.2.2 Commitment Models in MA Transactions 

 

Different commitment models (open or close) classify nested transactions as either open 

nested transactions [WEI92, CHR94] or close nested transactions [MOS85]. In the open 

commitment model, every subtransaction (open subtransaction) makes its results visible to 

other transactions as soon as its computation has successfully terminated. This means that 

the commitment is independent of the outcome of its parent transaction. In contrast, in 

close commitment model, every subtransaction (close subtransaction) does not make its 

updates visible to other transactions until its parent transaction commits. For simplicity, 

hereafter, the open (close) commitment model is also referred to as open (close) 

commitment. In the following we briefly outline some of the limitations of the open and 

close commitment models and then propose a new commitment model − an adaptive 

commitment model. This new commitment model allows subtransactions taking place in 

base transaction systems to be committed using either the open or the close commitment 

model. 

 

1) Open/Close Commitment Models and Their Limitations 
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In the context of MA transactions, both open and close commitment models involve a 

number of tradeoffs. One advantage of the open commitment model, for example, is that a 

subtransaction will be committed as soon as it successfully finishes. This means that the 

resources will not be locked by the subtransaction for too long, greatly alleviating the 

problem of long-lived transaction. However, if a committed subtransaction has to be 

aborted, compensation processing is necessary [GAR87, GAJ93], which is not always 

available. The requirement of compensation processing is a big limitation of the open 

commitment model.  

 

In contrast, the close commitment model does not require compensation processing. It 

keeps subtransactions in the state of waiting-commit until the top-level transaction is ready 

to be committed. As a result, the subtransaction on the first visited server has to wait until 

the MA finishes the subtransaction on the last server. The locked resources on the first 

server cannot be made available to other transactions for a long time, which may increase 

the probability of distributed deadlock [GAJ93]. In addition, the close commitment model 

requires a coordinator during the commitment processing. Two phase commitment 

protocol (2PC) is a widely used commitment protocol for the close commitment model in 

distributed transaction. MA transaction provides some relief to 2PC. An MA will migrate 

to the next stop only when the current subtransaction is ready to commit. Consequently, 

when the MA reaches the destination, all the subtransactions are ready to commit. 

Therefore, we only need “one phase commitment” in a single MA’s transactional 

execution: the MA just sends the commitment command to all the subtransactions to 

commit the top-level transaction.  

 

The tradeoffs associated with the different commitment models make the choice of 

commitment model dependent on a number of factors. For example, open commitment 

may reduce the possibility of deadlock, but the precondition is that the subtransaction be 



CHAPTER 6 Mobile Agent Transaction
 

 136

compensable. Scarcity of a resource is another factor that affects the choice of the 

commitment model. Take a ticket selling service as an example: if there are plenty of 

tickets, people are allowed to book tickets firstly and pay for the booked ticket later. This 

situation corresponds exactly to close commitment. However, if few tickets remain but 

there are still many buyers, the booking service usually will be cancelled and the tickets are 

only sold to buyers who pay for the ticket in cash. This situation can be modeled as open 

commitment.  

 

2) An Adaptive Commitment Model 

 

As we mentioned before, an MA may travel over a large network and visit many servers 

belonging to different organizations. It is possible that ServerA supports open commitment 

and allows a subtransaction on it to remain uncommitted, while ServerB requires the 

subtransaction on it to be committed as soon as the subtransaction finished, allowing only 

close commitment. This suggests that an adaptive commitment model is needed to perform 

open commitment for the subtransactions on Server

B

A and close commitment on ServerBB. To 

support adaptive commitment, a base transaction system should provide a parameter to 

indicate what kind of commitment model it supports. As an example, in the following of 

this chapter, we adopt the scarcity of a resource as the criteria to determine the 

commitment model on a server. 

 

An adaptive commitment protocol requires an effective estimation of the scarcity of 

resource. To calculate it, we define the Resource Scarcity Valve Value (RSVV). RSVV is a 

configurable parameter for each kind of resource. If the quantity of a resource is greater 

than its RSVV, the close commitment model is required. Otherwise, the open commitment 

model can be selected. We let 0 denote close commitment and 1 denote open commitment. 

The required commitment model (RCM) for each type of resource is either 0 or 1. RCM is 
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calculated by the RM and stored in the TPM. Suppose a subtransaction needs N types of 

resources on a server. The commitment model for this subtransaction (SCM) on this server 

would be: SCM = RCM1 ∩RCM2 ∩…∩ RCMn.  

 

The owners of MAs can also specify their required commitment model (UCM) before the 

MAs are launched. Table 6.2 lists the final decisions made when UCM conflicts with SCM.  
 

Table 6.2 Final Commitment Model 

SCM \ UCM Open Close Adaptive 

Open Open Conflict -> (Abort) Open 

Close Conflict -> (Abort) Close Close 

 

The commitment model for each uncommitted subtransaction is stored in TPM on each 

server and is also carried by an MA’s transaction context. When the MA decides to 

commit/abort the top-level transaction, it will perform corresponding commitment/abort 

operations according to the different commitment models stored in its transaction context.  

 

6.2.3 Algorithms for MA Transaction’s Execution 

 

In this subsection, we propose the algorithms of MA’s transactional execution under 

different execution mode and using different commitment models. 
 

Table 6.3 The Modes of MA Transactions 

 Open Commitment Close Commitment Adaptive Commitment 

Single MA (SMA) Open SMA Transaction Close SMA Transaction Adaptive SMA Transaction 

Multiple MA (MMA) Open MMA Transaction Close MMA Transaction Adaptive MMA Transaction

 

As shown in Table 6.3, the three commitment models (Open, Close, and Adaptive) and the 

two MA execution modes (SMA and MMA) produce six combinations, which will result 
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Algorithm 6.1 Open SMA Transaction (pseudo-code format) 
 
// 1. Procedure for Initiating and Launching an MA 

MA.task = { Transaction_begin; Task1; Task2; … Taskn; Transaction_end }; //Tasks to be executed;  
MA.itinerary = { Server1; Server2; … Servern };  // Itinerary can be predefined, or self-initiated; 
MA.UCM = open;                          // Itinerary, UCM and Transaction ID compose 
MA.T_id = Tid_generator();                  // the transaction context for this MA transaction; 
Si = MA.itinerary.getNext();    //Get the first server; 
Result = MA.migrateTo(Si);    //Migration to the first server;  
If (Result = fail)             //If failed, generate an alarm to alert the user  
    Alarm(“Mission cannot be started”); // that the transaction cannot be started; 

