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ABSTRACT 

Multi-terminal direct current (MTDC) systems maximise the economic and flexible 

advantages of DC transmission, thereby showing broad application prospects in high 

renewables penetrated power systems. Nevertheless, the dynamic properties of MTDC 

systems are rather complicated. Under severe DC faults, the DC network may experience 

intense current surges, which may damage the vulnerable converters. Under small disturbances, 

the DC-link current may oscillate divergently with poor control parameters, which may cause 

the converter to block and even disrupt the power transmission. Consequently, it is essential 

to study the dynamic characteristics for ensuring the safe and stable operation of MTDC 

systems. This thesis mainly focuses on the DC-side dynamic behaviours of MTDC systems, 

including the converter modelling, fault analysis, and stability analysis of MTDC systems, 

stated as follows. 

 

1. Reduced linear models of the line-commutated converter (LCC) and voltage source 

converter (VSC) with control effects are established, respectively. As per the DC-link voltage 

deviation, the least squares approximation or small-signal analysis is utilised to derive the 

linear models of different converters. It is indicated that converters can be equivalent to simple 

RLC circuits for dynamic analysis from the DC side. 

 

2. An analytical DC fault calculation method for generic MTDC systems is proposed. 

Combining the derived converter models with the network model and eliminating the 

operating variables, the state-space equation of the fault network is obtained. Accordingly, the 

mathematical expression of the short-circuit current of the entire network can be derived.  

 

3. A simple DC fault calculation method of VSC-MTDC systems is proposed based on the 

high-frequency equivalent (HFE) model. In this model, the low-frequency components in the 

Laplace fault component network are omitted for the initial fault analysis. Accordingly, an 

analytical expression of fault current of the whole network is derived. It is unveiled that in the 

initial fault stage, the short-circuit current of the fault line increases approximately linearly, 

while that of other lines increases approximately cubically.  

 



 

 

4. The DC-side instability mechanism is explored by investigating the small-signal stability of 

two-terminal DC links. The DC-side damping properties of various converters are first studied 

based on the system characteristic functions. For facilitating stability analysis, the original 

model can be reduced by retaining the dynamic characteristics in the vicinity of the dominant 

frequency, which is called dominant frequency analysis (DFA). Based on DFA, an analytical 

DC-side stabilising condition of the point-to-point VSC-HVDC link is derived. 

 

5. Analytical DC-side stabilising conditions of MTDC systems are derived. The frequency 

domain model of a generic MTDC system is established. By using DFA, the analytical 

expressions of the system damping under each dominant frequency can be obtained. It is found 

that when the positive damping generated from constant-power-controlled rectifier(s), 

constant-DC-voltage-controlled converter(s), and transmission resistance cannot compensate 

for the negative damping introduced by constant-power-controlled inverter(s), divergent 

oscillation will appear in the DC network. 

 

 

KEY WORDS: Multi-terminal direct current system; Converter modelling; Fault calculation; 
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1   Introduction 

1.1 Background and Significance 

Exploring and utilising renewable energy sources, such as wind and photovoltaic power, 

is a critical approach to dealing with the energy and environmental issues [1]. Since wind and 

solar energy resources are often inversely distributed with load centres [2], long-distance, 

large-capacity high-voltage transmission is required to achieve large-scale intensive 

development of renewables [3]. Direct current (DC) transmission has a larger transmission 

capacity, lower loss, higher control flexibility, and better economy in long-distance, large-

capacity transmission scenarios than its alternative current(AC) counterpart [4]. Therefore, DC 

transmission is regarded as a preferred choice for integrating renewable sources [5]. 

Currently, the line-commutated-converter-based (LCC-based) high-voltage DC (HVDC) 

transmission technique has matured and has become the mainstream scheme for large-capacity 

long-distance DC transmission [6], [7]. However, several inherent drawbacks impede its 

further development. Firstly, the LCC cannot establish AC voltage independently, and thus 

synchronous generators (SGs) are required at the sending-end AC grid [8]. Secondly, there is 

a high commutation failure risk if severe faults occur at the receiving-end AC grid, resulting 

in transmission interruption [9], [10]. Thirdly, LCC-HVDC transmission requires large-sized 

reactive power compensation devices and complex filters, which increases the difficulty in site 

selection with the large area occupied [11]. 

On the basis of the full-controllable electric semiconductor device and pulse width 

modulation, the voltage-source-converter-based (VSC-based) HVDC revolutionised the 

power industry [12], [13]. Despite the higher cost, the VSC outperforms the LCC for its 

independent voltage buildup capability[14], fast and decoupled active and reactive power 

modulation [15], and elimination of commutation failure [16], and enhancement in the stability 

and flexibility of the power grid. 

Recently, developing the multi-terminal DC (MTDC) network has gathered extensive 

attention [17]. Compared with AC interconnection, DC interconnection has many prominent 

advantages, stated as follows. Since renewable sources can directly integrate into the grid 

through DC boost converters, power delivery via the DC network can enhance the utilisation 

efficiency of renewable energy [18]. In addition, DC interconnection gets rid of the power-

angle stability and frequency stability issues [19]. Moreover, the mutual supply of several AC 



 

 

systems can be achieved via DC interconnection due to its fast and flexible power regulation 

capability [20]. At present, MTDC systems fall into two categories: the VSC-MTDC system 

[21] and the hybrid MTDC system containing both LCC(s) and VSC(s) [22]. MTDC systems 

maximise the economic and flexible advantages of DC transmission with multi-point power 

supply and reception, which have wide applications in the future high renewables penetrated 

power system, e.g. offshore wind energy integration [23], asynchronous interconnection of 

multi-region AC grids [24], as illustrated by Fig. 1-1.  
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Fig. 1-1 Applications of MTDC systems. 

Converter control has significant impacts on the dynamic process of MTDC systems. 

Since multiple converters with different control modes are coupled via the DC network, the 

dynamic behaviour of MTDC systems is rather complicated [25]. On the one hand, once a DC 

short-circuit fault occurs, the ground capacitors of VSCs discharge to the fault point, which 

leads to a DC-link current surge in the DC line and brings huge impacts to the system [26]. To 

avoid the fault overcurrent damaging the vulnerable power electronic switches, the fault line 

should be cut off accurately within a few milliseconds after the fault. Otherwise, the converter 

will be blocked, and the power transfer in the MTDC system must be interrupted [27]. On the 



 

 

other hand, during normal operation, converter control may amplify the resonance between 

the inductance and capacitance components in the DC network, leading to oscillations of the 

DC-link voltage and current [28]. In many DC transmission systems projects, oscillation 

instability risks have appeared under certain operating conditions with poor control parameters. 

For example, the Xiamen ±320 kV VSC-HVDC transmission project exhibited DC-link 

current oscillations of 23.6 Hz and 25.2 Hz under the single-pole sending mode with the 

transfer power of 100 MW and 500 MW, individually [29]. Oscillations in DC-side electrical 

quantities may trigger the alarm of monitoring equipment or even cause converter shutdown. 

The short-circuit current calculation of MTDC systems can guide the typing of protection 

equipment, such as circuit breakers, limiting reactors, and the design of protection schemes. 

In addition, based on the stability analysis of MTDC systems, the mathematical relationship 

between control parameters and system stability can be built up, which provides essential 

guidance for the control parameter tuning and stabilisation control design. Therefore, the 

dynamic analysis is of significant for the safe and stable operation of MTDC systems. 

1.2 Literature Review 

A generic dynamic system can be expressed by differential-algebraic equations (DAEs), 

and its dynamic process can be obtained by solving the DAEs with the initial condition. 

Investigation of the dynamic properties under fault and normal conditions is the foundation 

for controlling the dynamic system. Existing works mainly study the dynamic properties of 

MTDC systems from their modelling, fault current calculation, and stability. 

1.2.1 Modelling of MTDC Systems 

The mathematical model of MTDC systems is the foundation of dynamic analysis. 

MTDC systems mainly consist of converters, DC transmission lines, filters, and so on, among 

which converters are the most critical components in MTDC systems. So far, there are three 

types of converters commonly used in MTDC systems, namely, the LCC, the two-level VSC 

(TLVSC), and the modular multilevel converter (MMC).  

To accurately represent the converters’ dynamic behaviours, many researchers have made 

great efforts on the switching model of various converters. The circuit and control systems of 

the converter are described by a series of DAEs, and the dynamic responses are obtained by 

solving the DAEs with some numerical integration methods. The switching model mainly 

orients to the electromagnetic transient program (EMTP), and existing works focus on 



 

 

enhancing the calculation accuracy with a reduced computational burden. In [30], a co-

simulation method based on multi-rate and mixed solver is proposed to boost the simulation 

efficiency of LCC-HVDC systems. Using the switch-state representation, a fast 

electromagnetic transient simulation model of VSC with different topologies is proposed in 

[31]. Without the iterative computation to determine the feasible switch-state combination, the 

proposed model can significantly enhance the simulation efficiency. In [32], the TLVSC with 

different PWM techniques is established in the extended harmonic domain, which can 

represent the harmonic interactions in the converter. The electromechanical transient model of 

the MMC is reported in [33], which takes the effects of the inner and outer controllers, and the 

modulation strategies into account. In [34], the valves in each arm of the MMC are equivalent 

to interpolation-enabled IGBT and diodes to enable the transient simulation after converter 

blocking. Despite the high accuracy, the switching model can only generate the dynamic 

response curves under studied scenarios rather than the general rules of the dynamic 

behaviours of converters. 

For the convenience of analysis, the average value model is proposed, which neglects the 

switching processes of valves and only reflects the low-frequency dynamics of the converter. 

In [35], the TLVSC is equivalent to a grounded capacitor to calculate the short-circuit current 

after several milliseconds after DC faults. In [36], a resistor, inductor, and capacitor (RLC) 

series circuit model is proposed to study the dynamic responses of the MMC under DC faults. 

On the basis of the RLC model, the analytical expression of fault current can be easily derived. 

However, the RLC model omits the control dynamics of the converter, which may result in 

relatively large errors in the dynamic analysis.  

To address this issue, the small-signal analysis is adopted to derive the linear converter 

model considering the control effects. In [37], the circuit and control equations of LCC are 

linearized around the equilibrium, and an LCC is expressed by 21-order differential equations 

for the small-signal analysis of LCC-HVDC systems. On the basis of the concept of the motion 

equation, a small-signal model of LCC is proposed in [38] to reflect the external properties of 

the LCC. Similarly, a DC-side equivalent impedance model of the TLVSC is proposed in [39], 

which considers the inner and outer loops of the VSC vector control. In [40], a small-signal 

model of the MMC is proposed, and the balanced realization theory is used to reduce the order 

of the converter model. To investigate the harmonic dynamics of converters, the harmonic 

state space and the dynamic phasor are utilised in the modelling. On the basis of the dynamic 

phasor theory, an average-value model of the LCC is proposed in [41], which can represent 



 

 

the low-frequency dynamics of the LCC with a low computational burden. In [42], the 

harmonically coupled impedance matrix is used to represent the dynamic behaviours of the 

TLVSC at the harmonic frequencies, which lays a foundation for the harmonic analysis of the 

converter-embedded power systems. In [43], the harmonic state-space representation of the 

MMC is derived, which can reflect the internal harmonic dynamics of the converter. A 

modified average value model of the MMC is reported in [44], which not only increases the 

accuracy in evaluating the power loss but also enables the dynamic response calculation after 

the converter blocking. Due to the complexity of the control system of converters, the order 

of the small-signal converter model is relatively high, which may hinder the analytical solution 

of the dynamic responses of the converter. 

To sum up, the switching model can hardly render the general rules of the dynamic 

properties of converters, while existing average-value-based models with the consideration of 

control effects are relatively complex such that the order of the entire MTDC system can be 

rather high. Consequently, it is urgent to derive simplified converter models for the analytical 

dynamic analysis of MTDC systems.  

1.2.2 Fault Calculation of MTDC Systems 

Fault current calculation is the foundation of power device typing and protection scheme 

designing. Transient simulation is widely used to determine the short-circuit current level in a 

faulted MTDC system. The DAEs of the studied system are first formulated. Then, the time-

domain responses of the system are calculated by solving the DAEs numerically. The transient 

simulation model of a back-to-back LCC-HVDC system is established in [45], and the 

dynamics of the short-circuit current in the HVDC link under various fault scenarios can be 

obtained. In [46], a two-terminal TLVSC-HVDC link is established based on 

Matlab/Simulation, and the system responses under DC faults can be obtained. To enhance the 

simulation efficiency, the average value model of TLVSCs under different control modes is 

used in [47], and the transient model of the DC microgrid is proposed for DC fault analysis. 

Similarly, the fault characteristics of the multi-infeed AC/DC modernized microgrid are 

investigated in [48], where the balancing equation of the VSC is linearized, and the TLVSC is 

described by the state-phasor representation. In [49], Thevenin's theorem is adopted to derive 

the DC-side impedance model of the TLVSC. By neglecting the switching process of the 

converter, the dynamics of the DC fault current can be fast obtained via numerical simulation. 

In [50], the transient simulation model of the MMC-MTDC system is built to determine the 

system responses under DC faults. However, it could be rather time-consuming due to the 



 

 

large number of sub-modules (SMs) of the MMC. To address that, the average value model of 

the MMC is adopted in [51], and the companion-circuit-based model of the MMC-MTDC 

system is proposed. In [52], the fault characteristics of the MMC-MTDC system are 

investigated based on the companion circuirt method, which significantly enhances the 

efficiency of the transient simulation. Apart from the high accuracy, the fault current 

calculation based on transient simulation is compatible with various converters. In [53], the 

transient model of the China Wudongde HVDC project, a hybrid LCC-MMC three-terminal 

DC system, is established to study its dynamic properties. The transient simulation model of 

the same project is also reported in [54], which has been verified via the on-site experiment. 

To reduce the computational complexity of the electromagnetic transient simulation, the 

average models of the LCC and the MMC are utilised to form the dynamic-phasor-based 

model of the hybrid LCC-MMC system [55], which accurately reflect the low-frequency 

behaviours of the system. Despite the high accuracy, the transient simulation cannot render 

the general fault properties of the studied system. 

Recently, researchers have resolved the RLC circuit analysis to deduce the analytical 

expression of the fault current. In [56], the TLVSC is represented by a grounded DC-link 

capacitor for the DC fault analysis, and the discharging power of the capacitor is assessed. The 

analytical expression of the initial travelling wave in the MMC-HVDC link under pole-to-

ground DC faults is deduced in [57] based on Perterson’s law in the modal domain. In [58], 

the mathematical expression of the fault current considering all refractions and reflections of 

the travelling wave is proposed, which is rather complicated due to the complexity of the 

travelling wave propagation process. Since the travelling wave process can induce oscillations 

in the DC-link voltage and current, the fault calculation results on the basis of the lumped 

parameter line model can represent the average behaviours of those with the distributed 

parameter line model. For the simplicity of analysis, the travelling wave process is usually 

overlooked in most works on the analytical fault calculation of MTDC systems. In [59], the 

fault characteristics of the DC distribution network containing different TLVSC-integrated 

distributed generators are investigated. Based on the RLC circuit analysis, the closed-form 

mathematical expressions of the short-circuit current during the three fault stages are deduced. 

Analogously, the decoupled equivalent circuit of each distributed generator is established, and 

the short-circuit current flowing through each branch can be obtained by solving each RLC 

circuit separately [60]. However, these two works can only apply to DC distribution networks 

with one common DC bus rather than generic MTDC systems with arbitrary topology. An 



 

 

analytical fault current calculation method of the symmetrical monopole MMC-HVDC link 

under pole-to-ground faults is proposed in [61]. The frequency-domain expression of the fault 

current is first deduced, and its time-domain expression is then obtained via the inverse 

Laplace transformation. It is found that the fault current in a two-terminal MMC-HVDC link 

can be regarded as a linear combination of four oscillation modes. Although the RLC circuit 

analysis can provide a clear expression of the fault current, the expression is usually based on 

specified network topology and neglects the control effects of converters.  

To address the demerits of the RLC circuit analysis method, the state space method is 

adopted for the more general and accurate fault calculation of MTDC systems. The dynamic 

phasor model of the LCC-MMC HVDC link is proposed in [62], and the system dynamics 

under asymmetrical faults and commutation failure are obtained by solving the state-space 

equations. In [63], the half-bridge MMC is equivalent to an RLC series circuit, and the state-

space equations of the three-terminal MMC-HVDC system incorporating a pole-to-pole fault 

are formulated. In [64], the common and differential mode networks of the DC grid are 

proposed to study the fault characteristics of the monopolar MMC-MTDC system. In [65], the 

control effects of MMCs are described by algebraic equations, which implies the dynamic 

process of MMCs is neglected. Subsequently, the state-space equations of the MMC-MTDC 

system are linearized so that the superposition principle can be used to facilitate the calculation. 

The state-space model of the MMC-MTDC system considering the control effects is reported 

in [66]. However, the proposed model only takes into the relatively slower outer loop of VSCs, 

while the fast inner loop is overlooked. So far, the state-space-based fault calculation of MTDC 

systems has not considered different converters with various control modes. 

In short, the fault analysis of MTDC systems mainly relies on numerical simulation. 

Although the analytical expression of the short-circuit of MTDC systems can be derived based 

on RLC circuit analysis and state space method, existing works concentrate on specified 

network topology or converter control modes. It is necessary to investigate universal fault 

calculation methods for generic MTDC systems with arbitrary topology and various 

converters under different control modes. 

1.2.3 Stability Analysis of MTDC Systems 

Stability is a necessary condition of the operation of the MTDC system. The stability of 

the studied system can be determined by conducting the transient simulation. In [67], the 

transient simulation model of the VSC-HVDC system is formulated for the stability 

assessment, which adopts the average value model of the TLVSC and the hybrid simulation 



 

 

technique to increase the calculation speed. However, stability analysis based on transient 

simulation can only offer judgment under certain selected scenarios. Consequently,  

researchers have explored direct stability analysis methods without solving the time-domain 

responses of the studied system. 

Modal analysis is a classic methods to determine the small-signal stability of a dynamic 

system. The small-signal model of the LCC-HVDC link is formulated in [68]. According to 

modal analysis, it is found that the instability is mainly caused by the inappropriate parameters 

of the phase-locked loop (PLL). The small-signal model of the AC-MTDC system is built in 

[69], and the system damping is enhanced by modulating the active power of VSCs. The small-

signal stability of the MTDC system connecting several asynchronous AC systems is studied 

in [70]. The impacts of the inertia and the primary frequency control on the system stability 

are revealed on the basis of modal analysis. [71] investigates the influences of the interactions 

of VSCs on the stability of the AC-MTDC system, which is proven to degrade the small-signal 

stability. [72] reveals that the instability risks of the AC-MTDC system can be increased when 

the open-loop modes of the AC and DC networks are close in the complex plane. Based on 

modal analysis, it is found that the power-voltage droop gain of VSCs significantly influences 

on the small-signal stability of the VSC-MTDC system [73]. A selection criterion of the droop 

gain is further proposed for ensuring stability. Similarly, the stability of the VSC-MTDC 

system is investigated in [74] under converter outage events. Based on the trajectory sensitivity 

analysis, a stability-constrained model is proposed to achieve automatic power-sharing while 

guaranteeing system stability. [75] points out system the interactions of the droop control 

dynamics and the converter-tied AC grid with weak strength may degrade the stability of the 

VSC-MTDC system. [76] further reveals that the negative damping generated from the q-q 

channel of the PLL can lead to oscillatory instability at the AC side. The above works mainly 

explore the influence of the DC system integration on the stability of the AC system. Actually, 

the interactions of the converters and the inductance and capacitance components in the DC 

network may also result in small-signal instability, which is called DC-side stability and is the 

focus of this thesis.  

In [77], the small-signal model of the VSC-MTDC system connecting to asynchronous 

AC systems is established. On the basis of modal analysis, it is revealed that some oscillation 

modes with a small damping ratio are merely associated with the DC-link electrical quantities. 

By calculating the participation factors, it is unveiled in [78] that the interactions between 

VSCs in an MTDC system are closely related to the dynamics of the DC-link voltage. In [79], 



 

 

the small-signal model of the MMC-HVDC system is formulated. It is indicated that the inner 

dynamics of the MMC could cause instability if the parameters of the circulating current 

suppression control are inappropriate. This stability issue is referred to as harmonic stability. 

In [80], it is assumed that the harmonics are effectively restrained by the inner control of 

MMCs. The contribution of each MMC on the DC-side stability is assessed based on 

participation factor analysis. The inequality constraints of the MMC-MTDC system are 

derived in [81], where the second-order Taylor expansion is applied to the eigenvalues to 

determine the maximum value of the droop gain of each MMC for ensuring stability. Although 

the modal analysis can accurately determine the system stability, it relies on numerical 

calculations to obtain the eigenvalues of the system. As a result, analytical expressions 

bridging the relationship between system stability and parameters of physical and control 

systems cannot be derived.  

