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Abstract 

It is not hard to imagine making a choice between items of the same category, for 

example, two watches vary in price, accuracy, design, etc.  A decision can be made by 

comparing these attributes.  This kind of everyday decisions has been extensively 

investigated over the past decades and the underlying neural mechanisms were reviewed 

in Chapter 1.  However, it is also ubiquitous to face decisions between ostensibly 

incomparable options (e.g. wages versus vacation, staying in the current company versus 

searching alternatives in the job market).  A question arises, how could these 

heterogeneous options be compared?  Since there are countless decisions, it is impossible 

for the brain to have individual mechanisms for every decision.  I therefore propose the 

brain should respond to decisions by the classes of the options involved.  I introduce an 

approach of classification according to the qualitative differences between the options.  

As a result, options are categorized into either items or environments.  Items are concrete 

options that provide direct payoff whereas environments are options which lead to 

potential impacts in the future as opposed to direct payoff (e.g. searching in the job 

market provides an opportunity to get better jobs but not directly provide an offer).  With 

this classification, I combined human behavioural testing, deep learning neural network, 

and brain imaging to address the central question of this thesis – whether there is a neural 

mechanism which can make comparison among all different kinds of option or there are 

different neural mechanisms to work with particular decisions. 

To address the central question of this thesis, first it is necessary to investigate 

environment choice (i.e. decision between environments), which receives little attention 

and remains highly elusive.  In Chapter 2, I examined human decision-making 
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specifically when decisions are made between environments via a behavioural study.  In a 

binary decision-making task, environments were characterized by their complex 

structures – each environment was composed of 20 items and hence massive information 

was embedded.  Yet, the results demonstrated that people were capable of integrating the 

information in the environments to guide their choices.  Particularly, I found that people 

preferred environments with larger means or variances in their component item 

distributions.  After that, the second study involved a two-stage decision-making task to 

directly contrast environment choice and item choice.  Behavioural results reported in 

Chapter 3 showed that context-dependent adaptation, an essential property of decision-

making, was observed in both environment choice and item choice.  It served as the basis 

for developing computational models in Chapter 4 and examination of neural signals in 

Chapter 5. 

To understand the neurocomputation during decision-making, in Chapter 4, I 

developed and tested different computational models to describe participants’ choice 

behaviour in the studies reported in Chapters 2 and 3.  Specifically, I employed 

convolutional neural network (CNN), general linear model, cumulative prospect theory, 

mean-variance-skewness model, power law model, and autoencoder to fit the behavioural 

data of those studies.  Model comparison results showed that the CNN, a deep learning 

neural network, best describes participants’ decision-making behaviour in both studies.  

The CNN possesses a strength over traditional computational models that it allows fewer 

a priori assumptions, by which implicit features of the valuation process can be captured 

and described even some they are not specified explicitly.  Besides, it possesses multiple 

nodes and multiple layers for representation of option value, facilitating the examination 
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of multivariate neural signals in Chapter 5.  A closer inspection using a series of 

representational similarity analysis (RSA), a multivariate analysis, ascertained that the 

CNN multi-nodal representations encode the complex information of the item 

distributions in the environments. 

Chapter 5 reports a functional magnetic resonance imaging (fMRI) study that 

showed a double dissociation of the lateral frontopolar cortex (FPl) and ventromedial 

prefrontal cortex (vmPFC) in environment choice and item choice.  Closer inspection 

revealed both the FPl and vmPFC signals exhibited essential properties of value 

comparison process (e.g. activity correlated with the difference in value between options; 

invariance to salience), suggesting the FPl and vmPFC did subserve the value comparison 

process.  In addition, I performed a series of RSA to test the similarity of the FPl multi-

voxel activation patterns during environment choice with the multi-nodal representations 

of CNN variants that employ single or multiple feature detectors for encoding 

environment value.  Notably, the FPl was found similar to the CNN with multiple feature 

detectors only, and the FPl was the most similar to the CNN developed in Chapter 4.  It 

implies the FPl and CNN shared similar multiple parallel encoding processes in valuation 

of environments and the FPl carried a multivariate coding for the complex environment 

information. 

To conclude, in this thesis I proposed an approach of classification to categorize 

options into items or environments according to their qualitative differences.  With the 

use of behavioural testing, computational models, and brain imaging, I demonstrated 

environment choice and item choice were indeed dissimilar and they involved distinct 

neural mechanisms.  Dissociable roles of the FPl and vmPFC in environment choice and 
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item choice were revealed.  It reflects a functional specialization in decision-making that 

the brain requires multiple neural substrates to work with particular types of decision as 

opposed to a single neural substrate to deal with all kinds of decision. 



1 

 

Chapter 1 Introduction 

1.1 Background 

Socrates asked “O my friend, why do you who are a citizen of the great and mighty and 

wise city of Athens care so much about laying up the greatest amount of money and 

honor and reputation and so little about wisdom and truth and the greatest improvement 

of the soul, which you never regard or heed at all?” (Apology, 29d-e).  

 From the ancient times, people have been asking how the valuation process works 

during decision-making.  Even though making a living is the most predominant affair for 

the survival of human beings, people on occasion forgo the pursuit of basic needs and 

strive for higher-order affairs.  Liberty, justice, equality, conscientiousness etc., without 

any one of these affairs people can still stay alive but it is not rare to see social activists 

fight for righteousness despite the risk to be jailed.  Ostensibly, this is a matter of 

subjectivity that individual differences drive dissimilar valuation.  Nonetheless, there is a 

more intrinsic issue embedded which is overlooked and worth much more endeavour to 

explore: why different affairs can be compared in spite of their diverse forms, disparate 

functions and/or heterogeneous natures?  It is not hard to imagine making a choice 

between similar items, for example, two watches vary in price, accuracy, design, etc.  A 

decision can be made by comparison in these attributes.  However, decisions often 

involve items from different categories (e.g. buying a luxury watch or a high-end camera) 

and even heterogeneous, abstract options (e.g. vacation leave versus wages).  It is 

unintuitive to articulate how a decision is made in these scenarios but practically people 
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manage to choose.  It is intriguing to uncover how the valuation and comparison 

processes are carried out.  Whether there is a single decision-making system universally 

applicable for all kinds of options or distinct systems are required for different scenarios 

remains elusive.  This thesis aims to address this issue by investigating the neural 

mechanisms underlying value-based decision-making.  Specifically, this thesis discussed 

the features and distinctiveness of different types of decisions, models for estimation of 

the value computation process, and the neural substrates underpinning valuation and 

value comparison were examined. 

1.2 Operational definition 

To systematically investigate the mechanisms of decision-making, the first crucial 

step is to categorize decisions.  However, it is an equivalently difficult task because there 

are infinite options and thus limitless criteria for categorization.  For instance, a 

consensus could be easily reached that choosing between an apple and an orange 

qualitatively differs from deciding between two career paths.  Differentiation between 

these two kinds of decision could be accounted for by trivial decision versus important 

decision, or on the other hand decision involving concrete options versus decision 

involving abstract options.  A well-structured classification is thus warranted.  To this 

end, I proposed a classification via which options are categorized according to their 

qualitative differences, thereby decisions can be categorized with respective to their 

options involved.  Consequently, in this thesis, options are categorized into two main 

classes: (1) item and (2) environment.   

1.2.1 Item 
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To establish the basic understanding on decision-making, people started by 

investigating the simplest form of options, that is item.  Most often, routine decisions in 

our daily life involve selection between items and it has been the mainstream of the 

existing literature.  Items are referred to as options that are directly obtainable – the 

relation between selection of an item and acquisition of the item is straightforward.  For 

example, one is picking between Japanese sushi and Korean kimbap for lunch from the 

fridge.  A choice of sushi (kimbap) directly leads to its acquisition and hence the sushi 

(kimbap) is classified as an item.  Apart from this example of concrete food items, items 

often exist in other less intuitive forms.  It is worth noting that an option is classified as 

an item as long as selection of that option directly leads to acquisition of whom, 

regardless of whether the option is associated with deterministic or probabilistic 

outcomes.  An illustrative example is a lottery of 50/50 chance to win a prize of $100 is 

also deemed as an item.  The reason is if an individual buys a lottery ticket, s/he instantly 

obtains the lottery no matter it results in the prize or not. 

1.2.2 Environment 

By contrast, environments are characterized by their prospective nature, making 

them qualitatively different from items.  Despite the ubiquity and importance of 

environments in real life, environments receive far less attention in the existing literature.  

Here, an environment is referred to as a choice set of multiple items that brings in the 

opportunities to attain potential items, as opposed to direct acquisition of items.  In other 

words, selection of an environment only defines and constraints the items that can be 

encountered in the future.  Further decisions are needed in order to obtain any item.  For 

instance, a Japanese restaurant is an environment which serves with different Japanese 
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food items.  For an individual who intends to have sushi for dinner, making a choice of 

Japanese restaurant over a British restaurant comes up with the possibility to attain sushi.  

The sushi can be obtained only if further ordering is made. 

Although environments consist of multiple items, it is worth noting that 

environments should not be merely considered as aggregates of multiple items (e.g. 

assortments) although they both consist of multiple items.  Crucially, environments are 

distinguishable from aggregates by their prospective nature.  To illustrate, using the 

abovementioned example, a Japanese restaurant can be deemed as a collection of various 

food items.  However, going in the restaurant only facilitates the attainment of sushi as 

opposed to act as a direct proxy of sushi (e.g. the sushi may have sold out so it is not 

equivalent to acquisition of sushi).  By contrast, a snack assortment also provides a 

collection of various food items.  However, purchase of a snack assortment directly leads 

to all the food items.  In other words, the assortment can act as the proxy of any of its 

component item.  On the other hand, there is a temporal distancing between selection of 

an environment and the final outcome (i.e. item acquisition).  Nonetheless, it is a by-

product of the prospective nature of environments.  Fundamentally, temporal distancing 

is not a sufficient criterion to differentiate environments from items. 

1.3 Decision-making frameworks 

Valuation and value comparison are two indispensable processes for value-based 

decision and scrutinization of the functional specialization of these two processes are 

pivotal to the understanding of decision-making.  In the visual perception literature, 

functional specialization is established by conclusive evidence that the fusiform face area 
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(FFA) and parahippocampal place area are regions selective for perception of faces and 

houses respectively (Kanwisher & Yovel, 2006; Pitcher et al., 2019; Tong et al., 1998).  

In a similar vein, the functional specialization during decision-making could operate 

according to the class of the options under the item-environment dichotomy –the 

valuation processes of items and environments are subserved by separate neural 

substrates.  On the other hand, the FFA was also found activated when stimuli other than 

faces, that is objects which people were familiar with, were viewed (Gauthier et al., 1999, 

2000).  It suggests a generalization of encoding across divergent categories.  It is also 

possible for the case of valuation – a neural substrate could have a generalizable coding 

to a variety of options.  Apart from valuation, value comparison is another indispensable 

process in decision-making.  Previous findings have shown that value signals could 

emerge even though no value-based decisions were required (Lebreton et al., 2009; Levy 

et al., 2011; Lopez-Persem et al., 2020).  It implies the possiblity that the neural 

substrates subserving valuation and value comparison are dissociated.  In order to tease 

out the functional specialization during decision-making, three candidate frameworks are 

proposed here by which the valuation and value comparison processes can be 

disentangled: (1) Option Homogeneity Framework, (2) Decision Homogeneity 

Framework, and (3) Neural Common Currency Framework. 

 Under the Option Homogeneity Framework, each class of option has an exclusive 

neural substrate for valuation and within-class value comparison (Fig. 1.1; left panel).  As 

such, item choice and environment choice involve distinct neural substrates, and 

between-class decisions (i.e. item versus environment) will be subserved by another 

neural substrate.  On the other hand, the Decision Homogeneity Framework is similar to 
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the Option Homogeneity Framework that different neural substrates are required for 

within-class and between-class decisions separately (Fig. 1.1; middle panel).  However, 

the Decision Homogeneity Framework assumes all within-class decisions are subserved 

by one single neural substrate as opposed to distinct neural substrates.  Finally, the Neural 

Common Currency Framework posits a single neural substrate is sufficient to deal with 

the valuation for options of all classes and decisions of any kinds (Fig. 1.1; right panel).  

The possibility of all these frameworks was extensively discussed in the following 

chapters. 

 

Figure 1.1. Frameworks of the mechanisms underlying different decisions. The Option Homogeneity 

Framework (left panel) suggests there are distinct brain regions responsible for the valuation and value 

comparison of each class of option and a separate region is rerquired for between-class decisions (i.e. item 

versus environment). In contrast, the Decision Homogeneity Framework (middle panel) asserts that only 

two regions are required; one region can deal with all kinds of within-class decisions (regardless of 

between items or between environments) and one region is responsible for between-class decisions. Finally, 

the Neural Common Currency Framework (right panel) assumes that a single brain region is sufficient to 

work for all kinds of decisiosn, independent of whether they are within-class or between-class. 
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1.4 Neuroanatomy 

 There are three candidate neural substrates to be involved in the abovementioned 

frameworks, namely the ventromedial prefrontal cortex (vmPFC), dorsal anterior 

prefrontal cortex (dACC), and frontopolar cortex (FPC).  They have been shown closely 

tied to decision-making in the existing literature.  Before scrutinization of their precise 

functional natures, the anatomy of these regions is reviewed here.   

The human vmPFC is referred to the areas which are lying on the midline and 

located ventrally to the genu of the corpus callosum (Roberts & Clarke, 2019).  It is 

homologous to primate medial orbitofrontal cortex (mOFC) or BA14 (Mackey & 

Petrides, 2010, 2014; Neubert et al., 2015).  In primates, the OFC is primarily composed 

of three regions, namely BA11, BA 13, and BA14, but the OFC also includes parts of 

BA47/12 (Carmichael & Price, 1994; Petrides & Pandya, 1994).  BA11 and BA47/12 are 

granular whereas BA13 and BA14 are agranular in nature (Roberts & Clarke, 2019).  The 

OFC has strong connections with the adjacent dACC (Carmichael & Price, 1995) and the 

ventral striatum (Haber et al., 1995), another region which plays an important role in 

decision-making (e.g. reward value representation) (Bartra et al., 2013; Knutson et al., 

2005). 

The dACC is composed of BA24 and BA32 and they are parts of the agranular 

cortex (Petrides & Pandya, 1994).  The dACC is located dorsally to the genu of the 

corpus callosum with a rostral border to the FPC and a caudal border to the posterior 

cingulate cortex (Heilbronner & Hayden, 2016).  In addition to the connection with the 
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vmPFC, the dACC is strongly connected with the adjacent FPC and the ventral striatum 

(Barbas & Pandya, 1989; Vogt et al., 1987).   

The FPC (also known as rostral prefrontal cortex and anterior prefrontal cortex) is 

the most anterior part of the granular prefrontal cortex (Semendeferi et al., 2001).  It is 

composed of BA10 which includes the frontomarginal sulcus, the rostral superior frontal 

gyrus, and parts of the middle frontal gyrus (Brodmann, 1909).  The FPC has a caudal 

border to BA46, a rostral border to BA11, and a mesial border to BA32.  It shows strong 

connections with the adjacent OFC (Petrides & Pandya, 2007; Yeterian et al., 2012) and 

dACC (Carmichael & Price, 1996; Cavada et al., 2000). 

1.5 Item choice 

1.5.1 Neural substrate underlying valuation 

Decision-making is about value comparison and there is a fundamental 

assumption that people always choose according to their preference.  Such that the 

chosen option must be the preferable one or in other words the option possessing higher 

subjective value.  The neural substrates underlying decision-making should show activity 

corresponding to this revealed preference.  Therefore, searching for the active brain 

regions during making simple choices between concrete items could be the simplest 

approach to uncover the neural mechanisms underlying decision-making.  An early study 

adopted this approach and showed that the vmPFC is the candidate region (Paulus & 

Frank, 2003).  Participants underwent a binary item choice task in which they were asked 

to choose according to their preference to the items or physical description of the items.  

The vmPFC was found more active when decisions were based on participants’ 
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preference, suggesting that the vmPFC activity was pertaining to decisions relying on 

values. 

Despite the successful identification of the vmPFC, there is a critical limitation of 

revealed preference on the understanding of the role of the vmPFC in item choice.  

Revealed preference can only reflect the order of likeability among different items but a 

quantitative account is lacked.  Essentially, a decision is made by comparison between 

the items.  Quantifiable subjective values towards the items should hence exist such that 

the underlying neural computation can be executed.  To this end, different approaches to 

probe the quantitative nature of item value were developed subsequently.  Measuring the 

willingness-to-pay (WTP) is one of the nowadays widely used means (Plassmann et al., 

2007).  Preference towards an item can be numerically represented by the indication of 

how much money is willing to be paid in exchange for the item.  Plassmann and 

colleagues (2007) required participants to bid different food items via WTP.  Strikingly, 

the vmPFC activity was found correlated with the WTP of the food items (Plassmann et 

al., 2007).  Moreover, this value signal was only observed when people were free to bid 

but absent when they were forced to bid with preassigned amount, revealing that the 

vmPFC activity reflecting the subjective value of the item.  Apart from food items, 

several lines of studies concurrently demonstrated that the vmPFC activity also correlated 

with the preference ratings of faces, odour, and paintings (Harvey et al., 2010; O’Doherty 

et al., 2003; Rolls et al., 2003).  Furthermore, the vmPFC could also signal the value of 

more abstract items.  O’Doherty, Kringelbach, Rolls, Hornak, and Andrews (2001) 

adopted a reinforcement learning task in which abstract items (i.e. fractal patterns) were 

associated with different reward amount.  Participants progressively learnt the association 
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through trial-and-error.  During the course of learning, a self-generated value 

representation of each item arose and this self-generated value was found represented in 

the vmPFC.   

With the considerable body of research revealing a value signal in the vmPFC 

responding to diverse items, a proposal of “neural common currency” was asserted.  The 

common currency hypothesis advocates that a common scale exists through which 

valuation of all options are on the same lines (Montague & Berns, 2002).  Hence 

comparison among different options, even in dissimilar categories, is feasible.  To test the 

neural common currency signal, different experimental tasks which involved 

simultaneously viewing items from dissimilar categories were carried out and yielded 

congruent findings – a category-independent value representation was found in the 

vmPFC (Chib et al., 2009; Lebreton et al., 2009; McNamee et al., 2013).  On top of these 

congruent findings from individual studies, two meta-analyses including up to 81 studies 

further provided affirming evidence about the presence of neural common currency 

signal in the vmPFC (Bartra et al., 2013; Clithero & Rangel, 2014). 

1.5.2 Cognitive map coding 

Apart from the long-held univariate coding, a growing body of studies points to a 

cognitive map coding in the vmPFC (e.g. Bongioanni et al., 2021; Constantinescu et al., 

2016; Park et al., 2020; Schuck et al., 2016).  Cognitive map coding, which allows 

multi-dimensional representation, indeed provide an advantageous account to delineate 

the value computation process because real-life item choices are most often 

multifaceted.  For example, watch A is more elegant than watch B, but it is also costly.  

Integration of different attributes such as the design and price are necessary in order to 
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make a decision.  Under the conventional univariate coding approach, value 

computation is carried out by integration of different attributes into a unidimensional 

representation (e.g. a weighted-sum of values in design and price).  Explanation about 

how decisions are guided is limited especially when options are similar or even 

identical in integrated value.  By contrast, cognitive map coding involves multiple 

dimensions for value representation with regard to different attributes.  It provides a 

more precise account about how the integration process occurs along the attributes and 

thereby guides the decision behaviour.   

Cognitive map coding is not a conventional approach for value-based decision-

making but it is instead widely used in spatial navigation (Fyhn et al., 2007; Hafting et 

al., 2005; Leutgeb et al., 2005).  Therefore, Constantinescu, O'Reilly, and Behrens 

(2016) attempted to examine whether conceptual information can also be represented 

by a cognitive map coding analogous to spatial information.  They trained participants 

to associate particular items with different bird silhouettes of variable neck and leg 

lengths.  The association was indeed organized in a 2D “bird space” that an item could 

be “navigated” in the “bird space” with parametric changes in neck and leg lengths 

(Fig. 1.2).  Participants were instructed to learn the association by focusing on the neck 

and leg lengths, but critically they were not informed about the organization of the 

“bird space”.  During fMRI scanning, a video was displayed in which a bird morphed 

according to a particular ratio of neck length to leg length.  Participants were required 

to imagine the outcome of morphing.  In terms of “bird space”, imagination of the 

morphing outcome implies a displacement from one item to another item.  The vmPFC 



 

 

12 

activity was found modulated by the trajectory in the “bird space”, providing evidence 

for the cognitive map coding hypothesis of conceptual information. 

 

Figure 1.2. Stimuli used for studying the cognitive map coding in the vmPFC. (a) Participants learn 

to associate different items with bird silhouettes of variable neck and leg lengths. (b) The items were 

organized in a 2D map with respect to the neck length and legs length of their corresponding bird 

silhouettes. Adapted from Constantinescu et al., 2016. 

 

Given the important role of the vmPFC in valuation of items, it is critical for the 

cognitive map coding in the vmPFC to be applicable to unexperienced items because in 

our daily lives it is inevitable to make decisions between novel options.  Therefore, it is 

necessary to assure the cognitive map coding is not the result of parsimonious stimulus-

outcome pairing.  A recent study by Park and colleagues (2020) sheds light on the 

generalizability of cognitive map coding to novel items, by showing that two items which 

had never paired up could be compared with regard to their Euclidean distance in the 

cognitive map.  Participants first learnt the social status of different people along two 

dimensions separately, namely popularity and competence.  They were given various 

pairs of photos of the people and made decisions to indicate who possessed a higher 

social status in a given dimension.  Feedback was provided such that the hierarchy could 
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be acquired across trials.  Under fMRI scanning, participants were presented with novel 

pairs of photos and again chose the one possessed a higher social status in a given 

dimension.  Notably, the vmPFC activity positively correlated with the Euclidean 

distance between the photos.  It implies the locations of the items in the cognitive map 

were accessed for making decisions and it precludes the possibility that cognitive map 

coding is confounded by stimulus-outcome pairing.  Similar results were also observed in 

non-human primates.  Bongioanni and colleagues (2021) trained rhesus macaques to 

learn separately about the reward magnitude and reward probability of particular items.   

The items were presented in a form of a rectangular box with dots inside.  Reward 

magnitude of an item was denoted by its colour (the more greenish [blueish], the smaller 

[larger] the reward) and the reward probability was denoted by the number of dots inside 

(the more the dots, the higher the reward probability).  One set of training items varied in 

colour with dot number fixed while another set of training items varied in dot number 

with colour fixed.  After training, monkeys were required to choose between 

unexperienced items with variable reward magnitude and reward probability.  

Surprisingly, the monkeys could generalize their understanding of colour and dot number 

to novel items and made decisions accordingly.  It reflects the values of the items were 

not represented by a simple stimulus-outcome pairing manner.  Moreover, if the items 

values are represented by a cognitive map coding, successive presentation of different 

items is analogous to displacement in the cognitive map.  Hence, in a follow-up 

experiment, the monkeys were required to observe a single item on each trial under fMRI 

scanning to examine whether the inter-trial displacement in the cognitive map is reflected 
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in the vmPFC.  The results showed that it was the case – the vmPFC activity was 

modulated by the trajectory in the cognitive map between successive trials. 

Cognitive map coding was also found apart from contexts which require learning in 

advance in the vmPFC.  In the study by Schuck and colleagues (2016), participants 

repeatedly viewed face-house rivalry images and judged the age of the face or house 

(young versus old).  On the beginning trial, the category to be judged was cued (e.g. 

human face).  The age of the cued category would remain the same for subsequent trials 

(e.g. a young human face).  When age change occurred (e.g. a young man face changed 

to an old man face), it indicated switch of judging category.  Starting from the next trial, 

participants had to focus on the alternative category (e.g. house) and made judgement.  

