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Abstract

Autonomous trucks (ATs) are expected to be an effective solution to reducing the

operating costs and carbon footprint in road freight transport. To realize the

transition from a human-driving truck (HDT) fleet to a complete unmanned truck

fleet, platooning with a driver in the leading vehicle is a practical concept that can

be applied in this stage. To fully reap the benefits of cooperative autonomous truck

platooning, this thesis proposes a hierarchical modeling framework to explicate the

necessitated strategies.

The first work formulates and analyzes an optimal ATs platooning schedule where

a detour is possible. Decisions regarding the routing, platoon composition and

scheduling are made simultaneously based on the minimal platoon-size dependent

costs accounting for labor costs and fuel costs. We also propose a tailored combina-

torial Benders decomposition algorithm to solve the model efficiently. Our numerical

results show these techniques are effective in reducing computational complexity

and time. We discuss the impacts of the number of ATs, the platoon size limit, and

the ratio of fuel price and the driver wages on the performance of the AT platooning

schedules based on the Hong Kong road network.

The second part of the thesis investigates the potential of AT platooning to fight

against driver shortage by considering the coordination between platooning schedules

and the driver assignment under the driving hour regulations. The problem is

considered in the setting of long-haul freight transport where ATs are deployed to

service the mainline haulage. A branch and price algorithm embedded with column

generation is developed to find the optimal solution to the formation of AT platoons,

trip schedules and driver assignment. Given the transport requests, our model and

algorithm can determine the minimal drivers to complete the tasks.
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1Introduction

Section 1.1 introduces the motivation for this thesis. The outline of this thesis is

furnished in Section 1.2.

1.1 Background

The freight transport industry has been promoting and testing the use of autonomous

trucks (ATs). Compared to human-driven trucks (HDTs), ATs exhibit several

advantages, including labor cost cut, longer daily working time and more flexible

working schedules (e.g., night shifts), and better safety (Maurer et al., 2016). Many

companies (e.g., Embark, Amazon, UPS, and Suning) have been testing or deploying

ATs for commercial trips.

Given the present limitations in technology and legislation, autonomous vehicle

platoons traveling in comfortable driving environments (e.g., on highways) is widely

believed to be a promising solution before reaching the level of full autonomy

(Bhoopalam et al., 2018). An autonomous vehicle platoon consists of multiple

autonomous vehicles traveling together with short inter-vehicle distance Zhang et al.

(2017). The leader vehicle of a platoon is often operated or overseen by a human

driver. In the freight transport sector, using platoons of ATs would have the following

major benefits:

i. By letting the leader truck be operated by a human driver, an AT platoon is

more capable of handling unexpected complexities in the road environment.

This renders higher safety with limited autonomous driving technology.

ii. With the leader truck’s driver dealing with the paper-check duties, all the

following ATs can be driverless (Bhoopalam et al., 2018). This will save the

labor cost significantly compared to individually travelling trucks.
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iii. Following trucks in a platoon will suffer less air drag and thus save fuel Zabat

et al. (1995); Belzile et al. (2012).

iv. The shorter spacing maintained by autonomous driving technology between

ATs will save the road space occupied and thus reduce congestion (Ghiasi et al.,

2017).

However, the overall economic benefits of AT platoons are still ambiguous, which is

heavily dependent on the AT schedules (Sun and Yin, 2019). To establish a platoon,

the departure times, travel speeds, and the routes of the members in the platoon

must be synchronized. Unlike HTs, ATs enjoy extra benefits from driverless trips.

Intuitively, platoons of ATs have higher tolerance on the detour. That is, an AT

may, for instance, deviate from its shortest path to join a platoon without violating

its service time windows.

Except the vehicle routing and scheduling, the personnel arrangement also influence

the benefits that are reaped from AT platooning. It is more critical as the trucking

industry is suffering from the shortage of drivers these days. 70.6% of all freight

tonnage is moved on the US highways. According to the American Transportation

Research Institute, 43% of trucking’s operational costs is driver compensation which

is the largest operational cost for a motor carrier (Williams and Murray, 2020).

Additionally, as freight volumes increase, the existing driver pool is only more

strained. The US has seen a shortage of 20000 in 2005 growing to 50700 by 2017

(Costello and Karickhoff, 2019).

The driver shortfall is expected to rise as freight volumes recover and the industry

transitions to the use of electronic logging devices (ELD) to record driver hours-of-

service (HOS). Truck drivers have an incentive to violate HOS rules because the

industry’s widespread use of piece-rate pay (Masten, 2009) can incentivize them

to work more hours than legally permitted (Scott and Nyaga, 2019). However,

it becomes more difficult to falsify when the paper logbook is replaced by the
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mandatory ELD in each truck. Consequently, the implementation of ELD under

HOS in deed decreases the productivity of a truck driver. This imposes a new

challenge for the truck driver scheduling, in particular, confronted with the driver

shortage.

From above discussion, we can sense that to what extend those advantages of AT

platooning indeed can be realized is heavily dependent on the AT platooning planning

and management strategy. Strategies to improve the platooning opportunities on a

specific route or over a wide traffic network have been investigated by many recent

studies (Larsson et al., 2015; Larson et al., 2016; Sokolov et al., 2017). Nevertheless,

few of them focus on the optimization towards the resulted operation cost savings

with practical freight transport constraints. The answers, indeed, will testify whether

truck platooning is financially reliable in reality, thus plays a crucial factor in the

whole truck platoon’s adoption process. Therefore, the first research task in this

thesis is estimating the cost-saving potentials over a large traffic network from the

planning perspective.

More importantly, the coordination between driver shifts and the AT platooning

scheduling has gone unnoticed in the previous literature. On the one hand, a fleet

manager of a freight transport company aims to facilitate the formation of an

minimal-operation-cost platoon, ideally, the one consume least fuel and requires least

drivers. This is not difficult if there are no constraints on the capacity of a platoon

or availability of drivers. But the fact is that there drivers are in shortage and their

service time (travel time of a trip) is confined to the HOS regulations. The mutual

influence of HOS regulations and schedules will compromise the opportunity of

forming large platoons. The impacts of HOS regulations on given trip time windows

has been studied (Goel, 2009; Goel and Irnich, 2017), but has not yet been explored

in the context of AT platooning, where the time windows of a platoon is flexible to

be decided. Thus, the second research task in this thesis is to answer the potentials

of AT platoons to reduce driver shortages in the trucking industry.
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1.2 Organization of the thesis

The thesis is organized as follows.

Chapter 2 presents the AT platooning scheduling problem where a detour is possible.

Decisions regarding the routing, platoon composition and scheduling are made

simultaneously based on the minimal costs accounting for labor costs and fuel costs.

We also propose a logic benders decomposition algorithm with some acceleration

techniques to solve the model efficiently. Numerical case studies are performed and

insights stemming from our models are discussed.

Chapter 3 addresses the coordination problem between AT platooning formation and

truck driver assignment. Under the HOS regulations, the travel time on a fixed route

is much longer than that of the non-stop driving time. To answer the question, the

potential of AT platooning operations in reduce driver shortage, we try to minimize

the maximal number of driver needed. The complexity arises exponentially when

the driver schedule and the departure times of AT platoons are jointly decided. A

branch and price algorithm embedded with column generation is developed to solve

it to optimality. Experiments conducted show the validity of our algorithm.

Chapter 4 concludes the thesis by summarizing our contributions, and discussing

potential extensions of the present work.
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2The Optimal Autonomous Truck

Platooning Scheduling

2.1 Introduction

To facilitate the implementation and operations of AT platoons, this Chapter will

develop a model for optimizing the formation and scheduling of AT platoons traveling

in a highway network. Specifically, the model will identify the optimal assignment

of ATs to platoons, platoon departure times, and routes for minimizing the overall

operating cost, including labor and fuel costs.

The truck platooning problems can be classified according to some key operating

features. The first feature is whether the trucks to be platooned belong to a single

company or not. If platoons are formed by vehicles owned by different companies,

the mechanism to incentivize players to join the platoon is a primary research

question (Sun and Yin, 2019). In our study, ATs are assumed to belong to a single

company, and the platooning decisions are made by a central planner. The second

issue is whether the truck trip information is obtained in advance or in real time.

Bhoopalam et al. (2018) divided the truck platooning problems into two classes:

off-line (or static) planning problems where all trips are known by a central planner

in advance, and online planning problems where the trip information is reported to

the central planner in real time. Our study falls in the first of the two classes.

Most works in the above realm of literature investigated HDT platooning problems

(Zhang et al., 2017). Boysen et al. (2018) explored the complexity of the platoon

scheduling problem on an identical path. Liang et al. (2015) studied the fuel

efficiency of platoons where each vehicle’s route is given. Luo and Larson (2021)

designed a routing-then-scheduling heuristic to solve the truck platooning planning
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problem. Compared to the literature, our study makes three contributions, which

are summarized and justified as follows:

i. We formulate the AT platoon scheduling problem which involves the mini-

mization of labor cost in addition to the fuel cost. Most previous studies only

considered the minimization of fuel cost (Liang et al., 2014; Van De Hoef et al.,

2015; Sokolov et al., 2017) since they focused on the platooning of HDTs.

ii. We develop an exact solution algorithm (a tailored combinatorial Benders

decomposition algorithm) for optimal platoon formation considering both routing

and scheduling decisions. Many previous works have assumed that platoon

routes are fixed (Liang et al., 2015; Boysen et al., 2018). However, route

optimization is necessary for truck platoon planning since trucks may take

detours to form platoons if the associated cost reduction outweighs the added

cost of detours. To our best knowledge, no study has developed exact solutions

for jointly optimizing platoon routing and scheduling. The closest work to

our study is Luo and Larson (2021). However, only a heuristic solution was

developed in that work 1

iii. We consider a platoon size limit constraint. This constraint is imperative for

practical implementation of truck platoons (Aarts and Feddes, 2016), partly due

to the present limitation of autonomous driving technologies. A long platoon of

trucks will also block the ramps on highways (since trucks usually travel in the

shoulder lane) and increase the wear and tear of roads and bridges. However,

incorporating this constraint will significantly increase the complexity of the

problem (Gijswijt et al., 2007; Correa and Megow, 2015; Boysen et al., 2018).

Thus, it would be more challenging to find exact solutions, especially when the

nonlinearity of the fuel cost saving function of the platoon size is accounted for

1The problem solved in Luo and Larson (2021) can be considered as a more general version of
our problem since platoon merges and splits are allowed in that work, but not in our work.
Nevertheless, no exact solution was proposed in their work.
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Hucho and Sovran (1993); Lammert et al. (2014); Deng (2016); Tsugawa et al.

(2016). Previous studies have developed exact solutions to the truck platooning

problem considering two-vehicle platoons only (Correa and Megow, 2015) or

unlimited platoon size (Boysen et al., 2018). No work has solved the problem

with a finite platoon size limit constraint exactly.

The rest of the Chapter is organized as follows. Section 2 describes the AT platoon

scheduling problem and key assumptions. A mixed-integer nonlinear program is

formulated and linearized in Section 3. A tailored combinatorial Benders cuts (CBC)

algorithm is proposed in Section 4. Numerical experiment results and findings are

discussed in Section 5. Section 6 presents the conclusions and future work.