 
// 2. MA’s Entry Point on Each Server: Execute Subtransaction on server Si; 
 TPM = Si.getTPM();             //MA gets the TPM of server Si 

TPM.insert(T_id, UCM, itinerary);  //TPM allocate an entry for this MA transaction 
 Result = TPM.execute(task.Taski);  //TPM help to initiate the subtransaction 
 If (Result == commitable )  
   Goto 3      //Go to commit this subtransaction; 
 Else  
   Goto 5;     //Go to abort this subtransaction and then abort the top-level transaction; 
 
// 3. Procedure for Committing Current Subtransaction 
 If (Si = MA.itinerary.getNext() ==NULL)    //Get the next stop. If there is no next stop, it means that we 

Goto 4;           //finished all the subtransactions. Therefore, we go to commit top-level transaction; 
 Result = MA.migrateTo(Si); 
If (Result = fail) 

   Goto 5; //If the next server is unreachable, go to abort this subtransaction and the top-level transaction; 
 Else  
   TPM.commit(T_id); //Only when the migration is successful, we commit this subtransaction; 

Goto 2; //Here is a logical Goto. Actual scenario is the MA finishes its execution on current server,  
//and starts its execution on the next server. 

 
// 4. Procedure for Committing the Top-level Transaction 
 Itinerary = TPM.getItinerary(T_id); 
 While (S = Itinerary.getNext() != NULL) 
      {CommitMsg = {“Commit”, T_id}; //Compose a commitment command 
       SendTo(S.TPM, CommitMsg);    //Send commitment commands to all the subtransactions.  
      } 
   
// 5. Procedure for Aborting Current Subtransaction and Top-level Transaction 

TPM.abort(T_id);                //Abort current subtransaction; 
Itinerary = TPM.getItinerary(T_id);  //Get MA’s itinerary from the context stored in TPM 
VisitedServers = Itinerary.getPrevious(Si); //Get the servers that MA have visited  
While (S = VisitedServers.getNext() != NULL) 

      {AbortMsg = {“Abort”, T_id};    //Compose a commitment command 
       SendTo(S.TPM, AbortMsg);      //Send commitment commands to all the previous subtransactions. 
      } 
 
//Asynchronous message processing: corresponding to procedures 4 and 5 
Msg =MAP.getMessge();         //MA platform is responsible to get a message; 
If Msg.content = = “Commit”      
  TPM.commit(msg.T_id);       //“Commit” command will flush the context stored in this TPM; 
If Msg.content = = “Abort” 
  TPM.abort(msg.T_id);        //“Abort” command not only flush the context stored in this TPM; 
  TPM.compensate(msg.T_id);   //but also trigger the compensation proc for this committed subtransaction. 
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Algorithm 6.2 Close SMA Transaction (pseudo-code format) 
 
// 1. Procedure for Initiating and Launching an MA 

MA.task = { Transaction_begin; Task1; Task2; … Taskn; Transaction_end }; // Tasks to be executed; 
MA.itinerary = { Server1; Server2; … Servern };  // Itinerary can be predefined, or self-initiated; 
MA.UCM = close;                          // Itinerary, UCM and Transaction ID compose 
MA.T_id = Tid_generator();                  // the transaction context for this MA transaction; 
Si = MA.itinerary.getNext();    //Get the first server; 
Result = MA.migrateTo(Si);    //Migration to the first server;  
If (Result = fail)             //If failed, generate an alarm to alert the user; 
  Alarm(“Mission cannot be started”);  // that the transaction cannot be started; 

 
// 2. MA’s Entry Point on Each Server: Execute Subtransaction on server Si; 
 TPM = Si.getTPM();             //MA gets the TPM of server Si; 
 RM = Si.getRM();               //MA gets the RM of server Si, to record the locked resources; 

TPM.insert(T_id, UCM, itinerary);  //TPM allocate an entry for this MA transaction; 
 Result = TPM.execute(task.Task,RMi);  //TPM help to initiate the subtransaction. Please be noted here RM 
 If (Result == commitable )            //is also involve in the execution to record the locked resources;  
   Goto 3      //Go to commit this subtransaction; 
 Else  
   Goto 5;     //Go to abort this subtransaction and then abort the top-level transaction; 
 
// 3. Procedure for Migrating to the Next Stop 
 If (Si = MA.itinerary.getNext() ==NULL)  //Get the next stop. If there is no next stop, it means that we  

Goto 4;            //finished all the subtransactions. Therefore, we go to commit top-level transaction; 
 Result = MA.migrateTo(Si); 
If (Result = fail) 

   Goto 5; //If the next server is unreachable, go to abort this subtransaction and the top-level transaction; 
 Else  
   Goto 2; //Here is a logical Goto. Actual scenario is the MA finishes its execution on current server,  

// and starts its execution on the next server. 
 

// 4. Procedure for Committing the Top-level Transaction 
 Itinerary = TPM.getItinerary(T_id); 
 While (S = Itinerary.getNext() != NULL) 
      {CommitMsg = {“Commit”, T_id}; //Compose a commitment command 
       SendTo(S.TPM, CommitMsg);    //Send commitment commands to all the subtransactions.  
      } 
   
// 5. Procedure for Aborting Current Subtransaction and Top-level Transaction 

TPM.abort(T_id);                //Abort current subtransaction; 
Itinerary = TPM.getItinerary(T_id);  //Get MA’s itinerary from the context stored in TPM 
VisitedServers = Itinerary.getPrevious(Si); //Get the servers that MA have visited  
While (S = VisitedServers.getNext() != NULL) 

      {AbortMsg = {“Abort”, T_id};    //Compose a commitment command 
       SendTo(S.TPM, AbortMsg);      //Send commitment commands to all the previous subtransactions. 
      } 
 
//Asynchronous message processing: corresponding to procedures 4 and 5 
Msg =MAP.getMessge();         //MA platform is responsible to get a message; 
If Msg.content = = “Commit”      
  TPM.commit(msg.T_id);       //“Commit” command will flush the context stored in this TPM; 
If Msg.content = = “Abort” 
  TPM.abort(msg.T_id);        //“Abort” command flushes the context stored in this TPM;  
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Procedure 2 describes the operations performed when an MA lands on a server and begins 

to execute the corresponding subtransaction on this server. MA only needs to get the 

handle of TPM and let TPM manage the execution of this subtransaction. As a result, the 

complicated task of subtransaction management is shifted from the MA to the MA 

platform, which not only makes it easier to program the MA transactions, but also makes 

MA transactions more robust because TPM belongs to the system level module.  

