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Abstract

Nowadays, many optimization problems are presented on a large scale. Therefore,

numerous techniques have been introduced to accelarate optimization algorithms. A

practical one is the extrapolation strategy. In this thesis, we propose and explore two

extrapolated first-order algorithms and then evaluate their efficiency by numerical

experiments. We also construct sparse portfolio selection models and observe their

theoretical and numerical characteristics.

The first part investigates an extrapolated inexact quasisubgradient method with

diminishing, constant, and dynamic stepsizes for a quasiconvex minimization prob-

lem. The convergence in objective values and the iteration complexity of the method

are established under a Hölder condition. With an additional assumption of weak

sharp minima, a sublinear convergence rate for iterates is obtained for some special

diminishing stepsize and extrapolation rule. For the constant and dynamic stepsizes,

a linear rate of convergence to (a ball of) the optimal solution set is provided with

a specially selected extrapolation step. In a similar way, we study a primal-dual

extrapolated quasisubgradient method with the diminishing and constant stepsizes

for finding a saddle point of a quasiconvex-quasiconcave function. The numerical

testing shows that extrapolation improves the performance in terms of the number

of iterations needed for reaching an approximate optimal solution.

In the second part, a penalty extrapolated alternating direction method of mul-

tipliers (ADMM) is proposed to solve a generalized bilinear programming problem.

The algorithm is divided into inner and outer iterations. The inner iterations are

constructed by using a proximal ADMM strategy with extrapolation for a quadratic

penalty relaxation. The outer iterations are composed of updating the penalty pa-
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rameter. The subsequential convergence and the iteration complexity O(1/k) are

established for the inner extrapolated ADMM algorithm, and its global convergence

is obtained by virtue of the Kurdyka- Lojasiewicz theory. Afterward, the conver-

gence to the stationary point is also provided for the outer algorithm. In numerical

testing, the efficiency of extrapolation is again demonstrated in the penalty ADMM

algorithm. Besides, we compare the proposed algorithm with a semidefinite relax-

ation method. The resulting optimal values of both methods are close, but the

proposed ADMM algorithm terminates within a shorter time.

In the final part, we study an lp-sparse minimax model and an l1-sparse minimax

Sharpe ratio model and observe a descent property of the lp norm of the optimal

portfolio. A parametric algorithm is also designed for finding a global solution of the

l1-sparse minimax Sharpe ratio model. Numerically, we compare the three sparse

minimax models with two sparse mean-variance models and test the effect of the

regularization parameter on the sparsity, return, risk, and short selling by using the

weekly historical data of 1200 stocks. We also apply the proposed penalty ADMM

method to the l1-sparse minimax Sharpe ratio model. As indicated in numerical

experiments, more sparse portfolios of all the sparse minimax models tend to have

lower rates of return and lower levels of risk. However, for the sparse mean-variance

models, the corresponding changes are not so significant.
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〈x̄, ȳ〉 Inner product of the vectors x̄ and ȳ.
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Chapter 1

Literature Review and
Introduction

In this day and age, optimization problems arise in numerous fields such as engi-

neering, economics, biology, and aerostatics. Due to the low requirement of storage,

first-order optimization algorithms have attracted widespread attention. On the

other hand, as many application problems are large-scale, various techniques have

been proposed to design fast algorithms. A popular one is the extrapolation strategy.

Therefore, we are interested in using the extrapolation step to speed up first-order

methods. This thesis focuses on two extrapolated first-order algorithms for solving

some structured nonconvex problems, particularly an extrapolated inexact quasisub-

gradient method for a quasiconvex programming problem and a penalty extrapolated

proximal alternating direction method of multipliers (ADMM) for a generalized bi-

linear programming problem. In addition, several sparse portfolio selection models

are also studied, where a critical descent property is satisfied for the lp regularizer of

the optimal portfolio.

This chapter will first present a literature review on the concerned issues and

our motivations, then follow notations and definitions of the thesis and background

knowledge of first-order optimization methods. The content of Chapters 2-4 will be

briefly introduced afterward.
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1.1 Extrapolation Strategy

The extrapolation step, also known as the inertial force in the literature, has been

widely used in numerical optimization to accelerate the convergence rate and enhance

numerical performances. In general, algorithms with extrapolation adopt the updat-

ing rules on an extrapolated point instead of the last iterate. For an optimization

problem with xk and xk−1 being the previous two iterates, an extrapolated point is

given by x̂k := xk + αk(xk − xk−1), where αk ≥ 0 is the extrapolation parameter.

For some classes of nondifferentiable convex optimization problems, the iteration

complexity is improved from O(1/k) to O(1/k2) by using specially structured ex-

trapolation rules in proximal gradient algorithms (see Beck & Teboulle (2009) and

Nesterov (2013)) and a primal-dual algorithm (see Chambolle & Pock (2011)). With-

out the theoretically accelerated rate of convergence, more general schemes of the

extrapolation step have been investigated for various types of convex optimization

methods (see Alvarez (2004), Maingé & Merabet (2010), Boţ et al. (2015), Chen et

al. (2015), Chambolle & Pock (2016), Johnstone & Moulin (2017), Wen et al. (2017),

Alves et al. (2020), and Attouch & Cabot (2020)). In Boţ et al. (2015), Chen et al.

(2015), Chambolle & Pock (2016), and Alves et al. (2020), better numerical results

are obtained with the extrapolation strategy.

For nonconvex optimization problems, the convergence of different extrapolated

algorithms has been established with an assumption of the Kurdyka- Lojasiewicz

property (see Ochs et al. (2014), Pock & Sabach (2016), Alecsa et al. (2019), Wu

& Li (2019), Jia et al. (2019), Zhang et al. (2019), Chao et al. (2020)). Moreover,

Goudou & Munier (2009) and Maingé (2009) studied a proximal point method with

extrapolation for quasiconvex optimizations in Hilbert space, where the weak con-

vergence is satisfied. As indicated in numerical experiments conducted by Ochs et

al. (2014), Pock & Sabach (2016), Wu & Li (2019), and Zhang et al. (2019), the
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extrapolation step enhances the performance of some nonconvex algorithms when

the extrapolation parameter is appropriately selected.

To the best of our knowledge, no subgradient method with extrapolation has

been studied for nondifferentiable convex or nonconvex problems in the literature.

For ADMM-type methods, only Chen et al. (2015) constructed extrapolated proximal

ADMM algorithms for a separable convex problem.

1.2 Quasiconvex Programming and Quasisubgra-

dient Method

Quasiconvex programming, minimizing a quasiconvex function over a closed and con-

vex set, appears in various areas, for example, engineering, economics, and decision

science (see Avriel et al. (1988), Crouzeix et al. (1998), dos Santos Gromicho (1998),

Hadjisavvas et al. (2005), and Ramı́k & Vlach (2012)). Many gradient-type meth-

ods have been investigated for continuously differentiable quasiconvex minimization

problems. Kiwiel & Murty (1996) discussed the convergence property of the steep-

est descent method with Armijo’s stepsize. Motivated by Kiwiel & Murty (1996),

Quiroz et al. (2008) generalized the classical Armijo line search and constructed the

steepest descent method for quasiconvex functions on Riemannian manifolds. More-

over, projected gradient methods with the convergence to a stationary point have

been used to solve quasiconvex problems (see Cruz & Pérez (2010)) and quasiconvex

multiobjective problems (see Cruz et al. (2011)). Proximal-method variants have

also been adopted on the minimization problem of quasiconvex functions. Replacing

the classical proximal distance with some second-order homogeneous distances, At-

touch & Teboulle (2004) and Pan & Chen (2007) introduced proximal-like methods

for quasiconvex programming. After that, Quiroz et al. (2008), Souza et al. (2010),

and Langenberg & Tichatschke (2012) extended the proximal algorithm by Bregman
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distances, and Quiroz et al. (2015) proposed an inexact proximal method with an

induced proximal distance for some classes of quasiconvex minimization problems.

Furthermore, Goudou & Munier (2009) and Maingé (2009) studied a proximal point

method with extrapolation for quasiconvex optimizations in Hilbert space, where the

weak convergence is satisfied.

The subgradient method also plays an essential role in quasiconvex programming.

Subgradient methods for solving nondifferentiable convex optimization problems be-

gan with the works of Ermol’ev (1966) and Polyak (1967) and were further developed

by Shor (1985), Bertsekas et al. (2003), and Auslender & Teboulle (2004). Based on

the Greenberg-Pierskalla subdifferential (Greenberg & Pierskalla, 1973), the quasi-

subdifferential (see the definition in Subsection 1.5.2) was introduced to construct

the quasisubgradient method for quasiconvex optimizations. For the minimization

of a quasiconvex function f over a closed and convex set X (i.e., min
x∈X

f(x)), the

standard quasisubgradient method is given by

xk+1 = PX
(
xk − vkg(xk)

)
,

where g(xk) is a quasisubgradient of f at xk, vk is a stepsize, and PX(·) denotes the

Euclidean projection onto X.

Kiwiel (2001) explored convergence properties of quasisubgradient methods in

Hilbert spaces with a diminishing stepsize, including an application to surrogate

relaxation. Konnov (2003) studied an inexact quasisubgradient method with ex-

act and inexact dynamic stepsizes for quasiconvex optimization problems. Inspired

by Polyak (1978) and Nedić & Bertsekas (2010), Hu et al. (2015) added noise in

an inexact quasisubgradient to establish an approximate quasisubgradient method

with diminishing and constant stepsizes and presented convergence results in both

objective values and iterates and the finite convergence to approximate optimality.

Afterward, Hu et al. (2020) provided a unified convergence analysis for a sequence
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satisfying a basic inequality and applied it to various types of quasisubgradient meth-

ods, which includes an abstract convergence theorem in Yu et al. (2019) as a special

case. Furthermore, Hishinuma & Iiduka (2020) proposed a quasisubgradient method

for quasiconvex problems with respect to a fixed point set and showed its numerical

superiority to some existing algorithms. In Kiwiel (2001), Konnov (2003), and Hu

et al. (2020), a sublinear convergence in objective values is obtained under a Hölder

condition, and a sublinear or linear convergence for iterates is obtained under both

Hölder and weak sharp minima conditions.

1.3 Generalized Bilinear Programming and ADMM

A function with two variables is said to be bilinear if it is linear in one variable when

the other one is fixed. More precisely, a function f(x, y) is bilinear if it is linear in x

for a fixed y and linear in y for a fixed x. Bilinear programming (BLP), minimizing

a bilinear function subject to linear constraints, emerges in numerous application

problems such as the assignment problem, game theory, and location allocation (see

Konno (1971), Reklaitis et al. (1983), and Papalambros & Wilde (2000)). Recently,

industrial applications of the BLP problem have also drawn widespread attention,

e.g., the nonnegative matrix factorization and nonnegative matrix factorization com-

pletion (see Pauca et al. (2006), Xu et al. (2012), and Hajinezhad et al. (2016)).

Based on bilinear programming, Al-Khayyal (1992) discussed a more complicated

bilinear optimization problem with bilinear constraints and called it the generalized

bilinear programming (GBLP) problem. The pooling problem in Foulds et al. (1992),

Audet et al. (2004), and Erbeyoğlu & Bilge (2016), farm management problem in

Bloemhof-Ruwaard & Hendrix (1996), and global supply chain problem in Vidal &

Goetschalckx (2001) provided specializations of this class of problems. Moreover,

all quadratically constrained quadratic programming (QCQP) problems (see Luo et
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al. (2010) and Anstreicher (2012)) and all linear sum-of-ratios problems (see Ben-

son (2007) and Jiao & Liu (2015)) can be reformulated as a GBLP problem (see

Subsections 3.6.2 and 3.6.3).

Research on global algorithms for GBLP problems is abundant, and the most has

centered on branch-and-bound methods with different relaxation strategies. Sherali

& Alameddine (1992), Liberti & Pantelides (2006), and Sherali & Adams (2013)

used the reformulation linearization technique to extend branch-and-bound algo-

rithms. Al-Khayyal (1992), Tawarmalani et al. (2010), and Fukuda & Kojima

(2001) provided some tight convex approximations to reformulate subproblems in

the branch-and-bound scheme. Another common relaxation technique is the La-

grangian relaxation (see Ben-Tal et al. (1994) and Almutairi & Elhedhli (2009)).

Besides branch-and-bound methods, Konno & Kuno (1992) and Kuno et al. (1992)

constructed a parametric algorithm by solving a master problem for a class of GBLP

problems. Floudas & Aggarwal (1990) and Osman & Demirli (2010) applied gener-

alized Benders decompositions to some specific GBLP problems. Moreover, convex

transformations have been composed to approximate a bilinear integer nonlinear

programming problem (see Harjunkoski et al. (1997) and Harjunkoski et al. (1998)),

where any GBLP problem is included as a specialization.

In terms of the local method, alternating algorithms have been used to solve

some linearly constrained nonconvex problems, accommodating BLP problems as

instances. The major types are the block coordinate descent (BCD) method and the

alternating direction method of multipliers (ADMM) (see Tseng (1993) and Tseng

(2001) for BCD; see Xu et al. (2012) for ADMM). For problems with nonconvex

constraints, BCD or ADMM methods with the convergence to a Nash point or a

stationary point were provided by Xu & Yin (2013) and Hajinezhad & Shi (2018).

In Xu & Yin (2013), three BCD variants were proposed to solve a multi-convex op-

timization problem, which covers the GBLP structure. However, those algorithms
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are limited to the feasibility of subproblems, which is not guaranteed for many gen-

eralized bilinear problems. In Hajinezhad & Shi (2018), an ADMM algorithm was

adopted on a structured bilinear problem, where the framework is related to GBLP.

Inspired by the mentioned literature, we are interested in constructing an ADMM-

type method for GBLP problems. The alternating direction method of multipliers

(ADMM) was introduced by Gabay & Mercier (1976) to solve the following two-block

separable convex optimization problem

min
x,z

f(x) + h(z)

s.t. Ax+Bz = c,

(1.1)

where f and h are proper, closed, and convex functions. The augmented Lagrangian

function of (1.1) is written as

Lρ(x, z, µ) := f(x) + h(z) + µT(Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖2,

where µ is the multiplier and ρ > 0 is the (augmented) penalty parameter of Lρ.

The standard ADMM for (1.1) is given by

xk+1 = arg min
x
Lρ(x, zk, µk),

zk+1 = arg min
z
Lρ(xk+1, z, µk),

µk+1 = µk + ρ(Axk+1 +Bzk+1 − c).

(1.2)

Eckstein & Bertsekas (1992) and Fukushima (1992) provided the convergence of

(1.2), and He & Yuan (2012, 2015) obtained its iteration complexity O(1/k). Apart

from the standard scheme, modified ADMM methods have also been studied in He

et al. (2002), He et al. (2006), and Chen et al. (2015). From Chen et al. (2016),

the straight extension of (1.2) may diverge when (1.1) is extended to a multi-block

structure. However, under mild conditions or with revised subproblems, He et al.
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(2012), Chang et al. (2014), and Shen & Pan (2015) established the convergence

of ADMM algorithms for multi-block separable convex problems. With relatively

restrictive assumptions, a linear convergence or a sublinear convergence with the

rate o(1/k) can be obtained for some multi-block ADMM method (see Hong & Luo

(2017) and Deng et al. (2017)).

For nonconvex problems, ADMM variants with the convergence to a stationary

point have been adopted on specific application problems, such as the matrix com-

pletion problem in Xu et al. (2012) and the sharing and consensus problem in Hong

et al. (2016). Li & Pong (2015), Yang et al. (2017), and Hajinezhad & Shi (2018)

proposed ADMM-type algorithms for some classes of nonconvex and nonsmooth

problems and conducted numerical experiments to evaluate the effectiveness of their

methods. Furthermore, the ADMM scheme has also been applied to more general

nonconvex problems with novel techniques and weaker assumptions (see Wang et

al. (2019) and Jiang et al. (2019)). The subsequential convergence of all those al-

gorithms is established with a sufficiently large associated penalty parameter, and

their global convergence is obtained by virtue of the Kurdyka- Lojasiewicz theory (see

Attouch et al. (2010)).

1.4 Sparse Portfolio Selection Models

In 1952, Markowitz (1952) formulated the portfolio selection problem as the mean-

variance model, which has since then become a milestone in portfolio selection and

remains a dominant technique in use today (see Das et al. (2011) and Markowitz

& Van Dijk (2003)). In the mean-variance framework, two critical elements, return

and risk, are defined by the expected return and variance of a portfolio, respectively.

The expression of return is straightforward, but the measure of risk is not definite.

In fact, various risk measures have been proposed to replace the portfolio variance
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and establish alternative portfolio selection rules, typically the ones with a linear

structure. Sharpe (1967) measured the risk by market responsiveness and composed

a linear approximation of the mean-variance model. Moreover, some new linear risk

measures such as a mean absolute deviation (Konno & Yamazaki, 1991), a minimax

risk measure (Young, 1998), and an l∞ risk function (Cai et al., 2000) have been

demonstrated to be competitive in empirical studies.

In modern society, portfolios including many securities are not desirable, espe-

cially for large-scale investments or retail investors. Therefore, finding sparse optimal

portfolios becomes an essential issue in portfolio selection. Many selection criteria

have been adopted to seek sparse portfolios based on the mean-variance model. By

considering nonnegativity constrained portfolios, Jagannathan & Ma (2003) obtained

an optimal portfolio consisting of only around 24 stocks for a 500-stock universe. Qi

et al. (2019) applied their portfolio model to 1800-stock problems, and the minimum

number of the selected stocks can be 62 on average. Woodside-Oriakhi et al. (2011)

provided a series of heuristic algorithms for a cardinality constrained mean-variance

model, which generate an efficient frontier with the number of stocks included fixed.

Furthermore, the regularization method is also a promising method for pursuing

sparse portfolios in the mean-variance framework. For this method, an lp norm or lp

regularizer (0 < p ≤ 1) is added in the objective function or constraint set to modify

the original model. The regularization technique has been widely applied in the

industry. In particular, the l1 regularizer has been used to seek sparsity for problems

of image reconstruction, data analysis, machine learning, and so on (see Tibshirani

(1996), Daubechies et al. (2004), and Beck & Teboulle (2009)). Furthermore, it has

been shown by Chartrand (2007) and Saab et al. (2008) that the method with lp (0 <

p < 1) norm rather than l1 norm produces more sparse solutions for some industrial

applications, although the computation of lp-sparse formulations is more complicated.

In respect of the portfolio selection, some l1-norm mean-variance models have been
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illustrated to be effective for promoting the sparsity of portfolios (see Brodie et

al. (2009), DeMiguel et al. (2009), and Dai & Wen (2018)). When 0 < p < 1,

Chen et al. (2013) and Fastrich et al. (2015) claimed that sparse optimal portfolios

of lp-regularized mean-variance models have satisfactory numerical performances.

In fact, research on the sparse portfolio selection has been centered on the mean-

variance model, but few studies have focused on linear portfolio models. Therefore,

we take a linear minimax model (Young, 1998) as an example to investigate lp-sparse

(0 < p ≤ 1) linear portfolio models (see Subsection 4.3.1).

In addition to classical portfolio selection frameworks, we are also curious about

a sparse minimax model based on the Sharpe ratio. In performance assessment,

the Treynor index (Treynor, 1965), Sharpe index (Sharpe, 1966), and Jensen index

(Jensen, 1968) are the three popular performance measures to rank the performance

of portfolios. The Sharpe index, also known as the Sharpe ratio, was first put forward

by Sharpe (1966) as an extension of the Treynor index. The classical Sharpe ratio is a

quotient of an expected excess return (numerator) and risk (denominator). The risk

in the Sharpe ratio is defined by the volatility or standard deviation of the portfolio

under consideration. By virtue of the quotient structure, different Sharpe-type ratios

were composed, where the volatility is replaced by alternative risk measures, such as

the Martin ratio (Martin & McCann, 1989), Sortino ratio (Sortino & Van Der Meer,

1991), and Sterling ratio (McCafferty, 2002). Apart from ranking performances, the

Sharpe ratio is also employed as the objective function to construct portfolio selection

models (see Benninga & Czaczkes (2014) and Elton et al. (2014)). With generalized

Sharpe ratios, the Sharpe ratio maximization model can be extended. In this way,

we establish a generalized Sharpe ratio model by the minimax risk measure in Young

(1998) and study its l1-sparse formulation in Subsection 4.3.2.
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1.5 Preliminaries

In this section, we present notations and definitions of the thesis and then introduce

several essential subdifferentials and first-order conditions of different optimization

problems, which will be frequently mentioned in our convergence analysis.

1.5.1 Notations and Definitions

Throughout the thesis, notations and definitions are standard. We restrict ourselves

to a Euclidean space. Let R be the set of real numbers, Rn be the set of n-dimensional

real vectors, Rm×n be the set of m×n real matrices, and N be the set of nonnegative

integers. Notations ‖·‖, 〈·, ·〉, and d·e are used to represent the Euclidean norm of a

vector, the inner product of two vectors, and the ceiling function of a real number,

respectively. The limit inferior (resp. limit superior) of a sequence is denoted by

lim inf (resp. lim sup).

For a vector x̄ ∈ Rn and a closed and convex set X ⊆ Rn, dist(x̄, X) denotes the

Euclidean distance between x̄ and X, i.e.,

dist(x̄, X) := min
x∈X
‖x− x̄‖ ;

PX(x̄) denotes the Euclidean projection of x̄ onto X, i.e.,

PX(x̄) := arg min
x∈X

‖x− x̄‖ ;

NX(x̄) denotes the normal cone to X at x̄, i.e.,

NX(x̄) := {v ∈ Rn : 〈v, x− x̄〉 ≤ 0, ∀x ∈ X};

δX(x̄) denotes the indicator function of X at x̄, i.e.,

δX(x̄) :=

{
0, if x̄ ∈ X,

+∞, if x̄ /∈ X.
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For a function f : Rn → R ∪ {+∞}, the effective domain of f is defined by

domf := {x ∈ Rn : f(x) < +∞} .

f is said to be proper if there exists x ∈ Rn such that f(x) < +∞, or equivalently,

domf 6= ∅. f is said to be lower semi-continuous on Rn if

lim inf
y→x

f(y) = f(x) for all x ∈ Rn.

f is said to be Lipschitz continuous on D ⊆ Rn if there exists L > 0 such that

|f(x)− f(y)| ≤ L ‖x− y‖ for all x, y ∈ D.

f is said to be convex if domf is a convex set and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ domf and t ∈ [0, 1].

f is said to be concave if −f is convex. Moreover, if f − γ
2
‖x‖2 is convex for some

γ > 0, we say that f is strongly convex with modulus γ. When f is continuously

differentiable, an equivalent definition of f to be strongly convex with γ is

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
γ

2
‖x− y‖ for all x, y ∈ domf.

f is said to be quasiconvex if domf is a convex set and

f(tx+ (1− t)y) ≤ max {f(x), f(y)} for all x, y ∈ domf and t ∈ [0, 1].

f is said to be quasiconcave if −f is quasiconvex. For each c ∈ R, the (strict) level

sets of f are written as

lev<cf := {x ∈ Rn : f(x) < c}, lev>cf := {x ∈ Rn : f(x) > c},

lev≤cf := {x ∈ Rn : f(x) ≤ c}, lev≥cf := {x ∈ Rn : f(x) ≥ c}.
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1.5.2 Subdifferentials and First-order Conditions

We consider an unconstrained optimization problem

min
x

f(x), (1.3)

where f : Rn → R ∪ {+∞} is a proper function.

Convex Optimization Problem

Suppose that f in (1.3) is convex. The (convex) subdifferential of f at x̄ is given by

∂f(x̄) := {g ∈ Rn : 〈g, x− x̄〉 ≤ f(x)− f(x̄), ∀x ∈ domf}.

If f is smooth at x̄, the gradient is the only element included, i.e., ∂f(x̄) = {∇f(x̄)}.

The stationary point associated with the subdifferential is defined as follows.

Definition 1.5.1. Suppose that f in (1.3) is convex. We say that x̄ is a stationary

point of (1.3) if 0 ∈ ∂f(x̄).

Then, the first-order optimality condition of (1.3) can be expressed by the sta-

tionary point (see Rockafellar (1970, Section 27)).

Proposition 1.5.2. Suppose that f in (1.3) is convex. Then x̄ is an optimal solution

of (1.3) if and only if x̄ is a stationary point of (1.3).

Nonconvex Optimization Problem

Suppose that f in (1.3) is possibly nonconvex. When f is smooth, the stationary

point is standardly defined by the gradient. Specifically, we say that x̄ is a stationary

point of (1.3) if ∇f(x̄) = 0. This point is either a local extremum (maximum or

maximum) or a saddle point of the problem. When f is nonsmooth, unfortunately,

directly using the (convex) subdifferential may lose critical information. For example,

the subdifferential of f(x) = −|x| is empty at the origin, which is in fact the global
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maximum of the function. Therefore, numerous generalized subdifferentials have

been proposed to investigate nonconvex and nonsmooth optimization problems (see

Aussel et al. (1995), Rockafellar & Wets (2009), and Mordukhovich (2006)). The

most popular are the Fréchet or regular subdifferential (Bazaraa et al., 1974) and

limiting (Fréchet) subdifferential (Mordukhovich, 1976).

- The Fréchet or regular subdifferential of f at x̄ is given by

∂Ff(x̄) :=

{
g ∈ Rn : lim inf

x 6=x̄,x→x̄

f(x)− f(x̄)− 〈g, x− x̄〉
‖x− x̄‖

≥ 0

}
;

- The limiting (Fréchet) subdifferential of f at x̄ is given by

∂Lf(x̄) :=
{
g ∈ Rn : ∃ xk f→ x̄ and gk → g with gk ∈ ∂Ff(xk) as k → +∞

}
,

which is the limit version of the Fréchet subdifferential.

Similar to ∂f , it holds that ∂Ff(x̄) = ∂Lf(x̄) = {∇f(x̄)} if f is smooth at x̄.

When f is convex, both subdifferentials reduce to the (convex) subdifferential, i.e.,

∂Ff(x̄) = ∂Lf(x̄) = ∂f(x̄).

Respective stationary points for the above subdifferentials are defined as follows.

Definition 1.5.3. We say that x̄ is a Fréchet or directional (resp. limiting) station-

ary point of (1.3) if 0 ∈ ∂Ff(x̄) (resp. 0 ∈ ∂Lf(x̄)).

Referring to Rockafellar (1985), Van Ngai et al. (2002), Kruger (2003), Mor-

dukhovich (2006, Chapters 1 and 3), and Rockafellar & Wets (2009, Chapters 8 and

10), we summarize some useful properties about these generalized subdifferentials

and stationary points.

Proposition 1.5.4. For (1.3), the following statements hold.
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(1). (Relationship). For any x̄ ∈ domf , one has that ∂Ff(x̄) ⊆ ∂Lf(x̄).

(2). (First-order condition). If x̄ is a local minimum of (1.3), then x̄ is a Fréchet

or directional stationary point and also a limiting stationary point of (1.3).

(3). (Addition with a smooth function). Let f(x) := f1(x) + f2(x). Then, for

any x̄ ∈ domf1 with f2 being smooth on a neighborhood of x̄, one has that

∂Ff(x̄) = ∂Ff1(x̄) +∇f2(x̄) and ∂Lf(x̄) = ∂Lf1(x̄) +∇f2(x̄).

(4). (Addition of separable functions). Let f(x) := f1(x1) + f2(x2), where f1 and

f2 are lower semi-continuous functions, and x := (x1, x2). Then, for any

x̄ := (x̄1, x̄2) ∈ domf with lim inf
t↘0,d→0

fi(x̄i+td)−fi(x̄)
t

= 0, i = 1, 2, one has that

∂Ff(x̄) = ∂Ff1(x̄1)× ∂Ff2(x̄2) and ∂Lf(x̄) = ∂Lf1(x̄1)× ∂Lf2(x̄2).

Quasiconvex Optimization Problem

Suppose that f in (1.3) is quasiconvex. Initially, all the subdifferentials for non-

convex and nonsmooth functions can be used to discuss quasiconvex optimization

problems (see Pan & Chen (2007), Langenberg & Tichatschke (2012), and Quiroz et

al. (2015)). On the other hand, some subdifferentials related to quasiconvexity have

also been investigated (see Greenberg & Pierskalla (1973), Plastria (1985), Mart́ınez-

Legaz & Sach (1999), and Daniilidis et al. (2001)). In this thesis, we focus on the

quasisubdifferential (see Kiwiel (2001)) and its inexact version (see Konnov (2003)

and Hu et al. (2015)).

Let ε ≥ 0. Then the quasisubdifferential and ε-quasisubdifferential of f at x̄ are

respectively given by

∂̄∗f(x̄) :=
{
g ∈ Rn : 〈g, x− x̄〉 ≤ 0, ∀x ∈ lev<f(x̄)f

}
and

∂̄∗ε f(x̄) :=
{
g ∈ Rn : 〈g, x− x̄〉 ≤ 0, ∀x ∈ lev<f(x̄)−εf

}
.
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Another equivalent definition is the normal cone to a level set; in particular,

∂̄∗f(x̄) := Nlev<f(x̄)f (x̄) and ∂̄∗ε f(x̄) := Nlev<f(x̄)−εf (x̄).

It is clear that ∂̄∗f(x̄) = ∂̄∗ε=0f(x̄) and ∂̄∗ε f(x̄) is a closed and convex cone. When f

is convex, one has that ∂̄∗f(x̄) = {λg : g ∈ ∂f(x̄), λ ≥ 0}.