To provide more physical interpretations of the instability mechanism, the impedance-

based method focusing on the external behaviours of the subsystems is widely used in the 

small-signal stability analysis of converter-embedded systems. In [82], the AC-side impedance 

of the LCC is derived so that the interactions between the LCC, the wind farm, and the weak 

AC grid can be evaluated. The impedance-based method can provide an accurate phase margin 

of the doubly fed induction generator (DFIG) integrated system via the LCC-HVDC link. In 

[83], the AC-side impedance of the TLVSC is deduced to evaluate the impacts of the converter 

on the AC system stability. In contrast, the DC-side impedance of the TLVSC is formed in [84] 

to investigate the DC-side stability of the two-terminal VSC-HVDC link. In [85], the 

modularized model of the TLVSC is built. Based on the analysis in the frequency domain, it 

is found that the constant power load (CPL) can bring about negative damping to the low-

voltage MTDC system. The separating point of source subsystem and load subsystem in a 

point-to-point VSC-HVDC link is discussed in [86], and the contribution of each VSC on the 

DC-side stability is assessed. On the basis of the impedance-based method, it is unveiled in 

[87] that the nonpassive behaviour coinciding with the DC network resonance is the reason 

for the DC-side instability. In [88], the DC-side impedance of the MMC is derived, and it is 

indicated that the interactions between the MMC and the DC network may induce high-

frequency resonance. [89] reveals that the increase in the proportional gain of the constant 

voltage control of the MMC may degrade the stability performance, yet the feasible range of 

the proportional gain is not determined. By using the general Nyquist criterion, the harmonic 

stability of the VSC-MTDC system is studied in [90]. The impedance-based method can be 



 

 

conducted via online measurement. Unfortunately, the order of the subsystems can be 

relatively high such that the analytical stability criterion is absent. 

Passivity analysis is another popular method for stability analysis and control. In [91], 

the control parameters of the grid-connected VSC are tuned to make sure the converter itself 

is passive under arbitrary frequency. From the passivity aspect, it is unveiled in [92] that the 

negative equivalent conductance of VSCs will amplify the DC-side resonance. The passivity 

analysis requires that the energy is non-decreasing under any frequency. Consequently, it 

cannot render an analytical relationship between system parameters and the stability boundary. 

In contrast, the damping torque analysis only concentrates on the system behaviours near the 

dominant oscillation frequency. The DC-side stability of a radial MTDC system containing 

one source subsystem and one load subsystem connecting with the same common DC bus is 

explored in [93]. With this specified network topology, the analytical expression of the 

damping ratio of the DC-side oscillation mode can be obtained. It is assumed in [94] that all 

VSCs in the MTDC system are identical. Nearby the dominant frequency, the characteristic 

function of the VSC-MTDC system is reduced to a second-order function. Similarly, [95] also 

assumes that all VSCs in the VSC-MTDC system are the same, which is certainly unrealistic. 

By using damping analysis, it is found that there is only one dominant frequency in the master-

slave MTDC system, while multiple dominant frequencies may appear in the droop-based 

MTDC system [96]. The current flow controllers are incorporated into the DC-side stability 

model of the VSC-MTDC system in [97], and a parameter tuning method for ensuring the DC-

side stability is proposed. The assumption of identical VSCs is first removed in [98]. The 

definition of the VSC differences is first put forward, whose influences on the DC-side 

stability of the VSC-MTDC system are then evaluated based on the damping torque. In [99], 

the properties of the DC-link voltage oscillation mode are investigated based on damping 

torque analysis and modal analysis. Damping torque analysis can reduce the order of the 

studied system such that analytical stability conditions can be obtained. However, the existing 

works assume that the natural oscillation mode is induced by the inner and outer loops of the 

converter. Actually, the DC-side oscillations are usually caused by the resonance between the 

inductance and capacitance components in the DC network, provided that the DC-link voltage 

control is well-tuned, which cannot be reflected in the existing studies based on damping 

torque analysis. 

In conclusion, existing works on the stability of MTDC systems fail to provide clear 

mathematical relationships between the stability boundary and parameters of physical and 



 

 

control systems. There is a need for analytical stabilising conditions to reveal the DC-side 

instability mechanism of MTDC systems.  

1.3 Primary Contributions 

1. Existing converter models for DC fault analysis usually neglect the control effects, 

while those for stability analysis are relatively complicated. Focusing on the DC-side dynamic 

behaviours of converters, the reduced linear models of various converters considering the 

control effects are derived for the fault and stability analysis in this thesis. According to the 

DC-link voltage derivations of the converter, the small-signal analysis and the least squares 

approximation are utilised to deduce the linear model of the LCC, TLVSC, and MMC. It is 

indicated that the LCC, TLVSC, and MMC can be equivalent to simple RLC circuits from the 

DC side. The derived converters models consider the control effects with relatively low 

computational complexity, which lay foundation for the dynamic analysis of MTDC systems. 

2. Existing state-space-based fault calculation methods can only apply to MTDC systems 

containing a single type of converter with a fixed control mode. This thesis proposes a state-

space-based fault calculation method for generic MTDC systems. Using the superposition 

principle, the state-space equation of the fault component network is derived so that the 

analytical expression of the fault current in the whole network is obtained by solving the initial 

value problem of ordinary differential equations. The proposed method can not only deal with 

converters with different topologies and control modes but also achieves higher accuracy than 

existing state-space-based fault analysis methods. 

3. To deduce concise expressions of the fault current in VSC-MTDC systems, a high-

frequency equivalent (HFE) model is put forward in this thesis. Since the high-frequency 

electrical quantities dominate in the Laplace circuit within the first milliseconds after faults, 

the low-frequency components are neglected for the initial fault calculation of VSC-MTDC 

systems. According to the HFE model, analytical time-domain expressions of the fault current 

of the entire network are derived, indicating that the fault component current of the fault line 

grows linearly, while that of the healthy line rises cubically within several milliseconds after 

the DC fault. Compared with the existing method, the proposed one can achieve a more 

straightforward DC fault analysis with simple calculations and little loss of accuracy. 

4. Existing methods based on eigenvalue calculation or Nyquist plot only provide 

numerical results rather than the general rules of the small-signal stability. This thesis 

investigates the DC-side damping properties of various converters to develop insight into the 



 

 

DC-side instability in MTDC systems. Focusing on the dynamic behaviours nearby the 

dominant oscillation frequency, which is referred to as dominant frequency analysis (DFA), 

the impacts of control parameters on the DC-side damping of the converter can be evaluated 

via simple and direct calculation. Based on DFA, the DC-side stability of the two-terminal 

VSC-HVDC link is studied, which reveals the instability mechanism of the DC link under 

joint actions of different VSCs. 

5. This thesis proposes a DC-side stability analysis method for generic MTDC systems 

based on DFA. The frequency domain model of generic MTDC systems is established. Using 

DFA, the analytical stabilising condition of the MTDC system is derived, which reveals that 

DC-side instability appears once the positive damping of the CPC-based rectifier, the CDVC-

based inverter, and the transmission resistance cannot compensate for the negative damping 

of the CPC-based inverter. Compared with existing stability analysis methods, the proposed 

one can provide concise and analytical relationships between the stability boundary and 

parameters of physical and control systems. 

1.4 Thesis Layout 

The rest of the thesis is composed of six chapters. Chapter 2 derives the DC-side 

equivalent model of the LCC, the TLVSC, and the MMC considering the control effects. 

Chapter 3 proposes a universal and efficient fault calculation method for generic MTDC 

systems with arbitrary network topology and various converters. Chapter 4 proposes a simple 

fault calculation method for VSC-MTDC systems based on the HFE. Chapter 5 investigates 

the DC-side damping properties of various converters and the joint influences of different 

converters on the system damping. Chapter 6 proposes a DC-side stability analysis method for 

generic MTDC systems based on DFA. Chapter 7 summarizes this thesis and clarifies future 

work. 
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2   DC-Side Equivalent Models of Different Types of Converters for 

Dynamic Analysis 

2.1 Introduction 

Power electronic converters are the key devices in MTDC systems, which interconnect 

the AC and DC grids. Born in the 1960s, the line-commutated converter (LCC) has been 

widely used in HVDC projects because of its low cost and large capacity [6]. However, the 

LCC demands relatively large reactive power compensation and is unable to supply weak AC 

systems. Most seriously, there are high risks of commutation failure when the voltage of the 

point of common coupling (PCC) of the LCC-based inverter dips [9]. In recent decades, 

voltage-source converters (VSCs) have developed rapidly, especially with the emerging of the 

modular multilevel converter (MMC). Due to the use of full-controlled switching devices, e.g., 

the gate turn-off (GTO) thyristor or the insulated gate bipolar transistor (IGBT), the VSCs 

distinguish themselves with needless of AC system supports, commutation failure elimination, 

and decoupling control of active and reactive power [13]. Compared with the classic two-level 

VSC (TLVSC), the MMC has many series-connected submodules (SMs) in each arm. This 

enhances the reliability of MMC-based converters and significantly reduces the switching 

frequency, as each SM can switch on or off independently. Establishing the mathematical 

models of these three types of converters is the most fundamental step for the dynamic analysis 

of MTDC systems.  

The electromagnetic transient program (EMTP) is one of the most common tools to 

obtain the dynamic process of power electronic converters. The converter is first formulated 

by a series of differential-algebraic equations (DAEs). Then, the EMTP calculates the time 

response of the converter via numerical integration. The detailed switching models of the LCC, 

TLVSC, and MMC are reported in [30], [31], [33]. Despite the high accuracy, the EMTP-based 

simulation is timing confusing, especially for large-scale MTDC systems with several 

converters. Furthermore, it only provides information for selected scenarios rather than the 

general rule of dynamic responses.  

For the convenience of analysis, great efforts have been paid on deriving the reduced 

mathematical converter models. It is reported in [35] that the TLVSC is reduced as a parallel-

connected DC-link capacitor during the capacitor discharging stage of DC fault. Similarly, the 

MMC is simplified to an RLC series circuit for the initial fault analysis in [36]. Although these 



 

 

models significantly simplify the fault analysis, the effects of the controllers of the converter 

are omitted. The DC-side impedance model of the TLVSC considering control effects is 

proposed in [39]. The average value model of the MMC is derived in [44], which neglects the 

switching process and reflects only the average terminal behaviour of the converter in a 

relatively long timescale. However, the complexity and the computational burden of the model 

increase with the consideration of various control loops. Moreover, the nonlinearity of the 

converter model can hinder the analytical analysis of the dynamics of MTDC systems. 

For one thing, some of the converter models overlook the dynamics of controllers, which 

may introduce significant errors in the solution of the converter dynamics. For another, the 

existing converters models considering control effects usually have relatively high complexity, 

which may not be convenient for the analysis of large MTDC systems. This chapter derives 

the linear models of the LCC, TLVSC, and MMC, with the consideration of control effects. 

Based on the change of the DC-link terminal voltage of the converter, the least squares 

approximation and the small-signal analysis are utilised in the model reduction The derived 

converters models lay foundation for the dynamic analysis of MTDC systems.  

2.2 Modelling of the Line Commutated Converter 

2.2.1 Dynamic Equations of the LCC-Based Rectifier 

In MTDC systems, the LCCs usually serve as rectifiers to avoid commutation failure. 

Therefore, this thesis only considers the LCC-based rectifier. Fig. 2-1 depicts the sketch and 

equivalent circuit of the LCC-based rectifier. idc and udc are the DC-link current and voltage, 

separately. Vo is the ideal no-load voltage of the LCC satisfying 3 2 πoV E= , and E is the 

AC-side root-mean-square (RMS) line voltage. Ld is the inductance of the smoothing reactor. 

dγ is the equivalent commutation resistance. 
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Fig. 2-1 Sketch and equivalent circuit of the LCC. 

The dynamics of the LCC-based rectifier are written as, 
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where α is the firing angle of the rectifier. The equivalent commutation resistance dγ is 

calculated as, 
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where ωs denotes the frequency of the AC system; Lγ denotes the equivalent inductance 

between AC system and the LCC. 

Usually, the LCC-based rectifier regulates constant DC-link current by a proportional-

integral (PI) controller, as illustrated by Fig. 2-2. The dynamics of the constant current 

controller can be written as, 

 ( ) ( )π dref ref

Pc dc dc Ic dc dcK i i K i i t = − − − −  (2-3) 

where the superscript ref denotes the reference value. KPc and KIc are the proportional and 

integral gains of the constant current controller. It is assumed that the PI controller will not 

saturate to its limiting values under disturbances. 
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Fig. 2-2 Control diagram of the constant current control. 

As this thesis concentrates on the dynamics of MTDC systems under DC-side 

disturbances, it is assumed that an ideal AC connects to the LCC, and the dynamics of the PLL 

can be overlooked. 

2.2.2 Small-Signal Model of the LCC-Based Rectifier 

When a small perturbation occurs at the DC link, the terminal voltage of the LCC slightly 

deviates from the nominal value. Accordingly, the classic small-signal analysis is adopted to 

simplify the LCC model. Linearizing (2-1) and (2-3) around one equilibrium and applying 

the Laplace transform, it yields that, 

 0sindc o dc d dcu V d i sL i  = −  −  −   (2-4) 
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where the subscript 0 denotes the initial steady-state value; Δ denotes a general deviation from 

the equilibrium. 

Combined with (2-4) and (2-5), we have, 
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(2-6) is the small-signal model of the LCC-based rectifier, which describes the DC-link 

current responses with the change of the DC-link voltage. 

2.2.3 Linearized Model of the LCC-Based Rectifier for DC Fault Analysis 

When a DC fault occurs, the DC-link voltage of the LCC fast drops by the constant 

current control to suppress the surge of the DC-link current. In this scenario, the LCC can 

deviate far from the steady-state point, and thus the small-signal model expressed by (2-6) 

cannot hold for the fault analysis. Due to the nonlinearity brought by cos α in (2-1), it requires 

numerical calculation to obtain the dynamic responses of the LCC. Therefore, the key step in 

deriving the reduced LCC model for DC fault analysis is to find a proper linearization of cos 

α. A linear approximation function of cos α denoted by fl (α) can be constructed as, 

 ( ) ( )0 0cos coslf k     = − −  (2-7) 

where kα is the slope of the linear approximation function fl(α). Based on (2-7), both fl (α) and 

cos α cross the same point (α0, cos α0), which ensures the approximation does not change the 

pre-fault condition of the LCC. The optimal slope kα is determined in the sense of least squares, 

i.e., by minimizing the integral error between the original function cos α and the approximation 

function fl (α) over the interval [α0, α1]. 
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where J denotes the objective function. The optimal slope kα is achieved when the derivative 

of J with respect to kα equals 0. Based on (2-7) and (2-8), we have,  
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Rearranging (2-9), it provides the expression of kα. 
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On the one hand, α0 normally falls into [π/36, π/12] for the LCC-based rectifier to make 

a tradeoff between the transmission power factor and the DC-link voltage regulation capability. 

On the other hand, the firing angle surges to around π/2 after the DC fault by the constant 

current controller. Therefore, α1 is selected as π/2 in this thesis.  

Replace cos α with fl (α), (2-1) can be rewritten as, 
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Notice the steady-state relation of (2-1),  

 0 0 0cosdc o dcu V d i= −  (2-12) 

Substitute (2-12) into (2-11), 
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Similarly, the relation between ∆α and ∆id can be obtained based on (2-3), 

 dIc dc Ic dcK i K i t =  +   (2-14) 

As (2-13) and (2-14) are linear equations, the Laplace transform can be applied to them, 

yielding the linearized model of the LCC-based rectifier under DC faults. 
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2.2.4 DC-Side Equivalent Circuit of the LCC-Based Rectifier 

Compared with (2-6) and (2-15), the LCC-based rectifier under different sizes of 

disturbances can be equivalent to a uniform RLC series circuit, as illustrated by Fig. 2-3. 
LCC

eqR  

and 
LCC

eqC  are the equivalent resistance and capacitance of the LCC, which incorporate the 

impacts of the constant current control. The equivalent parameters under small perturbations 

and DC faults are expressed by (2-16) and (2-17), respectively. 
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Fig. 2-3 Equivalent circuit of the LCC-based rectifier under DC-side disturbances. 

In practical engineering, the LCC-based rectifier can also adopt other control modes, such 

as constant active power control. It should be noted that the proposed method is also applicable 

to LCCs with other control modes. Taking the constant active power control as an example, 

under normal-condition perturbations, the small-signal analysis is utilised as the variations of 

the DC-link terminal voltage of the LCC are relatively small. By substituting the constant 

current control equation with the constant active power control equation, the small-signal 

model of the LCC with the constant active power can be obtained. Under DC faults, the DC-

link terminal voltage of the LCC drops drastically. To avoid overcurrent damaging the valves, 

constant active power control must switch to constant current control. Consequently, the 

derived model of the LCC-based rectifier for DC fault analysis is the same no matter the 

control mode. 

2.3 Modelling of the Two-Level Voltage-Source Converter 

2.3.1 Dynamic Equations of the TLVSC 

Fig. 2-4 depicts the equivalent circuit of the grid-connected TLVSC. Ls and Rs are the 

inductance and the resistance of the phase reactor between the AC grid and the converter, 

respectively. us and uc are the voltage of the AC grid and the AC terminal of the converter, 

respectively. is is the AC-side current of the converter. Cc is the capacitance of the DC-link 

capacitor. LT is the inductance of the supplementary DC reactor to suppress DC-link harmonic 



 

 

current under normal operation and DC-link current surge during the occurrence of faults. ud 

and udc are the DC-side voltage of the TLVSC before and after the DC reactor, individually. id 

and ic are the DC-link current of the converter and the capacitor, individually. idc is the current 

flowing through the DC reactor.  

According to the AC-side circuit of the grid-tied TLVSC, the following equation holds in 

the three-phase coordinate system, 
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where the superscript j denotes the three phases. For VSCs, the dq coordinate system is 

normally utilised to realize the decoupled active and reactive power control. Considering the 

active power of the converter is highly associated with the d-axis components, only the d-axis 

dynamic equation of (2-18) is given as, 
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where the superscripts d and q denote the d- and q-axis components, individually. Under the 

classic unity power factor control, the reactive power of the converter is regulated as 0 to 

maximise the active power transmission, and thus 0q

ci = . 
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ic
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Fig. 2-4 Equivalent circuit of the grid-connected TLVSC. 

At the DC side, the dynamics of the capacitor and the reactor are expressed as, 
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By using Kirchhoff current law (KCL), the following equation holds, 

 0d c dci i i+ − =  (2-22) 

In addition, the power balance equation expressed by (2-23) holds when overlooking the 



 

 

loss of the transformer and the converter. 
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where Pac and Pdc are the AC- and DC-side active power of the converter. 

Fig. 2-5 depicts the diagram of the vector current control, which comprises an inner loop 

and an outer loop. The inner current loop makes the AC-link current of the converter to fast 

track the reference value, which is expressed as, 

 ( ) ( )dd dref d dref d d q

c Pi s s Ii s s s s s su K i i K i i t u L i= − − − − + +  (2-24) 

where KPi and KIi are the proportional and integral gains of the inner current loop.  

Broadly, the outer loop control schemes fall into three categories, namely, the constant 

power control (CPC), the constant DC voltage control (CDVC), and the power-voltage droop 

control. The former two schemes maintain the active power of the converter and its DC-link 

voltage, respectively. The droop control can enhance the DC-link voltage stability and realize 

automatic active power sharing among different VSCs, thereby showing bright prospects in 

MTDC systems. The diagram of the droop control is illustrated by Fig. 2-5, and its dynamic 

equation is given as follows. 

 ( )( ) ( )( )ddref ref ref ref ref

s Po ac d d d ac Io ac d d d aci K P K u u P K P K u u P t= + − − + + − −  (2-25) 

where KPo and KIo are the proportional and integral gains of the outer loop. 
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Fig. 2-5 Diagram of the vector current control. 

In addition, the droop control can switch into the CPC by configuring the droop 

coefficient Kd as 0. As for the CDVC, its equation is expressed as, 

 ( ) ( )ddref ref ref

s Pv d d Iv d di K u u K u u t= − + −  (2-26) 

where KPv and KIv are the proportional and integral gains of the CDVC. 

Similar to the LCC, the converter-connected AC system is assumed to be ideal, and thus 

the dynamics of the PLL of the TLVSC are omitted for the DC-side dynamic analysis. 



 

 

2.3.2  Small-Signal Model of the TLVSC Under Different Control Modes 

After the occurrence of a DC fault, the fault line must be fast cut off within the capacitor 

discharging stage to avoid the blocking of VSCs and the interruption of the entire MTDC 

system. Therefore, short-circuit current calculation during the initial fault period is of more 

interest for MTDC systems. Within this short period, the decrease in the DC-link voltage is 

relatively small because of the existence of the DC-link capacitor, and the changes in the AC-

side voltage and current are minimal. Consequently, nonlinear equations containing 

corresponding variables can be linearized at the equilibrium point. In addition, the growth of 

the DC-link current of VSC can be described by the linear dynamic equation of the capacitor. 

Therefore, the VSC exhibits linear circuit characteristics during the initial stage of the fault so 

that the linear VSC model based on small-signal analysis is applicable under small 

perturbations and DC faults.  

Linearizing (2-19) and (2-24) around one equilibrium and applying the Laplace 

transform, it yields that, 
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 ( )d dref d qIi
c Pi s s s s s

K
u K i i L i

s


 
 = − +  −  +  

 
 (2-28) 

Combined with (2-27) and (2-28) provides, 
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Usually, (2-29) is designed to possess first-order system chracteristics by tuning the PI 

parameters based on (2-30) [100]. 
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Based on (2-25), the small-signal form of the outer loop control is expressed as, 
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Combined with (2-30) and (2-31) yields, 
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 (2-32) 

Linearizing the power balance equation expressed by (2-23), we have, 
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Substituting (2-33) into (2-32) provides, 
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Rearranging (2-33) and (2-34), it yields that, 

 ( )d d dG s u i−  =   (2-35) 

where Gd(s) is the transfer function between ∆id and ∆ud under the droop control, which is 

expressed as, 
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where gd0 is the equivalent DC-side conductance of the converter. 