 

Procedure 3 presents the migration operation. A special design is that only after the MA 

lands on the next stop successfully, TPM on the current server will commit the 

subtransaction; Otherwise TPM can abort this subtransaction without executing 

compensation procedure for it. To let TPM manage the subtransaction, an MA should pass 

its transaction context to the TPM. When all the subtransactions are committed, the MA 

can commit the top-level transaction and let all the involved TPMs flush the transaction 

context of this committed MA transaction.  

 

Procedures 4 and 5 provide the commitment and abort procedures respectively. A 

subtransaction may have to abort for a number of reasons such as deadlock, mismatch 

between SCM and UCM. Network failures may cause MAs to crash or prevent them from 

landing on the next stop. All these conditions can result in the aborting of the top-level 

transaction. Compensation operations are needed when a committed subtransaction is 

aborted. In fact, in Procedure five, it is not necessary to abort a top-level transaction if one 

or several its subtransactions have aborted. It depends on the commitment strategy adopted 

by the top-level transaction. For example, aborting some unimportant subtransactions will 

not impact on the final commitment of the top-level transaction. In this chapter, we adopt 

the strict commitment strategy which will not allow aborted subtransaction exist when 

commit the top-level transaction. 
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Algorithm 6.1 uses a predefined itinerary. This is similar to the implementation using a 

self-initiated itinerary except that adding each newly obtained next stop into the transaction 

context to prepare for the commitment of the top-level transaction when all the 

subtransactions are finished. 

 

Algorithm 6.2 provides the close SMA transaction algorithm in pseudo-code format. The 

differences between close SMA transactions and open SMA transactions are in the 

resource management and the commitment procedure. Since we adopt 2PL for close 

commitment model, it is possible to produce deadlock. Therefore, for resource 

management, top-level transaction must track the allocation of the resources to provide 

necessary information for deadlock detection algorithms. During the execution of the 

subtransaction, RM will take the responsibility for recording each locked resource in the 

locking table. In the commitment procedure, unlike open SMA transactions, no 

subtransactions will commit until the top-level transaction is committed.  

 

In the adaptive SMA transaction algorithm, UCM = Adaptive, which, according to Table 

6.2, means that there is no conflict with any SCM. The subtransactions are grouped as open 

commitment or close commitment. The commitment/abort procedure for open 

subtransactions is the same as that in Algorithm 6.1. The commitment/abort procedure for 

close subtransactions is the same as that in Algorithm 6.2. 

 

2) Algorithms for MMA Transactions 

 

Figure 6.3 shows a typical scenario for an MMA transaction in which two MAs (MA1 and 

MA2) are launched. During the execution, a child MA (MA3) is spawned. All the MAs in an 

MMA transaction share the same transaction ID. The locking strategy, however, depends 

on different isolation policies. For example, in Figure 6.3, MA1 and MA2 belong to the 
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The commitment procedure requires a coordinator to coordinate the final commitment of 

an MMA transaction. If an MA within the MMA transaction is ready to commit its 

top-level transaction, it must wait until all the other MAs are also ready to commit their 

top-level transactions. We can let one MA act as the coordinator. This coordinator can be 

the first MA that is ready or the MA with the highest MA ID, depending on the user’s 

configuration. When an MA is ready to commit its top-level transaction, it reports its 

transaction context to the coordinator. The coordinator can get all the TPMs involved in 

this MA’s SMA transaction from its transaction context. After the coordinator collects all 

the transaction contexts, the coordinator starts the commitment with all the participants 

(TPMs). According to the commitment model (close or open) recorded in each MA’s 

transaction context, the commitment is the same as in Step 6 of both the open and close 

SMA transactions.  

 

Each MA can abort its SMA transaction independently. It should also inform other MAs 

that they must stop their execution and abort their SMA transactions.  

 

6.3 Deadlock Handling in MA Transactions 
 

A deadlock is a situation in which subsets of processes are waiting for some other 

processes to release resources. No progress is possible until this situation is resolved. 

Deadlock handling can be divided into three types: deadlock prevention, deadlock 

avoidance, and deadlock detection and resolution. In this section, we first describe the 

scenarios of distributed deadlock and local deadlock in MA transactions. We then carry out 

simulations to study the probability of the occurrence of deadlocks in MA transactions and 

their affection on the MA system. We propose algorithms for deadlock prevention and 

deadlock detection, mainly focusing on the deadlock detection algorithms and their 

performance comparison. 



CHAPTER 6 Mobile Agent Transaction
 

 145

 

6.3.1 Local Deadlock and Distributed Deadlock 

 

Section 6.1.1 introduced the MA transaction execution environment. In such an 

environment, several MA transactions execute in parallel and each MA requests resources 

autonomously. If the requested resource is held by another MA, the requesting MA will be 

blocked until the requested resource is released. At any time, an MA can be only either 

active or blocked: active when it performs tasks normally or requests an idle resource; 

blocked if it requests a resource currently held by others. On being granted the requested 

resource, the MA will revert to the active state.  

 

Different deadlock models have been proposed to describe a deadlock, including 

one-resource model, and model, or model, and p-out-of-q model. The most widely adopted 

model is the one-resource model, in which an MA handles only one outgoing request at a 

time, limiting it to being involved in just one deadlock cycle. Algorithms designed for 

deadlock detection under this model can be easily extended to other models. In this chapter, 

we consider only the one-resource model.  

 

In MA transactions, a deadlock occurring within a subtransaction is called a local deadlock. 

A local deadlock will be detected and handled by the base transaction system, so it is not 

the concern of the top-level transaction which is managed by the MA transaction layer. On 

the other hand, a distributed deadlock is a deadlock that occurs between several 

subtransactions (as shown in Figure 6.4) and it cannot be detected by a base transaction 

system because the base transaction system has no knowledge of the global resource 

allocation situation. Distributed deadlocks will be detected and handled by the top-level 

transaction of an MA transaction. This is possible because the top-level transaction is fully 
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informed as to the status of resource allocation by recording all the resource allocation 

information in RM (see Section 6.2).  
 