Therefore, it was essential to infer the task states about the category and age of both 

previous and current trial.  Schuck and colleagues (2016) proposed there is a cognitive 

map where all task states are represented and transition among different task states are 

traced during the task.  With the use of multi-voxel pattern analysis (MVPA), different 

task states were decoded from the vmPFC voxel activation patterns.  It implies the 

presence of a cognitive map containing all task states in the vmPFC. 

1.5.3 Neural substrate underlying value comparison 

Existence of neural common currency signal in the vmPFC makes the vmPFC a 

plausible candidate region underlying value comparison during item choice.  A 

considerable body of evidence did show that a signal of value difference between items 

was observed in the vmPFC.  For instance, in a relatively parsimonious decision-

making task, participants chose between two food items according to their preference 

on each trial (Lim et al., 2011).  The vmPFC activity positively correlated with the 
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value difference between the items.  In lines with the findings of neural common 

currency, apart from food items, value difference signal was also observed in the 

vmPFC during item choice involving a great variety of items, such as music or 

magazines (Lopez-Persem et al., 2016), lotteries (Chau et al., 2014, 2020; Hunt et al., 

2012; Kolling et al., 2014), or even more abstract items whose value had to be learnt 

across trial (Boorman et al., 2009, 2013).   

Notwithstanding, it is insufficient to affirm the role of the vmPFC in decision-

making in spite of its encoding of value difference between items.  To support the 

causal role of the vmPFC in value comparison during item choice, lesion studies could 

provide straightforward evidence.  In fact, a series of lesion studies did demonstrate that 

patients with vmPFC lesion exhibited distorted revealed preference during item choice 

(Camille et al., 2011; Fellows & Farah, 2007).  On the contrary, several lines of studies 

demonstrated that the value signal in the vmPFC was an automatic signal but not 

choice-dependent, opposing the findings from the lesion studies.  For instance, the 

vmPFC was found to encode the item ratings during passive viewing of items from a 

variety of categories (Harvey et al., 2010; Levy et al., 2011).  In another study where 

participants were presented with different faces and required to indicate the gender of 

the faces, the vmPFC activity was found positively correlated with the attractiveness 

ratings of the faces (O’Doherty et al., 2003).  Nonetheless, it is worth noting that most 

of the evidence of automatic value signal in the vmPFC was derived from paradigms 

with single item presented.  Automatic signal might only arise for valuation but not for 

value comparison.  A study by Frömer and colleagues (2019) sheds light on this 

controversy.  The authors conducted a study to disentangle task goal value from item 
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value by requiring the participants to make choices among the same set of items under 

two conditions: (1) choosing the most desirable items and (2) choosing the least 

desirable items.  Therefore, the item value was constant but the task goal value was in 

the opposite manner across the two conditions.  The results showed that the vmPFC 

encoded both item value and task goal value.  Crucially, the vmPFC only signalled the 

value difference in task goal value but the value difference signal of item value was 

lacked.  These findings provide a compatible account for the choice-independent value 

encoding of item value during passive viewing and the impaired value comparison 

revealed in lesion studies.  Taken together, previous findings concurrently indicate that 

the vmPFC is a vital neural substrate underlying valuation and value comparison during 

item choice. 

1.5.4 Mechanisms of value comparison 

Having established the presence of value difference signal, the next question is how 

the value comparison process is executed.  One class of theories is the diffusion 

models, and drift diffusion model (DDM) is an illustrative example (Ratcliff, 1978).  

DDM assumes two opposing decision boundaries corresponding to each option during a 

binary decision.  When evidence which favours one of the options is provided, a 

particle drifts towards the corresponding decision boundary.  Once the accumulated 

evidence reaches any decision boundary, a choice related to the boundary will be 

committed accordingly.  DDM has been shown successful to describe behavioural 

choices (Krajbich et al., 2010; Lim et al., 2011; Lopez-Persem et al., 2016) but one 

limitation of DDM is specification of how the competition between the two choices 

occurs at the neural level is lacking.  The biophysical cortical attractor network model 
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on the other hand sheds light on this issue.  It suggests there are two pools of excitatory 

neurons which respectively receive input from the two options to be compared and 

encode their values through recurrent excitation (Wang, 2002).  Meanwhile, there is a 

mutual inhibition via the interneurons connected between the two neuronal pools; such 

that heightened activity of a neuronal pool will suppress the activity of its counterpart.  

This mutual inhibition makes the value comparison process work in a winner-takes-all 

manner.  As a result, the option corresponding to the winning pool will be chosen.  

Importantly, several lines of evidence have indicated that the biophysical cortical 

attractor network model could explain the value difference signal in the vmPFC 

empirically (Chau et al., 2014; Hunt et al., 2012).  Single-unit recording findings 

however suggest valuation and value comparison take place within the same pool of 

vmPFC neurons and preclude the possibility of a two-pool theory (Strait et al., 2014; 

Yoo & Hayden, 2020).  Particularly, these single-unit recording studies adopted a 

binary decision-making task with asynchronous presentation of items (i.e. in the first 

epoch, only one item was presented; in the second epoch, the second item appeared and 

both items were simultaneously shown).  With this asynchronous presentation, 

valuation and value comparison could be partially separated (value comparison was 

only possible when the second item appeared).  The authors found that the vmPFC 

neurons which exhibited value encoding in both epochs came from the same pool.  

Notably, the value encoding for the first item and second item was conducted in an 

antagonistic fashion – neurons exhibiting positive correlation with the value of the first 

item would show a negative correlation with the value of the second item, and vice 

versa.  It suggests the same neurons first underwent option valuation but turned to 
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undergo value comparison when the second item appeared.  Yoo and Hayden (2020) 

further demonstrated that values of the items were represented in subspaces in the 

vmPFC neurons.  Crucially, distinct subspaces were found in the same neurons during 

two different item valuation epochs.  The authors asserted that the tuning of coding 

from valuation to value comparison was carried out by subspace reorganization in the 

vmPFC neurons. 

1.5.5 Properties of value signal 

Thus far, large coverage has been given to the role of the vmPFC in valuation and 

value comparison processes during item choice.  From behavioural studies, it has been 

revealed that human decision-making indeed possesses diverse properties (Kahneman & 

Tversky, 1979).  It is intriguing whether the vmPFC as a key neural substrate of value 

processing also exhibits neural activities pertinent to these properties. 

1.5.5.1 Differential responses under gains and losses. One noteworthy property 

during decision-making is people behave distinctively under gains and losses.  In the 

preceding section, a large body of findings have been discussed which consistently 

indicate the vmPFC activity positively correlated with item value.  However, most 

decision neuroscience studies only involve appetitive items or items leading to reward but 

seldom involve aversive items.  It is unclear whether the vmPFC also responds to 

aversive items and carries a full spectrum of value signal from positive to negative.  To 

this end, Plassmann and colleagues (2010) extended their previous work of a food item 

rating task (Plassmann et al., 2007) by expanding the rating scale from the positive end to 

the negative end.  The results showed that the vmPFC differentially responded to 

appetitive and aversive items in the way that it positively correlated with the former but 
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negatively correlated with the latter, suggesting a unified spectrum to encode both 

positive and negative values in the vmPFC.   

In addition to differentiation between appetitive and aversive coding of primary 

reward or punishment, similar coding was also found in the vmPFC for secondary reward 

or punishment.  In the study by Tom and colleagues (2007), participants were offered 

items with a 50/50 chance leading to a monetary gain or loss and they could accept or 

reject the offer.  The vmPFC exhibited negative correlation with the value of losses apart 

from the positive correlation with the value of gains.  Furthermore, according to prospect 

theory people tend to be more sensitive to losses than gains of the same magnitude and 

particularly the sensitivity to losses is about twice to gains (Kahneman & Tversky, 1979).  

Tom et al. (2007) also found that the effect size of the vmPFC responses to losses was 

approximately two times to that to gains, providing a neural account of economic choices 

and importantly value processing of secondary items.   

In spite of the findings that positive and negative values are discerned by the 

vmPFC, these studies are merely pertinent to the valuation process but inspection of the 

value comparison process is lacking.  Value comparison only concerns which option is 

better and how much it is better than its counterpart, regardless of whether the options 

are indeed appetitive or aversive.  Hence, it is crucial to scrutinize whether value 

comparison is carried out indifferently under gains and losses in the vmPFC to affirm 

the role of the vmPFC in computation of value difference.  The findings by FitzGerald, 

Seymour, and Dolan (2009) did support this notion.  In their study, participants were 

offered variable money-item pairs.  In gain condition, they decided either to obtain the 

money or the item.  On the contrary, in loss condition, they were provided with all the 
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money and items in advance and they had to decide which one to give up.  The vmPFC 

was found signalling the value difference in both gain and loss conditions.  The 

presence of this essential property of value difference signal in the vmPFC affirms its 

role in value comparison. 

1.5.5.2 Independence of salience. Despite the large body of findings about the 

presence of value signal in the vmPFC, item value often covaries with salience 

especially those studies examine appetitive or rewarding items alone without aversive 

items.  Salience is closely tied to attentional capture (Yantis & Jonides, 1984) and there 

are extensive works suggesting the impact of attention on perception during valuation 

and on choice bias during value comparison.  For instance, scrutinizing the fixation 

patterns in item choice with DDM revealed that value of the attended item was 

amplified and the evidence accumulation towards the attended item was favoured 

(Krajbich et al., 2010; Krajbich & Rangel, 2011).  Meanwhile, evidence accumulation of 

the unattended item was discounted (Thomas et al., 2019).  Besides, taking both item 

value and salience into account rather than either factor in isolation has been shown to 

better depict item choice behaviour (Towal et al., 2013).  In fact, attentional modulation 

is well-established in the perceptual decision-making literature.  There are two long-

held explanations: (1) encoding of visual information is enhanced by attention (Cohen 

& Maunsell, 2009; Mitchell et al., 2009; Ruff & Cohen, 2014); (2) read out of encoded 

visual information to guiding choices is tuned and improved by attention (Fries, 2015; 

Ruff & Cohen, 2016, 2017).  Recently, a new hypothesis of attentional modulation 

asserts attention indeed does not improve the encoding of visual information nor the 

read out of encoded visual information, but reshapes the neural representation of the 
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encoded information to align with the current way of read out; such that behavioural 

responses are improved (Ruff & Cohen, 2019).  This account is also plausible in the 

case of value-based decision-making – the representation of the encoded item value is 

reshaped to better suit the current way of read out such that the item value is utilized 

more efficiently to guiding choices.  Illustrating the influence of attention on decision-

making with all these lines of findings, it is thus critical to ensure whether the vmPFC 

activity during item choice is value-driven but not salience-driven. 

 To dissociate item value and salience, Litt and colleagues (2011) adapted a food 

rating task (Plassmann et al., 2007) by asking the participants to indicate their liking 

ratings to different food items (i.e. measure of value) and the extent they would like to 

consume the food at the end of experiment (i.e. measure of salience).  The results showed 

that the vmPFC activity monotonically increased with value but not salience.  On the 

other hand, Zhang and colleagues (2017) adopted a similar approach to address this issue.  

In their study, participants indicated their liking ratings to different stimuli.  Crucially, 

stimuli included both reward (pleasant face images and monetary gain) and punishment 

(electric shock and monetary loss) in variable extent.  Since the value and salience of the 

punishment were anti-correlated, such design could dissociate item value from salience.  

Akin to the findings by Litt and colleagues (2011), fMRI results revealed that the vmPFC 

exhibited a value signal but a lack of salience signal. 

1.5.5.3 Relative rather than absolute coding of value. Thus far, all discussed 

findings point to a conclusion that the value signal in the vmPFC is absolute, for 

example, the vmPFC exhibits positive activity to gains but negative activity to losses.  

However, according to prospect theory, a mental reference point exists – how good or 
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bad an item being is determined by comparison with the reference point rather than its 

factual value (Kahneman & Tversky, 1979).  It is possible that the neural value signal 

possesses a feature of relative coding similar to reference point.  In fact, relative coding 

receives numerous empirical supports.  For instance, in the study by Elliott, Agnew, and 

Deakin (2008), three items (in form of abstract patterns) were associated with large, 

intermediate, and small reward respectively.  On each trial, a pair of items were displayed 

at first and then one of them disappeared after a delay.  Participants were required to 

make value-independent responses to indicate which side the remaining item located at.  

Notably, there were two phases that the neurons for item valuation should respond: (1) 

when item pair was displayed, and (2) when only one item remained.  If the value coding 

is executed in an absolute manner, the encoded value of the remaining item should be 

independent of the identity of the alternative.  Interestingly, the vmPFC demonstrated 

higher activity when the intermediate item remained after the small-intermediate pair 

than after the large-intermediate pair.  It implies the valuation to the intermediate item 

depended on the hierarchical position to the alternative item, supporting a relative coding 

hypothesis.  In a similar vein, in the study by Kim and colleagues (2006), participants 

performed a binary decision-making task between items.  Each item was associated with 

either a probabilistic reward or a probabilistic loss and one of the items possessed higher 

probability.  On trials where both items were rewarding, unsurprisingly the vmPFC 

showed higher activity when the more probable reward was obtained.  Intriguingly, 

acquisition of the less probable reward gave rise to lower vmPFC activity as if a loss is 

encountered.  In contrast, on trials where both items were associated with losses, the 

vmPFC exhibited heightened activity to the avoidance of more probable loss but lowered 
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activity to avoidance of less probable loss.  These results reflect that valuation of an item 

is regardless of its actual valence, but its relative value to the alternative item.   

 In theory, item value could go to infinity and beyond.  Yet practically it is 

impossible for the valuation system to have a boundless representation of the item value 

and thus an efficient coding is necessary.  Relative coding indeed forms the basis of 

efficient coding to cope with the dynamic environment.  To investigate whether the 

valuation system possesses such adaptive nature, one means is by inspection of the 

value signal under different value ranges.  If the value encoding is adaptive, the value-

encoding brain region should exhibit similar maximum and minimum activities when it 

exposes to wide or narrow value ranges.  An fMRI study revealed that the vmPFC 

activity did demonstrate range adaption (Cox & Kable, 2014).  Participants performed a 

binary decision-making task between items block-by-block.  Notably, the value range 

of the presented items changed across blocks.  The vmPFC was found exhibited a larger 

regression slope when the value range was narrow whereas exhibited a smaller 

regression slope when the value range was wide.  It reflects the vmPFC adaptively 

adjust its activity within the maximum and minimum borders.  Taken together, all these 

lines of findings come to a conclusion that valuation of items is performed in a relative, 

rather than an absolute, manner. 

1.5.5.4 Context dependence. Living in the changing world, it is vital to adjust the 

behaviour and adapt to the dynamic demand for the current environment.  Yet, the 

“optimal” behavioural strategy may vary under different contexts.  It is necessary for a 

decision maker to make choices according to the current context (e.g. re-evaluation of 

options time by time, focusing on relevant information).  From an ecological perspective, 
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it is particularly important for the existence of an automatic context-dependent valuation 

process because it can help quickly discern whether approach or avoidance is needed.  

Several lines of findings indeed have revealed people’s valuation as well as the 

corresponding value signal in the vmPFC were modulated by the context unintentionally.  

For example, in the study by Harvey and colleagues (2010), participants were asked to 

passively view different paintings during fMRI scanning but they were explicitly 

informed before experiment that their participation would be compensated by one of two 

companies.  Paintings were presented with simultaneous display of either a sponsor or 

non-sponsor logo.  Participants had no reason to upweight the paintings presented with 

sponsor logo because the only instruction they received was to view the paintings 

passively.  However, surprisingly a post-scan rating task indicated that the ratings of the 

paintings that were presented with sponsor logo were higher than those presented with 

non-sponsor logo.  Importantly, this was also reflected in the vmPFC activity.  In a 

similar vein, Plassmann and colleagues (2008) presented some wines with different price 

labels to people and asked them to indicate their liking ratings towards the wines.  

Unbeknown to the participatns, two wines were presented twice with substantially 

different prices (wine 1: $5 & $45; wine 2: $10 & $90).  Interestingly, the resutls 

revealed that participants perceived the same wine more appetitive when it was priced 

higher.  It was not only observed behaviourally, but also exhibited at the neural level that 

the vmPFC showed heightened activity for the same wine when the labelled price was 

higher.   

In additon to the modulation by concurrent context, another line of evidence 

demonstrated that the baseline activity of vmPFC was susceptible to task-independent 
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contextual information prior to stimulus onset.  For instance, Abitbol and colleagues 

(2015)  presented some music prior to a rating task of paintings to the participants on 

each trial.  Participants were explicitly instructed to ignore the musical context 

preceding the presentation of the paintings.  It was found that the vmPFC activity 

towards the ratings of paintings was modulated by the pleasantness of the musical 

context – a more pleasant musical context led to higher vmPFC activity to the 

subsequent painting.  Apart from that, in the study by Losecaat Vermeer and colleagues 

(2014), participants could choose to accept or reject a 50/50 gamble that potentially 

resulted in a gain or loss.  Prior to each gamble, they underwent a time-estimation task 

in which correct responses gave rise to a reward but incorrect responses led to a loss.  

As such, a pre-gamble context of gain or loss was provided by the time-estimation task.  

Behavioural results showed that people tended to avoid taking risks after receiving a 

gain and tended to be risk-seeking after encountering a loss.  Interestingly, this 

“adaptation” of risk preference to the context was also reflected in the vmPFC.  The 

vmPFC exhibited higher activity if people rejected to take the gamble after a gain, 

compared to if they accepted the gamble after a gain.  Similarly, the vmPFC showed 

higher activity if people chose to gamble after a loss than if they refused to gamble after 

a loss.   

1.6 Decision between items and environments 

(foraging) 

In addition to the widely investigated item choice, how decisions are made 

between items and environments (also known as foraging in the existing literature) has 
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received growing concern in the last decade.  On most occasions, decision between 

items and environments concerns the stay-switch problem of deciding to stay and 

engage currently available items or to explore an alternative environment for potentially 

better items.  It is as ubiquitous as item choice in our daily lives, for instance, an 

individual can buy food from the only food stand in front or s/he can walk around the 

district to look for any restaurant providing better food.  To directly examine the neural 

mechanisms of decision between items and environments, Kolling and colleagues 

(2012) designed a task in which participants were presented with two available items 

and an alternative environment composing of multiple items.  They could make a 

choice between the two available items or forgo the items and search in the alternative 

environment to obtain another two items for selection.  Behavioural results showed that 

participants were more likely to search when the value of the environment was high and 

contrarily less likely to search when the value of the available items was high.  As 

discussed in preceding sections, the vmPFC has been implicated in decision-making 

among diverse items by exhibiting a neural common currency signal.  It is plausible 

that the vmPFC also encodes the value of the environment and compares the 

environment with the available items to make a choice.  Surprisingly, the dorsal 

anterior cingulate cortex (dACC), but not the vmPFC, was identified to show positively 

correlated activity with the environment value.  In addition, the dACC activity 

decreased with the value of the available items.  This implies the dACC carried a value 

difference signal (environment value minus item value).  Importantly, participants 

whose dACC activity better predicted by environment value also showed higher 

tendency to search, suggesting the role of the dACC in driving searching.  On the 
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contrary, when participants made choices between the two available items, the vmPFC 

demonstrated a value difference signal between the items.  This dissociation between 

the roles of the dACC and vmPFC in value encoding of environments and items 

partially precludes the possibility of the Neural Common Currency Framework.   

Furthermore, Kolling and colleagues (2018) reasoned that during evaluation of 

an environment, people also hold an expectation to obtain the desired composing items 

apart from estimation of how good overall the composing items are.  To this end, they 

adapted the task by Kolling and colleagues (2012) to further study this prospective 

nature of environments.  Participants were offered an item and an opportunity to search 

in another environment for alternative items.  Crucially, the number of possible 

searches was manipulated and explicitly disclosed.  Supposedly, in order to obtain the 

desired items, people are more likely to search when there is a long time horizon and 

vice versa.  And there should be a neural value signal about the most rewarding item.  It 

was indeed the case of the results.  The value of the most rewarding item in the 

environment was represented in the dACC.  It implies participants prospectively 

pursued for the most desired item by searching the environment.  In addition, consistent 

to the previous findings by Kolling and colleagues (2012), a value signal of the 

environment (i.e. the average value of the composing items within the environment) 

was found in the dACC.  These pieces of results revealed that the dACC was closely 

tied to the valuation of environments. 

The role of the dACC in valuation of environments can also be implicated by 

studies focusing on environment-leaving.  In terms of ecology, environment-leaving 

refers to the behaviour observed in wild animals that they forgo the current food 
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resources and search in the environment.  In the nature, living in a region for a period of 

time, food resource will be depleted gradually.  Animals have to decide whether to 

consume the diminishing food resource (i.e. exploiting the currently available items) or 

to search in the environment for alternative sources (i.e. exploring alternative 

environment for opportunity of potentially better items).  Despite the similarities 

between environment-leaving and decision between items and environments, there is a 

subtle difference among these two processes.  Instead of comparing a concrete item 

with an environment, environment-leaving concerns whether to leave an environment 

and engage in an alternative environment.  Moreover, searching is accompanied by 

costs – there might be a period of time when the supply of food is lacking during 

searching.  Additionally, the new sources of food could be a wealthier one but also it 

might yield fewer food than the current one.  It is thus critical to estimate the trade-off 

between potential gains and costs of leaving an environment. 

To simulate environment-leaving and investigate the underlying neural 

mechanisms, Wittmann and colleagues (2016) adopted a task in which participants were 

assigned an environment to engage in by default.  Reward was delivered across time 

but the reward rate could either increase or decrease gradually.  At certain time points, 

participants could make choices to stay in the current environment, or to leave the 

environment and engage an alternative environment which had known, constant reward 

rate instead.  To decide whether to stay or leave, it is critical to estimate whether the 

reward rate of the current environment was trending to increase or decrease by 

comparing the most recent reward rate (LastRR) with the average past reward rate 

(AvgRR).  It was found that participants were more likely to stay when LastRR was 
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high and less likely to stay when AvgRR was high.  In other words, environment-

leaving was guided by the value difference between LastRR and AvgRR and a value 

difference signal (LastRR minus AvgRR) was found in the dACC.   

Kaiser and colleagues (2021) further tested the role of the dACC in 

environment-leaving by examination of the concentrations of glutamate and GABA, the 

neurotransmitters of excitation and inhibition, in the dACC.  If the dACC is pertaining 

to environment-leaving, the balance between glutamatergic excitation and GABAergic 

inhibition (E/I balance) in the dACC should change with the value of environment-

leaving.  The authors adopted a two-stage decision-making task to mimic environment-

leaving.  Participants were first assigned to one of two simultaneously presented 

environments.  They could choose to stay in the current environment or switch to the 

alternative environment.  After a decision, the reward magnitudes of all available items 

within the environments were shown and two items were randomly drawn.  These two 

items were also randomly assigned with different reward probabilities and participants 

chose an item to earn the reward.  Notably, the reward in the current environment 

depleted over trials while the alternative environment was replenished, but switching 

was associated with a cost.  To make a leaving decision, it was critical to consider the 

leaving advantage – the relative benefit of switching (i.e. value difference between 

alternative environment and current environment) to the cost associated with leaving.  

This leaving advantage on trials where the participants switched was correlated with the 

E/I balance in the dACC, indicating that the dACC was closely tied to guiding 

environment-leaving.  Interestingly, the correlation between leaving advantage and the 

E/I balance in the vmPFC was also tested but yielded no significant results.  On the 
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other hand, the second stage involved item choice and the value difference between the 

items was found correlated with the vmPFC E/I balance but not with the dACC E/I 

balance.  This double dissociation echoed with the findings by Kolling and colleagues 

(2012) that the valuation processes of environments and items involve dissociable 

neural substrates. 