2.2 Problem description and assumptions

We denote G(N,A) the graph representing a highway network in an area, where

N = Non ∪Noff denotes the set of on- and off-ramp nodes; Non the set of on-ramp

nodes; Noff that of off-ramp nodes; and A the set of highway links connecting

these nodes (see Fig. 2.1 for the illustration). Consider a fleet of ATs denoted by

V = {1, 2, . . . , |V |}. AT v ∈ V is required to depart its origin ov no earlier than

a time ev, and arrive at its destination dv no later than a time lv. Each origin

ov(v ∈ V ) or destination dv is connected to one or more on- or off-ramp nodes in G

through local roads. The origin and destination nodes and the local road links are

excluded from graph G for the simplicity of formulation.

The following key assumptions are made for the simplicity of modeling:

i. Considering the present technological limitations and safety concerns for ATs,

an AT can be operated in the driverless mode only when it joins a platoon led

by a manned truck (Bhoopalam et al., 2018) traveling on the highways (Albiński

et al., 2020). In other words, an AT must be operated by a human driver under

one of the following three conditions: if it travels individually; if it is the leader
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of a platoon; or if it is traveling in local roads where the traffic environment is

more complicated and unfriendly to autonomous vehicles.

ii. To ensure safety, a platoon formed at an on-ramp will remain intact until it

exits through an off-ramp. In other words, a platoon will not break down into

smaller platoons or individual ATs, nor will it merge with other platoons or

trucks in the highways. In practice, a group of manned ATs first travel to a

sorting yard near an on-ramp, where all but one switch to the driverless mode

and form a platoon led by the remaining manned AT. When the platoon exits

from an off-ramp, they enter another sorting yard where human drivers board

and drive the ATs to their destinations. Different batches of drivers can be used

before and after the highway trip.

iii. All ATs are identical in terms of their type, size, age, freight load, engine

characteristics, and cruise speed. And they travel at a constant cruise speed

throughout their journeys. They also maintain a constant spacing in platoons.

This way, the total air drag reduction for an AT platoon only depends on the

platoon size. Longer platoons will enjoy greater labor and fuel cost savings.

Figure 2.1: Illustration of the AT platoon formation and split

Under the above assumptions, the objective of the AT platoon scheduling problem is

to minimize the sum of driver and fuel costs. A fleet manager seeks to determine the
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optimal departure times, routes, and platoon formation of the |V | ATs under this

objective. Note that in order to join a platoon, an AT may choose a non-shortest

route from its origin to destination. For example, AT 3 (from o3 to d3) in Fig. 2.1

will travel on route o3 → A → B → C → D → E → d3 instead of the shortest

route o3 → B → C → D → d3 so that it can join the platoon of ATs 1 and 2 at

on-ramp A. Thus, trade-off exists between the labor and fuel cost savings owing to

platooning and the increased travel cost due to the detours. In addition, the routing

and scheduling of an AT platoon must satisfy the travel time window constraints

for all its members. The benefit of optimal platoon scheduling will be assessed via

comparison against the scenario where each AT is operated individually by a human

driver. In the latter scenario, an AT will always choose the shortest route.

2.3 Model formulation

Section 2.3.1 presents the list of notations used in this chapter. Section 2.3.2 describes

the fuel and labor cost functions. Section 2.3.3 furnishes a nonlinear formulation of

the optimal AT platoon scheduling problem. Linearization of that formulation is

presented in Section 2.3.4

2.3.1 Notation list

Indices and sets

v Index of an AT

V Set of ATs

non Index of an on-ramp

noff Index of an off-ramp

Non Set of on-ramps

Noff Set of off-ramps

k Index of an AT platoon

K Set of platoons
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r Index of a candidate platoon path, characterized by an

on- and off-ramp pair. It represents the shortest path on

the highways connecting the two ramps

R Set of candidate platoon paths

ov Origin of AT v ∈ V

dv Destination of AT v ∈ V

Parameters

dr,ov Shortest distance between o_v and the on-ramp of path

r ∈ R, km

dr,ov Shortest distance between d_v and the off-ramp of path

r ∈ R km

dr Length of path r ∈ R km

c Labor cost rate, $/h

ev Earliest departure time of AT v ∈ V from its origin, h

lv Latest arrival time of AT v ∈ V to its destination, h

s ATs’ cruise speed, km/h

p Fuel price, $/liter

L Maximum number of ATs allowed in a platoon

fB(s) Fuel consumption rate by an AT traveling individually

at speed s, liter/km

Φ(n) Total air-drag reduction factor of a n-AT platoon

φm Air-drag reduction factor for the m-th AT in a platoon

λr
v Ratio of the length of a candidate platoon path r ∈ R

to a whole route of AT v ∈ V , ov → r → dv

Decision variables

xr,k
v Binary variable that equals 1 if AT v ∈ V joins platoon

k ∈ K traveling on path r ∈ R, and 0 otherwise.
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tr,k Departure time of platoon k ∈ K traveling on path r ∈ R

from the associated on-ramp, h

ur,k Binary variable that equals 1 if platoon k ∈ K on path

r ∈ Ris nonempty, and 0 otherwise

Sr,k Number of reduced drivers of platoon k ∈ K on path

r ∈ R

T r,k
v Departure time of AT v ∈ V if it joins platoon k ∈ K

traveling on path r ∈ R

zr,k
m Binary variable that equals 1 if the size of platoon k ∈ K

on path r ∈ Ris greater than or equal to m, and 0

otherwise.

x, t, u, S, T, z Vector representations of xr,k
v , tr,k, ur,k, Sr,k, T r,k

v , zr,k
m ,v ∈

V , r ∈ R, k ∈ K,m ∈ {1, 2, . . . , n}

2.3.2 Cost functions

The following two subsections describe the fuel and labor cost functions, respectively.

Fuel cost Platoons can save the trucks’ fuel cost by reducing the air drag (Zabat

et al., 1995; Belzile et al., 2012). We borrow the following vehicle fuel consumption

function from Franceschetti et al. (2013) to model an AT’s fuel consumption per

km:

fB(s) = as2 (1− ϕ) + b (2.1)

where s denotes the vehicle speed; a and b are constant coefficients related to the

AT’s shape, size, freight load, and engine characteristics; and ϕ ∈ [0, 1] a factor that

captures the air-drag reduction effect. We set ϕ = 0 for an individually traveling

AT (Abdolmaleki et al., 2019). Denote xr,k
v the binary variable that equals 1 if AT

v ∈ V joins the k-th platoon traveling on the highway path r ∈ R and 0 otherwise,

where r denotes a candidate platoon path and R the set of all candidate platoon

paths. For a given pair of on- and -ff-ramps, r is the shortest highway path between

11



them. (We use the term “path” to describe a highway path in G connecting an

on-ramp and an off-ramp, and the term “route” to describe a full route from an

AT’s origin to its destination.) The fuel cost for AT platoons is formulated as the

difference between the fuel cost given that all the ATs travel individually and the

fuel saving due to platooning. The former is formulated as follows:

FCI = pfB(s)
∑
v∈V

∑
r∈R

∑
k∈K

(
dr,ov

+ dr + dr,dv

)
xr,k

v (2.2)

where p denotes the fuel price ($/liter); s the cruise speed; dr,ov the distance from ov

to the on-ramp of path r; dr the travel distance on r; and dr,dv the distance from

the off-ramp of r to dv. For the fuel saving of platoons, denote Φ(n) = ∑n
m=1 ϕm the

total air-drag reduction factor for a platoon of n ATs, where ϕm (m ∈ {1, 2, . . . , n})

denotes the air-drag reduction factor for the m-th AT in the platoon (the leader

truck is numbered the 1st). Values of ϕm can be determined by field experiments.

Bergenhem et al. (2012) showed that the leader truck has little air-drag reduction;

i.e., ϕ1 = 0. The total fuel saving for all the AT platoons is thus:

FCS = pas2∑
r∈R

∑
k∈K

Φ
(∑

v∈V

xr,k
v

)
dr (2.3)

Note that ∑
v∈V

xr,k
v is the size of the k-th platoon traveling on path r. For completeness,

we specify that ϕ0 = ϕ1 = 0. Hence, the total fuel cost is:

FC = FCI − FCS

= pfB(s)
∑
v∈V

∑
r∈R

∑
k∈K

(
dr,ov

+ dr + dr,dv

)
xr,k

v

− pas2∑
r∈R

∑
k∈K

Φ
(∑

v∈V

xr,k
v

)
dr

(2.4)
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Labor cost For simplicity, we assume the labor cost is proportional to the driving

time of human drivers. The total labor cost is then formulated as:

C = c

s

∑
v∈V

∑
r∈R

∑
k∈K

(d r,ov
+ dr + dr,dv

)
xr,k

v −
c

s

∑
r∈R

∑
k∈K

dr

(∑
v∈V

xr,k
v − 1

)+

(2.5)

where c denotes the labor cost per hour of driving. The first term in the RHS is the

total labor cost if all the ATs are operated by human drivers, and the second term

is the labor cost saving of AT platoons. We next formulate the optimal AT platoon

scheduling model.

2.3.3 Mathematical formulation

The AT platoon scheduling model is formulated as follows:

[M1]

minF (x, t) = pfB(s)
∑
v∈V

∑
r∈R

∑
k∈K

(
dr,ov

+ dr + dr,dv

)
xr,k

v − pas2∑
r∈R

∑
k∈K

Φ
(∑

v∈V

xr,k
v

)
dr

+ c

s

∑
v∈V

∑
r∈R

∑
k∈K

(d r,ov
+ dr + dr,dv

)
xr,k

v −
c

s

∑
r∈R

∑
k∈K

dr

(∑
v∈V

xr,k
v − 1

)+

(2.6)

∑
k∈K

∑
r∈R

xr,k
v = 1 ∀v ∈ V (2.7)

∑
v∈V

xr,k
v ≤ L ∀r ∈ R, k ∈ K (2.8)

xr,k
v

(
tr,k − dr,ov

s
− ev

)
≥ 0 ∀v ∈ V, r ∈ R, k ∈ K (2.9)

xr,k
v

(
lv − tr,k − dr,dv + dr

s

)
≥ 0 ∀v ∈ V, r ∈ R, k ∈ K (2.10)

tr,k ≥ 0 ∀r ∈ R, k ∈ K (2.11)

xr,k
v ∈ {0, 1} ∀v ∈ V, r ∈ R, k ∈ K (2.12)

where x and t are the vector representations of xr,k
v and tr,k (v ∈ V, r ∈ R, k ∈

K) respectively; and tr,k the departure time of the k-th platoon on path r from

13



the associated on-ramp. Constraint (2.7) ensure that every AT is assigned to a

platoon (here an individually traveling AT is considered as a platoon of size 1).

Constraint (2.8) specify that a platoon’s size cannot exceed a limit, L, which is

determined by the technology level and safety concerns. Constraint (2.9) guarantee

that all the ATs in a platoon will arrive at the gathering on-ramp before the platoon

departure time. Constraint (2.10) ensure that every AT can arrive at its destination

in time. Constraints (2.11)-(2.12) define the ranges of decision variables.

