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1. Abstract 
 

Direct sequencing of clinical specimens is now a trending approach for antibiotic resistance 

detection in target pathogenic microorganism as it can greatly reduce the time to report to a few 

working days that favors the choice of the appropriate regimens and the management of 

resource and samples. To further understand the process in developing sequencing workflows 

for this application, two target sequencing workflows: direct antimicrobial resistance (AMR) 

detection in Mycobacterium tuberculosis (MTB) in sputum samples and direct antiretroviral (ARV) 

resistance detection in human immunodeficiency virus 1 (HIV) in plasma samples, were 

successfully developed. The target sequencing workflow for AMR detection in MTB achieved 

100% agreement between nanopore sequencing by Oxford Nanopore Technologies (ONT) and 

Illumina next generation sequencing (NGS) for the MTB DNA contents in samples above the limit 

of detection (LOD), while the target sequencing workflow for AVR resistance detection in HIV 

achieved high F1 score 0.918, or even 0.96 with a threshold from ROC analysis. The hierarchical 

clustering used in HIV sequencing workflow could even provide a detailed AVR resistance profile 

by associating the AVR resistance-associated amino acid mutation patterns with different 

quasispecies in the same samples. The success of these workflows proved the working principle 

of direct resistance detection in clinical specimens that requires only a few working days to 

report. Other than exploring the power of sequencing technologies, challenges for the workflow 

development were also highlighted. Both index misassignment and background nasal/oral flora 

(especially in sputum samples with low MTB gDNA content) can cause contamination that can 

lead to false results. The recommendations in this study including the choice of the index set, and 
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the employment of decoy strategy can minimize the impact of these issues. The above findings 

can be a reference for the future drug resistance workflow development for other infectious 

diseases. 
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2. Introduction 

In clinical microbiology, the adoption of sequencing technology to clinical services, including 

pathogen identification and antimicrobial resistance (AMR), is currently a research interest 

worldwide. For example, the 16S rRNA gene is one major marker for bacterial species 

identification. Sequencing reads are mapped to the reference 16S rRNA sequences in a database 

[1]. The bacteria species is called when a read is mapped with the highest mapping score. 

Alternatively, fragmented genomic DNA sequencing reads are mapped to databases such as 

RefSeq, covering bacteria, fungi, viruses, and even AMR associated mobile plasmids [2]. A profile 

of identified species and AMR are reported.  

 

Another application is the detection of known chromosomal mutations that are associated with 

the AMR gain in target bacteria or viruses. Variants are called after sequencing reads are mapped 

to the target reference genome. Those variants associated with AMR in a database are 

annotated. Tuberculosis (TB) and acquired immunodeficiency syndrome (AIDS) caused by human 

immunodeficiency virus (HIV) are two examples demonstrating how sequencing technologies are 

applied to detect drug resistance, revealing the current drug resistance distribution within a 

community, and clinically provide a reference for medical prescriptions. 
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2-1. Tuberculosis (TB)  

Tuberculosis is a chronic disease caused by Mycobacterium tuberculosis (MTB). In the year 2020, 

there were around 5.8 million newly reported cases, and pulmonary TB accounted for 82 percent 

(4.8 million) of the cases. Though the number of newly reported cases declined by 18% compared 

with the year 2019, the percentage of rifampicin resistant tuberculosis (RR-TB) and multiple drug 

resistance tuberculosis (MDR-TB) among the pulmonary TB cases climbed from 61% (in the year 

2019) to 71% (in the year 2020). With the economic impact of coronavirus pandemic in the year 

2019 and the rising global price index, the decline in family income may discourage both TB 

diagnosis and treatment, especially for low-income families, and then it may worsen the TB 

incidence [3]. 

 

Multiple lines of antibiotics are available to combat MTB [4]. Once a patient has been confirmed 

to be TB-positive, an immediate 6-month standard of first line drug treatment phase is initiated. 

A combination of isoniazid (INH) and rifampicin (RIF), pyrazinamide (PZA), and either ethambutol 

(EMB) or streptomycin (STR) is prescribed for two months, followed by the extended prescription 

of INH and RIF for four months. Extension of the treatment may be required until the patient is 

completely cured or until the release of the drug susceptibility test (ST) results, in the case of 

suspected drug resistant TB. For rifampicin-resistant (RR) and multidrug-resistant (MDR) TB, 

there are two major regimens recommended by WHO (World Health Organization): the 

traditional longer treatment regimen (18 – 20 months) and the recently recommended shorter 

treatment regimen (an oral regime, 9 – 12 months), covering a combination of partial first ling 
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drugs and the second line drugs. On the longer regimen, the patients are prescribed with all drugs 

in Group A (levofloxacin (LFX) or moxifloxacin (MFX) (members of fluoroquinolones (FQ), BDQ, 

and linezolid (LZD)), combined with at least one of the drugs in Group B (CFZ and cycloserine (CS) 

or terizidone (TRD)), while drugs in Group C (EMB, PZA, delamanid (DLM), Imipenem–cilastatin 

(IPM-CLN) or meropenem (MPM), AMK, ETO, PTO, and P-aminosalicylic acid (PAS) are used as 

reserve if any key drugs in Group A and Group B is unavailable or inappropriate. In the newly 

recommended shorter regimen (an oral regime), oral-based bedaquiline (BDQ) is one key drug 

used as a replacement for some second-line injection drugs (SLIDs) such as kanamycin (KAN), 

capreomycin (CAP), and amikacin (AMK), combining with LFX or MFX and other drugs such as 

ethionamide (ETO), EMB, INH, PZA, and clofazimine (CFZ). A higher cure rate is reported with the 

shorter regime than with the longer regime, and the shorter regime is thought to be favorable to 

treatment coverage, patient follow-up, and so TB management. However, it is limited to patients 

with exposure to the second line drug treatment for less than one month, lower disease severity, 

and no report of FQ-resistance in MTB. For MDR/RR-TB patients with the additional resistance to 

FQ, or even the additional resistance to at least one of the SLIDs (XDR-TB), a regimen composed 

of BQ, pretomanid (PA), and LZD, commonly known as the BPAL regime (6 – 9 months), is 

introduced. In the study by the NIX-TB Trial Team, a high positive rate of treatment outcome for 

BPAL (90%, 98 out of 109 patients) meant that the patients were cured with the culture 

conversion at 6 months after the end of the BPAL treatment [5]. Of which, the positive treatment 

outcomes for patients with XDR-TB and MDR-TB were 89% (63 out of 71 patients) and 92% (35 

out of 38 patients), respectively. Of note, different degrees of adverse effects associated with 
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LZD were commonly found in the patients [5], reduced dosage may be an option. Careful patient 

support and management for handling these adverse effects are recommended. 

 

2-2. Anti-TB drugs and antimicrobial resistance 

2-2-1. Isoniazid (INH) 

Isoniazid is a key first line drug that is widely used for treating TB. The full working mechanism is 

still being studied as it involves several pathways. One important mechanism is the inhibition of 

mycolic acid (MA) synthesis, a long fatty acid chain that is a key component of the thick cell wall 

in MTB [6]. The thick cell wall provides MTB protection from hydrophilic antibiotics and 

macrophage invasion. After the pro-INH is converted to active INH, it is then converted to an 

isonicotinic acyl radical with catalase-peroxidase encoded by the gene katG. This radical is then 

combined with the reduced form of nicotinamide adenine dinucleotide (NADH) and finally 

becomes the INH-NADH adduct. The adduct binds to the active site of 2-trans-enoyl-acyl carrier 

protein reductase (encoded by the gene inhA) and hinders the access of the original substrate, 

trans-2-enoyl-ACP, and so blocks the MA synthesis in the fatty acid synthesis type II (FASII) 

system. 

 

Genomic mutations in the related genes are associated with INH resistance. For example, a highly 

prevalent genomic mutation led to an amino acid change at position 315 from serine to threonine 

(S315T) in katG, which confers MTB INH resistance by reducing its affinity for INH [7, 8]. Another 

typical mutation is C-15T in the promoter region of the gene inhA, which enhances the expression 
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of 2-trans-enoyl-acyl carrier protein reductase [9]. Either of these two mutations alone may not 

necessarily totally impair the treatment efficiency with the high dose of INH (15–20 mg/kg), but 

the combination of these two mutations may lead to clinically ineffective doses [10]. Also, 

mutations (G-7A, A-10C, and G-12A) in the furA-katG intergenic region can downregulate the 

katG expression and so confer INH resistance [11]. 

 

2-2-2. Rifampicin (RIF) 

Rifampicin is another key first-line drug that is usually prescribed with INH. The binding of RIF to 

RNA polymerase (RNAP) inhibits RNA synthesis by blocking RNA elongation beyond the 2nd or 3rd 

nucleotide in the RNAP beta subunit [12]. RIF contains several atoms that are responsible for 

binding to the RNAP beta subunit, which is encoded by the gene rpoB. Some known mutations 

on rpoB cause amino acid changes and weaken the binding affinity to RIF, and so confer MTB RIF 

resistance. These mutations are distributed in the 81-bp hotspot region (the codon range 

between 507 and 533) of gene rpoB, and they account for at least eighty percent of the reported 

RR cases [13]. Of which, genomic mutations leading to the amino acid change H445Y and S450L 

(H526Y and S531L in Escherichia coli respectively) confer high-level MTB high level resistance to 

RIF. The reported occurrence in codon 450 can be noticeably high at 60% - 80%, while the 

occurrence in codon 445 may largely vary from 3% to 30%, based on studies of cohorts of RIF 

resistant isolates held in China, Georgia, and Angola [14-16]. Interestingly, these two mutations 

also add to the MTB fitness burden. Compared with the wild-type strain, a reduced growth rate 

in hypoxia or poor nutrient conditions was observed in MTB carrying the H445D mutation [17]. 

Also, the mutation S450L could lead to a reduced growth rate, and such a cost could be 
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compensated with secondary mutations in genes rpoA, rpoB, and rpoC [18]. Transcriptomic 

analysis done by Xu et al. suggested the rpoC mutation might rescue the impairment of oxidative 

respiratory pathway caused by the rpoB mutation for MTB exposed to RIF [19]. This may partially 

explain how the fitness cost is compensated with mutations on other RNAP subunits such as rpoA 

and rpoC. 

  

2-2-3. Ethambutol (EMB) 

Ethambutol is a key first line drug that is usually used with INH, RIF, and sometimes second line 

drugs. The mechanism of action is the binding of EMB to the active site of arabinosyltransferase 

EmbB of the EmbA-EmbB complex and the active site of the EmbC-EmbC complex, which inhibits 

the arabinose transfer that is essential for the synthesis of the special cell wall complex in MTB 

[20]. A recent study suggested another mechanism by which EMB enhanced the DNA binding of 

a repressor protein encoded by gene Rv0273c (EtbR) to inhA promoter, repressed the expression 

of inhA, enhanced the INH susceptibility [21]. Amino acid change at codon 306 of EmbB gene 

decreases the binding affinity of EMB to the active site without significant change in arabinose 

transferase activity, and so it increases the minimum inhibition concentration (MIC) by two to 

four folds [22], while mutation on codon 406 confers MTB mild EMB resistance [23]. Analysis of 

the prevalence of EMB resistance showed that the majority of the EMB resistant samples (80% 

to 90%) carried mutations in embB. Of which, the mutation frequency on codon 306 (including 

M306V and M306I) ranged from 30% - 75%, while the mutation frequency on codon 406 was 

much lower at less than 6% in EMB resistant samples [22, 24, 25]. 
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Gene ubiA encoding 5-phospho-alpha-d-ribose-1-diphosphate: decaprenyl-phosphate 5-

phosphoribosyltransferase is also associated with the EMB resistance. This enzyme converts 

phosphoribose diphosphate (pRpp) and decaprenylphosphate (DP) to decaprenylphosphoryl-

beta-D-5-phosphoribose (DPPR), which is further converted to decaprenylphosphoryl-D-

arabinose (DPA) in the downstream process within the DPA pathway. The DPA is a substrate for 

EmbB in cell wall synthesis [26]. Point mutations on codons 188, 237, 240, and 249 included in 

the transmembrane domain led to overexpression of ubiA and then increased the DPA level. DPA 

competes with EMB for the active sites, resulting the MTB EMB resistance [27]. 

 

2-2-4. Pyrazinamide (PZA) 

Pyrazinamide is a drug that is commonly used in first- and second- line treatment regimens. The 

drug is converted to pyrazinoic acid (POA) by hydrolysis with pyrazinamidase or nicotinamidase 

encoded by the gene pncA. The mechanism of action of POA is still under exploration. One 

proposed mechanism is the binding of POA to the aspartate decarboxylase encoded by PanD, 

which promotes the PanD degradation. This prevents aspartate from being converted to beta-

alanine, thereby suppressing downstream Coenzyme A synthesis (CoA) [28]. The high prevalence 

of mutations on pncA accounts for the PZA resistance. Excessive hydrogen bonds caused by 

mutations D8G, S104R, and C138Y lead to the rigid binding site and hinder the conversion of 

pyrazinamidase to its active form [29]. Another important mutation on codon 57, such as H57D, 
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affects the coordination of the iron (II) ion in the active site region and inactivates the 

pyrazinamidase [30]. 

 

2-2-5. Streptomycin (STR) 

Streptomycin is a well-known antibiotic that is used to treat a wide range of infectious diseases, 

including tuberculosis and plague. After binding to several nucleotides in 16S ribosomal RNA 

(gene rrs) and several amino acid residues in S12 protein encoded by gene rpsL in ribosomal 

subunit S30, this causes conformational change of the helices in the decoding site and then codon 

mismatch to aminoacyl transfer RNA (tRNA), and so intervenes in the normal protein synthesis 

[31]. Mutations in gene rrs were associated with STR resistance. On the other hand, mutations in 

gene rpsL lead to hyperaccurate phenotypes by destabilizing the ribosomal ambiguity (RAM) 

state that compensates for the stabilization caused by STR, and so the translation returns to 

normal [32]. The mutation frequency in rrs for STR resistance cases ranged from 16% to 44%, 

while the mutation frequency ranged from 31% to 63% in rpsL, according to the studies in China 

and Iran [33, 34]. 

 

2-2-6. Bedaquiline (BDQ) 

Bedaquiline was approved for TB treatment in 2012 and is now a key antibiotic for combating 

MDR-TB. It shows promising bactericidal results even against the non-replicating MTB [35]. BDQ 

binds to the c-unit of F-ATP synthase in mycobacteria and hinders the rotation of the c-unit, which 

blocks the ion exchange between the periplasm and cytoplasm in the electron transport chain 
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[36, 37]. The ATP synthesis is eventually shut down, which slows down the cellular activities, and 

finally leads to cell death. However, mutations at codon 63 alone at the gene atpE encoding the 

c-unit of F-ATP synthase can raise the MIC level of MDR-TB culture from 0.05 ug/ mL to the higher 

level (4-8 ug/ mL), while the mutations at codon 83 and mutations at gene Rv0678 encoding a 

repressor of MmpS5-MmpL5 efflux pump only raise the MIC level to around 0.5 ug/ mL [38]. 

