Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Interactive Functions in Broadcast Video-on-Demand

by

MA Hon Shing

A dissertation submitted in partial fulfillment of the requirements
for the degree of Master of Philosophy
The Hong Kong Polytechnic University

Supervisor: Dr. To Tsun Ping Jimmy

Department of Electronic and Information Engineering
The Hong Kong Polytechnic University
Hong Kong SAR, China

This work was supported in part by
The Hong Kong Polytechnic University project G-V738

May 2002

/A Pao Yue-kong Library
@ PolyU * Hong Kong

Abstract of thesis entitled "Interactive Functions in Broadcast Video-on-Demand”
submitted by Ma Hon Shing for the degree of Master of Philosophy at The Hong Kong
Polytechnic University in May 2002.

Broadcast schemes for Video-on-Demand (VoD) service are done according to a
predetermined schedule. New clients have to wait for the beginning of the next instance of
the target video stream. A video server may not be able to deviate from its scheduled video
data retrievals when a video stream is shared by more than one client. With this difficulty,
the possibility of providing interactive VCR (video cassette recorder) functions in broadcast
VoD has not been well addressed. In this project, two broadcasting schemes are proposed
and analyzed to address the issue of VCR functions in broadcast VoD service. Each scheme
has its own merits in supporting interactive functions. The first scheme, called Skip-Forward
Broadcasting (SFB), allows clients to reposition their points-of-play in a forward direction.
The second scheme, called Short-Range Fast-Forward Broadcasting (SRFFB), is designed to
support clients to view the video at a doubled speed in the forward direction. Further, both
schemes support pause/resume interaction and ‘on the fly’ seamless channel transition without
any user-observable disruptions. However these two schemes have a large requirement on
the client-side buffers. To reduce the buffer requirement, two additional schemes are also
introduced. The third scheme, called Mirrored-Pyramid Broadcasting (MPB), supports fast-
forward with a reduced client-side /O bandwidth requirement. The fourth scheme, called
Small-Buffer Skip-Forward Broadcasting (SB-SFB), is a modified version of the Skip-

Forward Broadcasting scheme that reduces the buffer requirement by half.

Acknowledgement

I would like to express my deep gratitude to my supervisor, Dr. Jimmy To, for his persistent
supervision, invaluable advice and indispensable help throughout my MPhil study. His
kindness and patience have helped in one way or another to solve many challenging

problems. I would also like to thank Dr. Daniel Pak-Kong Lun and Dr. Chi-Kwong Li for

their advice and support.

In addition, I would like to thank my family for their long-term support. Thanks to my

friends at the HKIBBS and the E-Fever BBS: Desmond, Helen, Chester, Cky and Edwin.

Finally, a very special thanks also to my soul mates, Dr. Pang Ka Lai, Mok Ka Yee and Tse
Ka Yi. Thank you for taking time, time to stop and take an interest in me, time to listen to

my problems and help me find the solutions, and most of all, time to smile at me and show

you care. I do really enjoy our monthly gathering.

Ma Hon Shing

Table of Contents

ABSTRACT

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

CHAPTER 1: INTRODUCTION

1.1
1.2
1.3
14
1.5

Video-on-Demand

VoD System Architecture
Performance Objectives
Service Policies

Research Focus

CHAPTER 2: RELATED WORKS

2.1
2.2
2.3
24
25
2.6
2.7

CHAPTER 3: SKIP-FORWARD BROADCASTING SCHEME

3.1
32
33
34
35
36

The Phase-Constrained Allocation (PCA) Scheme
The Pyramid Broadcasting (PB) Scheme

The Fast Data Broadcasting (FDB) Scheme

The Seamless Channel Transition (SCT) Scheme
The Skyscraper Broadcasting (SB) Scheme
Zero-Delay Broadcasting Protocols

VCR Interactions

Skip-Forward Interaction
Skip-Forward Broadcasting Scheme
Performance Analysis

Seamless Channel Transition

Pause and Resume Interactions

Summary

11

Vil

Vil

O h Lh e e b

1
11
12
14
16
18
20
20

21
21
26
29
33
42
44

CHAPTER 4: SHORT-RANGE FAST-FORWARD BROADCASTING SCHEME 45

4.1
42
43
4.4
4.5
46

CHAPTER 5: MIRRORED-PYRAMID BROADCASTING SCHEME

5.1
5.2
53
54
55
5.6
5.7

CHAPTER 6: ON MINIMIZING CLIENT-SIDE BUFFER IN SFB AND SRFFB

6.1
6.2
6.3
6.4

Fast-Forward Interaction

Short-Range Fast-Forward Broadcasting Scheme
Performance Analysis

Seamless Channel Transition in SRFFB

Pause and Resume Interactions

Summary

Client-side Buffer Requirement
Mirrored-Pyramid Broadcasting Scheme
Performance Analysis in MPB

Scheme Enhancement

Performance Comparison

Fast-Forward Interaction in EnMPB

Summary

Introduction
Small-Buffer Skip-Forward Broadcasting (SB-SFB) Scheme
Interactive Operations in SB-SFB

Summary

CHAPTER 7: CONCLUSIONS

REFERENCES

PUBLICATION LIST

45
47
49
53
57
58

59
59
59
62
64
68
72
74

75
75
75
78
80

81

85

89

List of Figures

Figure 1.1.
Figure 1.2.
Figure 2.1a.
Figure 2.1b.
Figure 2.1c.
Figure 2.2,
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5a.
Figure 3.5b.
Figure 3.6a.
Figure 3.6b.
Figure 3.7.
Figure 3.8.

Figure 3.9,
Figure 3.10.
Figure 3.11.

Figure 3.12a.
Figure 3.12b.
Figure 3.13a.
Figure 3.13b.
Figure 3.14a.
Figure 3.14b.

Figure 4.1.
Figure 4.2.
Figure 4.3a.
Figure 4.3b.
Figure 4.4a.

A simple VOD architeCture.oooiiiiieninser st n e sa s s n e st b e e st s st s e e s 2
A hypothetical daily-access model for a VoD SYStem. ... e 4
Logical view of a video in PCA. ...t 11
Retrieval sequence (column-major order) in PCA. ..o 12
Viewing sequence (row-major order) in PCA. ... 12
The startup latency and the client-side buffer requirement of PB. ... 14
The broadcast schedule of FDB (3 channels). oo e s s ssar e e 15
The worst-case concurrent download in FDB. ...t insneens 15
The startup latencies of FDB and PB. ..ottt ea et 15
The segmentations Of a video in SCT (= 2). ccvrevieer s et et e et b 17
Buffer requirements of 8B (W = infinite, 12). ... 19
Startup latencies of SB (W =infinite, 12) and FDB.oooirimeimiie 19
An example of Just-In-Time Sequence (shaded blocks) of FDB (3 logical channels). 22
An example of partial Just-In-Time Sequence (shaded blocks) of FDB (3 logical channels). 22
The relation between the video segments on two consecutive logical channels of FDB............... 24
The segmentation of a video in SFB with 4 channels and 5channels 27
The segmentation of a video in SFB (4 logical channels).cccocooviicieninnininniniinin 28
The broadcast schedule of SFB (4 logical channels). ... 28
A greedy download sequence in SFB..........cooiiiiinii 28
An optimistic download sequence in SFB..........cccoooiiiinc e 28
Feasible range of skip-forward in SFB..........ooviimiiiie s 30
The download sequence for the peak client-side buffer size required in SFB

(4 logical channels). ... 31
The startup latencies of FDB (without skip-forward support) and SFB.cocooivvmvciiniiiinnncns 32
The startup latencies of FDB (with skip-forward support) and SFB. ... 32
The client-side buffer requirements of FDB and SFB........c.ccoooiiiiiiii 33
Data padding in SCT (= 2} et e s sae s ettt bamr s 34
Data padding in SCT (@ =3). o i s 34
The original broadcast schedules of the 2-, 3- and 4-channel SCT schemes [31]. 36
The shifted broadcast schedules of the 2-, 3- and 4-channel SCT schemes [31] 36
The broadcast schedufe of SFB (4 logical channels). ... 41
The broadcast schedule of SFB (35 logical channels). ..., 41
Fast-forward INEEraCIOM. ..o oo i e en e it s e ean s erns st eereennt s beereeenes 45
The segmentations of a video in the 3-channel and 4-channel of SRFFB schemes....................... 48
The segmentation of a video in SRFFB (3 logical channels). ... 49
The broadcast schedule of SRFFB (3 logical channels).ccocoiiininien 49
A greedy download sequence in SRFFB. ... 49

Figure 4.4b.

Figure 4.5.

Figure 4.6a.
Figure 4.6b.
Figure 4.7a.
Figure 4.7b.

Figure 5.1.
Figure 5.2.

Figure 5.3a.
Figure 5.3b.

Figure 5.4.

Figure 5.5a.
Figure 5.5b.

Figure 5.6.
Figure 5.7.
Figure 5.8.
Figure 5.9.

Figure 5.10.
Figure 5.11.
Figure 5.12.

Figure 6.1.
Figure 6.2,
Figure 6.3.

An optimistic download sequence in SREFB. ... 49
The download sequence for the peak client-side buffer size required in SRFFB

(3 10ZICal ChARNEIS). ..ot b e ey e s pa g e s e et e e 52
The broadcast schedule of SRFFB (3 logical channels).coovvvrvrevvoceiooeeeccee e 55
The broadcast schedule of SRFFB (4 logical channels).cooooieieierieiiiiini i 55

The broadcast schedules on channel 0 and channel 1 of the (K + 1})-channel SRFFB scheme......56
The broadcast schedule on channel 0 of the K-channel SRFFB scheme.c.oovvvevrveneierinnene . 56

The abstraction of segmentatién in Mirrored-Pyramid Broadcasting scheme. ... 60
The segmentation of a video under MPB for 3 channels, 5 channels and 7 channels. 61
The segmentation of a video in MPB (5 logical channels).ocooeemereeoiciee 61
The broadcast schedule of MPB (5 logical channels)............cc.cconmnis 61
The client-side buffer requirement of MPB...........co v e 64
The broadcast schedule of MPB with 10 video segment blocks........cccoiiiiiiiiiii, 65
The broadcast schedule of EnMPB with 10 video segment blocks. ...ovovveeveemi 65
The network bandwidth requirements in MPB and EnMPB under the s;ame segmentation. 68
The startup latencies in MPB and EnMPB.ccciiimnininsmerrimrns e e eieeecvnrens e sesrens 69
The client-side buffer requirements in MPB and EnMPB....._ ..., 69
The client-side buffer requirements in EnMPB, FDB and SFB. ... 70
The client-side I/O bandwidth requirements in ENMPB, FDB and SFBc.ccoiiiineiiiiniinnneen. 71
The startup latencies in ENMPB, FDB and SFB...........cccoinrimimimncism e 71
The broadcast schedule of EnMPB (4 logical channels).coovoeriicrineinncii e, 72
The broadcast schedule of SFB (4 logical channels)..........cooecvvvmeiiieiici e 76
The broadcast schedule of SB-SFB (5 logical channels)..........ccccoviinniinccniennnenen. 76
The startup latencies in SB-SFB and SFB. ... 78

Vi

List of Tables

Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.

Table 4.1.
Table 4.2.

Table 7.1.
Table 7.2.

The probability of forming a Just-In-Time Sequence in FDB. ... 25
The extra logical channels and bandwidth required by FDB to support skip-forward. 26
The size of broadcast dummy video data under different number of logical channels.................. 35

The holding time of to-be-returned logical channels under different step-down

channe] FansSitions.occooevcinnneeaeeee e cese e etertereeresiesieseniastar e eyt ne e e e e e ese e e nmeraean 39
Performance comparison between SRFFB and SFB. ... 52
The holding time of the to-be-returned channel under step-down channel transitions

N SRFFB and SCT ...ttt e e nr s e mems s st abs s et vt eanans 57
PerfOrmMANCE SUIMITIATY . .occe o ceceeiee o ricee e st ere e s st e sva s e e s sassesta s e bt s bs s s aasaesabeants e i ntassansr e s rartas sressrasas 83
SeleCtion SUIE.coeerie i e e e e e a e e esb et 83

List of Symbols

C()

The network bandwidth allocated to a video in Mbps.

The normal video playout rate in Mbps.

The number of logical channels altocated to a video.

The playback duration of a video tn minutes.

The total number of video segment blocks of a video.

The jth video segment block of a video.

The playback duration of a video segment block.

The jth video segment block of a video under a broadcasting scheme with K logical channels.
The video segment on logical channel .

The video segment on logical channel { of a broadcasting scheme with K logical channels.
The recurring period of ;.

The number of video segment blocks that made up the video segment on logical channel /.
The base number of logical channels allocated to a video.

A set of channel allocations with the same & setting.

The K-channel allocation scheme in a set UL

The logical channel i of the K-channel allocation scheme in a set U.

The ratio between the sizes of 5; and Sj,;.

The bandwidth of a logical channel in Mbps.

vii

Interactive Functions in Broadcast Video-on-Demand

Chapter 1: Introduction

1.1 Video-on-Demand

Video-on-Demand (VoD) is an electronic form of video rental service. It offers clients a
video library from which they can select a video programme to watch at any time. Further,
Interactive VoD allows clients to control the progress of a video using VCR (video cassette

recorder) functions such as pause, resume and fast-forward.

VoD service represents a fundamental change in the TV watching paradigm. In the
traditional broadcast TV system, many stations broadcast their programs simultaneously, and
a client can choose to tune onto any specified TV channel. As a resuit, the client is allowed
to select from a group of parallel and competing TV programmes [22]. Additionally, if a
client misses the starting time of a programme, he/she will need to wait for another
opportunity, which can be hours in the case of a cable service, or weeks in the case of
wireless broadcast TV channels. In contrast, VoD service makes all programmes available to

the customer without such restrictions.

Basically, VoD service can be classified into two quality-of-service categories, namely True
VoD and Near VoD. True VoD needs to provide instant-starting service with full VCR

functions. In Near VoD service, the instant-start and VCR requirements are normally relaxed

to achieve cost-effectiveness.

1.2 VoD System Architecture

A typical VoD system architecture consists of a local video server connected to clients via a
communication network. The client’s hardware consists of a customer interface device (also
called set-top box) with network interface, a display and a remote control unit for interacting

with the system. Figure 1.1 illustrates this architecture.

This system can be part of a hierarchical video distribution system which consists of local
and remote video servers [23]. The video servers are connected through a high-speed

network. Information is cached locally and subsequently delivered to clients. Such a video

Page 1

Interactive Functions in Broadcast Video-on-Demand

distribution scheme serves many purposes [22]. First, it increases availability and reliability
of the system. Secondly, the provider can tailor the information delivery to a user group in a
particular geographic area. Finally, it is easier to manage as each local system is responsible

for its own billing and accounting. Now let us examine in greater detail the different

components of this VoD architecture.

local distribution ‘\’4_!_,"' ﬁ 'x.%
network o 6
__________ E\ 3
_ ., — e
local video
server

high speed
backbone H

—————
-

remote video remote video

server Server

Figure 1.1. A simple VoD architecture.

1.2.1 VoD Server
VoD servers are responsible for processing clients’ requests and maintaining the data streams

used to deliver requested videos. To support a large client population and a wide variety of
videos, a VoD server has to store and manage large volumes of data. It is likely that the
videos are stored digttally in a compressed form to save storage space and to reduce transport
cost. For example, a 120-minute video, using MPEG-2 compression (average rate 4 Mbps),
requires about 3.6 GB of storage. Since video files have different popularities, they have to

be well allocated in the servers in order to reduce the storage costs [7, 19, 28, 35].

A VoD server typically uses fast harddisk drives to deliver video streams to the clients. As

the total disk bandwidth is a large multiple of the video playout rate, each disk can support a

number of simultaneous video streams. The server maintains memory buffers and refills

Page 2

Interactive Functions in Broadcast Video-on-Demand

them successively by reading ahead from the video files. Each retrieval of video data from
the disk involves disk seek and rotational overhead times [29]). On the other hand, the real-
time characteristic of video playout requires the VoD servers to observe strict deadlines. Any
deviation from the timing sequence can lead to jerky motion. Hence, it is obvious that the
time a disk takes to refill the data buffers for all the streams has to be less than the time it
takes to exhaust the buffered readahead data. This constraint limits the maximum number of

simultaneous streams that a server can accommodate.

In order to maximize the number of concurrent video streams, disk scheduling is employed in
VoD servers to minimize the service latency between video streams, as well as the latency
between successive services for a video stream [10, 30, 36]. Since the video streams are
served in rounds, buffers are needed in the client-side to avoid output device starvation. The
disk scheduling policy, therefore, will affect the client-side buffer requirement. Moreover, if
VCR interactions are to be supported by a server, the number of concurrent video streams
that can be supported will be less. For instance, in the fast-forward playout, video data are
consumed at a faster rate. The disk, therefore, needs to read more for that video stream so as

to prevent buffer underrun. As a result, the total number of video streams that can be

supported in each round is decreased.

The server has a finite amount of resources. Therefore, it has to employ admission control
algorithms to decide if a particular customer request can be satisfied given the current system
load and resources [21, 23, 33]. A simple admission control policy that allocates resources
conservatively using the worst-case assumption may give a poor resource utilization,
Alternatively, a statistical admission control, based on observation, can be employed.
Statistical admission control will try to increase the number of clients until real-time

constraints are marginally violated, at the expense of an appreciable degradation in the

quality of service [33].

1.2.2 Communication Network

Like disk bandwidths in VoD servers, the bandwidth of the communication network is also
finite. Therefore, it has to be utilized properly. Even though clients may access the VoD
system randomly, having a priori knowledge about user access patterns can lead to efficient

network bandwidth management. For example, if the traffic charactenstics indicate that a

Page 3

Interactive Functions in Broadcast Video-on-Demand

video is popular at a particular site, the system can cache the video locally to increase

availability.

The pattern of user access to the system is unlikely to be uniform over any given 24-hour
period. Typically, the load would be low to moderate duning daytime, increase gradually
through the evening, and fall off during the night. Figure 1.2 illustrates a hypothetical access
pattern to the VoD system. The loading in the system is high during evening hours, peaking
at around 8:00 PM, and is low to moderate at other times. Similar models can be built for
different geographical regions, video types and individual titles. Such models can be used to
update the video popularity tables, redistribute data, as well as reconfigure the system during

off-peak hours.

System load

4 8 12 16 20 24

Daytime

Figure 1.2. A hypothetical daily-access model for a VoD system.

1.2.3 End-user Subsystem

In the end-user subsystem, there exists a device through which the client can interact with the
VoD servers. This device 1s called customer interface device, also known as set-top box
(STB). The STB decodes incoming data and delivers a video image to the display. It also

translates the client’s interactions to give appropriate messages to the server.

Normally, a buffer inside the STB is present for smoothing of vartable network delivery
latencies. For traditional broadcasting and VoD systems with little or no buffering, a client

and its server arc tightly coupled. Any change in the consumption of video data from the

Page 4

Interactive Functions in Broadcast Video-on-Demand

client has to be immediately and continuously handied by the server. With buffering,
changes in consumption do not require instantaneous adjustment. Larger buffers allow

greater latitude in handling these adjustments, especially during VCR interactions.

An important consideration in the evaluation of a VoD system is the cost of the STB since the

device needs to be provided for each client. The cost of the STB needs to be minimized to

make it technologically cost-effective and commercially competitive.

1.3 Performance Objectives

In VoD systems, the performance objectives to be met are:

o Use the smallest server-side disk I/O and network bandwidths to support the largest
client population.
. The startup latency (the time latency between the client’s request arrived at the

system and the data is delivered to the client’s display device) should be minimized.

. VCR interactions are provided by the system.

. Use the smallest storage to provide a large variety of videos.

It is obvious that some of the objectives listed above are conflicting. For instance, to provide
VCR interactions, the server-side disk I/O and network bandwidths need to be increased in
order to serve the same chient population. To provide instant starting, the server needs to

support a large number of concurrent streams for each video such that the client can capture

one without excessive waiting time.

