
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



ON THE MODELLING OF HIGH
DIMENSIONAL TIME SERIES

CHUNG KAM HIN

PhD

The Hong Kong Polytechnic University

2023



ii



The Hong Kong Polytechnic University

Department of Applied Mathematics

On the Modelling of High Dimensional
Time Series

Chung Kam Hin

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

September 2022



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Chung Kam Hin (Name of student)

iv



v



Dedication

I would like to dedicate my works to my parents and my brother.

Thanks God for his verse in German:

“Er aber sprach: Was bei den Menschen unmöglich ist, das ist bei Gott
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Abstract

Graphical models for high dimensional time series data visualize dynamics relation-

ships among variables which however need a huge number of parameters. Some of

them, indeed, fail to be estimated in some cases. To tackle these problems, this thesis

introduces a new sparse graphical vector, new matrix and new sparse graphical ma-

trix time series models, and studies an estimation problem encountered for modelling

the inverse of the high dimensional covariance matrix. Our first model, the sparse

graphical vector autoregressive (VAR) model, combines the sparse VAR model and

the sparse Gaussian graphical model to visualize causal dynamics and conditional

independence among variables. Its autoregressive (AR) coefficient matrix indicates

causal dynamics of variables, while a sparse entry of the inverse of the covariance

matrix (precision matrix) characterizes conditional independence between variables.

Three penalized likelihood estimation methods are used and a final model is selected

from all possible sparse graphical VAR models based on the Bayesian Information

Criterion (BIC). Under this setting, the model has the optimal sparsity combination

of the AR coefficient and precision matrices and its sparsity pattern is more robust

than that in existing sparse models, which require the sparsity pre-determined. We

develop an algorithm and prove that it is convergent. We also prove that the penal-

ized maximum likelihood estimators of the model are consistent and asymptotically

normally distributed. A simulation study shows that our minimax concave penalized

(MCP) graphical VAR models always have smaller BIC than the popular LASSO
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penalized models and their estimates are unbiased. We apply our models to the Pearl

River Delta air pollution data for illustration and compare the results with the ex-

isting models. Our MCP model has the minimum BIC. We, then, extend the vector

AR model to a matrix AR model with a precision matrix. This model has the AR co-

efficient matrices in the bilinear form. The left and right coefficient matrices explain

the row-wise interaction and the column-wise dependence respectively. This analyzes

the structured information under two categorical variables and reduces dramatically

the number of parameters. In connection with the sparse Gaussian graphical model,

we consider a sparse graphical matrix AR model with the optimal sparsity obtained

in the same way as our first model. Two algorithms are proposed and we proved

that they are convergent. A simulation study shows satisfactory results. Economic

indicator data are fitted for illustration. We compare our model results with their

corresponding existing models in the literature. The prediction sum of squared errors

of our models are smaller. Finally, the thesis resolves the precision matrix problem

encountered in the model estimation. The positive definiteness of the matrix is not

easily transformed as constraints in the maximization likelihood estimation. During

the estimation, a non-positive definite matrix iterate might be obtained after some

iterations and causes numerical errors in the log-likelihood function value calculation.

It leads to an estimation failure. We construct two algorithms to keep the precision

matrix iterates falling into the positive definite cone in the estimation process. We

test our algorithms on the failure cases of the constrained VAR model and our second

model. Both are found successful in estimation.
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Chapter 1

Introduction

1.1 Background

In the era of big data, data are high-dimensional and complex and models are getting

complicated. For example, an environmental study in Hu et al. (2016) aims to identify

the core locations of pollutants for management and to improve the air quality in

Hong Kong. Four air pollutants over three air pollutant monitoring stations for 1491

days were collected. To investigate the inter-relationship between the air pollutants

and between the locations, a vector autoregressive (VAR) model is sufficient, but

Hu et al. (2016) applied a more advanced model, a graphical model for multivariate

time series to visualize the inter-relationship. The most fundamental and widely used

multivariate time series model for multiple time series is the VAR model. Consider

a K-dimensional VAR process of lag order p

yt = ν +A1yt−1 + . . .+Apyt−p + ut,

where yt = (y1,t, . . . , yK,t)
T is a length K column vector, Al, l = 1, . . . p, are K ×K

autoregressive coefficient matrices, ν is a length K column vector of intercepts, ut =

(u1,t, . . . , uK,t)
T is a K-dimensional Gaussian innovation vector with mean 0 and

a K × K covariance matrix, Σu and t = 1, . . . , T . The model assumes that the

innovation ut is uncorrelated with all past innovations ut−i and observations yt−i for
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i = 1, 2, . . ., and the process can be viewed as a lagged autoregression of the current

value from the past p observations. Data can be modelled by a sufficiently high order

p.

The recent development on reducing the model complexity of the VAR(p) process

focuses on a sparse VAR(p) model. When the dimension, K, is large and the lag

order, p, is high, the model has a very huge number of parameters but it is not

necessary because insignificant values in the autoregressive coefficient and covariance

matrices can be replaced by zeros in the model. There are two existing approaches

for the act in the literature: a traditional approach which determines the sparsity

of a sparse VAR model using some statistics, such as partial correlation or spectral

coherence; and a sparse modelling approach which determines the sparsity using

penalties in the estimation objective functions. Both approaches aim to reduce an

unnecessary number of parameters in the VAR model.

The traditional approach for a sparse VAR model requires two stages, spar-

sity structure identification and constrained optimization for the estimation process.

Songsiri et al. (2009b) made use of the spectral density matrix to obtain the condi-

tional independence pairs of variables and apply convex relaxation to estimate sparse

autoregressive (AR) coefficient matrices of the VAR model. Davis et al. (2016) deter-

mined the sparse coefficients by partial spectral coherence and conducted constrained

maximum likelihood estimation. The selected VAR model is then refined to remove

spurious non-zero AR coefficients in the second stage. However, the sparsity struc-

ture of the inverse of the covariance matrix for undirected graphs is not identified in

Songsiri et al. (2009b) and Davis et al. (2016).

Another approach for constructing sparse VAR models is sparse modelling. It

is a penalized estimation method and was firstly proposed byTibshirani (1996) for

regression. A review of these sparse regression methods can be found in Filzmoser

et al. (2012). Hsu et al. (2008), Ren et al. (2013) and Songsiri et al. (2009a) imposed
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penalties on the ordinary least squares of residuals to obtain sparse coefficients. How-

ever, Song and Bickel (2011) discussed that this linear regression approach ignored

the contemporaneous dependence structure in time series.

To visualize the conditional dependence relationship among contemporaneous

variables, there exist many graphical models (Pearl et al. (1988), Lauritzen and Wer-

muth (1989),Whittaker (1990),Wermuth and Lauritzen (1990)). A Gaussian graph-

ical model gives an undirected graph on conditional independence among variables.

It consists of a set of edges and a set of vertices, where vertices represent variables

and an edge connecting the vertices represents that the corresponding variables are

conditional dependent. The graphical model originated from Dempster (1972)’s co-

variance selection problem. An iterative method is used to find out any conditional

independence between variables and the conditional independence between a pair of

variables is represented by a zero in the inverse of the covariance matrix (precision

matrix). Darroch et al. (1980) linked up the graphical models with log-linear mod-

els for discrete data. Detailed introduction to graphical modelling can be found in

Edwards (1995) and Lauritzen (1996).

A recent development in graphical models is sparse modelling. Champion et al.

(2017) estimated sparse directed acyclic graphs via lasso penalized likelihood. Dahl

et al. (2008) suggested an iterative algorithm for covariance selection with nonchordal

graphs, where the sparsity can be expressed as conditional independence constraints

in the maximization problem of the likelihood function of Gaussian graphical models.

Several researchers have linked the graphical models with time series. Brillinger

(1996) discussed how to explore the interrelationship among variables in the time

series process by graphs. Dahlhaus (2000) extended the undirected graphical models

to explore the condition dependence between variables of a multivariate time series
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process. Another VAR model, a structural vector autoregressive model, is considered

A0yt = A1yt−1 + . . .+Apyt−p + et,

where K is the dimension, yt = (y1,t, . . . , yK,t)
T is a length K column vector, Al, l =

0, 1, . . . p, are K ×K autoregressive coefficient matrices, et = (e1,t, . . . , eK,t)
T is a K-

dimensional Gaussian innovation vector with mean 0 and aK×K diagonal covariance

matrix, Du and t = 1, . . . , T . It gives a direct acyclic graph for presenting the causal

dynamics between contemporaneous and past variables. When it is transformed

into a canonical form, the covariance matrix is converted to a generally structured

covariance and may not be sparse. Without the sparse entries in the covariance

matrix, the conditional independence between contemporaneous variables could not

be identified. The more recent development of graphical time series models can be

found in Tunnicliffe Wilson et al. (2015).

A sparse graphical VAR model is needed for illustrating the high-dimensional

lagged variable dynamics and the contemporaneous variable relationship. Yuen et al.

(2018) proposed a constrained graphical time series model which initially identified

the sparsity by partial cross-correlation in the time domain approach and partial

spectral coherence the in frequency domain approach. The identified sparsity of the

AR coefficient matrices becomes a sparsity constraint for the inverse of the inno-

vation matrix. As a result, both the estimated AR coefficients and the inverse of

innovation covariance matrices are sparse. However, it does not allow other sparsity

patterns for the parameter matrices in the VAR model and may not generate the

best model in some situations. We, therefore, apply the sparse modelling concept

to the likelihood function to develop a novel sparse graphical vector autoregressive

model. The resulting model is a combined version of the sparse VAR(p) process and

the sparse graphical model. The sparse pattern is more robust and flexible. More

details will be discussed in Chapter 2.
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The VAR(p) model is likely to have an over-parametrization problem and is,

indeed, not capable to capture the structured information between two categorical

variables. For example, in a study of economic indicators over five countries, data are

collected under two classifications. A traditional method is to analyze the data by two

autoregressive time series models. And a convention for handling the matrix-variate

observations is to treat these multiple observations as a vector. However, the number

of parameters is large and the relationship between the indicators among countries

is very complicated. Other traditional data analysis methods include dynamic factor

analysis (Bai and Ng (2011), Forni et al. (2000); Lam et al. (2011)). Tsai and Tsay

(2010) added group constraints in a factor model for the time series. Hallin and

Lǐska (2011) decomposed the time series into blocks and conducted factor analysis.

There is a need on keeping the structural information and further dimension

reduction to avoid over-parameterization.

An extension to a matrix autoregressive (MAR) model is a new direction. Chen

et al. (2021) proposed a very simple matrix time series model by applying a bilinear

regression concept to the autoregressive time series models. The bilinear regression

comes from a growth curve model and the bilinear form allows complete interpretabil-

ity over the original matrix structure. von Rosen (2018) gave the theoretical details.

The matrix time series model has a product of three matrices as a similar bilinear

form of bilinear regression and an innovation matrix. The middle matrix of the

bilinear form is a data matrix at time point Xt. The left matrix is a coefficient

matrix which investigates the row-wise interactions, while the right matrix is an-

other coefficient matrix which examines the column-wise dependence. The existing

MAR model is yet not adequate for a more complicated data structure. Chen et al.

(2021) developed the model up to lag order one. In addition, the MAR model fur-

ther dramatically reduces the number of parameters by introducing the structured

innovation covariance tensor. i.e. The model assumes row-wise and column-wise
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innovation relationship covariance matrices. This might be too restrictive in many

applications.

A more general matrix time series model is proposed in Chapter 3 to fill the

gaps. The matrix time series model needs a more general covariance structure and

assumes innovations which may not exhibit completely independent row-wise and

column-wise relationships. A graphical presentation will be investigated. In addition,

a sparse graphical version is explored in the chapter for model visualization of high-

dimensional data.

Our last topic to be covered relates to the estimation of a high-dimensional co-

variance matrix, which plays, in whatever models, an important role in presenting

variable correlations and dependence.

Lots of papers in the literature present a solution to handle the cases when the

covariance is not positive definite or it is low-ranked. Bai and Shi (2011) reviewed

various methods of reducing the number of parameters for covariance matrix esti-

mation. In the context of asset return, the shrinkage method gives a covariance

estimator based on the linear combination of a single index model and the sample

covariance. In a factor model, the estimated factor vector and the estimated factor

covariance matrix are used to construct a quadratic form and this quadratic form

added with a diagonal matrix of the variance of the noise estimates the sample co-

variance matrix. It can be observed that the above two estimation methods estimate

the sample covariance matrix with a lower dimension full rank symmetric positive

definite matrix and a diagonal positive matrix. Then the inverse of the covariance

matrix could be calculated.

Another similar problem, called the nearest correlation problem, arises in finance.

It is one of the matrix nearness problems. A survey on this problem can be found in

Higham (1999). Higham (1998) first studied a positive approximant for any arbitrary

matrix and this matrix is the nearest symmetric positive semi-definite (psd) matrix.
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It is used to modify an indefinite Hessian matrix in the Newton method. Higham

(1998) showed that the closest psd matrix was uniquely based on the Frobenius norm,

while the uniqueness does not hold based on the shortest 2-norm distance. Higham

(2002) examined a particular type of psd matrix, namely the correlation matrix. He

computed a symmetric psd matrix for a correlation matrix with zero or negative

eigenvalues by using the modified alternating projection method.

Boyd and Lin (2005) studied the least-squares covariance adjustment problem

(LSCAP) and it was solved via its dual problem using some standard optimization

methods. The LSCAP aims to find the nearest symmetric psd matrix using the least

squares sense in the Frobenius norm. In addition, linear equalities and inequalities

can be imposed on the problem. Same to the correlation matrix approach, the

resultant matrix is a projection on the positive semidefinite cone and is the optimal

adjustment. The rank of the optimal adjustment was studied. Qi and Sun (2006)

developed a quadratically convergent Newton method to find the nearest correlation

matrix and the algorithm is extended to find the nearest covariance matrix.

The estimation of the covariance/precision matrix is problematic, especially in

high-dimensional modelling. In a traditional vector model estimation, vectorization

of the covariance or the precision matrix destructs its positive definite property. It is

difficult to express the positive definite property of these matrices as linear equality

or inequality constraints in optimization problems using vector or matrix forms.

Computation of log(det(Σ)) gives a numerical error when a non-positive definite

covariance iterate, Σ(k), is generated in the algorithm. The algorithm stops and the

estimation is not successful.

We, in particular, focus on the estimation of the inverse of the innovation co-

variance matrix, the innovation precision matrix for time series models, because the

precision matrix is always estimated for graphical time series models. We avoid

implementing positive definite constraints but adopt the nearest correlation matrix
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concept to keep the precision matrix iterates in positive definite cones for nonlinear

optimization. The details will be discussed in Chapter 4.

1.2 Research Contributions

1. Chapter 2 gives a sparse graphical vector time series model in a new sense. It

combines a sparse graphical model and a sparse vector autoregressive (VAR)

model. Three penalized likelihood estimation methods are considered and

ranges of AR coefficient and precision matrix regularizers are used to esti-

mate all possible sparse graphical VAR models. A final model is selected based

on the minimum Bayesian Information Criterion (BIC). As a result, the sparse

patterns of autoregressive coefficient and precision matrices are simultaneously

selected and are optimal. The final model is much more robust than the tradi-

tional sparse time series model, which requires to identify the sparsity, based

on partial correlations or other statistics, in the first stage. In addition, the

model enables us to plot a mixed graph, which contains a set of nodes and

a set of edges for variables and a relationship between variables. The sparse

AR matrix gives significant causal dynamics by a directed edge, while a sparse

entry of the precision matrix presents a missing undirected edge between vari-

ables. The model visualizes significant causal dynamics and conditional de-

pendence among variables. In addition, our model overcomes the difficulty of

using a non-convex penalty and the sparse models obtained minimax concave

penalized (MCP) estimation method are empirically the best and the model

estimates are unbiased. It is much better than the traditional LASSO penal-

ized sparse model because their estimates are biased. An estimation algorithm

is developed. We proved that the algorithm is convergent. Consistency and

asymptotic normality of the estimator are established.The simulation study
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shows satisfactory results. The Pearl River Delta air pollution data is fitted

with our models for illustration and it is compared with existing models in the

literature. The MCP sparse model has the lowest BIC and therefore, it is the

best.

2. Chapter 3 extends the VAR model to a matrix AR (MAR) model, which caters

for fitting data under two categorical variables. The proposed MAR model has

AR matrices in bilinear forms and a generally structured precision matrix. The

model allows us to extract structured information under two classifications and

gives a graphical representation of conditional dependence among variables. In

addition, it reduces the number of parameters used dramatically. To further

reduce the number of parameters, the same penalized estimation methodol-

ogy as in Chapter 2 is applied to obtain a new sparse graphical MAR model.

For simplicity, the popular penalty, LASSO, is used for estimating all possi-

ble sparse graphical MAR models. Again, BIC is used to select the model

with optimal sparsity combination between AR coefficient and precision ma-

trices. Two corresponding algorithms are developed and we proved that they

are convergent. A simulation study shows satisfactory results. In addition, the

proposed MAR model tackles well in more situations than the existing MAR

model. An economic indicator example is used to illustrate the proposed MAR

and the proposed sparse MAR models. Comparison is made with the existing

models in the literature. Both proposed models have smaller prediction sums

of squared errors. Therefore, they are better.

3. Chapter 4 resolves the problem arising from the positive definite property of

the covariance Σ or precision Θ matrices estimation. This property is not eas-

ily transformed as equality and inequality constraints in the maximization of a

log-likelihood function. During the estimation process, there might exist an it-
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erate of covariance or precision matrix being non-positive definite or very close

to zero, calculation of log-likelihood functions involve the term log(det(Σ) or

log(det(Θ), which causes numerical errors. We construct two algorithms for a

vector time series and a matrix time series. Both algorithms keep every covari-

ance/precision matrix iterate in the positive definite cone. We have extracted

some estimation failure cases from a constrained graphical VAR model and a

MAR model in Chapter 3 for testing. Both algorithms are found successful in

estimation. In addition, it has been discussed that our algorithms are descent

and convergent under some regularity conditions.

As a result, the following four papers are being prepared in conjunction with this

thesis:

1. Dorothy Kam-hin Chung, Cedric Ka-fai Yiu and Heung Wong, “On sparse

graphical modelling in time series”. Comments were received. The paper has

been revised and will be re-submitted to “Journal of Computational Statistics”.

2. Dorothy Kam-hin Chung, Cedric Ka-fai Yiu and Heung Wong, “Modelling

graphical matrix time series”. To be submitted.

3. Dorothy Kam-hin Chung, Cedric Ka-fai Yiu and Heung Wong,“A new method

to handle positive definiteness of covariance/precision matrices in constrained

vector model estimation”. To be submitted.

4. Dorothy Kam-hin Chung, Cedric Ka-fai Yiu and Heung Wong,“Handling posi-

tive definiteness of covariance/precision matrices in matrix model estimation”.

To be submitted.

Parts of the results of Chapter 2 was presented in a talk of conference:

1. Dorothy Kam-hin Chung and Cedric Ka-fai Yiu, “Sparse graphical time seres

models”, NACA-ICOTA 2019, Hakodate, Japan, August 26-31, 2019.
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1.3 Thesis Outline

Here is the outline of the thesis.

1. Chapter 2 reviews the graphical models, the sparse vector autoregressive models

and introduces a new sparse model, which combines the features of these two

models. This new model is estimated by penalized log-likelihood estimation.

Three different penalties are proposed. An algorithm is set up and it is proved

that it is convergent.

2. Chapter 3 extends the bilinear regression to matrix auto-regressive time series

model using structured covariance tensor to a general version of MAR(p) model

with a free structured covariance and a higher lag order. To cater for the need

for parameter reduction, a sparse version of the MAR(p) model using a precision

matrix is proposed. Together with the sparse precision matrix, the graphical

structure of the conditional dependence between variables would be visualized.

3. Chapter 4 explores the problems encountered during covariance/precision ma-

trix estimation in time series when the positive definiteness property is not eas-

ily imposed as constraints in the estimation. Two new algorithms are proposed,

where one is for vector time series while another one is for matrix time series.

They both remedy the problematic situation by replacing the non-positive defi-

nite covariance/precision matrix with their closest covariance/precision matrix.

The convergence of algorithms is discussed.

4. Chapter 5 gives the conclusions and explores the future works.
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Chapter 2

Vector Autoregressive Graphical

Time Series Models

High dimensional time series data are always available in finance, economics, envi-

ronmental science and many other areas. The model complexity is getting higher

and higher. To make the models better and easier for understanding, visualization

and sparse model estimation techniques are important.

A mixed graph can be used to visualize causal dynamics and conditional indepen-

dence between time series variables. It contains a set of edges and a set of vertices.

Each vertex represents a variable. Each directed edge represents influence in the

past from one variable to another variable, while each undirected edge represents

conditional dependence between variables. A missing directed edge between vertices

indicates a null value in the autoregressive coefficient matrix for the corresponding

pair of variables, while a missing undirected edge between vertices indicates a null

value in the precision matrix between the corresponding pair of variables.

Estimating an inverse of covariance matrix (precision matrix) with null values

is found in Dempster (1972). It aims to use a minimum number of parameters to

estimate the precision matrix based on normality assumption and is converted as a

mixed graph for viewing the conditional independence between variables. It is devel-

oped as a Gaussian graphical model. Detailed introduction of graphical modelling
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can be found in Edwards (1995) and Lauritzen (1996).

In the recent development of a sparse version of the Gaussian graphical model,

Dahl et al. (2008) made use of the projection of a sample covariance matrix onto

the set of symmetric matrices, having the same sparsity structure as the constraints

for maximum likelihood estimation, to convert the constrained optimization prob-

lem into an unconstrained optimization problem. Banerjee and d’Aspremont (2007)

developed a block coordinate algorithm to estimate an inverse of covariance matrix

from the LASSO penalized likelihood function. Friedman et al. (2008) developed a

graphical LASSO algorithm for the model.

In the recent development of a sparse time series model. Davis et al. (2016)

proposed a sparse VAR model based on two-stage estimation. The first stage iden-

tifies the insignificant conditional dependence between pairs of variables by partial

spectral coherence. These insignificant relations, represented by sparsity in temporal

variables, are converted as zero AR coefficients constraints for maximum likelihood

estimation for models at different lag orders. Models corresponding to different lag

orders are constructed and Bayesian information criterion (BIC) is used to choose

the ‘best’ model. This selected model is then refined to remove spurious non-zero

small AR coefficients based on t-statistics at the second stage. However, the preci-

sion matrix of this sparse model is likely to contain a few very small insignificant

values and may not achieve the most parsimonious form of conditional independence

among variables.

Yuen et al. (2018) extended the sparse VAR model to a constrained graphi-

cal sparse VAR (CGsVAR) model by adding the conditional independence feature

among variables in the precision matrix and their model generates a mixed graph.

Again, the identification of the sparse structure of both AR coefficient matrices and

the inverse of the innovation covariance matrix is required. Zero constraints for likeli-

hood estimation represent conditional independence, which is obtained from a partial
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correlation graph for the time domain approach and partial spectral coherence for

the frequency approach. Then the CGsVAR model is estimated by an iterative algo-

rithm, incorporating alternating constrained optimization solved by alternate convex

search. Therefore, the both AR and precision matrices’ sparse structure of the model

is restricted by conditional independence constraints and the AR coefficient matrices

may not have the best sparsity pattern in practice.

The application of a graph model onto a time series model is suggested by

Brillinger (1996). He discussed how to explore the interrelationship between vari-

ables in the time series process by graphs. Dahlhaus (2000) extended the undirected

graphical models to explore the conditional dependence between variables of a mul-

tivariate time series process. The recent development of graphical time series models

can be found in Tunnicliffe Wilson et al. (2015).

In this chapter, we consider combining a sparse Gaussian graphical model with

a sparse VAR model. In literature, this sparse model requires two-stage estimation.

The novelty of our sparse model is that we select one optimal sparse model from

all possible sparse combinations of sparse autoregressive coefficient and sparse pre-

cision matrices. Minimum BIC is used as a selection criterion. Penalized estimation

is conducted with the popular LASSO penalty and two other unbiased penalties,

the smoothly clipped absolute deviation (SCAD) penalty and the minimax concave

penalty (MCP). In fact, they are oracle but non-convex in nature. We overcome

the challenge to use the non-convex penalty and developed an algorithm for the pro-

posed model. We proved that the algorithm is convergent. Simulated data shows a

promising result using the MCP estimation. An environmental application in Pearl

River Delta is used to demonstrate our model and the result is compared with the

existing sparse graphical model. Our model has minimum BIC and this confirms

that our proposed sparse graphical model is useful in time series.

This chapter is organized as follows. Section 2.1 discusses how a sparse graphical
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VAR model is built via a penalized likelihood estimation problem. A simple and

new iterative alternating algorithm is developed in Section 2.1. A simulation study

is performed for various VAR models in Section 2.3. Section 2.4 illustrates our

LASSO, SCAD and MCP sparse models with the Pearl River Delta air pollution

data and compares the results with the existing sparse model methods. Section 2.5

gives the conclusion.

2.1 Sparse Graphical Time Series Model

We aim to produce an optimal sparse time series model so that its presentation in a

mixed graph is the simplest. The directed and undirected edges represent temporal

structure and the conditional dependence between variables.

Finding null values in the precision matrix is the covariance selection problem

(Dempster (1972)). A covariance matrix might be low-ranked and Dempster (1972)

aimed to use a minimum number of parameters by setting null values to the elements

between the independent component pairs of the precision matrix iteratively. A

sequence of hypothesis testings on finding null elements is conducted on the sample

data with normal assumption. This method was then developed as a graphical model.

Mathematically, the covariance selection problem can be expressed in the frame-

work of maximum likelihood estimation. Consider a K-dimensional random variable

X ∼ N(0,Σ). The precision matrix Θ = Σ−1 satisfies

max log det(Θ)− tr(SΘ)

subject to

{
Θij = 0, (i, j) ∈ Ω,
Θ ≻ 0,

(2.1)

where S is the sample covariance matrix, Ω is an ultimate set of conditionally inde-

pendent node pairs in the final step and the last condition on theΘmatrix guarantees

the matrix is positive definite.
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When the method is applied to a time series model, the conditional independence

between the contemporaneous variables is investigated. The null values in the preci-

sion matrix from the innovations terms are found after fitting the data with a time

series model. A null value between two nodes (variables) represent missing edges be-

tween the two variables in a conditional independence graph (CIG). On the contrary,

a non-null value between two variables indicates they are conditionally dependent.

Thus, the two variables are linked with an edge in the CIG. The contemporaneous

interrelationship among variables in a time series model would be visualized.

In the development of large scaled high dimensional Gaussian graphical model

problems, parsimonious models with a minimum number of parameters are aimed

at data analysis and this induces the sparse model estimation in the covariance and

precision matrix. Dahl et al. (2008) made use of the projection of a sample covari-

ance matrix onto the set of a symmetric matrix having the same sparsity structure

as the constraints of the maximum likelihood estimation to convert the constrained

optimization problem into an unconstrained optimization problem. Banerjee and

d’Aspremont (2007) and Friedman et al. (2008) applied the LASSO penalty to like-

lihood function onto inverse covariance matrix estimation for a sparse graph. The

penalized log-likelihood is

max log det(Θ)− tr(SΘ)− λ∥Θ∥1

subject to Θ ≻ 0, (2.2)

where S is the sample covariance matrix, λ is a non-negative regularization parameter

and ∥ · ∥1 is the l1 norm.

The commonly used vector time series model is the vector autoregressive (VAR)

model and it can be visualized the causal relationship among the lagged variables.

Existence of a causal relationship would be indicated by a directed edge in a mixed

graph. The sparse VAR models have not yet been well estimated by a sophisticated
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penalized approach and require sparsity structure identification in AR matrices be-

fore model estimation. Song and Bickel (2011) attempted to construct a sparse VAR

model by LASSO penalized regression methods via ordinary least squares. However,

such an approach does not exploit the covariance matrix and ignores the temporal

and contemporaneous dependence structure of time series data. Another sparse VAR

model, proposed by Davis et al. (2016) , is a two-stage sparse VAR model. The first

stage determines the sparsity structure of the AR matrices by partial spectral co-

herence and fits several VAR models up to a pre-specified lag order. A final model

is then selected by minimum BIC. In the second stage, the model is fine-tuned by

removing small AR coefficients using t-tests. However, such a sparse model does not

achieve the most parsimonious form of precision matrix.

2.1.1 Problem formulation

Consider a K-dimensional vector autorgressive model, VAR(p):

yt = ν +A1yt−1 + . . .+Apyt−p + ut,

where p is a pre-determined lag order, yt = (y1,t, . . . , yK,t)
T is a length K column ob-

servation vector, Al, l = 1, . . . p, are K ×K autoregressive (AR) coefficient matrices,

ν is a length K column vector of intercepts, ut = (u1,t, . . . , uK,t)
T is a K-dimensional

Gaussian innovation vector with mean 0 and a K × K positive definite covariance

matrix, Σu and t = 1, . . . , T . We estimate the innovation precision matrix Θ = Σ−1
u ,

because the innovation precision matrix indicates directly the conditional dependence

between the variables and the partial correlation coefficients can be easily calculated

by the ρij = − θij√
θiiθjj

for i, j = 1, . . . , K, where θij is the (i, j)-th entry ofΘ. We then

rewrite the model as multivariate regression model, Y = BZ+U and the likelihood

function becomes

l(B,Θ) = −KT
2

log 2π +
T

2
log detΘ− 1

2
trace

(
(Y −BZ)T Θ (Y −BZ)

)
,(2.3)

17



where Y = (y1, . . . ,yT ), B = (ν,A1, . . . ,Ap) is a K × (Kp + 1) matrix, Z =

(z0, . . . , zT−1) is a (Kp + 1) × T matrix with zt = (1,yT
t , . . . ,y

T
t−p+1)

T , a length

(Kp + 1) column vector, U = (u1, . . . ,uT ). For simplicity, we assume ν is a zero

vector and drop the ν vector in the B matrix and the first row vector of ones in Z

for discussion afterwards. The maximum likelihood estimators (MLE) of B and Θ

are

B̂ = YZT (ZZT )−1 and Θ̂ = T
(
(Y − B̂Z)(Y − B̂Z)T

)−1

. (2.4)

Chapter 3 of Lütkepohl (2005) gave the estimation of the VAR process in detail.

A traditional way for sparse estimation is to apply a penalty on the residual sum

of squares, as in the regression approach, but this method ignores contemporaneous

dependence structure in time series. Basu and Michailidis (2015) provided empirical

results that estimation via the log-likelihood with penalty gave better results than

the penalized ordinary least squares method. Friedman et al. (2008) applied the

LASSO penalty onto the log-likelihood function for the inverse covariance matrix

estimation to create a sparse graph.

We conduct penalized likelihood estimation and impose a penalty on the coeffi-

cients and innovation precision matrices to the VAR(p) likelihood function (2.3) and

our optimization problem becomes:

argmin
B,Θ

F (B,Θ) := −l(B,Θ) + T
∑
i,j

pλB
(|bij|) + T

∑
i ̸=j

pλΘ
(|θij|), (2.5)

where pλB
(.) and pλΘ

(.) are penalty functions, with λB and λΘ being regularization

parameters, for K×Kp coefficient matrix B = (bij) and K×K innovation precision

matrix, Θ = (θij), n is sample size and p is the number of lag. Note that penalty

is applied to all elements of coefficient matrix B and all off-diagonal elements of the

precision matrix Θ.
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Under this setting, we can obtain all possible sparse models with different sparse

combinations of coefficient and precision matrices. Minimum BIC is used to select

the model to optimal sparseness.

2.2 Estimation

We propose an iterative algorithm for estimating the sparse graphical VAR model

by the penalized likelihood. LASSO penalty is widely used in Gaussian graphical

and VAR models (Meinshausen and Bühlmann (2006); Friedman et al. (2007); Song

and Bickel (2011)) because it keeps the convexity nature of the penalized estimation

problem and is robust. However, LASSO penalized estimator is not unbiased (Fan

and Li (2001)).

2.2.1 Penalties

A good penalty is a function, which should result in an estimator with three prop-

erties. The first important property is “unbiasedness”. i.e. The resulting estimator

is nearly unbiased when the true unknown parameter is large to avoid unnecessary

modelling bias. The second property is “sparsity”. The resulting estimator sets a

thresholding rule, which automatically sets small estimated coefficients to zero to

reduce model complexity. The last one is “continuity”. The resulting estimator is

continuous to avoid instability in model prediction. A penalty possessing these three

properties is oracle.