Despite the fact that studies in South Africa and China reported a low percentage of BDQ 

resistance cases out of the total number of TB cases at the time (199/3005, 7% in South Africa, 

6/1603, 0.4% in China) [39, 40], a warning of several cases harboring spontaneous mutations 

associated with BDQ resistance prior to BDQ treatment was reported [41]. Mutations at Rv0678 

are dominant among the BDQ resistant cases. More statistical information is required for close 

monitoring of the spread of BDQ resistant strains, which is necessary to safeguard the 

bactericidal power against MDR-TB. 

 

2-2-7. Fluoroquinolones (FQ) 

Among the antibiotics in the fluoroquinolone (FQ) family, levofloxacin (LFX) or moxifloxacin 

(MFX) are commonly used for treating MDR-TB. These antibiotics inhibit the gyrase complex (an 

enzyme type of Type II topoisomerases unique in bacteria) from resealing DNA double-strand 

breaks and form the complex with DNA that further blocks the transcription in the DNA 

transcription fork, which is toxic to the bacteria and causes cell death [42]. One proposed 

mechanism is the formation of a water-metal ion bridge between the gyrase and the antibiotics. 

Mutation D94G in gene gyrA strongly disrupts bridge formation and so confers MTB resistance 

[43]. Mutations D500A, N538T, T539P, and E540V in gene gyrB may be associated with low level 



   

 

 25  

 

FQ resistance [44]. Mutations A90V and D94G in gene gyrA are highly frequent in FQ resistant 

cases, while mutations in gene gyrB or double mutations in both gyrA and gyrB are less common 

[45-47].  

 

2-2-8. Second line injection drugs (SLIDs) (kanamycin (KAN), capreomycin (CAP), and amikacin 

(AMK)) 

Capreomycin is a bactericidal antibiotic used for treating MDR-TB. The mechanism of action is 

still under exploration. One study suggested it inhibited protein synthesis by blocking the 

interaction between L10 and L12 and lowering the GTPase activity of Elongation Factor G (EF-G) 

[48]. It was also proposed that CAP could bind to the ribosome 30S decoding site, which is 

sandwiched between 50S and 30S rRNA, inhibiting tRNA translocation and, eventually, protein 

synthesis [49, 50]. Mutations A1401G, C1402T, and G1484T in gene rrs are associated with CAP 

resistance [51]. Also, the binding of CAP to 70S ribosome requires the methylation of cytidine at 

positions 1409 on 16S and 2158 on 23S rRNA with (cytidine 1920-2'-O)-methyltransferase 

encoded by gene tlyA. Mutations such as N236K at gene tlyA lead to structural changes that 

impair the methylation activity, and so confer MTB resistance to CAP [52]. Based on several 

studies worldwide [53-56], mutations at gene rrs are highly frequent (49.3% - 84.3%) for CAP-

resistant cases. Though the high mutation frequency of a non-synonymous mutation A33G is 

reported in India and Thailand [53, 56], its irrelevance to AMR is suggested. Other novel 

mutations are rare, and their AMR association is pending confirmation [56]. 
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Kanamycin (KAN) was removed from the World Health Organization's List of Essential Medicines 

in 2019 because of its severe adverse effects, whereas Amikacin (AMK), an antibiotic synthesized 

from KAN, is still in use. AMK forms a complex at the A-site of the decoding region in the 30S 

ribosome subunit as well as the RNA region at the GC pairs C1404–G1497 and G1405–G1496 [57], 

and then causes the improper reading of mRNA and finally inhibits protein synthesis. Mutations 

within the RNA region at gene rrs are associated with AMK resistance. On the other hand, 

overexpression of enhanced intercellular survival protein (eis) can acetylate and inactivate AMK 

[58]. Over transcription of mRNA transcripts is caused by mutations such as -10 in the promoter 

region, which slightly increases the MIC (from 0.5 to 3 ug/ mL) [59]. Also, the expression of gene 

eis is also regulated by a transcriptional regulator encoded by gene whiB7. Mutations at the 

untranslated region (UTR) of whiB7 increase its mRNA level and the subsequent expression level 

of eis [60]. A few studies showed mutation frequency at gene rrs was dominant in AMK resistance 

cases (70% - 83%), whereas the mutations at the eis promoter region was less common (0.02-

0.17%) (51-53, 59). The mutation at the gene whiB7 UTR region is rare [53, 61].  

 

2-2-9. Linezolid (LZD) 

Linezolid is one important antibiotic for treating MDR-TB and even XDR-TB. LZD binds to the 

ribosomal peptidyl transferase center (PTC) surrounded by the 23S ribosomal RNA in the 50S 

ribosome subunit and blocks the positioning of aminoacyl tRNA that is essential for peptide 

transfer [62]. Mutations at the nucleotide position in 23S ribosomal RNA (gene rrl), such as 2062 

and 2576, are associated with resistance to this antibiotic. Another identified mutation, 

Cys154Arg, at gene rplC encoding 50S ribosomal protein L3, is also associated with resistance to 
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LZD as a loop of this peptide protrudes to the PTC of 23S ribosomal RNA [63, 64]. In the studies 

held in South Africa, China, and Moscow (Russia), both hot spot mutations at protein position 

154 at gene rplC (around 20% - 90%) and mutations at gene rrl (around 12.7% - 30%) contributed 

to the LZD resistance [65-67]. 

 

2-2-10. Summary 

While the introduction of second-line and new antibiotics helps to combat the rising prevalence 

of RR-TB and MDR-TB, antibiotic resistance is a concern. Rapid drug resistance detection tests 

are necessary to provide the patients with appropriate regimens in order to suppress the growth 

and spread of drug resistant TB. 

With the ongoing research in understanding the mechanisms of action and resistance, more AMR 

associated mutations have been explored and confirmed. These mutations can serve as genetic 

markers for revealing the AMR profile, which allows for better choices of regimens. Phenotypic 

drug susceptibility test (pDST) is considered the gold-standard for detecting AMR in MTB. 

However, the time to a clinical report is too long (in terms of months) because of the slow growing 

properties of MTB. During this waiting period, patients may miss out on the best regimens. 

Nucleic acid amplification assays such as Xpert® MTB series offer quick genotypic results within 

a single working day, but the coverage of genetic markers is limited. With the decreasing running 

cost for sequencing technologies, many studies reported the adoption of sequencing 

technologies to detect drug resistance in clinical isolates or even clinical specimens. On the other 

hand, they can be used for public health surveillance that monitors the evolution and spread of 
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AMR (especially for second line drugs and new antibiotics) within a community. For example, the 

discovery of a high proportion (73.6%) of pan-XDR and XDR strains (meaning they also possessed 

FQ resistance) in MDR cases in Mumbai raises the specter of failure in second-line drug regimens 

[68]. 

 

2-3. Human immunodeficiency virus and acquired immunodeficiency syndrome 

(HIV/AIDS)  

HIV/AIDS is a chronic immunodeficiency disease caused by HIV transmission through the 

exchange of body fluid such as bloods, breast milk, and secretions from the sex organs (including 

semen). According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), they estimated 

that a total of 38.4 million people were infected with HIV, around 650,000 infected people died 

of HIV-related diseases, and there were around 1.5 million new cases in 2021. Approximately 

28.7 million people (~74.7%) were being treated with antiretroviral therapy (ART). 

 

The envelope glycoprotein (ENV) of HIV specifically binds to the surface receptors (CD4 receptor, 

CCR5, or CXCR4) on the CD4+ T cells. After the binding and fusion of the viral envelope into the 

cell membrane, the capsid containing two copies of viral RNA along with key enzymes such as 

reverse transcriptase (RT) and integrase (INT) is delivered to the cytoplasm. The HIV vRNA is 

converted to vDNA with its RT. This is one of the major targets of antiretroviral (ARV) drugs. The 

vDNA is then transferred into the nucleus and incorporated into the host cell genome with the 

aid of viral INT. The INT is another major target for ARV drugs. Essential materials (HIV protein 
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chains and enzymes) and the viral genome are generated by transcription and translation using 

host cell machinery. The materials and the vRNA are then assembled at the host cell surface, 

forming a bud that becomes an immature HIV. Finally, immature HIV is converted to mature HIV 

with viral protein chains (such as gag and gag-pol) broken down with HIV protease (PR), and the 

new generation of mature HIV leaves the host cell. The protease is also the major target of ARV 

drugs. Since HIV/AIDS is not curable, the objective of ART is to slow down viral replication by 

interrupting the key processes in the HIV life cycle. 

 

2-4. Antiretroviral therapy (ART) and drug resistance 

 

2-4-1. Nucleoside RT inhibitors (NRTI) 

Nucleoside RT inhibitors (NRTI) are nucleoside analogs (after the activation by adding phosphate 

groups with the intracellular kinase) but lack the 3’-hydroxyl group at the 2’-deoxyribosyl moiety. 

As a result, they compete with natural nucleotides and prevent the formation of a 3’-5’-

phosphodiester bond in growing DNA chains during reverse transcription, and so the viral 

replication fails [69]. For pyridine analogs, zidovudine (AZT) and stavudine (d4T) are analogous to 

thymine, while lamivudine (3TC) and emtricitabine (FTC) are analogous to cytosine. For purine 

analogs, didanosine (ddI) and tenofovir (TDF) are analogous to adenosine, while abacavir (ABC) 

is analogous to guanosine. 
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Mutations at the genomic region encoding RT are associated with different levels of resistance 

to different NRTIs. One mechanism, called the mechanism of discrimination, is the exclusion of 

NRTI from the natural dNTPs. For example, M184VI causes high-level resistance to 3TC and FTC 

as it changes the geometry of the highly conserved YMDD motif [70] that is part of the active site 

of polymerase in RT [71]. Another Q151M complex mutation changes the conformation of the 

dNTP-binding pocket but overcomes the fitness cost of slow viral replication, conferring HIV high-

level resistance to AZT, DDI, ABC, and d4T [72]. Another mechanism, called the mechanism of 

excision, is the pyrophosphorolysis of thymine analogs in the 3’-terminal end of blocked vDNA. 

Eventually, the thymine analog is released, and so the DNA synthesis can be resumed [73]. 

Thymidine analog mutations (TAMs) at several positions (M41L, D67N, K70R, L210W, T215F/Y, 

and K219Q/E) are associated with AZT and d4T resistance.  

 

Interestingly, mutations such as M184VI and K65R alone confers high level resistance to some 

NRTIs, but it can increase the susceptibility to other NRTIs. Mutation M184VI confers high-level 

resistance to FTC and 3TC but increases the sensitivity to AZT and d4T. Mutation K65R confers 

high-level resistance to d4T, ddI, TDF, FTC, and 3TC, but greatly increases the sensitivity to AZT. 

However, the increased sensitivity can be compensated with other mutations such as Q151M. 

Compensation mutations at various sites, such as the Q151M complex (for example, F77L, F116Y, 

and Q151M), increase resistance to almost all commonly used NRTI. This means that the final 

resistance level of different NRTIs should be based on consideration of combination of the 

mutations (if any) instead of individual mutations. 
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2-4-2. Non-nucleoside reverse-transcriptase inhibitors (NNRTI) 

Different from NRTIs, NNRTIs bind to the RT and open a hydrophobic pocket close to the active 

site of polymerase. This causes the confirmation change in the YMDD loop at the active site, the 

primer gripping site, and the base of the p66 thumb that is unfavorable to proper primer binding, 

and so inhibits viral replication [74, 75]. Doravirine (DOR), etravirine (ETR), efavirenz (EFV), 

nevirapine (NVP), and rilpivirine (RPV) are examples of NNRTIs. Since amino acid positions 100 – 

108, 179-190, 227, 229, 234, 318 in p66 and 138 in p51 are responsible for the structure of this 

hydrophobic cavity, mutations at these positions and some nearby amino acid positions are 

associated with NNRTI resistance. Mutations at these positions usually lead to high-level 

resistance to different NNRTIs. 

 

2-4-3. Protease inhibitors (PI) 

HIV protease is used for cleaving gag and gag-pol to generate the envelope glycoproteins and 

enzymes for new generation virions. The protease inhibitors saquinavir (SQV), nelfinavir (NFV), 

and darunavir (DRV) bind to several amino acids at the active site, including the catalytic Asp25, 

with different hydrogen bonds and van der Waals force networks, and so they inhibit the protein 

chain cleavage [76, 77]. It is also proposed that DRV can additionally block the dimerization of PR 

by binding it to the PR monomer. Multiple mutations V32I, L33F, I54M, and I84V, on the other 

hand, confer DRV resistance [77]. Even the I84V alone confers low to high levels of resistance to 

various ARV drugs such as indinavir (IDV), atazanavir (ATV), tipranavir (TPV), and DRV, as amino 

acid changes result in a lower van der Waals force between the PI and PR [78]. The mutation 
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G48T and L89M cause a wider opening that is unfavorable to the van der Waals force binding to 

PR, resulting in high-level resistance to SQV, amprenavir (APV), and NFV [79]. In short, mutations 

at positions within or close to the active site are usually associated with PI resistance. 

 

2-4-4. Integrase Strand Transfer Inhibitor (INSTI) 

HIV integrase is responsible for genome integration of vDNA into host genome. The integrase 

cleaves two or three nucleotides from the 3’ end of the vDNA (called 3’-processing), followed by 

the cleavage of the double strand host chromosomal DNA and the immediate strand transfer to 

the 5’ end of one strand of host chromosomal DNA. The DNA polymerase closes the DNA gap (a 

few nucleotides) caused by HIV INT on the other strand. The 5’ overhangs of vDNA are removed, 

and finally, the vDNA is integrated into the host genomic DNA with the aid of DNA ligase [80]. 

INSTI binds to the active site containing 3’-processed vDNA in INT and displaces the cleaved 

chromosomal DNA. Finally, the strand transfer by INT is retarded [81]. Elvitegravir (EVG) and 

raltegravir (RAL) are the first generation INSTIs. Bictegravir (BIC), cabotegravir (CAB), dolutegravir 

(DTG) are second generation INSTI as BIC and DTG can enhance the binding by reaching N117 

and G118 with their oxazinane/oxazepane rings [81, 82].  

 

The well known mutation Y143 causes the loss of π–π stacking interactions to RAL and the side 

chain of Y143, and so confers high-level RAL resistance [82, 83]. Also, mutations Q148R, N155H, 

E92Q, and T66I are associated with high-level EVG resistance found in failed EVG-containing 

regimen patients [84]. The second-generation drug DTG is not affected by the RAL resistance 
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associated mutations Y143R and N155H or the EVG resistance associated mutations T66I and 

E92Q [82]. That is why it is such a powerful drug for combating AIDS/HIV. One mutation, G118R, 

has been linked to intermediate-level DTG and BIC resistance, but it is associated with reduced 

viral replication capacity, which may explain why this DTG resistance associated mutation is so 

rare [85]. Another mutation, R263K, may cause intermediate-level resistance to DTG but also 

lower the efficiency of strand transfer and 3′-processing [86]. 

 

2-4-5. Summary 

AIDS/HIV is not curable because of the integration of vDNA into the host genome. Also, the high 

error rate of HIV RT leads to a high mutation rate and favors drug resistance development. 

