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Abstract

Over the last decade, complex urban environments raised higher demands on geo-

graphic information data collection. Traditional data collection methods gradually

fail to meet the growing efficiency, completeness, flexibility, and safety requirements.

The advent of mobile mapping systems (MMS) filled these gaps but it has also brought

new challenges to data processing. The processing of mobile measurement data re-

quires automated, accurate, and efficient algorithms, which have been the hottest

research topics in many relevant fields.

In the thesis, loop closure detection (LCD), as one of the core problems of Simultane-

ous localization and mapping (SLAM) will be studied in depth. Focusing on LCD in

indoor environments, a fast and compact algorithm is proposed utilizing comprehen-

sive descriptors extraction and machine learning. Besides, a novel double-deck loop

candidate verification strategy is proposed to validate loop candidates and reject false

positives.

As for outdoor large-scale environments, point clouds do not exhibit significant struc-

tural and regular geometric characteristics. Thus, the deep learning model is utilized

to mine advanced and high-dimensional features. A very deep and lightweight neu-

ral network DeLightLCD is proposed to enable efficient LCD. The framework con-

tains two key modules: a feature extraction module and a feature difference module.

Depth-wise separable convolution (DSC) and batch normalization (BN) are utilized

to ensure that the network is lightweight and trainable.
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In practical use, the generalization and flexibility performance of LCD algorithms

are affected by sensor changes and indoor-outdoor environmental changes. Thus,

DeLightLCD++ is proposed to address these problems. The improvement of De-

LightLCD++ is threefold. (1) A novel data presentation method encoding measure-

ment distance and azimuth angle information is used to reduce the effects of sensor

changes. (2) The architecture of the network is also adjusted to ensure that the al-

gorithm is rotation invariant. (3) A loop candidate fast search method is used to

suppress the computation cost and time cost increase due to ultra-long measurement

distance.

After loop closures are detected, the results will be utilized for the pose optimization

to eliminate accumulative errors in LiDAR odometry (LO). An enhanced graph opti-

mization strategy based on LCD results is utilized in this thesis. Besides, three types

of loops in graphs, detected loop closures, pseudo loop closures, and enhanced loop

closures are introduced. Then, experiments are conducted to study factors affecting

trajectory optimization performance. Finally, some guidance is given on fieldwork

and data processing of the mobile mapping backpack system.

The proposed methods are evaluated on open-source datasets and in-house datasets.

The in-house datasets are captured by a self-designed mobile mapping backpack sys-

tem. The backpack is equipped with two multi-line laser scanners. Results show that

the LCD algorithms are superior to state-of-the-art algorithms in precision, time ef-

ficiency, generalization performance, and flexibility. The optimization method could

effectively improve the LiDAR odometry results and enable a consistent map result.

In sum, this thesis focuses on LCD and optimization for LiDAR-SLAM. The three

LCD algorithms presented in the thesis aim to solve LCD problems in indoor and

outdoor large-scale scenes. The experiments exhibit the effectiveness and superior

performance of the proposed algorithms. The work presented can be implemented

in LiDAR-SLAM for surveying and mapping. Furthermore, it could be used for

autonomous driving, high-definition maps, and urban 3D modeling.
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Chapter 1

Introduction

1.1 Research Background

The Government published the Smart City Blueprint for Hong Kong (Blueprint 2.0)

in 2017, setting out six smart areas, including “Smart Mobility”, “Smart Living”,

“Smart Environment”, “Smart People”, “Smart Government” and “Smart Econ-

omy”. Behind them, many fields both in academia and industry should develop

efficient and practical technologies to support the construction and improvement of

the Smart City scheme in Hong Kong. The vital and core technologies of the Smart

City scheme include urban planning, big data, the internet of things, artificial intel-

ligence, etc. However, the most fundamental technology is surveying and mapping

cities efficiently and precisely. Academic and industrial practitioners have made great

hardware development and algorithm research efforts to make urban 3D data acqui-

sition more efficient, complete, and precise. Then, mobile mapping was created to

overcome the shortcomings of the traditional terrestrial data collection system with

low efficiency and high labor cost.

The last decade saw great progress in data capture sensors, which drove the develop-

ment of various data capture systems based on multiple platforms, especially mobile

1



Chapter 1. Introduction

mapping systems. Mobile mapping system has become one of the most important

and widely used data capture methods for urban 3D geographic information data

collection. The data capture sensors include cameras, Light Detection and Ranging

(LiDAR), Radar, the Inertial Navigation System (INS), Global Navigation Satellite

System (GNSS), etc. The sensors capture texture and color information, ranging

measurement information, positioning, and orientation information. The multiple

geometry and texture information enables 3D model reconstruction of urban environ-

ments with precise geometry information and photo-realistic information. Besides,

various platforms from ground-based to aerial-based allow the data capture of com-

plete urban scenes. The common data capture platforms include vehicles, Unmanned

Aerial Vehicles (UAV), backpacks, trolleys, vessels, and robots. The aerial-based

platforms, like Unmanned Aerial Vehicle (UAV), could capture data from rooftops

or high places, compensating for the blind spots of the ground-based data collection

system.

Currently, the two most important data capture sensors are LiDAR and cameras. In

recent years, the cameras’ frame rate and pixel resolution have been greatly improved,

which lay a solid foundation for algorithms based on visual data. Vision sensors have

become the most widely used type of sensor due to their low cost. However, there

are many inherent defects of visual sensors. (1) Most cameras, as passive sensors, are

more sensitive to illumination condition changes and seasonal changes; (2) Observing

depth is difficult for cameras. Although some types of cameras could obtain ranging

distance information, the distance of observing depth is quite limited; (3) In some

regions with weak texture information, it is difficult to extract valid features from the

visual data, which brings challenges to subsequent algorithm development. Although

these defects are greatly compensated with the emergence of new algorithms, the

application of pure cameras is still insufficient to meet the demand. LiDAR sensors,

also generally called laser scanners, are measuring devices that measure the distance

from a sensor to a target by emitting a laser beam to illuminate the target. LiDARs
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have many advantages, like measurement of distance information directly, high range

measurement accuracy, a wide range of detection, being less affected by illumination

condition changes and seasonal changes, and resistance to electromagnetic interfer-

ence. The sensors usually include 2D laser scanners and 3D laser scanners. In recent

years, as LiDAR sensors have been upgraded from 2D Lidar to 3D Lidar, and the

price has declined, LiDAR sensors are widely used in mobile mapping systems and

play an increasingly significant role.

After data collection, some technologies will be utilized to process the data. Simulta-

neous Localization and Mapping (SLAM) plays a significant role in mobile mapping

data processing. SLAM is a computational problem of constructing or updating a

map of an unknown environment while simultaneously keeping track of an agent’s

location within it. Before SLAM was proposed, localization and mapping were al-

ways considered to be two separate problems(Smith, Self, & Cheeseman, 1988). Since

SLAM was first proposed by Leonard and Durrant-Whyte (J. J. Leonard & Durrant-

Whyte, 1991), which has always been considered by researchers to be a major problem

in the field of mobile robots. The solution of SLAM will make it possible for mobile

agents to move in an environment without prior knowledge, which is of great signifi-

cance. SLAM is especially significant for indoor or other GNSS-denied scenes mobile

mapping.

When graph-based optimization is adopted in SLAM computation, the SLAM process

can be roughly divided into two steps: front-end odometry and back-end optimization.

Loop closure detection (LCD) plays a core role in back-end optimization. LCD is to

detect whether the agent revisits the places. LCD is a problem of data association

in SLAM. It aligns two data that are in the same place but discontinuous in time.

LCD provides control information that could be treated as redundant observations

for back-end optimization.

Currently, LCD and SLAM have gained outstanding progress in the past decades.

Especially in recent years, with the development of LiDAR sensors and computer
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science, the research on LCD and SLAM has been a hot research direction in the field

of computer science, surveying and mapping, robotics, electronics, etc. Tradition

approaches are based on handcrafted features, such as key points, feature lines, and

planar features. When deep learning is used in this field, semantic features and high-

dimensional features are learned to address the problems. From the perspective of the

application, indoor small-scale scenes and large-scale outdoor scenes require different

feature types and detection strategies to guarantee the results’ precision and time

efficiency. Specifically, the human-made indoor scenes always contain rich geometry

features, like planar features and line features, while the outdoor scenes may not have

sufficient and regular geometry features, especially in natural environments. Thus,

the challenges for LCD in indoor scenes are feature integration and fusion, while

the problems for LCD in outdoor environments are feature extraction. Besides, time

efficiency and computation complexity are also key problems for LCD and SLAM. The

method should be fast even conducted in real-time to save time cost, and lightweight

to save computation resources.

1.2 Research Scope and Problem Statement

In the thesis, loop closure detection in SLAM using 3D point cloud data will be

researched in depth. Loop closure detection means identifying whether the place

has been revisited. The problem is simplified to check whether a pair of data is

similar enough in many algorithms. If two LiDAR scans are highly similar, they are

recognized to be collected in the same scenes. Then, the two scans construct a loop.

LCD is a problem of data association [56]. Many researchers contribute to finding

solutions from distinct views, like data retrieval [74] or pattern recognition [163]. In

the field of place recognition and computer vision, deep learning is popular and widely

used [148, 100, 26].

The problem statement of LCD could be represented as follows. A LiDAR scan query
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denoted as {(P1 ,P2 , . . . ,PI )|P ∈ RN×3}, where PI means the point cloud scan in the

query. A pair of LiDAR scans Pi and Pj will be input into an LCD algorithm module

for detection, while the output is a binary classification to identify whether they are

a loop closure.

1.3 Current Research Problems

• Because of the huge point volume in every point cloud scan, the dimensional

reduction is needed to reduce the computation cost and time cost. Feature

extraction is a conventional method for dimensional reduction, but how to define

the features which can describe the environment comprehensively and precisely,

and how to extract features effectively and efficiently from the inhomogeneous

point cloud data are urgent problems to be solved.

• For indoor scenes, current research always utilize the rich geometry features,

while other information also may play a significant role in this task. The chal-

lenges are how to fuse and integrate them for LCD in a highly efficient time

level.

• For outdoor scenes, the computation cost and data amount will increase sharply

with the measuring distance and measuring time increasing, Thus, fast and

lightweight algorithms should be researched to conduct highly efficient or even

real-time LCD. Besides, in large-scale environments, sparse point cloud den-

sity, long measurement distances, indistinctive geometry features, fast-moving

measurement platforms, and a large number of moving objects all bring new

challenges to LCD algorithms. Thus, robust LCD approaches need to be re-

searched.

• Point cloud data is 3-dimensional and unordered. Using point clouds as input

directly for the deep learning model will suffer from permutation invariance
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problems. Some researchers transform 3D point clouds into 2D image space.

However, the transformation methods are worth studying to ensure low data

loss and efficient computation.

• Currently, many algorithms could only process specific point clouds collected

by one kind or one type of LiDAR sensor. Thus, a general and robust LCD

framework is worth studying regardless of sensor types and environment scale

changes.

1.4 Research Objectives

• Objective 1: To propose a fast LCD algorithm for indoor environments. Com-

prehensive and multi-modality features of point clouds are extracted and ana-

lyzed to enable a fast and compact LCD method.

• Objective 2: To propose a lightweight LCD algorithm for large-scale environ-

ments. The deep learning technique will be used to extract advanced and high-

dimensional features from point cloud data.

• Objective 3: To propose a flexible deep-learning-based LCD algorithm regard-

less of sensor changes and environmental changes. Besides, a fast loop candi-

dates search strategy is also needed to ensure time efficiency.

• Objective 4: To propose an enhanced graph optimization method based on LCD

in SLAM which is used to suppress the accumulative error in LiDAR odometry.

Factors of loops affecting optimization performance are worthy research topics

to give some guidance on fieldwork measurement and data processing.
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Figure 1.1: Outline of the thesis

1.5 Thesis Outline

The thesis is organized as follows, as shown in Fig. 1.1. In Chapter 3, compre-

hensive descriptors are proposed encoding discriminative multi-modality features to

describe each scan of point clouds. A machine learning model is used to learn from

the descriptors to perform fast and compact LCD (objective 1). A very deep and

lightweight neural network DeLightLCD is proposed in Chapter 4 to enable real-time

loop closure detection in large-scale environments (objective 2). An improved method

DeLightLCD++ is proposed in Chapter 5 based on DeLightLCD which is more flex-

ible to diverse point cloud input and robust to the environment changes, whether in

small-scale indoor environments or large-scale outdoor scenes. Besides, an efficient

loop candidates search strategy is designed to suppress the time cost (objective 3). In

Chapter 6, an enhanced graph optimization based on loop closure detection is used

to reduce the cumulative error of LiDAR odometry in SLAM. In addition, a study of
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factors of loops affecting optimization performance is also conducted (objective 4).

1.6 Research Basis

To verify the proposed framework of loop closure detection and back-end optimization,

a lightweight 3D mobile mapping backpack named SpaceScanX is designed for data

collection, as shown in Fig. 1.2. The mobile mapping backpack is equipped with

LiDAR, an omnidirectional camera, an IMU, and GNSS receivers.

(a) (b)

Figure 1.2: The self-designed mobile mapping backpack system

The 3D mobile mapping backpack has the following advantages:

• Lightweight, only about 9 kg;

• Seamless indoor-outdoor highly efficient data capturing;

• Flexible data capture in some challenging environments, like indoor, under-

ground, city canyon, mine caves, or other GNSS-denied environments;

• Abundant data including 3D point clouds, panoramic images, IMU data, and

GNSS data;
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• Accurate system calibration and time synchronization;

• Facilitating with efficient SLAM solutions.
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Chapter 2

Literature Review

2.1 3D Mapping Technologies: A Review

The last decades have witnessed the substantial development of data acquisition sys-

tems: satellites, drones, Unmanned Aerial Vehicles(UAV), vehicles, vessels, trolleys,

backpacks, and robots. These autonomous and intelligent data acquisition systems

greatly facilitate the surveying and mapping industry which are also expanded and

implemented in many fields of work for 3D modeling, urban planning, building, elec-

tricity industry, public infrastructure management, autonomous driving, etc. [134].

Especially, driven by the development of the data acquisition sensors, problems of

urban 3D modeling, like building information models (BIM) have become hot top-

ics in academia and industry. Urban 3D modeling aims at establishing a 2.5D or

3D digital representation of urban areas and the objects, such as roads, buildings,

vegetation, indoor environments, and other man-made structures. There are three

major techniques utilized in this field: (1) conventional geodetic mapping, (2) 2D

image photogrammetry, and (3) 3D measurements, such as laser scanning. Thus,

the development of the urban 3D modeling depends on the development of the data

acquisition sensor [151].
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The tremendous growth of these versatile mobile mapping systems is expected to be

promoted by (1) the abundance of new data acquisition sensors and mobile mapping

platforms, (2) the increasingly low price, small volume, and lightweight of sensors, (3)

the development in many relevant industries of communication, computer, machinery,

electronic, and geographic information, (4) the constant advancement of the funda-

mental technologies from the robotics and autonomous positioning and navigation

communities [73].

Compared with conventional data acquisition methods, data collection by mobile

mapping methods determines a higher efficiency. Thus, the mobile mapping approach

greatly increases the frequency of data updates. Besides, for the data capture in

dangerous environments, the unmanned mobile mapping method improves safety and

saves manpower. However, mobile mapping also brings more complex problems of

data processing.

In this chapter, data capture sensors will be summarized and compared first. Some

common mobile mapping systems including UAV-based mobile mapping, vehicle-

based mobile mapping, and backpack-based mobile mapping systems will be briefly

reviewed. Then, as the core technology of mobile mapping, simultaneous localiza-

tion and mapping (SLAM) will be introduced and reviewed in detail. Especially,

loop closure detection which is one of the fundamental parts of SLAM will also be

researched.

2.2 Data Capture Sensors

With the development of sensor technology in the last decade, the types of sensors

have become more abundant, and their accuracy, reliability, and availability have

greatly improved. As for the sensors installed on mobile mapping platforms, they

can be generally grouped into three categories: (1) laser scanners for capturing point
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cloud data of the surrounding environments directly, (2) visual sensors for obtaining

visual data with rich texture information, (3) positioning and navigation sensors

for providing positioning information or geo-reference information. Generally, every

single type of sensor has its unique strengths and inherent weaknesses. A reliable and

mature mobile mapping system usually needs to fuse the data acquired by different

types of sensors. In this section, some common sensors for mobile mapping systems

will be summarized.

2.2.1 Laser Scanners

With increasing applications relying on geospatial information, laser scanning has

become one of the most popular surveying and mapping methods. Laser scanning

systems also called light detection and ranging systems (LiDAR), use light pulses to

collect information from surroundings. The systems capture a huge amount of 3D

coordinates (also known as points), which are combined to generate point clouds.

Laser scanners generally could be divided into airborne laser scanning (ALS), terres-

trial laser scanning (TLS), and mobile laser scanning (MLS). Due to our focus on

ground-based mobile mapping platforms, TLS and MLS will be introduced in detail.

Both the two types use similar measurement principle of light pulses. However, there

are some fundamental differences between these two laser scanning systems.

2.2.1.1 Terrestrial Laser Scanning

TLS uses ground-based remote sensing systems, which are now being widely used

for topographic mapping applications. TLS sensors are usually mounted on static

tripods. The measurement mode of TLS is station-by-station. After the scanning in

an area finishing, the system needs to be moved to another position. TLS is also a

subtype of MLS. TLS could also be installed on mobile land-based platforms. Then,

it could be used for mobile scanning in large areas.
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According to the measuring techniques adopted for data capture, terrestrial laser

scanners are classified into those that employ pulses ranging or time-of-flight (TOF)

measuring principle and those that utilize the phase measuring technique [50]. Be-

sides, in [126], terrestrial laser scanners are also divided into panoramic-type 3D

scanners, hybrid laser scanners, and camera-type 3D laser scanners. Based on the

platforms where laser scanners are installed, terrestrial laser scanners are generally

grouped into static terrestrial laser scanners and dynamic laser scanners. In the study

of [130], according to the range or distance, the static terrestrial laser scanners also

can be divided into three types:

• Short-range laser scanners are limited up to 150 m, some are also limited to

30-60 m. They usually utilize the phase measuring principle for distance mea-

surement. The limitation of the short measurement range significantly restricts

the application of these laser scanners. Therefore, short-range laser scanners

are commonly used in indoor environments within buildings and urban area

outdoor environments with high buildings. However, the defects in the range

of these sensors are compensated by the high accuracy that they achieve in

distance measurement, generally at a few millimeters level.

• Medium-range laser scanners typically measure 150-450 m. Due to the mea-

surement range being farther than the short-range laser scanner, accordingly,

its measurement accuracy has been reduced. Medium-range laser scanners al-

most utilize the TOF technique for distance measurement.

• Long-range laser scanners can cover very long distances, up to several kilo-

meters. Such a long measurement distance also inevitably brings a decrease

in measurement accuracy, but the current level of accuracy is still acceptable.

Long-range laser scanners are usually used in large-scale environments, like mine

surveying and mapping. This type of laser scanner also adopts the pulse ranging

technique which allows much longer distances.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.1: Some common TLS sensors. (a) Zoller + Fröhlich (Z+F) IMAGER

5006EX 3D laser scanner, (b) Z+F IMAGER 5016 3D laser scanner, (c) Faro FocusM

series laser scanner, (d) Faro FocusS series laser scanner, (e) Surphaser IR 100HS laser

scanner, (f) Surphaser 10 HS laser scanner, (g) Leica BLK360 Imaging laser scanner,

(h) Leica RTC360 3D laser scanner, (i) Leica ScanStation P50, (j) TOPCON GLS-

2200 series 3D laser scanner, (k) Teledyne Optech Polaris laser scanning system, (l)

Teledyne Optech TLS-M3 laser scanning system, (m) Trimble X7 3D laser scanning

system, (n) Trimble TX8 3D laser scanner, (o) RIEGL VZ400i laser scanner, and

RIEGL VZ6000 laser scanner.
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Table 2.1: Maximum range and accuracy comparison of some common TLSs

Products Maximum range Range accuracy

Z+F IMAGER 5006EX 79 m 0.7 mm

Z+F IMAGER 5016 360 m 0.25 mm

Faro FocusM70 70 m ±3 mm

Faro FocusS70 70 m ±1 mm

Faro FocusS150 150 m ±1 mm

Faro FocusS350 350 m ±1 mm

Surphaser IR 100HS 90 m 0.16 mm @10 m

Surphaser 10 HS 180 m 0.25 mm @15 m

Leica BLK360 60 m 4 mm @10 m / 7 mm @20 m

Leica RTC360 130 m 1.0 mm + 10 ppm

Leica ScanStation P50 ¿1 km 0.4mm @10 m / 0.5 mm @50 m

TOPCON GLS-2200-short 130 m 3.1mm @1-90 m

TOPCON GLS-2200-middle 350 m 3.1mm @1-110 m

TOPCON GLS-2200-long 500 m 3.1mm @1-150 m

Teledyne Optech POLARIS ¿2 km / 750 m / 250 m 5 mm @100 m

Teledyne Optech TLS-M3 ¿2 km / 750 m / 250 m 5 mm @100 m

Trimble X7 80 m ¡2.5 mm @30 m

Trimble TX8 340 m ¡2 mm @2-120 m

RIEGL VZ-400i 800 m 5 mm

RIEGL VZ-2000i 2500 m 5 mm

RIEGL VZ-6000 >6 km 5 mm

As shown in Tab. 2.1 and Fig. 2.1, some common static TLS sensors are summarized.

Sensors with a short measurement range are advanced in range accuracy. Among

these sensors, Leica, Teledyne Optech, and Riegl produce high-precision long-range

laser scanners, while Faro is more common for its short-range and medium-range laser

scanners.

As for mobile terrestrial laser scanning, a terrestrial laser scanner is mounted on a

mobile platform, as shown in Fig. 2.2. Common mobile platforms include vehicles,
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(a) (b) (c) (d)

Figure 2.2: Mobile TLSs. (a) RIEGL VMR with RIEGL VZ-400i laser scanner, (b)

Faro TLS laser scanner mounted on Boston Dynamics Spot Robot platform, (c) Leica

BLK360 installed on a UAV platform, and (d) Leica BLK360 installed on a handheld

platform.

trolleys, UAVs, or robots. Mobile terrestrial laser scanning measurement not only

maintains the high accuracy on the measurement range of fixed station laser scanners

but also improves efficiency and broadens the scope of laser scanning work. In some

areas that are dangerous or difficult for humans to access, mobile TLS is significant

and effective to be used. Thus, in recent years, many manufacturers have dedicated

a lot of effort to producing easy-to-use, reliable, cost-effective mobile TLS systems.