1.4 Service Policies

The number of clients that the server can simultaneously support depends on how the server
allocates video streams to arriving requests from the clients. The scheduling and the
allocation of video steams give rise to different service policies [34]. The VoD server can
choose to start a video stream as it is requested by a client, or at fixed régu]ar intervals.
Further, each video stream can be dedicated to a single client or shared by a pool of clients.

The combination of these criteria results in three service policies which are discussed below.

Page 5

Interactive Functions in Broadcast Video-on-Demand

The interested reader is referred to [11] for a comprehensive overview of several major

service policies.

1.4.1 Unicast
In unicast VoD systems, clients are individually allocated and dedicated a transmission

channel and a set of server resources. This service policy can be considered as True VoD
service. The client is served immediately upon request. However, clients need to wait
whenever the server reaches full capacity. Since only one client is the user of each video
stream, the implementation of VCR interactions is easy because the server does not need to

cater for the impact of these interactions on the other clients.

However, this service policy leads to an expensive-to-operate and non-scalable system. This
is because the number of simultaneous clients that can be supported is limited by the servers’
capacity. The startup latency can easily be very long once the server runs out of free
resources. Employing a larger number of storage devices can proportionally yield more
video streams only if the mapping of clients’ video choices to available storage is ideal. In
other words, a selected video may not be served by any arbitrary storage device in the system.
In reality, a client’s selection can only be retrieved from the disks where a copy of the
selected video is stored. If an imperfect mapping arises, the imbalance in load distribution

over the server’s disk drives will also prevent optimum utilization [22].

1.4.2 Broadcast
In this service policy, each video stream is shared by an unbounded number of clients [2, 13,

15-18, 24-25, 32]. For each video, a new data stream is started at regular intervals. All the
clients who request for the same video will be grouped or batched together and
simultaneously served by the same new data stream. Thus, clients will have to wait for the
broadcast of the next instance of the video stream before they can view the video. The
startup latency depends on the video’s length and the number of video streams that the VoD

server has allocated to the video. For example, if a 120-minute video is allocated ten streams,

the longest startup latency will be twelve minutes.

Although this service policy increases the number of clients that can be served
simultaneously with little server disk I/O bandwidth, the implementation of VCR interactions

is more complicated than that in the unicast policy. This is because the sharing of video

Page 6

Interactive Functions in Broadcast Video-on-Demand

streams does not allow the server to deviate from its scheduled retrieval of video data. The
video server cannot alter the data retrieval of a video stream to retrieve a video block in
response to a random access request from one client, as the video stream may be shared by
other clients at the same time. With this difficulty, the provision of interactive VCR

functions in broadcast VoD systems has not been well addressed.

Broadcasting is good for cable and microwave transmission technologies in which bandwidth

is the most precious resource. The most related works on broadcast VoD will be reviewed in

more details in Chapter 2.

'1.4.3 Multicast
This service policy addresses some of the drawbacks of the previous two polices. In

multicasting, a video stream is also shared by a pool of clients. How a VoD server starts a
video stream depends very much on the system design [5, 6, 27]. The server may start a new
video stream when the number of waiting clients or the elapsed time reaches a certain
threshold. Thus, the time skews between streams of the same video are not necessarily
regular. To further increase the utilization of video streams, three approaches, namely

Caching [4], Adaptive Piggybacking [12] and Patching [14], are proposed.

The basic idea behind Caching is to store the data already read by the previous video stream
in memory set aside as cache and feed the next stream for the same video from the cache
rather than from the disk storage. This avoids the need to initiate a new video stream from
the disk. To be effective, Caching requires abundant buffer at the server. The viability of the
method depends on the cost trade-off between memory buffer and disk bandwidth.
Moreover, these techniques often assume that spare network bandwidth is available for

delivery. This is true in multicasting but is not necessarily valid in broadcasting.

The main idea behind Adaptive Piggybacking is to alter the playout rates (slow down or
speed up) of the video streams (for the same video) in progress so that the differences in the
points-of-play of nearby video streams diminish after some time. The clients served by these
video streams can then be served by one single video stream. The advantages of this
approach are that no buffer is needed during the merging and the new clients need not wait
for a pre-fixed time for their videos to start, i.e., startup latency is shortened. However, the

variation of the playout rate can only done to an extent that it is not perceptible by the client.

Page 7

Interactive Functions in Broadcast Video-on-Demand

As a result, the number of streams that can be merged may be limited in the case of less

popular videos.

Instead of altering the video playout rate, Patching increases the buffer space at the client-
side for prefetching in order to improve the efficiency of multicasting. In Patching, a new
client prefetches the future video data from an existing video stream (called regular-channel)
while being served by a new video stream (called patching-channel). Once the point-of-play
comes to a skew point [14], service can be switched from the patching-channel to the
regular-channel which is shared by more clients (the skew is absorbed by the client-side
buffer). Thus, the patching-channels are temporary and are used during the initial catch-up

period. The effectiveness of Patching depends on the number of regular-channels and the

client-side buffer size.

In the support of VCR interactions, a multicast service policy often suffers from the same
problems as the broadcast policy in that one client’s VCR interaction affects all other clients
sharing the same data stream. The support of VCR interactions in the multicast scheme has
been studied to some extent [1, 3,20, 26]. In these studies, each VCR interaction needs to be
supported by a new video stream. Hence, some streaming capacities of the server need to be
reserved for the VCR interaction. In addition, network bandwidth, which is also needed to be
reserved for the delivery of extra streams, is too expensive in broadcasting. Thus, these

solutions in providing VCR functions cannot be applied to broadcasting.

1.5 Research Focus

As demands on different videos can hardly be uniform, some videos are more popular than
others. It has been shown that the access frequencies to various videos can be characterized
by a Zipf distribution [6]). Practically, most of the demand (80%) is for a few very popular
videos. In the previous section, we have discussed the merits of different VoD service
policies. It can be seen that clients requesting the same popular video thus are most
economicaily served by repetitive broadcasting of overlapped instances at regular intervals.

This cost-advantage has motivated us to focus on the VoD broadcasting services on popular

videos.

Page 8

Interactive Functions in Broadcast Video-on-Demand

In the design of a broadcast scheme, the following four issues need to be resolved:

1) Channel design
The collection of resources required to deliver a data stream is referred to as a logical

channel, or simply a channel [5]. The key resources include the disk I/O bandwidth in the

server and the transmission bandwidth in the network.

The channel design deals with determining the transmission rate of a logical channel and how

many logical channels are allocated to a video.

2) Segmentation design
Segmentation is the process of dividing a video file into small video segment blocks, or

blocks in brief. The size of the blocks can be uniform or different.

3) Broadcast schedule design

This determines how many blocks are put on each logical channel and how frequently these
blocks are broadcast on the channel. Each series of blocks on a logical channel is called a
video segment. In other words, each channel has only one video segment consisting of one or

more blocks. How these blocks made up the video segments on the channels is referred to as

an allocation series.

4) Playback strategy design
This refers to how a client starting and acquiring the desired video data from the logical

channels in order to enjoy continuous viewing. The way a client collects/downloads the
video data from channels is called a download sequence and the timeslot in which the first
segment of a video is downloaded is referred to as the starting timeslot. Different starting

timeslots may result in different download sequences.

Performance objectives more specific to broadcast schemes are as follows:
. The network bandwidth allocated to a video can be adjusted by the service provider
dynamically in order to adapt to demand changes.

. In the client’s set-top box, the buffer requirement is to be minimized in order to reduce

COst.

Page 9

Interactive Functions in Broadcast Video-cn-Demand

° VCR interactions are provided.
. The startup latency is to be small.
. The client-side I/O bandwidth requirement is the minimum.

Unfortunately, the VoD system has finite resources measured in terms of storage I/O and
network bandwidths. Since customers compete for the same resources, system developers
have to design efficient schemes that ensure fair allocation. At the same time, service
providers want to generate maximum profits from the offered services. We need to balance
these two conflicting requirements in order to minimize the cost and maximize the potential
revenues of the system. The objective of this research is, thus, to explore approaches that can

achieve significant improvements in one or more performance objectives.

In the next chapter, previous works on broadcast schemes will be examined and discussed.
Original work will be discussed in Chapter 3 to 6. The first scheme, called Skip-Forward
Broadcasting scheme which allows clients to reposition their points-of-play, will be
introduced and analyzed in Chapter 3. In Chapter 4, another scheme called Short-Range
Fast-Forward Broadcasting scheme will be discussed in detail. The last two schemes,
Mirrored-Pyramid Broadcasting scheme and Small-Buffer Skip-Forward Broadcasting
scheme will be presented in Chapter 5 and Chapter 6, respectively. The latter two aim to

reduce the client-side buffer requirement.

Page 10

Interactive Functions in Broadcast Video-on-Demand

Chapter 2: Related Works

In this chapter, we shall review some broadcasting schemes proposed by researchers within
our specific area of focus. All of them aim to economically broadcast popular videos to
clients. Without loss of generality, it is assumed in this chapter that the system has only one

video. The list of symbols used in this report can be found on page vii.

2.1 The Phase-Constrained Allocation (PCA) Scheme

In [24], Ozden et al. proposed a low-cost storage hierarchy which supports a large number of
client requests. A video is modeled as a two-dimensional array of video segment blocks as
shown in Figure 2.1a. Each phase (or row) represents a different point-of-play of the video

and is further viewed as consisting of n video segment blocks each of size d, where d is the

media unit retrieved from disks each time.

The video segment blocks are laid out on the disk in a column major form (Figure 2.1b), such
that retrieving video data sequentially from the disk enables blocks of different phases to be
retrieved concurrently. On the other hand, clients view the video in a row-major order
(Figure 2.1c). The transmission rate of video data from the server to clients is equal to the
normal playback rate of the video. As a result, the size of client's buffer is as small as one
block. The time taken for the disk head to read from the first column to the last column such

that a new video stream can be initiated is the startup latency.

) I I N R B 4—— Dblock

Figure 2.1a. Logical view of a video in PCA.

Page 11

Interactive Functions in Broadcast Video-on-Demand

1 2 3 n
1 / /
2 / S e
3 ! ‘)' i /'

p|’|/| I |:|

Figure 2.1b. Retrieval sequence (column-major order} in PCA.

1 2 3 n

[S—
Y

A 4

(VR o8)

o I —

Figure 2.1c. Viewing sequence (row-major order} in PCA.,

If this approach is used to broadcast a video over p channels, the startup latency can only be
improved linearly with the increase in the network bandwidth. Moreover, the support of

VCR functions in the scheme needs extra network bandwidth and thus is not suitable for

cable or microwave transmission technologies.

2.2 The Pyramid Broadcasting (PB) Scheme
Back in 1996, a new broadcasting scheme called Pyramid Broadcasting [32] for supporting
frequently requested videos was proposed. The objective of PB is to reduce the startup

latency without the need to increase the allocated network bandwidth proportionally.

The basic idea of PB is to break up the video ftle into video segments of increasing size.
Each segment, composed of one or more uniform video segment blocks, is broadcast on one
logical channel. To ensure tﬁat a video can be viewed continuously, the segments are
broadcast in a way such that the time to start downloading of video segment (i + 1) is not
later than the exhaustion time of video segment i. The startup latency of a video decreases
with the size of the first segment. By minimizing the size of the first segment, PB can

broadcast the first segment more frequently on the channel and consequently reduce the

startup latency.

Page 12

Interactive Functions in Broadcast Video-on-Demand

In PB, the network bandwidth B allocated to a video is divided into K logical channels each
having bandwidth B’ (where B’ is equal to B/K). B and B’ are in multiples of the video
playout rate. Each M-minute video is also divided into K segments. The size of segment

(i + 1) is made f times that of segment i. Finally, segment { is put on channel { and is

broadcast periodically.

On the client side, downloading begins with the first segment at the first occurrence, while
consumption also starts concurrently. For subsequent segments, the client downloads the
following segment at the earliest possible time after playback of the current segment has
begun. At any one time, the client downloads from at most two consecutive channels. Thus,
the parameter £ needs to be chosen in such a way to ensure that the playback duration of the

current video segment is longer than the worst latency in downloading the next segment.

The startup latency of a video is equal to the time between successive broadcast instances of
M*(5-1)
B*(B* -1

factor of f for each addition channel. The optimal startup latency can be obtained by using a

the first segment. The startup latency is in PB is and is roughly reduced by a

value of faround Euler’s constant (e = 2.72) [32]. In terms of client-side buffer requirement,

#*(RBK-2yk g _ '
PB requires each client to have a buffer of size [M UZBK) 1)(ﬁ I)J*b, where b is the

playout rate of the video.

Figure 2.2 shows the startup latency and the client-side buffer requirement of PB under
different number of channels allocated to a 120-minute video. It can be seen that PB can
improve the startup latency exponentially with respect to the allocated network bandwidth.

However, it requires quite a large buffer size (>65% of the video file size) at the client’s set-

top box.

Page 13

Interactive Functions in Broadcast Video-on-Demand

45 120%
40 1 —
—a—startup latency [| 100% B
AR —e— buffer °
3 =
‘é 30 + 80% _§
£ >
= 254 s
2 + 60% i
2 =
—_ =
. 2
g]5 1 o 40% -g
“ 10 g
L 20% &

0 - 0%

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Network bandwidth (in multiples of video playout rate)

Figure 2.2. The startup latency and the client-side buffer requirement of PB.

2.3 The Fast Data Broadcasting (FDB) Scheme

Although the Pyramid Broadcasting scheme improves the startup latency exponentially with
respect to the allocated network bandwidth, it requires quite a large buffer size. This buffer
requirement does not significantly change with the allocated bandwidth. In [18], Juhn
proposed a broadcasting scheme called Fast Data Broadcasting (FDB) that can reduce the

client-side buffer requirement to 50% of a video file size.

In FDB, a video is allocated X logical channels where the bandwidth of each channel is equal

to the video playout rate. A video is then equally divided into N video segment blocks, where

K-1 .
N=Y 2 =2F_]|
i=()

Next, 2' continuous blocks are allocated into channel i and are broadcast periodically as

shown in Figure 2.3. In the figure, the numbers in the slots are the block numbers. Hence,

the number of blocks on channel (i + 1) is twice of that on channel i.

Page 14

Interactive Functions in Broadcast Video-on-Demand

—
-
—

channel 0 1 1 1 1 1 1 1 1 1 1 1 1 1
channel 1 2 2]3|2:i3:i2:3:i2:3i2:3:12:i3:2
channel 2 4 :65:6:714|516|7}|4i5:i6:7:4:5:6:7

Figure 2.3. The broadcast schedule of FDB (3 channels).

w
W

Similar to PB, the client begins downloading the first segment at the first occurrence and
starts to consume it concurrently. However, the client may have to download blocks from all
the remaining logical channels concurrently to ensure a continuous viewing of the video as

illustrated in Figure 2.4 where the shaded blocks need to be downloaded.

channelO® @451 1 11 i1 11111111 1 i1 i1 i1 43171481

channell 72 |73/ 2|3 |2;{3:2:3:2:3:2:3:2:3:2:3

channel 2 -5¥k6]7|45|6|7|4i5!6:i7:4{5i6]7
Figure 2.4. The worst-case concurrent download in FDB.

In FDB, the startup latency for an M-minute video is equal to the playback duration of the
K-l
. The client-side buffer requirement is (1— Y 1)Mb (b is

first segment, which is Y
the normal playout rate of the video), or roughly 50% of a video file size. This is a saving up
of 23% relative to PB. Figure 2.5 shows the startup latency of FDB and PB. It can be seen

that FDB has a better performance in the startup latency than PB.

Startup latency (minutes)

3 4 5 6 7 8 9 10
Network bandwidth (in multiples of video playout rate)

Figure 2.5. The startup latencies of FDB and PB.

Page 15

Interactive Functions in Broadcast Video-on-Demand

2.4 The Seamless Channel Transition (SCT) Scheme

The demand of a video may be affected by factors such as time of a day, day of a week, or
special holidays. Even for popular videos, the demand within a day is not uniform. Thus, it
is desirable to dynamically adjust the number of logical channels allocated to a video on-the-
fly such that the network bandwidth can be utilized efficiently. However, the broadcasting
schemes we have reviewed all aim at reducing the startup latency given a fixed bandwidth for

a video and cannot dynamically adapt to demand changes.

In the Seamless Channel Transition (SCT) scheme proposed by Tseng [31], the number of
channels allocated to a video can be dynamically adjusted seamlessly such that during the
transition period, clients currently viewing the video will not experience any disruption.
Meanwhile, new clients can be accepted and served immediately. Tseng’s design is based on
the Fast Data Broadcasting scheme. Thus, it inherits the basic features of FDB. The main

difference is that, durnmy video data blocks need to be padded at the end of the video in SCT.

For FDB with K logical channels, the number of blocks is (2X — 1). Thus for an M-minute
video, the size of a block is in the number series [M/1, M/3, M/7, M/15, M/31, ...] as the
number of channels increases. Since the denominators in the series are mutually prime, there
is no clear relationship between the size of blocks from any two FDB with different number

of channels. To solve this problem, SCT uses a data padding method.

To carry out data padding, a base number of channels allocated to a video, denoted as ¢,
needs to be decided first. This is the minimum number of channels that needs to be allocated

to the video in the scheme. Once is chosen, the size of dummy video data for an M-minute

video can be determined by the following equation:

M

Video =
dummy
2% —1

Figure 2.6 shows some segmentations in SCT with & = 2 under different number of channels.

In SCT, the padded video is divided into 2% blocks instead of (2% — 1) blocks.

Page 16

Interactive Functions in Broadcast Video-on-Demand

Number of The new video file
channels Criginal video file Dummy video data
2 | 2 3 4
3 1 2 3 4 5 6 7 3
4 12314)5]6(7(8|9|10jL1]12{13|14]15][16

Figure 2.6. The segmentations of a video in SCT (@ =2).

After data padding, the new video file length becomes

M

M =M+
2% —1

2 %)
S22

Since SCT is built on top of FDB, the number of blocks to be broadcast also follows the
number series [1, 3, 7, 15... }' as the number of channels increases. As a result, the last block,

which is purely dummy video data, is never broadcast on any channel.

To perform channel transition, say between SCT with K and (K + 1) channels and K = ¢, the
ending times of the respective first video segments need to be aligned first. By doing so,
Tseng proved that the video data of the K-channel scheme at timeslot ¢ can be found in the

corresponding timeslots in the (K + 1)-channel scheme.

There are two types of channel transition, step-up and step-down. In step-up transitton, SCT
can finish the operation instantaneously and seamlessly. In step-down transition, the number
of logical channels is decreased after the transttion. This means that the video data that can
be broadcast in one timeslot is reduced such that some video data scheduled to be delivered in
the old broadcast schedule will not be broadcast in the new stepped-down broadcast schedule.
These 'missing’ video data may cause viewing disruption to the clients. To solve this
problem, Tseng suggests that the missing video data can be packed together and then
broadcast on the channels that are going to be returned back to the VoD system. Such to-be-
returned channels can only be released after the delivery of the missing video data is

completed. Therefore, step-down transition in SCT cannot be immediate and takes

considerable time to complete.

Page 17

Interactive Functions in Broadcast Video-on-Demand

2.5 The Skyscraper Broadcasting (SB) Scheme
Similar to the previous reviewed broadcasting schemes, the Skyscraper Broadcasting (SB)
scheme also fragments a video into segments of increasing sizes and broadcast them on

separate channels periodically at the video playout rate. The main difference between SB and

other schemes is the growth pattern of segment size.

Instead of monotonic increasing the size of every segment, except for the first segment, every
subsequent pair of consecutive segments of SB has the same size. To prevent the segments
becoming too large, SB also sets a restriction factor, denoted as W, such that the size of

segments will not exceed W blocks. The allocation series of SB follows the function below:

(1 i=1,

min(W, 2) =23,
min(W, 2*C(i- 1)+ 1) imod4 =0,
ch) = < _
min(W, C(i — 1)) imod4=1,
7 mirKW, 2*C(i- 1)+ 2) imod4 =2,
\. min(W, C(i - 1)) imod4=3

where C(i) is the number of blocks that made up the segment on channel i. The growth
pattern is (1, 2, 2, 5, 5, 12, 12, ...). From the allocation senes of SB, we can see that every
two channels form a phased-constrained allocation while the overall SB is a pyramid-based
broadcasting scheme. Therefore, it can be said that SB is a hybrid of PCA and PB. Because
of this, SB has inherited characteristics from both PCA and PB.