According to recent studies in Guanxi (China), Kazakhstan, Uganda, and the USA, NNRTI 

resistance in newly diagnosed or treatment-initiated patients is higher than NRTI and PI [87-90], 

meaning that the resistance is being transmitted within the community. The INSTI resistance is 

still the lowest (<1%), but the prevalence may be significant decades later [91]. As a result, close 

monitoring of the spread of resistant strains and understanding more about the mechanism of 

resistance are required for public health management and drug discovery. Like TB, with 

sequencing technologies, drug resistance profiles can assist clinicians in optimizing the ART for 

individual patients. 
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2-5. Adoption of sequencing technologies to detect the drug resistance detection 

in clinical laboratories – the motivation of this study 

 

2-5-1. Direct AMR detection in MTB in sputum samples 

Benefiting from the power of collecting comprehensive genetic information with nucleic acid 

amplification and sequencing technologies (including next generation sequencing (NGS) by 

Illumina and long-read sequencing by Pacific Bioscience (PacBio) and Oxford Nanopore 

Technologies(ONT), direct sequencing of Mycobacterium tuberculosis (MTB) genomic DNA in 

clinical samples for rapid antibiotic resistance detection has become a research interest. Previous 

studies from other research teams proved the feasibility of using whole genome sequencing 

(WGS) for antibiotic resistance detection in sputum samples from pulmonary tuberculosis (TB) 

[92, 93]. Compared with the gold standard phenotypic drug susceptibility test (pDST), the time 

to clinical report by sequencing could be greatly reduced from weeks to a few days, given the 

high concordance of drug resistance results for both pDST and WGS of clinical isolates.  

 

WGS can generate sequencing data for clinical antibiotic resistance reports as well as 

epidemiological analysis. In principle, however, the whole genome data size should be much 

larger than targeted sequencing data. Besides, the highly varied amount of MTB DNA in the 

mucosal content and the genomic DNA contamination from humans and other nasal or oral 

microbiota in sputum samples may result in a higher demand for sequencing depth in order to 

reach a sufficient depth of coverage for downstream analysis [94]. This strategy may raise the 
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sequencing cost and the data storage requirement, which may not favor routine testing in clinical 

laboratories.  

 

Target sequencing is one method to enrich the sequencing data in the region of interest. In our 

previous study, the working principle of target sequencing was proven to provide high agreement 

between ONT, NGS, and pDST in clinical isolates [95]. However, the minimum time for a clinical 

report is still around two weeks because of the long incubation period of MTB. A target 

sequencing workflow for direct sequencing of sputum samples is required to further shorten the 

time to clinical report. Studies from our team and other research teams proved the working 

principle of direct target sequencing for AMR detection in respiratory samples [96-99], but 

precautions should be highlighted before the adoption of the sequencing technologies in clinical 

laboratories.  

 

Direct sequencing of sputum samples can be difficult due to contamination with genomic DNA 

from humans and nasal/oral flora. A few antibiotic resistance-associated housekeeping genes, 

such as RNA polymerase subunit B (rpoB), 16S ribosomal RNA (rrs), 23S ribosomal RNA (rrl), and 

DNA gyrase B (gyrB) exist in MTB and common nasal and oral microbiota, such as Staphylococcus 

sp. and Corynebacterium sp. [100]. Limited studies cover the possible interference of these genes 

from nasal/oral microbiota to the variant calling performance and, therefore, the specificity in 

antibiotic resistance prediction. More work is required for confirming the possible interference 

from this background nasal/oral flora. 
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2-5-2. Direct ARV resistance detection in HIV in plasma samples 

The presence of DRMs in minor quasispecies can be the consequence of the mutation in the 

original strain, or the infection of a new distant resistant strain in the case of superinfection. 

Minor quasispecies carrying DRMs can lead to subsequent treatment failure in some cases [101-

104]. During the treatment period, the resistant minor quasispecies outgrows the other 

quasispecies and subsequently lead to treatment failure. Also, other studies suggested 

quasispecues carrying dual-class DRMs was associated with the higher risk of treatment failure 

[105]. With the long-read sequencing and hierarchical clustering, not only the drug resistance 

results by the major DRMs can be detected, the minor quasispecies and the corresponding drug 

resistance profiles can also be revealed that provides more genetic information for the follow-

up. 

Sanger sequencing is one common technology used for ARV resistance detection [106, 107]. Due 

to the limited read length, separated DNA amplification in multiple regions is required for the full 

coverage of the genome of interest. Such laboriousness does not favor the handling of large 

sample batches. Also, it does not support mixed variants at low variant frequencies (for example, 

<0.2) [108] and misses drug resistance associated minor variants. Next generation sequencing 

(NGS) is one popular sequencing technology because of its high sequencing capacity and high 

base accuracy (typically 99.99%). It is used for variant calling, including low variant allele 

frequency variants. The PCR-tiling strategy can overcome the limited readlength in NGS (such as 

SARSCoV2), but it lacks the association between variants and quasispecies in a sample. 
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Oxford Nanopore Technologies (ONT) nanopore sequencing provides long-read sequencing 

readlength and a flexible sequencing batch size. The super-accurate (SUP) basecalling model with 

Flowcell R9.4.1 pushes the raw read accuracy to 98% above. With its low adoption cost and small 

size, the MinION sequencer is now being used in clinical diagnosis of infectious diseases. Not only 

does the long-read sequencing allow variant calling, it also allows the clustering of sequencing 

reads that clearly reveals the ARV resistance profile, including the association between the 

variants and the quasispecies in a sample. 
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2-6. The objectives 

For AMR resistance detection in MTB: 

1) A direct target sequencing workflow is designed that shortens the time to clinical reports 

to a few working days. 

2) To explore the potential source of contamination and any precautions within the 

sequencing workflow, including the possible interference of nasal/oral flora, and to 

provide the solution. 

For ARV resistance detection in HIV: 

1) Using a hierarchical clustering strategy, a direct target sequencing workflow is designed 

to provide a comprehensive AMR resistance profile by associating ARV resistance with 

the quasispecies in a sample. 

Finally, with these two examples of direct sequencing workflow development, the strategies, 

including the use of the advantages of targeted sequencing, the precautions, and the solutions, 

can be a reference for sequencing workflow development for drug resistance detection in other 

diseases. 
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3. Materials and methods 

3-1. Targeted sequencing workflow for direct AMR detection in MTB in sputum 

samples 

 

Sample collection and preparation 

A validation cohort consisting of 13 clinical isolates (5 from Asella Hospital, Ethiopia, and 8 from 

Queen Mary Hospital, Hong Kong) and 37 TB-negative samples (from Queen Mary Hospital, Hong 

Kong) was used for the evaluation of non-TB interference filtering and the performance of drug 

resistance detection. Among the clinical isolates, H37RV was selected for preparing a 10-fold 

dilution spike-in series in triplicate (n=24), while three clinical isolates (026, 069, and 150B) were 

used for preparing a 4-fold dilution series in triplicate (n=31). All the dilution series were used for 

determining the limit of detection (LOD) and the evaluation of non-TB interference filtering. A 

testing cohort of 130 TB-positive clinical specimens collected from Queen Mary Hospital was also 

recruited to assess the performance of non-TB interference and drug resistance detection (see 

below). 

 

All the samples were liquified and decontaminated. The genomic DNA was extracted with the 

AMPLICOR® respiratory specimen preparation kit, followed by 1x bead-based purification 

(AMPure XP beads) with an elution volume of 50 uL nuclease free water. The colony forming unit 

(CFU) of MTB in spike-in samples and TB-positive clinical specimens was estimated with IS6110 
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quantitative polymerase chain reaction (PCR) [109]. The IS6110 PCR Ct value was adjusted by 

adding 15 cycles in the first round of nested PCR. 

 

Primer design 

A total of 19 pairs of primers were designed to amplify 19 validated drug resistant genes in MTBC 

(Table 1a). For the primer set of Nanopore sequencing, universal sequences 

5’TTTCTGTTGGTGCTGATATTGC-[forward primer]3’ and 5’ACTTGCCTGTCGCTCTATCTTC-[reverse 

primer]3’ were added to the primers in order to incorporate the barcode sequences to the 

amplicons in the subsequent barcoding PCR. The 19 pairs of primers were divided into Pool 1 (10 

pairs) and Pool 2 (9 pairs) (Table 1b) based on the GC content and the coverage region of the 

amplicons. 
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Table 1a) The primer set Version 2 was designed for amplifying the 19 regions of interest in the MTB genome. The primer set, Version 

1, was listed in Supplementary Table 2. 

Sr # Gene/ 
locus  

Rv 
numbering/Lo
cus tag 

Forward Primer Forward 
Primer 
length 

Forward 
Primer 
region 

Reverse Primer Reverse 
Primer 
length 

Reverse 
Primer 
region 

Targeted 
region 

Amplicon 
length 

1 rpsA Rv1630 ACCGAGTTTGTCCA
GCGTGT 

20 1833451 - 
1833470 

GAACGCGATCAGCTG
CAAGA 

20 1834988 
- 
1835007 

1833451 - 
1835007 

1557 

2 katG 
structural 
gene 

Rv1908c TCCACTTCACCTTGC
CACTG 

20 2154044 - 
2154063 

GCAGATGGGGCTGAT
CTACG 

20 2155424 
- 
2155443 

2154044 - 
2155443 

1400 

3 rpoB Rv0667 CAAAGTTCCTCGAAT
AACTCCGTACCCG 

28 759861 - 
759888 

GGCGGTCAGGTACAC
GATCT 

20 761368 - 
761387 

759861 - 
761387 

1527 

4 MabA-
inhA 
promoter, 
inhA 
structural 

Rv1483(mabA)
, Rv1484 
(inhA) 

CGTACACGTCTTTAT
GTAGCGCGACATA 

28 1673200 - 
1673227 

CATCGAAGCATACGA
ATACGCCGAGATG 

28 1674564 
- 
1674591 

1673200 - 
1674591 

1392 

5 rrs Rvnr01 CGTGGCCGTTTGTTT
TGTCAGGATATTT 

28 1471777 – 
1471804 

GGCTCTCGCCCACTA
CAGAC 

20 1473438 
- 
1473457 

1471777 - 
1473457 

1681 

6 ubiA Rv3806c CATACAGCAGATAC
GTCCACGCTGTC 

26 4268632 - 
4268657 

GACACGCCAAGTCAA
CTGAGCTTTCC 

26 4270060 
- 
4270085 

4268632 - 
4270085 

1254 

7 rrl Rvnr02 CCCGTAACTTCGGG
AGAAGG 

20 1475576 - 
1475595 

TTTGTATGTTCGGCGG
TGTCCTACTTTT 

28 1476992 
- 
1477019 

1475576 - 
1477019 

1444 

8 gyrB Rv0005 CTGACCATCAACCT
GACCGACGAGAG 

26 5849-5874 TCGTGTCTGTCATCTA
TTCCTCGTTTGC 

28 7287 - 
7314 

5849 - 
7314 

1466 

9 embB Rv3795 CGACCACGCTGAAA
CTGCT 

19 4247154 - 
4247172 

AAAGATTGTGCTGACT
GTGATCCCGTC 

27 4248503 
- 
4248529 

4247154 - 
4248529 

1376 



   

 

 42  

 

10 tlyA Rv1694 CAATGACCATCGATC
CTGACCAGATCC 

27 1917754 - 
1917780 

CCCTTTTCCAGACTGA
CTTCGTTGAGC 

27 1919216 
- 
1919242 

1917754 - 
1919242 

1489 

11 FurA-
KatG 
intergenic 

Rv1909c 
(FurA) 

CATTTCGTCGGGGT
GTTCGTCCATAC 

26 2155129 - 
2155154 

GGGAGTCATATTGTCT
AGTGTGTCCTCT 

28 2156584 
- 
2156611 

2155129 - 
2156611 

1483 

12 whiB7 Rv3197A CGAGAAGAACTACG
ACCTCCTGTTGC 

26 3568004- 
3568029 

CGGATCTGTAACAAC
GAGCTGAACACTT 

28 3569375 
- 
3569402 

3568004 - 
3569402 

1399 

13 pncA Rv2043c GTAGCTCATCCTCG
CCTAAAGTCATTGT 

28 2288057 - 
2288084 

GTTGTATCAACGGTG
GTAATGCACTTCG 

28 2289590 
- 
2289617 

2288057 - 
2289617 

1561 

14 gyrA Rv0006 GCAAACGAGGAATA
GATGACAGACACGA 

28 7287 - 7314 CTGGGTGGTGAAGAA
CAGGATCAAATCG 

28 8993 - 
9020 

8993 - 
9020 

1734 

15 rplC Rv0701 GCTACCGACTGAGA
AGAACGTGTATTGC 

28 800609 - 
800636 

GATGACCACCAGCAC
CTGTTTACGTTCT 

28 801926 - 
801953 

800609 - 
801953 

1345 

16 Rv0678 Rv0678 ATTTCACAAAGCAGT
AGGTCAGGGCATC 

28 778485 - 
778512 

GAGAATCCACAACCG
CTTCGATCCAGAT 

28 779814 - 
779841 

778485 - 
779841 

1357 

17 eis 
promoter 

Rv2416c TCCTGTGGATGGGT
GATGATGCTGATTC 

28 2714515 - 
2714542 

GGAAAACTTGTTCTGG
TCCAACGGG 

25 2715726 
- 
2715750 

2714515 - 
2715750 

1236 

18 rpsL Rv0682 GGTCGCTAGAGTCA
TTAGTTGGCCCTAA 

28 780567 - 
780594 

AGTTAGCTGTCTATCA
CTGTCGGTTTGC 

28 782430 - 
782457 

780567 - 
782457 

1891 

19 atpE Rv1305 GAACCGGTCGCAAC
TTATTCTTCCAATG 

28 1460180 - 
1460207 

TCGCCACACCAGATA
AACGATGACC 

25 1461878 
- 
1461902 

1460180 - 
1461902 

1722 
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 Table 1b) The assignment of primers to Pool 1 and Pool 2 for multiplex PCR. 

 

Pool 2 Volume (uL) 1000 
   

Primer Genomic location ('000) Stock molarity (uM) Volume required for primer mix (for each primer) Molarity in primer mix (uM) H2O volume (uL) 

whiB7 3568 100 5 0.5 910 

ubiA 4268 100 5 0.5  

rrl 1475 100 5 0.5  

gyrB 5 100 5 0.5  

tlyA 1917 100 5 0.5  

FurA 2155 100 5 0.5  

rplC 800 100 5 0.5  

Rv0678 778 100 5 0.5  

embB 4247 100 5 0.5  

Pool 1 Volume (uL) 1000    

Primer Genomic location ('000) Stock molarity (uM) Volume required for primer mix (for each primer) Molarity in primer mix (uM) H2O volume (uL) 

gyrA 7 100 5 0.5 900 

katG 2154 100 5 0.5  

pncA 2288 100 5 0.5  

rpsL 781 100 5 0.5  

rrs 1472 100 5 0.5  

rpsA 1833 100 5 0.5  

rpoB 760 100 5 0.5  

MabA 1673 100 5 0.5  

eis 2714 100 5 0.5  

atpE 1461 100 5 0.5  
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Multiplex PCR 

Each sample was amplified with pool 1 and pool 2 primers separately. The reaction mixture was 

prepared by mixing 5ul of DNA, 12.5ul of Platinum™ Multiplex PCR Master Mix (Thermo Fisher 

Scientific, Waltham, MA, USA), 0.5ul of GC enhancer for pool 1 primers or 3ul of GC enhancer for 

pool 2 primers, 3.75ul of pool 1 or pool 2 primers (0.5uM) and each reaction was filled up to 25ul 

with nuclease-free water. The PCR conditions were 95°C for 4min, 40 cycles of 95°C for 30sec, 

63°C for 1.5min and 72°C for 2min, final extension at 72°C for 10min and hold at 4°C. The PCR 

products were purified with 0.4x AMPure XP beads and eluted in 20ul nuclease-free water. The 

DNA were quantified by Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) 

using Qubit™ 1X dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). 