Server1 

……..

……..

Requested by MA
Locked by MA 

Figure 6.4 Distributed Deadlock in MA Transaction 
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As mentioned in Section 6.2.3, we choose strict isolation policy for MMA transaction, 

which implies the isolation is required between the different members within an MMA 

transaction. As a result, each MA in a MMA transaction can be viewed as executing an 

SMA transaction. Therefore, only SMA transactions need to be considered.  

 

Distributed deadlock will not occur in open SMA transactions because a subtransaction is 

either committed or aborted immediately after it finishes local operations, releasing all the 

allocated resources. Close SMA transaction, however, keeps resources locked up until all 

the subtransactions have finished, which may produce the distributed deadlocks. Therefore, 

we only consider distributed deadlock occurring in close SMA transactions. For simplicity, 

we use MA transaction to stand for close SMA transaction in the following sections.  

 

6.3.2 Evaluation of Deadlock Probability and Its Impact 
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Figure 6.5 Probabilities of Deadlock in MA Transactions 
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In this section, we perform a simulation to evaluate the probability of deadlock occurrence 

in MA transactions. We simulate a system consisting of N servers (2≤N≤25). On each 

server there is only one resource. There are k (2≤k≤10) MAs simultaneously performing 

MA transactions on a subset of these N servers. Since we are considering the one-resource 

model, each MA applies only one resource on a server. If an MA gets the permission to use 
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a resource, it will lock the resource until it commits the MA transaction. Since a server 

only has one resource, the number of resources an MA locks is equal to the number of 

servers the MA has visited. To estimate the probability of deadlock occurrence, we use the 

average deadlock ratio as metric. In order to let the average deadlock ratio approximate 

the real probability, we execute each simulation 5000 times with the same settings, and 

then compute the deadlock ratio as (Number of deadlock occurrence)/5000.  

 

We compare the probability of deadlock occurrence according to three parameters:  

(1) Different degrees of concurrency. The number of MA transactions executing 

concurrently in an MA system ranges from 2 to 9;  

(2) Different migration time between two servers, which ranges from 2ms to 28ms 

(denoted as mt in Figure 6.5). This covers the migration time in networks with low latency 

such as LAN and those with high latency such as the Internet;  

(3) Different number of resources being applied, ranging from 2 to 19.  

 

Figure 6.5 illustrates the simulation results. It can be observed that with a fixed number of 

concurrent MA transactions, the deadlock ratio increases with an increasing migration time, 

and more resources applied. If we increase the number of concurrent MA transactions, the 

deadlock ratio increases sharply. 

 

Now let us consider the impact of deadlock so that, more specifically, we can answer the 

question, how many MA transactions will be blocked if a deadlock occurs without being 

resolved? There are two types of MA transaction that can be blocked. One type is the MA 

transactions involved in the deadlock ring and the other is the MA transactions that are 

applying the resource locked in the deadlock ring. To evaluate the impact of deadlock, we 

let the MA transactions run until all the MA transactions are either finished or blocked, and 

then we count the number of blocked transactions. By executing each simulation 5000 
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times, we obtained a spectrum of probabilities for the different numbers of MA 

transactions that had been blocked. Figure 6.6 shows these probabilities for the situations 

with a fixed mean migration time (MMT = 10 ms) and different numbers of MA 

transactions.  
 

Figure 6.6 Probabilities for the Number of MA Transactions been Blocked 
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In Figure 6.6, the dotted line with square marks denotes the deadlock probability getting 

from Figure 6.5. We can see that with a higher deadlock probability, there are more MA 

transactions being blocked. One solution is to prevent the deadlock, for example by using 

the open subtransactions to reduce the distributed deadlock. Another solution is to detect 

and resolve the deadlock. We discuss these two solutions in the following sections. 
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6.3.3 Deadlock Prevention in MA Transactions 

 

We consider two ways to deal with deadlock in MA transactions: either prevent it or detect 

and resolve it. The prevention of deadlock means breaking at least one of the four 

necessary conditions for deadlock: mutual exclusion, non-preemption, hold-and-wait, and 

circular wait. There are four basic schemes for doing this, each dependent on one of the 

four following specific requirements:  

(1) An MA must acquire all the resources it needs before its execution;  

(2) An MA must release all resources before acquiring any new resources;  

(3) An MA commits suicide if it cannot complete;  

(4) An MA must acquire resources in a pre-defined order.  

 

We choose not to adopt the first scheme because it is difficult to satisfy since we need to 

know the required resources in advance and must hold up resources even when we do not 

use them. The second scheme is rejected because it can be in breach of the consistency and 

isolation properties of transaction. The third scheme is also rejected because it will induce 

a high abort ratio. The fourth scheme appears to be more suitable to MA transactions as it 

only requires all the MAs acquire the resources in a predefined sequence, which is not 

difficult for MA applications if their itineraries is adjustable. 

 

Whereas the local deadlock on a server will be solved using a base transaction system, in 

our MA transaction model, a top-level transaction handles only distributed deadlocks. We 

can assign each server with a global unique ID, and all the MAs visit the servers in an ID 

increasing sequence. This prevents the occurrence of deadlock as there is no circular wait 

but it does so at the cost of the system’s flexibility as an MA cannot visit servers according 

to its preferred sequence. We deal with this by setting up a coordinator. The coordinator 
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satisfies MA enquiries as to the current sequence for visiting hosts and ensures their 

itineraries have the same sequence. The VIP MA (MA has the highest priority) can decide 

the host visitation sequence and inform the coordinator. This scheme, however, is also not 

ideal in that it the coordinator provides a single point of failure. To this extent, it may be 

seen as demonstrating the limitations of deadlock prevention schemes, and justifying our 

focus on deadlock detection algorithms. 

 

6.3.4 Deadlock Detection in MA Transactions 

 

In this section, we propose deadlock detection algorithms. A deadlock detection algorithm 

must satisfy two properties:  

(1) Safety: when it detects a deadlock, then there must be indeed a deadlock; 

(2) Progress: when there is a deadlock, it must be detected eventually.   

 

We first introduce a lemma and theorem which will be used to proof the safety property for 

all the deadlock detection algorithms introduced in the following sections. 

 

Lemma 6.1: If all transactions are 2PL, then a cycle in the WFG indicates a deadlock. 