Moreover, for a proper quasiconcave function h : Rn → R ∪ {+∞}, the quasi-

subdifferential and ε-quasisubdifferential at x̄ are respectively given by

∂̄∗h(x̄) :=
{
g ∈ Rn : 〈g, x− x̄〉 ≥ 0, ∀x ∈ lev>h(x̄)h

}
and

∂̄∗εh(x̄) :=
{
g ∈ Rn : 〈g, x− x̄〉 ≥ 0, ∀x ∈ lev>h(x̄)+εh

}
.

Constrained Optimization Problem

Now, we consider a constrained optimization problem

min
x

f(x)

s.t. x ∈ X,
(1.4)

where f : Rn → R∪ {+∞} is a proper function, and X ⊆ Rn is a nonempty, closed,

and convex set. Equivalently, (1.4) can be translated into an unconstrained form

min
x

f(x) + δX(x).

From definitions of the normal cone and (convex) subdifferential, we have that

NX = ∂δX . Thus, the first-order condition of (1.4) can be expressed by the normal

cone to X. We give an example for f being smooth.

Proposition 1.5.5. Suppose that f in (1.4) is smooth. If x̄ is a local minimum of

(1.4), then −∇f(x̄) ∈ NX(x̄), or equivalently,

〈∇f(x̄), x− x̄〉 ≥ 0 for all x ∈ X.
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Furthermore, if f is a smooth convex function, the above condition is sufficient and

necessary for x̄ to be an optimal solution of (1.4).

1.6 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we generalize the inexact quasisubgradient method in Hu et al.

(2015) by the extrapolation strategy for a quasiconvex optimization problem. The

convergence properties of the method are explored with diminishing, constant and

dynamic stepsizes. The convergence in objective values and the iteration complex-

ity are established under a Hölder condition, where the diminishing stepsize and

constant stepsize are treated in a unified way as both have similar structures. Fur-

thermore, the rate of convergence for all the stepsizes is analyzed under both Hölder

and weak sharp minima conditions. We also consider the extrapolated inexact qua-

sisubgradient method in a primal-dual framework for solving a saddle point problem

of a quasiconvex-quasiconcave function afterward. The primal-dual method is in-

vestigated with the diminishing and constant stepsizes in respect of the convergence

property in objective values and the iteration complexity. Eventually, numerical

experiments are carried out to evaluate the effectiveness of the extrapolation step.

In Chapter 3, we introduce a penalty extrapolated ADMM method to solve a

GBLP problem. The algorithm contains inner and outer iterations. The inner al-

gorithm is a proximal ADMM method with extrapolation for a quadratic penalty

relaxation of the GBLP problem. Its subsequential convergence and iteration com-

plexity are explored using a basic descent property, and the global convergence is

discussed on the basis of the Kurdyka- Lojasiewicz theory. The outer algorithm is an

update of the penalty parameter associated with the inner method, and the outer

convergence to a stationary point is also investigated. In numerical testing, the effect
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of extrapolation parameters is examined for the inner penalty problem and a linear

sum-of-ratios problem. Apart from it, we also compare the proposed algorithm with

a semidefinite relaxation method for a specially structured QCQP problem.

In Chapter 4, we take the minimax risk measure in Young (1998) as the represen-

tative of linear risk measures to construct sparse linear portfolio models, specifically,

an lp-sparse (0 < p ≤ 1) minimax model and an l1-sparse minimax Sharpe ratio

model. To find a global solution of the second model, we design a parametric method

based on Konno & Kuno (1990). Additionally, since the second model can be trans-

lated into the GBLP structure, we also specialize the algorithm in Chapter 3 to it

in numerical studies. In the experiments, we test the influence of model parameters

and observe characteristics of the sparse minimax models, where the equal-weighted

rule and lp-sparse mean-variance models are selected as benchmarks.

In Chapter 5, we summarize the main results in this thesis.
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Chapter 2

Inexact Quasisubgradient Methods

with Extrapolation

2.1 Introduction

In this chapter, we consider the following quasiconvex programming problem

min
x

f(x)

s.t. x ∈ X,
(2.1)

where f : Rn → R is a quasiconvex function, and X ⊆ Rn is a nonempty, bounded,

closed, and convex set.

For solving (2.1), we extend an inexact quasisubgradient method (see Hu et

al. (2015)) by using the extrapolation strategy. For the proposed algorithm, each

iteration is an inexact quasisubgradient step based on a combination of the previous

two iterates. To the best of our knowledge, no subgradient method with extrapolation

has been studied for nondifferential convex or nonconvex optimization problems in

the literature. To obtain a critical basic inequality, we need to assume that the

constraint set X is bounded. The same boundedness assumption is also found in

Kiwiel (2001), Nedić & Bertsekas (2010), and Hu et al. (2015). The convergence

property is explored with diminishing, constant, and dynamic stepsizes, where the

third stepsize is absent in Hu et al. (2015). Under a Hölder condition of order p, we
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derive an extended basic inequality, a dominant tool in our analysis, as it is the case

for all subgradient-type methods.

We establish the convergence in objective values, iteration complexity, and con-

vergence rate for iterates for the proposed method. In the analysis of the convergence

in objective values and the iteration complexity, we treat the diminishing stepsize

and constant stepsize in a unified way as both have similar structures. When study-

ing the iteration complexity and rate of convergence for iterates, we make use of

some specially structured diminishing stepsize and extrapolation rule. When both

the diminishing stepsize and extrapolation rule are decaying as a power function, we

obtain explicit iteration complexities. Moreover, an additional assumption of weak

sharp minima of order q is made to investigate the convergence rate for iterates.

When the diminishing stepsize is decaying as a power function and the extrapolation

rule is decreasing not less than a power function, the method provides a sublinear

convergence rate O
(
τ k

s)
(for some 0 < s < 1 and 0 < τ < 1) to the optimal solution

set of (2.1) or a tolerance region of the optimal solution set, which is faster than

O
(
1/kh

)
(for each h > 0). With a geometrically decreasing extrapolation step, we

obtain a linear rate of convergence (in particular, O
(
τ k
)

for some 0 < τ < 1) to

(a tolerance region of) the optimal solution set for the constant and dynamic step-

sizes. Our convergence results include the relevant ones in Kiwiel (2001), Konnov

(2003), Hu et al. (2015), Hu et al. (2020), and references therein as special cases.

Motivated by Hu et al. (2016), we also study a primal-dual extrapolated quasisub-

gradient method with diminishing and constant stepsizes for finding a saddle point

of a quasiconvex-quasiconcave function. The convergence in objective values and the

iteration complexity of the primal-dual method are obtained by virtue of the similar

analysis to the (primal) extrapolated inexact quasisubgradient method. Eventually,

we test the effect of the extrapolation step and find that the quasisubgradient algo-

rithm with extrapolation is more efficient than that without extrapolation in terms
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of the number of iterations needed for reaching an approximate optimal solution.

The rest of the chapter is organized as follows. We propose an extrapolated inex-

act quasisubgradient method and provide some preliminary properties in Section 2.2.

In Sections 2.3 and 2.4, we establish the general convergence property in objective

values and study the iteration complexity of the method, respectively, then follow the

convergence rate for iterates in Section 2.5. Afterward, in Section 2.6, a primal-dual

extrapolated inexact quasisubgradient method is introduced and explored in terms

of the convergence in objective values and the iteration complexity. Eventually, we

present and discuss numerical results in Section 2.7.

2.2 Inexact Quasisubgradient Method and Basic

Properties

Let ε ≥ 0 be the inexactness of the quasisubdifferential,
{
rk
}

be the sequence of

noise,
{
vk
}

be the sequence of stepsizes, and
{
αk
}

be the sequence of extrapola-

tion parameters. We use S to denote the unit sphere centered at the origin. Be-

sides, f ∗ and X∗ represent the optimal value and optimal solution set of (2.1),

respectively, and X∗ε represents the ε-approximate solution set of (2.1), that is,

X∗ε := {x ∈ X : f(x) ≤ f ∗ + ε}. As X is bounded, then there exists d > 0 such

that ‖x‖ ≤ d for all x ∈ X. Recall that the ε-quasisubdifferential of f (see Subsec-

tion 1.5.2) is defined by

∂̄∗ε f(x̄) :=
{
g ∈ Rn : 〈g, x− x̄〉 ≤ 0, ∀x ∈ lev<f(x̄)−εf

}
.

Now, we propose the following extrapolated inexact quasisubgradient method

(EiQSG) for (2.1), which extends the method in Hu et al. (2015) by extrapolation,

x̂k = xk + αk(xk − xk−1),

xk+1 = PX
(
x̂k − vkg̃(xk)

)
,

(2.2)

21



where x0 ∈ Rn and x−1 = x0 are initial points. As the projection is adopted, the

function value f(xk) does not decrease monotonically. Moreover,

g̃(xk) = g(xk) + rk and g(xk) ∈ ∂̄∗ε f(xk) ∩ S.

In (2.2), the extrapolation parameter sequence
{
αk
}

is assumed to satisfy

αk ≥ 0 and
+∞∑
k=0

αk < +∞,

which implies that lim
k→+∞

αk = 0 and
{
αk
}

is bounded. When αk ≡ 0, (2.2) reduces

to the method in Hu et al. (2015). Without loss of generality, we assume that αk ≤ 1

for all k ∈ N. We also assume that the noise sequence
{
rk
}

is bounded, then there

exists R ≥ 0 such that
∥∥rk∥∥ ≤ R for all k ∈ N. For

{
vk
}

, we consider the following

stepsizes:

- Diminishing stepsize: vk > 0, lim
k→+∞

vk = 0, and
+∞∑
k=0

vk = +∞;

- Constant stepsize: vk ≡ v > 0;

- Dynamic stepsize:

vk = γk
(
f(xk)− f ∗ − ε

L

) 1
p

with 0 < γ ≤ γk ≤ γ̄ <
2

(1 +R)2
,

where p and L are the order and modulus in Assumption 2.2.1, respectively.

For this stepsize, the method terminates at the kth iteration if xk ∈ X∗ε .

The diminishing stepsize and constant stepsize have similar structures and can be

unified as

vk > 0, lim
k→+∞

vk = v ≥ 0, and
+∞∑
k=0

vk = +∞. (2.3)

22



When v = 0, it is the diminishing stepsize. When vk ≡ v > 0, it is the constant

stepsize. This unification simplifies our presentation in Section 2.3. In Section 2.4,

we focus on a specially structured diminishing stepsize vk = ck−s, where c > 0 and

0 < s < 1. For this case, the diminishing and constant stepsizes can be unified as

vk = v + ck−s > 0 with v ≥ 0, c ≥ 0, and 0 < s < 1. (2.4)

When a Hölder condition is satisfied, the dynamic stepsize sequence
{
vk
}

is bounded

(see (2.5)). Then there exists v̄ > 0 such that vk ≤ v̄ for all k ∈ N. This upper

bound is helpful in convergence analysis for the dynamic stepsize.

The Hölder condition of order p has been used in the literature to study the

convergence of subgradient or quasisubgradient methods, as it is a key condition to

establish some properties of (quasi)subgradients and obtain a basic inequality. This

condition is assumed throughout Sections 2.2-2.5.

Assumption 2.2.1. Assume that f in (2.1) satisfies the Hölder condition restricted

to X∗ of order p > 0 with modulus L > 0 on Rn, i.e.,

f(x)− f ∗ ≤ Ldistp(x,X∗) for all x ∈ Rn.

Suppose that Assumption 2.2.1 holds. Then the sequence of dynamic stepsizes{
vk
}

is bounded. Indeed, for any k satisfying xk /∈ X∗ε , we have that

vk = γk
(
f(xk)− f ∗ − ε

L

) 1
p

≤ γ̄

(
Ldistp(x,X∗)− ε

L

) 1
p

≤ γ̄

(
L(2d)p − ε

L

) 1
p

. (2.5)

Lemma 2.2.2 (Hu et al. (2015, Lemma 3.3)) and Lemma 2.2.3 (Konnov (2003,

Proposition 2.1)) provide the relations between an ε-quasisubgradient and a function

value under the Hölder condition of order p. In fact, Lemma 2.2.2 can be implied

by Lemma 2.2.3. However, as the inequality in Lemma 2.2.2 will be repeatedly used

in the proofs about diminishing and constant stepsizes, we still keep it for readers’

convenience.
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Lemma 2.2.2. Suppose that Assumption 2.2.1 holds. Let x ∈ X and ζ ≥ 0 satisfy

f(x) > f ∗ + Lζp + ε, and let g(x) ∈ ∂̄∗ε f(x) ∩ S. Then 〈g(x), x − x∗〉 ≥ ζ for all

x∗ ∈ X∗.

Lemma 2.2.3. Suppose that Assumption 2.2.1 holds. Let x ∈ X satisfy f(x) >

f ∗ + ε, and let g(x) ∈ ∂̄∗ε f(x) ∩ S. Then

〈g(x), x− x∗〉 ≥
(
f(x)− f ∗ − ε

L

) 1
p

for all x∗ ∈ X∗.

With the introduction of extrapolation, we establish the following extended basic

inequality for EiQSG (2.2).

Lemma 2.2.4. Let {xk} be the sequence generated by EiQSG (2.2). Then, for any

k ∈ N and x ∈ X, one has that

‖xk+1 − x‖2 ≤‖xk − x‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk〈g(xk), xk − x〉+ 4Rdvk +
[
(1 +R)vk

]2
.

Proof. By use of the nonexpansive property of the projection operator and (2.2), we

obtain that, for any k ∈ N and x ∈ X,

‖xk+1 − x‖2 ≤‖x̂k − vkg̃(xk)− x‖2

=‖xk − x‖2 + ‖x̂k − xk‖2 + 2〈xk − x, x̂k − xk〉

− 2vk〈g̃(xk), x̂k − xk〉 − 2vk〈g̃(xk), xk − x〉+ (‖g̃(xk)‖vk)2.

Then, it follows from the Cauchy-Schwarz inequality, boundedness of X and {αk},
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and (2.2) that, for any k ∈ N and x ∈ X,

‖xk+1 − x‖2 ≤‖xk − x‖2 + (‖xk − xk−1‖αk)2 + 2‖xk − x‖‖xk − xk−1‖αk

+ 2(1 +R)‖xk − xk−1‖vkαk − 2vk〈g(xk), xk − x〉

+ 2R‖xk − x‖vk + (‖g̃(xk)‖vk)2

≤‖xk − x‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk〈g(xk), xk − x〉+ 4Rdvk +
[
(1 +R)vk

]2
,

which completes the proof.

2.3 Convergence in Objective Values

In this section, we study the convergence property in objective values for the proposed

method with different stepsizes. Our results depend on the inexactness ε, level of

noise R, and bound parameter d for the constraint set X.

2.3.1 Diminishing and Constant Stepsizes

As the diminishing stepsize and constant stepsize have similar structures but differ

in magnitude (see (2.3)), we treat them together in the following theorem.

Theorem 2.3.1. Let {xk} be the sequence generated by EiQSG (2.2) with the stepsize

(2.3) and Assumption 2.2.1 hold. Then

lim inf
k→+∞

f(xk) ≤ f ∗ + L
(v

2
(1 +R)2 + 2Rd

)p
+ ε.

Proof. We assume by contradiction that

lim inf
k→+∞

f(xk) > f ∗ + L
(v

2
(1 +R)2 + 2Rd

)p
+ ε.

Then, there exist δ > 0 and k0 ∈ N such that

f(xk) > f ∗ + L
(v

2
(1 +R)2 + 2Rd+ δ

)p
+ ε for all k ≥ k0.
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It follows from Lemma 2.2.2 that, for any k ≥ k0 and x∗ ∈ X∗,

〈g(xk), xk − x∗〉 ≥ v

2
(1 +R)2 + 2Rd+ δ. (2.6)

As lim
k→+∞

vk = v and lim
k→+∞

αk = 0, there exists k1 ∈ N such that

vk ≤ v +
δ

2(1 +R)2
and αk ≤ δ

4d(1 +R)
for all k ≥ k1. (2.7)

Together with (2.6), (2.7), and Lemma 2.2.4, we have that, for any k ≥ k2 :=

max{k0, k1} and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk
(v

2
(1 +R)2 + 2Rd+ δ

)
+ 4Rdvk +

[
(1 +R)vk

]2
≤‖xk − x∗‖2 + 12d2αk − δ

2
vk,

where, in the right-hand side of the first inequality, the second αk and one vk in[
(1 +R)vk

]2
were respectively replaced by estimates in (2.7). For n > k2, summing

the left-hand side and right-hand side of the above inequality over k = k2, · · · , n, we

obtain that

‖xn+1 − x∗‖2 ≤ ‖xk2 − x∗‖2 + 12d2

n∑
k=k2

αk − δ

2

n∑
k=k2

vk,

in contradiction when n → +∞ to the facts that
+∞∑
k=0

αk < +∞ and
+∞∑
k=0

vk = +∞.

Thus, the proof is completed.

When v = 0, the following estimate is the convergence result in objective values

for the diminishing stepsize

lim inf
k→+∞

f(xk) ≤ f ∗ + L(2Rd)p + ε.

When vk ≡ v > 0, the estimate in Theorem 2.3.1 is the convergence result in objective

values for the constant stepsize.
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2.3.2 Dynamic Stepsize

Then, we explore the convergence property for the dynamic stepsize.

Theorem 2.3.2. Let {xk} be the sequence generated by EiQSG (2.2) with the dy-

namic stepsize and Assumption 2.2.1 hold. Then either xk ∈ X∗ε for some k ∈ N,

or

lim inf
k→+∞

f(xk) ≤ f ∗ + L

(
4Rdγ̄

γ[2− γ̄(1 +R)2]

)p
+ ε.

Furthermore, if R = 0, then either xk ∈ X∗ε for some k ∈ N, or lim
k→+∞

f(xk) = f ∗+ ε.

Proof. If there is k ∈ N such that xk ∈ X∗ε , then the statement holds automatically.

Now, we consider the case that xk /∈ X∗ε (i.e., f(xk) > f ∗ + ε) for all k ∈ N. We

assume by contradiction that

lim inf
k→+∞

f(xk) > f ∗ + L

(
4Rdγ̄

γ[2− γ̄(1 +R)2]

)p
+ ε.

Then, there exist δ > 0 and k0 ∈ N such that

f(xk) > f ∗ + L

(
4Rdγ̄

γ[2− γ̄(1 +R)2]
+ δ

)p
+ ε for all k ≥ k0. (2.8)

On the other hand, since f(xk) > f ∗ + ε for all k ∈ N, it follows from Lemmas 2.2.3

and 2.2.4 that, for any k ≥ k0 and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk
(
f(xk)− f ∗ − ε

L

) 1
p

+ 4Rdvk +
[
(1 +R)vk

]2
.

Thus, replacing the vk in the term with αk by v̄ and other vk’s by the formula of the
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dynamic stepsize, respectively, we obtain that, for any k ≥ k0 and x∗ ∈ X∗,

‖xk+1 − x∗‖2

≤‖xk − x∗‖2 + 12d2αk + 4(1 +R)dv̄αk + 4Rdγk
(
f(xk)− f ∗ − ε

L

) 1
p

− γk[2− γk(1 +R)2]

(
f(xk)− f ∗ − ε

L

) 2
p

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk + 4Rdγ̄

(
f(xk)− f ∗ − ε

L

) 1
p

− γ[2− γ̄(1 +R)2]

(
f(xk)− f ∗ − ε

L

) 2
p

=‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk +
4R2d2γ̄2

γ[2− γ̄(1 +R)2]

− γ[2− γ̄(1 +R)2]

[(
f(xk)− f ∗ − ε

L

) 1
p

− 2Rdγ̄

γ[2− γ̄(1 +R)2]

]2

.

(2.9)

Together with (2.8) and (2.9), we have that, for any k ≥ k0 and x∗ ∈ X∗,

‖xk+1 − x∗‖2

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk +
4R2d2γ̄2

γ[2− γ̄(1 +R)2]

− γ[2− γ̄(1 +R)2]

[(
4Rdγ̄

γ[2− γ̄(1 +R)2]
+ δ

)
− 2Rdγ̄

γ[2− γ̄(1 +R)2]

]2

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk

− γ[2− γ̄(1 +R)2]

[(
2Rdγ̄

γ[2− γ̄(1 +R)2]
+ δ

)2

−
(

2Rdγ̄

γ[2− γ̄(1 +R)2]

)2
]

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk − γ[2− γ̄(1 +R)2]δ2.

For n > k0, summing the left-hand side and right-hand side of the above inequality
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over k = k0, · · · , n, we obtain that

‖xn+1 − x∗‖2 ≤‖xk0 − x∗‖2 + 4[3d+ (1 +R)v̄]d
n∑

k=k0

αk

− (n+ 1− k0)γ[2− γ̄(1 +R)2]δ2,

in contradiction when n → +∞ to the facts that
+∞∑
k=0

αk < +∞ and the last term

tends to +∞ as n→ +∞.

Then, we consider the case that R = 0. Since f(xk) > f ∗ + ε for all k ∈ N, it

follows from (2.9) that, for any k ≥ k0 and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 4(3d+ v̄)dαk − γ(2− γ̄)

(
f(xk)− f ∗ − ε

L

) 2
p

.

For n > k0, summing the left-hand side and right-hand side of the above inequality

over k = k0, · · · , n, we obtain that

‖xn+1 − x∗‖2 ≤‖xk0 − x∗‖2 + 4(3d+ v̄)d
n∑

k=k0

αk − γ(2− γ̄)
n∑

k=k0

(
f(xk)− f ∗ − ε

L

) 2
p

.

When n→ +∞, it follows from
+∞∑
k=0

αk < +∞ that

lim
k→+∞

(
f(xk)− f ∗ − ε

L

) 2
p

= 0.

Therefore, we have that

lim
k→+∞

f(xk) = f ∗ + ε.

Thus, the proof is completed.

Both theorems indicate the convergence to the optimal value within some toler-

ance. As the inexactness and noise are considered, the optimal value f ∗ may not be
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attained. In Theorem 2.3.1, the tolerance level is L
(
v
2
(1 +R)2 + 2Rd

)p
+ε, the same

as the formula provided in Hu et al. (2015); in Theorem 2.3.2, the tolerance level is

L
(

4Rdγ̄
γ[2−γ̄(1+R)2]

)p
+ ε. It is clear that the convergence result in objective values for

the inexact quasisubgradient method with extrapolation coincides with that without

extrapolation for all the stepsizes.

2.4 Iteration Complexity

This section analyzes the iteration complexity by estimating the difference between

the optimal value and best objective value among the first K iterations. The best

objective value at the Kth iteration is recorded as

fbest(x
K) := min

1≤k≤K
f(xk).

2.4.1 Diminishing and Constant Stepsizes

We again treat the diminishing stepsize and constant stepsize together and consider

a special case of (2.3) (see (2.4)). Moreover, a structured extrapolation rule is also

assumed in the analysis.

Theorem 2.4.1. Let δ > 0 and 0 < η < 2
3
. Let {xk} be the sequence generated by

EiQSG (2.2) with the stepsize (2.4) and extrapolation rule αk = o (vk) and Assump-

tion 2.2.1 hold. Then there exists K̄ ∈ N such that

fbest(x
K)− f ∗ ≤ L

(v
2

(1 +R)2 + 2Rd+ δ
)p

+ ε,

where K is the minimum integer such that

(2− 3η)δ

(
(K − K̄ + 1)v +

c[(K + 1)1−s − K̄1−s]

1− s

)
> dist2(xK̄ , X∗).
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Proof. We assume by contradiction that, for any 1 ≤ k ≤ K,

f(xk)− f ∗ > L
(v

2
(1 +R)2 + 2Rd+ δ

)p
+ ε.

It follows from Lemma 2.2.2 that, for any 1 ≤ k ≤ K and x∗ ∈ X∗,

〈g(xk), xk − x∗〉 ≥ v

2
(1 +R)2 + 2Rd+ δ. (2.10)

Given δ > 0 and 0 < η < 2
3
, it is easy to see that there exists K̄ ∈ N such that

vk ≤ v +
ηδ

(1 +R)2
for all k ≥ K̄, (2.11)

and

αk ≤ min

{
ηδvk

12d2
,

ηδ

4(1 +R)d

}
for all k ≥ K̄. (2.12)

Together with (2.10), (2.11), and Lemma 2.2.4, we have that, for any K̄ ≤ k ≤ K

and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk〈g(xk), xk − x∗〉+ 4Rdvk +
[
(1 +R)vk

]2
≤‖xk − x∗‖2 + 12d2αk + 4(1 +R)dvkαk − 2vk

(v
2

(1 +R)2 + 2Rd+ δ
)

+ 4Rdvk + (1 +R)2vk
(
v +

ηδ

(1 +R)2

)
=‖xk − x∗‖2 + 12d2αk + 4(1 +R)dvkαk − 2δvk + ηδvk.

Now by (2.12), for any K̄ ≤ k ≤ K and x∗ ∈ X∗, it holds that

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 − (2− 3η)δvk = ‖xk − x∗‖2 − (2− 3η)δ
(
v + ck−s

)
.

Summing the above inequality over k = K̄, · · · , K, we obtain that

(2− 3η)δ
K∑

k=K̄

(
v + ck−s

)
≤ ‖xK̄ − x∗‖2 − ‖xK+1 − x∗‖2 ≤ ‖xK̄ − x∗‖2. (2.13)
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Since k−s decreases as k increases, we see that

K∑
k=K̄

k−s ≥
∫ K+1

K̄

t−sdt =
(K + 1)1−s − K̄1−s

1− s
.

Let x∗ = PX∗(x
K̄). Then, it follows from (2.13) that

(2− 3η)δ

(
(K − K̄ + 1)v +

c[(K + 1)1−s − K̄1−s]

1− s

)
≤ dist2(xK̄ , X∗),

in contradiction to the definition of K. Thus, the proof is completed.

When v = 0 and c > 0, the following estimate provides the tolerance level for the

diminishing stepsize vk = ck−s

fbest(x
K)− f ∗ ≤ L (2Rd+ δ)p + ε.

Moreover, if αk = k−t (for each t > 1), from (2.11) and (2.12), the specific forms of

K̄ and K are respectively given as

K̄ := max

{⌈(
12d2

ηcδ

) 1
t−s
⌉
,

⌈(
4(1 +R)d

ηδ

) 1
t

⌉
,

⌈(
c(1 +R)2

ηδ

) 1
s

⌉}

and

K :=


(
K̄1−s +

(1− s)dist2(xK̄ , X∗)

(2− 3η)cδ

) 1
1−s
 .

When v > 0 and c = 0, the estimate in Theorem 2.4.1 provides the tolerance level

for the constant stepsize vk ≡ v. Moreover, if αk = k−t (for each t > 1), from (2.11)

and (2.12), the specific forms of K̄ and K are respectively given as

K̄ := max

{⌈(
12d2

ηvδ

) 1
t

⌉
,

⌈(
4(1 +R)d

ηδ

) 1
t

⌉}

and

K :=

⌈
K̄ +

dist2(xK̄ , X∗)

(2− 3η)vδ

⌉
.
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2.4.2 Dynamic Stepsize

Next, we see the complexity for the dynamic stepsize.

Theorem 2.4.2. Let δ > 0 and 0 < η < 1. Let {xk} be the sequence generated

by EiQSG (2.2) with the dynamic stepsize and Assumption 2.2.1 hold. Then there

exists K̄ ∈ N such that

fbest(x
K)− f ∗ ≤ L

(
4Rdγ̄

γ[2− γ̄(1 +R)2]
+ δ

)p
+ ε,

where K :=
⌈
K̄ + dist2(xK̄ ,X∗)

(1−η)[2−γ̄(1+R)2]γδ2

⌉
.

Proof. We assume by contradiction that, for any 1 ≤ k ≤ K,

f(xk)− f ∗ > L

(
4Rdγ̄

γ[2− γ̄(1 +R)2]
+ δ

)p
+ ε.

It follows from Lemmas 2.2.3 and 2.2.4 that, for any 1 ≤ k ≤ K and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 12d2αk + 4d(1 +R)vkαk

− 2vk
(
f(xk)− f ∗ − ε

L

) 1
p

+ 4Rdvk +
[
(1 +R)vk

]2
.

Thus, replacing the vk in the term with αk by v̄ and other vk’s by the formula of the

dynamic stepsize, respectively, we obtain that, for any 1 ≤ k ≤ K and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk + 4Rdγk
(
f(xk)− f ∗ − ε

L

) 1
p

− γk[2− γk(1 +R)2]

(
f(xk)− f ∗ − ε

L

) 2
p

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk + 4Rdγ̄

(
f(xk)− f ∗ − ε

L

) 1
p

− γ[2− γ̄(1 +R)2]

(
f(xk)− f ∗ − ε

L

) 2
p

.
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Rearranging the terms, we have that

‖xk+1 − x∗‖2

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk +
4R2d2γ̄2

γ[2− γ̄(1 +R)2]

− γ[2− γ̄(1 +R)2]

[(
f(xk)− f ∗ − ε

L

) 1
p

− 2Rdγ̄

γ[2− γ̄(1 +R)2]

]2

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk

− γ[2− γ̄(1 +R)2]

[(
2Rdγ̄

γ[2− γ̄(1 +R)2]
+ δ

)2

−
(

2Rdγ̄

γ[2− γ̄(1 +R)2]

)2
]

≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk − γ[2− γ̄(1 +R)2]δ2.