Based on (2-20), (2-21), (2-22), and (2-35), the following equation holds. 
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(2-37) is the small-signal model of the droop-based TLVSCs, where Gd(s) reflects the 

control effects on the dynamic responses of the converter.  

By configuring the droop coefficient Kd as 0, the droop control switches into the CPC. 

Substitution of Kd = 0 into (2-36), Gd(s) is reduced as gd0, and the small-signal model of the 

TLVSC under the CPC is obtained. 
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(2-38) shows that the control parameters have negligible effects on the DC-side dynamics 

of the CPC-based TLVSC. 

As for the CDVC, transforming (2-26) into the small-signal form yields, 
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 (2-39) 

By combining (2-30), (2-33), and (2-39), the transfer function between ∆id and ∆ud 

under the CDVC denoted by Gv(s) can be expressed as, 
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As a result, the small-signal model of the TLVSC under the CDVC is obtained as (2-41) 

based on (2-20), (2-21), (2-22), and (2-40). 



 

 

 
( )

1
dc T dc

v c

u sL i
G s sC

 
 = − +   + 

 (2-41) 

2.3.3 DC-Side Equivalent Circuit of the TLVSC 

On the basis of the small-signal models of the TLVSC under different control modes, the 

equivalent circuits under DC-side disturbances can be derived as follows. 

1) Constant Power Control 

Based on (2-38), the TLVSC under CPC is represented by an RLC circuit, as illustrated 

by Fig. 2-6. 
VSC

eqR  is the equivalent resistance of the TLVSC, which is expressed as, 
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Based on (2-42), 
VSC

eqR  is positive for the CPC-based TLVSC (id0 > 0), while it turns 

negative when the CPC-based TLVSC operates as the inverter (id0 > 0). 
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Fig. 2-6 DC-side equivalent circuits of the TLVSC under the CPC mode. 

2) Constant DC Voltage Control 

Since the proportional regulator inevitably leads to steady-state deviations, an integrator 

with a relatively low gain is required to push the DC-link voltage back to its reference value. 

For small values of KIv, the integrator has negligible effects on the overall dynamics, which 

therefore is assumed to be 0 for deriving the equivalent circuit of the CDVC-based TLVSC 

[101], [102]. The transfer function Gv(s) is simplified as, 
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Based on (2-41) and (2-43), the CDVC-based TLVSC is equivalent to an RLC circuit, 

as illustrated by Fig. 2-7. 
VSC

eqpR , 
VSC

eqsR , and 
VSC

eqL  the equivalent resistances and inductance 

of the TLVSC, which are expressed as, 
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Fig. 2-7 DC-side equivalent circuits of the TLVSC under the CDVC mode. 

3) Droop Control 

Similarly, the transfer function Gd(s) can be simplified as follows by overlooking the 

small value of KIo. 
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Based on (2-37) and (2-45), the DC-side equivalent circuit of the TLVSC under the 

droop control is similar to that of the CDVC-based one, as shown in Fig. 2-7. The difference 

is the equivalent parameters under the droop control are calculated as, 
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Compared with Fig. 2-6 and Fig. 2-7, it is found that the TLVSC under different control 

modes can be equivalent to RLC circuits for the dynamic analysis under DC disturbances. 

2.4 Modelling of the Modular Multilevel Converter 

2.4.1 Dynamic Equations of the MMC 

The MMC is a category of VSCs, whose basic structure is illustrated by Fig. 2-8. Every 



 

 

phase has an upper and a lower arm composed of Nsm half-bridge sub-modules (SMs). 

Depending on the one SM switched in or out, the terminal voltage of the SM equals the 

capacitor voltage denoted by usm or 0. By controlling the number of on-state SMs in the upper 

and low arms, the AC-side voltage of the converter marked as uv and the DC-link voltage 

marked as udc can be controlled effectively. The capacitance of each SM is denoted as Csm. 

The equivalent arm resistance and inductance are denoted by Ra and La, individaully. us and is 

are the AC source voltage and the current flowing from the AC source into the converter, 

individaully. ip and in are the current flowing through the upper and lower arm, individually. 

up and un are the upper and lower arm voltages generated by cascaded SMs, individually.  
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Fig. 2-8 Diagram of the MMC. 

The dynamics of each phase are expressed as, 
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where the superscript j represents the three-phase electrical quantities, j = a, b, c. 

It is assumed that the harmonic current of the MMC can be effectively damped by 

choosing the proper parameters of the circulating current control [103], [104]. Accordingly, 

the arm currents satisfy the following equations. 
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Substitution of (2-48) into (2-47) yields, 
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where ud are uc are the total capacitor voltage and the inner electromotive force generated in 

each phase satisfying, 
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(2-49) indicates that the AC-side equivalent resistance and inductance of the grid-tied 

MMC are individually Ra/2 and La/2. Meanwhile, its DC-side equivalent resistance and 

inductance are RM = 2Ra/3 and LM = 2La/3, respectively.  

By energy balancing law, the equivalent capacitance of all three-phase units marked as 

CM can be derived as follows. 
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The time derivative of the capacitor energy equals the active power of the capacitor, and 

thus, 
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where the superscript * represents the complex conjugate. The time derivative of ud times the 

capacitance CM is defined as the total capacitor current of the MMC denoted by ic, which is 

expressed as, 
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Substitution of (2-48) and (2-50) into (2-52) provides, 
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 (2-54) 

Neglecting the small amount of power loss in the converter and the transformer, the 

following power balancing equation is derived from (2-54). 
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Based on (2-55), the infeed current into the DC link denoted by id can be obtained. 
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Based on (2-49), (2-53), and (2-56), the equivalent circuit of the grid-tied MMC is 

obtained, as illustrated by Fig. 2-9. Compared Fig. 2-4 with Fig. 2-9, it is concluded that the 

equivalent circuit of the grid-connected MMC is similar to that of the grid-connected TLVSC. 

The small arm resistance and inductance of the MMC will slightly change the parameters in 

the equivalent circuit. 
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Fig. 2-9 Equivalent circuit of the grid-connected MMC. 

As for the control system, the MMC also adopts the vector current control, as depicted 

by Fig. 2-5. The control equations of the MMC are expressed by (2-24), (2-25), and (2-26). 

2.4.2 Small-Signal Model of the MMC Under Different Control Modes 

Analogous to the TLVSC, the DC-link voltage of the MMC drops slightly within the first 

instants after the occurrence of DC faults due to the support of the submodular capacitors. 

Accordingly, the small-signal model of the MMC is also applicable during the first instants 

after DC faults. The derivation of the small-signal model of the MMC is analogous to that of 

the TLVSC, which is not presented here.  

By using the small-signal analysis, the DC-link voltage and current of the CPC-based 

MMC satisfy the following relation. 
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Under the CDVC, the relation between the DC-link voltage and DC-link current of the 

MMC becomes, 
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As for the MMC under the droop control, the small-signal model is expressed as, 
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 (2-59) 

2.4.3 DC-Side Equivalent Circuit of the MMC 

On the basis of the above small-signal models expressed by (2-57), (2-58), and (2-59), 

the DC-side equivalent circuits of the MMC under three control modes can be obtained. Fig. 

2-10 (a) depicts the equivalent circuit of the CPC-based MMC, while Fig. 2-10 (b) depicts the 

equivalent circuit of the MMC under the CDVC or droop control. The equivalent parameter(s) 

under the CPC, CDVC, and droop control can be expressed by (2-42), (2-44), and (2-46), 

respectively. 
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Fig. 2-10 DC-side equivalent circuits of the MMC under different control modes. 

2.5 Case Studies 

The detailed switching models of the LCC, the TLVSC, and the MMC are established in 

PSCAD/EMTDC to validate the accuracy of the proposed models under DC-side disturbances. 

The three converters are connected to an ideal DC source via a DC transmission line, separately. 

The LCC-based rectifier adopts the classic constant current control with the proportional and 

integral gains of 1 and 100, respectively. The TLVSC under the CPC, CDVC, and droop 

control is investigated. The proportional and integral gains of the outer loop (for all three 



 

 

control modes) are configured as 1 and 10, respectively. The power-voltage droop coefficient 

is 5. The MMC is of 201 levels, and its control parameters are the same as the TLVSC. The 

main parameters of the test systems are summarized in Table 2-1.  

Table 2-1 Main parameters of the test systems 

Symbol Item Value 

LCC 

E Nominal voltage of LCC-connected AC source 450 kV 

ωs Nominal frequency of AC grids 50 Hz 

un Nominal DC-link voltage of the LCC 500 kV 

SB Base capacity of the LCC system 1000 MW 

ref

dci  Reference DC-link current 2 kA 

dγ Equivalent commutation resistance 41 Ω 

Ld Smoothing reactor of LCC 200 mH 

(KPc, KIc) Proportional and integral gains of constant current control (1, 100) 

TLVSC 

us Nominal voltage of VSC-tied AC source 220 kV 

un Nominal DC-link voltage of the VSC 400 kV 

SB Base capacity of the VSC system 400 MW 

Cc DC-link capacitance of VSC  F 

us Nominal voltage of VSC-tied AC source 220 kV 

C 

us Nominal voltage of VSC-tied AC source 220 kV 

un Nominal DC-link voltage of the VSC 400 kV 

SB Base capacity of the VSC system 400 MW 

Nsm Number of SMs per arm 200 

Csm SM capacitance  F 

Ron On-state resistance of a diode or IGBT 2 mΩ 

La Inductance of bridge arm 29 mH 

LT VSC-side supplementary reactor 100 mH 

 

2.5.1 LCC-Based Rectifier 

Fig. 2-11 depicts the dynamics of the LCC-based rectifier under small perturbations. Fig. 

2-11 (a) and (b) are the dynamic responses of the DC-link current and the DC-link voltage 

when the reference DC-link current changes from 1 per unit (p.u.) to 0.8 p.u, respectively. As 

illustrated by Fig. 2-11 (a), the DC-link current gradually decreases to 0.8 after changing its 



 

 

reference value, exhibiting the typical characteristics of the inertial element. In contrast, the 

DC-link voltage maintains quite near the nominal value, indicating the DC-link current 

alternation has very limited impacts on the DC voltage dynamics. Fig. 2-11 (c) and (d) show 

the DC-side dynamics when the voltage of the DC source reduces from 1 p.u. to 0.95 p.u. The 

DC-link current first increases with the drop of the DC-link voltage, as illustrated by Fig. 2-

11 (c). Subsequently, the DC-link voltage of the LCC decreases with the influences of the 

constant current control, as illustrated by Fig. 2-11 (d). Accordingly, the DC-link current 

gradually returns to its reference value, and the DC-link converter voltage eventually becomes 

close to the DC source voltage.  
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Fig. 2-11 Dynamics of the LCC-based rectifier under small perturbations. 

Compared with the results obtained by the EMTP simulation marked as the solid black 

line and the proposed model marked as the dashed red line, it is found that the proposed model 

omits the switching process of the converter. Nevertheless, considering the DC-link current 

and voltage with the simulation vibrate very slightly around those with the proposed model, 

the proposed model can well reflect the average behaviours of the LCC-based rectifier. Fig. 2-

11 verifies the accuracy of the proposed LCC model under small perturbations. 

Fig. 2-12 depicts the dynamic responses of the LCC-based rectifier under DC faults. Fig. 

2-12 (a) depicts the DC-link current variation when a metallic fault occurs at the beginning of 

the DC transmission line. The DC-link current rises fast at the occurrence of the fault, and the 

current rising speed decreases soon owing to the constant current control. With the EMTP 

simulation, the maximum DC fault current is 1.961 p.u., while that with the proposed model 

is 2.004 p.u. This is mainly because the nonlinearity of cos α is approximated by a linear 

function as expressed by (2-7) with the proposed model. Notably, the relative error of the 

maximum fault current with these two models is 2.19%, which is fully acceptable for the fault 

analysis. Fig. 2-12 (b) depicts the DC-link current dynamics under a DC fault with a fault 

resistance of 100 Ω. Compared with Fig. 2-12 (a) and (b), it is observed that the overall 

transient processes of the DC-link current are quite similar under low- and high-resistance 

fault scenarios. As illustrated by Fig. 2-12 (b), the maximum DC fault current with the EMTP 

simulation and that with the proposed model are 1.696 p.u. and 1.647 p.u., individually, 

indicating the fault current decreases with the increase of the fault resistance. Fig. 2-12 (c) 

illustrates the influences of the proportional gain of the controller on the fault current. It can 

be seen that the DC fault current is significantly suppressed by enlarging the proportional gain, 

since the response time of the constant current control will reduce with a larger proportional 

gain. Fig. 2-12 (d) shows that the fault current reduces with the increase in the firing angle. 

This is because the DC-link voltage goes down when increasing the firing angle. Fig. 2-12 

illustrates that the responses with the simulation and those with the proposed model are quite 

similar under different fault resistances, control parameters, and operating points, which 

validates the effectiveness of the proposed LCC model for DC fault analysis. 
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Fig. 2-12 Dynamics of the LCC-based rectifier under DC faults. 

2.5.2 TLVSC Under Different Control Modes 

Fig. 2-13 depicts the dynamic responses of the TLVSC under different control modes 

when subjected to small perturbations. Fig. 2-13 (a) and (b) depict the change of DC-link 

current and voltage of the CPC-based TLVSC when the reference active power drops from 1 

p.u. to 0.75 p.u. As can be seen from Fig. 2-13 (a), there exhibit apparent oscillations in the 

DC-link current because of the resonance of the RLC circuit. As illustrated by Fig. 2-13 (b), 

the change of the DC-link voltage is much minor than that of the current. Moreover, the DC-

link voltage slightly deviates from its nominal value after the transient, which is induced by 

the decrease of the voltage drop over the DC line with the decrease in the DC-link current.  
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Fig. 2-13 Dynamics of the TLVSC under small perturbations. 

Fig. 2-13 (c) and (d) depict the dynamic responses of the CDVC-based TLVSC when the 

DC source voltage changes from 0.993 p.u. to 0.985 p.u. As illustrated by Fig. 2-13 (c), the 

small shift of the DC source voltage leads to a significantly large variation of the DC-link 

current of the CDVC-based TLSVC. In contrast, the DC-link voltage of the converter first 

drops rapidly after the disturbance, and soon increases to its nominal value. Because of the 

effects of the CDVC, the change of the DC-link voltage of the TLVSC is quite small during 

the transient process. Fig. 2-13 (e) and (f) show the dynamic responses of the droop-based 

TLSVC when the reference active power changes from 1 p.u. to 0.75 p.u. Compared with Fig. 

2-13 (a) and (e), it is found that the DC-link oscillations can be suppressed by introducing the 

power-voltage droop element. Besides, it is illustrated by Fig. 2-13 (b) and (e) that the 

deviations of the DC-link voltage are also reduced by the droop control. As illustrated by Fig. 



 

 

2-13, the dynamic responses of the TLVSC with the proposed model marked as the dashed red 

line are aligned with the simulation results marked as the solid black line no matter the control 

mode, which verifies the accuracy of the proposed TLVSC models under small perturbations.  

Fig. 2-14 illustrates the responses of the TLVSC under different control modes when a 

metallic fault happens at the beginning of the DC transmission line. Fig. 2-14 (a) and (b) are 

the dynamics of the DC-link current and the capacitor voltage of the CPC-based TLVSC. As 

illustrated by Fig. 2-14 (a), the DC-link current increases fast after the occurrence of the DC 

fault. The increasing speed of the fault current can almost maintain constant within the 

capacitor discharging stage, which is around several milliseconds after the DC fault. In 

addition, the DC-link voltage remains relatively high at the initial fault period due to the 

support of the DC-link capacitor, as illustrated by Fig. 2-14 (b). Fig. 2-14 (c) and (d) depict 

the fault responses of the CDVC-based TLVSC, which are quite similar to those of the CPC-

based TLVSC. Compared with Fig. 2-14 (a) and (c), it is observed that the fault current of the 

CDVC-based TLVSC is slightly larger than that of the CPC-based one. This is because the 

capacitor voltage with the CDVC decreases slower than that with the CPC, which can be 

referred to in Fig. 2-14 (b) and (d), and the capacitor discharging current becomes smaller. As 

for the droop-based TLVSC, the change of the DC-link current is in between that of the CPC-

based and the CDVC-based TLVSCs, as illustrated by Fig. 2-14 (e). Similarly, it is indicated 

by Fig. 2-14 (f) that the dropping speed of the capacitor voltage of the droop-based converter 

is also between that of the CPC-based and the CDVC-based ones. 

Compared with Fig. 2-12 and Fig. 2-14, it is found that the fault characteristics of the 

LCC and the VSC are distinct. The fault current of the LCC is effectively regulated by the 

constant current control, while that of the TLVSC is mainly contributed by the capacitor 

discharging current, which can be much larger than the LCC. In addition, the DC-link voltage 

of the LCC drops fast by the constant current control to avoid overcurrent. In contrast, the DC-

link capacitor of the TLVSC can support the DC-link voltage within the initial fault period. It 

is illustrated by Fig. 2-14 that the capacitor voltage of the TLVSC under different control 

modes keeps above 0.8 p.u. within 5 ms after the DC fault. Accordingly, the proposed TLVSC 

models obtained via the small-signal analysis are valid under DC faults. As illustrated by Fig. 

2-14, the fault responses with the proposed model are almost the same as the simulation results, 

manifesting the effectiveness of the proposed TLVSC models for DC fault analysis. 
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Fig. 2-14 Dynamics of the TLVSC under DC faults. 

2.5.3 MMC Under Different Control Modes 

Fig. 2-15 depicts the dynamic responses of the MMC under small disturbances. When the 

reference active power of the CPC-based MMC decreases from 1 p.u. to 0.75 p.u., divergent 

oscillations appear in the DC-link current, as illustrated by Fig. 2-15 (a). Fig. 2-15 (b) depicts 

the corresponding dynamics of the DC-link voltage, which also exhibit damped oscillations in 

a relatively smaller range. Fig. 2-15 (c) and (d) are the change of the DC-link current and 

voltage of the CDVC-based MMC when the DC source voltage drops from 0.993 p.u. to 0.985 

p.u. It is observed that the terminal voltage of the converter maintains quite near the nominal 

value by the CDVC, while the DC-link current can drastically change under DC voltage 

alternations. Fig. 2-15 (e) and (f) are the dynamic responses of the droop-based MMC. 

Compared with the dynamics of the CPC-based MMC, it is indicated that the droop element 



 

 

can effectively suppress the oscillation in the DC link. 

Additionally, the dynamic responses of the MMC shown in Fig. 2-15 are analogous to 

those of the TLVSC shown in Fig. 2-13, indicating the MMC and the TLVSC have similar 

external characteristics. The current and voltage curves with the EMTP simulation slightly 

vibrate around those with the proposed model, verifying the accuracy of the proposed MMC 

models under small perturbations.  
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Fig. 2-15 Dynamics of the MMC under small perturbations. 

Fig. 2-16 illustrates the fault responses of the MMC under different control modes when 

a metallic fault happens at the beginning of the DC transmission line. As illustrated by Fig. 2-

16 (a), (c), and (e), the DC-link current increases fast with a similar rising speed under different 

control modes. In contrast, the discharging speed of the capacitors shows more apparent 

differences under the CPC, CDVC, and droop control, as depicted in Fig. 2-16 (b), (d), and 



 

 

(e). Nevertheless, the total capacitor voltage of the MMC remains above 0.8 p.u. within 5 ms 

after the DC fault under different control modes, which makes the linearized models applicable 

to the fault scenarios. It is also observed in Fig. 2-16 that the simulation results marked as the 

solid black line almost coincide with the curves with the proposed model marked as the dashed 

red line, which manifests that the proposed MMC models under different control modes are 

accurate for the initial DC fault analysis.  
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Fig. 2-16 Dynamics of the MMC under DC faults. 

2.6 Summary 

The DC-side dynamic analysis models of the LCC, TLVSC, and MMC are derived in this 

chapter. Depending on the DC-link voltage derivations of the LCC during disturbances, the 

small-signal analysis and the least squares approximation are utilised to deduce the linearized 



 

 

model of the LCC, respectively. It is found that the LCC under small perturbations and DC 

faults can be equivalent to a similar RLC circuit with different parameters. Considering the 

DC-link voltage drop of the TLVSC is relatively small during the initial DC fault period, the 

small-signal model of the TLVSC is valid for the DC fault analysis. Accordingly, the TLVSC 

models under the CPC, CDVC, and droop control are derived based on the small-signal 

analysis, which can apply to different sizes of disturbances. As for the MMC, it is found that 

the external characteristics of the MMC are similar to those of the TLVSC, and thus the MMC 

models under three control modes are deduced in analogous to the TLVSC. In addition, it is 

indicated that the LCC, TLVSC, and MMC, with the consideration of control effects, can be 

equivalent to simple RLC circuits for dynamic analysis. Simulation studies have validated the 

accuracy of the derived linear models of the converters. 
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3   DC Fault Calculation of Generic MTDC Systems Based on State-

Space Method 

3.1 Introduction 

Fault calculation forms a critical part of the dynamic analysis of power systems. Faults 

on DC networks can be classified into pole-to-pole short-circuit faults, pole-to-ground short-

circuit faults, single-pole breaking-line faults, and double-pole breaking-line faults. Since 

pole-to-pole short-circuit faults generate the strongest impacts on the entire system and are 

recognized as the most dangerous ones, this thesis mainly focuses on this type of fault. In 

MTDC systems, the fault line must be cut off within the short capacitor discharging stage to 

avoid overcurrent damaging the vulnerable switching valves in converters. Therefore, fault 

characteristics in the initial fault period are of more interest to the DC network. The results of 

short-circuit calculation during the initial fault period can provide important guidance for 

proper sizing of power devices, such as DC circuit breakers (CBs) and supplementary DC 

reactors, and designing protection schemes in MTDC systems.  