2.2.1.2 Mobile Laser Scanning

Mobile Laser Scanning (MLS) uses laser scanning sensors mounted on mobile plat-

forms. These MLS sensors can be mounted on land-based vehicles such as trolleys,

cars, airborne vehicles such as UAVs and helicopters, boats, backpacks, robots, or

handheld platforms.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s)

Figure 2.3: Some common MLSs. (a) Velodyne Puck LiDAR, (b) Velodyne Ultra Puck

LiDAR, (c) Velodyne HDL-32E LiDAR, (d) Ouster OS0 LiDAR sensor, (e) Ouster

OS1 LiDAR sensor, (f) Ouster OS2 LiDAR sensor, (g) RIEGL VUX-1HA laser scan-

ner, (h) SICK TIM781S-2174104 laser scanner, (i) SICK S30B-3011BA laser scanner,

(j) Livox Mid-70 laser scanner, (k) Livox Mid-40 laser scanner, (l) Livox Horizon laser

scanner, (m) Livox Avia laser scanner, (n) Livox Tele-15 laser scanner, (o) Robosense

RS-LiDAR-16 LiDAR, (p) Robosense RS-LiDAR-32 LiDAR, (q) Robosense RS-Helios

LiDAR, (r) Robosense Ruby LiDAR, and (s) Robosense RS-LiDAR-M1 LiDAR.
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Table 2.2: Maximum range and accuracy comparison of some common MLSs

Products Channels Maximum range Range accuracy Weight

Velodyne Puck 16 100 m ±3 cm 830 g

Velodyne Ultra Puck 32 200 m ±3 cm 925 g

Velodyne HDL-32E 32 100 m ±2 cm 1000 g

Velodyne Alpha Prime 128 245 m ±3 cm 3500 g

Ouster OS0 32/64/128 50 m ±1.5− 5 cm 447 g

Ouster OS1 32/64/128 120 m ±0.7− 5 cm 447 g

Ouster OS3 32/64/128 240 m ±2.5− 8 cm 1100 g

RIEGL VUX-1HA22 1 475 m ±5 mm 3500 g

SICK TIM781S-2174104 1 25 m ±60 mm 250 g

SICK S30B-3011BA 1 30 m \ 1200 g

Livox Mid-70 \ ¿260 m ±2 cm 580 g

Livox Mid-40 \ ¿260 m ±2 cm 760 g

Livox Horizon \ ¿260 m ±2 cm 1100 g

Livox Avia \ 450 m ±2 cm 498 g

Livox Tele-15 \ 1000 m ±2 cm 1500 g

Robosense RS-LiDAR-16 16 150 m ±2 cm 870 g

Robosense RS-LiDAR-32 32 200 m ±3 cm 1130 g

Robosense RS-Helios 32 150 m ±3 cm 1000 g

Robosense Ruby 128 250 m ±3 cm 3750 g

Robosense RS-LiDAR-M1 128 200 m ±5 cm 730 g
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Compared with MLS methods, traditional measurements are time-consuming, sub-

ject to traffic, pedestrian, and road conditions, and even require isolation of the

measurement area from traffic. Besides, traditional measurements require many on-

site workers. Whereas, MLS is outstanding of its high time efficiency and could

save project budgets for on-site operation. Due to the high time efficiency, MLS can

quickly analyze environmental conditions for emergency response, and can also be

used for omnidirectional data collection for street view, such as Google Maps.

As shown in Fig. 2.3, some important MLS systems are summarized. Their channels,

maximum range, range accuracy, and weights are compared in Tab. 2.2. All the

mobile laser scanners can be divided into two categories, non-repetitive scanning

pattern, and repetitive scanning pattern, according to the scanning theory. Livox

series laser scanners are all non-repetitive laser scanners. The point cloud density

will increase with resting time. The repetitive laser scanners are more common,

usually generating multiple scan lines, like 16, 32, 64, or 128 channels. Mobile laser

scanners are more lightweight than terrestrial laser scanners, while the range accuracy

is worse than TLS sensors.

2.2.1.3 Comparison Between TLS and MLS

With laser scanning as one of the most important and commonly used methods of

environmental data collection, surveying teams must decide whether to use TLS or

MLS systems. This decision affects the cost of the project, schedule, measurement

time, quality, and accuracy of the data. The defects and advantages of these two

measurement methods are summarized as follows:

• MLS are much more efficient than TLS. Thus, for large-scale environments

measurement, MLS can complete data collection tasks very quickly. However,

data captured by MLS are less accurate than those from TLS.

• MLS is more suitable for measuring in areas with limited accessibility. MLS sys-

19



Chapter 2. Literature Review

tems can measure the areas that are unsafe or inaccessible for workers. Sensors

mounted on the UAV platforms could capture data from restricted locations.

• Generally, static TLS systems can collect more accurate, detailed, and high-

density point clouds. The static TLS sensor remains completely still during the

scanning of a station, which results in the low risk of data outliers. The static

TLS sensor can also be moved to another station for measuring the environment

from different angles and locations. Thus, the static TLS system could capture

more accurate and detailed information from environments.

• It may take longer to process data of static TLS than that of MLS. Denser point

clouds and richer details bring larger file sizes. More time will be needed for

data processing if the files are larger. While MLS data processing, especially

point cloud registration, is also time-consuming, static TLS data processing will

take more time.

• Data storage should also be considered for static TLS system. Some supporting

software could provide cloud storage functions for large datasets. If not, users

need to equip a large hard disk for data storage.

2.2.2 Visual Sensors

Laser scanners provide high range accuracy, while visual data is rich in texture. The

two types of data have their irreplaceable advantages. Compared with point clouds,

visual data are sensitive to illumination and season changes which may lead to critical

degradation under certain circumstances. In previous decades, driven by the reduced

prices and widespread applications of laser scanners, increasing work began to focus

on LiDAR-based SLAM and LCD. However, visual SLAM is also a hot spot and a

difficult area in both academia and industry. As shown in Tab. 2.3, the character-

istics of LiDAR sensors and visual sensors are listed. Due to their respective unique
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advantages, sensor fusion is a reasonable and feasible strategy to reinforce strengths

and suppress weaknesses. Thus, many measurement systems integrate laser scanners,

visual sensors together to achieve robust performance and versatile information.

Table 2.3: Comparison between LiDAR sensors and Visual sensors

LiDAR Sensors Visual Sensors

Advantages

1. high range accuracy 1. rich texture information

2. insensitive to illumination changes 2. low cost

3. excellent distance tracking 3. high resolution

performance

Disadvantages

1. relatively expensive 1. sensitive to illumination changes

2. low anti-interference capability from 2. fail in feature extraction in

weather some areas

Table 2.4: Some common visual sensors and resolution comparison

Products Number of lenses Panoramic Maximum Resolution Weights

ZED 2 stereo camera 2 No 4416× 1242 124 g

Intel Depth Camera D435 2 No 1920× 1080 \

Teledyne FLIR Ladybug 5+ 6 Yes 2048× 2464 3 kg

MYNT EYE P Depth camera 1 No 2560× 720 184 g

Insta 360 One X2 2 Yes 2560× 1440 149 g

Garmin Dash Cam Tandem 2 Yes 2560× 1440 65.4 g

Ricoh Theta Z1 camera 2 Yes 6720× 3360 182 g

Teche TE720 pro 7 Yes 4608× 3456 for each 1.4 kg

Visual sensors are widely used in data acquisition, which results in their rapid de-

velopment. There is a wide variety of cameras, including monocular cameras, stereo

cameras, depth cameras (RGB-D cameras), panoramic cameras, event cameras, etc.

Versatile types of visual sensors are briefly shown in Fig. 2.4. Visual sensors also can

generate point cloud data. Depth cameras can measure depth information directly,

while stereo cameras can calculate range information. Besides, structure-from-motion

21



Chapter 2. Literature Review

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 2.4: Some common visual sensors. (a) ZED 2 stereo camera, (b) Intel Depth

Camera D435, (c) Teledyne FLIR Ladybug 5+ camera, (d) MYNT EYE P Depth

camera, (e) Insta 360 One X2 camera, (f) Garmin Dash Cam Tandem Dual-lens

camera, (g) Ricoh Theta Z1 camera, and (h) Teche TE720 pro panoramic camera.

(SfM) or visual SLAM also could generate point cloud data. However, the point clouds

generated by these visual techniques are still different from the point clouds captured

by laser scanners. Generally, the measurement range is much shorter than that of

laser scanners. The focal length of cameras also affects the performance of point

clouds generated.

2.2.3 Positioning and Navigation Sensors

Currently, there are many positioning technologies used in mobile mapping applica-

tions. Some prevalent devices and technologies include Global Navigation Satellite

Systems (GNSS), Inertial Measurement Unit (IMU), WiFi, Bluetooth, Ultra Wide

Band (UWB), ZigBee, and Radio Frequency Identification (RFID), which are the

most commonly used positioning and orientation technologies. Besides, SLAM has

been adopted as one of the most popular software solutions to generate trajectories
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and orientations.

GNSS refers to all satellite navigation systems in general, including global and re-

gional navigation systems and their augmentation systems, such as Global Position-

ing System (GPS), Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS),

BeiDou Navigation Satellite System (BDS), and Galileo; augmentation systems, such

as Wide Area Augmentation System (WAAS), European Geostationary Navigation

Overlay Service (EGNOS), and MTSAT Satellite Augmentation System (MSAS).

GNSS receivers are devices that can provide absolute position in all-weather, all-day,

all-range in the global coordinate system, but they also have the disadvantages of

poor positioning accuracy and stability. They are easily affected by the environment

and weather. It is responsible for receiving the satellite signals to solve the position

information. When working in an urban area with dense buildings, the GNSS sig-

nal is not reliable enough, i.e. multi-path noise and occlusion by surrounding tall

buildings. As a data processing method based on high-frequency measurements and

second-order integration, GNSS suffers from drift accumulation with distance increas-

ing. However, in indoor environments, GNSS receivers cannot receive any signal for

position information calculation.

IMU devices consisting of accelerators and gyroscopes are used to calculate motion

and attitude changes. Regardless of the operating conditions and environments, IMUs

(a) (b) (c) (d)

Figure 2.5: Some common positioning and navigation sensors. (a) NovAtel GPS-704-

X antennas, (b) Hemisphere HA32 UAV GNSS Antenna, (c) Trimble R10 Integrated

GNSS System, and (d) Emlid Reach M2 RTK GNSS modules.
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(a) (b) (c) (d)

Figure 2.6: Some MEMs IMU systems. (a) EnOcean STM300 IMU, (b) HoneyWell

HGuide i300 MEMs IMU, (c) LORD 3DM-GX5-25 Attitude Heading Reference Sys-

tem, and (d) Xsens MTi-100 IMU.

can output the information of motion state change at high frequency. However, IMU

will also suffer from the error of drift accumulation and noise. The drift error increases

sharply with time. Thus, suppressing the drift error from accumulation is one of the

key issues for every IMU-based mobile mapping system. Generally, IMU could provide

an initial value for LiDAR or visual odometry.

2.3 Mobile Mapping System

Due to the indisputable value of the 3D point cloud, many data acquisition systems

have been developed over the last decades. The fixed mapping system has the ad-

vantage of high accuracy but the disadvantages are also obvious, low data capture

efficiency, labor-intensive, and inflexible. The laser scanning systems mounted on

mobile platforms seek to balance the costs, times, accuracy, and efficiency. Thus,

the Mobile Mapping Systems (MMS) have been a valuable alternative to geospatial

data acquisition. The application of MMS is widely used in several fields of industry

and academia: urban environment, 3D modeling, surveying and mapping, cultural

heritage, environmental monitoring, autonomous driving, robotics, surveillance and

security, road management, construction site monitoring, etc. [142]

Due to the mobile platforms, MMS could collect data in dynamic environments and
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some environments that are dangerous or not easy to access. Currently, for differ-

ent requirements and different environments characteristics, the platforms utilized for

MMS are various including UAVs, airplanes, vessels, vehicles, trolleys, backpacks, and

helmets. The sensors could be installed on MMS including GNSS, INS, visual sensors,

LiDAR, Radar, and other remote sensing sensors. Generally, in outdoor large-scale

environments, MMS enables the rapid and accurate calculation of continuous 3D po-

sition, velocity, and attitude by combining GNSS information with INS. It should

be indicated that all GNSS position and INS attitude data should be time synchro-

nized with the mapping sensors for direct and precise mapping. However, in indoor

environments or other GNSS-denied environments, no GNSS signal will be recorded.

Thus, some positioning algorithms are utilized to calculate the position and attitude

information by point clouds, images, or other remote sensing data. Simultaneous

Localization and Mapping (SLAM) is one of the most important technologies in this

field and will be reviewed in detail in Sec. 2.4.

MMS has the outstanding advantages of costs, times, and flexibility, while it also raises

new challenges of data processing, dynamic object effects, environmental degradation,

accuracy decrease, trajectory drift, and a large amount of data. Thus, recent trends

in MMS have led to a proliferation of studies both in industry and academia. In this

section, we will review some important and common MMS of UVAs, vehicles, trolleys,

and backpacks.
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Table 2.5: Comparison of some common MMSs on various platforms

Platforms Products LiDAR Camera IMU GNSS

UAV

Riegl VUX-SYS system
√ √ √ √

Leica Aibot SX
√ √ √ √

LiAir V70 UAV 3D Mapping System
√ √ √ √

DJI PHANTOM 4 RTK ×
√ √ √

CHC Navigation P580 system
√ √ √ √

CHC Navigation BB4 system
√ √ √ √

Vehicle

Leica Pegasus:Swift
√ √ √ √

Leica Pegasus:Two Ultimate
√ √ √ √

RIEGL VMQ-1HA Mapping System
√ √ √ √

RIEGL VMX-2HA Mobile Mapping System
√ √ √ √

RIEGL VMY-1 Mapping System
√ √ √ √

RIEGL VMY-2 Mapping System
√ √ √ √

Trolley

Trimble GEDO CE 2 Rail Measuring System
√

×
√ √

Viametris IMS3D Trolley
√ √ √ √

NavVis M6
√ √ √

×

Backpack

Leica Pegasus:Backpack
√ √ √ √

GreenValley LiBackpack C50
√ √ √

×

GreenValley LiBackpack DGC50
√ √ √ √

NavVis VLX
√ √ √

×

Viametris BMS3D-HD Backpack
√ √ √ √

Handheld

GeoSALM ZEB Go
√ √ √

×

GeoSALM ZEB Revo RT
√ √ √

×

GeoSALM ZEB Horizon
√ √ √

×
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

(v) (w)

Figure 2.7: Some common MMSs on various platforms. (a) Riegl RiCOPTER with

VUX-SYS, (b) Leica Aibot SX, (c) LiAir V70 UAV, (d) DJI PHANTOM 4 RTK

Drone, (e) CHC Navigation P 580 UAV, and (f) CHC Navigation BB4 UAV, (g) Le-

ica Pegasus:Swift, (h) Leica Pegasus:Two Ultimate, (i)RIEGL VMQ-1HA Mapping

System, (j) RIEGL VMX-2HA Dual Scanner Mobile Mapping System, (k) RIEGL

VMY-1 Mapping System, (l) RIEGL VMY-2 Mapping System, (m) Trimble GEDO

CE 2 Rail Measuring System, (n)Viametris IMS3D Trolley,(o) NavVis M6, (p) Le-

ica Pegasus:Backpack, (q) GreenValley LiBackpack C50, (r)GreenValley LiBackpack

DGC50, (s) NavVis VLX, (t) Viametris BMS3D-HD Backpack, (u) GeoSALM ZEB

Go, (v)GeoSALM ZEB Revo RT, (w)GeoSALM ZEB Horizon.
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The UAV-based MMS allows the aerial data capture from a height of tens of me-

ters or even thousands of meters. UAV mobile measurement data can be combined

with other measurement technologies, such as GNSS, backpack-based MMS data,

and vehicle-based MMS data. The fusion and unification of measurement data from

these different platforms can provide a more complete measurement of the urban en-

vironment. UAVs can quickly survey a site from the air, enabling the completion

of projects at a lower cost and with little personnel. It is more suitable for power

line inspection, forestry survey, mining survey, and urban environment survey. The

UAV MMS can be equipped with many different sensors, such as laser scanners, RGB

cameras, thermal infrared cameras, etc. Due to its inherent advantage of being able

to measure data from the air, it can accomplish both large-scale topographic data

acquisition and provide data support for fine modeling. The UAV MMS is currently

limited by their battery capacity and load capacity, making them unable to work for

a long time.

The vehicle-based MMS is the most commonly used data collection method for urban

measurements, including high definition maps (HD Map) for autonomous driving,

3D modeling of cities, etc. Vehicle-MMSs could only be used in outdoor urban or

large-scale environments due to the environmental requirements of vehicle driving.

Equipped with GNSS, IMU, LiDAR, cameras, and radars, vehicle-MMSs could always

collect abundant, high-precision, high-density, and large-volume data.

Unlike MMSs on UAV and vehicle platforms, which are suitable for large-scale outdoor

scenes, trolleys, backpacks, and handheld MMSs are dedicated to small-scale scenes,

especially for indoor, underground, and other GNSS-denied environments. However,

they are still some differences in their measurement applications. The trolley-MMS

can only run in a flat indoor environment and cannot be used in staircases, con-

struction sites, and other rough-ground scenarios. Backpack-MMS can measure the

environment that surveyors can access. The handheld platform is more suitable for

small-scale scenes, especially for the detailed data collection of pipes, ceilings, corners,
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etc. Besides, robots are also widely used in measurement nowadays, but there are

still no mature and widely used industrial solutions. Thus, robot-based MMSs are

one of the hot topics both in academia and industry.

2.4 SLAM

In the years when SLAM was just proposed, researchers mainly focused on how

to apply probability methods to the field of robot technology. In the subsequent

development, the solutions of SLAM tend to be diverse. In this section, the SLAM

methods will be reviewed according to the basic theory, SLAM based on filtering

theory, and SLAM based on graph theory. In the last decades, deep learning boomed

in many research fields. In SLAM applications, deep learning also was utilized and

achieved significant results. Thus, SLAM based on deep learning will also be reviewed

especially.

2.4.1 SLAM based on Filtering Theory

This kind of method is to consider the solution of the SLAM problem as an estimation

process. In this research field, some famous research achievements include introducing

Kalman Filter (KF) model, Extended Kalman Filter (EKF) model, the Particle Filter

(PF)model, and the Maximum Likelihood Estimation (MLE) into SLAM. The idea of

SLAM was introduced in [87], which used EKF to solve the SLAM problem. The work

was inspired by the work done in [137]. The method uses a probabilistic approach to

limit the influence of errors on the accuracy of the generated maps [110]. Since then,

this has become the basic processing flow for SLAM problems, and EKF has gradually

become the most commonly used method in newly proposed SLAM algorithms.

EKF is one of the earliest theoretical methods applied in SLAM. Many successful

implementations of this approach have been reported in indoors [17], outdoors [58],
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sub-sea [88] and air-borne [75] applications. The EKF assumes that the noise conforms

to a Gaussian distribution, which leads to the assumption that the environmental

characteristics are unique and the EKF algorithm is prone to divergence when this

assumption is not true. Moreover, EKF uses the covariance matrix between the robot

and the environmental eigenvalues. To eliminate the cumulative error, the matrix is

processed every time it is estimated and corrected, which makes the computational

complexity reach a high-level [116], and seriously restricts the method in large-scale

environment applications [18].

Another solution is based on Bayes Filter theory, which can represent any probabil-

ity density function. However, the original Bayes Filter SLAM is difficult to use in

practical applications, due to the huge computation amount. To reduce the computa-

tion complexity, finding a functional representation for probability distributions is a

useful method. The Sum of Gaussian (SOG) method provides such a representation.

Durrant-Whyte et al applied SOG to represent the environmental landmark feature

model in the full Bayesian algorithm [45]. This method has the advantage of being

computationally tractable and indeed can be implemented with many of the same

rules that are employed in Kalman filtering. FastSLAM is a solution approaching the

SLAM problem from a Bayesian point of view, which will recursively estimate the

full posterior distribution over robot pose and landmark locations [107].

Particle filtering or Monte-Carlo methods are another SLAM method based on Bayes

Filter theory, which aims to provide a complete representation of the joint posterior

probability using a large set of sample points, also called particles. These points

provide a faithful state approximation to the true shape of the full distributions em-

ployed. State propagation and observation models are also represented in the form

of a sampled distribution. Particle filters can perform system state estimation in a

recursive form. Particle filtering is to obtain the proposed distribution of states from

the known prior information, and then extract some of the particles from the proposed

distribution and perform iterative operations. In this process, the weight of each par-
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ticle is obtained, and the particle state and weight will be updated continuously. The

approximate posterior probability distribution of the system state will be obtained

according to the weight. In the current open-source algorithms, the GMapping algo-

rithm is an improvement and implementation of the particle filter algorithm [57]. The

GMapping algorithm can compute an accurate proposal distribution, taking into ac-

count not only the movement of the robot but also the most recent observation, which

will drastically decrease the uncertainty about the robot’s pose in the prediction step

of the filter.

Cadena et al regarded the year 2004 as the watershed of SLAM algorithm research [14].

They called the previous two decades the classical age. The classical age saw the intro-

duction of the main probabilistic formulations for SLAM, including approaches based

on extended Kalman filters (EKF), Rao-Blackwellized particle filters, and maximum

likelihood estimation. Moreover, it also delineated the basic problems of efficiency

and robust data association. The subsequent period is the algorithmic-analysis age

(2004-2018). The algorithmic analysis period witnessed the research of basic problems

of SLAM, including observability, convergence, and consistency. In this period, the

significance of sparsity towards efficient SLAM solvers was also analyzed. Besides,

some far-reaching open-source SLAM frameworks were developed.

2.4.2 SLAM based on Optimization Theory

Lu and Milios proposed a new SLAM algorithm based on graph optimization. They

used the pose graph to represent the SLAM problem. The nodes in the pose graph

represented the poses of the robot at different times. The edges in the pose map rep-

resented the pose constraints between different nodes. Although the algorithm com-

putationally efficiency is relatively low when building large maps, many researchers

have discovered the prospects of this research direction and have invested a lot of

energy into it. Graph-based SLAM methods are post-processing methods, also called

31



Chapter 2. Literature Review

full SLAM methods.

With the continuous development of graph optimization, graph-based SLAM algo-

rithm research has become the mainstream trend of SLAM algorithms currently,

because graph optimization not only has advantages in accuracy and efficiency in

practical applications but also has an elegant framework and can stand the test of

practice. Konolige et al [80] explored the sparsity of graph-based two-dimensional

SLAM problems, then an efficient solution of graph-based SLAM problems has been

proposed. PTAM (Parallel Tracking And Mapping) is the first SLAM method to

separate tracking and mapping as two threads [76]. It is a monocular vision SLAM

algorithm based on keyframes. The main steps of PTAM include FAST corner de-

tection [124], map initialization, tracking localization, keyframes selection, relocaliza-

tion, bundle adjustment, etc. ORB-SLAM is another famous feature-based monocular

SLAM system that can operate in real-time, in small and large indoor and outdoor en-

vironments [109]. The system is robust to severe motion clutter, allows wide baseline

loop closing and relocalization, and includes fully automatic initialization. Building

on excellent algorithms of recent years, ORB-SALM can be seen as an extension of

PTAM, which adds another thread called loop closing to the original tracking and

mapping threads of PTAM. Its performance is better than PTAM in most instances.

