

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ROBUST OPTIMIZATION FOR GENERALIZED

PROJECT NETWORKS

CHEN SIYUAN

MPhil

The Hong Kong Polytechnic University

2023

The Hong Kong Polytechnic University

Department of Logistics and Maritime Studies

Robust Optimization for Generalized Project Networks

Chen Siyuan

A thesis submitted in partial fulfilment of the

requirements for the degree of Master of Philosophy

June 2023

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

(Signed)

(Name of student)Siyuan CHEN

Abstract

Completion time estimation is a key component for project management. In addi-

tion to uncertain task times, uncertain task outcomes also have a significant impact

on the evaluation of completion time. For example, due to some uncontrolled fac-

tors in a project, certain task may have a probability of failure, which will result

in full repetition or partial rework of the task. Introduction of new task or change

of precedence relationships may occur during project execution as a contingency

measure. Another example is probabilistic branching, i.e., after the project reaches

a milestone, it may be necessary to choose among alternative plans by that time.

However, these uncertainties are often ignored in standard approaches, e.g., the

program evaluation and review technique (PERT). In this thesis, we introduce the

generalized project network to capture all the uncertainties in both task durations

and task outcomes. A distributionally robust optimization model is developed

to estimate the project completion time as well as the target-based measure of

tardiness. We develop an efficient algorithm to solve the distributionally robust

optimization model. The performance of the estimates obtained through distri-

butionally robust optimization is evaluated through numerical studies. Numerical

studies show that our model is practical and general to capture all the uncertainties

in both task durations and task outcomes in completion time estimation problems.

i

ii

The proposed algorithm demonstrates exceptional efficiency, allowing us to solve

one large size project instance, solved by the simulation method in the literature,

in 98.2 seconds.

Acknowledgements

I would like to thank everyone who has supported and contributed to the comple-

tion of this thesis and my MPhil degree.

Special thanks go to my supervisor, SONGMiao, for her invaluable guidance,

unwavering support, and expertise throughout this research.

I am also grateful to the members of my thesis committee for their valuable

input and feedback, which greatly improved this work.

I extendmy appreciation to theHKPolyu for providing the necessary resources

and research facilities that facilitated the successful completion of this study.

To my family and friends, thank you for your constant encouragement and

support throughout this journey. Your belief in me has been a tremendous source

of motivation.

Thank you all for your support and encouragement.

iii

Contents

1 Introduction and Literature Review 2

1.1 Introduction . 2

1.2 Literature Review . 5

2 Generalized Project Network 10

3 Formulation and Solution Procedure 18

3.1 Marginal Distribution Model for c̃ 18

3.2 Distributionally Robust Model for c̃ and η̃ 27

3.2.1 Find the Initial Subset Ω′ 30

3.2.2 Solve the Pricing Problem 35

4 Computational Study 39

4.1 Classical Research and Development Projects Network 40

4.1.1 Input Explanation . 42

4.1.2 Numerical Result . 43

4.2 Performance Test . 44

4.2.1 Performance Test in Small-scale andMiddle-scale Networks 45

4.2.2 Performance Test in Large-scale Network 47

iv

CONTENTS v

4.3 Solution Quality Check . 53

5 Conclusion and Future Work 56

5.1 Conclusion . 57

5.2 Future Work on Formulation Structure 58

5.2.1 DRO Model for η̃ under Deterministic c 58

5.2.2 DRO Model Allowing Dependence between η̃ and c̃ . . . 61

5.2.3 Other Formulation Extensions 62

5.3 Research Field Extensions . 63

List of Figures

2.1 Illustration of Probabilistic Branching 13

3.1 Intuitive Explanation of Algorithm 2 35

4.1 Network of R&D Process for One Project 42

4.2 Performance Result in the Large-scale Network with |Ap| 48

4.3 Performance Result in Large-scale Network with |Nbs | 50

4.4 Case of Solution Quality Check 54

vi

List of Tables

4.1 Numerical Result in Small-scale and Middle-scale Networks . . . 46

4.2 Numerical Result in the Large-scale Network 49

4.3 Marginal Distribution Information 54

1

Chapter 1

Introduction and Literature Review

1.1 Introduction

Many projects, especially those involving research and development activities,

have an uncertain scope. For example, new tasks must be introduced during the

execution of a project. Another example is probabilistic branching, i.e., after the

project reaches a milestone, it may be necessary to choose among alternative plans

based on information that has been revealed by that time. However, uncertainty

in the project scope is often ignored in standard approaches for project planning,

which consider a given list of tasks and assume that it will not be changed during

the project lifecycle. Standard approaches simplify projects further in the follow-

ing two respects. First, it is assumed that the precedence relations of the tasks,

i.e., whether one task must be performed before the start of another, are known for

certain at the planning phase of the project. Whereas, in reality, precedence rela-

tions may change over time as new information arrives. A task that was previously

believed to be independent of another may turn out to need the information from

2

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 3

the latter and cannot start before its completion. Second, the outcomes of certain

tasks may not meet expectations or quality standards. In this case, it is common

to have these tasks repeated or partially reworked. Unfortunately, the practice of

task repetition is not considered in standard project planning methods either.

In this study, we generalize the project networks to incorporate uncertainties

in the network structure. This framework enables us to capture the introduction of

new tasks, task repetition or partial rework, change of precedence, and probabilis-

tic branching. The few existing studies on generalized project networks mainly

resort to simulation or Markov chain approaches, which require the complete joint

distribution of random task durations and other uncertain events. However, due

to the uniqueness of projects, it is always a challenge to determine the joint dis-

tribution, which limits the practical applicability of the existing approaches. To

address this issue, we adopt the methodologies of distributionally robust optimiza-

tion, whose strong performance has been proved in the literature when applied to

standard project management problems with incomplete information on the distri-

bution of uncertain task durations. Marginal distributions are usually considered to

build ambiguity set in the literature. The network uncertainty can be only captured

by Bernoulli variables because the precedence relation has only two outcomes. For

Bernoulli random variables, if we know moments information, we knowMarginal

distributions. Thus, in this study, we apply the Marginal distribution model. As a

first step to studying generalized project networks using distributionally robust op-

timization, we focus on the evaluation of project makespan. The universal “triple

constraint” defines priorities for time, cost, and scope in projects (Kerzner 2013,

pp. 8-9). In reality, however, time and cost performance typically show a strong

positive correlation. Companies usually need to pay higher labor and material

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 4

costs for projects with longer completion time. This work studies the time issue

under the uncertain scope and therefore addresses all three components of the triple

constraint.

This thesis is organized as follows.

• In Chapter 1, we provide a comprehensive introduction to show the back-

ground and motivations and review some literature.

• In Chapter 2, we delve into the specifics of the generalized project network.

Here, we outline the generalization and uncertainties we will consider in the

execution of projects.

• Chapter 3 focuses on the formulation and solution procedure. Within this

chapter, we elaborate on the establishment of the model and the step-by-step

derivation process leading to formulation results.

• In Chapter 4, we shift our attention to computational research. Here, we ap-

ply our approach to one instance from the literature. By solving the instance

using the proposed approach, we demonstrate the practicality and generality

of our research. Additionally, we conduct three sets of performance exper-

iments to test the practicality of models and the efficiency of the algorithm

in different scale networks.

• Finally, in the last chapter, we draw conclusions based on our research find-

ings and reflect on the broader implications of our work. We also outline

future work.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 5

1.2 Literature Review

Hall (2016) describes some project management research directions and some

mainstream branching as follows: 1. Project expediting. Delays in previous tasks,

changed circumstances, and modifications of the project scope motivate the need

to expedite. Crashing decisions with determined task time can be modeled in lin-

ear programming, however, the uncertainty of task time makes crashing decisions

more complex, which requires the estimation of uncertain task durations over the

remainder of the project. Two standard approaches, PERT and Monte Carlo simu-

lation, assume full knowledge of the probability distributions of the arc lengths and

independence of the task durations, instead, robust optimization provides a more

efficient way to find crashing decisions without the need of these assumptions. 2.

Project selection. Selection of the right projects can bring better returns and ease

of management. Selecting individually and accepting multiple projects simulta-

neously are two fundamental ways to select the project. Control of risk through

diversification, better resource utilization, the potential to model dependency be-

tween projects, and optimization of overall portfolio performance are provided

by the project portfolio planning approach to project selection. Project selection

with determined returns can be solved by the knapsack model. For uncertainty,

robust optimization is applied to solve a project selection problem as well as the

target-measured underperformance risk. 3. Estimation of project completion time.

Accurate estimation of completion time or makespan, can help a company pre-

vent expensive crashing costs and loss of a contract when bidding. The standard

method is PERT, however, it ignores many uncertainties of modern complicated

and unique projects. Limited distributional information on task duration and de-

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 6

pendence between both tasks and precedence relationships stimulate more applica-

tion of DRO in project management. Among these project management research

branches, completing time estimation is crucial not only because it is a basic need

of project management but it also plays an important role in other aspects, such as

crashing decisions. In practice, accurate estimation of completion tasks can help

the company save cashing money and prevent loss of contracts.

The earliest algorithms for scheduling projects and estimating their duration,

i.e., the critical path method (CPM) (Kelley and Walker 1959) and the program

evaluation and review technique (PERT) (Fazar 1959, Malcolm et al. 1959), were

proposed in the late 1950s. CPM assumes deterministic durations for all tasks,

from which the project makespan is calculated as the sum of the durations of the

tasks on the longest path in the project network. PERT uses the expected duration

of each task to determine the critical path, as in CPM. Further, recognizing un-

certainties in the task durations, it estimates the variance of the project makespan

as the sum of variances of the tasks on the critical path. Although PERT remains

a standard method for makespan estimation, it has been widely documented that

PERT often significantly underestimates the expected makespan (see, e.g., Welsh

1965, Hartley and Wortham 1966, Klingel 1966, and Schonberger 1981). This

error is mainly caused by merging paths and hence is known as the merge bias.

Intuitively, the cause of merge bias is that the longest path in expectation is not the

longest in realization due to uncertain task durations. Therefore, by basing its es-

timates solely on the longest path in expectation, PERT ignores important relevant

information.

Hagstrom (1988) shows that the problem of computing either the expected

makespan or the probability to complete a project by a given time is #P-complete.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 7

Due to this severe intractability, the literature predominantly focuses on approxi-

mation approaches. One exception is Kulkarni andAdlakha (1986)which analyzes

the distribution of project makespan and the probability for a path to be critical for

independent and exponentially distributed task durations. Methods to compensate

for the merge bias are based on (a) details of merging activity (Gong and Hugsted

1993, Gong and Rowings 1995, and Banerjee and Paul 2008) or (b) consideration

of multiple paths (see, e.g., Anklesaria and Drezner 1986, Sculli and Shum 1991,

and Jun and El-Rayes 2011).

Another active research stream identifies bounds on the distribution and/or

expectation of project makespan. This work includes Fulkerson (1962), Kleindor-

fer (1971), Robillard and Trahan (1976), Spelde (1976), Shogan (1977), Dodin

(1985), Ludwig et al. (2001), and Möhring (2001). More recent studies apply dis-

tributionally robust optimization, which finds the worst-case expectation among a

structured set of distributions. In Meilijson and Nádas (1979), task durations are

specified by marginal distributions. They identify a computational procedure to

find the worst-case expected project makespan and the corresponding probability

for a path to be longest. Bertsimas et al. (2004, 2006) determine the worst-case

expected tardiness (and makespan) among all distributions of task durations with

given marginal moments. They also compute the persistency under the worst-

case distribution, i.e. the probability for a task to be critical sometimes called the

criticality index. Natarajan et al. (2011) then consider the case where the distri-

bution information on task duration is specified by both marginal moments and

cross moments. An approximation based on a completely positive representation

is developed to estimate the worst-case expected makespan and criticality index.

In Doan and Natarajan (2012), tasks are partitioned into non-overlapping sets, and

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 8

the joint distribution of the task durations in each set is given. Assuming task dura-

tions follow discrete distributions, they identify cases under which the worst-case

expected makespan can be computed in polynomial time. Zheng et al. (2016) con-

sider task durations that follow a multivariate normal distribution and propose the

least squares normal approximation and the least squares quadratic approximation

to the task duration, which can be obtained from the criticality index.

All the above studies assume that the set of tasks and the precedence relation-

ships among them are known deterministically. Yet, in reality, uncertainty in net-

work structure is present in many projects, especially those for research and devel-

opment, new product and service development, and pharmaceutical and software

development. In such situations, when a project starts, even the list of tasks is not

known with certainty. Some early studies consider uncertain network structure.