Note that compared to the arc-based model proposed by Luo and Larson (2021)

which addressed the routing planning and scheduling problem separately, our route-

based model [M1] can simultaneously optimize the decisions on platoon scheduling

and route planning.

Model [M1] is a nonlinear program due to the function terms Φ
( ∑

v∈V
xr,k

v

)
and( ∑

v∈V
xr,k

v − 1
)+

and constraints (2.9)-(2.10). These nonlinear elements are linearized

next.

2.3.4 Linearization

Linearization of the objective To linearize the nonlinear function Φ
( ∑

v∈V
xr,k

v

)
we in-

troduce an auxiliary binary variable zr,k
m for each r ∈ R, k ∈ K and m ∈ {1, 2, . . . , L}

which equals 1 if the size of the k-th platoon on path r is greater than or equal to

m, and 0 otherwise. Thus, the size of the k-th platoon on path r, ∑
v∈V

xr,k
v , can be re-

placed with
L∑

m=1
zr,k

m . Moreover, the platoon’s air-drag reduction factor Φ
( ∑

v∈V
xr,k

v

)

can be replaced with a linear term
L∑

m=1
ϕmz

r,k
m . (Recall that Φ(n) = ∑n

m=1 ϕm.)

Accordingly, the following constraints are added to the formulation:

∑
v∈V

xr,k
v =

L∑
m=1

zr,k
m ∀r ∈ R, k ∈ K (2.13)

zr,k
m−1 − zr,k

m ≥ 0 ∀r ∈ R, k ∈ K,m ∈ {2, . . . , L} (2.14)
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zr,k
m ∈ {0, 1} ∀r ∈ R, k ∈ K,m ∈ {1, 2, . . . , L} (2.15)

In addition, the ceiling function term ( ∑
v∈V

xr,k
v − 1)+ is replaced with an integer

auxiliary variable Sr,k (r ∈ R, k ∈ K) that indicates the number of saved drivers in a

platoon. Note in the objective function (2.6) that this term has a negative coefficient,

meaning that Sr,k is the larger the better. Thus, we further introduce an auxiliary

binary variable ur,k for each r ∈ R, k ∈ K which equals 1 if ∑
v∈V

xr,k
v − 1 ≥ 0 and 0

otherwise. The following additional constraints are included in the formulation to

ensure the linearized formulation is equivalent to the original one:

Sr,k ≥ 0 ∀r ∈ R, k ∈ K (2.16)

Sr,k ≥
∑
v∈V

xr,k
v − 1 ∀r ∈ R, k ∈ K (2.17)

∑
v∈V

xr,k
v − 1 ≤Mur,k ∀r ∈ R, k ∈ K (2.18)

∑
v∈V

xr,k
v + 1 ≤M(1− ur,k) ∀r ∈ R, k ∈ K (2.19)

Sr,k ≤
∑
v∈V

xr,k
v − 1 +M(1− ur,k) ∀r ∈ R, k ∈ K (2.20)

Sr,k ≤Mur,k ≤
∑
v∈V

xr,k
v − 1 +M(1− ur,k) ∀r ∈ R, k ∈ K (2.21)

Sr,k ∈ Z ∀r ∈ R, k ∈ K (2.22)

ur,k ∈ {0, 1} ∀r ∈ R, k ∈ K (2.23)

Linearization of constraints (2.9)-(2.10) We introduce auxiliary variables T r,k
v (v ∈

V, r ∈ R, k ∈ K) to replace the nonlinear term xr,k
v tr,k in constraints (2.9)-(2.10).

They are then linearized using the big-M method. Specifically, (2.9)-(2.10) are

replaced with the following constraints:

T r,k
v − xr,k

v

(
dr,ov

s
+ ev

)
≥ 0 ∀r ∈ R, k ∈ K (2.24)

− T r,k
v + xr,k

v

(
lv −

dr,dv + dr

s

)
≥ 0 ∀r ∈ R, k ∈ K (2.25)
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−M
(
1− xr,k

v

)
≤ T r,k

v − tr,k ≤M
(
1− xr,k

v

)
∀v ∈ V, r ∈ R, k ∈ K (2.26)

In summary, the linearized formulation is presented as follows:

[M2]

min F (x, z,u,S, t,T) =
(
pfB(s) + c

s

)∑
v∈V

∑
r∈R

∑
k∈K

(dr,ov + dr + dr,dv)xr,k
v

− pas2∑
r∈R

∑
k∈K

L∑
m=1

ϕmz
r,k
m dr −

c

s

∑
r∈R

∑
k∈K

Sr,kdr

(2.27)

subject to

Constraints (2.7)-(2.8), (2.11)-(2.12),(2.13)-(2.26).

where z,u,S,T are the vector representations of zr,k
m , ur,k, Sr,k, T r,k

v (v ∈ V, r ∈ R, k ∈ K,m ∈ {1, 2, . . . , n})

respectively.

2.4 Solution approach

Although [M2] is solvable by CPLEX, large-scale instances are still difficult to

be solved to optimality due to the curse of dimensionality. This section develops

a more efficient solution approach by employing the combinatorial Benders cuts

(CBC) method. First, we tighten the model by reducing the size of the candidate

platoon path set R which significantly affects the solution efficiency. The associated

problem-specific cuts are introduced in Section 2.4.1. The CBC algorithm is then

presented in Section 2.4.2

2.4.1 Reducing the size of R

Initially, R can be set to include all the |Non||Noff | shortest paths in graph G that

connect every pair of on- and off-ramps. We then apply the following rules to reduce

the size of R.
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First, if a path cannot be used by any AT (i.e., if the corresponding on- and off-ramp

pair is not connected to any AT’s OD), that path should be deleted from R.

Second, if an AT cannot join any other ATs to form a platoon, then this AT will

travel individually on the shortest route connecting its OD. Thus, the AT can be

removed from set V . The associated on- or off-ramps, if not connected to any other

AT, can also be removed from graph G. This rule is elaborated in the following

proposition.

Proposition 2.4.1. If none of the on-ramps connected to ov is connected to another

AT’s origin, or, if none of the off-ramps connected to dv is connected to another

AT’s destination, then v cannot be platooned with any other ATs. This AT will travel

alone on its shortest route connecting ov and dv. Thus, it can be removed from set V ;

i.e., V ← V \ {v}. The associated on-ramps connecting to ov or off-ramps connecting

to dv can be removed from set Non or Noff , respectively. The paths associated with

those removed on- or off-ramps can be deleted from R.

Proposition 2.4.1 is self-evident. Take the network in Fig. 2.1 for example, AT No.

5 has only one possible route, o5 → C → H → d5, and it cannot be platooned with

any other ATs. Thus, this AT will be deleted from V . Accordingly, on-ramp node

C, off-ramp node H, and link CH will be deleted from graph G. Links BC and CD

will be combined into a single link BD. Candidate platoon paths associated with

node C or H will be deleted from R. Finally, set R can be further trimmed down

by pruning some paths that are never optimal. To this end, we define the path

dominance as follows. Let r1 and r2 be two platoon paths that a specific AT v ∈ V

can take. Denote disti the total travel distance for v’s route through path ri, and λi
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the ratio between the length of highway fragment ri and disti. We say r1 dominates

r2 for AT v if the following two conditions are both satisfied 2 :

dist1 ≤ dist2 (2.28)

λ2 ≤
c
s

+ pfB
c
s

+ pas2ϕL

(
1− dist1

dist2

)
(2.29)

We have the following proposition regarding the path dominance: If r1 dominates r2

for AT v ∈ V , shifting v from r1 to r2 will not reduce the AT’s travel cost. The

proof of Proposition 2.4.1 is relegated to Appendix A. The following two corollaries

can be derived from Proposition 2.4.1.

Corollary 2.4.1.1. Let Ro
v be the set of all the non-dominated paths for AT v ∈ V .

Let Rp = R\⋃v∈V R
o
v. Platoon paths in Rp can be pruned from R.

Corollary 2.4.1.2. Let Rd
v denote the set of all the dominated paths for AT v ∈ V ,

and R′
v = Rd

v\ {rv|rv ∈ Rp} denote the set of dominated paths for AT v after path

pruning (see Corollary ). We have:

xr,k
v = 0,∀r ∈ R′

v, k ∈ K, v ∈ V (2.30)

Corollaries and are also self-evident. Corollary states that, if for each AT that can

travel on a path r, r is always dominated by another path, then r should be pruned.

Corollary indicates that for any AT, a dominated but not pruned path will never be

selected 3. Eq. 2.30 will be added to [M2] as a cut.

2Under rare cases where equalities are held in both conditions, we can arbitrarily choose one of
the two paths as the dominating path and the other as the dominated path.

3There may exist multiple optima where equalities hold in both (2.28) and (2.29). However, our
goal is to obtain one optimal solution. Thus, pruning or deselecting a dominated path will not
compromise the optimality of our solution even if multiple optima exist.
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Luo and Larson (2021) reported that the ATs will not deviate to a route that is too

far from the shortest one to join a platoon. Proposition 2.4.1 and Corollaries and

practically rule out the possibility for ATs to take such a “too far” route.

2.4.2 A CBC algorithm

In this section, we develop a CBC algorithm to solve our model in industry scales.

Benders decomposition can be applied to separate the platoon size constraint and the

truck time window constraints. However, the standard Benders decomposition would

perform poorly in our problem due to the many conditional (big-M) constraints in

[M2]. These big-M constraints would result in poor bound improvement and slow

convergence when cuts are dependent on the dual form. To alleviate the dependency

on big-M values, we apply the CBC algorithm here. The CBC algorithm was firstly

proposed by Hooker (2011) and extended by Codato and Fischetti (2006) to solve

mixed integer programs with special structures. Compared with the classical Benders

decomposition, the CBC algorithm tries to derive Benders’ cuts from the primal

subproblem rather than the dual information. Specifically, the CBC algorithm

divides the original problem into a master problem and several sub-problems which

are solved iteratively. The master problem assigns the ATs to possible paths and

candidate platoons under the size limit. Subsequently, each subproblem verifies

whether the proposed plan is time feasible. If an infeasible solution is observed,

feasibility cuts are generated, stating that at least one AT should change its path

and platoon. The algorithm stops when all the subproblems are feasible (i.e., the

optimal solution is obtained) or when a predefined optimality gap ε is attained.

The master problem and sub-problems are described in Section 2.4.2 Acceleration

techniques on the CBC algorithm, including the search for minimal infeasible subsets

and the relaxation of subproblems, are presented in Section 2.4.2.

