

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

TOWARDS EFFICIENT AND PERSONALIZED
COLLABORATIVE EDGE LEARNING ON

HETEROGENEOUS ENVIRONMENT

TAO GUO

PhD

The Hong Kong Polytechnic University

2024

The Hong Kong Polytechnic University

Department of Computing

Towards Efficient and Personalized Collaborative
Edge Learning on Heterogeneous Environment

Tao Guo

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

Jun 2023

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Tao Guo (Name of student)

iii

Abstract

With the development of artificial intelligence and the corresponding application

by-products, Internet of Things (IoT) devices, e.g, smart watches, cell phones has

engaged in people’s daily life. Such proliferation has resulted in the silos and isolation

of local data. To make the full use of the long range personal data and ensure

data privacy, a new computing paradigm arised, ,i.e, collaborative edge computing.

Collaborative edge computing allows training a large neural model over a wide range

based on their isolated datasets, e.g, Federated Learning (FL) and Split Learning

(SL).

As the diversified IoT edge devices prospered and thrived in recent years, several

challenges present in today’s collaborative training process, including data hetero-

geneity, model heterogeneity and resource heterogeneity. Furthermore, as the model

sizes become larger, foundation models, e.g, BERT, DALL-E, GPT-3, emerges as an

assistant to the adaptation of of a wide range of downstream tasks. However, existing

framework e.g, FL and SL, can not fully satisfy the heterogeneous requirements and

keep up with the state-of-the-art models. Thus, there is a need to explore efficient

collaborative edge learning frameworks for better performance. In this thesis, we

explore novel frameworks and propose efficient and effective method to address the

heterogeneous challenges above.

First, we focus on tackling the model and resource heterogeneity across different

IoT devices. Existing FL requires all users to store the entire model locally and

employs an iterative update mechanism by exchanging model parameters repeat-

edly with the server. Such behavior has high demand for local computation and

memory capabilities and can cause significant communication overhead. SL on the

v

other hand address the resource by reallocating the most of the neural networks

on the server, hence alleviate the majority of computation burden. However, the

inherent training mechanism of SL, i.e, sequential training order between the edge

and cloud, impede the optimal training efficiency. Thus, we come up with a novel

collaborative learning framework, i.e, Tree Learning, to optimize the training ef-

ficiency across clients. Specifically, We allocate different layers for heterogeneous

clients according to their different computation capacities and successfully facilitate

all the participants to achieve the minimum synchronization overhead via a global

level parallelism scheme. We further provide rigorous theoretical analysis of our

framework and conduct extensive experiments across various datasets to validate

the effectiveness.

Second, we propose an innovate paradigm in FL to solve the existing challenges

from a different perspective. Artificial intelligence (AI) nowadays has shown its

success to train on broad data and produce large pretrained models (e.g., BERT,

DALL-E, GPT-3) that can help human with timely and properly decisions. Re-

cently, a paradigm shift arise when the pretrained models are utilized to adapt to

the downstream tasks. And here we rename the aforementioned models the foun-

dation models (FM). Inspired by the adaptation of FM in the centralized manners,

we revisits the question of how FL mines the distributed data in iterative train-

ing rounds, and exploit the emerging foundation model (FM) to optimize the FL

training. We propose PromptFL, other than training the whole model parame-

ters, our framework works with the prompt vectors instead. Specifically, FL clients

train prompts instead of a model, which can simultaneously exploit the insufficient

local data and reduce the aggregation overhead. Experiments show the superiority

of PromptFL from system feasibility, model performance and privacy preserving.

Third, we consider to address the statistical heterogeneity in existing PromptFL

to achieve a better personalization for local user modeling. Given the lightweight

nature of prompt learning, researchers have migrated the paradigm from centralized

to decentralized system to innovate the collaborative training framework of Federated

Learning (FL), which we called PromptFL. However, current PromptFL mainly

vi

focuses on modeling user consensus and neglects the adaptation of local edge devices,

leaving the personalization of PromptFL largely under-explored. Here we leverage

the the unique advantage of multimodality in vision-language models by learning user

consensus from linguistic space and adapting to user characteristics in visual space

collaboratively. We also survey the personalization techniques in traditional pFL

and reform them in current PromptFL scenario. Experiments show the superiority

of our pFedPrompt against the alternative approaches with robust performance.

Finally, we focus on the data utilization challenges on local client in existing

PromptFL. Although PromptFL offers significant in benefiting computation, com-

munication, and privacy over the existing frameworks, none of the researches analyze

it from the data utilization manners. During the experiments, we found that feder-

ated prompting is a data-efficient but data-sensitive paradigm, and therefore, it is

crucial to select data carefully for participation in the process. This work presents

a local data selection strategy based on informative vectors that specify the most

informative direction in the weight space of a vision-language model. Moving in this

direction steers the behavior of pre-trained neurons precisely and improves perfor-

mance on the local task. Experiments show that informative vectors offer promising

robustness, making it a simple yet effective way to enhance the performance of fed-

erated prompting.