Given δ > 0 and 0 < η < 1, it is easy to see that there exists K̄ ∈ N such that

αk ≤
ηγ[2− γ̄(1 +R)2]δ2

4[3d+ (1 +R)v̄]d
for all k ≥ K̄ (2.14)

Now by (2.14), for any K̄ ≤ k ≤ K and x∗ ∈ X∗, it holds that

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 − (1− η)[2− γ̄(1 +R)2]γδ2.

Summing the above inequality over k = K̄, · · · , K and letting x∗ = PX∗(x
K̄), we

obtain that

(K − K̄ + 1)(1− η)[2− γ̄(1 +R)2]γδ2 ≤‖xK̄ − x∗‖2 − ‖xK+1 − x∗‖2 ≤ dist2(xK̄ , X∗),

in contradiction to the definition of K. Thus, the proof is completed.

If αk = k−t (for each t > 1), from (2.14), the specific form of K̄ is given as

K̄ :=

⌈(
4[3d+ (1 +R)v̄]d

ηγ[2− γ̄(1 +R)2]δ2

) 1
t

⌉
.
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When αk ≡ 0 and R = 0, Theorems 2.4.1 and 2.4.2 are consistent with Theorem

3.2 in Hu et al. (2020). The following remark specifies the best iteration complexity

for all the stepsizes.

Remark 2.4.3. From Theorems 2.4.1 and 2.4.2, the computational complexity of

EiQSG is influenced by the extrapolation rule, and the theoretically best complexities

are O(1/kpmin{s,1−s}), O(1/kp), and O(1/k
p
2 ). In particular, all the best complexities

can be achieved for the respective stepsizes when αk ≡ 0 or αk = k−t (for each t > 1).

2.5 Convergence Rate for Iterates

Section 2.4 investigates the rate of convergence in objective values. In this section,

we study the convergence rate for iterates under a weak sharp minima condition.

The classical weak sharp minima condition was introduced in Burke & Ferris

(1993). After that, a generalized definition, the weak sharp minima condition of

order q, was identified by Studniarski & Ward (1999). An assumption of weak sharp

minima of order q is made in analyzing the rate of convergence in iterates.

Assumption 2.5.1. Assume that X∗ for (2.1) is a set of weak sharp minima of

order q > 0 with modulus ρ > 0 over X, i.e.,

f(x)− f ∗ ≥ ρdistq(x,X∗) for all x ∈ X.

It is well-known that the optimal solution set of a linear programming problem

or a convex quadratic programming problem is a set of weak sharp minima of order

1 (see Burke & Ferris (1993)). Another example (see Studniarski & Ward (1999,

Example 2.1)) is

min
x,y

xq

s.t. x ≥ 0, 0 ≤ y ≤ 1,
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where q > 0. Clearly, its optimal solution set {(x, y) : x = 0 and 0 ≤ y ≤ 1} is a set

of weak sharp minima of order q. When 0 < q < 1, the problem is quasiconvex.

Lemma 2.5.2 (Huang & Yang (2003, Lemma 4.1)) and Lemma 2.5.3 (Polyak

(1987, Lemmas 4 and 5)) provide several significant inequalities for the following

convergence analysis.

Lemma 2.5.2. Let a ≥ b ≥ 0, c := min{1, 21−t}, and t > 0. Then (a−b)t ≥ cat−bt.

Lemma 2.5.3. Let uk ≥ 0 and uk+1 ≤ (1 − ak−s)uk + bk−t for all k ∈ N, where

a > 0 and b > 0.

(1). If s = 1, t > 1, and a > t− 1, then

uk ≤
b

a− t+ 1
k1−t + o(k1−t) for all k ∈ N.

(2). If 0 < s < 1 and t > s, then

uk ≤
b

a
ks−t + o(ks−t) for all k ∈ N.

To find an estimate of uk in Lemma 2.5.3 for the case that 0 < s < 1 and t = s,

we establish Lemma 2.5.4, a modified version of Lemma 2.3 (ii) in Hu et al. (2020).

Lemma 2.5.4. Let uk ≥ 0 and uk+1 ≤ (1 − ak−s)uk + bk−s for all k ∈ N, where

a > 0, b > 0, and 0 < s < 1. Then

uk ≤ cτ k
1−s

+
b

a
for all k ≥ da

1
s e+ 2,

where c := uk0e
a

1−sk
1−s
0 and τ := e−

a
1−s .

Proof. For any k ≥ k0 := da 1
s e+ 1, we have that

36



uk+1 −
b

a
≤
(
1− ak−s

)(
uk −

b

a

)
≤
(
1− ak−s

) (
1− a(k − 1)−s

)(
uk−1 −

b

a

)

≤ · · · · · · · · · ≤
(
uk0 −

b

a

) k∏
i=k0

(
1− ai−s

)
=

(
uk0 −

b

a

)
e
∑k
i=k0

ln(1−ai−s).

As {ln (1− ai−s)} is increasing and ln (1− ai−s) < −ai−s holds for all i ≥ k0, one

has that

k∑
i=k0

ln
(
1− ai−s

)
<

∫ k+1

k0

ln
(
1− at−s

)
dt <

∫ k+1

k0

−at−sdt =
a

1− s
[
k1−s

0 − (k + 1)1−s] .
Then, we see that

uk+1 −
b

a
≤
(
uk0 −

b

a

)
e

a
1−sk

1−s
0 e−

a
1−s (k+1)1−s ≤ uk0e

a
1−sk

1−s
0

(
e−

a
1−s

)(k+1)1−s

,

which completes the proof.

Remark 2.5.5. In Lemma 2.5.4, {uk} is sublinearly convergent with the rate O
(
τ k

1−s
)

for some 0 < τ < 1, which is faster than O
(
1/kh

)
for each h > 0.

Proof. The sublinear convergence can be verified by definition, specifically,

lim
k→+∞

τ (k+1)1−s

τ k1−s = τ
lim

k→+∞
k1−s

[
(1+ 1

k)
1−s
−1

]
= τ

lim
k→+∞

k1−s(1+ 1−s
k

+o( 1
k2 )−1)

= 1,

where the second equality comes from the Taylor’s theorem.

Now, we prove that τ k
1−s

= o
(
1/kh

)
. Letting t := a

1−sk
1−s and i0 :=

⌈
h

1−s − 1
⌉
,

we see that

lim
k→+∞

τ k
1−s

1
kh

= lim
t→+∞

(
1−s
a
t
) h

1−s

et
=

(
1− s
a

) h
1−s

lim
t→+∞

t
h

1−s

et

=

(
1− s
a

) h
1−s i0∏

i=0

(
h

1− s
− i
)

lim
t→+∞

t
h

1−s−i0−1

et
= 0,

where the second line holds due to the L’Hôspital’s rule.
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2.5.1 Diminishing Stepsize

When exploring the rate of convergence for the diminishing stepsize, we focus on

some structured stepsize and extrapolation rule. The estimates in Lemmas 2.5.3 and

2.5.4 are used to prove a sublinear convergence rate.

Theorem 2.5.6. Suppose that Assumptions 2.2.1 and 2.5.1 hold with p ≤ q ≤ 2p.

Let {xk} be the sequence generated by EiQSG (2.2) with the diminishing stepsize

vk = c1k
−s and extrapolation rule αk ≤ c2k

−2s, where c1 > 0, c2 ≥ 0, and 0 < s ≤ 1.

(1). If 0 < s ≤ 1, R = 0, ε = 0, and c1 > (2d)1− q
pd
(
L
ρ

) 1
p

when s = 1, then either

xk ∈ X∗ for some k ∈ N, or there exists C > 0 such that

dist2(xk, X∗) ≤ Ck−s for sufficiently large k.

(2). If 0 < s < 1 and either R > 0 or ε > 0, then either xk ∈ X∗ε for some k ∈ N,

or there exist C > 0, D > 0, and 0 < τ < 1 such that

dist2(xk, X∗) ≤ Cτ k
1−s

+D for sufficiently large k.

Proof. If there is k ∈ N such that xk ∈ X∗ε , then the statements (1) and (2) hold

automatically. Now, we consider the case that xk /∈ X∗ε (i.e., f(xk) > f ∗ + ε) for all

k ∈ N. Thus, by use of Lemmas 2.2.3 and 2.2.4, we have that, for any k ∈ N and

x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 12d2c2k
−2s + 4(1 +R)dc1c2k

−3s

− 2c1k
−s
(
f(xk)− f ∗ − ε

L

) 1
p

+ 4Rdc1k
−s + (1 +R)2c2

1k
−2s.

Let C1 := 12d2c2 + 4(1 +R)dc1c2 + (1 +R)2c2
1 and x∗ = PX∗(x

k). Since k−3s ≤ k−2s,
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it holds that, for any k ∈ N,

dist2(xk+1, X∗) ≤ dist2(xk, X∗)− 2c1k
−s
(
f(xk)− f ∗ − ε

L

) 1
p

+ C1k
−2s + 4Rdc1k

−s.

(2.15)

We consider two cases: ε = 0, and ε > 0.

Case (i). Let ε = 0. It follows from (2.15), Assumption 2.5.1, and the fact of

dist
q
p
−2(xk, X∗) ≥ (2d)

q
p
−2 that, for any k ∈ N,

dist2(xk+1, X∗) ≤
[
1− 2(2d)

q
p
−2
( ρ
L

) 1
p
c1k
−s
]

dist2(xk, X∗) + C1k
−2s + 4Rdc1k

−s.

(2.16)

Case (ii). Let ε > 0. It follows from Lemma 2.5.2 and (2.15) that, for any k ∈ N,

dist2(xk+1, X∗) ≤ dist2(xk, X∗)− 2c1k
−s

[
c̃

(
f(xk)− f ∗

L

) 1
p

−
( ε
L

) 1
p

]

+ C1k
−2s + 4Rdc1k

−s,

where c̃ := min{1, 21− 1
p}. Then, combining with Assumption 2.5.1 and the fact of

dist
q
p
−2(xk, X∗) ≥ (2d)

q
p
−2, we have that, for any k ∈ N,

dist2(xk+1, X∗) ≤
[
1− 2(2d)

q
p
−2
( ρ
L

) 1
p
c̃c1k

−s
]

dist2(xk, X∗)

+

[
2c1

( ε
L

) 1
p

+ 4Rdc1(1 + κ1)

]
k−s,

(2.17)

where κ1 is an arbitrary positive number.

Next, we prove the statements (1) and (2).

(1). Let a := 2(2d)
q
p
−2
(
ρ
L

) 1
p c1 and b := C1. Consider first s = 1, R = 0, ε = 0,

and a > 1. Applying Lemma 2.5.3(1) to (2.16), we obtain that

dist2(xk, X∗) ≤ b

a− 1
k−1 + o

(
k−1
)

for all k ∈ N.
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Consider then 0 < s < 1, R = 0, and ε = 0. Applying Lemma 2.5.3(2) to (2.16), we

obtain that

dist2(xk, X∗) ≤ a

b
k−s + o

(
k−s
)

for all k ∈ N.

From both cases, the statement (1) is true.

(2). Consider first 0 < s < 1, R > 0, and ε = 0. Let κ2 be an arbitrary positive

number. For any k ≥
(

C1

4Rdc1κ2

) 1
s
, (2.16) reduces to

dist2(xk+1, X∗) ≤
[
1− 2(2d)

q
p
−2
( ρ
L

) 1
p
c1k
−s
]

dist2(xk, X∗) + 4Rdc1(1 + κ2)k−s.

Now, we apply Lemma 2.5.4 to the above inequality; then, there exist 0 < τ < 1,

C > 0, and D > 0 such that

dist2(xk, X∗) ≤ Cτ k
1−s

+D for sufficiently large k.

Consider then 0 < s < 1 and ε > 0. We apply Lemma 2.5.4 to (2.17); then, there

exist 0 < τ < 1, C > 0, and D > 0 such that

dist2(xk, X∗) ≤ Cτ k
1−s

+D for sufficiently large k.

From both cases, the statement (2) is true.

2.5.2 Constant Stepsize

In the discussion of the constant stepsize, we consider another specific extrapolation

rule. A linear convergence rate is provided in the following theorem.

Theorem 2.5.7. Suppose that Assumptions 2.2.1 and 2.5.1 hold with p ≤ q ≤ 2p.

Let {xk} be the sequence generated by EiQSG (2.2) with the constant stepsize and

extrapolation rule αk+1 ≤ ζαk, where 0 ≤ ζ < 1. Then either xk ∈ X∗ε for some

k ∈ N, or there exist C > 0, D > 0, and 0 < τ < 1 such that

dist2(xk, X∗) ≤ Cτ k +D for all k ≥ 1.
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Proof. If there is k ∈ N such that xk ∈ X∗ε , then the statement holds automatically.

Now, we consider the case that xk /∈ X∗ε (i.e., f(xk) > f ∗ + ε) for all k ∈ N. Thus,

by use of Lemmas 2.2.3 and 2.2.4, we have that, for any k ∈ N and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 + 12d2αk + 4(1 +R)dvαk

− 2v

(
f(xk)− f ∗ − ε

L

) 1
p

+ 4Rdv + (1 +R)2v2.

Let x∗ = PX∗(x
k). It holds that, for any k ∈ N,

dist2(xk+1, X∗) ≤dist2(xk, X∗) + 12d2αk + 4(1 +R)dvαk

− 2v

(
f(xk)− f ∗ − ε

L

) 1
p

+ 4Rdv + (1 +R)2v2.

(2.18)

We consider two cases: ε = 0, and ε > 0.

Case (i). Let ε = 0. It follows from (2.18), Assumption 2.5.1, and the fact of

dist
q
p
−2(xk, X∗) ≥ (2d)

q
p
−2 that, for any k ∈ N,

dist2(xk+1, X∗) ≤ C1dist2(xk, X∗) + C2α
k + C3,

where C1 := 1−2(2d)
q
p
−2
(
ρ
L

) 1
p v, C2 := 4[3d+(1+R)v]d, and C3 := 4Rdv+(1+R)2v2.

If C1 ≤ 0, then, noting αk+1 ≤ ζαk, we have that, for any k ∈ N,

dist2(xk+1, X∗) ≤ C2α
k + C3 ≤ · · · · · · ≤ C2ζ

kα0 + C3 =
C2α

0

ζ
ζk+1 + C3. (2.19)

If 0 < C1 < 1, then we have that, for any k ∈ N,

dist2(xk+1, X∗) ≤ C1dist2(xk, X∗) + C2α
k + C3

≤ C1[C1dist2(xk−1, X∗) + C2α
k−1 + C3] + C2α

k−1 + C3

· · · · · · · · ·

≤ Ck+1
1 dist2(x0, X∗) + C2

k∑
i=0

Ci
1α

k−i + C3

k∑
i=0

Ci
1.
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Let max{C1, ζ} < τ < 1. Then it follows from αk+1 ≤ ζαk that, for any k ∈ N,

dist2(xk+1, X∗) ≤ Ck+1
1 dist2(x0, X∗) + C2α

0

k∑
i=0

Ci
1τ

k−i + C3

k∑
i=0

Ci
1

≤ dist2(x1, X∗) τ k+1 +
C2α

0

(τ − C1)
τ k+1 +

C3

1− C1

.

(2.20)

From (2.19) and (2.20), the statement is true for this case.

Case (ii). Let ε > 0. It follows from Lemma 2.5.2 and (2.18) that, for any k ∈ N,

dist2(xk+1, X∗) ≤ dist2(xk, X∗) + C2α
k − 2v

[
c̃

(
f(xk)− f ∗

L

) 1
p

−
( ε
L

) 1
p

]
+ C3,

where c̃ := min{1, 21− 1
p}. Then, combining with Assumption 2.5.1 and the fact of

dist
q
p
−2(xk, X∗) ≥ (2d)

q
p
−2, we have that, for any k ∈ N,

dist2(xk+1, X∗) ≤ C1dist2(xk, X∗) + C2α
k + C3,

where C1 := 1− 2(2d)
q
p
−2
(
ρ
L

) 1
p c̃v and C3 := C3 + 2v

(
ε
L

) 1
p . The rest of the proof for

this case can be completed similarly as for Case (i).

2.5.3 Dynamic Stepsize

For the proposed method with the dynamic stepsize, a linear convergence for iterates

is obtained in Theorem 2.5.8. The extrapolation rule under consideration is the same

as that in Theorem 2.5.7.

Theorem 2.5.8. Suppose that Assumptions 2.2.1 and 2.5.1 hold with q = p. Let

{xk} be the sequence generated by EiQSG (2.2) with the dynamic stepsize and ex-

trapolation rule αk+1 ≤ ζαk, where 0 ≤ ζ < 1. Then either xk ∈ X∗ε for some k ∈ N,

or there exist C > 0, D > 0, and 0 < τ < 1 such that

dist2(xk, X∗) ≤ Cτ k +D for all k ≥ 1.
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Proof. If there is k ∈ N such that xk ∈ X∗ε , then the statement holds automatically.

Now, we consider the case that xk /∈ X∗ε (i.e., f(xk) > f ∗ + ε) for all k ∈ N. Thus,

by use of Lemmas 2.2.3 and 2.2.4, we have that, for any k ∈ N and x∗ ∈ X∗,

‖xk+1 − x‖2 ≤‖xk − x∗‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk
(
f(xk)− f ∗ − ε

L

) 1
p

+ 4Rdvk +
[
(1 +R)vk

]2
≤‖xk − x∗‖2 + 4[3d+ (1 +R)v̄]dαk + 4Rdv̄

− γ[2− γ̄(1 +R)2]

(
f(xk)− f ∗ − ε

L

) 2
p

,

where vk was replaced by v̄ in the terms 4(1 +R)dvkαk and 4Rdvk and other vk’s by

the formula of the dynamic stepsize. Let x∗ = PX∗(x
k). It holds that, for any k ∈ N,

dist2(xk+1, X∗) ≤ dist2(xk, X∗) + 4[3d+ (1 +R)v̄]dαk + 4Rdv̄

− γ[2− γ̄(1 +R)2]

(
f(xk)− f ∗ − ε

L

) 2
p

.

(2.21)

We consider two cases: ε = 0, and ε > 0.

Case (i). Let ε = 0. It follows from (2.21) and Assumption 2.5.1 that, for any

k ∈ N,

dist2(xk+1, X∗) ≤ C1dist2(xk, X∗) + C2α
k + C3,

where C1 := 1− γ[2− γ̄(1 +R)2]
(
ρ
L

) 2
p , C2 := 4[3d+ (1 +R)v̄]d, and C3 := 4Rdv̄.

If C1 ≤ 0, then, noting αk+1 ≤ ζαk, we have that, for any k ∈ N,

dist2(xk+1, X∗) ≤ C2α
k + C3 ≤ · · · · · · ≤ C2ζ

kα0 + C3 =
C2α

0

ζ
ζk+1 + C3. (2.22)
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If 0 < C1 < 1, then we have that, for any k ∈ N,

dist2(xk+1, X∗) ≤ C1dist2(xk, X∗) + C2α
k + C3

≤ C1[C1dist2(xk−1, X∗) + C2α
k−1 + C3] + C2α

k + C3

· · · · · · · · ·

≤ Ck+1
1 dist2(x0, X∗) + C2

k∑
i=0

Ci
1α

k−i + C3

k∑
i=0

Ci
1.

Let max{C1, ζ} < τ < 1. Then it follows from αk+1 ≤ ζαk that, for any k ∈ N,

dist2(xk+1, X∗) ≤ Ck+1
1 dist2(x0, X∗) + C2α

0

k∑
i=0

Ci
1τ

k−i + C3

k∑
i=0

Ci
1

≤ dist2(xN+1, X∗) τ k+1 +
C2α

0

(τ − C1)
τ k+1 +

C3

1− C1

.

(2.23)

From (2.22) and (2.23), the statement is true for this case.

Case (ii). Let ε > 0. It follows from Lemma 2.5.2 and (2.21) that, for any k ∈ N,

dist2(xk+1, X∗) ≤ dist2(xk, X∗) + C2α
k + 4Rdv̄

− γ[2− γ̄(1 +R)2]

[
c̃

(
f(xk)− f ∗

L

) 2
p

−
( ε
L

) 2
p

]
,

where c̃ := min{1, 21− 2
p}. Then, combining with Assumption 2.5.1, we have that, for

any k ∈ N,

dist2(xk+1, X∗) ≤ C1dist2(xk, X∗) + C2α
k−1 + C3,

where C1 := 1 − c̃γ[2 − γ̄(1 + R)2]
(
ρ
L

) 2
p and C3 := γ[2 − γ̄(1 + R)2]

(
ε
L

) 2
p + 4Rdv̄.

The rest of the proof for this case can be completed similarly as for Case (i).

Theorems 2.5.6(2), 2.5.7, and 2.5.8 present the convergence to a ball (tolerance

region) of the optimal solution set, and D in the theorems represents the radius of

the tolerance region. Table 2.1 lists the specific value of D in different cases.
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Table 2.1: Radius of tolerance region (D)

Stepsize ε = 0 ε > 0

Dimi. (2d)3−q/pR (L/ρ)1/p (2d)3−q/pR
c̃

(L/ρ)1/p + (2d)2−q/p

c̃
(ε/ρ)1/p

Cons. 4Rdv+(1+R)2v2

min{1,2(2d)q/p−2(ρ/L)1/pv}
4Rdv+(1+R)2v2+2v(ε/L)1/p

min{1,2(2d)q/p−2(ρ/L)1/pc̃v}

Dyna. 4Rdv̄
min{1,γ[2−γ̄(1+R)2](ρ/L)2/p}

4Rdv̄+γ[2−γ̄(1+R)2](ε/L)2/p

min{1,c̃γ[2−γ̄(1+R)2](ρ/L)2/p}

When αk ≡ 0, the results in Theorems 2.5.6-2.5.8 provide the rate of conver-

gence without extrapolation. It is worth noting that both the convergence rate

and tolerance region (see Table 2.1) of the inexact quasisubgradient method with

extrapolation are the same as those without extrapolation. The following remark

summarizes the rate of convergence in iterates for all the stepsizes.

Remark 2.5.9. Theorem 2.5.6 indicates a sublinear convergence (see Remark 2.5.5),

in particular, O (1/ks) or O
(
τ k

s)
for some 0 < s < 1 and some 0 < τ < 1.

Theorems 2.5.7 and 2.5.8 illustrate a linear convergence, in particular, O
(
τ k
)

for

some 0 < τ < 1.

2.6 Primal-Dual Inexact Quasisubgradient Method

with Extrapolation

In this section, we study EiQSG in a primal-dual framework for finding a saddle point

of a quasiconvex-quasiconcave function, inspired by the work of Hu et al. (2016).

A function F (x, y) is said to be quasiconvex-quasiconcave if it is quasiconvex in

x for a fixed y and quasiconcave in y for a fixed x. We say that (x∗, y∗) is a saddle

point of F over X × Y if (x∗, y∗) ∈ X × Y and

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗) for all (x, y) ∈ X × Y,
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or equivalently,

min
x∈X

max
y∈Y

F (x, y) = F (x∗, y∗) = max
y∈Y

min
x∈X

F (x, y).

2.6.1 Method Proposal and Basic Properties

We restrict ourselves to finding a saddle point of F over X×Y , where F : Rm×n → R

is a quasiconvex-quasiconcave function, and X ⊆ Rm and Y ⊆ Rn are nonempty,

bounded, closed, and convex sets. We assume that there exists a saddle point of

F over X × Y . Then the considered saddle point problem can be expressed by the

following minimax optimization problem

min
x∈X

max
y∈Y

F (x, y). (2.24)

Notations ε, rk, vk, αk, R, and S are used the same as in Section 2.2. Besides,

F ∗ and X∗ × Y ∗ represent the optimal value and optimal solution set of (2.24),

respectively. As X and Y are bounded, then there exists d > 0 such that ‖x‖ ≤ d for

all x ∈ X and ‖y‖ ≤ d for all y ∈ Y . Recall that the partial ε-quasisubdifferentials

of F for x and y (see Subsection 1.5.2) are respectively defined by

∂̄∗x,εF (x̄, ȳ) := {g ∈ Rm : 〈g, x− x̄〉 ≤ 0, ∀x with F (x, ȳ) < F (x̄, ȳ)− ε}

and

∂̄∗y,εF (x̄, ȳ) := {g ∈ Rn : 〈g, y − ȳ〉 ≥ 0, ∀y with F (x̄, y) > F (x̄, ȳ) + ε}.

Now, we propose the following primal-dual extrapolated inexact quasisubgradient

method (Pd-EiQSG) for (2.24)

x̂k = xk + αk(xk − xk−1), ŷk = yk − αk(yk − yk−1),

xk+1 = PX

(
x̂k − vkF̃x(xk, yk)

)
, yk+1 = PY

(
ŷk + vkF̃y(x

k, yk)
)
,

(2.25)
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where x0 ∈ Rm, x−1 = x0, y0 ∈ Rn, and y−1 = y0 are initial points. Moreover,

F̃x(x
k, yk) = Fx(x

k, yk) + rk and Fx(x
k, yk) ∈ ∂̄∗x,εF (xk, yk) ∩ S,

and

F̃y(x
k, yk) = Fy(x

k, yk)− rk and Fy(x
k, yk) ∈ ∂̄∗y,εF (xk, yk) ∩ S.

As in (2.2), the extrapolation parameter sequence
{
αk
}

in (2.25) is again assumed

to satisfy

0 ≤ αk ≤ 1 and
+∞∑
k=0

αk < +∞.

The boundedness of {rk} is also assumed, then there exists R ≥ 0 such that
∥∥rk∥∥ ≤ R

for all k ∈ N. For
{
vk
}

, we focus on the diminishing and constant stepsizes:

- Diminishing stepsize: vk > 0, lim
k→+∞

vk = 0, and
+∞∑
k=0

vk = +∞;

- Constant stepsize: vk ≡ v(> 0).

We need to point out that the parameters vk, αk, rk, d, and ε can be separately

selected for
{
xk
}

and
{
yk
}

, and the corresponding theoretical results can still be

obtained for this case. We discuss them uniformly for simplicity.

An assumption of the Hölder condition restricted to X × Y is made in analyzing

the convergence of Pd-EiQSG (2.25).

Assumption 2.6.1. Assume that F in (2.24) satisfies the Hölder condition restricted

to X × Y of order p > 0 with modulus L > 0 on Rm×n, i.e.,

|F (x, y)− F (x̄, ȳ)| ≤ L‖(x, y)− (x̄, ȳ)‖p

for all (x̄, ȳ) ∈ X × Y and (x, y) ∈ Rm×n.
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Lemma 2.6.2 is an extension of Lemma 2.2.2. With f in place of h and X∗ in

place of D, Lemma 2.6.2 reduces to Lemma 2.2.2.

Lemma 2.6.2. Let h : Rn → R be a quasiconvex function and D ∈ Rn be a closed

and convex set. Suppose that h satisfies the Hölder condition restricted to D of order

p > 0 with modulus L > 0 on Rn, i.e.,

|h(x)− h(x̄)| ≤ L‖x− x̄‖p for all x̄ ∈ D and x ∈ Rn.

Let x̄ ∈ D, x ∈ Rn, and ζ ≥ 0 satisfy h(x) > h(x̄)+Lζp+ε and let g(x) ∈ ∂̄∗εh(x)∩S.

Then 〈g(x), x− x̄〉 ≥ ζ.

Proof. From the Hölder condition, for any y ∈ B(x̄, ζ) := {y : ‖y − x̄‖ ≤ ζ}, one has

that

h(y)− h(x̄) ≤ L ‖y − x̄‖p ≤ Lζp < h(x)− h(x̄)− ε.

That is, y ∈ lev<h(x)−ε holds for all y ∈ B(x̄, ζ). Then, x̄+ ζg(x) ∈ lev<h(x)−ε can be

obtained by virtue of x̄ + ζg(x) ∈ B(x̄, ζ). As g(x) is a quasisubgradient, we have

that 〈g(x), x̄+ ζg(x)− x〉 ≤ 0, which implies the desired estimate.

Introducing the extrapolation steps, we derive extended basic inequalities for{
xk
}

and
{
yk
}

, respectively.

Lemma 2.6.3. Let {xk} and {yk} be the sequences generated by Pd-EiQSG (2.25).

Then, for any k ∈ N and (x, y) ∈ X × Y , one has that

‖xk+1 − x‖2 ≤‖xk − x‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk
〈
Fx(x

k, yk), xk − x
〉

+ 4Rdvk +
[
(1 +R)vk

]2
,

and

‖yk+1 − y‖2 ≤‖yk − y‖2 + 12d2αk + 4(1 +R)dvkαk

+ 2vk
〈
Fy(x

k, yk), yk − y
〉

+ 4Rdvk +
[
(1 +R)vk

]2
.
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Proof. For the first estimate, by use of the nonexpansive property of the projection

operator and (2.25), we obtain that, for any k ∈ N and x ∈ X,

‖xk+1 − x‖2 ≤‖x̂k − vkF̃x(xk, yk)− x‖2

=‖xk − x‖2 + ‖x̂k − xk‖2 + 2〈xk − x, x̂k − xk〉 − 2vk〈F̃x(xk, yk), x̂k − xk〉

− 2vk〈F̃x(xk, yk), xk − x〉+ (‖F̃x(xk, yk)‖vk)2.

Then, it follows from the Cauchy-Schwarz inequality, boundedness of X and {αk},

and (2.25) that, for any k ∈ N and x ∈ X,

‖xk+1 − x‖2 ≤‖xk − x‖2 + (‖xk − xk−1‖αk)2 + 2‖xk − x‖‖xk − xk−1‖αk

+ 2(1 +R)‖xk − xk−1‖vkαk − 2vk〈Fx(xk, yk), xk − x〉

+ 2R‖xk − x‖vk + (‖F̃x(xk, yk)‖vk)2

≤‖xk − x‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk〈Fx(xk, yk), xk − x〉+ 4Rdvk +
[
(1 +R)vk

]2
,

which completes the proof of the first inequality. The second inequality can be proved

similarly.