M

For SB with K channels, the startup latency for an M-minute video is — and
2 i min(CE),W)

the buffer requirement is (W - 1) blocks. Figure 2.7 and Figure 2.8 show, respectively, the
buffer requirement and startup latency of SB with different values of W. With unrestricted
W, the buffer requirement, in fraction of a video file size, is the smallest (20%) when the
number of channels is three. For other number of channels, the buffer requirement ranges
from 26% to 40%. From Figure 2.7, we can observe that the buffer requirement of SB with
restricted W is much smaller than that of unrestricted W. However, their performance in the

startup latency does not scale as well with respect to the allocated bandwidth. With restricted .

Page 18

Interactive Functions in Broadcast Video-on-Demand

W, more channels are needed in SB so as to provide small startup latency because the rate of
growth is constrained. Therefore, SB achieves a small buffer requirement at some trade-off
between the buffer requirement and the startup latency/the network bandwidth. Figure 2.8
also compares the performancé in startup latency between FDB and SB. FDB has a much

smaller startup latency than SB because it has a quicker growth in the number of blocks and

can minimizes the size of the first segment.

50%
45% - —o— 8B (W =infinite)
o 40% —+—SB (W =12)
[
o 35% |
i
e 30% -
b
= 25%
G
Q
2 20% -
|- of. |
%: 15%
@ 10% -
5% -
0% — — .
2 3 4 5 6 7 8 9 10 11 12 13
Number of channels
Figure 2.7. Buffer requirements of SB (# = infinite, 12).
100
—o— 8B (W =infinite}
——SB (W =12)
10 —5—FDB

Startup latency (minutes)

=
N

0.01 - =
2 3 4 5 6 7 8 9 10 11 12 13

Number of channels

Figure 2.8. Startup latencies of SB (W = infinite, 12) and FDB.

Page {9

Interactive Functions in Broadcast Video-on-Demand

A dynamic Skyscraper Broadcasting scheme was proposed in [8] to improve the performance
of SB for lower client request rates and time-varying video popularities. In [9], Eager et al.

further shows that the dynamic SB can be applied in multicast VoD systems.

2.6 Zero-Delay Broadcasting Protocols

In [25), Paris proposed a technique called Partial Preloading which can archive a zero
startup latency. Péaris observed that many broadcasting schemes require a large client-side
buffer size and use one dedicated channel to deliver the first few minutes of a video in order
to reduce the startup latency. Therefore, Paris suggests preloading the first few minutes of
the top ten to twenty most popular videos (that are likely to be requested by over 40% of all
clients) into the client's buffer so that clients can start these videos instantaneously.
Preloading can also reduce the network bandwidth required to broadcast these leading video
data. Paris also presented two new schemes with partial preloading in [25], namely
Polyharmonic Broadcasting with Partia! Preloading and Mayan Temple Broadcasting.
However, both schemes assume that the client-side buffer has enough space to store at least

40% to 50% of the video file.

2.7 VCR Interactions

In the previous sections, several broadcasting schemes are reviewed. Both the Pyramid
Broadcasting scheme and the Fast Data Broadcasting scheme can improve the startup latency
exponentially, while FDB has a smaller client-side buffer requirement. The Seamless
Channel Transition scheme can dynamically adjust the number of logical channels according
to demand changes. Besides, the Skyscraper Broadcasting scheme can archive a very small
buffer requirement at the expense of more channels. Last but not least, Partial Preloading can
help to archive zero startup latency for popular videos. However, none of these schemes has
addressed the issue of VCR interaction. In the following chapters, several new broadcasting
schemes which have different merits in supporting VCR interactions will be proposed and
analysed. FDB will be mainly used as a yardstick for comparison because it has a balanced
performance in startup latency and client-side buffer requirement. In addition, FDB can -

support seamless channel transition after being modified to SCT.

Page 20

Interactive Functions in Broadcast Video-on-Demand

Chapter 3: Skip-Forward Broadcasting Scheme

3.1 Skip-Forward Interaction

In this section, we shall discuss how skip-forward interaction can be supported in broadcast
VoD service. In skip-forward interaction, a viewer is allowed to reposition his/her point-of-
play in a forward direction instantly. In the known broadcasting schemes, a video is
quantized into video segment blocks which are delivered on logical channels. Thus, skip-
forward interaction in broadcast schemes can be simulated by repositioning the point-of-play
to a point in the succeeding video segment block, provided that the downloading of the

succeeding block always is in progress or completed.

There are two modes of download in broadcasting schemes. The first mode is concurrent
downloading from several logical channels. In this mode, some blocks are prefetched in the
buffer. Another mode is just-in-time downloading where the same block is being viewed
while it is being downloaded, which means that no blocks are readahead. These two modes
can be mixed in a download sequence. However, the broadcast schedules inherent in a

scheme chosen will impose constraints on which of the above download modes can be used.

In the Fast Data Broadcasting (FDB) scheme [18], the download sequence of video segment
blocks is usually performed in an optimistic way. In a download sequence, there can be more
than one feasible timeslot to download a particular block. The later timeslot with the largest
timestamp is to be chosen to reduce the client-side buffer requirement. Such an optimistic
approach allows just-in-time downloading. Under this approach, a just-in-time downloading
subsequence may occur. If the subsequence begins with the first segment of the video, it is
referred 10 as a Just-In-Time Sequence (JITS). The length of such a sequence depends on
the starting time, which may vary. The main characteristic of a JITS is that no block in the
sequence is readahead. Therefore, if a subsequence of just-in-time downloading occurs in the
middle of the download sequence but not at the beginning, it is not classified as a JITS
because some blocks are prefeiched already before consumption. The JITS needs not occur
throughout the download sequence. It is possible that within a complete download sequence,

only the first part of downloading is a JITS. Figure 3.1 and 3.2 show two examples of JITS.

Page 21

Interactive Functions in Broadcast Video-on-Demand

To perform skip-forward, the next video segment block with reference to the current point-of-
play needs to be already prefetched or is currently broadcasting on a channel, otherwise the

interaction cannot be performed. JITS, thus, does not allow skip-forward interaction.

timeslot# | tO |t [2 [t3 | t4 [t5 [t6 |t7 [tB] O [HO|H11 112113 |t14]115
chanpel0 [1 P81 |t 1|1 {1 1|11+]1]1]1]1]1
channell | 2 | 3 12§32 |3|213|2|3]2|3|2]|3}2]3
channel2 [4] 5|6 |7 14|56 16LTqa[5]|6[7[4][5]|6]7

Figure 3.1. An example of Just-In-Time Sequence (shaded blocks) of FDB (3 logical channels).

timeslot# |0] t1 |2 |t3 |4 |t5 |16 |7 8|19 |110]111112|1131114 (115
channel 0" | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
channell {2 |32 |3 |2°k3| 2|32 (3[2]3|2[|3]2]3
channel2 | 4 |5 (6|7 L4 5. P68 T]4|5(6|[7]|]4|]5]|6]|7

Figure 3.2. An example of partial Just-In-Time Sequence (shaded blocks) of FDB (3 logical channels).

JITS is caused by the implementation of optimistic downloading. It appears that if we change
the download sequences into a greedy way such that all video segment blocks are
downloaded immediately at their first occurrence (ignoring other feasible timeslots in the
future), then the problem may be solved. However, this is not necessarily true. Even when
the blocks in FDB are downloaded in the greedy way, just-in-time downloading may still

occur.

Proposition 3.1: For the first block of the video segment on any logical channel in FDB,
except the first channel, there is one and only one suitable timeslot to download no matter

which timeslot the download sequence starts with.

Proof:

For FDB with K channels, a video is segmented into (2K — 1) video segment biocks. On
channel i, a video segment which composed of 2" video segment blocks i1s broadcast
repeatedly. Denoting the video segment on channel 7 as S; and the jth video segment blocks

as X;, we have

S; = Xy I Xaisi ’ ' Xatieh g

Page 22

Interactive Functions in Broadcast Video-on-Demand

The video segment S;, or each block of the segment, recurs every 2' timeslots on the channel.
The duration of 2' timeslots is referred to as the recurring period of S; (or the blocks of §;),

and denoted as Q;. For any two blocks, their difference in the playtime at the normal playout

rate is defined as playtime difference.

The first block of S; is X».. The playtime difference, in units of timeslots, between X, and the

first block of the video, X, is (2 — 1). Since (2 - 1) < 2/,
2i— 1 < Q,‘

As the playtime difference is smaller than the recurring period of Xy, it's possible that no
instance of Xy starts within the playtime difference period. If no instances of X, begins
within the period, one instance must then exist in the timeslot just after the playtime

difference period, i.e., just-in-time downloading needs to be performed. .

Proposition 3.2: In a Just-In-Time Sequence of FDB, the video segment blocks,
excluding the first block of the video segment on each logical channel, could be prefetched

under the greedy download sequences of FDB.

Proof:

The non first-video-segment-blocks of S; are Xsi,y, where 0 <y < 2", The playtime difference,

in units of timeslots, between Xai,, and X is (2’ +y — 1). Since 2'+y-1)22,
24y—12Q

This playtime difference is the playtime of Xsi,, with reference to the consumption of X, at
the normal playout rate. Since the difference is larger than the recurring period of the blocks
on channel i, an instance of each non first-video-segment-block will be broadcast at least

once within the playtime difference period and thus be prefetched. .

From the propositions, we can see that within a JITS in FDB, the just-in-time downloading

problem of the first video segment block of each video segment on channels cannot be

Page 23

Interactive Functions in Broadcast Video-on-Demand

resolved even by using a greedy download sequence. In order to provide skip-forward
interaction, extra channels are needed to deliver these first blocks redundantly one timeslot
before their broadcast schedule. To find out how many extra logical channels are needed, we
need to know the probability of JITS arising in FDB. The probability is an inverse measure

of the number of starting timeslots that one can find an instance of a just-in-time

downloading problém.

Proposition 3.3: In FDB, the probability of forming a Just-In-Time Sequence between

an instance of a video segment on channel 0 and any instance of a segment on channel (i + 1)

is (1/2).

Proof:

In FDB, the video segment on channel i consists of 2' blocks. Now let us consider the
segments on two consecutive channels, i and (i + 1). The size of segment on channel (i + 1)
is twice of that on channel i. This means that two instances of S; will be broadcast while one
Sis1 is delivered. For every two deliveries of S;, one will be aligned with a S;,; while another
will be aligned with the center of the same S;,,, or said to be joined to the beginning of the

next instance of S;1, as illustrated in Figure 3.3. In other words, there is a chance of 1/2 for a

S; to form a JITS with S;.

channel no.

i segment | § segment i | segment { | segment

__;...i ' A

segment i+1 segment i+]

i+1

I
h
1]
[
H

Figure 3.3. The relation between the video segments on two consecutive logical channels of FDB.

The addition of channels in FDB will not change the characteristics of the broadcast schedule

of the existing channels. This will only change the size of video segments. As a result, the

Page 24

Interactive Functions in Broadcast Video-on-Demand

broadcast schedule’s properties of the existing channels will extend to schedules with
additional channels. This means that the properties of FDB with K channels can also be
found in FDB with (K + 1) channels. Therefore, the probability of forming a JITS between
Sp and S; is (1/2)". For example, the probability of forming a JITS between So and S; is 1/2,
which means that for every two downloading pairs of So and S, there will be one just-in-time

download problem. Table 3.1 shows the probabilities of Sp forming a JITS with other

segments.

Probability of forming a JITS

Segment number i
between Sy and §;

1 172
2 1/4
3 18
4 1/16
5

1/32

Table 3.1. The probability of forming a Just-In-Time Sequence in FDB.

Recall that the JITS is measured from the first video segment. If So forms a JITS with the

video segment on channel i, then it is also forming a JITS with the video segments on

channels 1, 2, ..., (i —1).

From Proposition 3.1, we know that the first block of each video segment, there is one and
only one suitable timeslot to download. If all these blocks are broadcast in the same timeslot,
the peak instances of just-in-time downloading occurs. Thus, for FDB with K logical
channels, the maximum instances of just-in-time downloading within one timeslot is (K — 1)
since the downloading from the first channel is excluded. In other words, (K — 1) extra
channels are needed in order to provide skip-forward interaction in FDB. However, these
extra channels can be shared with another video with the same segmentation. This is due to
Proposition 3.3, where the highest probability of forming a JITS is 1/2. The unoccupied
timeslots in the extra channels can then be used by another video. Therefore, the extra
bandwidth required can be reduced by half, that is, (K — 1)*b/2 where b is the video playout

rate. Table 3.2 shows the needed resource increment if skip-forward interaction is to be

supported in FDB.

Page 25

Interactive Functions in Broadcast Video-on-Demand

Original number of | Extra number of logical Logical channels Bandwidth
logical channels channels needed increment (%) increment (%)
2 1 50 25
3 2 67 33
4 3 75 38
5 4 80 40
6 b] 83 42
7 6 86 43

Table 3.2. The extra logical channels and bandwidth required by FDB to support skip-forward.

3.2 Skip-Forward Broadcasting Scheme

Skip-forward interaction repositions the point-of-play to a point within the succeeding block.
To perform the action successfully, the succeeding block needs to be already prefetched in
the buffer or is being downloaded. Based on this observation, the Skip-Forward

Broadcasting (SFB) scheme is designed. Details of the scheme will be descrnibed in thc

following subsections.

3.2.1 Channel Design
Suppose that the video server allocates B Mbits/sec network bandwidth to a video. The

network bandwidth is divided into K (= | B/b) logical channels of » Mbits/sec each and b is

the normal playback rate of a video. Each logical channel repeatedly broadcasts a distinct

video segment. The logical channels are numbered beginning with zero.

3.2.2 Video Segmentation and Allocation
In SFB, the video file is equally divided into NV video segment blocks, where

N = 25!

The total number of blocks is doubled when the number of logical channels is increased by
one. Let us denote the jth block of the video as X; (j > 0). The concatenation of all blocks, in

the order of increasing block numbers, constitutes the whole video.

videofile=X, | X5 | X5 | ... | Xy | Xu

Page 26

Interactive Functions in Broadcast Video-on-Demand

Figure 3.4 shows two examples of the segmentation of the same video in SFB. From the
figure, we can see that there is a regular relationship between the blocks of the two schemes.
For instance, the second block of SFB with four channels, denoted as X42, is the
concatenation of the two consecutive blocks, X53 and X54, of SFB with five channels. In

general, we have the relationship between the blocks under two different segmentations in

SFB as follows,

K K+1 K+1
X5 = xF | x5y,

4-channel 1 2 3 4 5 6 7 8
5-channel i 2131415167189 |10}11[12113]14]15 16

Figure 3.4. The segmentation of a video in SFB with 4 channels and 5-channels.

Instead of allocating the video segment blocks in a series of geometrically increasing number

[1, 2', 22,...] on the channels as in FDB, the allocation series of SFB with K channels is

generated by the following function

1 i=0,

C(i):{l i=1,
2%C(i-1) 2<i<(K-1)

where C(i} is number of blocks on channel i. The first two channels both have one block,
which is X, and X; respectively. For the other channels, each has the number of blocks two
times of that on the previous channel. We shall refer to these contiguous blocks on channel i

as video segment i, and denoted as S;. In general, we have

X[i=0
Si =
Xaiiyr, Xaitsa, ... Xoi i>0
For SFB with K logical channels, the total number of blocks is:

141424224 . +25 21421) =2f-!

Page 27

Interactive Functions in Broadcast Video-on-Demand

If the video segment on the first channel is not taken into account, the allocation series of
SFB is the same as in FDB. An example of SFB with four logical channels is shown in

Figure 3.5.

videofile [1|2 [3[4[5]6][7]8]

Figure 3.5a. The segmentation of a video in SFB (4 logical channels).

timeslot# |10 [11 |2) t3 |4 [t5 | t68 [t7 [t8 | t9 [110|t11|t12]|t13[t14[115
channelO | 1 [1 | ¥ (1|1 {1] 1|1t} 1r 111111]1]1
chamnell | 2 |2 (2 }2|2|2|2|2]|2|2|2|2|2]|]2]|2]|2
channel2 | 3 (4[| 3| 4| 3]14|3]4[3]|]4]|13]4]3|]4]|3]4
channeld | 5[6|7)8|5|6|7|8|56]7]|8]|]5|6]|7]S8

Figure 3.5b. The broadcast schedule of SFB (4 logical channels).

3.2.3 Download Sequence in SFB

New clients have to wait for the broadcasting of the next instance of the first block X of the
target video. Once starting the download, X, is consumed instantly. The second block X,
needs to be downloaded from channel 1 at the same timeslot of the downloading of X,
otherwise skip-forward interaction cannot be guaranteed in the scheme. Subsequent blocks
can be downloaded either in a greedy way or in an optimistic way, as illustrated in Figure 3.6.
In the greedy way, they are downloaded at their first occurrence whenever the downloading
of the first block starts. In the optimistic way, a block is downloaded only if missing of it
will result in viewing discontinuity which can be indicated by the playtime difference with
respect to the current point-of-play. If the difference is smaller than or equal to the recurring

period of the block, then this block has to be downioaded.

timeslot# 110 |11 [2 (3| t4 {15 t6([t7]|t8B[t9 |H10(111 112|113 (t14{115
channel Q 1 1 1 1 1 1 1 1 1 1 1
channel 1 2 2121212222222
channel 2 3. 3434|343]4] 3] 4
channel 3 Y 718|567 |8(5|6]|7(8
download sequence in SFB.
timeslot# | t0 | t1 t7 | t8 [t9 1110111 (112|113 t14(115
channel 0 | 1 [t 1111|1111 11]1
channel | | 2 [52% 2(2)|2|2)12|212]2]2
channel 2 314 4 13| 413)14)3)4]3]|4
channel3 [5 | 6 -84 5 (6|7 |8|5|6|7]8

Figure 3.6b. An optimistic download sequence in SFB.

Page 28

Interactive Functions in Broadcast Video-on-Demand

Except in the first block, just-in-time downloading is not found in other blocks because the

blocks are prefetched before their playtime. Hence, there is no JITS in SFB.

3.3 Performance Analysis
SFB guarantees clients to perform a skip-forward interaction successfully within a range of
one block during the whole video duration. The extra attempts depend on the video data in

the client’s buffer or the download sequence. The next subsection proves the correctness of

the guarantee.

3.3.1 Correctness

Case 1. Skip-forward is performed during the consumption of X;. _

The skip-forward interaction will reposition the new point-of-play within the succeeding
video segment block X;. In the download sequence, X; and X, are downloaded
simultaneously. Therefore, part of X; is already prefetched in the client’s buffer and skip-

forward can be carried out. The later skip-forward is performed, the longer the range of new

point-of-play selection can be.

Case 2. Skip-forward is performed during the consumption of blocks other than X.

In SFB, the download sequence excluding the downioading of X is the same as in FDB but
starts with X, instead of X;. Recall that the blocks in FDB are always readahead or just-in-
time downloaded. Since X is prefetched one timeslot before its normal playtime, all the
subsequent blocks are consequently being prefetched too. This shifting effect guarantees that
the succeeding block with reference to the current point-of-play will always be prefetchéd in

the buffer. Thus, skip-forward can be supported and the feasible range of selection is the

playback duration of one block.

Page 29

Interactive Functions in Broadcast Video-on-Demand

The shaded area in Figure 3.7 shows the feasible range of skip-forward in SFB.

F
L
o
&b
c 2
E 3
s £
- &
8.8 :
L = duration of one
L] -
video segment
block
. >
—> : .
. point-of-play
Xy : end of the video

Figure 3.7. Feasible range of skip-forward in SFB.