Single-unit recordings also provide evidence of the role of the dACC in 

environment-leaving.  Two rhesus macaques performed an environment-leaving task in 

which they could exploit an environment but the reward amount reduced every time it 

had been exploited, or they could leave the environment to replenish the environment 

with a cost of travel time (Hayden et al., 2011).  The key consideration was thus to trace 

how long they had been staying in the environment.  The dACC firing rates were found 

increased every time a decision of staying was made.  Importantly, the authors 

identified a threshold of leaving – when the dACC firing rates reached the threshold, 

the subjects left the environment.  These findings suggest that the dACC was pertaining 

to valuation of environments as well as guiding environment-leaving. 

1.7 Items and environments are not confounded by 

component diversity or temporal distance 

Thus far, the literature reviewed in the preceding sections suggests that the 

vmPFC and dACC underlie the valuation processes for items and environments 

respectively.  It is worth taking a closer look at the distinction between these two classes 

of options to assure the dissociation.  Environments are characterized by two features: (1) 
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environments are composed of a variety of items and (2) the relation between an 

environment choice and the final outcome is temporally distant (because selection of an 

environment gives rise to the opportunity to come across the component items rather than 

actual acquisition).  It is easy to mix up environments with items associated with 

multiples components or delayed outcomes.  However, the critical feature making 

environments distinct from items is their prospective nature.  It is more than merely a 

diversity of components or the temporal distancing between decision and decision 

outcomes.  In fact, several lines of studies identified the vmPFC in encoding of item 

value even the items were composed of multiples components or associated with delayed 

outcomes, reflecting association with a variety of components or delayed outcomes are 

not sufficient to discern items and environments. 

In the study by Shenhav and Karmarkar (2019), participants were presented with 

a set of four items on each trial and they were required to rate the entire item set.  

Behavioural results revealed that the reported rating of the item sets was correlated with 

the average value of all their component items.  Crucially, item sets lacked a prospective 

nature and the item set rating was found signalled by the vmPFC, which is incompatible 

with the findings that environment value in terms of the average value of all component 

items was signalled by the dACC (Kolling et al., 2012, 2018).  In a similar vein, 

Symmonds and colleagues (2010) presented participants with an item that was associated 

with four possible amounts of reward (ranged from £0-£4) with equal probabilities on 

each trial.  Participants could accept the item or choose the alternative with a fixed 

amount of £2 (not visually presented) and reward was directly delivered after decision.  It 

was found that the vmPFC also encoded the expected value (EV) of the item, consistent 
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to the widely reported findings that the vmPFC encoded the value of simple items which 

only resulted in binary outcomes (Boorman et al., 2009; Chau et al., 2014; Jocham et al., 

2012; Kolling et al., 2014).  Taken together, component diversity is not a sufficient 

criterion for the differentiation between items and environments. 

Intertemporal choice on the other hand allows inspecting the differentiation 

between items and environments in terms of temporal distancing.  Intertemporal choice 

stems from economics and refers to the decisions in which the gains and costs are 

subjected to the time span (Loewenstein & Thaler, 1989).  For instance, Kable and 

Glimcher (2007) presented participants with a delayed large reward which varied in 

amount of reward magnitude ($20.25-$110) and delay (6 hours to 180 days) across trials.  

Participants could accept the delayed larger reward or forgo it to select an immediate 

small reward (fixed at $20).  Intertemporal choice requires integrating the costs and 

benefits of the delay which differ from the ubiquitous decisions between simple items 

that reward accompanies directly after decision.  Surprisingly, the vmPFC activity was 

also found correlated with the value of the delayed reward.  In a similar vein, Prévost and 

colleagues (2010) presented fuzzy erotic images to the participants and asked the 

participants to choose a default option by which they could view the images clearly for 

1s after a short delay, or to wait for a long dealy but they could view the clear images 

for 3s.  The vmPFC activity also increased with the value of the delayed reward even 

primary reward was used.  A lesion study additionally provided evidence of the causal 

role of the vmPFC in value encoding of delayed reward (Sellitto et al., 2010).  Patients 

with lesions in the vmPFC made choices between an immediate small reward and a 

delayed large reward.  Their task performance was compared with that of control patients 
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with lesions outside the frontal lobe and healthy control.  The vmPFC patients exhibited 

larger preference of the immediate reward than the two control groups.  Closer inspection 

revealed the vmPFC patients possessed a larger value discounting to the delayed reward.  

In other words, their abilities to integrate the costs and benefit of a delayed reward were 

impaired.  All these lines of findings from intertemporal choice consistently point to the 

role of the vmPFC in value encoding of delayed reward.   

On the other hand, the multi-stage structure of environment choice entails 

environments a prospective nature.  Any option that leads to further decision might be 

easily recognized as an environment.  Nonetheless, it should be cautious that an 

environment is a choice set that provide the possibility to attain potential items.  

Consideration of the entire choice set instead of substituting the choice set as a proxy to a 

certain item is essential.  Hence, option that is a distant proxy to a certain item via 

multiple stages of decision should not be deemed as an environment.  A classical two-

stage decision-making paradigm did affirm that choice sets which acted as the proxy to 

particular items did not give rise to any neural signal of environment value (Daw et al., 

2011).  The paradigm consists of a decision that requires planning (first stage) and a 

decision that requires learning (second stage) on each trial.  There were two pairs of items 

in total in the second stage.  Participants were presented with one of the pairs each time 

and made decision between the items.  The items were associated with different reward 

probabilities, which were not explicitly depicted and had to be learnt across trials.  By 

contrast, in the first stage participants chose between two items that were associated with 

the item pairs.  Notably, each first-stage item led to one second-stage item pairs with high 

likelihood (i.e. 70%) and led to the remaining pair with low likelihood (i.e. 30%).  Across 
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trials of learning, participants became more familiar with the reward probabilities of all 

the second-stage items and they could choose a first-stage item that had high likelihood to 

reach the most rewarding second-stage item thereby maximizing their earning.  Crucially, 

the values of the second-stage items were represented in the vmPFC during first-stage 

decision.  It implies the first-stage items had been deemed as proxies to particular second-

stage items.  On top of intertemporal choice, this finding about items relating with 

multiple stages demonstrated that it is not sufficient to discern environments and items by 

temporal distancing between selection and final outcome alone. 

In this chapter, I have reviewed multiple lines of studies which indicated the 

vmPFC also encoded the item value even item was composed of multiple components or 

associated with distant outcomes.  It in other words suggests that the critical difference 

between environments and items do not stem from the diversity of components nor the 

temporal distancing between decision and decision outcomes.  Besides, findings of item 

choice and environments and environment-leaving reported an absence of environment 

value signal in the vmPFC.  Taken together, it can be assured that the critical feature 

making environments distinct from items should be their prospective nature.  In my two 

studies that were reported in subsequent chapters, this prospective nature of environments 

was examined and environment choice and item choice were discerned. 

1.8 Approaches to model decision-making behaviour 

 A considerable body of studies has implicated the role of the vmPFC and dACC 

in valuation of items and environments respectively.  These previous studies indeed 

employed many different approaches to derive value estimates for seeking the neural 
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correlates of option value.  Yet, are these approaches sufficient to reflect the underlying 

valuation process?  Historically, people’s economic choices were explained by 

normative models, which suggest how decisions should be made.  One typical example 

is modelling people’s choices by expected value, a widely used approach in the existing 

literature (e.g. Chau et al., 2014; Hunt et al., 2012; Kolling et al., 2012).  It assumes that 

people always select the option yielding the highest payoff.  However, the same option 

may be perceived differently across people, for example a lottery of winning $1000 

appears much more valuable to a poor person than a billionaire.  Therefore, expected 

utility theory was proposed which states that the value of an option should be in a form 

of utility, a subjective value transformed by a non-linear function, and people should 

make decisions according to the expected utility instead of expected value (Bernoulli, 

1954).  The introduction of expected utility did provide improved modelling of human 

choices.  Nonetheless, empirically many economic choices could not be accounted for 

by normative models.  For instance, to make a choice between a 50/50 gamble of 

winning $100 and a sure-win option of $49, a risk-averse individual might prefer the 

sure-win option despite its lower expected payoff.  Descriptive models were thus 

developed in order to vividly describe how people subjectively evaluate the options to 

give rise to their choices.  Therefore, estimating people’s subjective value using 

descriptive models greatly helps unveil the neural mechanisms underlying decision-

making and different models which are related to the valuation of items or 

environments were discussed below.   

Cumulative prospect theory (CPT) is a canonical model to describe decision-

making behaviour under risk (Tversky & Kahneman, 1992).  It accounts for the value 
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estimation process during economic choices in a variety of scenarios.  One of the most 

influential account by CPT is the formulation of loss aversion.  Conventionally, the 

value estimation processes to both gains and losses are assumed to perform in the same 

manner.  CPT instead suggests the value estimations of gains and losses are computed 

by a concave value function and a convex value function respectively (Fig. 1.3a).  

Moreover, the function for losses is steeper, indicating a loss aversion – loss in a given 

amount is perceived twice as strongly as a gain in objectively equivalent amount.  

Besides, CPT provides account for the value estimation in probability.  CPT states that 

small probabilities are overweighted and moderate to large probabilities are 

underweighted (Fig. 1.3b), which can explain a variety of behaviour patterns (e.g. 

purchase of an insurance plan to a rare event, more willing to take risk when 

experiencing a loss).   

 

Figure 1.3. Transformation by cumulative prospect theory. (a) People possess larger sensitivity to 

gains than losses. The subjective value to a loss is approximately twice of that to a gain in objectively 

equivalent amount (b) People possess unequal weightings on probabilities.  Small probabilities are 

overweighted whereas moderate and large probabilities are underweighted.   
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CPT most often is applied for individual quantity.  For choices involving 

evaluation of a distribution of numbers, the value estimation becomes complex because 

integration of massive information is needed.  CPT is not developed for describing 

evaluation of distribution and hence alterative models are warranted.  One intuitive way 

is to estimate the mean value for each distribution.  Besides, distributions can be 

characterized by different statistical moments (e.g. variance, skewness).  It is plausible 

that evaluation of distributions is influenced by the statistical moments.  The mean-

variance-skewness (MVS) model (Symmonds et al., 2011, 2013; Wright, Symmonds, 

Morris, et al., 2013) provides a direct account of this issue.  It posits evaluation of a 

distribution primarily relies on the mean value but the preferences of variance and 

skewness additionally contribute to the value estimate in a linear sum manner.  

Nevertheless, it has been discussed that value estimation of individual quantity could be 

better explained by non-linear functions (e.g. expected utility theory).  It might also 

hold true for evaluation of distributions, especially people have insufficient cognitive 

resources to perfectly estimate the values of all quantities within a distribution.  It is 

plausible that people perceive the quantities within a distribution with unequal weights.  

To this end, the power law model proposes each quantity within a distribution is 

transduced by an exponent.  As a result, when estimating the mean value of a 

distribution, the small and large quantities are underweighted. 

In recent years, a growing body of neuroscience research have been applying 

deep learning to develop models of cognitive processes that are hard to be portrayed by 

conventional computational models (e.g. object classification) (Yang & Wang, 2020).  

In a similar vein, there could be implicit cognitive processes during value estimation 
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that are overlooked by the traditional computational models, especially for distributions 

which involve massive information.  Therefore, deep learning provides potential 

solutions to modelling the value estimation process.  Autoencoder (Kiarashinejad et al., 

2020) and convolutional neural network (CNN; Krizhevsky et al., 2012; Lindsay, 2020) 

are two widely used deep learning neural networks.  Autoencoder is distinguished for 

its capability in compression of high-dimensional data into concise representations (i.e. 

hidden nodes) with minimal information loss.  Specifically, high-dimensional data are 

fed as the input of the autoencoder.  In the subsequent hidden layers, features of the 

input are extracted, meanwhile redundant information is removed.  Notably, the 

resulting hidden nodes are highly representative to the original input but with lower 

dimensionality.  On the other hand, the CNN is successful in extracting and integrating 

complicated visual features from images to solve classification problems.  Images are 

fed as the input of the CNN.  In the subsequent convolutional layer, the input is 

convolved by various feature detectors – features in the input are extracted and 

represented by different feature maps.  In other words, the feature maps characterize the 

original images in particular aspects.  Afterwards, the feature maps are aggregated in 

the fully-connected layer and then activated by a softmax function to generate choice 

predictions.  Since autoencoder and CNN both involve feature extraction and 

integration of massive information which are akin to the evaluation of distributions, 

they are plausible to provide good estimate of the subjective value of distribution, 

thereby shed light on the value estimation process. 
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1.9 Research question 

 This thesis aims to address the question whether there is a neural mechanism 

which can make comparison among all different kinds of option or there are different 

neural mechanisms to work with particular decisions.  A considerable body of research 

has implicated the vmPFC to decisions between a wide variety of items.  It provides 

evidence for the Neural Common Currency Framework which assumes that all kinds of 

decision can be dealt with by a single neural substrate.  Yet, the increasing works on the 

decision between items and environments in the last decade reveal that the dACC, but not 

the vmPFC, is pertaining to the guide item choice and environments.  It has refuted the 

Neural Common Currency Framework.  On the other hand, both the Option Homogeneity 

Framework and Decision Homogeneity Framework assume multiple neural mechanisms 

for within-class decisions (i.e. item versus item, environment versus environment) and 

between-class decisions (i.e. items versus environments).  However, the Option 

Homogeneity Framework posits within-class decisions involve exclusive neural 

substrates for each class of option whereas the Decision Homogeneity Framework 

postulates a single neural substrate can work with all within-class decisions.  Since the 

existing literature extensively investigated item choice and little endeavour was made on 

environment choice, the underlying neural mechanism of environment choice remains 

highly unclear.  To discern the functional specialization during decision-making, in this 

thesis, the neural mechanism underlying environment choice was examined and 

contrasted to the neural mechanism underlying item choice. 

  



 

 

40 

Chapter 2 Evaluation of environments with 

complex information  

Chapter highlights 

 This chapter aims to test the evaluation process during environment choice 

 People were capable of integrating complex information in environments to guide 

decision-making 

 People preferred environments with larger means and variances of the item 

distributions in the environments 

 

2.1  Introduction 

 Lots of endeavour in the last two decades has been made on the underlying neural 

mechanisms of decision between simple items.  There are also growing concerns of 

foraging, which is about the stay-switch problem – to exploit current items or to explore 

an alternative environment for potentially better items.  A large body of findings about 

item choice and foraging has been discussed in Chapter 1.  Yet, environment choice 

receives far less attention in the existing literature.  How the decision-making system 

works, specifically, whether a neural substrate universally copes with all different kinds 

of decision or multiple neural substrates are required to handle particular types of 

decision, remains elusive.  To address this question, it is important to fill in the missing 

piece of environment choice.  The first crucial step is to examine how evaluation of 
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environments is carried out.  Environments possess two essential features which 

constitute to their distinctiveness.  First, an environment comprises of multiple items; 

valuation of an environment requires consideration of the distribution of its component 

items – whether overall the items are good and whether there is a great variety of items to 

choose from.  Second, selection of an environment gives rise to the opportunity to come 

across the component items rather than actual payoff.  This study was conducted to test 

whether these essential features of environments are exhibited when people undergo 

decision-making between environments.  In particular, previous studies showed that 

people’s economic choices were biased by statistical moments (e.g. mean, variance, 

skewness) when options were presented in forms of distribution (Wright et al., 2012; 

Wright, Symmonds, & Dolan, 2013; Wright, Symmonds, Morris, et al., 2013).  It is 

hypothesized that during environment choice, statistical moments of the item 

distributions within the environments are also considered and influence people’s 

environment choices. 

To address the evaluation process of environments, this study involved a 

parsimonious behavioural decision-making task which required participants to choose 

between two environments repeatedly.  Each environment was composed of 20 items and 

selection of an environment gave rise to the opportunity to obtain one of its component 

items.  The results showed that participants were capable of integrating the multiplex 

information embedded in the environments to guide decisions.  Importantly, elementary 

findings on the evaluation process of environments were unveiled – environments were 

evaluated with regard to the statistical moments (i.e. mean, variance) of their component 
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item distributions.  Environments with larger means and variances in their item 

distributions were preferred.   

2.2  Methods 

2.2.1 Participants 

Twenty healthy young adults (11 females), aged 18-27 years with normal or 

corrected-to-normal vision and no current or history of neurological or psychiatric 

conditions, were recruited via advertisement in the university and participants’ referral.  

Written informed consent for each participant was obtained before experiment.  The 

experiment was approved by the Human Subjects Ethics Committee of the Hong Kong 

Polytechnic University. 

2.2.2 Experimental task 

This study involved a binary decision-making task between environments (Fig. 

2.1a).  In each block, participants chose repeatedly between two environments for 10 

trials.  On each trial, two environments were displayed – each of which was presented in 

a form of a series of 20 bars and a number.  Each bar represented a lottery item and the 

height of each bar was related to the probability of winning the lottery.  The number 

indicated the mean reward magnitude of all lotteries in the same environment (reward 

magnitude of an item ranged from -$100 to $100 in HKD).  After selection of an 

environment, the chosen environment was surrounded by a blue frame (0.5 second).  One 

item from the chosen environment was randomly drawn and highlighted in yellow after a 

delay of 0.7 second.  Reward was delivered according to the reward magnitude and 
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reward probability of the drawn lottery item.  Decision outcomes were disclosed at once 

after all 10 trials of the same block were completed.  Participants were told that points 

earned in the task would be converted into monetary reward after the experiment.  There 

was a total of 400 trials. 

In Chapter 1, it has been discussed in detail about the neural value difference 

signal should be invariant to gains or losses.  Despite the lack of measurement of neural 

data, this experiment also considered this essential property of the value comparison 

process.  Specifically, this experiment included environments that led to losses (reward 

magnitude and probability were coloured in red) in addition to environments that led to 

gains (coloured in green).  50% of the trials involved two gain environments, 30% of the 

trials involved two loss environments, and 20% of the trials involved one gain and one 

loss environment.  

 

Figure 2.1. Task schematic of the experiment. Within a block, two environments were presented on each 

trial (Stimulus onset). After selection of an environment, a blue frame appeared and surrounded the chosen 

environment (Decision). A lottery item was randomly drawn from the chosen environment and highlighted 

in yellow after a delay (Delay). Decision outcomes of all trials were displayed at the end of the block 

(Outcome). 
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2.2.3 Statistical analysis 

A logistic regression (GLM1) was applied to predict whether participants’ choices 

(to the right=1 and left=0) were biased by the environments’ reward magnitudes and 

probabilities respectively: 

𝑙𝑜𝑔𝑖𝑡
𝑃(𝑅)

1 − 𝑃(𝑅)
= 𝛽0 + 𝛽1𝑅𝑒𝑤𝑅 + 𝛽2𝑃𝑟𝑜𝑏𝑅 + 𝛽3𝑅𝑒𝑤𝐿 + 𝛽4𝑃𝑟𝑜𝑏𝐿 

where P(R) denotes the probability of choosing the option on the right.  RewR and ProbR 

denotes the reward magnitude and reward probability of the rightward environment 

respectively; RewL and ProbL denotes the reward magnitude and reward probability of the 

leftward environment respectively.  This logistic regression was separately applied to 

gain trials and loss trials.   

Another logistic regression (GLM2) was performed to test whether people integrated 

both reward magnitude and reward probability of each environment to guide their 

decisions: 

𝑙𝑜𝑔𝑖𝑡
𝑃(𝑅)

1 − 𝑃(𝑅)
= 𝛽0 + 𝛽1𝐸𝑉(𝑅−𝐿) 

where P(R) denotes the probability of choosing the rightward environment.  EV(R-L) 

denotes the difference in expected value (reward magnitude multiplied by reward 

probability) between the rightward and leftward environments.  Apart from participants’ 

choices, how their reaction time (RT) was affected by EV difference was also inspected 

(GLM3): 

𝑅𝑇 = 𝛽0 + 𝛽1𝐸𝑉(𝑅−𝐿) 
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Given each environment was composed of a distribution of items, to test whether 

participants’ choices were influenced by the statistical moments of the item distributions, 

the following logistic regression (GLM4) was applied: 

𝑙𝑜𝑔𝑖𝑡
𝑃(𝑅)

1−𝑃(𝑅)
= 𝛽0 + 𝛽1𝐸𝑉(𝑅−𝐿) + 𝛽2𝑀𝑒𝑎𝑛(𝑅−𝐿) + 𝛽3𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅−𝐿) +

𝛽4𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑅−𝐿)  

where Mean(R-L), Variance(R-L), Skewness(R-L) denote the differences in mean, variance, 

and skewness of environment probability respectively.  A one-sample t-test was 

performed to examine whether each beta weight was significantly different from zero 

across participants in all regressions. 

2.3  Results 

First, it is important to assure participants held correct understanding to the 

environments given their complex structures.  This study included both environments that 

led to gains and environments that led to losses.  Supposedly, the preference of large 

probability should differ between gain and loss trials – options with large probabilities 

should be preferred on gain trials and options with small probabilities should be preferred 

on loss trials.  A logistic regression (GLM1) which included the respective reward 

magnitudes and reward probabilities of the two environments as regressors was 

performed to predict participants’ choices on gain and loss trials separately.  As expected, 

it was found that participants preferred environments with large reward magnitude on 

both gain and loss trials (|β|s>3.062, |t|s>8.053, Ps<2.228× 10-7; Fig. 2.2).  Notably, the 

participants exhibited differential preferences of reward probability when the 
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environments leading to gains and when the environments leading to losses.  On gain 

trials, participants were more likely to choose the rightward environment when its reward 

probability was large (β=0.841, t18=6.476, P=4.317× 10-6; Fig. 2.2a) and less likely to 

choose the rightward environment when the reward probability of the leftward 

environment was large (β=-0.403, t18=-3.679, P=0.002; Fig. 2.2a).  In contrast, on loss 

trials, participants were less likely to select the rightward environment when its reward 

probability was large (β = -0.451, t15 = -3.884, P = 0.002; Fig. 2.2b) and more likely to 

select the rightward environment when the reward probability of the leftward 

environment was large (β = 0.548, t15 = 4.048, P = 0.001; Fig. 2.2b).  All these pieces of 

results suggest participants comprehended the values of the environments despite their 

complex structures and behaved conformingly to the task instruction.  Interestingly, 

participants exhibited opposite patterns of side bias on gain and loss trials – they 

preferred the leftward environments on gain trials (β = -0.906, t18 = -7.550, P = 

5.537× 10-7; Fig. 2.2a) and rightward environments on loss trials (β = 1.328, t15 = 5.018, P 

= 1.528× 10-4; Fig. 2.2b).  By design, the values of both reward magnitude and reward 

probability were counterbalanced across sides.  Moreover, the side bias refers to the 

preference to a particular side when all other attributes (i.e. reward magnitude and reward 

probability) have been accounted.  This unexplained side bias did not confound the 

crucial findings that participants were capable of making choices according to the 

environments’ values. 
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Figure 2.2. Differential preferences of reward probability under gains and losses. (a) Environments 

with larger reward magnitude and reward probability were preferred on gain trials. (b) On loss trials, 

environments with larger reward magnitude were still favoured but environments with larger reward 

probability were avoided. RewR=reward magnitude of the rightward environment; ProbR=reward 

probability of the rightward environment; RewL=reward magnitude of the leftward environment; 

ProbL=reward probability of the leftward environment. *** denotes P<0.001 and ** denotes P<0.01. Error 

bars represent means±s.e.m. 

 

Next, it was tested in detail how environments are evaluated to guide decision-

making.  One conventional approach used in the literature of item choice is to regress 

item choices against the difference in EV between the items (Chau et al., 2014; Hunt et 

al., 2012).  In this study, participants’ environment choices were similarly regressed 

against the difference in EV between environments (GLM2).  The results showed that 

participants were more likely to choose the rightward environment when its EV was 

relatively larger than that of the leftward environment (EV(R-L); β=7.356, t19=6.883, 
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P=1.451× 10-6; Fig. 2.3a,b).  Decisions were also made faster when the EV difference 

between the environments was large (β=-0.033, t19=-3.557, P=0.002; Fig. 2.3c).  