During a DC fault, all converters in the system can simultaneously inject current to the 

fault point. The coupling effects of multiple converters make the fault current calculation in a 

DC network difficult. So far, most works on the fault calculation of MTDC systems rely on 

EMTP simulation. In [45] and [50], the fault characteristics of TLVSC- and MMC-MTDC 

systems are investigated based on numerical simulation, respectively. To boost the calculation 

efficiency, a fault calculation method for MMC-MTDC systems based on the companion 

circuit method is proposed in [52]. As for the hybrid MTDC system that contains both LCC(s) 

and VSC(s), [53] establishes a detailed transient simulation mode of China Wudongde HVDC 

project, an LCC-MMC three-terminal HVDC transmission system to study the faul properties 

of the system. In [55], the transient simulation model of a two-terminal LCC-MMC system is 

established based on the dynamic phasor to reduce the model complexity. However, transient-

simulation-based fault calculation can only investigate a limited number of selected fault 

scenarios. In addition, detailed parameters of extensive devices and transmission lines are 

required to form the simulation model of the studied system.  

To tackle the shortcomings of the simulation-based fault analysis method, some 

researchers resolve to the state-space method. The state-space equation of the MMC-MTDC 

network is derived in [63], so that the fault current of the entire DC network is calculated by 



 

 

solving the state-space equation. However, MMCs are regarded as an RLC series circuit, while 

the control effects are neglected. An improved fault current calculation method for MMC-

MTDC systems is reported in [66], which takes the outer loop control of MMCs into account. 

Unfortunately, it is assumed that all MMCs in the system adopt the CDVC, while actual 

MTDC systems usually adopt the master-slave or droop-based scheme. Moreover, the inner 

control is neglected in this work, which can have greater influences on the fault current than 

the outer loop in the short initial fault period.  

Existing state-space-based fault calculation methods can only apply to MTDC systems 

containing a single type of converter with a fixed control mode. In this chapter, a short-circuit 

current calculation method for generic MTDC systems is proposed. On the basis of the linear 

converters models derived in the last chapter, the superposition principle is utilised on the 

linear systems to facilitate the calculation. The system equation of the fault component 

network is formed by incorporating the state-space representations of converters and the DC 

network. After eliminating the nonstate variables, the state-space equation of the fault 

component network is derived, and the short-circuit current of the entire network can be solved. 

The proposed method can not only deal with converters with different topologies and control 

modes but also achieves higher accuracy than existing state-space-based fault analysis 

methods. 

3.2 Fault Component Network of Generic MTDC Systems 

In a generic MTDC system, the numbers of branches, nodes, and converters are denoted 

by B, N, and M, respectively. In total, the MTDC system contains M1 LCC-based rectifiers, 

M2 CPC-based TLVSCs, M3 CDVC/droop-based TLVSCs, M4 CPC-based MMCs, and M5 

CDVC/droop-based MMCs. Obviously, M1 + M2 + M3 + M4 + M5 = M. For the convenience 

of analysis, the numbering of nodes is in accordance with the following rule. 
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For the system incorporating a DC fault, the fault point is marked as Node 0. Accordingly, 

the numbers of branches and nodes of the faulted MTDC system become (B+1) and (N+1), 



 

 

respectively.  
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Fig. 3-1 Decomposition of the generic MTDC system under a DC fault. 



 

 

As discussed in the last chapter, the derived fault analysis models of various converters 

are linear. Considering DC lines are represented by the RL model shown in Fig. 3-1, the entire 

MTDC system is a linear system. Therefore, the classic superposition principle is applied to 

facilitate the analysis. As illustrated by Fig. 3-1, the original MTDC system with a DC fault is 

decomposed into a normal operation network and a fault component network. The electrical 

quantities on the three networks satisfy the following relations. 

 
n f

n f

u u u

i i i

= +


= +
 (3-1) 

where u and i represent the voltage and current of the studied system, individually. The 

subscript n and f denote the normal operation component (pre-fault steady-state value) and the 

fault component value, respectively.  

As illustrated by Fig. 3-1 (c), the fault component network contains only one active 

source, which makes the fault analysis on this network much easier. In addition, since DC 

supplementary reactors are installed at the terminal of the transmission line, they are not 

included in the converter model, but incorporated into the DC network instead. 

3.3 State-Space Representation of Converters 

In this section, the converters models derived in the last chapter are transferred into the 

state-space representation to form the state-space equation of the fault component network. As 

per the equivalent circuit model of the LCC-based rectifier depicted in Fig. 2-3, the LCC 

equations in a state-space form are written as, 

 1
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dfiLCC

eqi dcfi
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 (3-2) 

where ud is the voltage of the equivalent capacitor 
LCC

eqC . udc and idc are the node voltage and 

the injected current into the node. Subscript i denotes electrical quantities related to Node i.  

Similarly, the state-space representation of the CPC-based TLVSC is deduced based on 

the equivalent circuit depicted in Fig. 2-6, which is written as, 
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As for the CDVC/droop-based TLVSC, one RL series branch should be supplemented to 



 

 

reflect the control effects, as shown in Fig. 2-7. Accordingly, the equations of the 

CDVC/droop-based TLVSC are given as, 
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 (3-4) 

where ieq is the current flowing through the equivalent RL series branch. 

In (3-3) and (3-4), the voltage of the DC-link capacitor and that of the node are equal. 

However, both variables are reserved to make the equation has a similar form to the equations 

of the LCC as expressed by (3-2).  

Different from TLVSCs, the DC-link capacitor and the node are connected via an 

equivalent arm inductor LM as shown in Fig. 2-10. Accordingly, one equation should be added 

to express the dynamics in the arm. According to Fig. 2-10 (a), the state-space representation 

of the CPC-based MMC is written as, 
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According to Fig. 2-10 (b), the equations of the CDVC/droop-based MMC are written as, 
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3.4 State-Space Representation of the DC Network 

For simplicity, the classic RL model is utilised to represent the DC transmission line. For 

Branch ij that connects Node i and Node j, its dynamics can be expressed as follows according 

to Kirchhoff voltage law (KVL). 
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where Lbij and Rbij are the equivalent inductance and resistance of the branch that connects 

Node i and Node j, respectively. Note that Lbij consists of the line inductance Ll and the 

inductance of the supplementary reactor Ld or LT. ibfij is the fault component current flowing 

through Branch ij. For the whole network, (3-7) is rewritten in a compact form as, 

 
d

ˆ
dt

= − +
bf

b b bf dcf

i
L R i Au  (3-8) 

where Lb = diag{Lb1, Lb2, ⋯, Lb(B+1)}, Rb = diag{Rb1, Rb2, ⋯, Rb(B+1)}, ibf = [ibf1, ibf2, ⋯, ibf(B+1)]T, 

udcf = [udcf0, udcf1, ⋯, udcfN]T. Â  is the branch-to-node incidence matrix of the network under 

the DC fault, containing (B+1) rows and (N+1) columns. The entities of Â  are given as, 

 

0, Branch  does not connect to Node 

ˆ 1, Branch  directes from Node 

1, Branch  directes to Node 

ij

i j

a i j

i j




= 
−

 (3-9) 

In addition, the following equation holds at the fault point. 

 0 0n dcf f idcfu u R i− − =  (3-10) 

where Rf is the fault resistance. During normal operation, the voltage of the network is close 

to the nominal voltage denoted by un, and thereby the pre-fault voltage at the fault point is 

assumed as un in (3-10). 

According to KCL, the algebraic sum of the current injecting into each node is 0, yielding, 

 ˆ =T

bf dcfA i i  (3-11) 

where idcf = [idcf0, idcf1, ⋯, idcfN]T. Since there is no converter connecting with virtual nodes, the 

injected current into Node M +1 to Node N is 0. Thus, idcf = [idcf0, idcf1, ⋯, idcfM, 01×(N-M)]T. 

3.5 Short-Circuit Current Calculation of the Fault Network Based on State-

Space Method 

3.5.1 System Equation of the Fault Component Network 

The system equation of the fault component network is obtained by synthesizing the 

converter equations and the network equations. The state-space representation of converters 

expressed by (3-2), (3-3), (3-4), (3-5), and (3-6) are rewritten in a compact form as, 

 ( ) ( )d
,

d

T
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df T
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u
C g u K i i i

1 2  (3-12) 
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eqf
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2 2dcf
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 ( ) ( )
= −

1 1

dcf u df eq dcfu K u R i  (3-15) 

where, 
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1 2 3
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1 11
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As for the network equation, (3-8) and (3-11) can be partitioned as follows. 
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(3-10), (3-12), (3-13), (3-14), (3-15), (3-16), and (3-17) constitute the system 

equation of the studied fault component MTDC network.  

3.5.2 Elimination of Nonstate Variables 

In the above system equation, only a part of the variables is state variables. In addition, 

it can be seen from (3-17) that ( )4

bfi  in (3-16) is colinear with idcf0, 
( )2

bfi , and ( )3

bfi . Therefore, 

the nonstate variables elimination should be conducted to formulate the state-space equation 

of the system.  

According to the fourth row in (3-17), ( )4

bfi  is a linear combination of idcf0, 
( )2

bfi , and ( )3

bfi , 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

1
ˆ ˆ ˆ ˆ ˆ ˆ

bfi
− − −

= − − −
4 2 3

44 14 44 24 44 34

T T T T T T

bf bf bfi A A A A i A A i  (3-18) 

Substitution of (3-18) into (3-17), it yields that, 
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where ( )
1

ˆ ˆ ˆ ˆˆ
−

= − 4 44 4

T T T T

ij ji i jB A A A A . 

Combined with (3-10) and (3-19), we have, 
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0 11 1
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1

ˆ ˆ ˆ
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1 2 3

21 22 23dcf u df eq eq bf eq bfu K u R B R B i R B i  (3-21) 

Substitution of (3-18) into (3-16), the fourth row of (3-16) turns into an algebraic 

equation as follows. 
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where,  
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Similarly, by substituting (3-16) and (3-19) into (3-14), (3-14) becomes an algebraic 

equation as, 

 ( ) ( ) ( ) ( ) ( )
( )1 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
bf dcfi u


+ + − + + + + =

4 5

2 3 1 2 31

1 2 3 0 1 2 3 1
0

-

i i bf i bf M idc df u u dcf u dcf u dcf M +M
D D i D i L K u D D u D u D u  (3-23) 

where, 
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Based on (3-20), (3-21), (3-22), and (3-23), ( )2

dcfu  and ( )3

dcfu  can be expressed by the 

state variables as follows. 
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Combined with (3-20), (3-21), (3-24), and (3-25), dcfu  can be rewritten as, 
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 (3-26) 

3.5.3 State-Space Equation of the Fault Component Network 

Substitution of (3-19) and (3-26) into (3-12), it yields that,  
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Similarly, substituting (3-19) and (3-26) into (3-16) provides, 
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By combining (3-13), (3-27), and (3-28), the state-space equation of the fault 

component network is expressed as, 
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Since the state variables are the electrical quantities of the fault component network, their 

initial value should be 0, i.e., 
( )3 5

0 2 1 1
0

M + M + M +
x = . Accordingly, the solution of the dynamic 

equation expressed by (3-29) is written as, 

 ( ) n nt u u= −-1 -1
e

At
x A B A B  (3-30) 

Based on (3-30), the dynamics of state variables of the system are calculated via matrix 

manipulations rather than numerical integration, which reduces the computational burden and 

avoids numerical issues. The operation values can be determined based on (3-10), (3-18), 

(3-19), and (3-26).  

3.6 Case Studies 

A radial and a meshed MTDC system are built in PSCAD/EMTDC, separately. The fault 

current obtained via EMPT simulation is compared with the calculated fault current to validate 

the accuracy of the proposed fault calculation method.  

3.6.1 Radial MTDC System 

Fig. 3-2 presents the topology of the radial LCC-MMC MTDC system. The constant 

current control is adopted by the 12-pulse LCC-based rectifier, while the two MMC-based 

inverters adopt the droop control. According to the numbering rule, Node 1 is connected to the 

LCC-based rectifier, Node 2 and Node 3 are connected to the MMC-based inverters, and Node 

4 is a virtual node. Transmission lines are represented by the detailed frequency-dependent 

model, whose lengths are given in Fig. 3-2. The nominal DC voltage of the system is ±200 kV. 



 

 

The inductance of smoothing reactors deployed at the terminal of LCC is chosen as 400 mH. 

The supplementary DC reactors are selected as 150 mH. Other parameters of the test system 

are presented in Table 3-1. 
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Fig. 3-2 Topology of the test radial MTDC system. 

Table 3-1 Main parameters of the test radial MTDC system 

Symbol Item Value 

un Nominal DC-link voltage of the test system ±200 kV 

ωs Nominal frequency of AC grids 50 Hz 

dγ Equivalent commutation resistance 41 Ω 

ref

dci  Reference DC-link current 1 kA 

(KPc, KIc) Proportional and integral gains of constant current control (1, 100) 

Ld LCC-side smoothing reactor 400 mH 

Nsm Number of SMs of MMC in one arm 200 

Csm SM capacitance of MMC 12 mF 

Ron On-state resistance of one IGBT/diode 5.445 m 

La Arm inductance of MMC 60 mH 

σi Time constant of the inner loop 2 ms 

(KPo, KIo) Proportional and integral gains of the outer loop (1, 10) 

Kd Power-voltage droop coefficient 0.2 

LT DC reactor inductance 150 mH 

R0 Per-kilometre resistance of DC line 0.015  

L0 Per-kilometre inductance of DC line 1.4 mH 

fs Sampling frequency 10 kHz 

 

The fault component current of the test radial MTDC system under metallic faults is 

shown in Fig. 3-3, which compares the EMTP simulation and the proposed model. As seen 

from Fig. 3-3 (a), the current injected by the LCC-based rectifier quickly rises after the DC 

fault. Then, the fault current reaches the peak value at around 4 ms and starts to decrease 



 

 

gradually because of the constant current control of the LCC. On the other hand, the current 

injected by the MMC inverter illustrated by Fig. 3-3 (b) sharply increases over 8 ms, indicating 

a clear capacitor discharging process. Moreover, the fault current with EMTP simulation has 

slight fluctuations owing to the travelling wave propagation process, but the overall patterns 

of the fault current are very similar to those with the proposed method. It suggests that the 

proposed method can effectively simplify the model complexity with little accuracy loss.  
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Fig. 3-3 Short-circuit current of the test radial system under metallic DC faults. 

Fig. 3-3 (c) and (d) illustrate the fault current with a metallic fault occurring between LT42 



 

 

and Line 24 (f2). As illuminated by by Fig. 3-3 (c), there is a drop of the current of Branch 10 

and more noticeable travelling wave propagations than those in Fig. 3-3 (a), because of the 

increase in fault distance. For MMC-connected lines in Fig. 3-3 (d), the fault line current rises 

evidently faster than that of the healthy line. Furthermore, the errors between fault current with 

the EMTP simulation and the proposed model are relatively small, which demonstrates the 

accuracy of the proposed model in short-circuit current calculation within the first moments 

after the DC fault.  

Fig. 3-4 depicts the dynamics of the test radial MTDC system under DC faults with a 

fault resistance of 300 Ω. When a high-resistance fault occurs at the terminal of Line 14 near 

Node 4 (f1), the injected current from the LCC-based rectifier first rises and soon decreases 

with the effects of the constant current control, as illustrated by Fig. 3-4 (a). It can be seen 

from Fig. 3-4 (b) that there is an apparent saturation trend of the fault component of the injected 

current from the MMC-based inverter. Moreover, the short-circuit current with the proposed 

model and that with the EMTP simulation are approximated to each other. Fig. 3-4 (c) shows 

the fault current dynamics under a DC fault with a fault resistance of 300 Ω occurring between 

LT42 and Line 24 (f2). Compared with Fig. 3-3 (a) and (c), it is found that the injected current 

from the LCC decreases due to the increase in the fault distance. Fig. 3-4 (d) shows the fault 

component current of Branch 20 and Branch 34 under f2. The fluctuations of current in the 

healthy line are larger than those of the fault line. This is because of electrical distance from 

the fault point to the measurement point of the healthy line is farther than that of the fault line, 

leading to more apparent travelling wave processes. Nevertheless, the fault current with EMTP 

simulation still vibrates slightly around that with the proposed method, which again validates 

the accuracy of the proposed method in fault calculation.  
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Fig. 3-4 Short-circuit current of the test radial system under high-resistance DC faults. 

3.6.2 Meshed MTDC System 

Fig. 3-5 depicts the topology of the meshed six-terminal MMC-MTDC system. MMC1 

to MMC5 adopt the CPC, while MMC6 adopts the CDVC. The nominal DC voltage of the 

system is ±400kV. The supplementary DC reactors are chosen to be 100 mH. The length of 

each DC transmission line is given in Fig. 3-5. Other main parameters of the test meshed 

system are summarized in Table 3-2. 
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Fig. 3-5 Topology of the test meshed MTDC system. 

Table 3-2 Main parameters of the test meshed MTDC system 

Symbol Item Value 

un Nominal DC-link voltage of the meshed system ±400 kV 

Nsm Number of SMs per arm of MMC 200 

Csm SM capacitance of MMC 0.8 mF 

Ron On-state resistance of one IGBT/diode 5.445 m 

La Arm inductance of MMC 70 mH 

σi Time constant of the inner loop 2 ms 

(KPo, KIo) Proportional and integral gains of the CPC (1, 10) 

(KPv, KIv) Proportional and integral gains of the CDVC (5, 10) 

LT DC reactor inductance 100 mH 

R0 Per-kilometre resistance of DC line 0.015  

L0 Per-kilometre inductance of DC line 1.4 mH 
 



 

 

Fig. 3-6 shows the fault component current of Branch 26 under various metallic DC faults. 

The fault distance here is defined from the fault point to Node 2.  
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Fig. 3-6 Short-circuit current of the test meshed system under metallic faults. 

Fig. 3-6 (a) depicts the current dynamics when a metallic fault happens on Line 26 (f1) 

with a fault distance of 100 km. The fault component current rises rapidly after the fault. 

Because of the travelling wave process, the short-circuit current with EMTP simulation 

denoted by the solid black line fluctuates around the current curve obtained by the proposed 



 

 

method marked as the red dashed line. However, the overall trends of the two curves are fairly 

similar. As illustrated by Fig. 3-6 (b), the errors between the results of EMTP simulation and 

the proposed method are related to the fault distance. When the fault distance is 10 km, the 

two current curves almost overlap together. As the fault distance increases to 150 km, the 

refractions and reflections of travelling waves become more apparent, leading to small 

vibrations in the simulation current curve compared to that of the proposed method. Notably, 

the errors between the lumped and distribution parameters models are in an acceptable range 

no matter the fault distance. Fig. 3-6 (c) shows the system dynamics under metallic fault 

occurring on Line 56 (f2). It is observed that the fault current decreases significantly with the 

increase in the fault distance. Besides, the fault component current rises much slower 

compared with the cases of f1 faults. This is because the measured current is that of Branch 26, 

which is a healthy line in this fault scenario. Fig. 3-6 (d) shows the fault component current 

when metallic faults occur on Line 12 (f3). In this situation, the fault component current 

becomes negative because the direction of the current is defined as from Node 2 to Node 6. 

Since Branch 26 is a healthy line in this case, the current curves are very similar to those of f2 

faults. It is indicated from Fig. 3-6 that the results of the proposed method are very close to 

those of EMTP simulation, which manifests the accuracy of the proposed method for short-

circuit current calculation in the initial DC fault period. 

Fig. 3-7 presents the fault component current of Branch 26 under various high-resistance 

DC faults. Fig.3-7 (a) illustrates the short-circuit current dynamics when the fault distance is 

100 km. Different from the current curves under metallic faults, the fault component current 

fast rises around 1 ms to 2 ms and soon exhibits an apparent saturation trend. This is because 

the DC-link voltage under high-resistance faults is higher than that under metallic faults, which 

shortens the discharging time of the DC-link capacitor. In addition, it is indicated from Fig. 3-

7 that the fault current decreases as the fault resistance increases. Fig. 3-7 (b) and (c) show the 

system dynamics when the fault distances are 10 km and 150 km, respectively. As the fault 

distance increases, the fault component current becomes lower. Simultaneously, the travelling 

wave process gets easier to be observed. Fig. 3-7 (d) shows the fault component current under 

f2 and f3 faults. The fault distances are 170 km and 10 km, respectively. Since the measured 

current is flowing through the healthy line, i.e., Branch 26, the fault component current 

increases much slower compared to the aforementioned cases. Moreover, it is shown in Fig. 

3-7 that the fault component current based on the proposed method is fairly close to that 

obtained from EMTP simulation, which again manifests the effectiveness of the proposed 



 

 

method for the initial DC fault analysis in MTDC systems.  
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Fig. 3-7 Short-circuit current of the test meshed system under high-resistance faults. 

The computational time of the state space method is related to the scale of the studied 

system. For the cases of the test radial and meshed MTDC systems, the computational time is 

less than 1 second. However, the time of simulation is several minutes. It is indicated that the 

state-space method can boost computation efficiency by getting rid of time-consuming 

numerical integrations.  



 

 

3.7 Summary 

A short-circuit current calculation method for generic MTDC systems is proposed in this 

chapter. On the basis of the linear converters models derived in the last chapter, the entire DC 

system is linear, and thereby the superposition principle can be used to facilitate the analysis. 