Eisner (1962) considers probabilistic branching, i.e., after completing a task, the

project will take exactly one of several alternative paths with a certain probability,

and studies the network based on enumerating possible outcomes. Elmaghraby

(1964) presents a graphic representation and an algebra to analyze networks with

probabilistic branching and task repetition. These features are also enabled in the

simulation package Graphical Evaluation and Review Technique (GERT) and its

successor Q-GERT (see, e.g., Pritsker 1966, 1979, Moore and Taylor 1977, and

Taylor andMoore 1980). Carracosa et al. (1998) andAhmadi et al. (2001) develop

Markov chain models for projects with task repetition and information depen-

dency. Cho and Eppinger (2005) consider similar project networks with resource

constraints and use simulation and heuristics to estimate the makespan. Imple-

menting all these approaches requires knowledge of a joint probability distribution

of the task durations and the network structure. Problematically, since projects are

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 9

unique, this distributional information is rarely available. Consequently, distribu-

tionally robust optimization, which relies on only partial information about the

joint distribution, is a natural and potentially powerful approach to studying the

makespan of projects with uncertain network structures. Robust optimization has

been applied to project management to model crashing decisions during project

execution by Goh and Hall (2013) and project portfolio selection by Hall et al.

(2015). The work proposed here will exploit this approach. Moreover, Birge and

Maddox (1995) provide that the tardiness of a project rises linearly after a deadline

is passed, but it is zero before the deadline. Tardiness is more difficult to obtain

distribution information than completion time, however, since tardiness includes

more information than completion time, it has stimulated many research motiva-

tions to how to derive it. In this thesis, wemodel our objective as a target-measured

of tardiness.

Chapter 2

Generalized Project Network

Before introducing the generalized project network, we first consider a project with

a deterministic network structure, i.e., one that can be analyzed by the classical ap-

proaches of CPM or PERT. The project can be represented as a set of tasks denoted

by N and a set of precedence relations A. Every task i ∈ N must be executed

during the project. If (i, j) ∈ A for some i, j ∈ N , then task i must be completed

before the start of task j. Without loss of generality, we define dummy start and

end tasks s, t ∈ N , which represent the start and completion of the project, respec-

tively. Furthermore, for any task i ∈ N \ {s, t}, task i can only be started after

the start of the project, and the project is completed only if task i is completed,

implying (s, i), (i, t) ∈ A. For any task i ∈ N , let c̃i denote the uncertain time

to complete task i. Given the vector c̃ of c̃i for all i ∈ N , the project makespan,

i.e., the elapsed time of the entire project, can be obtained by solving the following

10

CHAPTER 2. GENERALIZED PROJECT NETWORK 11

integer program:

max
∑

(i,j)∈A:i ̸=s

c̃ixij (2.1a)

s.t.
∑

j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji ∀i ∈ N \ {s, t}, (2.1b)

∑
i:(s,i)∈A

xsi = 1, (2.1c)

∑
i:(i,t)∈A

xit = 1, (2.1d)

xij ∈ {0, 1} ∀(i, j) ∈ A. (2.1e)

If we consider the activity-on-node network for this project, i.e., the network with

nodes N and arcs A, and set the length of any arc (i, j) ∈ A to c̃i, the above

optimization problem finds the longest path from s to t, which corresponds to the

project makespan. The binary decision variable xij denotes whether arc (i, j) is in

the longest path. Constraints (2.1b)-(2.1d) ensure flow balance at each node.

In this study, we consider a generalized project network with an uncertain

structure. The potential sources of uncertainty are: (a) tasks can be repeated or

partially reworked due to failure or unacceptable quality, (b) new tasks not pre-

viously considered necessary can become necessary, (c) precedence requirements

can be added or removed due to a better understanding of the relationships among

the tasks, and (d) choice between alternative plans may be realized based on un-

certain scenarios to be revealed during the project execution, which is also referred

to as probabilistic branching in the literature (see, e.g., Eisner 1962, Elmaghraby

1964, GERT, and Q-GERT). We would like to model the project makespan for

such a generalized project as an optimization model. Towards this end, we first

CHAPTER 2. GENERALIZED PROJECT NETWORK 12

introduce two sets of tasks that may not necessarily be executed during the project.

• First, as mentioned in generalization (b), certain new tasks, denoted by set

NN , could be introduced after the project starts. The necessity of executing

them cannot be determined before the execution of the project. For example,

for a project that is developing a new consumer electronic product, various

elaborations, and improvements will become necessary in the event that a

competitor company unexpectedly releases a similar product.

• Second, the aforementioned generalization (d) considers choices between

alternative plans, i.e., probabilistic branching. The tasks in alternative plans,

denoted by the set NB, may not be executed either. An example is shown

in Figure 2.1. After completing task 1, the project takes exactly one of two

alternative plans, plans 1 and 2, with equal probability, but not both. For

example, task 1 may represent collecting customers’ feedback on a current

prototype of a product. Based on the uncertain feedback, exactly one of two

alternative features, represented by plans 1 and 2, will be incorporated into

the product design. At the planning phase of the project, we only know that

the two plans will be followed with equal probability. Plan 1 consists of

tasks 2, 3, and 4, while Plan 2 consists of tasks 5 and 6. These two plans

merge at task 7. Therefore, tasks 2-6 are all in the alternative plans, i.e.,

{2, ..., 6} ⊆ NB.

Based on the introduction of new tasks and tasks on probabilistic branching, a task

should be included in set N as long as its probability to be executed is positive,

implying NN ,NB ⊆ N . In addition, we also have dummy tasks s, t ∈ N to

include the start and end of the project.

CHAPTER 2. GENERALIZED PROJECT NETWORK 13

1

2 3 4

5 6

7

Plan 1

with p
rob 0.5

Plan 2with prob 0.5

Figure 2.1: Illustration of Probabilistic Branching

Recall that model (2.1) for a project with a deterministic network considers

the uncertain parameters c̃i. To model the generalized network, we introduce an-

other group of uncertain parameters η̃ij associated with the precedence restrictions

(i, j) ∈ A. Using c̃i and η̃ij , we can address the aforementioned generalizations

(a)-(d) as follows:

(a) For generalization (a), we capture the possible repeats and reworks for each

task through the uncertain time c̃i to complete this task. Here we focus on

the tasks that must be executed, i.e., the tasks inN \NN \NB. The tasks that

may be introduced during the project (i.e.,NN) and the tasks on alternative

plans (i.e.,NB) will be further discussed when modeling generalizations (b)

and (d), respectively. Consider any task i ∈ N \ NN \ NB. We use c̃i to

represent the total time spent in task i, including possible repetitions and

partial reworks, instead of the time to complete task i once. Let m̃i denote

the number of times that task i is fully executed, and let ñi denote the num-

ber of times that task i is partially reworked. For any k ∈ {1, 2, ...}, c̃ci,k and

c̃pi,k represent the time required to complete the task for the kth time, where

k = 1 represents the first time execution, and the time required to complete

the kth partial rework, respectively. Our modeling of task repetition is dif-

CHAPTER 2. GENERALIZED PROJECT NETWORK 14

ferent from that in GERT and Q-GERT. Nevertheless, the distribution of m̃i

and ñi can be easily determined from the GERT or Q-GERT networks by

simple Markov chain models, while the distributions of c̃ci,k and c̃
p
i,k are also

specified in GERT and Q-GERT. Then, the total time spent on task i is

c̃i =

m̃i∑
k=1

c̃ci,k +

ñi∑
k=1

c̃pi,k. (2.2)

(b) Generalization (b) considers new tasks that could be potentially introduced

during the project. Some of the new tasks could be part of alternative plans.

For these new tasks, i.e., tasks in the set NN ∩ NB, we will introduce how

to model them in generalization (d). Here we consider new tasks not in

alternative plans, i.e., tasks in NN \ NB. For any task i ∈ NN \ NB, it is

sufficient tomake sure that there is a positive probability to skip the task, i.e.,

c̃i = 0 with a positive probability. Consider the random variables m̃i, ñi,

c̃ci,k, and c̃
p
i,k defined in generalization (a). We can still calculate c̃i based on

the formula in (2.2). Note that c̃i = 0 when m̃i = ñi = 0. In other words,

we can model the new task i by allowing m̃i = ñi = 0 with a positive

probability.

(c) To model generalization (c), let the set A contain all possible precedence

requirements among any two tasks inN . A Bernoulli random variable η̃ij is

introduced for any precedence restriction (i, j) ∈ A such that η̃ij = 1 if and

only if the precedence requirement (i, j) must be satisfied, i.e., task j can

only start after task i completes. The change in the precedence requirement

can then be modeled by η̃ij . In addition, to ensure that all the tasks not in

CHAPTER 2. GENERALIZED PROJECT NETWORK 15

alternative plans will be considered in a path from s to t, for all i /∈ NB, we

set (s, i), (i, t) ∈ A with P{η̃si = 1} = P{η̃it = 1} = 1.

(d) For generalization (d), first, we determine the marginal distribution of c̃i

for tasks in alternative plans resulted from probabilistic branching. For any

task i ∈ NB, we can define c̃i in a way similar to generalization (b). As in

generalization (b), we also let m̃i = ñi = 0with a positive probability if task

i could be a new task introduced during the project, i.e., i ∈ NN ∩NB. The

only difference is that m̃i and ñi now represent the numbers of executions

and partial reworks, respectively, given that an alternative plan including

task i is executed. For example, for the task i ∈ {2, 3, 4} in Figure 2.1, m̃i

and ñi are the times of executions and partial reworks under the condition

that plan 1 is chosen.

Second, we use the Bernoulli random variables η̃ij to model probabilistic

branching. For example, consider Figure 2.1. Tasks 2-4 will be executed

only if plan 1 is chosen. Thus, we can introduce the random variables η̃12,

η̃13, η̃14 such that P{η̃12 = η̃13 = η̃14 = 1} = 1 − P{η̃12 = η̃13 = η̃14 =

0} = 0.5. Similarly, P{η̃15 = η̃16 = 1} = 1−P{η̃15 = η̃16 = 0} = 0.5. We

have η̃1i+ η̃1j = 1 for any i ∈ {2, 3, 4} and j ∈ {5, 6} to ensure that exactly

one of plans 1 and 2 will be selected. Moreover, if either plan 1 or plan 2

is executed, the tasks in the chosen plan must be performed before task 7.

Therefore, we also have the precedence requirements (i, 7) with η̃i7 = 1 for

all i ∈ {2, ..., 6}. Now, consider the general case. LetNBs ⊆ N denote the

set of tasks after which we need to choose among several alternative plans.

For example, we have 1 ∈ NBs in Figure 2.1. For any i ∈ NBs , let gi denote

CHAPTER 2. GENERALIZED PROJECT NETWORK 16

the number of alternative plans after task i, e.g., g1 = 2 in Figure 2.1. For

any k ∈ {1, ..., gi}, plan k after task i consists of tasks in the set Gk
i . In

Figure 2.1, we can set G1
1 = {2, 3, 4} and G2

1 = {5, 6}. For all j ∈ Gk
i ,

we have (i, j) ∈ A and P{η̃ij = 1} > 0 corresponds to the probability that

the alternative plan Gk
i will be chosen after finishing task i. Thus, we have

η̃ij = η̃ij′ for all j, j ′ ∈ Gk
i . Also note that

∑gi
k=1 η̃ijk = 1 for all jk ∈ Gk

i

since exactly one alternative plan will be chosen. Let ti denote the task to

be executed after completing any one of the alternative plans following task

i, i.e., tasks in Gk
i for any k ∈ {1, ..., gi}. Here we have t1 = 7 in Figure

2.1. As the tasks in alternative plans must be executed before ti, we have

the precedence requirement (j, ti) ∈ A with η̃jti = 1 for all k ∈ {1, ..., gi}

and j ∈ ∪gi
k=1G

k
i .

Let η̃ and c̃ denote the random vectors of η̃ij and c̃i, respectively. The project

makespan can be written as the following model, for given η̃ and c̃:

Z(η̃, c̃) = max
∑

(i,j)∈A:i ̸=s

c̃iη̃ijxij (2.3a)

s.t.
∑

j:(i,j)∈A

η̃ijxij =
∑

j:(j,i)∈A

η̃jixji ∀i ∈ N \ {s, t}, (2.3b)

(2.1c), (2.1d), (2.1e). (2.3c)

For many projects, there exists a target project completion time of T . We are

particularly interested in the expected project tardiness defined as E[(Z(η̃, c̃) −

T)+], which measures the expected delay if the project cannot be completed within

the target time T . Motivated by typical contract penalties, and used earlier by

Bertsimas et al. (2004, 2006), this is a standard measure of project performance.