Three penalties are considered. The first one is the least absolute shrinkage

and selection operator (LASSO) technique, proposed by Tibshirani (1996). It is

applied to Gaussian log-likelihood function to estimate undirected graphs. It is

equivalent to an l1 norm penalty and is widely used. Banerjee et al. (2008) and

Friedman et al. (2008) applied the Lasso penalty. Champion et al. (2017) estimated

sparse directed acyclic graphs via lasso penalized likelihood. LASSO is popular
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and can be used as a benchmark for penalized estimation. The second penalty

is the smoothly clipped absolute deviation (SCAD) penalty. Fan and Li (2001)

claimed that the SCAD penalty was better at selecting significant variables than

the LASSO method and its estimator was unbiased. Zhang (2010a) proposed the

minimax concave penalty (MCP) because it is a fast, continuous, nearly unbiased

and accurate penalized variable selection method. Indeed, the SCAD and MCP are

oracle penalties. The sparse model estimated with the LASSO penalty is used as

a benchmark. The formulas of these three penalties are given in Table 2.1 and the

penalty functions are given in Figure 2.1.

Table 2.1: LASSO, SCAD and MCP regularizers, which are continuous but non-
smooth and non-convex, are expressed as a difference between two convex functions,
i.e. pλ(w) = pλ,1(w) − pλ,2(w). Here, λ is the regularization parameter, wi is the
i-th element of w and [x]+ = max(0, x).

Penalty pλ(wi) pλ,2(wi)

LASSO λ|wi| 0

SCAD
with pa-
rameter ϕ

λ
∫ |wi|
0

min
(
1, [ϕλ−x]+

(ϕ−1)λ

)
dx (ϕ > 2) λ

∫ |wi|
0

[min(ϕλ,x)−λ]+
(ϕ−1)λ dx (ϕ > 2)

=


λ|wi| if |wi| ≤ λ,
−w2

i+2ϕλ|wi|−λ2

2(ϕ−1) if λ < |wi| ≤ ϕλ,
(ϕ+1)λ2

2 if |wi| > ϕλ.

=


0 if |wi| ≤ λ,
w2

i−2ϕλ|wi|+λ2

2(ϕ−1) if λ < |wi| ≤ ϕλ,

λ|wi| − (ϕ+1)λ2

2 if |wi| > ϕλ.

MCP
with pa-
rameter ϕ

λ
∫ |wi|
0

[
1− x

ϕλ

]
+
dx (ϕ > 0) λ

∫ |wi|
0

min
(
1, x

ϕλ

)
dx (ϕ > 0)

=

{
λ|wi| − w2

i

2ϕ if |wi| ≤ ϕλ,
ϕλ2

2 if |wi| > ϕλ.
=

{
w2

i

2ϕ if |wi| ≤ ϕλ,
λ|wi|−ϕλ2

2 if |wi| > ϕλ.

Remark: pλ,1(wi) = λ|wi| for LASSO, SCAD and MCP.

We expect that the MCP performs the best among the three penalties, its formula
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Figure 2.1: LASSO, SCAD and MCP penalties

is examined as follows:

pSCAD,λ(ωi) =


pLASSO,λ if |ωi| ≤ λ,

pLASSO,λ − (λ−|ωi|)2
2(ϕ−1)

if λ < |ωi| ≤ ϕλ,
(ϕ+1)λ2

2
if |ωi| > ϕλ,

and

pMCP,λ(ωi) =

{
pLASSO,λ − ω2

i

2ϕ
if |ωi| ≤ ϕλ,

ϕλ2

2
if |ωi| > ϕλ,

,

where the LASSO penalty is pLASSO,λ = λ|ωi| for all ωi.

We discuss theoretically the performance of the TPR based on the formula in

Table 2.1 and Figure 2.1. The TPR measures the true positive rates, i.e. the pro-

portion of non-zero elements to be estimated as non-zero. When ωi > ϕλ, the MCP
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method adds a constant weight to ωi for estimation. This increases the chances of

non-zero elements being estimated as non-zero. However, the LASSO method ex-

hibits a penalty being proportional to ωi, i.e. the larger the absolute value of ωi,

the larger the penalty. This action is likely to vanish the estimates. Then the MCP

method keeps more non-zero elements than the LASSO method. This explains why

the MCP method has a better TPR than the LASSO method. The SCAD penalty

has a bigger weight, compared with MCP. Based on a similar argument as above,

the SCAD penalty performs in the middle position.

We then discuss theoretically the performance of the TNR using the LASSO and

MCP methods. When 0 < ωi ≤ ϕλ, pMCP,λ(ωi) < pLASSO,λ. Therefore, the MCP

method is more sensitive to the small true values and it vanishes the estimates of the

small values, while the LASSO method is likely to overweight the estimates of small

true values. Therefore, the MCP method tends to have more zero estimates for zero

true values than the LASSO method. Under this range of ωi, the SCAD penalty has

two parts (refer to Table 2.1). The first part is the same as the LASSO penalty, while

the second part is a smooth concave curve, pLASSO,λ− (λ−|ωi|)2
2(ϕ−1)

. It connects λ|ωi| and

(ϕ+1)λ2

2
. The last part is bigger than the last part of the MCP penalty. Therefore, the

SCAD penalty performs in the middle position using a similar argument as above.

It is expected that the MCP method would give a better sparsity performance

and hence gives a more accurate performance, in terms of bias, variance and MSE.

As discussed above, the TNR and the TPR of the MCP method are better than

that of the LASSO method. This indicates that the MCP method produces fewer

estimation errors for zero and non-zero true values and has a smaller bias and a

smaller MSE.
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2.2.2 Proposed algorithm

The joint likelihood function (2.5) of (B,Θ) is not convex. Many researchers devel-

oped a different alternating algorithm to solve the multivariate regression problem

with LASSO penalty, such as multivariate regression with covariance estimation of

Rothman et al. (2010) and Lee and Liu (2012)’s coordinate-descent algorithm for

Gaussian multivariate regression.

Sofer et al. (2014) introduced a so-called “two-stage procedure” for the penalized

likelihood estimation with other penalties for multivariate regression. In particular,

Yuen et al. (2018) proved that this optimization problem was ‘biconcave’. This indi-

cates that the alternating algorithm can solve the estimation problem well. Therefore,

we adopt their similar approach and split the estimation into two alternating steps:

coefficient matrix, B, and precision matrix, Θ, estimation.

The SCAD and MCP penalized likelihood functions for estimating B and Θ

are non-convex and non-smooth. Indeed, they are continuously differentiable with

Lipschitz continuous gradient and bounded below. A common approach to solve these

functions is to use the Multi-Stage convex relaxation or difference of convex functions

programming (Zhang (2010b)) which relaxes the original non-convex problem to a

sequence of convex problems. Thus this requires high computation costs for large-

scale problems. Gong et al. (2013) proposed a more efficient algorithm, called the

general iterative shrinkage thresholding (GIST) algorithm, which iteratively solves

a proximal operator problem with closed-form solutions for a large class of non-

convex penalties, including LASSO, SCAD and MCP. The line search step size in

the algorithm is initialized with Barzilai-Borwein (BB) rule (Barzilai and Borwein

(1988)) at each outer iteration, which greatly accelerates the convergence speed.

Indeed, a nonmonotone line search can be used to further speed up the convergence

speed. Since our estimation subproblems fulfil the assumptions of using the GIST
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algorithm, we use it for solving B and Θ in our unconstrained optimization part.

The proposed algorithm for solving (B,Θ) is the following:

1: Set iB = iΘ = 1 and the regularization parameter pair (λB, λΘ) to (0.01,0.01).

2: (Initialization of parameters B and Θ) For each (λB, λΘ) set of given values, set

the outer iteration counter, m, to 1. When iB = iΘ = 1, set the initial values of

B andΘ asB(0) andΘ(0), which are the maximum likelihood estimates of (2.3),

otherwise use a warm start by setting the initial values as previous B(iB−1,iΘ)

and Θ(iB−1,iΘ), when iB > 1 and iΘ = 1; and B(iB,iΘ−1) and Θ(iB,iΘ−1) , when

iB = 1, . . . , 100 and iΘ > 1.

3: (Block Coordinate Gradient Descent Algorithm) Given Θ(m−1), solve B(m) from

the following by an algorithm given in next section.

B(m) = argmin
B
−l(B,Θ(m−1)) + T

∑
i,j

pλB
(|bij|) (2.6)

4: Given B(m−1), solve Θ(m) from the following by the algorithm given in next

section.

Θ(m) = argmin
Θ
−l(B(m),Θ) + T

∑
i ̸=j

pλΘ
(|θij|) (2.7)

5: If
∥∇Bl(B

(m),Θ(m))−∇Bl(B
(m),Θ(m−1))∥

T ·max(1, ∥(B(m),Θ(m))∥)
≥ 10−4, set m to m + 1 and go

to Step 3.

6: Set the solutions B(iB,iΘ) = B(m), Θ(iB,iΘ) = Θ(m) and set (iB, iΘ) to next grid

value by iB = iB + 1 and/ or iΘ = iΘ + 1 and go to Step 2. Repeat Steps 2 to

6 until iB = iΘ = 100.

7: The final model is selected based on minimum BIC among the 10,000 grid

estimates.
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The size of regularization parameters λB and λΘ controls the sparsity of the

elements of AR coefficient and innovation precision matrix estimates. So a range

of regularization parameters generates different estimated models. The remaining

task is to choose the final model among the penalized models. When a coefficient

estimate is zero, one less parameter is used in the model. Then we may use some

well-known model selection techniques, such as Akaike Information Criterion (AIC)

(Akaike (1973)), Bayesian Information Criterion (BIC) (Schwarz (1978)) , Hannan-

Qunin Criterion (HQC) (Hannan and Quinn (1979)) and cross-validation method

for choosing the final model. In practice, models are obtained by maximization of

penalized likelihood function based on different (λB, λΘ), each ranging from 0 to 1

with 100 equal divisions. BIC is easy to compute and is a commonly used technique

for model selection, therefore, we use the minimum BIC approach to choose the final

model.

The proposed algorithm uses a traditional way to obtain the final model based on

penalized models estimated in full ranges of the regularization parameters λB and

λΘ from 0.01 to 1 with 100 divisions. This sets up a grid sized 10,000 points for

model running. Thus, it is time consuming.

To speed up the estimation process, we use smaller ranges of the regularization

parameters λB and λΘ by a strategic way. The first stage to set up a frame with

an initial step size of 0.05 used in the estimation algorithm. i.e. change 0.01 to 0.05

in Step 1 and change 100 in the Step 2 and the Step 6 as 20. Then the grid size is

reduced from 10,000 points to 400 points in Step 7. Run the estimation algorithm

and obtain an approximate optimal pair of (λ
(a)
B , λ

(a)
Θ ). Then, in the second stage, the

step size is set to 0.01 in Step 1 and the maximum values for λB and λΘ are set to

slightly larger values of λ
(a)
B and λ

(a)
Θ or up to 2× λ(a)B and 2× λ(a)Θ , and calculate the

no. of division required in the Steps 2 and 6. Rerun the estimation algorithm again

until none of the optimal value of λB and λΘ lies on their maximum grid values on
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the current frame used. If either the optimal regularization parameter value lies on

the frame, there might exist a model outside the grid having a lower BIC than our

selected model. So it is better to set the regularization parameter grid ranges wider

after getting the approximated optimal (λ
(a)
B , λ

(a)
Θ ).

Other good features of the proposed algorithm are simple and efficient. First

of all, our algorithm does not need local linear or quadratic approximation to the

nonconvex penalty, SCAD and MCP, and provides elementwise closed-form solutions

for Steps 3 and 4 in each iteration. The complexity of the algorithm would have not

much increase with the dimension of the time series data. In addition, the step size

of the line search in these two steps is initialized with Barzilai-Borwein (BB) rule

(Barzilai and Borwein (1988)) at each outer iteration, which greatly accelerates the

convergence speed. The stopping criterion of Step 5 is derived under the assumptions

that B(m) and Θ(m) satisfy the first order stationary conditions in Steps 3 and 4 and

penalized likelihood function (2.5). It guarantees the proposed algorithm generates

a stationary point for the B and Θ pair because (B(m),Θ(m)) is kept updating until

∇l(B(m),Θ(m)) converges to 0. The proposed algorithm is, in fact, a block coordinate

gradient descent method.

2.2.3 Modified GIST algorithm

An extrapolation technique, proposed by Yu and Pong (2019) is incorporated with

the non-monotone line search in the GIST algorithm in Gong et al. (2013) for further

improvement of the convergence. Let the objective function to be minimized be

f(w) = −l(w) + r(w), where l(.) is the likelihood function of a graphical VAR

model, r(.) is a penalty function, w = (wij) and r(w) =
∑

i,j rij(wij). The modified

GIST algorithm is as follows.

1. Take ξ = 10−4 for the tolerance parameter, as stated in Gong et al. (2013) and

ms = 5 for the number of iterations used in the line search criterion. Initialize
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iteration counter k as 0 and a bounded starting point w(0).

2. Set t(k) ∈ [10−8, 108].

3. Solve

w(k+1) = argmin
w

l(w(k))− ⟨∇l(w(k)),w −w(k)⟩+ t(k)

2
∥w −w(k)∥2 + r(w),(2.8)

4. Set t(k) = 2 t(k).

5. Go to Step 3 until this line search criterion is satisfied:

f(w(k+1)) ≤ max
i∈{max(0,k−ms+1),...,k}

f(w(i))− ξ

2
t(k)∥w(k+1) −w(k)∥2,

where ms is set to 1 and to a value greater than 1 for monotone and nonmono-

tone line search in Step 1 respectively.

6. Set k = k + 1.

7. Go to Step 2 until the number of iterations (i.e. k) reaches 5000 or the following

stopping criterion is satisfied:

∥∇l(w(k))−∇l(w(k+1))∥+ 1
t(k)
∥w(k) −w(k+1)∥

max(1, ∥w(k+1)∥)
< 10−4.

Let u(k) = (u
(k)
ij ) = w(k) + ∇l(w(k))

t(k)
, where 1

t(k)
is the step size for the line search

in the k-th iteration. The problem (2.8) can be solved dimension by dimension and

the solutions can be obtained via the following elementwise univariate optimization

problems:

w
(k+1)
ij = argmin

wij

hij =
1

2
(wij − u(k)ij )2 +

1

t(k)
rij(wij), for all i, j.

To simplify the notation, we remove the subscripts ij and superscripts (k) in u
(k)
ij for

the following elementwise closed-form solutions for LASSO, SCAD and MCP:
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(i) LASSO penalty

w(k+1) = sign(u)max(0, |u| − λ

t
) (2.9)

(ii) SCAD penalty

w(k+1) = argmin
y
hij(y) such that y ∈ {x1, x2, x3} (2.10)

where

x1 = sign(u)min
(
λ,max(0, |u| − λ/t)

)
,

x2 = sign(u)min

(
ϕλ,max(λ,

t|u|(ϕ− 1)− ϕλ)
t(ϕ− 1)− 1

)

)
,

x3 = sign(u)max(ϕλ, |u|)

(iii) MCP penalty

w(k+1) =

{
x1, if hij(x1) ≤ hij(x2)
x2, otherwise.

(2.11)

where

x1 = sign(u) argmin
w∈C

1

2
(w − |u|)2 + λ

t
|w| − w2

2ϕt
with

C =
{
{0, ϕλ,min(ϕλ,max(0, ϕ(t|u|−λ)

ϕt−1
))} if ϕt− 1 ̸= 0

{0, ϕλ} otherwise.

x2 = sign(u)max(ϕλ, |u|),

It is obvious that w and ∇l(w) refer to B and ∇l(B,Θ(k−1)) for B estimation

and to Θ and ∇l(B(k−1),Θ) for Θ estimation in the k-th iteration.
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2.2.4 Convergence of the algorithm

In order to prove the convergence of the algorithm, we reformulate our proposed

iterative alternating estimation algorithm in the framework of block coordinate gra-

dient descent method using monotone line search and followed by non-monotone line

search.

We aim to express the minimisation problem (2.5) as

argmin
B,Θ

F (B,Θ) := f(B,Θ) + PB,1(B) + PΘ,1(Θ), (2.12)

where f(B,Θ) is a continuously differentiable function with locally Lipschitz gradi-

ent, PB,1(B) and PΘ,1(Θ) are proper closed convex non-negative functions.

Lasso penalty is a convex non-negative function, but the SCAD penalty and MCP

functions considered are not convex. Gong et al.(2013) express them as difference of

two proper closed convex functions, listed in Table 2.1. Let

PλB,1(|bij|) = λB|bij|, PλΘ,1(|θij|) = λΘ|θij|.

They are l1-norm functions. Then we assume that PλB
(|bij|) = PλB,1(|bij|)−PλB,2(|bij|)

and PλΘ
(|θij|) = PλΘ,1(|θij|) − PλΘ,2(|θij|), where PλB,2(|bij|) and PλΘ,2(|θij|) are

proper closed convex functions as a polynomials of degree two in bij and θij respec-

tively. As listed in Table 2.1, their function forms varies with the location of bij and

θij.

Define

PB,1(B) = T
∑
i,j

PλB,1(|bij|), PB,2(B) = T
∑
i,j

PλB,2(|bij|), and (2.13)

PΘ,1(Θ) = T
∑
i ̸=j

PλΘ,1(|θij|), PΘ,2(Θ) = T
∑
i ̸=j

PλΘ,2(|θij|) (2.14)

Together with the above expressions (2.13) and (2.14) , we can define the functions
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in the problem (2.12) as follows.

f(B,Θ) = −l(B,Θ)− PB,2(B)− PΘ,2(Θ)

PB,1(B) = T
∑
i,j

λB|bij|

PΘ,1(Θ) = T
∑
i ̸=j

λΘ|θij|

We simplify the notation of B and Θ by denoting x1 as vec(B), x2 as vec(Θ),

x = (x1, x2), P1(x1) as PB,1(B) and P2(x2) as PΘ,1(Θ). The problem (2.12) becomes:

arg min
x=(x1,x2)

F (x1, x2) := f(x1, x2) + P1(x1) + P2(x2)

and rewrite the alternating estimation algorithm into the following framework of

block coordinate descent gradient algorithm based on monotone line search:

1: Choose parameter γ > 1, c > 0 and Lmin, Lmax with 0 < Lmin < Lmax. Initialise

iteration counter k ← 0.

2: Pick ik ∈ {1, 2}, L(k)
0 ∈ [Lmin, Lmax] and a bounded starting point x(0). Set

L̃ = L
(k)
0 .

3: Solve

x̃ik = argmin
xik

{⟨∇ikf(x
(k)), xik − x

(k)
ik
⟩+ Pik(xik) +

L̃

2
∥xik − x

(k)
ik
∥2} (2.15)

and obtain x̃ := (x̃ik , x
(k)
{1,2}\ik).

4: If F (x̃) > F (x(k))− c
2
∥x̃ik − x

(k)
ik
∥2, update L̃← γL̃ and go to Step 3 and else

go to Step 5.

5: Set x(k+1) = x̃ and L(k) = L̃. Update k ← k + 1 and go to Step 2.
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In our two steps estimation algorithm, γ = 2, c = 10−4, Lmin = 10−8, Lmax = 108

and L
(k)
0 = t(0). Recall the objective function given in GIST algorithm in Gong et al.

(2013),

w(k+1) = argmin
w

l(w(k+1))+ < ∇l(w(k)),w −w(k) > +
t(k)

2
∥w −w(k)∥2

+p(w), (2.16)

where l(w), p(w) and k are likelihood function, non-smooth and non-convex contin-

uous penalty function and k is the inner iteration counter within GIST algorithm

respectively. To ease for the convergence analysis, this function for B and Θ in Steps

2 and 3 in the two steps alternating estimation algorithm is required to be converted

into the minimisation problem (2.15) in Step 3 above. Here are the details of the

conversion. From Equation (2.16),we have

B(k+1) = argminB −l(B(k),Θ(k))−
〈
∇Bl(B

(k),Θ(k)),B−B(k)
〉

+
t(k)

2
∥B−B(k)∥2 + PB,1(B)− PB,2(B)

= argminB −l(B(k),Θ(k))− PB,2(B
(k))

−
〈
∇Bl(B

(k),Θ(k)),B−B(k)
〉
−
〈
∇PB,2(B

(k)),B−B(k)
〉

+
cB
2
∥B−B(k)∥2 + t(k)

2
∥B−B(k)∥2 + PB,1(B)

= argminB

〈
−∇Bl(B

(k),Θ(k))−∇PB,2(B
(k)),B−B(k)

〉
+
cB + t(k)

2
∥B−B(k)∥2 + PB,1(B), (2.17)
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Θ(k+1) = argminΘ −l(B(k+1),Θ(k))−
〈
∇Θl(B

(k+1),Θ(k)),Θ−Θ(k)
〉

+
t′(k)

2
∥Θ−Θ(k)∥2 + PΘ,1(Θ)− PΘ,2(Θ)

= argminΘ −l(B(k+1),Θ(k))− PΘ,2(Θ
(k))

−
〈
∇Θl(B

(k+1),Θ(k)),Θ−Θ(k)
〉
−
〈
∇PΘ,2(Θ

(k)),Θ−Θ(k)
〉

+
t′(k)

2
∥Θ−Θ(k)∥2 + cΘ

2
∥Θ−Θ(k)∥2 + PΘ,1(Θ)

= argminΘ

〈
−∇Θl(B

(k+1),Θ(k))−∇PΘ,2(Θ
(k)),Θ−Θ(k)

〉
+
t′(k) + cΘ

2
∥Θ−Θ(k)∥2 + PΘ,1(Θ), (2.18)

where t(k), t′(k) are the step sizes used in GIST algorithm and cB and cΘ are some con-

stants derived from Taylor’s exapansion. The second equalities of Equations (2.17)

and (2.18) follows from Taylor’s expansion and the fact that PB,2(B) and PΘ,2(Θ)

for Lasso penalty, SCAD penalty and MCP are polynomials up to degree two in bij

and θij respectively. It is clear that Equations (2.17) and (2.18) are equivalent to

Equation (2.15) in our GIST algorithm. Therefore, we can use the block coordinate

descent algorithm approach to discuss the convergence. Lemma 2.1 guarantees finite

number of steps in the line search and Lemma 2.2 proves the convergence of the algo-

rithm using monotone line search. Lemma 2.3 extends the results to non-monotone

line search.

Lemma 2.1. Assume that f is continuously differentiable with locally Lipschitz gra-

dient (i.e. for any compact set, there exists a Lf such that ∥∇f(x) − ∇f(y)∥ ≤

Lf∥x− y∥ ) and is bounded below and Pik(xik) for ik ∈ {1, 2} are proper closed con-

vex non-negative functions. Then the line search in Step 4 for the equation (2.15) is

well-defined.

Proof We prove by induction. Suppose x(k) is well-defined. Since x̃ik is a minimizer
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of problem (2.15), we have

⟨∇ikf(x
(k)), x̃ik − x

(k)
ik
⟩+ L̃

2
∥x̃ik − x

(k)
ik
∥2 + Pik(x̃ik) ≤ Pik(x̃

(k)
ik
),

for any L̃. Using the inequality of ⟨u,v⟩ ≥ −∥u∥ · ∥v∥ and the fact that Pik(·) ≥ 0,

we have

L̃

2
∥x̃ik − x

(k)
ik
∥2 − ∥∇ikf(x

(k))∥∥x̃ik − x
(k)
ik
∥ ≤ Pik(x̃

(k)
ik
),

Therefore ∥x̃ik − x
(k)
ik
∥ is bounded by

∥∇ik
f(x(k))∥+

√
∥∇ik

f(x(k))∥2+2L̃Pik
(x

(k)
ik

)

L̃
. When L̃ is

large enough, i.e. L̃ > L̂k for some large L̂k, then, by locally Lipschitz gradient

property of f , we can assume that x̃ and x(k) both lie in a ball on which ∇f is

Lipschitz continuous with modulus Lf,k.

Using Taylor’s inequality, we have

F (x̃) ≤ f(x(k)) + ⟨∇f(x(k)), x̃− x(k)⟩+ Lf,k

2
∥x̃− x(k)∥2 + P1(x̃1) + P2(x̃2)

= f(x(k)) + ⟨∇ikf(x
(k), x̃ik − x

(k)
ik
⟩+ L̃

2
∥x̃ik − x

(k)
ik
∥2 + P1(x̃1) + P2(x̃2)

+
Lf,k − L̃

2
∥x̃ik − x

(k)
ik
∥2

≤ F (x(k)) +
Lf,k − L̃

2
∥x̃ik − x

(k)
ik
∥2 (2.19)

The last inequality follows by the fact that x̃ is minimizer of Step 3. By defining

L̃ > max{L̂k, Lf,k + c}, the line search holds. □

Lemma 2.2. Under the same assumption of Lemma 2.1 and boundedness of

{x(k)}k∈K, any accumulation point x∗ of the sequence {x(k)}k∈K generated by the

above algorithm is a stationary point of F (x).

Proof From the monotone line search criterion used in Step 4,

F (x(k+1)) ≤ F (x(k))− c

2
∥x(k+1) − x(k)∥2, (2.20)
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we have
∞∑
k=0

∥x(k+1) − x(k)∥ ≤ 2

c

(
F (x(0))− inf F

)
<∞.

This implies that x(k+1)− x(k) → 0. i.e. there exists a positive integer ϵ and M such

that ∥x(k+1)−x(k)∥ > ϵ for k ≤M . Together with the boundedness of {x(k)}k∈K, we

can find a bounded set S such that x(k) ∈ S for all k = 1, 2, . . .. Since f has locally

Lipschitz gradients, we can find a positive constant LS (≥ Lf,k for all 0 < k ≤ M)

such that ∥∇f(x)−∇f(y)∥ < LS∥x−y∥ for all x,y ∈ S. In this case, we can argue

in a similar way as in Lemma 2.1 that the line search criterion (2.20) holds whenever

L̃ > LS + c.

Since the choice of ik is essentially cyclic, i.e. there exists a T such that {1, 2} ⊆

{i, i+ 1, . . . , i+ T − 1}. From Equation (2.15), we have

0 ∈ ∇ikf(x
(k)) + ∂Pik(x

(k+1)) + L(k)(x
(k+1)
ik

− x(k)ik
) (2.21)

for all k.

We now claim that L(k) is bounded for all k ≥ 0. Let nk be the number of

inner iterations for the k-th outer iteration. By the definition of L(k), Lminγ
nk−1 ≤

L
(k)
0 γnk−1, and by the locally Lipschitz property of f on a bounded set S, we have

L̃ > LS + c, we have L(k)/γ < LS + c or L(k) < γ(LS + c). Then we have

Lminγ
nk−1 ≤ L

(k)
0 γnk−1 < γ(LS + c).

Hence, nk ≤
⌈
log(LS+c)−logLmin

log γ
+ 2
⌉
. Then L(k) = L

(k)
0 γ

⌈
log(LS+c)−logLmin

log γ
+1

⌉
, and hence

is bounded.

Since x∗ be an accumulation point of the sequence {x(k)}, then there exists a

further subsequence of {ikj} converging to either 1 or 2. Since {L(k)} is bounded and

x(k+1) − x(k) → 0, we have x
(kj+1)
ikj

→ x
(kj)
ikj

and the term L(kj)(x
(kj+1)
ikj

− x(kj)ikj
) → 0.
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Since the choice of ik is essentially cyclic, ∇fikj (.) and Pik(.) are Lipschitz continuous,

x(kj+l) → x∗ holds for l = i, i + 1, . . . , i + T − 1 and Statement (2.21) holds for

k = kj + l and l = i, i + 1, . . . , i + T − 1. Therefore, taking limits on both sides of

statement (2.21), we have

0 ∈ ∇1f(x
∗) + ∂P1(x

∗
1) (2.22)

0 ∈ ∇2f(x
∗) + ∂P2(x

∗
2) (2.23)

Thus, by combining (2.22) and (2.23), we have

0 ∈ ∇f(x∗) +

[
∂P1(x

∗
1)

∂P2(x
∗
2)

]
.

Therefore x∗ is a stationary point. □

Now we move on the algorithm using nonmonotonic line search criterion and

Steps 1 and 4 are revised accordingly in the following:

1: Choose parameter γ > 1, ms > 1, c > 0 and Lmin, Lmax with 0 < Lmin < Lmax.

Initialise iteration counter k ← 0

4: If

F (x̃) > max
max{0,k−ms+1}≤i≤k

F (x(i))− c

2
∥x̃ik − x

(k)
ik
∥2,

update L̃← γL̃ and go to Step 3 and else go to Step 5.

The monotone line search criterion is more stringent than the nonmonotone line

search criterion. Therefore, the nonmonotone line search criterion is well-defined.

Lemma 2.3. Under the same assumptions of Lemma 2.1 and boundedness of {x(k)},

any accumulation point x∗ of the sequence {x(k)}k∈K generated by the algorithm using

nonmonotone line search is a stationary point of F (x).
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Proof Let s(k) be an integer such that max{0, k−ms+1} ≤ s(k) ≤ k for all k ≥ 0.

Define

F (x(s(k))) = max
{
F (x(i)) : max{0, k −ms + 1} ≤ s(k) ≤ k

}
for all k ≥ 0.

From the nonmonotone line search criterion,

F (x(k+1)) ≤ max
max{0,k−ms+1}≤i≤k

F (x(i))− c

2
∥x(k+1)

ik
− x(k)ik

∥2, (2.24)

we have

F (x(k+1)) ≤ F (x(s(k))) for all k ≥ 0.

Consider

F (x(s(k+1)))− F (x(s(k)))

= max
{
F (x(k+1)),max

{
F (x(i)) : max{0, k −ms + 2} ≤ s(k) ≤ k

}}
− F (xs(k))

≤ max
{
F (x(k+1)), F (x(s(k)))

}
− F (x(s(k)))

≤ max
{
F (x(s(k))), F (x(s(k)))

}
− F (x(s(k)))

= 0

for any k ≥ 0. This indicates that {F (x(s(k)))}k∈K is a monotonic nonincreasing

sequence. Since F is bounded below, there exists a constant F ∗ such that

lim
k→∞

F (x(s(k))) = F ∗.

By replacing k with s(k)− 1 in (2.24), we have

F (x(s(k))) < F (x(s(s(k)−1)))− c

2
∥x(s(k))ik

− x(s(k)−1)
ik

∥2.

Since limk→∞ F (x(s(s(k)−1))) = limk→∞ F (x(s(k))) = F ∗ and we take limit on both side

of the above inequality, then

lim
k→∞

c∥x(s(k))ik
− x(s(k)−1)

ik
∥2 = 0.

36



Indeed, c is a a positive constant. Then we have

lim
k→∞

x
(s(k))
ik

− x(s(k)−1)
ik

= 0. (2.25)

Hence, limk→∞ x(s(k)) − x(s(k)−1) = 0. In addition, by continuity of F , we have

F ∗ = lim
k→∞

F (x(s(k)))

= lim
k→∞

F (x(s(k)−1) + x(s(k)) − x(s(k)−1))

= lim
k→∞

F (x(s(k)−1)) (2.26)

We will now prove by induction that

lim
k→∞

x
(s(k)−j+1)
ik

− x(s(k)−j)
ik

= 0 and lim
k→∞

F (x(s(k)−j)) = F ∗ for j = 1, 2, . . .

(2.27)

For the case of j = 1, the results follow from (2.25) and (2.26). Now assume that

the limits in (2.27) hold for j and we are going to prove that they hold for the case

j + 1.

By replacing k with s(k) − j − 1 in the nonmonotone line search criterion, we

have

F (x(s(k)−j)) < F (x(s(s(k)−j−1)))− c

2
∥x(s(k)−j)

ik
− x(s(k)−j−1)

ik
∥2.

Then

∥x(s(k))−j
ik

− x(s(k)−j−1)
ik

∥2 ≤ 2

c

(
F (x(s(s(k)−j−1)))− F (x(s(k)−j))

)
By letting k → ∞ and using the limits of F (x(s(s(k)−j−1))) being equal to that of

F (x(s(k)−j)) in (2.27), x
(s(k)−j)
ik

− x(s(k)−j−1)
ik

→ 0. Then, by the continuity of F and
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(2.27) again, we have

lim
k→∞

F (x(s(k)−(j+1)))

= lim
k→∞

F
(
x(s(k)−j) − (x(s(k)−j) − x(s(k)−j−1))

)
= lim

k→∞
F (x(s(k)−j))

= F ∗

We are going to prove F (x(k))→ F ∗.

Note that xs(k) = x(max{0,k−ms+1}) +
∑s(k)−(k−ms+1)

j=1

(
x(s(k)−j+1) − x(s(k)−j)

)
for all

k. Since x(k) = (x
(k)
1 , x

(k)
2 ) and by the limits in (2.27), we have

x
(s(k)−j+1)
ik

− x(s(k)−j)
ik

→ 0 and x
(s(k)−j+1)
{1,2}\ik − x(s(k)−j)

{1,2}\ik = 0.