By eliminating the nonstate variables of the system equations, the state-space equation of the 

fault component network is formulated. Accordingly, the mathematical expression of the fault 

component current of the entire system can be obtained, which enables fast fault calculation 

based on matrix manipulations instead of solving DAEs based on numerical integration. 

Additionally, the proposed method is fully available to various MTDC systems with different 

network topologies, converters types, and control modes. Simulation studies have validated 

the accuracy and adaptability of the proposed method. 
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4   DC Fault Calculation of VSC-MTDC Systems Based on High-

Frequency Equivalent Model 

4.1 Introduction 

A state-space-based fault calculation method for generic MTDC systems is proposed in 

the last chapter. Although the proposed method gets rid of the numerical solution of DAEs, 

the relatively complicated matrix manipulations make it hard to get general and clear rules of 

the fault current in MTDC systems as per (3-30). 

The case studies of the meshed VSC-MTDC system in the last chapter show that the fault 

current in the fault line seems to increase linearly under metallic DC faults. As for healthy 

lines, the increasing speed of the fault current is much slower than that of the fault line because 

of the existence of the DC-link capacitors of VSCs, but the waveforms of healthy line current 

are not complicated either. Consequently, it is possible to derive simpler fault current 

expressions for VSC-MTDC systems. Note that the first milliseconds after the fault are of 

interest in the fault calculation of VSC-MTDC systems, and the high-frequency components 

of electrical quantities dominate in the fault network in this short period. Based on this property, 

the fault calculation can be significantly simplified. 

This chapter proposes a simple DC fault calculation method for the most common VSC-

MTDC systems using the high-frequency equivalent (HFE) model. The Laplace circuit of the 

fault network is first formed. Then, since only the high-frequency electrical quantities exist in 

the Laplace fault component network in the first milliseconds after the fault, the HFE model 

for the initial DC fault calculation is proposed by reserving only the high-frequency 

components of the Laplace circuit. Based on the HFE model, analytical time-domain 

expressions of the fault current of the entire network are derived. The proposed method can 

achieve a more straightforward DC fault analysis than existing approaches, with simple 

calculations and little loss of accuracy. 

4.2 DC Fault Analysis of the Radial VSC-MTDC System 

Fig. 4-1 illustrates a typical radial four-terminal DC grid that connects three offshore wind 

farms and one onshore AC main grid with submarine DC cables. Take a metallic fault that 

happens on Line 14 as an example, and the fault point is labelled as Node 0. The DC submarine 



 

 

cable is simplified as a π-section, and the transient travelling wave process of the transmission 

line is disregarded. The resistance and inductance of Line mn are represented by Rlmn and Llmn, 

separately. The inductance of the DC implemental inductor installed at the m terminal of Line 

mn is represented by LTmn. For simplicity, the effect of the equivalent capacitor of cables can 

be added to the DC-link capacitor of VSCk as a lumped grounded capacitor at the terminal of 

each branch. The grounded capacitor denoted by Cck, as shown in Fig. 4-1, is defined as the 

sum of the capacitance of the DC-link capacitor of VSCk and the equivalent capacitor of Cable 

mn. Although the travelling wave process is neglected by using the lumped parameter line 

model, it accurately reflects the relatively low-frequency properties of the fault current and 

thus is applicable to short-circuit current approximate calculation. 
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Fig. 4-1 Schematic of four-terminal radical MTDC system interconnecting offshore wind farms and 

onshore AC system. 

4.2.1 Laplace Circuit of the Radial VSC-MTDC System 

Similar to the analysis in the last chapter, the DC grid with a DC fault can be separated 

into a normal operation network and a fault component network, as seen in Fig 4-2, by using 

the superposition principle of electrical circuits due to the linear property of the DC grid. The 

fault component current can be easily obtained by solving the fault component network 

derived from adding a fault voltage source to the passive part of the original network. The 

positive direction of cable current is defined as from the healthy cable to the faulty one. The 

fault current calculation utilises the classical Laplace transform method that translates complex 

derivative operations into simpler algebraic operations. 



 

 

As illustrated by Fig. 4-2 (c), the fault component current of Branch 10 denoted by ibf10 

is determined through solving the left-hand side (LHS) circuit of the fault point. 
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( ) ( ) ( )
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l l T eq eqs eqp c

u s
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 (4-1) 

where VSC

eqL  , VSC

eqsR  , and VSC

eqpR   are the equivalent parameters of the VSC model derived in 

Chapter 2. // denotes parallel connection, e.g., x//y = 1/(1/x + 1/y). 
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Fig. 4-2 Circuit for the four-terminal DC grid under study. 

On the other hand, the deduction of fault component current of Branch 40 is much more 

complex because the grounded capacitor, Branch 24, and Branch 34 are parallel connected to 

Branch 40, significantly increasing the circuit complexity. For simplification, the related 

branch admittances are introduced as, 
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where, Yb24 and Yb34 are the admittance of Branch 24 and Branch 34, respectively. Applying 

KCL to Terminal 4, the following equality holds. 

 ( ) ( ) ( ) ( ) ( ) ( )24 4 34 4 4 4 40 0b dcf b dcf c dcf bfY s u s Y s u s sC u s i s+ + − =  (4-3) 

where, udcf4 and ibf40 denote the fault component of the DC-link voltage of Terminal 4 and the 

fault component current of Branch 40, individually. 

Applying KVL to the right-hand side (RHS) circuit of the fault point, the following 

equation should hold. 

 ( ) ( ) ( )4 40 40 41 40 0n
dcf l l T bf

u
u s R sL sL i s

s
− + + =  (4-4) 

By synthesizing (4-3) and (4-4), udcf4 is eliminated, and it yields the expression of ibf40 

as follows. 
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4.2.2 High-Frequency Equivalent Model and the Reduction of Initial Fault 

Calculation 

The proposed analytic converter model is only valid for fault analysis within several 

milliseconds after the DC fault. Therefore, it is unnecessary and inaccurate to derive the full 

time-domain expression of ibf40(t) through the inverse Laplace transform of (4-5). 

When the observed time is very short, the slow-changing low-frequency components of 

a signal cannot be reflected, while its fast-changing high-frequency components can be 

obtained. Therefore, during the initial first instants after the occurrence of the fault, only the 

high-frequency components of electrical quantities dominate in the Laplace circuit. Based on 

this property, the low-frequency components in the Laplace circuit can be omitted for the fault 

calculation in the initial fault period. The reserved Laplace circuit composed of high-frequency 

components is referred to as the high-frequency equivalent (HFE) model, which is very useful 

for simplifying the initial fault analysis.  

Normally, the capacitor discharging period of VSC-MTDC systems does not exceed 10 

ms, so the high-frequency region is above 100 Hz here. The following inequalities hold with 

typical parameters of VSC-MTDC systems in the high-frequency domain, 
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 (4-6) 

Fig. 4-3 illustrates the amplitude-frequency characteristics of the branch inductance of a 

100 km DC cable connected with two DC reactors of 100 mH at the terminals, the grounded 

capacitor, the equivalent inductance and resistance of the TLVSC with typical HVDC 

parameters. It is validated that the inductance and resistance components are more influential 

than the capacitance in the high-frequency domain, where the inequalities expressed in (4-6) 

can hold.  
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Fig. 4-3 Amplitude-frequency characteristics of the grounded capacitor, branch inductance, 

equivalent inductance and resistance of the TLVSC with typical HVDC parameters. 

Based on (4-6) and further neglecting the resistances of DC cable lines, it yields the 

following relation, 

 ( )4 4 4 4

4 4 4

1 1
( ) 1 , 2,3

1
bi li Ti T i

li bi ci bi

Y s s L L L i
R sL sC sL

  = + + =
+ +

 (4-7) 

Based on (4-7), the DC cable line is simplified as an equivalent inductance for the initial 

fault calculation. By substituting (4-6) into (4-7), it yields that, 

 
4 4 41 , 2,3bi bi cY sL sC i =  (4-8) 

(4-8) indicates that in the high-frequency domain, the admittance of the DC-link capacitor 

Cc4 are much larger than those of Branch 24 and Branch 34.  

In the high-frequency domain, Branch 24 and Branch 34 can be neglected. By 



 

 

synthesizing (4-5) and (4-8), the expression of the high-frequency component of the fault 

component current of Branch 40 marked as ( )40

H

bfi s  is obtained as, 
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Compared with (4-1) and (4-9), it is found that the fault component current in the LHS 

and RHS branches of the fault point have the same format, indicating that branches parallel 

connected to the grounded capacitor can be neglected for the initial fault calculation of the 

fault line. Substitution of (4-6) into (4-1) and (4-9), the fault component current of the fault 

line can be reduced in the high-frequency region as, 
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 (4-10) 

As for the fault component current of healthy lines, the following reduction holds in the 

high-frequency region. 
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(4-10) and (4-11) are the reduced fault current expressions of the studied radial DC grid 

based on the HFE model, which indicate that the fault component current of the healthy line 

equals that of the fault line times a second-order low-pass filter. Therefore, the high-frequency 

component of the healthy line current diminishes drastically compared with that of the fault 

line current. 

4.3 DC Fault Analysis of the Meshed VSC-MTDC System 

Fig. 4-4 depicts a typical three-terminal meshed HVDC system with a metallic fault 

occurring on Line 12. Similar to the analysis of the radial system, DC transmission lines are 

represented by the lumped RL series circuit (RL model). The symbolic notations are the same 

as the radial system.  
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Fig. 4-4 Schematic of three-terminal meshed VSC-MTDC system. 

4.3.1 Laplace Circuit of the Meshed VSC-MTDC System 

Based on the superposition principle of linear electrical circuits, the Laplace circuit of the 

fault component network of the studied meshed DC system is shown in Fig. 4-5. To facilitate 

the analysis, the equivalent impedances of converters are first defined as follows. 
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Fig. 4-5 Laplace fault component network of the meshed VSC-MTDC system. 

Based on KCL and KVL, the following equation holds. 

 ( ) ( ) ( ) ( )( )3 3 31 32dcf c bf bfu s Z s i s i s= +  (4-13) 

To open the loop in the meshed network, Zc3(s) is decomposed into two equivalent 

impedances as, 
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Denote rb21 as the ratio of the fault component current of Branch 32 and Branch 31, which 

is expressed as, 
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Substitution of (4-15) into (4-14), it yields that, 
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 (4-16) 

Using the decomposed impedances expressed in (4-16), the studied meshed DC network 

turns into a radial one, as shown in Fig. 4-6. As per the LHS circuit of the fault point in the 

open-loop network, the fault component current of Branch 10 is calculated as, 
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Fig. 4-6 Open-loop circuit of the fault component network of the studied meshed VSC-MTDC system. 

4.3.2 Reduced Fault Current Expression Based on HFE Model 

Deriving the time-domain expression of the fault current via the inverse Laplace 

transform of (4-17) is very difficult owing to the complex structure of the equivalent 

converters impedances Zc1(s) and Zc31(s). Similar to the analysis of the radial network, the HFE 

model is utilised to simplify the fault component network.  

Based on the inequalities expressed in (4-6), the equivalent impedances of converters are 

simplified in the high-frequency region as follows. 
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Based on (4-6) and (4-18), it can be concluded that the equivalent impedances of 

converters are much smaller than the branch impedances, and thus, 
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(4-19) indicates that the branches parallel connected to the ground capacitor can be 

omitted when calculating the fault line current. Substitution of (4-19) into (4-17), the fault 

component current of the fault line is reduced as follows in the high-frequency region. 
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Compared with (4-10) and (4-20), it is found that the fault line current of radial and 

meshed VSC-MTDC systems can be expressed in the same format.  

As for the healthy line, its fault component current can be expressed as follows in the 

high-frequency region based on (4-6). 
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 (4-21) 

(4-21) indicates that the fault component current of the healthy line equals that of the 

fault line times a second-order low-pass filter in the meshed VSC-MTDC system. Combined 

with the fault current expressions as shown in (4-10), (4-11), (4-20), and (4-21), it is 

concluded that within the first instants after a DC fault, the high-frequency fault component 

current mainly flows in the fault line, while the low-frequency one flows in the other lines. 

This characteristic holds for both radial and meshed VSC-MTDC systems. 

4.4 Analytical Fault Current Expression of Generic VSC-MTDC Systems 

4.4.1 HFE Model of Generic VSC-MTDC Systems 

The above fault analysis is based on networks with specified structures. However, to 

apply the HFE model to more generic VSC-MTDC systems, a new concept called the line 

level is introduced. This concept represents how many grounded capacitor buses will pass 

through from the investigated line to the fault point. Here are the steps to define the line level 

in this system. Firstly, the fault line takes a line level of 0. Secondly, the lines connected with 

the fault line take a line level of 1. Then, the line level of other lines connected with Level 1 



 

 

line(s) is 2, and so on. 

For general VSC-MTDC systems presented in Fig. 4-7, the fault component current of 

the fault line is determined based on (4-10), and those of the other lines are calculated based 

on (4-11) in the increasing order of the line level. Therefore, the fault component current of 

the generic VSC-MTDC system is written as follows based on the HFE model. 
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where L is the line level of Line ij. hl is the second-order low-pass filter of a line with the level 

of l, which has the following form. 
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Fig. 4-7 Fault calculation of generic VSC-MTDC system based on the HFE model. 

4.4.2 Analytical Time-Domain Fault Current Expression 

Based on (4-6), the grounded capacitor Cci and the branch resistance Ri0 in (4-22) can 

be further neglected in the high-frequency domain so that the fault component current of the 

fault line is reduced as, 
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By applying the inverse Laplace transform on (4-23), the time-domain expression of the 

fault component current of the fault line during the initial fault period is deduced as, 
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where ( )1−   denotes the inverse Laplace transform.  

Combined with (4-22) and (4-23), the fault component current of the healthy line with 

level 1 can be reduced as, 
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By calculating the inverse Laplace transform of (4-25), the fault component current of 

the healthy line is expressed as follows within the initial fault period. 
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It can be seen from (4-24) and (4-26) that the proposed HFE model effectively reduces 

the original complex network for the DC fault analysis, so that the approximate expressions 

of the fault component current of the fault and healthy lines can be clearly presented. In 

addition, it is revealed that the fault line current surges linearly, while the healthy line current 

increases cubically within the first milliseconds after the DC fault. 

Compared with the state-space method, the HFE-based fault analysis can significantly 

reduce the complexity of the network, such that concise expressions of the fault current are 

derived. Its main advantages include high efficiency and the capability to provide general rules 

of the fault current in the initial fault period. 

4.4.3 Fault Current Calculation Considering Fault Resistance 

The core idea of the HFE model is irrelevant to the fault type, and thus the HFE model is 

also applicable to DC faults with a fault resistance. Fig. 4-8 depicts the equivalent circuits of 

the fault line with a fault resistance based on the HFE model. Similar to the analysis of the 

meshed VSC-MTDC grid, the original circuit is open-looped at the fault point. Accordingly, 

two decomposed circuits for the DC fault calculation are formed, as ilstrated by Fig. 4-8. 

The fault resistance Rf is decomposed into two equivalent resistances noted as Rfi0 and 

Rfk0, which satisfy the following equations. 
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where rbki is the ratio between the fault component current of Branch k0 and Branch i0. 

Based on the decomposed circuits in Fig. 4-8, the fault current of Branch i0 and that of 

Branch k0 are expressed as, 
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Fig. 4-8 High-frequency equivalent circuits for fault analysis considering fault resistance. 

Based on (4-28), rbki is simplified in the high-frequency domain as, 
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Substitution of (4-27) and (4-29) into (4-28), the fault component current of the fault 

line is derived as, 
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Applying the inverse Laplace transform on (4-30), the fault component current of the 

fault line considering the fault resistance is expressed as, 
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Based on (4-31), the fault component current of the fault line exhibits a typical time 

response of a one-order system when considering the fault resistance.  

4.5 Case Studies 

To manifest the effectiveness of the proposed initial DC fault calculation based on the 

HFE model, simulation studies are conducted in a radial and a meshed VSC-MTDC system, 

respectively. Specifically, the fault responses with three models are compared, namely, the 

detailed EMTP simulation model, the switching converter model with transmission lines 

represented by the π-section model (referred to as the RL model), and the HFE model.  

4.5.1 Radial VSC-MTDC System 

Fig. 4-9 shows the test radial four-terminal VSC-HVDC system. Three offshore wind 

farms and a main onshore system are connected via submarine cables. At the terminal of each 

cable, DC reactors of 100 mH are installed to suppress the fault current surge.  
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Fig. 4-9 Schematic of the test radial four-terminal VSC-HVDC system. 

As shown in Table 4-1, the nominal DC-link voltage of the test radial VSC-MTDC system 

is ±200 kV. The DC-link capacitor of VSCs is 800 μF, and the short circuit ratio (SCR) of each 

AC system is 5.6. The classic master-slave scheme is adopted in the test system, i.e., the three 

wind farm integration converters adopt the CPC, while the onshore converter adopts the 

CDVC. The main control parameters are provided in Table 4-1. The sampling frequency is 

chosen as 10 kHz. 

 

 



 

 

Table 4-1 Main parameters of the test radial MTDC system 

Symbol Item Value 

un Nominal DC-link voltage of the test system ±200 kV 

ωs Nominal frequency of AC grids 50 Hz 

SCR AC side system SCR  5.6 

Cci DC-link capacitance of VSCs  800 μF 

σi Time constant of the inner loop 2 ms 

(KPo, KIo) Proportional and integral gains of the CPC (1, 10) 

(KPv, KIv) Proportional and integral gains of the CDVC (1, 10) 

LT Inductance of DC reactors 100 mH 

R0 Per-kilometre resistance of DC cable 0.083  

L0 Per-kilometre inductance of DC cable 0.1 mH 

fs Sampling frequency 10 kHz 

 

Fig. 4-10 depics the dynamics of the fault component current of the test radial MTDC 

system during metallic DC faults. As depicted in Fig. 4-10 (a), when a metallic fault occurs at 

the terminal of Cable 14 (close near T4), the fault component current of the faulty cable (Cable 

14) with EMTP simulation rapidly rises around 0.8 ms following the fault occurrence because 

of the travelling wave process. To compare the models fairly, a time delay of 0.8 ms is added 

to the fault curves with the lumped parameter line models (the RL model and the HFE model) 

to compensate for the travelling wave propagation process. Under the RL model and the HFE 

model, the fault component current of Cable 14 has the same trend. As for the EMTP 

simulation model, the corresponding fault component current of Cable 14 vibrates little around 

those with the RL and HFE models. Fig. 4-10 (b) shows the dynamics of the fault component 

current of Cable 14 when a metallic fault occurs at 100 km and 20 km away from the terminal 

of Cable 14 (adjacent to T1). As the fault distance increases, the travelling wave effect 

becomes more apparent and leads to fluctuation of the fault component current of Cable 14 

with EMTP simulation. The fault component currents of the fault line with the three models 

involved are rather approximate, manifesting the accuracy of the proposed HFE model for the 

analysis of DC fault current responses within several milliseconds after the fault. When a 

metallic fault occurs at the terminal of Cable 14, the travelling wave process is negligible for 

the healthy Cable 24, as illustrated by Fig. 4-10 (c), resulting in nearly the same fault 

component current curves with three different models involved. Fig. 4-10 (d) depicts the fault 

component current of the healthy line with different fault distances. Still, the fault component 



 

 

currents of the healthy line with the three models involved are rather approximate due to the 

weak travelling wave process in Cable 24. These simulation results verify that as per the HFE 

model, the initial DC fault current can be determined by solving simple RLC circuits in radial 

MTDC systems.  
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Fig. 4-10 Fault component current of the test radial MTDC system under metallic DC faults. 

Fig. 4-11 depicts the dynamics of the fault component current of the fault line when high-

resistance DC faults occur on Cable 14. As illustrated by Fig. 4-11 (a), the fault component 

current descends with the increase of the fault distances. Compared with Fig. 4-11 (a) and (b), 



 

 

it is found that the fault component current decreases as the fault resistance increases. In 

addition, the fault component current with EMTP simulation exhibits clear oscillations 

compared to that with the RL and HFE models due to the travelling waving effect. 

Nevertheless, the errors are in an acceptable range. Fig. 4-11 verifies that the proposed HFE 

model is effective for the initial DC fault calculation considering the fault resistance.  
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Fig. 4-11 Fault component current of the test radial MTDC system under high-resistance DC faults. 

4.5.2 Meshed VSC-MTDC System 

To verify the effectiveness of the proposed HFE model for meshed VSC-MTDC systems, 

a four-terminal grid is built in PSCAD/EMTDC, as illustrated by Fig. 4-12. Table 4-2 presents 

the main parameters of the test meshed four-terminal HVDC system. The nominal DC-link 

voltage of the test system is ±200 kV. The inductance of the implemental DC inductors at each 

terminal of DC overhead transmission lines is 100 mH. The DC-link capacitor voltage of VSCs 

is 880 μF, and the short circuit ratio SCR of each AC system is 5.6. VSC1, VSC3, and VSC4 

regulate their active and reactive power. In contrast, VSC2 regulates the DC-link voltage and 

the exchange of reactive power with the connected AC system. The control parameters of 

VSCs are the same as those of the test radial VSC-MTDC system, which can be referred to in 

Table 4-1. 
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Fig. 4-12 Schematic of the test meshed four-terminal VSC-HVDC system. 