Model reformulation under the CBC framework The original formulation [M2] is

decomposed into a master problem [MP] and sub-problems [SP]. The master problem
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optimizes the assignment of ATs to platoons, which involves decision variables

xr,k
v , zr,k

m , ur,k, and Sr,k (r ∈ R, k ∈ K, v ∈ V ). Each subproblem [SP] conducts

the time window feasibility check of platoon k ∈ K on path r ∈ R involving

decision variables tr,k and T r,k
v . The subproblems will take the AT assignment

generated from the master problem as input. We relax the integer variable Sr,k to

be continuous since the integrality of Sr,k (r ∈ R, k ∈ K) is guaranteed if xr,k
v and

ur,k (r ∈ R, k ∈ K, v ∈ V ) are binary. The formulation of [MP] is therefore given

by:

[MP]

min F (x, z,u,S) =
(
pfB(s) + c

s

)∑
v∈V

∑
r∈R

∑
k∈K

(dr,ov + dr + dr,dv)xr,k
v

− pas2∑
r∈R

∑
k∈K

L∑
m=1

ϕmz
r,k
m dr −

c

s

∑
r∈R

∑
k∈K

Sr,kdr

(2.31)

subject to:

(2.7)-(2.8), (2.12), (2.13)-(2.15), (2.16)-(2.21), (2.23), 2.30, feasibility cuts.

Note that Corollary 2.4.1 is incorporated by adding Eq. (2.30) as a constraint.

Denote ∼xr,k

v the optimal solution of xr,k
v (k ∈ K, r ∈ R, v ∈ V ) obtained from the

[MP]. We define the following subproblem [SP] for each platoon k ∈ K on path

r ∈ R:

[SP]

min 0 (2.32)

subject to:

T r,k
v ≥ ∼xr,k

v

(
dr,ov

s
+ ev

)
∀v ∈ V (2.33)

T r,k
v −T r,k

v ≥
∼
x

r,k

v

(
dr,dv + dr

s
− lv

)
∀v ∈ V (2.34)

T r,k
v − tr,k ≥ −M

(
1− ∼xr,k

v

)
∀v ∈ V (2.35)
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tr,k − T r,k
v ≥ −M

(
1− ∼xr,k

v

)
∀v ∈ V (2.36)

Constraint (2.11)

The objective function (2.32) can be set to any constant value since the subproblems

only check the feasibility of the [MP] solution. For each pair of r and k, we first

check whether ∑
v∈V

xr,k
v > 0 If the answer is no, then platoon k does not exist or does

not travel on path r. Thus, the total number of subproblems to be solved is no more

than the maximum number of platoons, i.e., |V |.

Given
{
∼
x

r,k

v , r ∈ R, k ∈ K, v ∈ V
}

if there exists a feasible solution to every sub-

problem, then the solution to [MP] is the optimal solution to [M2]. However, if one

subproblem [SP] is infeasible, then at least one of the binary variables xr,k
v associated

with a member truck of platoon k on path r must change its value. Mathematically,

this can be represented by a linear inequality termed the combinatorial Benders cut:

∑
v∈Cr,k⊆V

xr,k
v ≤

∣∣∣Cr,k
∣∣∣− 1,∀r ∈ R, k ∈ K (2.37)

where Cr,k is a subset of ATs defined as Cr,k =
{
v ∈ V

∣∣∣∣∼xr,k

v = 1
}
, r ∈ R, k ∈ K.

Namely, Cr,k consists of the ATs assigned to platoon k on path r. This cut means not

all the ATs in Cr,k can be assigned to the same path and platoon. The framework of

CBC is summarized in Algorithm 1 in Appendix B. Accelerating the CBC algorithm

Numerical tests show that the CBC algorithm presented above converges slowly. In

what follows, we employ two acceleration techniques to enhance the overall efficiency

of CBC.

The first technique involves incorporating relaxed subproblems in the [MP]. Hooker

(2007) claimed that this technique can reduce the number of infeasible solutions

generated by the [MP]. To this end, we introduce auxiliary variables yr,k
v ∈ [0, 1],
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v ∈ V, r ∈ R, k ∈ K and add the following soft time window constraints to the

[MP]:

T r,k
v − yr,k

v

(
dr,ov

s
+ ev

)
≥ 0 ∀k ∈ K, r ∈ R, v ∈ V (2.38)

T r,k
v ≤ max

v∈V

{
lv −

dr,dv + dr

s

}
∀k ∈ K, r ∈ R, v ∈ V (2.39)

xr,k
v

q
≤ yr,k

v ≤ xr,k
v ∀k ∈ K, r ∈ R, v ∈ V (2.40)

0 ≤ yr,k
v ≤ 1 ∀k ∈ K, r ∈ R, v ∈ V (2.41)

Constraints (2.38) are a relaxed version of constraints (2.34) that ensure the earliest

departure time constraints, where the binary ∼xr,k

v is replaced by the continuous yr,k
v .

The yr,k
v is defined by (2.40)-(2.41), where q ≥ 1 is a relaxation parameter. Note that

a greater q renders tighter time window constraints (2.38), which means the [MP]

would be more computationally expensive to solve. Constraints (2.39) are a more

relaxed version of constraints (2.40) that enforce the latest arrival time constraints.

This form of relaxation is selected to guarantee that the [MP] can be solved in a

reasonable time.

Our second accelerating technique employs the so-called minimal infeasible subsets

of ATs to strengthen the cuts to the [MP]. Note that cuts (2.37) can be weak if

|Cr,k| is large, because it only requires one of the |Cr,k| ATs to be removed from the

platoon. Stronger cuts can be obtained by using smaller subsets of ATs that have

conflicting time windows when they are assigned to the same platoon. We define a

minimal infeasible subset (MIS) as a set of ATs that cannot be assigned to a single

platoon. Since finding all the MISs for a given set of ATs is NP-hard (Amaldi et al.,

2003; Verstichel et al., 2015), we choose to search for them in a greedy fashion (Bai

and Rubin, 2009; Chen et al., 2012; Côté et al., 2014; Chen et al., 2018).

Specifically, we construct two types of MISs, Cr,k
1 and Cr,k

2 (r ∈ R, k ∈ K), via the

following procedure. For a specific AT v ∈ V traveling in a non-empty platoon k
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on path r, we calculate its earliest departure time, edep,r,k
v = dr,ov

s
+ ev, and latest

departure time, ldep,r,k
v = lv − dr,dv +dr

s
. If ldep,r,k

v < edep,r,k
v , then AT v cannot travel

on path r. This AT is then added to set Cr,k
1 .

For a platoon k ∈ K on path r ∈ R if there exist two ATs v1, v2 ∈ V satisfying

edep,r,k
v1 > ldep,r,k

v2 or edep,r,k
v2 > ldep,r,k

v1 , then the two ATs cannot be assigned to the

same platoon. We add the AT pair (v1, v2) to set Cr,k
2 . The detailed algorithm for

developing Cr,k
1 and Cr,k

2 is summarized in Algorithm 2 in Appendix B.

The MIS sets will be developed incrementally within the [MP]-[SP] iterations. In

every iteration, we will examine each AT and AT pair in every non-empty platoon

of the [MP] solution, and add the newly generated ATs and AT pairs to the original

sets of Cr,k
1 and Cr,k

2 , respectively. Note that the total number of individual ATs

checked in an iteration is |V |. And the total number of AT pairs checked is no

greater than L(L− 1)|V |/4, since each platoon contains no more than L(L− 1)/2

AT pairs and there are no more than |V |/2 platoons each containing 2 or more ATs.

Hence, the solution approach incorporating MISs is not computationally expensive.

With the updated Cr,k
1 and Cr,k

2 (r ∈ R, k ∈ K), the following two types of cuts are

included in the [MP] formulation in the next iteration:

xr,k
v ≤ 0 ∀v ∈ Cr,k

1 , k ∈ K, r ∈ R (2.42)

xr,k
v1 + xr,k

v2 ≤ 1 ∀v1, v2 ∈ Cr,k
2 , k ∈ K, r ∈ R (2.43)

where cuts (2.42) prevent a single AT from being assigned to an infeasible path; and

cuts (2.43) ensure that two ATs with conflicting time windows are not assigned to

the same platoon.

In addition, one can also stop the solution process of the [MP] before attaining its

optimality in the first a few [MP]-[SP] iterations. This will also accelerate the overall

solution process.
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2.5 Numerical case studies

We conduct numerical case studies to verify the applicability and effectiveness of the

proposed AT platoon scheduling model. Comparison against a benchmark scenario

where all the trucks are operated by human drivers reveals the platooning strategy’s

cost benefit and how this benefit is affected by key operating factors, including: i)

the number of ATs; ii) the platoon size limit; and iii) the cost parameters. All the

numerical experiments are coded in Java calling CPLEX 12.8 on a PC with 4GHz

and 8 Gb RAM. Section 2.5.1 describes the case studies. Section 2.5.2 examines the

computational performance of our solution procedure. The sensitivity analyses are

furnished in Section 2.5.3.

2.5.1 Case description and parameter values

We consider the heavy trucks traveling in the Hong Kong highway network illustrated

in Fig. 2.2. There are totally 31 pairs of neighboring on- and off-ramps, i.e.,

|Non| = |Noff | = 31. The location of each pair is illustrated by a black dot. Thus,

there are totally |R|=31×30=930 candidate platoon paths (note that a path should

not start and end at the same location). The lengths of these paths (dr, r ∈ R) are

obtained from the Google map.

Truck OD pairs are generated as follows. For a given |V |, we assume that all the |V |

origins and roughly one third of the |V | destinations are uniformly distributed in the

south half of Fig. 2.2; i.e., below the dashed line. This is because most economical

activities are conducted in this part of Hong Kong. The remaining destinations

are uniformly distributed in the north half of the figure. Euclidean distances are

calculated for dr,ov and dr,dv , r ∈ R, v ∈ V . The ratio of the length of a path to an

AT’s entire route, λr
v, can be calculated by λr

v = dr/(dr,ov + dr + dr,dv). For each

AT v ∈ V we assume ev = 1 + αω (h) and lv = ev + (1 + β) tmin
v (h), where ω is a

random variable uniformly distributed in [0, 1], and tmin
v denotes the travel time on
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Figure 2.2: The Hong Kong highway network and on-/off-ramp nodes

the shortest route from ov to dv. Parameter α ≥ 0 indicates the dispersion of the

earliest departure times. A larger α means that the ATs’ time windows are more

dispersed over the planning horizon, implying that they are more difficult to form

platoons. Parameter β ≥ 0 indicates the tightness of the time windows (Boysen

et al., 2018). A smaller β means the ATs have tighter time windows and thus less

redundancy to accommodate any detours needed for platoon formation.

We use the type of ATs presented in Zhang et al. (2017) with a 20-ton load, which

gives a = 1.08× 10−5 (liter · h2/km3) and b = 0.22 (liter/km). We further assume

that the AT cruise speed is s = 70 km/h. Thus, the fuel consumption rate of an

individually traveling truck is fB(s) = as2 + b = 0.27 liter/km. The diesel price is

set to p = 0.9 $/liter. 4 The labor cost rate is set to c = 15.91 $/h (Mayerle et al.,

2020). We further set q = 0.5, and the optimality gap ε = 10−6.

In addition, we assume the following air-drag reduction ratios: ϕ2 = 0.30, and

ϕm = 0.40,m ≥ 3. The values of ϕ2, and ϕ3 are borrowed from Deng (2016)

assuming a 20-m bumper-to-bumper spacing between consecutive ATs in a cruising

4This value is extracted from qiyoujiage.com (in Chinese).
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platoon (VanderWerf et al., 2001; Schakel et al., 2010; Tsugawa, 2014). Data for

ϕm when m ≥ 4 are absent in the literature. Thus, we assume ϕm = 0.40 for all

m ≥ 3. This assumption is conservative since Deng (2016) showed that ϕm should

be increasing with m.