3.3.2 Startup Latency _
Since all the video segments are broadcast at the normal playout rate, we can compute the
worst startup latency as the length (i.e., playback duration) of the first video segment, or one

block. To broadcast an M-minute video over K channels, we have
startup latency = (M / .’ZK']) minutes

3.3.3 Client-side Buffer Requirement

To prevent viewing discontinuity, video segment blocks are prefetched in the client-side
buffer. The peak buffer size is required when all blocks of the video are downloaded in the
shortest time which occurs if blocks on all the channels are downloaded concurrently. Hence,
the shortest time needed is equal to the delivery time of 2% plocks on the last channel.
During the downloading period, the number of blocks consumed is equal to the number of the
blocks on the last channel, i.e., 252 blocks. Therefore, the client-side buffer requirement,

expressed as a fraction of video file size, is

K~1 K-2
- -2
Buffer size = 2 Y=
{ 0 ifK=1
- Lin ifK>1

Page 30

Interactive Functions in Broadcast Video-on-Demand

The client-side buffer requirement is half the size of the complete video. The download
sequence for the peak buffer size required is illustrated in Figure 3.8. In the figure, the table
is the broadcast schedule of SFB with four channels. The download sequence starts at 10.
The chart below the table shows the number of blocks accumulated in the client-side buffer

under the corresponding timeslots.

timeslot# | tO [t1 [t2 | t3 |t4 |15 |16 (t7 |18)19 |[H10[t11
channel 0 |21 1 |1 [1 | v 111 1]1]1]1
chanmell 2%l 2 (22| 2|2 |22 |2]2]2]2
channel 2 4] 3|4|3|4|3|4[3|a]|3]4
chanme! 3 “pB8)]5|6|7|8[5])]6|7]8

s
8 32 357
2 E 2
£ g 2

<

°jo t 2 3 4 5 6 7

Timeslot Number

Figure 3.8. The download sequence for the peak client-side buffer size required in SFB (4 logical channels).

3.3.4 Client-side IY'O Bandwidth Requirement

At the client side, I/O bandwidth is required for write-to-buffer operation(s). Each instance
of downloading from a channel needs one write-to-buffer operation. In SFB with K logical
channels, the I/O bandwidth requirement is therefore (K * b), where b is the playout rate of

the video.

3.3.,5 Comparison

We shall compare the performance between FDB and SFB. The playback duration of the

whole video is set to 120 minutes.

A) Startup Latency

Figure 3.9 shows the startup latencies of FDB (without skip-forward support) and SFB. FDB
has a shorter startup latency than SFB under the same number of logical channels. It is
because SFB used one more channel than FDB in order to support skip-forward interaction.

With K logical channels, the total number of video segment blocks in FDB is (2” — 1) while

Page 31

Interactive Functions in Broadcast Video-on-Demand

in SFB, it is 2°2. The larger the number of video segment blocks, the smaller the size of a
block. Since the startup latency is directly proportional to the size of the first block, the

startup latency in FDB is shorter than SFB.

140
120 —&8— FDB
) ——SFB
L 100
=3
E
\.E.z 80 -
)
(]
5
E 60
.
£
g 40 |
wn
20
0 = gy |
1 2 3 4 5 6 7 8 9

Number of logical channels

Figure 3.9. The startup latencies of FDB (without skip-forward support) and SFB.

The merit is different if FDB is made to support a skip-forward function. Figure 3.10 shows
the startup latencies of SFB and FDB when skip-forward ts supported. The startup latency in
SFB is now shorter than FDB under the same number of logical channels. This 1s because

FDB needs more than one extra channel to provide skip-forward interaction.

140

120 +

100

80

Startup latency (minutes)

Number of logical channels

Figure 3.10. The startup latencies of FDB (with skip-forward support) and SFB.

Page 32

Interactive Functions in Broadcast Video-on-Demand

60%
0% - o—i 8
40% -

-8—FDB

Buffer (% Video)

20%

10% -

0% = T T T T T T T T T T T T T T)
1 2 3 4 5 6 7 8 9
Number of logical channels

Figure 3.11. The client-side buffer requirements of FDB and SFB.

B) Client-side buffer requirement

Figure 3.11 shows the buffer requirements of FDB and SFB. The buffer size required in SFB
stays at half of a video when the number of logical channels is greater than one. In FDB, the
buffer requirement converges to half of a video once the number of logical channels is more
than four. To achieve startup latency of a few minutes, a video will not be broadcast by less

than four channels. Under such condition, the buffer requirement of SFB is comparable to

FDB.

3.4 Seamless Channel Transition

Network bandwidth, in terms of the total number of channels available to a VoD system, is a
limited system resource. Thus, utilization of the network bandwidth is a key issue to the VoD
systemm performance. In addition, the level of demand on a video, no matter whether it is
popular or not, will be affected by many factors, such as holidays and the time of a day. To
achieve the best utilization of the network bandwidth, the number of channels allocated to a
video should adapt to changes in demand on the video. The adjustment in the number of
allocated channels can be an increase (step up) or a decrease (step down). Channel
transition refers 1o the process by which a broadcasting video undergoes a change on the
number of channels allocated to it [31]. Further, it is desirable that such adjustment can be
done on-the-fly and seamlessly such that the clients currently viewing the video will not

experience any disruption during the channel transitions.

Page 33

Interactive Functions in Broadcast Video-on-Demand

3.4.1 Seamless Channel Transition (SCT) Scheme
As reviewed in Chapter 2, SCT [31] is designed on top of the Fast Data Broadcasting scheme

to provide on-the-fly seamless channel transition. The technique used in SCT is called data

padding where dummy video data is padded at the end of a video.

A) Data Padding

The required size of the dummy video data, Viummy, depénds on the base number of channels,
o, of the video V. The number « represents the lower bound of the number of channels that
should be allocated to V. After a step-down channel transition, the number of channels of V

cannot go below . Assume the playback duration of V is M minutes. Once the number & is

chosen, the size of Vgymmy can be calculated by the following formula:

M
Vdummyl =5e]
After padding, the new video V' is
V=V I Vdummy

In SCT, the padded video is divided into 2% blocks and the broadcast schedule is the same as
that of FDB. Figures 3.12a and 3.12b show two segmentation examples of SCT with & being

2 and 3 respectively. In each figure, the video is segmented for some K channels.

v Vv Viaummy
K=a=2 1 2 3 4*

K=3 l 2 3 4 5 6 " B
K=4 1 2 34567 8 9 | 10| 11 | ¥2 |13~] 142} 15~ | 16*

Figure 3.12a. Data padding in SCT (&= 2).

Vv 14 vdummy
K=a=3 l 2 3 4 5 6 7 8*
K=4 L {2 |3]4|516{7 891011 |12([13]14(15"|16*

Figure 3.12b. Data padding in SCT {a = 3).

Page 34

Interactive Functions in Broadcast Video-on-Demand

The dummy video segment blocks are not all to be broadcast in SCT. In the figure, the

dummy blocks to be broadcast are marked with "~" behind their block number. Those not to

be broadcast are marked with "*",

From the figure, we can observe that

- L The block X; of the K-channel SCT scheme is equal to the concatenation of the blocks

Xy; and Xy; of the (K + 1)-channel SCT scheme for any j.
2. The smaller the &, the larger the size of Vgymmy-

3. With the same ¢, the more the channels allocated to a video, the larger the portion of

Vaummy Will be broadcast on channels. In other words, more network bandwidth is

used, or needed, by the dummy blocks.

The dummy blocks are broadcast periodically on channels. Hence, if we want to reduce the

network bandwidth spent on the broadcasting of dummy blocks, a large base number of

channels, ¢, should be chosen. However, a larger ¢ will leave less room for minimizing the

bandwidth allocated to a video at run time. Table 3.3 shows the size of dummy video data

that will be broadcast on channels for a 120-minute unpadded video under different base

number of channels and different allocated channels.

Broadcast dummy video The number of allocated logical channels
data (minutes) 3 4 5 6 7
2 20 30 35 37.5 38.8
=
= § 3 15 16
Lo 3
E 5 4 6 7
= =
g 9 5 1.9 2.9
: %
[= 6 0 1.4

Table 3.3. The size of broadcast dummy video data under different number of logical channels.

Each row in Table 3.3 is a set of channel allocations with the same ¢ setting. The set is

referred to as 2 channel allocation set and is denoted as U. The K-channel allocation in the

set is denoted as U® and the channel i of U¥ is denoted as UK,-, where i starts at zero.

Page 35

Interactive Functions in Broadcast Video-on-Demand

B) Channel Transition

In this subsection, we shall provide an in-depth analysis of the step-up and step-down channel
transition in SCT. Figure 3.13a illustrates the broadcast schedules of SCT (a = 2) with two,
three and four logical channels. To perform a channel transition, the ending of the first video
segments in each schedule have to be ali gned together as shown in Figure 3.13b. For a better
illustration, the blocks in all schedules are marked with the block numbers of the 4-channel

SCT scheme and the first video segment in each broadcast schedule is shaded.

t=0 t=4 t=8 Time

Ul | (g2 ar 2 3 &Hla 2 3 4 .

UG 6 AV'IIIHS) O 10 11 12|65 6 7 8

Uolawa|a afa ala a2
UhlG 9|16 616G G 6616 9
ULl 8 (o 1ojal 12(a3 |ds 16)

1N ST IV AN AU RO IR A IR I
U 215121312131 21312
vh|a]ls]|e|l7]4]|s5]|6]|7]4
vhls|ololnfjiz{13j14]15] 8

‘ Figure 3.13a. The original broadcast schedules of the 2-, 3- and 4-channel SCT schemes [31].

=0 t=4 =8 Time

>

Ta 2 3 &|a 2z 3 9
v,IG 6 7 9]0 10 11]G 6 7 8

v [Tagafae afa afa ala 2
G 16 o6 9]G 96 olc »
vl e oo 1wo]ar 2)a3s 14))dus 16y
Ub | - . B 1 1]1 1] 1F1 t 1 1
U4 2 3|23 2]312(13]2
U4, 4)lslef714]5]6]7]4
U glolwof]i2{131afis) 8

Figure 3.13b. The shifted broadcast schedules of the 2-, 3- and 4-channel SCT schemes [31].

Page 36

Interactive Functions in Broadcast Video-on-Demand

By shifting the timeslots, Tseng [31] proved that there is a relationship between the blocks of

UX and UX. Intuitively, the proof states that the block of UK,- at timeslot j is the

concatenation of

1. the blocks of U**!; at timeslot 2j and U**';,, at timeslot (2j + 1), or

2. the blocks of UX*,,; at timeslot 2 and timeslot (2j + 1).

" Since the size of a timeslot of UX is twice that of UX*', timeslot j of U¥ is the same as the
concatenation of the timeslot 2/ and timeslot (2 + 1) of U*!. As a result, what is broadcast
in U is also concurrently broadcast in U**' after the timeslot-shifting. Therefore, in the step-
up channel transition, the switching of broadcast schedule from U* to U could be done

seamlessly oﬁ—thc-ﬂy because the blocks expected by the clients could still be downloaded at

the same timeslots.

Unfortunately, in SCT the step-down channel transition is not as straight forward as step-up.
In a step-down transition from U**! to U¥, the number of channels is decreased by one. It

implies that at the same timeslot in the broadcast schedule of U¥, one block of U will be

missed.

Proposition 3.4: In the step-down channel transition from UK 10 UX, the missing video
segment blocks are the last block of the video segments of UX*! Further, these missing
blocks are from the instances of a segment where each left-aligned with an instance of a

segment on the next channel.

Proof:
In [31], it is proven that the block of U¥ at timeslot j must be the concatenation of two

consecutive blocks of UX*', one with an odd number at timeslot 2j and one with an even
number at timeslot (2j + 1). In other words, if a block with an odd number at timeslot 2;j of

U**! cannot find a block with succeeding block number at timeslot (2j + 1), then this block

will not be found at the jth timeslot of uX.

For the broadcast schedules of U, the last block of the segment on channel i is Xi+1_y,, which

is an odd-numbered block. Besides, the segment on channel i consists of 2 (an even

Page 37

Interactive Functions in Broadcast Video-on-Demand

number) blocks. Hence, the last blocks of the segments will be broadcast at even-numbered
timeslots. From Proposition 3.3, we know that for every two instances of the segment on
channel i, only one of them (which is aligned to the center of an instance of the segment on
the next channel) can feasibly form a sequence with an instance of a segment on channel
(i + 1). The infeasible one is left-aligned with an instance of succeeding segment such that its

last block cannot be followed by a succeeding block. The proof of the proposition is

completed. °

Now we know that some blocks will be missed at certain timeslots in the new broadcast
schedule after the step-down transition from U**! to UX. If these blocks are not made up to
the clients, viewing disruption will be experienced. Thus the to-be-returned logical channel

has to be tied-up further until all the missing blocks are broadcast.

Proposition 3.5: In a step-down channel transition from U to U*, the number of

missing blocks needed to be broadcast on the to-be-returned channel is (K - 1).

Proof:

SCT is inherently a Fast Data Broadcasting scheme with greedy download sequences. Blocks
are downloaded at their first occurrence on the channels. Consider the clients who started the
viewing one timeslot before the transition. In the download sequence, these clients have to
read 2' blocks from UX*!; for i = 0 to K. Thus, after the transition, they are still waiting for
(2’ - 1) blocks from U**!; fori = 1 to K. U**!; is not included because the downloading from
this channel is completed. In the worst case, the clients are following a download sequence
in which all the last blocks of the segments are missed in the new stepped-down broadcast
schedule, i.e., K blocks are missed. On the other hand, by the design property, the last block
of the segment on the last logical channel is always a dummy block. The broadcast of the

dummy block can be cancelled in the new broadcast schedule. The number of missing

blocks, therefore, 1s (K - 1).

Since there are time differences among the missing blocks in the broadcast schedule, Tseng
suggests to pack the missing blocks together so as to shorten the holding time of the to-be-

returned channel. As a result, under a secamless step-down channel transition from U 1o UK

K+1

in SCT, the to-be-retumed channel will be released (K -~ 1) timeslots of U™ after the starting

Page 38

Interactive Functions in Broadcast Video-on-Demand

of the transition. Table 3.4 shows the holding time of the to-be-returned channels in SCT

under different step-down transitions.

Holding time of to- Step-down Channel Transitions
be-returned channels | From3to2 | From4to3 | From5to4 | From6to5 | From7to 6
{minutes)
5 Y o =2 20 20 15 10 6.3
] —
E o a=3 54
g _5 a=4 5
c <0
=8| a=35 4.8
L g >
S8 a=6 48

Table 3.4. The holding time of to-be-returned logical channels under different step-down channel transitions.

3.4.2 Instantaneous Seamless Channel Transition in SFB

In SCT, a video is padded with dummy video data to support channel transition. This dummy
video data will be broadcast on the logical channels and will consume valuable server
bandwidth. Besides, a video has a base number of channels that at least needs to be allocated.
This base number also affects the size of the dummy video data needed in the padding. The
larger the base number, the smaller the dummy data size. On the othef hand, a large base
number will limit the range of step-down channel transitions that can take place. In a step-
down channel transition, the to-be-returned channel cannot be released immediately because

channel carrying blocks that are missing in the stepped-down broadcast schedule needs to be

sustained for some time.

In the Skip-Forward Broadcasting scheme, the dummy video padding, the choosing of a base
number of logical channels and the shifting of broadcast schedules are all not necessary to
support on-the-fly seamless channel transition. The generic design of SFB already supports
this kind of transition. Further, SFB provides instantaneous step-down channel transition.
That means that the to-be-returned channels can be released immediately upon a downward

transition. Before explaining the channel transition in SFB, we shall review the properties of

SFB briefly to facilitate the detail analysis.

Page 39

Interactive Functions in Broadcast Video-on-Demand

Properties of SFB:
1. The number of blocks on the first two logical channels (channel O and channel 1) is

one. Then the size increases doubly as we move up to higher channels.

2. The size of a block in the (K + 1)-channel SFB scheme is exactly half of that in the

K-channel SFB scheme.
3. The total number of blocks in the (K + 1)-channel SFB scheme is twice of that in the

K-channel SFB scheme.
4. Because of (2) and (3), we have

where X; denotes the jth block in SFB with m channels.

For an m-channel SFB scheme, let us denote the video segment on channel i as S™;, where

0<i<(m-1). In general, we have

"% = X"

S™ = X"gran | XPoray | | X™y, forl<i<(m-1)

For the segment on channel i of the K-channel SFB scheme where 1 < i < (K - 1), we have
s = XFer | XX o142 | | x5y

K+l K+l K+l K+l
= X" aetay-1 l X 2 1y ' X @ -1y | x¥+ Q' +2)) |

o X5 i1y , XM aan e by the property (4)

K+l K+l K+l K+t
= XMy | XM | X arasy | X5 0k '

. I XK+1(2NI -1} | XK+](2f+I)
K+l K+l K+l K+l Kl Kel
= X" | x T2t | x i +3) | x Taisay | x +(2'+'—|)| X" i,

K+l
= S"

The above derivation shows that S¥; has exactly the same blocks as S, has, ie.,

SKl = SK+]2, SKZ — SK‘I‘IB’ SK3 - SK+I4, L SKK_I — SK+]K.

Page 40

Interactive Functions in Broadcast Video-on-Demand

Now let us consider video segment s%. Again, by property (4), we have
XK] = XK+1| | XK+]2

In the (K + 1)-channel SFB scheme, X**!, and X**', are repeatedly broadcast on one channel
each. By property (2), the sizes of X5 and X**', are half of X*,. For one broadcast of X,
each of X¥*,and X**', is broadcast twice. Therefore, the instance of X, at timeslot j is the

concatenation of the X**', at timeslot 2j and the X**', at timeslot (2j + 1).

Next, we shall discuss the instantaneous step-up/step-down seamless channel transition in
SFB. Figure 3.14 shows the broadcast schedules of the 4-channel and 5-channel SFB

schemes to aid the discussion.

timeslot # to t1 2 13 t4 5 16 7
channel 0 i 1 1 1 1 1 1 1
channel 1 2 2 2 2 2 2 2 2
channel 2 3 4 3 4 3 4 3 4
channel 3 5 6 7 8 5 6 7 8

Figure 3.14a. The broadcast schedute of SFB (4 logical channels).

timeslot# |10 | t1 |12 | t3 [t4 |t5)16 | t7 | 18 [19 10| t11 |t12|t13|t114 |15
channelO | 1 |1 |1 v |1 [V |1 [1|1} ttp vy 11
channell | 2]| 2 | 2 2121221212122 212]) 2
channel2 | 3 | 4 | 3 2|14(3|14]|314}13]4 41 3] 4
channel3 | 5 | 6 | 7 5/6|7|8(5]|6|7|8 6|17 8
channel4 | 9 |10{ 11} 12|13 |14}15|16 | 9 [10[11 1213114 15]| 16

Figure 3.14b. The broadcast schedule of SFB (5 logical channels).

A} Step-up channel transition from K channels to (K + 1) channels in SFB

The download sequences of SFB require the clients to download the video segments on the
first two logical channels concurrently. Before a transition, the first two segments are
downloaded. Thus, the segments concerned are those on the channels other than these two
channels. From the preceding derivation, we know that the segment on channel i of the
K-channel SFB scheme, where | i (K _ 1), is the same as that on channel (i + 1) of the

(K + 1)-channel SFB scheme. This means that, from channel 1 onwards the segments of the

Page 41

Interactive Functions in Broadcast Video-on-Demand

K-channel scheme can be found at the corresponding timeslots in the (K + 1)-channel

scheme. Therefore, the step-up channel transition can be launched seamlessly and

instantaneously.

B) Step-down channel transition from (K + 1) channels to K channels in SFB

It is assumed that the transition is triggered at the beginning of timeslots in the K-channel

scheme because these are the entry points of new clients.

Similar to the case of step-up transition, the video segments concemed are those on the
channels after channel 1. From the preceding derivation, we know that the segment on
channel i of the (K + 1)-channel SFB scheme, where 2 <i < K, is the same as that on channel
(i — 1) of the K-channel SFB scheme. This means the segments on channels starting from
channel 2 of the (K + 1)-channel scheme can be found at the corresponding timeslots in the
K-channel scheme. Thus, the step-down channel transition can be launched seamlessly.
Moreover, as the broadcast schedule of the K-channel scheme covers all the biocks needed by
the existing clients of the (K + 1)-channel scheme, the to-be-returned logical channel can be
released immediately after the starting of the transition. The step-down channel transition in

SFB, therefore, can be completed instantaneously.