CHAPTER 2. GENERALIZED PROJECT NETWORK 17

If T = 0, then the expected tardiness and expectedmakespan are equivalent. In the

following sections, we apply the method of distributionally robust optimization to

provide estimates of E[(Z(η̃, c̃)− T)+].

Chapter 3

Formulation and Solution Procedure

3.1 Marginal Distribution Model for c̃

In this section, we consider the marginal distribution model for c̃, which captures

the uncertainties in generalizations (a) and (b). For any task i ∈ N , the time c̃i

required to complete task i is assumed to be a discrete random variable with a finite

support Ci and a probability mass function pi(·). Then, the set of all possible joint

distributions of c̃ can be written as

Θc = {θc : Pθc{c̃i = c} = pi(c) ∀i ∈ N \ {s, t}, c ∈ Ci},

where Pθc{·} represents the probability under the distribution θc. Given the vector

η̃, the worst-case expected tardiness among all distributions of c̃ in the set Θc is

Z∗(η̃) = max
θc∈Θc

Eθc [(Z(η̃, c̃)− T)+], (3.1)

18

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 19

where Eθc [·] denotes the expectation taken with respect to the distribution θc. We

refer tomodel (3.1) as themarginal distributionmodel since it only uses themarginal

distributions of c̃.

To solve model (3.1), we first consider an arbitrary binary integer linear pro-

gram with the uncertain objective vector c̃ defined as

Z(c̃) = max{c̃Ty : y ∈ Y}, (3.2)

where Y ⊆ {0, 1}|N\{s,t}|. Given the ambiguity set Θc for the distribution of c̃,

we can define the following distributionally robust model for Z(c̃):

Z∗ = max
θ∈Θc

Eθ[(Z(c̃)− T)+]. (3.3)

In the following theorem, we represent Z∗ as a linear program with a potentially

exponential number of decision variables.

Theorem 1. Z∗ is equivalent to the following linear problem:

Z̄ = max
∑

i∈N\{s,t}

∑
c∈Ci

cqi(c)−
∑
y∈Y

Tλ(y) (3.4a)

s.t. qi(c) ≤ pi(c) ∀i ∈ N \ {s, t}, c ∈ Ci, (3.4b)∑
c∈Ci

qi(c)−
∑

y∈Y:yi=1

λ(y) = 0 ∀i ∈ N \ {s, t}, (3.4c)

∑
y∈Y

λ(y) ≤ 1, (3.4d)

qi(c) ≥ 0 ∀i ∈ N \ {s, t}, c ∈ Ci, (3.4e)

λ(y) ≥ 0 ∀y ∈ Y , (3.4f)

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 20

where the decision variables λ(y) and qi(c) can be interpreted as the following

probabilities:

λ(y) = P{Z∗(c̃) ≥ T,y∗(c̃) = y} ∀y ∈ Y ,

qi(c) =

P{Z∗(c̃) ≥ T, c̃i = c, the ith component of y∗(c̃) is 1} ∀i ∈ N \ {s, t}, c ∈ Ci.
(3.5)

Proof. Consider the optimization problemZ(c̃) defined in (3.2). For any given c̃,

let y∗(c̃) be the corresponding optimal solution with ties broken by lexicographic

order. First conditioning on the value of Z∗(c̃) and then conditioning on the opti-

mal solution y∗(c̃), given λ(y) defined in (3.5), we have

E[(Z∗(c̃)− T)+] = P(Z∗{c̃) ≥ T}E[(Z∗(c̃)− T)+ | Z∗(c̃) ≥ T]

+ P{Z∗(c̃) < T}E[(Z∗(c̃)− T)+ | Z∗(c̃) < T]

=
∑
y∈Y

λ(y)E[(Z∗(c̃)− T)+ | Z∗(c̃) ≥ T,y∗(c̃) = y]

+

(
1−

∑
y∈Y

λ(y)

)
E[(Z∗(c̃)− T)+ | Z∗(c̃) < T].

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 21

Note that

E[(Z∗(c̃)− T)+ | Z∗(c̃) ≥ T,y∗(c̃) = y]

= E[Z∗(c̃)− T | Z∗(c̃) ≥ T,y∗(c̃) = y]

= E[c̃Ty | Z∗(c̃) ≥ T,y∗(c̃) = y]− T

=
∑

i∈N\{s,t}

E[c̃i | Z∗(c̃) ≥ T,y∗(c̃) = y] · yi − T

=
∑

i∈N\{s,t}

∑
c∈C

c · P{c̃i = c | Z∗(c̃) ≥ T,y∗(c̃) = y} · yi − T

and E[(Z∗(c̃)− T)+ | Z∗(c̃) < T] = 0. Therefore,

E[(Z∗(c̃)− T)+]

=
∑
y∈Y

λ(y)

 ∑
i∈N\{s,t}

∑
c∈Ci

c · P{c̃i = c | Z∗(c̃) ≥ T,y∗(c̃) = y} · yi − T

 .

Rearranging the terms yields

E[(Z∗(c̃)− T)+]

=
∑

i∈N\{s,t}

∑
c∈Ci

∑
y∈Y

c · λ(y) · P{c̃i = c | Z∗(c̃) ≥ T,y∗(c̃) = y} · yi −
∑
y∈Y

λ(y)T.

(3.6)

According to the definition of λ(y), we have

λ(y) · P{c̃i = c | Z∗(c̃) ≥ T,y∗(c̃) = y} = P{c̃i = c,Z∗(c̃) ≥ T,y∗(c̃) = y}

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 22

and so

E[(Z∗(c̃)− T)+]

=
∑

i∈N\{s,t}

∑
c∈Ci

∑
y∈Y

c · P{c̃i = c,Z∗(c̃) ≥ T,y∗(c̃) = y} · yi −
∑
y∈Y

λ(y)T

=
∑

i∈N\{s,t}

∑
c∈Ci

∑
y∈Y:yi=1

c · P{c̃i = c,Z∗(c̃) ≥ T,y∗(c̃) = y} −
∑
y∈Y

λ(y)T

=
∑

i∈N\{s,t}

∑
c∈Ci

c

(∑
y∈Y:yi=1

P{c̃i = c,Z∗(c̃) ≥ T,y∗(c̃) = y}

)
−
∑
y∈Y

λ(y)T

=
∑

i∈N\{s,t}

∑
c∈Ci

cqi(c)−
∑
y∈Y

Tλ(y),

where the second and last equalities are obtained from yi ∈ {0, 1} for all y ∈ Y

and the definition of qi(c) in (3.5), respectively. According to the definitions of

λ(y) and qi(c) in (3.5), we have λ(y) ≥ 0,
∑

y∈Y λ(y) ≤ 1, 0 ≤ qi(c) ≤ pi(c),

and

∑
c∈Ci

qi(c) =
∑

y∈Y:yi=1

λ(y) = P{Z∗(c̃) ≥ T, the ith component of y∗(c̃) is 1}.

Therefore, we obtain Z∗ ≤ Z̄ .

Next, we showZ∗ ≥ Z̄ . Let (q∗i (c), λ∗(y)) denote an optimal solution to (3.4).

We can construct a distribution θ for c̃ as follows:

• For any y ∈ Y , choose y with probability λ∗(y). For any i such that yi = 1,

generate c̃i ∼ q∗i (c)/
∑

c′∈Ci q
∗
i (c

′). For any i such that yi = 0, generate

c̃i ∼ (pi − q∗i (c))/(1−
∑

c′∈Ci q
∗
i (c

′)).

• With probability 1 −
∑

y∈Y λ∗(y), for any i ∈ N \ {s, t}, generate c̃i ∼

(pi − q∗i (c))/(1−
∑

c′∈Ci q
∗
i (c

′)).

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 23

As 0 ≤ q∗i (c) ≤ pi(c) and
∑

c∈Ci pi(c) = 1, it is straightforward that

q∗i (c)/
∑

c′∈Ci q
∗
i (c

′) and (pi−q∗i (c))/(1−
∑

c′∈Ci q
∗
i (c

′)) are valid probability mass

functions. Under this distribution θ, for any i ∈ N \ {s, t}, we have

Pθ(c̃i = c) =
∑

y∈Y:yi=1

λ∗(y)
q∗i (c)∑

c′∈Ci q
∗
i (c

′)
+

∑
y∈Y:yi=0

λ∗(y)
pi(c)− q∗i (c)

1−
∑

c′∈Ci q
∗
i (c

′)

+

(
1−

∑
y∈Y

λ∗(y)

)
pi(c)− q∗i (c)

1−
∑

c′∈Ci q
∗
i (c

′)

=
q∗i (c)∑

c′∈Ci q
∗
i (c

′)

(∑
y∈Y:yi=1

λ∗(y)

)

+
pi(c)− q∗i (c)

1−
∑

c′∈Ci q
∗
i (c

′)

(
1−

∑
y∈Y:yi=1

λ∗(y)

)

= pi(c),

where the last equality follows from (3.4c). Thus, we have θ ∈ Θc and hence

Eθ[(Z∗(c̃)− T)+] ≤ Z∗. (3.7)

Also, note that

Eθ[(Z∗(c̃)− T)+]

=
∑
y∈Y

λ∗(y)Eθ[(Z∗(c̃)− T)+ | y is chosen]

+

(
1−

∑
y∈Y

λ∗(y)

)
Eθ[(Z∗(c̃)− T)+ | none of y ∈ Y is chosen]

≥
∑
y∈Y

λ∗(y)Eθ[Z∗(c̃)− T | y is chosen] ≥
∑
y∈Y

λ∗(y)Eθ[c̃
Ty − T | y is chosen].

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 24

Similarly to the derivation of (3.6), we have

Eθ[(Z∗(c̃)− T)+] ≥
∑
y∈Y

λ∗(y)Eθ[c̃
Ty − T | y is chosen]

=
∑

i∈N\{s,t}

∑
c∈Ci

∑
y∈Y

c · λ∗(y) · Pθ{c̃i = c | y is chosen} · yi

−
∑
y∈Y

λ∗(y)T.

Applying yi ∈ {0, 1} for any y ∈ Y and the construction of θ, we have

Eθ[(Z∗(c̃)− T)+] ≥
∑

i∈N\{s,t}

∑
c∈Ci

∑
y∈Y:yi=1

c · λ∗(y) · q∗i (c)∑
c′∈Ci q

∗
i (c

′)
−
∑
y∈Y

λ∗(y)T

=
∑

i∈N\{s,t}

∑
c∈Ci

c ·

(∑
y∈Y:yi=1

λ∗(y)

)
· q∗i (c)∑

c′∈Ci q
∗
i (c

′)

−
∑
y∈Y

λ∗(y)T

=
∑

i∈N\{s,t}

∑
c∈Ci

cq∗i (c)−
∑
y∈Y

λ∗(y)T

= Z̄,

where the second last equality and the last equality follow from (3.4c) and (3.4a),

respectively. According to (3.7), we obtain Z̄ ≤ Eθ[(Z∗(c̃)− T)+] ≤ Z∗, which

yields Z∗ = Z̄ by combining with Z∗ ≤ Z̄ .

In Theorem 1, λ(y) represents the probability that a feasible solution y to

model (3.2) is optimal and its optimal value is at least T . q∗i (c) is the probability

that (i) the optimal value ofmodel (3.2) is at leastT , (ii) c̃i is equal to ci, and (iii) the

ith component in the optimal solution to (3.2) is 1. An optimal solution to model

(3.4) then corresponds to these probabilities under the worst-case distribution in

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 25

the distributionally robust model (3.3). In the proof of Theorem 1, we also show

how to generate the worst-case distribution based on the optimal solution to (3.4).

Also, note that Theorem 1 can be interpreted as the dual form of the result obtained

in Meilijson and Nadas (1979). Our result is derived based on the probability

that an arbitrary solution to (3.2) is optimal, which is different from the approach

adopted by Meilijson and Nadas (1979).

Next, we apply Theorem 1 to the project management model (3.1) and obtain

an equivalent linear programming formulation for model (3.1).