Thus, x(s(k)−j+1) − x(s(k)−j) → 0. Then

lim
k→∞

x(s(k)) − x(k−ms+1) = 0.

Therefore, by the continuity of F ,

lim
k→∞

F (x(k)) = F ( lim
k→∞

x(k))

= F ( lim
k→∞

x(k−ms+1))

= F ( lim
k→∞

x(s(k)))

= lim
k→∞

F (x(s(k)))

= F ∗. (2.28)

Taking limit on the both sides of (2.24) and using (2.28), we have

∥x(k+1)
ik

− x(k)ik
∥2 → 0 for all k.
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Using a similar argument on the boundedness of L(k) in Lemma 2.2, L(k) is

bounded.

Assume the choice of ik is essentially cyclic, i.e. there exists a T such that

{1, 2} ⊆ {i, i+ 1, . . . , i+ T − 1}. From Equation (2.15), we have

0 ∈ ∇ikf(x
(k)) + ∂Pik(x

(k+1)) + L(k)(x
(k+1)
ik

− x(k)ik
) (2.29)

for all k.

There exists a sequence {x(kj)} such that x(kj) → x∗. There exists a further

subsequence of {ikj} converging to 1 or 2. Since L(k) is bounded and x
(k+1)
ik
−x(k)

ik
→ 0,

the term L(k)(x
(k+1)
ik

− x
(k)
ik
) → 0. Since the choice of ik is essentially cyclic and

x(kj) → x∗, x(k) → x∗. Therefore, taking limits on both sides of statement (2.29), we

have

0 ∈ ∇1f(x
∗) + ∂P1(x

∗
1) (2.30)

0 ∈ ∇2f(x
∗) + ∂P2(x

∗
2) (2.31)

Thus, by combining (2.30) and (2.31), we have

0 ∈ ∇f(x∗) +

[
∂P1(x

∗
1)

∂P2(x
∗
2)

]
.

Therefore x∗ is a stationary point. □

Theorem 2.1. Let the sequence {(B(k),Θ(k))} be generated by the two-stage general

iterative shrinkage and thresholding algorithm. Suppose (B∗,Θ∗) is any accumulation

point of {(B(k),Θ(k))}. (B∗,Θ∗) is a first-order stationary point of the penalized

likelihood function (2.5).

Proof: It follows from Lemma 2.3. □
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2.2.5 Consistency and asymptotic normality

The last section discusses the convergence of the algorithm and this section discusses

the features of the penalized maximum likelihood estimator - consistency and asymp-

totic normality. Chu et al. (2011a) proved that the penalized maximum likelihood

estimator of their geostatistical model was consistent and converged asymptotically

to a normal distribution. We consider the asymptotic framework of their geostatis-

tical model to derive the consistency and the limiting distribution of our penalized

maximum likelihood estimator.

Here we set up the notations. Let β0 = vec(B0) be the true vectorized autoregres-

sive coefficient matrix. Let η0 = vec(Θ)0 be the true precision matrix. Without the

loss of generality, we assume β0 = (β10, . . . , βk2p,0)
T = (βT

10,β
T
20)

T with dim(β10) = s,

dim(β20) = k2p − s and β20 = 0. Similarly, η0 = (η10, . . . , ηk2,0)
T = (ηT

10,η
T
20) with

dim(η10) = ν, dim(η20) = k2 − ν and η20 = 0.

The log-likelihood function of our model is:

l(β,Θ) = −KT
2

log 2π +
T

2
log(det(Θ)) (2.32)

−1

2

(
vec(Y)− (ZT ⊗ Ik)

Tβ
)T

(Ik ⊗Θ)
(
vec(Y)− (ZT ⊗ Ik)

Tβ
)
.

and the penalized log-likelihood function (2.5) is written as

Q(β,η) = l(β,η)− T
k2p∑
i

pλB
(|βi|)− T

k2∑
i=1

i ̸=(r−1)k+r,r∈{1,...,k}

pλΘ
(|ηi|) (2.33)

where β = vec(B) and η = vec(Θ).

Let n be the stage of the asymptotics. In particular, we write Tn = T , λB,n =

λΘ,n = λ and k2n = k2. For the quantities which depend on the stage n, n will be in

either the left superscript or right subscript of the quantities.
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Define penalty-related scalars: aB,n = max1≤j≤k2p{|p′λB,n
(|βj0|)| : βi0 ̸= 0}, aΘ,n =

max1≤j≤k2,j ̸=(r−1)k+r,r∈{1,...,k}{|p′λΘ,n
(|ηj0|)| : ηj0 ̸= 0}, bB,n = max1≤j≤k2p{|p′′λB,n

(βj0|)| :

βi0 ̸= 0} and bΘ,n = max1≤j≤k2,j ̸=(r−1)k+r,r∈{1,...,k}{|p′′λΘ,n
(|ηj0|)| : ηj0 ̸= 0}, where

p′λB,n
(|βj0|) and p′′λB,n

(|βj0|) are the first and second order of derivatives of the penalty

with respect to βj respectively and p′λΘ,n
(|ηj0|), p′′λΘ,n

(|ηj0|) are the first and sec-

ond order of derivatives of the penalty with respect to ηj respectively. Here, the

clause j ̸= (r − 1)k + r, r ∈ {1, . . . , k} is used because penalty is not applied on

the diagonal elements of Θ. Then the first and second order of derivative vectors

are defined as ψB(β) = (p′λB,n
(|β1|)sgn(β1), . . . , p′λB,n

(|βk2p|)sgn(βk2p))T , ΨB(β) =

diag{p′′λB,n
(|β1|), . . . , p′′λB,n

(|βk2p|)} forB andψΘ(η) = (ψΘ,i(ηi))i=1,...,k2 andΨΘ(η) =

diag{ΨΘ,i(ηi)}i=1,...,k2 for Θ, where

ψΘ,i(ηi) =

{
0 i = (r − 1)k + r, r ∈ {1, . . . , k}
p′λΘ,n

(|ηi|)sgn(ηi) otherwise,

and

ΨΘ,i(ηi) =

{
0 i = (r − 1)k + r, r ∈ {1, . . . , k}
p′′λΘ,n

(|ηi|) otherwise.

We set up variables related to the precision matrix Θ. Define nΘi = ∂ nΘ
∂ηi

(k × k matrix) and nΘij = ∂2 nΘ
∂ηiηj

(k × k matrix). Let µ1 ≤ . . . ≤ µk2 be the

eigenvalues of nΘ. Let µq
l be the eigenvalues of nΘq such that |µq

1| ≤ . . . ≤ |µq
k2|

and let µqq′

l be the eigenvalues of nΘqq′ such that |µqq′

1 | ≤ . . . ≤ |µqq′

k2 |. Define

ntqq′ = trace(nΘ−1 nΘq
nΘ−1 nΘq′).

Next, the Frobenius norm, max norm and spectral norm of an matrix E =

(eij)i,j=1,...,Tn are defined as ∥E∥ = (
∑Tn

i

∑Tn

j e2ij)
1/2, ∥E∥max = max{|eij| : i, j =

1, . . . , Tn} and ∥E∥s = max{|µl| of E : l = 1, . . . , Tn}.

Following Chu et al. (2011a), based on Equation (2.33), we have the following

regularity conditions:
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(A1) For any η ∈ Ω, where Ω is an open set in Rk2 such that the precision matrix

Θ with η = vec(Θ) is positive definite and twice differentiable with respect to

η. Its second order derivatives is continuous and is positive definite.

(A2) There exist C,Cq, Cqq′ ∈ Z+ such that limn→∞ µk2n
= C < ∞, limn→∞ |µq

k2n
| =

Cq <∞, limn→∞ |µqq′

k2n
| = Cqq′ <∞ for all q, q′ = 1, . . . , k2n.

(A3) For some δ > 0, there exist positive constants Dq, Dqq′ and D∗
qq′ , such that

∥nΘq∥−2 = DqT
−1/2−δ
n for q = 1, . . . , k2;

(A4) For any q, q′ = 1, . . . , k2, neqq′ = limn→∞{ntqq′(ntqq ntq′q′)
−1/2} exists and En =

(neqq′)q,q′=1....,k2 is nonsingular;

(A5) The matrix Z has full rank kp and is uniformly bounded in max norm with

limn→∞(ZZT )−1 = 0.

(A6) There exists a C0 ∈ Z+, such that ∥nΘ−1∥s < C0 <∞.

(A7) For β ∈ Rk2p and η ∈ Ω, T−1
n In(β) → J(β) and T−1

n In(η) → J(η), where

In(·) is a Fisher information matrix and J(·) is a Jacobian matrix.

(A8) aB,n = O(T
−1/2
n ), aΘ,n = O(T

−1/2
n ), bB,n → 0, as n → ∞ and bΘ,n → 0 as

n→∞.

(A9) There exist cB,1, cΘ,1, cB,2, cΘ,2 ∈ Z+ such that, |p′′λB,n(β1) − p′′λB,n(β1)| ≤

cB,2|β1− β2| for β1, β2 > cB,1λB,n and |p′′λΘ,n(η1)− p′′λΘ,n(η1)| ≤ cΘ,2|η1− η2| for

η1, η2 > cΘ,1λΘ,n.

(A10) λB,n → 0, T
1/2
n λB,n →∞, as n→∞ and λΘ,n → 0, T

1/2
n λΘ,n →∞, as n→∞.

(A11) lim infn→∞ lim infβ→0+ λ
−1
B,np

′
λB,n(β) > 0 and lim infn→∞ lim infη→0+ λ

−1
Θ,np

′
λB,n(η)

> 0.
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Note that Conditions (A1) and (A5) are standard assumptions for maximum like-

lihood estimators and Conditions (A2), (A3), (A4) and (A6) assume the information

matrix is smooth and convergent. Conditions (A8) to (A11) refer to mild regularity

conditions for the penalty functions, LASSO, SCAD and MCP.

Theorem 2.2. Under the regularity conditions (A1) to (A9), there exists a local

maximizer nζ̂ = (nβ̂, nη̂) of Q(β,η) such that ∥β̂ − β0∥ = Op(T
−1/2
n + aB,n) and

∥η̂ − η0∥ = Op(T
−1/2
n + aΘ,n). Both have the probabilities tending to one. Assume

nβ̂ = (nβ̂1,
n β̂2) and

nη̂ = (nη̂1,
n η̂2). In addition, if (A10) to (A11) hold, we have

(a) sparsity on nβ̂ and nη̂.

(i) nβ̂2 = 0 with probability tending to 1.

(ii) nη̂2 = 0 with probability tending to 1.

(b) limiting normal distributions for nβ̂ and nη̂.

(i) T 1/2{J(β10)+ΨB(β10)}[ nβ̂10−β10+{J(β10)+ΨB(β10)}−1ψB(β10)]
D−→

Nk2p(0,J(β10)),

(ii) T 1/2{J(η10)+ΨΘ(η10)}[ nη̂10−η10+ {J(η10)+ΨΘ(η10)}−1ψΘ(η10)]
D−→

Nk2(0,J(η10)),

where J(β10) and J(η10) are the first k2p × k2p upper-left matrix and middle

k2 × k2 matrix of J(ζ0) respectively.

Proof: We make use the proof of Theorem 4.1 of the Technical Report of Chu et al.

(2011b) for proving our results.

Refer their proof, we replace the following for proving ∥β̂−β0∥ = Op(T
−1/2
n +aB,n)

and ∥η̂ − η0∥ = Op(T
−1/2
n + aΘ,n) with probabilities tending to one:
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1. ξn with ξB,n = T
−1/2
n + aB,n and ξΘ,n = T

−1/2
n + aΘ,n;

2. Equation (A.1) with

P

{
sup

∥(uB,uΘ)∥=C

Q(β0 + ξB,nuB,n,η0 + ξΘ,nuΘ,n) < Q(β0)

}
≥ 1− ϵ;

3. Q(η0 + ξnu)−Q(η0) inequality with

Q(β0 + ξB,nuB,n,η0 + ξΘ,nuΘ,n)−Q(β0,η0)

≤ l(β0 + ξB,nuB,n,η0 + ξΘ,nuΘ,n)− l(β0,η0)

− Tn
k2p∑
j=1

{pλB
(|βj0 + ξB,nuj|)− pλB

(|βj0|)}

− Tn
k2∑
j=1

{pλΘ
(|ηj0 + ξΘ,nuj|)− pλΘ

(|ηj0|)}(2.34)

The right hand side of Equation (2.34) will be expanded with Taylor’s expansion.

Together with their Lemma 1, the results follow.

In order to prove the sparsity of β̂, Equation (A.3) in their report is used. We

prove the sparsity of η̂ by formulating ∂Q(β̂,η̂)
∂ηj

in a similar way as ∂Q(β̂,η̂)
∂βj

in their report.

Then, it is clear that ∂Q(β̂,η̂)
∂ηj

< 0 for η̂j ∈ (0, ϵn) and
∂Q(β̂,η̂)

∂ηj
> 0 for η̂j ∈ (−ϵn, 0) for

ϵn > 0. As n→∞, ϵn → 0. Then, the sparsity results follow.

To show the asymptotic normality of β̂ and η̂, we can define sB and sΘ as the

number of non-zero elements in B and Θ and change the following in their proof:

1. ∂
∂ηj
Q(β̂, η̂) = −Tn

{
p′λΘ,n(|η̂j|)sgn(|η̂j|) +Op(T

−1/2
n )

}
2. U1 = [IsB ,0sB×(k2(p+1)−sB)]

3. U2 = [0sΘ×k2p, IsΘ ,0sΘ×(k2−sΘ)]

44



The first order derivatives are set to zero and similarly, apply the Slutsky’s theorem,

results follow. □

2.3 Simulation Study

2.3.1 Data generation

In this simulation study, we consider the following four sparse stable VAR models:

Model 1: yt = A
(1)
1 yt−1 + ut, with ut ∼ N(0,Σ1) with matrices sparsity 0.56.

Model 2: yt = A
(2)
1 yt−1 + ut, with ut ∼ N(0,Σ2) with matrices sparsity being

0.72.

Model 3: yt = A
(3)
1 yt−1 + A

(3)
2 yt−2 + ut, with ut ∼ N(0,Σ3), with matrices

sparsity being 0.5.

Model 4: yt = A
(4)
1 yt−1 + A

(4)
2 yt−2 + ut, with ut ∼ N(0,Σ4), with matrices

sparsity being 0.72,

where the coefficients and innovation precision matrices are

A
(1)
1 =


0.4352 −0.6552 0.4154 0.393 −0.52 0.2256
0.1478 −0.4932 0 0 0 0
−0.794 0 −0.8933 0 0 0
0.5894 0 0 −0.1478 0 0
−0.8009 0 0 0 −0.4169 0
0.4197 0 0 0 0 −0.2439

 ,

Σ−1
1 =


1 0.4 0.4 0.4 0.4 0.4
0.4 1 0 0 0 0
0.4 0 1 0 0 0
0.4 0 0 1 0 0
0.4 0 0 0 1 0
0.4 0 0 0 0 1

;

A
(2)
1 =



−0.9665 −0.8648 0 0 0 0 0 0 0
0.6593 0.0143 −0.7612 0 0 0 0 0 0

0 0.5644 0.0363 −0.0301 0 0 0 0 0
0 0 −0.5107 −0.6301 −0.8983 0 0 0 0
0 0 0 0.0502 0.1398 −0.2802 0 0 0
0 0 0 0 0.4055 0.0806 0.6966 0 0
0 0 0 0 0 −0.4182 −0.6615 0.2808 0
0 0 0 0 0 0 −0.2419 −0.5323 −0.3481
0 0 0 0 0 0 0 0.4555 0.1713

,
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Σ−1
2 =



1.9934 −0.2357 0 0 0 0 0 0 0
−0.2357 1.7076 0.5477 0 0 0 0 0 0

0 0.5477 0.8525 −0.0117 0 0 0 0 0
0 0 −0.0117 0.9293 0.0713 0 0 0 0
0 0 0 0.0713 0.6003 −0.0125 0 0 0
0 0 0 0 −0.0125 0.5386 0.0281 0 0
0 0 0 0 0 0.0281 1.2644 0.1604 0
0 0 0 0 0 0 0.1604 0.7970 −0.1512
0 0 0 0 0 0 0 −0.1512 1.6736

;

A
(3)
1 =


−0.6 0.4 0 0 0 0.4
0.4 −0.6 0.4 0 0 0
0 0.4 −0.6 0.4 0 0
0 0 0.4 −0.6 0.4 0
0 0 0 0.4 −0.6 0.4
0.4 0 0 0 0.4 −0.6

,A(3)
2 =


−0.3 0.2 0 0 0 0.2
0.2 −0.3 0.2 0 0 0
0 0.2 −0.3 0.2 0 0
0 0 0.2 −0.3 0.2 0
0 0 0 0.2 −0.3 0.2
0.2 0 0 0 0.2 −0.3

,

Σ−1
3 =


1 −0.3 0 0 0 −0.3

−0.3 1 −0.3 0 0 0
0 −0.3 1 −0.3 0 0
0 0 −0.3 1 −0.3 0
0 0 0 −0.3 1 −0.3

−0.3 0 0 0 −0.3 1

;

A
(4)
1 =



0.2559 −0.4582 0.2256 0.354 −0.38 −0.2754 0.439 −0.5911 0.2157
0.3954 0.1506 0 0 0 0 0 0 0
−0.401 0 0.1008 0 0 0 0 0 0
0.3762 0 0 0.2938 0 0 0 0 0
−0.4588 0 0 0 −0.8571 0 0 0 0
0.5327 0 0 0 0 −0.211 0 0 0
0.7749 0 0 0 0 0 −0.1765 0 0
0.5407 0 0 0 0 0 0 0.1244 0
0.6038 0 0 0 0 0 0 0 −0.5406

,

A
(4)
2 =



0.378 −0.2629 0.78 0.1052 0.3005 −0.382 0.6321 0.4034 −0.3793
0.7094 −0.5152 0 0 0 0 0 0 0
−0.8389 0 0.4518 0 0 0 0 0 0
−0.3865 0 0 −0.5059 0 0 0 0 0
0.9818 0 0 0 −0.5895 0 0 0 0
−0.1593 0 0 0 0 −0.2484 0 0 0
0.2882 0 0 0 0 0 0.7813 0 0
−0.8302 0 0 0 0 0 0 −0.2798 0
0.8814 0 0 0 0 0 0 0 −0.4475

 and

Σ−1
4 =



2.9388 −0.3055 −0.3675 0.5713 0.3805 0.895 −0.2748 −0.5905 −1.7305
−0.3055 1.6715 0 0 0 0 0 0 0
−0.3675 0 3.2985 0 0 0 0 0 0
0.5716 0 0 2.3303 0 0 0 0 0
0.3805 0 0 0 3.8838 0 0 0 0
0.895 0 0 0 0 1.9733 0 0 0

−0.2748 0 0 0 0 0 4.4195 0 0
−0.5905 0 0 0 0 0 0 3.7525 0
−1.7305 0 0 0 0 0 0 0 4.866

 .

Here, A
(1)
1 and Σ−1

1 are 6-dimensional square matrices with non-zero elements on

the first row, first column and its diagonal only. So Model 1 is a six-dimensional

VAR(1) model with its first node connecting to all other nodes in a mixed graph.

Model 2 is a nine-dimensional VAR(1) model having a tridiagonal AR coefficient ma-
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trix A
(2)
1 and precision matrices Σ−1

2 . If all nodes are located along a line, all nodes

are connected only with their adjacent neighbours in a mixed graph. Model 3 is a

6-dimensional VAR(2) model having A
(3)
1 ,A

(3)
2 and Σ−1

3 as Toeplitz and tridiagonal

structures, added with non-zero elements at (6,1) and (1,6) entries. Its graphical

presentation is very similar to Model 2’s, added with the first and last nodes be-

ing connected. Model 4 is a nine-dimensional VAR(2) model. A
(4)
1 ,A

(4)
2 and Σ−1

4

are 9-dimensional matrices have the same structure pattern as A
(4)
1 . Therefore, its

graphical representation is a lag two extension of Model 1.

Experiments have been conducted using R for Models 1 to 4 with sample sizes

(T ) of 200, 500 and 2000 over 500 replicates. Their sparse VAR models are obtained

from our penalized likelihood estimation method using LASSO, SCAD and MCP

penalties, over all combinations of tuning regularization parameters (λB, λΘ) with

each parameter being ranged from 0.01 to 1.00 under 100 equal divisions. For each

replicate, the final VAR model is selected based on minimum BIC.

2.3.2 Performance evaluation measures

To evaluate the performance of the methods, we consider two types of measures:

accuracy and sparsity recognition of the AR coefficients and the innovation precision

matrix estimates. The former is evaluated by bias, variance and mean square errors

(MSE). Bias measures the total expected absolute deviation from the true values.

Variance measures the total squares of deviation from the estimated mean value while

mean square errors measure the average squared deviation from the true values. The

smaller these measures are, the better the model is. The metrics are defined for the

AR coefficient matrices as follows. The former is defined as bias, variance and mean

square error (MSE).

1. Bias of the AR coefficient estimates from the true matrix:

47



Bias =
∑p

l=1

∑K
i,j=1

∣∣∣E [(Âl)i,j

]
− (Al)i,j

∣∣∣
2. Variance of the estimate:

Variance =
∑p

l=1

∑K
i,j=1 V ar

(
(Âl)i,j

)
;

3. Mean square error (MSE)of the estimates:

MSE =
∑p

l=1

∑K
i,j=1

{[
E
[
(Âl)i,j

]
− (Al)i,j

]2
+V ar

(
(Âl)i,j

)}
,

The above metrics for the estimated innovation precision matrix Θ̂ are defined sim-

ilarly, by replacing (Âl)i,j with Θ̂i,j and (Al)i,j with Θi,j.

The latter measure is the sparsity recognition metrics. We define the true negative

rate (TNR) as the proportion of the number of zero coefficients, which are correctly

estimated as zero, and the true positive rate (TPR) as the proportion of non-zero

coefficients, which are correctly estimated as non-zero. The higher these two rates

are, the better the model is. Here, the mean and standard deviation of the TNR and

the TPR over the simulated samples are recorded.

Note that only the upper triangular part of the matrix is estimated because the

innovation precision matrix is the inverse of the covariance matrix and is symmetric.

Hence the number of parameters in the precision matrix is equal to the number of

parameters in the upper triangular part of the matrix. This does not apply to the AR

coefficient matrix/matrices, as symmetry is not assumed in AR coefficients matrices.

To visualize the performance of the three penalties, boxplots on deviations of

estimated values and the true AR coefficients and innovation precision matrices are

plotted. If all median lines (marked in black) lie on the line of zero value for the devi-

ation axis in a boxplot, it indicates no or very little deviation among estimates from

their true values. Boxes in cyan colour indicate sparse elements, while red colour in-

dicates non-zero elements in the true matrices. This is useful for sparsity recognition
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analysis. The smaller the interquartile range box, the smaller the standard deviation

of the estimates.

To determine which penalized estimation method is the best, we count the number

of each penalized model being used as a final model for each sample and calculate the

proportion. The penalized estimation method with the high proportion is the best.

To select a final model among the three penalized models for each sample, we adopt

the commonly used variable selection criterion, the minimum Bayesian Information

Criterion (BIC).

2.3.3 Results

Tables 2.2, 2.3, 2.4 and 2.5 tabulate the results of accuracy measures and sparsity

recognition rates for Models 1 to 4 respectively. Bias, variance and MSE are accuracy

performance measures, while true negative rates (TNRs) and true positive rates

(TPRs) are the sparsity recognition measures. Plain figures under columns TNR

and TPR are mean true negative and positive rates, which are used to measure

the sparsity performance. Their corresponding standard deviations are below their

respective mean values and are in brackets. The table also gives the mean and

standard deviation of the corresponding regularization parameter values, λB’s and

λΘ’s, for these final models selected by BIC and such lambda pairs are called optimal

regularization parameters. Plain and bracketed figures below columns λB and λΘ are

the averages and standard deviations of optimal regularization parameters for the

AR coefficient matrix and precision matrix estimation respectively.

Table 2.2 shows that SCAD and MCP have overall good accuracy and sparsity

recognition performance for Model 1. LASSO gives the largest bias and MSE for the

two AR and precision matrices over T = 200, 500 and 2000. SCAD gives slightly

smaller bias and MSE values than LASSO. MCP gives the smallest bias and MSE

for the AR matrices and the second smallest bias and MSE values for the precision
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matrix over T = 200, 500 and 2000. Note that this bias value and this MSE value of

MCP for the precision matrix are very close to the smallest values. For each penalty,

the bias, variance and MSE get smaller as the sample size gets larger. When the

sparsity recognition is studied, the TPR for all penalties and sample sizes are very

close to 1, while the TNR of MCP are better than that of SCAD and LASSO. The

TNR values are greater than 0.8. However, the TNRs of LASSO penalized estimates

achieve about 0.6 to 0.7 for all sample sizes.

Table 2.3 illustrates that SCAD and MCP have good performance for Model 2

in general. We look at the accuracy performance first. LASSO gives the largest bias

and MSE for the AR coefficient and precision matrices, while MCP gives almost the

smallest bias and MSE over the three sample sizes. SCAD gives the bias and MSE

values for both matrices in the middle of three penalties for each sample size. Note

that the variances of matrices for the three penalties are small and LASSO achieves

the smallest. SCAD and MCP give similar values. The sparse recognition measures

are TNR and TPR. The TNRs and the TPRs for these three penalties get higher

as the sample size increases. MCP always gives the highest TNR for AR coefficient

and precision matrices and the TNRs and TPRs of SCAD are ranked in the middle.

The TNRs and TPRs of LASSO are the worst among these three penalties. MCP

seems to be the best among the three penalties.

Table 2.4 shows that the MCP penalty has the best performance in accuracy

and sparsity recognition for Model 3. We discuss the accuracy performance first.

The LASSO penalty has the largest bias and MSE for two matrices estimation,

while MCP gives the smallest bias and MSE for these three sample sizes. SCAD

has values of these two metrics in the middle of the two penalties. The variances

among the three penalties are similar. Then, the sparsity recognition performance

is investigated. The TPRs of the three penalties are all over 0.95 and are very good

in performance. When TNR is discussed, LASSO gives the lowest mean TNR of
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Table 2.2: LASSO, SCAD and MCP penalized results for Model 1 (VAR(1)) over
500 replicates. Figures in brackets are the corresponding standard deviations.

T Penalty λB AR Coefficient Matrix, B
Bias Variance MSE TNR TPR

200 LASSO 0.0866 0.9970 0.0557 0.1126 0.5906 0.9906
(0.0266) (0.1196) (0.0237)

SCAD 0.1251 0.4895 0.0577 0.0839 0.7587 0.9849
(0.0325) (0.0991) (0.0290)

MCP 0.1683 0.3436 0.0571 0.0725 0.8767 0.9721
(0.0421) (0.0786) (0.0403)

500 LASSO 0.0609 0.6650 0.0210 0.0460 0.6040 0.9999
(0.0173) (0.1129) (0.0028)

SCAD 0.0894 0.2353 0.0251 0.0187 0.8099 0.9991
(0.0199) (0.0918) (0.0074)

MCP 0.1247 0.1189 0.0160 0.0176 0.9350 0.9991
(0.0242) (0.0610) (0.0074)

2000 LASSO 0.0344 0.3287 0.0046 0.0110 0.6183 1.0000
(0.009) (0.1063) (0.0000)

SCAD 0.0650 0.0677 0.0033 0.0038 0.9367 1.0000
(0.0106) (0.0555) (0.0000)

MCP 0.0836 0.0198 0.0028 0.0029 0.9928 1.0000
(0.0179) (0.0192) (0.0000)

T Penalty λΘ Precision Matrix, Θ
Bias Variance MSE TNR TPR

200 LASSO 0.0466 1.203 0.1107 0.1739 0.6712 1.0000
(0.0213) (0.1677) (0.0000)

SCAD 0.0845 0.3365 0.1156 0.1236 0.9886 1.0000
(0.0231) (0.0407) (0.0000)

MCP 0.1184 0.3885 0.1273 0.1372 0.9758 1.0000
(0.0546) (0.0518) (0.0000)

500 LASSO 0.0323 0.9038 0.0429 0.0797 0.6806 1.0000
(0.0138) (0.1604) (0.0000)

SCAD 0.0689 0.1333 0.0401 0.0413 0.9938 1.0000
(0.0274) (0.0307) (0.0000)

MCP 0.0967 0.1650 0.0424 0.0440 0.9864 1.0000
(0.0623) (0.0387) (0.0000)

2000 LASSO 0.0191 0.5468 0.0111 0.0254 0.6772 1.0000
(0.0075) (0.1625) (0.0000)

SCAD 0.0510 0.0.373 0.0090 0.0091 0.9982 1.0000
(0.0294) (0.0133) (0.0000)

MCP 0.0849 0.0442 0.0092 0.0093 0.9950 1.0000
(0.0715) (0.0236) (0.0000)
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Table 2.3: LASSO, SCAD and MCP penalized results for Model 2 (VAR(1)) over
500 replicates. Figures in brackets are the corresponding standard deviations.

T Penalty λB AR Coefficient Matrix, B
Bias Variance MSE TNR TPR

200 LASSO 0.1404 1.9505 0.0727 0.2660 0.7998 0.8060
(0.0249) (0.0785) (0.0577)

SCAD 0.1637 1.1983 0.0980 0.2052 0.8564 0.7994
(0.0253) (0.0635) (0.0577)

MCP 0.2127 0.8530 0.1103 0.1666 0.9310 0.7565
(0.0311) (0.0434) (0.0500)

500 LASSO 0.0913 1.3124 0.0306 0.1147 0.7983 0.8620
(0.0167) (0.0755) (0.0524)

SCAD 0.1225 0.7013 0.0394 0.0777 0.8996 0.8471
(0.0168) (0.0490) (0.0513)

MCP 0.1599 0.5518 0.0338 0.0632 0.9585 0.7951
(0.0246) (0.0320) (0.0465)

2000 LASSO 0.0487 0.7793 0.0077 0.0325 0.8114 0.9457
(0.0086) (0.0715) (0.0381)

SCAD 0.0745 0.3472 0.0077 0.0195 0.9420 0.9226
(0.0122) (0.0408) (0.0454)

MCP 0.0885 0.2653 0.0084 0.0155 0.9694 0.8946
(0.0162) (0.0287) (0.0572)

T Penalty λΘ Precision Matrix, Θ
Bias Variance MSE TNR TPR

200 LASSO 0.0909 2.1401 0.1734 0.5506 0.9767 0.5128
(0.0323) (0.0382) (0.0904)

SCAD 0.1105 1.2825 0.3079 0.4266 0.9816 0.5053
(0.0338) (0.0392) (0.0926)

MCP 0.1278 1.0413 0.3846 0.4425 0.9738 0.5426
(0.0606) (0.0397) (0.0900)

500 LASSO 0.0544 1.7381 0.0817 0.3182 0.9638 0.6197
(0.0149) (0.0469) (0.1271)

SCAD 0.0674 0.8015 0.1554 0.2002 0.9769 0.6136
(0.0290) (0.0389) (0.1309)

MCP 0.0762 0.5269 0.1491 0.1641 0.9812 0.6434
(0.0300) (0.0299) (0.0821)

2000 LASSO 0.0212 0.9069 0.0252 0.0835 0.9151 0.8520
(0.0041) (0.0628) (0.0720)

SCAD 0.0318 0.2022 0.0273 0.0306 0.9839 0.7902
(0.0063) (0.0275) (0.0577)

MCP 0.0405 0.1722 0.0280 0.0301 0.9914 0.7619
(0.0097) (0.0203) (0.0483)
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both matrices (around 0.5 to 0.7). SCAD gives better TNRs of both matrices than

LASSO and MCP gives even better than SCAD. The performance of MCP seems to

be the best among the three penalties.

Table 2.5 shows that the MCP penalty has the best accuracy and sparse recogni-

tion measures of Model 4. We first examine the accuracy measures. LASSO gives the

largest bias, variance and MSE for AR coefficient matrix estimation for three sample

sizes. SCAD and MCP give similar accuracy metrics values for the AR coefficient

matrix at three sample sizes. But LASSO gives the largest bias and variance, but

the smallest MSE for precision matrix estimation for three sample sizes. SCAD and

MCP give similar accuracy metrics values for the precision matrix at three sample

sizes. SCAD is sometimes better than MCP and MCP is sometimes better than

SCAD. When the sample size is 2000, SCAD and MCP give similar accuracy metric

values and their MSE values are comparable with the MSE values of LASSO for both

matrices. It seems that SCAD and MCP are more accurate in general.