After the step-down transition, the size of a video segment block is changed and doubled.
The skip-forward range support to the clients existing before the transition will still apply to

the block size of the old broadcast schedule.

3.5 Pause and Resume Interactions
In this section, the third feature of Skip-Forward Broadcasting scheme in supporting pause

and resume interactions is discussed.

Pause and resume functions are among the most commonly used operations on VCRs. A
client may choose to stop viewing a video at any point in the video to answer a phone call, to

get a drink, etc., and then resume viewing from the paused point after a variable and

unpredictable duration.

Page 42

Interactive Functions in Broadcast Video-on-Demand

In unicast VoD systems, a client is the sole viewer of a video stream. The pause/resume
interaction can be simply handled by pausing the delivery of video data from the server to the

client. Once the client issues the resume command, delivery is restored on the same video

stream.

In broadcast VoD systems, however, a video stream is shared by a pool of clients. The video
data is broadcast in a predetermined schedule. The video server cannot deviate from its
scheduled video data retrievals. On the other hand, clients have to stay in track to the
schedule in order to ensure viewing continuity. Any missing video data may cause viewing
disruption. The recurrence of the missed video data depends very much on the system
design. It may range from a few seconds to tens of minutes. To provide a satisfactory VoD
service, it is undesirable to let the clients wait a long time before they can resume viewing
after a pause. Therefore, even if viewing is paused, a client should try his/her best to
continue the downloading of video data. Now the question is, how much video data has to be

downloaded in the pause period in order to provide an instantaneous resume without

disruption?

For SFB with X channels (X > 1), the total number of blocks is 251 The number of blocks

on the last channel is the largest and the recurring period of these blocks is 252 timeslots.

Clients who missed the downloading of one of these blocks have to wait 252 timeslots for its
next occurrence. In the pause period, the client may miss a downloading of these blocks.
Therefore, the playback duration of the video data in a client-side buffer has to be long
~ enough to cover 257 timeslots. In other words, the client-side buffer needs to be able to hold
252 blocks, which is half of the size of the complete video, because the playback duration of
one block is one timeslot. In Section 3.3.3, we show that the client-side buffer requirement of

SFB with i channels is half of a video file size. Therefore, SFB supports pause and resume

interactions by nature.

For SFB with K channels, pause/resume interaction can be simply implemented by:
L. During a pause period, the client keeps following the download sequence to download
video segment blocks up to 2k-2,

2. Once resume command is issued, the consumption of video data in the buffer restarts.

At the same time, the downloading of the remaining blocks starts.

Page 43

Interactive Functions in Broadcast Video-on-Demand

3.6 Summary

In this chapter, a new broadcasting scheme called Skip-Forward Broadcasting (SFB) is
introduced. In SFB, a video is segmented into small video segment blocks, which are then
broadcast on logical channels operating at a normal video playout rate. The underlying
principle of supporting a skip-forward function is to let the clients download the first two
video segment blocks at the same time in the beginning. By doing so, there is always at least
one prefetched block in the client’s buffer to support the skip-forward interaction. Thus, SFB
allows a client to reposition the point-of-play in the forward direction within a range of one
video segment block. More importantly, SFB supports instantaneous pause/resume

interaction and instantaneous on-the-fly seamless channel transition.

Page 44

Interactive Functions in Broadcast Video-on-Demand

Chapter 4: Short-Range Fast-Forward Broadcasting Scheme

4.1 Fast-Forward Interaction

Fast-forward (FF) interaction is a common function provided by VCR. It is different from

skip-forward, though both move the point-of-play in the forward direction. Skip-forward is

an instant discrete jump to the other point-of-play of the video. Fast-forward, on the other

hand, is a forward visible scan of the video at a rate higher than the normal playout rate.

Figure 4.1 illustrates the concept of a fast-forward interaction.

Point-of-play PP(t)
A
fast-forward
y+az - é;' -
]
' \.. normal play
y+ay frommemcsagfes ;
b — s
.
')
. . >
ty to+t Time
_ PPty + 1) PP(tp + t)
PP(1,) for normal piay for fast-forward
VIdEO SRS R . . e . - LN L AT
i i+ i+2 i+3 i+4 .} .7i+5
Segmen[...
|]
blocks y i E H
> i
1
wm s
| —!
: a) !

Figure 4.1. Fast-forward interaction.

Let y be the current point-of-play of the video at fp. After running ¢ units of time, in the

- normal play mode, the new point-of-play will be moved to (y + a;). But in the fast-forward

Page 45

Interactive Functions in Broadcast Video-on-Demand

mode, the new point-of-play will become (y + az), where a; > a;, and the video data from y to

(y + az) will be consumed within ¢ units of time. The ratio ax/a, is the fast-forward ratio and

is greater than one.

Due to the fact that fast-forward interaction is operated at a playout rate higher than the
normal rate, a video segment will be consumed in a shorter time than i1ts normal playback
duration. Under this situation, buffer may run out of data during the FF period. To cope with

this problem, the VoD server can

1. feed the client at the fast-forward playout rate duning the interaction, and/or
2. ensure that there are always some up-coming video segments prefetched already in

the client-side buffer before the interaction is allowed.

4.1.1 Fast-forward in FDB and SFB

Prefetching is employed in the Fast Data Broadcasting scheme. Video data is often
prefetched into the client-side buffer before its playtime. Depending on the download
sequence, the prefetched video data need not be the data required in the coming future and
thus is not useful to support FF. Besides, FDB has just-in-time d0\;vnloading problems such
that a video segment is consumed while being downloaded. For instance, in half of the
download sequences, the second block of the video is a just-in-time downloading. Moreover,
in FDB the data transmission rate of channels is equal to the video’s normal playout rate.
This means that the delivery rate of video data on a channel cannot be increased to the FF

rate. Therefore, FDB cannot support fast-forward interactions.

The Skip-Forward Broadcasting schemg provides better support in FF than FDB, though the
bandwidth of logical channels in SFB intrinsically supports a normal playout rate only. SFB
allows a client to jump forward to another point within the succeeding video segment block.
This jumping action requires that the succeeding block has already been prefetched in the
client-side buffer or is in the progress of downloading. In SFB, the first two blocks of a video
are downloaded simultaneously at the stérting timeslot. The subsequent blocks are
downloaded afterwards. If no VCR interactions are performed within the starting timeslot,
then there will always be at least one successive block kept in the client-side buffer. This
implies that an FF could be carried out. But if the FF is requested at the starting timeslot,

then it cannot be fulfilled. This is because the first block is in a state of just-in-time

Page 40

Interactive Functions in Broadcast Video-on-Demand

downloading at a delivery rate that cannot be increased. To sum up, SFB supports FF after
the consumption of the first block. Although SFB supports FF in most of the timeslots,

strictly speaking SFB does not support fast-forward interaction completely.

The incompleteness of fast-forward support in SFB comes from the first block of the video.
Once this problem is solved, SFB becomes fast-forward-interaction capable. Based on this
observation, a new broadcasting scheme called Short-Range Fast-Forward Broadcasting

(SRFFB) is proposed. The theory behind SRFFB will be presented in the next section.

4.2 Short-Range Fast-Forward Broadcasting Scheme
As mentioned above, there are two ways to implement fast-forward interaction. One of them

is to increase the transmission rate from the VoD server to clients. This technique will be

used to solve the deficiency in SFB.

4.2.1 Channel Design
Assuming that the server allocates B Mbits/sec network bandwidth to a video. The

bandwidth is then divided into K logical channels, where (K + 1) =| B/b | and b is the normal
playout rate of the video. The bandwidth of the first logical channel is 25 Mbits/sec while the
remaining (K — 1) channels are b Mbits/sec. The logical channels are numbered starting at

ZEro.

4.2.2 Video Segmentation and Allocation in SRFFB

SRFFB uses the same method as SFB in segmenting a video. A video file is equally

segmented into N video segment blocks, where
N=2f

When the number of channels is increased by one, the total number of blocks is doubled. In
other words, the size of a block is halved when the number of channels is increased by one.
Let X; denote the jth block of the video (j > 0). The concatenation of all blocks, in the order

of increasing block numbers, constitutes the whole video.

Page 47

Interactive Functions in Broadcast Video-on-Demand

video file = X] | Xz | X3 I I XN_| l XN

Figure 4.2 shows two examples of the segmentation of the same video in SRFFB. From the
figure, we can see that there is a relationship between the blocks of the schemes. For
example, the third block of the 3-channel SRFFB scheme, denoted as X3, is the
concatenation of the two consecutive blocks of the 4-channel scheme, namely X% and X%,

In general, the relationship between the blocks under two different segmentations in SRFFB

is,

K K+1 K+
x5 = XMy | XMy

3-channel 1 2 3 4 5 6 7 8
4-channel 1213|4516 7819 |10]11]12]13]|]14|15716

Figure 4.2. The segmentations of a video in the 3-channel and 4-channel of SRFFB schemes.
A similar relationship between blocks can also be found in SFB.

The allocation of blocks on the channels of SRFFB, however; is quite different from SFB.

The allocation series in SRFFB with K channels is defined by:

2 i=0,

C(f):{Z i=1,
2*¥C@E-1) 2<iS(K-1)

where C({) is the number of blocks that made up the video segment on channel i. Let S;
denote the video segment on channel i. On the first two channels, each segment consists of

two blocks. On the other channels, the segment’s size is two times of that on its previous

channel. In general, the blocks of S; are:

{ X|+X2 i=0

S,‘ =
Xotar, Xotgz, .., Xoimt o, X i30

Page 48

Interactive Functions in Broadcast Video-on-Demand

Figure 4.3 shows an example of SRFFB with three logical channels.

videofle [1 J2[3J4]5[6][7] 8]
Figure 4.3a. The segmentation of a video in SRFFB (3 logical channels).

timeslot # to tt 2 13 t4 t5 t6 t7
channel 0 1 21112111211 211 21{1 2 1 2 1 2
channel 1 3 4 3 4 3 4 3 4
channel 2 5 6 7 8 5 6 7 8

Figure 4.3b. The broadcast schedule of SRFFB (3 logical channels).

4.2.3 Download Sequence in SRFFB
A new client has to catch the next appearance of the first segment S; of the target video.

Once starting the download, consumption of S; starts instantly. Subsequent blocks are
downloaded in an optimistic approach or in a greedy approach, as illustrated in Figure 4.4. In
the optimistic approach, the blocks are downloaded according to the playtime difference
indication. If the playtime difference is smaller than or equal to the recurring period of the
block, then this block needs to be downloaded. In the greedy approach, blocks are

downloaded at their first occurrence as soon as the downloading of the video begins.

timeslot # to t4 t5 16 17

channel 0 1 2

channel 1 3 3 4 3 4
channel 2 5 i : 56l 7 8
Fi ownload sequence in SRFFB.
timeslot # t0 t4 t5 t6 t7

channel 0 1 2

channei | 3

3 4
channel 2 5 g5

i AT

S IS N

Figure 4.4b. An optimistic download sequence in SRFFB.

4.3 Performance Analysis
The implementation of SRFFB is very similar to SFB. The only difference is that the first

two channels of SFB are grouped together to form a single channel with a larger bandwidth in

Page 49

Interactive Functions in Broadcast Video-on-Demand

SRFFB such that the channel can deliver video data at a higher rate. Because of the

similarities in the scheme design, the performance of SRFFB is nearly the same as SFB.

SRFFB guarantees that a client can perform one double-rate fast-forward interaction within
two blocks at any point-of-play of the video. The extra attempts depend on the client’s buffer

contents or the download sequence. The correctness of the guarantee is proved below.

4.3.1 Correctness
Case 1. Fast-forward is performed at the beginning of the video.
At the starting timeslot, S;, which is composed of two blocks X and X5, is downloaded at a_

rate twice of the normal playout rate. As a result, the downloading of S; is able to keep up

with the FF rate for two blocks.

Case 2. Fast-forward is performed during the consumption of the blocks of S;.

Suppose the FF is performed at time ¢ and denote [X| as the playback duration of one block.
Hence, the downloading time of the remaining part of S is (JX] — 7). At time ¢, only #*b video
data of S; is consumed and the size of non-consumed S; is (2|X| — H*b. The playback
duration of the non-consumed S; in FF mode, which is (|X] - (t/2), is longer than the
downloading duration of the remaining part of S;. In the download sequence, the
downloading of S; will start at the same timeslot as S; or just after it. Therefore, during the
FF on S, the downloading of S; has begun. In the worst case, the downloading of S, follows
that of S;. At that time, there is still £*b video data of S, in the client's buffer. During the
consumption of these *b data, r*b/2 data of S, will be prefetched in the buffer. Similarly,
during the consumption of the r*b/2 data of S;, another t*b/4 data S; will be prefetched.
Since the FF rate is twice of the delivery rate of S, the consumption will finally catch up
with the downloading of video data such that no more readahead data in the buffer can be
used to support FF. Within the FF period, the amount of video data consumed will be

2IX| -t +t2 + 4 + /8 + t/16 + ...)*b, which tends to be 2*|X|*b, i.e., the size of two
blocks.

Case 3. Fast-forward is performed during the consumption of blocks other than that of §,.
If no FF is performed during the downloading of S;, then only the X; is consumed and the
full X, will be prefetched in the client's buffer. Meanwhile, the downloading of the

remaining blocks starts concurrently at or after the starting timeslot. This implies that there

Page 50

Interactive Functions in Broadcast Video-on-Demand

will always be at least one block prefetched in the buffer. Thus, the readahead video data in
the buffer can at least support an FF period of [X|/2. With the same argument stated in case
2, the downloading of video data is still in progress during the FF period. Therefore, the
length of the FF period is (JX|/2 + [X[/4 + |X)/8 +), i.e., the playback duration of one block.

Since the FF rate is twice of the normal playout rate, the video data consumed in the FF

period is also two blocks.

Summing up the above three cases, the range of FF supported in SRFFB is two blocks.

4.3.2 Startup Latency
The startup latency is equal to the time between occurrences of the first video segment of the

video. Although the first segment is composed of two blocks, the startup latency is still equal
to the delivery time of one block because the segment is broadcast at twice of the playout

rate. For an M-minute video broadcasting in SRFFB with X logical channels, we have
startup latency = (M / 2K) minutes

4.3.3 Client-side Buffer Requirement

Video segment blocks are prefetched in the client-side buffer to avoid viewing discontinuity.
The maximum data accumulation occurs when all blocks of the video are downloaded
concurrently in the shortest time. Thus, the shortest time to download all blocks is equal to
the time needed to download the last segment, which consists of 2% blocks and is the largest
among the segments. The number of blocks consumed during the downloading period will

also be 257!, Therefore, the client-side buffer requirement (in fraction of video file size) is:

5K _ gkl

Buffer size = %

= 12
Similar to SFB, the client-side buffer requirement of SRFFB is also half the size of a video.

The download sequence for the peak buffer size is illustrated in Figure 4.5. In the figure, the

table is the broadcast schedule of the 3-channel SRFFB scheme. The number of blocks

Page 51

Interactive Functions in Broadcast Video-on-Demand

accumulated in the client-side buffer under the corresponding timeslots is shown in the chart

below the table.

timeslot# | tO |t [t2 | t3|t4|t5[t6 |17 18] 9 |t10)t11
channel 0 _-1]21212121212121212121212

W
~n
[#%]
F-.
[95)
N
W
H
[]
-

channel 1 3 4
channel2 |57} 6|7 | 8|56 |7|8(|5|6[|7]8

Peak Data
Accumulation

o 1 2 3 4 5 6 17
Timeslot Number

Figure 4.5. The download sequence for the peak client-side buffer size required in SRFFB (3 logical channels).

4.3.4 Client-side /O Bandwidth Requirement
In the K-channel SRFFB scheme, there are at most K write-to-buffer operations for

concurrent downloading from all X logical channels, where one of them is at a rate twice that

of the others. The client-side I/O bandwidth requirement, therefore, is (K + 1) * b where b is

the video playout rate.

4.3.5 Overall Performance Comparison with SFB
The scheme design of SRFFB is similar to SFB. Therefore, the performance of these two

broadcasting schemes is very close. Table 4.1 shows their performance comparison.

SRFFB SFB
Number of channeis i i+1
Network bandwidth i+ 1)y*b (i+1)*h
Client-side buffer requirement (% of video file size) 50% 50%
Client-side /O bandwidth requirement G+ 1y*bh (i+1)*b
Startup latency for an M-minute video M2 M/2

Table 4.1. Performance comparison between SRFFB and SFB.

Page 52

Interactive Functions in Broadcast Video-on-Demand

44 Seamless Channel Transition in SRFFB
Channel transition deals with the dynamic allocation of bandwidth to a video. It is believed
that the network bandwidth should be utilized efficiently because it is limited. The utilization

of network bandwidth affects the overall service quality and profitability.

The demand on a video is affected by many factors such as the time of day. If the broadcast
schedule of a video can adapt to changes in demand on the video, the VoD system
performance can be improved. Additionally, the adjustment should be done on-the-fly and
seamlessly such that the existing clients do not experience any viewing disruption when the

broadcast schedule is undergoing a transition.

Means such as the dummy video padding, the choosing of a base number of logical channels
and the aligning of broadcast schedules (which are used in SCT to support on-the-fly
seamless channel transition) are all not needed in SRFFB. The generic design of SRFFB
supports the transition already. Unlike SFB, SRFFB cannot provide an instantaneous step-
down channel transition: This means that the to-be-retumed logical channels cannot be
released at once upon the step-down transition. Before the discussion of channel transitions

in SRFFB, the properties of SRFFB are re-stated below to aid the analysis.

Properties of SRFFB:
1. The number of blocks on the first two channels (channel 0 and channel 1) is two.

Then the size increase doubly to the remaining higher channels.

2. The size of a block in the (K + 1)-channel SRFFB scheme is exactly half of that in the

K-channel scheme.
3. The total number of blocks in the (K + 1)-channel SRFFB scheme is twice of that in

the X-channel scheme.

4. Because of (2) and (3), we have
XKj — XK+1(2j“ b | XK+|2j

where X¥; denotes the block j in the K-channel SRFFB scheme.

Page 53

Interactive Functions in Broadcast Video-on-Demand

Let S™; denote the video segment on channel i of the m-channel SRFFB scheme. From

Section 4.2.2, we have

x™ | xm
X" 4 | X" 42 l l XMt

S
s”;

Now let us consider the segment on channel i of the K-channel SRFFB scheme

where 1 <i<(K - 1), we have

SKI' = XK2i+] | XK2‘+2 I l XK?”

K+l K+l K+l K+l
= X" a@i+n-n | x& Q2 + 1) | xX+ R +2)-1) | x* 22 +2) '

o XX a1y | X o0ty e by the property (4)

K+l K+l K+l K+l
= X"z | X 2 42 | X " sda-1y I X 2 4 4 '

K+ . K+1 |
e I X +(2r+2_|) l X +(2r+2)

K+l K+l Kel Kl
= X"y | x Pty | xx* @43 | xx @+ +)

. I XK+I(2r'+2_ H I XK+1(2|'+2)
K¥l
= S

Hence, the blocks of S¥; is the same as that of S$¥*!,,, ie, S% = sk, sk, = gf+,
SK3 =8*,, ... ,and SKK_I = gk x. In addition, these segments are broadcast on channels of
the same bandwidth. As a result, the broadcast schedule on channel i of the K-channel
SRFFB scheme is equal to that on channel (i + 1) of the (K + 1)-channel SRFFB scheme,

where 1 < i £ (K - 1). Note that the derivation is in the same principle as in SFB because

both have a similar relationship among blocks.

However, the above equality is not applicable to S¥o. By properties (1) and (4), we have

s = XK | x5
— X1<+1 I XK+12 ’ XK+I | XK+I
— SK+I | SKH]

Page 54

Interactive Functions in Broadcast Video-on-Demand

The segment Sy is split into two segments which are broadcast on two channels of different
bandwidth in the (K + 1)-channel SRFFB scheme. Thus, equality cannot be applied to these

three segments.