Table 4-2 Main parameters of the test meshed MTDC system 

Symbol Item Value 

un Nominal DC-link voltage of the test system ±200 kV 

ωs Nominal frequency of AC grids 50 Hz 

SCR AC side system SCR  5.6 

Cci DC-link capacitor voltage of VSCs  880 μF 

LT Inductance of DC reactors 100 mH 

R0 Per-kilometre resistance of DC cable 0.015  

L0 Per-kilometre inductance of DC cable 1.635 mH 

fs Sampling frequency 10 kHz 

 

Fig. 4-13 depicts the dynamics of the fault component current of the fault line when 

metallic faults occur on the test meshed four-terminal VSC-HVDC system. Fig. 4-13 (a) 

illustrates the fault line current when a metallic fault occurs at the terminal of Line 12 (close 

near T2). As can be seen, the fault line current rapidly surges after the occurrence of the DC 

fault. In addition, the fault component current curves with the RL and HFE models are close 

to each other, which almost increases linearly with respect to time. This is in line with the 

analysis results expressed by (4-24). The fault component current curve with EMTP 

simulation exhibits the travelling wave propagation process. Delaying the fault component 

current curve with the RL model around 1 ms to compensate for the travelling wave 

propagation delay, it is observed that the fault component current with EMTP simulation 



 

 

fluctuates around the delayed curve. This indicates that the lumped parameter models (the RL 

and HFE models) can represent the average behaviour of the distributed model.  
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Fig. 4-13 Fault component current of the test meshed MTDC system under metallic DC faults. 

Fig. 4-13 (b) depicts the fault line current with different fault distances. It is seen that the 

fault component current of the fault line decreases with the increase in the fault distance. With 

the EMTP simulation model, it is observed that the travelling wave process becomes weaker 

with the increase in the fault distance. With the RL and HFE models, the fault component 

current curves linearly rise with very similar speeds. The errors between the three models are 



 

 

in an acceptable range, which validates the effectiveness of the proposed HFE model for the 

initial DC fault calculation. As for the fault component current of the healthy line (Line 24), it 

is shown in Fig. 4-13 (c) that it increases much slower than that of the fault line. Since the line 

boundary composed by the DC supplementary reactor and the DC-link capacitor serves as a 

second-order low-pass filter, the travelling wave process becomes almost invisible when it 

propagates into the healthy line. As a result, the fault component current curves with the three 

models are very close. Fig. 4-13 (d) illstrates the healthy line current with different fault 

distances. With the increases in the fault distance, the fault point becomes closer to the healthy 

line, leading to the increase of the fault component current of the healthy line. Based on the 

fault current curves with different models under different fault distances, it is concluded that 

the proposed fault calculation method based on the HFE model has accuracy within the initial 

period after the DC fault. 

Fig. 4-14 depicts the dynamics of the fault component current of the fault line under high-

resistance faults. As illustrated by Fig. 4-14 (a), the fault component current increases rapidly 

for around 1 ms and soon tends to a constant value, which is in line with the analysis result as 

expressed by (4-31). When the fault distance increases, there is a significant reduction in the 

fault component current. In addition, it is observed from the curve with EMTP simulation 

denoted by the solid black line that it takes a longer time for the fault travelling wave to arrive 

at the measurement point. On the whole, the fault component current with EMTP simulation 

fluctuates around that of the RL model, while the fault component current curves with the RL 

and HFE models are almost the same. It verifies the accuracy of the proposed HFE model for 

the DC fault analysis of the meshed VSC-MTDC system. Fig. 4-14 (b) shows the dynamics of 

the fault line current when the fault resistance decreases from 200 Ω to 100 Ω. The overall 

features of the fault component curve with the three models are similar to those illustrated by 

Fig. 4-14 (a). Compared with Fig. 4-14 (a) and (b), it is indicated that the fault component 

current increases as the fault resistance decreases. The fault current curves with EMTP 

simulation fluctuate around those of the RL and HFE models, validating the applicability of 

the proposed HFE-based fault analysis method for meshed VSC-MTDC system with the 

consideration of fault resistance. 
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Fig. 4-14 Fault component current of the test meshed MTDC system under high-resistance DC faults. 

4.6 Summary 

This chapter proposes a simple and efficient method for the approximate fault calculation 

of VSC-MTDC systems by using the HFE model. Considering the high-frequency electrical 

quantities dominate in the fault component Laplace circuit within the first milliseconds after 

the fault, the low-frequency components of the Laplace circuit can be omitted to simplify the 

initial fault analysis, which is referred to as the HFE model. As per the HFE model, it is found 

that the parallel connected branches with the grounded capacitor can be overlooked when 

calculating the fault component current of the fault line, while the fault component current of 

the healthy line equals that of the fault line times a second-order low-pass LC filter. It reveals 

that the fault component current of the fault line rises approximately linearly, while that of the 

healthy line increases approximately cubically within several milliseconds after the DC fault. 

Simulation studies have validated the accuracy of the proposed DC fault calculation method 

based on the HFE model in both radial and meshed VSC-MTDC systems. 
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5   DC-Side Damping Properties and Small-Signal Stability Analysis 

of Different Types of Converters 

5.1 Introduction 

The dynamic behaviours of MTDC systems under fault conditions have been studied in 

the last two chapters. In the following, the dynamics of MTDC systems under normal 

conditions perturbed by a disturbance will be investigated. Specifically, the stability issue 

determining whether the system can restore to steady-state operation after perturbations is of 

interest. There are DC-link capacitors, supplementary DC reactors, and DC transmission lines 

in the DC network. Accordingly, the energy exchanges between inductance and capacitance 

components can introduce natural resonance frequencies to the DC system. If the controllers 

of converters cannot provide sufficient damping within the resonant frequency band, there will 

exhibit low-frequency oscillations in the DC-link current, which may lead to the alarm of 

monitoring devices or even the blocking of converters. This new stability issue originating 

from the DC link is called DC-side stability, which is particularly important for the stable 

operation of MTDC systems. In addition, when subjected to large disturbances causing 

significant DC-link voltage derivations, the power transmission of the DC link will be 

interrupted, and the DC system should be restarted. Therefore, this thesis only concentrates on 

small-signal disturbances that do not lead to a large change in the DC-link voltage.  

Modal analysis is a classic method used for small-signal stability analysis, which involves 

examining the eigenvalues of the system state matrix. It can determine the small-signal 

stability of the studied system under specified operating conditions. [79] reports the harmonic 

transfer function of the MMC, which considers the detailed harmonic dynamics of the MMC. 

The stability issue highly relevant to harmonic dynamics is called harmonic stability. The 

interactions between MMCs in a point-to-point HVDC system are investigated based on the 

relative gain array (RGA) in [80]. Nevertheless, modal analysis requires detailed system 

parameters to form the system matrix and comparably elaborate iterative numerical 

calculations to obtain the eigenvalues. In addition, it is hard to derive analytical stabilising 

conditions for a high-order system based on modal analysis, making the instability mechanism 

of the studied system unclear. 

The impedance-based method has gained popularity for the stability analysis of converter 

systems recently. The studied system is split into a source subsystem and a load subsystem. 



 

 

Then, the Nyquist criterion is applied to the ratio of the impedances of these subsystems to 

determine the stability of the studied system. Instead of requiring detailed parameters of 

physical and control systems, the impedance-based approach concentrates on the external 

behaviours of the subsystems, which can be determined via external measurement. In [83] and 

[84], the impedances of the TLVSC from the AC and DC sides are derived. By using the net-

damping criterion, the influences of the source and load subsystems on the system stability are 

assessed in [86]. [87] points out that under certain operating conditions, the VSC may exhibit 

nonpassive properties, and DC-side instability may appear once the VSC amplifies the 

resonances in the DC grid. It is found in [89] that DC-side stability could degrade as the 

proportional gain of the CDVC increases, but the feasible range of the control parameter to 

guarantee DC-side stability is not provided. Besides, since the impedance matrices include 

internal dynamics of several coupling control loops, the impedance computation could be 

rather complex, making it hard to reveal the DC-side instability mechanism in DC networks 

based on the impedance-based method. 

Passivity analysis is another approach that is widely used in stability analysis. To address 

the instability arised from resonances, the TLVSC is tuned to possess passive input admittance 

in [91]. In [92], the choose of the dividing point of a point-to-point HVDC link is discussed to 

form the two subsystems. As per passivity analysis, the conductance of VSCs should be 

positive to suppress the resonances in the network. However, concise expressions bridging 

system stability and critical parameters of physical and control systems cannot be directly 

obtained via passivity analysis. 

Existing methods based on eigenvalue calculation or Nyquist plot only provide numerical 

solutions to the small-signal stability of DC systems. As a result, the stability analysis involves 

relatively complicated calculations, and the instability mechanism lacks clear physical 

interpretations. To tackle this, the DC-side damping properties of different converters are first 

investigated in this chapter. By focusing on the dynamic behaviours in the neighbourhood of 

the dominant oscillation frequency, which is referred to as dominant frequency analysis (DFA), 

the impacts of control parameters on the DC-side damping of the converter can be evaluated 

via simple and direct calculation. Subsequently, the DC-side stability of the two-terminal 

VSC-based DC link is studied. An analytical stabilising condition of the system is derived 

based on DFA, which reveals the instability mechanism of the DC link under joint actions of 

different VSCs.  



 

 

5.2 DC-Side Damping Properties of the LCC 

The system shown in Fig. 5-1 is utilised to investigate the DC-side damping properties 

of converters with different topologies and control modes, where a single converter connects 

to an ideal DC source via a DC transmission line. The transmission line is represented by the 

classic RL model, which is sufficiently accurate for the stability analysis because the 

oscillatory frequencies in the DC link fall into the feasible frequency band of the RL line model. 

Rl and Ll are the resistance and inductance of the DC line, respectively. The terminal voltage 

of the ideal DC source is regulated to the nominal DC-link voltage un. 

Based on the derived model of the LCC-based rectifier shown in Fig. 2-3, the equivalent 

circuit of an LCC-based rectifier to an ideal DC source system is illustrated by Fig. 5-2. 

Accordingly, the system equations are written as, 
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where Rb and Lb are the equivalent resistance and inductance of the branch, and 
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Fig. 5-1 Schematic of a single converter connected to an ideal DC bus. 
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Fig. 5-2 Equivalent circuit of an LCC to an ideal DC source system. 

Considering un is constant, the small-signal form of (5-1) can be expressed as, 
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Based (5-2), the characteristic function of the LCC to an ideal DC source system is 

obtained as, 
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Based on (2-16) and (5-3), the natural oscillation frequency ωn and the damping ratio ζ 

of the system are calculated as,  
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(5-4) indicates that the oscillation frequency in the DC link is related to the operating 

point, the transmission inductance, and the proportional gain of the constant current controller. 

The integral gain of the constant current control will not influence the oscillation frequency. 

In contrast, the damping ratio is relevant to the operating point, the transmission resistance 

and inductance, and the proportional and integral gains of the constant current controller. 

Additionally, (5-4) also implies that the LCC-based rectifier always provides positive 

damping as the damping ratio is positive. The DC-side damping of the LCC can be enlarged 

by increasing the proportional gain or reducing the DC-link voltage, the transmission 

inductance, and the integral gain of the constant current controller. 

5.3 DC-Side Damping Properties of the VSC 

5.3.1 CPC-Based VSC 

According to the derived model of the CPC-based TLVSC illustrated by Fig. 2-6, the 

equivalent circuit of a CPC-based VSC to an ideal DC source system is illustrated by Fig. 5-

3. The system equations are expressed as, 
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Fig. 5-3 Equivalent circuit of a CPC-based VSC to an ideal DC source system. 

Compared with the equivalent circuits of the TLVSC and the MMC, as shown in Fig. 2-

6, Fig. 2-7, and Fig. 2-10, it is found that the main difference between these two converters is 

that the MMC has DC-side equivalent resistance and inductance, which can be incorporated 

into the transmission resistance and inductance in the stability analysis. Accordingly, for the 

TLVSC, Rb and Lb in (5-5) are written as, 
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As for the MMC, Rb and Lb in (5-5) are written as, 
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Since the TLVSC and the MMC possess similar external characteristics, the TLVSC is 

adopted in the stability analysis for simplicity and without loss of generality. 

Rewriting (5-5) in a small-signal form, it provides that, 

 

1 1

d

d 1

VSC

eq c cd d

dc dcb

b b

R C Cu u

i it R

L L

 
− −      =        − 

 

 (5-6) 

The characteristic function of the single CPC-based VSC to an ideal DC source system 

can be derived based on (5-6) as follows. 
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Notice that with 
01VSC

eq dR g= , the natural oscillation frequency and the damping ratio of 

the DC link are calculated based on (5-7). 
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Because of the small value of the equivalent DC-side conductance gd0, we have Rbgd0 ≈ 

1. Consequently, the approximations in (5-8) can hold. (5-8) indicates that the oscillation 

frequency is determined by the transmission inductance of the DC link and the grounded 

capacitance of the VSC. The increase in the transmission inductance or the grounded 

capacitance will decrease the oscillation frequency. As for the damping ratio, it is also 

influenced by the transmission resistance and the operating point. Since gd0 is negative when 

the VSC operates as an inverter, there is a risk of negative damping in the DC link. In addition, 

it is interesting to find from (5-8) that the oscillation frequency and the damping ratio are 

irrelevant to the control parameters of the CPC. 

According to (5-8), the stability criterion of the single CPC-based VSC to an ideal DC 

source system can be expressed as, 

 00 0b c b dR C L g   +   (5-9) 

(5-9) indicates that the CPC-based VSC rectifier provides positive damping to the DC 

link and will not result in oscillatory instability. In contrast, the DC link will be destabilised 

once the positive damping provided by the transmission resistance cannot offset the negative 

damping induced by the CPC-based inverter. Rearranging (5-9) provides that,  
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(5-10) indicates that there is a critical transfer power for the CPC-based inverter. Once 

the active power of the VSC exceeds this critical value, the damping ratio will become negative, 

leading to divergent oscillation in the DC link.   



 

 

5.3.2 CDVC-Based VSC 

Based on the derived model of the CDVC-based VSC illustrated by Fig. 2-7, the 

equivalent circuit of a CDVC-based VSC to an ideal DC source system is shown in Fig. 5-4. 

The system equations are expressed as, 
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Fig. 5-4 Equivalent circuit of a CDVC-based VSC to an ideal DC source system. 

It is observed from (5-11) that the single CDVC-based VSC to an ideal DC source system 

is a three-order dynamic system, making it difficult to derive a concise analytical stability 

criterion for such a system. Note that the dominant oscillation modes that possess low damping 

ratios determine the small-signal stability of the system. Accordingly, the other modes can be 

simplified by reserving only the behaviours nearby the dominant frequency intact. In this way, 

the model reduction can be achieved without losing primary stability characteristics. The 

model reduction is called DFA in this thesis. Based on DFA, the natural oscillation mode of 

the system should be first determined, and the impacts of other factors will be introduced 

subsequently.  

Compared with Fig. 5-3 and Fig. 5-4, it is found that the main difference between the 

CPC and CDVC-based VSCs is the CDVC-based VSC has an additional branch representing 

the control effect. Therefore, the natural oscillation mode of these two systems is the same, 

which is mainly determined by the physical system.  

The impacts of the CDVC is written below by applying Laplace transform to the third 

equation in (5-11). 
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Combined with (5-11) and (5-12), the small-signal model of the single VSC to an ideal 

DC source system considering the CDVC effects can be obtained as, 
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Based on (5-13), the characteristic function of the single CDVC-based VSC to an ideal 

DC source system is written as, 
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Substitution of s = jωn into (5-14), the characteristic function can be simplified as follows 

in the vicinity of the dominant frequency. 
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Substituting the natural frequency expressed by (5-8) into Geq(jωn), it yields that, 
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Combined with (5-16) and (5-17), it provides that, 
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Substitution of (2-44) into (5-18) and notice that with the small value of the time 

constant of the inner loop denoted by σi, the coefficients are expressed as, 
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(5-19) indicates that a0 is always positive. To ensure the stability of the system, a1 should 

be positive, which provides, 
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Deonte 
cap

dcP  as the transmission capacity of the DC link, and the minimum proportional 

gain of the CDVC for ensuring stability can be obtained based on (5-20). 
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(5-21) indicates that the CDVC-based VSC to an ideal DC source system is stable if the 

proportional gain KPv is less than 
min

PvK . Actually, 
min

PvK  is rather small based on (5-21) such 

that the CDVC-based VSC with typical parameters can always keep stable. 

In addition, the dominated oscillation frequency denoted by ωd and the damping ratio of 

the single CDVC-based VSC to an ideal DC source system can be calculated as follows based 

on (5-19).   
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It is indicated by (5-22) that the dominant oscillation frequency and the damping ratio 

of the DC link are associated with the control parameters. Due to the small value of gd0, the 

damping ratio ζ is positive with common parameters. It reveals that the CDVC is conducive 



 

 

to the DC-side stability, and the CDVC-based VSC with a common proportional gain 

maintains stability no matter serves as a rectifier or an inverter. 

5.3.3 Droop-Based VSC 

As discussed previously, the DC-side equivalent circuit of the VSC under the droop 

control is similar to that of the CDVC-based one. Consequently, the equivalent circuit of a 

CDVC-based VSC to an ideal DC source system is the same as Fig. 5-4. Similar to the analysis 

of the damping properties of the CDVC-based VSC, the characteristic function of the single 

droop-based VSC to an ideal DC source system is also expressed by (5-15) and (5-16). Based 

on DFA, the coefficients of the characteristic function can be written as (5-18). Substitution 

of (2-46) into (5-18), it provides that, 
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Notice that with the small value of σi and gd0, the coefficients of the characteristic function 

can be reduced as, 
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(5-24) indicates that a0 is positive. On the contrary, a1 could be negative when the droop-

based VSC with a relatively small droop coefficient serves as an inverter. Consequently, there 

is also a critical transfer power for the droop-based inverter, which can be derived as follows. 
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Compared with (5-10) and (5-25), it is found that the critical transfer power of the VSC 

is not only related to the DC-link voltage, the transmission resistance and inductance, and the 

grounded capacitance, but also relevant to the droop coefficient. The critical transfer power 

enlarges with the increase in the droop coefficient, thereby enhancing the DC-side stability.  

Based on (5-24), the dominant frequency and the damping ratio of the DC link can be 

expressed as, 
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(5-26) 

By configuring Kd as 0, (5-26) reduces into (5-8), indicating a droop-based VSC with a 

small droop coefficient has similar damping properties as the CPC-based VSC. In contrast, 

when Kd is sufficiently large, taking Kd ⟶ ∞, KPo = Kpv/Kd into (5-26), (5-26) reduces into 

(5-22), manifesting that a droop-based VS`C with a large droop gain has similar damping 

properties as the CDVC-based VSC.  

5.4 DC-Side Small-Signal Stability Analysis of the Two-Terminal VSC-

Based DC Link 

The above part discussed the DC-side damping properties of a single converter. Next, a 

two-terminal VSC-based DC link depicted in Fig. 5-5 is investigated to develop insight into 

the interaction of different converters and their influences on the DC-side stability. The classic 

master-slave control is adopted, i.e., VSC1 utilises the CPC while VSC2 utilises the CDVC. 

Based on the derived models of the CPC- and CDVC-based VSCs, the equivalent circuit of 

the DC link under study is depicted in Fig. 5-6. The subscripts p and v denote the electrical 

quantities at the CPC- and the CDVC-based VSC sides, respectively. 
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Fig. 5-5 Schematic of two-terminal VSC-based DC link. 
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Fig. 5-6 Equivalent circuit of two-terminal VSC-based DC link. 



 

 

As per the equivalent circuit shown in Fig. 5-6, the studied system are written as follows. 
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(5-27) indicates that the two-terminal DC system under study is a four-order dynamic 

system. It is difficult to deduce an analytical stability criterion for such a high-order system. 

To address this issue, DFA is utilised for the stability analysis as follows. 

5.4.1 Dominant Oscillation Mode of the Two-Terminal VSC-Based DC 

Link 

The first step of DFA is to determine the dominant oscillation mode in the system under 

study. On the basis of the analysis of the damping properties of VSCs, the CPC-based VSC 

induces negative damping to the DC link when serving as an inverter, while the CDVC-based 

VSC always provides positive damping to the system when the proportional gain of the CDVC 

is not too small. Therefore, the dominant oscillation mode in the two-terminal DC link is 

induced by that the negative damping of the CPC-based VSC stimulates the resonance of the 

DC network. The natural oscillation mode of the two-terminal DC link is the same as that of 

the single CPC-based VSC to an ideal DC source system, which is written as, 
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Based on (5-28), the natural oscillation frequency is obtained as, 
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(5-29) indicates that the DC transmission inductance and the equivalent DC-link 

capacitance of the CPC-based VSC constitute a second-order oscillator. Accordingly, the 

natural frequency of the DC link is only associated with the transmission inductance and the 

capacitance of the CPC-based VSC. 



 

 

5.4.2 Impacts of the CDVC-Based VSC on the DC Link 

Calculating the inverse Laplace transform of the third and fourth equations in (5-27), it 

yields that, 

 

( )

( )
( )

0

1

1

eq dv eq dvVSC VSC

eq eq

dc dv z dv

cv dv eq

i u G s u
sL R

i u G s u
sC g G s


 = −  = −  +


 =  = 
 + +

 (5-30) 

Substitution of (5-30) into the first and second equations in (5-27) yields, 
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Based on (5-31), the characteristic function of the system under study is derived as, 
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5.4.3 Model Reduction of the Two-Terminal DC Link Based on Dominant 

Frequency Analysis 

Based on DFA, the characteristic function expressed by (5-32) can be simplified in the 

vicinity of the dominant frequency as follows. 
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Based on (2-44), (5-29), and (5-30), Gz(jωn) is simplified as follows nearby the 

dominant frequency. 
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Substitution of (5-35) into (5-34), the coefficients of the characteristic function can be 

reduced as, 
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Note that the approximations in (5-35) and (5-36) hold due to the small values of gd0, 

σi, and Cc. Based on (5-36), the dominant oscillation frequency and the damping ratio of the 

DC link are written as, 
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(5-37) indicates that the CPC- and CDVC-based VSCs jointly determine the damping 

ratio of the DC link.  