Having established the basis of a typical positive effect of EV difference on choices, 

a closer inspection of the effects by other less obvious parameters was taken.  

Particularly, during environment choice, it is critical to integrate information of the 

component items in each environment to form representations of statistical moments (e.g. 

the mean, variance, skewness of the item distribution).  Hence, differences in the 

statistical moments between environments (i.e. Mean(R-L), Variance(R-L), Skewness(R-L)) 

were also included as regressors in addition to the EV difference to examine whether the 

participants considered any of these pieces of information during decisions between 

environments.  Consistent to the results of GLM2, environments with larger EVs were 

preferred (EV(R-L): β=7.641, t19=6.989, P=1.172× 10-6; Fig. 2.3d).  On the other hand, 

there was an absence of effect of mean probability (Mean(R-L): β=0.174, t19=1.711, 

P=0.103).  Nonetheless, it has been shown participants’ choices were indeed biased by 

mean probability because as shown in Figure 2.2, the mean probability imposed positive 

and negative effects on gain trial and loss trials respectively.  The effect of mean 

probability was cancelled out when all trials were pooled together and hence an absence 

of effect was observed.  Interestingly, a positive effect of variance on environment 

choices was also observed (Variance(R-L): β=0.139, t19=2.393, P=0.027; Fig. 2.3d).  In 

other words, environments with more widespread distributions of item probabilities were 

favoured.  Besides, skewness did not show any significant effect on environment choice 

(Skewness (R-L): β=0.073, t19=1.215, P=0.239; Fig. 2.3d).  Nonetheless, skewness is a less 

intuitive statistical moment than the mean and variance.  One possibility for the absence 
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of effect could be a more sensitive test is necessary in order to capture the effect of 

skewness.  

 

Figure 2.3. Effects of EV and statistical moments on environment choice. (a) A logistic regression 

(GLM2) indicated that there was a positive EV(R-L) effect on participants’ environment choices. (b) 

Psychometric curve illustrating that participants were more likely to choose the environment with larger 

EV. (c) A linear regression (GLM3) indicated that there was a negative EV(R-L) effect on the speed of 

making environment choices. (d) Another logistic regression (GLM4) examining the effect of different 

statistical moments on environment choices revealed that participants also preferred environments with 

larger variance in addition to larger EV. EV(R-L)=difference in expected value; Mean(R-L), Variance(R-L), 
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Skewness(R-L)=difference in mean, variance, and skewness of reward probability between environments 

respectively; RT=reaction time. *** denotes P<0.001, ** denotes P<0.01, and * denotes P<0.05. Error bars 

represent means±s.e.m. 

2.4  Discussion 

This study provides fundamental understanding on several behavioural aspects of 

environment choice, which are important to the subsequent investigation of neural 

mechanisms in the fMRI study reported in Chapter 5.  First, this study revealed that 

people were able to integrate different attributes of environments to guide decisions 

despite the complex structure of the environments (Fig. 2.3a,b,d).  Specifically, each 

environment was composed of a distribution of items and positive effects of EV and 

variance in the item distribution on environment choices were observed (Fig. 2.3d).  

Preference of large EV is intuitive because in this paradigm the reward magnitude and 

mean reward probability were explicitly portrayed.  It is worth noting that, variance, the 

less obvious second statistical moment, also significantly biased participants’ 

environment choices.  A preference of large variance was observed during environment 

choice but it is contradictory to the findings from economic studies.  Previous findings 

revealed that economic choices with larger variance are perceived as riskier and thus a 

preference of small variance was resulted in (Kahneman & Tversky, 1979; Symmonds et 

al., 2011).  This discrepancy could stem from the particular importance of larger variance 

to environment choice.  Most often in real world decisions between environments (e.g. 

choosing between restaurants; each of which is an environment offering a collection of 

food), people have to consider whether there is a diversity of items to choose from (e.g. 

how many types of food are offered in each restaurant) in addition to whether overall the 
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items are good.  The variance preference revealed in this study was in accordance with 

the previous findings that people preferred environments in which diverse lotteries were 

available over environments which only provided identical lotteries for selection (Norton 

& Liljeholm, 2020).  Therefore, an opposite effect of variance was shown in evaluation 

of environments when compared to that observed in typical economic choices.   

Moreover, it was found that participants preferred environments with higher 

reward probability when the environments leading to gains (i.e. larger environment EV), 

but avoided environments with higher reward probability when the environments leading 

to losses (i.e. smaller environment EV).  Although this finding is unsurprising at the 

behavioural aspect, it is of great importance for scrutinizing the neural value comparison 

process between environments in the fMRI study.  One critical signature of a neural 

signal of value comparison is the invariance to gains and losses.  For a value comparison 

signal, the only relevant information is how much one option is better than the 

alternative.  The neural substrate underlying the value comparison process should reflect 

the value difference regardless of whether the options are rewarding or aversive.  Existing 

literature of item choice revealed this is indeed the case – although the vmPFC exhibits a 

positive value coding of rewarding items as well as negative value coding of aversive 

items (Plassmann et al., 2010), it signals the value difference between the available items 

during decision-making indifferently under gains and losses (FitzGerald et al., 2009).  

The inclusion of environments leading to losses in addition to environments leading to 

gains allows direct testing whether this essential property of value comparison signal also 

holds true during environment choice.  Properties of the neural signals were discussed in 

Chapter 5. 
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Chapter 3 Behavioural hallmarks of environment 

choice and item choice 

Chapter highlights 

 This chapters aims to test the behavioural hallmarks in environment choice and item 

choice 

 Human participants were tested on a two-stage decision-making that mimic 

environment choice and item choice 

 Context-dependent adaption was observed in environment choice, as well as item 

choice 

 Each environment was considered as an aggregate of multiple items, as opposed to a 

proxy to a particular component item 

 People preferred environments with larger means and variances of the item 

distributions in the environments 

 

3.1  Introduction 

 In Chapter 2, I have demonstrated people were able to compare the values of 

environments for making decisions given their complexity.  It provides the basis for 

examination of the underlying neural mechanisms.  Notably, as per the findings of neural 

value comparison process during item choice that were reviewed in Chapter 1, the neural 

signal of the value difference between options possesses two critical properties: (1) 

invariance to salience and (2) context dependence.  These properties are the essence of 
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value-based decision-making and should also be observed in environment choice.  To this 

end, a study that involved fMRI was designed with careful manipulation with regards to 

these properties.  Invariance to salience can be tested by inclusion of both environments 

that lead to gains and environments that lead to losses.  The first study reported in 

Chapter 2 has shown that people could distinguish these this property behaviourally, 

despite the lack of neural data.  The fMRI study therefore adopted a similar design.  On 

the other hand, to probe the nature of context dependence that has not been investigated 

in the first study, a “bonus”, an additional reward apart from the item reward, was 

included in this study.  The acquisition of bonus varied under conditions, by which 

context dependence can be tested – whether people exhibit behaviour flexibly adapted to 

the conditions to obtain the bonus. 

Furthermore, the primary aim of this thesis is to elucidate whether a single neural 

substrate is sufficient to deal with all different kinds of decision or multiple neural 

substrates are necessary.  To this end, the fMRI study adopted a more sophisticated 

design – it involved a two-stage decision-making task with the first stage mimicking 

environment choice and the second stage mimicking typical item choice.  Specifically, 

decision outcome of the first stage affected the items available for selection in the second 

stage as if a real-life scenario of choosing an environment (e.g. a restaurant) determines 

what items can be encountered for subsequent decision (e.g. food in the restaurant that 

can be ordered).  This experimental design can discern environment choice from item 

choice and allow direct testing on whether a unitary neural substrate or multiple neural 

substrates are underlying to deal with different kinds of decisions. 
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This study focused on the behavioural results of the fMRI study.  It revealed 

people could envisage the potential items that were later available after selection of an 

environment.  Besides, preference in statistical moment (i.e. variance) was observed 

which implies each environment was considered holistically with respect to its item 

distributions, as opposed to being evaluated as a proxy to a particular item.  More 

importantly, people demonstrated adaptation to the context related to the bonus, 

suggesting the property of context dependence.  All these properties as well as other 

behaviourally unexplained properties were discussed in Chapter 5 with neural data. 

3.2  Methods 

3.2.1 Participants 

Twenty-six healthy young adults (15 females), aged 19-39 years with normal or 

corrected-to-normal vision and no current or history of neurological or psychiatric 

conditions, were recruited via advertisement in the university and participants’ referral.  

Written informed consent for each participant was obtained before experiment.  This 

study was approved by the Human Subjects Ethics Committee of The Hong Kong 

Polytechnic University.  One participant withdrew because of contraindications to MRI 

scans.  Data of another participant was excluded because the fMRI session was broken 

into two separate runs and it was not possible to be analysed in the same way as data of 

other participants. 
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3.2.2 Experimental task 

Participants underwent a two-stage decision-making task.  Each block of trials 

included one Stage 1 trial, followed by zero to three Stage 2 trials (Fig. 3.1a).  Stage 2 

trials were similar to a typical binary decision-making task, which required participants to 

choose between two items associated with different reward magnitudes (between -£10 

and +£10) and reward probabilities (proportional to the height of the coloured bars) (Fig. 

3.1b).  On Stage 1 trials, participants chose between two environments, instead of two 

items, each of which was an aggregate of 20 items, presented in a form of a series of 20 

bars and a number.  The height of each bar was related to the reward probability of an 

item in the environment (i.e. a total of 20 items) and the number indicated the mean 

reward magnitude of all items in the same environment (Fig. 3.1b).  Notably, the decision 

made during Stage 1 determined the items that were made available on the subsequent 

Stage 2 trial(s) in the same block, as opposed to decisions in Stage 2 that resulted in 

earning rewards directly. 

To be specific, when a block began, participants first chose between two 

environments.  After selection of an environment, the chosen environment was 

surrounded by a red frame (0.5 second) and then presented at the centre; two items from 

which were pseudo-randomly drawn (highlighted in yellow) after a delay of 2-7 seconds, 

indicating that these two items would be offered on the subsequent Stage 2 trial.  For 

each chosen environment, participants were pseudo-randomly given zero to three Stage 2 

trials; each of which involved two items drawn from the same environment.  On each 

Stage 2 trial, participants chose between two items for reward earning.  The chosen item 

was then surrounded by a red frame (0.5 second).  Reward was delivered according to the 
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reward magnitude and reward probability of the chosen item.  Decision outcomes of all 

Stage 2 trials related to the same environment were simultaneously displayed after all 

Stage 2 trials of the same block were completed.  Participants had to maximize their 

earning by choosing a more rewarding item in Stage 2.  In turn, they also had to seek for 

more advantageous items in Stage 2 by choosing a more rewarding environment in Stage 

1.  There was a total of 200 Stage 1 trials and 200 Stage 2 trials in this task.  

This study intended to scrutinize the neural mechanisms underlying environment 

choice.  A neural substrate which underpins environment choice should possess the 

following properties: (1) it should exhibit a signal reflecting the difference in values 

between the environments; (2) the signal should be independent of salience; (3) the signal 

should show a context-dependent modulation.  To address the first two properties, akin to 

the study in Chapter 2, in this study environments/items leading to gains (Fig. 3.1c; 

green bars) and losses (Fig. 3.1c; red bars) were both included.  This manipulation can 

orthogonalize option value and option salience.  Specifically, there were 53.5% (55%) of 

the trials involved two gain environments (items), 31.5% (30%) of the trials involved two 

loss environments (items) and 15% of the trials involved one gain and one loss 

environment/item. 

Besides, to examine the context-dependent adaptation, this study included an 

opportunity to acquire additional rewards, the bonus, via different ways in two different 

Bonus Conditions (Fig. 3.1c).  On each Stage 1 trial, a bonus between -£4 and +£6 was 

displayed at the lower centre and stayed the same on the subsequent Stage 2 trials of the 

same block.  In Linked Condition (indicated by two arrows pointing from the bonus to 

the two environments/items), the bonus was obtained when the chosen Stage 2 item led to 
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reward.  Hence, in the presence of bonuses that were particularly rewarding, participants 

were incentivized to choose environments composed of items with larger probabilities, 

such that eventually they would be offered these items to win the bonus.  And they also 

ought to select items with higher reward probability in Stage 2.  In contrast, in Unlinked 

Condition (indicated by absence of arrows), the bonus was delivered unconditionally 

such that participants’ choices ought not to be affected by the bonus.  

 

Figure 3.1. A two-stage decision-making task. (a) Each block began by a Stage 1 trial that involved 

environment choice and followed by zero to three Stage 2 trials that involved item choice. (b) On each 

Stage 1 trial, participants chose between two environments, each of which was composed of 20 items 

(Stimulus onset). For each environment, the heights of the bars were related to the reward probabilities of 

the component items and the number above the bars was related to the average reward magnitude of the 

items. After an environment was chosen, it was surrounded by a red frame (Decision) and then was 



 

 

58 

presented at the centre (Delay). After a delay, two items were drawn pseudo-randomly and highlighted in 

yellow (Outcome). These two items were presented on the subsequent Stage 2 trial (Stimulus onset). A red 

frame surrounded the chosen item after decision (Decision). A fixation dot was presented (Delay). After 

that, the amount of probabilistic reward earned from the chosen item was shown (Outcome). (c) Each block 

involved a bonus (number at the bottom) that was delivered in one of the two Bonus Conditions. In Linked 

Bonus Condition (upper row; indicated by two arrows), the bonus was delivered only when the 

probabilistic reward of the chosen item in Stage 2 was earned. In Unlinked Bonus Condition (lower row; 

indicated by absence of arrows), the bonus was delivered unconditionally on each Stage 2 trial. Each block 

was also assigned to one of the three Valence Conditions (Gain, Loss or Mixed), in which the two options 

were either related to gains (left column), losses (right column), or a combination of gains and losses (not 

shown). 

 

3.2.3 Statistical analysis 

For both Stage 1 and Stage 2 decisions, a logistic regression (GLM5) was applied 

to predict whether participants’ choices (to the right=1 and left=0) were biased by the 

options’ expected value and probability, the magnitude of the bonus, and Bonus 

Condition: 

𝑙𝑜𝑔𝑖𝑡
𝑃(𝑅)

1−𝑃(𝑅)
= 𝛽0 + 𝛽1𝐸𝑉(𝑅−𝐿) + 𝛽2𝑃𝑟𝑜𝑏(𝑅−𝐿) + 𝛽3𝐵𝑜𝑛 + 𝛽4𝐶𝑜𝑛𝑑 +

𝛽5(𝐸𝑉(𝑅−𝐿) × 𝐵𝑜𝑛) + 𝛽6(𝑃𝑟𝑜𝑏(𝑅−𝐿) × 𝐵𝑜𝑛) + 𝛽7(𝐵𝑜𝑛 × 𝐶𝑜𝑛𝑑) +

𝛽8(𝐸𝑉(𝑅−𝐿) × 𝐵𝑜𝑛 × 𝐶𝑜𝑛𝑑) + 𝛽9(𝑃𝑟𝑜𝑏(𝑅−𝐿) × 𝐵𝑜𝑛 × 𝐶𝑜𝑛𝑑)  

where P(R) denotes the probability of choosing the option on the right. Prob(R-L) denotes 

the difference in reward probabilities (i.e. the average of item probabilities within 

environment in Stage 1 or item probability in Stage 2) between the options on the right 
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and left; EV(R-L) denotes the difference in expected value between the options on the right 

and left; Bon and Cond represent the bonus value and Bonus Condition (Linked 

Condition=1, Unlinked Condition=0) respectively. 

Stage 1 environments were composed of distributions of items.  To test whether 

participants’ choices were affected by the statistical moments of the item distributions, 

another logistic regression (GLM6) was performed: 

𝑙𝑜𝑔𝑖𝑡
𝑃(𝑅)

1−𝑃(𝑅)
= 𝛽0 + 𝛽1𝐸𝑉(𝑅−𝐿) + 𝛽2𝑀𝑒𝑎𝑛(𝑅−𝐿) + 𝛽3𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅−𝐿) +

𝛽4𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑅−𝐿)  

where Mean(R-L), Variance(R-L), Skewness(R-L) denote the differences in mean, variance, 

and skewness of environment probability respectively.  A one-sample t-test was 

performed to examine whether each beta weight was significantly different from zero 

across participants in both regressions. 

3.3  Results 

3.3.1 Environment choice and item choice flexibly modulated by context 

 This study adopted a two-stage decision-making task to investigate the neural 

mechanisms underpinning environment choice, and to discern environment choice from 

item choice.  First, it is important to assure some fundamental properties of decision-

making were successfully probed.  Therefore, both types of decision were tested 

behaviourally by a logistic regression (GLM5) to examine (1) whether participants chose 

options with larger values and (2) flexibly adapted their choices to earn large bonuses.  
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Under the current experimental design, environment choice in Stage 1 did not give rise to 

direct reward outcome.  Nonetheless, the selected environment determined the 

consequential items in Stage 2 which were directly related to reward earning.  A 

prospective thinking was thus required to opt for a more facilitative environment to 

maximize reward earning in Stage 2 when undertaking Stage 1.  Not surprisingly, the 

results of GLM5 revealed when the EV of the rightward environment was relatively 

larger than that of the leftward environment (i.e. large EV(R-L)), participants were also 

more likely to choose the rightward environment (β=6.264, t23=6.196, P=2.543× 10-6; Fig. 

3.2a).  On the other hand, in Linked Condition, the acquisition of bonus was dependent 

on whether the reward associated with the chosen item was won or not.  Therefore, 

environments composing of items with large reward probabilities should be preferred in 

Stage 1 in order to maximize their opportunities of obtaining the large bonus on the 

subsequent Stage 2 trials.  Contrarily, in Unlinked Condition, the bonus was bounded to 

be delivered and hence choices should not be influenced by the bonus.  This was indeed 

the case of the results – there was a three-way interaction effect between probability 

difference (Prob(R-L)), bonus value (Bon), and Bonus Condition (Cond; Linked vs 

Unlinked) (β=0.248, t23=3.069, P=0.005; Fig. 3.2a,b).  This reflects that on Linked trials 

with large bonuses, participants preferred environments with large reward probability 

such that on the upcoming Stage 2 trials they were more likely to encounter items with 

large reward probabilities and then earn the bonus. 

A similar logistic regression was applied to analyze the item choice in Stage 2.  Akin 

to the Stage 1 results, items with lager EVs were preferred (β=4.420, t23=11.582, 

P=4.468× 10-11; Fig. 3.2a) and there was also a significant Prob(R-L)×Bon×Cond 
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interaction effect (β=0.760, t23=4.731, P=9.113× 10-5; Fig. 3.2a,b).  Taken together, in 

both Stages 1 and 2 participants did make decision according to option value and adapt 

their choices to the context by exhibiting a stronger preference to choose options with 

greater probability when there was a large bonus in Linked Condition.  Importantly, these 

results also revealed that participants realized the offers on the subsequent Stage 2 trials 

were determined by the environments they selected in Stage 1.  In other words, the 

prospective nature of environments was successfully probed. 

3.3.2 Environment choices biased by statistical moments 

Similar to the study reported in Chapter 2, it is critical to scrutinize whether different 

statistical moments (e.g. mean, variance, skewness) were represented and integrated to 

guide decisions between complex environments.  To this end, another logistic regression 

(GLM6) was carried out and it showed an absence of effect of mean probability on 

environment choices (β=0.089, t23=1.121, P=0.274; Fig. 3.2c).  This was because the 

component items could lead to either gains or losses.  The preferences for mean 

probability were opposite under gains and losses such that the effects of mean probability 

in these two conditions were cancelled out.  On the other hand, a positive effect of 

variance was found (β=0.126, t23=2.248, P=0.035; Fig. 3.2c) but no effect of skewness on 

choices was observed (β=0.074, t23=1.290, P=0.210; Fig. 3.2c).  It implies that, akin to 

the findings of the study reported in Chapter 2, environments with more widespread item 

distribution were favoured. 
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Figure 3.2. Logistic regression results. (a) A logistic regression (GLM5) indicated that there were 

positive EV(R-L) and Prob(R-L)×Bon×Cond effects on participants’ choices in Stage 1 environment choice 

and Stage 2 item choice. (b) Psychometric curves illustrating that, in Stage 1, participants were more likely 

to choose environments with larger EVs (top-left panel). In Linked Condition, when the bonus value 
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became larger, there was a stronger preference for choosing environments with larger reward probabilities 

(bottom-left panel; blue vs red). In contrast, in Unlinked Condition, the preference for larger reward 

probabilities was no longer modulated by the bonus value (bottom left panel; orange vs green).  Similar 

choice patterns were observed in Stage 2 (right column).  (c) In Stage 1, participants showed a preference 

for environments with large variances, in addition to a preference for those with larger EVs. EV(R-

L)=difference in expected value; Prob(R-L)=difference in reward probability; Bon=bonus value; Cond=Bonus 

Condition; Mean(R-L), Variance(R-L), Skewness(R-L)=difference in mean, variance and skewness of reward 

probability between environments respectively. *** denotes P<0.001, ** denotes P<0.01, and * denotes 

P<0.05. Error bars represent means±s.e.m. 

 

3.4  Discussion 

The primary goal of this thesis is to investigate whether a single neural substrate 

deals with all kinds of decision or distinct neural substrates are required for different 

types of decision.  Therefore, in this study, environment choice as well as item choice 

were included for direct comparison.  Environment choice and item choice are similar in 

the way that they both involve making choices between options of the same class.  Given 

this resemblance, they should show a number of similar properties of decision-making.  

The behavioural results did provide evidence that these two types of decision do share 

some fundamental properties.  First, in both Stage 1 environment choice and Stage 2 item 

choice, participants chose according to the EV difference between the options 

(environments in Stage1 and items in Stage 2; Fig. 3.2a).  It reflects participants 

integrated both attributes of reward magnitude and reward probability to guide decision-

making, which is a well-established property in economic choice (von Neumann & 
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Morgenstern, 1944).  Second, a property of context dependence was observed in both 

stages.  In the context where the acquisition of bonus was related to reward probability 

(i.e. Linked Condition), participants preferred options with larger probability when the 

bonus value was large (Fig. 3.2b, bottom row, blue versus red).  On the contrary, in the 

context where the bonus was unconditionally delivered (i.e. Unlinked Condition), 

participants choices were not affected by the reward probability nor the bonus value (Fig. 

3.2b, bottom row, yellow versus green). 

Showing the similarities among environment choice and item choice, the next step is 

to scrutinize their differences.  This chapter only focuses on the behavioural results of the 

fMRI exp.  Without neural data, it is insufficient to discern these two types of decision.  

Nevertheless, the behavioural results revealed that these two different types of decision 

were being simulated and measured, providing the preliminary basis to further discern 

them at the neural level.  As discussed in Chapter 1, there are two essential features of 

environment: (1) an environment is an aggregate of multiple items and (2) it brings in the 

opportunity to come across its component items rather than direct acquisition of the final 

payoff associated with the items.  The behavioural results affirmed that these two features 

of environment were successfully probed.  First, consistent finding to the study reported 

in Chapter 2 was observed – environments with larger EV and larger variance were 

preferred (Fig. 3.2c).  It implies the distribution of items within an environment was 

considered holistically and in other words suggests that each environment was viewed as 

a collection of multiple items, as opposed to a proxy to a specific item.  While the second 

feature of environments concerns the interdependent relation between the choice of an 

environment, the prospective items that will be encountered, and the final payoff.  In this 
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study, Stage 1 choices did not give rise to reward (i.e. final payoff) but gave rise to the 

opportunity to encounter potentially better items in the subsequent Stage 2.  By contrast, 

Stage 2 decisions directly led to reward earning and the decision outcome might affect 

the acquisition of bonus (in Linked Condition a bonus was delivered if a reward was 

obtained; in Unlinked Condition the bonus was bound to be delivered).  Therefore, a 

context-dependent adaptation was needed for Stage 2 decisions and this was the case of 

the results.  Interestingly, although bonus acquisition was not directly dependent on Stage 

1 decisions in either condition, an interaction effect between the mean probability of 

environment, bonus value, and Bonus Condition was also observed during Stage 1.  It 

implies participants did carry a prospective thinking about the consequence of 

environment choices – they flexibly chose environments composing of items with high 

reward probability to facilitate the acquisition of bonus in the upcoming Stage 2 in 

Linked Condition but not in Unlinked Condition.  This provides the basis for discerning 

the neural signal related to environment choice from that related to item choice. 