Besides, it also integrates covisible graphs, relocalization, and loop closing based on

the DBoW2 library. However, in the ORB-SLAM program, the FAST features are

replaced by ORB features. Until now, ORB-SLAM has been keeping updating and

optimizing, and new research results are achieved.

As for LiDAR-based SLAM, there were tremendous achievements in the last decade.

LOAM [171] is a milestone of LiDAR-SLAM. It achieves practical LiDAR odometry

with both low-drift and low-computational complexity. It does not need high ac-

curacy ranging or inertial measurements. It builds a general odometry pipeline for

subsequent LiDAR-SLAM frameworks. SA-LOAM [91] integrates semantics in odom-

etry and loop closure detection with LOAM. Loam livox [97] is a LOAM framework
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using point clouds data generated by non-repetitive scanning. Edge features and

planar features are used for LiDAR odometry. F-LOAM [152] extracts edge and pla-

nar features from each scan and is registered to a local edge map and a local plane

map separately, where the local smoothness is also adopted for iterative pose opti-

mization. Lego-LOAM [131] is a lightweight system. It also uses the planar and

edge features to solve the 6-DoF transformation parameter by a proposed two-step

Levenberg-Marquardt optimization method. T-LOAM [174] utilizes a hierarchical

feature-based LiDAR-only odometry that performs precise pose estimates by extract-

ing four peculiar features: edge features, sphere features, planar features, and ground

features. HDL Graph SLAM [78] proposes a general LiDAR-SLAM pipeline: front-

end LiDAR odometry and back-end loop closure detection and graph-based pose

optimization. SUMA++ [25] uses a efficient surfel-based mapping method [10] and

exploits 3D point clouds by integrating semantic information. The semantic infor-

mation is extracted by RangeNet++ [106]. LIO-SAM [132] is a tightly-coupled LIO

using smoothing and mapping. It uses points and planar features to perform odom-

etry. A factor graph is used for multi-sensor fusion and global optimization. Then,

the visual sensor is also integrated to propose an updated LVI-SAM [133]. FAST-

LIO [166] fuses LiDAR feature points with IMU information by a tightly-coupled

iterated extended Kalman filter with an optimized Kalman gain. Then, two aspects

of optimization including registering raw points to the maps and maintaining a map

by an incremental k-d tree data structure (ikd-Tree), are conducted to FAST-LIO2

[165]. LiTAMIN [168] proposes an optimized ICP method stabilized with normaliza-

tion of the cost function by the Frobenius norm and a regularized covariance matrix.

The cost function is further optimized in LiTAMIN2 [169] by introducing symmet-

ric KL-divergence that reflects the difference between two probabilistic distributions.

The current LiDAR-SLAM generally contains two main modules front-end and back-

end. The front-end always contains data preprocessing, point cloud filtering, and LO,

while the back-end always contains LCD, pose optimization, and mapping. According

to the aforementioned LiDAR-SLAM review, features adopted in LiDAR odometry
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generally are corner points, edge features, and planar features.

SLAM based on optimization is the current mainstream direction of SLAM research.

This method divides SLAM problems into two steps, front-end data alignment, and

back-end optimization. Loop closure detection is one of the key issues that remain

unresolved for SLAM based on optimization. Besides, there are still some problems

unresolved [96]:

1. Efficiency problem. When the SLAM method based on graph optimization was just

proposed, the method based on nonlinear least squares is adopted. However, because

it does not consider the sparse structure in the SLAM problem, and even directly

solves the problem by using the matrix inversion method, the solution efficiency is very

low. Based on the relaxation and stochastic gradient descent method, the solution

efficiency is improved to some extent, but it does not fully utilize the advantages of the

nonlinear least-squares problem. For example, the stochastic gradient descent method

only uses the first-order property of the function, and the convergence is very slow

when the optimal solution is approached. In the case where the number of iterations

is limited, the accuracy of the result is affected. The method recently proposed based

on nonlinear least squares not only makes full use of the sparse structure in SLAM

[81] but also draws important research results from sparse linear algebra. This greatly

improves the solution efficiency of the problem, and the scale of the problem can be

greatly improved, representing the current high level of the field.

2. Robustness problem. The robustness of the solution method is mainly considered

from two aspects, one is the dependence on the initial value, and the other is the

adaptability to the error loop closing information. (1) Robustness to initial values.

Since the odometer (including the wheel odometer and other methods relying on

observation information for self-motion estimation) information may have a large cu-

mulative error, there is a large deviation between the initial value and the true value of

the resulting pose sequence. Therefore, reducing the dependence on the initial value

is important to enhance the convergence domain of the method. There are two solu-
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tions to this problem: one is to improve the global search ability of the optimization

method itself, and the other is to quickly obtain an acceptable initial value by other

methods. Carlone et al. [16] proposed a linear approximation of SLAM based on

graph optimization and gave an analytical solution. The method has no dependence

on the initial value, and the result can be used as the initial value of the nonlinear

least-squares method. However, this method is currently only available for 2D SLAM.

(2) Robustness to error loop closure information. Conventional graph optimization

methods usually assume that the graph has the correct topology [113]. If the map in-

troduces improper positive loop closure, it may lead to erroneous convergence results.

This is because the least-squares optimization method itself is not robust to outliers.

To ensure that the map obtained during convergence is correct, strict constraints can

be imposed on the ring closure, so that the error rate of detection is low enough and

the effect is reduced by the kernel function method.

3. Scalability problem. The SLAM method based on graph optimization takes the

pose of the robot as the node. Usually, the longer the trajectory of the robot, the

more pose nodes that need to be processed, which is not conducive to the expansion

of the method. When the robot is walking in a fixed-size environment, the number

of nodes in the graph should be related to the size of the environment and not to the

length of the motion trajectory. To make the SLAM method have good scalability,

the key is to effectively control the graph nodes. The most direct way to reduce the

number of nodes in the graph is to limit the distance between nodes. Only if the

distance between nodes exceeds a certain threshold, the node can be added to the

graph [79].

2.4.3 SLAM based on Deep Learning

Motivated by the success of deep learning applied in many fields, many researchers

contribute to using deep learning in SLAM components. Generally, according to
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whether it is based on deep learning, we divided SLAM frameworks into learning-

based SLAM and geometry-based SLAM, also called traditional SLAM frameworks.

There have been many successful approaches in visual-SLAM, including feature ex-

traction, odometry, loop closure detection or relocalization, and semantic SLAM.

These aspects are also hot topics in LiDAR-based SLAM. Although learning-based

SLAM approaches still do not significantly outperform traditional SLAM solutions,

they provide new solutions to SLAM problems and are proven to be more robust than

traditional SLAM. Thus, learning-based SLAM methods are well-worthy to research.

Instead of manually estimating the geometry of the environments, learning-based ap-

proaches automatically learn the features, correspondences, and relationships between

sources and targets for visual odometry (VO) and LiDAR odometry (LO). We will

briefly review some significant learning-based VO methods, followed by learning-based

LO.

An end-to-end SLAM framework DeepVO [154] is dedicated to monocular visual

odometry problems by using deep Recurrent Convolutional Neural Networks (RC-

NNs) [42]. Features are extracted from a pre-trained FlowNet [43] and then for-

warded to LSTM. VINet [32] is an on-manifold sequence-to-sequence algorithm of

visual-inertial odometry (VIO). The proposed learning-based VIO eliminates the need

for tedious synchronization of the camera and IMU and the need for calibration be-

tween the IMU and camera, which are two fundamental problems for traditional

SLAM solutions. VidLoc [31] is a recurrent model performing 6-DoF pose estima-

tion of video-clips. LS-VO [34] jointly estimates a low dimensional representation of

dense optical flow manifold based on Auto-Encoder (AE) and meanwhile computes

the camera ego-motion estimation by a standard convolutional network. Chen et al

[20] propose a generic framework to learn selective sensor fusion which can be vi-

sualized and interpreted enabling more robust and accurate ego-motion estimation.

UnDeepVO [93] is an unsupervised deep learning scheme that enables the estimate of

the 6-DoF pose of a monocular camera and the depth. GANVO [3] is a unsupervised
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learning algorithm that estimate the pose information and depth information of the

environments by unsupervised deep convolutional Generative Adversarial Networks

(GANs) [55]. DL Hybrid [9] can extract effective key points from each frame even in

extreme scenes, and it has good performance even in extreme moving conditions. In

the proposed framework, two deep learning neural networks are designed to extract

feature maps between image frame pairs. One named DenseFlowNetwork is dedicated

to estimating the dense optical flow map, and another named DenseDepthNetwork

is proposed to extract the dense depth map per frame. To sum up, learning-based

VO or VIO systems are realized by training in a supervised or self-supervised manner

to end-to-end estimate the pose. However, although the ability of networks can be

improved by increasing the number of training data sets and optimizing the network

structure, insufficient generalization ability and insufficient accuracy problems are

inevitable.

As for learning-based LO, [112] proposed a two-stream CNN architecture for frame-

to-frame point cloud odometry. The proposed method transforms high-dimensional

point cloud data to a depth image that could be fed into a CNN to perform mo-

tion estimation directly. This method circumvents the defects of high computational

constraints associated with traditional scan matching. Different from existing LO

pipelines that go through individually designed feature selection, feature matching,

and pose estimation, networks trained in an end-to-end manner are new research

trends in this field. DeepPCO [155] is a dual-branch scheme to infer 3D translation

and orientation separately, which is trained in an end-to-end fashion. LO-Net [92]

is a real-time LiDAR odometry estimation framework, which is also trained in an

end-to-end manner. A scan-to-map module is proposed to improve the odometry ac-

curacy by utilizing the geometric and semantic features. DeepLO [27] is a geometry-

aware deep LiDAR odometry framework that is trainable via both supervised and

unsupervised manners. The unsupervised LO approach proposed in [28] introduces

the uncertainty-aware loss with geometric confidence to enable the reliability of the
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proposed pipeline. DMLO [95] enforces geometry constraints in the framework and

decomposes the 6-DoF pose estimation into two parts. A learning-based matching

network is designed to extract high confidence correspondences from successive Li-

DAR scans. Then, rigid transformation estimation is performed by Singular Value

Decomposition (SVD). SLOAM [24] introduces an end-to-end pipeline for tree diam-

eter estimation based on semantic segmentation and LiDAR odometry and mapping

in forest scenes. A synthetic network based on deep learning is proposed for achieving

an integrated navigation performance of LIO [138]. The networks proposed in [149]

could perform fast, real-time and precise estimation of translation. 3DRegNet [114] is

a deep neural network including two sub-blocks: classification block of the point cor-

respondences into inliers/outliers, and regression block of the motion parameters. A

transformation estimation approach using SVD is also used as an alternative to deep

neural network registration. PointNetLK [5] uses PointNet [19] as an image function.

It combines PointNet and Lucas & Kanade algorithm into a single recurrent deep

neural network. Odometry is the core problem of SLAM, which has been researched

for many years. Deep learning networks always are more robust than traditional

geometry-based methods. However, the precision and computation cost still need to

be optimized.

2.5 Loop Closure Detection

LCD is to check whether the robot revisits the same scene. It is a significant method

to control or even eliminate the cumulative error. The loop closing problem is one of

the most important problems in SLAM which remains unresolved. In SLAM based

on graph optimization methods, there are two types of edges in a graph, one kind of

edge is obtained from LiDAR odometry, the other kind of edges is to provide control

information, which is generally obtained from loop closure detection.

In recent years, SLAM solutions based on graph optimization gradually become the
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mainstream of research. As the key problem in back-end optimization of SLAM,

loop closure detection also attracts much research interest. Loop closing is vital for

cumulative error reduction or even elimination. However, if the loop information is

wrong, it means a disaster to the global map, which may result in the inconsistency

of the map. Therefore, LCD methods should achieve high accuracy and recall rate

as much as possible. The conventional way to detect loops is to match the current

scan with all the scans collected before, but it will waste much time and cannot

achieve a real-time level. With the measuring time and measuring distance increasing,

the computation amount will increase exponentially. Thus, to reduce the number of

matches, some researchers will not match the current scan with all the scans collected

before but select some scans to match the current scan. However, this method cannot

make sure that the frames which will form a loop can be selected. To achieve high

accuracy and high recall rate, many researchers develop algorithms to detect loops.

According to basic theory, LCD algorithms can be divided into two categories: pose

probability estimation and scene appearance matching.

2.5.1 LCD based on Pose Probability Estimation

Approaches based on pose probability estimation are to detect loops according to the

location reckoning of the measuring equipment. This approach implements in the

process of map construction and mobile navigation synchronously.

Haris [8] constructs the 3D features of the environment based on laser ranging data

and visual data fusion, then the probability of whether the two frames of data are

collected from the same environment are estimated based on these accurate features.

Data fusion is achieved by validating 3D structure assumptions formed according to

2D range scans of the environment, through the exploitation of visual information.

Jochen [139] proposes a heuristic LCD method based on the 3D point cloud. The

pose of the scanner is corrected timely by loop information and constructs a sparse
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SLAM map without iterative optimization, then the LCD process can be conducted

in real-time. Gong [108] conducts EKF-SLAM to realize localization and mapping in

real-time based on laser range data. And a new description method that is similar to

the raster map is proposed for the local map. Then LCD is conducted based on the

local map description. Many research results are achieved based on this approach,

however, it is a passive LCD method, which is inflexible and shows high complexity

in model construction and calculation. Therefore, many researchers choose scene

appearance matching for LCD.

2.5.2 LCD based on Scene Appearance Matching

LCD in monocular visual SLAM can be divided into three categories according to

the data association method. Williams [159] summarized and analyzed the three

strategies from two aspects of theories and experiment results.

• Map to map matching strategy. Appearances and relative positions are con-

sidered to find correspondences between two submaps. Clemente [33] proposed

a new method based on the variable scale geometric compatibility branch-and-

bound (GCBB) algorithm to detect loops. A new visual map matching algo-

rithm stitches these maps together and can detect large loops automatically,

taking into account the unobservability of scale intrinsic to pure monocular

SLAM.

• Image to image strategy. Cummins [35, 36] used visual appearance to describe

the environment and to loop closing by identifying the visual appearance of the

area which has been explored before. Bag-of-Word (BoW) model was used to

describe every image. And a method that is similar to text retrieval methods

is adopted to match search in visual word space.

• Image to map strategy. Williams [158] proposed an LCD method based on
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relocalization technique. The relocalization model is constructed based on the

similarity of feature points between images and sub-maps, then the pose of the

camera relative to the environment will be get according to RANSAC (Random

Sample Consensus) algorithm and three-point pose calculation algorithm.

In addition, Liu [99] adopted feature matching to detect loops directly to avoid percep-

tual ambiguity and constructs the KD tree according to the features in every frame of

images to realize real-time loop closure detection. Labbé [83] proposed a graph-based

global LCD approach. This approach can realize online detection and correct mapping

result in real-time. In recent years, with machine learning and deep learning meth-

ods attracting much research interest, those methods are applied in many research

areas and show better performance. Some researchers also adopt these thoughts into

loop closure detection. In [56] the loop closure detection problems are treated as a

classification problem. Geometric features and range histograms will be adopted to

describe the external environment, and training samples will be generated based on

the features to train an AdaBoost classifier. Then, the classifier will have the ability

to distinguish whether two scans of the point cloud are collected from the same scene.

Hao et al [120] proposed a new loop closure detection algorithm that combines both

camera and LiDAR sensors. In the image matching session, an improved learning-

based descriptors generator with triplets and an adaptive max-pooling layer will be

adopted to generate more robust and accurate descriptors. To improve the accuracy

of loop detection, the sliding window will be used first to find the exact matching po-

sition of the scan in the corresponding sub-maps, and then image matching to remove

errors and increase the optimization conditions. Experimental results show that the

method is helpful to improve the accuracy of the SLAM algorithm. In the applica-

tion field, DBoW2 [51] is a very famous library for loop closure detection. DBoW2

received a great deal of attention, because of its good performance in ORB-SLAM2.

It is a model for visual place recognition based on bags of words obtained from FAST

keypoints [125] and BRIEF descriptors [15].
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Chapter 3

FastLCD: A Fast and Compact

Loop Closure Detection Approach

This chapter proposes a fast and compact loop closure detection method based on

comprehensive descriptors and machine learning using 3D point clouds for indoor

LiDAR mobile mapping. Comprehensive descriptors proposed in this chapter encode

discriminative multi-modality features to describe each scan of point clouds. The

specific values of descriptors of point cloud scan pairs are fed into a machine learn-

ing model. We leverage the pre-trained learning model as a classifier to distinguish

whether a pair of laser scans is a loop candidate. Then, to ensure the results’ preci-

sion, a novel double-deck loop candidate verification strategy is used to reject false

positives. The algorithm is evaluated on datasets of some typical indoor environ-

ments. Compared with some state-of-the-art loop closure detection algorithms, the

proposed FastLCD algorithm demonstrates superior performance in precision and re-

call rate. Moreover, the method proposed also exhibits high time efficiency, excellent

generalization performance, and insensitivity to threshold changes.
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3.1 Introduction

Surveying robots are being increasingly used for mobile mapping and model recon-

struction, especially in environments that lack the reliable signals of the global nav-

igation satellite system (GNSS) or other localization methods, such as indoor envi-

ronments, city canyons, and underground scenes. In such environments, sensor-based

localization methods are adopted, such as scan matching and visual odometry. How-

ever, these methods cause a drift in position because of the generation of cumulative

errors. With increasing measurement distance, the drift also grows sharply [147].

Loop closure detection is a key step in SLAM to restrict these cumulative errors.

It can be defined as a data association problem that aims to determine whether a

place has been previously visited. It can reduce the pose estimation uncertainty

and map inconsistency [160], to construct an accurate and consistent map for model

reconstruction [135].

So far, several loop closure detection algorithms using 2D point cloud data [64, 65, 179]

or visual data [4, 82, 83, 105] have been proposed. However, a 2D laser scanner only

captures environmental information on a plane in each frame, which does not contain

sufficient information [90]. When robots are running on a rough floor, the 2D scans

might appear markedly different despite only slight changes in the position. Thus,

in such cases, loop closure detection based on 2D scans is not reliable. Visual data

are also widely used as they contain adequate information about environments with

much lower costs. However, visual sensors are sensitive to illumination conditions

[22, 85], especially in indoor environments. Recently, due to the declining costs, 3D

laser scanners have been widely applied in many fields. They capture more informa-

tion than 2D scanners do and work stably under illumination changes, even in dark

environments.

In this chapter, the loop closure detection problem is treated as a classification prob-

lem to identify whether two scans are captured from the same environment. We
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propose a loop closure detection method in indoor environments based on compre-

hensive descriptors and machine learning. Considering multi-modality information

in 3D point clouds, the comprehensive descriptor is proposed to describe each point

cloud scan. The descriptor ratios are fed into a supervised learning model to detect

loop closures. Loop results provide control information for back-end optimization

in SLAM [144], enhancing the reliability of the adjustment network and improving

the map’s overall accuracy. False loop closures will have disastrous effects on SLAM

results. Thus, a double-deck verification strategy is used to reject false detection to

ensure the algorithm’s precision.

The main contributions of this chapter are:

• The FastLCD algorithm leverages multi-modality features to transform a point

cloud scan to a global comprehensive descriptor. The multi-modality features

are extracted from each single raw 3D LiDAR scan without any transformation

or projection. Theory analysis and experiment results demonstrate the compre-

hensive descriptor is discriminative to location and external environments.

• A highly-efficient supervised learning model is used as a classifier to identify

loop closure candidates without prior poses. The model can also provide an

estimate of the reliability of detection results. The detection results comply

with Gaussian Mixture Model (GMM), which indicates the method proposed

has great separability and insensitivity to threshold changes.

• A double-deck loop verification strategy comprising cross-validation and post-

verification is implemented to reject false positives to ensure precision.

The rest of this chapter is organized as follows. In Sec. 3.2, a brief review of loop clo-

sure detection methods is summarized and classified. Their problems and limitations

are also stated in this section. In Sec. 3.3, the FastLCD method based on comprehen-

sive descriptors and machine learning are introduced in detail. The discrimination
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of multi-modality features is also demonstrated. Section 3.4 shows the experimental

results of our method and comparison algorithms in indoor environments. Sec. 3.5

discusses the performance and limitations of the FastLCD algorithm. In Section 6,

conclusions are stated, and directions of future work are presented.

3.2 Related Works

Loop closure detection is a critical component towards addressing the problem of

SLAM. This section briefly summarizes the previous work related to loop closure

detection using point clouds. Loop closure detection algorithms can be classified into

four categories according to the features adopted: (1) based on local features, (2)

based on handcrafted global descriptors, (3) based on planes, objects, or semantic

information, (4) based on deep learning.

Many of the traditional approaches are based on local features, such as key points.

Steder et al. [140] proposed a place recognition method based on point features

extracted from 3D range data. The obtained points of interest were applied to ex-

tract features and score candidate transformations. Then, a threshold was applied to

validate the candidates. In [141], normal aligned radial features were applied using

bag-of-words models. The fast point feature histograms (FPFHs) proposed in [128]

optimized the traditional point feature histograms (PFHs) [129]. The computation

of FPFH was based on the combination of geometry relations between the key points

and neighbors. The FPFHs not only retained most of the descriptive power of a PFH

but also could be computed online for real-time application.

Regarding methods based on handcrafted global descriptors, substantial achievements

have been gained. Magnusson et al. [103] exploited the surface representation of a nor-

mal distribution transform to create feature histograms. Here, a point cloud scan was

split into several overlapping grids, and their linear, planar, and spherical properties
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were computed and compressed into a shape histogram. In addition, expectation-

maximization was used to fit a gamma mixture model to output similarity measures

for automatically determining the threshold for loop closure detection. Röhling et

al. [123] proposed a fast histogram computed from the distances between the point

and robot. A discrete Wasserstein metric was used to compare the two histograms,

and loop closures were detected using an appropriate distance threshold. Consider-

ing structural information, a non-histogram-based global descriptor from 3D LiDAR

scans, called scan context [74] was proposed. This approach directly recorded the 3D

structure of a space that was invariant to LiDAR viewpoint changes. Scan context

is also expanded to intensity scan context [153], considering intensity information.

Granstróm et al. [56] used two types of global features, geometry features, and range

histograms. AdaBoost is used to learn a classifier from these features. The approach

proposed in [178] comprised local speeded-up robust features (SURFs) and global

spatial features for the place recognition task. M2DP [62] was a global descriptor

produced by projecting a 3D point cloud to multiple 2D planes and computation of

the signatures of the cloud on these planes. LiDAR Iris [156] is a binary signature

image representation. Place recognition is implemented by calculating the Hamming

distance as similarities of two corresponding binary signature images.