2.6.2 Convergence in Objective Values

The convergence result in objective values for the primal-dual method is presented

in the following theorem. Recalling (2.3), we again consider a unified structure of

the diminishing and constant stepsizes.

Theorem 2.6.4. Let {xk} and {yk} be the sequences generated by Pd-EiQSG (2.25)

with the stepsize (2.3) and Assumption 2.6.1 hold. Then

lim sup
k→+∞

F (xk, yk) ≥ F ∗ − L
(v

2
(1 +R)2 + 2Rd

)p
− ε,
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and

lim inf
k→+∞

F (xk, yk) ≤ F ∗ + L
(v

2
(1 +R)2 + 2Rd

)p
+ ε.

Proof. For the first estimate, we assume by contradiction that

lim sup
k→+∞

F (xk, yk) < F ∗ − L
(v

2
(1 +R)2 + 2Rd

)p
− ε.

Then, there exist δ > 0 and k0 ∈ N such that

F (xk, yk) < F ∗ − L
(v

2
(1 +R)2 + 2Rd+ δ

)p
− ε for all k ≥ k0.

By the definition of the saddle point, we have that, for any k ≥ k0 and y∗ ∈ Y ∗,

F (xk, yk) < F (xk, y∗)− L
(v

2
(1 +R)2 + 2Rd+ δ

)p
− ε.

It follows from Lemma 2.6.2 and the quasiconvexity of −F (·, y) that, for any k ≥ k0

and y∗ ∈ Y ∗, 〈
−Fy(xk, yk), yk − y∗

〉
≥ v

2
(1 +R)2 + 2Rd+ δ. (2.26)

As lim
k→+∞

vk = v and lim
k→+∞

αk = 0, there exists k1 ∈ N such that

vk ≤ v +
δ

2(1 +R)2
and αk ≤ δ

4d(1 +R)
for all k ≥ k1. (2.27)

Together with (2.26), (2.27), and Lemma 2.6.3, we have that, for any k ≥ k2 :=

max{k0, k1} and y∗ ∈ Y ∗,

‖yk+1 − y∗‖2 ≤‖yk − y∗‖2 + 12d2αk + 4(1 +R)dvkαk

− 2vk
(v

2
(1 +R)2 + 2Rd+ δ

)
+ 4Rdvk +

[
(1 +R)vk

]2
≤‖yk − y∗‖2 + 12d2αk − δ

2
vk,
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where, in the right-hand side of the first inequality, the second αk and one vk in[
(1 +R)vk

]2
were respectively replaced by estimates in (2.27). For n > k2, summing

the left-hand side and right-hand side of the above inequality over k = k2, · · · , n, we

obtain that

‖yn+1 − y∗‖2 ≤ ‖yk2 − y∗‖2 + 12d2

n∑
k=k2

αk − δ

2

n∑
k=k2

vk,

in contradiction when n → +∞ to the facts that
+∞∑
k=0

αk < +∞ and
+∞∑
k=0

vk = +∞.

Thus, the proof of the first inequality is completed. The proof of the second inequality

can be completed similarly.

When v = 0, the following estimates are the convergence result in objective values

for the diminishing stepsize

lim inf
k→+∞

F (xk, yk)− L(2Rd)p − ε ≤ F ∗ ≤ lim sup
k→+∞

F (xk, yk) + L(2Rd)p + ε.

When vk ≡ v > 0, the estimates in Theorem 2.6.4 are the convergence result in

objective values for the constant stepsize.

2.6.3 Iteration Complexity

Now, we explore the computational complexity. For this purpose, we respectively

record the minimum and maximum objective values at the Kth iteration as

Fmin(xK , yK) := min
1≤k≤K

F (xk, yk)

and

Fmax(x
K , yK) := max

1≤k≤K
F (xk, yk).

We discuss the two stepsizes together again and focus on the special structure

(2.4), as in Theorem 2.4.1.
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Theorem 2.6.5. Let δ > 0 and 0 < η < 2
3
. Let {xk} and {yk} be the sequences

generated by Pd-EiQSG (2.25) with the stepsize (2.4) and extrapolation rule αk =

o (vk) and Assumption 2.6.1 hold. Then there exists K̄ ∈ N such that

F ∗ − Fmax(xK , yK) ≤ L
(v

2
(1 +R)2 + 2Rd+ δ

)p
+ ε,

and

Fmin(xK , yK)− F ∗ ≤ L
(v

2
(1 +R)2 + 2Rd+ δ

)p
+ ε,

where K is the minimum integer such that

(2− 3η)δ

(
(K − K̄ + 1)v +

c[(K + 1)1−s − K̄1−s]

1− s

)
> max

{
dist2

(
xK̄ , X∗

)
, dist2

(
yK̄ , Y ∗

)}
.

Proof. For the first estimate, we assume by contradiction that, for any 1 ≤ k ≤ K,

F ∗ − F (xk, yk) > L
(v

2
(1 +R)2 + 2Rd+ δ

)p
+ ε.

By the definition of the saddle point, we have that, for any 1 ≤ k ≤ K and y∗ ∈ Y ∗,

F (xk, y∗)− F (xk, yk) > L
(v

2
(1 +R)2 + 2Rd+ δ

)p
+ ε.

It follows from Lemma 2.6.2 and the quasiconvexity of −F (·, y) that, for any 1 ≤

k ≤ K and y∗ ∈ Y ∗,

〈
−Fy(xk, yk), yk − y∗

〉
≥ v

2
(1 +R)2 + 2Rd+ δ. (2.28)

Given δ > 0 and 0 < η < 2
3
, it is easy to see that there exists K̄ ∈ N such that

vk ≤ v +
ηδ

(1 +R)2
for all k ≥ K̄, (2.29)
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and

αk ≤ min

{
ηδvk

12d2
,

ηδ

4(1 +R)d

}
for all k ≥ K̄. (2.30)

Together with (2.28), (2.29), and Lemma 2.6.3, we have that, for any K̄ ≤ k ≤ K

and y∗ ∈ Y ∗,

‖yk+1 − y∗‖2 ≤‖yk − y∗‖2 + 12d2αk + 4(1 +R)dvkαk

+ 2vk
〈
Fy(x

k, yk), yk − y
〉

+ 4Rdvk +
[
(1 +R)vk

]2
≤‖yk − y∗‖2 + 12d2αk + 4(1 +R)dvkαk − 2vk

(v
2

(1 +R)2 + 2Rd+ δ
)

+ 4Rdvk + (1 +R)2vk
(
v +

ηδ

(1 +R)2

)
=‖yk − y∗‖2 + 12d2αk + 4(1 +R)dvkαk − 2δvk + ηδvk.

Now by (2.30), for any K̄ ≤ k ≤ K and y∗ ∈ Y ∗, it holds that

‖yk+1 − y∗‖2 ≤‖yk − y∗‖2 − (2− 3η)δvk = ‖yk − y∗‖2 − (2− 3η)δ
(
v + ck−s

)
.

Summing the above inequality over k = K̄, · · · , K, we obtain that

(2− 3η)δ
K∑

k=K̄

(
v + ck−s

)
≤ ‖yK̄ − y∗‖2 − ‖yK+1 − y∗‖2 ≤ ‖yK̄ − y∗‖2. (2.31)

Since k−s decreases as k increases, we see that

K∑
k=K̄

k−s ≥
∫ K+1

K̄

t−sdt =
(K + 1)1−s − K̄1−s

1− s
.

Let y∗ = PY ∗(y
K̄). Then, it follows from (2.31) that

(2− 3η)δ

(
(K − K̄ + 1)v +

c[(K + 1)1−s − K̄1−s]

1− s

)
≤ dist2(yK̄ , Y ∗),

in contradiction to the definition of K. Thus, the proof of the first inequality is

completed. The proof of the second inequality can be completed similarly.

53



When v = 0 and c > 0, the following estimates provide the tolerance level for the

diminishing stepsize vk = ck−s

F ∗ − Fmax(xK , yK) ≤ L (2Rd+ δ)p + ε

and

Fmin(xK , yK)− F ∗ ≤ L (2Rd+ δ)p + ε.

Moreover, if αk = k−t (for each t > 1), from (2.29) and (2.30), the specific forms of

K̄ and K are respectively given as

K̄ := max

{⌈(
12d2

ηcδ

) 1
t−s
⌉
,

⌈(
4(1 +R)d

ηδ

) 1
t

⌉
,

⌈(
c(1 +R)2

ηδ

) 1
s

⌉}

and

K :=


(
K̄1−s +

(1− s) max
{

dist2(xK̄ , X∗), dist2(yK̄ , Y ∗)
}

(2− 3η)cδ

) 1
1−s
 .

When v > 0 and c = 0, the estimates in Theorem 2.6.5 provide the tolerance level

for the constant stepsize vk ≡ v. Moreover, if αk = k−t (for each t > 1), from (2.29)

and (2.30), the specific forms of K̄ and K are respectively given as

K̄ : = max

{⌈(
12d2

ηvδ

) 1
t

⌉
,

⌈(
4(1 +R)d

ηδ

) 1
t

⌉}

and

K : =

⌈
K̄ +

max
{

dist2(xK̄ , X∗), dist2(yK̄ , Y ∗)
}

(2− 3η)vδ

⌉
.

2.6.4 An Application

In convex programming, minimizing a convex function over a closed and convex set,

under some mild constraint qualifications, is equivalent to finding the saddle points of
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a convex-concave Lagrangian function. Inspired by this property, we provide a class

of optimization problems, where the strong duality holds for a modified quasiconvex-

quasiconcave Lagrangian function, as an application of Pd-EiQSG (2.25).

We consider the following problem

min
x

f(x)

s.t. hi(x) ≤ 0, i = 1, · · · , l

x ∈ X,

(2.32)

where f, hi (i = 1, · · · , l) : Rn → R, and X ⊆ Rn is a closed and convex set.

Without the convexity of (2.32), the strong duality is not guaranteed for the

classical Lagrangian function. Thus, we focus on a modified Lagrangian function of

(2.32) instead, i.e.,

L+(x, µ) := f(x) +
l∑

i=1

µi (hi(x))+ with (x, µ) ∈ X × Rl
+,

where (hi(x))+ := max {hi(x), 0} (i = 1, · · · , l), µ := (µ1, · · · , µl) is the multiplier,

and Rl
+ denotes the set of l-dimensional nonnegative real vectors.

The zero duality gap (or strong duality) for L+(x, µ) has been demonstrated in

Rubinov et al. (2002) (see Proposition 2.6.6).

Proposition 2.6.6. Let (x∗, µ∗) be a saddle point of L+ over X × Rl
+. Then x∗ is

an optimal solution of (2.32).

It is clear that L+(x, µ) is linear in µ for a fixed x. Then, if L+(x, µ) is quasiconvex

in x for a fixed µ, Pd-EiQSG (2.25) can be adopted on L+(x, µ), thus solves (2.32).

For example, when f has some fractional form, the modified Lagrangian function

can be formulated as a quasiconvex-quasiconcave function.
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Suppose that hi(x) in (2.32) is a convex function, and f(x) in (2.32) a quasiconvex

function given by f(x) := c(x)
d(x)

, where c(x) is a convex function, and d(x) is a concave

function. We also assume that c(x) ≥ 0 and d(x) > 0 for all x ∈ X. As hi(x) ≤ 0 is

identical to hi(x)
d(x)
≤ 0 for all x ∈ X, the modified Lagrangian function of an equivalent

formulation of (2.32) is written as

L̃+(x, µ) :=
c(x)

d(x)
+

l∑
i=1

µi
(hi(x))+

d(x)
with (x, µ) ∈ X × Rp

+.

It follows from Stancu-Minasian (2012, Section 2.5) that L̃+(x, ·) is quasiconvex.

Since the convexity or quasiconvexity is not necessary for Proposition 2.6.6, the zero

duality gap property is still satisfied for L̃+(x, µ). Therefore, a global solution of

(2.32) can be obtained by applying Pd-EiQSG (2.25) to L̃+(x, µ).

2.7 Numerical Experiments

This section specifies EiQSG (2.2) to the Cobb-Douglas production efficiency model

and portfolio selection model. The testing of the Cobb-Douglas model is conducted

with data randomly generated, while the experiment of the portfolio model is car-

ried out with data from the real-world market. As we focus on the effect of the

extrapolation parameter αk, we let ε = R = 0 in the testing. All the experiments are

completed in MATLAB R2021a and macOS 11.6 on a 64-bit PC with an i5-5250U

CPU and 4GB RAM.

2.7.1 Cobb-Douglas Efficiency Production Model

Given n production factors, the Cobb-Douglas production efficiency model (see

Bradley & Frey Jr (1974)), maximizing profit over cost, is written as
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max
x

s0

∏n
j=1 x

sj
j

n∑
j=1

tjxj + t0

s.t.
n∑
j=1

aijxj ≥ bi, i = 1, · · · ,m

x ≥ 0,

where x := (x1, · · · , xn) is a vector of quantities for production factors, and sj > 0

with
n∑
i=1

sj = 1 and tj > 0 (j = 0, 1, · · · , n) are profit and cost coefficients for the

production factor j, respectively. The constraints include the budget balance and

other general conditions in the production problem. This model has been used as a

quasiconvex optimization test problem in Hu et al. (2015).

Following Hu et al. (2015), we select the coefficients from data randomly generated

under the normal distribution within the following intervals

s0, t0, tj ∈ [0, 10], sj, aij ∈ [0, 1], and bi ∈ [0,
n

2
].

The initial point is taken as a vector of 10’s.

Let the extrapolation rule be set as

αk =
β

1 + 0.1k2
.

Table 2.2: Computational time for Cobb-Douglas model

Setting m = 100, n = 100 m = 100, n = 200 m = 200, n = 100 m = 200, n = 200

Stepsize Dimi. Cons. Dyna. Dimi. Cons. Dyna. Dimi. Cons. Dyna. Dimi. Cons. Dyna.

β = 0 26s 30s 28s 40s 44s 41s 58s 68s 63s 105s 93s 96s

β = 1 27s 27s 28s 41s 44s 43s 62s 72s 62s 103s 97s 96s

β = 2 31s 27s 27s 41s 42s 45s 63s 66s 67s 102s 97s 103s

β = 3 32s 27s 27s 46s 43s 43s 66s 68s 66s 108s 101s 104s
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The diminishing, constant, and dynamic stepsizes are respectively chosen as

vk =
2

1 + 0.1k
, vk ≡ 0.5, and vk =

f(xk)− f ∗

0.01
.

For the dynamic stepsize, the (approximate) optimal value is estimated by the best

results of the diminishing and constant stepsizes; specifically, f ∗ ≈ 0.036, 0.015,

0.029, and 0.014 for the respective problem sizes. Since the projection is adopted,

the resulting solutions are feasible, thus the obtained approximate optimal value is

larger than the true optimal value. We consider that p = 1 and L = 0.01, where the
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Figure 2.1: Convergence behavior (diminishing stepsize)
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theoretical requirement (Assumption 2.6.1) is ignored. In fact, the convergence rate

with p and L satisfying the theoretical requirement is very slow. Thus, to speed up

the method, we neglect the assumption.

We test β = 0, 1, 2, and 3 for all the stepsizes on different data sets, where

(m,n) = (100, 100), (100, 200), (200, 100), and (200, 200). The case β = 0 corre-

sponds to the original method without extrapolation. The method terminates after

800 iterations.

The computational time for the different stepsizes and extrapolation parameters
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Figure 2.2: Convergence behavior (constant stepsize)
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Figure 2.3: Convergence behavior (dynamic stepsize)

under the four problem sizes is presented in Table 2.2. As we can see, the choice of

the extrapolation rule has no influence on the running time for all the cases.

The objective values against the number of iterations for different extrapolation

rules are plotted in Figures 2.1-2.3. Figures 2.1-2.3 indicate that the extrapolation

strategy accelerates the convergence of the method. In general, the method with

β = 3 outperforms the others in terms of the number of iterations needed for reach-

ing an approximate optimal solution. However, it is not necessary that the larger

extrapolation parameter, the better performance is. For example, in Figure 2.1(c),
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the selection of β = 2 produces a superior result. This phenomenon is also observed

in Pock & Sabach (2016).

2.7.2 Portfolio Selection Model

In the second experiment, we consider a portfolio selection model, which combines

the classical Sharpe ratio maximization model and a generalized Sharpe ratio maxi-

mization model, and the minimum variance model.

Given n stocks with the risk-free rate rf ∈ R, expected rate of return vector

r := (r1, · · · , rn), and covariance matrix Σ ⊆ Rn×n, the classical Sharpe ratio (see

Sharpe (1966)) of the portfolio w := (w1, · · · , wn) is defined by

rTw − rf√
wTΣw

.

The numerator rTw−rf represents the expected excess return, and the denominator
√
wTΣw represents the risk. On the other hand, Cai et al. (2000) proposed an l∞

function as an alternative risk measure with the structure max
i=1,··· ,n

E(|Riwi − riwi|),

where R := (R1, · · · , Rn) is the rate of return vector of stocks, and E(·) denotes the

mathematical expectation. Let qi := E(|Ri − ri|), i = 1 · · · , n. Then a generalized

Sharpe ratio based on the l∞ risk function is given by

rTw − rf
max
i=1,··· ,n

qiwi
.

The Sharpe ratio maximization model is to find a portfolio by maximizing the se-

lected Sharpe ratio subject to some general constraints. Apart from it, the minimum

variance model (see Luenberger (2013)), which uses the variance wTΣw to measure

the risk and seeks the minimum risk, is also a popular portfolio selection model.

On the basis of the models mentioned above, we consider the following minimax
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portfolio selection model

min
w

max

{
µ1

√
wTΣw

rTw − rf
, µ2

max
i=1,··· ,n

qiwi

rTw − rf
, wTΣw

}

s.t. 1Tw = 1, w ≥ 0, rTw − rf ≥ 0,

where 1 is the vector of ones and µ1 > 0 and µ2 > 0 are the normalization parameters

so chosen such that the three terms are almost equal at an approximate solution. The

first constraint 1Tw = 1 represents that the budget is fully invested, the second one

w ≥ 0 means that short selling is not allowed in the investment, and rTw−rf ≥ 0 is an

additional constraint to guarantee the nonnegativity of the excess return (a necessary

assumption for the Sharpe ratio, see Bacon (2008)). From Stancu-Minasian (2012,

Section 2.5), this model is a nonsmooth quasiconvex optimization problem.

We carry out the experiment with rf = 0.01 and the weekly historical data of 100

stocks from the Hang Seng stock market from 4 January 2010 to 31 December 2019.

Besides, we select µ1 = 0.08 and µ2 = 0.01. The initial point is taken as (1, 0, · · · , 0).

As the results of all the stepsizes are similar, we only present the result of constant

stepsize as the representative. Let the extrapolation rule and constant stepsize be

respectively set as

αk =
β

k2
and vk ≡ 0.01.

The subgradient of the nonsmooth term is calculated as a convex combination of

the gradients of three functions in the ‘max’ term with the corresponding convex

combination parameters λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 satisfying λ1 + λ2 + λ3 = 1.

We test β = 0, 5, 15, and 25 with (λ1, λ2, λ3) = (0.35, 0.35, 0.3), (0.25, 0.25, 0.5),

and (0.15, 0.15, 0.7). The case β = 0 corresponds to the original method without

extrapolation. The method terminates after 600 iterations.
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Figure 2.4: Convergence behavior (constant stepsize)
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The objective values against the number of iterations for different extrapolation

and combination parameters are plotted in Figure 2.4. Similar patterns of conver-

gence in objective values are observed for different combinations of (λ1, λ2, λ3). From

Figure 2.4, the method with β = 15 performs best and achieves a good approximate

optimal value within about 200 iterations, while the one with β = 0 or 5 needs over

500 iterations. We conclude that the objective value changes significantly for differ-

ent extrapolation rules, but the choice of the weighted gradients among the functions

in the ‘max’ term has a minor effect on the change for the objective value.
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Chapter 3

Penalty Proximal ADMM Method

with Extrapolation

3.1 Introduction

In this chapter, we consider the generalized bilinear programming (GBLP) problem

proposed by Al-Khayyal (1992). Let cj ∈ Rm, dj ∈ Rn, Mj ∈ Rm×n (j = 0, 1, · · · , p),

ei ∈ R (i = 1, · · · , p), A ∈ Rl1×m, B ∈ Rl2×n, u ∈ Rl1 , and v ∈ Rl2 . The GBLP

problem is formulated as follows:

min
x,y

cT
0 x+ xTM0y + dT

0 y

s.t. cT
i x+ xTMiy + dT

i y + ei = 0, i = 1, · · · , p

Ax ≤ u, By ≤ v,

(3.1)

where x ∈ Rm, and y ∈ Rn are variables.

For solving (3.1), we provide an algorithm based on an ADMM scheme with

extrapolation and a penalty relaxation. More precisely, we first compose an extrap-

olated proximal ADMM method as an inner algorithm to solve a quadratic penalty

problem and then apply an update of the associated penalty parameter as an outer

algorithm. The same inner-and-outer framework is also found in Lu (2014a) for an

iterative hard thresholding method. The inner algorithm is constructed with extrap-
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olation. To the best of our knowledge, the extrapolation strategy has been little

adopted on ADMM-type methods except for Chen et al. (2015), where extrapolated

ADMM algorithms are proposed for a class of linearly constrained convex problems.

As the extrapolation step is included, a potential function instead of the augmented

Lagrangian function is used to explore the convergence properties of the inner algo-

rithm. By assuming that the related parameters satisfy a system of inequalities, we

derive a descent property of the potential function, a dominant tool in our analysis,

as it is the case for all nonconvex ADMM-type methods.

We establish the subsequential convergence, iteration complexity, and global con-

vergence for the inner extrapolated ADMM method. The subsequential convergence,

which means that any limit point of the iterate sequence is a stationary point, is ob-

tained by virtue of the basic descent property. The iteration complexity is shown

to be O(1/k), which is the same as some nonextrapolated convex and nonconvex

ADMM methods in He & Yuan (2012, 2015), and Hong et al. (2016) and better than

O(1/
√
k) for extrapolated convex ADMM methods in Chen et al. (2015). Moreover,

the global convergence is studied with the Kurdyka- Lojasiewicz property of the po-

tential function. For the outer algorithm, the convergence is established under the

condition that the associated penalty parameter goes to infinite and the inner method

tends to be exactly convergent. Finally, numerical experiments are carried out. In

numerical testing, the extrapolation step accelerates the rate of convergence to an

approximate solution. When comparing the proposed algorithm with a semidefinite

relaxation method for a structured QCQP problem, we observe the superiorities of

our method in respect of the running time, especially when the size of the problem

becomes large. However, the objective values of the two methods are close.

The rest of the chapter is organized as follows. In Section 3.2, we propose in-

ner and outer algorithms and then introduce necessary definitions and preliminaries

for the convergence analysis. After that, the attainment of a minimum of (3.1) is
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discussed by virtue of the asymptotic cone and asymptotic function in Section 3.3.

In Sections 3.4 and 3.5, we present the convergence results of the inner and outer

algorithms, respectively. Finally, the numerical testing is provided in Section 3.6.

3.2 Inner and Outer Algorithms

In this section, we compose inner and outer algorithms for a reformulation of (3.1).

We also provide definitions of the stationary point and recall the Kurdyka- Lojasiewicz

theory, which is essential to establish the global convergence of the inner algorithm.

3.2.1 Inner and Outer Algorithms

Invoking an auxiliary variable z := (z1, · · · , zp), we rewrite (3.1) as

min
x,y,z

q0(x, y) + δX(x) + δY (y)

s.t. qi(x, y, zi) = 0, i ∈ I

zi = xTMiy, i ∈ I,

(3.2)

where q0(x, y) := cT
0 x + xTM0y + dT

0 y, qi(x, y, zi) := zi + cT
i x + dT

i y + ei (i ∈ I),

X := {x : Ax ≤ u}, Y := {y : By ≤ v}, and I := {1, · · · , p}.

To solve (3.2), we first apply an ADMM method with extrapolation as an inner

algorithm to its quadratic penalty relaxation and then adopt an update of the penalty

parameter as an outer algorithm to reach a stationary point of (3.2).

Inner Algorithm

Initially, we focus on the following quadratic penalty problem of (3.2) with the

penalty parameter τ > 0 fixed

min
x,y,z

Ψτ (x, y, z) := q0(x, y) +
τ

2

∑
i∈I

qi(x, y, zi)
2 + δX(x) + δY (y)

s.t. zi = xTMiy, i ∈ I.

(3.3)
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Let µ := (µ1, · · · , µp) be a Lagrangian multiplier. Then the Lagrangian function

Lτ and augmented Lagrangian function Lτ,ρ of (3.3) are respectively given by

Lτ (x, y, z, µ) := Ψτ (x, y, z) +
∑
i∈I

µi(zi − xTMiy)

and

Lτ,ρ(x, y, z, µ) := Lτ (x, y, z, µ) +
ρ

2

∑
i∈I

(zi − xTMiy)2,

where ρ > 0 is the (augmented) penalty parameter of Lρ. For simplicity, the smooth

parts in Lτ and Lτ,ρ are respectively denoted by

Lτ (x, y, z, µ) := q0(x, y) +
τ

2

∑
i∈I

qi(x, y, zi)
2 +

∑
i∈I

µi(zi − xTMiy)

and

Lτ,ρ(x, y, z, µ) := Lτ (x, y, z, µ) +
ρ

2

∑
i∈I

(zi − xTMiy)2.

Now, we propose an extrapolated proximal ADMM method for (3.3). The up-

dating rules of the variables are given as follows:

x̂k = xk + αx(x
k − xk−1), ŷk = yk + αy(y

k − yk−1), (3.4a)

ẑk = zk + αz(z
k − zk−1), µ̂k = µk + αµ(µk − µk−1), (3.4b)

xk+1 = arg min
x∈X

{
Lτ,ρ(x, y

k, ẑk, µ̂k) +
β

2
‖x− x̂k‖2

}
, (3.4c)

yk+1 = arg min
y∈Y

{
Lτ,ρ(x

k+1, y, ẑk, µ̂k) +
β

2
‖y − ŷk‖2

}
, (3.4d)

zk+1 = arg min
z

{
Lτ,ρ(x

k+1, yk+1, z, µ̂k)
}
, (3.4e)

µk+1
i = µ̂ki + ρ

[
zk+1
i − (xk+1)TMiy

k+1
]
, i ∈ I, (3.4f)

where α := (αx, αy, αz, αµ) ≥ 0 are the extrapolation parameters, and β ≥ 0 is the

parameter of the proximal terms.
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The use of extrapolation in (3.4c) is not standard; in particular, yk is considered

rather than ŷk. In (3.4c) and (3.4d), a proximal term is added to guarantee the

strong convexity of the objective function, which is significant to obtain a descent

property (see Lemma 3.4.3(1)). Moreover, by virtue of the optimality condition,

(3.4e) produces an analytic solution (see (3.9c))

zk+1
i =

ρ(xk+1)TMiy
k+1 − τ(cT

i x
k+1 + dT

i y
k+1 + ei)− µ̂ki

τ + ρ
, i ∈ I.

On the basis of (3.4a)-(3.4f), we establish Algorithm 1 for (3.3).

Algorithm 1 Extrapolated proximal ADMM for solving (3.3) with τ fixed

Let τ , ρ, β, (αx, αy, αz, αµ), and (x0, y0, z0, µ0) be given.

Initialization (x−1, y−1, z−1, µ−1) = (x0, y0, z0, µ0).

While k = 0, 1, 2, · · · , do

- x̂k = xk + αx(x
k − xk−1), ŷk = yk + αy(y

k − yk−1), ẑk = zk + αz(z
k − zk−1), and

µ̂k = µk + αµ(µk − µk−1).

- xk+1 = arg min
x∈X

{Lτ,ρ(x, yk, ẑk, µ̂k) + β
2
‖x− x̂k‖2}.

- yk+1 = arg min
y∈Y

{Lτ,ρ(xk+1, y, ẑk, µ̂k) + β
2
‖y − ŷk‖2}.

- zk+1
i =

ρ(xk+1)TMiy
k+1−τ(cTi x

k+1+dT
i y

k+1+ei)−µ̂ki
τ+ρ

, i ∈ I.

- µk+1
i = µ̂k + ρ[zk+1

i − (xk+1)TMiy
k+1], i ∈ I.

Output (xk+1, yk+1, zk+1, µk+1).

End while

Outer Algorithm

Then, by specifying Algorithm 1 to (3.3) with τ updated, we construct outer itera-

tions (Algorithm 2) for the original problem (3.2).
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Algorithm 2 Penalty Algorithm 1 for solving (3.2)

Let the sequences {τ r}, {ρr}, and {βr}, and quartet (αx, αy, αz, αµ) be given.

Initialization (x̌0, y̌0, ž0, µ̌0).

While r = 0, 1, 2, · · · , do

- Let τ ← τ r, ρ← ρr, β ← βr, and (x0, y0, z0, µ0) = (x̌r, y̌r, žr, µ̌r).

- Adopt Algorithm 1 on (3.3), and write the resulting solution as (x̃r, ỹr, z̃r, µ̃r).

- Choose (x̌r+1, y̌r+1, žr+1, µ̌r+1).

Output (x̃r+1, ỹr+1, z̃r+1, µ̃r+1).