Next, we shall discuss the step-up/step-down seamless channel transition in SRFFB. It is
presumed that the transition takes place at the end of a timeslot. Figure 4.6 shows the
broadcast schedules of the 3-channel and 4-channel SRFFB schemes for illustration. To aid

the discussion, the block numbers of the 4-channel scheme is added (with brackets) into the

timeslots of the 3-channel scheme.

timeslot # 0 1 2 13 t4 5 16 t7

1121121112111 2|1(211(2|1]211]2

channel 0
(1.2)| (3.4 (1,2)| (3.4)] (1,2){ (3.4) | {(1.2) | (3.4} (1.2} | (3.4} | (1.2) | (3.4} | (1,2} | (3,9) | {1,2) | (3.4}

channell | 3¢5,6) | 4(7.8 | 3(5.6) | 4(7.8) | 3(5.8) | 4(7.80 | 3(5.6) | 4 (7.8

channel 2 | 5 (9,10) (6 ($1,12) |7 (13,14)| 8 (15,16)| 5 (9,10} |6 (11,12)| 7 (13, 14)| B (15, 16)

Figure 4.6a. The broadcast schedule of SRFFB (3 logical channels).

timeslot# | O | 11 |2 j13 |14 (15 |16 | 17 | 1B [19 [t10tF1 (1121113114115

channel 0 |1|2[1]|2|1j2[1|2({1|2]1|2]1|2|1|2[1|2|1|2|1]|2(1|2[1{2[1]2}1|2[1|2

channel | 3({4|3|4|3[4|]3|4:314|314|3(14]3] 4
channel2 | 5 |6 (7| 8] 5|6 |7]|8|5|6|7]8|516
channel3 | 9 (10|11 }12 13|14 |15} 16| 9 (101112113 |14 | 15[16

Figure 4.6b. The broadcast schedule of SRFFB (4 logical channels).

A) Step-up channel transition from K channels to (K + 1) channels in SRFFB

Before a transition, the downloading of the first segment is completed so that we only need to
consider the succeeding video segments. In the above derivation, we showed the equality of
the segments on channel i of the K-channel SRFFB scheme and channel (i + 1) of the
(K + 1)-channel scheme, where 1 <i < (K —1). As aresult, the segment on channels starting
from channel 1 of the K-channel scheme can always be found in the equivalent timeslots and
channel of the (K + 1)-channel scheme. Therefore, the step-up channel transition can be

launched seamlessly and instantaneously.

Page 55

Interactive Functions in Broadcast Video-on-Demand

B) Step-down channel transition from (K + 1) channels to K channels in SRFFB

The step-down channel transition in SRFFB is not as smooth as in SFB. Problems exist in
the coordination of the three segments SX;, $¥*'¢ and $**!;. Practically, the transition should
be triggered at the beginning of a timeslot in the K-channel scheme which 1s the entry point
of new clients. Equivalently, the transition is triggered at the beginning of an even-numbered
timeslot in the (K + 1)channel scheme because the width of a timeslot in the K-channel

scheme is two times that in the (K + 1)-channel scheme.

Without loss of generality, let us assume that the transition takes place at the beginning of
timeslot (2y + 2) of SRFFB with (K + 1) channels. The blocks X**'; and X**', are expected
to be downloaded in timeslots (2y + 2) and (2y + 3) respectively. We note that the
concatenation of timeslots (2y + 2) and (2y + 3) of the (K + 1)-channel scheme equals to the
timeslot (v + 1) in the X-channel scheme. After the transition, it is the start of timeslot (y + 1)
of the K-channel scheme in which XKI and XKz are broadcast in order. This means that XKp_,

alias the concatenation of X**'5 and X**',, is broadcast at the second half of timeslot (y + 1).

The case is tliustrated in Figure 4.7.

timeslot # t(2y) M2 y +:1) t(2y+2) t(2y + 3)
channel O 1 2 1 2 1 2
channel 1 3 ' 4 S 4

Figure 4.7a. The broadcast schedules on channel 0 and channel | of the (K + 1)-channel SRFFB scheme.

timeslot # t(y) t(y+1)
1 2 R 2
(12) (3.4) o e

channel ¢

Figure 4.7b. The broadcast schedule on channel O of the K-channel SRFFB scheme.

As a result, an existing client cannot download XK+]3 and XK+]4 at the corresponding timeslots
of the new stepped-down broadcast schedule. Therefore, the to-be-returned channel has to
deliver these two blocks in order to finish the step-down channel transition seamlessly. Table
4.2 compares the holding time of the to-be-returned channel for a 120-minute video under

different step-down channel transitions in SRFFB and SCT.

Page 56

Interactive Functions in Broadcast Video-on-Demand

Holding Time {minutes)
Channel Transition SRFFB SCT
From 7 to 6 19 248
From6to 5 3.8 =77
From5to4 - 15 212
From4to3 15 2z 17
From3 to 2 30 20

Table 4.2. The holding time of the to-be-returned channel under step-down channel transitions in SRFFB and
SCT.

After the transition, the size of a video segment block is doubled. The fast-forward
interaction support to the clients existing before the transition will still apply to the block size

of the old broadcast schedule.

4.5 Pause and Resume Interactions
As explained in Section 3.5, the support of pause and resume interactions in broadcast

schemes depends on the client-side buffer size.

For SRFFB with K channels, the number of blocks of a video is 2% and the largest segment is
broadcasting on the last channel. The recurring period of the blocks of the last segment is
21 Clients who missed the downloading of one of these blocks have to wait 2% timeslots
for its next occurrence. During the pause period, a client may miss the downloading of one
of these blocks. Therefore, the playback duration of the video data in a client-side buffer
needs to be long enough to cover 25! timeslots. In other words, the client-side buffer size
has to be at least as large as 2K-1 blocks, which 1s half of a video file size in SRFFB. In
Section 4.3.3, we show that the client-side buffer requirement for SRFFB with K channels is

half of a video file size. Therefore, SRFFB supports pause and resume interactions.

The implementation of pause/resume interaction in SRFFB is the same as in SFB. Thus, it is

skipped here.

Page 57

Interactive Functions in Broadcast Video-on-Demand

4.6 Summary

Fast-forward (FF) operation consumes video data at a rate higher than the normal playout
rate. To prevent buffer run out of data, the transmission rate of video data to clients has to be
increased. Under this pnnciple, the Short-Range Fast-Forward Broadcasting (SRFFB)
scheme for VoD service is proposed in this chapter. In SRFFB, the first two video segment
blocks are delivered to clients at a rate twice to the normal playout rate while the others are
broadcast at the normal rate. Besides, blocks are prefetched in the client-side buffer. As a
result, fast-forward operation can be performed at any point-of-play of the whole video. The
FF interaction in SRFFB supports a range of two blocks. Furthermore, SRFFB also supports

instantaneous pause/resume interaction and on-the-fly seamless channel transition.

Page 58

Interactive Functions in Broadcast Video-on-Demand

Chapter 5: Mirrored-Pyramid Broadcasting Scheme

5.1 Client-side Buffer Requirement

In the previous chapters, we have discussed several different broadcasting schemes, namely
Fast Data Broadcasting (FDB), Skip-Forward Broadcasting (SFB) and Short-Ranged Fast-
Forward Broadcasting (SRFFB). These broadcasting schemes can achieve short startup
latency under limited network bandwidth. SFB and SRFFB are also designed to support
several VCR interactions. However, the client-side buffer requirements in these three
schemes are considerably large and approach to half of a video file size. For a 120-minute
MPEG-1 video, the buffer required will be 675 Mbytes. This large buffer size will likely

dominate the cost of set-top boxes located in the clients” homes.

In this chapter, a broadcasting scheme called Mirrored-Pyramid Broadcasting (MPB)

scheme will be presented. It will be shown that MPB can lower the client-side buffer

requirement to one-third of a video file size.

5.2 Mirrored-Pyramid Broadcasting Scheme

In this section, the implementation and scheme design of MPB will be presented.

5.2.1 Channel Design
With B Mbits/sec network bandwidth allocated to a video, we shall divide the bandwidth into

K (= ng J) logical channels of 26 Mbits/sec each, where b is the normal video playout rate.

To broadcast the video over the K dedicated channels, the video file is partitioned into K

video segments each being broadcast on a designated channel. For the ease of segmentation,

K only needs to be an odd number.

5.2.2 Video Segmentation and Allocation
Next, we shall decide the allocation series, i.e., how many video segment blocks are to make

up the video segment on each channel, and then calculate the total number of video segment

Page 59

Interactive Functions in Broadcast Video-on-Demand

blocks in the scheme. Let us denote the segment on channel i as S; and the number of blocks

of video segment i as C({). For MPB with K channels, the allocation series is defined by:

1 Q=0
ClE =< 2*C(GE-1) 1<i<p,
Ci-1)/2 p<isK-1

wherep = (K-1)/2 and K >2

C(i) is also a measure of the recurring period of S;. In the rest of this chapter, we shall call
the channels from 0 to (p — 1) as the leading channels, the channels from (p + 1) to (K- 1) as

the trailing channels and channel p as the peak channel.

For any video segment (or equivalently the set of video segment blocks) on the leading
channels and the peak channel, the segment is two times larger than the one on its previous
channel. However, instead of monotonically doubling the segment size, the segmentation
algorithm changes to halving once the segment size reaches a peak value. More precisely,
the size of segments on the trailing channels will shrink by a factor of half successively.

Thus, the segmentation model of the video is a pyramid with its mirror image, as shown in

Figure 5.1.

A

segment size

»
0 ' J K-1 segment number

Figure 3.1. The abstraction of segmentation in Mirrored-Pyramid Broadcasting scheme.

Page 60

Interactive Functions in Broadcast Video-on-Demand

Define N be the total number of blocks. From the allocation series, we have

N = 1+2+2%+ . +27' 427427 ¢ 4224241
= 2*(1+2+2% 4. +27 D)+ 2
= 2@ D+
= 3%2_2

Given K channels, the video file has to be equally divided into (3 * 27 — 2) blocks, where
p= (K—-1)/2 The concatenation of all blocks constitutes the whole video. Figure 5.2
shows video segmentation under MPB for 3 channels, 5 channels and 7 channels
respectively. From the figure, we can see that there is no regular relationship between the
blocks in different segmentations. As a result, channel transition is difficult to be

implemented in MPB and is not to be included in the scheme. Figure 5.3 shows the broadcast

schedule of the 5-channel MPB scheme.

3-channel 1 2 3 4
5-channel 1 2 3 4 5 6 7 8 9 10
Tchannel | 1|23 14{5]6]|7|8|9]10)11|12{13|14|15116|17|18]18|20]21|22

Figure 5.2. The segmentation of a video under MPB for 3 channels, 5 channels and 7 channels.

So S 52 S; S4
t]l213]4 5[617'8 9 10|

Figure 5.3a. The segmentation of a video in MPB (5 logical channels).
timeslot# 10 H t2 13 t4 t5 16 17 18 19 t10t11 t12 113 t14 t15 t16 117 t18 119
channelOf:j.:.._.|1|1|1]1|1,1|1I1I1l1|1|1|1|1{1l1|1|1|1]¢2b
channeurzj;],;,sfﬂz[3]2]3]2|3|2|3|2[3|2|3]2]3]2|3|2[3[
channelzl4|5[6|7|§@| 5;|'-:_js_“|gj;z,:'|4|5|s]7|4]5|6|7|4,5|6|7]
channel3[8989 [8[9[8[9][8]9[8[9]8:]9 8|98 9|89
channei4f10’1o|1o|10[10]10[10]10[10!10]10|1o|1o|10|10|1o|1o|_;—.;1-&g;]10[1o[

Figure 5.3b. The broadcast schedule of MPB (5 logical channels).

5.2.3 Download Sequence in MPB

In any other broadcasting scheme, new clients have to wait for the occurrence of the next

instance of the first segment of the target video. Once downloading of the first segment

Page 61

Interactive Functions in Broadcast Video-on-Demand

begins, playback of the video starts instantly. Download of a subsequent segment appearing
on the next channel begins only if missing of it will result in either viewing discontinuity or

just-in-time downloading. A download sequence example (the shaded blocks) of MPB is

illustrated 1n Figure 5.3b.

Let us recall that the transmission rate in the channels of MPB is twice of the normal playout
rate. This means that a block collected in one timeslot can be played for two timeslots. On
the other hand, the size of a segment on a channel is at most twice of that on the preceding
channel. With these two conditions, we can see that the playback duration of a segment is
never less than the recurring period of the segment on the succeeding channel. In other
words, the playback duration of a segment can at least cover the time frame occupied by one
suitable succeeding segment on the next channel. Therefore, at any point-of-play, the client

only needs to download at most two video segments from two consecutive channels

concurrently.

5.3 Performance Analysis in MPB
As before, we shall use startup latency, client-side buffer requirement and client-side /O

bandwidth requirement as the performance metrics.

5.3.1 Startup Latency

When a client misses an occurrence of the first video segment Sy of the requested video,
he/she needs to wait for the next occurrence of the segment. To broadcast an M-minute video
over (2p + 1) channels, the number of blocks is (3*%27 — 2). A video file size is (M*b) and the
size of each block is (M*b)/ (3*2” - 2), where b is the video playout rate. Since the startup

latency is equal to the time to transmit Sp which has one block only, we have:

block size

2b
M

2%(3%27 -2)

startup latency =

Page 62

Interactive Functions in Broadcast Video-on-Demand

5.3.2 Client-side Buffer Requirement

In MPB, clients need to download segments from at most two channels all the time. When
the client is downloading segments from channel i and channel (i + 1), the consumption of
blocks on chaﬁnel (i + 1) will not start until the consumption of blocks on channel i
completes. Once the consumption of S;,; starts, the downloading from channel (i + 2) will
begin. This dual-channel downloading mechanism means that only the blocks from two
consecutive channels need to be kept in the client-side buffer at any one time. Therefore, the

maximum size among all pairs of consecutive video segments is the client-side buffer

requirement.

With (2p + 1) channels, the peak buffer size is required in MPB when the largest pair of
segments are downloaded from two channels in the shortest time. Since the segments on
channel (p — 1) and channel p are the largest, it is sufficient to consider the buffer required
while these two channels are being read. The sizes of video segments on these two channels
are 27" and 2° blocks respectively. Within the downloading period of channel p, the number

of blocks consumed is equal to that on channel (p — 1). Thus the size of buffer required (in

units of blocks) is

Buffer size = (2 '+27) - 277!
= 2

Figure 5.4 shows the buffer requirement in MPB for different number of channels. From the
figure, we can see that the buffer requirement in MPB converges to one third of a video file.
Practically, a buffer size of 36.4% of the video size will support videos broadcast over four or
more channels. The service provider can safely scale up the number of channels for popular

videos, without worries on the buffer capacity of the clients’ set-top boxes.

5.3.3 Client-side I/0 Bandwidth Requirement
The I/O bandwidth requirement at the client side is the total I/O bandwidth required for wnite-
to-buffer operations. In MPB, there are at most two concurrent write-to-buffer operations

from two logical channels. Therefore, the client-side I/O bandwidth required is

2%2b =4%p

Page 03

Interactive Functions in Broadcast Video-on-Demand

0.9
0.8
0.7
0.6
0.5 4

0.4 \
0.3 -

0.2 1
0.1 1

Buffer (% of video file size)

3 5 7 9 1 13 15 17 19 2
Number of logical channels

Figure 5.4. The client-side buffer requirement of MPB.

54 Scheme Enhancement

Although MPB can reduce the client-side buffer requirement, the network bandwidth
required is farge. It is because the channels of MPB are operating at twice the video playout
rate. In this section, we shall present a technique to reduce the network bandwidth

requirement of MPB by packing the segments in the trailing set of channels into one.

5.4.1 Channel-Packing

Recall that from the peak channel onwards, the size of video segments is reduced by half
successively. If the size of S; is 2 blocks, then the size of S, will be 2! blocks. In MPB,
each video segment is delivered in half of its playback duration. Thus, the time to deliver S;,,
is equivalent to the playback duration of 22 blocks, which is one quarter of the playback

duration of S;. Next, let us consider the possible starting times of the consumption of S;.

L. If the starting time of the consumption of S; ts aligned with the beginning of the
appearance of S; on channel (i + 1), then the consumption period of S; will cover the

time spanned by four instances of integral S;,.

2. | If the starting time of the consumption of S; is not aligned with S, then the

consumption period of S; will cover the time frame occupied by three integral S, and

one partial S;;.

Page 64

Interactive Functions in Broadcast Video-on-Demand

In both of the above cases, starting from the peak channel, the playback duration of any video
segment will cover four instances of suitable succeeding segment on the next logical channel.
These cases are illustrated in Figure 5.5a. Let us consider the shaded video segment S; which
consists of blocks 4 to 7 on channel 2. In the best case, consumption of this segment starts at
t4 or t6 and finishes at t11 or t13. The consumption period of S, will cover the instances of
Ss starting at 14/16/t8/t10 or at t6/t8/t10/t12. In the worst case, consumption will start at £5 or
t7 and will finish at 112 or t14. Again, the consumption period of S; will cover four instances
of S; which start at 16/t8/t10/t12 or 18/t10/t12/t14. In all cases, the number of instances of
suitable succeeding S3 covered is four. As the client does not need choices of more than two
suitable instances of S; to download, half of the instances of S; can be omitted safely. The

remaining two suitable instances of S; left after the omission will be sufficient. Similar

argument can be applied to S4 while viewing S;.

timeslot# t0 H 12 13 t4 t5 t6 7 18 19 t10 t11 112 t13 114 t15 116 t17 t18 t19
channelOl‘I|1|1|1|1|1|1|1|1l1|1l1]1|1'1|1|1|1|1|1'12!)
channellr2l3l2[3]2|3I2[3|2|3[2,3'2'3‘2[3'2,3,2[3[
channel2 [4 [5] 6 | 7 fasRERlieepm] 4 |5 |6 [7]4|5({6]7]a[5]6]7]
channel3 [8:T 9789 [8:[9[8]9o[8]9|8][9]8i9 8 9][8]9]8]9]
channe14[1o[10|1o|1o|10[10]10[10]10|10[10]10]10|10|1o]10]10]10]10]10|

Figure 5.5a. The broadcast schedule of MPB with 10 video segment blocks.

TR

timeslot# 10 t1 t2 t3 t4 15 t6 t7 t8 t9 t10 t11 t12 t13 t14 115 116 117 118 119
channe10|1|1|1|1|1|1|1|1,1|1[1]1[1|1|1I1I1|1L1|1|Izb
channe11|2|3|2|3|2[3|2]3]2[3|2|3|2|3|2]3|2|3[2|3]
channel2l4|5l6|7I4I5[6|7|4]5,6|7|4]5'6[7[41ﬂ6[7,
channel 3 [._‘_‘_3_'[.9";:10"| [fi.s_"l_"gf‘lqu_l f-ev‘lf‘f’!.‘l"o?l [“'s il g 1~1.Q’| [;3;‘;[59 ’H’_‘O‘]]

Figure 5.5b. The broadcast schedule of EnMPB with 10 video segment blocks.

With (2p + 1) channels, the peak channel in MPB is channel p. Suppose we now omit half of
the instances of segment broadcast on the channel right after the peak channel. As illustrated
in Figure 5.5a, only the shaded video segments on channel 3 (the channel right after the peak
channel) are broadcast. Then, half of the timeslots in channel (p + 1) is freed. The capacity
of the contiguous freed timeslots on channel (p + 1) is the same as the size of S,;), which can

be expressed (in units of blocks) as

Page 65

Interactive Functions in Broadcast Video-on-Demand

Cp+1l) = Clp+2)+C(p+2)
= Clp+2)+C(p+3)+C(p+3)
= Clp+2)+Cp+3)+Clp+4)+... +C(2p)+C(2p)
2p 2
= ¥ cy) +cep > ¥ ¢y
j=p+2 J=pt2

The above shows that the capacity of the freed timeslots is larger than the sum of the size of
segments on all channels after channel (p + 1). This allows us to make use of the vacated
timeslots in channel (p + 1) to accommodate all the segments on channels after channel
(p + 1), as shown in Figure 5.5b. The segments on the trailing channels can then be packed
together to form a single large contiguous segment of size (27 — 1) blocks. In other words, all
segments on the trailing channels (consists of p channels) are now packed and broadcast on
one logical channel, channel (p + 1). After channel-packing, the recurring period of S, in
the new MPB will be the same as S,. The new MPB scheme is referred to as Enhanced

MPB (EnMPB) in the rest of the chapters. The total number of channels required in EnMPB
becomes 2p + 1)-p+ 1,01, p+ 2.