 

The proof of Lemma 6.1 can be found in [WUU85]. A cycle can also be found in a group 

of MAs which perform MA transactions. If 2PL is adopted, an MA will be blocked if the 

required resource is not available. A set of blocked MAs {MAi, MAi+1,…, MAi+n} can form 

a directed chain by the directed edges. If we follow the direction of the edges, we can start 

from an MA and return to the same MA, (i.e. MAi->MAi+1->… -> MAi+n -> MAi), then a 

loop (cycle) is formed. For example, in Figure 6.7, if MA4 applies R1, a loop is formed: 

MA1->MA2->MA3 ->MA4->MA1. 
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Theorem 6.1: If all MA transactions adopt 2PL, then a loop detected in the Waiting For 

Graph (WFG) by a deadlock detection algorithm indicates a deadlock.  

 

Proof: Since each blocked MA in the loop represents a transaction, and 2PL is used in our 

discussed MA transactions, according to Lemma 6.1, when a deadlock detection algorithm 

detects the loop, there must be indeed a deadlock. 

 

Two widely adopted deadlock detection mechanisms in distributed system are edge 

chasing and path pushing (introduced in Section 2.6.3 of Chapter 2). When an MA execute 

on a server, it has no difference with a process in distributed system. As a result, the edge 

chasing based deadlock detection algorithms for MA transactions are almost the same as 

the algorithms proposed for distributed systems. But when we implement them in MA 

systems, we must consider the specific data structure catering for the MA transaction. We 

need structures to store the WFG and the trace of an MA. The deadlock table in RM can 

store the WFG and the itinerary stored in TPM can provide the trace to be chased. Example 

deadlock tables are shown in Tables 6.4 and 6.5. 
 

Table 6.4 MA Platform1’s Locking Table 

Resource 
ID 

Holder’s 
Transaction ID 

Waiter’s 
Transaction ID 

Registered 
Event  

MP1_R1 T_MA1  T_MA2 TO / Release 
 
 

Table 6.5 MA Platform2’s Locking Table 

Resource 
ID 

Holder’s 
Transaction ID 

Waiter’s 
Transaction ID 

Registered 
Event  

MP2_R1 T_MA2 T_MA1 TO / Release 
 

A significant drawback of edge chasing algorithms is that it is difficult to determine when 

to put them into operation. If we start the detection process once an MA waiting on a 

locked resource times out, it may be that there is no real deadlock. If there is a real 
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deadlock, however, we can detect it only after it has occurred and resources have been tied 

up. A second drawback is that edge chasing algorithms require a pre-defined itinerary or 

the trance of the MA must be maintained.  

 

On the contrary, path pushing based deadlock detection algorithms do not have above 

drawbacks. In the following, we propose two path pushing based deadlock detection 

algorithms for MA transactions and then offer a comparison of their performances. The 

deadlock tables shown in Tables 6.4 and 6.5 provide the basic data structures for the 

following algorithms. 

 

1) Path Pushing Based Deadlock Detection Algorithm 1: MA-WFG 
 

Figure 6.7 The Scenario of MA-WFG 
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The first algorithm, MA-WFG, lets each MA carry the WFG during its migration. A WFG 

in an MA transaction system consists of a set of MAs: {MA1, MA2,…, MAn}. An edge MAi 

->MAj exists in WFG if and only if MAi is waiting for a resource held by MAj. The edge 

starts from the blocked MA and points to the resource’s holder. For example, in Figure 6.7, 

MA0 is blocked on R2 which is locked by MA2, so the WFG on MA0 is MA0 ->MA2. In the 



CHAPTER 6 Mobile Agent Transaction
 

 154

following Theorem 6.2, we show that the structure of each WFG is a tree in MA-WFG 

algorithm. 

 

Theorem 6.2: In our MA system model, prior to a deadlock being detected, there will be 

two types of MAs, active and blocked. The WFG carried by active MA or blocked MA is a 

directed tree. 

 

Proof: If the WFG is not a tree structure, there must be a cycle in the WFG. The cycle can 

either be like the loop, which, according to Theorem 6.1, will indicate a deadlock or the 

cycle will reverse the direction of one or several (but not all) of the edges. Then there is at 

least one MA waits two other MAs, which contradicts with our assumed one resource 

model for deadlock detection. So there is no cycle in the WFG. A directed graph without a 

cycle is a directed tree.  

 

Algorithm 6.3 provides the MA-WFG algorithm in pseudo-code format and the following 

two theorems will illustrate that MA-WFG can guarantee both the safety property and the 

progress property of a deadlock detection algorithm.  

 

Theorem 6.3 (For MA-WFG’s Safety Property): When MA-WFG detects a deadlock, 

there must be indeed a deadlock. That is to say, MA-WFG can guarantee the safety 

property of a deadlock detection algorithm.  
 

Proof: In the tree structure WFG of an MA, when a loop is identified, then according to 

line 6 of Algorithm 6.3 (MA-WFG), a deadlock will be asserted. Since 2PL is adopted in 

the MA transactions running in MA-WFG, according to Theorem 6.1, the deadlock 

asserted by MA-WFG is indeed a deadlock. 
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Algorithm 6.3 MA-WFG 
 
// 1. A MA (MAi) Applying a Resource (R);  
1)  RM = Si.getRM();       //Get the RM from the platform to check resource’s status; 
2)  If (R.id ∈ RM.LockingTable)    //The resource has already been locked by another MA; 
3)    {MA_locker = RM.getLoker(R.id);  //Get the locker; 
4)     If (MAi.WFG.empty() == FALSE)  //If MAi’s WFG is not empty; 
5)        {MAi.WFG.addRoot(MA_locker); //Update MAi’s WFG: let locker be the new root of MAi’s WFG;
6)         If (MAi.WFG.loopChecking() == TRUE)  //Perform the loop checking; 
7)            Alarm(“Deadlock Detected”); //If a loop exists, a deadlock is detected. 
8)          Else                           //No loop, no deadlock.  
9)            {WFGmsg = {“MA-WFG”, MAi.WFG };    //Compose a WFG message  
10)            SendTo(MA_locker, WFGmsg);}  // Send MAi’s WFG to the MA that locked resource R; 

        } 
11)    Else                              //If WFG is empty, compose a WFG for MAi; 
12)       {MAi.WFG.add(MAi->MA_locker);  //Update MAi’s WFG; 
13)         WFGmsg = {“MA-WFG”, MAi.WFG }; //Compose a WFG message 
14)         SendTo(MA_locker, WFGmsg);   // Send MAi’s WFG to the MA that locked resource R;; 