Thus far, results of this study demonstrated that behaviourally both environment 

choice and item choice were successfully probed, and these two types of decision did 

share some fundamental properties of decision-making.  To disentangle whether these 

types of decision involve separate neural substrates or both of them are executed by a 

single neural substrate, the neural data were inspected and reported in Chapter 5.  

Specifically, three frameworks which hold different assumptions on within-class (item 

versus item or environment versus environment) and between-class (item versus 

environment) decisions were tested.  The Neural Common Currency Framework posits 

all kinds of decision, regardless of within-class or between-class decisions, are 
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underpinned by a single neural substrate.  On the other hand, the Option Homogeneity 

Framework postulates there are distinct neural substrates underlying the within-class 

decisions for each class of option and a separate neural substrate subserves the between-

class decision.  In a similar vein, the Decision Homogeneity Framework also assumes 

separate neural substrates for between-class and within-class decisions.  It however 

suggests that all within-class decisions are subserved by the same neural substrate, 

irrespective of what the options involved are.  A previous study which involved both 

decision between items and environments has partially precluded the Neural Common 

Currency Framework by showing that separate neural substrates were involved in item 

choice and item choice and decision between items and environments (Kolling et al., 

2012).  Hence, for the neural data analysis in Chapter 5, the Option Homogeneity 

Framework and Decision Homogeneity Framework were focused. 
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Chapter 4 Estimating value computation process 

during decision-making 

Chapter highlights 

 This chapter aims to develop computational models to describe the value computation 

process 

 A convolutional neural network (CNN) best predicts people’s decision-making 

behaviour compared to general linear model, cumulative prospect theory, mean-

variance-skewness model, power model, autoencoder 

 The CNN encodes the means, variances, and skewness of the item distributions in the 

environments even though these parameters are not explicitly specified to the CNN  

 The CNN involves multiple feature detectors to extract and integrate features of the 

complex information in the environments 

 

4.1  Introduction 

Thus far, all behavioural analyses in Chapters 2 and 3 assume participants perfectly 

estimated the option value according to some typically used parameters such as expected 

value (EV), variance, and skewness.  However, actual human decision-making may not 

necessarily follow these computations, especially for the case of complex environments.  

Computational models, on the contrary, can vividly describe how people subjectively 

evaluate the options.  Critically, these accounts of the subjectivity facilitate the 
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examination of the neural computation underlying decision-making.  Multiple lines of 

studies have demonstrated that describing people’s choices using computational models 

as opposed to EV better explained the neural value signals (Hsu et al., 2009; Symmonds 

et al., 2011).  Therefore, before analysis of the neural data, I developed and compared 

different computational models to scrutinize how the values of the environments or items 

were estimated in the studies reported in Chapters 2 and 3.   

Models that are commonly used for modelling economic value or value in 

distribution were adapted in this study, such as general linear model, cumulative prospect 

theory, mean-variance-skewness model, and power law model.  Apart from conventional 

computational models, I also adapted the cutting-edge deep learning neural networks 

from the field of artificial intelligence.  There are several merits of deep learning neural 

networks over conventional computational models.  First, conventional models require 

explicit specification of every feature-of-interest within the data.  While deep learning 

neural networks allow fewer a priori assumptions.  Only the essential information of 

environments is needed and the deep learning neural networks will decide what features 

to extract.  Implicit features or patterns within the data can also be extracted even not 

specified.  Second, deep learning neural networks possess a multi-nodal architecture via 

which environment values can be represented by multiple nodes.  It provides a means to 

delineate the multivariate coding during valuation.  Examination of multivariate neural 

signals is permitted and it facilitates the disentanglement of functional specialization 

among different brain regions during decision-making in Chapter 5. 

For both studies reported in Chapters 2 and 3, the convolutional neural network 

(CNN) outperforms other alternative models in predicting environment choices.  
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Furthermore, it was found that the CNN carries information about statistical moments – 

the between-environment differences in mean, variance, and skewness of the item 

distributions.  It was consistent to the findings observed from the behavioural analyses in 

Chapters 2 and 3. 

4.2  Methods 

4.2.1 Experimental task 

 The behavioural study involved a parsimonious binary decision-making task 

between environments.  Details about the task are described in Chapter 2.  In brief, 

participants chose repeatedly between two environments for 10 trials in each block.  Each 

environment was composed of a number (representing the average reward magnitude of 

20 items) and 20 bars (representing the individual reward probabilities of 20 items).  

After selection of an environment, one item from the chosen environment was randomly 

drawn.  Reward was then delivered according to the reward magnitude and reward 

probability of the drawn item. 

 On the other hand, the fMRI experiment involved a two-stage decision-making 

task.  Details about the task are described in Chapter 3.  In brief, in each block there was 

a Stage 1 trial accompanied by 0-3 Stage 2 trials.  Stage 1 was similar to the behavioural 

study.  Each environment was composed of a number (representing the average reward 

magnitude of 20 items) and 20 bars (representing the individual reward probabilities of 

20 items).  Notably, after selection of an environment, two items from the chosen 

environment were pseudo-randomly drawn and offered for selection on the subsequent 

Stage 2 trial.  Participants chose between the two items which were associated with 
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different reward magnitudes and reward probabilities.  Reward was delivered accordingly 

after the choice of an item.  Furthermore, there was an additional reward, the bonus, 

whose acquisition was determined by the Bonus Condition.  In Linked Condition, the 

bonus was delivered if the chosen item on the same Stage 2 trial led to reward.  In 

Unlinked Condition, the bonus was delivered unconditionally.   

4.2.2 General linear model (GLM) 

Computational modelling aims to delineate the valuation process.  Despite the 

differences in the underlying computation among models, all models commonly generate 

a decision value (DV) for each environment for choice prediction.   

GLM is typical approach to fit economic choices.  Environment choice data of the 

behavioural study were therefore fitted by a GLM with the three essential attributes of the 

environments, namely reward magnitude (Rew), reward probability (Prob), and EV (i.e. 

Rew multiplied by Prob).  DVs of the environments are estimated by: 

𝐷𝑉𝑅 = 𝛽0 + 𝛽1𝑅𝑒𝑤(𝑅−𝐿) + 𝛽2𝑃𝑟𝑜𝑏(𝑅−𝐿) + 𝛽3(𝑅𝑒𝑤𝑅 × 𝑃𝑟𝑜𝑏𝑅 − 𝑅𝑒𝑤𝐿 × 𝑃𝑟𝑜𝑏𝐿)  

Eq. 1 

where DVR is the DV of the rightward environment; Rew(R-L) and Prob(R-L) denote the 

differences in reward magnitude and mean reward probability between the rightward and 

leftward environments respectively. 

The environments in the fMRI study were highly similar to those in the behavioural 

study, except that information about bonus value and Bonus Condition were additionally 

included.  Besides, the fMRI study involved item choice as well.  To fit the behavioural 
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data of both environment choice and item choice in the fMRI study, Eq. 1 was modified 

as follow: 

𝐷𝑉𝑅 = 𝛽0 + 𝛽1𝑅𝑒𝑤(𝑅−𝐿) + 𝛽2𝑃𝑟𝑜𝑏(𝑅−𝐿) + 𝛽3𝐵𝑜𝑛 + 𝛽4𝐶𝑜𝑛𝑑 +

𝛽5(𝑅𝑒𝑤𝑅 × 𝑃𝑟𝑜𝑏𝑅 − 𝑅𝑒𝑤𝐿 × 𝑃𝑟𝑜𝑏𝐿) + 𝛽6(𝑃𝑟𝑜𝑏(𝑅−𝐿) × 𝐵𝑜𝑛 × 𝐶𝑜𝑛𝑑)  

Eq. 2 

where DVR is the DV of the rightward option (environment or item for the corresponding 

choice data); Rew(R-L) denotes the difference in reward magnitude between the rightward 

and leftward options; Prob(R-L) denotes the difference in reward probabilities between the 

rightward and leftward options; Bon and Cond represent the bonus value and Bonus 

Condition (Linked Condition=1, Unlinked Condition=0) respectively. 

4.2.3 Mean-variance-skewness (MVS) model  

Given an environment can be characterized by the mean, variance, and skewness of 

the distribution of its component items, the subjective probability of a given environment 

can be estimated with regard to these statistical moments by the MVS model (Symmonds 

et al., 2011, 2013; Wright, Symmonds, Morris, et al., 2013): 

𝑃𝑟𝑜𝑏𝑘̂ =
1

20
∑𝑃𝑟𝑜𝑏𝑞

𝑘

20

𝑞=1

+ 𝜌𝑉𝑎𝑟(𝑃𝑟𝑜𝑏𝑘) + 𝜎𝑆𝑘𝑒𝑤(𝑃𝑟𝑜𝑏𝑘) 

Eq. 3 

where 𝑃𝑟𝑜𝑏𝑘̂  is the subjective probability of the kth environment (either the leftward or 

rightward environment) while Probk
q is the qth individual item probability in the kth 



 

 

72 

environment.  Preferences for variance and skewness are reflected by two free parameters 

ρ and σ respectively.  DV of the kth environment is formulated as follow: 

𝐷𝑉𝑘 = 𝛽1𝑅𝑒𝑤
𝑘 + 𝛽2𝑃𝑟𝑜𝑏𝑘̂ +𝛽3(𝑅𝑒𝑤

𝑘 × 𝑃𝑟𝑜𝑏𝑘)̂  

Eq. 4 

where Rewk is the reward magnitude of the kth environment. 

Similarly, Eq. 4 was adapted to estimate environments’ subjective reward 

probabilities in the fMRI study and the computation of DVs is as follow: 

𝐷𝑉𝑘 = 𝛽1𝑅𝑒𝑤
𝑘 + 𝛽2𝑃𝑟𝑜𝑏𝑘 +̂ 𝛽3(𝑅𝑒𝑤

𝑘 × 𝑃𝑟𝑜𝑏𝑘̂ )+𝛽4𝐵𝑜𝑛 + 𝛽5𝐶𝑜𝑛𝑑 +

𝛽6(𝑃𝑟𝑜𝑏𝑘̂ ×𝐵𝑜𝑛 × 𝐶𝑜𝑛𝑑)  

Eq. 5 

4.2.4 Power law model  

Previous findings showed that the value estimation of an array of stimuli can be 

accounted for by a power law model (Li et al., 2017).  The power law model was 

therefore applied to estimate the subjective probabilities of the environments: 

𝑃𝑟𝑜𝑏𝑘̂ =
1

20
∑(𝑃𝑟𝑜𝑏𝑞

𝑘)𝑔
20

𝑞=1

 

Eq. 6 

where 𝑃𝑟𝑜𝑏𝑘̂  is the subjective probability of the kth environment while Probk
q is the qth 

individual item probability in the kth environment.  Each individual item probability in an 
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environment is transduced by a power g.  The computation of the DVs is identical to Eq. 

4. 

For the fMRI study, the estimation of environments’ subjective reward probabilities 

is identical to Eq. 6 and the computation of DVs is identical to Eq. 5. 

4.2.5 Cumulative prospect theory (CPT) 

The cumulative prospect theory (Tversky & Kahneman, 1992) is a classical model 

of subjective value estimation towards item value.  It was also adopted to estimate the 

subjective probability of each item within a given environment.  Different from the 

abovementioned models, CPT provides the capability for estimating the subjective value 

of reward magnitude in addition to the reward probability.  Moreover, it has discrete 

transformation functions for value estimation under gains and losses.  Subjective reward 

magnitudes of the environments were estimated by the following two utility functions for 

gains and losses respectively: 

𝑅𝑒𝑤�̂� = {
(𝑅𝑒𝑤𝑘)𝛼             𝑖𝑓 𝑅𝑒𝑤𝑘 ≥ 0

−𝜆(−𝑅𝑒𝑤𝑘)𝛽         𝑖𝑓 𝑅𝑒𝑤𝑘 < 0
}     

Eq. 7 

where Rewk
 is the reward magnitude of the kth environment and 𝑅𝑒𝑤�̂� is the 

corresponding subjective reward magnitude; α and β denote the sensitivity to value 

change in gains or losses; λ denotes the degree of loss aversion.  There are also two 

weighting functions for estimation of subjective probability under gains and losses 
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respectively: 

   𝑃𝑟𝑜𝑏𝑘̂ =

{
 
 

 
 
1

20
∑

(𝑃𝑟𝑜𝑏𝑞
𝑘)γ

((𝑃𝑟𝑜𝑏𝑞
𝑘)γ+(1−𝑃𝑟𝑜𝑏𝑞

𝑘)
γ
)
1
γ

20
𝑞=1       𝑖𝑓 𝑅𝑒𝑤𝑘 ≥ 0

1

20
∑

(𝑃𝑟𝑜𝑏𝑞
𝑘)Δ

((𝑃𝑟𝑜𝑏𝑞
𝑘)Δ+(1−𝑃𝑟𝑜𝑏𝑞

𝑘)
Δ
)
1
Δ

20
𝑞=1      𝑖𝑓 𝑅𝑒𝑤𝑘 < 0

}
 
 

 
 

 

Eq. 8 

where γ and Δ denotes the extent of upweighting of small probability and downweighting 

of large probability, under gains and losses respectively.  DV of the kth environment is 

computed with the subjective reward magnitude and subjective reward probability: 

𝐷𝑉𝑘 = 𝛽1𝑅𝑒𝑤𝑘̂ +𝛽2𝑃𝑟𝑜𝑏𝑘̂ +𝛽3(𝑅𝑒𝑤�̂� × 𝑃𝑟𝑜𝑏𝑘̂ ) 

Eq. 9 

The CPT used for estimation of subjective reward magnitude and subject reward 

probability in the fMRI study is identical to Eq. 7-9, except that the computation of DVs 

involved the bonus value and Bonus Condition: 

𝐷𝑉𝑘 = 𝛽1𝑅𝑒𝑤𝑘̂ +𝛽2𝑃𝑟𝑜𝑏𝑘̂ +𝛽3(𝑅𝑒𝑤�̂� × 𝑃𝑟𝑜𝑏𝑘̂ )+𝛽4𝐵𝑜𝑛 + 𝛽5𝐶𝑜𝑛𝑑 +

𝛽6(𝑃𝑟𝑜𝑏𝑘̂ ×𝐵𝑜𝑛 × 𝐶𝑜𝑛𝑑)  

Eq. 10 

where 𝑅𝑒𝑤�̂� and 𝑃𝑟𝑜𝑏𝑘̂  denote the subjective reward magnitude and subjective reward 

probability of the kth option (environment or item for the corresponding choice data) 

respectively; Bon is the bonus value and Cond is the Bonus Condition. 
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4.2.6 Convolutional neural network (CNN) 

In addition to the abovementioned models, deep learning models such as CNN 

were also applied to fit environment choices.  One characteristic of the CNN is its 

capability to integrate bundles of information into digested representation of features.  It 

is hence applicable to describe the feature extraction and integration of the complex 

information embedded in the environments.  There are four essential parts in a CNN: (1) 

input layer; (2) hidden layers; (3) choice-predicting fully-connected layer; (4) output 

layer (Fig. 4.1a).  Environment value (i.e. reward magnitude and reward probability) is 

fed in as the input layer of the CNN.  Next, reward probability in the input layer, which is 

stored in a form of matrix, undergoes convolution with four feature detectors and results 

in four sets of feature maps (Fig. 4.1b).  To be specific, each feature detector which 

involves a set of weights, superimposes on the matrix of reward probability and slides 

along the entire matrix stride by stride.  In each stride, the superimposed portion in the 

matrix is multiplied by the feature detector weights and the weighted-sum becomes the 

output of that stride.  Feature map derived from this convolution process can be 

formulated as follow: 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑖𝑗
𝐴 = 𝑏𝐴

(1) + ∑ ∑𝑊𝑚𝑛
(1)

𝑁

𝑛=1

𝑀

𝑚=1

⊙𝑋(𝑖+𝑚−1)(𝑗+𝑛−1) 

Eq. 11 

where bA
(1) is the bias term for the Ath feature map. X is the matrix containing information 

about reward probability with a size of I×J; W(1) is the weight matrix of the feature 

detector with a size of M×N and Wmn
(1) refers to the element in the mth row, nth column; 
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The ith row, jth column of a feature map is the convolution outcome of a stride 

(i∈{1,2,…,[I-m+1]}; j∈{1,2,…,[J-n+1]}). 

Features maps are subsequently multiplied by the reward magnitude to take the 

interaction in between into account, similar to the EV (i.e. reward magnitude multiplied 

by reward probability).  Afterwards, feature maps, reward magnitude, and feature maps × 

reward magnitude are concatenated (denoted by concat).  In an early fully-connected 

layer (fc1), concat is vectorized and then converted into 512 nodes and all these nodes are 

activated by a rectified linear unit (ReLU) function: 

𝑌𝑁 = 𝑊𝑁
(2)
．𝑐𝑜𝑛𝑐𝑎𝑡 + 𝑏𝑁

(2)
 

Eq. 12 

𝑅𝑒𝐿𝑈(𝑌) = {
0 𝑖𝑓 𝑌 < 0
𝑌 𝑖𝑓 𝑌 ≥ 0

} 

Eq. 13 

where bN
(2) is the bias term and WN

(2) is the weight matrix for the Nth node respectively.   

Afterwards, in the choice-predicting fully-connected layer (final fc), all nodes are 

vectorized and then weigh-summed to form the DVs.  The DV for the kth environment is 

computed by: 

𝐷𝑉𝑘 = 𝑊𝑘
(3)
．Y + 𝑏𝑘

(3)
 

Eq. 14 

where Wk
(3) are the weights in final fc and bk

(3)
 is the bias term for the kth environment.  

Finally, in the output layer, the DV of each environment is transformed into a choice 

probability via a softmax function: 
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𝑃(𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑘) =
𝑒𝐷𝑉𝑘

∑ 𝑒𝐷𝑉𝑘2
𝑘

 

   Eq. 15 

On the other hand, a CNN was developed to fit the environment choice data of the 

fMRI study.  It was adapted from the CNN for the behavioural study and it is highly 

similar except several differences (Fig. 4.1c).  First, since the fMRI study involved an 

additional component of bonus, information about bonus value and Bonus Condition are 

fed in to the input layer.  Feature maps are multiplied by bonus value and Bonus 

Condition to take the interaction between reward probability and the bonus into account.  

This interaction is also concatenated into concat in addition to feature maps, reward 

magnitude and feature maps × reward magnitude.  Next, the information about the 

environments represented in concat is integrated through fc1 and ReLU.  It is 

concatenated with the information about bonus value and Bonus Condition into concat2 

to account for the existence of context (i.e. bonus).  The remaining divisions are identical 

to the CNN for the behavioural study.  This CNN for environment choice data of the 

fMRI study was then adapted to fit the item choice data.  However, due to the limitation 

in data structure (each item has only one number for reward probability as opposed to an 

environment which has 20 numbers), convolution is not feasible for item choice and the 

CNN is reduced into an artificial neural network (ANN) by removing the convolution 

part (Fig. 4.1d). 



 

 

78 

 

Figure 4.1. Deep learning neural network architectures. (a) Simplified schematic of the convolutional 

neural network (CNN) for the behavioural study. The CNN receives information of each environment as 

the input. During convolution, four feature detectors extract the features embedded in the item distributions 
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of the environments, giving rise to four sets of feature maps. Feature maps are multiplied by the reward 

magnitude and then feature maps, reward magnitude, and their interaction are concatenated. The 

concatenated features are represented by 512 nodes and integrated via a couple of hidden layers. Finally, in 

the fully-connected layer, all nodes are weighted and added up to form decision values (DVs) for the 

leftward or rightward environments. DVs are subsequently transformed by a softmax function into choice 

probabilities of the environments in the output layer. (b-d) Full schematics of the (b) CNN for behavioural 

study, (c) CNN for environment choice data of fMRI study, and (d) artificial neural network (ANN) for 

item choice data of fMRI study. 

 

In addition, to investigate whether the CNN integrates information about 

statistical moments of the environments, four “simplified” CNN models, namely Mean 

Model, Mean+Var Model, Mean+Skew Model and Mean+Var+Skew Model, were 

developed.  In the original CNN, the values of all component items in each environment 

are individually specified in the input.  In contrast, in the Mean Model, the input involves 

the mean of the item distribution, instead of individual item values.  In the Mean+Var 

Model, the input involves the mean and variance of the item distribution.  In the 

Mean+Skew Model, the input involves the mean and skewness of the item distribution.  

In the Mean+Var+Skew Model, the input involves the mean, variance, and skewness of 

the item distribution. 

4.2.7 Autoencoder  

Apart from CNN, another deep learning neural network – autoencoder, was used for 

fitting the environment choice of the behavioural study.  There are three essential layers 

in the autoencoder: (1) input layer; (2) hidden layer; (3) output layer.  Environment value 

is fed in as the input layer of the autoencoder (Fig. 4.2).  In the hidden layer, features 
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embedded in the environments are extracted as such the input layer is transformed into 10 

hidden nodes.  Afterwards, every hidden node is activated by a sigmoid function: 

𝑍ℎ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎ
(4)
．𝑋𝐴𝑢𝑡𝑜𝑒𝑛𝑐 + 𝑏

(4)) 

    Eq. 16 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =
1

1 + 𝑒−𝑧
 

  Eq. 17 

where XAutoenc is the input; Wh
(4) is the hth weight matrix transforming XAutoenc into the hth 

hidden node Zh ; b
(4) is a bias term.  All hidden nodes are then weigh-summed to form the 

DV.  The DV for the kth option is computed by: 

𝐷𝑉𝑘 = 𝑊𝑘
(5)
．𝑍 + 𝑏𝑘

(5) 
 

     Eq. 18 

where Wk
(5) is the weight matrix for the kth option; bk

 (5) is the bias term for the kth option.  

In the output layer, the DV of each environment is transformed into a choice probability 

via Eq. 15. 
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Figure 4.2. Schematic of the autoencoder. In the input layer, all attributes of the environments were fed 

as the input. In the subsequent hidden layer, feature extraction is performed. As a result, the input is 

transformed into 10 hidden nodes (not all of them are shown here). In the output layer, the hidden nodes are 

weighted and added up to form a decision value (DV) for each environment, which are then transformed by 

a softmax function to generate the choice probability. 

 

The autoencoder employed in the behavioural study was adapted for fitting the data 

of the fMRI study.  The primary changes are: (1) Bon, Cond, and Prob×Bon×Cond in 

addition to Rew, Prob, and EV were fed in as the input; (2) a different number of hidden 

nodes (i.e. 512) was used.  Similarly, the autoencoder was applied to the item choice data 

with an architecture of 512 hidden nodes. 

4.2.8 Parameter optimization and model comparison 

All CNNs and autoencoders were fitted to participants’ choices using Matlab Deep 

Learning Toolbox (The MathWorks, 2018) whereas the other models were fitted using 



 

 

82 

MatlabVBA-toolbox (Daunizeau et al., 2014).  For each model, a 20-fold cross-validation 

procedure was performed to prevent overfitting.  Specifically, data from all participants 

were collapsed and was randomly split into subsets.  All but one subsets were used for 

training a model and the remaining subset was selected to test the trained model.  This 

procedure repeated 20 times by changing the testing subset each time.  The performance 

of the models was compared by their negative log-likelihood (NLL). 