Besides artificially designed local and global features, some algorithms based on ad-

vanced features, like planes, objects, or semantic information are proposed. Dude et

al. [44] proposed 3D segmentation methods and realized place recognition through

segment matching and geometry verification. Cupec et al. [37] proposed an indoor

place recognition approach based on matching planar surface segments and straight

edges in-depth images obtained from RGB-D images. Luo et al. [102] proposed

a scene recognition algorithm based on object descriptors, including the oriented,

unique, and repeatable-clustered viewpoint feature histogram descriptor [2] and an

ensemble of shape functions descriptor [161], which were extracted from the submaps

segmented from the RGB-D range data. Furthermore, a distance metric was learned
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[38], to increase the precision of place recognition under environmental changes.

Each type of feature has inherent disadvantages. Local features generally lack descrip-

tive power and suffer from ambiguity and environment changes, while global descrip-

tors always face problems of view-dependent and invariance. Algorithms based on

planes, objects, or semantic information rely on the performance of these advanced

feature extraction. Thus, multi-modalities integration is an effective approach to

remedy the defects of a single feature. The mining of point cloud features aims at

describing environments more comprehensively and discriminatively, which found a

basis for our FastLCD method, a feasible and reliable loop closure detection algorithm.

Algorithms also need to balance performance in terms of accuracy and efficiency. In

addition, the majority of the existing methods rely on appropriate threshold setting,

which needs to be adjusted on new datasets, while the proposed FastLCD could use

a uniform threshold ignoring dataset changes.

3.3 Methodology

The input of this algorithm is raw point clouds without any transformation and

projection. Multi-modality features are extracted directly from raw 3D LiDAR scans.

Then, they are concatenated into a discriminative global comprehensive descriptor,

by which the computational and storage cost will reduce significantly. The descriptor

ratio is calculated from a pair of comprehensive descriptors. The descriptor ratio

will be used to be checked by the pre-trained machine learning model without any

prior pose information to obtain loop candidates. Then, a double-deck verification

strategy comprising cross-validation and post-verification is implemented to ensure

the final results’ precision. The effective and efficient loop closure detection results

will greatly enhance the localization and mapping tasks in the application of robotics

and self-driving. The algorithm architecture is shown in Fig. 3.1.
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Figure 3.1: Flowchart of proposed FastLCD algorithm based on a comprehensive

descriptor and machine learning. The workflow includes two main modules: multi-

modality feature extraction, loop detection, and verification.

3.3.1 Multi-modality Feature Extraction

The proposed FastLCD algorithm leverages discriminative global comprehensive de-

scriptors encoded by multi-modality features, which are extracted from each single

3D LiDAR scan, including statistics, geometry, planes, range histogram, and intensity

histogram. The multi-modality features are all invariant to rotation. Therefore, the

FastLCD algorithm is also rotation-invariant.
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Notations : Given a point cloud P ∈ RN×3, i is the point ID (i ∈ [1, N ]) and (Xi, Yi, Zi)

are the point coordinates. f id
m is defined as the features, with id and m denoting the

scan ID and the feature ID, respectively.

3.3.1.1 Statistics

The statistical features are computed using the nominal range distance, point coor-

dinates, and point number. They can reflect the point distribution, which represents

the surrounding environment intuitively.

The statistics include mean value of X, Y , and Z respectively. (X̄, Ȳ , Z̄), mean

measuring distance (R̄), maximum and minimum of distances (Rmax, Rmin), standard

deviation (σR), coordinate of mass center (X̃, Ỹ , Z̃), average distance between each

point and mass center ( ¯̃R), skewness (SR), and kurtosis (γR).

3.3.1.2 Geometry Features

Geometry features (Fg) describe the contextual information of each point on one scan

line. Features of each point are computed concerning the adjacent points. Geometry

can describe local information of the point cloud.

(1) Sum and standard deviation of distances between adjacent point (Di,i+1) on the

same scan line.

(2) Sum and standard deviation of curvatures. A is defined as the area of a triangle

formed by three points pi−1, pi, and p(i + 1). The distances among the three points

are Di,i+1, Di−1,i, and Di−1,i+1. The curvature (Ci) at pi is computed as

Ci =
4A

Di,i+1Di−1,iDi−1,i+1

, (3.1)

49



Chapter 3. FastLCD: A Fast and Compact Loop Closure Detection Approach

in which

A =
√
s(s−Di,i+1)(s−Di−1,i)(s−Di−1,i+1) (3.2)

s =
Di,i+1Di−1,iDi−1,i+1

2
(3.3)

(3) Mean value and standard deviation of range ratios on one LiDAR scan. Range

ratio is defined as the specific value of ranging distances of adjacent point pairs.

(4) Mean value and standard deviation of range differences. Range difference is

defined as the difference value of ranging distances between adjacent point pairs.

3.3.1.3 Planar Features

(a) (b)

Figure 3.2: Planar features in indoor environments. The green arrow indicates the

maximum distance between two parallel planes, while in the vertical direction of those

two planes, the maximum distance is denoted by orange arrows.

Planar surfaces are the most common geometric structure in man-made environments,

such as ground, walls, ceilings, and furniture. These plane features can reflect the

environment’s structural information and complexity, as shown in Fig. 3.2. We

define some structural features based on these plane features. The parallel planes in

an indoor environment always refer to ground, ceiling, or walls. Thus, the features

can be designed as (1) the number of plane features in a point cloud scan, (2) the
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maximum distance between two parallel planes P1 and P2, (3) The maximum distance

between two parallel planes, which are vertical to P1 and P2, (4) structure index: the

ratio of two maximum distances computed in (2) and (3). The ratio can reflect the

shape of the indoor space. Generally, the man-made environment is four-sided. The

ratio ranges from 0 to 1. If it is close to 0, the environment is long and narrow, such

as corridors and tunnels. Meanwhile, if it is close to 1, the environment is more like a

square. In our approach, the plane feature extraction algorithm is proposed by [46].

3.3.1.4 Range Histogram

Each LiDAR scan is represented as an unstructured and uneven distributed 3D point

cloud and always associated with a location. With the measuring distance defining the

range between each point and the sensor’s center, the range histogram describes the

distribution of the points in a scan and reflects the environment’s size and complexity.

Assuming a bucket count b and a value range R ∈ [Rmin, Rmax], we can divideR into

sub-intervals of size.

∆ =
1

b
(Rmax −Rmin) (3.4)

Each point falls in a corresponding bucket according to the value of R.

(Rmin + k ·∆) < R < [Rmin + (k + 1) ·∆] (3.5)

Then, the histogram for a point cloud scan P can be written as:

Hb = (h0, h1, · · · , hb−1), hk = count(pk)/N, (3.6)

in which count(pk) refers to the point number in bucket k. Theoretically, the number

of measurement points in each LiDAR scan is relatively constant. While in practice,

the number will show slight difference due to specific reflection in some surface types,

or the slight vibrations of rotating devices. The normalization of point count ensures

that the range histograms remain comparable under these unexpected conditions.
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3.3.1.5 Laser Intensity Histogram

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Intensity histograms of different environments. (a) and (c) are at different

locations in the same corridor, (e) is a scan of a long corridor, (g) is captured in an

office room. (b), (d), (f) and (h) are the intensity histogram of (a), (c), (e) and

(g) respectively. (b) and (d) shows the similar trend and peakness, while they are

different from those in (f) and (h).

Similar to the range histograms, the laser intensity of the points in a scan can also

be counted as a laser intensity histogram. In Fig. 3.3, if the two point clouds are

captured in the same environments, the intensity histograms are also similar. By

contrast, the laser intensity histograms of different environments vary on trends and

peaks.

The histogram reflects the measuring distance and object attributes. It should be

indicated that the intensity value of different laser scanners is defined differently.

Thus, normalization of intensity value should be implemented for each point. The

calculation method of intensity histogram is similar to range histogram.
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3.3.2 Feature Discriminative and Rotation Invariant Analy-

sis

Loop closure detection is to find whether the location has been revisited. To ensure

the algorithm’s detection performance, the features should be discriminative. Besides,

rotation-invariant is also significant for loop closure detection. The loop closure should

be detected if the robot revisits the same place wherever the laser scanner is facing.

• Feature discriminative analysis: statistics, geometry features, and range his-

tograms are computed according to nominal distances and adjacent points on

each scan line. The three modalities are all sensitive to locations and environ-

ments. A slight location perturbation of the laser scanner will cause changes in

the ranging distances and scan lines. Even in the same environment, ranging

histograms will be different when the sensor’s location changes, which indicates

the location discriminative characteristic. The plane features describing the

shape and complexity of the scenes will differ with the scene changes. The in-

tensity information is affected by the system and objects. The incident angle

and materials of objects matter much on intensity values. The incident angles

are influenced by the sensor’s relative locations in the environment. Besides,

the materials of objects might be different in diverse environments. Thus, the

intensity histogram feature is also discriminative to locations and environments.

• Rotation invariance analysis: the statistics, geometry features, plane features,

range histograms, and laser intensity histogram are all statistical-based feature

quantities. No matter how much the laser scanner rotates, if the robot revisits

the same place, the features will be similar.
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3.3.3 Loop Closure Detection

After the discriminative global comprehensive descriptor F (id1,id2) is extracted, the de-

scriptor ratios are computed by concatenating the specific values of multi-modalities.

Then, the descriptor ratios are organized as samples to be fed into machine learn-

ing models. Methods of calculating descriptor ratios vary for different modalities.

For statistics (fs), geometry features (fg) and plane features (fp), the element-wise

specific values are computed as:

f id1,di2 =

f
id1
m /f id2

m ,

(f id1
m /f id2

m )−1
(3.7)

Each pair of LiDAR scans generate two samples due to the two calculation methods

in (3.7). It should be indicated that a minimum value needs to be added to the

denominator in the case of NaN value. If two LiDAR scans are captured from the

same environment, the values of f id1
m and f id2

m will be very similar, and the value of

f (id1,id2) is close to 1.

As for range histogram and intensity histogram, correlation coefficient cr and ci is

computed. Then, F (id1,id2) is computed by concatenating the specific values of each

element.

F id1,id2 = fz ⊕ fg ⊕ fp ⊕ cr ⊕ ci (3.8)

For model training, a descriptor ratio and a binary label are combined as a training

sample {y, F (id1,id2)
m }. If y is 0, the scan pair is not a loop closure, whereas the value

of 1 means that the scan pair is a loop closure. Then, training samples are fed into

the supervised learning model.

y =

1 positive

0 negative

(3.9)

A supervised learning model will learn from training samples to identify whether a

scan pair is a loop candidate or not, meanwhile, the machine learning model could also
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provide a posterior probability of being detected as loops to estimate the reliability

of the detection results.

3.3.4 Double-deck Loop Verification

Precision is the dominant indicator for evaluating loop closure detection results, due to

wrong loop conditions might ruin the global map. Thus, to ensure precision and reject

false positives, a novel double-deck loop verification strategy will be implemented.

The loop verification contains two parts: cross-validation and post-verification.

Cross-validation: due to the two calculation methods of descriptor ratios in Eq.??,

each scan pair generate two samples. Then, if one of the two samples is identified as

negative, this pair of laser scans will be rejected.

Figure 3.4: Schematic of post-verification.

Post-verification: if a laser scan pair is identified as a loop candidate, it will be verified

according to time consistency and geometry consistency. As shown in Fig. 3.4, in

an appropriate time buffer, scan pairs are combined. Then, all these scan pairs are

detected by the machine learning model to check whether they are positive or not. If

they are positive, the scan i and j are verified as a loop closure.

3.4 Experimental Results
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3.4.1 Data

We train and evaluate FastLCD algorithm on the in-house datasets and Mimap in

SLAM 00 dataset [157, 150], as shown in Fig. 3.5.

In-house datasets: (a) The corridor A dataset is captured in a long and narrow

corridor with some corners; (b) The small lecture room is an irregular lecture theatre

with approximately 200 seats; (c) The large lecture room is a large irregular lecture

theatre with approximately 400 seats; (d) The corridor B dataset has long and narrow

corridors, corners, and an open small podium; (e) The office room dataset is captured

in a square office room with some desks, chairs, computers, and laboratory equipment,

which is much smaller than the two lecture rooms. To validate the learning model’s

generalization performance, the supervised machine learning model is only trained

by the corridor A dataset, then tested on the other four datasets. These datasets

are the most typical scenes in indoor environments. Most indoor environments are a

combination of these scenes.

The in-house datasets are captured on the Hong Kong Polytechnic University campus

using a backpack mobile mapping system [46]. The laser scanner mounted on the

backpack mobile platform is Velodyne’s Puck LiDAR sensor.

Mimap in slam 00 datasets : the dataset is collected in a two-floor building scene,

including data of individual rooms, non-enclosed loop corridors, and stairs. The

point cloud scans are captured by a Velodyne Ultra puck scanner. The open-source

dataset download link is: https://www2.isprs.org/commissions/comm1/wg6/isprs-

benchmark-on-multisensory-indoor-mapping-and-positioning/

3.4.2 Supervised Model Selection

In this section, we compare the impact of different machine learning models on the

algorithm’s performance. Four popular machine learning models are adopted to con-
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Experimental datasets. (a) corridor A dataset, (b) small lecture room

dataset, (c) large lecture room dataset, (d) corridor B dataset, (e) office room dataset,

(f) Mimap in slam 00 dataset.

duct the comparative experiments, including AdaBoost[49], random forest (RF)[12],

support vector machine (SVM)[117], and artificial neural network (ANN)[127]. It

should be specified that a backpropagation neural network (BPNN), one of the ANN

models, will be used. The results are shown in Fig. 3.6 and Tab. 3.1.

3.4.3 Ablation Studies

3.4.3.1 Feature Elements

The feature ablation study results are demonstrated in Tab. 3.2. Ablation of plane

features does not make noticeable impacts on results’ precision but results in a slight
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(a) (b)

(c) (d)

Figure 3.6: ROC curves of different learning models on the in-house datasets. (a)

small lecture room dataset, (b) large lecture room dataset, (c) corridor B dataset, (d)

office room dataset.

reduction of recall rate. It should be emphasized that range histogram ablation ruined

the algorithm’s performance. The other four types of features all influenced more on

recall rate, while precision remains stable without obvious loss. Thus, the five types

of feature elements affect the precision and recall rate of results to varying degrees.

Besides feature importance analysis, feature selection also relies on correlation analy-
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Table 3.1: F1-scores and AUCs of machine learning models on in-house datasets

Algorithms
Small lecture room Large lecture room Corridor B Office room

F1 AUC F1 AUC F1 AUC F1 AUC

SVM[117] 0.98 1.00 0.94 0.99 0.83 0.98 0.99 1.00

AdaBoost[49] 0.98 1.00 0.98 0.99 0.79 0.99 0.99 1.00

RF[12] 0.99 1.00 0.99 1.00 0.92 0.99 1.00 1.00

ANN[127] 0.77 0.99 0.74 0.99 0.94 0.98 0.96 1.00

Table 3.2: Result of feature ablation experiments

Feature ablation Precision Recall F1

Complete 0.98 0.87 0.92

Statistics ablation 0.98 0.55 0.70

Geometry features ablation 0.98 0.77 0.86

Plane features ablation 0.98 0.86 0.92

Range histogram ablation 0.82 0.06 0.12

Intensity histogram ablation 0.97 0.85 0.91

After feature selection 0.98 0.92 0.95

sis results. In this experiment, the chi-square test will be used to perform correlation

analysis. After feature selection, the updated descriptor shows the best performance

with the precision, recall rate, and F1-score achieving 0.98, 0.92, and 0.95, respec-

tively. Thus, the FastLCD adopts the five types of features ultimately.

3.4.3.2 Double-deck Verification Ablation Study

In this section, we will study the impact of the double-deck verification step. The

ablation experiment results are demonstrated in the Tab. 3.3, in which the precision

and F1-score are compared. We can see the precision of the results increases to
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varying degrees after adding verification steps. However, due to the discriminative

descriptor and excellent supervised learning model, even the double-deck verification

step is ablated, the precision and F1-score remain relatively stable without much loss.

After all, the verification step indeed increases the precision of the results more or

less, which aims to make the algorithm more robust.

Table 3.3: Double-deck verification ablation experiment results

Dataset
Without double-deck verification Double-deck verification

F1 Precision F1 Precision

Small lecture room 0.99 0.98 1.00 1.00

Large lecture room 0.96 0.94 0.99 0.99

Corridor B 0.95 0.98 0.95 0.98

Office room 0.99 1.00 1.00 1.00

3.4.4 Loop Closure Detection Results

3.4.4.1 FastLCD Results

In-house datasets : we compare our FastLCD algorithm with some state-of-the-

art methods on the in-house indoor datasets. Comparison results are shown in Fig.

3.7 and Tab. 3.4, where M2DP [62], FastHistogram [123], ScanContext [74],LiDAR

Iris [156], Yin [167] are adopted. We can find that the comparison algorithms are

difficult to achieve stable performance on all four datasets. FastLCD algorithm over-

performs the state-of-the-art methods on the four datasets as the AUCs are almost

equal to 1. The specific F1 scores and AUCs are demonstrated in Tab. 3.4. Though

on corridor B dataset, the F1-score and AUC both rank second with 0.95 and 0.99

respectively, on the other three datasets, FastLCD all obtains superior performance.

Because the experiments are trained only on the corridor A dataset, the FastLCD’s

superior results on the four datasets indicate the great generalization ability.

60



3.4. Experimental Results

Mimap in slam 00 datasets : compared with the five algorithms in mimap in

slam 00 dataset, FastLCD still outperforms stably, with 0.94 F1-score and 1.00 AUC.

The Yin method also shows the same great performance as our method. However,

ScanContext and LiDAR Iris are not suitable for this scene, only getting 0.56 and

0.53 F1-score respectively, which is almost useless for indoor mapping. FastLCD and

Yin method both need training samples. The same training samples are used, while

the training time of FastLCD is significantly shorter than that of the Yin method.

The other four methods all define a distance to measure the differentiation between

a pair of point clouds. According to the results in Tab. 3.4 and Tab. 3.5, FastLCD

shows superior performance to the five methods on in-house datasets and mimap slam

00 datasets.
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(a) Small lecture room

datasets

(b) Large lecture room

dataset

(c) Corridor B dataset

(d) Office room datset (e) Small lecture room

dataset

(f) Large lecture room

dataset

(g) Corridor B dataset (h) Office room datset

Figure 3.7: ROC curves of FastLCD and state-of-the-art algorithms in the four in-

house datasets. (a), (b), (c), and (d) are ROC curves of FastLCD and state-of-the-art

algorithms in the four in-house datasets respectively. The pictures (e), (f), (g), (h)

are the zoom in parts of (a), (b), (c), and (d).
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Table 3.4: F1-scores and AUCs of FastLCD and state-of-the-art algorithms on in-

house datasets

Algorithms
Small lecture room Large lecture room Corridor B Office room

F1 AUC F1 AUC F1 AUC F1 AUC

M2DP[62] 0.75 0.99 0.82 0.96 0.79 0.88 0.85 0.99

ScanContext[74] 0.75 0.99 0.87 0.99 0.86 1.00 0.83 0.95

FastHistogram[123] 0.95 1.00 0.86 0.95 0.76 0.85 0.95 0.99

LiDAR Iris[156] 0.90 1.00 0.95 1.00 0.96 0.98 0.99 0.99

Yin[167] 0.90 0.99 0.91 0.98 0.66 0.98 0.92 1.00

FastLCD 0.99 1.00 0.99 1.00 0.95 0.99 1.00 1.00

Table 3.5: F1-scores and AUCs of FastLCD and state-of-the-art algorithms on Mimap

00 datasets

Algorithms F1 AUC

M2DP[62] 0.91 0.97

ScanContext[74] 0.56 0.65

FastHistogram[123] 0.81 0.90

LiDAR Iris[156] 0.53 0.64

Yin[167] 0.94 1.00

FastLCD 0.94 1.00

M2DP, FastHistogram, ScanContext, and LiDAR Iris are four popular approaches

based on advanced handcraft features, while the Yin method uses a siamese CNN-

based network, in which it is also trained by corridor A dataset. M2DP processes

3D point clouds by projecting them onto 2D planes, which will lose some 3D in-

formation. FastHistogram and Yin methods only use ranging distance histograms

as features and set thresholds experimentally. However, FastHistogram uses ranging

distance histograms directly, while Yin learns deep features by a siamese CNN-based
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network using histograms as input. ScanContext considers the geometry character-

istics and transforms the 3D point cloud into a 2D feature image. Similarly, LiDAR

Iris also generates 2D binary feature maps based on geometry information. All these

methods consider part of the characteristics of the 3D point cloud with information

loss. Our method integrates geometry, ranging distance and intensity information

to a discriminative global comprehensive descriptor, by which our algorithm exhibits

superior and stable performance on different datasets. The thresholds of the experi-

ments are all set accordingly. We can find the comparison algorithms’ performances

all rely on the appropriate threshold setting, which brings in extra work and makes the

algorithm not robust. Besides, overdependence on thresholds would also weaken the

generalization performance of the methods. By contrast, our algorithm shows stable

results using a uniform threshold, which will be analyzed in the Section 3.4.4.2.

3.4.4.2 Separability and Threshold Sensitivity Studies

If AUC equals 1, it is confirmed that there is an appropriate threshold making the

model a perfect classifier. However, the defect of the comparison methods is that

the thresholds may differ on different datasets. Due to the comparison methods all

depending on appropriate thresholds, much effort is needed to adjust the parameters

and thresholds for a relatively good result. If the algorithm is sensitive to the thresh-

old, the threshold needs to be updated accordingly when a new dataset comes. Thus,

this section is to study the threshold sensitivity of our algorithm.

As shown in Fig. 3.8, the bar graphs depict the posterior probability distribution of

being recognized as loop closures. The X-axis is the posterior probability, while the

Y-axis is the number of laser scan pairs to be detected. The color of the bars refers

to the ground truth. The orange bars are the correct loops, while the blue bars are

not loop closures.

Loop closure detection could be treated as a binary classification problem. We can
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(a) (b)

(c) (d)

Figure 3.8: The posterior probability distribution of being recognized as loops on the

in-house datasets. (a), (b). (c) and (d) are the bar graph of probability distribution

on small lecture room, large lecture room, corridor B, and office room, respectively.
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find that the probability distribution complies with Gaussian Mixture Model (GMM).

It is obvious that the probability distributions of correct loops on the four experiments

are all concentrated in [0.8, 1], while the probability of negative samples is concen-

trated in [0, 0.4]. The probability distribution shows a clear trend of the U-shape

canyon. It proves the superior separability and insensitivity to the threshold of the

proposed algorithm. Low threshold sensitivity makes it easy to determine the thresh-

old. According to Fig. 3.8, we can find on the four datasets, a uniform threshold 0.8

for posterior probability could be adopted.

According to the probability distribution, we can also analyze the reliability of the re-

sults. Due to the true positive probability’s concentrated distribution in [0.8, 1], which

demonstrates that the results are highly reliable. Moreover, the posterior probability

also can be used as the estimation of the loop closure detection results’ reliability. Our

method decides threshold by posterior probability, while the aforementioned state-

of-the-art algorithms all use distance metrics. The posterior probability will be more

stable than distance metrics on different datasets.