The next task to compare their sparse recognition ability from the TPR and TNR

values. LASSO has the smallest TNRs for both matrices among the three penalties.

SCAD gives larger TNRs for both matrices than LASSO and MCP has the largest

TNR for both matrices. All TPRs for AR coefficient matrices are over 0.9 for the

three penalties, but it is not the case for the precision matrix estimation. LASSO has

the largest TPR for precision matrix estimates. SCAD and MCP have similar values

and they are slightly lower than that of LASSO. Anyway, the TPR of SCAD and

MCP for the precision matrix are over 0.7. There is a trade-off between TNR and

TPR. When the sample size is 2000, MCP has almost the largest TNR and TPR.

When the sample size is 2000, MCP has almost the largest TNR and TPR. MCP

has an overall better TNR and TPR for both matrices.

When accuracy and the TNR are prioritized as the most important, the overall

performance of the LASSO method is the poorest, while the MCP method is almost
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Table 2.4: LASSO, SCAD and MCP penalized results for Model 3 (VAR(2)) over
500 replicates. Figures in brackets are the corresponding standard deviations.

T Penalty λB AR Coefficient Matrix, B
Bias Variance MSE TNR TPR

200 LASSO 0.0535 2.6269 0.2303 0.4106 0.5341 0.9849
(0.0142) (0.1255) (0.0237)

SCAD 0.0937 1.4358 0.3419 0.4003 0.7478 0.9711
(0.0140) (0.0921) (0.0333)

MCP 0.1381 1.1414 0.3698 0.4113 0.8913 0.9324
(0.0208) (0.0573) (0.0550)

500 LASSO 0.0382 1.7137 0.0834 0.1600 0.5711 0.9999
(0.0086) (0.1213) (0.0012)

SCAD 0.0762 0.7081 0.1042 0.1206 0.8394 0.9996
(0.0105) (0.0730) (0.0039)

MCP 0.1035 0.3449 0.0895 0.0933 0.9433 0.9983
(0.0143) (0.0450) (0.0073)

2000 LASSO 0.0231 0.9704 0.0191 0.0440 0.6445 1.0000
(0.0053) (0.1137) (0.0000)

SCAD 0.0594 0.2571 0.0535 0.0557 0.9167 0.9986
(0.0097) (0.1283) (0.0080)

MCP 0.0756 0.0394 0.0147 0.0147 0.9984 1.0000
(0.0102) (0.0081) (0.0000)

T Penalty λΘ Precision Matrix, Θ
Bias Variance MSE TNR TPR

200 LASSO 0.0294 1.0486 0.1642 0.2132 0.5771 0.9993
(0.0132) (0.2217) -(0.0086)

SCAD 0.0610 0.4910 0.2068 0.2258 0.9131 0.9964
(0.0157) (0.1214) (0.0196)

MCP 0.0893 0.5594 0.1892 0.2107 0.9609 0.9909
(0.0284) (0.0724) (0.0305)

500 LASSO 0.0220 0.8488 0.0559 0.0861 0.6220 1.0000
(0.0088) (0.1984) (0.0000)

SCAD 0.0567 0.2508 0.0556 0.0587 0.9887 1.0000
(0.0142) (0.0502) (0.0000)

MCP 0.0734 0.2381 0.0540 0.0581 0.9884 1.0000
(0.0320) (0.0374) (0.0000)

2000 LASSO 0.0130 0.5464 0.0135 0.0262 0.6478 1.0000
(0.0047) (0.1781) (0.0000)

SCAD 0.0484 0.1318 0.0332 0.0345 0.9824 1.0000
(0.0184) (0.0577) (0.0000)

MCP 0.1051 0.0538 0.0120 0.0123 0.9922 1.0000
(0.0428) (0.0284) (0.0000)
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Table 2.5: LASSO, SCAD and MCP penalized results for Model 4 (VAR(2)) over
500 replicates. Figures in brackets are the corresponding standard deviations.

T Penalty λB AR Coefficient Matrix, B
Bias Variance MSE TNR TPR

200 LASSO 0.0972 4.8085 0.2204 0.8087 0.5784 0.9652
(0.0180) (0.0661) (0.0268)

SCAD 0.1344 2.3562 0.3473 0.5036 0.7244 0.9571
(0.0171) (0.0485) (0.0232)

MCP 0.1987 1.9505 0.3512 0.4690 0.8531 0.9285
(0.0257) (0.0405) (0.0316)

500 LASSO 0.0692 3.1939 0.0833 0.3570 0.5996 0.9950
(0.0117) (0.0561) (0.0102)

SCAD 0.1091 1.4797 0.1250 0.1910 0.8020 0.9824
(0.0144) (0.0391) (0.0152)

MCP 0.1535 1.2154 0.0922 0.1550 0.8989 0.9725
(0.0244) (0.0340) (0.0204)

2000 LASSO 0.0393 1.6574 0.0185 0.0944 0.6265 1.0000
(0.0066) (0.0521) (0.0000)

SCAD 0.0703 0.5383 0.0147 0.0275 0.8758 0.9998
(0.0080) (0.0322) (0.0020)

MCP 0.1024 0.2975 0.0118 0.0169 0.9544 0.9986
(0.0112) (0.0210) (0.0053)

T Penalty λΘ Precision Matrix, Θ
Bias Variance MSE TNR TPR

200 LASSO 0.0224 7.1638 1.8266 4.1718 0.8708 0.8590
(0.0073) (0.1018) (0.1006)

SCAD 0.0894 4.4435 4.3791 5.1799 0.9311 0.7400
(0.0485) (0.0703) (0.1099)

MCP 0.1616 3.9958 4.1110 4.7309 0.9428 0.7360
(0.0885) (0.0643) (0.1079)

500 LASSO 0.0128 4.4610 0.7537 1.6629 0.8349 0.9630
(0.0046) (0.0956) (0.0519)

SCAD 0.0558 1.6709 1.4082 1.5318 0.9481 0.8822
(0.0243) (0.0584) (0.0872)

MCP 0.1074 1.6303 1.3594 1.4826 0.9525 0.8778
(0.0552) (0.0596) (0.0876)

2000 LASSO 0.0100 3.0324 0.1465 0.6681 0.9199 0.9989
(0.0000) (0.0511) (0.0094)

SCAD 0.0436 0.3431 0.2139 0.2222 0.9922 0.9803
(0.0216) (0.0233) (0.0352)

MCP 0.0633 0.3096 0.2223 0.2266 0.9806 0.9946
(0.0397) (0.0303) (0.0202)
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the best. The results in Table 2.5 are similar to that in Table 2.3, but MCP gives

the smallest bias, variance and MSE in AR and precision matrix estimation in most

of the sample cases. Indeed, the TNRs using MCP are higher among the others and

the corresponding to TPRs are comparable to those using SCAD. As a result, MCP

is the best. This result is consistent with our theoretical performance discussion in

Section 2.2.1.

We further examine the entry-wise estimation performance of the AR coefficient

and precision matrices for these three penalties. The deviations of each element

estimate are presented in boxplots. A red-coloured box plot is used to represent the

true non-zero elements while cyan coloured box plot is used to represent the true zero

elements. A black horizontal line is used to represent the median. And the box plots

are put together to form AR coefficients and innovation matrix estimates deviation

box plots. The overall accuracy and sparsity recognition patterns for each penalty

are quite similar among these four models. Therefore, we choose a VAR(1) model at

a sample size of 500 and VAR(2) model at a sample size of 2000 for illustration and

they are presented in Figures 2.2 and 2.3 for Model 2 (T = 500) and 4 (T = 2000)

respectively.

Figure 2.2 shows the box plots for AR coefficient A1 and the innovation precision

matrix Θ for Model 2. Figure 2.2 (a) shows the red boxes of LASSO are smaller

than that of SCAD and MCP. The cyan outlier spots of zero elements estimated by

LASSO fluctuate more from zero than the other two penalized methods. Figure 2.2

(b) has red smaller boxes in the LASSO plot than in the SCAD and the MCP plots,

but all black median lines of zero entries lie on zero for these three methods. Its

MCP cyan spots lie farther away than LASSO and SCAD.

Figure 2.3 shows the box plots for AR coefficients A1, A2 and the innovation

precision matrix Θ for Model 4. Figure 2.3 (a) and (b) show that the red boxes of

LASSO deviate more from zero than the SCAD and MCP. SCAD estimates deviate
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(a) Deviation boxplot of AR coefficient matrix at lag one for Model 2 at T = 500

Figure 2.2: The deviation boxplot of the LASSO, SCAD and MCP penalized esti-
mates from the true values for Model 2 (T = 500), first part.

more from zero than the MCP method. The cyan outlier spots of zero elements

estimated by LASSO fluctuate more from zero than the other two penalized methods.

All black median lines lie on zero for these three methods. Its LASSO cyan spots

lie farther away than SCAD and MCP. Figure 2.3 (c) shows that the red boxes in

the LASSO plot are smaller than in the SCAD and the MCP plots, and all black

median lines of zero entries lie on zero for these three methods. Its MCP cyan spots
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(b) Deviation boxplot of precision matrix for Model 2 at T = 500

Figure 2.2: The deviation boxplot of the LASSO, SCAD and MCP penalized esti-
mates from the true values for Model 2 (T = 500), second part.

lie farther away than LASSO and SCAD.

All in all, the boxplots of the AR coefficients and precision matrices show that

the MCP penalized estimation seems to be the best among these penalties in general.

To confirm that the MCP penalized estimation method is the best, we adopt

the BIC for model selection. For each sample, we choose the model with minimum

BIC from the LASSO, SCAD and MCP models. We count the number of models
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(a) Deviation boxplot of AR coefficient matrix at lag one for Model 4 at T = 2000

Figure 2.3: The deviation boxplot of the LASSO, SCAD and MCP penalized esti-
mates from the true values for Model 4 (T = 2000), first part

chosen as the final model to calculate the proportion of models chosen as the final

model for each penalty. The results are tabulated in Tables 2.6 to 2.9 for Models 1

to 4 respectively. All models have minimum mean BICs using the MCP penalization

method over all the sample sizes T = 200, 500 and 2000. Table 2.6 shows that

100% MCP sparse models with lengths T = 200 and 500 have minimum BIC, when

compared with the other two penalties and are chosen as the final model for Model 1.
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(b) Deviation boxplot of AR coefficient matrix at lag two for Model 4 at T = 2000

Figure 2.3: The deviation boxplot of the LASSO, SCAD and MCP penalized esti-
mates from the true values for Model 4 (T = 2000), second part

For the case of T = 2000, over 99% of MCP are chosen based on minimum BIC as final

models. In Tables 2.7 to 2.9, all MCP penalized sparse models are similarly selected

as final models for Models 2 to 4 at lengths T = 200, 500 and 2000. Therefore, MCP

is the best penalized method.
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(c) Deviation boxplot of precision matrix for Model 4 at T = 2000

Figure 2.3: The deviation boxplot of the LASSO, SCAD and MCP penalized esti-
mates from the true values for Model 4 (T = 2000), third part

2.3.4 Robustness Test

To test the robustness of the MCP penalty, we used the LASSO penalty as a bench-

mark for comparison, because the LASSO penalty is well known for its robustness

against large variance. The performance evaluation measures described in Sec-

tion 2.3.2 are used and we compare the pattern of the results across the change

to the precision matrices.
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Table 2.6: Bayesian Information Criterion values for LASSO, SCAD and MCP pe-
nalized results for Model 1 (VAR(1)) over 500 replicates.

BIC % of models
T Penalty mean sd having min BIC

200 LASSO 3899.36 51.99 0
SCAD 3862.09 50.69 0
MCP 3849.46 50.88 100

500 LASSO 9525.25 76.19 0
SCAD 9475.27 75.94 0
MCP 9460.63 75.57 100

2000 LASSO 37532.86 151.79 0
SCAD 37451.75 151.46 0.4
MCP 37443.42 151.30 99.6

Table 2.7: Bayesian Information Criterion values for LASSO, SCAD and MCP pe-
nalized results for Model 2 (VAR(1)) over 500 replicates.

BIC % of models
T Penalty mean sd having min BIC

200 LASSO 5334.09 62.10 0
SCAD 5288.33 61.92 0
MCP 5253.74 61.42 100

500 LASSO 13040.50 89.05 0
SCAD 12966.78 89.38 0
MCP 12929.92 89.25 100

2000 LASSO 51344.20 189.00 0
SCAD 51224.87 189.87 0
MCP 51193.74 189.20 100

Two VAR(1) models with sample sizes 200, 500 and 2000 and with the spar-

sity rates in AR coefficients being 0.56 and in the precision matrix being 0.48 are

simulated for 200 replicates. They have the same AR coefficient matrix but their

precision matrices are different. The precision matrix of Model 5 is one-fifth of the

precision matrix of Model 6. That is, the covariance matrix of Model 6 is larger.

Their details are the following:

Model 5: yt = A
(5)
1 yt−1 + ut with ut ∼ N(0,Σ5),
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Table 2.8: Bayesian Information Criterion values for LASSO, SCAD and MCP pe-
nalized results for Model 3 (VAR(2)) over 500 replicates.

BIC % of models
T Penalty mean sd having min BIC

200 LASSO 3843.74 52.66 0
SCAD 3779.09 52.47 0
MCP 3747.44 51.50 100

500 LASSO 9204.86 77.00 0
SCAD 9112.98 76.37 0
MCP 9086.50 76.06 100

2000 LASSO 35784.50 150.94 0
SCAD 35774.85 374.45 0
MCP 35632.64 151.15 100

Table 2.9: Bayesian Information Criterion values for LASSO, SCAD and MCP pe-
nalized results for Model 4 (VAR(1)) over 500 replicates.

BIC % of models
T Penalty mean sd having min BIC

200 LASSO 3777.33 64.75 0
SCAD 3641.24 65.47 0
MCP 3572.23 65.02 100

500 LASSO 8735.02 94.60 0
SCAD 8538.57 91.96 0
MCP 8477.18 90.48 100

2000 LASSO 33103.55 187.96 0
SCAD 32806.50 186.04 0
MCP 32742.62 188.09 100

Model 6: yt = A
(5)
1 yt−1 + ut with ut ∼ N(0,Σ6),

where the coefficient and innovation precision matrices are

A
(5)
1 =


0.4352 −0.6552 0.4154 0.3930 −0.5200 0.2256
0.1478 −0.4932 0 0 0 0
−0.7940 0 −0.8933 0 0 0
0.5894 0 0 −0.1478 0 0
−0.8009 0 0 0 −0.4169 0
0.4197 0 0 0 0 −0.2439

 ,
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Σ−1
5 =


0.05 0.02 0.02 0.02 0.02 0.02
0.02 0.05 0 0 0 0
0.02 0 0.05 0 0 0
0.02 0 0 0.05 0 0
0.02 0 0 0 0.05 0
0.02 0 0 0 0 0.05

 and

Σ−1
6 =


0.01 0.004 0.004 0.004 0.004 0.004
0.004 0.01 0 0 0 0
0.004 0 0.01 0 0 0
0.004 0 0 0.01 0 0
0.004 0 0 0 0.01 0
0.004 0 0 0 0 0.01

 .

The accuracy performance and sparsity recognition performance of Model 5 are

reported in Table 2.10. The bias, variance and MSE of the AR coefficient matrix, B

of MCP are much lower than that of the LASSO method and these three accuracy

measures are very similar in the precision matrix estimation. The TPR of the AR

coefficient matrix using both methods are extremely high, close to one, while the

TNR of the MCP method is much higher than that of the LASSO method. The

TNR of MCP are at least 0.88, but the LASSO method results in around 0.6 in 3

different sample sizes. When the performance of the precision matrix is examined,

bias, variance and MSE of the two methods are similar and close to zero. Both

methods exhibit similar TNR and TPR.

The accuracy performance and sparsity recognition performance of Model 6 are

reported in Table 2.11. The bias, variance and MSE of the AR coefficient matrix,

B of MCP are much lower than that of the LASSO method and a similar accuracy

performance is found in both LASSO and MCP methods. The TPR of the AR

coefficient matrix using both methods are extremely high, close to one, while the

TNR of the MCP method is much higher than that of the LASSO method. The

TNR of MCP are at least 0.86, but the LASSO method results in around 0.6 in 3
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Table 2.10: LASSO and MCP penalized results for Model 5 (VAR(1)). Figures in
brackets are the corresponding standard deviations.

T Penalty λB AR Coefficient Matrix, B
Bias Variance MSE TPR TNR

200 LASSO 0.0901 0.9960 0.0515 0.1084 0.5990 0.9906
(0.0263) (0.1095) (0.0241)

MCP 0.1709 0.3838 0.0546 0.0730 0.8825 0.9706
(0.0432) (0.0763) (0.0381)

500 LASSO 0.0638 0.6748 0.0198 0.0455 0.6145 0.9997
(0.0176) (0.1140) (0.0044)

MCP 0.1230 0.1089 0.0154 0.0170 0.9388 0.9988
(0.0227) (0.0611) (0.0088)

2000 LASSO 0.0363 0.3306 0.0044 0.0110 0.6363 1.0000
(0.0092) (0.1132) (0.0000)

MCP 0.0831 0.0183 0.0027 0.0028 0.9950 1.0000
(0.0170) (0.0159) (0.0000)

T Penalty λΘ Precision Matrix, Θ
Bias Variance MSE TNR TPR

200 LASSO 0.6535 0.0490 0.0003 0.0004 0.6090 1.0000
(0.2203) (0.1654) (0.0000)

MCP 0.6562 0.0472 0.0003 0.0004 0.6245 1.0000
(0.2048) (0.1621) (0.0000)

500 LASSO 0.5300 0.0435 0.0001 0.0002 0.6465 1.0000
(0.2164) (0.1600) (0.0000)

MCP 0.5565 0.0415 0.0001 0.0002 0.6670 1.0000
(0.2094) (0.1467) (0.0000)

2000 LASSO 0.3182 0.0244 0.0000 0.0001 0.6920 1.0000
(0.1409) (0.1535) (0.0000)

MCP 0.3075 0.0226 0.0000 0.0000 0.7070 1.0000
(0.1326) (0.1529) (0.0000)

different sample sizes. When the performance of the precision matrix is examined,

bias, variance and MSE of the two methods are similar and close to zero. Both

methods exhibit similar TNR and TPR.

Next, we compare the difference in accuracy and sparsity recognition performance

of Model 5 from Model 6.

Table 2.12 tabulates the difference in the accuracy performance of Model 5 from

Model 6. The accuracy measures, bias, variance and MSE of the AR coefficients

of Model 6 are expected to be larger than that of Model 5 because Model 6 is a

model with diagonal variances about 5 times (larger than) the corresponding variance
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Table 2.11: LASSO and MCP penalized results for Model 6 (VAR(1)). Figures in
brackets are the corresponding standard deviations.

T Penalty λB AR Coefficient Matrix, B
Bias Variance MSE TNR TPR

200 LASSO 0.0954 1.0534 0.0548 0.1161 0.5953 0.9906
(0.0318) (0.1177) (0.0241)

MCP 0.1723 0.3881 0.0555 0.0755 0.8693 0.9725
(0.0455) (0.0834) (0.0369)

500 LASSO 0.0626 0.6500 0.0209 0.0443 0.5940 1.0000
(0.0205) (0.1173) (0.0000)

MCP 0.1239 0.1221 0.0146 0.0161 0.9338 0.9991
(0.0231) (0.0640) (0.0076)

2000 LASSO 0.0348 0.3270 0.0045 0.0107 0.6180 1.0000
(0.0097) (0.1102) (0.0000)

MCP 0.0874 0.0223 0.0027 0.0028 0.9935 1.0000
(0.0178) (0.0196) (0.0000)

T Penalty λΘ Precision Matrix, Θ
Bias Variance MSE TNR TPR

200 LASSO 0.6502 0.0045 0.0000 0.0000 0.2310 1.0000
(0.3012) (0.1324) (0.0000)

MCP 0.6633 0.0043 0.0000 0.0000 0.2365 1.0000
(0.3049) (0.1342) (0.0000)

500 LASSO 0.7391 0.0042 0.0000 0.0000 0.3315 1.0000
(0.2310) (0.1479) (0.0000)

MCP 0.7564 0.0038 0.0000 0.0000 0.3385 1.0000
(0.2178) (0.1420) (0.0000)

2000 LASSO 0.7439 0.0033 0.0000 0.0000 0.5405 1.0000
(0.2004) (0.1654) (0.0000)

MCP 0.7487 0.0032 0.0000 0.0000 0.5490 1.0000
(0.2047) (0.1692) (0.0000)

of Model 5 and it would be expected that it is more difficult to estimate the AR

coefficients in Model 6. Therefore, we expect the differences of bias, variance and

MSE in the AR coefficient matrix are negative for most of the cases. Except for the

difference of variance and MSE of MCP at 500 sample sizes, MSE of LASSO at 500

sample sizes and MSE of LASSO at 2000 samples in the AR coefficient matrix, all

differences in the accuracy measures are negative or zero. The differences in variance

and MSE in the AR coefficients and precision matrices are either a tiny positive value

or zero for both the LASSO and the MCP methods. Differences in variance and MSE

of the two methods in both matrices is very similar and differences in the bias of
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MCP are smaller than that of LASSO. It indicates that MCP is slightly better in

LASSO in accuracy performance.

Table 2.12: LASSO and MCP penalized results difference of Model 5 from Model 6

T Penalty Difference of AR Coefficient Matrix, B
Bias Variance MSE TNR TPR

200 LASSO -0.0574 -0.0032 -0.0078 0.0038 0.0000
MCP -0.0044 -0.0009 -0.0025 0.0133 -0.0019

500 LASSO 0.0248 -0.0011 0.0012 0.0205 -0.0003
MCP -0.0132 0.0008 0.0008 0.0050 -0.0003

2000 LASSO 0.0036 -0.0001 0.0002 0.0183 0.0000
MCP -0.0040 0.0000 0.0000 0.0015 0.0000

T Penalty Difference of Precision Matrix, Θ
Bias Variance MSE TNR TPR

200 LASSO 0.0444 0.0003 0.0004 0.3780 0.0000
MCP 0.0429 0.0003 0.0004 0.3880 0.0000

500 LASSO 0.0393 0.0001 0.0002 0.3150 0.0000
MCP 0.0377 0.0001 0.0002 0.3285 0.0000

2000 LASSO 0.0211 0.0000 0.0001 0.1515 0.0000
MCP 0.0193 0.0000 0.0000 0.1580 0.0000

Table 2.12 also gives the difference in sparsity recognition performance between

Model 5 and Model 6. The TPR differences of LASSO and MCP are close to zero, but

the TNR differences of them are negative. When the sparsity measures are discussed,

it would expect that the zero true values of the model with larger variances have

higher chances to be estimated as non-zero, i.e. Model 6 is expected to have a lower

TNR. That implies that the TNR difference between Model 5 and Model 6 would be

positive. This pattern is observed in the TNR of the AR coefficients and precision

matrices for the three selected sample sizes. On the contrary, the non-zero small

values of the model with larger variances have higher chances of being estimated to

be zero. It is expected that the TPR of that model is smaller. This pattern is also

found in the TPR for Model 6 (model with larger variance) and hence their difference

is negative. Therefore, the phenomena are expected. Most of the TNR differences

of MCP are smaller than that of LASSO, while all TPR differences of LASSO and
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MCP are close to zero. It indicates that MCP is superior in sparsity recognition.

When the minimum BIC criterion is used, the MCP method is always the best,

because all final models are MCP models, as given in Tables 2.13 and 2.14. This

example empirically confirms the robustness of the MCP method and is consistent

with our theoretical discussion given in Section 2.2.1.

Patterns of accuracy measures and sparsity recognition rates of the MCP method

across two variances are similar to that of the LASSO method. In addition, the MCP

estimates are always chosen based on BIC. This indicates that the MCP method

performs slightly better than that of the LASSO in the robustness test.

Table 2.13: Bayesian Information Criterion values for LASSO and MCP penalized
results for Model 5 (VAR(1))

BIC % of model
T Penalty mean sd having min BIC

200 LASSO 7492.28 50.91 0.00
MCP 7459.82 50.10 100.00

500 LASSO 18512.78 72.95 0.00
MCP 18468.44 73.38 100.00

2000 LASSO 73467.11 159.46 0.00
MCP 73405.30 158.69 100.00

Table 2.14: Bayesian Information Criterion values for LASSO and MCP penalized
results for Model 6 (VAR(1))

BIC % of model
T Penalty mean sd having min BIC

200 LASSO 9438.36 49.12 0.00
MCP 9406.75 49.67 100.00

500 LASSO 23354.49 73.81 0.00
MCP 23309.50 72.65 100.00

2000 LASSO 92785.67 159.20 0.00
MCP 92725.01 158.98 100.00
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2.4 Application

In this section, we use Pearl River air pollution data to demonstrate the use of our

proposed model and compare the result with existing sparse time series models.

2.4.1 Pearl River air pollution data

We applied the proposed penalized estimation method to a respirable suspended

particles (RSP) time series in Pearl River Delta Region (PRDR) 1. Seven data series

for locations, Chengzhong, Donghu, Luhu, Tianhu, Tanija, Tap Mun and Xiapu, from

January 2006 to December 2015, were transformed, detrended and deseasonalized in

the same setting as in Yuen et al. (2018). LASSO, SCAD and MCP penalties were

used and again, BIC was used to choose the final model. Finally, we compared our

proposed models with existing sparse VAR models in the literature.

2.4.2 Results

We fit the data with VARmodels up to order 4 by LASSO, SCAD and MCP penalized

estimation and calculated their BIC values, tabulated in Table 2.15. The final LASSO

penalized graphical VAR model estimated is a lag one model, which has the BIC value

of 1365.7. The final SCAD penalized estimated model is also a lag one model with

BIC value of 1341 and the final MCP penalized estimated model is a lag two model

with BIC of 1301. Its BIC value is the minimum among the three final models.

Therefore, the final MCP penalized estimated sparse graphical VAR(2) model is

selected as the final model for analysis and interpretation.

The final MCP sparse graphical VAR(2) model is estimated with the regulariza-

tion parameters λB = 0.21 and Θ = 0.09. Its AR coefficients matrices and partial

correlation matrix, determined by precision matrix, are visualized by the heatmaps

1 http://www.epd.gov.hk/epd/english/resources/pub/publications/m report.html.

69



Table 2.15: BIC values of penalized estimated sparse graphical VAR processes for
RSP time series in Pearl River Delta Region.

BIC for Penalties
Graphical VAR model order LASSO SCAD MCP

1 1365.7 1341.0 1301.7
2 1392.2 1354.5 1301.0
3 1416.8 1374.1 1312.9
4 1412.6 1404.0 1311.4

in Figure 2.4 and a mixed graph is plotted in Figure 2.5. The directed and undi-

rected components are the temporal causal graph and the conditional independence

graph; and they are separately plotted in Figure 2.6. The model consists of 14 and 7

significant AR lagged one and AR lagged two coefficients respectively and generates

21 pairs of cities pollutant causal lagged relationships. Four pairs of cities have both

lags one and two relationships. Details refer to Figure 2.6 (a). In addition, it has 13

significant partial correlations. Details refer to Figure 2.6 (b).

2.4.3 Comparison with existing sparse time series models

We compare the MCP penalized sparse graphical VAR (sGVAR) model with existing

sparse models in the literature. They are a structural VAR (SVAR) model, a 2-stage

sparse VAR (2sVAR) model (Davis et al. (2016)) and two constrained graphical

sparse VAR (CGsVAR) models in Yuen et al. (2018). The sparse information and

BIC values are tabulated in Table 2.16. Despite the higher VAR order of the fitted

sGVAR model, it gives the minimum BIC and would be selected as the final model

for analysis. We compare the graphical representation of the models to find the

difference between the models.

The most traditional sparse model is the SVAR model. It has almost the same

model structure as the VAR model except for two differences. It assumes dependence

between lag 0 components, but the VAR model does not. In addition, it assumes
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independence between the innovations but the VAR model assumes a general covari-

ance structure of innovations. That is, the SVAR model possesses one more sparse

AR matrix with ones along diagonal at lag 0 and its innovation precision matrix

has only 7 non-zero parameters. The SVAR model for RSP data gave altogether 26

temporal and lagged causal relationships and it needs 33 parameters in lags 0 and 1

autoregressive (AR) coefficient matrices. Its graphical representation is given in Fig-

ure 22 in Yuen et al. (2018). The total number of elements estimated as non-sparse

is close to the sGVAR model. Since the SVAR model gives a directed acyclic graph

(DAG) and the proposed sGVAR model gives a mixed graph, they could not be

compared directly. The Moralization theorem was applied to the DAG graph of the

SVAR model to form an undirected graph and it is similar to the undirected graph of

the sGVAR model. It contains all edges in the moralized graph of the SVAR model,

but the SVAR model does not contain lag one relationship from Tianhu to Tanjia

and Tianhu to Chengzhong and lag 2 causal relationships in the sGVAR model.

The 2sVAR model captures 12 AR lagged coefficients respectively, as given in

Figure 23(a) and (b) in Yuen et al. (2018). 11 of these lagged coefficients are common

with the SVAR model and their values are quite similar. The main discrepancies are

that the 2sVAR model does not have the directed edges from Tianhu to Donghu and

to Tanjia; and from Tanjia to Xiapu and lagged two directed edges in the sGVAR

model.

When the innovation precision matrix of the 2sVAR model is examined, 10 entries

do not have significant values at the 5% level. These differences might cause a larger

BIC value of the 2sVAR model. Thus, the 2sVAR model has not achieved the best

sparsity pattern.

The last two models for comparison are the CGsVAR models (Yuen et al. (2018))

using frequency and time domain approaches for estimation and their AR coefficients

and partial correlation matrices are shown in Figure 20(a) and (c) in Yuen et al.
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(2018). The sparsity structure of AR coefficients is assumed same as the insignificant

conditional partial correlations pattern.

Their estimated AR and precision matrices contain insignificant values and need

further fine-tuning. But this phenomenon is not found in the sGVAR model. The

frequency and time domain CGsVAR models consist of 13 and 11 statistically signifi-

cant edges in the lagged one coefficients and have less directed edges, when compared

with the sGVAR model. Nine and ten of them in these two models are common with

the sGVAR model respectively. The sGVAR model has 5 to 6 more conditional

dependencies in the partial correlation matrix than these two models (Figure 20(b)

and (d) in Yuen et al. (2018)). The missing conditional dependence in the partial

correlation matrix may account for the larger BIC values of these two CGsVAR

models.

In general, the proposed sGVAR model can capture a mild higher lagged corre-

lated relationship. It has not only the best sparsity pattern of AR coefficients and

precision matrices, chosen by the BIC, but also the minimum BIC among the vari-

ous sparse VAR models. From the above discussion, we notice that the penalization

applied to both AR and precision matrices in estimation allows better flexibility in

modelling sparsity structure and thus, improves the model performance.

2.5 Conclusion

We have considered a new sparse graphical time series model, which combines all

possible sparse Gaussian graphical models and sparse vector autoregressive models

and selects the combined one with the optimal sparsity combination of AR coeffi-

cients and precision matrices to be determined by minimum BIC. It avoids the sparse

structure affected by any pre-estimates based on AR coefficients, partial correlations

or spectral coherence. No sharing of sparsity assumption between AR coefficient and
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Table 2.16: BIC values of different sparse models for Pearl River Delta Region.

VAR No. of non-sparse cells in matrices BIC
Sparse models Order AR Coefficients Precision1 Total values

Structural VAR model 1 33∗ 7∗ 40 1380.9
2-stage sparse VAR model 1 12 28# 40 1334.1
CGsVAR model2 (Freq Domain) 1 27 17 44 1365.8
CGsVAR model2 (Time Domain) 1 25 16 41 1354.8
MCP penalized sGVAR model 2 21 20 41 1301.0

1 Precision matrix is symmetric and therefore the maximum number of parameters required is 28.
2 CGsVAR model refers to the constrained graphical sparse VAR model.
∗ The structural VAR model has autoregressive coefficients to lag 0 and its noise components are
independent.
# The 2-stage model estimates covariance matrix. Ten cells values of the covariance are not
significant at 5% level.

precision matrices is made and it would be more applicable in an exploratory stage

in many areas. We have proved that the penalized maximum likelihood estimators

of the model are consistent and converge to asymptotic normal distributions. We

develop a new, effective and convergent iterative alternating algorithm for LASSO,

SCAD and MCP penalized likelihood estimation for the sparse model. We overcome

the challenge induced by some non-convex penalties in the penalized likelihood esti-

mation, and allow flexibility to use the traditional LASSO method. Our algorithm

does not require a Hessian matrix and enables us to obtain the iterative estimates

using independent elementwise closed-form solutions, which allow parallel program-

ming within the same iteration. This makes the complexity of the algorithm not

increase much, as the dimension increases.