       } 
       }   
15)  Else   //The resource has not been locked by other MAs; 
16)   {MAi.reserve(R);  //This MA can get this resource; 
17)    RM.record(MAi, R.id); //RM records the allocation of this resource; 
     } 

 
//2. Asynchronous message processing. Suppose MAj receive this message. 
18)  Msg =MAP.getMessge();         //MA platform is responsible to get a message; 
19)  If (Msg.content = = “MA-WFG”)   
20)    { MAj.merge(Msg.WFG);        //Merge the incoming WFG with MAj’s WFG; 
21)      If (MAj.WFG.loopChecking() == TRUE)  //Perform the loop checking; 
22)           Alarm(“Deadlock Detected”);  //If a loop exists, a deadlock is detected.  
23)      Else                          //No loop, no deadlock. 
24)          While (MAw = MAj.getWaitedMA() != NULL)  
25)               {WFGmsg = {“MA-WFG”, MAj.WFG };    //Compose a WFG message 
26)                SendTo(MAw, WFGmsg);   // Send MAj’s WFG to all the MAs that are waiting MAj; 

} 
        } 

 
 

Theorem 6.4 (For MA-WFG’s Progress Property): When there is a deadlock in MA 

transactions, it must be detected eventually by MA-WFG. That is to say, MA-WFG can 

guarantee the progress property of a deadlock detection algorithm.  

 

Proof: If there is a deadlock in the MA transaction system, a loop must exist in the WFG. 

Suppose the loop consists of n MAs: MA1->… -> MAn -> MA1 (n≥2). For this loop, 

suppose MAn being blocked by MA1 (MAn -> MA1) is the last step to form this loop. For the 

WFG (WFGn) of MAn, only two conditions exist before the last step. One condition is that 

WFGn already contains MA1. According to line 5~7 of Algorithm 6.3 (MA-WFG), a 
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deadlock will be detected. The second condition is that MA1 is not contained in WFGn. 

According to line 9~10, a new WFG: (WFGn->MA1) is formed and the new WFG will be 

sent to MA1. According to line 24~26, (WFGn->MA1) will be forwarded along the loop, 

until it encounters some MA which belongs to (WFGn->MA1). According to line 20~22, a 

deadlock will be detected. If no deadlock is detected during the forwarding process, 

(WFGn->MA1) will be forwarded along the loop until it reaches MAn. Since MAn�WFGn, 

the deadlock can be detected according to line 5~7.  

 

A problem for MA-WFG is that the MA must carry a tree during its migrations, which will 

increase the size of an MA and consume more bandwidth. Another problem is that it 

requires message passing between MAs, which is costly.  

 

2) Path Pushing Based Deadlock Detection Algorithm 2: Host-WFS 

 
Table 6.6 Locking Table for Host-WFS 

Resource 
ID 

Waiter’s Transaction 
ID  (waiter column) 

Holder’s Transaction  
ID  (holder column) 

Registered Event  WFS 
(WFS  column) 

MP2_R1 T_MA1 T_MA2 TO / Release MA3, MA4… 
 

In algorithm Host-WFS, we expand the locking table with one more column (as shown in 

Table 6.6) and the WFG is stored in the locking table. A WFG is been decomposed into 

three sections: a resource holder (stored in column 2 of Table 6.6), the set of MAs waiting 

for this resource (waiter set, stored in column 3 of Table 6.6), and the set of MAs that the 

resource holder is waiting for (wait-for set, stored in column 5 of Table 6.6). Since here the 

MAs that are waiting resources are represented as the type of set, we call the set as the 

wait-for set (WFS). To distinguish this algorithm from Algorithm 6.3, we call it 

Host-WFS. 
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Figure 6.8 The Scenario of Host-WFS
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Figure 6.8 illustrates the scenario applying Host-WFS. MA4 holds resource (R-MA4-1) and 

its ID is recorded in the holder column of Table 4-1. When MA3 is blocked on this resource, 

it becomes a waiter and its ID is recorded in the waiter column of Table 4-1. Then the 

holder’s ID (MA4’s ID) will be forwarded to the WFS columns of all the locking table 

entries (in Table 3-1, Table 3-2) for the waiter (MA3). If the waiter columns of these entries 

are not empty (i.e., the entry in Table 3-1), then the forwarding process will continue to 

build up the direct or indirect “waiting for” relations. In Figure 6.8, MA4’s ID is forwarded 

to all the deadlock tables because MA3 is waiting for MA4 directly, while others are waiting 

for MA4 indirectly. If an MA is blocked and finds its ID is in the locking table’s WFS 

column, a deadlock is detected. For example, in Figure 6.8, if MA4 applies R-MA4-1, it will 

be blocked. Since its ID is in the WFS column of Table 2-1, a deadlock is detected. The 

algorithm of Host-WFS in pseudo-code format is illustrated in Algorithm 6.4. 
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Algorithm 6.4 Host-WFS 
 
// 1. an MA (MAi) Applying a Resource (R); 
1)  RM = Si.getRM();       //Get the RM from the platform to check resource’s status; 
2)  If (R.id ∈ RM.LockingTable)    //The resource has already been locked by another MA; 
3)     {WFS = RM. LockingTable(R.id).getWFS();  //Get the locker; 
4)      If (MAi.id ∈ WFS)  //If MAi’s ID is in the WFG; 
5)           Alarm(“Deadlock Detected”); //A loop exists and a deadlock is detected.  
6)      Else                              //If WFG is empty, compose a WFG for MAi; 
7)           {RM.LockingTable.addWaitingMA(R.id, MAi.id);  //add MAi’s ID in WaitingMA_ID column;
8)            WFSmsg = {“Host-WFS”, MAi.id, WFS }; //Compose a WFS message 
9)            Itinerary = MAi.getItinerary();  //Get MA’s itinerary; 
10)           VisitedServers = Itinerary.getPrevious(Si); //Get the servers that MA have visited  
11)           While (S = VisitedServers.getNext() != NULL) 
12)                      SendTo(S, WFSmsg);   // Send WFS message to the MAs that MAi has visited;