5.4.4 Analytical DC-Side Stabilising Condition of the Two-Terminal DC 

Link 

The two-terminal DC link is stable, provided that the dominant mode has a positive 

damping ratio. According to (5-37), a concise stabilising requirement of the two-terminal 

VSC-based DC system can be expressed as, 
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(5-38) indicates that the damping of the studied system broadly comes from three aspects. 

The first term denotes the positive damping arising from the transmission resistance in the DC 



 

 

link. The second term denotes the impacts of the CPC-based VSC, and this term is negative 

once the VSC serves as an inverter. The third term denotes the positive damping generated 

from the CDVC-based VSC. It is interesting to find that if the positive damping induced by 

the CDVC-based VSC and the transmission resistance cannot offset the negative damping 

brought by the CPC-based inverter, DC-side instability will occur in the DC link. 

Substitution of 2

0 0dp dc dpg P u=  into (5-38) provides, 
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In (5-39), udp0 and udv0 are replaced with un since the DC-link voltage is very close to the 

nominal value during normal operation. (5-39) implies that DC-side instability could occur 

if the power transferred in the DC link is larger than a critical value.  

The stability margin can be defined as the relative distance from the actual transfered 

power to the critical one, which is expressed as, 

 
( )

( )
1

cr

dc dc dc
s crcr

dcdc

P P P
M

PP

− −
= = +

−
 (5-40) 

Based on (5-40), the stability margin decreases as the transferred power Pdc decreases. 

Therefore, the system has the minimum stability margin if 
cap

dc dcP P= − . 

For reliability, the stability margin must be higher than a positive value under every 

operating point. The allowable minimum stability margin is denoted by 
min

sM  in this thesis. 

Synthesizing (5-39) and (5-40), the maximum value of KPv for ensuring the stability margin 

reserve can be obtained as, 
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By setting KPv no more than 
max

PvK , the DC link keeps stable under DC-side disturbances 

even under the severest operating point. 

5.5 Case Studies 

5.5.1 A Single Converter to an Ideal DC Source System 

A single VSC connected to an ideal DC source system illustrated by Fig. 5-1 is built in 

PSCAD/EMTDC to verify the analysis of the damping properties of VSCs. The nominal DC-

link voltage of the test system is ±200 kV. The TLVSC adopts the CPC or the droop control, 



 

 

and the time constant of its inner loop is 3 ms. DC supplementary reactors of 50 mH are 

deployed at the terminals of a 200 km DC transmission line. Other parameters of the test 

system are summarized in Table 5-1. 

Table 5-1 Main parameters of the test single VSC to an ideal DC source system 

Symbol Item Value 

un Nominal DC-link voltage of the test system ±200 kV 

us Nominal voltage of VSC-tied AC source 220 kV 

ωs Nominal frequency of AC grids 50 Hz 

Cc DC-link capacitance of VSC  220 μF 

σi Time constant of the inner loop 3 ms 

(KPo, KIo) Proportional and integral gains of the CPC (1, 10) 

Kd Droop coefficient 0.2 

LT Inductance of DC reactors 50 mH 

R0 Per-kilometre resistance of DC line 0.015  

L0 Per-kilometre inductance of DC line 1.635 mH 

l Length of the DC line 200 km 

 

Fig. 5-7 shows the dynamic properties of the single VSC to an ideal DC source system 

under power alternations. Fig. 5-7 (a) and (b) are dynamic responses of the DC-link current 

and the transmitted active power when the reference power of the CPC-based VSC suddenly 

changes, respectively. The negative sign denotes the CPC-based VSC serves as an inverter. As 

can be seen, the damping ratio gradually decreases with the increase in the transfer power. 

When the reference power changes from -50 MW to -300 MW, the damping ratio of the DC 

link becomes negative. Accordingly, apparent divergent oscillations appear in the DC-link 

current and the transfer power. This validates the CPC-based inverter will induce negative 

damping to the DC link. Fig. 5-7 (c) depicts the dynamics of the test system under a relatively 

slow increase in the reference power of the CPC-based VSC. Based on (5-10), the critical 

transfer power of the DC link is calculated as 247 MW. When the transfer power exceeds this 

value, divergent oscillations appear in the DC link, which gradually develops into unattenuated 

oscillations because of the saturation of the inner current control of the VSC. Fig. 5-7 (d) 

depicts the change in the damping ratio and oscillation frequency with the transfer power. It is 

observed that when the CPC-based VSC serves as a rectifier, the increase in the transfer power 

is conducive to its damping properties. On the contrary, when the CPC-based VSC serves as 

an inverter, the increase in the transfer power degrades the damping ratio and even causes DC-



 

 

side instability. As for the oscillation frequency, different operating points have negligible 

impacts on the frequency. This can be explained by (5-8) that the oscillation arises from the 

resonant oscillator composed by the transmission inductance and the grounded capacitance. 

Fig. 5-7 (e) shows the root locus of the dominant oscillation mode of the test system when the 

VSC adopts the droop control. It is shown that the root locus moves right with the increase in 

the droop coefficient. The critical transfer power increases to 399 MW with Kd = 0.4, which is 

in line with (5-25). It is indicated that the DC-side stability enhances with the increase in the 

droop coefficient.  

Fig. 5-8 depicts the dynamic responses of the test system under sudden power alternations 

with different physical and control parameters. As illustrated by Fig. 5-8 (a), the damping ratio 

drops as the DC-link capacitance of the CPC-based VSC decreases, and DC-side instability 

appears with the converter capacitance decreases to 150 μF. In addition, it can be seen that the 

decrease of the DC-link capacitance leads to an increase in the oscillation frequency in the DC 

link. Fig. 5-8 (b) shows the influences of the line length on the system dynamics. The damping 

ratio decreases with a shorter transmission distance. This is because the shorter the line is, the 

less the ratio between the transmission resistance and the inductance will be due to the 

existence of the DC supplementary reactors. As a result, the critical transfer power of the DC 

link drops based on (5-10) so that the DC-side stability gets endangered. Fig. 5-8 (c) shows 

the system dynamics with different DC reactor inductances. As the DC reactor inductance 

increases, the damping ratio of the DC link significantly reduces. Simultaneously, the 

oscillation frequency also decreases. Fig. 5-8 (d) shows the system dynamic responses with 

different droop coefficients. As the droop coefficient decreases, the damping ratio of the DC 

link decreases, and there exhibit divergent oscillations in the transfer power with Kd = -0.2. 

This can be explained by (5-25) that the increase in the droop coefficient will enlarge the 

critical transfer power, thereby reducing the risks of DC-side stability. Simulation studies 

validate the correctness of the analysis of the damping properties of converters.  
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Fig. 5-7 Dynamic properties of the single VSC to an ideal DC source system under power alternations. 
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Fig. 5-8 Impacts of system parameters on the dynamics of the single VSC to an ideal DC source system. 

5.5.2 Two-Terminal VSC-HVDC System 

A two-terminal MMC-based DC transmission system illustrated by Fig. 5-5 is built in 

PSCAD/EMTDC to validate the stabilising condition of the two-terminal DC link. The 

nominal DC-link voltage and the base capacity of the test system are ±200 kV and 400 MW, 

respectively. The length of the DC line is 100 km, which is represented by the frequency-

dependent (phase) model. The MMCs have 201 levels, which are represented by the detailed 



 

 

switching model. The time constant of the inner loop is 2 ms for fast-tracking. The proportional 

and integral gains of the CPC-based MMC1 are 1 and 10, respectively. The proportional and 

integral gains of the CDVC-based MMC2 are 3 and 50, respectively. The main parameters of 

the test HVDC system are provided in Table 5-2. 

Table 5-2 Main parameters of the test two-terminal VSC-HVDC system 

Symbol Item Value 

un Nominal DC-link voltage of the test system ±200 kV 

us Nominal voltage of VSC-tied AC source 220 kV 

cap

dcP  Transmission capacity of the DC link 400 MW 

Nsm Number of SMs of MMC in one arm 200 

Csm SM capacitance  μF 

Ron On-state resistance of a diode or IGBT 5.44 mΩ 

La Bridge arm inductance 29 mH 

σi Time constant of the inner loop 2 ms 

(KPo, KIo) Proportional and integral gains of the CPC (1, 10) 

(KPv, KIv) Proportional and integral gains of the CDVC (3, 15) 

R0 Per-kilometre resistance of DC line 0.015  

L0 Per-kilometre inductance of DC line 1.7 mH 

l Length of the DC line 100 km 

 

Fig. 5-9 compares the dynamics properties of the point-to-point VSC-HVDC link with 

different models, namely, the EMTP simulation model, the analytical model expressed by 

(5-27), and the reduced model based on DFA. Fig. 5-9 (a) and (b) show the system dynamics 

under the power alternation from 100 MW to 300 MW and -400 MW, respectively. With all 

three models, the DC-link current vibrates roughly at the dominated frequency after the 

perturbance, which is 125.39 rad/s based on (5-36). Although some very slight high-frequency 

fluctuations may exist with the EMTP simulation model because of the switching process of 

MMCs, they are neglectable on the whole, and the dynamics under the three models are quite 

approximate to each other. Besides, it is verified that the DC system could exhibit divergent 

oscillations once the transferred power from the CDVC-based VSC to the CPC-based VSC 

exceeds the critical transfer power.  



 

 

0.0 0.2 0.4 0.6

0.4

0.6

0.8

0.0 0.2 0.4 0.6

-1.5

-1.0

-0.5

0.0

0.5

-400 -300 -200 -100 0 100
-0.02

0.00

0.02

0.04

0.06

-400 -300 -200 -100 0 100 200 300

125

126

 = 0.0880, d = 125.68 rad/s

time / s

5.15 5.20 5.25 5.30

0.72

0.74

0.76

i d
c
 /

 k
A

(a) DC-link current under reference power increase

  EMTP simulation

  Analytical model

  Reduced model

time / s

 = -0.0093, d = 124.52 rad/s

5.270 5.275 5.280

-0.68

-0.64

-0.60

i d
c
 /

 k
A

(b) DC-link current under reference power decrease

  EMTP simulation

  Analytical model

  Reduced model

analytical model: 339.20

reduced mode: 343.67

Pcr
dc / MW

Pdc / MW



(c) Damping ratio versus transfer power

  Analytical model

  Reduced model

unstable area

analytical model: 0.0334

reduced mode: 0.0335



Pdc / MW

analytical model: 124.69

reduced model: 124.89


d
 /

 r
a

d
s

-1

(d) Oscillation frequency versus transfer power

  Analytical model

  Reduced model

n = 125.39 rad/s

d / rads-1

 

Fig. 5-9 Dynamic properties of the two-terminal VSC-HVDC system with different models. 

Fig. 5-9 (c) and (d) further depict the change in the damping ratio and the dominant 

oscillation frequency versus the transfer power. It is observed that the calculation results by 

the analytical and reduced models are almost the same. With the analytical model, the critical 

transfer power is 339.20 MW, which is determined by finding the minimal transfer power 

making the damping ratio of the dominant mode negative. As for the reduced model, the 



 

 

critical transfer power is calculated as 343.67 MW based on (5-39). Under any transfer power, 

the damping ratio of the reduced model is quite near to that of the analytical model obtained 

via eigenvalue calculation, manifesting the accuracy of DFA for stability analysis. Moreover, 

the oscillation frequency remains rather close to the natural oscillation frequency marked as 

the blue dot-dash line no matter the transfer power, indicating the variation of the operating 

point mainly impacts the system damping but not the oscillatory frequency. The numerical 

results manifest the accuracy of the proposed analytical and reduced models for DC-side 

stability analysis. 

Fig. 5-10 shows the influences of physical system parameters on the DC-side stability. 

Fig. 5-10 (a) indicates that the critical transfer power dramatically drops with the increase in 

the transmission inductance. When the transmission inductance is 0.2 H, the critical transfer 

power is around 600 MW. When the transmission inductance increases to 1.0 H, the critical 

transfer power reduces to around 120 MW. In addition, it is shown that the critical transfer 

power with the analytical model is closely approximated to that with the reduced model in a 

wide range of the transmission inductance, which verifies the accuracy of the proposed DFA 

for small-signal stability analysis. Fig. 10 (b) depicts the DC-link current dynamics under a 

sudden power variation from -100 MW to -300 MW with different transmission inductances. 

The damping ratio decreases with the increase in the transmission inductance. When the 

transmission inductance exceeds 0.4 H, the damping ratio becomes negative and divergent 

oscillations appear in the DC-link current. Additionally, it is observed that the oscillation 

frequency reduces with the increase in the transmission inductance. Fig. 5-10 (c) presents the 

impacts of the converter capacitance on the dynamics. The critical transfer power rises rapidly 

as the converter capacitance increases. Besides, the critical transfer power with the analytical 

and the reduced models are quite close, indicating making approximations in the 

neighbourhood of the dominant frequency brings very limited error to the stability properties. 

Fig. 5-10 (d) depicts the DC-link current dynamics with different converter capacitances under 

a sudden power variation from -100 MW to -300 MW. The transient simulation results indicate 

that the system damping gradually decreases as the converter capacitance decreases. 

Particularly, the system damping will be negative once the transferred power is larger than the 

critical transferred power, leading to divergent oscillations depicted in Fig. 5-10 (d). 

Meanwhile, it is also manifested that the increase in the converter capacitance can result in a 

reduction in the oscillatory frequency. 
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Fig. 5-10 Impacts of the physical system parameters on the DC-side stability. 

Fig. 5-11 shows the impacts of the proportional gain of CDVC on the DC-side stability. 

Fig. 5-11 (a) presents that the critical transfer power dramatically descends as the proportional 

gain of CDVC increases when it is small. In contrast, there exists a clear saturation trend when 

further increasing the proportional gain, and the critical transfer power converges to a constant 

value. This is because the effect of the CDVC-based converter on the system stability is 

inversely proportional to the proportional gain as expressed by (5-38) so that the dynamic 



 

 

properties of the two-terminal DC link with a sufficiently large proportional gain become 

approximate to those of a single CPC-based VSC to an ideal DC source system. Fig. 5-11 (b) 

shows the change in stability margin with different proportional gains when the transfer power 

reaches the capacity of the DC link. It is manifest that the system stability margin can be 

significantly improved by reducing the proportional gain since, in this way, the CDVC-based 

converter can provide larger system damping based on (5-37). Provided that the allowable 

minimal stability margin is 0.1, the maximum proportional gain of CDVC to ensure DC-side 

stability is 0.8004 and 0.8207 with the analytical and reduced models, respectively. Fig. 5-11 

(c) shows the dynamic of the studied system under the power alternation from -100 MW to -

400 MW. It is observed that divergent oscillations will occur when the proportional gain 

exceeds 2, which corresponds to the region of the negative stability margin shown in Fig. 5-

11 (b). However, by setting the proportional gain to no more than the maximum value 

expressed by (5-41), the DC-side oscillation can be effectively damped. 
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Fig. 5-11 Impacts of CDVC parameters on system stability. 



 

 

5.6 Summary 

This chapter develops insight into the oscillations originating from the resonances 

between the DC-link transmission inductors and the DC-link grounded capacitors. The 

damping properties of different converters are first investigated. The LCC always provides 

positive damping to the DC link, and its damping can be enlarged by increasing the 

proportional gain or reducing the integral gain of the constant current controller. As for the 

VSC, its damping properties are closely associated with the control mode. The CPC-based 

VSC provides positive damping when it serves as a rectifier and vice versa. More importantly, 

the damping is related to the operating point (i.e., the transfer power) but is irrespective of the 

control parameters. By using DFA to reduce the order of the characteristic function, it is found 

that the CDVC-based VSC can always generate positive damping to the DC link, provided 

that the proportional gain of CDVC is not too small. Similarly, the damping of the droop-based 

VSC is relevant to the droop gain, and the increase in the droop gain will significantly improve 

the damping properties. Furthermore, the stabilising condition of the two-terminal DC link is 

derived to figure out how different converters jointly influence the DC-side stability. Based on 

DFA, it is revealed that when the negative damping induced by the CPC-based inverter cannot 

be compensated by the positive damping provided by the CDVC-based rectifier and the DC 

transmission line, divergent oscillations will appear in the DC link. Finally, simulation studies 

have verified the analysis of converter damping properties and the derived stabilising 

condition of the two-terminal DC link. 
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6   DC-Side Stability Analysis of Generic MTDC Systems Based on 

Dominant Frequency Analysis 

6.1 Introduction 

The DC-side damping properties of various converters are studied in the last chapter. As 

the number of converters increases, the small-signal stability analysis of an MTDC system 

becomes more difficult. On the one hand, the order of the studied system could be rather high, 

which significantly increases the computational burden. On the other hand, there might exist 

various oscillation frequencies in the DC network, and the interactions between converters and 

the DC network becomes more complicated. 

So far, the small-signal stability of MTDC systems has been investigated based on modal 

analysis and the impedance-based method. The state-space model of the combined AC-MTDC 

system is formulated in [77]. Based on the participation factor analysis, it is revealed that some 

oscillation modes in the combined AC-MTDC system are merely relevant to the DC-side state 

variables. Actually, the stability issue arising from these variables is called the DC-side 

stability in this thesis. The interaction modes between converters are evaluated in [78] by 

calculating the aggregated participation factors. It is indicated that the interactions between 

converters are closely relevant to the DC-link voltage. However, these methods possess high 

computational complexity due to the high-order modelling. The order of each TLVSC reaches 

18 in [78], while the order of the test system in [77] containing 4 TLVSCs and 6 SGs reaches 

246. To address this issue, the DC-side impedance of the MMC is derived in [88], and the 

interactions between the converter and the DC network are accessed by using the impedance-

based method. Nevertheless, this method cannot offer an analytical stability boundary of the 

MTDC system.  

Existing works on the stability of MTDC systems fail to provide clear mathematical 

relationships between system parameters and system stability. In this chapter, the frequency 

domain model of the MTDC system is first built up. Subsequently, model reduction is 

conducted nearby each dominant frequency based on DFA to derive the analytical stabilising 

conditions of MTDC systems. Accordingly, the contribution of each converter on the system 

damping and the influences of control parameters on the DC-side stability of the entire MTDC 

system are clearly revealed.  



 

 

6.2 Frequency Domain Model of Converters 

The frequency domain model of various converters is formulated based on the derived 

DC-side equivalent models in Chapter 2. For the convenience of introducing perturbations, 

the control reference value is no longer assumed to be constant.  

Based on (2-3) and (2-6), the small-signal model of the LCC-based rectifier is written 

as, 

 ( ) ( ) ref

dc c d u dci G s u G s i = −  +   (6-1) 
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Similarly, the frequency domain model of the CPC-based VSC is expressed as follows 

based on (2-25) and (2-35). 
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In (6-4), Gu(s) is simplified within the range of oscillation frequency in the DC link. 

Considering the droop coefficient, the frequency model of the droop-based VSC is 

expressed as, 

 ( ) ( ) ref
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where, 
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As for the CDVC-based VSC, its frequency domain model is written as, 

 ( ) ( ) ref

dc c d u dci G s u G s u = −  +   (6-7) 

where, 
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6.3 DC-Side Stability Analysis of the Three-Terminal VSC-HVDC System 

A typical three-terminal VSC-based HVDC system illustrated by Fig. 6-1 is under study. 

Three TLVSCs are interconnected through DC transmission lines represented by the RL model. 

VSC1 and VSC2 are the CPC-based rectifier and inverter, respectively. VSC3 adopts the CDVC 

to regulate the DC-link voltage of the system. 
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Fig. 6-1 Schematic of the three-terminal VSC-based HVDC system. 

6.3.1 Frequency Domain Model of the Three-Terminal VSC-HVDC 

System 

According to the converter model and KCL, the following equations hold. 
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Based on KVL, it yields that, 
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Combined with (6-9) and (6-10), the frequency domain model of the studied system is 

deduced as, 
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where, 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 31 0 2 0 3 0
, , 3 2d

c c c c c s Pv gd d d
G s sC g G s sC g G s u K u k= + = + = =  (6-12) 

(6-11) and (6-12) lay the foundation for the DC-side small-signal stability of the three-

terminal VSC-HVDC system. However, it is difficult to derive an analytical stability criterion 

directly due to the relatively high order of the system equations expressed by (6-11) and 

(6-12). To address this issue, the DFA is adopted in this thesis to simplify the analysis. 

6.3.2 Natural Oscillation Frequencies of the Three-Terminal VSC-HVDC 

System 

Since the DC-side instability originates from the resonance between the inductance and 

capacitance components in the DC network, the resistance components in the network are 

omitted to determine the natural oscillation frequencies in the DC link. In addition, it is 

assumed that the terminal voltage of VSC3 keeps constant with the CDVC. Accordingly, the 

original network is simplified to a pure reactance network, as illustrated by Fig. 6-2. 
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 ud2

 ib12
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Fig. 6-2 Simplified pure reactance network of the three-terminal VSC-HVDC system. 



 

 

As per (6-11) and (6-12), the transfer function between ∆ud2 and 2

ref

acP  are reduced 

according to the simplified pure reactance network as, 
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Based on (6-13), the characteristic function of the simplified network is obtained as, 
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(6-14) indicates that there exist two natural oscillation frequencies in the studied system, 

which is different from the two-terminal DC link that only possesses a single resonance 

oscillation frequency. By setting the characteristic function expressed by (6-14) as zero, the 

expressions of the natural frequencies can be written as, 
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 (6-15) 

Compared with (5-29) and (6-15), it is found that one natural oscillation frequency of 

the three-terminal DC network is similar to that of the two-terminal DC link. The other one is 

associated with the topology of the network, which ascends with the increase in the number 

of converters. 