The simulation study shows that MCP provided the most satisfactory results. Its

BIC is always the smallest and has always been selected among the three penalties.

We have further illustrated the LASSO, SCAD and MCP sparse graphical VAR

models on the Pearl River region RSP time series. Again, the MCP sparse model

has minimum BIC and is the best among them. When we further compared our
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MCP sparse model results with the existing sparse time series models, our results

are consistent with these models. In addition, our model avoids entangling more

variables in the directed edges structures, as in structural VAR model or CGsVAR

models; or detangling these directed edges, as in the 2-stage sparse VAR model. It

has more balanced sparsity patterns over the AR coefficient and precision matrices

and contains a few more mild correlated relationships in a higher lag order. It has

the minimum BIC. Therefore, the proposed MCP sparse model is best.
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Figure 2.4: The MCP penalized estimated AR coefficients and partial correlation of
innovations for the RSP data.
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Figure 2.5: A mixed graph visualizing the MCP penalized estimated sparse graph-
ical VAR(2) model for the RSP data. The black solid and red dashed arrows are
directed edges representing AR order lag one and lag two coefficients respectively,
while the blue solid blue lines are undirected edges representing partial correlations,
which are determined by the precision matrix. The figure displays the approximate
geographical location and is not drawn to scale.
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Figure 2.6: (a) The temporal causal graph (directed component) and (b) the con-
ditional independence graph (undirected component) of Figure 2.5. The black solid
and red dashed arrows are directed edges representing AR order lag one and lag
two coefficients respectively, while the blue solid blue lines are undirected edges rep-
resenting partial correlations, which are determined by the precision matrix. The
figure displays the approximate geographical location and is not drawn to scale.
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Chapter 3

Graphical Matrix Time Series

Models

Matrix-variate observations are commonly encountered in macroeconomics analysis

and many other areas. For example, in a study of the influence of four economic

indicators over five countries, it is natural to collect the quarterly data in a matrix

form under the intersection of two categorical variables. The quarterly economic

observations at each time point can naturally form a matrix Xt by taking each row

as an economic indicator and each column as a country. The data exhibit more

structural information, especially when the two categorical variables have a close

relationship with each other. The collection of data matrix variates, Xt, t = 1, . . . , T,

become a matrix-variate time series for analysis.

A traditional convention for analyzing matrix-variate observations is to treat

these multiple observations as vectors and to model them by vector models. The

traditional methods run two standard vector time series models for analysis and

adopt dynamic factor analysis (Bai and Ng (2011), Forni et al. (2000); Lam et al.

(2011)). To understand better the structural information, Tsai and Tsay (2010)

added group constraints in a factor model for the time series. Hallin and Lǐska

(2011) decomposed the time series into blocks and conducted factor analysis. All

these methods treat all data using vector form.
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Since the traditional modelling method cannot efficiently analyze the matrix

structural relationship, matrix models have been first developed in regression and

then extended to time series models. A bilinear matrix regression model originated

from a growth curve model. Its model equation has a left and right design matrix,

and an unknown matrix between design matrices for estimation. Theoretical de-

tails are given in von Rosen (2018). Chen et al. (2021) proposed to combine the

autoregressive time series models with this bilinear regression model and called the

proposed model a Matrix Autoregressive (MAR) model. Similar to the bilinear re-

gression model, the MAR model has a bilinear form. It has a coefficient matrix

multiplying a data matrix at time point Xt on the left side and another coefficient

matrix multiplies the data matrix Xt on the right side. The left matrix of the bilin-

ear form investigates the row-wise interactions and the column matrix examines the

column-wise dependence. This bilinear form allows complete interpretability over

the original matrix structure. This model further reduces the number of parameters

by introducing the structured covariance tensor, which consists of existing row-wise

covariance and column-wise covariance, and has a huge reduction in parameters as

compared with a vector autoregressive model. However, the number of lag ready to

use is one only and it is not adequate in many applications.

We aim to extend the existing matrix time series model to any general lag order

and its inverse of the innovation covariance structure is free of structure. This pro-

posed model enables exploring further the conditional dependence between variables

and visualizing the relationship, based on a graphical model. The idea of the graph-

ical model originated from the covariance selection problem in Dempster (1972) and

a typical Gaussian graphical model can be found in Lauritzen (1996).

In addition, we would like to consider a sparse version of our ‘graphical’ MAR

model by penalized estimation method. The penalized estimation on a likelihood

with an innovation precision matrix builds a sparse graphical vector model for vec(Xt)
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and the sparsity of the precision matrix implies the sparsity of the partial correlation

structure. We change the penalized estimation into a matrix setting and obtain a

sparse graphical matrix time series model. It consists of a set of vertices and a set of

edges, where each vertex represents a variable and an edge is absent from two vertices

indicating the conditional independence between the corresponding variables. The

absent edge is represented by a zero in the precision matrix.

The LASSO penalty will be adopted because of its popularity. Meinshausen and

Bühlmann (2006) adopted the LASSO penalized method and Zhao and Leng (2014)

studied the structured LASSO for regression with matrix covariates. It has been

used as a benchmark for sparse penalized models.

In this chapter, we extend Chen et al. (2021)’s work on the MAR model as

follows. We replace the structured covariance tensor of their MAR model with a

freely structured precision matrix so that any imperfect relationship between the

two categorical variables could be modelled. Besides this, the model lag order will

be generalized to any general lag order, i.e. p = 1, 2, 3, . . .. The detailed definition of

the MAR(p) model will be given in Section 3.1. The data visualization concept from

the graphical Gaussian model will be added to our MAR(p) model. LASSO penalized

log-likelihood method is adopted. The sparse graphical MAR(p) model is defined in

Section 3.2. Section 3.3 proposes two respective algorithms for these two models.

The convergence of the algorithms is discussed. We conduct the simulation study

in Section 3.4. Both algorithms work well for the MAR(p) model and the sparse

graphical MAR(p) model. We revisit Chen et al. (2021)’s four economic indicators

example in Section 3.5 and our general MAR(p) has a smaller in-sample residual sum

of squares and an out-of-sample prediction error sum of squares than the existing

MAR(p) model. A sparse graphical model is constructed and compared with the

existing sparse graphical vector time series model. Again, our sparse graphical model

is better because it has a smaller in-sample residual sum of squares and an out-of-
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samples prediction error sum of squares. The corresponding conditional dependence

graph is plotted and the relationship shown is intuitively correct.

3.1 General Matrix Autoregressive Models

Chen et al. (2021) adopt the bilinear regression in von Rosen (2018) into a matrix

time series model and assume the covariance matrix of the model as a Kronecker

product of column-wise covariance and row-wise covariance matrices. Assume data

under the intersection of two classifications be an m × n valued matrix Xt at time

t and the time series has a length T . Chen et al. (2021)’s bilinear form matrix

autoregressive model is the following:

Xt = AXt−1B
T + Et, t = 1, . . . , T, (3.1)

where vec(Et) ∼ N(0,Σc ⊗ Σr), A = (aij) is an m × m left coefficient matrix,

B = (bij) is an n × n right coefficient matrix, Et = (eij,t) is an m × n white noise

matrix and ⊗ is a Kronecker product.

Under this setting, the data under two classifications can be expressed as a matrix

and a perfect independent relationship between the two classifications is assumed.

The model takes advantage of the original matrix structure and reduced the di-

mension significantly. However, the model is restricted to lag order one and the

structure of the covariance matrix is also very restrictive. These two features may

not be adequate for real-life applications.

3.1.1 General MAR(p) models

We extend his matrix autoregressive (MAR) time series model to lag order p and

combine it with a graphical model, originated from Dempster (1972). Lauritzen

(1996) gives the theoretical details of the graphical model.
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Xt =

p∑
k=1

AkXt−kB
T
k + Et, for t = 1, . . . , T, (3.2)

where vec(Et) ∼ N(0,Σ),Ak = (aij,k), is an m × m left autoregressive coefficient

matrix, Bk = (bij,k) is an n×n right autoregressive coefficient matrix and Et = (eij,t)

is a m× n matrix white noise. Here, we assume Cov(vec(Et)) = Σ, where Σ = Θ−1

is a mn × mn symmetric positive definite covariance matrix and Θ is a mn × mn

symmetric positive definite precision matrix.

The log-likelihood function of (3.2) is

l(A,B,Σ) =
1

2

{
−mn(T − p) log(2π) + (T − p) log(det(Σ−1))

−
T∑

t=p+1

vec(Xt)
TΣ−1vec(Xt)

+
T∑

t=p+1

p∑
i=1

vec(Xt−i)
T (BT

i ⊗AT
i )Σ

−1vec(Xt)

+
T∑

t=p+1

p∑
i=1

vec(Xt)
TΣ−1(Bi ⊗Ai)vec(Xt−i) (3.3)

−
T∑

t=p+1

p∑
i=1

p∑
j=1

vec(Xt−i)
T (BT

i ⊗AT
i )Σ

−1(Bj ⊗Aj)vec(Xt−j)
}

And this MAR(p) model can be represented by the following vector autoregressive

model:

vec(Xt) = (B1 ⊗A1)vec(Xt−1) + · · ·+ (Bp ⊗Ap)vec(Xt−p) + vec(Et),

where ⊗ denotes the matrix Kronecker product. Lots of properties can be derived

from its corresponding VAR(p) model. Lütkepohl (2005) gives theoretical details of

the VAR(p) model.
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3.1.2 Stability condition of the general MAR(p) model

We can adopt Proposition 1 of Chen et al. (2021) for the stability condition of our

MAR(1) model, because the structure of covariance assumed in their proof of the

stability is also valid in our case. As a result, the product of radius spectral ρ(A)·ρ(B)

for a MAR(1) model is less than 1.

As p (≥ 2) gets larger, we define

A =


B1 ⊗A1 B2 ⊗A2 · · · Bp−1 ⊗Ap−1 Bp ⊗Ap

Imn 0 · · · 0 0
0 Imn 0 · · · 0
...

. . .
...

0 · · · 0 Imn 0

 .

By Chapter 2 of Lütkepohl (2005), we can express the stability condition of a MAR(p)

model is that the moduli of all eigenvalues of A are less than 1. We select Ai’s

and Bi’s satisfying this condition and ∥Ai∥ = 1 for i = 1, . . . , p is used to fix the

identification problem.

3.2 Sparse Graphical MAR(p) Models

The purpose of using fewer parameters is not preserved in our general MAR(p) model,

because its precision matrix Θ has mn × mn number of parameters. But using a

huge number of parameters with a very limited observation would cause inaccurate

model estimation in high dimensional data. Therefore, Chen et al. (2021)’s MAR(1)

model proposed a structured covariance tensor for a dimension reduction purpose.

Then a huge number of parameters reduction will be found in the covariance matrix.

A modern approach to reducing the number of parameters is to make the model

“sparse” by penalized log-likelihood estimation. Penalties are imposed in the log-

likelihood function to make small values shrink in row-wise interactions coefficient A

and column-wise dependence coefficient matrices as well as the precision matrix Θ.
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This resulting sparse MAR(p) model gives another advantage of understanding

the conditional dependence between variables. A mixed graph could be plotted to

visualize the relationship between variables.

We propose a sparse graphical MAR(p) model, in a similar way, as our sparse

graphical VAR(p) model Equation (2.5). i.e. The sparsity of the proposed model is

selected from all possible sparse left and right coefficient matrices and all possible

sparse precision matrices, based on minimum BIC. Then the model achieves an

optimal sparsity.

LASSO is a popular penalty and is always used as a benchmark for all penalized

estimation methods. Compared with SCAD and MCP, its computational time is the

shortest. Therefore, it is chosen for our sparse model.

Let A = (A1, . . . ,Ap) and B = (B1, . . . ,Bp). The sparse graphical MAR(p)

model has the LASSO penalized log-likelihood function as below.

arg min
A,B,Θ

F (A,B,Θ) := −l(A,B,Θ) + T
∑
i,j,k

λA|aij,k|+ T
∑
i,j,k

λB|bij,k|

+T
∑
i ̸=j

λΘ|θij|, (3.4)

where λA, λB and λΘ are regularization parameters for the m×m row-wise interac-

tion matrix, Ak = (aij,k)i,j=1,...,m with ∥Ak∥ = 1, the n× n column-wise dependence

matrix, Bk = (bij,k)i,j=1,...,n (for k = 1, . . . , p) and the mn × mn precision matrix,

Θ = Σ−1 = (θij)i,j=1,...,mn and T is the sample size. To solve the identifiability

problem, we fix ∥Ai∥ = 1 for i = 1, . . . , p.

3.3 Estimation

To set up an algorithm for estimating the MAR(p) Model, we need to derive the first-

order derivative of the log-likelihood function. This requires the following lemma:
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Lemma 3.1. Let a = (aij),A be an m×m matrix, b = (bij),B = (Bij) be an n×n

matrix and R be an mn×mn matrix, the following expressions hold:

1. Tr (R(b⊗A)) = Tr
(
(In ⊗ 1T

m) [R(In ⊗A)⊙ (Jn ⊗ Im)] (In ⊗ 1m)b
)
;

2. Tr
(
R(bT ⊗AT )

)
= Tr

(
(In ⊗ 1T

m)
[
(In ⊗A)RT ⊙ (Jn ⊗ Im)

]
(In ⊗ 1m)b

)
;

3. Tr
(
R(BT ⊗ aT )

)
= Tr

(
(1T

n ⊗ Im)
[
(BT ⊗ Jm)⊙RT

]
(1n ⊗ Im)a

)
; and

4. Tr (R(B⊗ a)) = Tr
(
(1T

n ⊗ Im)
[
(BT ⊗ Jm)⊙R

]
(1n ⊗ Im)a

)
,

where 1m is a column vector with m entries being 1, Jm is an m×m matrix with all

entries being 1, Im is an m×m identity matrix, ⊗ is a Kronecker product and ⊙ is

a Hadamard product of matrices.

Proof Let R =

 R11 · · · R1n
...

...
Rn1 · · · Rnn

 and RT =

 R∗
11 · · · R∗

1n
...

...
R∗

n1 · · · R∗
nn

 , where Rij

and R∗
ij are m×m matrices for i, j = 1, . . . , n.

1.

Tr (R(b⊗A)) = Tr

(
n∑

i=1

n∑
j=1

bijRijA

)

= Tr


 Tr(R11A) Tr(R1nA)

...
Tr(Rn1A) Tr(RnnA)


 b11 · · · b1n

...
...

bn1 · · · bnn
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Note that Tr(RijA) = Tr(RijA⊙ Im) = 1T
m (RijA⊙ Im)1m for i, j = 1, . . . , n.

Tr (R(b⊗A))

= Tr


 Tr(R11A⊙ Im) · · · Tr(R1nA⊙ Im)

...
...

Tr(Rn1A⊙ Im) · · · Tr(RnnA⊙ Im)


 b11 · · · b1n

...
...

bn1 · · · bnn




= Tr




1T
m 0 · · · 0
0 1T

m
...

. . .

0 0 · · · 1T
m


︸ ︷︷ ︸

n×n blocks

 R11A⊙ Im · · · R1nA⊙ Im
...

...
Rn1A⊙ Im · · · RnnA⊙ Im




1m 0 · · · 0

0 1m
...

...
. . .

0 0 · · · 1m


︸ ︷︷ ︸

n×n blocks

b


(3.5)

Hence, Tr (R(b⊗A)) = Tr
(
(In ⊗ 1T

m) [R(In ⊗A)⊙ (Jn ⊗ Im)] (In ⊗ 1m)b
)
.

2.

Tr
(
R(bT ⊗AT )

)
= Tr

(
(b⊗A)RT

)
= Tr

(
RT (b⊗A)

)
By Expression 1, the result follows.
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3.

Tr
(
R(BT ⊗ aT )

)
= Tr

(
(B⊗ a)RT

)
= Tr

(
RT (B⊗ a)

)
= Tr

(
n∑

i=1

n∑
j=1

BjiR
∗
ija

)

= Tr

((
n∑

i=1

n∑
j=1

BjiR
∗
ij

)
a

)
(3.6)

Note that

n∑
i=1

n∑
j=1

BjiR
∗
ij =

(
Im · · · Im

)︸ ︷︷ ︸
n blocks

 B11R
∗
11 · · · Bn1R

∗
1n

...
...

B1nR
∗
n1 · · · BnnR

∗
nn


 Im

...
Im


︸ ︷︷ ︸

n vertical blocks

=
(
1T
n ⊗ Im

) (
(BT ⊗ Jm)⊙RT

) (
1T
n ⊗ Im

)
(3.7)

By combining (3.6) and (3.7), the result follows.

4.

Tr (R(B⊗ a)) = Tr
(
(R(B⊗ a))T

)
= Tr

(
(B⊗ a)TRT

)
= Tr

(
RT (B⊗ a)T

)
= Tr

(
RT (BT ⊗ aT )

)
By Expression 3, the result follows.

□

Numerical verification was done with R programs.

We aim at setting up an algorithm of the MAR(p) and derive the gradient of the

log-likelihood function with respect to A,B and Σ−1.
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Theorem 3.1. Let Y1 =
∑T

t=p+1 vec(Xt)vec(Xt)
T ,Y2,i =

∑T
t=p+1 vec(Xt)vec(Xt−i)

T

and Y3,i,j =
∑T

t=p+1 vec(Xt−i)vec(Xt−j)
T for i, j = 1, . . . , p. Let A = (A1, . . . ,Ap)

and B = (B1, . . . ,Bp). Then the gradient of the log-likelihood function of MAR(p)

is

∇l(A,B,Σ−1) =
(
DAl(A,B,Σ

−1), DBl(A,B,Σ
−1), DΣ−1l(A,B,Σ−1)

)
,

where

DAi
l(A,B,Σ−1) = (1T

n ⊗ Im) [(Bi ⊗ Jm)⊙Y4,i] (1n ⊗ Im) (3.8)

DBi
l(A,B,Σ−1) =

1

2
(In ⊗ 1T

m)
([

(In ⊗AT
i )Y4,i +Y4,i(In ⊗AT

i )
]
⊙ (Jn ⊗ Im)

)
(In ⊗ 1m) (3.9)

Y4,i =
[
Σ−1

(
Y2,i − (

p∑
j=1

(Bj ⊗Aj)Y
T
3,i,j

)]

for i = 1, . . . , p,

DΣ−1l(A,B,Σ−1) =
1

2

{
(T − 1)Σ−Y1 +

p∑
i=1

(Bi ⊗Ai)Y
T
2,i +

p∑
i=1

Y2,i(B
T
i ⊗AT

i )

−
p∑

i=1

p∑
j=1

(Bi ⊗Ai)Y3,i,j(B
T
j ⊗AT

j )
}

(3.10)

Proof Let A = (A1, . . . ,Ap) and B = (B1, . . . ,Bp), a = (a1, . . . , ap) and b =

(b1, . . . ,bp), where ai(i = 1, . . . , p),bi(i = 1, . . . , p), s are m×m, n×n and mn×mn

small matrices respectively. Consider the Taylor’s expansion of the log-likelihood

function (3.2),
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l(A+ a,B+ b,Σ−1 + s)− l(A,B,Σ−1)

=
1

2

{
(T − p)

(
log(det(Σ−1 + s))− log(det(Σ−1))

)

−
T∑

t=p+1

vec(Xt)
T (Σ−1 + s)vec(Xt)

+
T∑

t=p+1

vec(Xt)
TΣ−1vec(Xt)

+
T∑

t=p+1

p∑
i=1

vec(Xt−i)
T
(
(Bi + bi)

T ⊗ (Ai + ai)
T
)
(Σ−1 + s−1)vec(Xt)

−
T∑

t=p+1

p∑
i=1

vec(Xt−i)
T (BT

i ⊗AT
i )Σ

−1vec(Xt)

+
T∑

t=p+1

p∑
i=1

vec(Xt)
T (Σ−1 + s−1) ((Bi + bi)⊗ (Ai + ai)) vec(Xt−i)

−
T∑

t=p+1

p∑
i=1

vec(Xt)
TΣ−1(Bi ⊗Ai)vec(Xt−i)

−
T∑

t=p+1

p∑
i=1

p∑
j=1

vec(Xt−i)
T
(
(Bi + bi)

T ⊗ (Ai + ai)
T
)
·

(
Σ−1 + s−1

)
((Bj + bj)⊗ (Aj + aj)) vec(Xt−j)

+
T∑

t=p+1

p∑
i=1

p∑
j=1

vec(Xt−i)
T (BT

i ⊗AT
i )Σ

−1(Bj ⊗Aj)vec(Xt−j)
}
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=
1

2

{
(T − 1)

(
log(det(Σ−1 + s))− log(det(Σ−1))

)
−

T∑
t=p+1

vec(Xt)
T s vec(Xt)

+
T∑

t=p+1

p∑
i=1

[
vec(Xt−i)

T
(
(bT

i ⊗AT
i )Σ

−1 + (BT
i ⊗ aT

i )Σ
−1

+(BT
i ⊗AT

i )s
)
vec(Xt)

]
+

T∑
t=p+1

p∑
i=1

[
vec(Xt)

T ·

(
Σ−1(bi ⊗Ai) +Σ−1(Bi ⊗ ai) + s(Bi ⊗Ai)

)
vec(Xt−i)

]
−

T∑
t=p+1

p∑
i=1

p∑
j=1

[
vec(Xt−i)

T
(
(bT

i ⊗AT
i )Σ

−1(Bj ⊗Aj)

+(BT
i ⊗ aT

i )Σ
−1(Bj ⊗Aj) + (BT

i ⊗AT )s(Bj ⊗Aj)

+(BT
i ⊗AT

i )Σ
−1(bj ⊗Aj) + (BT

i ⊗AT
i )Σ

−1(Bj ⊗ aj)
)
vec(Xt−j)

] }

+O(∥a∥2) +O(∥b∥2) +O(∥s∥2)

=
1

2

{
Tr
(
(T − 1)Σs−

T∑
t=p+1

vec(Xt)vec(Xt)
T s

+
T∑

t=p+1

p∑
i=1

(Bi ⊗Ai)vec(Xt−i)vec(Xt)
T s

+
T∑

t=p+1

p∑
i=1

vec(Xt)vec(Xt−i)
T (BT

i ⊗AT
i )s

−
T∑

t=p+1

p∑
i=1

p∑
j=1

(Bi ⊗Ai)
(
vec(Xt−i)vec(Xt−j)

T
)
(BT

j ⊗AT
j )s
)
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+Tr
( T∑

t=p+1

p∑
i=1

Σ−1vec(Xt)vec(Xt−i)
T
(
(bT

i ⊗AT
i ) + (BT

i ⊗ aT
i )
)

+
T∑

t=p+1

p∑
i=1

vec(Xt−i)vec(Xt)
TΣ−1

(
(bi ⊗Ai) + (Bi ⊗ ai)

)

−
T∑

t=p+1

p∑
i=1

p∑
j=1

[
Σ−1(Bi ⊗Ai)vec(Xt−i)vec(Xt−j)

T ·

(
(bT

j ⊗AT
j ) + (BT

j ⊗ aT
j )
)]

−
T∑

t=p+1

p∑
i=1

p∑
j=1

[
vec(Xt−i)vec(Xt−j)

T (BT
j ⊗AT

j )Σ
−1·

(
(bi ⊗Ai) + (Bi ⊗ ai)

)] )}

+O(∥a∥2) +O(∥b∥2) +O(∥s∥2)

=
1

2

{
Tr
([

(T − 1)Σ−Y1 +

p∑
i=1

(Bi ⊗Ai)Y
T
2,i +

p∑
i=1

Y2,i(B
T
i ⊗AT

i )

−
p∑

i=1

p∑
j=1

(Bi ⊗Ai)Y3,i,j(B
T
j ⊗AT

j )
]
s
)

+Tr
( p∑

j=1

[
Σ−1Y2,j −

p∑
i=1

Σ−1(Bi ⊗Ai)Y3,i,j

]
(BT

j ⊗ aT
j )

+

p∑
j=1

[
YT

2,jΣ
−1 −

p∑
i=1

Y3,j,i(B
T
i ⊗AT

i )Σ
−1
]
(Bj ⊗ aj)

)
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+Tr
( p∑

j=1

[
Σ−1Y2,j −

p∑
i=1

Σ−1(Bi ⊗Ai)Y3,i,j

]
(bT

j ⊗AT
j )

+

p∑
j=1

[
YT

2,jΣ
−1 −

p∑
i=1

Y3,j,i(B
T
i ⊗AT

i )Σ
−1
]
(bj ⊗Aj)

)}

+O(∥a∥2) +O(∥b∥2) +O(∥s∥2)

=
1

2

{
Tr
[(

(T − 1)Σ−Y1 +

p∑
i=1

(Bi ⊗A)YT
2,i +

p∑
i=1

Y2,i(B
T
i ⊗AT

i )

−
p∑

i=1

p∑
j=1

(Bi ⊗Ai)Y3,i,j(B
T
j ⊗AT

j )
)T

s
]

+Tr
[ p∑

j=1

((
(1T

n ⊗ Im)

(
(Bj ⊗ Jm)⊙

[
2Σ−1

(
Y2,j −

p∑
i=1

((B⊗A)Y3,i,j

)])
·

(1n ⊗ Im)
)T

aj

)]

+Tr
[ p∑

j=1

(
(In ⊗ 1T

m)
([

(In ⊗AT
j )
(
YT

2,j −
p∑

i=1

Y3,i,j(B
T
i ⊗AT

i )
)
Σ−1

+
(
YT

2,j −
p∑

i=1

Y3,i,j(B
T
i ⊗AT

i )
)
Σ−1 · (In ⊗AT

j )
]
⊙ (Jn ⊗ Im)

)
·

(In ⊗ 1m)
)T

bj

)]}
+O(∥a∥2) +O(∥b∥2) +O(∥s∥2)

Using Lemma 3.1, the last equality holds. It is obviously that Y3,i,j = YT
3,j,i.

Define Y4,i =
[
Σ−1

(
Y2,i − (

∑p
j=1(Bj ⊗Aj)Y

T
3,i,j

)]
,
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and using the fact that

l(A+ a,B+ b,Σ−1 + s)− l(A,B,Σ−1)

= Tr(

p∑
i=1

DAi
l(A,B,Σ−1)Tai) + Tr(

p∑
i=1

DBi
l(A,B,Σ−1)Tbi)

+Tr(

p∑
i=1

DΣ−1l(A,B,Σ−1)T s) +O(∥a∥2) +O(∥b∥2) +O(∥s∥2),

the results follow. □

3.3.1 Proposed algorithm for the general MAR(p) model

We aim to solve not just the MAR(p) model (3.2) with lag order p = 1 but also

with lag order p > 1. From now onwards, we denote Σ−1 by Θ. Our algorithm has

two parts. The former estimates the MAR(p) model with a general Θ and the latter

estimates the MAR(p) model under the structured covariance tensor, as stated in

Chen, Xiao and Yang (2021).

Let q = 1, .., Q be iteration number, A = (A1, . . . ,Ap) and B = (B1, . . . ,Bp).

To fix the identifiability, we fix ∥Ai∥ = 1 for i = 1, . . . , p. We apply the concept of

block coordinate gradient descent algorithm to our algorithm as follows.

1. General MAR(p) Estimation:

(a) We solve B⊗A and Θ based on the maximum likelihood estimates of the

best fitted vector autoregressive model for the data. Then the projection

method is extended to estimate Ai,Bi, i = 1, . . . , p. These estimates

A
(0)
i ,B

(0)
i ,Θ(0) are used as initial values.

(b) Set iteration number q = 1.

(c) Given B(q−1) and Θ(q−1), solve

A(q) = argmin
A
−l(A,B(q−1),Θ(q−1))
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and renormalize A afterwards.

(d) Given A(q) and Θ(q−1), solve

B(q) = argmin
B
−l(A(q),B,Θ(q−1))

(e) Given A(q) and B(q), solve

Θ(q) = argmin
Θ
−l(A(q),B(q),Θ)

(f) Set q = q + 1. Repeat Steps (c) and (e) until ∥A(q)−A(q−1)∥F
max(1,∥A(q)∥F )

< 1 × 10−4,

∥B(q)−B(q−1)∥F
max(1,∥B(q)∥F )

< 1× 10−4 and ∥Θ(q)−Θ(q−1)∥F
max(1,∥Θ(q)∥F )

< 1× 10−4.

2. Obtain initial values from VAR(p) MLE using the following steps:

(a) Perform the projection method on the i-th lag order coefficient matrices

Ci, (i = 1, . . . , p). i.e. minAi,Bi
∥Ci −Bi ⊗Ai∥2F

(b) Normalize Âi: i.e. Âi ← Âi

∥Âi∥
and B̂i ← B̂i · ∥Âi∥

(c) Direct apply the precision matrix of the best fitted VAR(p) model as the

initial value of MAR(p).

In the A, B and Θ steps, we use the algorithm in Section 2.2.3 with the

following change in Step 3:

w(k+1) = w(k) −∇l(w(k))/t(k).

And the whole big algorithm forms a block coordinate gradient descent algo-

rithm and its convergence will be discussed in Section 3.3.3
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3.3.2 Proposed algorithm for the sparse graphical MAR(p)
model

The proposed algorithm for solving (A,B,Θ) is the following:

1: Set iA = iB = iΘ = 1 and the regularization parameter triplet (λA, λB, λΘ)

to (0.01, 0.01, 0.01). Set up minimum and maximum for these regulariza-

tion parameters and form a grid for (λA, λB, λΘ).

2: (Initialization of parameters A,B and Θ) For each (λA, λB, λΘ) set of

given values, set the outer iteration counter, q, to 1. When iB = iΘ = 1,

set the initial values of A B and Θ as A(0),B(0) and Θ(0), which are the

maximum likelihood estimates of (2.3), otherwise use a warm start in the

following way:

(a) When iA = 1, iB = 1 and iΘ > 1, set the initial value as A(1,1,1),B(1,1,1)

and Θ(1,1,1).

(b) When iA = 1, for any iB > 1, and any iΘ , set the initial value from

A(1,iB−1,iΘ), B(1,iB−1,iΘ) and Θ(1,iB−1,iΘ).

(c) For any iA > 1, iB > 1, iΘ , set the initial value from A(iA−1,iB,iΘ),

B(iA−1,iB,iΘ) and Θ(iA−1,iB,iΘ).

3: (Block Coordinate Gradient Descent Algorithm) Given B(q−1) and Θ(q−1), solve

A(q) from the following:

A(q) = argmin
A
−l(A,B,Θ(q−1)) + T

∑
i,j,k

λA|aij,k| (3.11)

A
(q)
k ← A

(q)
k /∥A(q)

k ∥ for k = 1, . . . , p.

4: Given A(q−1) and Θ(q−1), solve B(q) from the following.
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B(q) = argmin
B
−l(A,B,Θ(q−1)) + T

∑
i,j,k

λB|bij,k| (3.12)

5: Given A(q−1),B(q−1), solve Θ(q) from the following.

Θ(q) = argmin
Θ
−l(A(q),B(q),Θ) + T

∑
i ̸=j

λΘ|θij| (3.13)

6: Set q = q + 1 and repeat Steps 3 to 5 until the following stopping criterion is

fulfilled:

∥A(q) −A(q−1)∥
max(1, ∥A(q)∥)

≤ 1× 10−4,
∥B(q) −B(q−1)∥
max(1, ∥B(q)∥)

≤ 1× 10−4 and

∥Θ(q) −Θ(q−1)∥
max(1, ∥Θ(q)∥)

≤ 1× 10−4.

7: Set the solutions A(iA,iB,iΘ) = A(q), B(iA,iB,iΘ) = B(q), Θ(iA,iB,iΘ) = Θ(q) and

set (iA, iB, iΘ) to next grid value by iA = iA+1, iB = iB+1 and/ or iΘ = iΘ+1

and go to Step 2. Repeat Steps 2 to 6 until all grid points of (iA, iB, iΘ) are

used.

8: The final model is selected based on minimum BIC among the all grid estimates.

In the A, B and Θ steps, we use the algorithm in Section 2.2.3. Running the

above sparse graphical MAR(p) model algorithm is computationally costly because

one may run Steps 1 to 8 of the above algorithm for 100 × 100 × 100 grid points.