End while

Notations

Let γ1 := max
{∑
i∈I
‖ci‖2,

∑
i∈I
‖di‖2

}
and Lkτ,ρ := Lτ,ρ(x

k, yk, zk, µk). Our analysis

greatly relies on a potential function Υτ,ρ,α,β and a potential sequence
{

Υk
τ,ρ,α,β

}
,

which are respectively written as

Υτ,ρ,α,β(x, y, z, w, µ) :=Lτ,ρ(x, y, z, µ) + ξx(τ, ρ, α, β) ‖wx‖2

+ ξy(τ, ρ, α, β) ‖wy‖2 + ξz(τ, ρ, α) ‖wz‖2

and

Υk
τ,ρ,α,β :=Lτ,ρ(xk, yk, zk, µk) + ξx(τ, ρ, α, β)

∥∥xk − xk−1
∥∥2

+ ξy(τ, ρ, α, β)
∥∥yk − yk−1

∥∥2
+ ξz(τ, ρ, α)

∥∥zk − zk−1
∥∥2
,

where wx ∈ Rm, wy ∈ Rn, wz ∈ Rp, w := (wx, wy, wz), and

ξx(τ, ρ, α, β) := βα2
x + 3τ 2γ1

(
3

2
+

1

2ρ

)
α2
µ

ξy(τ, ρ, α, β) := βα2
y + 3τ 2γ1

(
3

2
+

1

2ρ

)
α2
µ

ξz(τ, ρ, α) := (τ + ρ)α2
z + 3τ 2

(
3

2
+

1

2ρ

)
α2
µ.
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3.2.2 Definitions and Preliminaries

We now introduce the stationary point of (3.2) and (3.3) and review the Kurdyka-

 Lojasiewicz theory for further analysis.

Stationary Point

Definition 3.2.1. We say that (x?, y?, z?, µ?, ν?) is a stationary point of (3.2) if the

following holds

−
(
c0 +M0y

? −
∑
i∈I

µ?iMiy
? +

∑
i∈I

ν?i ci

)
∈ NX(x?) (3.5a)

−
(
d0 +MT

0 x
? −

∑
i∈I

µ?iM
T
i x

? +
∑
i∈I

ν?i di

)
∈ NY (y?) (3.5b)

µ? + ν? = 0 (3.5c)

z?i = (x?)TMiy
?, i ∈ I (3.5d)

z?i + cT
i x

? + dT
i y

? + ei = 0, i ∈ I. (3.5e)

Definition 3.2.2. We say that (x∗, y∗, z∗, µ∗) is a stationary point of (3.3) if the

following holds

−∇xLτ (x
∗, y∗, z∗, µ∗) ∈ NX(x∗) (3.6a)

−∇yLτ (x
∗, y∗, z∗, µ∗) ∈ NY (y∗) (3.6b)

τ(z∗i + cT
i x
∗ + dT

i y
∗ + ei) + µ∗i = 0, i ∈ I (3.6c)

z∗i = (x∗)TMiy
∗, i ∈ I. (3.6d)

In both definitions, the primal-dual limiting stationary point (i.e., the limiting

stationary point of the Lagrangian problem) is considered rather than the primal one.

For example, the system (3.6a)-(3.6d) interprets the condition 0 ∈ ∂LLτ (x∗, y∗, z∗, µ∗)

(see Proposition 1.5.4). For (3.2) and (3.3), the limiting subdifferential is identical

to the Fréchet subdifferential due to the convexity of δX(x) and δY (y).
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Kurdyka- Lojasiewicz (K L) Theorey

The Kurdyka- Lojasiewicz (K L) theory (see Attouch et al. (2010) and Bolte et al.

(2014)) plays an important role in analyzing the global convergence of Algorithm 1.

For η ∈ (0,+∞], let Φη be the class of continuous and concave functions φ :

[0, η)→ [0,+∞) satisfying (i) φ(0) = 0; (ii) φ is continuously differentiable on (0, η)

and continuous at 0; (iii) φ′(x) > 0 for all x ∈ (0, η). The K L property and K L

function are defined as follows.

Definition 3.2.3. Let f : Rn → R ∪ {+∞} be a proper and lower semi-continuous

function and x̄ ∈ dom∂Lf := {x ∈ Rn : ∂Lf(x) 6= ∅}. If there exist η ∈ (0,+∞], a

neighborhood U of x̄, and a function φ ∈ Φη such that

φ′(f(x)− f(x̄))dist(0, ∂Lf(x)) ≥ 1

for all x ∈ U ∩ {x ∈ Rn : f(x̄) < f(x) < f(x̄) + η}, then f is said to satisfy the

Kurdyka- Lojasiewicz (K L) property at x̄. Furthermore, we say that f is a K L func-

tion if f satisfies the K L property at every point in dom∂Lf .

For more general use of K L functions, Bolte et al. (2014, Lemma 6) provided the

following uniformized K L property.

Proposition 3.2.4. Let Ξ ⊆ Rn be a compact set and f : Rn → R ∪ {+∞} be a

proper and lower semi-continuous function. Suppose that f is constant on Ξ and

satisfies the K L property at every point in Ξ. Then there exist ε > 0, η > 0, and a

function φ ∈ Φη such that

φ′(f(x)− f(x̄))dist(0, ∂Lf(x)) ≥ 1

for all x̄ ∈ Ξ and x ∈ {x ∈ Rn : dist(x,Ξ) < ε}∩{x ∈ Rn : f(x̄) < f(x) < f(x̄) +η}.

K L functions emerge in various applications and involve many classes of functions,

among which the semi-algebraic function is a common instance (see Attouch et al.

(2010, Section 4.3)).
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Definition 3.2.5. Let S ⊆ Rn and f : Rn → R ∪ {+∞}. We say that S is a

semi-algebraic set if it can be written as a finite union of sets with the structure

{x ∈ Rn : gi(x) = 0, hi(x) < 0, i = 1, · · · , r} ,

where gi(x), hi(x) (i = 1, · · · , r) : Rn → R ∪ {+∞} are polynomial functions, and r

is a positive finite integer. Furthermore, we say that f is a semi-algebraic function

if its graph, i.e., {(x, t) ∈ Rn+1 : f(x) = t}, is a semi-algebraic subset of Rn+1.

Proposition 3.2.6. Let S ⊆ Rn be a semi-algebraic set and g, h : Rn → R ∪ {+∞}

be semi-algebraic functions. Then g+h, g ·h, and δS are all semi-algebraic functions.

Proposition 3.2.7. Let f : Rn → R∪{+∞} be a proper and lower semi-continuous

function. If f is a semi-algebraic function, then it is also a K L function.

3.3 Existence of a Minimum of GBLP

Before investigating the convergence properties of Algorithms 1 and 2, we discuss

the attainment of a minimum of (3.1) first. In doing so, we need to make use of the

asymptotic cone and asymptotic function (for systematical learning, see Auslender

& Teboulle (2006, Section 2)).

3.3.1 Asymptotic Cone and Asymptotic Function

Here, we introduce the concept of asymptotic cone and asymptotic function.

Definition 3.3.1. For any nonempty set S ⊆ Rn, let

S∞ :=

{
d ∈ Rn : ∃ tk → +∞ and

xk
tk
→ d with xk ∈ S as k → +∞

}
.

We say that S∞ is the asymptotic cone of S.
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Definition 3.3.2. For any proper function f : Rn → R ∪ {+∞}, there exists a

unique function f∞ : Rn → R ∪ {+∞}∪ {−∞} such that epif∞ = (epif)∞. We say

that f∞ is the asymptotic function of f .

Critical propositions, which contribute to analyzing the existence of a minimum,

are stated as follows.

Proposition 3.3.3. Let S ⊆ Rn. Then S is bounded if and only if S∞ = {0}.

Proposition 3.3.4. Let Si ⊆ Rn, i ∈ I, where I is an arbitrary index set. Then

(∩i∈ISi)∞ ⊆ ∩i∈I(Si)∞.

Proposition 3.3.5. Let f : Rn → R∪{+∞} be a proper function and α ∈ R satisfy

lev≤αf 6= ∅. Then (lev≤αf)∞ ⊆ lev≤0f∞, i.e.,

{x ∈ Rn : f(x) ≤ α}∞ ⊆ {d ∈ Rn : f∞(d) ≤ 0} .

Noting that a bilinear function can be reformulated as a quadratic function, we

present the explicit asymptotic function of a quadratic function for further analysis.

An example for the asymptotic cone of a polyhedral convex set is also introduced,

as such a set covers the inequality constraints in (3.1).

Example 3.3.6. Let f(x) := 1
2
xTQx+rTx+s, where Q ∈ Rn×n, r ∈ Rn, and s ∈ R.

(1). If Q is positive semidefinite, then

f∞(d) =

 rTd, if Qd = 0,

+∞, if Qd 6= 0.

(2). If Q is not positive semidefinite, then

f∞(d) =

+∞, if dTQd > 0,

−∞, if dTQd ≤ 0.
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Example 3.3.7. Let S := {x ∈ Rn : Qx ≤ r}, where Q ∈ Rm×n and r ∈ Rm. Then

S∞ = {d ∈ Rn : Qd ≤ 0}.

3.3.2 Existence of a Minimum

Based on the above propositions and examples, we provide a sufficient condition of

the existence of a minimum of (3.1).

Theorem 3.3.8. Let the feasible set of (3.1) be nonempty and

S :=
{

(x, y) ∈ Rm × Rn : cT
i x+ dT

i y = 0, i ∈ E ; xTMiy = 0, i ∈ N ; Ax ≤ 0; By ≤ 0
}
,

where E := {i ∈ I : Mi = 0}, and N := {i ∈ I : Mi 6= 0}. Then the optimal solution

set of (3.1) is nonempty and compact if one of the following holds.

(1). M0 = 0 and
{

(x, y) ∈ S : cT
0 x+ dT

0 y ≤ 0
}

= {(0, 0)} .

(2). M0 6= 0 and
{

(x, y) ∈ S : xTM0y ≤ 0
}

= {(0, 0)} .

Proof. For convenience, we write

q̄0(x, y) := xTM0y + cT
0 x+ dT

0 y;

q̄i(x, y) := xTMiy + cT
i x+ dT

i y + ei, i ∈ I;

Qi := {(x, y) : q̄i(x, y) = 0} , i ∈ I;

Q := ∩i∈IQi, R := {(x, y) : Ax ≤ u, By ≤ v} ;

h(x, y) := q̄0(x, y) + δQ + δR(x, y).

In fact, the proof can be completed by a well-known result: if a proper and lower semi-

continues function f(x) is level bounded, then the optimal solution set of min
x
f(x)

is nonempty and compact (see Rockafellar & Wets (2009, Theorem 1.9)). As the

boundedness of a set can be expressed by its asymptotic cone (see Proposition 3.3.3),

next, we evaluate (lev≤αh)∞ for each α ∈ R satisfying lev≤αh 6= ∅.
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Noting q̄i(x, y) = 1
2
(xT yT)

(
0 Mi

MT
i 0

)(
x

y

)
+(cT

i d
T
i )

(
x

y

)
+ei, we see from Example

3.3.6 that, for any j ∈ {0} ∪ I,

(q̄j)∞(x, y) =


cT
j x+ dT

j y, if Mj = 0,

+∞, if Mj 6= 0, xTMjy > 0,

−∞, if Mj 6= 0, xTMjy ≤ 0.

Then, it follows from Propositions 3.3.4 and 3.3.5 that, for any i ∈ I,

(Qi)∞ ⊆ {(x, y) : (qi)∞(x, y) ≤ 0, (−qi)∞(x, y) ≤ 0}

=


{

(x, y) : cT
i x+ dT

i y = 0
}
, if Mi = 0,{

(x, y) : xTMiy = 0
}
, if Mi 6= 0,

(3.7)

and from Example 3.3.7 that

R∞ = {(x, y) : Ax ≤ 0, By ≤ 0}. (3.8)

Now, we obtain the estimate of (lev≤αh)∞, that is,

(lev≤αh)∞ = (lev≤αq̄0 ∩Q ∩R)∞

⊆ (lev≤αq̄0)∞ ∩i∈I (Qi)∞ ∩R∞

⊆ {(x, y) ∈ S : (q̄0)∞(x, y) ≤ 0} ,

where the first inclusion comes from Proposition 3.3.4, and the second holds due to

Proposition 3.3.5, (3.7), and (3.8). Under the conditions (1) and (2), one has that

(lev≤αh)∞ ⊆ {(0, 0)}. On the other hand, we have that {(0, 0)} ⊆ (lev≤αh)∞ from

the definition of the asymptotic cone. Then, by virtue of Proposition 3.3.3, h is level

bounded, which completes the proof.
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3.4 Convergence Analysis of Inner Algorithm

This section explores the convergence properties of Algorithm 1 and starts with

listing the first-order optimality conditions of (3.4c)-(3.4e) as follows:〈
∇xLτ,ρ(x

k+1, yk, ẑk, µ̂k) + β(xk+1 − x̂k), x− xk+1
〉
≥ 0 for all x ∈ X, (3.9a)

〈
∇yLτ,ρ(x

k+1, yk+1, ẑk, µ̂k) + β(yk+1 − ŷk), y − yk+1
〉
≥ 0 for all y ∈ Y, (3.9b)

τqi(x
k+1, yk+1, zk+1

i ) + µ̂ki + ρ[zk+1
i − (xk+1)TMiy

k+1] = 0, i ∈ I. (3.9c)

The estimates (3.4f) and (3.9c) yield the following equality, which will be fre-

quently used in the subsequent proofs

µk+1
i = −τqi(xk+1, yk+1, zk+1

i ), i ∈ I. (3.10)

Assumption 3.4.1 is made throughout this section for establishing an important

descent property of the potential function.

Assumption 3.4.1.

(1). Assume that the sequences
{
xk
}

and
{
yk
}

, generated by Algorithm 1, are

bounded. Then, for any k ∈ N, there exists q
0
∈ R such that q0(xk, yk) ≥ q

0

and exists γ2 > 0 such that
∑
i∈I

∥∥(xk)TMi

∥∥2 ≤ γ2 and
∑
i∈I

∥∥Miy
k
∥∥2 ≤ γ2.

(2). Assume that the parameters ρ, β, and (αx, αy, αz, αµ) in Algorithm 1 satisfy

one of the following.

(2a). (αx, αy, αz) 6= 0 and



(
3

4
−max

{
α2
x, α

2
y

})
β

− (1 + ρ)γ2

2
− τ 2γ1

2

[
1

τ
+

9

ρ
+ 3α2

µ

(
3 +

1

ρ

)]
> 0

τ + ρ− 1

2
− 9τ 2

2ρ
− (τ + ρ)α2

z − 3τ 2α2
µ

(
3

2
+

1

2ρ

)
> 0.
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(2b). (αx, αy, αz) = 0, αµ 6= 0, and


β − γ2

2
− 3τ 2γ1

2

[
3

ρ
+ α2

µ

(
3 +

1

ρ

)]
> 0

τ + ρ− 1

2
− 9τ 2

2ρ
− 3τ 2α2

µ

(
3

2
+

1

2ρ

)
> 0.

(2c). (αx, αy, αz, αµ) = 0 and ρ > max
{

3τ2γ1

β
, 2τ

}
.

Parameters satisfying Assumption 3.4.1(2a) or (2b) always exist. Specifically,

when ρ and β are sufficiently large, those inequalities are met.

3.4.1 Basic Properties

Lemmas presented in this subsection indicate some significant properties of the iter-

ates generated by Algorithm 1.

The first lemma states that the successive difference of dual iterates can be

bounded by that of primal ones.

Lemma 3.4.2. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by Al-

gorithm 1. Then, for any k ∈ N, one has that

‖µk+1 − µk‖2 ≤ 3τ 2
(
γ1‖xk+1 − xk‖2 + γ1‖yk+1 − yk‖2 + ‖zk+1 − zk‖2

)
.

Proof. It follows from (3.10) that, for any k ∈ N and i ∈ I,

|µk+1
i − µki | = τ |qi(xk+1, yk+1, zk+1

i )− qi(xk, yk, zki )|.

Then, for any k ∈ N and i ∈ I, it holds that

|µk+1
i − µki |2 ≤ τ 2(‖ci‖‖xk+1 − xk‖+ ‖di‖‖yk+1 − yk‖+ |zk+1

i − zki |)2

≤ 3τ 2(‖ci‖2‖xk+1 − xk‖2 + ‖di‖2‖yk+1 − yk‖2 + |zk+1
i − zki |2),
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where the estimates come from the Cauchy-Schwarz inequality and Young’s inequal-

ity, respectively. Summing the left-hand side and right-hand side of the above in-

equality over i ∈ I, we obtain the desired estimate. Thus, the proof is completed.

With Lemma 3.4.2, we can obtain the descent of
{

Υk
τ,ρ,α,β

}
. This kind of prop-

erty is a critical condition to establish the subsequential convergence and global

convergence for nonconvex ADMM-type algorithms. In what follows, we provide the

convergence of
{

Υk
τ,ρ,α,β

}
by virtue of its descent and lower boundedness properties.

Lemma 3.4.3. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by Al-

gorithm 1 and Assumption 3.4.1 hold. Then

(1).
{

Υk
τ,ρ,α,β

}
is decreasing, and in particular, there exists ξ > 0, for any k ∈ N,

one has that

Υk+1
τ,ρ,α,β −Υk

τ,ρ,α,β ≤− ξ
(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2 + ‖zk+1 − zk‖2

)
;

(2).
{

Υk
τ,ρ,α,β

}
is lower bounded, and in particular, for any k ∈ N, one has that

Υk
τ,ρ,α,β ≥ Lkτ,ρ ≥ q

0
.

Therefore, the potential sequence
{

Υk
τ,ρ,α,β

}
is convergent.

Proof. (1). Our proof begins with bounding the successive difference of {Lkτ,ρ}. To

this end, we split the successive difference into four parts, that is, for any k ∈ N,

Lk+1
τ,ρ − Lkτ,ρ = Ek+1

1 + Ek+1
2 + Ek+1

3 + Ek+1
4 ,

where

Ek+1
1 := Lk+1

τ,ρ − Lτ,ρ(xk+1, yk+1, zk+1, µk),

Ek+1
2 := Lτ,ρ(x

k+1, yk+1, zk+1, µk)− Lτ,ρ(xk+1, yk+1, zk, µk),

Ek+1
3 := Lτ,ρ(x

k+1, yk+1, zk, µk)− Lτ,ρ(xk+1, yk, zk, µk),

Ek+1
4 := Lτ,ρ(x

k+1, yk, zk, µk)− Lkτ,ρ.
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We consider three cases: (αx, αy, αz) 6= 0, (αx, αy, αz) = 0 and αµ 6= 0, and

(αx, αy, αz, αµ) = 0.

Case (i). Let (αx, αy, αz) 6= 0. Now, we estimate the upper bounds of Ek+1
1 –Ek+1

4

one by one. For Ek+1
1 , we have that

Ek+1
1 =

∑
i∈I

(µk+1
i − µki )[zk+1

i − (xk+1)TMiy
k+1]

=
1

ρ

〈
µk+1 − µk, µk+1 − µk

〉
+

1

ρ

〈
µk+1 − µk, µk − µ̂k

〉
≤ 3

2ρ
‖µk+1 − µk‖2 +

1

2ρ
‖µk − µ̂k‖2,

where the second and third estimates hold due to (3.4f) and the Young’s inequality,

respectively.

For Ek+1
2 , we have that

Ek+1
2 =

(
Lτ,ρ(x

k+1, yk+1, zk+1, µ̂k)− Lτ,ρ(xk+1, yk+1, zk, µ̂k)
)

+
(
Lτ,ρ(x

k+1, yk+1, zk+1, µk)− Lτ,ρ(xk+1, yk+1, zk+1, µ̂k)
)

−
(
Lτ,ρ(x

k+1, yk+1, zk, µk)− Lτ,ρ(xk+1, yk+1, zk, µ̂k)
)

≤−
〈
∇zLτ,ρ(x

k+1, yk+1, zk+1, µ̂k), zk − zk+1
〉
− τ + ρ

2

∥∥zk+1 − zk
∥∥2

+
∑
i∈I

(µki − µ̂ki )[zk+1
i − (xk+1)TMiy

k+1]−
∑
i∈I

(µki − µ̂ki )[zki − (xk+1)TMiy
k+1]

≤− τ + ρ

2

∥∥zk+1 − zk
∥∥2

+
〈
µk − µ̂k, zk+1 − zk

〉
≤− τ + ρ

2

∥∥zk+1 − zk
∥∥2

+
1

2

∥∥µk − µ̂k∥∥2
+

1

2

∥∥zk+1 − zk
∥∥2
,

where the second to fourth estimates hold due to the strong convexity of Lτ,ρ with

respect to z, optimality condition of (3.4e), and Young’s inequality, respectively.
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When evaluating Ek+1
3 , we make use of the following relation

‖yk+1 − ŷk‖2 + ‖yk − ŷk‖2 ≥ 1

2
‖yk+1 − yk‖2, (3.11)

which comes from the triangle inequality and Lemma 4.1(ii) in Huang & Yang (2003).

For Ek+1
3 , we have that

Ek+1
3 =

[(
Lτ,ρ(x

k+1, yk+1, ẑk, µ̂k) +
β

2
‖yk+1 − ŷk‖2

)
−
(
Lτ,ρ(x

k+1, yk, ẑk, µ̂k) +
β

2
‖yk − ŷk‖2

)]
− β

2
‖yk+1 − ŷk‖2 +

β

2
‖yk − ŷk‖2

+
(
Lτ,ρ(x

k+1, yk+1, zk, µk)− Lτ,ρ(xk+1, yk+1, ẑk, µ̂k)
)

−
(
Lτ,ρ(x

k+1, yk, zk, µk)− Lτ,ρ(xk+1, yk, ẑk, µ̂k)
)

≤− β

2
‖yk+1 − yk‖2 − β

2
‖yk+1 − ŷk‖2 +

β

2
‖yk − ŷk‖2

+ τ
∑
i∈I

dT
i (yk+1 − yk)(zki − ẑki ) +

∑
i∈I

(xk+1)TMi(y
k − yk+1)(µki − µ̂ki )

+ ρ
∑
i∈I

(xk+1)TMi(y
k − yk+1)(zki − ẑki )

≤− 3β

4
‖yk+1 − yk‖2 + β‖yk − ŷk‖2 +

τγ1

2

∥∥yk+1 − yk
∥∥2

+
τ

2

∥∥zk − ẑk∥∥2

+
γ2

2

∥∥yk+1 − yk
∥∥2

+
1

2

∥∥µk − µ̂k∥∥2
+
ργ2

2

∥∥yk+1 − yk
∥∥2

+
ρ

2

∥∥zk − ẑk∥∥2

=−
(

3β

4
− τγ1 + γ2 + ργ2

2

)
‖yk+1 − yk‖2 + β‖yk − ŷk‖2

+
τ + ρ

2

∥∥zk − ẑk∥∥2
+

1

2

∥∥µk − µ̂k∥∥2
,

where the second inequality is derived by the strong convexity of the objective func-

tion in (3.4d) with respect to y and optimality condition (3.9b), and the third follows

from (3.11), Assumption 3.4.1(1), and the Young’s inequality, respectively.
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Likewise, for Ek+1
4 , we have that

Ek+1
4 ≤−

(
3β

4
− τγ1 + γ2 + ργ2

2

)
‖xk+1 − xk‖2 + β‖xk − x̂k‖2

+
τ + ρ

2

∥∥zk − ẑk∥∥2
+

1

2

∥∥µk − µ̂k∥∥2
.

Summing up Ek+1
i , i = 1, 2, 3, 4, and invoking (3.4a), (3.4b), and Lemma 3.4.2,

we obtain that, for any k ∈ N,

Lk+1
τ,ρ − Lkτ,ρ ≤− ξ̄x(τ, ρ, β)‖xk+1 − xk‖2 + ξx(τ, ρ, α, β)‖xk − xk−1‖2

− ξ̄y(τ, ρ, β)‖yk+1 − yk‖2 + ξy(τ, ρ, α, β)‖yk − yk−1‖2

− ξ̄z(τ, ρ)‖zk+1 − zk‖2 + ξz(τ, ρ, α)‖zk − zk−1‖2,

where ξ̄x(τ, ρ, β) = ξ̄y(τ, ρ, β) = 3β
4
− τγ1+γ2+ργ2

2
− 9τ2γ1

2ρ
and ξ̄z(τ, ρ) = τ+ρ−1

2
− 9τ2

2ρ

(recall that ξx(τ, ρ, α, β), ξy(τ, ρ, α, β), and ξz(τ, ρ, α) are the coefficients of Υτ,ρ,α,β).

Then, we obtain the bound of the successive difference of
{

Υk
τ,ρ,α,β

}
; that is, for any

k ∈ N,

Υk+1
τ,ρ,α,β −Υk

τ,ρ,α,β ≤− (ξ̄x(τ, ρ, β)− ξx(τ, ρ, α, β))‖xk+1 − xk‖2

− (ξ̄y(τ, ρ, β)− ξy(τ, ρ, α, β))‖yk+1 − yk‖2

− (ξ̄z(τ, ρ)− ξz(τ, ρ, α))‖zk+1 − zk‖2.

Clearly, {Υk
τ,ρ,α,β} is decreasing with Assumption 3.4.1(2a), which makes the coef-

ficients ξ̄x(ρ, β) − ξx(ρ, α, β), ξ̄y(τ, ρ, β) − ξy(τ, ρ, α, β), and ξ̄z(τ, ρ) − ξz(τ, ρ, α) all

positive. Therefore, the statement (1) is true for this case.

Case (ii). Let (αx, αy, αz) = 0 and αµ 6= 0. Similar to Case (i), the upper
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bounds of Ek+1
1 –Ek+1

4 are respectively estimated as

Ek+1
1 ≤ 3

2ρ
‖µk+1 − µk‖2 +

1

2ρ
‖µk − µ̂k‖2

Ek+1
2 ≤ −τ + ρ− 1

2

∥∥zk+1 − zk
∥∥2

+
1

2

∥∥µk − µ̂k∥∥2

Ek+1
3 ≤ −

(
β − γ2

2

)
‖yk+1 − yk‖2 +

1

2

∥∥µk − µ̂k∥∥2

Ek+1
4 ≤ −

(
β − γ2

2

)
‖xk+1 − xk‖2 +

1

2

∥∥µk − µ̂k∥∥2
.

With Assumption 3.4.1(2b), the rest of the proof for this case can be completed

similarly as for Case (i).

Case (iii). Let (αx, αy, αz, αµ) = 0. Similar to Case (i), the upper bounds of

Ek+1
1 –Ek+1

4 are respectively estimated as

Ek+1
1 ≤ 1

ρ
‖µk+1 − µk‖2

Ek+1
2 ≤ −τ + ρ

2

∥∥zk+1 − zk
∥∥2

Ek+1
3 ≤ −β‖yk+1 − yk‖2

Ek+1
4 ≤ −β‖xk+1 − xk‖2.

With Assumption 3.4.1(2c), the rest of the proof for this case can be completed

similarly as for Case (i).

(2). As Υk
τ,ρ,α,β ≥ Lkτ,ρ (k ∈ N) is evident from the definition, we only need to

focus on the lower bound of
{
Lkτ,ρ

}
.
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It follows from (3.10) that, for any k ∈ N,

Lkτ,ρ = q0(xk, yk) +
τ

2

∑
i∈I

qi(x
k, yk, zki )2

− τ
∑
i∈I

qi(x
k, yk, zki )

[
zki − (xk)TMiy

k
]

+
ρ

2

∑
i∈I

[
zki − (xk)TMiy

k
]2

= q0(xk, yk) +
ρ− τ

2

∑
i∈I

[
zki − (xk)TMiy

k
]2

+
τ

2

∑
i∈I

[
qi(x

k, yk, zki )−
(
zki − (xk)TMiy

k
)]2

.

(3.12)

Noting that ρ > τ is guaranteed by Assumption 3.4.1(2), we obtain Lkτ,ρ ≥ q
0

for all

k ∈ N from Assumption 3.4.1(1). Thus, the proof is completed.

We end this subsection by the boundedness of iterates (see Lemma 3.4.4) and the

bound of iterative subgradients (see Lemma 3.4.5).

Lemma 3.4.4. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by Al-

gorithm 1 and Assumption 3.4.1 hold. Then
{
zk
}

and
{
µk
}

are bounded.

Proof. Initially, from Lemma 3.4.3, Lkτ,ρ < +∞ holds for all k ∈ N. Then, as ρ > τ

(from Assumption 3.4.1(2)), we see from (3.12) that |qi(xk, yk, zki )| < +∞ holds for

all k ∈ N and i ∈ I. Finally, by virtue of (3.10) and the boundedness of
{
xk
}

and{
yk
}

, one has that {zk} and {µk} are bounded.

Lemma 3.4.5. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by Al-

gorithm 1 and Assumption 3.4.1 hold. Then, for any k ∈ N, there exists ζ > 0 such

that

dist
(
0, ∂LLτ,ρ(xk+1, yk+1, zk+1, µk+1)

)
≤ ζ

(
‖xk+1 − xk‖+ ‖yk+1 − yk‖+ ‖zk+1 − zk‖+ ‖µk+1 − µk‖

+ ‖xk − xk−1‖+ ‖yk − yk−1‖+ ‖zk − zk−1‖+ ‖µk − µk−1‖
)
.
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Proof. From Proposition 1.5.4 and (3.4f), the left-hand side of the estimate can be

bounded above by four parts, that is, for any k ∈ N,

dist
(
0, ∂LLτ,ρ(xk+1, yk+1, zk+1, µk+1)

)
≤ dist

(
−∇xLτ,ρ(x

k+1, yk+1, zk+1, µk+1), NX(xk+1)
)

+ dist
(
−∇yLτ,ρ(x

k+1, yk+1, zk+1, µk+1), NY (yk+1)
)

+
∥∥∇zLτ,ρ(x

k+1, yk+1, zk+1, µk+1)
∥∥+

1

ρ

∥∥µk+1 − µ̂k
∥∥ .