4.2.9 Representational similarity analysis (RSA) 

RSA (Kriegeskorte et al., 2008) was performed to inspect the relatedness between 

the CNN and the simplified CNN, by comparing their representational dissimilarity 

matrices (RDMs).  First, RDMs of different datasets for each subject were computed.  

RSA was then conducted in a subject-by-subject manner.  Specifically, trial-by-trial 

nodal activations of a given layer (e.g. a feature map) in each CNN model were extracted.  

Next, a self-correlation was performed using Pearson correlation.  The resulting 

correlation matrix was then subtracted from 1 to become an RDM.  RSA was performed 

by computing Spearman correlations between a pair of RDMs.  Noting that only the 

lower triangle (or equivalently the upper triangle) of the RDMs was used for RSA 

because the upper and lower triangles within an RDM are symmetrical.  

4.3  Results 

 Since each environment is composed of multiple items, to scrutinize how the 

complex information within the environments was integrated to guide decision-making, 

different computational models were applied to fit participants’ choices and their 

goodness-of-fit was compared.  It is worth noting that the performance of the CNN and 
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autoencoder is susceptible to the architectures employed.  Therefore, before model 

comparison, different architectures of the CNN and autoencoder were tested.  The 

optimized models were then selected for model comparison. 

4.3.1 Parameterization of CNN/ANN 

Environment choice requires encoding and integrating the complex information of 

the environments.  CNN is a candidate model that could provide remarkable description 

about these processes because CNN is efficient in feature extraction from complex visual 

information to decode image identity (Krizhevsky et al., 2012; Lindsay, 2020).  

Therefore, the CNN was adopted to decode environment choices from the multiplex 

environments’ values.  Yet, the architectures of the CNN can greatly affect its 

performance.  To this end, the sizes of the feature detector (from small to large: 2×1, 5×1, 

10×1, 20×1), the number of feature detector (from 1 to 5 detectors), and the number of 

nodes in fc1 (32, 64, 128, 256, 512) were systematically varied to identify the optimized 

CNN architecture.  For the behavioural study, no significance difference among the CNN 

variants were observed (F(99,1900)=0.099, P=1; Fig. 4.3a).  The CNN with four feature 

detectors in a size of 2×1 and 512 nodes in fc1 yielded the lowest NLL (39.935±4.318) 

and hence it was selected for subsequent analyses. 

Different CNN variants for environment choice of the fMRI study were also 

inspected and the model comparison results showed a marginally significant difference 

among the variants (F(99,1900)=1.199, P=0.094; Fig. 4.3b).  The variant with four 

feature detectors in a size of 2×1 and 512 nodes in fc1 yielded the lowest NLL (33.235±

5.5628) and this variant was selected for subsequent analyses.  Interestingly, this CNN 
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variant possesses identical parameters (i.e. four feature detectors in a size of 1×2 and 512 

nodes in fc1) to the CNN variant that best describes the environment choice data of the 

behavioural study.  This provides further evidence that the delineation of environment 

choice behaviour by the CNN is reliable irrespective of data set, in addition to the cross-

validation procedure that prevents overfitting (Section Parameter optimization and model 

comparison of Chapter 4).  Similarly, the optimized ANN architecture for item choice of 

the fMRI study was tested by varying the number of nodes in fc1 (32, 64, 128, 256, 512).  

It was found that there was no significant difference among the ANN variants 

(F(4,95)=0.071, P=0.991; Fig. 4.3c).  Nonetheless, the variant with 512 nodes in fc1 

yielded the lowest NLL (46.195±2.918) and thus it was selected for subsequent analyses. 
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Figure 4.3. Performance of different CNN/ANN architectures. (a) The CNN involving four feature 

detectors in a size of 1×2 and 512 nodes in fc1 (green arrow) yielded the lowest negative log-likelihood 

(NLL; 39.935) for the environment choice of the behavioural study. (b) Identical CNN architecture (green 

arrow) also yielded the lowest NLL (33.235) for environment choice of the fMRI study. (c) ANN with 512 

nodes in fc1 yielded the lowest NLL (46.195) for item choice of the fMRI study. Error bars represent 

means±s.e.m. 

 

4.3.2 Parameterization of autoencoder 

The autoencoder is characterized by its capability in dimensionality reduction.  The 

autoencoder reduces the high-dimensional input into low-dimensional hidden nodes 

representing the features of the original input with minimal information loss 

(Kiarashinejad et al., 2020).  Different autoencoder architectures were tested by varying 

the number of hidden nodes.  Since there were 42 numbers representing the value of 

reward magnitude and reward probability (one for reward magnitude and 20 for reward 

probability for each environment) in the input layer, the number of hidden nodes being 

tested ranged from one to 42 and further increment (i.e. 64, 128, 256, and 512) was 

arbitrarily set.  Interestingly, relatively high NLLs were yielded for autoencoders with 

less than 10 nodes and the NLL significantly dropped when 10 nodes were used (ts38<-

4.823, Ps<2.301×10-5; Fig. 4.4a).  From 10 nodes onwards, there was no significant 

difference in NLL (F(36,703)=0.314, P=1; Fig. 4.4a).  Nevertheless, the autoencoder 

with 10 nodes yielded the lowest NLL (40.177±4.687) among all autoencoder variants 

and thus it was selected for comparison with other computational models. 
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For environment choice of the fMRI study, the variant with 512 hidden nodes 

yielded the lowest NLL (37.175±3.589; Fig. 4.4b).  This 512-node variant outperformed 

about half the tested variants, especially when fewer number of hidden nodes were used 

(i.e. variants with number of nodes of 1-20, 24, 27; ts38<-2.133, Ps<0.040; Fig. 4.4b).  

Item choice data was fitted with the same procedures.  The variant with 512 hidden nodes 

also yielded the lowest NLL (46.638±4.95; Fig. 4.4c).  In addition, it significantly 

outperformed all other variants (ts38<-2.500, Ps<0.017; Fig. 4.4c), except when 43-45 

hidden nodes were used (ts38>-0.755, Ps>0.454; Fig. 4.4c).  
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Figure 4.4. Performance of different autoencoder architectures. (a) The autoencoder involving 10 

hidden nodes (green arrow) yielded the lowest negative log-likelihood (NLL; 40.177) for the behavioural 
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study. (b) For the environment choice of the fMRI study, the autoencoder involving 512 hidden nodes 

(green arrow) yielded the lowest NLL (37.175). (c) The autoencoder involving 512 hidden nodes (green 

arrow) also yielded the lowest NLL (46.638) for item choice of the fMRI study. Error bars represent 

means±s.e.m. 

 

4.3.3 Model comparison revealed CNN/ANN best predicts participants’ choices 

After identifying the optimized architectures, these optimized CNNs, ANN, and 

autoencoders were selected and compared with all other models.  Model comparison 

results of the behavioural study revealed that the CNN outperformed all other models 

(NLL=39.935; ts38<-2.222, Ps<0.033; Fig. 4.5a) except the autoencoder (t38=-0.170, 

P=0.866).  Surprisingly, when the environment choice data of the fMRI study was 

inspected, the CNN also significantly outperformed all other alternative models 

(NLL=33.235; ts38<-2.662, Ps<0.012; Fig. 4.5b).  Finally, the same set of models was 

applied to predict participants’ item choices (except MVS model and power law model 

that are not applicable).  Model comparison revealed the ANN outperformed other 

alternative models in predicting item choices (NLL=46.195, ts38<-3.226, Ps<0.003; Fig. 

4.5c) except the autoencoder (ts38=-0.345, P=0.732; Fig. 4.5c). 
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Figure 4.5. Model comparison results. The CNN/ANN outperforms other alternative models in predicting 

participants’ decision-making behaviour in all data sets: (a) behavioural study, (b) environment choices of 

the fMRI study, (c) item choices of the fMRI study. CNN=convolutional neural network; ANN=artificial 

neural network; Autoenc=autoencoder; GLM=general linear model; MVS=mean-variance-skewness 

model; Power=power law model; Prospect=cumulative prospect theory. ** denotes P<0.01 and * denotes 

P<0.05. Error bars represent means±s.e.m. 

 

4.3.4 CNN encodes statistical moments within the environments 

Thus far, the CNN was found outperforming all other models in predicting 

participant’s choices across data sets.  It is worth noting that the behavioural analysis 

results in Chapters 2 and 3 also revealed participants’ environment choices were guided 

by statistical moments of the environments.  Yet, whether the CNN involves any 

information about statistical moments remains elusive.  In order to scrutinize the neural 

mechanisms during environment choice in the next chapter, hereafter all analyses only 

focused on the CNN for the fMRI study. 

I have showed that the CNN consisting of four feature detectors best predicts 

participants’ environment choices.  During convolution, each feature map extracts the 

features about the item distribution in each environment by assigning a weight for every 

item probability (Fig. 4.6a).  Given the extracted features are ultimately integrated into a 

DV for each environment to guide decision, the DVs should contain information about 

the statistical moments.  Hence, I inspected the DVs derived from each feature detector 

individually to examine the corresponding contribution of each feature detector in 

extraction of the statistical moments.  The relationships between the between-
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environment difference in DV and the differences in statistical moments of the 

environments were tested.  Significant correlations with the between-environment 

differences in mean (rs>0.816, Ps<0.001; Fig. 4.6b) and variance (rs>0.038, Ps<0.009) 

were found for all feature detectors but significant correlation with difference in 

skewness was only observed for Feature detector 1 (r=0.076, P=1.658× 10-7).  Besides, 

when focusing on the correlations with differences in mean and variance, interestingly 

these feature detectors exhibit disparate correlation patterns.  Feature detector 1 possesses 

more prominent correlation with the difference in mean and relatively stronger 

correlation with the difference in variance than other feature detectors.  While Feature 

detector 3 shows the strongest correlation with the difference in variance among all 

feature detectors.  Feature detectors 2 and 4 exhibit very similar correlations on 

difference in variance but Feature detectors 4 shows a relatively stronger correlation with 

difference in mean.  These differential correlation patterns enable the CNN to encode the 

statistical moments of the item distribution in the environments during environment 

choice. 

 Apart from that, a diagnostic test was performed to examine whether the CNN 

encodes any information about statistical moments.  First, four “simplified” CNN models 

were trained.  Instead of receiving 20 component items of each environment as input, 

these models receive either the item mean (Mean Model), the item mean and variance 

(Mean+Var Model), item mean and skewness (Mean+Skew Model), or item mean, 

variance and skewness (Mean+Var+Skew Model).  Supposedly the original CNN 

resembles the fourth model the most and the results of RSA revealed it was the case.  

There were significant correlations between the original CNN and these four “simplified” 
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CNN models (rhos>0.978; Zs>4.299, signed-rank Ps<1.708× 10-5, Fig. 4.6c) and 

importantly, the correlation was strongest with the Mean+Var+Skew Model (Zs>4.413, 

signed-rank Ps<1.017× 10-5; Fig. 4.6c).  These suggest that the CNN is most similar to a 

model that receives input of the mean, variance and skewness of the environments.  
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Figure 4.6. The CNN contains information about statistical moments in environments. (a) All feature 

detectors possess a weight for every item probability in each environment. (b) Since the feature detectors 

have different weights on the item probabilities, the DVs (i.e. the ultimate output) of the feature detectors 

show different degrees of correlation to the differences in mean, variance, and skewness of the 

environments. (c) A representational similarity analysis (RSA) was performed to compare the similarities 

of the original CNN with different “simplified” CNNs, which directly receive the actual mean, variance, 

and/or skewness of the environments as input. The original CNN shows greatest similarity to the simplified 

model that receive a combination of mean, variance, and skewness. Error bars represent means±s.e.m. 

 

4.4  Discussion 

It is a critical step to scrutinize how the complex information embedded in the 

environments are integrated before examination of the neural computation underlying 

decision between environments.  Each environment was consisted of a distribution of 20 

items and the behavioural analysis results in Chapters 2 and 3 have shown that statistical 
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moments such as the variance could bias environment choices in human behaviour.  

Therefore, different models were applied to investigate how these pieces of multiplex 

values in the environments are estimated.  By careful testing of different architectures, it 

was found that the CNN with four feature detectors in a size of 2×1 and 512 nodes in fc1 

outperforms other models, in both the behavioural study and fMRI study.  This could be 

due to the high degree of resemblance of environment choice to computer vision that the 

CNN is widely used for.  In artificial intelligence, the CNN has been found successful in 

computer vision.  It is not only because it can analyze complex visual information to 

decode image identity, but also it resembles the hierarchical neural process of the human 

ventral visual pathway (Krizhevsky et al., 2012; Lindsay, 2020).  On one hand, visual 

object recognition involves integrating complex information from the retina.  Similarly, 

environment choice requires integration of complex choice information to guide 

decisions.  This similarity might explain why the CNN is also successful in decoding 

environment choices from the multiplex environments. 

Another important finding of the CNN is that it carries information about 

statistical moments within the environments.  Although the behavioural analysis results in 

Chapters 2 and 3 have demonstrated that participants’ choices were biased by statistical 

moments, the behavioural analysis as well as other alternative models in this chapter (e.g. 

MVS model, power law model) assume the participants hold perfect estimation of the 

statistical moments.  Contrarily, CNN does not require explicit specification of the 

statistical moments and the CNN representations are not perfectly correlated with the 

statistical moments indeed.  Yet, this should better resemble the actual behaviour that 

people are unable to carry out a perfect estimation of the statistical moments due to their 
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limited cognitive resources.  This might explain why the CNN outperforms the other 

models, in addition to the similarity among environment choice and computer vision.  

Moreover, the GLMs reported in Chapters 2 and 3 only revealed effects of mean and 

variance of the item distributions on choices.  Now I showed that the outperforming CNN 

encodes the skewness in addition to the mean and variance of the item distributions 

although to a lesser extent.  It reflects environment choice is also biased by the less 

intuitive skewness and this effect can only be delineated with a more sensitive model 

such as the CNN.    

This chapter shows that participants’ environment choice behaviour was best 

described by the CNN among different computational models.  Importantly, the CNN 

provides value estimates of the environments as the basis for examination of the neural 

signals during environment choice.  The neural substrates underlying environment choice 

could be identified with the use of the DVs derived from the CNN.  Furthermore, the 

CNN possesses multiple nodes and multiple layers for representation and integration of 

multiplex environment values.  The precise mechanisms underlying environment choice 

could be inspected with the use of CNN.  All these details of neural data analysis were 

discussed in Chapter 5. 

  



 

 

96 

Chapter 5 Contrasting roles for lateral 

frontopolar cortex and ventromedial prefrontal 

cortex in environment choice and item choice 

Chapter highlights 

 This chapter aims to test the neural substrates underlying environment choice and item 

choice 

 A functional magnetic resonance imaging study showed a double dissociation of 

lateral frontopolar cortex (FPl) and ventromedial prefrontal cortex (vmPFC) in 

environment choice and item choice 

 The FPl signals exhibited two essential properties of neural value comparison: (1) 

context-dependent modulation and (2) invariance to salience 

 FPl was similar to the convolutional neural network in encoding environment value 

via parallel processing 

 FPl employed a multivariate coding for representation and integration of environment 

value 

 

5.1  Introduction 

 The central question of this dissertation is, given the diversity of decisions, 

whether a single neural substrate deals with all different kinds of decision or distinct 

neural substrates are necessary for specific kinds of decision.  However, the exiting 
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literature primarily focuses on item choice whereas environment choice receives far less 

attention and remains obscure.  To address the central question, it is crucial to investigate 

the neural mechanisms underlying environment choice.  In the preceding chapters, I have 

demonstrated the most important feature of environment choice, the prospective thinking, 

was successfully probed behaviourally.  Besides, I fitted people’s environment choices 

with different computational models and found the convolutional neural network (CNN) 

best described their environment choice behaviour.  These behavioural findings provide 

the basis for further examination of the neural mechanisms underlying environment 

choice.  With the use of CNN, the neural computation involved during environment 

choice can be estimated.  Critically, this fMRI study also included decisions between 

items.  By examining and contrasting the neural mechanisms during environment choice 

and item choice, whether these two types of decision are subserved by the same neural 

substrate or separate neural substrates can be directly tested.   

The CNN is a deep learning neural network which allows estimation of the implicit 

cognitive processes during environment choice that are hard to be portrayed by 

conventional computational models.  The CNN by means of multiple feature detectors 

extracts and integrates the multiplex information embedded in the environments into 

decision values (DVs) thereby to guide environment choices.  Given the CNN has been 

shown to best predict participants’ environment choices, the neural substrate underlying 

environment choice supposedly involves similar processes to the CNN by showing two 

characteristics.  First, the underlying neural substrate should exhibit activity that 

correlates with the CNN DVs.  Second, the CNN possesses multiple nodal activations 

and the underlying neural substrate should exhibit a similar multivariate coding, which 
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can be revealed by a representational similarity analysis (RSA).  RSA is a multivariate 

analysis that can test the similarity between different data sets such as behavioural data 

and neural data, by which the closeness between the trial-by-trial brain activation patterns 

and the trial-by-trial CNN representations can be inspected.  The neural substrate 

underlying environment choice supposedly shows correlated activation patterns with the 

CNN representations in RSA. 

 In this chapter, the functional specialization in environment choice and item 

choice was examined.  Whole-brain analysis results revealed a double dissociation in the 

neural substrates underpinning environment choice and item choice – the lateral 

frontopolar cortex (FPl) was involved in the former and the ventromedial prefrontal 

cortex (vmPFC) was involved in the latter.  Region-of-interest analysis results further 

affirmed this double dissociation.  Notably, the FPl signal during environment choice 

exhibited two essential properties of value comparison process, namely (1) context-

dependent modulation and (2) invariance to salience.  Moreover, with the use of RSA, the 

FPl was found underwent a parallel value encoding process that is similar to the CNN to 

extract information from environments.  The extracted information was subsequently 

represented and integrated by a multivariate coding in the FPl. 

5.2  Methods 

5.2.1 Experimental task and computational modelling 

Details please refer to Section Experimental task of Chapter 3.  In brief, this fMRI 

study involved a two-stage decision-making task.  In each block, there was a Stage 1 trial 

followed by 0-3 Stage 2 trials.  Stage 1 was related to environment choice.  On each 
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Stage 1 trial, two environments were presented; each of which was composed of a 

number (representing the average reward magnitude of 20 items) and 20 bars 

(representing the individual reward probabilities of 20 items).  After selection of an 

environment, two items from the chosen environment were pseudo-randomly drawn and 

became the items available for selection on the subsequent Stage 2 trial.  On each Stage 2 

trial, participants made a decision between the items.  Reward was then delivered 

according to the reward magnitude and reward probability associated with the selected 

item.  Moreover, there were two Bonus Conditions to determine the acquisition of an 

additional bonus.  In Linked Condition, the bonus was delivered if the chosen item on the 

same Stage 2 trial led to reward.  In Unlinked Condition, the bonus was delivered 

unconditionally. 

Details about the CNN can refer to the Section Convolutional neural network 

(CNN) in Chapter 4.  Briefly, there are four essential parts in the CNN: (1) input layer; 

(2) hidden layers; (3) choice-predicting fully-connected layer; (4) output layer.  Essential 

environment value (i.e. reward magnitude and reward probability) is fed in as the input 

layer of the CNN.  Afterwards, reward probability in the input layer is convolved by four 

feature detectors and transformed into four sets of feature maps.  Feature maps are then 

multiplied by the reward magnitude and the bonus information (i.e. bonus value and 

Bonus Condition) to account for the interactions between reward probability and these 

attributes.  Feature maps, reward magnitude, feature maps × reward magnitude, and 

feature maps × bonus value × Bonus Condition are concatenated and converted 512 

nodes.  Finally, these 512 nodes are weigh-summed to form the decision values (DVs) in 
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the choice-predicting fully-connected layer.  DVs are subsequently transformed by a 

softmax function to generate choice probabilities in the output layer. 

5.2.2 Neuroimaging data acquisition and preprocessing 

A Siemens 3T MRI scanner was used to collect the neuroimaging data.  FMRI 

data were collected with a multi-band echo planar imaging sequence: 2.5 × 2.5 × 2.5 mm3 

voxel- resolution, TR=1.6s, TE1=15ms, TE2=36.19ms, TE3=57.38ms, flip angle=70°, 

slice angle=-30° (T>C).  Field maps were collected to correct for signal distortions using 

a dual echo 2D gradient echo sequence: 2.5 × 2.5 × 2.5 mm3 voxel resolution, 

TR=590ms, TE1=4.92ms, TE2=7.38ms.  T1-weighted structural images were acquired 

using an MPRAGE sequence: 1 × 1 × 1 mm3 voxel resolution, 174 × 192 × 192 grid, 

TR=1900ms, TE=3.97ms, TI=904ms.  

FMRIB’s Software Library (FSL) (Smith et al., 2004) was used to analyze fMRI 

data.  FMRI data were preprocessed by the following procedures: motion correction by 

using FMRIB's Linear Image Registration Tool (Jenkinson et al., 2002), brain extraction 

by Brain Extraction Tool (Smith, 2002), field map correction for distorted signal 

(Jenkinson, 2003), Gaussian spatial smoothing with fullwidth at half maximum of 5mm, 

and high-pass temporal filtering (3 dB cutoff of 100s).  FMRI data were registered to the 

high-resolution structural images of individual participants, which were then normalized 

into the standard Montreal Neurological Institute (MNI) space (Jenkinson & Smith, 

2001). 
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5.2.3 Whole-brain analysis 

A univariate GLM approach was used for all whole-brain analyses.  At individual 

level, a GLM was applied to fit the fMRI data of every participant.  At group level, 

FMRIB’s local analysis of mixed effects (Beckmann et al., 2003; Woolrich et al., 2004) 

was applied with outlier deweighting (Woolrich, 2008).  Significant clusters were 

identified using a cluster-based thresholding of Z>3.1 and significance threshold of 

P<0.05 (Worsley et al., 1992), unless otherwise stated. 

The whole-brain GLM included two regressors-of-interest, the ΔDVenvironment (i.e. 

difference in DV between the chosen and unchosen environments in Stage 1) and 

ΔDVitem (i.e. difference in DV between the chosen and unchosen items in Stage 2), to 

examine the signals during environment choice and item choice respectively.  These two 

regressors were time-locked to the stimulus (environments in Stage 1 and items in Stage 

2) onset and convolved with a haemodynamic response function.  A total of six nuisance 

regressors were additionally included: (1) a parametric regressor of the bonus value, 

time-locked to block bonus onset; (2) a parametric regressor about the value of the 

chosen environment for modelling the neural signal pertaining to the chosen environment 

prior to the onset of each Stage 2 trial, time-locked to the onset of Stage 1 delay phase; 

(3) two box car regressors related to left-hand and right-hand responses, time-locked to 

participants’ responses; (4) two regressors related to the average BOLD signal in the 

cerebrospinal fluid (CSF) and white matter (WM).   

5.2.4 Region-of-interest analysis 
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To inspect the time courses of the key brain regions identified from the whole-brain 

GLM, region-of-interest (ROI) analysis was conducted.  Whole-brain analysis showed 

that activities of the lateral frontopolar cortex (FPl) and the ventromedial prefrontal 

cortex (vmPFC) were correlated with the ΔDV during environment choice and item 

choice respectively.  Therefore, a mask was generated by centering a sphere of 3mm 

radius at the coordinates pertaining to information-seeking to extract the FPl activity 

(Zajkowski et al., 2017), whereas another mask was generated by centering a sphere of 

3mm radius at the coordinates pertaining to item choice to extract the vmPFC activity 

(Juechems et al., 2017).  Besides, the dorsal posterior cingulate cortex (dPCC) was 

identified in both environment choice and item choice.  Activity of the dPCC was 

extracted using an atlas which is developed based on findings of reward-guided decision-

making (Neubert et al., 2015).  A ten times upsampling was performed by cubic spline 

interpolation and time-locked to stimulus onset (either Stage 1 or Stage 2) for the 

extracted ROI time courses.  For each participant, a GLM was applied to regress the ROI 

activities at every time point to obtain time courses of beta weight for each term in the 

GLM.  The beta weight time courses were group averaged and plotted.  To test whether 

each peak in the group time courses was significantly different from zero, the size of each 

peak of each participant was extracted and tested using a one-sample t-test.  To avoid bias 

in estimating the peak size, a leave-one-subject-out procedure was employed (Chau et al., 

2015; Trudel et al., 2020).  In particular, a time window for extracting a peak was defined 

by the full-width half-maximum of that peak in the group time course.  Next, for a given 

participant, the time point of peak extraction was defined by the position of the peak 

within this time window when the group time course had the beta weights from that 
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participant removed.  This leave-one-out procedure was repeated for all participants to 

extract the peak for statistical tests.  