Based on the experience of fitting a sparse graphical VAR(p) model for the simulated

samples in Chapter 2, the regularization parameters of coefficient and precision ma-

trices have very small mean values and small deviations. Refer to Tables 2.3 and 2.5

for details. Therefore, it is not necessary to run all grid points for obtaining the

optimal sparse model.

We consider a strategy to reduce the number of grid points for running the sparse

MAR(p) model. We first consider the step size for a grid is 0.05, instead of 0.01.
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Then the number of grid points is reduced to 20×20×20 = 8000. Conduct the above

algorithm from Steps 1 to 7 for these 8000 grid points. We extract the estimated

triplets with total positive rates (TPRs) and total negative rates (TNRs) of A,B,Θ)

and plot a three-dimensional graph of (λA, λB, λΘ) from the extracted estimated

triplets. Then the plotted ranges of (λA, λB, λΘ) suggest smaller ranges from 0.01

to 1 for the grid of (λA, λB, λΘ) for sparse graphical MAR(p) model estimation.

For simplicity, we consider plotting the diagram where all TPRs and TNRs are

greater than 75% for the three-dimensional plot and determining the ranges of the

regularization parameter triplet for using a 0.01 step size afterwards. Normally, we

take a bigger range than the range observed from the range observed in a three-

dimensional plot.

3.3.3 Convergence of the algorithms

In this section, we discuss the convergence of the algorithm for MAR(p) model esti-

mation and sparse graphical MAR(p) model estimation.

Theorem 3.2. The MAR(p) model estimation algorithm is a block coordinate gra-

dient descent algorithm and is convergent.

Proof: We modify the proof of Theorem 2.1 with the following:

1. Change the objective function to F (x1, x2, x3) instead of F (x1, x2).

2. Set the penalty function of P1(x1) = P2(x2) = 0.

Results follow. □

Theorem 3.3. The sparse graphical MAR(p) model estimation algorithm is a block

coordinate gradient descent algorithm and is convergent.

Proof: We formulate the minimization problem as

arg min
x=(x1,x2,x3)

F (x1, x2, x3) := f(x1, , x2, x3) + P1(x) + P2(x) + P3(x).
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Using the proof of Theorem 2.1, results follow. □

3.4 Simulation Study

3.4.1 Evaluation measures

We conducted 100 samples to evaluate the performance of our algorithm. For a

MAR(p) model, let A = [A1, . . . ,Ap], B = [B1, . . . ,Bp] and B ⊗ A = [B1 ⊗

A1, . . . ,Bp ⊗Ap]. The following are performance evaluation metrics:

1. RMSEA =
E(∥Â−A∥)

m
√
p

2. RMSEB =
E(∥B̂−B∥)

n
√
p

3. RMSEB⊗A =
E(∥B̂⊗ Â−B⊗A∥)

mn
√
p

4. RMSEΘ =
E(∥Θ̂−Θ∥)

mn

They are root mean squares (RMSE) per cell of the coefficient matrices and precision

matrices.

3.4.2 The general MAR(p) model

We conducted a simulation study nine MAR(p) (p = 1, 2, 3) stable models with three

combinations of dimensions (m,n) = (3, 2), (6, 4), (9, 6) at length (T ) 200, 500 and

2000 and the models were the following:

1. Models p802, p813 and p816: MAR(1) model, i.e. Xt = A
(j)
1 Xt−1(B

(j)
1 )T +Et,

where Et ∼ N(0, (Θ
(j)
1 )−1), for j = p802, p813 and p816;
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2. Models p822, p818 and p824: MAR(2) model, i.e. Xt = A
(j)
1 Xt−1(B

(j)
1 )T +

A
(j)
2 Xt−2(B

(j)
2 )T +Et, where Et ∼ N(0, (Θ

(j)
2 )−1) for j =p822, p818 and p824;

and

3. Models p16, p819 and p825: MAR(3) model, i.e. Xt = A
(j)
1 Xt−1(B

(j)
1 )T +

A
(j)
2 Xt−2(B

(j)
2 )T+A

(j)
3 Xt−3(B

(j)
3 )T+Et, where Et ∼ N(0, (Θ

(j)
3 )−1), for j =p16,

p819 and p825.

We selected the spectral radii of the left and right coefficient matrices (A
(j)
i

and B
(j)
i ) between 0 and 1. Entries of the left and right coefficient matrices (A

(j)
i

and B
(j)
i ) are randomly generated from normal distributions with mean zero and

standard deviation randomly chosen from a value between 0 and 5 and the randomly

generated matrices are then divided by their largest absolute eigenvalues times the

spectral radius. Note that the selection of the spectral radii were chosen in the way

that the generated time series satisfies the following stability conditions:

1. When p = 1, ρ(A) · ρ(B) < 1, where ρ(A) is the spectral radius of ρ(A).

2. When p = 2, the largest modulus of eigenvalues of

A2 =

[
B1 ⊗A1 B2 ⊗A2

Imn 0

]

is less than 1.

3. When p = 3, the largest modulus of eigenvalues of

A3 =

 B1 ⊗A1 B2 ⊗A2 B3 ⊗A3

Imn 0 0
0 Imn 0


is less than 1.
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Note that ∥A(j)
i ∥ = 1 for i = 1, 2, 3 and all j to fix the identification problem.

Models p802, p813 and p816 have dimensions of (m,n) = (3, 2), (6, 4), (9, 6) re-

spectively. Since they are lag order 1 models, we considered the product of their

spectral radii of A1 and B1 for checking the stability of the time series. They are

0.29, 0.35 and 0.33 respectively. All are less than 1. Therefore, the model is stable.

Their respective determinants of Θ are 0.0005, 0.6996 and 1.2454.

The lag order 2 models p822, p818 and p824 have dimensions of (m,n) =

(3, 2), (6, 4), (9, 6) respectively. Since their lag orders are greater than 1, we exam-

ined matrix A2 for checking the stability of the time series. The respective moduli of

eigenvalues of A2 range from 0.4924 to 0.5704, 0.0054 to 0.7556 and 0.1336 to 0.5867.

All are less than 1. Therefore, the model is stable. Their respective determinants of

Θ are 0.0097, 0.0020 and 0.0168.

The lag order 3 models p16, p823 and p825 have dimensions of (m,n) = (3, 2),

(6, 4), (9, 6) respectively. Since their lag orders are greater than 1, we examined the

eigenvalues of matrix A3 for checking the stability of the time series. The respective

moduli of eigenvalues of A3 range from 0.0825 to 0.7057, 0.1050 to 0.8427 and 0.0404

to 0.5500. All are less than 1. Therefore, the model is stable. Their respective

determinants of Θ are 6.38, 69.02 and 42.67.

Table 3.1 gave the root mean squares of errors of the left row-wise interactions

and right column-wise interactions coefficient matrices, Kronecker products of the

autoregressive coefficient matrices and precision matrices. The majority of the RM-

SEs of the coefficients A and B are less than 0.1. Only a few RMSEs of these

coefficients are slightly greater than 0.1. This indicates the estimation over A and

B are good.

The mean RMSE of the coefficients B⊗A for MAR(1) models ranged from 0.044

to 0.0437, while the mean RMSE of the precision matrix was from 0.0081 to 0.1454.
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In the cases of MAR(2) models, the mean RMSE(B ⊗ A), ranging from 0.0044 to

0.0389, were in similar magnitudes as the selected MAR(1) models but the mean

RMSE(Θ), ranging from 0.0140 to 0.2792, were slightly larger than the MAR(1)

models. In the cases of MAR(3) models, the mean RMSE(B ⊗ A), ranging from

0.0044 to 0.0399, were in similar magnitudes as the selected MAR(1) and MAR(2)

models but the mean RMSE(Θ) , ranging from 0.0486 to 0.4015, were slightly larger

in higher lag MAR(3) models. As the length of the time series increased, all RMSEs

of the same model were getting smaller and the corresponding standard deviations

were smaller. The longer the time series fitted, the smaller the mean RMSEs of the

model were. When the dimensions of A and B in the model increased, the RMSEs

among the models had similar values. The small values of RMSE of coefficients and

covariance matrices indicated that the proposed algorithm worked satisfactorily.

3.4.3 Comparison of the general MAR model and the exist-
ing MAR model

We simulated 100 random samples from our general MAR model and the existing

MAR model, proposed by Chen et al. (2021), and fitted the data with these two

models for comparison. The existing MAR model has a structured covariance tensor

product and lag order one. For simplicity, it is named as SCT MAR(1) model.

The covariance has the form, Σ
(j)
c ⊗Σ

(j)
r . So the precision matrix can be written as

Θ = Σ−1 = Σ−1
c ⊗Σ−1

r , i.e. Θ = Θc ⊗Θr with ∥Θ−1
r ∥ = 1.

As the existing MAR model has lag order one. Therefore, we selected a general

MAR(1) model for comparison. Both our MAR(p) algorithm and the maximum

likelihood estimation under the structured covariance tensor (MLESCT) algorithm

in Chen et al. (2021) were used to estimate the models. The following are the selected

general MAR(1) stable model and three stable SCT MAR(1) models:

1. Model p807: Xt = A(j)Xt−1(B
(j))T + Et with Et ∼ N(0, (Θ(j))−1), for j =
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Table 3.1: Root mean squares of errors of estimated autoregressive coefficients and
precision matrices of MAR(p) models. (*All models used VAR(p) MLE as initial
values, except the case of Model p825 and T=200. Its initial values were two arbitrary
coefficient matrices and an identity precision matrix.)

Model VAR RMSE(A) RMSE(B) RMSE(B⊗A) RMSE(Θ)
order m n Length mean sd mean sd mean sd mean sd

p802 1 3 2 200 0.1013 0.0301 0.0797 0.0315 0.0437 0.0107 0.0278 0.0070
500 0.0617 0.0177 0.0508 0.0197 0.0272 0.0064 0.0157 0.0031
2000 0.0299 0.0082 0.0227 0.0094 0.0127 0.0029 0.0081 0.0018

p813 1 6 4 200 0.0563 0.0062 0.0865 0.0186 0.0221 0.0027 0.1047 0.0082
500 0.0342 0.0045 0.0485 0.0100 0.0129 0.0014 0.0551 0.0030
2000 0.0172 0.0020 0.0236 0.0044 0.0063 0.0007 0.0249 0.0013

p816 1 9 6 200 0.0483 0.0041 0.1027 0.0134 0.0176 0.0013 0.1454 0.6408
500 0.0276 0.0021 0.0523 0.0069 0.0094 0.0007 0.0605 0.0023
2000 0.0132 0.0011 0.0235 0.0029 0.0044 0.0003 0.0249 0.0006

p822 2 3 2 200 0.0762 0.0162 0.0617 0.0182 0.0389 0.0071 0.0536 0.0154
500 0.0471 0.0099 0.0360 0.0118 0.0239 0.0042 0.0303 0.0066
2000 0.0228 0.0040 0.0180 0.0053 0.0116 0.0018 0.0140 0.0031

p818 2 6 4 200 0.0320 0.0046 0.0613 0.0100 0.0192 0.0021 0.1188 0.0135
500 0.0197 0.0028 0.0352 0.0054 0.0114 0.0012 0.0579 0.0054
2000 0.0095 0.0013 0.0170 0.0025 0.0056 0.0005 0.0254 0.0018

p824 2 9 6 200 0.0487 0.0043 0.0754 0.0101 0.0172 0.0014 0.2792 0.0320
500 0.0291 0.0024 0.0357 0.0039 0.0095 0.0007 0.1017 0.0098
2000 0.0139 0.0012 0.0161 0.0018 0.0044 0.0003 0.0381 0.0023

p16 3 3 2 200 0.1037 0.0214 0.0718 0.0226 0.0399 0.0071 0.2264 0.0777
500 0.0661 0.0131 0.0435 0.0124 0.0246 0.0040 0.1246 0.0384
2000 0.0324 0.0068 0.0210 0.0066 0.0119 0.0022 0.0576 0.0142

p819 3 6 4 200 0.0398 0.0036 0.0507 0.0070 0.0173 0.0014 0.2654 0.0488
500 0.0234 0.0022 0.0290 0.0037 0.0101 0.0008 0.1190 0.0212
2000 0.0116 0.0012 0.0139 0.0017 0.0049 0.0004 0.0484 0.0061

p825 3 9 6 200* 0.0590 0.0041 0.0822 0.0082 0.0173 0.0012 0.4015 0.0447
500 0.0351 0.0025 0.0384 0.0033 0.0094 0.0006 0.1326 0.0116
2000 0.0172 0.0014 0.0164 0.0014 0.0044 0.0003 0.0486 0.0034

p807.

2. Models p802, p813 and p816: Xt = A(j)Xt−1(B
(j))T+Et with Et ∼ N(0,Σ

(j)
c ⊗

Σ
(j)
r ) , for j = p802, p813 and p816.

The (j) index indicates the model number. For simplicity, we drop this index for

discussion. The general MAR(1) model, p807, has dimensions of (m,n) = (9, 6) and

its product of the spectral radii ρ(A) · ρ(B) is 0.2276. The determinant of Θ is

0.7903. The Models, p802, p813 and p816 are SCT MAR(1) models with respective

dimensions (m,n) as (3, 2), (6, 4) and (9, 6). Their products of the spectral radii

ρ(A) · ρ(B) are 0.912, 0.2214 and 0.2276 respectively. Their covariances Σr have
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Frobenius norm, one. The determinants of covariances Σr are 0.1231, 0.0046 and

5.0707 × 10−5 respectively, while the determinants of covariances Σc are 50.3155,

38.329 and 712.3589. Since these models have the products of the spectral radii

ρ(A) · ρ(B) less than 1. They are all stable. To fix the identification problem, their

left row-wise interactions coefficient matrices have unit norms, i.e. ∥A∥ = 1.

The RMSEs on B ⊗ A and Θ of the above models are tabulated in Table 3.2

for comparison. Our algorithm performed better on the general MAR(1) model,

p807, and the MLESCT algorithm performed better on SCT MAR(1) models, p802,

p813 and p816. For Model p807, the RMSEs of B ⊗A estimated by the MLESCT

algorithm are 3 to 4 times bigger than that estimated by our algorithm. In addition,

the RMSEs of Θ estimated by the MLESCT algorithm were at least 1.1 for these

three series with different lengths, while the RMSEs estimated by our algorithm

shrunk as the length of the time series increased. For the cases of three SCT MAR(1)

models, p802, p813 and p816, the RMSEs of B⊗A estimated by our algorithm were

slightly larger than that of RMSEs estimated by MLESCT algorithm. The differences

were less than 0.04. When Θ RMSEs were examined, our algorithm only generated

at most about 0.08 difference. This indicated that fitting a general MAR(p) model

was better in general.

3.4.4 Sparse graphical MAR(p) model

We chose the following four sparse graphical MAR(p) stable models with dimensions

of A and B, (m,n) = (6, 4) and lengths (T ) 200, 500, 2000:

1. Model p3004: MAR(1) model with sparsity in A, B and Θ are 0.47, 0.43

and 0.84 respectively. The graph corresponding to the Θ is the first variable

connecting all the other variables.

2. Model p3005: MAR(1) model with sparsity in A, B and Θ are 0.56, 0.75 and
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Table 3.2: Comparison of MAR(1) estimates between our proposed and MLESCT
algorithms

RMSE(B⊗A) RMSE(Θ)
Model Length Our algorithm MLESCT algorithm Our algorithm MLESCT algorithm

m n mean sd mean sd mean sd mean sd
A MAR(1) model with general Θ

p807 9 6 200 0.0043 0.0003 0.0149 0.0011 0.8460 0.0692 1.1084 0.0007
500 0.0024 0.0002 0.0092 0.0007 0.3231 0.0255 1.1087 0.0004
2000 0.0011 0.0001 0.0045 0.0004 0.1257 0.0083 1.1089 0.0002

Three SCT MAR(1) models with Θ−1
c ⊗Θ−1

r

p802 3 2 200 0.0437 0.0107 0.0432 0.0106 0.0278 0.0070 0.0168 0.0055
500 0.0272 0.0064 0.0271 0.0064 0.0157 0.0031 0.0100 0.0027
2000 0.0127 0.0029 0.0127 0.0029 0.0081 0.0018 0.0052 0.0016

p813 6 4 200 0.0221 0.0027 0.0209 0.0025 0.1047 0.0082 0.0268 0.0045
500 0.0129 0.0014 0.0125 0.0014 0.0551 0.0030 0.0165 0.0024
2000 0.0063 0.0007 0.0063 0.0007 0.0249 0.0013 0.0079 0.0011

p816 9 6 200 0.0176 0.0013 0.0145 0.0010 0.1454 0.0080 0.0172 0.0020
500 0.0094 0.0007 0.0089 0.0006 0.0605 0.0023 0.0104 0.0011
2000 0.0044 0.0003 0.0043 0.0003 0.0249 0.0006 0.0050 0.0005

0.84 respectively. B = I and A and Θ are tridiagonal matrices.

3. Model p3006: MAR(2) model with sparsity in A, B and Θ are 0.47, 0.38 and

0.71 respectively. The sparseness of Ai, Bi, (i = 1, 2) and Θ was randomly

chosen.

4. Model p3007: MAR(3) model with sparsity in A, B and Θ are 0.45, 0.40 and

0.71 respectively. Values of Ai, Bi, (i = 1, 2, 3) of Θ are randomly generated

and the sparseness of Ai, Bi, (i = 1, 2, 3) of Θ is the same as that of Model

p3006.

We developed a strategy to obtain the sparse graphical MAR(p) model at a

minimal computation cost. i.e. Not all models with λA, λB and λΘ ranging from

0.01 to 1 were run. Based on the experience of the sparse graphical VAR(p) models

in 2, we found that the optimal regularization parameters were quite small for our

examples in the simulation study. We then set up an experiment for getting ranges

of regularization parameters in our sparse graphical MAR(p) models. The models

with regularization parameters ranging from a larger grid size from 0.01 to 1 were
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3D Lambdas Plot (LASSO_BMAR1p3005_T200)
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Figure 3.1: Plots of regularization parameters λA, λB and λΘ for Model p3005 with
length T = 200 having TPRA, TNRA, TPRB, TNRB, TPRΘ and TNRΘ greater
than or equal to 0.75

Table 3.3: Maximum values of regularization parameters for sparse graphical
MAR(p) models runs

Model maxλA maxλB maxλΘ
p3004 0.4 0.5 1
p3005 0.65 1 0.4
p3006 0.3 0.35 0.1
p3007 0.25 0.35 1

run. We found that the regularization parameters for models with high total positive

rates (TPR) and total negative rates (TNR) in A, B and Θ formed clusters. Plots

of λA, λB and λΘ for Model p3005 were shown in Figures 3.1, 3.2 and 3.3. We used

these diagrams to set up the maximum values of regularization parameters for sparse

MAR(p) models running. The ranges of λA, λB and λΘ were set as in Table 3.3.

Table 3.4 gave the mean optimal size of regularization parameters, λA, λB and

λΘ, and their standard deviations, as well as the TPRs and TNRs for A, B and
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3D Lambdas Plot (LASSO_BMAR1p3005_T500)
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Figure 3.2: Plots of regularization parameters λA, λB and λΘ for Model p3005 with
length T = 500 having TPRA, TNRA, TPRB, TNRB, TPRΘ and TNRΘ greater
than or equal to 0.75

3D Lambdas Plot (LASSO_BMAR1p3005_T2000)
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Figure 3.3: Plots of regularization parameters λA, λB and λΘ for Model p3005 with
length T = 2000 having TPRA, TNRA, TPRB, TNRB, TPRΘ and TNRΘ greater
than or equal to 0.75
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Table 3.4: Mean regularized parameters values, total positive and negative rates for
coefficients and precision matrices of LASSO MAR(p) Models

Model T λA λB λΘ

mean sd mean sd mean sd
p3004 200 0.227 0.052 0.067 0.025 0.122 0.012

500 0.153 0.039 0.051 0.016 0.081 0.009
2000 0.083 0.018 0.03 0.009 0.043 0.005

p3005 200 0.161 0.051 0.165 0.051 0.034 0.005
500 0.122 0.035 0.118 0.029 0.021 0.003
2000 0.079 0.019 0.071 0.018 0.01 0

p3006 200 0.099 0.019 0.057 0.022 0.03 0.006
500 0.065 0.013 0.035 0.014 0.02 0.001
2000 0.036 0.006 0.024 0.008 0.01 0

p3007 200 0.093 0.022 0.069 0.024 0.03 0.007
500 0.051 0.014 0.041 0.014 0.019 0.003
2000 0.025 0.005 0.024 0.007 0.01 0

Model T TPRA TNRA TPRB TNRB TPRΘ TNRΘ

p3004 200 0.753 0.889 0.93 0.677 1 0.987
500 0.852 0.885 0.918 0.744 1 0.989
2000 0.956 0.91 0.91 0.779 1 0.991

p3005 200 0.998 0.763 1 0.88 1 0.806
500 1 0.772 1 0.908 1 0.798
2000 1 0.799 1 0.937 1 0.787

p3006 200 0.726 0.91 0.936 0.643 0.934 0.824
500 0.925 0.898 0.997 0.627 0.999 0.82
2000 1 0.9 1 0.712 1 0.812

p3007 200 0.497 0.928 0.72 0.776 0.932 0.818
500 0.736 0.861 0.934 0.667 0.999 0.81
2000 0.954 0.818 1 0.684 1 0.813

Θ. The mean λA, λB and λΘ were less than 0.1 with standard deviations being

less than 0.1. Their values were far from the maximum values set for the sparse

graphical MAR(p) model runs. This indicated that our strategy was adequate for

sparse graphical MAR(p) models running. Most of their TPRs and TNRs for A, B

and λΘ varied from 0.7 to 1.0. The TNRs for B for Models p3006 and p3007 were

larger than 0.6. These might be due to the low dimension of B, 4, and higher lag

order, i.e. higher complexity of the model. As the length of the time series increased,

the optimal size of regularization parameters decreased and the TPRs and TNRs for

A, B and Θ were similar in magnitude.
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Table 3.5: RMSEs of coefficients and precision matrices of LASSO MAR(p) Models

Model Lag T RMSEA RMSEB RMSEB⊗A RMSEΘ

mean sd mean sd mean sd mean sd
p3004 1 200 0.0274 0.0056 0.0660 0.0153 0.0174 0.0029 0.0275 0.0032

500 0.0186 0.0035 0.0420 0.0097 0.0116 0.0018 0.0192 0.0022
2000 0.0096 0.0016 0.0221 0.0055 0.0061 0.0009 0.0105 0.0013

p3005 1 200 0.0278 0.0059 0.0521 0.0133 0.0159 0.0028 0.1738 0.0213
500 0.0172 0.0034 0.0342 0.0084 0.0102 0.0017 0.1203 0.0125

2000 0.0086 0.0020 0.0193 0.0048 0.0054 0.0011 0.0651 0.0051
p3006 2 200 0.0873 0.0158 0.0794 0.0188 0.0222 0.0029 0.1694 0.0195

500 0.0488 0.0082 0.0427 0.0070 0.0127 0.0016 0.1229 0.0079
2000 0.0220 0.0035 0.0218 0.0039 0.0061 0.0007 0.0701 0.0035

p3007 3 200 0.1203 0.0103 0.0920 0.0143 0.0215 0.0019 0.1747 0.0202
500 0.0870 0.0157 0.0522 0.0135 0.0137 0.0016 0.1216 0.0131

2000 0.0386 0.0075 0.0220 0.0036 0.0065 0.0008 0.0700 0.0032

Table 3.5 gave the accuracy performance evaluation of the sparse graphical MAR(p)

models. Model p3004 and p3005 are lag order 1 models and had very similar per-

formance in RMSEA and RMSEB : Their RMSEA’s varied from 0.01 to 0.02 and

their RMSEB’s varied from 0.02 and 0.07. The RMSEΘ’s for Model p3004 were

from 0.01 to 0.02 and for Model p3005 were from 0.06 to 0.2. Their RMSEB⊗A

were about 0.005 to 0.02. This indicated that their vector form models were quite

accurate. Keeping the same length of the time series, the higher the lag order of the

model, the larger the RMSE. The Model p3006 had RMSEA’s from 0.02 to 0.09,

RMSEB’s from 0.02 to 0.07 and RMSEΘ’s from 0.07 to 0.17. The Model p3007

had RMSEA’s from 0.04 to 0.12, RMSEB’s from 0.02 to 0.1 and RMSEΘ’s from

0.07 to 0.18. Both had RMSEB⊗A of about 0.006 to 0.025. This indicated that their

vector form models were quite accurate. All these models gave satisfactory accuracy.

3.5 Application

We revisited the economic indicator time series example in Chen et al. (2021), with an

extension of the time frame from 1991 to 2019. The data were quarterly observations
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from four indicators, first differenced 3-month interbank interest rate, GDP growth

(log difference), total manufacturing production growth (log difference), and CPI core

inflation growth (log difference) from five countries, USA, Germany (DEU), France

(FRA), United Kingdom (GBR) and Canada (CAN), obtained from Organisation for

Economic Co-operation and Development (OECD) at https://data.oecd.org/. Before

fitting any autoregressive models, the seasonality of CPI was adjusted by subtracting

the sample quarterly means. All series are normalized and the combined variance of

each indicator is 1. All these 20 time series formed a 4 × 5 matrix time series with

time t at quarter with the length of T = 115.

70% of the data were used as training for fitting autoregressive models and sparse

autoregressive models and the remaining 30% were used to get the out-of-sample

forecast for model comparisons.

3.5.1 Fitting VAR and MAR models

We fitted the OECD training data with the SCT MAR(1), i.e. MAR(1) under a

structured covariance tensor and general MAR(p) models, up to p = 3, and also a

traditional general VAR(p) up to p = 2 model for comparison. Their BIC values

are tabulated in Table 3.6. The SCT MAR(1) model had the smallest number of

parameters and minimum BIC value (135.4).

When the in-sample and out-of-sample performance were examined, VAR(1)

model has the minimum residual sum of squares, while MAR(2) model had the

smallest out-of-sample prediction sum of error squares. Although the number of pa-

rameters was bigger than the SCT MAR(1) model, no overfitting phenomenon was

observed. Therefore, the MAR(2) model was chosen as the final model.

Figure 3.4 shows the estimated left coefficient matrices, A1 and A2. The first

columns ofA1 andA2 show the influence on the current economic indicators from the

last quarter’s interest rate and the previous two quarter’s interest rate respectively.
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The coefficients of interest rate to GDP, production and CPI growth were negative

in lags 1 and 2. This indicated that higher interest rates would slow down the GDP,

production and CPI growth in the last quarter and the negative effect would be to a

larger extent in the previous two quarters. The second columns in A1 and A2 show

the influence on the current economic indicators from the last quarter’s and previous

two quarters’ GDP growth. An increase in GDP growth would result in a small

growth in interest rate in the last two quarters, but such GDP growth would first

decrease the production growth slightly and would increase the production growth

in the previous two quarters. In the case of CPI growth, it is the opposite of the

influence of production growth. The third column of A1 is all negative. It indicated

the impact of the production growth would make the interest rate, GDP and CPI

growth slower in the past quarter and make the interest rate, GDP and CPI growth

faster in the previous two quarters. The fourth column of A1 and A2 have small

values. This indicated that CPI had a small positive impact on the interest rate and

the production growth in the last two quarters.

Figure 3.5 shows the estimated right coefficient matrices, B1 and B2. Their

effect should be considered as B1X
T
t and B2X

T
t−1. It could be interpreted similarly

as matrix Ai, i = 1, 2.

One way to select the sign of Ai,Bi, i = 1, 2 is to use the shock-first impulse and

shock-second impulse functions so that the sign of the coefficients is consistent with

the sign of the changes from the shock impulse function.

Figure 3.6 shows the partial correlation matrix of the MAR(2) Model. It can be

observed that a lot of pairs have estimated partial correlation values smaller than

0.02. It is worth conducting the sparse MAR(p) model, which would give meaningful

conditional dependent economic indicator pairs.
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Table 3.6: BIC values, in-sample residual sum of squares (RSS), out-of-sample pre-
diction error sum of squares (PSS) for models for the OECD data from 1991 to
2019

Model Number of parameters BIC values RSS PSS
1 SCT MAR(1) 66 135.4 103.05 45.5
2 General MAR(1) 251 446.8 113.15 38.45
3 General MAR(2) 292 470.2 126.44 34.55
4 General MAR(3) 333 542.1 114.23 38.87
5 VAR(1) 610 1265.2 70.4 48.99
6 VAR(2) 1010 1976.1 42.05 77.70
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Figure 3.4: Row-wise interactions coefficients matrices of the MAR(2) Model for the
OECD data

3.5.2 Fitting sparse graphical VAR and MAR models

We considered our sparse graphical MAR(p) model, up to p = 3 and compared

it with the constrained graphical sparse vector autoregressive (CGsVAR) model in

Yuen et al. (2018). The sparsity pattern of this model was pre-determined by the

partial correlations of the data and the sparsity entries of the coefficient matrix were

assumed the same as that of the precision matrix. The final selected constrained

111



−1.0962 0.3666 −0.2656 −0.0558 0.1189

−0.1798 −0.5987 −0.1905 0.1389 0.0072

0.1595 −0.5999 0.2344 0.1678 −0.5478

−0.2953 −0.0883 0.0838 −0.2421 −0.0289

−0.4071 0.4192 −0.3816 −0.2294 −0.2019

C
A
N

G
B
R

F
R
A

D
E
U

U
S
A

U
S
A

D
E
U

F
R
A

G
B
R

C
A
N

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

(a) B1

0.4077 0.7185 0.3322 −0.1542 −0.1249

−0.1415 0.328 0.2176 −0.2095 0.0013

0.015 0.6455 0.4077 0.3433 −0.0659

0.209 0.6757 0.1704 0.1838 0.1923

0.2963 0.4952 0.1944 0.4077 −0.1884

C
A
N

G
B
R

F
R
A

D
E
U

U
S
A

U
S
A

D
E
U

F
R
A

G
B
R

C
A
N

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

(b) B2

Figure 3.5: Column-wise dependence coefficients matrices, B1 and B2 of the MAR(2)
Model for the OECD data

112



1 −0.0146 −0.109 0.0133 0.5807 0.5963 0.1711 −0.1999 −0.0455 −0.2023 0.0878 0.0785 −0.0775 −0.3701 0.1282 −0.0477 0.5702 −0.167 0.3967 −0.2719

−0.0146 1 0.4183 0.0307 0.2218 0.1297 −0.1391 −0.1952 −0.204 0.3452 −0.1891 0.0098 −0.051 0.115 −0.0999 −0.2053 0.0742 −0.213 0.2518 −0.124

−0.109 0.4183 1 −0.042 0.1884 0.0123 0.1013 0.2463 0.0879 −0.4015 0.4738 −0.0564 −0.1749 0.0148 0.0584 0.2495 −0.0225 0.0438 0.1569 0.0141

0.0133 0.0307 −0.042 1 0.1393 0.0115 −0.1115 0.1761 0.1937 0.0873 0.1298 −0.0135 −0.2569 0.0269 0.0721 −0.0457 −0.0313 −0.0556 −0.1992 −0.0191

0.5807 0.2218 0.1884 0.1393 1 −0.4213 0.1784 0.0097 0.3086 0.1198 −0.2021 −0.1161 0.5247 0.173 0.0348 0.0188 −0.36 0.064 −0.1089 0.2242

0.5963 0.1297 0.0123 0.0115 −0.4213 1 −0.048 0.2055 0.005 −0.0187 −0.0837 −0.1926 0.1392 0.1738 0.0323 −0.0242 −0.3219 0.1633 −0.2007 0.2811

0.1711 −0.1391 0.1013 −0.1115 0.1784 −0.048 1 0.0229 −0.2146 0.0636 0.3398 0.1324 −0.0287 0.0371 0.0829 −0.0091 0.0124 0.0997 −0.1742 0.1534

−0.1999 −0.1952 0.2463 0.1761 0.0097 0.2055 0.0229 1 0.0884 0.1165 −0.1206 0.5338 −0.0461 −0.0405 −0.0487 −0.0522 −0.0625 −0.1093 0.1986 −0.1429

−0.0455 −0.204 0.0879 0.1937 0.3086 0.005 −0.2146 0.0884 1 0.075 −0.0176 0.0485 0.0293 0.0268 0.0584 −0.1444 0.3747 −0.0551 0.1553 0.0696

−0.2023 0.3452 −0.4015 0.0873 0.1198 −0.0187 0.0636 0.1165 0.075 1 0.6058 −0.1349 −0.032 −0.201 0.2489 0.1379 0.191 0.1543 −0.0823 0.0696

0.0878 −0.1891 0.4738 0.1298 −0.2021 −0.0837 0.3398 −0.1206 −0.0176 0.6058 1 −0.0093 0.3345 0.3277 −0.0129 0.0126 0.041 −0.0205 0.0425 −0.1871

0.0785 0.0098 −0.0564 −0.0135 −0.1161 −0.1926 0.1324 0.5338 0.0485 −0.1349 −0.0093 1 0.2098 −0.0179 0.1436 −0.2244 0.069 −0.1466 0.0677 0.0475

−0.0775 −0.051 −0.1749 −0.2569 0.5247 0.1392 −0.0287 −0.0461 0.0293 −0.032 0.3345 0.2098 1 −0.0578 −0.1236 0.1736 −0.2086 0.0649 −0.1124 0.113

−0.3701 0.115 0.0148 0.0269 0.173 0.1738 0.0371 −0.0405 0.0268 −0.201 0.3277 −0.0179 −0.0578 1 0.2503 −0.1678 0.1182 0.0546 0.0849 −0.02

0.1282 −0.0999 0.0584 0.0721 0.0348 0.0323 0.0829 −0.0487 0.0584 0.2489 −0.0129 0.1436 −0.1236 0.2503 1 −0.1211 −0.2246 −0.0316 −0.0253 −0.1045

−0.0477 −0.2053 0.2495 −0.0457 0.0188 −0.0242 −0.0091 −0.0522 −0.1444 0.1379 0.0126 −0.2244 0.1736 −0.1678 −0.1211 1 0.1214 −0.3914 0.2376 −0.2135

0.5702 0.0742 −0.0225 −0.0313 −0.36 −0.3219 0.0124 −0.0625 0.3747 0.191 0.041 0.069 −0.2086 0.1182 −0.2246 0.1214 1 0.1894 −0.1463 0.2528

−0.167 −0.213 0.0438 −0.0556 0.064 0.1633 0.0997 −0.1093 −0.0551 0.1543 −0.0205 −0.1466 0.0649 0.0546 −0.0316 −0.3914 0.1894 1 0.5796 −0.1962

0.3967 0.2518 0.1569 −0.1992 −0.1089 −0.2007 −0.1742 0.1986 0.1553 −0.0823 0.0425 0.0677 −0.1124 0.0849 −0.0253 0.2376 −0.1463 0.5796 1 0.1891

−0.2719 −0.124 0.0141 −0.0191 0.2242 0.2811 0.1534 −0.1429 0.0696 0.0696 −0.1871 0.0475 0.113 −0.02 −0.1045 −0.2135 0.2528 −0.1962 0.1891 1

C
A
N
−
C
P
I

C
A
N
−
P
ro
d

C
A
N
−
G
D
PC

A
N
−
In
t

G
B
R
−
C
P
I

G
B
R
−
P
ro
d

G
B
R
−
G
D
PG

B
R
−
In
t

F
R
A
−
C
P
I

F
R
A
−
P
ro
d

F
R
A
−
G
D
PF

R
A
−
In
t

D
E
U
−
C
P
I

D
E
U
−
P
ro
d

D
E
U
−
G
D
PD

E
U
−
In
t

U
S
A
−
C
P
I

U
S
A
−
P
ro
d

U
S
A
−
G
D
PU

S
A
−
In
t

U
S
A
−
In
t

U
S
A
−
G
D
P

U
S
A
−
P
ro
d

U
S
A
−
C
P
I

D
E
U
−
In
t

D
E
U
−
G
D
P

D
E
U
−
P
ro
d

D
E
U
−
C
P
I

F
R
A
−
In
t

F
R
A
−
G
D
P

F
R
A
−
P
ro
d

F
R
A
−
C
P
I

G
B
R
−
In
t

G
B
R
−
G
D
P

G
B
R
−
P
ro
d

G
B
R
−
C
P
I

C
A
N
−
In
t

C
A
N
−
G
D
P

C
A
N
−
P
ro
d

C
A
N
−
C
P
I

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.6: Partial correlation matrix of the MAR(2) Model for the OECD data
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Table 3.7: BIC values, in-sample residual sum of squares (RSS), out-of-sample pre-
diction sum of squares (PSS) for OECD sparse graphical VAR and MAR models

Model Number of parameters BIC RSS PSS
Constrained graphical sparse VAR(1) model 166 425.4 101.2 39.7
Sparse graphical MAR(1) 80 237.4 103.7 42.3
Sparse graphical MAR(2) 81 196.1 101.3 39.1
Sparse graphical MAR(3)* 86 160.6 94.4 37.9

sparse graphical model had lag order 1 and 166 parameters. It had a slightly larger

in-sample residual sum of squares and out-of-sample prediction error sum of squares

than the sparse graphical MAR(p) model (p = 1, 2, 3). The three MAR models had

a similar number of parameters. Since the MAR(3) model had the smallest residual

sum of squares and prediction error sum of squares, the sparse graphical MAR(3)

model was selected as the final model.