2.5.2 Performance of the tailored CBC algorithm

We perform extensive computational experiments to verify the applicability and

effectiveness of the tailored CBC algorithm. We set L = 4 and α = 0.86 h, which is

the standard deviation of the shortest travel times tmin
v , v ∈ V We examine nine

instances with |V | ∈ {25, 45, 75} and β ∈ {0.05, 0.1, 0.5}. The runtimes and

solution quality of the CBC algorithm and CPLEX are summarized in Table 2.2. If

CPLEX returns an optimal solution within 1200s, the objective gap is 0. Otherwise,

the objective gap reflects the difference of best solutions obtained by CPLEX and

CBC in 1200s.

The tailored CBC algorithm could find the optimal solution in all the nine instances.

By contrast, CPLEX was unable to find the optimal solution in three of them,

although the objective gaps are small in those instances.

Table 2.2: Comparison between the CBC algorithm and CPLEX

Instance CPLEX CBC runtime (s) CBC runtime
CPLEX runtime

|V | β Objective gap Runtime (s)
25 0.05 10.91% 2.86 0.3 10.49%
25 0.1 1.24% 1200 14.1 <1.18%
25 0.5 0 56.4 1.7 3.01%
50 0.05 11.15% 14.34 1.0 6.97%
50 0.1 1.15% 1200 19.4 <1.62%
50 0.5 0 383.3 7.1 1.85%
75 0.05 12.03% 260 4.4 1.69%
75 0.1 0.83% 1200 148.4 <12.4%
75 0.5 0 870.1 19.7 2.26%

Regarding the computational performance, the CBC algorithm performed exception-

ally better for the more realistic instances with β = 0.1 or 0.5. In these instances,
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our algorithm could be over 50 times faster than CPLEX. The instances with β=0

(i.e., no redundancy for any detour) are much easier to solve since ATs must choose

their shortest routes. Even in those simpler instances, the CBC algorithm performed

generally better than CPLEX.

2.5.3 Sensitivity analyses

We examine the cost savings of the optimal AT platoon scheduling as compared

to the benchmark scenario where all the ATs travel individually. Three batches of

sensitivity analyses are conducted on the cost savings with respect to: (i) the size

limit of platoons ; (ii) the ratio between unit labor and fuel cost rates; and (iii) the

dispersion and tightness of AT travel time windows, respectively.

Sensitivity to the platoon size limit

For the first batch of analyses, we assume α=0.86, β=0.5, and |V | ∈ {25, 45, 75}.

An instance is generated with randomly selected AT ODs and time windows for

each value of |V|. Each instance is solved with different values of L ∈ {2, 3, 4, 5, 6, 7}.

Results are plotted in Fig. 2.3. As expected, the percentage cost saving of optimal

Figure 2.3: Percentage cost saving versus platoon size limit
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scheduling of AT platoons increases with L and |V |. The improvement by using

a larger L is sizeable. For example, when |V |=75, allowing 6-AT platoons instead

of allowing 2-AT platoons only would bring an additional cost saving of 7%. It is

also observed from the figure that the marginal cost saving brought by increasing

L by one unit is decreasing with L. When L is sufficiently large (e.g., when L=5

for the instance of 25 ATs), further increasing L would not produce additional cost

saving.

Sensitivity to the labor-fuel cost ratio

In this batch of analyses, we use the same three instances as above. The L is fixed

at 3. We define the labor-fuel cost ratio as the ratio between the unit labor cost per

km, c/s, and the unit fuel cost per km for an individually traveling AT, p(as2 + b).

We let this ratio vary from 0.5 to 10. Fig. 2.4a plots the percentage cost savings of

optimal platoon scheduling against that ratio for the three instances.

(a) Percentage cost saving (b) Average platoon size

Figure 2.4: Sensitivity to the labor-fuel cost ratio

Results show that the percentage cost saving increases rapidly with the labor-fuel

cost ratio. For example, the cost saving increases from 10% to 25% when the

ratio increases from 0.5 to 10 in the instance of 75 ATs. (Even greater increases

are observed for larger L values.) This finding manifests that the cost saving of

AT platooning is mainly contributed by the reduction of drivers. The finding is
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consistent with the literature (Larsen et al., 2019) and is explainable. Note that

the fuel cost saving (if any) would be minor since the AT detours required to form

platoons will consume more fuel and erode the fuel saving accrued from air-drag

reduction. Fig. 2.4a also shows that the cost saving increases with the cost ratio at

a decreasing rate. This is also intuitive because the percentage cost saving has an

upper bound when the labor-fuel cost ratio approaches infinity. That upper bound

is dictated by the percentage reduction of drivers.

On the other hand, Fig. 2.4b shows that the average platoon size is insensitive

to the cost ratio. This indicates that the cost ratio may have little impact on the

optimal platoon assignment when the time windows are not tight.

Sensitivity to the AT travel time windows

In the last batch of experiments, we fix L=3 and |V |=25, but let the time window

dispersion indicator α take values in {0, 0.5, 1, 1.5, 2, 2.5} and tightness indicator

β take values in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The cost parameters take the values

specified in Section 2.5.1. Fig. 2.5a and b plot the percentage cost savings and

average platoon sizes,respectively, for the 6× 7 = 42 combinations of α and β values.

Darker colors indicate larger values.

(a) Percentage cost saving (b) Average platoon size

Figure 2.5: Sensitivity to the time window parameters (α, β)
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The figures show that both metrics decrease with α but increase with β. Note that

when α=0 and β=0.6 (the upper-left corner), optimal AT platooning can save 26.7%

of the total cost with an average platoon size near the upper limit 3. On the other

hand, when α=2.5 and β=0 (the bottom-right corner), nearly all the ATs will travel

individually, and the cost saving is close to 0. This is expected since a smaller α

means different AT’s time windows are largely overlapped, and the ATs are more

likely to be platooned without violating the time window constraints. Similarly, a

greater β means ATs can undergo more detours and adjust their departure times

more flexibly to form platoons. Also note that the gradients in these contour plots

would be greater when L takes larger values.

2.6 Summary

This chapter studies the optimal scheduling schedule considering the size-dependent

costs under hard time window. The proposed model is developed from the perspective

of central planners, taking into account the inefficiency in the process of platoon

construction. Decisions regarding platoon composition, scheduling and routing are

made at the same time. In addition, we propose a customized CBC algorithm to

solve the scheduling problem. Numerical experiments provide general conclusions

and specific findings. The results show that with the increase of the size limit of the

platoon, the profitability of the platoon can be improved.

Future work should be devoted to a large number of ATs, more flexible platoon-

ing rules, and more complicated network topologies. Also, it seems necessary to

synchronize the driver scheduling and ATs scheduling to accommodate practical

regulations.
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3Can Autonomous Trucks Reduce the

Driver Shortage: Potentials and

Scheduling

3.1 Introduction

Truck is the dominant transportation mode in the freight transportation department,

70.6% of all freight tonnage is moved on the US highways. Despite the economic

importance, the trucking industry is suffering from the shortage of drivers these days.

The US has seen a shortage of 20000 in 2005 growing to 50700 by 2017 (Costello and

Karickhoff, 2019). The driver shortfall is expected to rise as freight volumes recover

and the industry transitions to the use of electronic logging devices (ELD) to record

driver hours-of-service (HOS) after the COVID-19 pandemic. Previously, truck

drivers have an incentive to violate HOS rules because the industry’s widespread use

of piece-rate pay can incentivize them to work more hours than legally permitted

(Masten, 2009; Scott and Nyaga, 2019). However, it becomes more difficult to falsify

when the total freight trip is recorded by the mandatory ELD in each truck in 2020.

As freight volumes increase, the existing driver pool is only more strained.

This trend imposes new challenges on the sustainability and profitability of freight

carriers. The implementation of ELD under HOS in deed stimulates the demand of

truck drivers, and thus pushes the labor price. Driver compensation is the largest

component of operational costs for a motor carrier (Williams and Murray, 2020),

which consists of 43% of trucking’s operational costs according to the American

Transportation Research Institute.

Wrenn (2017) suggests that autonomous truck (AT) platoons is useful in addressing

the driver shortage, especially for long-haul trips. From the profitability perspective,
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cost savings derived from highly automated vehicles include fuel savings and reduced

number of drivers in the following ATs. Lammert et al. (2014) examined more than

57000 vehicles on over 210 million miles in the United States to find that 55.7%

vehicle-miles are "platoonable". To what extend those advantages of AT platooning

indeed can be realized is heavily dependent on the AT platooning planning and

management strategy. Strategies to improve the platooning opportunities on a

specific route or over a wide traffic network have been investigated by many recent

studies (Larsson et al., 2015; Larson et al., 2016; Sokolov et al., 2017). Stehbeck

(2019) develops a mixed integer program to investigate the benefits of platooning

on labor-cost saving. Nevertheless, few of them focus on the optimization on fleet

operations confined to practical freight transport constraints like driver schedules.

Driver scheduling problems has been studied in various context: for trains veelenturf,

buses chen 2013, and for trucks(Goel et al., 2012). At the core, these literature

considers the assignment of a series of tasks to drivers and the corresponding order

to conduct for drivers (Lin and Hsu, 2016; Ma et al., 2016). To solve the driver

scheduling problem without HOS regulations, heuristic algorithms are widely used

(Shen and Kwan, 2001; Shen et al., 2013).

On a related note, driver scheduling problems under HOS regulations triggers a

heated discussion recently. Most of these work tried to construct a feasible schedule

for a given route in conformity with a country legislation (Tilk et al., 2017; Tilk

and Goel, 2020). Archetti and Savelsbergh (2009) have considered the problem of

determining how a sequence of full truckload transportation requests, each with

a dispatch window at the origin, can be executed by a driver in conformity with

the HOS regulations. Their algorithm can find a feasible schedule in polynomial

time, if one exists. However, the problem gets much more complicated if an optimal

schedule towards some objective is desired. Xu et al. (2003) conjecture that the

problem of minimizing total costs of all on- and off-duty times for a given tour is

NP-hard in the presence of US HOS regulations.
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To conclude, the coordination between driver shifts and the AT platooning scheduling

has gone unnoticed in the previous literature. More importantly, the problem is

more complicated since the decisions on service sequence of transport requests, AT

platoon formation and driver assignment are intertwined. In addition, The answers

to such problems indeed will testify whether AT platooning is financially reliable

in reality and play a crucial role in adoption process of AT platoons. Therefore, it

is worth studying the combined scheduling problems of AT platooning and drivers

under HOS regulations.

The rest of the chapter is organized as follows. Section 3.2 describes and analyzes

the problem of scheduling of drivers and AT platoons under the HOS regulations. A

mathematical model is given in section 3.3. A branch and price algorithm embedded

with column generation is developed in Section 3.4. Experiments are conducted in

Section 3.5 to validate our solution approach.