The first ROI analysis (GLM7) involved using the ΔDV to regress the ROI 

activities: 

𝑅𝑂𝐼 𝑡𝑖𝑚𝑒 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 = 𝛽0 + 𝛽1ΔDV 

where ΔDV denotes ΔDVenvironment and ΔDVitem for Stage 1 environment choice and Stage 

2 item choice respectively. 

The second ROI analysis (GLM8) tested whether the ROI signal time courses 

exhibited differential responses in different Bonus Conditions.  First, the DV term in 

GLM7 was split into two terms: (1) a DV term that concerns all choice information 

except the bonus (i.e. DVbonus excluded) and (2) a DV term that only concerns the bonus-

related information (i.e. DVbonus only).  Afterwards, ΔDVbonus excluded, ΔDVLinked bonus, and 

ΔDVUnlinked bonus were computed and included as regressors.  ΔDVLinked bonus was the bonus 

value in the Linked Condition.  In contrast, ΔDVUnlinked bonus was the bonus value in the 

Unlinked Condition but it was computed as if the bonus occurred in the Linked 

Condition.  GLM8 is formulated as follow: 

𝑅𝑂𝐼 𝑡𝑖𝑚𝑒 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 = 𝛽0 + 𝛽1ΔDV𝑏𝑜𝑛𝑢𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 + 𝛽2ΔDV𝐿𝑖𝑛𝑘𝑒𝑑 𝑏𝑜𝑛𝑢𝑠 +

𝛽3ΔDV𝑈𝑛𝑙𝑖𝑛𝑘𝑒𝑑 𝑏𝑜𝑛𝑢𝑠  

Finally, GLM9 tested the salience invariance of the ΔDV signal by including 

regressors of ΔDV, DV sum and salience (i.e. sum of the two options’ absolute values).  

Noting that DV sum and salience were computed using expected value but not CNN-

derived DV.  It is because CNN involves normalization and non-linear transformation 
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such that information about the sign of the option values would be lost.  GLM9 is 

formulated as follow: 

𝑅𝑂𝐼 𝑡𝑖𝑚𝑒 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 = 𝛽0 + 𝛽1ΔDV𝑏𝑜𝑛𝑢𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 + 𝛽2𝐷𝑉 𝑠𝑢𝑚 + 𝛽3𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 

5.2.5 Psychophysiological interaction (PPI) analysis  

Since coactivation among different regions (i.e. FPl, vmPFC, dPCC) was 

observed in the whole-brain analysis, a PPI analysis was performed to examine the 

functional coupling between these regions during environment choice and item choice.  

PPI is an analysis of functional connectivity by which how the task-dependent activities 

among different brain regions interact is tested (Friston et al., 1997).  Basically, a PPI 

analysis included a psychological regressor (i.e. the task variable convolved with a 

haemodynamic response function), a physiological regressor (i.e. the time course of an 

ROI), an interaction term between the psychological regressor and physiological 

regressor.  Because ROI analysis revealed the dPCC exhibited correlated activity with the 

ΔDV during both environment choice and item choice, the dPCC was set as the seed 

region and its functional coupling with FPl and vmPFC during different choice were 

tested by GLM10:    

𝑑𝑃𝐶𝐶 𝑡𝑖𝑚𝑒 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 = 𝛽0 + 𝛽1𝑆𝑡𝑎𝑔𝑒 + 𝛽2𝑃𝐻𝑌𝑆𝐹𝑃𝑙 + 𝛽3(𝑆𝑡𝑎𝑔𝑒 × 𝑃𝐻𝑌𝑆𝐹𝑃𝑙) +

𝛽4𝑃𝐻𝑌𝑆𝑣𝑚𝑃𝐹𝐶 + 𝛽5(𝑆𝑡𝑎𝑔𝑒 × 𝑃𝐻𝑌𝑆𝑣𝑚𝑃𝐹𝐶)  

where Stage is the psychological regressor (a dummy variable; Stage 1 environment 

choice=1, Stage 2 item choice=0), PHYSFPl and PHYSvmPFC are the physiological 

regressors of FPl and vmPFC time courses respectively. 
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5.2.6 Representational similarity analysis (RSA) 

The procedures of RSA and the computation of the representational dissimilarity 

matrices (RDMs) were largely similar to the description in Section Representational 

similarity analysis of Chapter 4.  First, for the CNN representations, trial-by-trial nodal 

activations of a given layer (e.g. a feature map) in the CNN were extracted.  A self-

correlation was then performed using Pearson correlation and the resulting correlation 

matrix was subtracted by 1 to become an RDM.  Similarly, for the neural data, trial-by-

trial voxel activations in different ROIs were extracted.  The ROIs included the FPl, 

vmPFC, dPCC, primary visual cortex (V1), and cerebrospinal fluid (CSF).  Voxel 

activations in the ROIs were extracted using built-in atlases of the FSL (Smith et al., 

2004), except for the FPl, vmPFC, and dPCC that the corresponding ROI masks 

mentioned in the previous section ROI analysis were used.  Since one participant did not 

finish the experimental task within an fMRI run, there were fewer number of trials for 

neural data than behavioural data.  For RSA of that participant, the CNN RDM was 

computed by excluding the trials that lacked fMRI data.  Finally, RSA was performed by 

computing Spearman correlations between a pair of RDMs. 

5.3  Results 

5.3.1 FPl, but not vmPFC, involved in environment choice 

Chapter 4 shows that the CNN outperforms other computational models in 

describing behavioural environment choices.  Particularly, the CNN is characterized in 

integrating multiplex information embedded in the environments (e.g. statistical 

moments) into single DVs to guide decisions.  The CNN-derived DVs were thus applied 
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to identify the neural substrates underlying environment choice.  Multiple lines of 

previous work have demonstrated that during item choice, the difference in option DVs 

was represented in the vmPFC (Boorman et al., 2009, 2013; Chau et al., 2014; Hunt et 

al., 2012; Levy & Glimcher, 2011).  It is intriguing whether environment choice and item 

choice involved the same vmPFC region or dissociable neural substrates.  To this end, a 

whole-brain GLM was performed to examine the fMRI data, which included the DV 

difference in Stage 1 environment choice (i.e. ΔDVenvironment) and the DV difference in 

Stage 2 item choice (i.e. ΔDVitem) as regressors.  Surprisingly, a double dissociation of 

the DV difference signals was revealed.  First, the widely reported finding that the 

vmPFC activity correlated with ΔDVitem was replicated (MNI=[2, 40, -10], cluster-based 

thresholding Z>3.1, P=7.77× 10-21; Fig. 5.1b).  In contrast, there was an absence of 

ΔDVenvironment signal in the vmPFC when the Stage 1 environment choice trials were 

inspected.  On the contrary, there was a positive signal of the Stage 1 ΔDVenvironment 

(MNI=[38, 52, 22], cluster-based thresholding Z>3.1, P=1.19× 10-7; Fig. 5.1a), but 

absence of Stage 2 ΔDVitem, in the FPl.  Other significant regions are reported in Table 1.  

An additional whole-brain contrast of (ΔDVenvironment - ΔDVitem) further identified the FPl 

(MNI=[28, 44, 36], note that this applied a more lenient threshold of cluster-based 

thresholding Z>2.3, P=0.021 because it did not reach significance at threshold of Z>3.1; 

Fig. 5.1c).  Besides, it is a conventional approach to estimate DVs using expected value 

(i.e. the product between reward probability and magnitude), instead of using DVs 

derived from a CNN.  Similar results were obtained even when I took this conventional 

approach.  A ΔDVenvironment signal in the FPl (MNI=[38, 52, 24], cluster-based 

thresholding Z>3.1, P=2.65× 10-5, Fig. 5.1d) and an absence of ΔDVenvironment signal in the 
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vmPFC were observed during environment choice.  Also, a ΔDVitem signal in the vmPFC 

(MNI=[2, 40, -12], cluster-based thresholding Z>3.1, P=1.5× 10-12, Fig. 5.1e) and an 

absence of ΔDVitem in the FPl were observed during item choice.  It revealed that the 

results by the CNN-derived DVs were unlikely due to statistical artefact. 

 

Figure 5.1. Dissociable roles of FPl and vmPFC in environment choice and item choice. (a) A whole-

brain analysis showed that the lateral frontopolar cortex (FPl) signal was related to the difference in DV 

between environments (ΔDVenvironment) in Stage 1 environment choice and (b) the ventromedial prefrontal 

cortex (vmPFC) signal was related to the difference in DV between items (ΔDVitem) in Stage 2 item choice. 

(c) An additional whole-brain contrast indicated that the ΔDVenvironment signal in environment choice was 

significantly stronger than the ΔDVitem signal in item choice in the FPl (threshold of cluster-based 

thresholding Z>2.3, P<0.05). (d-e) A conventional whole-brain analysis approach using difference in EV 

(ΔEV) instead of ΔDV also yielded similar results to (a-b). 
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Table 1. Whole-brain analysis results 

 X Y Z Max Z-score P-value # voxels 

ΔDVenvironment       

Lateral frontopolar 

cortex 

38 52 22 4.31 1.19×10-7 486 

Dorsal posterior 

cingulate cortex 

16 -32 42 4.65 2.44×10-13 1074 

Frontal eye field 4 44 30 4.12 0.001 180 

Inferior frontal gyrus 56 28 0 4.29 0.035 100 

Lateral orbitofrontal 

cortex 

42 26 -18 4.46 0.004 151 

Postcentral gyrus 24 -40 66 4.11 0.001 188 

Inferior parietal lobule 48 -62 32 5.28 7.09×10-29 3281 

Superior temporal 

gyrus 

-62 -30 20 4.63 8.53×10-09 598 

Right cerebellum 18 -76 -32 3.9 0.014 122 

Left cerebellum -22 -86 -30 -5 1.22×10-13 780 

ΔDVitem       

Ventromedial prefrontal 

cortex 

2 40 -10 4.47 7.77×10-21 2055 

Dorsal posterior 

cingulate cortex 

8 -52 36 5.26 1.73×10-24 2599 

Temporoparietal 

junction 

52 -20 -10 5.99 <0.0001 6932 

Supramarginal gyrus -54 -38 24 4.95 1.22×10-18 1749 

Medial frontopolar 

cortex 

-16 62 12 3.61 2.47×10-4 233 

Temporal fusiform 

cortex 

-34 -34 -24 3.98 0.014 123 

Angular gyrus -50 -68 28 3.69 0.015 121 

Right cerebellum 28 -74 -36 3.77 0.038 99 

Left cerebellum -24 -74 -36 5.11 3.84×10-12 947 

ΔDVenvironment - ΔDVitem
^       

Lateral frontopolar 

cortex 

28 44 36 3.4 0.021 348 

ΔDVenvironment=decision value difference between environments; ΔDVitem=decision value 

difference between items. 

 
^Cluster-based thresholding Z>2.3 
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5.3.2 Time courses of FPl and vmPFC affirmed their dissociable roles 

Despite the findings of dissociable FPl and vmPFC signals in environment choice 

and item choice, it is critical to ascertain the absence of ΔDVitem signal in the FPl during 

item choice and absence of ΔDVenvironment signal in the vmPFC during environment 

choice were not because of the conservative statistical corrections in the whole-brain 

analysis.  An ROI analysis (GLM7) was thus performed by placing a mask over the FPl 

and vmPFC and tested their signal time courses using one-sample t-tests.  To affirm any 

null effects identified, a Bayesian t-test was also applied to each ROI analysis because of 

the limitation of conventional frequentist inference in confirming null effects.  GLM7 

yielded broadly consistent results to the whole-brain analysis.  First, there was a 

ΔDVenvironment signal in the FPl during environment choice which ramped up and peaked 

at 3.507s after stimulus onset (β=0.046, t23=3.032, P=0.006, BF10=7.526; Fig. 5.2a, top 

panel), and no significant ΔDVitem signal was found in the FPl during item choice 

(β=0.023, t23=1.409, P=0.172, BF10=0.514; Fig. 5.2b, top panel).  On the contrary, a 

ΔDVitem signal during item choice was observed in the vmPFC which peaked at 7.813s 

(β=0.067, t23=3.806, P=9.105× 10-4, BF10=38.074; Fig. 5.2b, bottom panel) but no 

significant ΔDVenvironment signal was found during environment choice in the vmPFC 

(β=0.018, t23=1.011, P=0.323, BF10=0.339; Fig. 5.2a, bottom panel).  To further ascertain 

the double dissociation, sizes of the ΔDV signals observed in the FPl and vmPFC during 

environment choice and item choice were compared by a two-way ANOVA (2 regions × 

2 stages).  The ANOVA yielded a significant interaction effect (F(1,23)=16.026, 

P=0.001), implying the ΔDV signal in the FPl was stronger during environment choice 

than during item choice and the vmPFC exhibited the opposite pattern. 
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Figure 5.2. ROI analysis affirmed the dissociable roles of FPl and vmPFC. (a) Significant Stage 1 

ΔDVenvironment signal was only observed in the FPl (top panel), but not in the vmPFC (bottom panel). (b) 

Contrarily, significant Stage 2 ΔDVitem signal was only found in the vmPFC (bottom panel), but not in the 

FPl (top panel). *** denotes P<0.001 and ** denotes P<0.001. Shading represent means±s.e.m. 

 

Apart from that, the dissociable roles of the FPl and vmPFC in environment choice 

and item choice were supported by a closer inspection of their mean activities.  Both the 

FPl and vmPFC are parts of the default mode network.  Supposedly, an overall 

deactivation (i.e. negative signal in the mean activity) is observed in the composing 

regions of the default mode network when they engaged in a task (Buckner et al., 2008; 

Raichle & Raichle, 2001).  If the vmPFC exclusively engaged in Stage 2 item choice but 
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not in Stage 1 environment choice, it should demonstrate an overall deactivation in Stage 

2 only.  The results revealed this was the case – the vmPFC exhibited a negative mean 

signal in Stage 2 but not in Stage 1 (β=-0.218, t23=-7.423, P=1.512× 10-7, 

BF10=1.026× 105; Fig. 5.3b, magenta line).  In contrast, if the FPl was only involved in 

environment choice exclusively, an opposite deactivation pattern in mean signal to the 

vmPFC should be shown in the FPl.  The results in the FPl, however, were less 

conclusive.  In Stage 1, despite the presence of an overall deactivation at a time point 

close to that of the ΔDVenvironment signal (at 4.840s; β=-0.182, t23=-5.874, P=5.491× 10-6, 

BF10=3.752; Fig. 5.3a, cyan line), there was a positive effect in the mean signal before 

Stage 1 onset (β=0.172, t23=6.770, P=6.633× 10-7, BF10=2.613× 104; Fig. 5.3a, cyan line).  

Whereas in Stage 2 an opposite pattern was observed – the FPl showed a deactivation 

after Stage 2 onset (β=-0.125, t23=-6.183, P=2.623× 10-6, BF10=7.380× 103; Fig. 5.3a, 

magenta line) but its activity ramped up approximately 5s later (β=0.232, t23=6.526, 

P=1.169× 10-6, BF10=1.551× 104; Fig. 5.3a, magenta line).  It is less clear why there was a 

combination of both overall activation and deactivation.  Nonetheless, it is unambiguous 

that the FPl showed opposite patterns in the mean signal during environment choice and 

item choice.  Taken together, the ROI analysis results provided further evidence for the 

functional dissociation between the FPl and vmPFC in environment choice and item 

choice. 
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Figure 5.3. Mean signals of FPl and vmPFC shed light of their dissociable roles. (a) The FPl exhibited 

a mixture of ramping up and down in the mean signal in both Stage 1 environment choice and Stage 2 item 

choice. (b) The vmPFC demonstrated an overall activation of mean signal in Stage 1 environment choice 

(cyan) and an overall deactivation in Stage 2 item choice (magenta). *** denotes P<0.001. Shading 

represent means±s.e.m. 

 

ΔDVenvironment and ΔDVitem signals were also observed in the dPCC during 

environment choice and item choice respectively (Environment choice: MNI=[16, 32, -

42], cluster-based thresholding Z>3.1, P=2.44× 10-13; Fig 5.1a,d; Item choice: MNI=[8, -

52, 36], cluster-based thresholding Z>3.1, P=1.73× 10-24; Fig. 5.1b,e) on top of the signals 

identified in FPl and vmPFC.  It was consistent to the roles of dPCC in value encoding of 

environments (Kolling et al., 2018) and value encoding of items (Lopez-Persem et al., 

2016) in the existing literature.  ROI analysis (GLM7) also reproduced these two signals 

in the dPCC (ΔDVenvironment: β=0.039, t23=2.199, P=0.038, BF10=1.609; Fig. 5.4a, left 

panel; ΔDVitem: β=0.051, t23=3.363, P=0.003, BF10=14.818; Fig. 5.4a, right panel).  

Besides, dPCC is also part of default mode network, similar to the FPl and vmPFC 
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(Buckner et al., 2008; Raichle & Raichle, 2001).  It should exhibit overall deactivations 

during both environment choice and item choice.  However, the dPCC only showed an 

overall deactivation during item choice (β=-0.108, t23=-4.919, P=5.708× 10-5, 

BF10=448.050; Fig. 5.4b, magenta line) but an absence of deactivation during 

environment choice (β=0.019, t23=0.840, P=0.410, BF10=0.295; Fig. 5.4b, cyan line). 

 

Figure 5.4. Value signals of dPCC during environment choice and item choice. (a) The dPCC showed 

correlated activity with ΔDV during Stage 1 environment choice (left panel) and during Stage 2 item choice 

(right panel) respectively. (b) An overall deactivation of dPCC was observed during Stage 2 item choice 

(magenta) but it was absent during Stage 1 environment choice (cyan). *** denotes P<0.001, ** denotes 

P<0.01, and * denotes P<0.05. Shading represent means±s.e.m. 

 

 Since all the FPl, vmPFC, and dPCC exhibited correlated activities with the ΔDV, 

a PPI analysis (GLM10) was performed to further test the interplay between these regions 

when undergoing different decisions (Fig. 5.5a).  PPI analysis results revealed that there 

was a positive effect of Stage (a dummy variable; Stage 1 environment choice=1, Stage 2 

item choice=0) on the functional connectivity between FPl and dPCC (β=0.048, 

t23=2.529, P=0.019, BF10=2.869; Fig. 5.5b), suggesting that the coactivation between FPl 

and dPCC was more related during environment choice than during item choice.  On the 
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contrary, there was a negative effect of Stage on the functional connectivity between 

vmPFC and dPCC (β=-0.081, t23=-2.388, P=0.026, BF10=2.227; Fig. 5.5c).  It implies the 

coactivation between vmPFC and dPCC was more related during item choice than during 

environment choice.  Taken together, the changes in functional connectivity of the dPCC 

with FPl and vmPFC affirmed its engagement during environment choice and item 

choice. 

 

Figure 5.5. Psychophysiological interaction (PPI) analysis of dPCC with FPl and vmPFC. (a) The 

ROIs involved in the PPI analysis. (b) The FPl and dPCC were more functionally connected during 

environment choice than during item choice. The left panel demonstrates the time courses of Stage (a 

dummy variable; Stage 1 environment choice=1, Stage 2 item choice=0) while the right panel illustrates the 

corresponding simple effects. (c) Contrarily, the vmPFC and dPCC were more functionally connected 

during item choice than during environment choice. * denotes P<0.05. Shading represent means±s.e.m. 
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5.3.3 FPl signals exhibited essential properties of value comparison 

Results of the whole-brain and ROI analyses consistently indicate that the FPl 

exclusively engaged in environment choice, while the vmPFC exclusively engaged in 

item choice.  Next, it is crucial to affirm that these signals observed in the FPl and 

vmPFC possess two essential properties of the neural value comparison signal: (1) a 

context-dependent modulation to flexibly respond to current environment and (2) 

invariance to salience.  To this end, closer inspection of the signals in the FPl and vmPFC 

was taken based on the GLM7 reported above. 

5.3.3.1 Context-dependent modulation. In this experiment, there were two 

conditions (i.e. Linked and Unlinked Conditions) determining the ways to obtain the 

bonus.  Particularly, in Linked Condition, the bonus was obtained if the chosen item on 

the same Stage 2 trial resulted in a reward.  Yet, Stage 1 environment choice outcome 

would have an indirect influence on the bonus acquisition because it affected what items 

were available in Stage 2 item choice.  In contrast, in Unlinked Condition, the bonus was 

delivered unconditionally.  Behavioural results reported in Chapter 3 have demonstrated 

that participants did make choices in response to the Bonus Conditions in order to obtain 

the bonus, in both Stage 1 and Stage 2.  If the FPl and vmPFC signals possess the 

property of context dependence, they should show responses adapted to the Bonus 

Condition – the signals should change with the bonus value in Linked Condition only, but 

not in the Unlinked Condition.   

To address this issue, GLM8 was carried out in which the DV (DVenvironment in Stage 

1 and DVitem in Stage 2) was split into two terms: (1) a DV term that involves all choice 

information but the bonus (i.e. DVbonus excluded) and (2) a DV term that only involves the 
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combination of bonus value and Bonus Condition (i.e. DVbonus only).  Akin to the findings 

of GLM7, during environment choice the FPl signal was related to the ΔDVbonus excluded 

(β=0.047, t23=2.967, P=0.007, BF10=6.621; Fig. 5.6, left panel).  Notably, the FPl also 

encoded the bonus value in Linked Condition (β=0.037, t23=3.030, P=0.006, BF10=7.506; 

Fig. 5.6, middle panel).  In contrast, in the Unlinked Condition the bonus acquisition was 

independent of the choices that the participants made and the FPl was found not encode 

the bonus value in Unlinked Condition (β=-0.013, t23=-0.975, P=0.340, BF10=0.329; Fig. 

5.6, right panel).  These findings revealed that during environment choice, the FPl 

selectively integrated the choice-relevant information.  On the other hand, in Stage 2 item 

choice, no ΔDVbonus excluded signal (β=0.027, t23=1.551, P=0.135, BF10=0.613; Fig. 5.6, left 

panel) nor any bonus related signals (ΔDVLinked bonus: β=0.023, t23=1.497, P=0.148, 

BF10=0.572; Fig. 5.6, middle panel; ΔDVUnlinked bonus: β=-0.011, t23=-0.993, P=0.331, 

BF10=0.334; Fig. 5.6, right panel) were observed in the FPl.  It reflects the FPl was 

unrelated to the value comparison process during item choice. 
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Figure 5.6. FPl encoded choice-relevant information during environment choice. The ΔDV term was 

split into three components – the ΔDV that excluded the bonus (ΔDVbonus excluded), the rest of the ΔDV that 

was contributed by the bonus in Linked Condition (ΔDVLinked bonus), and that in Unlinked Condition 

(ΔDVUnlinked bonus). (a) The FPl signal exhibited a bonus adaption in Stage 1 environment choice – the FPl 

signal modulated by the choice-relevant ΔDVbonus excluded (left panel) and ΔDVLinked bonus (middle panel), but 

not by the choice-irrelevant ΔDVUnlinked bonus (right panel). (b) In Stage 2 item choice, no ΔDVbonus excluded 

(left panel), ΔDVLinked bonus (middle panel) nor the ΔDVUnlinked bonus signals were found in the FPl. ** denotes 

P<0.01. Shading represent means±s.e.m. 