Theorem 2. Z∗(η̃) can be computed by solving the following linear program:

min
u,v,w,z(·)

∑
i∈N\{s,t}

∑
c∈Ci

pi(c)zi(c) + u (3.8a)

s.t. zi(c) + vi ≥ c ∀i ∈ N \ {s, t}, c ∈ Ci, (3.8b)

ws − wt ≤ T + u, (3.8c)

η̃ij(wi − wj) ≥ η̃ijvi ∀(i, j) ∈ A, i, j ∈ N \ {s, t}, (3.8d)

ws − wi ≥ 0 ∀(s, i) ∈ A, (3.8e)

wi − wt ≥ vi ∀(i, t) ∈ A, (3.8f)

zi(c) ≥ 0 ∀i ∈ N \ {s, t}, c ∈ Ci, (3.8g)

u ≥ 0. (3.8h)

Proof. Consider the linear program (3.4). Let zi(c), vi, and u be the dual variables

corresponding to constraints (3.4b), (3.4c), and (3.4d), respectively. The dual form

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 26

of (3.4) is written as

Z∗ = min
u,v,z(·)


∑

i∈N\{s,t}

∑
c∈Ci

pi(c)zi(c) + u

∣∣∣∣∣∣∣
∑

i:yi=1 vi ≤ T + u ∀y ∈ Y ,

(3.8b), (3.8g), (3.8h)

 .

(3.9)

If we let yi =
∑

j:(i,j)∈A η̃ijxij =
∑

j:(j,i)∈A η̃jixji for all i ∈ N \ {s, t}, model

Z(η̃, c̃) with given η̃ can be written as

Z(η̃, c̃) = max{c̃Ty : y ∈ Y(η̃)}, (3.10)

where

Y(η̃) =

y ∈ {0, 1}|N\{s,t}|

∣∣∣∣∣∣∣∣∣∣

∑
j:(i,j)∈A η̃ijxij

=
∑

j:(j,i)∈A η̃jixji = yi ∀i ∈ N \ {s, t},

(2.1c), (2.1d), (2.1e)

 .

Applying the general result in (3.9) to Z∗(η̃) with Z(η̃, c̃) formulated in (3.10),

Z∗(η̃) is equivalent to the following model:

Z∗(η̃) = min
u,v,z(·)


∑

i∈N\{s,t}

∑
c∈Ci

pi(c)zi(c) + u

∣∣∣∣∣∣∣
Z(η̃,v) ≤ T + u,

(3.8b), (3.8g), (3.8h)

 . (3.11)

Consider the formulation of Z(η̃, c̃) in (2.3). As (2.3) is the longest path problem,

we can replace the binary constraints xij ∈ {0, 1} with xij ≥ 0 for all (i, j) ∈ A,

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 27

i.e.,

Z(η̃,v) = max

 ∑
(i,j)∈A

viη̃ijxij : (2.3b), (2.1c), (2.1d), xij ≥ 0 ∀(i, j) ∈ A

 .

Letwi,ws, andwt be the dual variables corresponding to constraints (2.3b), (2.1c),

(2.1d), respectively. The dual form of Z(η̃,v) is formulated as

Z(η̃,v) = min {ws − wt : (3.8d), (3.8e), (3.8f)} .

Next we complete the proof by showing that (3.8) is equivalent to Z∗(η̃) for-

mulated in (3.11). Note that these two models have the same objective function.

It suffices to show that their feasible regions are equivalent. First, consider any

(u,v, z(·)) feasible to (3.11). There exists a dual optimal solution w∗ to Z(η̃,v)

such that w∗
s − w∗

t = Z(η̃,v) ≤ T + u. Thus, (u,v,w∗, z(·)) is feasible to (3.8).

Now consider any (u,v,w, z(·)) feasible to (3.8). As w is a feasible dual solu-

tion to Z(η̃,v), we have Z(η̃,v) ≤ ws − wt ≤ T + u. Therefore, (u,v, z(·)) is

feasible to (3.11), which completes the proof.

3.2 Distributionally Robust Model for c̃ and η̃

In this section, we further consider the uncertain precedence restrictions η̃ in the

distributionally robust optimization model so that generalizations (c) and (d) can

also be incorporated when evaluating the project makespan. Recall that η̃ij for any

(i, j) ∈ A is the Bernoulli random variable such that task i should be completed

before the start of j if and only if η̃ij = 1. Here we assume that the marginal

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 28

distribution of η̃ij is known, which can be easily specified by the parameter η̄ij

defined as η̄ij = P{η̃ij = 1}.

According to the description of generalization (d), we can further identify some

information regarding the joint distribution of η̃. Recall that NBs denotes the set

of tasks after which alternative plans will be considered. For any i ∈ NBs , gi is

the number of alternative plans after task i and, for any k ∈ {1, ..., gi}, Gk
i is the

set of tasks in the kth alternative plan after task i. Observe that any task j ∈ Gk
i

is executed if and only if the alternative plan Gk
i after task i ∈ NBs is selected.

Therefore, for the kth alternative plan Gk
i , we can use an arbitrary task denoted

by jki ∈ Gk
i to represent whether the alternative plan Gk

i is selected. In other

words, Gk
i is selected if and only if η̃ijki = 1 and the probability of selecting Gk

i is

P{η̃ijki = 1} = η̄ijki . This implies that η̃ij = η̃ijki and hence η̄ij = P{η̃ij = 1} =

P{η̃i,jki = 1} = η̄ijki for all j ∈ Gk
i . Furthermore, as exactly one of the alternatives

after i will be executed, we have
∑gi

k=1 η̃ijki = 1 with probability 1, which also

implies
∑gi

k=1 η̄ijki = 1.

Additionally, let Af be a subset of the set of precedence relations A such that

Af = {(i, j) ∈ A : η̄ij = 1}, (3.12)

i.e., η̃ij = 1 with probability 1 for any (i, j) ∈ Af . Section 2 shows that Af at

least includes the following precedence relations. First, for any task not in the

alternatives plans, it must be executed and so it is linked with the dummy start and

end tasks, i.e., s and t. In other words, we have η̃si = η̃ti = 1 for any i ∈ N\{s, t}\

NB, where NB, as defined in Section 2, represents the tasks in alternative plans

and satisfies NB = ∪i∈NBs
∪gik=1 G

k
i . Second, for any task i ∈ NBs after which

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 29

probabilistic branching will occur, we use ti to denote the task to be executed after

completing any selected alternative plan after task i. The tasks in the alternative

plans after i, if executed, must be completed before the initiation of ti. This yields

η̃jti = 1 for all j in any alternative plan after i.

Putting together all these restrictions, we obtain that the support of η̃ should

be contained in the following set Ω:

Ω =


η ∈ {0, 1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑gi
k=1 ηijki = 1, ∀i ∈ NBs ,

ηij = ηijki , ∀i ∈ NBs , k ∈ {1, ..., gi},

j ∈ Gk
i \ {jki },

ηij = 1 ∀(i, j) ∈ Af


. (3.13)

Combining with the marginal distribution of η̃ specified by the parameters η̄ij , the

joint distribution of η̃ij should be contained within the following set:

Θη =

{
θη :

∑
η∈Ω

Pθη{η̃ = η} = 1,Pθη{η̃ij = 1} = η̄ij ∀(i, j) ∈ A

}
.

Without further information regarding the joint distribution of c̃ and η̃, we can

obtain an upper bound on the expected tardiness by solving the following distri-

butionally robust optimization model:

max
θη∈Θη

Eθη [Z
∗(η̃)] = max

θη∈Θη

Eθη

[
max
θc∈Θc

Eθc [(Z(η̃, c̃)− T)+]

]
. (3.14)

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 30

For any η ∈ Ω, let p(η) = P{η̃ = η}. Model (3.14) can be formulated as

max
∑
η∈Ω

Z∗(η)p(η) (3.15a)

s.t.
∑

η∈Ω:ηij=1

p(η) = η̄ij ∀(i, j) ∈ A, (3.15b)

∑
η∈Ω

p(η) = 1, (3.15c)

p(η) ≥ 0 ∀η ∈ Ω. (3.15d)

Model (3.15) is a linear program with |Ω| decision variables, whose number could

be exponential in |A|. To tackle the numerical challenge, we present in Algorithm

1 a column generation framework to solve the linear program.

To execute Algorithm 1, we first need to find an initial subset Ω′ of Ω that

ensures the feasibility of the restricted model (3.16). Furthermore, the pricing

problem (3.17) must be solved for each column generation iteration. These two

issues are addressed in the following two subsections, respectively.

3.2.1 Find the Initial Subset Ω′

In this subsection, we propose a low polynomial time algorithm to obtain Ω′ ⊆ Ω

such that the restricted model (3.16) based on Ω′ is feasible.

Recall that we have defined in a subset Af of A in (3.12), which corresponds

to the precedence relations that must be satisfied. For any i ∈ NBs , let Ai
b =

{(i, jki) : k ∈ {1, ..., gi}} and Ai
f = {(i, j) : j ∈ ∪gi

k=1G
k
i \ {jki }}, which corre-

sponds to the precedence relations between the node in NBs and the node in NB.

Furthermore, let Ap = A \ Af \
(
∪i∈NBs

(Ai
b ∪ Ai

f)
)
, which corresponds to the

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 31

Algorithm 1: Column Generation Framework
1 Consider Ω′ ⊆ Ω such that the following restricted model is feasible:

max
∑
η∈Ω′

Z∗(η)p(η), (3.16a)

s.t.
∑

η∈Ω′:ηij=1

p(η) = η̄ij ∀(i, j) ∈ A, (3.16b)

∑
η∈Ω′

p(η) = 1, (3.16c)

p(η) ≥ 0 ∀η ∈ Ω′. (3.16d)

2 Solve the restricted model (3.16) to obtain the primal optimal solution
(p∗(η) ∀η ∈ Ω′) and the dual optimal solution (α∗, β∗), where α∗ and
β∗ correspond to the optimal dual variables for constraints (3.16b) and
(3.16c), respectively.

3 Consider the following pricing problem:

max
η∈Ω

Z∗(η)−
∑

(i,j)∈A

α∗
ijηij

 . (3.17)

Let η∗ and P∗ denote its optimal solution and optimal value
respectively. Given the dual variable (α∗, β∗) for the original model
(3.15), P∗ − β∗ is the maximum reduced cost for all decision variables
p(η) where η ∈ Ω.

4 If P∗ − β∗ ≤ 0, i.e., p(η) for all η ∈ Ω has a non-positive reduced cost,
an optimal solution (p∗(η), ∀η ∈ Ω) to the original problem (3.15) can
be obtained from the current optimal solution (p∗(η) ∀η ∈ Ω′) to the
restricted model (3.16) by setting p∗(η) = 0 for all η ∈ Ω \ Ω′.
Otherwise, i.e., P∗ − β∗ > 0, let Ω′ ← Ω′ ∪ {η∗} and go to Step 2.

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 32

precedence relations with the positive probability of being unsatisfied in the real

project. Obviously, Af , Ap, Ai
b and Ai

f for all i ∈ NBs correspond to a partition

of A. Therefore, for any η ∈ Ω, we can decompose it into subvectors η(Af),

η(Ap), η(Ai
b) and η(Ai

f) for all i ∈ NBs, each of which represent the entries in η

corresponding to Af , Ap, Ai
b and Ai

f for all i ∈ NBs , respectively. Next, for each

of these subvectors, we propose its possible values for all η in the desired subset

Ω′.

• According to the last constraint in (3.13), for any η ∈ Ω, η(Af) = 1 where

1 denotes a vector of all 1’s of the proper dimension. Thus, for any η ∈ Ω′,

we also have η(Af) = 1.

• Consider the entries corresponding to Ap. Without loss of generality, we

assume that Ap = {(i1, j1), ..., (i|Ap|, j|Ap|)} with η̄ik,jk ≤ η̄ik+1,jk+1
for all

k ∈ {1, ..., |Ap|−1}, i.e., the precedence relations inAp are sorted according

to the ascending order of η̄ij . For any k ∈ {1, ..., |Ap| + 1}, let ηk
0 be

the |Ap|-dimensional vector where the first k − 1 entries are 0’s and the

other entries are 1’s. For all η ∈ Ω′, we consider η(Ap) to be ηk
0 for some

k ∈ {1, ..., |Ap| + 1}. Furthermore, let p10 = η̄i1,j1 , pk0 = η̄ik,jk − η̄ik−1,jk−1

for all k ∈ {2, ..., |Ap|}, and p
|Ap|+1
0 = 1 − η̄i|Ap|,j|Ap|

. It is straightforward

that
∑|Ap|+1

k=1 pk0 = 1 and
∑|Ap|+1

k=1 pk0η
k
0 = [η̄i1,j1 , ..., η̄i|Ap|,j|Ap|

]T. Therefore,

pk0 can be viewed as the probability for η̃(Ap) = ηk
0 if the support of η̃ is

Ω′.