} 
  }   

13)  Else   //The resource has not been locked by other MAs; 
14)    {MAi.reserve(R);  //This MA can get this resource; 
15)     RM.record(MAi, R.id); //RM records the allocation of this resource; 
       } 
 
//2. Asynchronous message processing. Suppose MAj receive this message. 
16)  Msg =MAP.getMessge();         //MA platform is responsible to get a message; 
17)  If (Msg.content = = “Host-WFS”)   
18)    {  WaitingMA_id = Msg.getWaitingMA(); 
19)       If (LockingTableEntry = RM. LockingTable(WaitingMA_id) != NULL) 
20)          {WFS = LockingTableEntry.getWFS(); 
21)            WaitingMASet = LockingTableEntry.getWaitingMASet (); 
22)            WFS.merge(Msg.getWFS());        //Merge the incoming WFG with MAj’s WFG; 
23)            If (WaitingMASet ∩ WFS != Φ)  //Perform the loop checking; 
24)                 Alarm(“Deadlock Detected”);  //If a loop exists, a deadlock is detected.  
25)            Else                          //No loop, no deadlock. 
26)                 If (WaitingMASet != Φ) 
27)                    While (MAw = WaitingMASet.getNextWaitedMA() != NULL)  
28)                          {WFSmsg = {“Host-WFS”, MAw.id, WFS }; //Compose a WFS message 
29)                           Itinerary = MAw.getItinerary();  //Get MA’s itinerary; 
30)                           VisitedServers = Itinerary.getPrevious(Si); //MA visited servers 
31)                           While (S = VisitedServers.getNext() != NULL) 
32)                                 SendTo(S, WFSmsg); // Send WFS msgs to MAs MAi has visited;

} 
              } 

} 

 
 

Theorem 6.5 (For Host-WFS’s Safety Property): When Host-WFS detects a deadlock, 

there must be indeed a deadlock. That is to say, Host-WFS can guarantee the safety 

property of a deadlock detection algorithm.  

 

Proof: In algorithm Host-WFS, when a loop is identified (WaitingMASet ∩ WFS != Φ or 

MAi.id ∈ WFS), then according to line 4 and line 23 (Algorithm 6.4 Host-WFS), a 



CHAPTER 6 Mobile Agent Transaction
 

 159

deadlock will be asserted. Since 2PL is adopted in the MA transactions running in 

Host-WFS, according to Theorem 6.1, the deadlock asserted by Host-WFS is indeed a 

deadlock. 

 

Theorem 6.6 (For Host-WFS’s Progress Property): When there is a deadlock in MA 

transactions, it must be detected eventually by Host-WFS. That is to say, Host-WFS can 

guarantee the progress property of a deadlock detection algorithm.  

 

Proof: If there is a deadlock in the MA transaction system, a loop must exist in the WFG. 

Suppose the loop consists of n MAs: MA1-> MA2…MAn-1-> MAn -> MA1 (n≥2), and the 

last step to form this loop is that MAn is blocked by resource R1 which is locked by MA1. 

Before the last step, the locking table entry for R1 (EntryR1) only has two possible 

conditions. One condition is that the MAn’s ID is in the WFS column of EntryR1. According 

to line 4~5 of Algorithm 6.4, a deadlock is detected. The other condition is that the MAn’s 

ID is still not in the WFS column of EntryR1. Because the chain “MA1-> MA2…MAn-1-> 

MAn” exists before the last step, according to line 7~12 and line 26~32 of Algorithm 6.4, 

the MAn’s ID will ultimately be forwarded to the WFS column of EntryR1. According to 

line 23~24 of Algorithm 6.4, the deadlock is detected.  

 

The advantage of Host-WFS is that it relieves the MA of the burden of carrying a WFG. 

On the contrary, the WFG is arranged in a form of “wait for set” and is distributed and 

stored on hosts. Therefore, the task of path pushing is finished by the hosts and the MA 

need not participate in the operation of path pushing. Intuitively, this feather provides the 

probability for the MA transactions and the path pushing executing in parallel, so as to 

make Host-WFS more efficient. We will report the result of performance comparison 

between MA-WFG and Host-WFS in next subsection. 
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3) Performance Comparison 

 

The main metric used for evaluating and comparing the performance of path pushing style 

deadlock detection algorithms is message cost. Since WFG_messages can be piggybacked 

in MA-WFG and Host-WFS, different execution scenarios will produce different message 

overheads. Suppose the loop for a deadlock involves k blocked MAs, and between two 

blocked MAs, there are ni (0<i≤ k, ni>0) hosts. For a fair comparison, we adopt the 

forwarding pointer scheme for delivering the WFG_message in MA-WFG. The message 

cost (Cmessage_cost) for both algorithms satisfies the following inequality 
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We can see that the upper bound and lower bound of the message cost are the same for 

both algorithms. It is obviously that an algorithm standing at the upper bound or lower 

bound will produce different message cost, but the problem is that we could not know 

which algorithm would stand on which side by theoretical analysis. Therefore, we carried 

out simulations to evaluate the performance of the two algorithms. The setup of the 

simulations is the same as the simulations reported in Section 6.3.2. In order to compare 

the performance of other types of algorithms as well, we also implemented two edge 

chasing style deadlock detection algorithms, namely MME [MIT84] and CME [CHY82].  

 

Figures 6.9 and 6.10 illustrate the simulation results. From Figure 6.9, we can see that our 

proposed two path pushing algorithms (MA-WFG and Host-WFS) perform better than the 

two edge chasing algorithms (MME and CME) in terms of message cost when more 

resources (>10) are requested. For the two path pushing algorithms, Host-WFS performs 

better than MA-WFG when more resources (>10) are requested.  
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Figure 6.9 Message Cost for Four Different Deadlock Detection Algorithms 
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Figure 6.10 shows the message cost for the detection of the first deadlock in an MA system. 

Different from Figure 6.9, path pushing style algorithms almost always achieve better 

performance than edge chasing style algorithms. For the two path pushing algorithms, 

generally Host-WFS performs better than MA-WFG when more resources are requested. 

 
Table 6.7 The Threshold in Figure 6.10 

Number of MA Transactions The Threshold Value on X-axes 

3 Requested Resources = 16 

6 Requested Resources = 11 

9 Requested Resources = 9 

 

Table 6.7 shows the threshold values of the number of resource requests shown on the 

x-axes in Figure 6.10, at which the message cost of Host-WFS becomes less than that of 

MA-WFG. From Table 6.7, we can see that with more MA transactions involved, the 

threshold values become smaller. That is to say, Host-WFS has more chance to perform 

better than MA-WFG when more MA transactions executing concurrently. Considering 

that dozens or hundreds of MA transactions may execute concurrently in an MA system 

and each MA transaction may request dozens of resources, it is obviously that Host-WFS 

can achieve better performance than MA-WFG.  