We first consider the bound of dist
(
−∇xLτ,ρ(x

k+1, yk+1, zk+1, µk+1), NX(xk+1)
)
.

For this propose, we rewrite the optimality condition (3.9a) as

−∇xLτ,ρ(x
k+1, yk, ẑk, µ̂k)− β(xk+1 − x̂k) ∈ NX(xk+1).

On the other hand, ∇xLτ,ρ is Lipschitz continuous on any bounded set. Then, for

any k ∈ N, there exists ζ1 > 0 such that

∣∣∇xLτ,ρ(x
k+1, yk, ẑk, µ̂k) + β(xk+1 − x̂k)−∇xLτ,ρ(x

k+1, yk+1, zk+1, µk+1)
∣∣

≤ ζ1

(
‖xk+1 − x̂k‖+ ‖yk+1 − yk‖+ ‖zk+1 − ẑk‖+ ‖µk+1 − µ̂k‖

)
.

From the above two estimates, there exists ζ2 > 0, for any k ∈ N, one has that

dist
(
−∇xLτ,ρ(x

k+1, yk+1, zk+1, µk+1), NX(xk+1)
)

≤ ζ1

(
‖xk+1 − x̂k‖+ ‖yk+1 − yk‖+ ‖zk+1 − ẑk‖+ ‖µk+1 − µ̂k‖

)
≤ ζ1

(
‖xk+1 − xk‖+ ‖yk+1 − yk‖+ ‖zk+1 − zk‖+ ‖µk+1 − µk‖

)
+ ζ2

(
‖xk − xk−1‖+ ‖yk − yk−1‖+ ‖zk − zk−1‖+ ‖µk − µk−1‖

)
.

Repeating the above process for the rest terms, we obtain similar inequalities.

Thus, the proof is completed.
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3.4.2 Subsequential Convergence

In this subsection, we establish the subsequential convergence to a stationary point

and the convergence of some critical sequences.

The following theorem presents the convergence for the successive difference of

iterates and subsequential convergence of the method.

Theorem 3.4.6. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by

Algorithm 1 and Assumption 3.4.1 hold. Then

(1). lim
k→+∞

∥∥xk+1 − xk
∥∥+

∥∥yk+1 − yk
∥∥+

∥∥zk+1 − zk
∥∥+

∥∥µk+1 − µk
∥∥ = 0;

(2). any limit point of {(xk, yk, zk, µk)} is a stationary point of (3.3).

Proof. (1). From Lemma 3.4.3, we have that

lim
k→+∞

∥∥xk+1 − xk
∥∥ = lim

k→+∞

∥∥yk+1 − yk
∥∥ = lim

k→+∞

∥∥zk+1 − zk
∥∥ = 0,

hence immediately obtain that lim
k→+∞

∥∥µk+1 − µk
∥∥ = 0 by virtue of Lemma 3.4.2.

(2). The existence of a limit point is guaranteed by the boundedness of the

sequence (see Lemma 3.4.4). Let (x∗, y∗, z∗, µ∗) be an arbitrary limit point of the

sequence {xk, yk, zk, µk} and K be the corresponding infinite subsequence such that

lim
k∈K

(xk, yk, zk, µk) = (x∗, y∗, z∗, µ∗).

Clearly, the following relation holds due to (3.4a), (3.4b), and the statement (1)

lim
k→+∞

∥∥xk+1 − x̂k
∥∥+

∥∥yk+1 − ŷk
∥∥+

∥∥zk+1 − ẑk
∥∥+

∥∥µk+1 − µ̂k
∥∥ = 0. (3.13)

Then, combining (3.4f), we see that

lim
k→+∞

zki − (xk)TMiy
k = lim

k→+∞

µk+1
i − µ̂ki
ρ

= 0, i ∈ I. (3.14)
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Now, we show that (x∗, y∗, z∗, µ∗) satisfies (3.6a)-(3.6d). For (3.6a), as ∇xLτ,ρ is

Lipschitz continuous on any bounded set, then, by virtue of (3.13), (3.14), and the

statement (1), we have that

lim
k∈K
∇xLτ,ρ(x

k+1, yk, ẑk, µ̂k) + β
(
xk+1 − x̂k

)
= ∇xLτ (x

∗, y∗, z∗, µ∗).

Therefore, taking the limit of (3.9a) on K, we obtain that

〈∇xLτ (x
∗, y∗, z∗, µ∗), x− x∗〉 ≥ 0 for all x ∈ X,

which is identical to (3.6a). The proof of (3.6b) is similar to (3.6a). Furthermore,

(3.6c) and (3.6d) can be straightly verified by (3.10) and (3.14), respectively. Thus,

the proof is completed.

The global convergence properties in objective values and in iterates to the set

of stationary points are also explored on the basis of Theorem 3.4.6.

Proposition 3.4.7. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by

Algorithm 1 and Assumption 3.4.1 hold. Then

(1). lim
k→+∞

Ψτ (x
k, yk, zk) = Ψτ (x

∗, y∗, z∗), where (x∗, y∗, z∗) represents an arbitrary

limit point of
{

(xk, yk, zk)
}

;

(2). lim
k→+∞

dist
(
(xk, yk, zk, µk),Ω∗

)
= 0, where Ω∗ represents the set of stationary

points of (3.3).

Proof. (1). The statement (1) comes from Lemma 3.4.3, Theorem 3.4.6(1), (3.14),

and the lower semi-continuity of Ψτ . More precisely, there exists an infinite subse-

quence K such that

lim
k→+∞

Υk
τ,ρ,α,β = lim

k→+∞
Ψτ (x

k, yk, zk) = lim
k∈K

Ψτ (x
k, yk, zk) = Ψτ (x

∗, y∗, z∗).
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(2). We assume by contradiction that the distance is not convergent to 0. Then

there exist ε̄ > 0 and an infinite subsequence K0 such that

dist
(
(xk, yk, zk, µk),Ω∗

)
≥ ε̄ for all k ∈ K0.

As
{

(xk, yk, zk, µk)
}
k∈K0

is bounded (see Lemma 3.4.4), this sequence has a limit

point. Let (ẋ, ẏ, ż, µ̇) be an arbitrary limit point of
{

(xk, yk, zk, µk)
}
k∈K0

. Then there

exists an infinite subsequence K1 ⊆ K0 such that

dist ((ẋ, ẏ, ż, µ̇),Ω∗) = lim
k∈K1

dist
(
(xk, yk, zk, µk),Ω∗

)
≥ ε̄ > 0,

in contradiction to the fact that (ẋ, ẏ, ż, µ̇) ∈ Ω∗ (see Theorem 3.4.6(2)).

3.4.3 Iteration Complexity

In analyzing the computational complexity, we select dist2
(
0, ∂LLτ,ρ(xk, yk, zk, µk)

)
to measure the progress of the algorithm.

Theorem 3.4.8. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by

Algorithm 1, Assumption 3.4.1 hold, and δ > 0. Then there exists C > 0 such that

min
1≤k≤K

dist2
(
0, ∂LLτ,ρ(xk, yk, zk, µk)

)
≤ δ, (3.15)

where K :=
⌈
C(Υ0

τ,ρ,α,β+Υ1
τ,ρ,α,β−2q

0
)

δ

⌉
+ 1.

Proof. For any k ≥ 2, there exist C1, C2, C > 0 such that

dist2
(
0, ∂LLτ,ρ(xk, yk, zk, µk)

)
≤ C1

(
‖xk − xk−1‖2 + ‖yk − yk−1‖2 + ‖zk − zk−1‖2 + ‖µk − µk−1‖2

+ ‖xk−1 − xk−2‖2 + ‖yk−1 − yk−2‖2 + ‖zk−1 − zk−2‖2 + ‖µk−1 − µk−2‖2
)

≤ C2

(
‖xk − xk−1‖2 + ‖yk − yk−1‖2 + ‖zk − zk−1‖2

+ ‖xk−1 − xk−2‖2 + ‖yk−1 − yk−2‖2 + ‖zk−1 − zk−2‖2
)

≤ C(Υk−2
τ,ρ,α,β −Υk

τ,ρ,α,β),
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where the existence of C1, C2, and C comes from Lemmas 3.4.5, 3.4.2, and 3.4.3,

respectively. Summing the left-hand side and right-hand side of the above inequality

over k = 2, · · · , K, we obtain that

K∑
k=2

dist2(0, ∂LLτ,ρ(xk, yk, zk, µk))

≤ C(Υ0
τ,ρ,α,β + Υ1

τ,ρ,α,β −ΥK−1
τ,ρ,α,β −ΥK

τ,ρ,α,β)

≤ C(Υ0
τ,ρ,α,β + Υ1

τ,ρ,α,β − 2q
0
),

where the second inequality holds due to Lemma 3.4.3(2). Then, we see that

min
1≤k≤K

dist2
(
0, ∂LLτ,ρ(xk, yk, zk, µk)

)
≤
C(Υ0

τ,ρ,α,β + Υ1
τ,ρ,α,β − 2q

0
)

K − 1
.

Thus, the proof is completed.

As indicated in Theorem 3.4.8, the iteration complexity of Algorithm 1 is O(1/k).

This complexity is the same as existing research on convex and nonconvex ADMM-

type algorithms without extrapolation (see He & Yuan (2012, 2015) and Hong et

al. (2016)) and better than the rate O(1/
√
k) in the work of Chen et al. (2015) on

ADMM methods with extrapolation for a linearly constrained convex problem.

3.4.4 Global Convergence

The K L theory makes a major contribution to our global convergence analysis. As

the potential function is a K L function, we can establish the global convergence of

Algorithm 1 using the uniformized K L property (Proposition 3.2.4).

Theorem 3.4.9. Let
{
xk
}

,
{
yk
}

,
{
zk
}

, and
{
µk
}

be the sequences generated by

Algorithm 1 and Assumption 3.4.1 hold. Then
{

(xk, yk, zk, µk)
}

is convergent.

Proof. Noting the descent and convergence of
{

Υk
τ,ρ,α,β

}
(see Lemma 3.4.3), we write

Υ∗τ,ρ,α,β := lim
k→+∞

Υk
τ,ρ,α,β and consider two cases: Υk

τ,ρ,α,β = Υ∗τ,ρ,α,β for some k ∈ N,
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and Υk
τ,ρ,α,β > Υ∗τ,ρ,α,β for all k ∈ N. If there is k ∈ N such that Υk

τ,ρ,α,β = Υ∗τ,ρ,α,β,

then
{

(xk, yk, zk, µk)
}

is convergent finitely from Lemmas 3.4.2 and 3.4.3, thus the

statement holds. Now, we consider the case that Υk
τ,ρ,α,β > Υ∗τ,ρ,α,β for all k ∈ N.

Let wk := (xk − xk−1, yk − yk−1, zk − zk−1) and Ω
∗

denote the set of limit points of{
(xk, yk, zk, wk, µk)

}
.

Initially, we verify that the uniformized K L property (Proposition 3.2.4) is sat-

isfied for Υτ,ρ,α,β. As
{

(xk, yk, zk, µk)
}

is bounded (see Lemma 3.4.4), then Ω
∗

is

nonempty and bounded, thus compact by definition. It is also clear that Υτ,ρ,α,β is

constant on Ω
∗
. Specifically, for any limit point (x∗, y∗, z∗, w∗, µ∗) ∈ Ω

∗
, there exists

an infinite subsequence K such that

Υτ,ρ,α,β(x∗, y∗, z∗, w∗, µ∗) = lim
k∈K

Υk
τ,ρ,α,β = lim

k→+∞
Υk
τ,ρ,α,β(= Υ∗τ,ρ,α,β),

where the equalities follow from the lower semi-continuity of Υτ,ρ,α,β and Lemma

3.4.3, respectively. From Propositions 3.2.6 and 3.2.7, Υτ,ρ,α,β is a K L function. Thus,

Υτ,ρ,α,β satisfies the uniformized K L property on Ω
∗
. Also, lim

k→+∞
Υk
τ,ρ,α,β = Υ∗τ,ρ,α,β

and lim
k→+∞

dist((xk, yk, zk, wk, µk),Ω
∗
) = 0 hold due to the definition. Then, by virtue

of Proposition 3.2.4, there exist k0 ≥ 3 and a concave function φ, for any k ≥ k0,

one has that φ(Υk
τ,ρ,α,β −Υ∗τ,ρ,α,β) > φ(Υk+1

τ,ρ,α,β −Υ∗τ,ρ,α,β) and

φ′(Υk
τ,ρ,α,β −Υ∗τ,ρ,α,β)dist

(
0, ∂LΥτ,ρ,α,β(xk, yk, zk, wk, µk)

)
≥ 1. (3.16)

Next, we show the convergence by making use of (3.16). Let

σk := φ(Υk
τ,ρ,α,β −Υ∗τ,ρ,α,β)− φ(Υk+1

τ,ρ,α,β −Υ∗τ,ρ,α,β).
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Then, for any k ≥ k0, there exist θ1 > 0 and θ2 > 0 such that

θ1

(
‖xk − xk−1‖+ ‖yk − yk−1‖+ ‖zk − zk−1‖+ ‖µk − µk−1‖

+ ‖xk−1 − xk−2‖+ ‖yk−1 − yk−2‖+ ‖zk−1 − zk−2‖+ ‖µk−1 − µk−2‖
)
σk

≥ dist
(
0, ∂LΥτ,ρ,α,β(xk, yk, zk, wk, µk)

)
σk

≥ dist
(
0, ∂LΥτ,ρ,α,β(xk, yk, zk, wk, µk)

) (
Υk
τ,ρ,α,β −Υk+1

τ,ρ,α,β

)
φ′
(
Υk
τ,ρ,α,β −Υ∗τ,ρ,α,β

)
≥ Υk

τ,ρ,α,β −Υk+1
τ,ρ,α,β

≥ θ2

(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2 + ‖zk+1 − zk‖2

)
≥ θ2

3

(
‖xk+1 − xk‖+ ‖yk+1 − yk‖+ ‖zk+1 − zk‖

)2
,

(3.17)

where the first and fourth estimates are implied by Lemmas 3.4.5 and 3.4.3, respec-

tively. The second and last inequalities follow from the concavity of φ and Young’s

inequality, respectively, and the third relation holds due to (3.16). We also estimate

the upper bound of the left-hand side of (3.17). Let κ0 be an arbitrary positive

number. Then, for any k ≥ 3, there exists θ3 > 0 such that

θ1

(
‖xk − xk−1‖+ ‖yk − yk−1‖+ ‖zk − zk−1‖+ ‖µk − µk−1‖

+ ‖xk−1 − xk−2‖+ ‖yk−1 − yk−2‖+ ‖zk−1 − zk−2‖+ ‖µk−1 − µk−2‖
)
σk

≤ 1

4

[
θ1σ

k

κ0

+ κ0

(
‖xk − xk−1‖+ ‖yk − yk−1‖+ ‖zk − zk−1‖+ ‖µk − µk−1‖

+ ‖xk−1 − xk−2‖+ ‖yk−1 − yk−2‖+ ‖zk−1 − zk−2‖+ ‖µk−1 − µk−2‖
)]2

≤ 1

4

[
θ1σ

k

κ0

+ κ0(1 + θ3)
(
‖xk − xk−1‖+ ‖yk − yk−1‖+ ‖zk − zk−1‖

+ ‖xk−1 − xk−2‖+ ‖yk−1 − yk−2‖+ ‖zk−1 − zk−2‖
)]2

,

(3.18)

where the estimates come from the Young’s inequality and Lemma 3.4.2, respectively.
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Let κ :=
√

3
4θ2

(1 + θ3)κ0 and θ := 3θ1
4θ2

(1 + θ3). From (3.17) and (3.18), for any

k ≥ k0, it holds that

‖xk+1 − xk‖+ ‖yk+1 − yk‖+ ‖zk+1 − zk‖

≤ κ
(
‖xk − xk−1‖+ ‖yk − yk−1‖+ ‖zk − zk−1‖

+ ‖xk−1 − xk−2‖+ ‖yk−1 − yk−2‖+ ‖zk−1 − zk−2‖
)

+
θ

κ
σk.

Rearranging terms, we see that, for any k ≥ k0,

(1− 2κ)
(
‖xk+1 − xk‖+ ‖yk+1 − yk‖+ ‖zk+1 − zk‖

)
≤ κ

(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖ − 2‖xk+1 − xk‖

+ ‖yk − yk−1‖+ ‖yk−1 − yk−2‖ − 2‖yk+1 − yk‖

+ ‖zk − zk−1‖+ ‖zk−1 − zk−2‖ − 2‖zk+1 − zk‖
)

+
θ

κ
σk.

For n ≥ k0, summing the above inequality over k = k0, · · · , n, we obtain that

(1− 2κ)

(
n∑

k=k0

‖xk+1 − xk‖+
n∑

k=k0

‖yk+1 − yk‖+
n∑

k=k0

‖zk+1 − zk‖

)

≤ κ
(
2‖xk0 − xk0−1‖+ ‖xk0−1 − xk0−2‖ − 2‖xn+1 − xn‖ − ‖xn − xn−1‖

+ 2‖yk0 − yk0−1‖+ ‖yk0−1 − yk0−2‖ − 2‖yn+1 − yn‖ − ‖yn − yn−1‖

+ 2‖zk0 − zk0−1‖+ ‖zk0−1 − zk0−2‖ − 2‖zn+1 − zn‖ − ‖zn − zn−1‖
)

+
θ

κ

[
φ(Υk0

τ,ρ,α,β −Υ∗τ,ρ,α,β)− φ(Υn+1
τ,ρ,α,β −Υ∗τ,ρ,α,β)

]
.

When 0 < κ < 1
2

and n → +∞, the above inequality together with Lemma 3.4.2

implies that

+∞∑
k=k0

‖xk+1 − xk‖+ ‖yk+1 − yk‖+ ‖zk+1 − zk‖+ ‖µk+1 − µk‖ < +∞.

Thus, the proof is completed.
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3.5 Convergence Analysis of Outer Algorithm

The convergence of the outer iterations is established under the condition that the

penalty parameter τ tends to be infinite and the inner algorithm tends to be exactly

convergent.

Theorem 3.5.1. Let {x̃r}, {ỹr}, {z̃r}, and {µ̃r} be the sequences generated by Al-

gorithm 2 and ν̃ri := τ r(z̃ri + cT
i x̃

r + dT
i ỹ

r + ei), i ∈ I. Suppose that lim
r→+∞

τ r = +∞

and lim
r→+∞

dist
(
0, ∂LLτr(x̃r, ỹr, z̃r, µ̃r)

)
= 0. If {(x̃r, ỹr, z̃r, µ̃r, ν̃r)} has a limit point,

then any limit point is a stationary point of (3.2).

Proof. Suppose that {(x̃r, ỹr, z̃r, µ̃r, ν̃r)} has a limit point. Let (x?, y?, z?, µ?, ν?) be

an arbitrary limit point and R be the corresponding infinite subsequence such that

lim
r∈R

(x̃r, ỹr, z̃r, µ̃r, ν̃r) = (x?, y?, z?, µ?, ν?) .

It follows from Proposition 1.5.4 and lim
r→+∞

dist
(
0, ∂LLτr(x̃r, ỹr, z̃r, µ̃r)

)
= 0 that

lim
r→+∞

dist (−∇xLτr(x̃
r, ỹr, z̃r, µ̃r), NX(x̃r)) = 0 (3.19a)

lim
r→+∞

dist (−∇yLτr(x̃
r, ỹr, z̃r, µ̃r), NY (ỹr)) = 0 (3.19b)

lim
r→+∞

τ r(z̃ri + cT
i x̃

r + dT
i ỹ

r + ei) + µ̃ri = 0, i ∈ I (3.19c)

lim
r→+∞

z̃ri − (x̃r)TMiỹ
r = 0, i ∈ I. (3.19d)

Now, we show that (x?, y?, z?, µ?, ν?) satisfies (3.5a)-(3.5e). Initially, since ν̃ri is given

by ν̃ri := τ r(z̃ri + cT
i x̃

r +dT
i ỹ

r + ei), (3.5a)-(3.5d) can be straightly verified by (3.19a)-

(3.19d), respectively. For (3.5e), combining (3.19c) and lim
r→+∞

τ r = +∞, we see that

z?i + cT
i x

? + dT
i y

? + ei = lim
r∈R

z̃ri + cT
i x̃

r + dT
i ỹ

r + ei = lim
r∈R
− µ̃

r
i

τ r
= 0, i ∈ I.

Thus, the proof is completed.
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As the inner algorithm is convergent to a primal-dual stationary point, the con-

vergence of Algorithm 2 is also obtained in a primal-dual framework. This is different

from the classical convergence result of the quadratic penalty method (see Nocedal

& Wright (2006, Theorem 17.2)).

At the end of the section, we discuss how to make the penalty problem (3.3) less

ill-conditioned by adjusting βr in Algorithm 2.

Remark 3.5.2. With τ r increasing, the Hessian matrices in (3.4c) and (3.4d) possi-

bly become ill-conditioned, leading to computational difficulties. The respective Hes-

sian matrices in (3.4c) and (3.4d) are

Hk
x = τ r

∑
i∈I

cic
T
i + ρr

∑
i∈I

Miy
k(yk)TMT

i + βrEm

and

Hk
y = τ r

∑
i∈I

did
T
i + ρr

∑
i∈I

MT
i x

k+1(xk+1)TMi + βrEn,

where Em and En are the identity matrices of size m and size n, respectively.

For two symmetric matrices G and H, it follows from the Weyl’s inequality (see

Weyl (1912) and Fomin et al. (2005)) that λmax(G+H) ≤ λmax(G) + λmax(H)

λmin(G+H) ≥ λmin(G) + λmin(H),

where λmax(·)/λmin(·) denotes the largest/smallest eigenvalue. Then, the condition

numbers K(Hk
x) and K(Hk

y) respectively satisfy that

K(Hk
x) ≤

τ rλmax(
∑

i∈I cic
T
i ) + ρrλmax(

∑
i∈IMiy

k(yk)TMT
i ) + βr

τ rλmin(
∑

i∈I cic
T
i ) + ρrλmin(

∑
i∈IMiyk(yk)TMT

i ) + βr

and

K(Hk
y) ≤

τ rλmax(
∑

i∈I did
T
i ) + ρrλmax(

∑
i∈IM

T
i x

k+1(xk+1)TMi) + βr

τ rλmin(
∑

i∈I did
T
i ) + ρrλmin(

∑
i∈IM

T
i x

k+1(xk+1)TMi) + βr
.
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Thus, the ill-conditioning difficulty can be partly overcome if we choose βr such that

τr

βr
and ρr

βr
fall into an appropriate range.

3.6 Numerical Experiments

This section provides numerical studies of the proposed algorithms. To see the effec-

tiveness of extrapolation, we initially conduct an experiment on the inner algorithm

with different extrapolation steps. Then, the outer algorithm is specified to a linear

sum-of-ratios problem and a structured quadratically constrained quadratic program-

ming problem, respectively. All the experiments are completed in MATLAB R2021a

and macOS 11.6 on a 64-bit PC with an i5-5250U CPU and 4GB RAM.

Stopping criteria of the inner and outer algorithms are respectively designed as

follows:

Accuracy := max

{∣∣Ψτr(x
k+1, yk+1, zk+1)−Ψτr(x

k, yk, zk)
∣∣

|Ψτr(xk, yk, zk)|+ 1
,

∑
i∈I

(
zk+1
i − (xk+1)TMiy

k+1
)2

}
≤ Tolin

(3.20)

and

Feasibility :=
∑
i∈I

qi(x
k+1, yk+1, zk+1

i )2 ≤ Tolout. (3.21)

For the outer algorithm, the penalty parameter τ r is initialized as some given τ̃

and updated as 10τ r at the next iteration, that is, τ r = 10rτ̃ . When adopting the in-

ner algorithm at the rth outer iteration, we determine ρr and βr by heuristics. Given

ρ̃ and c̃, we start with ρr = 10rρ̃ and βr = τr

c̃
. Then, if the descent of

{
Υk
τr,ρr,α,βr

}
is

met, we keep them unchanged; otherwise, we increase them at the next (inner) iter-

ation until Υk+1
τr,ρr,α,βr ≤ Υk

τr,ρr,α,βr . Remarkably, in this way, the parameters selected

may not satisfy Assumption 3.4.1 (2). The following extrapolation parameters are
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tested in all the experiments

ADMM-1 : α = (αx, αy, αz, αµ) = (0, 0, 0, 0)

ADMM-2 : α = (αx, αy, αz, αµ) = (0.1, 0.1, 0.1, 0.2)

ADMM-3 : α = (αx, αy, αz, αµ) = (0.2, 0.2, 0.2, 0.5)

ADMM-4 : α = (αx, αy, αz, αµ) = (0.5, 0.5, 0.5, 1).

(3.22)

3.6.1 Effect of Extrapolation Strategy
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Figure 3.1: Convergence behavior (objective value)
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Figure 3.2: Convergence behavior (Accuracy)
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To test the effect of extrapolation, we carry out the first experiment on Algorithm 1

for the quadratic approximation (3.3) with the extrapolation parameters in (3.22).

We select the coefficients from data randomly generated under the uniform distribu-

tion within the following intervals

ci ∈ [−2, 2], di,Mi ∈ [−3, 3], and ei ∈ [−1, 1].

The inequality constraint sets are given by

X = {x : −10 ≤ x ≤ 10} and Y = {y : −10 ≤ y ≤ 10} .

The initial point is taken as the origin. The parameters in Algorithm 1 are set as

τ = 104, ρ̃ = 102, and c̃ = 103. Two problem sizes (m,n, p) = (120, 80, 20) and

(500, 200, 100) are considered in the testing.

Figure 3.1 (resp. Figure 3.2) plots the objective value (resp. ‘Accuracy’ (see

(3.20))) against the number of iterations for the four extrapolation rules. We observe

that Algorithm 1 with ‘ADMM-4’ converges faster than others in objective values,

and it is always the first to terminate for any stopping tolerance. The extrapolation

with large parameters performs better in this experiment.

3.6.2 Linear Sum-of-Ratios Problem

In the second experiment, we evaluate the performance of the outer algorithm for a

linear sum-of-ratios problem with ‘ADMM-1’ to ‘ADMM-4’ in (3.22).

A linear sum-of-ratios problem (see Benson (2007) and Jiao & Liu (2015)) has

the structure

min
x

n∑
i=1

cT
i x+ pi
dT
i x+ qi

s.t. Ax ≤ b,

where cT
i x + pi ≥ 0 and dT

i x + qi > 0 (i = 1, · · · , n) are assumed for all the feasible

solutions. A linear fractional function is strongly associated with a bilinear function.
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Algorithm 3 Penalty extrapolated proximal ADMM for solving (3.24)

Let the sequences {τ r}, {ρr}, and {βr}, and quartet (αx, αy, αz, αµ) be given.

While r = 0, 1, 2, · · · , do

Initialization (x0, y0, z0, µ0) = (x−1, y−1, z−1, µ−1).

While k = 0, 1, 2, · · · , do

- x̂k = xk + αx(x
k − xk−1), ŷk = yk + αy(y

k − yk−1), ẑk = zk + αz(z
k − zk−1), and

µ̂k = µk + αµ(µk − µk−1).

- xk+1 = arg min
x∈X

{Lτr,ρr(x, yk, ẑk, µ̂k) + βr

2
‖x− x̂k‖2}.

- yk+1
i =

(µ̂ki +ρr ẑki )(xk+1)Tdi−1−τrqi(ẑki −cTi xk+1−pi)+βr ŷki
τrq2

i+ρ((xk+1)Tdi)2+βr
, i = 1, · · · , n.

- zk+1
i =

τr(cTi x
k+1−qiyk+1

i +pi)−µ̂ki +ρr(xk+1)Tdiy
k+1
i

τr+ρr
, i = 1, · · · , n.

- µk+1
i = µ̂k + ρr[zk+1

i − (xk+1)Tdiy
k+1
i ], i = 1, · · · , n.

End while

End while

Letting yi =
cTi x+pi
dT
i x+qi

, we obtain a bilinear constraint xTdiyi − cT
i x + qiyi − pi = 0. In

this way, any linear sum-of-ratios problem can be reformulated as a GBLP problem.

In this experiment, we consider the following linear sum-of-ratios problem

min
x

n∑
i=1

cT
i x+ pi
dT
i x+ qi

s.t. cT
i x+ pi ≥ 0, dT

i x+ qi ≥ 0, i = 1, · · · , n

Ax ≤ b, x ≤ x ≤ x,

(3.23)

where x, x, x, ci, di ∈ Rm, pi, qi ∈ R, A ∈ Rl×m, and b ∈ Rl. Remarkably, cT
i x+pi ≥ 0

and dT
i x + qi ≥ 0 are additional constraints to guarantee the assumption of (3.23),

and the bound constraint x ≤ x ≤ x is added to make the optimal value finite.

With auxiliary variables y := (y1, · · · , yn) and z := (z1, · · · , zn), we transform
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(3.23) into a GBLP structure

min
x,y,z

n∑
i=1

yi

s.t. zi − cT
i x+ qiyi − pi = 0, i = 1, · · · , n

zi = xTdiyi, i = 1, · · · , n

cT
i x+ pi ≥ 0, dT

i x+ qi ≥ 0, i = 1, · · · , n

Ax ≤ b, x ≤ x ≤ x.