For example, suppose thatAp = {(7, 8), (7, 9), (8, 9)}with η̄78 = 0.2, η̄79 =

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 33

0.6, and η̄89 = 0.9. We have

η1
0 η2

0 η3
0 η4

0


η78 1 0 0 0

η79 1 1 0 0

η89 1 1 1 0

pk0 0.2 0.4 0.3 0.1

. (3.18)

• For any i ∈ NBs , given η ∈ Ω, the first constraint in (3.13) shows that

η(Ai
b)must be a gi-dimensional standard basis vector, i.e., a gi-dimensional

vector with only one entry equal to 1 and the others 0’s, which implies only

one alternative plan is chosen after any branching staring node i ∈ NBs .

Therefore, for any η ∈ Ω′, η(Ai
b) ∈ {b1i , ..., b

gi
i } where bki for any k ∈

{1, ..., gi} is the gi-dimensional vector with the kth entry to be 1 and the

others 0’s. Since
∑gi

k=1 η̄ijki b
k
i = [η̄ij1i , ..., η̄ij

gi
i
]T and

∑gi
k=1 η̄ijki = 1, η̄ijki

can be viewed as the probability of η̃(Ai
b) = bki given that the support of η̃

isΩ′. According to the second constraint in (3.13), for η ∈ Ω, η(Ai
f) can be

determined by η(Ai
b). As a result, for η ∈ Ω′, given η(Ai

b) = bki for some

k ∈ {1, ..., gi}, the second constraint in (3.13) yields a unique vector fk
i

such that η(Ai
f) = fk

i . As there is a one-to-one correspondence between bki

and fk
i , if we restrict the support of η̃ to Ω′, the probability for η̃(Ai

f) = fk
i

is η̄ijki .

For example, consider the probabilistic branching after task 1 in Figure 2.1.

We have i = 1, g1 = 2, G1
1 = {2, 3, 4}, and G2

1 = {5, 6}. Suppose that

j11 = 2 and j21 = 5. Then A1
b = {(1, 2), (1, 5)} with η̄12 = η̄15 = 0.5 and

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 34

A1
f = {(1, 3), (1, 4), (1, 6)}.

b11 b21 η12 1 0

η15 0 1

η̄1jk1 0.5 0.5

and

f 1
1 f 2

1


η13 1 0

η14 1 0

η16 0 1

η̄1jk1 0.5 0.5

. (3.19)

Given η ∈ Ω, the above analysis obtains the possible values of the subvectors

η(Af), η(Ap), η(Ai
b) and η(Ai

f) for all i ∈ NBs. It also computes the probability

for each subvector to take a certain value whenΩ′ is the support of η̃. Based on this

information, we can use Algorithm 2 to combine the subvectors into the elements

of Ω′ and find a feasible solution (p(η) ∀η ∈ Ω′) to (3.16). For example, consider

a project network consisting of Af , Ap = {(7, 8), (7, 9), (8, 9)} with η̄78 = 0.2,

η̄78 = 0.6, and η̄89 = 0.9, and the probabilistic branching in Figure 2.1. We can

use (3.18) and (3.19) to obtain Ω′ = {η1, ...,η5} and a corresponding feasible

solution (p(η) ∀η ∈ Ω′) shown as follows:

η1 η2 η3 η4 η5


η(Af) 1 1 1 1 1

η(Ap) η1
0 η2

0 η2
0 η3

0 η4
0

η(A1
b) b11 b11 b21 b21 b21

η(A1
f) f 1

1 f 1
1 f 2

1 f 2
1 f 2

1

p(η) 0.2 0.3 0.1 0.3 0.1

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 35

Let us discuss the general idea of Algorithm 2 here. The vectors ηk0 correspond

to the uncertain precedence relations in Ap. They are generated in a way that

we try to put the most number of precedence relationships in a scenario as long

as the expectation requirement (3.15b) is not violated. The vectors bki and fk
i

correspond to the probabilistic branching after task i. In particular, each pair of bki

and fk
i represents a given branch after task i. We then combine these vectors of

ones for Af , the vectors ηk0 , and the pairs (bki ,fk
i) so as to satisfy the expectation

requirement (3.15b). The more intuitive explanation of how Algorithm 2 gets the

feasible solution in the last paragraph is shown as Figure 3.1. In Figure 3.1, we

only present the combination process of ηk0 and (bki ,fk
i), as η(Af) does not affect

|Ω′| and p(η), ∀η ∈ Ω′.

η1
0 , 0.2

(b11,f 1
1), 0.5

η2
0 , 0.4 η3

0 , 0.3

(b21,f 2
1), 0.5

η4
0 , 0.1

0.2
0.3 0.1 0.3

0.1

Figure 3.1: Intuitive Explanation of Algorithm 2

In Algorithm 2, the while loop from line 4 to 12 will be executed for at most

|Ap| +
∑

i∈NBs
gi ≤ |A| times. Thus, the subset Ω′ returned by Algorithm 2

has at most O(|A|) elements. Also note that each η ∈ Ω′ has |A| entries. The

computational complexity is bounded by O(|A|2).

3.2.2 Solve the Pricing Problem

To solve the pricing problem in (3.17), we reformulate it as a compact mixed inte-

ger linear program shown in Theorem 3, which can be readily solved by commer-

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 36

Algorithm 2: Find the Initial Subset Ω′ ⊆ Ω

Input: NBs , Ap, Af , Ai
b ∀i ∈ NBs , Ai

f ∀i ∈ NBs , η̄ij ∀(i, j) ∈ A, bi,
fi,η0

Output: Ω′ ⊆ Ω, (p(η) ∀η ∈ Ω′) feasible to (3.16)
1 Label the elements in Ap as {(i1, j1), ..., (i|Ap|, j|Ap|)} with

η̄ik,jk ≤ η̄ik+1,jk+1
for all k ∈ {1, ..., |Ap| − 1}

2 p10 ← η̄i1,j1 , pk0 ← η̄ik,jk − η̄ik−1,jk−1
for all k ∈ {2, ..., |Ap|},

p
|Ap|+1
0 ← 1− η̄i|Ap|,j|Ap|

3 Ω′ ← 0, P ← 0, k0 ← 1, ki ← 1 for all i ∈ NBs

4 while P < 1 do
5 q ← min{pk00 , η̄

i,j
ki
i
∀i ∈ NBs}

6 if q > 0 then
7 Generate η such that η(Af)← 1, η(Ap)← ηk0

0 , η(Ai
b)← bkii

and η(Ai
f)← fki

i for all i ∈ NBs

8 Ω′ ← Ω′ ∪ {η}, p(η)← q

9 P ← P + q, pk00 ← pk00 − q, η̄
i,j

ki
i
← η̄

i,j
ki
i
− q for all i ∈ NBs

10 if pk00 = 0 then k0 ← k0 + 1;
11 for i ∈ NBs do
12 if η̄

i,j
ki
i
= 0 then ki ← ki + 1;

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 37

cial optimization packages.

Theorem 3. The pricing problem in (3.17) is equivalent to

max
y,q(·),λ,η

∑
i∈N\{s,t}

∑
c∈Ci

cqi(c)− Tλ−
∑

(i,j)∈A

α∗
ijηij (3.20a)

s.t.
∑
c∈Ci

qi(c) =
∑

(i,j)∈A

yij ∀i ∈ N \ {s, t}, (3.20b)

∑
j:(i,j)∈A

yij =
∑

j:(j,i)∈A

yji ∀i ∈ N \ {s, t}, (3.20c)

∑
i:(s,i)∈A

ysi = λ, (3.20d)

∑
i:(i,t)∈A

yit = λ, (3.20e)

0 ≤ qi(c) ≤ pi(c) ∀i ∈ N \ {s, t}, c ∈ Ci,

(3.20f)

0 ≤ λ ≤ 1, (3.20g)

0 ≤ yij ≤ ηij, ∀(i, j) ∈ A, (3.20h)

η ∈ Ω. (3.20i)

Proof. Recall that Z∗(η) can be formulated as the minimization problem in (3.8).

Let qi(c), λ, xij , xsi, and xit be the dual variables corresponding to constraints

(3.8b), (3.8c), (3.8d), (3.8e), and (3.8f), respectively. Applying strong duality to

CHAPTER 3. FORMULATION AND SOLUTION PROCEDURE 38

the linear program, we have

Z∗(η) = max
x,q(·),λ

∑
i∈N\{s,t}

∑
c∈Ci

cqi(c)− Tλ (3.21a)

s.t.
∑
c∈Ci

qi(c) =
∑

(i,j)∈A

ηijxij ∀i ∈ N \ {s, t}, (3.21b)

∑
j:(i,j)∈A

ηijxij =
∑

j:(j,i)∈A

ηjixji ∀i ∈ N \ {s, t}, (3.21c)

∑
i:(s,i)∈A

xsi = λ, (3.21d)

∑
i:(i,t)∈A

xit = λ, (3.21e)

xij ≥ 0 ∀(i, j) ∈ A, (3.21f)

(3.20f), (3.20g). (3.21g)

Inserting the above formulation of Z∗(η) into (3.17), the pricing problem can be

reformulated as follows:

max
x,q(·),λ,η

∑
i∈N\{s,t}

∑
c∈Ci

cqi(c)− Tλ−
∑

(i,j)∈A

α∗
ijηij

s.t. (3.21b), (3.21c), (3.21d), (3.21e), (3.21f), (3.20f), (3.20g),

η ∈ Ω.

Due to the network flow balance constaints and 0 ≤ λ ≤ 1, we have 0 ≤ xij ≤

1, ∀(i, j) ∈ A. Also, note that ηij is a binary decision variable. Therefore, ηijxij is

always within [0, ηij]. Replacing ηijxij with a new decision variable 0 ≤ yij ≤ ηij ,

we obtain Theorem 3.

Chapter 4

Computational Study

In this section, we conduct a computational study. The objectives of the compu-

tational study are as follows. First, in Section 4.1, we compute the instance of

classical research and development projects from the literature to demonstrate the

practicality of our approach. Second, Section 4.2 conducts numerical experiments

in small-scale, middle-scale, and large-scale networks to test the performance of

the proposed approach and obtain findings. Third, Section 4.3 presents one small

instance to check solution quality. In this thesis, we use the Python programming

language and call Gurobi solver. The computation device is a Linux server op-

erating on Ubuntu 18.04.5 LTS. It is equipped with 80 Intel Xeon Gold 5218R

processors running at 2.10 GHz, and it has a generous memory capacity of 256GB

RAM.

39

CHAPTER 4. COMPUTATIONAL STUDY 40

4.1 Classical Research andDevelopment ProjectsNet-

work

Research and development projects (R&D projects) are essential when a new tech-

nology, product, or proposal is developed. It is practical and widely applied in

various industries, such as electronic products, aerospace, commerce, and phar-

maceuticals. According to Moore and Taylor (1977), network analysis has been

applied to plan and control of R&D projects since the 1950s. The classical pro-

cedure for R&D projects is as follows: problem definition (PD), research imple-

mentation (RI), solution proposal (SP), prototype development (PtD), and solution

implementation (SI). However, Moore and Taylor (1977) present that four special

uncertainties in real project execution need to be considered.

• First, experience has shown that problem definition is frequently failed, and

project executors need to redefine the problem until that problem definition

is successfully completed.

• Second, the projects team will meet four choices after the solution proposal:

going directly to prototype development, doing more research, redefining

the problem, and washout.

• Third, the project team still encounters the possibility of redefining the prob-

lem after doing more research; otherwise, go directly to the solution pro-

posal.

• Fourth, prototype development sometimes fails, so the project team needs

to redevelop the prototype until prototype development is successfully com-

CHAPTER 4. COMPUTATIONAL STUDY 41

pleted.

Every time the project team enters the problem definition or prototype develop-

ment task, they have to ensure successful completion before leaving, which means

that rework would often be necessary. Considering these uncertainties, Moore and

Taylor (1977) use the numerical simulationmethod to estimate the completion time

of R&D projects for the subsequent four projects.

Our generalized and robust model can solve this instance more efficiently

based on the below fitness.

• Model (2.2) can be applied to model rework of the tasks problem definition

and prototype development. Observe that m̃i in the model (2.2) represents

the number of times the task problem definition needs to be completed be-

fore achieving success, following a Geometric distribution. If the distribu-

tion of completion time of problem definition once and the probability of

successful problem definition each time are given, the distribution of com-

pletion time of successful problem definition can be determined easily. In

the same way, the time distribution of successful prototype development

completion can also be determined. Therefore, the task notations successful

problem definition (PDS) and successful prototype development (PtDS) can

be used as replacements for the task notations problem definition (PD) and

prototype development (PtD) in the network.