 

Nanopore sequencing 

The library was prepared by following the official protocols of the PCR barcoding (96) amplicons 

kit (SQK-LSK109 and EXP-PBC096) from Oxford Nanopore Technologies (ONT). In brief, 0.5 nM 

amplicon from multiplex PCR of each sample was taken to barcoding PCR, followed by 0.65x 

AMPure XP bead-based purification. A batch of 12 or 24 samples was pooled for end-repairing 

and adapter ligation. A final 50-fmole library was sequenced for 8 or 16 hours (respectively for 

12 and 24 samples), using the flow cell FLO-MIN106 R9.4.1 and the sequencer MinION. High 

accuracy (HAC) basecalling mode was selected on the MinKNOW software.  
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Next generation sequencing (NGS) 

Library preparation was performed using the NEBNext® Ultra™ II FS DNA Library Prep Kit for 

Illumina and NEBNext® Multiplex Oligos for Illumina® (96 Unique Dual Index Primer Pairs) (NEB, 

Ipswich, Massachusetts, USA) according to the manufacturer’s protocol. Briefly, the DNA input 

for each sample (from multiplex PCR) was 100 ng. The DNA was enzymatically fragmented for 15 

minutes, followed by the ligation with the adapter (1.5 uM). Then, a double bead-based size 

selection targeting the library size at 320-470 bp was performed. The libraries were enzymatically 

indexed and amplified in a 5-cycle PCR. The quantity of the libraries was estimated by real-time 

PCR using LightCycler® 480 Instrument II (Roche, Basel, Switzerland) and QIAseq™ Library Quant 

Assay Kit (Qiagen, Hilden, Germany). The quality of libraries was measured by 2100 Bioanalyzer 

system (Agilent, Santa Clara, CA, USA) using a High Sensitivity DNA Kit (Agilent, Santa Clara, CA, 

USA). The libraries were normalized and pooled into 4 nM and were subsequently diluted and 

denatured. Finally, a 10 pM pooled library spiked with 10% of 10pM PhiX Control Kit v3 (Illumina, 

San Diego, California, USA) was sequenced on the MiSeq system (Illumina, San Diego, California, 

USA) in the setting of 2 X 250 cycles, using MiSeq Reagent Nano Kit v2 (500-cycles) (Illumina, San 

Diego, California, USA). 

 

Bioinformatics 

Figure 1 summarizes the details of bioinformatic analysis, known as the decoy strategy. Briefly, 

NGS data preprocessing was done using the amplicon filtering module in MegaPath (source code 

available at https://github.com/HKU-BAL/MegaPath) [110]. Using the module, adaptors in 

https://github.com/HKU-BAL/MegaPath
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sequencing reads were trimmed using BBMap (v36.28)[111]. Sequencing reads shorter than 150 

bp or with an average base quality score lower than 10 were filtered. As a step to remove short-

read alignment ambiguities, filtered sequencing reads were aligned to the regions of interest in 

the Mycobacterium tuberculosis H37Rv (NC_000962.3) reference genome using BWA-MEM 

(version 0.7.17-r1188)[112]. The aligned reads were assembled into contigs using MEGAHIT 

(version 1.2.9) [113] with the option --presets meta-sensitive. In the decoy filter, sequencing 

reads that belonged to contigs that were aligned to another region or non-amplification regions 

were removed. In addition, reads exactly matched to the decoy database containing the 

expanded Human Oral Microbiome Database (eHOMD) (version 9.03) or the human (GRCh38) 

reference genome were removed. The remaining reads were mapped to H37Rv again. In the 

taxon filter, reads partially aligned to the non-M. tuberculosis sequences in the NCBI RefSeq 

database were removed. Also, alignments with low mapping quality (MAPQ) < 10 or alignment 

score (AS) < 150 were filtered out. Genome Analysis Toolkit (GATK, version 4.1.9.0) [114] was 

used for variant calling, with two options enabled, including --read-filter PrimaryLineReadFilter 

and --max-reads-per-alignment-start 0. Local realignment was done at the called positions to 

achieve a precise variant allele frequency (VAF) estimation. Variants with coverage < 20-fold and 

AF < 0.2 were flagged as less confident.  

  

ONT data preprocessing was done using the amplicon filtering module in MegaPath-Nano (source 

code available at https://github.com/HKU-BAL/MegaPath-Nano). MegaPath-Nano is an 

extension of MegaPath for ONT long-read [115]. Using the module, like NGS, the adapter was 

trimmed and demultiplexed using Porechop (version 0.2.4, source code available at 

https://github.com/HKU-BAL/MegaPath-Nano
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https://github.com/rrwick/Porechop ) with options --barcode_threshold 85, --

require_two_barcodes, and --discard_middle. Trimmed sequencing reads shorter than 300 bp or 

an average base quality score below 7 were filtered out. The remaining reads were aligned to the 

regions of interest in the Mycobacterium tuberculosis H37Rv (NC_000962.3) reference genome 

with minimap2 (v2.17-r941)[116] for long-read alignment. In the decoy filter, reads aligned to 

eHOMD decoy database or human reference with AS ≥ 1000 or AS-to-read-length-ratio ≥ 1.5 were 

removed. Like in NGS, the remaining reads that were partially aligned to non-M. tuberculosis 

sequences from the NCBI RefSeq database were also removed in the taxon filter. Clair-ensemble 

(version 1.1, source code available at https://github.com/HKU-BAL/ECNano )[117] was used for 

variant calling. In each position to be called, Clair-ensemble was set to ignore the low-quality (i.e., 

base quality score < 7) bases. Like the post-processing of GATK output, local realignment was 

likewise performed at the called positions. Variants with coverage < 20-fold and VAF < 0.2 were 

flagged as less confident. 

  

https://github.com/rrwick/Porechop
https://github.com/HKU-BAL/ECNano
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Fig. 1) The introduction of the decoy strategy. 
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Evaluation of index assignment in nanopore sequencing and NGS 

For ONT, the performance of index assignment with default demultiplexing setting in MinKNOW 

(index score = 60) and the stringent setting (index score = 85 or barcode threshold = 0.85, two 

barcodes at both ends, and discard middle barcode) in Porechop (v0.2.4) and MinKNOW were 

compared. Non-template control (NTC) samples (N=13) with expected zero mapped reads were 

included in sequencing batches. The percentage of mapped reads and the average depth of 

coverage per covered position for NTC obtained from different demultiplexing methods were 

calculated. 

 

For NGS, libraries of twelve clinical specimens were prepared with NEBNext® Multiplex Oligos for 

Illumina® (Dual Index Primer Set 1) (includes 8 i5 index primers and 12 i7 index primers) and 

NEBNext® Multiplex Oligos for Illumina® (96 Unique Dual Index Primer Pairs) (UDI). Libraries with 

the same adapter set were sequenced in one batch, meaning that libraries with multiplex oligos 

and UDI were separately sequenced in two runs. The empty positions with expected zero 

sequencing reads and mapped reads were used for the evaluation. The percentage of the 

mapped reads and the average depth of coverage per covered position for empty positions were 

calculated. 

 

Limit of detection (LOD) 

Spike-in samples with known adjusted IS6110 PCR Ct values (n = 55) were defined as a validation 

set, which was taken to logistic regression analysis with Prism software. The log average DP in an 
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individual target region larger than or equal to 1.7 (equivalent to the average DP 50) was set as 

1, or it was set as 0. A linear equation was constructed for each target region with the log odds 

against the adjusted IS6110 Ct values. Then the adjusted IS6110 Ct values having the probability 

of reaching the log average DP 50 in that target region were calculated. The LOD of target region 

was defined as the adjusted IS6110 PCR Ct value required to have the 0.9 probability of reaching 

the log average DP 1.7 in that region. The LOD of the first line drug was the lowest LOD (in 

adjusted IS6110 Ct value) among the target regions katG, furA-KatG intergenic regions, mabA-

inhA promoter, rpoB, ubiA, embB, rpsA, and pncA. The LOD of the overall panel was the lowest 

LOD among all 19 target regions. 

 

The performance of drug resistance detection 

The variants found in ONT and NGS were annotated as resistant or susceptible by matching the 

variants to the database containing validated AMR associated genes and mutations, including the 

deduced ones (Supplementary Table 3). The variant allele frequency (VAF) of 0.2 and DP of 20 

were the cutoff values for classifying a genotypic result as valid, a genotypic result with its values 

below either of these cutoff values was classified as uncertain. Also, with the high base accuracy 

of NGS, the agreement between ONT and NGS was used to evaluate the variant calling 

performance in ONT. 
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3-2. Targeted sequencing workflow for direct ARV resistance detection in HIV in 

plasma samples 

 

Sample collection 

Seventy-seven plasma samples were collected from hospital in Hong Kong between Year 2002 – 

Year 2014 (Supplementary Table 4). Seventy samples were male, and seven samples were female. 

The age ranged from 18 to 68 (average was 37). On the other hand, HIV plasmid pHIV-1_pr-V82A 

was acquired from the European Virus Archive - Global (EVAG). It was used as a control for 

gradient studies as well as in-silico simulation datasets (please see below). The reference genome 

sequence was available on EVAG. 

 

RNA extraction, long region amplification and library preparation 

Around 1.5 mL of frozen plasma was thawed on ice for 2 hours before being resuspended and 

centrifuged at 4°C for 1.5 hours at 14,000 rpm. The supernatant was discarded without disturbing 

the pellet.  

Viral RNA was extracted from plasma samples by following the official protocols of QIAamp 

Viral RNA Kits. Host genomic DNA in the total nucleic acid sample (8 uL) was removed with 

ezDNase™. The reaction sample was taken to reverse transcription with LunaScript RT SuperMix 

(5X). Target genomic region (NC_001802.1: 1413 – 7363, amplicon length: 5951 base pairs) was 
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amplified with the and cycling condition shown in Table 2. The amplicon was purified with 0.5 X 

AMPure XP beads (for nanopore sequencing) and quantified with Qubit® dsDNA HS Assay Kits.  
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Table 2) The PCR reagents and the cycling condition used for amplifying the viral genome region 

of interest for downstream sequencing. 

Primer Sequence 

Forward primer GCAAGRGTTTTGGCBGARGCAATGAG 

Reverse primer GCCCATAGTGCTTCCTGCTGCTCCCAAGAACC 

 

Component Volume (uL) Final concentration  

2X Platinum SuperFi II PCR 

Master Mix 

25 1X 

10 uM Forward primer 2.5 0.5 uM 

10 uM Reverse primer 2.5 0.5 uM 

Template cDNA (directly 

from reverse transcription 

reaction) 

20  

Total volume 50  

 

Cycling condition 

Cycle step Temperature Time  

Heat activation 98°C 2 minutes  

Denaturation 98°C 10 seconds 

35 cycles Annealing 60°C 10 seconds 

Extension 72°C 4 minutes 30 seconds 

Final extension 72°C 5 minutes  

Hold 4°C ∞  
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Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

The viral load (copies per uL) of each sample was quantified by following the official protocol of 

the genesig Standard Real-time PCR Detection Kit for HIV-1 and oasig lyophilised OneStep qRT-

PCR MasterMix Kit. Briefly, 5 uL of extracted viral RNA (vRNA) and an HIV positive control 

template were enzymatically converted to complementary DNA (cDNA). Next, the cDNA was 

amplified in 50 cycles, and the vRNA of each sample was quantified with the linear standard 

curve. 

 

The ONT workflow - nanopore sequencing 

The library was prepared using the following Native Barcoding Amplicons (with SQK-LSK109, EXP-

NBD104, and EXP-NBD114). Briefly, amplicons (for each sample) were enzymatically converted 

to blunt-end DNA and then ligated to barcode adapters, followed by 1 X AMPure XP bead 

purification. Barcoded amplicons were pooled and normalized to reach the recommended input 

100 - 200 femtomole. The pooled barcoded amplicons were further ligated to Adapter Mix II. 

After the post-ligation cleanup with 0.5 X AMPure XP beads, the pooled library was again 

quantified with Qubit® dsDNA HS Assay Kits. A library of approximately fifty femtomoles was 

subjected to 48-hour sequencing on GridION using the SUP basecalling mode, a minimum quality 

score for read filtering of 10, and a modified demultiplexing setting (trim_barcodes="on", 

require_barcodes_both_ends="on", detect_mid_strand_barcodes="on", min_score=85). 
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Next generation sequencing (NGS) 

One nanogram of purified amplicon was used for library preparation with the Nextera XT DNA 

Library Preparation Kit and IDT® for Illumina® DNA/RNA UD Indexes Set A, Tagmentation. The 

quality of the library was checked with High Sensitivity DNA Assay on Bioanalyzer, and  the library 

was quantified with a QIAseq Library Quant Assay Kit. The final pooled library was sequenced 

with MiSeq Reagent Kit Nano V2 on the Illumina MiSeq System (250 X 2 cycles). 

 

Bioinformatics 

Sequencing reads from ONT were used to iterate quasispecies clustering and variant calling with 

a software package, called ClusterV, which was designated for providing abundance, variant 

calling, and clinical reports down to each quasispecies, based on the input of the alignment files 

and Browser Extensible Data (BED) files. Briefly, the sequencing reads were mapped to the HIV 

reference genome NC_001802.1 with Minimap2 (2.24-r1122)[116]. Sequencing reads with large 

INDELs or that failed to cover the targeted region in binary alignment map (BAM) files were 

excluded. The variants were called with Clair-ensemble (a variant calling tool for targeting 

sequencing with high depth of coverage) and were used as markers for iterating hierarchical 

clustering processes to find the quasispecies in a sample. After the iterative clustering processes, 

consensus sequences for each quasispecies were generated based on their variants. The final 

consensus sequences for all quasispecies in a sample were submitted to HIV Drug Resistance 

Database (HIVDB) [118] via SierraPy (a package to interact with HIVDB Sierra GraphQL 

Webservice) to generate the ARV resistance report. 
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Validation of clustering performance in the ONT workflow 

To evaluate the clustering performance of ClusterV in the ONT method, one HIV plasmid and two 

clinical samples (Sample ID: KB2061 and KB2979) were employed. These samples contained only 

one quasispecies with a distinct amino acid mutation pattern (Supplementary Table 5) and a 

median VAF greater than 0.9. Briefly, an in-silico simulation dataset was prepared by mixing the 

HIV plasmid and two clinical samples (Sample ID: KB2061 and KB2979) in various combinations 

(10:10:80, 33:33:33, 80:20:0, 50:50:0, 5:95:0). Also, a gradient series in triplicate was prepared 

by mixing the amplicons of HIV plasmid amplicons and Sample ID: KB2061 in the following 

gradient ratios: 95:5, 90:10, 85:15, and 80:20. The R square was used to assess the linear 

relationship between ClusterV's predicted abundance of quasispecies and the true abundance in 

the corresponding ratios. 