 

Another advantage of Host-WFS is that its message cost keeps stable (both in Figure 6.9 

and Figure 6.10), while the message costs of other algorithms keep increasing. With the 

above analysis, we can draw a conclusion that Host-WFS is better suited for MA 

transactions. 

 

6.4 Summary 
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Existing works on MA transaction support do not consider how to deploy MA transactions 

on top of the de-facto transaction support technologies. In this research, we have proposed 

a system model, system architecture, and related algorithms for MA transactions which 

integrate MA transactions with the widely deployed existing transaction support systems. 

The system model is a two-level nested transaction model. Accordingly, the system 

architecture is separated into two layers. The lower layer is the execution environment of 

the subtransactions, which is implemented by the existing transaction processing systems. 

The higher layer implements the top-level MA transaction involving functionalities such as 

commitment/abort control, resource management, and distributed deadlock detection. In 

this way, we integrate the MA computing model with the underlying de-facto transaction 

technologies, making use of the existing transaction processing system available on the 

hosts. Taking into account the characteristics of mobile agents, we proposed an adaptive 

commitment model for MA transactions and studied the issue of how to handle deadlocks 

for MA transactions. We further proposed two new path-pushing style deadlock detection 

algorithms. Simulation results show that the message cost of path-pushing style algorithms 

is lower than that of edge-chasing style algorithms, and in particular, the Host-WFS 

algorithm is particularly efficient for MA transactions. 
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Chapter 7 

Conclusions and Future Works 

 

In this chapter, we briefly summarize our work and outline directions for future research.  

 

7.1 Conclusions 
 

This research proposes a framework for fault tolerant MA systems. The fault tolerance 

techniques and the algorithms developed took into account the particular characteristics of 

MA systems. They allow the construction of an effective and efficient fault tolerant MA 

system with the support at different layers of system architecture. The system makes use of 

a failure detector and supports MA transaction. The failure detector provides failure 

notification and triggers recovery processing. MA transaction guarantees the system’s 

consistency during recovery processing. Rollback is implemented using checkpointing and 

primary-backup. 

 

We proposed a general model for implementing failure detectors (FDs) that is particularly 

suitable for MA systems. Our proposed failure detector, NTFD, uses failure notification in 

preference to the use of heartbeat message passing. As a result, NTFD is both highly 

scalable and economical in terms of network bandwidth. The biggest advantage of NTFD 

is that it is detects failures accurately -- a highly valued property in many applications. In 

e-commerce, for example, accurate failure detection prevents duplicated operations. NTFD 

has been shown to perform well in every area of QoS except completeness. Therefore, 

NTFD can provide at-most-once execution, which provides a solution to the problem of 

duplicate execution. In contrast, HBFD has the advantage of completeness. Following an 

 164



CHAPTER 7 Conclusions and Future Works 

analysis of the trade-offs for achieving QoS of FDs, we proposed a hybrid FD which 

combines the advantages of both the NTFD and HBFD approaches.  

 

Our proposed MA transaction architecture can be directly implemented in a realistic 

system because our design is based on an analysis of a realistic MA execution environment. 

The two layered system architecture can seamlessly integrate the MA system with the 

existing transaction platform without the need to modify the underlying transaction 

platform, making possible the large scale deployment of an MA system.  

 

Our primary-backup based algorithms were designed with efficiency in mind. Using 

parallel processing results in shorter execution time. This improves the system 

performance, while at the same time, increases the chances for an MA to bypass host 

failures. Efficiency is also considered in the checkpointing-based algorithms for MA 

systems. Based on two checkpointing strategies, we proposed three checkpoint placement 

algorithms for MA systems and identified the best of the three algorithms through 

simulations. For MA groups, we adopted CIC for MA systems to benefit the flexible, 

efficient and scalable properties of CIC scheme. We also proposed DM-CIC, which 

combines the flexibility of CIC and the reliable migration operation of MA to create a 

more integrated and efficient checkpointing solution for MA systems. 

 

7.2 Future Works 
 

While the proposed system is complete in functionality, opportunities for further 

development nonetheless remain. We have currently identified the following directions for 

future work: guaranteeing accuracy and completeness properties of an FD; message 

logging; improvement of the primary-backup based algorithms; determining the optimal 
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checkpointing intervals; consolidating all the research results and incorporate them into a 

practical MA system. 

 

Currently, neither HBFD, NTFD, nor hybrid FD can simultaneously demonstrate the 

capability to guarantee both accuracy and completeness properties. [FET03] proposed a 

solution to this dilemma, which is based on the lease protocol and sacrifices processes that 

have been falsely detected. In our future work, we will incorporate this method into our 

hybrid FD. 

 

We will also study message logging for rollback recovery as one way to improve the QoS 

of fault tolerance. By logging and replaying nondeterministic events in their original order, 

a process can deterministically recreate its pre-failure state even if this state has not been 

checkpointed. In general, log-based rollback recovery enables a system to recover beyond 

the most recent set of consistent checkpoints. It is therefore particularly attractive for 

applications that frequently interact with the outside world, which consists of all input and 

output devices that cannot roll back [ELN02].  

 

There is also room for improvement in the backup-based algorithms described in Chapter 4. 

One goal is to integrate them with MA transaction to support non-idempotent operations. 

We will also implement them in MA groups to deal with message exchange between group 

members. 

 

As for the issue of determining checkpointing intervals, in this research we have 

considered only independent checkpointing of single MAs. However, coordinated or CIC 

checkpointing is needed in an MA group. In our future work, we will investigate ways to 

determine the checkpointing intervals for more complicated checkpointing schemes for 

MA groups. 
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Finally, up to current stage, our research results are mostly theoretical and evaluated 

through simulation. Although some algorithms have been implemented on a practical MA 

platform Naplet [NAP], they are not integrated. In the future, we plan to integrate all the 

algorithms in an MA platform and provide a convenience interface to the programmers 

(via a set of APIs) or users (via a GUI) to help them build fault tolerant MA applications.  
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