 

The same analysis was applied to scrutinize the neural signals in the vmPFC.  

Consistent to the results of GLM7, during Stage 2 item choice, a significant ΔDVbonus 

excluded signal (β=0.070, t23=3.970, P=6.061× 10-4, BF10=54.458; Fig. 5.7b, left panel) was 

observed in the vmPFC.  Surprisingly, there were no significant ΔDVbonus only signals in 

Linked Condition (P>0.05; Fig. 5.7b, middle panel) nor in Unlinked Condition (P>0.05; 
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Fig. 5.7b, right panel).  The vmPFC signal during Stage 1 environment choice was also 

examined.  Similar to the results of GLM7, no ΔDVbonus excluded signal was observed in the 

vmPFC (β=0.023, t23=1.320, P=0.200, BF10=0.463; Fig. 5.7a, left panel).  Besides, the 

vmPFC did not signal any bonus information in environment choice (ΔDVLinked bonus: β=-

0.020, t23=-1.492, P=0.149, BF10=0.569; Fig. 5.7a, middle panel; ΔDVUnlinked bonus: 

β=0.015, t23=1.378, P=0.182, BF10=0.495; Fig. 5.7a, right panel).  It reflects the vmPFC 

was unrelated to the value comparison process between environments. 

 

Figure 5.7. vmPFC signals under different Bonus Conditions. (a) In Stage 1, there was an absence of 

ΔDVbonus excluded signal nor any ΔDVbonus only signal, suggesting the vmPFC was unrelated to environment 

choice. (b) In Stage 2 item choice, the vmPFC showed a significant ΔDVbonus excluded signal and but no 

ΔDVLinked bonus nor ΔDVUnlinked bonus signals were found. *** denotes P<0.001. Shading represent 

means±s.e.m. 
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5.3.3.2 Invariance to salience. To affirm a neural signal reflecting the value 

comparison process, it is particularly important to show that it is not confounded by 

salience.  Hence, in GLM9, a regressor of salience (i.e. the sum of the options’ absolute 

values) was included apart from ΔDV.  A nuisance regressor about the sum of the 

options’ DVs was also included to take the remaining variance by the options’ DVs into 

account.  The results revealed that the FPl still encoded the ΔDVenvironment in spite of the 

inclusion of salience as a regressor (β=0.043, t23=2.829, P=0.010, BF10=5.051; Fig. 5.8a, 

left panel).  Critically, the FPl activity was found independent of salience (P>0.05; Fig. 

5.8a, right panel).  And consistently there was an absence of ΔDVitem signal in the FPl 

during Stage 2 item choice (β=0.021, t23=1.194, P=0.245, BF10=0.405; Fig. 5.8b, left 

panel). 
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Figure 5.8. ΔDVenvironment signal in FPl was invariant to salience. (a) ΔDV signal of the FPl in Stage 1 

environment choice was orthogonal to the option salience. (b) No ΔDV signal was found in the FPl during 

Stage 2 item choice. ** denotes P<0.01. Shading represent means±s.e.m. 

 

In a similar vein, when the same analysis was applied to test the vmPFC activity, a 

significant ΔDVitem signal during Stage 2 item choice was found (β=0.086, t23=4.125, 

P=4.124× 10-4, BF10=76.536; Fig. 5.9b, left panel) and there was an absence of salience 

signal (β=0.021, t23=1.456, P=0.159, BF10=0.544; Fig. 5.9b, right panel).  Also, there was 
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an absence of ΔDVenvironment signal in the vmPFC during Stage 1 environment choice 

(β=0.024, t23=1.261, P=0.220, BF10=0.434; Fig. 5.9a, left panel). 

 

Figure 5.9. ΔDVitem signal in vmPFC was invariant to salience. (a) There was a absence of ΔDV signal 

in the vmPFC during Stage 1 environment choice. (b) Importantly, the vmPFC showed a significant DV 

signal during Stage 2 item choice and this signal was orthogonal to the option salience. *** denotes 

P<0.001. Shading represent means±s.e.m. 
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5.3.4 FPl shared similar computation to CNN 

With the use of the CNN-derived DV in whole-brain analysis as well as ROI 

analysis, it was found that the FPl carried a univariate signal reflecting the value 

comparison process between environments.  Nonetheless, results from the whole-brain 

and ROI analyses merely revealed the FPl and CNN shared a similar computational 

output.  It remains obscure whether the FPl undergoes similar computational processes as 

if the CNN to encode the multiplex information embedded in the environments to guide 

decision-making.  Chapter 4 shows that the CNN extracts the information about 

statistical moments of the item distribution in the environments and integrates into 

concise DVs.  Specifically, four feature detectors are utilized in the CNN to extract 

different pieces of information from the environments.  Furthermore, during the course of 

evolution from the input environment value to the final DVs, CNN employs multiple 

nodes and multiple layers for value representation and value integration.  To inspect 

whether the FPl shared similar computational mechanisms to the CNN, the relationship 

of the multi-voxel neural activation patterns of the FPl with the multi-nodal 

representations of the CNN was examined.  

5.3.4.1 Multivariate coding for value representation and value integration of 

complex environment value. First, an RSA was performed to test whether the FPl 

employed a multivariate coding for representation of the multiplex environment value, 

like the CNN.  RSA results showed that the multi-voxel activation patterns of FPl was 

correlated with the CNN (rho=0.007, signed-rank P=0.016; Fig. 5.10a).  The same RSA 

was applied to other control regions (i.e. vmPFC, dPCC, V1, and CSF) and no significant 

correlation was yielded (rhos<0.004, signed-rank Ps>0.345; Fig. 5.10a).  It provides 
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preliminary evidence of similar mechanisms in value encoding between the FPl and 

CNN.  Next, a series of RSAs were performed with regard to separate CNN layers to 

further scrutinize the computations in the FPl.  It began with testing the first layer – the 

input layer.  The input layer contains rich visual information of the environments and 

hence it is not surprising that a marginally significant correlation was observed with V1 

(rho=0.003, signed-rank P=0.056; Fig. 5.10b, top left panel).  In contrast, the FPl and 

other control regions were not correlated with the input layer (rhos<0.003, signed-rank 

Ps>0.290; Fig. 5.10b, top left panel).  Second, the hidden layers where value integration 

undergoes were inspected.  Intriguingly the FPl was correlated with all hidden layers 

(rhos>0.007, signed-rank Ps<0.035; Fig. 5.10b, top middle panel) while no other regions 

were similar to any of the hidden layers (rhos<0.004, signed-rank Ps>0.317; Fig. 5.10b, 

top middle panel).  Finally, the choice-predicting fully-connected layer where DVs are 

generated was examined.  Surprisingly, this layer was similar to the dPCC (rho=0.002, 

signed-rank P=0.022; Fig. 5.10b, top right panel) but not the FPl (rho=0.001, signed-rank 

P=0.568; Fig. 5.10b, top right panel) nor other control regions (rhos<0.002, signed-rank 

Ps>0.492; Fig. 5.10b, top right panel).  Taken together, all these lines of results imply the 

FPl was more concerned in the value integration process whereas the dPCC was more 

concerned in representing the ultimate decision values for guiding decision.   
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Figure 5.10. Multivariate coding of environment value in the FPl. (a) An RSA showed that the full 

CNN (consisting of multiple layers and multiple nodes) was similar to the multi-voxel activation patterns of 

the FPl, but not other control regions. (b) A series of RSAs were performed with respect to different layers 

of the CNN (Details please refer to Section Convolutional neural network (CNN) of Chapter 4). V1= 
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primary visual cortex; FPl=lateral frontopolar cortex; vmPFC=ventromedial prefrontal cortex; 

dPCC=dorsal posterior cingulate cortex; CSF=cerebrospinal fluid. 

 

5.3.4.2 Parallel feature detection processes during encoding of complex 

environment value.  It is worth noting that the CNN involves four parallel feature 

detectors to extract information from the environments.  Given the multiplex information 

embedded in the environments, it is plausible that this parallel manner is necessary for 

efficient value encoding.  To further affirm this is indeed the case, the FPl activity was 

additionally tested with CNN variants that involve single feature detector as well as 

variants involve different numbers of feature detectors.  RSA was performed by focusing 

on the feature maps because they are the first representation after feature detection.  It 

was found that the FPl was similar to all CNN variants (rhos>0.005, signed-rank 

Ps<0.026; Fig. 5.11), except the variant with single feature detector only (rho=-0.0002, 

signed-rank P=0.977; Fig. 5.11).  It suggests the FPl employed multiple parallel 

processes to encode the multiplex information of the environments.  Besides, the FPl was 

the most similar to the 4-feature-detecoter CNN among all the variants (rho=0.008) 

although a Kruskal-Wallis test did not reveal significant differences among the variants 

(H(9)=4.254, P=0.894). 
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Figure 5.11. RSA between FPl and CNN variants that involve different number of feature detectors. 

FPl voxel activation patterns were correlated with the feature maps of all CNN variants, except the variant 

with single feature detector (i.e. 1-FD CNN). * denotes P<0.05. 

 

5.4  Discussion 

 The vmPFC is widely accepted as the key neural substrate underlying decision-

making (Boorman et al., 2009, 2013; Chau et al., 2014; Hunt et al., 2012; Lopez-Persem 

et al., 2016).  However, it was established on the basis of a large body of previous 

findings about item choice.  This study, by adopting a two-stage decision-making task 

isolating environment choice and item choice, revealed that these two kinds of decision 
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involved distinct underlying neural mechanisms: a double dissociation between the FPl 

and vmPFC. 

 To affirm the roles of the FPl and vmPFC in decision-making, different signatures 

of the value comparison process were scrutinized.  First, for a neural substrate underlying 

decision-making, it should signal the difference in value between the options being 

compared.  Second, value comparison signal should purely reflect the difference in value 

and not confounded by salience.  Third, it has to adapt to the changing environment and 

flexibly respond in a productive way according to the context.  All these signatures of 

value comparison signal have been widely observed in the vmPFC (e.g. Bartra et al., 

2013; Chau et al., 2014; Hunt et al., 2012; Litt et al., 2011; Plassmann et al., 2008; Zhang 

et al., 2017) during item choice and consistent findings except the context-dependent 

modulation were reproduced in this study.  In fact, the context-dependent modulation of 

the vmPFC is less conclusive because it is primarily observed when contextual changes 

occur externally to the ongoing task (Abitbol et al., 2015; Harvey et al., 2010; Losecaat 

Vermeer et al., 2014; Plassmann et al., 2008).  By contrast, in my study contextual 

information (i.e. bonus information) had to be integrated deliberately within the ongoing 

task in order to make responses.  Further investigation is needed to discern the context 

dependent modulation in the vmPFC under difference conditions.  Nonetheless, crucially, 

the vmPFC was not identified, but the FPl, during decision between complex 

environments.  Closer inspection of the FPl signal revealed that it exhibited all the 

abovementioned signatures of the value comparison process.  First, the FPl activity 

correlated with the DV difference between the environments.  Moreover, the FPl signal 

was not confounded by salience.  It also demonstrated a selective encoding of choice-
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relevant information (i.e. reward probability and bonus value) depending on the Bonus 

Conditions.  The presence of these properties in the FPl signal implicates its role 

underlying decision-making, importantly it is exclusive in environment choice. 

Environment choice requires integrating information from multiple items within 

each environment and envisaging the potential outcomes that the items can lead to.  

Previous findings have implicated the role of FPl in parallel processing of massive 

information such as maintaining decision strategies and multiple goals simultaneously 

(Mansouri et al., 2017; Schuck et al., 2015), and the encoding of multiple goals could be 

carried out in a multivariate manner (Haynes et al., 2007).  In lines with the previous 

findings, here I showed that the FPl shared similar computational mechanisms to the 

CNN that multiple parallel feature detectors were employed to encode the complex 

information embedded in the environments.  Furthermore, the multi-voxel activation 

patterns of the FPl were correlated with the CNN.  In particular, the FPl activation 

patterns were correlated with all hidden layers of the CNN, which are the layers where 

value integration occurs, suggesting the FPl possessed a multivariate coding for value 

representation and value integration.  Crucially, this finding of multivariate coding also 

facilitates the functional specialization between FPl and dPCC.  By the conventional 

approach of focusing on the univariate DV difference signals, it is unable to tease out the 

functional roles of FPl and dPCC in environment choice due to their coactivation.  With 

the use of RSA, a multivariate analysis, I demonstrated that the FPl was more tied to 

value integration whereas the dPCC was more tied to representation of the final decision 

value.  Taken the results of the univariate and multivariate analyses together, FPl is an 

important neural substrate underlying environment choice – it is involved in encoding 
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and integrating complex environment value as well as the value comparison process to 

guide decisions. 
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Chapter 6 General discussion 

We face numerous types of decisions in our daily lives, ranging from trivial ones to 

influential ones.  Traditional economics theories suggest that decisions of all kinds are 

made according to the options’ utility, which is a ubiquitous scale that reflects the 

subjective preference for any given option.  In decision neuroscience, early studies have 

attempted to search in the brain and identify a specific region that encodes such 

ubiquitous utility.  However, recent evidence suggests that the brain does not rely on a 

single brain region for value encoding.  Instead, multiple regions subserve value encoding 

in their specialized way.  To systematically investigate whether a unitary neural substrate 

is sufficient to work with decisions of all kinds or multiple neural substrates are required 

for particular decisions, in this thesis I introduced an approach of classification.  Options 

can be classified into two classes: (1) item and (2) environment.  Under this 

classification, three candidate frameworks are proposed to test the functional 

specialization in decision-making, namely Neural Common Currency Framework, Option 

Homogeneity Framework, and Decision Homogeneity Framework.  The Neural Common 

Currency Framework presumes a neural substrate is compatible with decisions of all 

kinds.  On the other hand, both the Option Homogeneity Framework and Decision 

Homogeneity Framework assumes within-class decisions (i.e. item versus item, 

environment versus environment) and between-class decisions (i.e. items versus 

environments) involve separate neural substrates.  However, the Decision Homogeneity 

Framework assumes a unitary neural substrate copes with all within-class decisions 

whereas the Option Homogeneity Framework posits within-class decisions involve 

exclusive neural substrates for each class of option. 
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The Neural Common Currency Framework is favoured by the generalizability of the 

vmPFC on value encoding of a wide variety of items.  A considerable body of findings in 

the existing literature has demonstrated that the vmPFC exhibited a “neural common 

currency” signal – items from disparate categories whose values were commonly 

represented in the vmPFC (Chib et al., 2009; Lebreton et al., 2009; McNamee et al., 

2013).  Besides, the vmPFC signalled the difference in value when decision was made 

between dissimilar items (Levy & Glimcher, 2011; Lopez-Persem et al., 2016).  All these 

lines of findings make the vmPFC plausible to encode the value of environments and 

making decisions involving environments.  Nevertheless, the Neural Common Currency 

Framework has been refuted by the findings from studies of decision between items and 

environments or environment-leaving that emerged in the last decade.  Environment 

value was found represented by the dACC but not the vmPFC (Hayden et al., 2011; 

Kaiser et al., 2021; Kolling et al., 2012, 2018; Wittmann et al., 2016).  Making choices 

between items and environments was also shown to be driven by the dACC (Kolling et 

al., 2012).  These lines of findings have precluded the possibility of the Neural Common 

Currency Framework and the next step is to discern the Option Homogeneity Framework 

and Decision Homogeneity Framework. 

Despite the absence of the vmPFC signal during decision between items and 

environments, it is worth noting that decision between items and environments involves 

comparison between options of different classes.  In contrast, both item choice and 

environment choice involve comparison between options of the same class.  According to 

the Decision Homogeneity Framework, it is feasible that the vmPFC is not exclusive for 

item choice but within-class decision.  Otherwise, as the Option Homogeneity 
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Framework predicts, the vmPFC will merely show involvement in item choice.  To 

discern the Option Homogeneity Framework and Decision Homogeneity Framework, in 

Chapters 2-5, I conducted different studies to unveil the underlying mechanisms of 

environment choice and made direct contrast with item choice.  The first study was a 

pilot behavioural study of the fMRI study.  It involved a binary decision-making task 

which required participants to choose between environments.  The results showed that 

participants were capable of integrating complex information in the environments to 

guide decisions.  In particular, participants made environment choices with consideration 

of the statistical moments (i.e. mean, variance) of the item distributions within the 

environments, which sheds light on the evaluation of environments.  In Chapter 5, I 

reported an fMRI study to test the neural mechanisms underlying environment choice.  

Participants performed a two-stage decision-making task which included both 

environment choice and item choice while underwent fMRI scanning.  In spite of the 

similarities shared by environment choice and item choice, surprisingly a double 

dissociation was revealed.  I showed that the vmPFC signal emerged during item choice, 

consistent to the well-documented findings in the existing literature.  Crucially, there was 

an absence of the vmPFC signal during environment choice.  On the contrary, a FPl 

signal was identified during environment choice but it was absence when people 

choosing between items.  This double dissociation provides direct evidence for the 

Option Homogeneity Framework and refutes the Decision Homogeneity Framework. 

One distinctive feature of environment choice is it necessitates a prospective thinking 

to envisage the interdependent relation between an environment choice, the consequential 

items encountered, and the final payoff.  Information is maintained and decays across 
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time in neurons dynamically (Runyan et al., 2017).  The neuronal timescales (i.e. the time 

that information can be sustained) of the brain regions are thus closely tied to their 

functionalities.  A neural substrate underlying environment choice must possess a longer 

intrinsic timescale to maintain loads of information for such computation.  By contrast, a 

choice of an item directly leads to the final payoff and a neural substrate with shorter 

intrinsic timescale is sufficient for item choice.  Single-unit recordings from rhesus 

macaques did show that the FPl had longer timescale than the vmPFC  (Fascianelli et al., 

2019; Maisson et al., 2021).  It on the other hand provides evidence of the functional 

dissociation between the FPl and vmPFC in environment choice and item choice. 

Given the existing literature largely focuses on item choice and decision between 

items and environments, I complemented the missing piece of understanding on 

environment choice.  I showed that environment choice was subserved by the FPl, a brain 

region that has been implicated to prospective processing.  For instance, the FPl was 

found to carry a representation of internal task state during tracing the current position in 

a succession of events (Desrochers et al., 2015).  It provides evidence of the capability of 

the FPl in envisioning the consequence of an environment choice.  The role of the FPl in 

prospective processing can also be revealed from studies on explore-exploit dilemma.  

Environment choice and exploration indeed are similar in the way that both of them are 

executed to affect future events to facilitate acquisition of the final payoff.  Several lines 

of findings have shown that the FPl signal is pertaining to exploration of options which 

can lead to potentially larger reward in the future (Beharelle et al., 2015; Daw et al., 

2006; Zajkowski et al., 2017).  Non-invasive brain stimulation over FPl also revealed that 

excitation or disruption of the FPl resulted in more frequent and less frequent exploration 
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respectively (Beharelle et al., 2015; Zajkowski et al., 2017).  All these lines of findings 

provide supporting evidence of the capability of the FPl in environment choice. 

Despite the findings of the FPl in my study, intriguingly the dACC was identified in 

previous studies on environment-related decisions.  Those studies generally focused on 

stay-switch choices in which participants decided to stay and exploit current items or to 

search for better items in an alternative environment.  The dACC activity was found 

pertaining to the value of the items’ average or the most rewarding item in the alternative 

environment (Fouragnan et al., 2019; Hayden et al., 2011; Kolling et al., 2012, 2018; 

Sarafyazd & Jazayeri, 2019).  In fact, the dACC is a region having direct connection with 

the FPl (Carmichael & Price, 1996; Saleem et al., 2014).  The dACC and FPl are 

implicated in a variety of functional similarities, such as integration of task-relevant 

information, hierarchical reasoning, task state monitoring, and envisioning the choice 

prospect (Heilbronner & Hayden, 2016; Mansouri et al., 2017).  Nevertheless, direct 

contrast in the functional distinction between these two closely connected regions is 

seldom made.  My studies focused on choices between simultaneously presented 

environments and identified the FPl, but not the dACC.  It suggests that, despite the 

highly overlapping in the functions of the FPl and dACC, the FPl is more connected to 

parallel processing demands in particular types of decision, such as environment choice. 

I also demonstrated that the use of deep learning neural networks, such as the CNN, 

can predict value-based decision-making behaviour with better performance than 

conventional computational models.  One limitation of the conventional models is that 

they greatly rely on a priori assumptions such that it might not be able to capture the 

actual underlying processes.  For example, the expected value theory presumes people 
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compute the expected value (i.e. reward magnitude multiplied by reward probability) for 

each option and make choices by comparing the expected values (Tobler & Weber, 

2013).  Any factors which are not explicitly specified (e.g. attentional capture derived 

from the option salience) cannot be described.  On the contrary, deep learning neural 

networks offers a model-free approach to model behaviour with fewer a priori 

assumptions.  For example, I demonstrated information about statistical moments (i.e. 

mean, variance, skewness) within the environments are extracted by the CNN even 

though the CNN does not receive information about these parameters directly.  Besides, 

the CNN involves multiple parallel feature detectors to extract the multiplex information 

from the environments.  Although the CNN was trained purely by the behavioural data 

without any knowledge about the brain, interestingly, its resulting multi-nodal 

representations resemble the multi-voxel activation patterns of the FPl.  It implies the FPl 

similarly employed an approach of parallel processing to encode the value of the 

environments.  This property is difficult to reveal using the conventional computational 

models, such as expected value theory (Tobler & Weber, 2013).  Furthermore, univariate 

analysis (e.g. whole-brain analysis) is a typical approach to investigate the neural 

mechanisms underlying decision-making.  It is not easy to discern the roles of different 

brain regions when they show coactivation.  The multi-nodal representation structure of 

the CNN allows examination of multivariate neural signals, by which inspection of the 

functional specialization is facilitated.  In addition to my univariate analysis findings 

about the functional dissociation between FPl and vmPFC, I found that both the FPl and 

dPCC exhibited correlated activity with the environment value.  With the use of 

multivariate analysis (i.e. RSA), the roles of the FPl and dPCC in environment choice 
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were discerned – the FPl is more tied to value integration during environment choice 

while the dPCC is more tied to representation of ultimate decision value.  Taken together, 

these findings suggest the use of deep learning neural networks provides more 

biologically plausible account of the underlying mechanisms because it can capture the 

implicit cognitive processes involved during decision-making. 

6.1 Conclusions and Suggestions for Future Research 

This thesis reveals that item choice and environment choice involve dissociable 

neural mechanisms.  The long-held role of the vmPFC in valuation and value comparison 

are shown exclusive to items only but not as universal as the neural common currency 

hypothesis (Montague & Berns, 2002) predicted.  In contrast, the valuation and value 

comparison of complex environments require the FPl, a brain region which is closely tied 

to prospective processing.  This functional distinction might stem from the hierarchy in 

intrinsic timescales of the vmPFC and FPl. 

On the other hand, environment choice is of great importance because in daily lives, 

influential decisions often involve choosing between environments (e.g. choose between 

two cities which to migrate to by comparing the available jobs they potentially provide).  

Despite its importance, environment choice receives little attention in the existing 

literature.  This thesis has scrutinized the neural mechanisms underlying environment 

choice and shed light on the role of the FPl.  To further provide causal evidence, future 

studies about lesion or inhibition by brain stimulation over the FPl are warranted.  If the 

FPl is indeed underlying environment choice, FPl lesions should show impaired decision-

making behaviour.  Alternatively, transcranial magnetic stimulation (TMS), a non-
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invasive brain stimulation, provides a means to the alter the neural activity (temporal 

enhancement or disruption) by changing the cortical excitability (Pascual-Leone et al., 

1999).  Causal role of the FPl can be established by TMS over the FPl during 

environment choice. 
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