 

Evaluation of the diagnostic performance of the targeted ONT sequencing workflow  

To evaluate the variant calling performance, the amino acid mutations reported in the ONT 

workflow were compared with those reported in Sanger sequencing. In some samples, genomic 

variants called from NGS were used to validate mutations found in ONT but inconsistent with 

Sanger sequencing or could not be validated without available Sanger sequencing results. 

Genomic variants reported in NGS with VAF > 0.03 were considered valid based on the 

recommendation in several studies [119-122]. The overall VAF of the amino acid mutations was 

calculated by the summation of abundance multiplied by the called VAF in all quasispecies of a 
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sample. Briefly, the amino acid mutations (including AVR resistance associated and other 

mutations) found in ONT were compared with those found in Sanger (Fig. 2). A mutation called 

ONT was considered true if it was concordant with Sanger. If it was discordant with Sanger or the 

corresponding Sanger result was not available, it would be validated with the NGS. In this case, 

the ONT mutation was considered true if it was concordant with NGS. A mutation was considered 

false if it was discordant with both Sanger and NGS. If both Sanger and NGS were not available, 

the ONT mutation was inconclusive or uncertain. On the other hand, amino acid mutations 

exclusively found in Sanger, but not in ONT, were validated with NGS. Those mutations that were 

concordant with NGS were considered true, whereas those that were discordant ones were 

considered false. A receiver operating characteristic (ROC) curve was plotted to determine the 

VAF against the percentage of true mutations found in ONT. An overall VAF threshold was then 

determined when the threshold led to the optimum true mutation rate and false mutation rate. 

Finally, the F1 score (2 X (precision X recall) / (precision + recall) was used to assess variant calling 

and diagnostic performance with and without the overall VAF threshold. The statistical analysis 

was performed with GraphPad Prism (v9.4.1) and Microsoft Excel. 
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Fig. 2) A flowchart demonstrated how amino acid mutations found in ONT workflow were 

classified as true or false mutations. 
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Limit of detection (LOD) 

The limit of detection was defined as the viral load required for having a 0.9 probability to reach 

average depth of coverage (DP). Two DP cutoffs, 50X (minimum) and 1500X (recommended), 

were used for LOD calculation. A sample with DP that passed the cutoff was set as 1 or 0. A logistic 

regression was constructed with the odds against the viral load. The AUC was used for evaluating 

the model, and the equation of this model was used for calculating the LOD. 
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4. Results 

4-1. Targeted sequencing workflow for direct AMR detection in MTB in sputum 

samples 

 

4-1-1. Assay optimization 
 

To confirm the amplicon length of each targeted genomic region in Primer Set Version 2, 

amplicon (from amplification with clinical isolate 1033B) were taken to gel electrophesis (1.5% 

agarose in 1X Tris/Borate/EDTA buffer). The band size of each genomic regions met the 

expected corresponding amplicon length (Fig. 3). 
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Fig. 3) Gel electrophoresis of PCR products of 19 targeted genomic regions. All the band size 

were within 1000 bp and 2000 bp, and their band positions met the expected corresponding 

amplicon length. 
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To avoid the overlapping region between targeted genomic regions and to minimize enzymatic 

bias to shorter amplicon length, primer sets targeting six genomic regions with longer amplicon 

length (rpsA, katG, rrs, pncA, gryA, rpsL, and atpE) was grouped in Pool 1, and the rest of 

thirteen genomic regions were grouped in Pool 2. This preliminary version was called 

V2_first_version. 

 

To evaluate the DP distribution of each targeted genomic region, the DP of individual targeted 

genomic region was compared with the average DP of 19 targeted genomic regions. Briefly, the 

percentage of DP to the average DP was calculated by dividing the DP of the individual targeted 

region by the average DP, then the absolute DP distance was obtained by subtracting the 

percentage by one, only the different was kept in absolute value to avoid any negative 

numbers. 

 

Absolute DP distance of individual targeted genomic region = | (DP of individual targeted 

genomic region / average DP of 19 targeted genomic regions) -1| 

 

Six samples of H37RV spike-in (ID1_power0 in duplicate, ID1_power1 in duplicate, and 

ID1_power2 in duplicate) were included in the evaluation the DP distribution of Primer Set 

V2_first_version. The average absolute DP difference of these six samples was high in eis 

promoter (0.5758), embB (0.8419), gyrB (0.46), katG (0.411), pncA (0.4768), rplC (0.5491), rpsA 
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(0.5482), rpsL (0.563), rrs (0.5155), and whiB7 (0.5091), while the average absolute DP 

difference was remained low in other targeted genomic regions (ranging from 0.15 to 0.3) 

(Supplementary Table 6) . This suggested enzymatic bias might happen within these 19 targeted 

genomic regions. 

 

Subsequently, a newer version of primer set V2 (that was the final version of Primer Set V2 

mentioned in Table 1a) was developed (called V2_final in this session). Three primer sets 

targeting rpoB, MabA, and eis promoter were moved from Pool 2 to Pool 1. 

 

Six spike-in samples (ID1_power0, ID1_power1, ID1_power2, 069_1, 069_2, and 069_3) were 

used for the evaluation the DP distribution (Fig. 4). The average absolute DP difference of 

V2_final was reduced to below 0.4 (except embB with absolute DP difference of 0.4025). Of 

which, the absolute DP difference of gyrA, rplC, rpsA, rpsL, and whiB7 (P value <0.05). This 

concluded that the DP distribution of V2_final was more even than V2_first_version. 
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Fig. 4) The average absolute distance between DP of individual targeted regions and average DP 

across 19 targeted regions in Primer Sets V2_first_version (N = 6) and V2_final (N=6). The error 

bar represented the standard deviation. 
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4-1-2. The potential source of index misassignment in ONT and NGS 

Index misassignment in sequencing was thought to be the source of cross-contamination 

between samples. Some reads from one index (sample) “leaked” to other indexes (samples). To 

study how index misassignment could cause cross contamination between clinical samples and 

empty samples within a sequencing batch, the number of mapped reads and the DP were 

examined in the empty samples in NGS and non-template control (NTC). 

 

NTC samples were included in thirteen separate ONT sequencing batches. In average, 1.65% of 

sequencing reads demultiplexed with the default setting in MiniKNOW (index percent identity 

60%) were mapped to the H37RV reference genome. The average DP per covered position was 

8.59.  

The average percentage of sequencing reads mapped to the reference genome was significantly 

reduced to 0.06% with a stringent demultiplexing process with Porechop (index percent identity 

85%, two-barcodes, discard-middle) (P value < 0.005), and the average DP per covered position 

was dropped from 8.59 to 2.03 (Fig 5a). 

In the sequencing run with libraries carrying the universal dual-index adapters (Supplementary 

Table 7), the number of sequencing reads in 83 empty positions both ranged from 2 to 105 (one 

empty position carried zero reads), and all these reads were successfully mapped to the H37RV 

reference genome. The average and the maximum depth of coverage per covered position were 

1.775 and 10 respectively.  
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In contrast, the sequencing run with the same twelve libraries carrying UDI generated zero reads 

in empty positions (Fig 5b). 
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Fig.5a) Comparison analysis of the mapped reads contamination in NTC samples (N=13) between 

default parameter setting in MinKNOW demultiplexing (index percent identity 60%) and an 

additional stringent demultiplexing process (index percent identity 85%, two-barcodes, discard-

middle) with Porechop. 5b) Comparison analysis of the mapped reads contamination in empty 

samples (N=84) between using universal index and UDI index. 

5a) 

5b) 
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4-1-3. Background nasal/oral flora interference 

An increasing trend of noisy variants associated with the increasing adjusted IS6110 PCR Ct values 

(lower MTB gDNA content) of the spike-in samples and clinical specimens was discovered 

(Supplementary Table 8a and 8c). We then applied a filtering strategy for the ONT and NGS 

datasets. The quality control filter removed sequencing reads with the readlength less than 700 

and/or average base quality 7 in ONT, while it removed the sequencing reads with the readlength 

less than 150 and average base quality 7 in NGS. Next, applied to both ONT and NGS, the decoy 

filter removed mapped reads aligned to the eHOMD decoy database or human reference with AS 

≥ 1000 or AS-to-read-length-ratio ≥ 1.5 in ONT and AS-to-read-length-ratio ≥ 1 in NGS. Finally, 

the sequencing reads were filtered out in taxon filter if there was partial alignment to non-MTB 

in the RefSeq database. 

For samples with high levels of MTB gDNA (adjusted IS6110 PCR Ct value 34), the mean 

percentage of mapped reads removed by the filters was consistently low (10%). The percentage 

of removed reads dramatically increased afterwards (Fig. 6a). The mean percentage of removed 

reads reached 94.49% for the negative samples.  

Similarly, the mean change in the number of variants was generally less than 2 for samples with 

the adjusted IS6110 PCR Ct value < 30, but significantly increased to tens and even hundreds 

afterwards (P value < 0.05) (Fig. 6b). 

Similarly, in NGS dataset (Supplementary Table 8b and 8d), the decoy and taxon filters removed 

low percentage of mapped reads (mean < 10%) for samples with high level of MTB gDNA (i.e. low 

PCR Ct value).  The removed reads gradually increased along with increasing ct value (Fig. 7a). 
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The mean percentage removal for the negative samples was 93.64%. Like ONT, the mean change 

in the number of variants was also less than 2 for samples with the adjusted IS6110 PCR Ct value 

< 30 and it considerably raised to tens and even hundreds afterwards (P value < 0.05) (Fig. 7b). 
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6b) 

 

Fig. 6a) The mean percentage of removed mapped reads among 55 clinical isolate/H37RV spike-in samples. 130 clinical specimens, 37 

TB-negative samples in the ONT workflow. The reads removed by quality control filter, decoy filter, taxon filter were increased 

dramatically when the IS6110 ct value >34 (i.e. samples with low MTB gDNA content). The error bars represented the corresponding 

standard deviations. 

b) The mean of number of variants before and after the filtering with the decoy and taxon filters in the ONT workflow against the 

increasing IS6110 Ct values (decreasing MTB DNA contents in the samples). The percentage of removed mapped reads and the changed 
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number of variants (usually decreasing) was positive associated with the IS6110 Ct values. The number above each bar represented 

the mean value and error bars represented the corresponding standard deviations. 
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7a) 
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7b) 

 

Fig. 7a) The mean percentage of removed mapped reads among 55 clinical isolate/H37RV spike-in samples. 130 clinical specimens, 37 

TB-negative samples in the NGS workflow.  The reads removed by filters increased gradually along with the increasing IS6110 PCR ct 

value. The error bars represented the corresponding standard deviations. 
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7b) the mean of number of variants before and after the filtering with multiple filters in the NGS workflow against the increasing 

IS6110 PCR Ct values (decreasing MTB DNA contents in the samples). Like ONT workflow, more false variants was removed by the 

filters in samples with higher IS6110 PCR ct value. The number above each bar represented the mean value and error bars represented 

the corresponding standard deviations. 
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In genomic region rrl, without any filtering, the number of noisy variants is positively associated 

with the adjusted IS6110 PCR Ct value (Fig. 8a). After filtering, sequencing reads harboring noisy 

variants were removed, with zero coverage from the adjusted IS6110 PCR Ct value of 33.2 (Fig. 

8b). Most of the filtered mapped reads in ONT workflow were removed in decoy filter (Fig. 8c, 

Supplementary Table 9a). Of which, the highest percentage of unique read count was genus 

Haemophilus (58.98%), followed by Eikenella (29.54%). In the taxon filter, the highest percentage 

of unique read count was genus Mycolicibacterium (34.08%), followed by Eikenella (28.15%) and 

Haemophilus (26.71%). Only a very low percentage 0.14% was uniquely mapped to the homo 

sapiens reference genome in taxon filter (Fig. 8d).  

Different from the ONT workflow, most of the mapped reads from NGS were filtered in the taxon 

filter (Fig. 8e, Supplementary Table 9b). Of which, the top dominating genus was 

Mycobacteroides (51.46%), the second was Gemella (8.3%). Compared with the ONT workflow, 

a higher percentage (26.06%) of filtered reads from NGS mapped to the homo sapiens reference 

genome was observed in taxon filter (Fig. 8f). In the decoy filter, the top genus was Oribacterium 

(53.73%), contributing more than half of the filtered reads. 
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8b) 
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8c) 
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8d) 
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8e) 
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8f) 

 

Fig 8a) The Integrative Genomics Viewer (IGV) showed the mapping of sequencing reads to the rrl gene of MTB reference genome 

NC_000962.3) for a spike-in samples containing serially diluted MTB gDNA. The number of random variants (colored) increased in the 

samples with lower level of MTB. Fig. 8b) The sequencing reads harboring the noisy variants at the rrl gene of the same sample were 

removed by the decoy and taxon filters.  

The distribution of the nasal/oral flora species and host genomic DNA in the unique alignments filtered in 8c) decoy filter and 8d) taxon 

filter in ONT workflow. The distribution of the nasal/oral flora species and host genomic DNA in the unique alignments filtered in 8e) 

decoy filter and 8f) taxon filter in NGS workflow. 
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4-1-4. Limit of Detection 

Linear equations for 19 different genomic regions derived from the 55 spike-in samples 

(validation set) were constructed with the analysis results summarized in Fig. 9a (for ONT), Fig. 

9b (for NGS), and Supplementary Table 10. The area under the curve (AUC) for ONT ranged from 

0.932 to 0.985, while the AUC for the NGS ranged from 0.888 to 0.979.  

By calculating the adjusted IS6110 Ct value required for having a probability of 0.9 of reaching 

the log average DP 1.7 (DP 50) in all targeted regions, the LOD (the lowest adjusted IS6110 Ct 

value) of the first-line drug panel (katG, furA-KatG intergenic regions, mabA-inhA promoter, rpoB, 

ubiA, embB, rpsA, and pncA) and the overall panel in ONT were 27.78 and 25.06, respectively. 

The LOD of the first line drug panel and the overall panel in NGS were 23.69 and 22.72 

respectively. 

The testing cohort, which contained 130 clinical specimens, was used to test the prediction 

accuracy of the logistic regression model (Supplementary Table 10c). With the probability cutoff 

of 0.9, the true positive rate in ONT ranged from 92.96% to 100% (mean 97.71%, SD 1.88%), but 

the true negative rate widely ranged between 14.46% and 50% (mean 28.62%, SD 9.72%). 

Similarly, the true positive rate in NGS ranged from 88.89% to 100% (mean 94.17%, SD 2.4%), but 

the true negative rate dropped to the range between 17.65% and 80% (mean 32.05%, SD 

13.32%). 

In the testing cohort, 57 samples were positive for both the acid-fast bacilli (AFB) smear and 

culture, whereas 73 samples were AFB negative. For those samples with positive AFB smear 

results, 94.74% (54/57) and 89.47% (51/57) were respectively first-line drug interpretable (katG, 
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furA-katG intergenic, mabA-inhA promoter, inhA structural, rpoB, ubiA, embB. rpsA, and pncA) 

and overall interpretable (all 19 target regions) in both ONT and NGS. For those samples with AFB 

smear negative results, 63.01% (46/73) and 57.73% (42/73) were first-line drug interpretable and 

overall interpretable, respectively. 