6.3.3 DFA-Based Model Reduction of the Three-Terminal VSC-HVDC 

System 

After determining the natural oscillation frequencies in the DC network, the model 

reduction can be conducted on (6-11) nearby the dominant frequencies.  

Rearranging the third equation in (6-11), it yields that, 
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In the neighbourhood of the natural oscillation frequencies, the transmission resistance is 

far less than the transmission reactance, and thus, 
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Based on (6-17), (6-16) can be further simplified in the vicinity of the natural oscillation 

frequencies as follows. 
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Substitution of s = jωn into (6-18) provides, 
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 (6-19) 

The relationships expressed by (6-19) hold because the imaginary parts are far larger 

than the real parts in the vicinity of the natural oscillation frequencies. 

Multiplying Zb13(s) on both sides of the first equation in (6-11) yields, 
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Similarly, (6-20) can be simplified as, 
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Substitution of (6-19) into (6-21), the following relations hold in the vicinity of the 

natural oscillation frequencies. 
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where, 
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Multiplying Zb12(s) on both sides of the second equation in (6-11) yields, 
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Substituting (6-17) and (6-19) into (6-24), it provides that, 
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Combined with (6-22) and (6-25) yields the following equation. 
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Based on (6-26), the transfer function between ∆ud2 and 1

ref

acP  can be obtained as, 
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(6-27) and (6-28) constitute the reduced-order model of the three-terminal VSC-HVDC 

system. As a result, the small-signal stability of the system is determined by analysing the 

zeros of the denominators D1(s) and D2(s). 

6.3.4 Analytical DC-Side Stabilising Condition of the Three-Terminal 

VSC-HVDC System 

Since VSC1 serves as a rectifier, the equivalent DC-side conductance gd1(0) is positive, 

and the following inequality holds. 
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Based on (6-29), D2(s) has two negative roots so that the corresponding modes will not 

cause instability. Consequently, the DC-side stability of the system is determined by the roots 

of D1(s). Based on (6-23) and (6-28), the stability criterion of the three-terminal VSC-HVDC 

system is derived as, 
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(6-30) indicates that the system damping is related to all three converters. Once the 

positive damping brought by the CPC-based rectifier, the CDVC-based VSC, and the 

transmission resistance cannot overset the negative damping introduced by the CPC-based 

inverter, DC-side instability will occur in the DC system. In addition, the operating point is 

influential to the stability properties. The system damping can be enhanced by increasing the 

transferred power of the CPC-based rectifier or decreasing the transfer power of the CDVC-

based inverter. 

Taking the derivative of (6-30) with respect to KPv yields, 
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Based on (6-31), increasing the proportional gain of the CDVC will degrade the stability 

properties. This is because the positive damping of the CDVC-based VSC decreases as the 

proportional gain increases.  

6.4 DC-Side Stability Analysis of Generic MTDC Systems 

The above analysis is based on a three-terminal VSC-HVDC system as an example. 

Notably, the DFA can be extended to the stability analysis of generic MTDC systems, which 

is introduced as follows.  

6.4.1 Frequency Domain Model of Generic MTDC Systems 

For the convenience of analysis, the nodes connected to the LCC are numbered from 1 to 

M1, the nodes connected to the CPC-based VSC are numbered from (M1+1) to (M1+M2), the 

nodes connected to the droop-based VSC are numbered from (M1+M2+1) to (M1+M2+ M3), 

while the nodes connected to the CDVC-based VSC are numbered from (M1+M2+ M3+1) to 

M (M = M1+ M2+M3+M4). Based on (6-1), (6-3), (6-5), and (6-7), the dynamics of all 



 

 

converters in the MTDC system are expressed in a compact form as, 
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The frequency domain model of the DC network is written as, 

 ( )s = 
dc d

i Y u  (6-33) 

where Y(s) is the transfer function matrix of the network admittance. 

Combined with (6-32) and (6-33), the transfer function matrix between the node voltage 

and the perturbation of the reference value of converter control can be obtained as follows. 

 
( )

( ) ( )

s

s s


=

 +

ud

c

Gu

u G Y
 (6-34) 

(6-34) is the frequency domain model of generic MTDC systems, which lays a foundation 

for the small-signal stability analysis. 

6.4.2 DC-Side Stabilising Condition of Generic MTDC Systems Based on 

DFA 

Based on (6-34), the dynamic equation of ∆udi under a specified perturbation of ∆uj is 

expressed as, 

 ( ) ( )di uj jD s u G s u =   (6-35) 

Since Guj(s) has no positive root, the small-signal stability of the MTDC system is merely 

determined by the roots of the following equation based on (6-35). 

 ( ) 0D s =  (6-36) 

The DFA is utilised to reduce the order of D(s) in the neighbourhood of the dominant 

frequency. As shown in Fig. 6-3, the frequency sweeping method is adopted to determine the 

dominant oscillation frequencies of the DC network. The basic procedures of the method are 



 

 

introduced as follows. Firstly, calculate the absolute value of D(jω) for all ω in the range of 

[ωmin, ωmax] with a step of ∆ω. Secondly, find all the local minimum points of D(jω). Thirdly, 

save the frequencies corresponding to all the local minimum points as the approximated 

dominant frequencies of the system. Denote the dominant frequencies as ωd1, ωd2, ⋯, ωdK. 

Obviously, any dominant frequency is the root of the following equation. 

 ( ) 2 2 0, 1,2, ,dih s s i K= + = =  (6-37) 

The characteristic function D(s) can be rewritten as, 

 ( ) ( ) ( ) ( )2 2 2 20,di diD s s H s H s D s s = + + = = − −  (6-38) 
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Fig. 6-3 Diagram of the frequency sweeping method. 

In the vicinity of the dominant frequency, (6-38) can be approximated as, 
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The system damping under the dominant frequencies much be positive to ensure stability. 

Therefore, the DC-side stabilising condition of the system can be expressed as follows based 

on (6-39). 
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(6-40) indicates that the small-signal stability determination can be achieved by 

examining the damping nearby by the dominant frequencies. In this way, the order of the 

system model can be reduced. Traditionally, the control parameters are chosen to improve the 

dynamic properties. Meanwhile, the parameters cannot make the system unstable, which is 

checked via modal analysis. The DFA-based method can reduce the model complexity without 

losing principal stability properties, thus providing a clear relationship between system 



 

 

parameters and stability. As a result, system stability can be ensured by serving the analytical 

stabilizing condition as an inequality constraint during control design, which gets rid of the 

repeated time-consuming eigenvalue calculations. 

6.5 Case Studies 

A three-terminal VSC-HVDC system illustrated by Fig. 6-1 is established based on 

PSCAD/EMTDC to validate the correctness of the DFA-based model reduction and the 

proposed stabilising condition. The nominal voltage of the AC and that of the DC system are 

220 kV and ±200 kV, respectively. Three converters are represented by the detailed switching 

model with the master-slave control strategy, i.e., VSC1 serves as a rectifier with the CPC, 

VSC2 serves as an inverter with the CPC, while VSC3 regulates the voltage of the DC network. 

The reference active power of VSC1 and VSC2 are set as 300 MW and -250 MW, individually. 

The reference DC-link voltage is configured as 400 kV. The time constant of each VSC is 2 

ms. The DC-link capacitor of each VSC is 200 μF. The DC transmission lines connecting the 

VSCs adopt the frequency-dependent model. The lengths of Line 12, Line 13, and Line 23 are 

200 km, 150 km, and 100 km, individually. To restrict the capacitor discharging current, DC 

supplementary reactors of 50 mH are deployed at the terminal of each transmission line. The 

main parameters of the test system are summarized in Table 6-1. 

Table 6-1 Main parameters of the test three-terminal VSC-HVDC system 

Symbol Item Value 

un Nominal DC-link voltage of the test system ±200 kV 

us Nominal voltage of VSC-tied AC source 220 kV 

Cc DC-link capacitance of TLVSCs  μF 

LT Inductance of DC reactors   

σi Time constant of the inner loop 2 ms 

(KPo, KIo) Proportional and integral gains of the CPC (1, 10) 

(KPv, KIv) Proportional and integral gains of the CDVC (1, 10) 

1

ref

acP , 2

ref

acP  Reference active power of VSC1 and VSC2 300 MW, -250 MW 

ref

du  Reference DC-link voltage 400 kV 

R0 Per-kilometre resistance of DC line 0.015  

L0 Per-kilometre inductance of DC line 1.7 mH 

l12, l13, l23 Lengths of Line 12, Line 13, and Line 23 200 km, 150 km, 100 km 

 

Fig. 6-4 shows the dynamic responses of the test system with different system parameters 



 

 

under a sudden change of the reference active power of VSC2 from -250 MW to -300 MW. As 

depicted in Fig. 6-4 (a), there are oscillations in the DC-link current after the power alternation. 

Based on (6-15), the dominant frequency of the system is calculated as 135.67 rad/s. By 

applying the DFA, the damping ratio and the oscillation frequency of the perturbed system are 

calculated as 0.0088 and 137.58 rad/s based on (6-28). It can be found that the dominant 

frequency estimation based on (6-15) is very close to the actual frequency, indicating that the 

dominant oscillation frequency in the MTDC system is mainly determined by the inductance 

and capacitance components in the DC network. Fig. 6-4 (b) illustrates the dynamics of the 

DC-link current under the power alternation when the DC supplementary reactors LT12 and 

LT21 increase to 300 mH. It is shown that apparent divergent oscillations appear after the 

disturbance. This is because the increase of the branch inductance can amplify the negative 

damping brought by VSC2 based on (6-30). In this situation, the system damping ratio reduces 

to -0.0059, implying that the studied system losses the DC-side stability. Besides, the estimated 

and the actual oscillation frequency are 111.18 rad/s and 112.36 rad/s, which decrease with the 

increase of the branch inductance. Fig. 6-4 (c) illustrates that the studied system can be 

stabilised by scaling up the DC-link capacitor of VSC2 to 250 μF. Based on (6-30), the positive 

damping effects induced by the transmission resistance can be amplified by increasing the DC-

link capacitance. The system damping ratio changes to 0.0244 in this situation, which indicates 

that the positive damping offsets the negative damping in the DC system so that the DC-side 

stability of the MTDC system can be ensured. It is noted that the estimated and the actual 

oscillation frequency reduce to 108.76 rad/s and 108.73 rad/s, implying that the increase of 

the DC-link capacitance can also increase the oscillation frequency in the DC link. Moreover, 

it is observed that the DFA-based analysis results align with the simulation results under 

various system parameters, which manifests the accuracy of the DFA in small-signal stability 

analysis of the MTDC system. 
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Fig. 6-4 Dynamic responses with different system parameters under a sudden power alternation. 

Fig. 6-5 presents the dynamics of the DC-link current under different power alternation 

disturbances. Fig. 6-5 (a) shows the dynamic responses of the system when the active power 

of VSC1 suddenly increases to 500 MW. After the perturbation, oscillations appear in the DC 

link and get damped faster than those shown in Fig. 6-4 (a). This can be explained by the fact 

that the positive damping of the CPC-based rectifier enlarges as the transfer power increases 

based on (6-30). Based on (6-28), the system damping ratio is calculated as 0.0258. In 

addition, the oscillation frequency is calculated as 137.35 rad/s, which is close to the estimated 

value of 135.67 rad/s. This indicates the transfer power of the VSC has negligible influences 

on the oscillation frequency. Fig. 6-5 (b) depicts the system dynamics when the reference 

active power of VSC1 suddenly decreases to 0 MW. It is observed that the branch current of 

every transmission line exhibits divergent oscillations. The reason is that VSC1 no longer 

provides positive damping to the DC link with 0 power transfer, and the system damping 



 

 

decreases to -0.0064. Similarly, Fig. 6-5 (c) and (d) depict the system dynamics when the 

power alternation of VSC2 occurs. As illustrated by Fig. 6-5 (c), the DC-side stability 

deteriorates when the reference active power of VSC2 changes from -250 MW to -500 MW, 

which implies VSC2 brings about larger negative damping to the DC-link. Accordingly, the 

system damping ratio decreases to -0.0105, and intense oscillations appear in the branch 

current. In constrast, when the reference active power of VSC2 alters to 0 MW, VSC2 does not 

induce negative damping to the DC network. In this situation, the damping ratio increases to 

0.0332, and the DC-side oscillation can be damped. The simulation results under various 

operating points again verify the effectiveness of the DFA-based model reduction and the 

proposed stabilising condition as expressed by (6-30). 
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Fig. 6-5 Dynamic responses with different power alternations. 

Fig. 6-6 presents the dynamic responses of the studied MTDC system when the reference 



 

 

active power of VSC1 suddenly descends from 300 MW to 0 MW with different control 

parameters. As shown in Fig. 6-6 (a), apparent divergent oscillations appear in the DC network 

when the proportional gain of the CDVC increases to 5. This is because the positive damping 

provided by the CDVC-based VSC is inversely proportional to the proportional gain based on 

(6-30). In this situation, VSC1 does not provide damping to the DC system, while the positive 

damping provided by the CDVC-based VSC and the transmission resistance cannot 

overwhelm the negative damping induced by the CPC-based inverter. As a result, the system 

damping ratio decreases to -0.0079, and the MTDC system is destabilised. In contrast, when 

the proportional gain of the CDVC drops to 0.05, the damping ratio increases to 0.0031. 

Accordingly, DC-side oscillations gradually decay, and the MTDC system keeps stable under 

the perturbation. In addition, it is observed that the change in the oscillation frequency is rather 

small with different proportional gains, indicating that the control parameters have negligible 

impacts on the oscillation frequency of the DC network. Consequently, the dominant 

frequency estimation based on (6-15) is accurate. The DFA-based analysis results are in line 

with the numerical simulation results under various control parameters, which again validates 

the correctness of the proposed method. 
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Fig. 6-6 Dynamic responses with different control parameters under a sudden power alternation. 



 

 

6.6 Summary 

This chapter investigates the DC-side stability of the MTDC system based on DFA. The 

frequency domain model of the MTDC system is first established, which lays a foundation for 

the stability analysis. Considering the dominant frequency of the system is mainly determined 

by the inductance and capacitance components in the DC network, the pure reactance network 

of the MTDC system is used to estimate the dominant frequencies. In addition, the dominant 

frequencies of the MTDC system can also be determined by applying the frequency sweeping 

method on the characteristic equation of the system. By using DFA, the original system model 

can be significantly reduced in the vicinity of the dominant frequencies. As a result, the 

analytical stabilising condition of the MTDC system can be derived. It is indicated the DC-

side instability mechanism of MTDC systems is that when the positive damping provided by 

the CPC-based rectifier, the CDVC-based converter, and the transmission reactance cannot 

offset the negative damping generated from the CPC-based inverter, DC-side instability will 

appear in the MTDC system. In other words, the MTDC system keeps stable only if the system 

damping nearby every dominant frequency is positive. Moreover, it is found that the DC-side 

stability can be enhanced by decreasing the transmission inductance and the proportional gain 

of the CDVC or scaling up the DC-link capacitors. Numerical simulation studies validate the 

accuracy of the DFA-based model reduction and the derived stabilising condition of the 

MTDC system. 
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7   Conclusion and Future Work 

7.1 Conclusion 

MTDC systems enable multi-point power supply and reception, which maximise the 

economic and flexible advantages of DC transmission. Consequently, MTDC systems have 

wide application foreground in large-bark long-distance power transmission. As one of the 

most critical components in MTDC systems, the converter takes a vital role in the systems’ 

dynamic responses. The flexible and diversified control systems make the dynamic properties 

of MTDC systems rather complicated. Under server DC faults, intensive current surges will 

appear in the DC network due to the natural discharging of the DC-link capacitor, which may 

injure the vulnerable converters. Under more general small perturbations, there exists the risk 

of divergent oscillations in the DC-link current with poor control parameters, which may result 

in the blocking of converters and even the interruption of the entire system. Therefore, 

exploring the dynamic properties of MTDC systems to guide the protection and control design 

for such systems is urgent. 

This thesis mainly focuses on the DC-side dynamic behaviours of MTDC systems, 

including the converter modelling, fault analysis, and stability analysis of MTDC systems. The 

conclusion of this thesis is summarized as follows. 

1. The linear models of three types of converters for DC-side dynamic analysis. 

Depending on the DC-link voltage derivations of the converter, the small-signal analysis and 

the least squares approximation can be utilised to deduce the linear model of the LCC, TLVSC, 

and MMC. It is indicated that the effects of the constant current control of the LCC can be 

equivalent to an RC series circuit. In contrast, the control effects of the TLVSC can be 

equivalent to an RL series circuit. The control mode, such as the CPC, CDVC, and droop 

control, will influence the equivalent parameters of the circuit. As for the MMC, its external 

characteristics are similar to those of the TLVSC, and thus the equivalent model of the MMC 

is analogous to that of the TLVSC. It is concluded that the three converters (the LCC, TLVSC, 

and MMC), considering the control effects, can be equivalent to simple RLC circuits from the 

DC side. 

2. A state-space-based fault calculation method for generic MTDC systems. Since 

converters and the DC network can be represented by linear models, the superposition 

principle is applicable to facilitate the fault analysis of generic MTDC systems. The state-



 

 

space equation of the fault component network is derived so that the analytical expression of 

the fault current in the whole network can be obtained by solving the initial value problem of 

ordinary differential equations. The proposed method has wide applicability to various MTDC 

systems with different network topologies, converters types, and control modes. It also 

achieves relatively high accuracy without the numerical solution of DAEs. 

3. A simple fault calculation method for VSC-MTDC systems by using the HFE. 

According to the HFE, the low-frequency components of the fault component network can be 

omitted to simplify the initial fault analysis because only the high-frequency electrical 

quantities dominate the Laplace circuit within the first milliseconds after faults. It is found that 

the parallel connected branches with the grounded capacitor can be overlooked when 

calculating the fault component current of the fault line, while the fault component current of 

the healthy line equals that of the fault line times a second-order low-pass LC filter. In addition, 

the fault component current of the fault line grows linearly, while that of the healthy line rises 

cubically within several milliseconds after the DC fault. By using the HFE, the proposed 

method achieves a more straightforward DC fault analysis of VSC-MTDC systems with 

simple calculations and little loss of accuracy. 

4. The DC-side damping properties and small-signal stability analysis of converters. The 

single converter to an ideal DC source system is utilised to investigate the DC-side damping 

properties of different converters. It is revealed that the LCC always exhibits positive damping, 

which increases when enlarging the proportional gain or reducing the integral gain of the 

constant current controller. The damping properties of the VSC is relevant to the control mode. 

For the CPC-based VSC, its damping is irrespective of the control parameters. It provides 

positive damping when serving as a rectifier, while it induces negative damping when 

operating as an inverter. In contrast, the damping of the CDVC-based VSC has less sensitivity 

to the power transfer, which is usually positive with typical control parameters. As for the 

droop-based VSC, both the control parameters and the transfer power will influence its 

damping, and increasing the droop gain can significantly enhance the damping properties. In 

addition, it is found that different converters can jointly determine the DC-side stability of the 

DC link by studying the two-terminal VSC-HVDC system. DC-side instability occurs when 

the positive damping provided by the CDVC-based rectifier and the transmission resistance 

cannot offset the negative damping brought by the CPC-based inverter. 

5. DC-side stability analysis of generic MTDC systems by using DFA. An MTDC system 

may have several dominant frequencies, which can be estimated via the frequency sweeping 



 

 

method. Since the system stability is determined by the dominant modes with small damping 

ratios, the model reduction can be conducted nearby the dominant frequencies without losing 

principal stability properties. Accordingly, the stability judgement is converted to check the 

damping under every dominant frequency. Based on the DFA, the analytical stabilising 

condition of the MTDC system is derived, which reveals that DC-side instability appears once 

the positive damping of the CPC-based rectifier, the CDVC-based inverter, and the 

transmission resistance cannot offset the negative damping of the CPC-based inverter. In 

addition, it is found that the DC-side stability can be enhanced by decreasing the transmission 

inductance and the proportional gain of the CDVC or scaling up the DC-link capacitors. 

7.2 Future Work 

This thesis proposes the linear model and investigates the dynamic behaviours of MTDC 

systems. To improve this study, the following work will be studied in the future. 

1. For the converter modelling, the converter-connected AC system is assumed to be ideal 

for deriving the DC-side equivalent model of the converter. This makes the proposed model 

in this thesis inapplicable to analyze the dynamic process from AC-side disturbances. 

Therefore, how to form a simple converter model taking account of the dynamics of the AC 

system and the PLL will be the future work. 

2. For the fault calculation, the travelling wave process is neglected to derive the 

analytical expressions of the fault current in the thesis. Although the travelling wave process 

can be represented by the distributed line model, it will introduce partial differential equations 

and hinder the analytical solution of the fault network. Consequently, a simple fault calculation 

method for MTDC systems considering the travelling wave process still needs further 

investigation. 

3. For the stability analysis, this thesis mainly focuses on the DC-side stability originating 

from the resonance between inductance and capacitance components in the DC network. How 

to propose analytical stabilising conditions accounting for both AC- and DC-side stability 

remains to be investigated. 

4. This thesis concentrates on the dynamic analysis of MTDC systems. How to design 

effective protection and control schemes of MTDC systems based on the analysis will be the 

future work. 
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