3.2 Problem statement

Consider a fleet manager who employs ATs and dedicated drivers to complete

mainline haulage from a depot to several destinations indexed by j, j ∈ J , (e.g.,

seaports or regional distribution centers); see Fig. 3.1. We assume that each freight

transport request i ∈ I is a unit demand destined for j ∈ J , i.e., freight of a full

truckload. In the freight transportation, a request is typically associated with a time

window negotiated by the shipper and the carrier to ensure in-time delivery that

also allows for some flexibility regarding preparation, administrative procedures and

traffic congestion (Bhoopalam et al., 2018; Johansson et al., 2018). We have binary

parameter zij,i ∈ I, j ∈ J to equal 1 if request i’s destination is j and 0 otherwise.

We suppose that each request’s departure time from the depot is bounded by a time

window denoted by [ei, li]. A group of drivers denoted by S are assigned to operate

AT platoons to serve these requests. At the beginning of the planning horizon, all
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ATs and drivers are based at the depot. We assume there are sufficient ATs and our

focus is on the assignment of truck drivers.

ATs bound for the same destination can form platoons, each operated by one driver

in the leading AT, to reduce fuel consumption and save labors. Longer platoons can

achieve greater fuel and labor savings (Liang et al., 2015; Aarts and Feddes, 2016).

However, the number of ATs in a platoon is constrained by a predefined size limit,

L, to ensure safe driving and alleviate the disruptions to the general traffic. For

generality, an independently-driven AT is treated as a single-AT platoon. From the

standpoint of drivers, each trip consists of two directions, one from the depot to the

destination, (i.e., the outbound direction shown by the solid lines in Fig. 3.1) and

the return trip (the inbound direction shown by the dash lines). Let tj0, j ∈ J denote

the non-stop driving time in each direction between the depot and destination j.

For simplicity, we further assume that the loading and unloading time is factored

into tj0.

Figure 3.1: Illustration of mainline haulage by AT platoons

A platoon’s actual travel time is the sum of the non-stop driving time and necessary

break and rest times following the hours of service (HOS) regulations. The fleet

manager aims to minimize the driver needed in the planning horizon by determining:

(i) the size and dispatch time of each AT platoon; and (ii) the assignment of drivers
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to the platoons complying with the driver working hour regulations. We describe

the HOS and driver states next.

Since it is impossible present a full list of HOS regulations worldwide, this chapter

focuses on the regulations enacted in the United States and the European Union.

Specifically, we examine the regulations applied to seven consecutive days (7 ×

24h) in this chapter. More details can be found in Federal Motor Carrier Saftey

Administration (FMCSA) (2020, 2010) and European Union (2014, 2006). Both

HOS regulations impose mandatory time constraints on four types of driver activities:

driving time, breaks, rests, and working time. The driving time refers to the period

during which a driver is operating a vehicle. A break refers to a short period

exclusively used for recuperation during which a driver must not carry out any work.

A rest is a long period during which the driver is off duty and has a free disposal of

his time (e.g., for sleeping). Finally, the the working time is all the time a driver is

on duty for driving and non-driving jobs (such as paper checking and communication

with customers). For simplicity, this chapter ignores the working time constraints

because there are many types of non-driving jobs and their durations and correlations

are difficult to define (Regan et al., 2011). In addition, most of a driver’s working

time is spent on his shift driving (Soccolich et al., 2013).

Specifically, we define the following parameters to describe an HOS regulation.

Denote τB the maximum driving time a driver can perform since his last break or

rest before he needs to break again; τR the maximum driving time a driver can

perform since his last rest before he needs to rest again; ωB the minimum duration

of a break; and ωR the minimum duration of a rest. Values of these parameters

under the US and EU regulations are summarized in Table 3.1. In addition, we

stipulate the following:
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• A break or a rest must be an uninterrupted period satisfying the minimum

duration constraint. Two separate periods, each less than ωB (ωR) cannot be

paired up to be a break or a rest.

• By having a rest, a driver also fulfills the requirement of having a break. For

example, under the US regulation, if a driver drives for 7 hours without a

break and then has a rest, he will be able to drive another 8 hours without

any break.

• All drivers are fully rested at the beginning of the planning horizon.

Table 3.1: HOS regulations in the US and EU

Parameter Values in DescriptionUS/EU,h

τB 8 / 4.5 the maximum driving time between two
consecutive breaks

τR 11 / 9 the maximum driving time between two
consecutive rests

ωB 0.5 / 0.75 the minimum duration of a continuous break period
ωR 10 / 11 the minimum duration of a continuous rest period

A schedule should specify the sequence of trips and the timeline of driving and

non-driving activities (e.g., breaks and rests) within a trip for each driver. A typical

driver schedule during the planning horizon is illustrated in Fig. 3.2, where trips

k and k+1 are two consecutive round trips.The idle time between two consecutive

trips can be a rest, a break or a wait if it is shorter than ωB. A wait has no

influence on the driver state. To model the HOS constraints, we define three decision

variables to describe the state of drivers: ts,k
start, T s,k

B and T s,k
R , s ∈ S, k ∈ K. The

ts,k
start and ts,k

end denote the departure and the returning times of the kth trip of driver

s, respectively. The T s,k
B and T s,k

R are the remaining driving times at the beginning

of the trip k before a break and a rest are needed, respectively. We will elaborate

on the relationship between theses driver states variables and driver activities in

Section 3.3.2.
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Figure 3.2: An example schedule of a driver

3.3 Mathematical model

We present the model for AT platoon and driver scheduling under the EU and US

HOS regulations. But the model can be easily adapted to other HOS regulations.

Section 3.3.1 summarize the notations used in the model. To further reduce the

complexity, we first develop an upper bound of a driver’s round trip time in Section

3.3.2. Section 3.3.3 presents the constraints for coordinating the AT platoon schedules

with the driver schedules. Finally, a mixed integer linear program (MILP) formulation

built upon the upper bound of round trip times is furnished in Section 3.3.4.

3.3.1 Notation list

Indices and sets

i Index of a freight transport requests

s Index of a driver

k Index of a trip

n Index of a platoon

j Index of a transport request destination

I Set of freight transport requests

S Set of drivers

K Set of round trip indices

N Set of AT platoons

J Set of transport request destinations

Parameters
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tj0 The driving time in a single trip from the depot to the

destination j, hour

qj The integer number of τR in the driving time of a round

trip destined for destination j

∆tj The time after subtracting an integer multiple of τR from

the driving time of a round trip destined for destination

j, hour

τB The maximum non-stop driving time between two con-

secutive breaks, hour

τR The maximum total driving time between two consecu-

tive rests or a break and a rest, hour

ei The earliest departure time of request i from the depot,

hour

li The latest departure time of request i from the depot,

hour

T s,k
B The remaining non-stop driving time before a break must

be taken at the beginning of the kth trip of driver s, hour

T s,k
R The remaining total driving time before a rest must be

taken at the beginning of the kth trip of driver s, hour

t
j, tj The maximal and minimal travel time to destination j

under a given trip plan, respectively, hour

L The size limit on a platoon

zij A binary variable that equals 1 if request i’s destination

is j and 0 otherwise

ωB The duration of a break, hour

ωR The duration of a rest, hour

Decision variables
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xijn A binary variable that equals 1 if request i to destination

j is satisfied through platoon n and 0 otherwise

Qs A binary variable that equals 1 if the driver s is assigned

a trip and 0 otherwise

tdep
nj The departure time of a platoon n at the depot with

destination j, hour

ys,k
nj A binary variable that equals 1 if platoon n to destination

j is assigned to the kth trip of driver s and 0 otherwise

ts,k
start The start time from the depot of the kth trip of driver s,

hour

3.3.2 An upper bound of the round trip time

We find that the problem is too complicated to find an exact solution. Thus, we

formulate our problem to find a tight upper bound of the minimum drivers needed.

This formulation relies on an upper bound of a round trip’s travel time, which is

derived next.

To derive that upper bound, we suppose that the breaks and rests within a trip

are arranged in the naive method proposed by Goel (2009),i.e., a break or rest is

taken until the respective regulated driving times are used up. In this way, the total

driving hour between two consecutive rests is exactly τR. Note that this method

produces an upper bound of the round trip time. Applying this method to the EU

or US HOS regulations, we have the following observation regarding the travel time

of a round trip:

• Only one break will occur between two consecutive rests.

• At most one break will be taken before the first rest in the round trip.
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• At most one break will be taken between the last rest of the round trip and

the returning time to the depot.

• The number of rests during the round trip is and qj satisfying 2tj0 = qj ·τR+∆tj ,

(the remainder ∆tj < τR ).

Proposition 3.3.1. The total travel time of the kth round trip, ts,k
j , is a function

of the driver state (T s,k
B , T s,k

R ) at the depot before the trip begins. The function can

be derived analytically.

Proof. For simplicity, we leave the index of trip destination j out of this proof. In

other words, we use t0, q, ∆t, and ts,k instead of tj0, qj, δj
t , and ts,k

j .

Since 2t0 = q · τR + ∆t, the total number of rests, rests,k, in this round trip (i.e.,

the kth trip of driver s),can be given by Eq. (3.1).

rs,k
(
T s,k

R

)
=


q, if T s,k

R −∆t > 0;

q + 1, otherwise.

(3.1)

Let bs,k
1 , bs,k

2 , and bs,k
3 denote the numbers of breaks taken before the first rest,after

the last rest, and between the first and last rests, respectively. From the first

observation above, we know that bs,k
3 = rests,k − 1. In addition, bs,k

1 and bs,k
2 are

given as follows:

bs,k
1

(
T s,k

R , T s,k
B

)
=


1, if T s,k

R − T s,k
B > 0;

0, otherwise.

(3.2)

bs,k
2

(
T s,k

R , T s,k
B

)
=


1, if 2t0 − T s,k

R − τR · (rs,k − 1) ≥ τB;

0, otherwise.

(3.3)
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The total number of breaks is bs,k
1 + bs,k

2 + bs,k
3 = rests,k − 1 + bs,k

1 + bs,k
2 , and the

round trip travel time ts,k is

ts,k = ωB ·
(
rs,k − 1 + bs,k

1 + bs,k
2

)
+ ωR · rs,k + 2t0 (3.4)

Table 3.3 lists all the cases for calculating ts,k. Proposition 3.3.1 follows directly

from Table 3.3.

Lemma 3.3.1.1. The maximum and minimum of the round trip travel time denoted

by tj, tj, are (q + 2)ωB + (q + 1)ωR + 2t0 and (q − 1)ωB + qωR + 2t0, respectively.

The difference between them is ωR + 3ωB for all destinations.

Proof. This follows immediately from the results in Table 3.3 .

Fig. 3.3 presents a typical case for calculating the round trip time EU HOS

regulations when ∆t+ τR − τB ≥ τB. Areas in same color corresponds to the same

round trip time. The number in each area represents the row of ts,k in Table 3.3.