3.4.5 Time Efficiency

This experiment is conducted to compute the time efficiency of the proposed FastLCD

approach. The algorithm includes three key steps: comprehensive descriptor extrac-

tion, supervised learning model training, and loop detection and verification. Model

training could be conducted offline. Thus, the time efficiency experiment will focus

on comprehensive descriptor extraction and loop detection and verification. We test

the time efficiency on a system equipped with an Intel i7-7700 CPU with 3.6 GHz

running Windows 10 x64 operating system. It should be emphasized that the code

has not been optimized by time acceleration technologies, such as Compute Unified

Device Architecture (CUDA) or multi-threading. The results are shown in Tab. 3.6.

As shown in Tab. 3.6, the time cost of feature extraction is stable on different datasets.
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Table 3.6: Descriptor extraction time cost of FastLCD on in-house datasets

Datasets
Data amount Time cost in total Time cost

(scan) (s) (ms/scan)

Small lecture room 9,545 790 82

Large lecture room 16,538 1,474 89

Corridor B 19,801 1,784 90

Office room 1,948 166 85

About 85 ms is needed to process each LiDAR scan, in which around 15,000 points

are stored. While in Tab. 3.7, compared with feature extraction, loop detection is

much more time-saving. Only about 1 ms is needed for each laser scan pair detection,

which includes loop candidate determined by supervised learning model and double-

deck verification. To check the time cost of the double-deck verification, we remove

this step. Then, we can find the time efficiency increase sharply to 0.03 ms per

detection. Compared with the state-of-the-art methods, our algorithm is the most

time-efficient, with less than 100ms to detect a loop.

Time efficiency comparison experiments are also performed. The results are shown in

Tab. 3.8. The experiments use open-source code of the comparison algorithms on the

aforementioned equipment. High time efficiency is a decisive factor for the feasibility

of the loop closure detection algorithm. All the algorithms show fast and efficient

characteristics, while FastLCD costs the least time among all comparison algorithms.

Overall, considering the computation cost and practical feasibility, it is not necessary

to conduct loop closure detection when every single LiDAR scan is captured. There-

fore, our FastLCD algorithm can realize real-time loop closure detection in SLAM, if

the data capture frequency of the scanner is set appropriately.
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Table 3.7: Loop detection and verification time cost of FastLCD on in-house datasets

Datasets
Data amount With verification Time cost in total Time cost

(laser pair) or not (s) (ms/detection)

Small lecture room 22,104
With 25.26 1.14

Without 0.68 0.03

Large lecture room 38,246
With 41.12 1.08

Without 1.19 0.03

Corridor B 148,536
With 176.00 1.18

Without 4.59 0.03

Office room 4,576
With 5.60 1.22

Without 0.14 0.03

Table 3.8: Time cost (s) comparison of FastLCD and the state-of-the-art methods

on in-house datasets

Algorithms Small lecture room Large lecture room Corridor B Office room

M2DP[62] 1097.68 1984.56 2574.13 214.28

ScanContext[74] 998.23 1730.00 2071.34 202.59

FastHistogram[123] 1587.20 2756.33 3298.16 306.66

LiDAR Iris[156] 1408.33 2439.55 2970.15 351.67

Yin[167] 1345.40 2234.17 2813.60 252.00

FastLCD 815.26 1515.12 1960.00 171.60

3.5 Discussion

According to the experiment results of the proposed FastLCD algorithm, some char-

acteristics and limitations are summarized.

• Precision, generalization performance, and time efficiency. The proposed method
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shows superior performance to some state-of-the-art algorithms, being more ac-

curate, reliable, and robust. The AUCs of the FastLCD algorithm on the dif-

ferent datasets are all close to 1 indicating that it has excellent generalization

performance. As for time cost, feature extraction and loop detection are both

show high time efficiency. If the data capture frequency of the scanner is set

appropriately, FastLCD can realize real-time loop closure detection in SLAM.

• Feature importance. The five types of features have varying degrees of influence.

Range histogram plays the dominant role, while plane features impact a little.

Statistics, intensity histogram, and geometry features matter much on recall

rate. According to feature importance analysis and correlation analysis, we

select some significant feature elements into the comprehensive descriptors.

• Separability and threshold sensitivity. The posterior probability distribution of

being recognized as loops almost perfectly complies with GMM, which indicates

the separability of FastLCD is excellent. The probability distributions of being

detected as loops on different datasets all concentrate in the same and narrow

range. It shows FastLCD is insensitive to the threshold. Thus, the loop results

detected are reliable and robust.

• The proposed algorithm could detect loops in those typical indoor scenes. More-

over, because the discriminative features are learned, the method is not limited

to the LCD in regular scenes. The algorithm could also be used in scenes with

not flat ground or walls.

• Limitations. The FastLCD algorithm is designed for indoor environments. If

the algorithm is extended to outdoor environments and large-scale scenes, some

optimization and experiments should be conducted. Besides, the computa-

tion cost will grow sharply with the measuring distance and time increasing.

Thus, some computation cost optimization and acceleration technologies could

be adopted to make it more feasible and robust for SLAM.
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3.6 Conclusion

This chapter proposes a fast and compact loop closure detection method FastLCD

based on comprehensive descriptors and machine learning. to achieve reliable and

precise results using 3D point clouds for indoor LiDAR mobile mapping. FastLCD

algorithm extracts multi-modality features from each single 3D LiDAR scan without

any transformation and projection, to map a LiDAR scan into a discriminative com-

prehensive descriptor. A machine learning model with a double-deck loop verification

strategy is used not only to identify loop closures without prior poses but also to

provide estimates of the reliability of detection results. Experiments show the algo-

rithm can detect loop results reliably and precisely. The algorithm also shows great

performance on separability, threshold insensitivity, and generalization. Besides, the

high time efficiency makes it possible to realize real-time loop closure detection for

SLAM in indoor mapping. In the future, as the proposed approach is only designed

in indoor environments for LiDAR mobile mapping, it can be extended to outdoor

and large-scale environments. Furthermore, a deep learning model could be used to

uncover some hidden features.
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Chapter 4

DeLightLCD: A Deep and

Lightweight Network for LCD in

LiDAR SLAM

Loop closure detection is a critical yet still open technique to enhance the performance

of Simultaneous Localization and Mapping (SLAM). In this chapter, a very deep and

lightweight neural network DeLightLCD is proposed to enable real-time loop closure

detection in large-scale environments. The raw 3D point clouds are mapped into 2D

depth image spaces as the input of the network. The architecture of the network

contains two key modules: a feature extraction module and a feature difference mod-

ule. A very deep but lightweight feature extraction network is designed to extract

high-dimensional and discriminative features. Depth-wise separable convolution and

batch normalization are utilized to ensure the network is lightweight and trainable.

The feature difference module enhanced by the dual attention technique generates

feature difference maps to identify the difference between pairs of LiDAR scans. The

proposed algorithm has been tested on the KITTI odometry datasets and Ford cam-

pus datasets. The experimental results demonstrate that the proposed algorithm
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outperforms the existing state-of-the-art methods. Although the model was trained

only on the KITTI dataset, it also demonstrated superior performance on the Ford

campus dataset. In particular, the proposed algorithm is much more lightweight than

the state-of-the-art methods.

4.1 Introduction

In recent years, methods concerning the loop closure detection (LCD) tasks have been

extensively examined from the robotics and autonomous driving viewpoints within

the scope of SLAM applications. LCD is used to check whether the place has been

previously explored, i.e. to distinguish whether a pair of LiDAR scans are captured in

the same environment. Thus, LCD is also recognized as a problem of place recognition

or instance retrieval, as shown in Fig. 4.1. KITTI odometry datasets [54, 53] are used

in the figure. By providing control information for back-end optimization, LCD plays

an important role in addressing the issue of eliminating cumulative errors in SLAM.

Currently, solutions towards the LCD problem focus more on whether the two scans

of point clouds have sufficiently high similarity to enable a judgment based on the

distance and a predefined threshold. The deep learning model always plays a role as

a feature encoder to obtain a global descriptor. Distance or metric learning will then

normally be used to measure the similarity between a pair of laser scans. Instead,

proposed here, is an end-to-end deep neural network for LCD to directly give a binary

result.

In [145], researchers argued that the most straightforward way to improve the perfor-

mance of deep neural networks is to increase their size, including depth and breadth.

Increasing the depth of the network is more feasible and cost-effective than increasing

the breadth. Nevertheless, deeper networks also bring along such typical problems

as excessive parameter count, gradient vanishing, and overfitting. Proposed in this
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Figure 4.1: Sequence point clouds diagram (trajectory: KITTI odometry 00 ). Point

clouds shown in (a) and (b) are loop closures because they are captured in the same

environment, as do those in (c) and (d), whereas the point clouds in (a) and (c) are

not loop closures. Neither are those in (b) and (d).

chapter, to extract high-dimensional and more abstract features is a feature extrac-

tion module with a deeper network than the state-of-the-art networks. Depth-wise

separable convolution (DSC) and batch normalization (BN) are utilized to suppress

those problems caused by the deeper network. The contributions of this chapter are:

• The proposal of an super lightweight neural network for LiDAR-based LCD

without using prior pose information. The proposed DeLightLCD offers a per-

formance that provides both highly efficient and reliable loop closure detection.

• The proposed network structure is deep and fully exploits the geometry informa-

tion of the 3D point clouds. Only leveraging (x, y, z) as the input, the network

not only achieves superior LCD performance comparing with the state-of-the-

art methods but also is much more lightweight in parameter amounts.

• The proposed feature extraction module integrates with DSC and BN to ensure

that the network is deep and lightweight while aiming at extracting discrimina-

tive point cloud features.
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• The feature difference module with a dual attention mechanism is proposed to

generate the feature difference map to measure the difference between a pair of

LiDAR scans, to determine if they are loop closures.

• The experimental results based on the KITTI [54] odometry benchmark and

the Ford campus dataset [115] show that the proposed method outperforms the

state-of-the-art LiDAR-based LCD methods.

4.2 Related Works

Unlike traditional approaches that use artificially designed features and metrics,

deep learning-based approaches deduce, or learn features and metrics from training

data. PointNetVLAD [148] combined PointNet [19] to learn about local features and

NetVLAD [6] architecture to build global descriptors from 3D point clouds. Since

then, many methods have followed the structure of PointNetVLAD, learning local

features, encoding local features into global features, and measuring similarities be-

tween global descriptors. The architecture has also become the standard workflow

for subsequent deep learning-based methods, such as SeqLPD [100], SOE-Net [162],

LPD-Net [101], and PCAN [173], etc. OverlapNet [26] transferred the raw 3D point

clouds into 2D images and adopted a Siamese Network as the backbone and defined

overlap to compute the yaw angle. It is worth mentioning that some cutting-edge

technologies, such as the attention mechanism [162] and the transformer [176] have

become widely used in LCD.

Current LiDAR loop closure detection approaches based on deep learning always

adopt relatively shallow networks for feature extraction. In image-based networks,

increasing network depth is a straightforward and effective way to achieve superior

74



4.3. Methodology

performance, such as ResNet [61] and VGG16 [136]. Thus, this study intended to de-

sign a very deep neural network to extract highly-dimensional and advanced features.

Then, we proposed a feature difference network enhanced by the dual attention tech-

nique to identify the degree of similarity between the LiDAR scans. The proposed

DeLightLCD approach can detect loop closures without prior pose knowledge and

predefined thresholds, which guarantee the robustness of the delivered method.

Figure 4.2: Pipeline overview of the proposed DeLightLCD approach

4.3 Methodology

This chapter addresses LCD as a point cloud retrieval problem. The proposed De-

LightLCD method uses an end-to-end network to detect loop closures without prior

pose information. The raw point clouds are transformed into 2D depth images and

encoded into feature spaces. The architecture of DeLightLCD is shown in Fig. 4.2.

DeLightLCD consists of two core modules: the feature extraction module and the

feature difference module. In the feature extraction module, DSC and BN are uti-

lized to ensure that the proposed very deep network is lightweight and computa-

tionally efficient. The dual attention technique composed of channel-wise attention

and point-wise attention enables a more outstanding and obvious feature difference.
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The efficient and accurate LCD approach greatly facilitates localization and mapping

tasks in robotics and automatic drive applications.

4.3.1 Data Representation

Cyclic projections of LiDAR scans are used as input, which is often used to improve

computational efficiency [11]. Many algorithms utilize the original 3D point cloud

data directly as the input to the network [173, 148], while the projected 2D images

can bypass the problem of permutation invariance. We project the 3D point cloud

P ∈ Rnk×3 into 2D image plane V ∈ RH×W [26] regarding cyclic coordinates using the

projection function φ(Pk): R3 7→ R2, where nk, h, and w are the number of points,

the height and the width of resulting images. The laser scan Pk is the keyframe at

the time step k ∈ Z+ in the point cloud query. Each point cloud Pk = (x, y, z) is

transformed to cyclic coordinates (u, v), according to:(
u

v

)
=

( 1
2
[1− arctan(y, x)π−1]W

[1− (arcsin(zr−1k ) + |fdown|)f−1)]H

)
, (4.1)

where rk = ‖Pk‖2 is the range, f = fup + |fdown| is the vertical field-of-view of the laser

scanner. h represents the number of scan lines, whereas the w direction contains

information on each single scan line. Thus, h and w are set as 64 and 900.

4.3.2 Feature Extraction Module

Proposed in this study is a deep and lightweight feature extraction network with

shared weights to learn high-dimensional and discriminative features from each Li-

DAR scan. The point coordinates (x, y, z) are leveraged only from each LiDAR scan

to generate projected maps C.

The architecture of the feature extraction network is shown in Tab. 4.1. The network

designed for poing cloud feature extraction is a convolutional neural network (CNN)

composed of 17 convolutional layers with batch normalization and 3 average pooling
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layers. Inspired by the studies in [145], increasing network depth and breadth is a

straightforward and effective way to improve network performance. Solid evidence is

yielded in [60] that increasing depth is a prior condition for improving accuracy. If the

network depth is increased reasonably, more complex, abstract, and high-dimensional

features are likely to be learned. Thus, to be designed is a feature extraction network

with 17 convolutional layers. The network will thus be deeper than the state-of-

the-art LCD networks. However, there are trade-offs regarding depth, width, and

Table 4.1: Layers of feature extraction module network architecture

Operator Filters Size Output Shape

Vertical Encoder

DSC+BN 8 (3,13) (62,888,8)

DSC+BN 8 (3,13) (60,876,8)

AP - (2,2) (30,438,8)

DSC+BN 8 (3,13) (28,426,8)

DSC+BN 8 (3,13) (26,414,8)

AP - (2,1) (13,414,8)

DSC+BN 16 (3,13) (11,402,16)

DSC+BN 16 (2,13) (10,390,16)

AP - (2,1) (5,390,16)

DSC+BN 16 (3,11) (3,380,16)

DSC+BN 16 (3,11) (1,370,16)

Horizontal Encoder

DSC+BN 32 (1,11) (1,360,32)

DSC+BN 32 (1,11) (1,350,32)

DSC+BN 32 (1,9) (1,342,32)

DSC+BN 32 (1,9) (1,334,32)

DSC+BN 32 (1,9) (1,326,32)

DSC+BN 32 (1,9) (1,318,32)

DSC+BN 32 (1,7) (1,312,32)

DSC+BN 32 (1,7) (1,306,32)

DSC+BN 32 (1,7) (1,300,32)

filter sizes. When the increased depth becomes saturated, the model performance

may show no improvement and even degradation. Increasing depth introduces new
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problems, such as an excessive parameter count and gradient vanishing. Any of those

particular problems may lead to non-convergence and the network untrainable. In the

proposed feature extraction module, DSC and BN have been adopted to restrain these

problems. DSC is a mechanism that has been widely recognized because it can signifi-

cantly reduce the number of parameters, especially after the success of the lightweight

neural networks Xception [30] and MobileNets [66]. This mechanism is based on an

assumption that each channel is highly auto-correlative across space, while different

channels may not be highly correlated with the other [29]. In the proposed approach,

only (x, y, z) information is leveraged to enable the learning of features. Point clouds

may exhibit different distribution characteristics in the x, y, and z spaces. A DSC

consists of a depth-wise convolution and a point-wise convolution performed subse-

quently. The former refers to a convolution performed separately on each channel,

while the latter refers to a 1× 1 convolution over channel space. They play different

roles in extracting new features: depth-wise convolution is used for obtaining spatial

correlations whereas point-wise convolution could capture channel-wise correlations

[59]. Thus, the DSC is not only more efficient than a standard convolution which maps

channel correlations and spatial correlations simultaneously [30], but also enables the

collection of features from multiple domains [59].

In addition, when networks go deeper, gradient propagation through a deep stack of

layers is more difficult, hence making the related network untrainable. Originally,

BN was proposed to reduce internal covariate shift, defined as “the change in the

distribution of network activations due to the change in network parameters during

training” [69]. This can normalize input data even allowing for means and variance

changes over time, during the training stage. BN can also both reduce the depen-

dence on gradients and benefit the gradient flow. Thus, BN is utilized to control the

problems brought by the increasing depth of the network.

The feature extraction network contains two feature encoders in two directions: a

vertical encoder and a horizontal encoder. The vertical encoder aims at extracting
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features from among different scan lines, while the horizontal encoder focuses on the

information on each scan line. Average pooling (AP) is used to reduce dimensions in

the height direction. The vertical encoder includes 4 groups, two DSC+BN convolu-

tional layers in all the four groups, and AP in the first three groups. In the horizontal

encoder, the three groups are all composed of DSC+BN convolutional layers. The di-

mension change from input image map V to output features F is RH×W×C 7→ Rh×w×c.

In the proposed network, h,w, and c are set as 1, 300, and 32, respectively.

4.3.3 Feature Difference Module

Currently, most LiDAR-based deep learning LCD algorithms extract the global de-

scriptor from each LiDAR scan, generated by local features extracted in advance.

A distance between two global descriptors will then be computed, and predefined

threshold or metric learning will be used [148]. The proposed feature difference mod-

ule includes a feature difference network to identify loop closures by building feature

difference mapsM. A feature difference map integrated with dual attention is fed into

a fully connected network to detect loop closures. The process of a feature difference

map calculation is shown in Fig. 4.3.

This module contains three key parts: feature broadcasting, feature difference, and

dual attention. The difference broadcasting features Fd are generated from F ∈

Rh×w×c 7→ Fd ∈ Rw×w×c. It should be noted that h,w and c, are set as 1, 300, and

32, respectively.

Dual attention contains point-wise attention Ap and channel-wise attention Ac. Point-

wise attention is designed to encode significant inter-spatial relationships into fea-

ture difference maps, while channel-wise attention expresses the importance of inter-

channel relationships. Inspiration generated by the work of [67], led in this study,

to the design of a lightweight network to calculate dual attention. Channel-wise at-

tention is performed by global average pooling Gc and fully connected layers on each
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Figure 4.3: The architecture of feature difference module

channel across space, whereas point-wise attention is conducted by global average

pooling Gp and fully connected layers on every point across the depth.

Gp(i, j) =
1

c

c∑
u=1

Fd(i, j, u), (4.2)

Gc(u) =
1

w × w

w∑
i=1

w∑
j=1

Fd(i, j, u), (4.3)

where Gp(i, j) refer to global average pooling in the space domain (i, j), while Gc(u)

denotes global average pooling in the channel domain u.

Ap(i, j) = sigmoid(σ(Gp(i, j))), (4.4)

Ac(u) = sigmoid(σ(Gc(u))), (4.5)

where sigmiod(·) refers to the sigmoid function, and σ(·) denotes the fully connected

layers. The feature difference map M ∈ Rw×w×c is then generated. The map not
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only contains differential information extracted from a pair of LiDAR scans, but also

the weights of each point and each channel.

M = Fd � δ(Ac ⊗ Ap), (4.6)

where � and ⊗ refers to element-wise multiplication and Kronecker product, respec-

tively. δ denotes the reshaping function to transform the tensor into Rw×w×c space.

Based on the dual attention technique, the difference map could adaptively recalibrate

point-wise and channel-wise feature responses by explicitly building the weight matrix

across the space domain and the channel domain.

A simple convolutional neural network is used as a binary classifier to detect whether

the LiDAR scan pair constructs a loop. The network contains a 3-layer fully connected

network and a sigmoid layer. The network architecture is shown in Fig. 4.4. The

input of the network is a difference map generated by the feature difference module

with the dimension of 300 × 300 × 32. The probabilities output by this network

indicates whether the LiDAR pair is a loop.

Figure 4.4: The network architecture of the binary classifier

4.3.4 Loss Functions

The developed DeLightLCD network was trained end-to-end to detect loop closures

from 3D LiDAR scans using a binary cross entropy loss function L(P1,P2), where
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(P1,P2) is a pair of LiDAR scans.

L(P1,P2) = − 1

N

N∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)), (4.7)

where N is the number of training samples, and yi binary denotes the ground truth.

p(yi) refers to the probability that the pair of LiDAR scans (P1,P2) form a loop

closure.

The training process of DeLightLCD is presented in Algorithm 1.

4.4 Experiments

4.4.1 Datasets

The KITTI odometry benchmark [54, 53] and Ford campus datasets [115] were used to

evaluate the proposed DeLightLCD approach. The two datasets both were collected

from large-scale outdoor environments.

• KITTI odometry data were captured by a Velodyne HDL-64E laser scanner.

The KITTI sequence 02 was used to validate the algorithm, while other se-

quences were used for training. If the distance between a pair of LiDAR scans

is less than 2m, they were considered as positive samples, whereas negative

samples are represented by distances greater than 10m. The rigorous training

sample thresholds ensured the correctness of training samples. The threshold

was set following the work in [148]. The open-source dataset download link is:

https://www.cvlibs.net/datasets/kitti/

• Tests were also made using the Ford campus 02 datasets. The data were also

captured by Velodyne 64-channel laser scanners in outdoor large-scale envi-

ronments. It should be emphasized that our network was never trained on
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Algorithm 1 DeLightLCD Training Workflow
Input: a pair of laser scans Pm, Pn

Output: a trained model

Spherical projection: Equation (4.1):

Cm : size(N, 64, 900, 3) ← Pm;

Cn : size(N, 64, 900, 3) ← Pn;

for epoch in enumerate maximum epoch do

Siamese feature extraction module:

Fm: size(N, 1, 300, 32) ← Cm;

Fn: size(N, 1, 300, 32) ← Cn;

Feature difference module:

M: size(N, 300, 300, 32) ← Fm,Fn;

Binary classifier module:

Predict result: p(yi)←M;

Compute loss: Equation (4.7);

Backpropagation;

Update the network parameters;

end for

return a trained model;
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the Ford campus dataset. Thus, the generalization performance of the pro-

posed method can be evaluated. The open-source dataset download link is:

http://robots.engin.umich.edu/SoftwareData/Ford

In the experiments, the results are evaluated by three indices: precision, AUC of PR-

curve (AUC), and F1-score (F1). F1 is a comprehensive evaluation index calculated by

precision and recall rate. Each LCD algorithm aims at achieving higher precision and

recall rate synchronously, although the two indices are often in an inverse relationship.