   

 

 85  

 

9a)        9b) 

 

 

 

Fig. 9a) The ROC curve for evaluating the logistic regression analysis of the validation set (55 spike-in samples) that was used for 

determining the LOD in ONT. The Beta values were listed on Supplementary Table 10a. Fig. 9b) The ROC curve for evaluating the 

logistic regression analysis of the validation set (55 spike-in samples) that was used for determining the LOD in NGS. The Beta values 

were listed on Supplementary Table 10b. The diagonal red dash line was the reference line if there was a random relationship between 

the adjusted IS6110 Ct value and the DP (depth of coverage) >=50. 
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4-1-5. The diagnostic accuracy of the drug resistance detection workflow 

For verification of performance of our new assays, nine clinical isolates, three spike-in samples 

(with clinical isolates WC026, WC069, and 150B) included in our previous study [95] were 

sequenced to reproduce the genotypic results presented in the previous study. The redesigned 

primer set for direct sequencing was comparable to the primer set in previous studies with the 

100% concordance in genotypic drug resistance results (Supplementary Table 11). Within the 

adjusted IS6110 PCR Ct value of 27.78, AMR associated mutations conferring resistance to INH, 

RIF, EMB, PZA, STR, CAP, KAN, and AMK in the WC069 spike-in series (up to dilution power 7, 

equivalent to the adjusted IS6110 Ct value of 26.11) was detected in ONT, that was consistent 

with NGS, except RIF in sample of dilution power 7 that was classified inconclusive because of 

low DP. In the WC026 spike-in series, the resistances to INH and FQ were detected in samples up 

to dilution power 5 (equivalent to the adjusted IS6110 Ct value of 27.72) in both ONT and NGS. 

No AMR associated mutation was found in samples up to dilution power 6 (equivalent to the 

adjusted IS6110 Ct value of 25.58) in the 150B spike-in series in ONT; this was consistent with 

NGS except for the eis promoter in the sample of dilution power 6 because of the low DP. As 

expected, pure susceptibility was also found in all the H37RV spike-in series (up to dilution power 

1 in ID1, ID2, and ID4 series, respectively), though eis promoter and rrs were uncertain in samples 

ID1_power0 and ID2_power0, respectively, because of low DP in either ONT or NGS 

(Supplementary Table 12). Surprisingly, uncertain genotypic results were found in several regions 

in ID1_power2 because of low DP in NGS, though its adjusted IS6110 Ct value was below the 

cutoff. In short, the agreement of genotypic results between ONT and NGS in primer versions 1 

and 2 was 100%.  
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With its well-known high base accuracy, NGS is used as a reference method for evaluating the 

genotyping performance of ONT (as summarized in Table 3 and Supplementary Table 13). In the 

testing cohort, 85 of the 130 clinical specimens fell below the cutoff for the adjusted IS6110 PCR 

Ct value of 28 (up from 27.78 in MabA-inhA promoter, inhA structural). Of these, 77 out of 85 

clinical specimens were first-line drug interpretable, and 73 out of these 77 clinical specimens 

were overall interpretable. In the first drug interpretable group, 5 clinical specimens and 72 

clinical specimens were respectively reported as resistant and susceptible in both ONT and NGS, 

and 8 clinical specimens were inconclusive because of low VAF or DP in either ONT or NGS. In the 

overall interpretable group, 11 clinical specimens and 62 clinical specimens were respectively 

reported as resistant and susceptible in both ONT and NGS, and 12 clinical specimens were 

inconclusive. On the other hand, 45 out of 130 clinical specimens were above the cutoff for the 

adjusted IS6110 Ct value of 28. Of these, 23 clinical specimens were first-line interpretable, and 

20 of these 23 clinical specimens were overall-interpretable. In the first drug interpretable group, 

3 clinical specimens and 20 clinical specimens were respectively reported as resistant and 

susceptible in both ONT and NGS, and 22 clinical specimens were inconclusive because of low 

VAF or DP in either ONT or NGS. In the overall interpretable group, 2 clinical specimens, and 18 

clinical specimens were respectively reported as resistant and susceptible in both ONT and NGS, 

and 25 clinical specimens were inconclusive. Of note, no disagreement was found in all clinical 

specimens with available genotypic results in both ONT and NGS. The agreement of genotypic 

results between ONT and NGS was 100% in this cohort. The genotypic results of all specimens 

are listed in Supplementary Tables 13a and 13b.  
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Table 3: The agreement of the genotypic results between ONT and NGS in 130 clinical 

specimens (Eighty-five samples were below adjusted IS6110 Ct value 28 and 45 samples were 

above this adjusted IS6110 Ct value). 

 Adjusted IS6110 Ct value < 28 Adjusted IS6110 Ct value > 28 

Number of samples 85 45 

First line drug interpretable 77 23 

Agreement in resistance 5 3 

Agreement in susceptible 72 20 

Total number of 
disagreement 

0 0 

Number of samples 
inconclusive 

8 22 

Overall interpretable 73 20 

Agreement in resistance 11 2 

Agreement in susceptible 62 18 

Total number of 
disagreement 

0 0 

Number of samples 
inconclusive 

12 25 
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Phenotypic drug susceptibility test (pDST) results were available for 48 out of 130 clinical samples 

(Supplementary Table 14), while the results for the remaining samples were pending because the 

drug was unavailable for testing. Also, bedaquiline was not available for pDST for all samples. 

Overall, there were 18 true resistant results (4 in INH, 3 in RIF, 2 in EMB, 1 in PZA, 6 in STR, 1 in 

KAN, and 1 in AMK), 453 true susceptible results (40 in INH, 43 in RIF, 46 in EMB, 47 in PZA, 40 in 

STR, 47 in KAN, 47 in AMK, 47 in CAP, 48 in FQ, and 48 in LZD), 7 false resistant results (3 in INH, 

1 in RIF, 2 in STR, and 1 in CAP), and 1 false susceptible result in RIF. Sample 23953 was 

inconclusive for INH as there was no coverage in the MabA-inhA promoter or inhA structural 

region (Table 4). The true positive (resistant) rate was 0.94 (18/(18+1)), while the true negative 

(susceptible) rate was 0.984 (453/(453+7)). The precision and the recall were 0.72 (18/(18+7)) 

and 0.94 (18/(18+1)) respectively, and so the F1 score was 0.815. Among the false-positive 

(resistant) results, most of the false results were found in sample IDs 19395, 19396, and 21065R. 

Mutation 1673425 (C>T) at the MabA-inhA promoter was found in all these samples. Mutation 

781687 (A>G) at rpsL was found in sample IDs 19395 and 19396. Mutation 1473246 (A>G) at rrs 

was found in sample ID 21065R. Mutation 761161 (T>C) at rpoB was found in sample ID 21729. 

Additionally, a false susceptible result for RIF was found in sample ID 21065R (Table 5). 
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Table 4) The agreement between the genotypic results and the pDST results of 48 clinical specimens. 

 Overall 

 First-line drugs Second-line drugs 

 Isoniazid Rifampicin Ethambutol Pyrazinamide Streptomycin Kanamycin Amikacin Capreomycin Fluoroquinolone Bedaquiline Linezolid 

True resistant 4 3 2 1 6 1 1 0 0 N/A 0 

True susceptible 40 43 46 47 40 47 47 47 48 N/A 48 

False resistant 3 1 0 0 2 0 0 1 0 N/A 0 

False susceptible 0 1 0 0 0 0 0 0 0 N/A 0 

N/A (VF<0.2 and/or 
DP<20) 

1 0 0 0 0 0 0 0 0 N/A 2 

N/A (pDST is not 
available) 

0 0 0 0 0 0 0 0 0 N/A 0 
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Table 5) The summary of false resistant and susceptible results. 

Drug Sample ID Agreement Gene Associated 
mutations 
(DP, VAF), amino 
acid change 

Isoniazid (INH) 19395 False resistant MabA-inhA 
promoter, inhA 
structural 

1673425 (C>T), 
(0.97, 2895), C-
15T 
 

19396 False resistant MabA-inhA 
promoter, inhA 
structural 

1673425 (C>T), 
(0.97, 2796), C-
15T 

21065R False resistant MabA-inhA 
promoter, inhA 
structural 

1673425 (C>T), C-
15T 

Rifampicin 21729 False resistant rpoB 761161 (T>C), 
(0.92, 5206), 
Leu533Pro 

21065R False susceptible rpoB  

Streptomycin 19395 False resistant rpsL 781687 (A>G), 
(0.9, 1938), 
Lys43Arg 

19396 False resistant rpsL 781687 (A>G), 
(0.9, 3068), 
Lys43Arg 

Capreomycin 21065R False resistant rrs 1473246 (A>G), 
(0.98, 3513), 
A1401G 
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4-1-6. Time to report and operation cost 

In the ONT workflow, genomic DNA extraction and post-DNA-extraction cleanup, and the 

multiplex PCR with its post-PCR cleanup, were held on the first working day. Then, the barcoding 

PCR and library preparation were held in the next morning, followed by the commencement of 

the sequencing run in the afternoon on the second working day. By assuming 24 samples per 

sequencing batch, the sequencing run lasted around 16 hours, which allowed the subsequent 

data analysis on the third working day. The AMR report was available the same working day. The 

total time to complete the clinical report for ONT was three working days.  

In the NGS workflow, like the ONT workflow, genomic DNA extraction, post-DNA-extraction 

cleanup, multiplex PCR, and post-PCR cleanup were conducted on the first working day. Library 

preparation and library quality control (QC) were done on the second working day. The library 

was sequenced with MiSeq Nano V2 (250 x 2 cycles) on the third working day. After the 28-hour 

sequencing, assuming 48 samples per sequencing batch, the subsequent analysis was performed 

in the morning of the fourth working day, and so the AMR report was available in the afternoon. 

The total time to clinical report for NGS workflow was 4 working days (Fig. 10).  

The cost per sample was USD 45.47 for ONT (assuming 24 samples per sequencing batch) and 

USD 59.72 for NGS (assuming 48 samples per sequencing batch). 
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Fig 10) The breakdown of time to report for ONT and NGS workflow for direct AMR detection in 

MTB. 
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4-2. Targeted sequencing workflow for direct ARV resistance detection in HIV in 

plasma samples 

 

4-2-1 Assay optimization 
 

To facilitate the long-range targeted genome amplification, two commercial master mix claimed 

for long-range PCR (Platinum SuperFi II PCR Master Mix, and LongAmp Taq 2X Master Mix) were 

tested with six plasma samples (KB2056, KB2061, KB2064, KB2065, KB2066, and KB2067). The 

reaction setup and the cycling condition were list in Table 6. Though the amplicon 

concentration from targeted genomic amplification with LongAmp was higher than those with 

SuperFi II, no clear band with the expected amplicon length could be observed in gel 

electrophoresis, while clear bands with the expected amplicon length could be observed in 

those reactions with SuperFi II (Fig. 11). This suggested that SuperFi II outperformed LongAmp 

in long-range amplification in this workflow. This also suggested the DNA concentration 

measurement after post-amplification cleanup did not have any reference value to true 

amplicon concentration in the sample. 
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Table 6) The reaction setup and the cycling conditions with SuperFi II PCR Master Mix and 

LongAmp Taq 2X Master Mix. 

LongAmp Taq 2X Master Mix 

Component  Volume (ul) 
Final 
concentration 

LongAmp Taq 2X Master Mix 12.5 1X 

10 uM Forward primer 1 0.4 uM  

10 uM Reverse primer 1 0.4 uM 

Template DNA 8  
Nuclease-free water 2.5  
Total volume  25  
 

Cycling condition   

Cycle Step Temp Time 

Heat denaturation 94°C 3 min 

35 cycles 

94°C 30 s 

60 30 s 

65°C 5 min 

Final extension 
65°C 10 min 

4°C hold 

 

SuperFi II PCR Master Mix 

Component Volume (uL) Final concentration  

2X Platinum SuperFi II PCR 

Master Mix 

25 1X 

10 uM Forward primer 2.5 0.5 uM 

10 uM Reverse primer 2.5 0.5 uM 

Template cDNA (directly 

from reverse transcription 

reaction) 

20  

Total volume 50  

 

  



   

 

 96  

 

Cycling condition 

Cycle step Temperature Time  

Heat activation 98°C 2 minutes  

Denaturation 98°C 10 seconds 

35 cycles Annealing 60°C 10 seconds 

Extension 72°C 4 minutes 30 seconds 

Final extension 72°C 5 minutes  

Hold 4°C ∞  
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Tube Sample ID  (ezDNase-treated) Viral load (copies/ uL) 

1 KB2056 4.97 

2 KB2061 2745.36 

3 KB2064 57.14 

4 KB2065 927.34 

5 KB2066 307.97 

6 KB2067 329.59 

7 NTC N/A 

Fig. 11) Gel electrophoresis of the amplicons after long-range targeted genomic region (~6kb). 

The key size markers on the ladder were listed on the right side of the figure. The sample IDs 

and the viral load were listed in the above table. 
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On the other hand, the effect of human DNA removal with ezDNase on amplification efficiency 

was also studied. The same six samples were taken to long-range targeted genome 

amplification with or without pretreatment with ezDNase. The band intensity for those 

amplicons with pretreatment of ezDNase was generally higher than those without 

pretreatment of ezDNase. This concluded that human DNA removal with ezDNase was 

recommended prior to targeted genome amplification (Fig. 12). 
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Fig. 12) Gel electrophoresis of PCR products of the same six samples after long-range targeted 

genome amplification with or without human gDNA removal with ezDNase. 
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4-2-2. Validation of clustering performance in the ONT workflow 

To test the clustering performance of ClusterV in the ONT workflow, samples with a unique 

mutation pattern were used for generating the in-silico simulation data set and gradient series in 

a known mixing ratio. In principle, the predicted abundance (mixing ratio) of different samples 

determined by ClusterV should be consistent with the true abundance (the corresponding mixing 

ratio) in the data set or the gradient series. The in-silico simulation dataset was prepared by 

mixing the HIV plasmid and two clinical samples (Sample ID: KB2061 and KB2979) in various 

combinations (10:10:80, 33:33:33, 80:20:0, 50:50:0, and 5:95:0). Meanwhile, a gradient series of 

HIV plasmid and KB2061 amplicons was prepared in triplicate with the following ratios: 95:5, 

90:10, 85:15, and 80:20. 

In short, only one quasispecies was found in the individual three samples (HIV plasmid, KB2061, 

and KB2979) used in the gradient series and in silico simulation data set with a median VAF > 0.9, 

confirming their qualification in evaluating the clustering performance.  

After the clustering with ClusterV, the number of identified quasispecies matched to the actual 

number of quasispecies in both gradient series and in silico simulation data set. Also, the 

predicted abundance found with ClusterV was in a linear relationship with the true abundance. 

The R squares for the HIV plasmid and KB2061 gradient series were both 0.996 (Figs. 13a and 

13b), while the R square for the in silico simulation data set was 0.9939 (Fig. 13c). In general, the 

median VAF for variants found in each quasispecies was 0.89 or above (Supplementary Table 15). 
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13a) 
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13b) 
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13c) 

 

Fig. 13) The comparison between the true abundance and the predicted abundance with ClusterV in a) HIV plasmid, b) KB2061 in 

gradient study, and c) In silico simulation data. 
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4-2-3. The variant calling and diagnostic performance of the targeting ONT sequencing workflow 

Fifty-nine samples out of 77 plasma samples were successfully sequenced with the ONT 

workflow. The Sanger sequencing results were available for all these samples, covering PR and 

RT (covering amino acid positions 1–402), and the Sanger sequencing results for INT were only 

available in 16 samples. On the other hand, NGS results were available in 43 samples but not in 

16 samples because of insufficient sample volume.  