A direct application of the above proposition is that by approximating the round

(a) ∆t ≥ τB (b) ∆t < τB

Figure 3.3: Typical cases for the round trip travel time under the EU HOS regulation

trip time at its maximum (given the specific HOS regulations and the non-stoping

driving time). Using the upper bound ensures the HOS regulation is satisfied. This

will render a conservative estimate of the number of drivers needed.
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3.3.3 Coordination between schedules of AT platoons and drivers

This section formulates constraints that link up the schedules of AT platoons

and the driver schedules. Denote the departure time of a platoon n ∈ N with

common destination j by tdep
nj , which should satisfy all time windows of its members.

The following binary variables are defined: xijn, i ∈ I, n ∈ N , that equals 1 if

the request i destined for j is assigned to platoon n and 0 otherwise; and ys,k
nj ,

n ∈ N, j ∈ J, s ∈ S, k ∈ K be 1 if platoon n to destination j is assigned to the kth

trip of driver s and 0 otherwise. In addition, denote ts,k
start the start time of driver

s’s kth trip.

−M · (1− ys,k
nj ) ≤ ts,k

start − tdep
nj ≤M · (1− ys,k

nj ) s ∈ S, k ∈ K,n ∈ N, j ∈ J (3.5)

ts,k+1
start − ts,k

start ≥ t
j ·
∑
n∈N

ys,k
nj s ∈ S, k ∈ K\{|K|}, j ∈ J (3.6)

xijn · ei ≤ tdep
nj ≤ xijn · li i ∈ I, n ∈ N (3.7)

xijn ≤ zij i ∈ I, n ∈ N, j ∈ J (3.8)

Constraint (3.5) ensures that the start time of a trip equals the departure time

of the assigned platoon„ where M is a sufficiently large number. Any value of M

greater than or equal to the planning horizon will suffice. Constraint (3.6) states

that the interval between two consecutive trips should be larger than the upper

bound of the round trip time, tj. This constraint guarantees that the next trip of

the same driver must start after the previous trip is completed. Constraint (3.7)

defines the scope of the departure time of a platoon. Constraint (3.8) guarantees

that only the requests with a common destination can be grouped in a platoon.
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3.3.4 A MILP formulation

Now we formulate the mathematical program to minimize the maximal number of

driver needed. To this end, we introduce an indicator function

Qs =


1,

∑
n

∑
k

ys,k
n > 0

0,
∑

n

∑
k

ys,k
n ≤ 0

, s ∈ S (3.9)

Eq 3.9 states that the binary variable Qs equals 1 if a driver s is deployed to serve

at least one trip and 0 otherwise. To linearize constraint (3.9), we replace it with

the following inequalities:

−M (1−Qs) ≤
∑
n∈N

∑
k∈K

ys,k
n − 1 s ∈ S (3.10)

∑
n∈N

∑
k∈K

ys,k
n ≤MQs s ∈ S (3.11)

where M ≥ |I| is a sufficiently large number.

Now the MILP model for the AT platoon and driver scheduling under an HOS

regulations is given below:

[M1]

min
∑
s∈S

Qs (3.12)

subject to

∑
n∈N

∑
j∈J

xijn = 1 i ∈ I (3.13)

∑
i∈I

xijn ≤ L n ∈ N, j ∈ J (3.14)

∑
s∈S

∑
k∈K

ys,k
nj ≤ 1 n ∈ N, j ∈ J (3.15)

∑
n∈N

∑
j∈J

ys,k
nj ≤ 1 s ∈ S, k ∈ K (3.16)
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0 ≤ ts,k
start ≤ 168 s ∈ S, k ∈ K (3.17)

0 ≤ tdep
nj ≤ 168 n ∈ N, j ∈ J (3.18)

xijn ∈ {0, 1} n ∈ N, i ∈ I, j ∈ J (3.19)

ys,k
nj ∈ {0, 1} n ∈ N, s ∈ S, k ∈ K, j ∈ J (3.20)

Qs ∈ {0, 1} s ∈ S (3.21)

Constraints (3.5)− (3.8), (3.11).

Constraint (3.13) guarantees that each request is served by one platoon. Con-

straint (3.14) states the size limit on platoons. Constraint (3.15) states that each

platoon can only be assigned to one trip of one driver. Constraint (3.16) guarantees

that a driver can only serve one platoon in a trip. Constraints (3.17)−(3.20) specify

the ranges of decision variables. Note that constraint (3.10) is dropped since the

objective (3.12) is in a minimization fashion.

3.4 Solution approach

The [M1] is so complicate to be solved for large scale instances. Thus, in what

follows, we solve a simplified case with only one destination. A branch and price

algorithm embedding column generation is used.

We reformulate the problem as a set covering model by using the Dantzig-Wolfe

decomposition (Vanderbeck, 2000) in Section 3.4.1. The column generation process

is described in Section 3.4.2. The corresponding pricing subproblem is solved in

Section 3.4.3.

3.4.1 A set covering model

Let p ∈ P be a feasible sequence of AT platoons that served by a driver and P the

set of all feasible AT sequences. Here "feasible" means each request is met at most

once, and all the time windows constraints, platoon size limit, HOS regulations are
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satisfied. Define a set of binary decision variables {λp} equals 1 if the sequence

p ∈ P is chosen in the solution and 0 otherwise , and a set of binary parameters,

{ap
i } that equals 1 if AT i ∈ I is served by the sequence p ∈ P and 0 otherwise.

Thus, minimizing the total drivers assigned is equivalent to minimizing the number

of sequences chosen. The resulting set covering model is formulated as follows:

[M2]

min
∑
p∈P

λp (3.22)

subject to

∑
p∈P

ap
iλp ≥ 1 ∀i ∈ I (3.23)

λp ∈ {0, 1} ∀p ∈ P (3.24)

Constraint (3.23) ensures that each request is served at least once. The domain of

binary variables are given by constraint (3.24).

3.4.2 Column generation (CG)

If we relax the integrality constraint 3.24 in [M2], the resulting model is referred

to as the master problem. This linear relaxation involves an exponential number

of columns (variables). Therefore, we apply the column generation scheme which

starts by solving a restricted master problem (RMP) defined on a subset of columns,

P ′ . In each iteration, new feasible columns are generated by solving the pricing

subproblem to expand the feasible sequence set P ′ .

The RMP formulation is similar to [M2] except that the integrality constraint is

relaxed and P is replaced by P ′ . We present it here for readers’ convenience:

[M3]

min
∑

p∈P ′
λp (3.25)
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subject to

∑
p∈P ′

ap
iλp ≥ 1 ∀i ∈ I (3.26)

λp ≥ 0 ∀p ∈ P ′ (3.27)

We first generate an initial sequence set as P ′ by simply assigning each request to

one distinct driver; i.e., each driver completes only one trip and each trip serves only

one request.

Let π be the dual vectors associated with constraint (3.23). In each CG iteration, the

dual vector is used as the input parameters of the pricing subproblem for generating a

new feasible sequence (i.e., column) with the lowest reduced cost. The CG procedure

terminates when the lowest reduced cost is non-negative, indicating that adding

more sequences to P ′ will not further decrease the objective of [M3].

3.4.3 The pricing subproblem

The objective of the pricing subproblem is to identify the column associated with the

minimal reduced cost. Its feasible region defines a feasible sequence of AT platoons

assigned to a driver. The pricing subproblem is essentially a resource constrained

elementary shortest path problem (RCESPP), with two types of resource: time and

platoon size limit.

Specifically, we define a G (V ∪ {o, d}, A). Each node in subset VI for represents

a request (or equivalently, an AT that serves this request), and each node in VK

represents a platoon. Two dummy vertices, o and d, are also included to represent

the origin and destination of each path. Each node i ∈ VI is associated with its

cost −πi, platoon size consumption hi = −1, departure time window [ei, li], and

service time si = 0. And each node i ∈ VK is associated with its cost 0, platoon

size consumption hi = L, departure time window [ei = 0, li = 168] and service time
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si = t̄ (superscript j is omitted since only one destination is considered). There are

three types of arcs in A: (i) from node o to any request node i ∈ VI ; (ii) from node

i ∈ V to node j ∈ V , if j 6= i and [ei, li] ∩ [ej, lj] 6= ∅; and (iii) from any platoon

node i ∈ Vk to node d.

Now we present the pricing subproblem formulation with the following additional

decision variables:

• a set of binary variables {αi} that equals 1 if a request node i ∈ VI is included

in the sequence and 0 otherwise;

• a set of binary variables {βij} that equals 1 if a node i ∈ V is the precedent of

node j ∈ V in a sequence and 0 otherwise;

• Ti is the departure time at node i ∈ V ;

• Tij denoting the departure time at node i ∈ V if it is followed by node j ∈ V ;

• Li denoting the remaining platoon capacity at node i ∈ V ;

• Lij denoting the remaining platoon capacity at node i ∈ V ∪{o} if it is followed

by node j ∈ V .

Note that the subscript p does not apply to the above decision variables since the

pricing subproblem is solved for a single sequence. Given an optimal solution of the

restricted master problem, the pricing subproblem is formulated as follows:

[M4]

min c = 1−
∑
i∈I

πiαi (3.28)

subject to

∑
j∈VI

βoj = 1 (3.29)
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∑
i∈VK

βid = 1 (3.30)

∑
j∈V

βij =
∑

j∈V ∪{o}
βji ∀i ∈ V (3.31)

∑
j∈V

βij = αi ∀i ∈ VI (3.32)

ei ≤ Ti ≤ li ∀i ∈ V (3.33)

Tij + siβij ≤ Tj i 6= j,∀i, j ∈ V (3.34)

−M · (1− βij) ≤ Tij − Ti ≤M · (1− βij) i 6= j,∀i, j ∈ V (3.35)

Li = L ∀i ∈ VK (3.36)

Lij + hjβij = Lj i 6= j,∀i ∈ V ∪ {O}, j ∈ VI (3.37)

Li ≤ 0 ∀i ∈ V (3.38)

−M · (1− βij) ≤ Lij − Li ≤M · (1− βij) i 6= j,∀i, j ∈ V ∪ {o} (3.39)

αi ∈ {0, 1} ∀i ∈ V (3.40)

βij ∈ {0, 1} i 6= j,∀i, j ∈ V (3.41)

Objective (3.28) minimizes the reduced cost of a feasible sequence. Constraints (3.29)-

(3.31) ensure the flow conservation. Variable βij is linked to αi in constraint (3.32).Con-

straints (3.33)-(3.35) define the relationship between the departure times in a se-

quence. Specifically, if i is a request node, (3.34) stipulates that the departure

time of its following node (whether that is a request or platoon node) is no later

than node i’s departure time. On the other hand, if i in (3.34) is a platoon node,

the upper bound trip time t̄ will be added between the departure times of node i

and its following one (which is a request node or node d). Constraint (3.36)-(3.39)

guarantee the platoon size limit constraint. Specifically, (3.36) sets the remaining

platoon capacity Li to L for node o and each platoon node i ∈ VK . Constraint (3.37)

specifies that when an AT node is appended to the current platoon, Lj is subtracted

by 1. Constraint (3.38) guarantees that the remaining platoon capacity is always
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non-negative. Finally, constraints (3.40)-(3.41) define the ranges of binary decision

variables.