Figure 3.7 gives a table This MAR(3) model can be interpreted in a similar way

as the MAR(2) model.

The sparse precision matrix is converted to a partial correlation matrix. Only

those significant values are tabulated in Table 3.8. A conditional dependence graph is

plotted in Figure 3.9. Interestingly, the US interest rate is connected with Canada’s

and Germany’s interest rates. Apart from this relationship, we cannot see any con-

nection between the USA and the other three European countries. And lots of edges

are found between Germany and France and therefore, their closest relationship is

closest. Canada has no edges connected with the three European Countries. This is

intuitively correct.

3.6 Conclusion

We studied the matrix time series model, which is modified from a bilinear regression

model into a time series with a matrix variate with a structured covariance tensor.
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We extend the model to a higher lag order and introduce the general covariance

structure so that any data with an imperfect independent relationship over two

classifications could be modelled. In addition, a graphical model is merged with our

matrix time series model to form a graphical matrix time series model. We adopt the

optimal sparsity concept as in Chapter 2 for our sparse model and LASSO penalized

estimation is used. The economic indicator example demonstrated that our MAR

model had a higher lag and had a lower residual sum of squares value and a prediction

error sum of squares value. The sparse model of the example exhibited an intuitively

correct economic relationship between the five countries.
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Figure 3.7: Row-wise interactions and column dependence coefficients matrices and
the heatmap diagrams of the sparse graphical MAR(3) model for the OECD data
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DEU-CPI FRA-CPI -0.1919
FRA-GDP FRA-Prod -0.1444
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Figure 3.8: Partial correlation matrix of the sparse graphical MAR(3) model for the
OECD data

117



Figure 3.9: Conditional dependence graph for the OECD data
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Chapter 4

Precision Matrix Estimation of
High Dimensional Time Series

4.1 Introduction

Estimating high dimensional covariance and correlation matrices are important in

portfolio selection, risk management, and asset pricing but their estimates may not

be positive definite in some cases. For example, there are numerous stocks considered

in a study, but the available stock time series data are short. The time elapses for

several stock time series data may not be coincident. Then the number of variables

for stock data might be greater than the number of observations and the estimation

of the covariance matrix even becomes problematic, especially when the matrix is of

high dimension. As a result, the estimated correlation and covariance matrices may

not be positive definite and may have low ranks. Thus, the inverse of the covariance

matrix estimates might not exist.

To handle the non-positive definite covariance problem in estimation, researchers

have studied a number of methods.

Bai and Shi (2011) reviewed various methods of reducing the number of param-

eters for covariance matrix estimation. In the context of asset return, the shrinkage

method gives a covariance estimator based on the linear combination of a single index
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model and the sample covariance. In a factor model, the estimated factor vector and

the estimated factor covariance matrix are used to construct a quadratic form and

this quadratic form added with a diagonal matrix of the variance of the noise is used

to estimate the sample covariance matrix. It can be observed that the above two

estimation methods give the sample covariance matrix as a sum of a lower dimension

full rank symmetric positive definite matrix and a diagonal positive matrix. Then

the inverse of the covariance matrix estimate could be calculated.

Another approach is to find the nearest correlation matrix problem, which is one

of the matrix nearness problems. A survey on this problem can be found in Higham

(1999). Higham (1998) first studied a positive approximant for any arbitrary matrix

and this matrix is the nearest symmetric positive semi-definite (psd) matrix. It is

used to modify an indefinite Hessian matrix in the Newton method. Higham (1998)

showed that the closest psd matrix was unique, based on the Frobenius norm, while

the uniqueness of the positive approximant does not hold based on the shortest 2-

norm distance. Higham (2002) examined a particular type of psd matrix, namely the

correlation matrix. He used a modified alternating projection method to compute a

symmetric psd matrix for a correlation matrix having zero or negative eigenvalues.

An algorithm is developed and is linearly convergent.

Finding the nearest covariance matrix has been also a focus of nearness matrix

problems. Boyd and Lin (2005) studied the least-squares covariance adjustment

problem (LSCAP) and it was solved via its dual problem using standard optimization

methods. The LSCAP aims to find the nearest symmetric psd matrix using the least

squares sense in the Frobenius norm. In addition, linear equalities and inequalities

can be imposed on the problem. Same as the correlation matrix approach, the

resultant matrix is a projection on the positive semidefinite cone and is the optimal

adjustment. The rank of the optimal adjustment was studied. Qi and Sun (2006)

developed a quadratically convergent Newton method to find the nearest correlation
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matrix and the algorithm is extended to find the nearest covariance matrix.

The positive definiteness of covariance matrices in many financial models is an

obviously unavoidable constraint in estimation. This positive definiteness matrix

constraint is also unavoidable for the precision matrix.

Traditional estimation methods need the vectorization of the covariance or the

precision matrix, but this method destructs its positive definite property. Even if the

matrix optimization is used, it is difficult to express the positive definite property

of these matrices as linear equality or inequality constraints in the optimization

problems. Computation of log(det(Σ)) gives a numerical error when the k-th step

non-positive definite covariance iterate, Σ(k), for some k ∈ Z, is generated in the

algorithm. The algorithm stops and the estimation is not successful.

Instead of imposing constraints on the positive definiteness of covariance matrices,

we develop convergent methods for precision matrix estimation in constrained vector

time series model and matrix time series model estimation. Both methods are de-

veloped based on existing optimization methods. They skip the non-positive definite

covariance/precision matrix iterates and replace them with the closest symmetric

psd matrices, based on Qi and Sun (2006)’s nearest correlation matrix method. We

proved that these algorithms are descent methods.

This chapter is organized as follows. Section 4.2 outlines precision matrix esti-

mation as an optimization problem. Section 4.3 discusses the proposed algorithms

to keep the precision matrix iterates in positive definite cones for vector and matrix

approaches. Section 4.4 illustrates the convergence of our three proposed algorithms

based on examples which were failed to be estimated by some standard optimization

methods. Section 4.5 gives a conclusion.
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4.2 The General Problem

Let K1 and K2 be positive integers and Θ be a K2×K2 covariance/precision matrix.

Let K = K1+K2 be the dimension of the problem in the vector/ square matrix form

and w ∈ RK1+K2 , l(w) be the log-likelihood function of a probabilistic model. Define

S++ = {u = vech(Θ) | Θ ≻ 0 and Θ ∈ RK2×K2} for some K2. Here, the statement

Θ ≻ 0 represents Θ being positive definite.

We assume that l(w) is bounded above and continuously differentiable with Lip-

schitz continuous gradient, that is, there exists β > 0 so that

∥∇l(w1, w2)−∇l(u1, u2)∥ ≤ β∥(w1−u1, w2−u2)∥ for all w1, u1 ∈ RK1 , w2, u2 ∈ S++

(4.1)

The boundedness and continuous differentiability assumptions of l(.) can be es-

tablished similarly in the matrix form.

We consider the following general problems:

(a) in the vector form,

min
y1,y2

f(y1, y2) := −l(y1, y2) (4.2)

subject to y2 = vech(Θ),

Θ ≻ 0,

gi(y1, y2) ≤ 0 for i = 1, . . . , v, and

hj(y1, y2) = 0 for j = 1, . . . , w.

where l is the log-likelihood function, y1 and y2 are model parameter vectors,

Θ is a positive definite matrix, gi and hj are inequality and equality constraints

and v, w ∈ Z. The gi’s and hj’s constraints are not required in some estimation

problems.
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(b) in the matrix form,

min
x1,...,xq ,Θ

f(x1, . . . ,xq,Θ) := −l(x1, . . . ,xq,Θ) (4.3)

subject to Θ ≻ 0

gi(x1, . . . ,xq,Θ) ≤ 0 for i = 1, . . . , v, and

hj(x1, . . . ,xq) = 0 for j = 1, . . . , w.

where l is the log-likelihood function, x1, . . . ,xq and Θ are model parameter

matrices, Θ is a positive definite matrix, and gi and hj are inequality and

equality constraints and v, w ∈ Z. The gi’s and hj’s constraints are not required

in some estimation problems.

In optimization problems, the superscript is always added to a symbol to represent

an iterate of an algorithm. i.e. y(k) is the k-th iterate of y in an algorithm.

4.3 The Proposed Algorithms

The positive definiteness of Θ is not easily handled as equality or inequality con-

straints in most of the existing optimization algorithms. To avoid numerical errors

in the computation of log(det(Θ)), we propose to replace the non-positive definite

Θ(k) iterates with the closest symmetric positive definite matrix and amend some

existing standard optimization algorithms. The matrix replacement incorporates a

calibration procedure of a covariance matrix, based on the Frobenius norm, in Qi

and Sun (2006) and this matrix calibration procedure can be written as follows.

minZ
1

2
∥Z−Θ(k)∥2 (4.4)

s.t. Z ⪰ τI,

⟨I,Z⟩ = tr(Θ(k)),

zii = θ
(k)
ii , i = 1, . . . , K2,
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where Z = (zij), Θ
(k) = (θ

(k)
ij ), τ > 0.

This calibration step is applied in the estimation of two time series models. Algo-

rithm 2, COVLS, is designed for vector time series model estimation while Algorithms

LSNCM and LSNCM IV aim for matrix time series models estimation.

4.3.1 Vector optimization algorithm COVLS

We study the constrained vector time series model problem (4.2). A typically con-

strained optimization without the positive definiteness constraint of a precision ma-

trix can be formulated as follows.

y = min
y
f(y)

subject to gi(y) ≤ 0 for i = 1, . . . , v, and

hj(y) = 0 for j = 1, . . . , w.

This is equivalent to minimizing an approximate problem:

fµ(y, s) = f(y)− µ
r∑

i=1

log(si) (4.5)

where s = (s1, . . . , sr) are slack variables, r = dim(y) and µ > 0. Define the auxiliary

Lagrangian function as

L(y, λ) = f(y) +
ν∑

i=1

λgigi(y) +
ω∑

j=1

λhj
hj(y),

where λ = (λg1 , . . . , λgν , λh1 , . . . , λhw), g = (g1, . . . , gν) and h = (h1, . . . , hw). Then

the Karush-Kuhn-Tucker (KKT) conditions are ∇L(y, λ) = 0, λgigi(y) = 0 for all i

and g(y) ≤ 0, h(y) = 0 and λgi ≥ 0.

Let y = (y1, y2) and H(y1, y2) be the Hessian of the Lagrangian of function of
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fµ(y1, y2, s). Then

H(y1, y2) = ∇2f(y1, y2) +
ν∑

i=1

λgi∇2gi(y1, y2) +
ω∑

j=1

λhj
∇2hj(y1, y2).

Let Jg(y1, y2) and Jh(y1, y2) be the Jacobian of constraint functions g and h respec-

tively.

Suppose the iterate (y
(k−1)
1 , y

(k−1)
2 ) is close to the solutions. The solution can

be obtained via the approximate problem using the Newton method. i.e. y(k) =

y(k−1) +∆y(k−1) and ∆y(k−1) is a solution of ∆y of


H 0 Jt

h JT
g

0 Λg 0 S
Jh 0 0 0
Jg I 0 0




∆y
∆s
∆λh
∆λg

 =


∇f + JT

hλh + JT
g λg

Sλg − µe
h

g + s

 , (4.6)

where H = H(y
(k−1)
1 , y

(k−1)
2 ), Jg = Jg(y

(k−1)
1 , y

(k−1)
2 ) and Jh = Jh(y

(k−1)
1 , y

(k−1)
2 ),

S = diag(s), Λg = diag(λg), λg is the Lagrange multiplier vector associated with

constraint g, λh is the Lagrange multiplier vector associated with constraint h and

e = (1, . . . , 1)T with length ν.

This algorithm converges to infeasible points or does not converge for some ex-

amples. Possible reasons are that the initial point is not close to the solutions or

Θ obtained from y2 is not positive definite and causes a numerical error in the

log(det(Θ)) term in the function f(y). Therefore, there is a need to handle the pos-

itive definiteness constraint of the precision matrix. This Newton step on Lagrange

optimization can be written as Algorithm 1, CMY.

We make use of the ideas of the line search for the descent algorithm, the nearest

correlation matrix and the above Newton step on Lagrange optimization for a new

algorithm on vector time series models estimation and propose Algorithm 2, COVLS.
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Algorithm 1 CMY - Constrained minimization of y

Require: Initial values of k > 0 and y(k−1) = (y
(k−1)
1 , y

(k−1)
2 ), vech(Θ(k−1))=y

(k−1)
2 .

1: repeat
2: Compute

H = H(y
(k−1)
1 , y

(k−1)
2 ),

Jg = Jg(y
(k−1)
1 , y

(k−1)
2 ) and

Jh = Jh(y
(k−1)
1 , y

(k−1)
2 ).

3: Solve ∆y from Equation 4.6.
4: Compute y(k) = y(k−1) +∆y and max | ∂

∂yi
f(y(k))| (for i = 1, . . . , K).

5: k = k + 1
6: until one of the following criteria is fulfilled:

• y(k) = (y
(k)
1 , y

(k)
2 ) converges with a positive definite precision matrix Θ(k)

(vech(Θ(k))=y
(k)
2 ) or

• a non-positive definite precision matrix Θ(k); or

•


H 0 Jt

h JT
g

0 Λg 0 S
Jh 0 0 0
Jg I 0 0

 does not have an inverse.

7: if y(k) converges with a positive definite precision matrix Θ(k) then
8: Denote the solution by y∗ = (y∗1, y

∗
2).

9: end if

Three main ideas are applied to establish the convergence of the proposed Algo-

rithm 2, COVLS. The first idea is to obtain a descent f via the line search method

in Step 7. Secondly, the line search iterate is used as an initial value for the above

constrained optimization algorithm. Thirdly, whenever a non-positive definite pre-

cision matrix is obtained in the line search, it is replaced by the closest symmetric

positive definite matrix generated from Steps 9 to 17. The positive τ value entails

the positive definiteness of the precision matrix.

Some steps to speed up the new algorithm are considered. A non-positive definite

matrix in the line search will only be replaced by a positive definite matrix when

f(y
(k′)
1 , y

(k′,j)
2,τ ) is less than 2f(y

(0)
1 , y

(0)
2 ) in Step 13. This avoids obtaining a Θ with
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Algorithm 2 COVLS

1: Set the initial value y(0) = (y
(0)
1 , y

(0)
2 ) and k = 1.

2: Conduct Algorithm 1, CMY for obtaining a list of y’s and their first-order
optimality, max | ∂

∂yi
f(y(k

′))|, i = 1, . . . , K.

3: From the iterates generated from the previous step, choose the iterate, y(k
′) which

has the smallest first-order optimality, max | ∂
∂yi
f(y(k

′))| (for i = 1, . . . , K).

4: Obtain the norm of the step s(k
′) = ∥y(k′) − y(k′−1)∥.

5: Obtain y
(k′)
2 from y(k

′), set j = 1 and t(k
′,j) = cs(k

′). In practice, c = 1/10.
6: repeat

7: Compute y(k
′,j) = y(k

′) − t(k′,j)∇f(y(k
′)

1 , y
(k′)
2 ) and obtain Θ(k′,j) from y

(k′,j)
2 .

8: if Θ(k′,j) is not positive definite then
9: set τ = 0.01.
10: repeat

11: Compute Θ
(k′)
τ = minQ

1
2
∥Q−Θ(k′)∥, such that

Q ⪰ τI,

⟨I,Q⟩ = tr(Θ(k′,j)) and

(Q)ii = (Θ(k′,j))ii.

12: Compute y
(k′,j)
2,τ = vech(Θ

(k′)
τ ).

13: if f(y
(k′)
1 , y

(k′,j)
2,τ ) < 2f(y

(0)
1 , y

(0)
2 ) then

14: Conduct Algorithm 1, CMY, with

• k = 1

• (y
(k′)
1 , y

(k′,j)
2,τ ) as an initial value.

15: end if
16: τ = τ + 0.01.
17: until (y1, y2) iterate sequence converges or τ > min(0.1, diag(Θ(k′,j))).
18: else
19: Conduct Algorithm 1, CMY for getting (y1, y2), with

• k = 1.

• (y
(k′)
1 , y

(k′,j)
2 ) as an initial value,

20: end if
21: if (y1, y2) iterate sequence converges with first-order optimality ≈ 0 then
22: y∗ = (y∗1, y

∗
2) is the solution.

23: Stop
24: else
25: t(k

′,j) = t(k
′,j)/2 and j = j + 1.

26: end if
27: until t(k

′,j) < 1e− 10.
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an unnecessarily extremely large f value in the line search because the iterate Θ will

be replaced by another iterate with a smaller f value. Another action is to start

a line search from an iterate with the smallest first-order derivative of f selected

from Algorithm 1, CMY of its unconstrained VAR(p) model so that an initial value

is closer to the solution for the above Newton step is obtained. In theory, the line

search can be started directly from the maximum likelihood estimate.

Algorithm 1, CMY, and Algorithm 2, COVLS, are coded with the fmincon pro-

cedure in MATLAB in the simulation study. Similar equivalent functions, gekko()

function in python and the nloptr function in R, can also be used.

4.3.2 Matrix optimization algorithm LSNCM

In this section, we assume that the coordinate gradient descent algorithm can be

used to estimate a matrix time series model in Problem 4.3. The coordinate gradient

descent algorithm is given in Algorithm 3.

Algorithm 3 Coordinate gradient descent algorithm for matrix time series model

1: Let x0 = (x
(0)
1 , . . . ,x

(0)
q ,Θ(0)) be the initial value. Set i = 1.

2: repeat
3: for j ← 1, q do
4: Compute x

(i)
j = minxj

f(x1,x
(i−1)
2 , . . . ,x

(i−1)
q ,Θ(i−1)).

5: end for
6: Compute Θ(i) = minΘ f(x

(i−1)
1 , . . . ,x

(i−1)
q ,Θ)

7: i = i+ 1.
8: until some convergence criterion is satisfied.

The Θ estimation step may generate a non-positive definite matrix in a line

search step. To guarantee the positive definiteness of all precision matrix iterates,

we approximate any non-positive definite matrix, Θ, with its closest positive definite

matrix. As the new algorithm makes use of the two concepts: the line search and the

nearest correlation matrix, all the first letter of the name is used to form the name

of the algorithm, i.e. LSNCM.
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Algorithm 4 LSNCM

1: Let Θ(i) be the i-th MAR(p) estimation iterate. Set step size, s = 1. Set j = 1.
2: repeat
3: Compute

Θ(i,j) = Θ(i−1) − s · ∇f(x(i)
1 , . . . ,x

(i)
q ,Θ

(i−1)).

4: Compute the eigenvalues λ1, . . . , λK of the j-th iterate of Θ(i), Θ(i,j).
5: if min{λj : j = 1, . . . , K} <= 0 then
6: Set τ = 0.1.
7: repeat
8: Θ

(i,j)
τ = min 1

2
∥Q−Θ(i)∥ such that

Q ⪰ τI,

⟨I,Q⟩ = tr(Θ(i)) and

diag(Q) = diag(Θ(i)).

9: τ = τ + 0.1.
10: Compute fnew = f(x

(i)
1 , . . . ,x

(i)
q ,Θ

(i,j)
τ ).

11: Set j = j + 1.
12: until one of the following criterion is fulfilled:

• τ ≥ min(1, θii), where diag(θ11, . . . , θmn,mn); or

• fnew >= f(x
(i)
1 , . . . ,x

(i)
q ,Θ(i−1)).

13: end if
14: s = s/2.
15: until some convergence criterion is satisfied.

The main idea of Algorithm 4, LSNCM, is to replace a precision matrix iterate

with its closest positive definite symmetric matrix, when it is not positive definite

in the line search. To ensure the f being descent in the algorithm, we impose the

condition fnew >= f(x
(i)
1 , . . . ,x

(i)
q ,Θ(i−1)) in Step 12. Again, the positive τ value

is to ensure that the precision matrix is estimated to be a positive definite matrix

instead of a positive semi-definite matrix.

4.3.3 Matrix optimization algorithm for initial value

Initial values are important in a nonlinear optimization because they are the starting

point of the algorithm and most of the time they are taken as maximum likelihood
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estimates. When the sample size is small, the maximum likelihood estimate may not

be close to the true value. In this case, the initial value of the precision matrix may

not be stable and may have a zero determinant.

The technique of closest positive definite matrix replacement can also be applied

in the initial value of Θ0, when a numerical error occurs in the log(det(Θ0)) term

in the log-likelihood function calculation. For simplicity, we apply the following IV

algorithm when the det(Θ0) term is less than 1× 10−8:

Algorithm 5 IV Algorithm for fixing non-positive definite initial precision matrix

1: τ = 0.01
2: repeat
3: Θ0,τ = min 1

2
∥Q− Θ̂0∥ such that

Q ⪰ τI,

⟨I,Q⟩ = tr(Θ̂0) and

diag(Q) = diag(Θ̂0).

4: τ = τ + 0.01
5: until det(Θ0,τ ) > 1× 10−8 or τ > min{θii : diag(Θ̂0) = (θ11, . . . , θmn,mn)}.

When the Algorithm 5, IV is stacked up with Algorithm 4, LSNCM, we

call it as Algorithm LSNCM IV for simplicity.

4.3.4 Convergence of the algorithms

In this section, we discuss the convergence of the two algorithms. The algorithms

require descent line search methods. A line search method determines a decent

direction and a step size for the next iterate so that the next iterate moves along the

descent direction of the objective function f .

Let the step size is 1/s(k). We would like to prove the algorithm satisfying the

following criterion:

f(y
(k)
1 , y

(k)
2 ) ≤ f(y

(k−1)
1 , y

(k−1)
2 )− η

2
s(k)∥(y(k)1 , y

(k)
2 )− (y

(k−1)
1 , y

(k−1)
2 )∥2 (4.7)
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for η ∈ (0, 1) and (y
(k)
1 , y

(k)
2 ), (y

(k−1)
1 , y

(k−1)
2 ) are the k-th and (k − 1)-th iterate and

are in the domain of f .

Assume y
(k−1)
2 = vech(Θ(k−1)) and Θ(k−1) ≻ 0. We conduct the line search, i.e.

(y
(k)
1 , y

(k)
2 ) = (y

(k−1)
1 , y

(k−1)
2 )− 1

s(k)
∇f(y(k−1)

1 , y
(k−1)
2 )

We actually search for a minimizer of

(y
(k)
1 , y

(k)
2 ) = arg min

(y1,y2)

1

2
∥(y1, y2)− (u

(k)
1 , u

(k)
2 )∥

where (u
(k)
1 , u

(k)
2 ) = (y

(k−1)
1 , y

(k−1)
2 )− 1

s(k)
∇f(y(k−1)

1 , y
(k−1)
2 )

This is equivalent to

(y
(k)
1 , y

(k)
2 ) = arg min

(y
(k−1)
1 ,y

(k−1)
2 )

f(y
(k−1)
1 , y

(k−1)
2 ) (4.8)

+
〈
∇f(y(k−1)

1 , y
(k−1)
2 ), (y1 − y(k−1)

1 , y2 − y(k−1)
2 )

〉
+
s(k−1)

2

(
∥y1 − y(k−1)

1 ∥2 + (∥y2 − y(k−1)
2 ∥2

)
Since (y

(k)
1 , y

(k)
2 ) is a minimizer, we have〈
∇f(y(k−1)

1 , y
(k−1)
2 ), (y

(k)
1 − y

(k−1)
1 , y

(k)
2 − y

(k−1)
2 )

〉
+
s(k−1)

2

(
∥y(k)1 − y

(k−1)
1 ∥2 + ∥y(k)2 − y

(k−1)
2 ∥2

)
≤ 0 (4.9)

From Qi and Sun (2006), we have for each y
(k)
2 , there exists a τ ≥ 0 and y

(k)
2,τ ≻ 0

such that ∥y(k)2,τ − y
(k)
2 ∥ = γk,τ , for γk,τ ≥ 0. Using the inequality (4.1), we have

f(y
(k)
1 , y

(k)
2,τ ) ≤ f(y

(k−1)
1 , y

(k−1)
2 ) (4.10)

+
〈
∇f(y(k−1)

1 , y
(k−1)
2 ), (y

(k)
1 , y

(k)
2,τ )− (y

(k−1)
1 , y

(k−1)
2 )

〉
+
β

2
∥(y(k)1 , y

(k)
2,τ )− (y

(k−1)
1 , y

(k−1)
2 )∥2
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Combining (4.9) and (4.10), we have

f(y
(k)
1 , y

(k)
2,τ ) ≤ f(y

(k−1)
1 , y

(k−1)
2 )

+
〈
∇y2f(y

(k−1)
1 , y

(k−1)
2 ), y

(k)
2,τ − y

(k)
2 )
〉

+
〈
∇f(y(k−1)

1 , y
(k−1)
2 ), (y

(k)
1 , y

(k)
2 )− (y

(k−1)
1 , y

(k−1)
2 )

〉
+
β

2
∥(y(k)1 , y

(k)
2,τ )− (y

(k−1)
1 , y

(k−1)
2 )∥2

≤ f(y
(k−1)
1 , y

(k−1)
2 )

+
〈
∇y2f(y

(k−1)
1 , y

(k−1)
2 ), y

(k)
2,τ − y

(k)
2 )
〉

−s
(k−1)

2

(
∥y(k)1 − y

(k−1)
1 ∥2 + ∥y(k)2 − y

(k−1)
2 ∥2

)
+
β

2
∥(y(k)1 , y

(k)
2,τ )− (y

(k−1)
1 , y

(k−1)
2 )∥2

≤ f(y
(k−1)
1 , y

(k−1)
2 )

+
〈
∇y2f(y

(k−1)
1 , y

(k−1)
2 ), y

(k)
2,τ − y

(k)
2 )
〉

−s
(k−1)

2

(
∥y(k)1 − y

(k−1)
1 ∥2 + ∥y(k)2 − y

(k−1)
2 ∥2

)
+
β

2
∥(y(k)1 , y

(k)
2,τ )− (y

(k−1)
1 , y

(k−1)
2 )∥2 (4.11)

By the inequality (4.1) and boundedness of f , there exists a Lf > 0 such that

〈
∇y2f(y

(k−1)
1 , y

(k−1)
2 ), y

(k)
2,τ − y

(k)
2

〉
≤ ∥∇y2f(y

(k−1)
1 , y

(k−1)
2 )∥∥y(k)2,τ − y

(k)
2 ∥

≤ Lf∥y(k)2,τ − y
(k)
2 ∥2

= Lf · γ2k,τ

Assume ∥y(k)2 − y
(k−1)
2 ∥ = ∥y(k)2,τ − y

(k−1)
2 ∥ + δk,τ for some δk,τ . The inequality (4.11)
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becomes

f(y
(k)
1 , y

(k)
2,τ ) ≤ f(y

(k−1)
1 , y

(k−1)
2 )

+Lf · γ2k,τ −
(
s(k−1)

2
− β

2

)(
∥(y(k)1 − y

(k−1)
1 )∥2 + ∥(y(k)2,τ − y

(k−1)
2 )∥2

)

−s
(k−1)

2
δk,τ (4.12)

In order to make the line search criterion well-defined, the following condition

Lf ·γ2k,τ − (
s(k−1)

2
− β

2
)(∥(y(k)1 −y

(k−1)
1 )∥2+∥(y(k)2,τ −y

(k−1)
2 )∥2)− s

(k−1)

2
δk,τ ≤ 0 (4.13)

is fulfilled. Under this condition, f(y
(k)
1 , y

(k)
2 ) is descent.

Algorithm 2, COVLS, starts with a line search method followed by a constrained

minimization using the Newton step. Under Condition (4.13), f is descent under the

line search. And the Newton step is a standard optimization method and it is proved

descent and convergent. Therefore, Algorithm 2, COVLS, is descent and convergent

under the condition (4.13) holds.