For LCD tasks, precision plays a primary role because if the wrong loop results are

adopted, a mapping disaster may result. Thus, an attempt was made to seek a trade-

off between the two indices while maintaining the highest precision. In addition, The

experimental setup is presented in Tab. 4.2.

Table 4.2: Parameter configuration of experimental setup

Parameters Description Configuration

h Height of 2D images 64

w Width of 2D images 900

σp Threshold of positive samples 2 m

σn Threshold of negative samples 10 m

e Epochs 20

l Learning rate 0.0001

f Factor of learning rate reduced 0.1

d Decay of every epoch 1e-6

m Momentum 0.9

4.4.2 Loop Closure Detection

The proposed DeLightLCD approach was compared with the three state-of-the-art

methods: PointNetVLAD [148], LPD-Net [101], and OverlapNet [26]. These three
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LiDAR-based LCD algorithms are well-established in the field of place recognition.

PointNetVLAD combined PointNet and NetVLAD with a fully connected network to

extract global features. Metric learning with the novel lazy triplet and lazy quadru-

plet losses is utilized to learn discriminative features. Similarly, LPD-Net also used

PointNet as the backbone for feature extraction and metric learning with lazy quadru-

plet loss. OverlapNet algorithm utilizes various information and defines an overlap

estimation between a pair of point cloud data. The input to both PointNetVLAD

and LPD-Net are raw point clouds, while those for OverlapNet are 2D depth images

containing multiple cues: coordinates, normal, measuring distances, intensity, and

semantic information. For the proposed DeLightLCD algorithm, raw point clouds

were mapped into 2D depth images by cyclic projection.

Table 4.3: Comparison with state-of-the-art methods LCD results

Dataset Algorithm Precision AUC F1

KITTI

PointNetVLAD[148] 0.81 0.83 0.79

LPD-Net[101] 0.83 0.83 0.85

OverlapNet[26] 0.94 0.86 0.87

DeLightLCD (ours) 0.96 0.99 0.90

Ford campus

PointNetVLAD[148] 0.67 0.64 0.72

LPD-Net[101] 0.74 0.77 0.77

OverlapNet[26] 0.85 0.88 0.83

DeLightLCD (ours) 0.88 0.99 0.93

The results of the comparative experiments are demonstrated in Tab. 4.3. The LCD

results on KITTI 02 sequence is depicted in Fig. 4.5. The same training and test

samples were used on the both datasets. It should be emphasized that the model was

only trained on the KITTI datasets. It was found that DeLightLCD can effectively
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Figure 4.5: The LCD results of KITTI 02 dataset

detect loop closures surpassing the performance of state-of-the-art methods based on

the two datasets. The approach used achieves a very high AUC value of 0.99 in both

cases. DeLightLCD also surpasses the precision and F1-score of other algorithms.

4.4.3 Impact of Network Depth

According to the previous study [145], increasing the depth of the network is a more

feasible and cost-effective way of improving the performance of deep neural networks.

Therefore, a very deep neural network DeLightLCD was designed. In this section,

the experimental results of feature extraction networks with different depths are com-

pared. According to the architecture of the proposed feature extraction network in

Tab. 4.1, the layers can be grouped into DSC+BN or DSC+BN+AP. This network

depth ablation study was conducted by cutting off groups in the network. It should

be indicated that the experiments were evaluated on the KITTI sequence 02 datasets.

The experimental results are shown in Fig.4.6. It was found that all three indices

increase sharply from 6 layers to 8 layers, with AUC, precision, and F1 growing from
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Figure 4.6: The impact of the number of layers on the results

0.81, 0.63, and 0.72 to 0.98, 0.91, and 0.88, respectively. AUC and F1 will then show

relative stability but still slight growth trends at around 0.98 and 0.90 respectively,

whereas precision keeps growing to 0.96 on the 17-layer network.

To explore the reasons, the convolutional layers were found to be responsible for

advanced features extraction in the proposed feature extraction network. When em-

ploying deeper networks, the algorithms could extract higher dimensional and more

complex features for LCD tasks, while the shallow network performs weakly in this

respect. The end-to-end network is trained to extract discriminative features with

strong descriptive power, which forms the basic premise for the LCD task.

However, the network cannot be deepened indefinitely. Various issues are significantly

highlighted as the network depth increases. The major problems include an exces-

sive parameter count and gradient vanishing. The problems may be mitigated and

ameliorated utilizing DSC and BN techniques, but as the network depth continues

to deepen, the techniques will lose efficacy. According to results shown in Fig.4.6,

the proposed 17-layer network can obtain satisfactory LCD results. Continuing to

deepen the network does not lead to a significant optimization of the results. The
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state-of-the-art methods, PointNetVLAD, LPD-Net, and OverlapNet have 5, 9, and

11 layers, respectively, in the feature extraction network. The 17-layer feature extrac-

tion network of the proposed DeLightLCD is deeper, but yet much more lightweight.

The comparison of parameter count is shown in Sec. 4.4.5.

4.4.4 Ablation Study of the Dual Attention Technique

Table 4.4: Ablation study of the dual attention technique

Dataset Algorithm Precision AUC F1

KITTI
With 0.96 0.99 0.90

Without 0.95 0.99 0.90

Ford campus
With 0.88 0.99 0.93

Without 0.69 0.97 0.80

In this section, the effect of the dual attention technique in feature difference layers

is investigated. In DeLightLCD, the dual attention module calculates point-wise

attention and channel-wise attention. It is argued that the channel-wise attention

could explicitly model the interdependence between channels, and that point-wise

attention could identify interdependence in the space domain. This strategy may

improve the robustness of the algorithm.

The comparison results are shown in Tab. 4.4. For both the KITTI dataset and

the Ford campus dataset, the results of the complete DeLightLCD are superior to

those of the methods where there is no dual attention mechanism. The dual attention

module does have different influences on the two datasets. On the KITTI dataset, the

precision of results reduces just slightly after module ablation, while the three indices

all reduce obviously for the Ford campus dataset. The precision is even reduced from

0.88 to 0.69. Thus, the dual attention module plays a significant role in DeLightLCD.
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4.4.5 Parameters and Computation Cost

Table 4.5: Comparison of parameter count and time cost

Algorithm Parameters Time cost (ms/detection)

PointNetVLAD[148] 2 M 24.88

LPD-Net[101] 2 M 22.94

OverlapNet[26] 921 K 8.88

DeLightLCD (ours) 89 K 1.69

In this section, the parameter and time cost of the proposed DeLightLCD are com-

pared with the three state-of-the-art methods. The time efficiency was tested on a

computer equipped with the Intel Xeon E5-2660 v4 CPU and two NVIDIA Tesla P100

16GB GPUs. AAs shown in Tab.4.5, It is found that the parameters vary greatly

among these methods. For PointNetVLAD and LPD-net, the numbers are similar,

at 2 M parameters [101]. The proposed DeLightLCD is much more lightweight, in-

volving only 89 K parameters. The number of parameters with PointNetVLAD and

LPD-net is about 20 times that of DeLightLCD, therefore. Fewer parameters lead

to a more lightweight model and a faster calculation speed. The time penalty for

DeLightLCD is only 1.69 ms for each detection, which is enough to meet real-time

needs.

4.5 Limitations

The DeLightLCD achieves precise and highly efficient result. However, in the ap-

plication of the DeLightLCD method, some practical problems still exist. Although

DeLightLCD achieves a very high time-efficiency level, when measurement distance

keeps increasing in large-scale environments, the time cost will also increase exponen-

tially. Thus, the LCD should be facilitated with a loop candidate fast search strategy
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to control the time cost. Besides, limited by the projection method, DeLightLCD is

dedicated to detecting loops using multi-line laser scanners and faces the problems of

data loss to some extent.

4.6 Conclusions

Proposed is an end-to-end LCD approach, DelightLCD, which can perform real-time

and reliable LCD in large-scale environments. The proposed approach consists of a

very deep and lightweight feature extraction module and a feature difference module.

The feature extraction module aims at extracting discriminative and high-dimensional

features. The feature difference module generates feature difference maps using the

dual attention technique. The approach was evaluated on the open-source datasets

and outperforms state-of-the-art LCD methods. It can conduct LCD without prior

pose knowledge and predefined thresholds. It should be emphasized also, that the

proposed DeLightLCD is superior on parameter count and real-time detection speed.

However, the input to DeLightLCD consists of 2D depth images. A network using

raw point clouds as input will be the target of future research.
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Chapter 5

DeLightLCD++: An Improved

and Flexible LCD Network for

LiDAR SLAM

5.1 Introduction

In applications of DeLightLCD, some practical problems are discovered. (1) The

3D point cloud projection method faces data loss problems inevitably. Due to the

dimension of 2D projected images being set as 64×900, it addresses the multi-line laser

scanners with 64 channels. If the scan lines change, the dimension of the data must

change accordingly. Then, the pre-trained model will lose effect, due to the dimension

of input data is not the same. Thus, we need to optimize the data representation

method to make the algorithm more flexible. (2) When DeLightLCD is performed

in a large-scale environment, only keyframes extracted by the front-end of SLAM

will be detected. However, with measurement distance increasing, the time cost will

also increase exponentially. Although the time cost of every single detection is low,

it will also bring unacceptable computational and time costs when the measurement
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distance keeps increasing.

To address the aforementioned problems, we propose an optimized approach named

DeLightLCD++. A novel data representation method is utilized to make the model

invariant to data changes. Practical loop candidates fast search method is adopted,

enabling the high time efficiency of the method. Besides, a weighted and hierarchy

back-end graph optimization method is proposed to control the drift error of front-end

odometry. The main contributions of this chapter are:

• The proposal of an improved data representation method for 3D point cloud pro-

jection to 2D images. The proposed data representation utilizes measurement

distance and angle information to encode the 3D point clouds to 2D images.

The representation method is flexible and invariant to sensors and environment

changes.

• The optimized feature extraction module aggregate the information in the hor-

izontal direction, which makes the feature extracted is invariant to rotation.

Thus, the feature different module will be simplified without feature broadcast-

ing.

• A practical and efficient loop candidate fast search strategy is utilized to control

the time cost in case the measurement distance keeps increasing.

• The experimental results based on the KITTI [54] odometry benchmark, the

Ford campus dataset [115], and the in-house datasets show that the proposed

method outperforms the state-of-the-art LiDAR-based LCD and back-end op-

timization methods.
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5.2 Related Works

In Sec. 3.2 and 4.2, point cloud data are represented by feature descriptors and

spherical projecting to 2D image spaces. Generally, the advantages of data represen-

tation of raw point cloud data are threefold: dimension reduction, feature mining,

and regularization of unordered point clouds. Besides, using raw point cloud data as

the input of the deep learning model brings problems of high computation cost and

permutation invariance. In this section, a brief review of data presentation for deep

learning models of point clouds will be given. All the representation ideas aim at

transforming unordered point cloud data into ordered data.

Volumetric representation. The volumetric representation methods transform the

point cloud to 3D grids/voxels, where the size of each grid/voxel is fixed. The points

or features filled in each grid/voxel are designed artificially or learned by deep learning

models. PointGrid [84], VoxelNet [175], SEGCloud [146] and VoxNet [104] voxelized

point cloud data as the input of neural networks. However, the problem of volumetric

representation is information loss. The small voxel size ensures the high spatial res-

olution, while it also brings high computation costs. A balance between the spatial

resolution and computation cost should be reached for volumetric representation.

Tree representation. To address the unbalanced problems of volumetric representa-

tion, adapted resolution methods that utilize tree-based data structures. The meth-

ods proposed in [170, 77] use kd-tree structure. The octree structure is adopted in

[122, 52, 86]. Tree-based methods divide the point cloud into a series of unbalanced

trees based on point densities.

2D image representation. 3D point clouds could also be transformed into the 2D space

by projection. Common projection methods include spherical projection [26, 11] and

multi-views projection [143, 98]. Based on the image representation, the permuta-

tion invariance problem is circumvented. The problem of 2D image presentation is

information loss and pointwise identification.
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Graph representation. Point clouds also can be represented as graphs in the spatial

domain or spectral domain. Graph-convolution methods proposed in [23, 63] trans-

form point clouds into spatial domain. Spectral-domain graph-convolution methods

use Laplacian Spectrum for spectral filtering on graphs [13, 39].

Point cloud representation. Point cloud representation methods use 3D point clouds

directly. The pioneering works is PointNet [19]. Since than, many point cloud rep-

resentation methods are developed motivated by PointNet, like PointNet++ [119],

PointCNN [94], and [68, 7]. Point cloud representation suffers from the problem of

permutation invariance and high computation cost. However, compared with other

methods, direct point cloud representation has no information loss.

In this chapter, a novel distance-angel representation is proposed to project 3D point

clouds to 2D image space. The proposed data representation utilizes measurement

distance and angle information to encode the 3D point clouds. The method is flexible

and invariant to scan lines and environment changes, which enables DeLightLCD++

flexible in either indoor small-scale environments or outdoor large-scale environments.

5.3 Methodology

In this chapter, an improved DeLightLCD approach, i.e. DeLightLCD++ is proposed

to addresses the aforementioned problem. The proposed DeLightLCD++ method

optimizes the data presentation method and utilizes a novel projection method from

3D point clouds to 2D images. The new data representation method reduces data

loss because it considers all points in each LiDAR scan, unlike in DeLightLCD where

only some points are counted. All points in each LiDAR scan are voxelized according

to measurement distance and angle information. A new strategy to realize rotation

invariance of loop closure detection is proposed in the feature extraction module. The

information in the horizontal direction which is related to the rotation is encoded
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Figure 5.1: Schematic diagram of the proposed DeLightLCD++ algorithm.

into 1-dimension. Then, in the feature difference module, feature broadcasting is

not necessary to be conducted. Besides, the loop candidate fast search strategy

is proposed to control the time cost, in case it increases exponentially when the

measurement continues for a long time. After loop closure detection, the results

should be used for pose drift error elimination. A weighted and hierarchy graph

optimization strategy is proposed. The framework of DeLightLCD++ is shown in

Fig. 5.1.

5.3.1 Data Representation

Projecting raw 3D point clouds to 2D image space has multiple obvious advantages,

including reducing data dimensionality, reducing data volume, improving computa-

tion time efficiency, and saving computation costs. Besides, transforming 3D point
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clouds to 2D images facilitates the direct use of a 2D convolutional deep learning

model. If 3D point clouds are input into the deep learning model directly, an in-

evitable problem should be considered-permutation invariance[173, 148]. The image-

based 2D convolutional deep learning model can circumvent that problem. In this

chapter, we propose a novel 3D point cloud projection method based on the nominal

measurement distance and azimuth angle.

(a) (b)

Figure 5.2: Schematic diagram of the proposed data presentation method.

We project the 3D point cloud P ∈ Rnk×3 into 2D image plane M ∈ RH×W×6 re-

garding the nominal measurement distance and azimuth angle. The key idea of this

projection method is inspired by Scan Context [74]. First, we divide a 3D LiDAR

scan into a 2D coordinate system. The horizontal axis is [0, 2π], while the vertical axis

is nominal measurement distance from 0 m to maximum ranging distance [0, Dmax]m.

The selection maximum distance Dmax considers a balance of four aspects: the scale

of outdoor environments, the measurement distance of laser scanner, the pixel size

of projected images, and the sparsity of 2D projected data. In this chapter, we just

use the points within 100 m of the sensor. We also set the rows H and columns

W for projected 2D images to be 200 and 360. Thus, the pixel sizes of azimuth gx

and ranging distance gy is 0.5 m and π/180. Every point in a LiDAR scan will be
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projected into 2D spaces to obtain 2D coordinates (u, v).

(
u

v

)
=

(
b
√
x2 + y2 + z2/gxc

barctan(y, x) · 180/(π · gy)c

)
, (5.1)

where bc refers to the round-down function. Points will fall in the same pixel by

the 2D coordinates calculation in Eq. 5.1. Then we obtain an image with 200 rows

and 360 columns. Then, information with six dimensions will be filled into each

pixel. Different from selecting the maximum z-coordinates point in Scan Context,

we provide six dimensions of each LiDAR scan in every pixel, including the point

number, ranging distance, and mean values of x, y, z, intensity, respectively. The

ablation study and final decision of input channel selection is presented in Sec. 5.4.3.

Utilizing mean values of x, y, z, intensity, and distance aims at suppressing the outliers

and ranging noises of the coordinates. The projected images of six channels are shown

in Fig. 5.3.

Figure 5.3: Data presentation results of a LiDAR scan.

Similar to Overlapnet [26], DeLightLCD used cyclic projection approach. However,

this method is sensitive to the scanner changes. Its row number and column number

were set as the number of scan lines and the point number in each scan line. When

a new laser scanner was used, the parameters should be adjusted accordingly. Then,

the LCD model would become invalid, due to the change of input data dimensions.
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In addition, due to a large number of points, Overlapnet only used 900 points in

each scan line, which would result in massive data loss. The projection method used

in this chapter overcomes those shortcomings. The methods will not be affected by

the sensor change and environmental changes. We only need to adjust the pixel size

to keep the image size constant at 200 × 360. Besides, all points are projected and

computed to get the six-dimension information. Thus, the method proposed also

suppresses data loss to a certain extent.

5.3.2 Feature Extraction Module

Proposed in this study is a deep and lightweight feature extraction network with

shared weights to learn high-dimensional and discriminative features from each Li-

DAR scan. The information of six dimensions including point number in each pixel,

ranging distance, and mean values of x, y, z, intensity are leveraged from each LiDAR

scan to generate projected maps M .

The architecture of the feature extraction network is shown in Table 5.1. The network

is a CNN which contains 15 convolutional layers with batch normalization and 3

average pooling layers. Inspired by the studies in [145], increasing network depth

and breadth is a straightforward and effective way to improve network performance.

Solid evidence is yielded in [60] that increasing depth is a prior condition for improving

accuracy. If the network depth is increased reasonably, more complex, abstract, and

high-dimensional features are likely to be learned. Thus, to be designed is a feature

extraction network with 15 convolutional layers. The network will thus be deeper

than the state-of-the-art LCD networks.

Similar to the DeLightLCD network in Sec. 4, DSC and BN have been adopted

to restrain excessive parameter count and gradient vanishing problems, which may

lead to non-convergence and the network untrainable. The experiments in Sec. 4.4.3

exhibit the impact of network depth on LCD performance. However, if the network
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Table 5.1: Layers of feature extraction network architecture

Operator Filters Size Output Shape

DSC+BN 8 (9,13) (192,348,8)

DSC+BN 8 (9,13) (184,336,8)

AP - (1,2) (184,168,8)

DSC+BN 16 (9,11) (176,158,16)

DSC+BN 16 (9,11) (168,148,16)

AP - (2,2) (84,74,16)

DSC+BN 32 (7,7) (78,68,32)

DSC+BN 32 (7,7) (72,62,32)

AP - (1,2) (72,31,32)

DSC+BN 32 (5,7) (68,25,32)

DSC+BN 32 (5,7) (64,19,32)

DSC+BN 64 (5,5) (60,15,64)

DSC+BN 64 (5,5) (56,11,64)

DSC+BN 64 (5,3) (52,9,64)

DSC+BN 64 (5,3) (48,7,64)

DSC+BN 64 (5,3) (44,5,64)

DSC+BN 64 (5,3) (40,3,64)

DSC+BN 64 (5,3) (36,1,64)

is too deep, BN may also lose effect. Thus, we design this 15-layer feature extraction

network, after balancing the LCD performance and computation cost resulting from

layers increase.

The feature extraction network utilizes different sizes of kernels in H and W direc-

tions. In the vertical H direction, the network aims at extracting features among

different scan lines, while the horizontal direction focuses on the information on each

scan line. Average pooling (AP) is used to reduce dimensions. The network contains

15 convolutional layers and 3 average pooling layers. Each convolutional layer is com-

posed of a DSC layer and a BN layer. The detailed network information and output
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tensor shapes of every layer are shown in Tab. 5.1. The dimension change from input

image map M to output features F is RH×W×C 7→ Rh×w×c. In the proposed network,

h,w, and c are set as 36, 1, and 64, respectively.

It should be specified that the dimensions of horizontal direction which stand for the

information in every single scan line are encoded to 1. The information in the hori-

zontal direction is related to rotation. This strategy enables the rotation invariance

of the proposed feature extraction network.

5.3.3 Feature Difference Module

Different from the dual-attention-based feature difference module in DeLightLCD,

DeLightLCD++ will remove the feature broadcasting step since it has solved the

rotation invariance problem in the feature extraction stage. The feature difference

module proposed in DeLightLCD++ mainly includes a dual-attention network. A

feature vector integrated with dual attention will be fed into a fully connected network

to detect loop closures. The process of a feature difference calculation is shown in

Fig. 5.4.

The features Fd (F ∈ Rh×w×c). It should be noted that h,w and c, are set as 36, 1,

and 64, respectively.

Dual attention contains point-wise attention Ap and channel-wise attention Ac. The

calculation principle of dual attention has been introduced in Sec. 4.3.3. Channel-

wise attention is performed by global average pooling Gc and fully connected layers

on each channel across space, whereas point-wise attention is conducted by global

average pooling Gp and fully connected layers on every point across the depth.

Gp(i, j) =
1

c

c∑
u=1

Fd(i, j, u), (5.2)
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Figure 5.4: The architecture of feature difference module

Gc(u) =
1

h× w

h∑
i=1

w∑
j=1

Fd(i, j, u), (5.3)

where Gp(i, j) refer to global average pooling in the space domain (i, j), while Gc(u)

denotes global average pooling in the channel domain u.

Ap(i, j) = sigmoid(σ(Gp(i, j))), (5.4)

Ac(u) = sigmoid(σ(Gc(u))), (5.5)

where sigmiod(·) refers to the sigmoid function, and σ(·) denotes the fully connected

layers. The feature difference map C ∈ Rh×w×c is then generated. The map not only

contains differential information extracted from a pair of LiDAR scans, but also the

weights of each point and each channel.

C = Fd � δ(Ac ⊗ Ap), (5.6)
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where � and ⊗ refers to element-wise multiplication and Kronecker product, respec-

tively. δ denotes the reshaping function to transform the tensor into Rh×w×c space.

Based on the dual attention technique, the feature vectors could adaptively recalibrate

point-wise and channel-wise feature responses by explicitly building the weight matrix

across the space domain and the channel domain.

Different from what is utilized in Sec. 5.4, a simple fully connected neural network is

used as a binary classifier to detect whether the LiDAR scan pair constructs a loop.

The network contains a 3-layer fully connected network and a sigmoid layer. The

network architecture is shown in Fig. 5.5. The input of the network is a difference

map generated by the feature difference module with the dimension of 36 × 1 × 64.

The probabilities output by this network indicates whether the LiDAR pair is a loop

closure.

Figure 5.5: The network architecture of the binary classifier network

5.3.4 Loop closure detection

The DeLightLCD++ network was trained end-to-end to detect loop closures from 3D

LiDAR scans using a binary cross entropy loss function L(P1,P2), where (P1,P2) is a
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pair of LiDAR scans.