After clustering with ClusterV, 28 out of 59 samples (47.45%) consisted of only one subtype, 10 

samples (16.94%) consisted of two subtypes (16.94%), 6 samples (10.17%) consisted of three 

subtypes, and the remaining 19 samples (25.42%) consisted of more than three subtypes. Of 

which, subtype B and CRF01_AE were dominant (accounting for 74.19%), followed by CRF07_BC 

(11.29%). Three samples, KB2974, KB2980, and KB2998, carried a mixture of subtypes 

(Supplementary Table 16a). 

A total of 4,104 amino acid mutations were found in 59 samples with ONT (Fig. 14, Supplementary 

Table 16b). Of which, 2,200 mutations (53.6%) were concordant with Sanger, 271 mutations 

(6.6%) were discordant, 1,506 (36.7%) mutations could not be validated with Sanger because of 

the unavailable Sanger sequencing results, and 127 (3.1%) mutations were classified as unknown 

amino acid mutations (Fig. 14a).  

Of the 1,506 mutations found in ONT that could not be validated with Sanger and those 271 

discordant mutations, 1153 (28%) and 222 (5%) mutations were respectively concordant and 

discordant with NGS, and 49 (1%) discordant mutations could not be validated with NGS. The 

remaining 353 mutations could not be validated without available NGS data. On the other hand, 
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135 amino acid mutations were uniquely found in Sanger but not in the ONT workflow (Fig. 14b). 

Of which, only 27 mutations were classified as true mutations because they were concordant 

with NGS, while 62 mutations were false mutations because of their discordance, and 46 

mutations could not be validated because of unavailable NGS results.  

As a result, the precision and recall of the ONT workflow were 93.79% (2200+1153)/ 

(2200+1153+222) and 99.2% (2200+1153)/ (2200+1153+27) respectively, and the F1 score was 

0.964. By correlating the log overall VAF with the number of true and false amino acid mutations, 

an ROC curve with AUC 0.903 was constructed. The overall VAF of reaching the true mutation 

rate of 0.9 of getting true amino acid mutations was 0.4, with the true mutation rate of 0.9072 

and the false mutation rate of 0.1712 (Fig. 15, Supplementary Table 17). 

Thirty AVR-resistance associated mutations were found in 22 samples (Fig. 14c, Supplementary 

Table 18a). Twenty-six out of thirty-three mutations were considered true mutations because of 

their concordance with Sanger. Six out of thirty-three mutations were discordant with Sanger, 

including four false mutations because of their discordance with NGS, one true mutation with 

their concordance with NGS, and one true mutation with no corresponding Sanger results but 

concordance with NGS. One mutation was uncertain because of unavailable NGS results. On the 

other hand, 3 AVR resistance associated mutations in mixed alleles were uniquely found in Sanger 

(Supplementary Table 18b). One was considered a true mutation because it was concordant with 

NGS, while the other two were false mutations due to their discordance with NGS. 

As a result, the precision and the recall of the diagnostic performance were respectively 0.875 

(28/32) and 0.965 (28/(28+1)), and so the F1 score was 0.918. With the cutoff of 0.4 from the 



   

 

 106  

 

ROC analysis, a total of seven mutations (three were respectively concordant and discordant with 

Sanger, and one could not be validated with Sanger) with an overall VAF below the cutoff were 

excluded (Fig. 14d). The precision and the recall of the diagnostic performance were respectively 

0.96 (24/25) and 0.96 (24/(24+1)), and so the F1 score increased to 0.96.  
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Fig. 14a) The distribution of the amino acid mutations (n=4,104) found in ONT with the concordance or discordance with Sanger or 

NGS. 14b) The agreement of unique amino acid mutations (n=135) detected in Sanger with the NGS. 14c) The distribution of AVR 

ssociated amino acid mutations (n=33) found in ONT with the concordance or discordance with Sanger or NGS before the application 

of the overall VAF cutoff 0.4, and 14d) after cutoff.   
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Fig. 15) The ROC analysis of variant calling performance in the ONT workflow. Each data point 

on the curve displayed sensitivity and false positive rate. The overall VAF cutoff 0.4 was 

highlighted in red. 
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4-2-4. Detection of the mutations in the quasispecies 

With the aid of hierarchical clustering in ONT workflow, different ARV resistance-associated 

mutations profiles were found between quasispecies in a sample. For example, in the sample 

KB0270, mutation G73S in the PR gene conferring potential low to low PI resistance (ATV, FPV, 

IDV, SQV) and mutations M41L, S68G, and M184V in the RT gene conferring potentially low to 

high NRTI resistance (ABC, DDI, NFV, FTC, and LMV) were commonly shared with the quasispecies 

KB2070_1 and KB0270_2 with a total abundance of 100%, but mutation T215F was found only in 

the quasispecies KB0270_2 (abundance of 32.27%), conferring additional low-intermediate 

resistance levels of NRTI (ABC, AZT, D4T, DDI, and TDF) (Fig. 16a - c).  

In the other example sample KB2987, mutation V106I in RT conferring potentially low NNRTI 

resistance (DOR, ETR, NVP, and NPV) was found in four out of seven quasispecies (KB2987_2, 

KB2987_3, KB2987_4, KB2987_5, and KB2987_7) with the total abundance 63.2%, while a low 

overall AF (0.063) mutation G190E conferring intermediate-high resistance of DOR, EFV, NVP, 

RPV, and ETR was exclusively found in KB2987_6 (abundance 0.067) that was confirmed with NGS 

(Fig. 16 d-f). 
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Fig. 16) Illustration of different mutation patterns of HIV quasispecies in samples KB0270 and KB2987. 

16a) The example in KB0270 with its different abundance, 16b) resistance patterns, and 16c) resistance 

levels in different quasispecies.  16d) The example in KB2987 with its different abundance, 16e) 

resistance patterns, and 16f) resistance levels found in different quasispecies.  
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4-2-5. Limit of detection 

Two linear equations from logistic regression models (Fig. 17) were constructed for two DP 

cutoffs, the minimum 50 and the suggested 1500, for bioinformatic analysis. The meaning of 

DP>=50 was depth of coverage enough for variant calling in high confidence for one quasispecies 

with using Clair-ensemble embedded in ClusterV. Higher DP allowed the detection of low 

abundance quasispecies with higher confidence, hence DP >= 1500 was recommended to detect 

quasispecies in the abundance as low as 0.03. The AUCs for the cutoffs of DP 50 and DP 1500 

were 0.853 and 0.8549, respectively. By calculating the viral load (copies/uL) required for having 

a probability of 0.9 of reaching DP 50 and DP 1500, the LOD for DP 50 was 303.9 copies/uL and 

1930.6 copies/uL, respectively. 
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Fig. 17) The ROC curve for evaluating the logistic regression analysis of 77 plasma samples that 

was used for determining the LOD in HIV ONT workflow. The Beta and the AUC values were listed 

on Supplementary Table 19a. The diagonal red dash line was the reference line if there was a 

random relationship between the adjusted IS6110 Ct value and the DP (depth of coverage) 

cutoffs. 
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4-2-6. Time to report and operation cost 

For a batch of 12 plasma samples, the first working day was assigned for viral RNA extraction (5 

hours) and RT-PCR (3.5 hours). On the second working day, the amplicons were purified and were 

then taken to library preparation (3 hours), followed by the commencement of nanopore 

sequencing. After the 48-hour sequencing, it should typically require 2 hours (based on a 

computer with two 12-core Intel Xeon Silver 4116 processors with 126 GB of RAM running in 10 

threads) for downstream bioinformatic analysis and clinical report generation. In short, the time 

to report was four working days (Fig. 18). It would take around 8 hours for a computer with 32 

GB of RAM and a CPU of Intel(R) Xeon(R) E5-2678 v3 or equivalent, with a clock speed of 2.5 GHz 

or equivalent. The cost per sample was USD 120.93 (assuming 12 samples per sequencing batch) 

and USD 88.02 (assuming 24 samples per sequencing batch) (Supplementary Table 20). 
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Fig 18) The breakdown of time to report in ONT workflow for direct AVR resistance detection in HIV. 
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5. Discussion 

5-1. Target sequencing workflow for direct AMR detection in MTB in sputum 

samples 

A targeted sequencing panel and a bioinformatic analysis workflow were developed, covering 19 

common antibiotic resistance genes associated with well-known first-line, second-line, and anti-

XDR-TB antibiotics. Compared with our previously published workflow for clinical isolates, this 

workflow was developed for direct specimen sequencing, which further reduced the time to 

report from two weeks to around four workdays by skipping the 14-day MTB culture (Fig. 10). 

The comprehensive drug resistance information and the saved time would benefit the patient in 

the choice of antibiotics during medical prescription, especially for those carrying drug-resistant 

MTB or intolerant to certain antibiotics in complicated cases. It also helps in disease control by 

minimizing the spread of the disease. Another advantage was the storage space savings from 

sequencing data. The sequencing data size of amplicon sequencing should be much lower than 

WGS, assuming the same average DP of covered target regions was reached. 

 

Though the advantages of a direct sequencing workflow can be seen, a few challenges should be 

taken into account for the transition from the working principle to on-site clinical diagnosis. In 

this study, index misassignment was reported in both nanopore sequencing and NGS workflows. 

The major reasons were the index hopping with dual-index adapters in NGS, which was consistent 

with other studies [123], and the lenient default demultiplexing setting in MinKNOW in ONT. 

Index misalignment may cause cross contamination between the patient samples, especially 
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when a sample with a low Ct value (high MTB gDNA content) masks another sample with a high 

Ct value (low MTB gDNA content). The ‘leaked’ sequencing reads can significantly contribute to 

the depth of coverage and can lead to false variant call. To improve the situation, the use of 

unique dual index adapters (UDI) in NGS and the stringent settings in Porechop and MinKNOW 

for demultiplexing in ONT were recommended. 

 

Another challenge is the possible nasal or oral interference with the genotypic results. Unlike 

pure clinical isolates, clinical specimens are a mixture of human cells, nasal or oral flora, and the 

MTB itself. In this study, an increasing number of noisy variants was associated with an increasing 

adjusted IS6110 PCR Ct value. The power of the decoy strategy successfully removed a portion of 

reads and several variants that were positively associated with the adjusted IS6110 PCR Ct value. 

The change in the number of variants was not necessarily negative, and it could be positive in 

some cases, meaning that some variants were recovered after filtering. The removed mapped 

reads in the decoy filter and the taxon filter revealed a diversity of bacterial species in normal 

oral and nasal flora that shared similar genomic sequences with MTB. This confirmed the 

presence of nasal or oral interference with the genotypic results. The risk of interference was the 

masking of the original MTB genotypic results with the variants from the nasal and oral flora, 

especially in the case of a genomic location with low or zero DP from MTB read sequences. So 

far, none of the random variants in our database hit the AMR resistance mutations in our drug 

resistance database, but the hitting chance is a concern. 
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To overcome this challenge, the decoy strategy consisting of multiple filters was introduced. 

Other than traditional filtering on readlength, base quality score, mapping score, DP, and more, 

reads mapped to MTB H37RV were additionally mapped to the reference genome in human 

(GRCh38) and eHOMD in the decoy filter, followed by the RefSeq in the taxon filter. These filters 

significantly removed the reads of interference in samples with a high adjusted IS6110 Ct value 

and even in negative samples. Of note, there were still mapped reads to the H37RV after filtering 

in negative samples. Usually, these reads mapped to a few target regions should be screened out 

with our LOD setting. Of course, there was still room for improvement, such as the regular 

updating of the databases included in the filtering process. Theoretically, the principle of the 

decoy strategy can be applied to direct sequencing of the patient samples for drug resistance 

detection in other infectious diseases. 

 

The DP of a genomic position was an important parameter for valid variant calling. However, the 

DP may vary because of the variation of the TB-gDNA content in neighboring samples in the same 

sequencing batch and the rough estimation of actual library concentration. In this data set, the 

average DP of the target regions within an adjusted IS6110 PCR Ct value interval (for example, 23 

- 25) mostly did not follow the normal distribution. To determine the LOD of this workflow, a 

binary standard was set based on a sample with known adjusted IS6110 PCR Ct values that 

reached the log average DP cutoff in all targeted regions. Also, by considering the DP variance 

within a region, a conservative higher log average DP cutoff of 1.7 (equivalent to 50) was set. The 

LODs of the first-line drug panel and the overall panel in ONT were 27.78 and 25.06, respectively. 



   

 

 118  

 

The LODs of the first-line drug panel and the overall panel in NGS were 23.69 and 22.72, 

respectively. 

 

Comparing the primers in our previous studies, the modified primer set reduced the enzyme bias, 

favoring the amplification of shorter target regions. The primer set specifically amplified target 

regions in both clinical isolates and spike-in samples as well as clinical specimens within the LOD. 

The variants called out in clinical isolates in the previous studies could also be called out in the 

primer validation test for both ONT and NGS. The genotypic results of ONT were completely 

concordant with NGS in all these sample types. This demonstrated that the performance of this 

primer set in specific amplification and variant calling was robust in clinical isolates and clinical 

specimens. 

 

Notably, the agreement between ONT and NGS was 100% in the testing cohort (especially for the 

samples below the cutoff), meaning that the high variant calling accuracy of both sequencing 

technologies for AMR detection in clinical specimens. From the partial pDST results of 48 clinical 

samples, the F1 score was only 0.815, which was mainly due to the false-positive results from 

Sample IDs 19395, 19396, and 21065R. A well-known mutation, C-15T, at the MabA-inhA 

promoter in these three samples did not confer INH resistance, and the mutation Lys43Arg at 

rpsL in Sample IDs 19395 and 19396 did not confer STR resistance. Also, the mutation Leu533Pro 

at rpoB in Sample ID 21729 did not confer RIF resistance, and the mutation A1401G at rrs in 

Sample ID 21065R did not confer CAP resistance. On the other hand, there was a false susceptible 
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result of RIF in Sample ID 21065R. One possible reason for the false resistance results was the 

slow growth rate of the bacteria and the low-level AMR caused the false culture-negative results 

given a fixed incubation time. Also, there might be unknown mutations and mechanisms outside 

of these regions reversing the resistance or susceptibility status. Partial pDST results were 

available for further concordance studies for these samples, but the high agreement between 

the genotypic results from ONT and NGS proved the working principle for clinical specimens. With 

the success of the targeted sequencing workflow, the time to report for clinical isolates can be 

reduced from more than two weeks to a few working days. This quickly provides the clinicians 

with the AMR profiles for the decision of an anti-TB regimen for the patients and avoids 

unnecessary waste of time on inappropriate use of antibiotics. Also, it favors resource and sample 

management by reducing the accumulation of culture wares during the long incubation period. 