• Choices after solution proposal can be modeled using η̃. To apply our

model, we adopt a fitting approach to handle situations where additional

branching start nodes are encountered after the initial branching start node.

Listing all extended alternative plans starting from the initial branching start

CHAPTER 4. COMPUTATIONAL STUDY 42

node, all subsequent branching start nodes are included in these extended al-

ternative plans. As a result, certain alternative plansmay have a significantly

low probability of being chosen. By setting a threshold of 0.01, alternative

plans with a probability below this threshold are automatically excluded,

and the corresponding probabilities are absorbed into the washout choice.

The instance in Moore and Taylor (1977) can be reorganized as the generalized

project network shown in Figure 4.1. Moore and Taylor (1977) organize the R&D

projects process into a series of four consecutive projects. The network structure

of the four projects remains consistent, with minor variations in the completion

time of individual tasks and the probabilities associated with alternative plans. We

present one project network in Figure 4.1, but we will perform numerical compu-

tations on these four projects in the next step.

PDS RI SP trans PDS RI SP PtDS SI Completion

washout

PtDS SI

trans PDS RI SP washout

PDS RI SP washout

PDS RI SP PtDS SI

0.06
0.24

0.6

0.
02

0.02
0.06

Figure 4.1: Network of R&D Process for One Project

4.1.1 Input Explanation

This subsection introduces the input data as follows:

CHAPTER 4. COMPUTATIONAL STUDY 43

• Distribution of random variables (c̃i): randomly generated real numbers

within the range defined by the minimum and maximum values and their

corresponding random probability value. In practice, the specific project

will determine the specific distribution of c̃i.

• Nodes and arcs set: to fit the instance into our model framework, the tasks

repeatedly included in multiple alternative plans are considered disjoint. As

a result, there are 142 nodes within the network structure. There are 26 arcs

in Ab, while all other existing arcs are in Af .

• The expectation η̄ij of Bernoulli random variables η̃ij is 1 for each (i, j)

in Af , and it’s the probability that the alternative plan including (i, j) is

chosen for each (i, j) in Ai
b, ∀i ∈ Nbs , respectively. The probability values

are sourced from Moore and Taylor (1977).

4.1.2 Numerical Result

When reorganizing this network, we have 142 tasks, four alternative plans start

nodes within Nbs , and a total of 26 arcs within
⋃

i∈Nbs
Ai

b after these four alterna-

tive plans start nodes. There are 395 arcs within A and 267 arcs within Af . We

add two arcs toAp to fit the model. By implementing computation, the numerical

result is shown in the first row of Table 4.2. The column generation algorithm was

executed for 156 iterations, with a CPU runtime of 98.2 seconds. The computation

time for solving the master problem and the pricing problem once was remarkably

short, at 0.23 seconds and 0.4 seconds, respectively. Based on these results, we can

infer that our model is well-suited for project completion time estimation problems

in networks with uncertainties in task duration and task outcomes. Our method

CHAPTER 4. COMPUTATIONAL STUDY 44

exhibits several advantages over literature approaches. It demonstrates superior

generality and can replace numerical and simulation approaches while requiring

significantly shorter computation time. Moreover, our approach is robust even

when provided with limited distributional information.

4.2 Performance Test

The computational study conducted in this section is a pivotal component of our re-

search, offering valuable insights into the robust optimization and mixed program-

ming aspects of our proposed model and solution algorithm. Through systematic

experimentation on networks of varying sizes, we aim to evaluate the performance

and scalability of our approach comprehensively. By analyzing the results ob-

tained from various computational scenarios, we can drawmeaningful conclusions

regarding the effectiveness and efficiency of our model. Specifically, our atten-

tion is directed towards the following key performance indicators: the number of

iterations, the solving time of the pricing problem in each iteration, and the solving

time of the master problem in each iteration used in the column generation algo-

rithm. These metrics provide crucial insights into the computational complexity

and runtime efficiency of our proposed model and solution approach. By examin-

ing the behavior of our algorithm across different network sizes, we aim to identify

any patterns or trends that may emerge. The findings from this study will validate

the practicality of our approach and highlight potential areas for further research

to improve and optimize.

While developing our model and algorithm, it is of utmost importance to con-

sider the impact of network scale. Specifically, we need to take into account the

CHAPTER 4. COMPUTATIONAL STUDY 45

number of arcs in Ap and the number of task nodes in Nbs , as these factors have

a significant impact on overall performance and computing time. Therefore, in

the following subsections, we will thoroughly examine three sets of computations

conducted on small-scale, middle-scale, and large-scale networks. Within each

network scale, we will carefully adjust the number of arcs within Ap, as well as

the number of task nodes within Nbs . With this systematic approach, we aim to

demonstrate the practicality of our research across different network scales. More-

over, we seek to identify any discernible relationships between computation time

and the numbers of arcs within Ap and task nodes within Nbs .

4.2.1 Performance Test in Small-scale and Middle-scale Net-

works

In this section, our primary focus is conducting numerical experiments on small-

scale and middle-scale networks. The small-scale network comprises 126 arcs

and 50 tasks, while the middle-scale network comprises 192 arcs and 80 tasks.

The completion time of each task is randomly generated within the range of 1 to

10. The expectations η̄ij are randomly assigned values between 0-1 for (i, j) in

Ap and
⋃

i∈Nbs
Ai

b, with the constraint that
∑

(i,j)∈Ai
b
η̄ij = 1, ∀i ∈ Nbs . We vary

the number of arcs in Ap and adjust the number of task nodes in Nbs . Due to the

short computation time required for the small and middle-scale numerical exper-

iments, we present the combined results in Table 4.1. The table includes a total

of 7 numerical experiments, with the first three small-scale network experiments

and the remaining six middle-scale experiments. Each row contains the input data

in the second through sixth columns, followed by the result data in the last four

CHAPTER 4. COMPUTATIONAL STUDY 46

columns of each experiment. Columns two and three represent the total number

of nodes inN and total arcs inA, indicating the network size. Columns four, five,

and six represent the numbers of branching start nodes, all alternative plans that

follow these branching start nodes, and precedence requirements that may not be

satisfied, respectively.

index |N | |A| |Nbs | |
⋃

i∈Nbs
Ai

b| |Ap| itera. # CPUtime last_master_time pricing_time
1 50 126 4 8 22 97 36.076s 0.158s 0.21s
2 50 126 7 15 22 120 50.3s 0.21s 0.28s
3 50 126 7 15 12 70 27.5s 0.145s 0.19s
4 79 192 14 33 7 50 10.6s 0.1s 0.18s
5 79 192 14 33 12 106 36.076s 0.158s 0.25s
6 79 192 14 33 17 150 70.6s 0.358s 0.28s
7 79 192 14 33 22 218 110.6s 0.659s 0.3s
8 79 192 10 24 22 167 75.2s 0.355s 0.28s
9 79 192 5 12 22 106 37.6s 0.159s 0.22s

Table 4.1: Numerical Result in Small-scale and Middle-scale Networks

In this table, itera. # represents the number of iterations the column generation

algorithm needs in the computation process. CPU time is the total time to solve

each numerical experiment. The last two columns are the time to solve the master

problem in the last iteration and the average time to solve the pricing problem

once. We have findings as follows.

• In both small and middle-scale experiments, we have successfully demon-

strated the efficiency of our formulation as shown, the total computation

time for small-scale and middle-scale cases remains within one minute and

two minutes, respectively.

• Basically, as more columns join the master problem, the runtime of the mas-

ter problem gradually increases. Experiment results support this point and

reveal that the runtime spent on solving the pricing problem remains almost

unchanged.

CHAPTER 4. COMPUTATIONAL STUDY 47

• Furthermore, we have observed a trend where the addition of 10 arcs in Ap

or in
⋃

i∈Nbs
Ai

b can at least doubles the computation time significantly.

• Finally, in experiments 1 2 3 4 5 9, the time taken to solve themaster problem

in the last iteration was shorter than the average time taken to solve the

pricing problem once. We can argue that for small and middle cases with

fewer than 130 iterations, the pricing problem accounts for the majority of

the computation time in the entire solving process. Conversely, above this

size, we observe that the master problem dominates the computation time.

These findings demonstrate the efficiency and practicality of our approach and

provide insights for further enhancing algorithms for small-scale and middle-scale

networks. In the following subsection, we will move on to large-scale cases to

explore the scalability of our approach and draw further conclusions.

4.2.2 Performance Test in Large-scale Network

This section presents the results of computational experiments conducted on the

large-scale network. The input data for these experiments are as follows: the

number of task nodes is approximately 140, the number of total arcs is approx-

imately 400, and the distribution of each task completion time is randomly gen-

erated within 1 to 10. Expectations η̄ij are random values between 0-1 for (i, j)

in Ap and
⋃

i∈Nbs
Ai

b, and
∑

(i,j)∈Ai
b
η̄ij = 1, ∀i ∈ Nbs . Additionally, the experi-

mental setup involves adjusting the number of arcs inAp, with a maximum of 74,

and the number of branching start nodes in Nbs , with a maximum of 26 (total of

53 arcs in
⋃

i∈Nbs
Ai

b).

Let’s introduce key output metrics and their corresponding column names in

CHAPTER 4. COMPUTATIONAL STUDY 48

Table 4.2 as follows: total time to solve each case (CPUtime), the number of it-

erations in the column generation process (itera. #), the computation time of the

master problem in the last iteration (last_master_time), the average computation

time of the pricing problem per iteration (pricing_time), and the optimal objec-

tive value (Result). By examining these outputs, we aim to gain insights into the

performance and efficiency of our computational approach in handling large-scale

network flows. Table 4.2 shows the detailed input and output. The column names

are defined similarly to the small-scale network table.

Figure 4.2 provides a more intuitive representation of the relationship between

the number of arcs inAp and system performance. The x-axis represents the num-

ber of arcs in Ap and the y-axis represents the number of iterations in the column

generation algorithm and CPU computational time. Similarly, Figure 4.3 shows

the relationship between the number of task nodes inNbs and system performance.

The x-axis represents the number of task nodes inNbs and the y-axis represents the

number of iterations in the column generation algorithm and CPU computational

time.

20 30 40 50 60 70
0

200

400

600

800

|Ap|

ite
ra
.#

itera.#

20 30 40 50 60 70

0

50

100

150

200

|Ap|

C
PU

tim
e
in

m
in

CPU time

Figure 4.2: Performance Result in the Large-scale Network with |Ap|

CHAPTER 4. COMPUTATIONAL STUDY 49

in
de
x
|N
|
|A
|
|N

b s
|
|⋃ i∈

N
b
s
A

i b
|
|A

p
|
|A

f
|

ite
ra
.#

C
PU

tim
e

la
st
_m

as
te
r_
tim

e
pr
ic
in
g_
tim

e
R
es
ul
t

R
&
D

14
2

39
5

4
26

2
26
7

15
6

98
.2
s

0.
23
2s

0.
4s

12
3.
1

10
12
4

38
3

3
6

21
35
2

74
34
s

0.
22
1s

0.
25
s

22
6

11
12
4

38
3

3
6

30
34
3

14
0

79
.4
s

0.
57
8s

0.
26
5s

22
6

12
12
4

38
3

3
6

45
32
8

30
5

7.
66
m
in

3.
04
s

0.
35
s

21
4

13
12
4

38
3

3
6

53
32
0

45
3

21
.9
8m

in
7s

0.
31
s

21
3

14
12
4

38
3

3
6

63
31
0

68
4

85
.9
m
in

21
s

0.
4s

20
9

15
12
4

38
3

3
6

74
29
9

90
0

3.
21
9h

36
.6
s

0.
45
s

20
4

16
12
4

37
5

6
12

40
31
6

19
6

3.
13
m
in

1.
68
s

0.
4s

22
1.
2

17
12
4

36
1

9
19

40
29
1

22
1

4.
41
4m

in
1.
96
5s

0.
38
s

25
1.
68

18
14
0

39
4

14
29

40
31
4

27
9

9.
27
m
in

3.
7s

0.
5s

30
6.
75
7

19
15
5

42
0

20
41

40
32
7

37
8

22
.0
7m

in
7.
94
s

0.
55
s

38
4.
57
9

20
17
0

44
6

26
53

40
34
0

58
7

1.
01
h

16
.2
s

0.
61
s

46
0.
46
5

Ta
bl
e
4.
2:
N
um

er
ic
al
R
es
ul
ti
n
th
e
La
rg
e-
sc
al
e
N
et
w
or
k

CHAPTER 4. COMPUTATIONAL STUDY 50

5 10 15 20 25

200

300

400

500

600

|Nbs |

ite
ra
.#

itera. #

5 10 15 20 25

0

20

40

60

|Nbs |

C
PU

tim
e
in

m
in

CPU time

Figure 4.3: Performance Result in Large-scale Network with |Nbs |

In the conducted 11 experiments, several noteworthy findings about the influ-

ence of |Ap| on system performance are obtained as follows.