5.4.2 Client-side Buffer Requirement in EnMPB
Since the broadcast schedule of EnMPB is different from MPB, the client-side buffer

requirement in EnMPB may not be the same as MPB. Hence, it is necessary to analyze the

buffer requirement in EnMPB.

For EnMPB with (p + 2) channels, the broadcast schedule in the first (p + 1) channels is
inherited from MPB. Therefore, the maximum size of buffer required during the
downloading from these channels is 2° blocks, which occurs when the segments on channel

(p — 1) and channel p are being downloaded at the same time.

Next, let us consider the size of the buffer required during the downloading from the last two
channels, p and (p + 1). The recurring periods of S, and S, are both 2° timeslots. The
consumption peried of S, will always cover the time spanned by two feasible instances of
Sp+1 to be downloaded. To reduce the buffer required, the second, instead of the first, feasible
Sp+1 can be chosen. This implies that the downioading of S, is not to be started at the same
timeslot when downloading of S, starts. Suppose that the consumption of S, starts at time ¢

and ends at (t + 2*2”). If we have started the downloading of Sp., before (+ + 27), the

Page 66

Interactive Functions in Broadcast Video-on-Demand

downloading will be finished before (r + 2*2°). Hence the earliest time to download S,
shall be (¢ + 2°). In fact, between (t + 27) and (t + 2*2”), there will always be another instance
of S,.1 broadcast on channel (p + 1). Therefore, the client can safely refrain from

downloading the first instance of S, appearing before (7 + 2°).

Now let us assume that Sp,; is downloaded at (¢ + 2°). In the worst case, at this timeslot the

number of prefetched blocks of S, in the client-side buffer is 2°~ because:

1. If the number of blocks of S, in the buffer is more than 27~ ! the playback duration of
these blocks will be more than 2° timeslots. Then the downloading of Sp,; will be
finished before the blocks of S, in the buffer can be exhausted. This implies that the

Sp+1 downloaded is not the second feasible instance which contradicts our assumption.

2. If the number of blocks in the buffer is smaller than 27~ 1, the blocks of S, in the buffer

will be exhausted before the downloading of S, is finished.

Therefore, there are at most an accumulation of 27" video segment blocks of S, at the time

downloading of the second feasible instance of 5, begins.

We now move on to calculate the buffer required during the downloading from channel p and
channel (p + 1). The size of Sy is (2 — 1) blocks. Before downloading S,.;, there are at
most 27" readahead blocks of S, left in the buffer. During the downloading of S,.;, the

number of blocks consumed is (2° —=1)/2. As a result, the buffer required (in units of blocks)

is

Buffersize = (- 1)+27" —(2*-1)/2
= 2-1+27 2 112
= 2°_112

< ¥

The buffer required for downloading from channel p and channel (p + 1) is less than 27
blocks (which is the buffer required for downloading from channel (p — 1) and channel p).

Thus, the client-side buffer requirement in EnMPB is also 27 blocks.

Page 67

Interactive Functions in Broadcast Video-on-Demand

5.5 Performance Comparison

In this section, the results of the analysis on the performance between EnMPB and MPB
schemes are presented. Then, the performance of EnMPB, FDB (Fast Data Broadcasting)
and SFB (Skip-Forward Broadcasting) are compared. In the analysis, the playback duration

of the whole video 1s set to 120 minutes.

5.5.1 EnMPB and MPB

A) Network Bandwidth Requirement

The first analysis between EnMPB and MPB focuses on the network bandwidth
requirements. As shown in Figure 5.6, under the same segmentation approach, the network
bandwidth required in EnMPB is smaller than MPB. This is because EnMPB has a better
broadcast schedule such that the number of logical channels required is reduced. The saving

of channels in EnMPB can be up to about 50%.

25

aMeB
20 1 m EnMFB
15 4

Number of logical channels

4 10 22 46 94 190 382 766 1534 3070 6142
Number of video segment blocks per video

Figure 5.6. The network bandwidth requirements in MPB and EnMPB under the same segmentation.

B) Startup Latency

Figure 5.7 shows the startup latency for both schemes under the same number of channels
allocated per video. The startup latency in EnMPB is significantly less than MPB. The
reason is that the new broadcast schedule of EnMPB makes a better channel utilization. The
number of segments of EnMPB is about twice than that of MPB, making the size of first
segment much smaller. As the startup latency is in direct proportion to the size of the first

segment, the startup latency in EnMPB is much shorter than MPB.

Page 68

{nteractive Functions in Broadcast Video-on-Demand

7
R ——FB
g —A— EMPB
=
g
&
8
k=
[=%
3
g
v}
0 —a r— - .
5 7 9 13 15 17 19 2

Number of logical channels per video

Figure 5.7. The startup latencies in MPB and EnMPB.

C) Client-side Buffer Requirement
The client-side buffer requirements for the schemes with the same number of logical channels

allocated per video are shown in Figure 5.8. Again, EnMPB has a better performance than

MPB. The buffer requirement is smaller in EnMPB, especially when the number of channels

per video needs to be kept small.

0.42
0.40 .
n —e—NMFB
@ ‘ —A— EnMPB
w
= 0.38 -
g
9
> 0.36 -
3
B
J‘:j 0.34 .
& ek
5
5] .
0.32
0.30 - v - - - . - - : ’ : T r - - -
5 7 g 11 13 i5 17 19 21

Number of logical channels per video

Figure 5.8. The client-side buffer requirements in MPB and EnMPB.

Page 69

Interactive Functions in Broadcast Video-on-Demand

5.5.2 EnMPB, FDB and SFB
Client-side buffer requirement, client-side I/O bandwidth requirement and startup latency are

employed as the performance metrics for comparison among EnMPB, FDB and SFB.

A) Client-side Buffer Requirement
Figure 5.9 shows the client-side buffer requirements under different network bandwidth per
video. It can be observed that EnMPB requires the smallest buffer size. As the bandwidth

allocated to a video increases, the buffer requirement in FDB and SFB are always 50% of a

video file size while EnMPB drops to 34% quickly.

1

9
0 —A— EnMPB
0.8 4 —o—FDB
0.7 1 —»—SFB

0.6 -

05 4 a &= a8 a8
o -‘\A\A‘

0.3
0.2 -
0.1 1

0

Buffer (% of video file size)
[+ 3
[3
[+ 3

8 8 10 12 14 16
Network bandwidth (in multiples of video playout rate)

Figure 5.9. The client-side buffer requirements in EnMPB, FDB and SFB.

B) Client-side I/O Bandwidth Requirement

The client-side I/O bandwidth requirements for the schemes are shown in Figure 5.10. It can
be seen that the I/O bandwidth requirements in FDB and SFB grow linearly with the
allocated network bandwidth. It is because both schemes need to download video data from
all logical channels concurrently in order to provide a continuous viewing service. The
bandwidth requirements in FDB and SFB, therefore, are unbounded. More importantly,
EnMPB does not need more IO bandwidth regardless of changes in the network bandwidth
allocated for a video. That is, the download capability of the installed set-top boxes will not
hinder the service provider from increasing the bandwidth allocated to a wvideo. The /O

bandwidth in MPB is the least among the three schemes.

Page 70

Interactive Functions in Broadcast Video-on-Demand

18

16

14

12 -

10 -

Client-side 1/O bandwidth
(in multiples of video playout rate)

F-Y
b
I8
18
3
|+
8

0 . -
6 8 10 12 14 16
Network bandwidth (in multiples of video playout rate)

Figure 5.10. The client-side I/O bandwidth requirements in EnMPB, FDB and SFB

C) Startup Latency

The performance in startup latency for the three schemes is shown in Figure 5.11. We can
see that the startup latency of EnMPB is the largest among the schemes. It is because the
bandwidth per channel in EnMPB is twice that of FDB and SFB. With the same network
bandwidth, the segmentation in EnMPB is coarser than the others. Since the startup latency
is directly proportional to the size of the first video segment, the startup latency in EnMPB is

inevitably larger than the other two schemes.

1000
900 -
800 -
700 -
soO] 0N e e
500 -
400 -
300

Startup latency (seconds)

200 -
100

0 . - x g =

6 8 10 12 14 16
Network bandwidth (in multiples of video playout ratc)

Figure 5.11. The startup latencies in EnMPB, FDB and SFB.

Page 71

Interactive Functions in Broadcast Video-on-Demand

When the network bandwidth allocated to a video is increased to eight times the video
playout rate, the startup latencies of all schemes will all be brought down to the order of
minutes. which should well be acceptable to home video consumers. Therefore, the absolute
differences in startup latency among schemes become much smaller once a reasonable

network bandwidth is allocated.

5.6 Fast-Forward Interaction in EnMPB

In EnMPB, the video data is delivered at twice of the normal video playout rate. Thus, by
nature EnMPB should be able to support double-rate fast-forward interaction. Although all
video segments are delivered at a rate higher than normal, the scheme is still unable to

support fast-forwarding throughout the whole video. Let us take a look at Figure 5.12.

timeslot# t0 t1 2 t3 t4 15 6 17 (8 19 t10 t11 t12 113 114 115 116 117 18 119
channe|o|1|1|1|1|1|1|1|1|1[1[1|1|1,1|1]1[1,1f1|1|32b
channelll2I3[2l3|2|3[2'3'2'3|2l3l2l3|2l3|2L3|2|3r
channe12|4|5|6]7[4|5|6|7|4|5|6|7|4|5|617[4]5[6]7T
channel 3 [8 | 9 [10] [8] 9[10] [8[9]10] [8]9]10] |8]9[10] |

Figure 5.12. The broadcast schedule of EnMPB (4 logical channels).

Figure 5.12 is an example of EnMPB broadcast schedule. If all video segment blocks are
consumed at the double playout rate, EnMPB will behave similarly to FDB in which a block
can be playback for one timeslot. Recall that in FDB, downloading video segments from all
logical channels concurrently is needed in order to ensure viewing continuity. In EnMPB,
only two logical channels are monitored at any one time. Thus, during the FF period, the

buffer may run out of data before refilling.

Next, we shall derive the range within which double-rate fast-forward is supported by

EnMPB. Note that the just-in-time downloading restriction is relaxed during the FF period.

Case I: FF 1s performed during the consumption of the video segment on the last

channel

Page 72

Interactive Functions in Broadcast Video-on-Demand

In any download sequence, a video segment is downloaded in whole every time. Thus before
the start of FF interaction, the last video segment is either already prefetched in the buffer or

being downloaded. In both scenarios, FF can be performed within the whole last video

segment continuously.

Case 2: FF i1s performed during the consumption of the video segment on the
second-last channel

The video segments on the last two channels have the same recurring period. A new instance

of the last video segment will be broadcast on the last channel during the FF period or just

after the FF period of the second-last video segment. In both scenarios, the buffer will not

run out of data. Thus, FF can be performed within the last two video segments continuously.

Case 3: FF is performed during the consumption of the video segment on a channel
other than the last two channels.
Suppose the downloading of the video segment, say S;, starts at timeslot r. Due to the fact
that just-in-time downloading is not allowed in the download sequence during the normal
playback, the downloading of a video segment must start before the consumption of the
segment. Hence, in the worst case, the consumption of S; may start at one timeslot just after
the starting time of its downloading, i.e., at timeslot (¢ + 1). Since the size of S; is 2 blocks,
the consumption of S; will finish at timeslot (z + 1 + 2*2). Applying the same principle, the

downloading of S;;; may start at timeslot (¢ + 2*2’).

Now let us assume the FF period on S; lasts for y timeslots. In order to prevent viewing

discontinuity, the playback (including FF period) of S; should not be allowed to be finished

before (t + 2*2’). Thus, we have

(+1) +y +2%2—y) = 1+2%2
l+y-2y =2 0
1z vy
y £ 1

In this worst case, the FF range on S; can only last for one timeslot, or the client can only play

one block in FF mode.

Page 73

Interactive Functions in Broadcast Video-on-Demand

After the consumption (included FF) of §;, video segment S;,, starts to be downloaded and be
playback instantly. The downloading of S, will start either at the same time with S;;; or just
after the downloading of S;;;. Since the video data is always delivered at twice of the playout
rate, the FF interaction can be performed again. For instance, the client performs FF on S;;,
immediately after the consumption of 5; completes. Let us assume that the downloading of
S;+1 starts at timeslot t;. The downloading of S, in the worst case, starts at timeslot

(t; + 2"*"). Supposing that the FF on S, lasts for y; timeslots this time, we have

h+2*CM -y 4w = 4+ 2"

2*21'4-] - 2y| +y1 2 2i+|
2l-+] _ yl 2 0
yl S 2i+l

The feasible FF range in the second attempt is 2*' timeslots which is much longer than that in
the first attempt and is equal to the delivery time of S;,;. This means that the FF interaction

immediately after the first attempt can be performed within the whole S;;) video segment.

Summing up the three cases, the clients can always perform double-rate FF for one block. In
EnMPB, the FF interaction can be performed more than once easily in all the download
sequences. In SRFFB, however, the second and subsequent attempts depend on buffer

content and are unlikely to be successful because the video data is delivered only at the

normal playout rate.

5.7 Summary

The Mirrored-Pyramid Broadcasting (MPB) scheme can reduce the client-side buffer
requirement down to one-third of a video file size. As the video data is broadcast at a rate
twice of the playout rate, clients only need to.download video data from no more than two
logical channels simultaneously at any time. Thus, the I/O bandwidth and the buffer
requirements in the set-top boxes are both minimized. Furthermore, an enhancement to MPB
is also given to reduce the network bandwidth requirement to around half of the original

without affecting the other performance metrics. The enhanced MPB scheme also supports

fast-forward interaction.

Page 74

Interactive Functions in Broadcast Video-on-Demand

Chapter 6: On Minimizing Client-side Buffer in SFB and SRFFB

6.1 Introduction

In the previous chapter, a new broadcasting scheme called Enhanced Mirrored-Pyramid
Broadcasting (EnMPB) which can reduce the client-side buffer requirement to one third of a
video file size is presented. However, unlike the other two broadcasting schemes,
Skip-Forward Broadcasting (SFB) and Short-Range Fast-Forward Broadcasting (SRFFB),
EnMPB does not support channel transition. This means that EnMPB would not adjust the
network bandwidth allocation so as to adapt to the changes in the demand of the videos. On
the other hand, both SFB and SRFFB apparently require a large client-side buffer size of half

of a video file. Therefore, if we can reduce the buffer requirements in SFB and SRFFB, then

these two schemes will be more practical and competitive.

Next, a technique to minimize the client-side buffer requirement for optimistic downloading

sequences in SFB will be discussed. The same technique can be applied to SRFFB and the

results should be similar.

6.2 Small-Buffer Skip-Forward Broadcasting (SB-SFB) Scheme

Recall that in SFB, video segment blocks are prefetched into the client-side buffer to avoid
viewing discontinuity. The maximum data accumulation occurs when the blocks are all
prefetched in the shortest time. This is because the buffer required is computed as the
difference between the total number of blocks of a video and the number of blocks consumed
during the whole downloading period. Therefore, if we can elongate the shortest download
sequence length, or shortest-length in brief, to download all the blocks, the number of blocks

consumed during the lengthened downloading period will increase and hence the buffer

requirement will decrease.

in SFB, the shortest time to download all the blocks occurs when the video segments on all
channels are downloaded concurrently. This is equal to the time needed to download the

video segment on the last channel as this video segment is the largest. Thus, if we can ‘make’

Page 75

Interactive Functions in Broadcast Video-on-Demand

a larger video segment out of the existing video segments without violating the principle of
viewing continuity, the shortest-length will increase.

In SFB with K logical channels (where K > 2), the video file is equally divided into 251 video
segment blocks. The number of blocks that made up the video segment on channel i, denoted

as C(i), follows the function below:

1 i=0,

C(i)-—-{l i=1,

2+ C(i-1) 2<i<(K-1)

Each video segment is then periodically broadcast on a channel. Figure 6.1 shows the

broadcast schedule of SFB with four channels.

timeslot# [0 [t1 |2 |13]|t4 |t5)6 |7 |t8B]| t9 [t10]t11|t12[t13|114|t15
channelQ | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
chamnell | 2|2]| 2|2 |2|2}2|2|2|2212]|2|2(2]| 2
channel2 | 3| 43| 4314|3434 (3[4]13]4]|3]|4
channel3 | 5(6|7 |8(|[5]|6|7|8|5|6|7|8|]5]|6]7]|8

Figure 6.1. The broadcast schedule of SFB (4 logical channels).

Suppose we now add one more logical channel to the K-channel SFB scheme. This extra
channel (i.e., channel K) is also used to broadcast the last video segment but with C(K — 1)/2
(= 2%} timeslots difference lagging behind that on channel (K - 1). This means that the

253 timeslots relative

broadcast of the last video segment on channel X is shifted to right by
to that on channel (K — 1). The broadcast of segments on the existing channels remains the
same. We call this new scheme as Small-Buffer Skip-Forward Broadcasting (SB-SFB).
The broadcast schedule of SB-SFB is shown in Figure 6.2. In the figure, channel 3 and

channel 4 broadcast the same video segment but with a timeslot difference of two.

timeslot # | tO | ti tslt6 | t7 | B9 |10 1121113114115
channel 0 1 1 1 1 1 1 1 1 1 1 1 1 1
channel 1 212 2122121222222 2
channel2 | 3 | 4 413|434 ;3|4]3]4)3]4
channel 3 [L5%16¢): o |85 6l7|8[5|[6]l7]|8|[5]|6{7]8
channel4 | 7 | 8 [i5-[oBsf 748 5| 617 [8| 56| 78|56

Figure 6.2. The broadcast schedule of SB-SFB (5 logicai channels).

Page 76

Interactive Functions in Broadcast Video-on-Demand

With the extra logical channel, the recurring period of the last segment in SB-SFB becomes
the same as that of second-last video segment. Let us denote the video segment on logical
channel 7 as S;. In the broadcast schedule of SB-SFB with (X + 1) channels, there is always a
new occurrence of Sk, either on channel (K — 1) or on channel K, comes after each instance
of Sx; on channel (K — 2). As a result, the downloading of Sk.; can always start after that of
Sk.2 and the downloading period of them will not overlap. These two segments, Sk.; and Sk,

can thus be viewed as a single large segment spreads over two channels.

In SB-SFB with (K + 1) channels, where K > 2, clients only need to download video
segments from the first (K — 1) channels concurrently in the worst case since the last two
channels are both used to deliver Sk.;. The shortest time to download all segments is equal to
the sum of the delivery time of Sk., and Sg.,, i.e., the delivery time of (253 + 2%%) blocks.

Hence, the client-side buffer requirement (as a fraction of video file size) in SB-SFB is

2K—3 + 2K—2

Buffer size = 1- e

2K _ (K3 4 pK-2y
H K-

2K3%22_1-9)
2K—I

2K—3

ZK-]

At the cost of one more logical channel, the buffer requirement in SB-SFB is reduced to one
quarter of a video file size, which is a saving of 50% relative to SFB. Besides, the client-side

I/O bandwidth requirement in SB-SFB is less than SFB by a bandwidth equivalent to one

logical channel.

Page 77

Interactive Functions in Broadcast Video-on-Demand

70

D
[=]
1

[ne] [28] P
o =) o g
L] L L

Startup latency (minutes)

—_
[=
X

2 3 4 5 6 7 8 9 10 11
Number of channels

Figure 6.3. The startup latencies in SB-SFB and SFB.

Figure 6.3 shows the startup latencies in SB-SFB and SFB versus the number of logical
channels employed for a 120-minute video. The startup latency in SB-SFB is longer than that
of SFB under the same number of logical channels, but is equal to that of SFB with one
channel less. This is because SB-SFB, segmented a video in the same way as SFB, used one
more channel than SFB in order to reduce the client-side buffer requirement. Under the same
number of logical channels, the difference in startup latency between the two schemes

becomes smaller when the number of channels increases.