(3.24)

Let X :=
{
x : cT

i x+ pi ≥ 0, dT
i x+ qi ≥ 0, i = 1, · · · , n; Ax ≤ b; x ≤ x ≤ x

}
and

Lτr,ρr(x, y, z, µ) :=
n∑
i=1

[
yi +

τ r

2
(zi − cT

i x+ qiyi − pi)2

+ µi(zi − xTdiyi) +
ρr

2
(zi − xTdiyi)

2
]
.

Then Algorithm 3 can be straightly applied to (3.24).

We select the initial point x0 and coefficients ci, di, and A from data randomly

generated under the uniform distribution within [−2, 2]. The bound coefficients are

given by x = −10 and x = 10. To make the feasible set nonempty, we produce the

rest coefficients based on x0. Specifically, let pi = −cT
i x

0 + ε, qi = −dT
i x

0 + ε, and

b = Ax0 + ε, where ε is randomly generated under the uniform distribution within

[0, 2]. The initial points of y, z, and µ are taken as y0
i =

cTi x
0+pi

dT
i x

0+qi
, z0

i = (x0)Tdiy
0
i , and

µ0 = 0, respectively. Three problem sizes (m,n, l) = (200, 100, 50), (400, 100, 50),

and (400, 200, 100) are considered in the testing, and we experiment on Algorithm

3 with two data sets for each problem size. The tolerance of the inner algorithm

is chosen as Tolin = 10−9, and the tolerance of the outer algorithm is chosen as

Tolout = 10−6. The parameters in Algorithm 3 are set as τ̃ = 108, ρ̃ = 109, and

c̃ = 107.
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Table 3.1: Computation result for linear sum-of-ratios problem

Algorithm
Problem Size Data Set A Data Set B

m n l Fval Time Feasibility Fval Time Feasibility

ADMM-1

200 100 50

0.4844 6.80 6.18E-08 0.8398 11.43 3.38E-07

ADMM-2 0.4844 1.25 3.24E-08 0.8399 12.22 4.39E-07

ADMM-3 0.4844 1.05 2.18E-08 0.8397 17.04 8.03E-07

ADMM-4 0.4844 5.81 4.47E-08 0.8397 5.69 4.63E-08

ADMM-1

400 100 50

0.0858 6.61 3.37E-08 0.4114 9.87 5.26E-08

ADMM-2 0.0858 2.79 2.56E-08 0.4114 4.49 4.76E-08

ADMM-3 0.0858 2.64 2.33E-08 0.4114 9.67 3.98E-08

ADMM-4 0.0858 5.10 2.86E-08 0.4114 6.00 3.61E-08

ADMM-1

400 200 100

0.5373 209.36 6.09E-08 0.3431 320.80 5.08E-07

ADMM-2 0.5472 270.85 1.57E-07 0.3431 301.40 1.70E-07

ADMM-3 0.5373 233.04 1.79E-07 0.3431 186.45 5.93E-08

ADMM-4 0.5371 63.97 9.70E-08 0.3430 104.85 7.08E-08

Computation results are presented in Table 3.1. The objective value (‘Fval’ in

the table) and running time are measures of efficiency, and ‘Feasibility’ (see (3.21))

indicates the validness of the resulting solutions. In Table 3.1, there are few differ-

ences in objective values for the four extrapolation rules. In respect of the running

time, Algorithm 3 with ‘ADMM-4’ outperforms the others on average. The use of

extrapolation speeds up the algorithm, but it is not necessary that the larger extrap-

olation parameters, the better performance is. This phenomenon is also observed in

Pock & Sabach (2016).

3.6.3 QCQP Problem

Eventually, we compare the proposed method with a semidefinite relaxation (SDR)

method for a specially structured nonconvex quadratically constrained quadratic

programming (QCQP) problem.
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The QCQP problem, which plays a significant part in numerical applications (see

Linderoth (2005), Luo et al. (2010), and Anstreicher (2012)), is given by

min
x

xTA0x

s.t. xTAixDi bi, i = 1, · · · ,m,

where “Di” (i = 1, · · · ,m) represents either “≥”, “≤”, or “=”. It is worth noting that

a quadratic term xTAix is identical to a bilinear term xTAiy plus a linear constraint

x = y. Therefore, we can convert the QCQP problem into a GBLP framework

min
x,y

xTA0y

s.t. xTAiy Di bi, i = 1, · · · ,m

x = y.

In this experiment, we consider the following nonconvex QCQP problem

min
x

xTA0x

s.t. xTAix ≥ 1, i = 1, · · · , p,
(3.25)

where x ∈ Rn and A0, Ai ∈ Rn×n (i = 1, · · · , p). Also, A0 � 0 and Ai � 0; that is,

A0 is symmetric and positive semidefinite, and Ai is symmetric and positive definite.

The SDR method is one of the most popular methods for solving QCQP problems,

which focuses on a convex relaxation rather than the original problem (see Luo et

al. (2010)). In particular, from

xTAjx = Trace(xTAjx) = Trace(Ajxx
T), j = 0, 1, · · · , p,

we obtain an equivalent formulation of (3.25)

min
X

Trace(A0X)

s.t. Trace(AiX) ≥ 1, i = 1, · · · , p

X � 0, Rank(X) = 1,
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where X := xxT ∈ Rn×n. The SDR method is to remove the nonconvex constraint

Rank(X) = 1 and solve the following convex semidefinite programming problem

min
X

Trace(A0X)

s.t. Trace(AiX) ≥ 1, i = 1, · · · , p

X � 0.

(3.26)

Then, an optimal or approximate solution of (3.25) can be obtained by extracting

the optimal solution X∗ of (3.26). In fact, if X∗ is rank-one, the extracted solution

is an optimal solution. However, if not, the best result for this method is to reach

a feasible solution as an approximate solution. For Rank(X∗) 6= 1, an applicable

extraction method is to use the eigendecomposition. Initially, take x̄ =
√
λmaxqmax,

where λmax is the largest eigenvalue of X∗, and qmax is the corresponding eigenvector.

Then, the point x̄∗ = x̄√
mini x̄TAix̄

is a feasible solution of (3.25). Luo et al. (2010)

recommended the CVX toolbox (see Grant et al. (2020)) to solve (3.26). But here,

we choose the SDTP3 package (see Toh et al. (1999)), as it is faster for this problem.

On the other hand, as mentioned above, (3.25) can be rewritten as

min
x,y,s,z

xTA0y

s.t. x = y, zi − si − 1 = 0, i = 1, · · · , p

zi = xTAiy, i = 1, · · · , p

si ≥ 0, i = 1, · · · , p,

(3.27)

where y := (y1, · · · , yn), s := (s1, · · · , sp), and z := (z1, · · · , zp) are auxiliary vari-

ables. We treat that (3.27) is bilinear with respect to x and (y, s) and let E be an

identity matrix. Then Algorithm 4 can be straightly applied to (3.27).

In the testing, the coefficients are given by A0 = E and Ai = ĀT
i Āi + E, where

Āi is randomly generated under the uniform distribution within [−3, 3]. We select
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Algorithm 4 Penalty extrapolated proximal ADMM for solving (3.27)

Let the sequences {τ r}, {ρr}, and {βr}, and the point (αx, αy, αs, αz, αµ) with
aαs = αz be given.

While r = 0, 1, 2, · · · , do

Initialization (x0, y0, s0, z0, µ0) = (x−1, y−1, s−1, z−1, µ−1).

While k = 0, 1, 2, · · · , do

- x̂k = xk + αx(x
k − xk−1), ŷk = yk + αy(y

k − yk−1), ŝk = sk + αy(s
k − sk−1),

ẑk = zk + αz(z
k − zk−1), and µ̂k = µk + αµ(µk − µk−1).

- xk+1 =
[
ρr

p∑
i=1

Aiy
k(yk)TAT

i + (τr + βr)E
]−1[

τryk +
p∑
i=1

(µ̂ki + ρr ẑki )Aiy
k −A0yk + βrx̂k

]
.

- yk+1 =
[
ρr

p∑
i=1

AT
i x

k+1(xk+1)TAi + (τr + βr)E
]−1[

τrxk+1 +
p∑
i=1

(µ̂ki + ρr ẑki )AT
i x

k+1 −AT
0 x

k+1 + βr ŷk
]
.

- sk+1
i = max

{ τr(ẑki −1)+βr ŝki
τr+βr

, 0
}
, i = 1, · · · , p.

- zk+1
i =

τr(sk+1
i +1)−µ̂ki +ρr(xk+1)TAiy

k+1

τr+ρr
, i = 1, · · · , p.

- µk+1
i = µ̂k + ρr[zk+1

i − (xk+1)TAiy
k+1], i = 1, · · · , p.

End while

End while

the initial point of x as x0 = x̄0√
mini (x̄0)TAix̄0

, where x̄0 is randomly generated under

the uniform distribution within [−1, 1]. The initial points of y, s, and µ are taken as

y0 = x0, s0
i = (x0)

T
Aiy

0 − 1, and µ0 = 0, respectively. The parameters of Algorithm

4 are set as τ̃ = 106, ρ̃ = 103, and c̃ = 105. As the SDR method produces feasible

solutions, we consider Tolout = 10−7 when adopting Algorithm 4, where the obtained

solutions can be seen to be feasible.

Table 3.2 lists the optimal value and running time of the SDR method and Algo-

rithm 4 under different problem sizes (n, p). Since all the extrapolated methods (see

(3.22)) perform closely, we only present the result of Algorithm 4 with ‘ADMM-1’

as the representative. As shown in Table 3.2, the two methods are comparable in

terms of the objective values. However, Algorithm 4 has a better performance on

the running time for most data sets, especially for large-scale problems.
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Table 3.2: Computation result for QCQP problem

Problem Size SDR Algorithm 4

n p Fval Time Fval Time

200 20 0.0355 1.29 0.0345 0.13

200 50 0.0089 2.03 0.0104 0.20

200 100 0.0047 3.67 0.0046 0.45

200 200 0.0019 13.12 0.0021 1.23

500 20 0.0684 2.92 0.0575 0.61

500 50 0.0136 5.22 0.0126 1.09

500 100 0.0049 13.95 0.0050 1.84

500 200 0.0022 48.13 0.0022 3.71

1000 20 0.0703 8.28 0.0587 4.99

1000 50 0.0128 14.79 0.0123 5.67

1000 100 0.0046 42.78. 0.0050 9.08

1000 200 0.0022 151.54 0.0023 30.76
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Chapter 4

Sparse Minimax Portfolio and

Sharpe Ratio Models

4.1 Introduction

In this chapter, we consider sparse portfolio models regularized by the lp (0 < p ≤ 1)

norm, where a risk measure (see Young (1998)) is used.

We first introduce an lp-sparse (0 < p ≤ 1) minimax model and obtain a descent

property of the lp norm of the optimal portfolio with respect to the regularization

parameter. That is to say, for this model, the regularization parameter can be a

controller to adjust the level of sparsity and the space for short selling. In numerical

studies, the l1-sparse minimax model and lp-sparse (0 < p < 1) minimax model are

examined separately due to their different natures on computation. Since the l1/2

regularizer performs best among lp (0 < p ≤ 1) regularizers (see Chartrand (2007)

and Hu et al. (2017)), we take the l1/2-sparse minimax model as the representative

for 0 < p < 1. The benchmarks are l1-sparse and l1/2-sparse mean-variance models

and the equal-weighted rule. When comparing different sparse portfolio models, we

observe their out-of-sample performance at the same level of sparsity. We find that,

when the level of sparsity is extremely high, the l1/2-sparse minimax model is more

competitive than the l1-sparse minimax model. However, as the resulting portfolios
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become less sparse, both models are comparable. The corresponding differences are

not evident for the l1-sparse and l1/2-sparse mean-variance models.

Afterward, we construct a generalized l1-sparse Sharpe ratio model based on the

minimax risk measure in Young (1998). To avoid a zero denominator, we modify

the original minimax risk measure by a pre-selected parameter to keep the denom-

inator positive. When solving the proposed model, we transform it into a bilinear

formulation and then adopt Algorithm 2 introduced in Chapter 3. Apart from it,

we also design a parametric algorithm for this model, a global method extending

the algorithm proposed by Konno & Kuno (1990). In numerical experiments, both

algorithms are applied. The parametric method performs better on average in terms

of the out-of-sample performance and stability. However, these superiorities are not

significant, and Algorithm 2 has an advantage of the running time.

Now, we present the definitions and notations in this chapter. The lp regularizer

or lp norm (0 < p ≤ 1) of the vector x := (x1, · · · , xn) is defined by

‖x‖p :=

(
N∑
j=1

|xj|p
) 1

p

.

For all the models in Sections 4.2 and 4.3, we consider N securities. The portfolio

under consideration is denoted by w := (w1, · · · , wN), where wj (j = 1, 2, . . . , N)

represents the percentage of the budget invested in security j. The security j is said

to be active if wj 6= 0. For simplicity, let 1 := (1, · · · , 1) ∈ RN .

The rest of the chapter is organized as follows. Initially, several sparse mean-

variance models with lp (0 < p ≤ 1) norm are briefly introduced in Section 4.2.

Then, in Section 4.3, we establish an lp-sparse minimax model and a generalized

l1-sparse minimax Sharpe ratio model and develop an extended parametric method

for the second model. The chapter is ended by numerical studies for different sparse

portfolio models in Section 4.4.
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4.2 Sparse Mean-variance Models With lp Norm

Given N securities with the expected rate of return vector r ∈ RN and covariance

matrix Σ ⊆ RN×N , the mean-variance model (Markowitz, 1952) is formulated as

min
w

1

2
wTΣw

s.t. rTw = G, 1Tw = 1.

where the terms wTΣw and rTw interpret the risk and return of w, respectively. The

parameter G ≥ 0 represents the desired rate of return, and the constraint 1Tw = 1

means that the budget is fully invested. Moreover, w ≥ 0 needs to be included if

short selling is prohibited in the investment.

Based on the mean-variance model, Brodie et al. (2009) established the following

l1-regularized mean-variance model with the regularization parameter τ ≥ 0

min
w

1

2
wTΣw + τ ‖w‖1

s.t. rTw = G, 1Tw = 1.

Notably, as ‖w‖1 = 1 holds for all w ≥ 0, the no-shorting constraint is not allowed

when using the l1 norm.

In this chapter, we consider a more general lp-sparse (0 < p ≤ 1) mean-variance

model, i.e.,

min
w

1

2
wTΣw + τ‖w‖pp

s.t. rTw ≥ G

1Tw = 1, w ≥ α,

(4.1)

which will be frequently mentioned in numerical studies as one of the benchmarks.

In this model, the choice of τ influences the sparsity and short selling of the optimal
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portfolios (see Proposition 4.2.1). Similar results have also been provided in Brodie

et al. (2009) for their l1-regularized model.

Proposition 4.2.1. Let wτ be an optimal solution of (4.1) corresponding to a specific

τ and w−τ be the componentwise negative part of wτ .

(1). For any 0 < p ≤ 1, one has that

(τ1 − τ2)
(
‖wτ2‖

p
p − ‖wτ1‖

p
p

)
≥ 0.

(2). Furthermore, when p= 1, one has that

(τ1 − τ2)
(∥∥w−τ2∥∥1

−
∥∥w−τ1∥∥1

)
≥ 0.

Proof. (1). Indeed, we have that

1

2
wT
τ1

Σwτ1 + τ1 ‖wτ1‖
p
p

≤ 1

2
wT
τ2

Σwτ2 + τ1 ‖wτ2‖
p
p

=
1

2
wT
τ2

Σwτ2 + τ2 ‖wτ2‖
p
p + (τ1 − τ2) ‖wτ2‖

p
p

≤ 1

2
wT
τ1

Σwτ1 + τ2 ‖wτ1‖
p
p + (τ1 − τ2) ‖wτ2‖

p
p

=
1

2
wT
τ1

Σwτ1 + τ1 ‖wτ1‖
p
p + (τ1 − τ2)

(
‖wτ2‖

p
p − ‖wτ1‖

p
p

)
,

where the inequalities hold due to the minimization for wτ1 and wτ2 , respectively.

(2). Let w+
τ denote the componentwise positive part of wτ . From the relations

1Twτ = 1, 1Twτ = ‖w+
τ ‖1 − ‖w−τ ‖1, and ‖wτ‖1 = ‖w+

τ ‖1 + ‖w−τ ‖1, we obtain that

‖wτ‖1 = 1 + 2‖w−τ ‖1. Then,

‖wτ2‖1 − ‖wτ1‖1 = 2
(∥∥w−τ2∥∥1

−
∥∥w−τ1∥∥1

)
.

Therefore, the statement (2) can be proved by the statement (1).
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4.3 Sparse Minimax Models with lp Norm

This section introduces the minimax portfolio model proposed by Young (1998) and

then establishes an lp-sparse (0 < p ≤ 1) minimax model and a generalized l1-sparse

minimax Sharpe ratio model. Besides, a parametric method is developed for finding

a global solution of the l1-sparse minimax Sharpe ratio model.

We observe N securities over T time periods and use Rjt to denote the rate of

return of security j in time period t. Let r ∈ RN be the expected rate of return

vector and r̄t := (R1t, · · · , RNt), t = 1, · · · , T .

In Young (1998), the author was concerned with the minimum return among all

the time periods, i.e.,

min
t=1,··· ,T

r̄T
t w,

which has a piecewise linear structure. By maximizing the above minimum return,

the minimax model is constructed as follows:

max
w

min
t=1,··· ,T

r̄T
t w

s.t. rTw ≥ G

1Tw = 1, w ≥ 0,

where the parameter G ≥ 0 represents the minimum level of rate of return. With an

auxiliary variable Mp := min
t=1,··· ,T

r̄T
t w, the minimax model can be equivalently written

as the following linear programming problem

max
w,Mp

Mp

s.t. r̄T
t w ≥Mp, t = 1, · · · , T

rTw ≥ G, 1Tw = 1, w ≥ 0.

As the minimax model is risk-averse, the risk measure in this model is −Mp rather

than Mp. For simplicity, we call it the minimax risk measure hereafter.
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4.3.1 lp-Sparse Minimax Models

By adding the lp (0 < p ≤ 1) norm in the minimax portfolio model, we obtain the

following lp-sparse minimax model

min
w,Mp

−Mp + τ‖w‖pp

s.t. r̄T
t w ≥Mp, t = 1, · · · , T

rTw ≥ G, 1Tw = 1, w ≥ α,

(4.2)

where α is the lower bound of the portfolio, and τ ≥ 0 is a tunable regularization

parameter.

In (4.2), a more general bound constraint w ≥ α is adopted instead of w ≥ 0.

When p = 1, we restrict ourselves to the case of α < 0, which means the limited

short selling is allowed in the investment; otherwise, (4.2) will reduce to the original

minimax model in that ‖w‖1 = 1 if α ≥ 0. Furthermore, different from the mean-

variance model, the minimax model requires a finite lower bound of the portfolio, as

the model may generate an infinite optimal value when α = −∞. But for a finite α,

the feasible region is bounded, then the corresponding optimal value is finite. Hence,

we set α > −∞ to guarantee the validness of (4.2).

A descent property is also satisfied for (4.2) (see Proposition 4.3.1). We omit the

proof since it is similar to that of Proposition 4.2.1.

Proposition 4.3.1. Let wτ be an optimal portfolio produced by (4.2) corresponding

to a specific τ and w−τ be the componentwise negative part of wτ .

(1). For any 0 < p ≤ 1, one has that

(τ1 − τ2)
(
‖wτ2‖

p
p − ‖wτ1‖

p
p

)
≥ 0.

(2). Furthermore, when p= 1, one has that

(τ1 − τ2)
(∥∥w−τ2∥∥1

−
∥∥w−τ1∥∥1

)
≥ 0.
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Proposition 4.3.1(1) indicates that a larger τ leads to a higher level of sparsity

(see Figures 4.3(a) and 4.4(a)). And Proposition 4.3.1(2) demonstrates that, with a

smaller τ , the optimal portfolio produced by (4.2) includes more short selling stocks;

furthermore, a nonnegative portfolio may be obtained when τ is sufficiently large

(see Figures 4.3(b) and 4.4(b)).

4.3.2 l1-Sparse Minimax Sharpe Ratio Model

In this subsection, we extend the classical Sharpe ratio by a modified minimax risk

measure, propose an l1-sparse minimax Sharpe ratio model using the extended min-

imax Sharpe ratio, and design a global algorithm for the proposed model. To this

end, we first introduce the background of the Sharpe ratio.

The classical Sharpe ratio of a portfolio w is defined by the following fractional

function

rTw − rf√
wTΣw

,

where rf is the risk-free rate, and the numerator represents the expected excess return

of w. In the denominator, the volatility or standard deviation
√
wTΣw is used to

measure the risk of w.

It is worth noting that a nonnegative expected excess return needs to be assumed

when using the Sharpe ratio. Bacon (2008) pointed out that the negative expected

excess return makes the Sharpe ratio difficult to interpret. In fact, a larger Sharpe

ratio corresponds to a higher rank of the portfolio. However, a negative expected

excess return generates a negative Sharpe ratio, thus results in a perverse ranking.

Specifically, a higher not lower level of risk is preferable when the expected excess

return is negative.
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l1-sparse Minimax Sharpe Ratio Model

Inspired by the quotient structure of the Sharpe ratio, we are interested in construct-

ing a generalized Sharpe ratio by using the minimax risk measure −Mp to replace

the volatility
√
wTΣw in the denominator. As discussed above, the nonnegativity

assumption of the expected excess return is still necessary for the new Sharpe ratio.

For a similar reason, the denominator of the new Sharpe ratio needs to be positive.

But unfortunately, −Mp is negative in general. Therefore, it is infeasible to straightly

adopt the original minimax risk measure. To overcome this difficulty, we revise the

minimax risk measure by guaranteeing the denominator positive with a pre-selected

parameter λ. In particular, we consider λ−Mp instead of −Mp, where λ is a constant

such that λ−Mp > 0 for all the concerned portfolios. The validness of this revision

is evident. The duty of the risk measure is to rank the risk of portfolios; in this sense,

λ−Mp is consistent with −Mp.

In what follows, we study a generalized l1-sparse minimax Sharpe ratio model

based on the revised minimax risk measure, i.e.,

min
w,Mp

− rTw − rf
λ−Mp

+ τ‖w‖1

s.t. r̄T
t w ≥Mp, t = 1, · · · , T

1Tw = 1, w ≥ α,

(4.3)

where rf is the risk-free rate, and λ is a parameter such that λ −Mp > 0 over the

constraint set. Moreover, we assume that rTw− rf ≥ 0 is satisfied for all the feasible

portfolios. The relations in Proposition 4.3.1 still hold for (4.3).

The choice of λ influences the final result. Figure 4.1 states a return-risk space,

where point A(λ1) represents the excess rate of return of portfolio A and its corre-

sponding minimax risk revised by λ1, and the other points are defined similarly. In

this space, the value of the Sharpe ratio is expressed by the slope of the point. As we

112



can see from Figure 4.1, with the selection of λ1, portfolio A is better than portfolio

B since the gradient of A(λ1) is steeper. While in the situation with λ2, the result is

the opposite. However, we need to emphasize that, as long as λ is selected such that

λ −Mp > 0, the revised minimax risk measure remains the essence of the original

one, thus the corresponding result is always reasonable.

Excess Rate of Return

R
ev

is
ed

R
is

k

A(λ1) A(λ2)

B(λ1) B(λ2)

Figure 4.1: Choice of λ

The parametric algorithm

Here, we investigate a global algorithm for the l1-sparse minimax Sharpe ratio model

(4.3). To this end, we study a generalization of the parametric algorithm proposed

by Konno & Kuno (1990), which is to minimize the sum of a differentiable convex

function and a linear fractional function subject to linear inequality constraints.

Specifically, we aim to develop a parametric algorithm for the following generalized

linear fractional programming problem

min
x

g(x)− cT
1 x+ c10

cT
2 x+ c20

s.t. x ∈ X =: {x ∈ Rn : A1x ≥ b1, A2x = b2},

(4.4)
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where g : Rn → R ∪ {+∞} is a convex but not necessarily differentiable function.

Moreover, c1, c2 ∈ Rn, c10, c20 ∈ R, A1 ∈ Rp×n, A2 ∈ Rq×n, b1 ∈ Rp, and b2 ∈ Rq are

given coefficients. We assume that the feasible region X is nonempty and bounded

and that

cT
1 + c10 ≥ 0 and cT

2 + c20 > 0 for all x ∈ X.

We first consider a master problem of (4.4)

min
x,ξ

g(x)− 2ξ
√
cT

1 x+ c10 + ξ2(cT
2 x+ c20)

s.t. x ∈ X, ξ ≥ 0,

(4.5)

where ξ ∈ R is an auxiliary single variable. Proposition 4.3.2 (Konno & Kuno (1990),

Theorem 4.3) is a fundamental property for designing the parametric algorithm,

where the relation between (4.4) and (4.5) is presented.

Proposition 4.3.2. Let (x∗, ξ∗) be an optimal solution of (4.5). Then x∗ is an

optimal solution of (4.4).

Let P (ξ) be the optimal value of the following convex optimization problem, an

associated problem of (4.5) with a specific ξ ≥ 0,

min
x

g(x)− 2ξ
√
cT

1 x+ c10 + ξ2(cT
2 x+ c20)

s.t. x ∈ X.
(4.6)

According to Proposition 4.3.2, an optimal solution of (4.4) can be obtained by

solving (4.6) with ξ = ξ∗, where ξ∗ is a nonnegative number such that P(ξ∗) ≤

P(ξ) for all ξ ≥ 0. Therefore, the main idea of the parametric algorithm is to solve

(4.6) over all ξ ≥ 0, then the solution corresponding to the smallest optimal value

of (4.6) produces an optimal solution of (4.4). However, it is hard to solve (4.6)

when ξ → +∞. As a matter of fact, for some classes of parametric programming
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problems, all the problems with sufficiently large ξ, say ξ ≥ ξmax, share the same

optimal solutions, say x∗max. Following this property, we can focus on [0, ξmax] instead

of [0,+∞). Therefore, we need to prove that this property is satisfied for (4.5).

Proposition 4.3.3. There exists ξmax ∈ R such that x∗max is an optimal solution of

(4.6) for any ξ ≥ ξmax, where x∗max ∈ S∗ := arg min{g(x) : x ∈ S∗1},

S∗1 := arg max{cT
1 x : x ∈ S∗2}, and S∗2 := arg min{cT

2 x : x ∈ X}.

If S∗2 is a singleton, then x∗max = arg min{cT
2 x : x ∈ X}.

Proof. We prove the following equivalent statement: there exists ξmax ∈ R such that

F (x, ξ) ≥ F (x∗max, ξ) for all ξ ≥ ξmax and x ∈ X\S∗. Let γ1(x) := cT
2 x − cT

2 x
∗
max,

γ2(x) :=
√
cT

1 x+ c10 −
√
cT

1 x
∗
max + c10, and γ3(x) := g(x)− g(x∗max). Clearly,

F (x, ξ)− F (x∗max, ξ) = γ1(x)ξ2 − 2γ2(x)ξ + γ3(x).

We consider three cases: x ∈ S∗1\S∗, x ∈ S∗2\S∗1 , and x ∈ X\S∗2 .

Case (i). Let x ∈ S∗1\S∗. We have that γ1(x) = γ2(x) = 0 and γ3(x) > 0. Then

F (x, ξ) ≥ F (x∗max, ξ) holds for all ξmax ∈ R.

Case (ii). Let x ∈ S∗2\S∗1 . We have that γ1(x) = 0 and γ2(x) < 0. Then ξmax

satisfying F (x, ξ) ≥ F (x∗max, ξ) exists in that γ3(x) is bounded.

Case (iii). Let x ∈ X\S∗2 . We have that γ1(x) > 0 and

F (x, ξ)− F (x∗max, ξ)

γ1(x)
=

(
ξ − γ2(x)

γ1(x)

)2

+
γ3(x)

γ1(x)
−
(
γ2(x)

γ1(x)

)2

.

Then it follows from the boundedness of γ2(x)
γ1(x)

and γ3(x)
γ1(x)

that there exists ξmax such

that F (x, ξ) ≥ F (x∗max, ξ) for all x ∈ X\S∗2 and ξ ≥ ξmax.

From all cases, the statement is true.
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Although Konno & Kuno (1990) provided an approach to finding x∗max for a

generalized linear multiplicative programming problem, we need to point out that

their criteria may fail when the associated problem has more than one solution.