• Firstly, in the first 6 cases, it is observed that the CPU runtime of an indi-

vidual experiment would at least double upon the addition of 10 arcs inAp.

This indicates that the computational time increases significantly with the

|Ap| increase. In the experimental setup, a maximum of 74 arcs in Ap is

considered, resulting in a running time of 3.22 hours.

• Similar to the middle-scale experiments, we observe that most of the CPU

time is spent computing the master problem. The computation time of the

master problem shows an increase in different iterations. This implies that

with the inclusion of more columns in different iterations, the computation

time for themaster problem escalates notably. Across experiments, the com-

putational time of the last master problem significantly increases with the

increase of |Ap|. Specifically, it is observed that the runtime of the last mas-

ter problem could double after the addition of every ten arcs in Ap. For ex-

ample, in the case of 74 arcs inAp, the time to solve the last master problem

CHAPTER 4. COMPUTATIONAL STUDY 51

is 36.6 seconds.

• However, the time required to solve the pricing problem remains relatively

constant across iterations in each experiment. Although this indicator in-

creases with the increase of |Ap|, the magnitude of the increase is small. For

example, although the number of arcs in Ap is increased to 74, the average

time to solve the pricing problem once is only 0.45 seconds. Specifically,

an approximate increase of 0.05 seconds is observed for every additional ten

arcs in Ap.

• Regarding the optimal objective function value, it is discovered that it de-

creases as the number of arcs in Ap increases. By changing fixed arcs to

arcs in Ap, more precedence requirements get relaxed, reducing the overall

project completion time.

Again, in terms of the influence of |Nbs | on system performance, we obtain

findings as follows.

• The largest network case consists of 26 branching start nodes, with 53 branch-

ings originating from these nodes. This network requires 587 column gen-

eration iterations and a CPU running time of 1.01 hours. It is evident that

our approach can handle network sizes beyond this scale.

• The total running time and the last master problem time in each experiment

approximately double with the addition of every five nodes in Nbs .

• Furthermore, our observations indicate that most of the computational time

is spent solving the master problem. In different experiments, the compu-

tation time for the last master problem at least doubles with adding every

CHAPTER 4. COMPUTATIONAL STUDY 52

five branching starting nodes. In experiment 11, the computation time for

the last master problem has been increased to 16.2 seconds.

• Similarly, the time required to solve the pricing problem remains relatively

constant across iterations in each experiment. Although the time for the pric-

ing problem also increases, the difference is less noticeable. For instance,

in the experiment with 26 nodes in Nbs , the average time required to solve

the pricing problem once is 0.61 seconds.

In summary, in the large-scale network, the entire computing time at least dou-

bles with the addition of every ten arcs in Ap or every five nodes in Nbs . In each

iteration, the running time required to solve the pricing problem remains relatively

constant. The pricing problem in different experiments shows an increase in com-

putation time with the increase of |Nbs | or |Ap|, but to a lesser extent. The master

problem’s computation time significantly increases with more columns in each ex-

periment. Across different experiments, the computation time of the last master

problem substantially increases with the increase of |Nbs | or |Ap|. The optimal

objective function value decreases as the number of arcs inAp increases. The ex-

periments suggest that the model can efficiently handle networks with more than

26 branching starting nodes. In the future, we can conduct more experiments on

larger |Nbs | or different network structures to obtain more general findings.

To summarize the findings from the small-scale, middle-scale, and large-scale

experiments, we can conclude that when the number of arcs in Ap exceeds 70,

the computation time surpasses 3 hours. Similarly, when the number of branch-

ing start nodes exceeds 26, the calculation time extends beyond 1 hour. Based on

these observations, wemake an initial estimation that we can handle larger network

CHAPTER 4. COMPUTATIONAL STUDY 53

structures consisting of more than 300 nodes and over 1000 arcs with a potential

computing time below 12 hours. |Nbs | and |Ap| significantly influence the com-

plexity of the proposed algorithm. However, it is essential to conduct more large-

scale experiments in the future on different network structures that may impact

computational efficiency differently. In the future, we can enhance our algorithm

based on these findings. For example, we can add more columns in each iteration

of the proposed algorithm framework to solve the pricing problem and the master

problem fewer times, which can easily reduce the total CPU time.

4.3 Solution Quality Check

We develop a DRO model to solve the tardiness estimation considering uncer-

tainties on tasks and precedence relations. The worst-case expected tardiness can

be easily obtained from our approach. Next step, solution quality should be con-

sidered. We can compare solutions obtained from our approach to solutions in

the literature. However, considering more uncertainties than existing studies, the

literature cannot give us enough samples. The simulation method is motivated

to generate some instances. We randomly generate 1000 deterministic (η̃, c̃) for

(2.3) based on same distribution information of η̃ and c̃ as our DRO model, solve

(Z(η̃, c̃)−T)+ 1000 times, and then get E[(Z(η̃, c̃)−T)+]. Obviously, this result

will be less than the worst-case expected tardiness obtained from our DROmodel.

Here, we start from one small network Figure 4.4.

We assumemarginal task durations distributions c̃i, ∀i ∈ N \{s, t}, as discrete

uniform distributions with probabilities 0.2 for values 3.0, 3.2, 3.4, 3.6, and 3.8.

CHAPTER 4. COMPUTATIONAL STUDY 54

1

2 3

4
5

6

7

Plan
1 pr

ob 0
.4

Plan 2 prob 0.6

prob 0.3prob 0.4

prob 0
.5

Figure 4.4: Case of Solution Quality Check

Then, the set of all possible joint distributions of c̃ can be written as

Θc = {θc : Pθc{c̃i = c} = 0.2, ∀i ∈ {1, ..., 7}, c ∈ {3.0, 3.2, 3.4, 3.6, 3.8}}.

(1, 6) (6, 5) (1, 7) (1, 2) (1, 3) (1, 4)
η̄ 0.3 0.5 0.4 0.4 0.4 0.6

Table 4.3: Marginal Distribution Information

In this network, we have (s, 1), (s, 5), (s, 6), (s, 7), (1, t), (5, t), (6, t), (7, t), (7, 5),

(2, 3), (3, 5),(2, 5),(4, 5)∈Af . Thus, we haveP{η̃ij = 1} = 1 for any (i, j) ∈ Af .

In addition, we assume marginal distributions for η̃ij, (i, j) /∈ Af as Table 4.3.

If T = 10, based on these input distribution information, the worst-case ex-

pected tardiness obtained from our robust approach is 1.78, and the expected tar-

diness obtained from the simulation is 1.58. The result from our approach is larger

than the result from simulation 12.6%. The quality of our solution is initially ex-

amined, and we will conduct more comparative experiments in different networks

CHAPTER 4. COMPUTATIONAL STUDY 55

in the future.

Chapter 5

Conclusion and Future Work

This chapter aims to provide an initial conclusion before delving into further in-

vestigations and future work. In future research, our focus extends beyond for-

mulation extensions to encompass applied research fields. Furthermore, we will

implement more numerical experiments in different network structures, especially

those with different probabilistic branching structures. In terms of formulation

extensions, we intend to delve deeper into the study of formulation structure and

solution procedures, exploring various aspects. Although not limited to these as-

pects, our plan focuses on two key areas, which are as follows:

• Firstly, we propose excluding the random variables c̃i from our investiga-

tion. This exclusion will streamline the model.

• Secondly, we aim to explore alternative methods for modeling the uncer-

tainty set of distributions in the distributionally robust model. This explo-

ration will involve considering any dependence structure that may exist be-

tween η̃ and c̃.

56

CHAPTER 5. CONCLUSION AND FUTURE WORK 57

By addressing these two aspects, we seek to enhance our understanding of the for-

mulation structure and solution procedures, contributing to the overall advance-

ment of the field. Moreover, we will explore extensions of various research fields

and contemplate integrating our research into alternative branch of project man-

agement.

5.1 Conclusion

This research models the problem of project completion time estimation more gen-

erally, including uncertainties in task durations and task outcomes such as rework,

the introduction of new tasks, changes in precedence, and alternative plans. Our

information set for task durations and outcomes is sufficiently general to model

practical project management problems. We formulate a DRO model as well as

a target-measured of tardiness based on limited distribution information. We de-

velop a specific column generation framework to solve mix-integer programming

with an exponential number of decision variables. The performance of the es-

timates obtained through distributionally robust optimization is evaluated using

numerical studies. Numerical studies show that our model is practical and can

capture all the uncertainties in both task durations and outcomes in completion

time estimation problems. The proposed algorithm demonstrates exceptional ef-

ficiency, allowing us to solve one large-size project instance, solved by the simu-

lation method in the literature, in 98.2 seconds. One simulation method is devel-

oped to examine the solution qualify, and it is initially applied to a tiny instance.

In the future, we plan to improve our algorithm based on our findings. We are

considering remodeling the formulation by excluding random variables for task

CHAPTER 5. CONCLUSION AND FUTURE WORK 58

durations. Simplifying the problem formulation can potentially enhance the algo-

rithm’s efficiency. Additionally, we can adjust the algorithm framework based on

computational studies to reduce the running time. We aim to provide project man-

agers with a general and efficient tool to solve project management problems in

projects with various uncertainties. Moreover, more extensive numerical studies

are expected to evaluate the performance and check the solution qualify.

5.2 Future Work on Formulation Structure

5.2.1 DRO Model for η̃ under Deterministic c

We believe that we can simplify our model by eliminating random variables for

task time uncertainty, specifically in the pricing problem formulation within the

column generation framework. This will lead to significant improvements in the

solution procedure. We present a preliminary model framework and plan to de-

velop more advanced algorithms in future research.

We consider replacing the uncertain task time c̃ with η̃. If the task durations

are discrete random variables, then we can also use the η̃ to model the uncertainty

while keeping c̃ deterministic. For example, suppose that task imay take 6, 8, 11,

or 15 units of timewith equal probability. Thenwe can consider tasks {i1, i2, i3, i4}

in the set N , each with deterministic completion times of 6, 8, 11, and 15. We

consider four alternative plans {i1}, {i2}, {i3}, and {i4} after any predecessor j

of task i. The set A of precedence relations includes (j, ik) for any predecessor j

of task i with corresponding Bernoulli variables η̃jik for all k ∈ {1, 2, 3, 4}, and

(ik,m) for any successor m of task i for all k ∈ {1, 2, 3, 4}. In this case, η̄jik=

CHAPTER 5. CONCLUSION AND FUTURE WORK 59

0.25 for all k ∈ {1, 2, 3, 4} for any predecessor j, and P{η̃ikm = 1} = 1 for all

k ∈ {1, 2, 3, 4} for any successor m. If this plan is applicable, the entire project

completion time under the random variable η̃ is modeled as follows:

Z∗(η̃) = max
∑

(i,j)∈A:i ̸=s

ciη̃ijxij (5.1a)

s.t.
∑

j:(i,j)∈A

η̃ijxij =
∑

j:(j,i)∈A

η̃jixji ∀i ∈ N \ {s, t}, (5.1b)

∑
i:(s,i)∈A

xsi = 1, (5.1c)

∑
i:(i,t)∈A

xit = 1, (5.1d)

xij ∈ {0, 1} ∀(i, j) ∈ A (5.1e)

The support of η̃ should be contained in the following set Ω:

Ω =


η ∈ {0, 1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑gi
k=1 ηijki = 1, ∀i ∈ NBs ,

ηij = ηijki , ∀i ∈ NBs , k ∈ {1, ..., gi},

j ∈ Gk
i \ {jki },

ηij = 1 ∀(i, j) ∈ Af


. (5.2)

Combining with the marginal distribution of η̃ specified by the parameters η̄ij , the

joint distribution of η̃ij should be contained within the following set:

Θη =

{
θη :

∑
η∈Ω

Pθη{η̃ = η} = 1,Pθη{η̃ij = 1} = η̄ij ∀(i, j) ∈ A

}
.