L(P1,P2) = − 1

N

N∑
i=1

[yi log(p(yi)) + (1− yi) log(1− p(yi))], (5.7)

where N is the number of training samples, and yi binary denotes the ground truth.

p(yi) refers to the probability that the pair of LiDAR scans (P1,P2) form a loop

closure. However, the number of training samples for LCD task are always unbalanced

which means that the negative samples are much more than the positive samples.

Therefore, the classifier is tend to predict a pair of laser scans to the negative which

will receive a small loss [172]. The binary cross entropy loss (5.7) will become (5.8):

L(P1,P2) ≈ −
1

N

N∑
i=1

[(1− yi) log(1− p(yi))], (5.8)

The the loss could be optimized by weighting it, the weighted loss is formulated as:

L(P1,P2) = − 1

N

N∑
i=1

[α yi log(p(yi)) + α+(1− yi) log(1− p(yi))], (5.9)

where α and α+ are the ratios of the number of negative samples to the total and

the ratio of the number of positive samples to the total, respectively. The weights

ranges in [0, 1] and α + α+ = 1.

The training process of DeLightLCD++ is presented in Algorithm 2.

5.3.5 Loop Candidate Fast Search Strategy

To ensure the LCD efficiency in SLAM, we design the proposed network DeLightLCD.

However, with measurement distance increase, the number of LiDAR scan pairs

needed to be detected also increases inevitably. Thus, a searching strategy should

be utilized to facilitate the high time efficiency of LCD. Generally, the main task

for LCD includes pairwise similarity scoring and loop candidates search [74]. In this
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Algorithm 2 DeLightLCD Training Workflow
Input: a pair of laser scans Pm, Pn

Output: a trained model

Spherical projection: Equation (5.1):

Cm : size(N, 200, 360, 6) ← Pm;

Cn : size(N, 200, 360, 6) ← Pn;

for epoch in enumerate maximum epoch do

Siamese feature extraction module:

Fm: size(N, 36, 1, 64) ← Cm;

Fn: size(N, 36, 1, 64) ← Cn;

Feature difference module:

M: size(N, 36, 1, 64) ← Fm,Fn;

Binary classifier module:

Predict result: p(yi)←M;

Compute loss: Equation (5.9);

Backpropagation;

Update the network parameters;

end for

return a trained model;
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chapter, we propose a hierarchical loop closure detection strategy including Top-N

loop candidate search and loop closure detection to save time cost.

A simple and coarse-grained coding method is used, which is similar to the ring key

generation method proposed in [74]. According to the measuring distance of each

point, a LiDAR scan is divided into several rings. This measuring distance encoding

method ignores the problem of sensor orientation. Thus, it is rotation invariant.

Figure 5.6: The data encoder method for loop closure candidate fast search

As shown in Fig. 5.6, a LiDAR scan is represented as a group of ring features. The

features is denoted as C and calculated by Eq. 5.10 and Eq. 5.11. The number of

the points falling into the same rings will be counted as the ring features.

C = {ϕ1, ϕ2, . . . , ϕK} , (5.10)

ϕn = ||pn||0 , {n ∈ N|n ≤ K} (5.11)

where ϕn is the ring code, K is the number of rings, and pn refer to a collection of

point falling in nth ring.
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The ring features coarsely encode the point distribution of a LiDAR scan. They

can be used for loop candidates fast searching. A distance is calculated between the

ring feature of the current LiDAR scan and the ring features of the previous scans.

The distances are sorted and selected Top-N LiDAR pairs as loop candidates. The

parameter N are set according to the motion velocity, environment complexity, mea-

surement trajectory, and measurement time. In this chapter, the Euclidean distance

is used to search loop candidates.

{C ∗} = argmin
top−N

D(Ci, Ci), (5.12)

where {C ∗} means the selected Top-N LiDAR pairs as loop candidates.

The loop candidates will be input into the deep learning model to be determined, by

which the calculation cost will reduce sharply. In real circumstances, the majority

of the LiDAR pairs are not loops, which could be removed by a fast search strategy.

The longer the measurement distance, the more significant the performance of this

method to control detection time.

Then, the detection workflow of DeLightLCD++ is presented in Algorithm 3.

5.4 Experiments

5.4.1 Datasets

The KITTI odometry datasets, Ford campus datasets, and Mimap datasets were

used to evaluate the proposed DeLightLCD approach. The introduction of the three

datasets is listed below. It should be emphasized that our network was only trained on

KITTI 00 and 08 sequence datasets and never trained on Ford campus datasets and

Mimap 00 datasets. Thus, the generalization performance of the proposed method

can be evaluated.
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Algorithm 3 DeLightLCD++ Prediction Workflow
Input: a sequence of existing keyframe scans {P0, · · · ,Pm}, the current laser scan Pm+1

Output: Loop closure scans of Pm+1

Ranging distance histogram Hm+1 ← Pm+1;

for Pi in {P0, · · · ,Pm} do

Ring features Hi ← Pi;

Distance D(Hm+1,Hi)←Hm+1,Hi;

if D(Hm+1,Hi) > τ then

D push back D(Hm+1,Hi);

end if

end for

K-D tree construction ←D;

Loop closure candidates: P∗ = argmax
Top-K

D;

for enumerate loop closure candidates in P∗ do

Spherical projection: Equation (5.1):

Cm+1 : size(N, 200, 360, 6) ← Pm+1;

Ci : size(N, 200, 360, 6) ← P∗i ;

Siamese feature extraction module:

Fm+1: size(N, 36, 1, 64); ← Cm+1

Fi: size(N, 36, 1, 64) ← Ci;

Feature difference module:

M: size(N, 36, 1, 64) ← Fm+1,Fi;

Binary classifier module:

Predict result: p(yi) ←M;

if p(yi) > 0.5 then

Loop closures: P̂∗ push back P∗i ;

end if

end for

return Loop closure scans of Pm+1 : P̂∗;
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• KITTI odometry data were captured by a Velodyne HDL-64E laser scanner.

The KITTI sequence 02 dataset was used to evaluate the algorithm, while se-

quence 00 and sequence 08 were used for training. If the distance between a

pair of LiDAR scans is less than 2m, they were considered as positive samples,

whereas negative samples are represented by distances greater than 10m. The

rigorous training sample thresholds ensured the correctness of training samples.

The threshold was set following the work in [148]. The open-source dataset

download link is: https://www.cvlibs.net/datasets/kitti/

• Tests were also made using the Ford campus 02 datasets. The data were also

captured by Velodyne 64-channel laser scanners in outdoor large-scale environ-

ments. The open-source dataset download link is: http://robots.engin.umich.edu/SoftwareData/Ford

• Mimap 00 dataset is collected in a two-floor building scene, including data of

individual rooms, non-enclosed loop corridors, and stairs. The point cloud scans

are captured by a Velodyne Ultra puck, a 32-channel laser scanner. The open-

source dataset download link is: https://www2.isprs.org/commissions/comm1/wg6/isprs-

benchmark-on-multisensory-indoor-mapping-and-positioning/

In the experiments, the results are evaluated by three indices: precision, AUC of PR-

curve (AUC), and F1-score (F1). F1 is comprehensive evaluation indices calculated

by precision and recall rate, while AUC is the area under PR-curve. The precision is

evaluated on the same possibility threshold for each algorithm. Each LCD algorithm

aims at achieving higher precision and recall rate synchronously, although the two

indices are often in an inverse relationship. For LCD tasks, precision plays a primary

role because if the wrong loop results are adopted, a mapping disaster may result.

Thus, an attempt was made to seek a trade-off between the two indices while main-

taining the highest precision. In addition, the experimental setup is represented in

Tab. 5.2.
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Table 5.2: Parameter configuration of experimental setup

Parameters Description Configuration

h Height of 2D images 200

w Width of 2D images 360

σp Threshold of positive samples 2 m

σn Threshold of negative samples 10 m

e Epochs 50

l Learning rate 0.001

f Factor of learning rate reduced 0.1

d Decay of every epoch 1e-6

m Momentum 0.9

5.4.2 Loop Closure Detection

DeLightLCD++ is first evaluated on outdoor large-scale environments. The results

are presented in Tab. 5.3. In outdoor large-scale environments, DeLightLCD++ was

compared with PointNetVLAD [148], LPD-Net [101], OverlapNet [26], Scan Context

[74], and DeLightLCD proposed in Sec. 4. DeLightLCD++ shows superior perfor-

mance on KITTI 02 datasets, while the results on Ford 02 dataset is second only to

DeLightLCD. That exhibits DeLightLCD++ is also effective and accurate. Although

the generalization performance is slightly weaker than DeLightLCD in outdoor envi-

ronment, DeLightLCD++ has another irreplaceable advantage: indoor-outdoor LCD.

OverlapNet and DeLightLCD could only be used to process the data captured from

limited LiDAR types, while DeLightLCD++ ignores sensor type changes and envi-

ronment scale changes.

The indoor LCD experiments are evaluated on Mimap 00 dataset. DeLightLCD++

was compared with some popular algorithms, M2DP [62], FastHistogram [123],LiDAR

Iris [156], and FastLCD proposed in Sec. 3. FastLCD is trained and dedicated in
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Table 5.3: Comparison Experimental Results on Outdoor Datasets

Methods Precision AUC F1-score

KITTI 02

PointNetVLAD[148] 0.81 0.83 0.79

LPD-net[101] 0.83 0.83 0.85

OverlapNet[26] 0.94 0.86 0.87

Scan Context[74] 0.92 0.96 0.89

DeLightLCD[164] 0.96 0.99 0.90

DeLightLCD++(ours) 0.98 0.99 0.95

Ford 02 campus dataset

PointNetVLAD[148] 0.67 0.64 0.72

LPD-net[101] 0.74 0.77 0.77

OverlapNet[26] 0.85 0.88 0.83

Scan Context[74] 0.78 0.50 0.46

DeLightLCD[164] 0.88 0.99 0.93

DeLightLCD++(ours) 0.96 0.92 0.90

solving LCD in indoor environments. Thus, it outperforms other algorithms, while

DeLightLCD++ is second only to FastLCD. It should be emphasized that although

DeLightLCD++ is never trained on any indoor datasets, it can also obtain comparable

results as FastLCD. The results on indoor environments exhibit that DeLightLCD++

has great generalization ability and flexibility in indoor-outdoor seamless LCD.

5.4.3 Ablation Study

The ablation study of DeLightLCD++ is performed on three aspects, the dual-

attention mechanism, the input channels, and the loop candidate fast search.

As shown in Tab. 5.5, the input channels are studied. The data representation

method introduced in Sec. 5.3.1 contain six input channels: X coordinates (X ), Y

coordinates (Y ), X coordinates (Z ), intensity (I ), the point number in each grid (N ),
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Table 5.4: Comparison Experimental Results on Indoor Datasets

Methods AUC F1-score

M2DP[62] 0.97 0.91

FastHistogram[123] 0.90 0.81

LiDAR Iris[156] 0.64 0.53

FastLCD[163] 1.00 0.94

DeLightLCD++(ours) 0.91 0.90

and mean value of distances in each grid (D). Because the Ford 02 data does not

contain intensity information, the intensity-relevant results are not presented. The

6-channel input obtains the best performance. It is significant to find that XYZ

gets a comparable result as 6-channel input, while XYZN and XYZND are failed.

Then, we could infer that the input information that plays a decisive role is the

XYZ coordinate value. Adding the input information of N and D makes the model

learning chaotic and could not give correct prediction results. The reason may be that

intensity information is not reliable. It is affected by many factors, like the object

materials, the incidence angle, the shooting angle, and the measurement distance.

Thus, the values of intensity may differ even the information is captured at the same

place. So, the relationships learned from intensity maybe not consistent with features

learned from coordinates. Besides, the distance D is correlated with the coordinate

information (X, Y, Z). The addition of D could not improve the performance. Thus,

we select 5 input channels combination of XY ZIN as the final version.

Ablation study w.r.t. dual-attention mechanism including point-wise attention (P)

and channel-wise attention (C ) is presented in Tab. 5.6. Dual-attention obtains

the best performance. We could find that channel-wise attention alone is useless for

LCD, while point-wise attention is significant. However, DeLightLCD++ without

dual-attention also get a acceptable result on KITTI 02 result but almost fails on

Ford 02 dataset which means that DeLightLCD++ without dual-attention is weak in
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Table 5.5: Ablation study w.r.t. input channels

KITTI02 Ford02

X Y Z I N D AUC F1 AUC F1

X X X × × × 0.99 0.92 0.92 0.90

X X X X × × 0.97 0.88 - -

X X X × X × 0.22 0.16 0.24 0.15

X X X × × X 0.40 0.51 0.35 0.48

X X X X X × 0.99 0.95 - -

X X X X × X 0.99 0.94 - -

X X X × X X 0.20 0.23 0.18 0.17

X X X X X X 0.99 0.95 - -

generalization ability.

Table 5.6: Ablation study w.r.t. dual-attention

KITTI02 Ford02

P C AUC F1 AUC F1

× × 0.74 0.83 0.51 0.68

× X 0.59 0.46 0.54 0.53

X × 0.86 0.82 0.74 0.66

X X 0.99 0.95 0.92 0.90

5.4.4 Time Efficiency and Parameters

The time efficiency and parameter amount were compared with some deep-learning-

based LCD algorithms. The time efficiency was tested on a computer equipped with

the Intel Xeon E5-2660 v4 CPU and two NVIDIA Tesla P100 16GB GPUs. Among

these algorithms, DeLightLCD++ also shows great time efficiency, only about 5 ms
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for each detection, slightly higher than DeLightLCD. The binary classifier used in

DeLightLCD is a CNN network with a DSC mechanism which has a relatively low

parameter amount, while DeLightLCD++ uses an FC network with more parameters

than DeLightLCD. Thus, the time cost is slightly higher than DeLightLCD. However,

when the measurement distance is very long, the time cost increase of DeLightLCD

is not controlled, while loop candidate fast search in DeLightLCD++ suppresses the

time cost to an acceptable level. In sum, DeLightLCD++ shows superior performance

in time efficiency.

Table 5.7: Comparison of parameter count and time cost

Algorithm Parameters Time cost (ms/detection)

PointNetVLAD[148] 2 M 24.88

LPD-Net[101] 2 M 22.94

OverlapNet[26] 921 K 8.88

DeLightLCD[164] 89 K 1.69

DeLightLCD++ (ours) 185 K 5.32

As shown in Fig. 5.7, as the number of laser point cloud frames increases, there

is a varying increase in time cost. Although the single detection time of the pre-

sented algorithms is all acceptable, a lack of efficient detection strategy makes the

time cost shows an exponential growth for PointNetVLAD, LPD-NET, OverlapNet,

DeLightLCD, and DeLightLCD++(no loop candidates fast search). The time cost

curve of DeLightLCD++ nearly presents a linear growth with the increase of laser

scans, while the other 5 curves shows an exponential trend. Thus, DeLightLCD++

is more practical due to its superior time efficiency, especially when the number of

laser scans is very large.
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Figure 5.7: The time cost with the number of laser scans increasing.

5.5 Discussion and Limitations

According to the experiment results of the proposed DeLightLCD++ algorithm, the

advantages are threefold.

• Due to the distance-angle data representation method, DeLightLCD++ just

uses the measurement distance and azimuth angle which circumnavigates the

usage of the number of scan lines, angle resolution, and field of view. Thus,

the data representation is not limited by sensor type changes and environment

scale changes.

• The data representation is calculated by all points in each LiDAR scan. Com-

pared with DeLightLCD, it suppresses data loss.

• With measurement distance increasing, loop candidate fast search controls the

time cost of LCD.
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However, there are still some limitations. The parameter amount could be reduced

to a lower level. Limited by the computer hardware performance, the sample number

is limited. Thus, more training samples, such as indoor data samples, could be used

to improve the LCD performance in indoor environments.

5.6 Conclusion

In this section, an improved LCD algorithm DeLightLCD++ is proposed to solve

the problems of DeLightLCD. The main problems of DeLightLCD includes time cost

in large-scale scenes and data loss. The improvement is threefold. A novel data

representation method encoding measurement distance and the azimuth angle is used

to circumnavigate the sensor type limitation. A new feature extraction network is

designed to ensure rotation invariance. Besides, a loop candidate fast search method

is proposed to control the time cost of LCD. The strategy can not only suppress

the time cost but also reject false loop closures in advance. Experimental results

on three open-source datasets demonstrate the great performance and flexibility of

DeLightLCD++. In the future, more training samples including outdoor data and

indoor data should be used to train a more precise and robust model.
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Chapter 6

An Enhanced Graph Optimization

in SLAM based on LCD

6.1 Introduction

A pair of loop-closed LiDAR scans will be associated and registered after LCD for

back-end optimization. According to the theory of graph optimization, an edge will

be added to the graph as a redundant observation. This facilitates the SLAM pipeline

for eliminating cumulative errors. In this chapter, we will apply the LCD results to

optimization the precision of the LiDAR odometry in SLAM using an enhanced graph

optimization method. The weight is generated according to the fitness score of two

LiDAR scans registration. The main contributions of the chapter are:

• The LCD results are utilized to eliminate the cumulative drift error and build

a consistent and accurate map by the enhanced graph optimization. The en-

hanced method is evaluated qualitatively and quantitatively on open-source

datasets and in-house datasets.

• The impact of loop closures will be investigated, including the scale parameter
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of the weight, the precision of the loop closures, and the types of the loop closure

edges. Quantitative experiments will be conducted to study the impacts of some

factors of loop closures to map building.

• Some discussions, analysis, and guidance of error distribution and fieldwork

measurement solutions for mobile mapping backpack will be given.

6.2 Related Works

Based on the previous work represented in Chapter 3, 4, and 5, the loop closures are

detected. Then, the results should be used in the SLAM pipeline. In this chapter, an

enhanced graph-based back-end optimization approach is used by a weighting method.

Qualitative experiments are conducted to show the optimization performance, while

quantitative experiments are conducted to exhibit the impact of weights and loop

numbers. Finally, some advice will be given for measurement implementations of

fieldwork.

Currently, SLAM solutions based on graph and back-end optimization become main-

stream in the field. Some popular graph optimization techniques like Ceres [1], g2o

[81], and GTSAM [40], etc. In this section, these common graph optimization libraries

will be introduced.

Ceres solver [1] is an open-source C++ library. It is developed to address the nonlinear

least-squares problems with bounds constraints. It is widely used for pose estimation

in SLAM and some general unconstrained optimization problems. The library is

easy to use, flexible, mature, and performant library. Some fundamental trust-region

methods algorithms are integrated like Levenberg-Marquardt and Powell’s Dogleg.

As one of the most mature and popular optimization libraries, Ceres has been used

in many applications, especially for pose estimation or odometry in SLAM [89, 121].

g2o [81] is an open-source C++ framework for optimizing nonlinear error functions

117



Chapter 6. An Enhanced Graph Optimization in SLAM based on LCD

that can be defined as graphs. It has the advantage of being easily extensible, effi-

cient, and applicable to a wide range of problems, especially in SLAM and bundle

adjustment (BA) problems. It has many advantages: (1) g2o provides comparable

performance to implementations of state-of-the-art approaches with a high degree

of versatility and scalability. (2) efficient computation is performed by exploiting

sparse connectivity, the special structure of graphs, and the characteristics of modern

processors. (3) the framework integrates three different pose graph optimization algo-

rithms: Gauss-Newton, Levenberg-Marquard, and Powell’s Dogleg. Since it has these

advantages, some popular SLAM solutions utilize g2o for back-end optimization, like

ORB-SLAM [109], SVO [48], HDL graph SLAM [78].

GTSAM [40] is another state-of-the-art C++ open-source library. It uses the factor

graph as the basic theory to model complex problems. It also integrates incremental

smoothing and mapping methods, iSAM [72] and iSAM2 [71] to provide an efficient

solution to the SLAM problem. It enables sensor fusion for robotics and computer

vision applications. It also integrates Gauss-Newton, Levenberg-Marquard, and Pow-

ell’s Dogleg optimization algorithms. GTSAM is known for its high efficiency. There-

fore, it is popular in many online or real-time SLAM solutions, like LIO-SAM [132],

LVI-SAM [133] and a variant of SVO [47].

The three all can provide efficient and effective pose estimation for SLAM. According

to the study in [41, 70], the three pose estimation solutions all could perform signif-

icant results, while there still are some minor differences. Based on the quantitative

experiments on many benchmarks, g2o performs relatively slightly best on precision

among the three methods, while GTSAM is time-efficient.

In this chapter, an enhanced graph optimization strategy is proposed based on g2o.

Because the odometry drift error will grow with the measurement distance increasing,

we assume that if the registration precision of a pair of loop LiDAR scans is higher,

the more it will optimize the whole graph. Then, we could trust the loop edges

with better registration performance and set the heavy weight to them. Thus, we
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use an enhanced graph constructed by a weighted edge for optimization. After a

loop closure between two LiDAR scans xi and xj is detected, point cloud registration

will be performed to obtain the transformation matrix between the two point clouds.

Then, an edge zij will be added into the graph connecting the two vertices xi and xj .

The edge will yield a heavier weight if the fitness score of point cloud registration is

lower.

6.3 Graph Optimization in SLAM Pipeline

Graph optimization can be treated as a nonlinear least squares problem, which is

generally transferred to form a linear system around the current state [81]. A graph

is consist of edges and vertices. An edge connects two vertices. The vertex i represents

the state parameters xi in a graph. Each xi is a generic parameter block. An edge

between vertex i and j represents an ordered constraint , represented as zi,j. In

graph-based optimization, the objective function is represented as

F(x) =
∑

<i,j>∈C

Fi,j (6.1)

Fi,j = e(xi, xj, zi,j)
>Ωi,je(xi, xj, zi,j), (6.2)

x∗ = argminF(x) (6.3)

e(xi, xj, zi,j) represents the error function that expresses how well the state parameters

xi and xj fit the constraint zi,j. The error function will be 0 when xi and xj perfectly

fit the constraint. Ωi,j is information matrix of the constraint zi,j. Our aim is to

calculate the parameter blocks x to find the minimum of the objective function F(x).

Fig. 6.1 depicts the architecture of a graph and parameters in it. Many solutions

have been proposed, like Gauss-Newton (GN) method or Levenberg-Marquardt (LM)
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Figure 6.1: The architecture of a graph

method. In the graph optimization framework g2o, it provides both GN and LM

algorithms to solve the problem. The characteristic of sparse connectivity of the

graph is exploited to simplify the solution and improve the computation efficiency.

6.4 Optimization based on LCD

In the LiDAR-SLAM graph optimization, edges in a graph have two sources: pose

relationship computed by point cloud registration in front-end odometry and the pose

relationship between two LiDAR scans detected as a loop closure. The latter can be

regarded as a redundant observation in the adjustment problem. Then, we call the

edges computed from LiDAR odometry as odometry edge, while the edges computed

from LCD result as loop closure edges. As the measurement distance increases, no

matter how accurate the point cloud registration algorithm is, it will suffer from the

problem of error accumulation. Cumulative drift errors can make the SLAM build

results inconsistent with reality. Thus, the pose relationship between a pair of loop

scans will be added to the graph to eliminate the drift error.