The pricing subproblem is solved by a label-setting algorithm, which finds a minimum-

cost elementary path from o to d within the planning horizon, 168h. Each node

i ∈ V is encoded by a label of the form (i, Ci, Ti, Vi, Li) recording a path from o

to node i ∈ V , where Ci, Ti, and Li are the cumulative cost, departure time, and

remaining platoon capacity at node i. Ni keeps track of all nodes visited before node

i in the sequence. At vertex o, the time label To is initialized at 0 and No = {−1};

cost Co is initialized to 1, which means a new driver is assigned.

The optimal solution is given by the path associated with the minimal cumulative

cost at destination node d. The efficiency of the labeling algorithm strongly depends

on the effectiveness of dominance rules employed to rule out non-optimal labels. We

introduce a dominance rule in the following proposition. Let I = (i, Ci, Ti, Vi, Li)

and I ′ = (i, C ′
i , T

′
i , V

′
i , L

′
i) be the two labels of different paths arriving at the same

node. We say I dominates I ′ (I � I ′) if all the following inequalities are satisfied

and at least one of them is strictly satisfied:

Ci ≤ C
′

i

Ti ≤ T
′

i

Vi ≥ V
′

i .

where Vi ≥ V
′

i means the size of the first list is larger than the second. The validity

of Proposition 3.4.3 is obvious A detailed proof can be found in Goel and Irnich

(2017).

To further improve the efficiency of the label-setting algorithm, we use two accelera-

tion techniques as follows.
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Unreachable request nodes. After setting the label at node i ∈ V , we can check

whether a neighboring node j ∈ V has become unreachable with the current resources.

A neighboring node is unreachable if extending the label to that node from the

current node would violate the platoon size limit or the time window constraint.

There is no need to extend the path from the current node to unreachable nodes

(Feillet et al., 2004). Then we can reduce the number of feasible labels and accelerate

the process of label comparison.

Dual stabilization. CG often experiences slow convergence when the solution is near

the optimum. This is called the tailing-off effect (Du Merle et al., 1999; Lübbecke

and Desrosiers, 2005). Inspired by Addis et al. (2012), we apply an ad hoc dual

stabilization method to fix the problem. Instead of using the dual vectors arising

from the RMP directly, a new formula to update the dual vector is adopted:

Φ̃ = µΦ + (1− µ)Φ, (3.42)

where 0 ≤ µ ≤ 1, and Φ is the incumbent best guess for the optimal dual vector.

The same as Wang et al. (2018), we initially set µ = 0.5 and then increase the value

of α by 0.05 in each interaction. Then in the following, the best guess Φ is set the

value of Φ̃ in last iteration. The column generation procedure is repeated until µ = 1

and no columns with negative reduced cost can be found.

The tailored label-setting algorithm is summarized as follows:

3.5 Numerical study

In this section, we run numerical experiments to validate the branch and price

algorithm for the AT platooning and driver scheduling problem under US HOS

regulations. ALL experiments are run on a PC equipped with a 3.6 GHz Dual Core

and an 8 GB RAM. The algorithms are programmed in Java and the RMP is solved

by CPLEX 12.8.
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Algorithm 1 The tailored label-setting algorithm
Input: π, G
Output: A shortest path from o to d
1: Step 1 Initialization: set the label of node o, l(o) = (0, 1, 0,−1, L); define

the label set of any node i ∈ V , L (i) = ∅; define the set of untreated labels,
L U = {l(o)}.

2: Step 2 Find the next label to be treated:
3: while L U 6= ∅ and i 6= d do
4: Arrange all the elements in L U , order them in ascending order, first with

respect to time and then cost.(Other orders can also be used). Suppose the
first element in the ordered list is the label l(i) = (i, Ci, Ti, Vi, Li).

5: Step 3 Label extension:
6: for Node j ∈ V adjacent to i do
7: Exclude nodes satisfying the rule of Unreachable ATs
8: if j 6∈ Li,Wi > 0, ej ≤ Ti + si ≤ lj then
9: Generate a new label l(j) of node j:Cj = Ci − πi, Tj = Ti + si and

Lj = Li + hi if j is a request node; Lj = L if j is a platoon node.
10: Add l(j) to L (j), and apply dominance rule in Proposition 3.3.1 to

identify the dominated labels. Remove them from both label set L (j)
and L U .

11: L U ← [L U ∪L (j)]
12: end if
13: end for
14: end while
15: Find l(d) ∈ L (D) with the minimum cost, denoted by l(d)∗.
16: Return The sequence of in permanent label l(d)∗.
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Numerical instances are created by modifying from the well-known vehicle routing

problem benchmark instances developed by Solomon (1987). Smaller instances are

generated here by using the only the first 25 nodes in the original data set. For

simplicity, we keep the names of instance IDs as it was. Time windows of demand

node of Solomon’s instances is used as the time windows of a request node. The

time windows of the origin, destination, and platoon nodes are set to [0, 168]. If a

node’s earliest departure time larger than 168− t, we reset it as 168− t− 1. The

size limit of a platoon is set to 3, and the non-stop driving time from the depot to

the destination is 10 hours. Thus, the maximum travel time t of a round trip is 47

hours according to Eq.(3.4) (note that ∆t < τB).

The initial solution is obtained by assuming that each driver only serves one AT

and no platoon is formed. Thus, the initial number of drivers equals the number of

request, and each path traverses only the origin, an request node, a platoon node,

and the destination.

Table 3.4 shows the optimal number of drivers needed and the runtimes with 25

requests under the US HOS regulations. All the 15 instances were solved within

250 seconds. During the implementation, we found that the acceleration techniques

have great influences on the algorithm efficiency.

3.6 Summary

This chapter considers the AT platooning and truck driver assignment problem.

Our model jointly optimizes the formation of platoons, the drivers required and

the resulting driver schedules under the HOS regulations. A branch and price

algorithm with column generation is developed. Numerical experiments validate the

efficiency.

Although the problem is considered under the EU and US HOS regulations, our

model and algorithm can be adapted to other nation’s regulations too. We can
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replace the driving hour related parameters by that in a new regulation system and

calculate the round trip time again. However, our model would fail if the driver

scheduling method changes. For example, if rests or breaks are allowed to be split

into smaller periods. In doing so, the driver scheduling can be very complicate,

which deserves to be considered separately. Our future research will also look into

exploring the coordination between AT platoons and driver schedules under different

personnel strategies although some simplifications must be made.
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Table 3.4: Results for 25 requests under the US regulation (t0 = 10h, t = 47h).

Instance ID Drivers needed Runtime (s)
C101 15 11.5
C102 16 40.1
C103 10 248.2
C104 13 7.2
C105 10 0.5
R101 10 0.6
R102 11 2.6
R103 12 0.7
R104 19 12.2
R105 9 1.6
RC101 10 1.2
RC102 9 1.2
RC103 10 1.4
RC104 14 1.0
RC105 11 7.2
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4Conclusions

Section 4.1 summarizes this dissertation’s contributions. Section 4.2 discusses

possible extensions of the current work.

4.1 Contributions

This thesis first investigates an optimal platooning schedule for ATs considering

platoon-size-dependent costs with hard time windows. The proposed model is

developed from a central planner’s view taking into account the inefficiencies in the

platoon building process. Decisions, including platoon composition, scheduling, and

routing are made simultaneously. The size for each platoon is not given in advance,

and the optimal number of ATs decides it in a platoon in turn. Furthermore, we

propose a tailored Combinatorial Benders Cuts algorithm to solve the scheduling

problem. Numerical experiments provide general conclusions as well as specific

findings. Generally, the proposed algorithm is valid to solve the problem much

faster. At a more specific level, the effects of the platooning schedules are influenced

by parameters like platoon size limit and the cost ratio between fuel and labors.

The results indicate that the profitability of the platoons can be increased as the

platoon size limit increase. Under the proposed schedules, more savings come from

the reduced drivers even when the driver wage is relatively low.

Meanwhile, to the best of our knowledge, we are the first to consider the coordinated

scheduling for AT platooning and truck driver assignment. In particular, the HOS

regulations are incorporated. The HOS regulations have been studied in the context

of vehicle routing and driver scheduling, but the previous methods are not applicable

because the time windows of tasks to be served by drivers are not given when AT

platooning is considered. More importantly, the time windows and formation of the
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AT platoons are mutually impacted with the schedule of drivers. Our branch and

price algorithm embedded with column generation can solve the problem efficiently.

4.2 Future work

Viewing the limitations of this thesis, two future directions are articulated in this

section to consolidate the studies on truck platooning management. The first

continues the exploitation of endogenous benefits within the truck platooning system

by providing a real-time itinerary planning model. The second study will explore

the coordination between driver schedules and AT platoons on a more complicated

network.

Truck operations are highly disaggregated and stochastic over time and space due to

demand uncertainty and huge amount of carriers. To address the more complicated

scheduling problem, future work should be devoted to a large number of ATs, more

flexible platooning rules, and more complicated network topologies. If another can

pick up an existing platoon, dynamic programming is required to be developed to

handle the in-time platooning decisions for each group along the trip heading to

the destination. An efficient online algorithm can be developed to satisfy practical

needs.

Another area of development is to synchronize the driver scheduling and ATs

scheduling considering the routing problem. The selection of the merge point which

will affect the route of AT platoons, for example. The merge point also serves as a hub

terminal where idle drivers leave follower trucks and platoon leaders receive trucks.

Then the choice of merge point requires incorporating work shifts of drivers with the

platoon routes because otherwise, some truck drivers remain idle for an excessive

time span and others may be fatigue driving if assigned to a long journey.
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Appendix

A Proof of Proposition 2.4.1

Proof. Suppose that r1 and r2 are two platoon paths for AT v ∈ V with distances

dist1 ≤ dist2. Denote λi (i = 1, 2) the ratio of the path length dri
to the route

distance from ov to dv via path ri. We further denote δv,r1 and δv,r2 the travel costs

of v via paths r1 and r2, respectively. The former cost is maximized when v travels

individually, i.e.,

δv,r1 ≤
(
c

s
+ pfB

)
· dist1 (A.1)

On the other hand, the latter cost is minimized when v travels at the tail of a

platoon of L ATs. This way, v incurs no labor cost and enjoys the largest air-drag

reduction on the highways. Thus,

δv,r2 ≥
(
c

s
+ pfB

)
· dist2 −

c

s
λ2 · dist2 − p · as2ϕL · λ2 · dist2 (A.2)

From inequalities A.1 and A.2, we have:

δv,r2−δv,r1 ≥
{(

c

s
+ pfB

)
· dist2 −

c

s
λ2 · dist2 − pas2ϕLλ2 · dist2

}
−
(
c

s
+ pfB

)
·dist1

(A.3)

For AT v, path r2 is never better than r1 if δv,r2 ≥ δv,r1 is always true. This condition

is satisfied when:

(
c

s
+ pfB

)
· dist2 −

c

s
λ2 · dist2 − pas2ϕLλ2 · dist2 ≥

(
c

s
+ pfB

)
· dist1

⇐⇒ λ2 ≤
c
s

+ pfB

c
s

+ pas2ϕL

·
(

1− dist1
dist2

)
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B Framework of algorithm for the AT platooning
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