The condition (4.13) can easily be extended to a matrix form. And when the

condition is true, f is descent under the line search in the Θ step. Let PB,1(B) =

PB,2(B) = 0 and PΘ,1(Θ) = PΘ,2(Θ) = 0 and use Lemmas 2.1, 2.2 and 2.3, we can

conclude that LSNCM is a block coordinate descent algorithm and it is convergent.

4.4 Numerical Experiments

In this section, we evaluate the convergence performance of Algorithm 2, COVLS,

Algorithm 4, LSNCM, and Algorithm LSNCM IV. For the former algorithm, we con-

sidered a constrained Graphical sparse VAR(p) (CGsVAR(p)) models in Yuen et al.

(2018) and for the latter two algorithms, MAR(p) models in Chapter 3 are consid-
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ered. We would like to demonstrate the convergence of the iterates for these models

using our algorithms and to make a comparison of existing estimation methods.

Samples of the models considered were those which could not be estimated by

algorithms without imposing the positive definiteness constraints of the precision

matrices. In the minimization of the objective function (f), i.e. the negative log-

likelihood function values, the calculation of the log(det(Θ)) was required. Thus the

precision matrices must be positive definite. When an iterate of the precision ma-

trix is non-positive definite, the calculation of the log(det(Θ)) would give numerical

errors. And the algorithm stopped at this point.

In addition, we considered some cases, which had MLE of the precision matrices

having very close to zero determinants. This caused a termination of the estimation

without solutions.

All these examples were re-estimated using our algorithms, COVLS, LSNCM

and LSNCM IV. The iterates convergence plots and root mean squares errors on

estimates were produced.

4.4.1 Algorithm COVLS

We chose the constrained graphical sparse VAR(p) model in Yuen et al. (2018) for

the demonstration of Algorithm 2, COVLS. The model is a vector time series model

and it can be estimated via the following optimization problem:

min
B,Σ−1

u

−
{
−KT

2
log 2π +

T

2
log det(Σ−1

u )

−1

2
tr
(
(Y −BZ)TΣ−1

u (Y −BZ)
)}

(4.14)

subject to


Cβ = 0,
(Σ−1

u )ij = 0, (i, j) ∈ Ω,
Σ−1

u ≻ 0,
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where β = vec(B), C is a matrix of known constants with full row rank, and 0

is a vector or zeros. The above problem adopts the traditional estimation, which

minimizes the minus of the log-likelihood function in the vectorized form of the

coefficient and precision matrices. The positive definiteness of the vech(Θ) was not

easy to be written as either inequality or equality constraints in the optimization and

therefore, the positive definiteness of the precision matrix criterion was not included

as constraints in every step of estimation.

A partial correlation graph was investigated to obtain the zero constraints in co-

efficient matrix B and the precision matrix Θ. A MATLAB function for constrained

minimization of the negative log-likelihood function, the fmincon procedure, was se-

lected for the estimation of the parameters in vector form and the constraints were

the zero constraints determined by the sample partial correlation graph. Initial val-

ues were taken as their maximum likelihood estimates.

The following constrained graphical VAR(p) models were selected:

1. Model 1: yt = A
(1)
1 yt−1 + ut, ut ∼ N(0,Σ1); and

2. Model 2: yt = A
(2)
1 yt−1 +A

(2)
2 yt−2 + ut, ut ∼ N(0,Σ2);

where

A
(1)
1 =


0.2177 0.3066 0 0 0 0.3775
−0.6324 −0.665 0.0214 0 0 0

0 −0.2749 −0.7509 0.4482 0 0
0 0 −0.3046 −0.8066 0.994 0
0 0 0 −0.7313 0.5054 0.7959

−0.0587 0 0 0 −0.514 −0.947

 ,

Σ−1
1 =


1 0.4 0 0 0 0.4
0.4 1 0.4 0 0 0
0 0.4 1 0.4 0 0
0 0 0.4 1 0.4 0
0 0 0 0.4 1 0.4
0.4 0 0 0 0.4 1

 ,
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A
(2)
1 =


−0.6 0.4 0 0 0 0.4
0.4 −0.6 0.4 0 0 0
0 0.4 −0.6 0.4 0 0
0 0 0.4 −0.6 0.4 0
0 0 0 0.4 −0.6 0.4
0.4 0 0 0 0.4 −0.6

 ,

A
(2)
2 =


−0.3 0.2 0 0 0 0.2
0.2 −0.3 0.2 0 0 0
0 0.2 −0.3 0.2 0 0
0 0 0.2 −0.3 0.2 0
0 0 0 0.2 −0.3 0.2
0.2 0 0 0 0.2 −0.3

 , and

Σ−1
2 =


1 −0.3 0 0 0 −0.3
−0.3 1 −0.3 0 0 0
0 −0.3 1 −0.3 0 0
0 0 −0.3 1 −0.3 0
0 0 0 −0.3 1 −0.3
−0.3 0 0 0 −0.3 1

 .

Model 1 is a six-dimensional VAR(1) model and its coefficient and precision

matrices are Toeplitz. The MATLAB fmincon procedure fails to estimate the model

for Samples, d4 with length 200, d10 with length 200, d11 with length 500 and d1

with length 1000 and therefore, they were selected for investigation.

The general phenomena observed in the constrained Newton step in the fmincon

procedure in MATLAB that the norm of the first iteration steps was greater than 1,

relatively large compared with the magnitude of individual cell parameter matrices

value in general. Besides this, the maximum of the absolute first-order derivatives

was far away from zeros. In every sample, the objective function f(= −l) descended

dramatically and the precision matrix of the last iterate had negative eigenvalues.

This indicated that the iterated precision matrices were not positive definite and

were outside the feasible region. In particular, Sample d4 gave the last iterate gave

a complex value of the negative log-likelihood function f value, which should not

exist. As a result, the fmincon procedure produced no solutions. A summary of the

fmincon failure results was tabulated in Table 4.1.

Figures 4.1, 4.2, 4.3 and 4.4 gave the convergence plots in grey-green coloured
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Table 4.1: Summary of CGsVAR model failure cases in the fmincon procedure

Last Iteration
Model Sample T Initial f f after iteration minimum eigenvalue

1st iteration no. f value of Θ
1 d1 100 905.3 -19671.1 1000 -1.73E+08 -43.6
1 d4 200 1780.8 -5474.0 13 -1.28E+09 -76.8
1 d10 200 1761.4 1761.4 1000 -6.26E+10 -283.9
1 d11 500 4545.0 4545.0 49 -1.39E+14 -2625.6
2 d3 100 833.3 -24427.7 407 -3.95E+13 -4639.7
2 d5 200 1705.3 -800.4 37 -2.90E+18 -189400.0
2 d6 200 1742.1 -27256.8 1000 -9.76E+18 -243270.0
2 d7 200 1725.1 -13422.0 1000 -1.27E+12 -1204.9
2 d8 500 4376.8 2348.9 1000 -7.48E+18 -163500.0
2 d9 500 4456.2 -7561.5 722 -7.34E+30 -1737200000.0

Remarks: Models 1 and 2 are CGsVAR(1) and CGsVAR(2) models respectively.

lines, run by the fmincon procedure. It would be observed in Figure 4.1 for Sample

d4 that the estimated negative log-likelihood function, f descended extremely fast

to −1× 109 in less than 10 steps and could not converge. For Sample d10, it would

be observed in Figure 4.2 that the estimated negative log-likelihood function, f

descended extremely fast to −1×109 in 6 steps and was convergent to −6×1010 but

the iterate did not fall into the feasible region. It would be observed in Figure 4.3

for Sample d11 that the estimated negative log-likelihood function, f descended

extremely fast to a negative value and kept descending to −1.4 × 1014. For the

last case of Sample d1, Figure 4.4 shows that the estimated negative log-likelihood

function, f descended extremely fast to −1× 108 in less than 10 steps. Although it

was convergent, the iterate did not fall into the feasible region.

Model 2 is a six-dimensional VAR(2) model and has two Toeplitz coefficient

matrices and a Toeplitz precision matrix. The MATLAB fmincon procedure failed

to estimate the model for Samples, d3 with length 100, d5, d6, d7 with length 200, d8

and d9 with length 500 of Model 2 and therefore, they were selected for investigation.

Similar fmincon procedure failure in convergence patterns of the four samples
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Figure 4.1: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 4 of Model 1 (fmincon in grey green line converged to an infeasible point)
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Figure 4.2: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 10 of Model 1 (fmincon in grey green line converged to an infeasible point)
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Figure 4.3: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 11 of Model 1 (fmincon in grey green line kept descending)
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Figure 4.4: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 1 of Model 1 (fmincon in grey green line converged to an infeasible point)
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of Model 1 were summarized in Table 4.1. The fmincon procedure would not give

convergent iterates or convergent iterates in an infeasible region. For samples d7 and

d11, the direct step in the fmincon procedure gave complex log-likelihood function

values, which are outside the feasible region. After some iterations in each run, the

vech(Θ) ended up with a non-positive definite Θ with negative eigenvalues.

Convergence plots of these six samples were given in Figures 4.5, 4.6, 4.7, 4.8, 4.9

and 4.10. The grey-green coloured lines gave the trace of fmincon procedure iterates.

It would be observed in Figure 4.5 for Sample d3 that the estimated negative

log-likelihood function, f kept descending to −7 × 1011 and could not converge.

For Sample d5, it would be observed in Figure 4.6 that the estimated negative log-

likelihood function, f , descended to −2.9 × 1018 and failed to converge. It would

be observed in Figure 4.7 for Sample d6 that the estimated negative log-likelihood

function, f descended to negative values and converged to −8× 1018, but the iterate

did not fall into the feasible region. For the case of Sample d7, it would be observed

in Figure 4.8 that the estimated negative log-likelihood function, f descended and

was convergent to −1.2× 1012 but the iterate did not fall into the feasible region. It

would be observed in Figure 4.9 that the estimated negative log-likelihood function,

f descended quickly to negative values and was convergent to −5.5 × 1013 but the

iterate did not fall into the feasible region. For the last case of Sample d1, it would

be observed in Figure 4.10 that the estimated negative log-likelihood function, f

descended to −4.0× 1020 but it was not convergent.

We repeated to estimate constrained graphical VAR(p) models for these ten sam-

ples using our algorithm COVLS.

Our algorithm first applied the line search to find a new vector to replace the

MLE initial value vector using a step size of one-tenth of the norm size in the first

iteration in the fmincon procedure. We continued to apply the line search and

examine whether the precision matrix was positive definite in each step. When the

140



−500

0

500

1000

−5e+11

0e+00

5e+11

1e+12

0 25 50 75 100
iteration

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e 

ob
ta

in
ed

 b
y 

A
lg

or
ith

m
 C

O
V

LS

objective function value obtained by fm
incon

Convergence of Algorithm COVLS and fmincon for sample d3

Figure 4.5: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 3 of Model 2 (fmincon in grey green line kept descending)
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Figure 4.6: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 5 of Model 2 (fmincon in grey green line kept descending)
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Figure 4.7: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 6 of Model 2 (fmincon in grey green line kept descending)
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Figure 4.8: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 7 of Model 2 (fmincon in grey green line kept descending)
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Figure 4.9: The COVLS algorithm and fmincon procedure convergence plot for Sam-
ple 8 of Model 2 (fmincon in grey green line kept descending)
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Figure 4.10: The COVLS algorithm and fmincon procedure convergence plot for
Sample 9 of Model 2 (fmincon in grey green line kept descending)
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precision matrix for the next iterate was not positive definite, we replaced it with

its projection in the positive definite cone, i.e. a symmetric positive definite matrix

with the minimum norm with τ starting from 0.01 to min(0.1, θ11, . . . , θK,K), where

θii is the i-th element of Θ. When Θ was guaranteed positive definite, we conducted

the same fmincon procedure to the iterate for minimizing the negative log-likelihood

function.

We studied the convergence plots of our algorithm COVLS for Samples d4, d10,

d11 and d1 of Model 1 as shown in Figures 4.1, 4.2, 4.3, and 4.4, and d3, d5, d6,

d7, d8 and d9 of Model 2 as shown in Figures 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10. The

trace of convergence of our algorithm COVLS was plotted in blue colour. The trace

began with a line search using a projected precision matrix in a positive definite

cone, when the precision matrix iterate was not positive definite. And then the trace

was the constrained minimization estimates of the parameter vector. The estimates

are solved by the fmincon function in MATLAB with the zero constraints. It could

be seen in all these figures that the objective functions f(= −l) decreased and their

iterates were convergent to positive values. Since our samples contained noises, f

would be convergent to values, which were close to the negative true log-likelihood

values.

To investigate further the performance of the estimate, we measured the close-

ness between the true coefficient and precision parameters matrices and our estimates

using root mean squares. We tabulated the root mean squares (RMSEB) for the co-

efficient matrix, B and RMSEΘ for the precision matrix (Θ) from the true matrices

in Table 4.2.

The estimates generated by our algorithm COVLS gave reasonable root mean

squares. The four tested Samples of Model 1 had RMSEB’s varying from 0.09 to

0.21 and RMSEΘ’s varying from 0.22 to 0.6. As the sample size (T ) increased,

RMSEB and RMSEΘ were getting smaller. Samples d4 and d10 had both the
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Table 4.2: Summary of constrained graphical sparse VAR estimation using Algorithm
COVLS

Final solutions
Model Sample T f RMSEB RMSEΘ

1 d1 100 901.0 0.2157 0.5955
1 d4 200 1826.1 0.1842 0.3973
1 d10 200 1798.9 0.1467 0.2496
1 d11 500 4559.9 0.0957 0.2258
2 d3 100 858.3 0.4213 0.6375
2 d5 200 1719.6 0.3233 0.3933
2 d6 200 1755.0 0.3595 0.2949
2 d7 200 1738.7 0.3295 0.4261
2 d8 500 4390.7 0.2624 0.2142
2 d9 500 4467.0 0.2884 0.2307

Remarks: Models 1 and 2 are CGsVAR(1) and CGsVAR(1) models respectively.

same sample sizes and their root mean squares were similar for B and Θ. We tested

six samples with sizes (T ) from 100 to 500. Their RMSEB varied from 0.42 to 0.29

and were almost double the root mean squares of the lag 1 model having the same

length. RMSEΘ varied from 0.63 to 0.21 and were a bit larger than root mean

squares of the lag 1 model with the same length. The smaller the sample size, the

larger the root mean squares of B and Θ. Samples d5, d6 and d7 had the same

length and their root mean squares in B and Θ were similar in magnitude. These

phenomena could also be observed in Samples d8 and d9, which both had sample

sizes (T ) of 500.

4.4.2 Algorithms LSNCM and LSNCM IV

Algorithms LSNCM and LSNCM IV are matrix-based and we evaluate these two

algorithms using a matrix time series model, MAR(p) model. Its model equation is

Xt =

p∑
k=1

CkXt−1Dk
T + Et, vec(Et) ∼ N(0,Θ−1),
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where the dimensions of the data matrix at time t, Xt, the left coefficient matrix,

Ck, the right coefficient matrix, Dk and the precision matrix, Θ are m× n, m×m,

n× n and mn×mn respectively.

The optimization problem of the MAR(p) model is given in Equation (3.4). The

algorithm in Section 3.3.1 adopts a block coordinate gradient descent approach to

minimize the negative log-likelihood function in coefficient and precision matrices

form; however, it stops for some samples.

We chose the samples, which could not be estimated, because the algorithm

stopped whenever a non-positive definite precision matrix iterate, Θ(1,j) (for some

j), in the first iteration was generated and the log(det(Θ)) of the objective function

gave the numerical errors.

We also selected other samples, in which initial precision matrices caused numer-

ical errors in the log(det(Θ)) term of the objective function. It is natural to choose

the maximum likelihood estimate of the corresponding vector autoregressive model

form as an initial value. The initial values, C0 and D0 were obtained by the nearest

Kronecker product decomposition from the coefficient of the VAR model, while the

Θ0 term were the corresponding precision matrix. In our models, we observed some

cases having the determinant of Θ0 very close to zero and the idea of replacement

of a non-positive definite precision matrix could also be applied to the initial value.

The details of selected bilinear matrix MAR(p) time series models were tabulated

in Tables 4.3 and 4.4 and their model forms are listed below.

1. Model p823: m = 6, n = 4,

Xt = C
(1)
1 Xt−1D

(1)
1

T
+C

(1)
2 Xt−2D

(1)
2

T
+C

(1)
3 Xt−3D

(1)
3

T
+ Et,

vec(Et) ∼ N(0,Θ−1
1 ),

2. Model p824: m = 9, n = 6,

Xt = C
(2)
1 Xt−1D

(2)
1

T
+C

(2)
2 Xt−2D

(2)
2

T
+ Et, vec(Et) ∼ N(0,Θ−1

2 ),
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3. Model p825: m = 9, n = 6,

Xt = C
(3)
1 Xt−1D

(3)
1

T
+C

(3)
2 Xt−2D

(3)
2

T
+C

(3)
3 Xt−3D

(3)
3

T
+ Et,

vec(Et) ∼ N(0,Θ−1
3 ).

The left and right coefficient matrices are randomly generated from a square matrix

with a specified spectral radius and then the left coefficient matrices are denormal-

ized. The precision matrix is generated from mn random positive eigenvalues. Each

model satisfies the stability condition stated in Section 3.1.2. For the first model,

the spectral radii of C
(1)
i (i = 1, 2, 3) and D

(1)
i (i = 1, 2, 3) are 0.5521, 0.5558, 0.5866

and 0.8269, 0.8154, 0.7914 respectively and det(Θ1) is 69.02. For the second model,

the spectral radii of C
(2)
i (i = 1, 2) and D

(2)
i (i = 1, 2) are 0.5608, 0.5585 and 1.08567

0.6512 respectively and det(Θ2) is 0.0168. For the third model, the spectral radii of

C
(3)
i (i = 1, 2, 3) and D

(3)
i (i = 1, 2, 3) are 0.4545, 0.4978, 0.4778 and 0.5960, 0.5597,

0.5914 respectively and det(Θ3) is 42.67. These three models fulfill the stability con-

ditions of the time series. The left and right coefficient matrices of the first model

are tabulated as below for reference.

C
(1)
1 =


−0.0432 −0.088 0.2079 −0.2285 −0.0163 0.0123
0.0187 −0.0394 0.0339 −0.0662 0.2406 −0.1085

−0.1192 −0.4294 0.1034 0.1793 −0.1255 0.2806
0.2001 0.177 −0.0294 0.3293 −0.0889 0.1211

−0.0859 0.1044 −0.0612 −0.3454 0.0878 −0.2659
−0.019 0.012 0.1536 0.18 −0.042 0.0208

 ,

C
(1)
2 =


−0.0162 −0.2708 0.0317 −0.0833 −0.0284 −0.1319
−0.0504 0.0386 0.2334 0.0385 0.1857 −0.1183
0.0843 0.2862 −0.0006 0.0558 −0.0075 −0.2305
0.2235 0.1237 0.2083 0.2049 0.1118 −0.404

−0.0452 −0.0989 0.0768 −0.1895 −0.0981 0.0257
−0.1816 −0.0446 0.0884 0.405 −0.1902 0.1148

 ,

C
(1)
3 =


−0.1064 0.0595 −0.0876 −0.0413 0.0195 0.0913

0.2 −0.0487 −0.0258 0.1296 −0.0803 0.0205
−0.0246 −0.0287 −0.2915 −0.038 0.1352 −0.1165
−0.1142 −0.1177 0.0623 0.0219 0.0665 −0.0367
−0.1656 0.2476 0.1247 −0.3681 −0.0432 −0.2244
0.0784 0.0421 −0.1527 0.3359 0.0689 −0.5503

 ,
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Table 4.3: Performance of Algorithm LSNCM for MAR(p) models failure cases (All
samples have non-pd Θ(1) in line search in the first iteration)

Algorithm LSNCM
lag no. of times

Model m n order T Θ(k) calibrated RMSEA RMSEB RMSEΘ

p824 9 6 2 200 21 0.0488 0.0763 0.2883
p824 9 6 2 200 34 0.0483 0.0705 0.2829
p825 9 6 3 200 72 0.0534 0.0870 0.3844
p825 9 6 3 200 94 0.0599 0.0806 0.4331

D
(1)
1 =


−0.0199 −0.4389 0.136 0.1424
0.1778 −0.0369 −0.4683 −0.3217

−0.5169 0.3497 −0.023 0.4342
0.4581 0.0892 0.4955 −0.519

 ,D
(1)
2 =


0.6528 0.4144 −0.0988 0.0862
0.3046 −0.7051 0.233 −0.3457
0.1781 −0.2759 0.1001 0.5187

−0.4753 0.0573 0.1455 0.5294

 ,

D
(1)
3 =


0.0256 0.4615 0.9347 −0.1765
0.4779 0.2214 −0.1995 −0.1102

−0.5671 0.2235 −0.0768 0.3953
0.1364 0.6246 −0.0192 −0.3386

 .

Note that these three models are not sparse. Model p824 is a MAR(2) model and

Models p823 and p825 are MAR(3) models.

We repeated to estimate these models by LSNCM algorithm so that the oc-

currence of the non-positive definite precision matrix would not generate numerical

errors by replacing the matrix with a ‘closest positive definite symmetric matrix in

the iterations and to estimate the model with invalid precision matrix initial values

by LSNCM IV algorithm. Then both algorithms skipped the non-positive definite

precision matrix and could produce the next iterate until the convergence of iterates.

Figures 4.11, 4.12, 4.13 and 4.14 are the convergence plots of the models and

they illustrate that the block coordinate gradient descent algorithm using line search

(LS) stopped in the first iteration. Only pink dots are marked at iteration zero for

the block coordinate gradient descent algorithm using line search (LS), while the f

value generated by the LSNCM algorithm, represented by blue lines was convergent.

Similar convergent patterns for the LSNCM IV algorithm were observed for the

case, which had an invalid precision matrix initial value, in the convergence plots in
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Figure 4.11: LSNCM and LS algorithms convergence plot for Sample 1 of Model
p824
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Figure 4.12: LSNCM and LS algorithms convergence plot for Sample 21 of Model
p824
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Figure 4.13: LSNCM and GIST algorithms convergence plot for Sample 21 of Model
p825
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Figure 4.14: LSNCM and GIST algorithms convergence plot for Sample 22 of Model
p825
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Figure 4.15: LSNCM IV and LS algorithms convergence plot for Sample 1 of Model
p823

Figures 4.15, 4.16, 4.17 and 4.18. As the initial precision matrix had almost zero

determinant, the calculation of the initial objective function (f) value failed.

We evaluated the performance of LSNCM in a similar way as the evaluation of

COVLS. We calculated the root mean squares for C, D and Θ in Table 4.3. All root

mean squares for C, D and Θ using LSNCM were around 0.05, 0.08 and 0.3 to 0.4

respectively. This indicated the algorithm worked well on these samples.

The LSNCM IV algorithm was also evaluated by the root mean squares, tabulated

in Table 4.4. All root mean squares for C, D and Θ using LSNCM were around

0.06, 0.08 to 0.09 and 0.4 for Model p825 and 0.73 for Model p823 respectively. This

indicated the algorithm worked well on these samples.

4.4.3 Discussion of computational efficiency of the algorithms

In this section, we discuss the computation efficiency of the algorithms, when the

dimension is very large. Note that our algorithms consist of the matrix calibration
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Figure 4.16: LSNCM IV and LS algorithms convergence plot for Sample 1 of Model
p825
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Figure 4.17: LSNCM IV and LS algorithms convergence plot for Sample 2 of Model
p825
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Figure 4.18: LSNCM IV and LS algorithms convergence plot for Sample 3 of Model
p825

Table 4.4: Performance of Algorithm LSNCM IV for MAR(3) models with almost
zero determinants of initial precision matrices

Algorithm LSNCM IV
Model Sample det(Θ) m n T det(Θ0) τ det(Θτ ) RMSEC RMSED RMSEΘ

p823 1 69.0 6 4 80 -1.1E-283 0.32 1.68E-08 0.0693 0.1084 0.7367
p825 1 42.7 9 6 200 -4.8E-244 0.03 4.79E-08 0.0587 0.0834 0.3523
p825 2 42.7 9 6 200 6.0E-243 0.03 2.80E-07 0.0531 0.0805 0.3383
p825 3 42.7 9 6 200 -2.9E-246 0.04 1.10E-05 0.0598 0.0816 0.3774

procedure by Qi and Sun (2006) in a single loop and a line search algorithm outside

the loop. This implies that the computation time is a sum of the total of line search

time used and a product of the number of times of the matrix calibration procedure

called and the computation time of the matrix calibration procedure.

We summarize the computation time of two main examples from the numerical

experiments in Qi and Sun (2006) in Table 4.5. The matrix calibration procedure is

developed based on the Newton method and therefore is marked as “Newton” and the

traditional method is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
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Case Algorithm dim (K) α CPU time Iterations Residuals
1 Newton 1000 0.01 2 m 13 s 1 2.6× 10−8

1000 0.1 2 m 58 s 3 2.0× 10−8

1000 0.01 3 m 38 s 5 2.7× 10−8

1000 0.01 4 m 13 s 7 9.9× 10−8

BFGS 1000 0.01 2 m 19 s 2 2.3× 10−7

1000 0.1 3 m 03 s 5 8.0× 10−7

1000 0.01 6 m 27 s 18 9.7× 10−6

1000 0.01 15 m 10 s 53 6.4× 10−6

2 Newton 500 random 0 m 34 s 8 3.7× 10−9

1000 random 4 m 55 s 9 3.1× 10−9

1500 random 14 m 04 s 9 4.5× 10−7

2000 random 33 m 52 s 9 2.6× 10−6

BFGS 500 random 4 m 46 s 88 9.4× 10−6

1000 random Failed 110 2.3× 10−5

1500 random Failed 111 4.7× 10−5

2000 random Failed 112 8.1× 10−5

Table 4.5: Numerical results of matrix calibration used

The models are listed in the following:

1: G = C+ αR, where C is a random correlation matrix and R = (rij) and rij’s

are randomly selected from [−1, 1].

2: G+P, where G = (gij) with gii being randomly selected from [−2× 104, 2×

104], P = PT = (pij) and pij’s are randomly selected from [−α, α], and α ∈

{0, 0.01, 0.1, 1}.

Together with the line search in our algorithms, the total running time has two

summands. The first summand is less than the sum of the line search running time

and the second summand is the product of the number of iterations used in the line

search and the running time of the matrix calibration method used above. As given

in Table 4.5, it is observed that the CPU time varied from less than one minute up

to 34 minutes. The maximum CPU time is less than 34 minutes for a dimension of

2000.
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In our simulation study, the number of iterations required for vector autoregres-

sive models with dimension 6 is less than 25, as observed in Figures 4.1 to 4.10. For

the cases of matrix autoregressive models with the dimension being up to (m,n) =

(9, 6), its covariance matrix is 54 × 54 and the maximum no. of calibration required

is 94 (see Table 4.3). It seems that the no. of matrix calibrations required is less

than the number of elements in the matrix required to be estimated. The idea of this

line search method comes from the gradient descent algorithm and if the function

to be minimized is strongly convex, it is linearly convergent. Note that the matrix

calibration method is quadratically convergent. The computation time seems not

bad. Further analysis of computational time is required to be conducted.

4.5 Conclusion

Positive definiteness constraints on covariance matrices or precision matrices (Θ)

in the log-likelihood estimation of models are required, but it is complicated to be

imposed. When any iterates of these matrices in the maximization are non-positive

definite, i.e. in the infeasible region, numerical errors would occur in the log(det(Θ))

term of the log-likelihood function. As a result, the estimation fails.

Traditional methods increase the chances of successful estimation by introducing

different model structures so that estimation of the covariance matrix and preci-

sion matrix could be estimated via highly reduced dimensions of positive definite

matrices. For the precision matrix, the most traditional method is the use of a con-

ditional dependence structure to reduce the number of parameters needed. As the

dimension of the problem increases dramatically, the current dimension reduction

method might also be large in scale. When a sparse matrix is used for the precision

matrix, the matrix will result in a low-ranked matrix and might have negative eigen-

values. Numerical computation errors may not be avoidable and thus, non-positive
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definite matrices might be generated in the series of iterates. As a result, both the

covariance and precision matrix estimation may stop somewhere or converge to an

infeasible point.

This chapter discusses how to replace the positive definiteness constraints by cal-

ibrating the precision matrices into symmetric positive definite matrices at every

step of the iteration. We have proved that the algorithms are descent. It has been

discussed that the proposed algorithms are convergent under certain regularity con-

ditions and our convergence analysis was conducted with a vector and a matrix time

series model examples for illustration. In addition, our method has been applied to

the cases, where the initial values of the precision matrices were non-positive definite.

The success of the simulation study of our algorithms inspires us to study further

the problem and extend our algorithm to the estimation of covariance matrix in

other statistical models. In addition, it would be much better to embed calibration

of covariance matrix techniques in the line search algorithm and the constrained

Newton Method so that covariance or precision matrices of some statistical models

are properly estimated with ease. Computation efficiency is also valuable to be

investigated.
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Chapter 5

Conclusions

This chapter draws conclusions on the thesis, and discusses some possible relevant

research directions in near future.

5.1 Discussions and Conclusions

1. Chapter 2 proposes a new sparse graphical time series model. It selects a

final model from all possible sparse Gaussian graphical models and sparse vec-

tor autoregressive models, using the minimum Bayesian Information Criterion.

Therefore, the sparsity combination of AR coefficients and precision matrices

is optimal. No pre-estimates based on AR coefficients, partial correlations or

spectral coherence are required for the sparsity structure identification and it

allows any free combination of sparsity between AR coefficient and precision

matrices. We have proved that the penalized maximum likelihood estimators

of the model are consistent and converge to asymptotic normal distributions. A

new, effective and convergent iterative alternating algorithm based on LASSO,

SCAD and MCP penalized likelihood estimation for the sparse model was set

up. The MCP penalty is a non-convex penalty and normally needs a lineariza-

tion in the penalized estimation. But our algorithm allows the linearization in

the penalized likelihood estimation and gives estimates. Our algorithm does
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not require a Hessian matrix and enables us to obtain the iterative estimates

using independent elementwise closed-form solutions, which allow parallel pro-

gramming within the same iteration. This makes complexity of the algorithm

not increase much, as the dimension increases.

2. Chapter 3 studies the matrix time series model, where Chen et al. (2021)

adopted the bilinear regression model onto a time series with matrix-variate

with a structured covariance tensor. We extend the model to a higher lag

order and introduce the general covariance structure, so that any data with the

imperfect independent relationship over two classifications could be modelled.

In addition, a graphical model is merged with our matrix time series model

to form a graphical matrix time series model. We adopt the optimal sparsity

concept as in Chapter 2 for our sparse model and LASSO penalized estimation

is used. The economic indicator example demonstrated that our MAR model

had higher lag and had a lower residual sum of squares value and a prediction

error sum of squares value. The sparse model of the example exhibited an

intuitively correct economic relationship between the five countries.

3. Chapter 4 discusses the problems arising from estimating high-dimensional co-

variance matrix. Due to a limited number of observations, the covariance might

be low rank or not positive definite. When this happens in a covariance esti-

mation algorithm, the algorithm fails to have a solution. However, the positive

definiteness property of the covariance matrix is not easily coded as equality or

inequality constraints in optimization. We aim to replace the positive definite-

ness constraints by calibrating the precision matrices iterates into symmetric

positive definite matrices in every step of iteration. We have discussed that the

algorithms are descent under certain regularity conditions. Convergence anal-

ysis were conducted with a vector and a matrix time series model examples for
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illustration. In addition, our method can also be applied to the cases, where

the precision matrix initial values are non-positive definite.

5.2 Future Works

We have started with the sparse graphical vector time series modelling and this model

has been extended to a matrix form, using the LASSO penalty. As observed in our

works the MCP penalty on sparse graphical vector time series model was the best,

it is suggested to study further on the use of MCP penalty on sparse matrix time

series model. As the sparse matrix time series model uses a general precision matrix,

further reduction on dimension by using a structured covariance tensor will lead to a

simpler model for data with a strong relationship between row-wise interactions and

column-wise dependency. Furthermore, we can consider applying the MAR model

to volatility modelling, for example on GARCH modelling (Engle (1982)).

On the estimation algorithm, we have demonstrated that the use of calibration

of a covariance/precision matrix to replace the non-positive definite matrix iterate

in two algorithms for minimization of a negative log-likelihood function is successful

and it is much simpler than imposing positive definiteness constraints of the co-

variance/precision matrix. It is interesting to further investigate the algorithm and

combine the theory of calibration of covariance/precision matrix with the theory of

the constrained/unconstrained minimization of a negative log-likelihood function so

that the approximate optimization problem can be solved in a more efficient algo-

rithm. This idea can also be extended to more probabilistic models.
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