 

5-2. Targeted sequencing workflow for direct ARV resistance detection in HIV in 

plasma samples 

 

Benefiting from the launch of long-sequencing technology and high-fidelity polymerase for long 

cDNA amplification, the ONT workflow was able to provide a detailed ARV resistance profile in 

each quasispecies of a sample. This workflow was proven to demonstrate high agreement for 

high VAF amino acid mutations with Sanger sequencing. Also, it showed the association of the 

amino acid mutations with different quasispecies after clustering. 
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Variant calling in both Sanger sequencing and NGS can provide genotype information for a 

sample with mixed quasispecies, but it cannot provide the linkage of the amino acid mutations 

to the quasispecies. The first advantage of long sequencing and clustering is the ability to 

associate amino acid mutations with different quasispecies. In the above highlighted examples 

such as KB0270 and KB2987, and other samples such as KB1895 and KB2974 (Supplementary 

Figures S1 and S2), AVR resistance-associated mutations were exclusively found in some 

quasispecies in a sample. The KB2987 was even a special example of one quasispecies in low 

abundance carrying an intermediate-high level of resistance to five NNRTIs, while other 

quasispecies in high abundance carried potential low level NNRTI resistance at that moment. 

Another special example KB2974 contained a mixture of quasispecies in different subtypes 

(Subtype B and Subtype CRF01_AE). An accessory DRM V179D in RT was found in only Subtype B 

quasispecies (KB2974_1, KB2974_3, KB2974_4, KB2974_5, and KB2974_6), while an accessory 

DRM S68G in RT was found in only Subtype CRF01_AE quasispecies (KB2974_2 and KB2974_8). 

To the best of my knowledge, coinfection with different HIV subtypes with different resistance 

profiles is rare, but this special example suggested it could happen. However, only Subtype 

CRF01_AE was reported in Sanger sequencing. This implied the potential for progression to ARV 

resistance, possibly caused by the co-infection of two HIV strains that individually carried 

different resistance profiles. This case requires clinical attention to confirm the development of 

resistance. This also implied the long-read sequencing technology together with the hierarchical 

clustering strategy could assist to reveal the association of the detailed drug resistance profile to 

different quasispecies levels that might be missed with Sanger sequencing. 
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Theoretically, the association of ARV resistance to the quasispecies in a sample can display the 

detailed ARV resistance profile, including how the ARV resistance was distributed between 

different quasispecies (Fig. 19). In a scenario where more than one ARV is found in a sample, with 

only the VAF as the indicator for determining the ARV resistance, the detailed drug resistance 

profile cannot be identified as there may be different combinations of DRMs distributed in 

quasispecies. In the case of a quasispecies carrying all the DRMs, the regimen covering those 

ARVs will no longer suppress the viral load and cause the virological rebound. However, in the 

case of the resistance to those ARVs, which are separately distributed to different quasispecies, 

the prescription of those ARVs may still be able to suppress the HIV activities in the life cycle, and 

so the patient will not miss the opportunity to receive this regimen. As a result, the power of 

long-read sequencing and hierarchical clustering grants more genetic evidence for highly active 

antiretroviral therapy (HAART) treatment. 
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Fig. 19) The explanation of how the linkage of ARV resistance to different HIV quasispecies 

revealed the clearer ARV resistance profile for medical regimen design. With long-read 

sequencing and hierarchical clustering, detailed drug resistance profile in quasispecies could be 

revealed (left). Without hierarchical clustering, different combinations of the linkage of DRMs 

to different quasispecies were possible. 
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The second benefit of using hierarchical clustering prior to variant calling is to avoid the 

misinterpreted variants in a genetic code containing two or three mutations at mixed alleles. 

Hierarchical clustering can group the reads with the unique genomic mutation patterns before 

the final variant calls in different quasispecies. For example, in Sanger sequencing, mutation A71I 

in PR was interpreted in sample KB2019 but the genetic codes ACT (encoding theronine T) and 

GTT (encoding valine V) were interpreted in both ONT and NGS instead (Fig. 20a). The analysis in 

Sanger sequencing could not originate the genomic mutations from different sequencing reads. 

Another example of mutation V111M in RT was found in sample KB2987 (Fig. 20b), but only ATA 

(encoding isoleucine I) and GTG (encoding valine V) were reported in ONT and NGS. 
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20a) 

 

20b) 

Fig. 20a) Two examples a) KB2019 and b) KB2987) demonstrated how the amino acid mutations 

were misinterpreted in Sanger, comparing with the genetic codes found in ONT and NGS (in red 

square). 
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The third benefit of hierarchical clustering is subtype identification in mixed quasispecies. For 

example, after clustering, sample KB2974 was found to contain a mixture of subtype B and 

subtype CRF01_AE, whereas only subtype CRF01_AE was reported in Sanger. Another example, 

Sample KB2980, was a mixture of subtypes CRF07_BC and CRF01_AE, but only CRF07_BC was 

identified in Sanger. In another example, Sample KB2998, two subtypes were detected: subtype 

CRF07_BC and subtype B+C, which were respectively identified in the top and third ranks in 

Sanger. This means the consensus generated from Sanger sequencing may not truly reveal all the 

subtypes in a sample. 

 

Hierarchical clustering can be resources-intensive, to lower the computation burden, the 

clustering strategy employed in this study was based on multiple rounds of variant selection with 

near VAF peaks rather than a distance matrix between the sequences. With the recommended 

computer specifications (two 12-core Intel Xeon Silver 4116 processors with 126 GB of RAM), the 

analysis time is around 2 hours. The analysis time is around 8 hours if a lower computer 

specification (32 GB of RAM and an Intel(R) Xeon(R) CPU E5-2678 v3 or equivalent) is used. This 

design favors the setup of this workflow in clinical centers that require short analysis times and 

low computer specifications. 

 

In the study of abundance prediction in gradient series and an in-silico simulation data set, a 

direct linear relationship was demonstrated between the predicted abundance from the ONT 

workflow and the corresponding true abundance, though they were generally slightly lower than 
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the true abundance. This meant the ONT workflow was able to detect the true minor variants in 

the samples. However, from the ROC analysis of 59 plasma samples, the false positive rate was 

higher than 0.2 when the overall VAF was below 0.35, whereas the cutoff of 0.4 could balance 

the high sensitivity (~0.91) and low false positive rate (~0.17). 

 

By applying this cutoff to ARV resistance detection, the F1 score was increased from 0.918 to 

0.96, as three out of four false mutations with an overall VAF below this cutoff were filtered out. 

Of note, two mutations (K70R in RT in KB2016 and N348I in RT in KB2971) with overall VAF above 

this cutoff were discordant with Sanger. The mutation N348I in KB2971 was inconclusive as it 

could not be validated without an available NGS result, but the mutation K70R in KB2016 was 

considered false because it was discordant with NGS. The reason was still unclear, but one 

possible reason was the low viral load of these two samples (104.79 copies/ uL and 98.79 copies/ 

uL in KB2016 and KB2971, respectively), which possibly led to occasional amplification of only 

one of the quasispecies and dominated the overall VAF. On the other hand, there were true 

mutations in the marginal overall VAF (<0.4); these mutations could be reported as possibly true 

and could be followed. 

 

There were limitations in this study. Firstly, no longitudinal samples were available for the same 

patient. It was hard to trace the temporal change in the abundance of the ARV resistance 

quasispecies. Secondly, though NGS was employed to validate the clustering performance, VF 

variation might be caused by the random fragmentation of defective genomes [124]. Unlike the 
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ONT workflow, these short amplicons could not be eliminated with the filtering parameters (such 

as long read length) in the downstream bioinformatic analysis. Thirdly, the clustering 

performance was validated with the gradient series and in-silico simulation data set, but it can 

also be validated with other long-sequencing technologies such as Pacific Biosciences (PacBio). 

The limited read length in Sanger sequencing and NGS could not be the reference for comparison 

in this case. Lastly, the F1 score based on only 22 ARV-resistant samples might be vulnerable to 

any discordance; more samples would be included for re-evaluating the overall ARV resistance 

detection in the future. 
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5-3. Lessons from the target sequencing workflow development 

 

5-3-1. The adoption of sequencing technologies to drug resistance detection in clinical 

laboratories  

Unlike in basic research, the daily sample size for clinical tests can be considerably larger as the 

tests are used to serve hundreds or even thousands of patients. Time and resource management 

are always the top priorities. Practically, there are a few conditions to be considered for the 

adoption: 1) The number of samples included in a sequencing batch (usually related to the 

required coverage or DP for downstream analysis) reflects the cost per sample. The lower cost 

per sample benefits the usage of the sequencing for clinical applications. Furthermore, the high 

flexibility of the sample number in a sequencing batch reduces the time required to begin a 

sequencing run. 2) The data generated by sequencing per sample can be a burden for data 

storage. Compact data size per sample no doubt favors the long-term storage of accumulated 

numbers of samples. 3) A shorter time to report allows for quick decisions about the regimens 

and favors resource management. 4) Simple handling steps usually minimize human error in 

sequencing operations. 

 

5-3-2. Direct whole genome sequencing versus target sequencing 

Direct whole genome sequencing (WGS) is one approach for drug resistance detection of MTB in 

sputum samples. With the aid of rapid library preparation, this approach can reduce the hand-

on time. However, with the high content of human genomic DNA (>80%, with a mapping quality 
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score >=50) (Supplementary Table 21) and less than 1% for MTB gDNA, a larger sequencing 

capacity is required for providing sufficient coverage for subsequent analysis, with the drawback 

of increased reagent cost. In ONT, a new sequencing model called adaptive sequencing can help 

to retain the MTB sequencing reads once a portion of the reads has been successfully mapped to 

the reference genome and eject the non-TB ones. The time to reach sufficient coverage is still 

under evaluation, as the MTB gDNA contents may highly vary between the sputum samples. An 

alternative is human gDNA depletion during gDNA extraction. Though around 80% of human 

gDNA can be removed prior to library preparation [125], with the presence of nasal and oral flora, 

the extent of improvement in MTB sequencing yield is still unknown. Also, not all the genomic 

regions are associated with AMR. The coverage of the whole genome no doubt occupies a large 

portion of sequencing capacity, unless the genomic information is necessary for further 

exploration of underlying mechanisms or phylogenetics for public health control.  

Target enrichment with amplicon sequencing is still a good option to increase the sequencing 

data yield of interest. Other than allowing a high depth of coverage for variant calling analysis, 

the smaller data size per sample supports a larger number of samples per sequencing batch, 

which lowers the data storage and cost per sample. 

 

5-3-3. Contamination - the potential source of false results 

Avoiding contamination is always important in clinical molecular biology, as nucleic acid 

amplification and sequencing are highly sensitive to trace amounts of nucleic acid, including 

those from contamination. In good clinical practice, molecular biology reagents should be 
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prepared separately from the site where the clinical sample was inputted, and all the processes 

should be carried out in a clean environment. More contamination sources were discovered in 

this study, which should be prioritized in research and development for direct sequencing of 

clinical samples. In a clinical sample containing background nasal or oral flora, sequencing reads 

from non-MTB species may interfere with variant calling results, resulting in false susceptibility 

or resistance results. The presence of interference is related to a decrease in MTB content in the 

samples. Another source of contamination confirmed in this study is index misassignment, 

meaning that the sequencing reads of one sample leak to another sample in the same sequencing 

batch. The choice of the traditional dual index in NGS and the lenient demultiplexing setting in 

ONT can cause this problem. Interestingly, false results may be observed when a sample with 

high MTB content contaminates another sample with low MTB content.  

 

Several studies done by other research teams worldwide successfully prove the working principle 

of direct sequencing of respiratory samples for drug resistance detection. To our knowledge, they 

rarely highlight the above-mentioned potential problems. Other than exploring the sequencing 

power in this clinical application, a guideline for the research and development of the sequencing 

panel or the standard operating procedure is necessary for avoiding the contamination problem. 

 

5-3-4. The database – the key element in sequencing workflow development 

Databases containing drug resistance-associated amino acids or genomic markers are usually 

used for checking the presence of those mutations in the samples. Many well-known key markers 
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are already involved in databases for MTB and HIV. These markers are validated in basic research 

worldwide. However, phenotypic resistance involves complicated cellular pathway networks, 

and even mutations compensate for the loss of fitness caused by the key drug resistance-

associated mutations in the same gene. More proteins in MTB are being discovered that may 

interact with AMK, revealing more unknown mechanisms of resistance to this antibiotic  [126]. 

Even some key mutations do not always indicate AMR; for example, A1401G in the rrs gene does 

not always confer CAP resistance in MTB [127]. Also, the workflows were designed for detecting 

the AMR-associated genomic markers, but AMR caused by overexpression of some genes is 

undetectable. For example, overexpression of gene Rv2170 may lead to INH resistance in 

wildtype MTB by acetylation and hydrolysis of INH into isonicotinic acid and acetylhydrazine 

[128]. Slow growth status may trigger downregulation of the expression of katG [129]. This 

implies more studies are required for determining the causative relationship between the genetic 

markers and the associated AMR, especially given the discordance between the genotypic results 

and the phenotypic results. 

 

5-3-5. The room for improvement in the workflow development 

In the development of target sequencing workflow specifically for MTB, the DNA contents in the 

sputum samples were quantified with quantitative PCR targeting IS6110 insertion elements and 

AFB Smear results. As GeneExpert was also one common clinical test for AMR detection, 

expansion of the testing cohort covering the samples with GeneExpert MTB assay results may 

provide the users more references if the samples meet the LOD of this workflow. On the other 

hand, with the ongoing exploration of AMR genetic markers, regular updating of the database, 
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such as mutations in gene panD, to improve diagnostic accuracy is necessary. Finally, the 

agreement between the genotypic results and the phenotypic results could not be completely 

determined as only partial pDST results were available at this moment. Discordance with pDST 

results would help reveal more novel underlying mechanisms of resistance. 

 

In the development of target sequencing workflow for HIV, retrospective longitudinal studies can 

be used for tracking the change in ARV resistance profile with a patient group. If a new AVR 

resistance-associated mutation is detected in a sample, it may become more significant over time 

unless there is a change in the regimen. 
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6. Conclusion 

Two target sequencing workflows for direct AMR detection in MTB in sputum and direct ARV 

resistance detection in HIV in plasma were successfully developed. The 100% agreement 

between ONT and NGS in AMR detection in MTB and the high F1 score of 0.96 with a threshold 

from ROC analysis in AVR resistance detection in HIV proved the working principle of these 

workflows. Other than the high diagnostic performance, this study demonstrated how long 

sequencing could be applied for associating the amino acid mutations with different HIV 

quasispecies in a sample that could provide a clearer ARV resistance profile. The success of the 

development implies the time to report for these two workflows can be only a few working days, 

which allows for a quick decision on the appropriate regimen for the patients and favors resource 

and sample management. However, from the journey in the workflow development, other than 

the bright side of the sequencing technologies, the challenges for adoption of these technologies 

for direct detection of clinical specimens were revealed, including index misassignment and 

nasal/oral flora interference in sputum that could lead to false results, together with the 

suggestion in choosing an index set and the employment of the decoy strategy, respectively, for 

minimizing the effects of these problems. The findings in this study can be a good reference for 

future direct sequencing developments in infectious diseases. 
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Supplementary Figures 

 

S1) The example in KB1895 with its different abundance, 12b) resistance patterns, and 12c) 

resistance levels in different quasispecies.  
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S2) The example in KB2974 with its different abundance, 12b) resistance patterns, and 12c) 

resistance levels in different quasispecies.  

 

 