In the proposed enhanced graph optimization method, weights will be discussed ac-

cording to the edge types. We set weights to edges to improve the performance of

graph optimization. The weights are calculated from the registration fitness score
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then used in the information matrix.

The weights calculation will be discussed according to two edge types. For odometry

edges, the frame-by-frame LiDAR odometry utilizes a point cloud registration algo-

rithm. The error of frame-by-frame registration is not very large. Thus, for simplicity,

we set the information matrix of the odometry matrix as identity matrix, which means

each odometry edge plays the same importance level in graph optimization.

As for loop closure edges, the constraint zi,j is computed from point cloud registration.

The fitness score f of point cloud registration refers to mean squared error (MSE). A

pair of loop scans S and T is registered. The valid correspondence point is denoted

as {(si, ti)|si ∈ S , ti ∈ T}. The fitness score is calculated as:

f =

∑
nD(ŝi,ti)

n
, (6.4)

where, n refers to the number of valid corresponding points, and ŝi denotes the point

si in source point cloud transformed to the target point cloud space. Thus, we could

find that the lower the fitness score is, the better the registration performance between

the pair of the loop LiDAR scans.

Then, the weight of loop closure edges W is calculated in Eq. 6.5, in which ϕ and α

both are constant-coefficient to make the equation workable. α is set to make αf < 1,

while ϕ is a scale parameter, a multiplier coefficient to scale the weights. Besides, a

threshold Tf needs to be set for the fitness score to reject the edge constraints with

large error.

W = − ϕ

ln(1− αf)
, s.t. αf < 1 (6.5)

The weight function W is a monotonic decreasing function when {f ∈ [0,Tf ]|αf < 1}.

The graph of the proposed weight function is shown in Fig. 6.2. The range of value

f is (0, 1). When a pair of loop scans have a small fitness score, which means they

are registered well together. Then, the edge between will get a heavy weight. Here,

we assume that the loop closure edges with low fitness scores should get heavier
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Figure 6.2: The graph of the proposed weight function

weights than those of odometry edges to control drift error better. By contrast, if

a loop closure edge gets a high fitness score, the light weight will be determined.

Thus, we design a weight calculation function shown in Eq. 6.5. The function maps

αf ∈ [0, 1] 7→W ∈ [0,+∞].

M = W · I6 (6.6)

Then, the information matrix M is computed as Eq. 6.6. 6-dimensional identity

matrix means the 6-DoF parameters in the same parameter block share the same

weights.

6.5 Experiments

In this part, experiments are demonstrated to exhibit the effectiveness of the op-

timization method. Then, comparative experiments are conducted to analyze the

impacts of some factors on the optimization results. Datasets used in this chapter

are KITTI benchmark 00 datasets [54, 53] and in-house dataset. The introduction of

the experimental dataset is in Sec. 5.4.1.
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(a) (b)

Figure 6.3: Optimization results on various datasets (a) KITTI 00 dataset, (b) in-

house dataset.

6.5.1 Qualitative Experiments

As shown in Fig. 6.3, in KITTI 00 dataset and in-house indoor dataset, the effec-

tiveness of the proposed optimization method is obvious. The optimized trajectory

is more consistent with the ground truth compared with the trajectory before opti-

mization. The trajectory of LO before optimization is computed by the algorithm in

[21].

6.5.2 Quantitative Experiments

According to the results reported in Sec. 6.5.1, it is shown the effectiveness of LCD

and graph optimization to the whole trajectory results. Furthermore, we try to study

the impact of some factors on optimization performance. According to the definition

of LCD, we could broaden the scope that if two LiDAR scans are similar enough, the

two scans are determined as a loop. Based on this explanation, the loop closures are
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divided into three types, detected loops, pseudo loops, and enhanced loops.

Figure 6.4: Schematic diagram of three types of loops: detected loops, pseudo loops,

and enhanced loops

As shown in Fig. 6.4, i and j are ID of scans . They are connected as a loop detected

by LCD algorithms. There is a long time interval between them. The sensor has

experienced a scene transition during this time interval. (i − 1) and (i + 1) are two

adjacent scans of scan i and j. Due to the high data capture frequency, the sensor

will capture many LiDAR scans in a short time interval. Scans (i − 1) and (i + 1)

are also highly-similar but not adjacent. The loops between the two scans are pseudo

loops. If we add pseudo loops to the graph, a dense graph will be controlled by these

pseudo loops. In this section, we will study the impact of adding pseudo loops to the

graph. Besides, according to time consistency and geometry consistency, if a pair of

scans are detected as a loop closure, the adjacent scans must be loop closures too.

Because of the high data capture frequency of LiDAR sensors, many scans will be

collected at a very close moving distance. Thus, in this section, we will also research

whether the optimization performance will be better if we add enhanced loops to the

graph. The comparative experimental results are shown in Tab. 6.1, 6.2, 6.3, 6.4,

and Fig. 6.5. For evaluation, average translation error (ATE) against ground truth

pose information is used [111].
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(a) (b)

(c) (d)

Figure 6.5: The impact of four factors on optimization performance. (a) Impact of

weight parameter: ϕ, (b) impact of the precision of loop closure edges, (c) impact of

adding pseudo loops, (d) Impact of adding enhanced loops.
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Table 6.1: Impact of scale parameter of weight: ϕ

Weight
Fitness

Score

Loop Closure

Number

Enhanced

Loop Buffer

Pseudo

Loop Gap
ATE(cm)

Before - - - - - 14.98

After

- 1 1132 - - 8.25(↓ 44.93%)

0.25 1 1132 - - 8.20(↓ 45.26%)

0.5 1 1132 - - 8.08(↓ 46.06%)

0.75 1 1132 - - 8.04(↓ 46.33%)

1 1 1132 - - 8.03(↓ 46.40%)

1.5 1 1132 - - 8.04(↓ 46.33%)

2 1 1132 - - 8.05(↓ 46.26%)

5 1 1132 - - 8.12(↓ 45.79%)

10 1 1132 - - 8.17(↓ 45.46%)

20 1 1132 - - 8.22(↓ 45.13%)

Figure 6.6: Experimental results of scale parameter changing
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In the experiment of research on the impact of the scale parameter on optimization

performance, different values of the scale parameter ϕ are set. The scale parameter

determines the value of the weight. The fitness score threshold is set as 1 so that the

number of loop closures remains the same, while no pseudo edges and enhanced edges

are added to the graph. According to the result reported in Tab. 6.1, a heavy weight

of loop closure edge will be set if ϕ is set a large value. We could find that the scale

parameter affects the results not very significantly, while when the scale parameter is

1, the optimization results are comparably best. The weights bigger or smaller than

1 all result in slightly worse performance.

Table 6.2: Impact of the precision of loop closure edges

Weight
Fitness

Score

Loop Closure

Number

Enhanced

Loop Buffer

Pseudo

Loop Gap
ATE(cm)

Before - - - - - 14.98

After

1 0.1 16 - - 9.67(↓ 35.45%)

1 0.2 179 - - 8.64(↓ 42.32%)

1 0.3 356 - - 9.18(↓ 38.72%)

1 0.4 544 - - 10.75(↓ 28.24%)

1 0.5 703 - - 10.04(↓ 32.98%)

1 0.6 824 - - 9.42(↓ 37.12%)

1 0.7 908 - - 8.97(↓ 40.12%)

1 0.8 1005 - - 8.71(↓ 41.86%)

1 0.9 1078 - - 8.54(↓ 42.99%)

1 1.0 1132 - - 8.03(↓ 46.40%)

1 1.1 1174 - - 14.66(↓ 2.14%)

1 1.2 1225 - - 19.64(↑ 31.11%)

1 1.4 1302 - - 31.8(↑ 112.28%)

1 1.6 1342 - - 22.13(↑ 47.73%)

1 1.8 1398 - - 24.39(↑ 62.82%)

1 2.0 1437 - - 30.15(↑ 101.27%)

In the following experiment, we try to adopt loop closure edges with different fitness
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score to explore the effect of loop closure edge precision on optimization results. It

should be indicated that if the registration between a pair of loop-closed laser scans

reach a low fitness score, the precision of the loop closure edge will be higher and

reliable. In this experiments, no pseudo loops and enhanced loops are added to the

graph and the scale parameter ϕ is set as 1. According to the results in Tab. 6.2,

we could find that optimization reaches the best performance when the threshold is

1, while the results are almost ruined at threshold 1.4. When a rigorous threshold is

set smaller than 1, the edge constraints added must be reliable and precise. However,

ATE results are worse because fewer loops are added and the control information is

insufficient. The more rigorous threshold is selected, the fewer detected loops could

be adopted. Thus, a balance should be reached between the loop precision threshold

and loop numbers.

Figure 6.7: Experimental results of different loop precision

The following experimental design is originally intended if adding many loop closure

edges to the graph, even though they are pseudo loops, a dense and strongly controlled

graph will be generated. A study is conducted to explore whether it will improve the

optimization performance. The parameter of pseudo loop gap means that a certain

number of frames separate two point clouds, which are aligned as a pseudo loop

128



6.5. Experiments

closure. The scan pairs that meet the fitness score threshold requirements are added

to the graph as pseudo loop closure edges. In this experiment, the value of scale

parameter and fitness score are set as 1 and 1, respectively. According to Tab. 6.3,

when the gap is set as 2 and 3, the results are better than ATE before optimized,

while ATE grows sharply when the gap number increases. The reason may be that

if the gap is large, the number of pseudo edges reduced and the effective control

information is insufficient, so that the graph optimization is ruined.

Table 6.3: Impact of adding pseudo loops

Weight
Fitness

Score

Loop Closure

Number

Enhanced

Loop Buffer

Pseudo

Loop Gap
ATE(cm)

Before - - - - - 14.98

After

1 1 4966 - 2 8.27(↓ 44.79%)

1 1 4333 - 3 7.75(↓ 48.26%)

1 1 3669 - 4 51.75(↑ 245.46%)

1 1 3068 - 5 69.03(↑ 360.81%)

1 1 2636 - 6 48.01(↑ 220.49%)

Figure 6.8: Experimental results of different pseudo edge gap
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Table 6.4: Impact of adding enhanced loops

Weight
Fitness

Score

Loop Closure

Number

Enhanced

Loop Buffer

Pseudo

Loop Gap
ATE(cm)

Before - - - - - 14.98

After

1 1 3201 1 - 8.01(↓ 46.53%)

1 1 5099 2 - 4.85(↓ 67.62%)

1 1 6818 3 - 4.93(↓ 67.09%)

1 1 8353 4 - 5.80(↓ 61.28%)

1 1 9714 5 - 6.17(↓ 58.81%)

Figure 6.9: Experimental results of different enhanced edge buffer

As for enhanced loops, they are determined by time consistency and geometry con-

sistency. The enhanced loop buffer in Tab. 6.4 means that in the range of a certain

number of scans adjacent to the detected loop scans, the scans are selected and reg-

istered to obtain the pose relationships. The enhanced loops which meet the fitness

score threshold requirements are adopted and added to the graph.In this experiment,

the value of scale parameter and fitness score are set as 1 and 1, respectively. We could

find that the results are improved significantly compared with the results of weight,

precision, and pseudo loops experiments. However, the number of loop closure edges
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increases sharply. Thus, some enhanced loop closure selection strategies could be

used to control the number of enhanced loop closure edges to save computation cost.

When the enhanced loop buffer is set as 1, 3201 loop closure edges are added into

the graph, while when the pseudo loop gap is set as 5, the similar number of loop

closure edges, 3068, are added. However, the results are different. The enhanced loop

closures facilitates the graph to reach a precision of 8.01 cm, while the pseudo loop

closure get a 69.03 cm result. Thus, enhanced loop closures could provide stronger

control and more significant optimization than pseudo loop closures.

Figure 6.10: Trajectory results of the proposed algorithm and some state-of-the-art

algorithms

Table 6.5: Experimental results compared with SOTA algorithms on the KITTI

dataset

NDT[176] LOAM[171] LeGO-LOAM[131] No optimization Optimized (Ours)

ATE(cm) 9.87 2.32 10.68 14.98 4.85

The optimization method is also compared with some state-of-the-art odometry and

mapping algorithms on KITTI 00 dataset. The trajectory results are shown in Fig.

6.10 and the ATE results are listed in Tab. 6.5. LOAM [171] as a milestone in

LiDAR-based odometry and mapping algorithm achieves the best results, while our

131



Chapter 6. An Enhanced Graph Optimization in SLAM based on LCD

optimization method also get a comparable ATE result.

6.6 Limitations and Discussions

The discussion is summarized as below:

• Main sources of error of LiDAR-SLAM data collection and processing include

observation errors of sensors, the motion error of mobile platforms, the point

cloud registration error, false loops introduced by LCD, optimization errors, and

the errors brought by other point cloud processing steps, like down-sampling,

ground segmentation, and normal computation.

• Generally speaking, the point cloud registration algorithms and the odometry

strategy play the dominant role in SLAM localization accuracy. As for the

quality of map results, localization accuracy and point cloud quality are two

significant factors. The point cloud quality includes the precision and accuracy

of the laser measurement, the noise of the laser point, the stability, and the

homogeneity of the laser scanning, etc.

• Affected by the measurement distance, those errors would accumulate and ruin

the localization and mapping results. Before optimization, the error accumu-

lates to a maximum level when the ending point is reached.

• The proposed weighted strategy is better than identify-weight, which means

that we set slightly higher weights to loop closure edges will enhance the opti-

mization ability of the graph.

• The precision of the loop closure edges is also significant. A reliable and ac-

curate point cloud scan registration method should be used to obtain the pose

transformation information.
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• The pseudo loop closures and enhanced loop closures both could enhance the

optimization performance significantly, while the costs should be balanced be-

cause the number of loop closure edges will grows sharply to make the graph

dense and redundant. Thus, the pseudo loop gap and the enhanced loop buffer

need to be adjusted according to the hardware computation power.

According to the optimization experimental results in multiple scenarios, some find-

ings of graph optimization strategy based on LCD could be summarized:

• If a measurement environment is globally controlled by loop closures, which

means the starting point and ending point are at the same place. The proposed

graph optimization based on LCD would be effective. The middle part of the

trajectory will obtain the largest error.

• If a measurement environment is partially controlled by loop closures, which

means the ending point doesn’t go back to the starting point. The suspended

part of the trajectory is not be optimized. Thus, the ending point returning

to the starting point is suggested to provide globally control information for

mapping.

• Loops formed by reciprocating measurements on the same path are not able

to provide effective information for optimization. Not only does it not even

optimize the cumulative error, but it makes the point cloud thickness larger.

• Optimization based on LCD could reduce or even eliminate cumulative error

when effective, sufficient, and precise loops are used. However, if the false loops

are introduced or there are suspended trajectories with a loop, optimization

performance will be limited or even lose effects.

Although the optimization methods is effective, limitations still exist. As shown in

Fig. 6.11, some problems arise in the in-house outdoor dataset. The shown trajectory
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Figure 6.11: The limitation of LO optimization based on LCD (in-house outdoor

datasets).

travels in the order of the marked numbers. The trajectory drifts severely, especially

in the trajectory 4○→ 5○→ 6○→ 7○→ end, because the drift error is cumulative and

increases sharply with the distance growing. Even the loops are used, the pose in tra-

jectory 5○ could not be corrected effectively. Thus, the pure LiDAR solutions, using

LiDAR odometry, LCD and graph optimization may not provide robust and reliable

localization information. Other positioning and orientation information provided by

GNSS or INS then could be utilized to enhance the performance. GNSS could pro-

vide positioning information directly in outdoor open area, while INS could provide

high-frequency orientation information and initialization values for odometry.

Thus, based on the experiments on factors of optimization performance and limitation

discussions, some guidance about mobile mapping backpack fieldwork measurement

and data processing could be presented.

• Loop is essential for cumulative error elimination. In fieldwork measurement,

it is highly advisable to build loop closures. Especially, when the measurement

scenario contains multiple independent sub-scenes, at least one loop closure
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needs to be constructed in each sub-scenes. The trajectory shown lemniscate

shape is recommended.

• When planning the measurement path, the ending point of the measurement

trajectory is better to return to the starting point. This provides global opti-

mization to the optimization.

• A correct loop closure could facilitate the LiDAR odometry and mapping, while

a wrong loop or edge constraint with low precision might ruin the whole trajec-

tory and map. Thus, the correctness and the precision of the LCD algorithm is

more important than the recall rate of LCD algorithms.

• The precision of loop scans registration has a significant impact on the re-

sults. Thus, an effective and precise point cloud registration algorithm should

be adopted.

• Pure LiDAR-SLAM framework is less precise and robust than SLAM based on

multiple sensors integration. IMU and GNSS should be fused into the solution

to provide sustained positioning and attitude information.

• The proposed LCD algorithms detect the LiDAR scans with high similarity

thus the detect results suffer from highly similar and repetitive environments.

Some strategies should be taken, such as two scans of a loop candidate should

be close in space distance and far in a time interval. The space distance could

be obtained from front-end odometry, while time interval could be computed

by timestamps of each LiDAR scan.

6.7 Conclusions

In this chapter, an enhanced graph optimization approach is utilized to reduce the

cumulative error of LiDAR odometry in SLAM. The weight is calculated based on the
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assumption that the loop closure edges with higher registration precision will improve

optimization performance more. Thus, they will obtain heavy weights. Qualitative

experiments are performed on open-source datasets and in-house datasets to exhibit

the effectiveness of the LCD results and optimization. Besides, Loop closure edges are

divided into three types, detected loops, pseudo loops, and enhanced loops. A study

of factors of loops affecting optimization performance is investigated. The factors

include the values of weights, the precision of loop closure edges, the number of

pseudo loops, and enhanced loops. Conclusions are reached according to quantitative

comparison experiments on open-source datasets. Then, some guidance on fieldwork

measurement and data processing is given. In the future, more strategies will be

researched to make the optimization more robust and reliable.
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Conclusion

7.1 Contributions

To summarize, this thesis focuses on fast and lightweight LCD and optimization for

LiDAR-SLAM. The contributions of this thesis are:

• A fast and compact LCD method is proposed based on comprehensive descrip-

tors and machine learning. Comprehensive descriptors are encoded by discrim-

inative multi-modality features to describe each laser scan, including statistics,

geometry, planar features, intensity, and ranging distance. RF model is used

as a binary classifier to detect loop closure candidates. Then, a novel double-

deck loop candidate verification strategy is used to reject false positives. This

method is dedicated to solving LCD in indoor or human-made structure scenes.

• As for the outdoor large-scale environments, the point cloud does not exhibit

significant structural and regular geometric characteristics. Thus, a very deep

and super lightweight neural network DeLightLCD is proposed to enable highly

efficient loop closure detection in large-scale environments. Depth-wise sepa-

rable convolution (DSC) and batch normalization (BN) are utilized to ensure
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that the network is lightweight and trainable.

• DeLightLCD++ is an improved LCD algorithm to address some practical prob-

lems of sensor alteration and environmental changes. A novel data presentation

method is used to reduce data loss and elimination the effects of environmental

changes. The architecture of the network is also adjusted to ensure that the

algorithm is rotation invariant. Besides, a loop candidate fast search method

is used to suppress the computation cost increase for ultra-long measurement

distance.

• After loop closures are detected, the loop closures will be utilized for pose

optimization. An enhanced graph optimization strategy is used. We intro-

duced three types of loop closures: detected loops, pseudo loops, and enhanced

loops. Then, factors affecting optimization performance are studied, including,

weights, the precision of loop closure edges, the number of pseudo loop closures,

and the number of enhanced loop closures. Finally, some guidance is given on

fieldwork and data processing of the mobile mapping backpack system.

• A mobile mapping backpack equipped with two multi-line laser scanners was

designed to collect point cloud data and test the performance of the proposed

methods.

7.2 Discussions

The discussions of every proposed algorithm have been provided in each chapter. In

this section, we would like to discuss LCD and SLAM research in a broader view.

• Both LiDAR sensors and depth cameras (RGBD-cameras) could obtain ranging

distance information and generate point cloud data. There are many differences

in measurement theory between the two sensors, thus the applicable scenes,
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data processing algorithms, and data results are all different. Depth cameras

are usually limited by natural light conditions and measurement distance, while

LiDAR sensors are not affected by illumination changes and have relatively long

measurement distances. As for the data processing, LiDAR-based SLAM results

usually have better precision than visual-based SLAM. Depth cameras could

capture texture information with real color, while LiDAR data only collected

laser point data with intensity.

• Visual sensors could capture abundant texture information. The sufficient in-

formation of image data could compensate for the defects of sparse point cloud

data and no texture information collected. However, image data could not ob-

tain precise ranging information like LiDAR data. Thus, visual sensors could be

fused with LiDAR sensors for an improved LCD approach. More broadly, some

other tasks based on point clouds, like object detection, semantic segmentation,

and instance segmentation, could be facilitated with the image data.

• As for the information adopted to solve LCD and SLAM tasks using point cloud

data, some high-level features, such as semantic information, object labels, and

spatial relationships, could be used to facilitate LCD and SLAM problems. Fac-

tually, some researchers have tried in this research direction[177, 118]. However,

the efficiency of semantic segmentation or object detection should be considered.

7.3 Limitations and Open Problems

Admittedly, the research and analysis still have limitations. The limitations and

future works are listed below:

• For FastLCD, it is limited in indoor environments due to the features used.

Thus, some novel and environmental-insensitive features should be researched

for extending the method to outdoor and large-scale scenes.
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• To address the problems of FastLCD, DeLightLCD is dedicated to LCD in

outdoor large-scale scenes. However, the data presentation of DeLightLCD

limits the input data format. Thus, the generalization performance on other

LiDAR sensors is restricted. A new data presentation method should be studied

to reduce data loss and ignore sensor changes.

• Although both FastLCD and DeLightLCD are highly time-efficient, with mea-

surement distance increasing, the time cost will grow sharply. They ignore

integrating an efficient search strategy.

• DeLightLCD++ is robust and insensitive to sensor changes and environmental

changes. However, the parameter amount grows resulting in time cost increases.

7.4 Future Works

• Although the LCD algorithm should be independent without prior pose knowl-

edge, LCD, as the subsequent step after LO, could use the features extracted

in LO. Then, the computation efficiency might be further improved.

• Some high dimensional and advanced features designed artificially or learned by

deep learning models will be further studied and applied in LCD and SLAM. Es-

pecially, semantic information, as common information in urban environments

will be researched to improve the algorithm performance.

• The enhanced graph optimization strategy shows effective performance. How-

ever, the convergence depends on the performance of front-end odometry and

the precision of loop closure edges. A poor front-end odometry might need a

large number of iterations. Thus, low-drift, precise and robust LiDAR odometry

algorithms will be researched in the next stage.

140



7.4. Future Works

• The pure LiDAR-SLAM solution with LiDAR odometry, LCD, and optimiza-

tion may not be very robust to different scenes. Multiple sensor fusion would

enhance the performance and make the solution reliable and robust. Thus, a

SLAM solution integrated with LiDAR, visual sensors, GNSS, IMU, and other

technologies would be researched in the future.
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