CHAPTER 5. CONCLUSION AND FUTURE WORK 60

No considering target, the worst case expectation completion time is

Z∗ = max
θη∈Θη ,η∈Ω

Eθη [Z
∗(η)]. (5.3)

For any η ∈ Ω, let p(η) = P{η̃ = η}. Model (5.3) can be formulated as

max
∑
η∈Ω

Z∗(η)p(η) (5.4a)

s.t.
∑

η∈Ω:ηij=1

p(η) = η̄ij ∀(i, j) ∈ A, (5.4b)

∑
η∈Ω

p(η) = 1, (5.4c)

p(η) ≥ 0 ∀η ∈ Ω. (5.4d)

Applying column generation to solve (5.4), the pricing problem is

max
η∈Ω

Z∗(η)−
∑

(i,j)∈A

α∗
ijηij

 . (5.5)

Inserting (5.1), the pricing problem (5.5) can be reformulated as

Z∗(η̃) = max
∑

(i,j)∈A:i ̸=s

ciηijxij −
∑

(i,j)∈A

α∗
ijηij (5.6a)

s.t.
∑

j:(i,j)∈A

ηijxij =
∑

j:(j,i)∈A

ηjixji ∀i ∈ N \ {s, t}, (5.6b)

(5.1c), (5.1d) (5.6c)

xij ∈ {0, 1} ∀(i, j) ∈ A (5.6d)

η ∈ Ω (5.6e)

CHAPTER 5. CONCLUSION AND FUTURE WORK 61

Replacing ηijxij with a new decision variable yij , we obtain pricing problemmodel

as

P∗ = max
∑

(i,j)∈A:i ̸=s

ciyij −
∑

(i,j)∈A

α∗
ijηij (5.7a)

s.t.
∑

j:(i,j)∈A

yij =
∑

j:(j,i)∈A

yji ∀i ∈ N \ {s, t}, (5.7b)

∑
i:(s,i)∈A

ysi = 1, (5.7c)

∑
i:(i,t)∈A

yit = 1, (5.7d)

0 ≤ yij ≤ ηij ∀(i, j) ∈ A (5.7e)

η ∈ Ω (5.7f)

Observe that the above model is simpler than the original pricing problem for-

mulation in the column generation framework. Hopefully, we can develop a more

efficient algorithm in the future.

5.2.2 DRO Model Allowing Dependence between η̃ and c̃

Based on model (3.14), we will consider alternative ways to model the ambiguity

set of the distributionally robust model. First, although model (3.14) does not

require independence between η̃ and c̃, c̃ is assumed to have the same marginal

distributions for any realization of η̃. To allow any dependence structure between

η̃ and c̃, we will consider

max
θ∈Θ

Eθ[(Z(η̃, c̃)− T)+], (5.8)

CHAPTER 5. CONCLUSION AND FUTURE WORK 62

where

Θ =

θ

∣∣∣∣∣∣∣∣∣∣
Pθ{c̃i = c} = pi(c) ∀i ∈ N \ {s, t}, c ∈ Ci,∑

η∈Ω Pθ{η̃ = η} = 1,

Pθ{η̃ij = 1} = η̄ij ∀(i, j) ∈ A

 . (5.9)

Second, alternative ways exist to model the distributional information of c̃i. For

example, according to the definition of c̃i in (2.2), instead of specifying themarginal

distribution of c̃i, we can define the distribution of c̃i using the marginal distribu-

tions of m̃i and ñi as well as the marginal distributions or moments of c̃ci,k and

c̃pi,k.

For these extensions and future work, we will develop efficient solution al-

gorithms, validate their performance by comparing their results with those from

simulations and other benchmarks, and develop insights of value for companies

that manage projects with generalized networks.

5.2.3 Other Formulation Extensions

Some formulation alternatives are worthwhile to be considered. For objective

function, we can consider not just the expectation, but some risk measures. For the

DRO model, we can incorporate moments information usually considered by lit-

erature. Additionally, when characterizing the ambiguity set, we can use Wasser-

stein distance. These methods are expected to be applied, and corresponding ex-

periments are conducted to check performance.

CHAPTER 5. CONCLUSION AND FUTURE WORK 63

5.3 Research Field Extensions

This thesis primarily focuses on the issue of estimating project completion time,

which holds great significance in project management. Accurate time estimates

can assist companies in saving costs and avoiding contract losses. Moreover, the

approach proposed in this study can be applied to various other aspects of project

management. For instance, in project portfolio problems, uncertainties exist re-

garding each project’s profit, completion time, and outcomes. By employing a

similar method, we can utilize the model to evaluate completion time or profit

to cater to the needs of project managers. Similarly, when faced with decision-

making problems in the project planning phase, where human resources and ma-

terials are subject to uncertainties, our model can be employed to aid project man-

agers in devising the optimal plan.

Bibliography

Ahmadi, R., T.A. Roemer, and R.H. Wang. 2001. Structuring product develop-

ment processes. European Journal of Operational Research, 130(3), 539-

558.

Anklesaria, K.P. and Z. Drezner. 1986. A multivariate approach to estimating the

completion time for PERT networks. Journal of the Operational Research

Society, 37(8), 811-815.

Banerjee, A. and A. Paul. 2008. On path correlation and PERT bias. European

Journal of Operational Research, 189(3), 1208-1216.

Bertsimas, D., K. Natarajan, and C.-P. Teo. 2004. Probabilistic combinatorial op-

timization: Moments, semidefinite programming, and asymptotic bounds.

SIAM Journal on Optimization, 15(1), 185-209.

Bertsimas, D., K. Natarajan, and C.-P. Teo. 2006. Persistence in discrete opti-

mization under data uncertainty. Mathematical Programming, 108(2), 251-

274.

Birge, J., R and Maddox, M., J. 1995. Bounds on expected project tardiness. Op-

erations Research, 43(5), 838-850.

64

BIBLIOGRAPHY 65

Carracosa, M., S.D. Eppinger, and D.E. Whitney. 1998. Using the design struc-

ture matrix to estimate product development time. Proceedings of DETC’98,

1998 ASME Design Engineering Technical Conferences, Atlanta, GA, USA.

Cho, S.-H. and S.D. Eppinger. 2005. A simulation-based process model for man-

aging complex design projects. IEEE Transactions on Engineering Manage-

ment, 52(3), 316-328.

Demeulemeester, E., M. Vanhoucke, and W. Herroelen. 2003. RanGen: A ran-

dom network generator for activity-on-the-node networks. Journal of

Scheduling, 6(1), 17-38.

Doan X.V. and K. Natarajan. 2012. On the complexity of nonoverlapping multi-

variate marginal bounds for probabilistic combinatorial optimization prob-

lems. Operations Research, 60(1), 138-149.

Dodin, B. 1985. Bounding the project completion time distribution in PERT net-

works. Operations Research, 33(4), 862-881.

Eisner, H. 1962. A generalized network approach to the planning and scheduling

of a research program. Operations Research, 10(1), 115-125.

Elmaghraby, S.E. 1964. An algebra for the analysis of generalized activity net-

works. Management Science, 10(3), 494-514.

Fazar, W. 1959. Program evaluation and review technique. American Statistician,

13(2), 10.

Fulkerson, D.R. 1962. Expected critical path length in PERT networks. Opera-

tions Research, 10(6), 808-817.

BIBLIOGRAPHY 66

Goh, J. and N.G. Hall. 2013. Total cost control in project management via satis-

ficing.Management Science, 59(6), 1354-1372.

Gong, D. and R. Hugsted. 1993. Time-uncertainty analysis in project networks

with a new merge-event time-estimation technique. International Journal of

Project Management, 11(3), 165-173.

Gong, D. and J.E. Rowings, Jr. 1995. Calculation of safe float use in risk-

analysis-oriented network scheduling. International Journal of Project Man-

agement, 13(3), 187-194.

Hagstrom, J.N. 1988. Computational complexity of PERT problems. Networks,

18(2), 139-147.

Hall, N.G. 2016. Research and teaching opportunities in project management.

Optimization Challenges in Complex, Networked and Risky Systems, IN-

FORMS, Catonsville, MD, USA, 329-388.

Hall, N.G., D.Z. Long, J. Qi, and M. Sim. 2015b. Managing underperformance

risk in project portfolio selection. Operations Research, 63(3), 660-675.

Hartley, H.O. and A.W. Wortham. 1966. A statistical theory for PERT critical

path analysis.Management Science, 12(10), B469-B481.

Jun, D.H. and K. El-Rayes. 2011. Fast and accurate risk evaluation for scheduling

large-scale construction projects. Journal of Computing in Civil Engineering,

25(5), 407-417.

Kelley, J. and Walker, M. 1959. Critical-path planning and scheduling. In Pro-

ceedings of the Eastern Joint Computer Conference.

BIBLIOGRAPHY 67

Kerzner, H. 2013. Project Management: A Systems Approach to Planning,

Scheduling, and Controlling, 11th edition. Wiley, Hoboken, NJ, USA.

Kleindorfer, G.B. 1971. Bounding distributions for a stochastic acyclic network.

Operations Research, 19(7), 1586-1601.

Klingel Jr, A.R. 1966. Bias in PERT project completion time calculations for a

real network.Management Science, 13(4), B194-B201.

Kulkarni, V.G. and V.G. Adlakha. 1986. Markov andMarkov-regenerative PERT

networks. Operations Research, 34(5), 769-781.

Li, Y., X. Li, J. Shu, M. Song, and K. Zhang. 2022. A General Model and Effi-

cient Algorithms for Reliable Facility Location Problem Under Uncertain

Disruptions. INFORMS Journal on Computing, 34(1), 407-426.

Lu, M., L. Ran, and Z.J.M. Shen. 2015. Reliable facility location design under

uncertain correlated disruptions.Manufacturing & Service Operations Man-

agement, 17(4), 445-455.

Ludwig, A., R.H. Möhring, and F. Stork. A computational study on bounding the

makespan distribution in stochastic PERT networks. Annals of Operations

Research, 102(1), 49-64.

Malcolm, D.G., Roseboom, J.H., Clark, C.E., and Fazar, W. 1959. Application

of a technique for research and development program evaluation.Operations

Research, 7(5), 646-669.

Meilijson, I. and A. Nádas. 1979. Convex majorization with an application to the

length of critical paths. Journal of Applied Probability 16(3), 671-677.

BIBLIOGRAPHY 68

Möhring, R.H. 2001. Scheduling under uncertainty: Bounding the makespan dis-

tribution. H. Alt, ed. Computational Discrete Mathematics: Advanced Lec-

tures, Lecture Notes in Computer Science, Vol. 2122. Springer, Berlin, 79-97.

Moore, L.J. and B.W. Taylor. 1977. Multiteam, multiproject research and devel-

opment planning with GERT.Management Science, 24(4), 401-410.

Natarajan, K., C.-P. Teo, and Z. Zheng. 2011. Mixed zero-one linear programs

under objective uncertainty: A completely positive representation. Opera-

tions Research, 59(3), 713-728.

Pritsker, A.A.B. 1966. GERT: Graphical evaluation and review technique. Mem-

orandumRM-4973-NASA, The RandCorporation, SantaMonica, CA, USA.

Pritsker, A.A.B. 1979.Modeling and Analysis Using Q-GERT Networks, 2nd edi-

tion. John Wiley/Halsted Press, New York, NY, USA.

Robillard, P. and M. Trahan. 1976. Expected completion time in PERT networks.

Operations Research, 24(1), 177-182.

Schonberger, R.J. 1981. Why projects are “always” late: A rationale based on

manual simulation of a PERT/CPM network. Interfaces, 11(5), 66-70.

Sculli, D. and Y.W. Shum. 1991. An approximate solution to the PERT problem.

Computers & Mathematics with Applications, 21(8), 1-7.

Shogan, A.W. 1977. Bounding distributions for a stochastic PERT network. Net-

works, 7(4), 359-381.

BIBLIOGRAPHY 69

Spelde, H.G. 1976. Stochastische Netzpläne und Ihre Anwendung im Baubetrieb.

PhD thesis, Rheinisch-Westfälische Technische Hochschule, Aachen, Ger-

many.

Taylor, B.W. and L.J. Moore. 1980. R&D project planning with Q-GERT net-

work modeling and simulation.Management Science, 26(1), 44-59.

Welsh, D.J.A. 1965. Errors introduced by a PERT assumption. Operations Re-

search, 13(1), 141-143.

Zheng, Z., K. Natarajan, and C.-P. Teo. 2016. Least Squares Approximation to

the Distribution of Project Completion Times with Gaussian Uncertainty.

Operations Research, 64(6), 1406-1421.