6.3 Interactive Operations in SB-SFB
In Chapter 3, we presented how SFB supports skip-forward interaction, on-the-fly seamless
channel transition and pause/resume interaction. Since the buffer requirement .and the

broadcast schedule of SB-SFB are different from SB-SFB, it is necessary to re-evaluate the

support of these three features in SB-SFB.

6.3.1 Skip-Forward Interaction

In SFB, the first two video segment blocks (or equivalently the first two video segments) are
downloaded concurrently. After that, the consequent blocks begin to be prefetched. In such

a download approach, the succeeding block with reference to the current point-of-play is

Page 78

Interactive Functions in Breadcast Video-on-Demand

always prefetched in the buffer or being downloaded (this case only happens in the second

block). This is the reason why SFB can provide skip-forward interaction.

In SB-SFB, only the downloading of blocks of the last video segment is changed such that it
starts right after the downloading of the last block of the second-last video segment. Since
the blocks of the second-last segment are readahead before 1ts playtime, the blocks of the last

video segment will also be readahead. As a result, skip-forward interaction is still supported

by SB-SFB.

6.3.2 Channel Transition
In SB-SFB with (K + 1) logrcal channels, the broadcast schedule in the first K logical

channels is the same as in SFB. This means that instantaneous seamiess channel transitions
among broadcast schedules in these K channels are feasible. Therefore, we only need to

study the broadcast of the segment on the last channel (channel K).

Denoting S™; as the video segment on channel i of SB-SFB with m channels. $",,..; is the
same as S".1. Let us compare SB-SFB with (K + 1) channels and SB-SFB with K channels.
Each occurrence of S$¥*!x is shifted to the right by 2%3 timeslots with respect to s* .. On
the other hand, each occurrence of SKK_I is shifted to the right by 254 timeslots with respect to
S%.,. We note that the timeslot duration in the (K + 1)-channel SB-SFB scheme is half of

that in the K-channel scheme. Thus, in terms of the timeslot duration in the (K + 1)-channel

scheme, SKK_I is shifted to the right by
2 % pK-4 _ oK-3 timeslots,

which is the same as that of S**'x. This means that both schemes broadcast a new instance of
segment on the last channel at the same timeslot. In the derivation in Section 3.4.2, it has
been shown that SK"'K 1s the same as SKK_I. As a result, when there is a channel transition
(step-down or step-up) in SB-SFB between (K + 1) channels and K channels, SK“K can be
found in the corresponding timeslots in the broadcast schedule of the K-channel scheme or

vice versa. Therefore, on-the-fly seamless channel transition can still be launched in SB-

SFB.

Page 79

Interactive Functions in Broadcast Video-on-Demand

6.3.3 Pause/Resume Interaction

The capability to support a pause/resume interaction depends on whether the playback
duration of the video data in the buffer is long enough to cover the longest recurring period
among blocks in the broadcasting scheme. In SB-SFB with (K + 1) logical channels, the total
number of blocks is 2% and the client-side buffer requirement is one quarter of a video file
size, i.e., 25 blocks. On the other hand, the longest recurring period among blocks is 253

timeslots, which is one quarter of the video length. Therefore, pause/resume interaction is

still supported by SB-SFB.

Summing up, the performance of SB-SFB remains the same as SFB even though the buffer

requirement is much reduced.

6.4 Summary

While the Skip-Forward Broadcasting scheme can support random forward repositioning, the
client-side buffer requirement is still considerable (about half of a video file size). In this
chapter, an enhancement to SFB is proposed. Such enhancement can reduce the buffer
requirement by half at the expense of one more logical channel allocated to a video, while
preserving all the desirable features of SFB. The same enhancement can equally be applied
to the Short-Range Fast-Forward Broadcasting scheme. Although this method is a trédeoff
between the network bandwidth and the client-side hardware cost, it can be critical to

commercial viability when the set-top box’s price tag is a key issue to market penetration.

Page 80

Interactive Functions in Broadcast Video-on-Demand

Chapter 7: Conclusions

With the advancement of broadband networking technology, processor speed and disk
capacity, Video-on-Demand (VoD) services have become possible. An interactive VoD
system can even provide clients with the VCR interactions such as pause/resume and fast-
forward. One of the VoD service policies is called broadcasting which aims at efficiently
delivering a set of selected popular videos. Earliest periodic broadcast schemes simply
broadcast instances of a video overlapped in time. However, the Starmp latency can be
improved only linearly with the increase in the number of instances, or allocated bandwidth.
This latency can be reduced exponentially by prefetching video data into the buffer at the
client-end. However, none of the schemes have adequately provided solutions to interactive
VCR functions. In this report, three new broadcasting schemes, which address the issue of

VCR functions in broadcast VoD service, are presented and analyzed.

The first proposed scheme, the Skip-Forward Broadcasting (SFB) scheme, allows a client to
reposition his/her point-of-play within a range of a video segment block in the forward
direction. In SFB, a video is segmented into uniform video segment blocks that are broadcast
on the logical channels operating at the normal video playout rate. The first two video
segment blocks are downloaded simultaneously such that there is always at least one
prefetched block in the client-side buffer to support skip-forward. Furthermore, SFB
supports pause/resume interaction and can provide instantaneous step-up and step-down

seamless channel transition on-the-fly.

The second proposed broadcasting scheme, called Short-Range Fast-Forward Broadcasting
(SRFFB}), supports the fast-forward interaction within a range of two video segment blocks.
The scheme design is similar to SFB, except that the first two blocks are grouped into one
block which is then transmitted to clients at a rate twice of the video playout rate. By doing
s0, the clients can fast-forward the video right at the beginning. The subsequent blocks are
broadcast on channels at the normal playout rate and are always prefetched into the client’s

buffer. Similar to SFB, SRFFB also supports on-the-fly seamless channel transition and

pause/resume interaction.

Page 81

Interactive Functions in Broadcast Video-on-Demand

The third proposed broadcasting scheme 1s known as Mirrored-Pyramid Broadcasting (MPB).
The main objective of this scheme is to reduce the client-side buffer requirement. Unlike
SFB and SRFFB, all channels in MPB deliver video segment at a rate twice of the normal
video playout rate. Thus, each segment only needs half of its playback duration to transmit.
Moreover, the size of the segments in MPB is first increased geometrically by factors of two,
and then shrunk in the reverse rate. As a result, the largest segment is not delivered on the
last logical channel, but on the middle. The playback duration of a segment will always
cover the time frame occupied by an instance of suitable succeeding segment on the next
channel. Therefore, clients need to download video data from at most two channels
simultaneously at any one time. This is an advantage over FDB, SFB and SRFFB in which
video data needs to be concurrently downloaded from more than two channels. In MPB, the

client-side buffer requirement can be lowered to one-third of a video file size.

Although MPB can reduce the client-side buffer requirement, its network bandwidth
requirement is larger. Therefore, an Enhanced Mirrored-Pyramid Broadcasting (EnMPB)
scheme is proposed to cut the network bandwidth requirement down to about 50% of MPB,
without increasing the buffer requirement. In EnMPB, the video segments on the trailing
channels are packed into one single large segment which can be broadcast on one channel.
As a result, less channels are used in EnMPB and the network bandwidth is saved. EnMPB
also supports fast-forward interaction. Moreover, the second and subsequent FF attempts can

be performed easier in EnMPB than in SRFFB.

Lastly, a Small-Buffer Skip-Forward Broadcasting (SB-SFB) scheme, which is an improved
version of SFB, is proposed. The scheme uses an extra channel to broadcast the timeslot-
shifted last video segment of SFB. By doing so, SB-SFB can successfully reduce the client-

side buffer requirement in SFB by half while preserving the features of SFB. The same

technique can also be applied to SRFFB.

Table 7.1 gives a summary on the performance of all the proposed broadcasting schemes. A

selection guide for these schemes is given in Table 7.2.

Page 82

Interactive Functions in Broadcast Video-on-Demand

Number of Network Client-side | Client-side /O Startup Support of
Channels |Bandwidth ** Buffer Bandwidth Latency Seamless
Requirement |Requirement **| for an M- Channel
(% of video minute video | Transition
file size) (minutes)

SFB i+1 (i+1)*b < 50% (F+D*b M2 yes
SRFFB i i+ 1)*b <50% (i+1)*b M2 yes
SB-SFB i+2 G+2*b <25% i*b M2 yes

233% M
; i * * -
MPB 2j+1 i+ 1)*2b and < 50% 2*2b 2+(3%2) -2 no
233% M
. , « *2 .
EnMPB j+2 (G+2)*2b and < 50% 2*2b 2%(3%27 —2) no
** b is the video playout rate
Table 7.1. Perforrance summary.
Skip Fast Pause/ Channel Buffer Network [Clients /O
Forward Forward Resume Transition Size Bandwidth | Bandwidth
SFB
v v v v moderate small moderate

SRFFB v 4 v v moderate small moderate
SB-SFB v v v v smallest small moderate
SB-SRFFB v vV v v smallest small moderate

small large small

small moderate small
moderate smali moderate

large moderate | moderate

Table 7.2. Selection guide.

Page 83

Interactive Functions in Broadcast Video-on-Demand

The VCR interactions supported by the three new proposed broadcasting schemes are all
about forward interactions. Backward interactions, such as fast-rewind and skip-backward,
are not addressed here. To some extent, short-range backward interactions can be supported
by extra/optional buffers in the client’s set-top box. To support large-range backward
interactions, a good client-side buffer manager is needed to decide which old video segment
blocks should be removed to provide space for new readahead data, without degrading the
backward interaction capability. Because of this, backward interactions call for techniques
quite different from that of forward interactions. Further work, therefore, can focus on the
implementation of backward interactions in broadcasting schemes. Hopefully, the schemes

proposed and analyzed here can provide critical insights to spark ideas on further

explorations.

Page 84

Interactive Functions in Broadcast Video-on-Demand

References

[1]

[2]

[3]

(4]

(3]

(6]

(7]

[&]

Abram-Profeta, E.L. and Shin, K.G. "Providing Unrestricted VCR Functions in
Multicast Video-on-Demand Servers". Proceedings of the 1998 IEEE International
Conference on Multimedia Computing and Systems, Austin, T.X., 28 June-1 July,

1998, pp.66-75 (1998)

Aggarwal, C.C., Wolf, J.L. and Yu, P.S. "Design and Analysis of Permutation-Based
Pyramid Broadcasting”. Multimedia Systems, Vol. 7, No. 6, pp-439-448 (1999)

Almeroth, K.C. and Ammar, M.H. "The Use of Multicast Delivery to Provide a

Scalable and Interactive Video-on-Demand Service”. [EEE Journal on Selected Areas

in Communications, Vol. 14, No. 6, pp.1110-1122 (1996)

Dan, A., Dias, D.M., Mukherjee, R., Sitaram, D. and Tewari, R. "Buffering and
Caching in Large-Scale Video Servers". Proceedings of the IEEE COMPCON, San
Francisco, California, 5-9 March, 1995, pp.217-224 (1995)

Dan, A., Shahabuddin, P., Sitaram, D. and Towsley, D. "Channel Allocation under
Batching and VCR Control in Video-on-Demand Systems”. Journal of Parallel and
Distributed Computing, Vol. 30, No. 2, pp.168-179 (1995)

Dan, A., Sitaram, D. and Shahabuddin, P. "Dynamic Baiching Policies for an On-
Demand Video Server". Multimedia Systems, Vol. 4, No. 3, pp.12-121 (1996)

Doganata, Y.N. and Tantawi, A.N. "Storage Hierarchy in Multimedia Servers". In
Chung, SM., ed., Multimedia Information Storage and Management, Kluwer

Academic Publishers, Boston, pp.61-94 (1996)

Eager, D.L. and Vernon, M.K. "Dynamic Skyscraper Broadcasts for Video-on-
Demand", Proceedings of the Fourth International Workshop on Multimedia

Information Systems, Istanbul, Turkey, 24-26 September, 1998, pp.18-32 (1998)

Page 85

Interactive Functions in Broadcast Video-on-Demand

9]

[10]

13y

[12]

[13]

[14]

[15]

[16]

Eager, D.L., Vernon, M. and Zahorjan, J. "Minimizing Bandwidth Requirements for
On-Demand Data Delivery", IEEE Transactions on Knowledge and Data Engineering,

Vol. 13, No.5, pp. 742-757 (2001)

Gemmell, D.J. "Disk Scheduling for Continuous Media". In Chung, S.M., ed,

Multimedia Information Storage and Management, Kluwer Academic Publishers,

Boston, pp.1-21 (1996)
Ghose, D. and Kim, H.J. "Scheduling Video Streams in Video-on-Demand Systems:

A Survey". Multimedia Tools and Applications, Vol. 11, pp.167-195 (2000)

Golubchik, L., Lui, J.C.S. and Muntz, R.R. "Adaptive Piggybacking: A Novel

Technique for Data Sharing in Video-on-Demand Storage Servers". Multimedia

Systems, Vol. 4, No. 3, pp.140-155 (1996)

Hua, K.A., Cai, Y. and Sheu, S. "Exploiting Client Bandwidth for More Efficient
Video Broadcast”. Proceedings of the 7th International Conference on Computer

Communications and Networks, Lafayette, L.A., 12-15 October, 1998, pp.848-856
(1998)

Hua, K.A., Cai, Y. and Sheu, S. "Patching: A Multicast Technique for True Video-on-
Demand Services". Proceedings of the Sixth ACM International Conference on

Multimedia, Bristol, United Kingdom, 13-16 September, 1998, pp.191-200 (1998)

Hua, K.A. and Sheu, S. "Skyscraper Broadcasting: A New Broadcasting Scheme for
Metroplitan Video-on-Demand Systems". Proceedings of the ACM SIGCOMM 97
Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication, Cannes, France, 14-18 September, 1997, pp.89-100
(1997)

Juhn L.S. and Tseng, L.M. “Harmonic Broadcasting for Video-on-Demand Service™.

IEEE Transactions on Broadcasting, Vol. 43, No.3, pp.268-271 (1997)

Page 86

Interactive Functions in Broadcast Video-on-Demand

(17]

(18]

(19]

(20]

[21]

(22])

[23]

[24]

[25]

Juhn, L.S. and Tseng, L.M. "Staircase Data Broadcasting and Receiving Scheme for

Hot Video Service". IEEE Transactions on Consumer Electronics, Vol. 43, No4,

pp.1110-1117 (1997)

Juhn, L.S. and Tseng, L.M. “Fast Data Broadcasting and Receiving Scheme for
Popular Video Service”. IEEE Transactions on Broadcasting, Vol 44, No.1, pp.100-

105 (1998)

Jun, S.B. and Lee, W.S. "Video Allocation Methods in a Muiti-Level Server for
Large-Scale VoD Services". IEEE Transactions on Consumer Electronics, Vol. 44,

No. 4, pp.1309-1318 (1998)

Liao, W.J. and Li, V.O.K. “The Split and Merge Protocol for Interactive Video-on-
Demand”. IEEE Multimedia, Vol. 4, No. 4, pp51-62 (1997)

Lin, F.Y.S. "Optimal Real-time Admission Control Algorithms for the Video-on-
Demand (VoD) Service”. IEEE Transactions on Broadcasting, Vol. 44, No. 4,

pp.402-408 (1998)

Little, T.D.C. and Venkatesh, D. "Prospects for Interactive Video-on-Demand". IEEE
Multimedia, Vol. 1, No. 3, pp.14-23 (1994)

Mundur, P., Simon, R. and Sood, A. "Integrated Admission Control in Hierarchical
Video-on-Demand Systems"”. Proceedings of the 1999 IEEE International Conference
on Multimedia Computing and Systems 1999, Florence, Italy, 7-11 June, 1999,

pp.220-225 (1999)

Ozden, B., Rastogi, R. and Silberschatz, A. "On the Design of a Low-Cost Video-on-
Demand Storage System". Multimedia Systems, Vol. 4, No. 2, pp.40-54 (1996)

Paris, J.F,, Long, D.D.E. and Mantey, P.E. "Zero-Delay Broadcasting Protocols for
Video-on-Demand”. Proceedings of the 1999 International Conference on

Multimedia, Orlando, FL. USA, 30 October — 5 November, 1999, pp.189-197 (1999)

Page 87

Interactive Functions in Broadcast Video-on-Demand

(26]

{27]

[28]

{29]

[30]

[31]

[32]

[33]

[34]

Poon, W.F., Lo, K.T. and Feng, J. "Multicast Video-on-Demand System with VCR
Functionality”. Proceedings of the 1998 International Conference on Communication

Technology, Beijing, China, 22-24 October, 1998, pp.523-10 (1998)

Poon, W.F. and Lo, K.T. "New Batching Policy for Providing True Video-on-
Demand (T-VoD) in Multicast System". Proceedings of 1999 IEEE Interactional
Conference on Communications, Vancouver, Canada, 6-10 June, 1999, pp.983-987
(1999) .

Rangan, P.V and Vin, HM. "Efficient Storage Techniques for Digital Continuous
Media". IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 4,
pp.564-573 (1993)

Ruemmler, C. and Wilkes, J. "An Introduction to Disk Drive Modeling”. I[EEE
Computer, Vol. 27, No. 3, pp.17-28 (1994)

To, J.T.P. and Hamidzadeh, B. "Dynamic Real-Time Scheduling Strategies for
Interactive Continuous Media Servers”. Multimedia Systems, Vol. 7, No. 3, pp.91-106

(1999)

Tseng, Y.C., Hsieh, C.M., Yang, M.H., Liao, W_.H. and Sheu, J.P. "Data Broadcasting
and Seamless Channel Transition for Highly-Demanded Videos". Proceedings of

[EEE INFOCOM 2000, USA, 26-30 March, 2000, pp.727-736 (2000)

Viswanathan, S. and Imielinski, T. “Metropolitan Area Video-on-Demand Service

Using Pyramid Broadcasting”. Multimedia Systems, Vol. 4, pp.197-208 (1996)

Vin, HM,, Goyal, A., Goyal, A. and Goyal, P. "An Observation-Based Admission
Control Algorithm for Multimedia Servers". Proceedings of the 1994 IEEE
International Conference on Multimedia Computing and Systems, Boston, M.A, 15-

19 May, 1994, pp.234-243 (1994)

Wong, W.T., Zhang, L. and Pang, K.K. "Video on Demand Service Policies”.
Proceedings of IEEE Singapore International Conference on Networks, Singapore, 3-

7 July, 1995, pp.560-564 (1995)

Page 88

Interactive Functions in Broadcast Video-on-Demand

[35] Wu, C.S.,Ma, G.K. and Liu, M.C. "A Scalable Storage Supporting Multistream Real-
Time Data Retrieval”". Multimedia Systems, Vol. 7, No. 6, pp.458-466 (1999)

[36] Yu, P.S., Wolf, JL. and Shachnai, H. "Scheduling Issues in Video-on-Demand
Systems". In Chung, S.M., ed., Multimedia Information Storage and Management,

Kluwer Academic Publishers, Boston, pp.183-207 (1996)

Publication List

1. Ma, H.S. and To, T.P.J. "Mirrored-Pyramid Broadcasting for Metropolitan On-Demand
Video Delivery". Proceedings of the 2000 Workshop on Multimedia Data Storage,
Retrieval, Integration and Applications, Hong Kong, 13-15 January, 2000, pp.104-109
(2000)

2. Ma, H.S., To, T.P.J. and Lun, P.K. "Enhanced Mirrored-Pyramid Broadcasting for Video-
On-Demand Delivery". Proceedings of the 2000 IEEE Asian Pacific Conference on CAS,
Tianjin, China, 4-6 December, 2000, pp.875-878 (2000)

3. Ma, H.S., To, T.P.J. and Li, C.K. "A New Broadcasting Scheme Supporting Fast-Forward
for Video-on-Demand Service". Proceedings of the International Network Conference

2002, Plymouth, UK, 16-18 July, 2002, accepted (2002)

Page 89