Now, we present how to locate ξmax using x∗max. When ξ ≥ ξmax, as x∗max is an

optimal solution of (4.6) and the linearity constraint qualification (LCQ) is satisfied,

there exist multipliers λ := (λ1, . . . , λp) ∈ Rp and µ := (µ1, . . . , µq) ∈ Rq such that


0 ∈ ∂g(x∗max)−

c1√
cT

1 x
∗
max + c10

ξ + c2ξ
2 − AT

1 λ− AT
2 µ

λi(A1x
∗
max − b1)i = 0, λi ≥ 0, i = 1, . . . , p,

where (A1x
∗
max− b1)i represents the ith element of the vector A1x

∗
max− b1. Let λ̄ and

Ā1 be the sub-vector and sub-matrix of λ and A1 corresponding to active constraints

in A1x
∗
max ≥ b1 (i.e., the inequality is strict). Then, the above system becomes

AT
0 ν ∈ ∂g(x∗max)−

c1√
cT

1 x
∗
max + c10

ξ + c2ξ
2,

where A0 =

[
Ā1

A2

]
and ν =

[
λ̄

µ

]
. As a result, ξmax can be estimated through the

following system


AT

0 ν ∈ ∂g(x∗max)−
c1√

cT
1 x
∗
max + c10

ξ + c2ξ
2

λ̄ ≥ 0,

(4.7)

Solving (4.7) can be expensive and complicated. But fortunately, when A0 is a

matrix of full-rank square, the process can be much simplified. With this assumption,

(4.7) can be rearranged as ν ∈ Q0 − q1ξ + q2ξ
2

λ̄ ≥ 0,
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where Q0 := {(AT
0 )−1} × ∂g(x∗max), q1 :=

(AT
0 )−1c1√

cT1 x
∗
max+c10

, and q2 := (AT
0 )−1c2. Remark-

ably, Q0 can be viewed as a vector, where the elements are sets rather than numbers.

Let Q
(λ)
0 , q

(λ)
1 , and q

(λ)
2 be the sub-vectors of Q0, q1, and q2 corresponding to λ. Then,

the existence of λ implies that

q
(λ)
0 − q

(λ)
1 ξ + q

(λ)
2 ξ2 ≥ 0 and q

(λ)
0 = max{Q(λ)

0 }, (4.8)

where q
(λ)
0 = max{Q(λ)

0 } means that q
(λ)
0 is a vector consisting of the maximums of

all sets in Q
(λ)
0 . Noting that the existence of λ is absolute, we have that q

(λ)
2 ≥ 0.

That is, the solution of (4.8) can be derived explicitly.

As discussed above, we conclude the parametric algorithm in two steps.

Step 1. Find x∗max by solving problems in Proposition 4.3.3 (see S∗, S∗1 ,

and S∗2) and ξmax by solving (4.7) or (4.8).

Step 2. If ξmax ≤ 0, then x∗max is the global solution of (4.4); otherwise,

solve (4.6) over ξ ∈ [0, ξmax], then the solution x∗ corresponding to the

smallest optimal value is a global solution of (4.4).

Discretization is a practical method to search the minimum optimal value of

(4.6) over [0, ξmax]. More precisely, we first divide the interval [0, ξmax] into many

subdivisions and then solve (4.6) with ξ at every breakpoint. If all the subdivisions

are narrow enough, the resulting solution would be sufficiently close to a global

solution of (4.4).

We end the part by some remarks for the parametric algorithm.

Remark 4.3.4.

(1). Konno & Kuno (1990) adopted the generalized inverse matrix to solve (4.7).

However, this method possibly leads to a wrong ξmax when A0 is not a matrix

of full-rank square.

117



(2). The assumption that A0 is a matrix of full-rank square is not very strict. For

instance, it is satisfied if S∗2 in Proposition 4.3.3 is a singleton and the Linear

independence constraint qualification (LICQ) holds at x∗max.

(3). Every step of locating ξmax is sufficient and necessary; thus, ξmax derived by

the above process is exact for the problem.

4.4 Numerical Experiments

This section evaluates the numerical performance of the lp-sparse (0 < p ≤ 1) min-

imax model (4.2) and l1-sparse minimax Sharpe ratio model (4.3) using the weekly

historical data of 1200 stocks from the Hang Seng, Shanghai Composite, and NAS-

DAQ stock markets (400 stocks from each) from 1 January 2005 to 31 December

2019. The rate of return Rjt is calculated by the formula Rjt =
pj,t+1−pjt

pjt
, where pjt

represents the price of stock j in week t. The expected rate of return is estimated

by the average rate of return, i.e., r = ( 1
T

T∑
t=1

R1t, · · · , 1
T

T∑
t=1

RNt).

For (4.2), the l1-sparse minimax model is a convex optimization problem, while

the model becomes nonconvex when 0 < p < 1. Therefore, we treat them separately

in the testing. As the l1/2 norm has been shown to be the best in the literature

(see Chartrand (2007) and Hu et al. (2017)), we use the l1/2-sparse minimax model

to typify the case 0 < p < 1. Benchmarks are the equal-weighted rule and the l1-

sparse and l1/2-sparse mean-variance models (4.1). The equal-weighted rule, taking

w = (1/N, · · · , 1/N), has been illustrated to outperform many portfolio selection

models (see DeMiguel et al. (2007)).

We now present the computation for all the concerned models one by one. All

the experiments are completed in MATLAB R2020a and Windows 10 on a 64-bit

PC with an i7-4790 CPU and 32GB RAM.

For the l1-sparse minimax model, we first translate it into a smooth formulation
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and then adopt the optimization toolbox (function ‘linprog’) in Matlab to solve the

equivalent problem. With an auxiliary variable u := |w|, the model (4.2) with p = 1

can be equivalently written as a linear programming problem

min
u,w,Mp

−Mp + τ · 1Tu

s.t. − u ≤ w ≤ u

r̄T
t w ≥Mp, t = 1, · · · , T

rTw ≥ G, 1Tw = 1, w ≥ α.

This is a parametric linear programming problem with respect to τ . A similar trans-

formation can be applied to the l1-sparse mean-variance model. According to Best

& Grauer (1991) and Berkelaar et al. (1997), there exists a finite set of breakpoints

0 ≤ τ1 < · · · < τK < +∞ such that the optimal solution set keeps unchanged on

any (open) interval between two successive breakpoints, which is also observed in

the figures of Experiment 2.

The computation of the l1-sparse mean-variance model is conducted by the CVX

toolbox (see Grant et al. (2020)). Furthermore, the iterative reweighted minimiza-

tion method provided by Lu (2014b) is utilized to solve the l1/2-sparse minimax and

mean-variance models. The l1-sparse minimax Sharpe ratio model is computed by

the parametric algorithm in Subsection 4.3.2 and Algorithm 2 in Chapter 3, respec-

tively. To this end, we need to transform the model (4.3) into a generalized bilinear

framework. By virtue of auxiliary variables u := |w| and z :=
rTw−rf
λ−Mp

, we obtain an

Table 4.1: Computational time for different sparse models

l1-MM l1/2-MM l1-MV l1/2-MV l1-SR(p) l1-SR(a)

0.56s 2.90s 24.35s 85.91s 225.33s 117.21s
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equivalent problem of (4.3), i.e.,

min
u,w,z,Mp

− z + τ · 1Tu

s.t. − u ≤ w ≤ u

z ·Mp + rTw − λz = rf

r̄T
t w ≥Mp, t = 1, · · · , T

1Tw = 1, w ≥ α,

which is bilinear with respect to (u,w, z) and Mp.

Preliminarily, we test the computational time for all models with a specific τ

(see Table 4.1). In Table 4.1, ‘l1-SR(p)’ and ‘l1-SR(a)’ represent the result of the

parametric algorithm and Algorithm 2. For reliability, the selected value of τ for

each model corresponds to 12–14 active stocks.

Here, we begin to examine the sparse minimax models using data from the real

market. Initially, we obverse the out-of-sample rate of return of the l1-sparse minimax

model with different τ in the first experiment. Then, in Experiment 2, we investigate

the effect of the regularization parameter τ on the sparsity and short selling of

the optimal portfolio. Finally, using the descent tendency observed in the second

experiment, we conduct the last experiment, comparing the performance of sparse

minimax models and sparse mean-variance models at the same level of sparsity.

Experiment 1. Return with Different Regularization Parameters

In this experiment, we test the out-of-sample rate of return of the l1-sparse minimax

model (4.2) with different τ and compare it with the equal-weighted rule. We set

the required rate of return G to be the average rate of return of all the stocks. Each

time period is taken as one week, and the number of periods is set as T = 11. The

lower bound α is fixed at −0.2; that is, the short selling for each stock is limited to
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under 20%.
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Figure 4.2: Rate of return with different τ

We apply the rolling window process. In particular, for the current time period,

data from the previous 11 time periods (since T = 11) is used to determine the

coefficients of the model (i.e., r̄t, r, and G). Then, an optimal portfolio can be

obtained by solving the l1-sparse minimax model (4.2) with these r̄t, r, and G. The

out-of-sample rate of return is calculated by the obtained optimal portfolio and the

rate of return of the current time period. For example, the out-of-sample rate of

return in period 12 is estimated using the associated coefficients produced by data

from period 1–11 and the rate of return of all stocks in period 12, and the same

procedure is repeated in the sequential periods.

Figure 4.2 plots the out-of-sample rates of return of the equal-weighted rule and

the l1-sparse minimax model with τ = 0.06, 0.07, and 0.15, respectively. There are

many similarities between the four curves in terms of the trend. Specifically, those

rates of return increase or decrease at the same time in most periods. For the three

l1-sparse minimax models, a small τ leads to evident fluctuations while a larger one

produces fewer variations. This tendency is partly due to the effect of τ on the level

of short selling (see Proposition 4.3.1(2)). And as claimed in Luenberger (2013),

short selling is considered quite risky, thus causes fluctuations.
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Experiment 2. Descent Trend on Sparsity and Short Selling

In Experiment 2, we select 37 blue chips from the Hang Seng market to illustrate the

variation tendency of sparsity and short selling of the l1-sparse minimax model (4.2),

l1/2-sparse minimax model (4.2), and l1-sparse minimax Sharpe ratio model (4.3),

together with two benchmark models: the l1-sparse and l1/2-sparse mean-variance

models (4.1). For this purpose, we obverse their sparsity and short selling with τ

going through 0–0.05. We keep the basic setting the same as in Experiment 1. To

see the influence of the bound parameter α, we also experiment α = −0.5.

Figures 4.3(a) and 4.4(a) show that, for all the five models, the number of active

(nonzero) stocks in the optimal portfolio (i.e., the level of sparsity) decreases as the

value of τ increases, which can be explained by Proposition 4.3.1(1) on theoretical

considerations. The monotonicity of the l1-sparse minimax Sharpe ratio model is

less exact compared with that of the other two l1-sparse models. As τ goes up,

the curve representing the l1/2-sparse minimax (resp. mean-variance) model reduces

more dramatically than that of the l1-sparse minimax (resp. mean-variance) model.

This descent property is quite practical and critical for the following experiment.

More precisely, we can target optimal portfolios in which the number of active stocks

is required within a specific range by taking τ over a smaller interval.

Figures 4.3(b) and 4.4(b) demonstrate a similar descent trend in terms of the

short selling, which coincides with Proposition 4.3.1(2) for the l1-sparse models.

When 0 < p < 1, the relation ‖x‖pp = ‖x+‖pp + ‖x−‖pp partly explains the consistent

tendency between the sparsity and short selling. From Figures 4.3 and 4.4, a more

sparse portfolio, at the same time, is a portfolio with a smaller number of negative-

weighted stocks, and a quite sparse portfolio may not include any short selling.

Furthermore, we find that the selection of α does not influence the descent tendency,

and an extremely sparse portfolio is again attained with α = 0.5. The only difference
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is that the extremely sparse portfolio is obtained at a smaller τ for the model with a

larger α. It is also noteworthy that, in all the figures, graphs are piecewise constant

due to the parametric construction of sparse models, as analyzed in Subsection 4.3.1.

In fact, the 1200-stock case shares the same descent trend. But for the problem

including 1200 stocks, three sparse minimax models vary in a relatively large range,

say 0–0.07, while the sparse mean-variance models vary in a quite narrow range,

say 0–10−8. The difference is attributed to the different orders of magnitude of the
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Figure 4.3: Performance with α = −0.2
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Figure 4.4: Performance with α = −0.5
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optimal objective functions. For the 37-stock case, the orders of the minimax and

mean-variance models are both −1. However, the respective orders are 1 and −11

for the 1200-stock problem.

Experiment 3. Performances under Fixed Level of Sparsity

In the last experiment, the rolling window process mentioned in Experiment 1 is

repeated over five observation periods to compare different sparse models with 1200

stocks. The desired rate of return G is retaken to be the maximal rate of return of

all stocks. The level of short selling (α = −0.2) and the number of periods (T = 11)

remain unchanged, while the out-of-sample observation period is reset as 11 weeks.

For example, data from period 688–698 are used to determine the optimal weights,

and then we use them to compute the out-of-sample performance (e.g., the rate of

return or Sharpe ratio) of period 699–709. As the same regularization parameter τ

in different sparse models generally corresponds to different levels of sparsity, there

is little comparability between different sparse models with the same τ . Therefore,

a more practical method is to compare them at the same level of sparsity. The

comparison in what follows is completed under this consideration.

The example tests the out-of-sample performance of the l1-sparse and l1/2-sparse

minimax models and l1-sparse minimax Sharpe ratio model under five levels of spar-

sity (see the last five columns in Table 4.2) from periods 699–709 to 703–713. The

l1-sparse and l1/2-sparse mean-variance models are considered as benchmarks. The

level of sparsity, say 11–20, means the number of active stocks is between 11 and

20, which can be achieved by adjusting the value of τ (see Experiment 2). However,

in general, more than one portfolio falls into the target level of sparsity. For this

situation, the smallest risk of these portfolios and its corresponding rate of return,

Sharpe ratio, and number of short selling stocks are considered. If the portfolio with

the minimum risk is still not unique, we select one with the maximal rate of return.
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Table 4.2: Performance of different sparse models

(a). l1-sparse minimax model

l1-MM
Equal-weighted 11–20 21–30 31–40 41–50 51–60

R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S

Period 699–709 0.007 0.032 0.218 0 0.012 0.112 0.109 10 0.033 0.248 0.133 21 0.034 0.443 0.076 31 0.046 0.511 0.090 40 0.072 0.616 0.118 50

Period 700–710 0.009 0.032 0.270 0 0.019 0.271 0.070 10 0.042 0.383 0.111 20 0.033 0.453 0.073 29 0.058 0.502 0.116 39 0.077 0.668 0.116 50

Period 701–711 0.008 0.032 0.237 0 0.097 0.325 0.298 12 0.150 0.424 0.353 21 0.169 0.612 0.277 31 0.238 0.713 0.334 40 0.286 0.949 0.301 51

Period 702–712 0.006 0.032 0.199 0 -0.004 0.307 -0.014 11 0.003 0.633 0.005 22 -0.002 0.974 -0.002 31 0.010 1.086 0.010 42 0.024 1.237 0.019 51

Period 703–713 0.004 0.029 0.150 0 0.022 0.179 0.123 9 0.099 0.252 0.393 21 0.127 0.387 0.329 31 0.155 0.525 0.296 40 0.196 0.677 0.289 51

(b). l1/2-sparse minimax model

l1/2-MM
Equal-weighted 11–20 21–30 31–40 41–50 51–60

R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S

Period 699–709 0.007 0.032 0.218 0 0.030 0.235 0.128 13 0.049 0.332 0.148 23 0.057 0.424 0.134 36 0.065 0.598 0.108 42 0.072 0.687 0.105 48

Period 700–710 0.009 0.032 0.270 0 0.050 0.476 0.105 14 0.008 0.625 0.013 24 0.033 0.762 0.043 37 0.033 0.835 0.039 42 0.044 0.967 0.046 53

Period 701–711 0.008 0.032 0.237 0 0.067 0.337 0.198 11 0.142 0.506 0.280 24 0.201 0.736 0.273 34 0.278 0.942 0.295 44 0.299 1.131 0.264 51

Period 702–712 0.006 0.032 0.199 0 0.051 3.182 0.016 11 0.758 6.499 0.117 16 -0.009 0.418 -0.022 31 -0.010 1.259 -0.008 44 0.016 1.817 0.009 50

Period 703–713 0.004 0.029 0.150 0 0.037 0.098 0.384 5 0.104 0.381 0.273 23 0.155 0.411 0.377 32 0.194 0.603 0.321 43 0.235 0.710 0.331 53

(c). l1-sparse mean-variance model

l1-MV
Equal-weighted 11–20 21–30 31–40 41–50 51–60

R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S

Period 699–709 0.007 0.000 31.384 0 0.014 0.004 3.177 7 0.013 0.004 3.156 11 0.014 0.004 3.259 14 0.014 0.004 3.393 18 0.015 0.004 3.653 27

Period 700–710 0.009 0.000 32.612 0 0.012 0.009 1.442 6 0.011 0.008 1.362 7 0.010 0.008 1.288 16 0.009 0.007 1.193 24 0.007 0.007 1.040 35

Period 701–711 0.008 0.000 25.308 0 0.021 0.027 0.809 5 0.025 0.026 0.963 7 0.032 0.027 1.215 15 0.029 0.023 1.249 23 0.027 0.022 1.226 27

Period 702–712 0.006 0.000 21.137 0 0.011 0.008 1.337 7 0.012 0.008 1.404 9 0.013 0.008 1.531 12 0.010 0.008 1.288 14 0.019 0.010 1.909 23

Period 703–713 0.004 0.000 18.594 0 0.006 0.006 0.995 6 0.005 0.005 0.916 9 0.004 0.006 0.737 10 0.005 0.006 0.843 14 0.005 0.006 0.843 21

(d). l1/2-sparse mean-variance model

l1/2-MV
Equal-weighted 11–20 21–30 31–40 41–50 51–60

R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S R RiskMV SRMV S

Period 699–709 0.007 0.000 31.384 0 0.033 0.016 2.060 8 0.015 0.006 2.592 12 0.009 0.007 1.341 19 0.030 0.015 1.940 24 0.008 0.007 1.231 36

Period 700–710 0.009 0.000 32.612 0 0.006 0.009 0.687 6 0.040 0.034 1.197 17 0.006 0.009 0.692 20 0.006 0.009 0.718 25 0.007 0.009 0.769 32

Period 701–711 0.008 0.000 25.308 0 0.055 0.043 1.263 7 0.054 0.043 1.247 13 0.053 0.045 1.162 18 0.052 0.045 1.145 30 0.052 0.045 1.155 32

Period 702–712 0.006 0.000 21.137 0 0.024 0.012 2.078 5 0.021 0.011 1.851 12 0.021 0.011 1.867 14 0.021 0.011 1.865 19 0.024 0.012 2.081 23

Period 703–713 0.004 0.000 18.594 0 0.018 0.006 2.911 4 0.015 0.006 2.484 10 0.015 0.006 2.441 15 0.008 0.006 1.534 17 0.013 0.006 2.424 26

(e). l1-sparse minimax Sharpe ratio model (parametric method)

l1-SR(p)
Equal-weighted 11–20 21–30 31–40 41–50 51–60

R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S

Period 699–709 0.007 0.032 0.218 0 0.026 0.274 0.095 11 0.069 0.533 0.130 20 0.090 0.804 0.112 31 0.113 1.042 0.108 42 0.130 1.199 0.108 50

Period 700–710 0.009 0.032 0.270 0 0.023 0.431 0.054 11 0.028 0.563 0.050 20 0.063 0.893 0.071 32 -0.084 1.148 -0.073 42 0.097 1.312 0.074 50

Period 701–711 0.008 0.032 0.237 0 0.028 0.244 0.113 11 0.032 0.517 0.062 20 0.064 0.771 0.084 30 0.107 1.184 0.091 40 0.151 1.462 0.103 52

Period 702–712 0.006 0.032 0.199 0 0.025 0.295 0.083 10 0.046 0.556 0.082 21 0.065 0.791 0.082 30 0.082 1.056 0.077 40 0.082 1.316 0.063 50

Period 703–713 0.004 0.029 0.150 0 -0.001 0.306 -0.005 10 0.006 0.552 0.011 21 0.000 0.820 0.000 30 0.000 1.168 0.000 40 0.008 1.563 0.005 52
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(f). l1-sparse minimax Sharpe ratio model (ADMM)

l1-SR(a)
Equal-weighted 11–20 21–30 31–40 41–50 51–60

R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S

Period 699–709 0.007 0.032 0.218 0 0.019 0.171 0.111 9 0.037 0.278 0.133 16 0.052 0.495 0.105 25 -0.004 0.019 -0.210 32 0.094 0.777 0.121 39

Period 700–710 0.009 0.032 0.270 0 -0.011 0.407 -0.027 7 0.028 0.903 0.031 15 0.041 0.872 0.047 22 0.078 1.472 0.053 29 0.106 3.655 0.029 36

Period 701–711 0.008 0.032 0.237 0 0.038 0.826 0.046 5 0.062 2.067 0.030 11 0.081 1.841 0.044 24 0.065 1.275 0.051 29 0.137 3.341 0.041 41

Period 702–712 0.006 0.032 0.199 0 0.009 0.087 0.103 6 0.021 0.107 0.197 13 0.046 0.164 0.281 29 0.097 0.348 0.279 31 0.091 0.316 0.288 35

Period 703–713 0.004 0.029 0.150 0 0.025 0.087 0.288 7 -0.014 0.438 -0.032 15 0.065 0.259 0.251 20 -0.007 0.104 -0.067 27 0.013 0.047 0.274 31

In Tables 4.2(a) to 4.2(f), R, RiskMV/RiskMV, SRMM/SRMV, and S represent the out-

of-sample rate of return, out-of-sample risk, out-of-sample Sharpe ratio, and the

number of short selling stocks. The result of equal-weighted rule is also presented for

reference. The equal-weighted rule performs best in terms of the Sharpe ratio due

to its extremely low level of risk. On the contrary, the rates of return of five sparse

models are more favorable than those of the equal-weighted strategy. From Tables

4.2(a), 4.2(b), 4.2(e), and 4.2(f), we observe that, for all the sparse minimax models,

a more sparse optimal portfolio tends to have a lower rate of return and a lower level

of risk. However, changes in the rate of return and risk are not so significant for the

l1-sparse and l1/2-sparse mean-variance models.

Next, we observe the l1-sparse and l1/2-sparse minimax models. When the level

of sparsity is extremely high, particularly with 11− 20 active stocks, the l1/2-sparse

minimax model outperforms the l1-sparse minimax rule, both in the aspect of the rate

of return and Sharpe ratio. For the less sparse optimal portfolios, particularly with

41–50 or 51–60 active stocks, they perform closely. Namely, the l1/2-sparse minimax

model would be a desirable choice for investors who seek extremely sparse portfolios,

while the l1-sparse minimax model is more beneficial to those who prefer relatively

less sparse portfolios due to its computational simplicity (see Table 4.1). For the

l1-sparse and l1/2-sparse mean-variance models, we do not observe any superiority

of the l1/2-sparse formulation. As a whole, their out-of-sample performances appear

to be commensurate for all levels of sparsity. Then, we compare two methods for
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Table 4.3: Performance with different p

Period 701–711
11–20 21–30 31–40 41–50 51–60

R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S R RiskMM SRMM S

l1/3-MM 0.065 0.422 0.154 13 0.163 0.453 0.361 22 0.150 0.683 0.220 31 0.233 0.837 0.279 42 0.277 0.984 0.281 51

l1/2-MM 0.084 0.322 0.261 12 0.113 0.555 0.204 22 0.165 0.704 0.235 33 0.215 0.799 0.269 41 0.277 0.983 0.282 51

l2/3-MM 0.077 0.455 0.170 14 0.117 0.528 0.222 22 0.183 0.682 0.269 33 0.213 0.789 0.270 41 0.269 1.031 0.261 52

Table 4.4: Performance with different α

Period 702–712 α = −0.02 α = −0.05 α = −0.2 α = −0.5

(level 11–20) R Risk SR S R Risk SR S R Risk SR S R Risk SR S

l1-MM 0.003 0.130 0.020 14 0.010 0.130 0.074 11 -0.004 0.307 -0.014 11 0.103 0.505 0.205 13

l1/3-MM -0.006 0.157 -0.040 16 0.004 0.155 0.029 0 0.060 0.292 0.206 13 0.104 0.495 0.209 12

l1/2-MM -0.000 0.142 -0.003 11 0.000 0.181 0.002 13 0.051 3.182 0.016 11 0.104 0.502 0.208 12

l2/3-MM 0.001 0.130 0.006 13 -0.000 0.204 -0.002 13 0.031 0.408 0.075 13 0.102 0.498 0.204 12

l1-MV 0.013 0.009 1.401 14 0.020 0.012 1.623 11 0.011 0.008 1.337 7 0.019 0.010 1.971 5

l1/2-MV -0.007 0.013 -0.561 16 0.019 0.011 1.727 13 0.024 0.012 2.078 5 0.035 0.015 2.305 5

l1-SR(p) 0.004 0.141 0.028 14 0.010 0.204 0.049 17 0.025 0.295 0.083 10 0.079 0.795 0.100 12

l1-SR(a) 0.006 0.094 0.064 12 0.013 0.169 0.077 11 0.009 0.087 0.103 6 0.035 0.337 0.104 7

solving the l1-sparse minimax Sharpe ratio model (4.3). The result in Table 4.2(e)

seems better and more stable than that in Table 4.2(f), but the advantages are not

evident. And we also need to notice that the latter is more efficient in terms of the

computational time (see Table 4.1).

Remarkably, the Sharpe ratios of the minimax model and mean-variance model

are not comparable in that they are calculated by their respective risk, which are

not comparable. Therefore, the only performance measure for comparing the sparse

minimax models and sparse mean-variance models is the out-of-sample rate of return.

Tables 4.2(a) and 4.2(c) (resp. Tables 4.2(b) and 4.2(d)) illustrate that the optimal

portfolios of the l1-sparse (resp. l1/2-sparse) minimax model tend to achieve higher

rates of return than those of the l1-sparse (resp. l1/2-sparse) mean-variance model.

From Tables 4.2(a) and 4.2(e) (or 4.2(f)), the l1-sparse minimax model and l1-sparse

minimax Sharpe ratio model perform similarly. Although the computation of the

l1-sparse minimax model is easier, the l1-sparse minimax Sharpe ratio model still
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would be a good choice for investors who do not have the desired return in advance.

We also conduct the above experiment with different p (i.e., p = 1/3 and 2/3)

and α (i.e., α = −0.02, −0.05, and −0.5), respectively. The results of periods 701–

711 and 702–712 are listed in Tables 4.3 and 4.4 as the representatives. For the

three lp-sparse minimax models, it seems that they have similar results when the

number of active stocks is between 41 − 50 or 51 − 60. For other levels of sparsity,

the performances are distinct, and it is hard to say which is better. Concerning the

effect of α, with a larger level of sparsity, we observe that higher rates of return

and Sharpe ratios are obtained for all the models and that the risks of three sparse

minimax models increase. However, the risks of two sparse mean-variance models

are stable with different α.

In conclusion, all sparse minimax models are efficient for promoting the sparsity

of the optimal portfolios. Moreover, with the level of sparsity fixed, the numerical

performance of all the sparse minimax models is satisfactory compared to that of

the sparse mean-variance models. The l1/2-sparse minimax model is advantageous

when the investor requires an extremely sparse portfolio, while the l1-sparse minimax

model is favorable for investment with a less strict requirement for sparsity. For the

l1-sparse minimax Sharpe ratio model, it is preferred when the desired return is not

given in advance. Furthermore, optimal portfolios including fewer stocks of the lp-

sparse (0 < p ≤ 1) minimax models tend to have lower rates of return and lower

levels of risk. However, for the lp-sparse mean-variance models, the corresponding

changes are not so significant.
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Chapter 5

Conclusions

In this thesis, we proposed an extrapolated inexact quasisubgradient method and a

penalty extrapolated ADMM method, provided their convergence results, and illus-

trated their efficiency by numerical testing. Furthermore, we also constructed sparse

minimax portfolio selection models by using the lp (0 < p ≤ 1) norm and then

explored their properties theoretically and numerically.

We investigated the quasisubgradient method with extrapolation in respect of

the convergence in objective values, iteration complexity and rate of convergence.

When the diminishing stepsize is decaying as a power function and the extrapolation

rule is decreasing not less than a power function, the method provides a sublinear

rate O
(
τ k

s)
(for some 0 < s < 1 and 0 < τ < 1) of convergence to the optimal

solution set or to a ball of the optimal solution set, which is faster than O
(
1/kh

)
for each h > 0. This is new in the literature. In a similar way, we proposed a

primal-dual quasisubgradient method with extrapolation. Convergence results of

both methods with extrapolation are consistent with those without extrapolation

when the extrapolation step is appropriately selected. The numerical results indicate

that the number of iteration required for obtaining an approximate optimal solution

when using the quasisubgradient method with extrapolation is much less than that

when using the corresponding quasisubgradient methods without extrapolation.
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For the penalty extrapolated ADMM algorithm, we established the subsequential

convergence, iteration complexity, and global convergence of the inner iterations

and obtained the convergence to the stationary point of the outer iterations. The

iteration complexity of the inner algorithm is O(1/k), which is the same as some

nonextrapolated convex and nonconvex ADMM methods in He & Yuan (2012, 2015),

and Hong et al. (2016) and better than O(1/
√
k) for extrapolated convex ADMM

methods in Chen et al. (2015). From the numerical experiment of a nonconvex

QCQP problem, we observed that our proposed method has an advantage of running

time compared to the SDR method, which is a popular method for solving QCQP

problems.

We also considered the lp-sparse (0 < p ≤ 1) minimax portfolio model and the l1-

sparse minimax Sharpe ratio model and developed a parametric algorithm for solving

the second model. A descent property of the lp norm of the optimal portfolio with

respect to the regularization parameter was obtained for the proposed models. In

numerical experiments, we found that all the sparse minimax models are efficient for

promoting the sparsity of the optimal portfolios. The l1/2-sparse minimax model is

advantageous when the investor requires an extremely sparse portfolio. However, the

l1-sparse minimax model is favorable for the investment with a less strict requirement

for sparsity. The l1-sparse minimax Sharpe ratio model is preferred when the desired

return is not given in advance.
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