In summary, this thesis aims to design efficient and personalized collaborative

framework for edge devices on the heterogeneous environment. We identify challenges

in the collaborative learning for edge devices and provide solutions from different

perspectives to overcome the communication, computation, statistics and resource

challenges. Extensive experiments show the effectiveness of our methods.

vii

viii

Publications arsing from the thesis

1. Tao Guo, Song Guo, Feijie Wu, and Wenchao Xu, Jiewei Zhang, Qihua Zhou,

Quan Chen and Weihua Zhuang, “Tree Learning: Towards Promoting Coordi-

nation in Scalable Multi-Client Training Acceleration”, IEEE Transactions on

Mobile Computing (TMC), 2023.

2. Tao Guo, Song Guo, and Junxiao Wang, “pFedPrompt: Learning Personalized

Prompt for Vision-Language Models in Federated Learning”, Proceedings of the

ACM Web Conference 2023 (WWW ’23), May 1–5, 2023, Austin, TX, USA.

3. Qihua Zhou, Song Guo, Yi Liu, Jie Zhang, Jiewei Zhang, Tao Guo, Zhenda Xu

and Zhihao Qu, “Hierarchical Channel-spatial Encoding for Communication-

efficient Collaborative Learning”, Advances in Neural Information Processing

System 35 (NeuIPS 2022), Nov 28 - Dec 9, 2022, New Orleans, LA, USA

4. Qihua Zhou, Song Guo, Zhihao Qu, Jingcai Guo, Zhenda Xu, Jiewei Zhang,

Tao Guo, Boyuan Luo and Jingren Zhou, “Octo: INT8 Training with Loss-

aware Compensation and Backward Quantization for Tiny On-device Learn-

ing”, USENIX Annual Technical Conference, July 14-16, 2021, Virtual Event.

5. Tao Guo, Song Guo, Junxiao Wang and Wenchao Xu, “PromptFL: Let Feder-

ated Participants Cooperatively Learn Prompts Instead of Models – Federated

Learning in Age of Foundation Model”, IEEE Transactions on Mobile Com-

puting (TMC), 2023.

6. Tao Guo, Song Guo, Junxiao Wang, Jiewei Zhang and Wenchao Xu, “Efficient

Attribute Unlearning: Towards Selective Removal of Input Attributes from

ix

Feature Representations”, submitted and under review.

7. Tao Guo, Song Guo, and Junxiao Wang, “Explore and Cure: Unveiling Sam-

ple Effectiveness with Context-Aware Federated Prompt Tuning”, submitted

and under review.

x

Acknowledgements

Time flies, and finally we have arrived at this moment. I am honored to express my

deepest gratitude and appreciation to all the people that assist me during the Ph.D.

studying period.

First and foremost, I would like to thank my Ph.D. supervisor, Prof. Song Guo,

for his precious guidance and full support throughout these three years journey.

Prof. Song Guo is the mentor I deeply respect, not only for his remarkable academic

accomplishment, but also for his conscientiousness and responsibility towards us.

During the whole journey, I have benefited from his constructive criticism, incisive

perspective, insightful feedback and profound expertise. Without Prof. Song Guo’s

meticulous guidance guidance, I can not reach this far. His invaluable guidance is a

lesson that I shall not forget throughout my life.

I also would like to thank my collaborators for their support and discussions.

Specially, I would to thank most Dr. Junxiao Wang, who was a postdoc when he

was in the Hong Kong Polytechnic University. Dr. Junxiao Wang is a very helpful

and responsible senior fellow of me, his sincere dedication to me and my work and

his insightful opinion make our collaboration makes our collaboration smooth and

enduring. Second, I would like to thank RAP. Wenchao Xu, another senior fellow

of our group. RAP. Wenchao Xu is also very supportive and diligent during our

collaboration and makes our cooperation enjoyable. Third, I would like to thank

Prof. Quan Chen, and Prof. Weihua Zhuang for their help at the emergency time.

Finally, I would like to thank my colleagues, Feijie Wu, Jiewei Zhang and Qihua

Zhou for their contributions.

Last but not least, I would like to thank my parents, who give me all the full

xi

support and understanding for the entire time. Without their support, I could not

achieve this goal and accomplishment. I am so grateful for their endless love, pa-

tience, understanding and support.

xii

Table of Contents

Abstract v

Publications arsing from the thesis ix

Acknowledgements xi

List of Figures xix

List of Tables xxv

1 Introduction 1

1.1 Overview . 1

1.2 Challenges . 5

1.3 Research Framework . 5

1.4 Thesis Contributions . 6

1.5 Thesis Organization . 9

2 Background and Literature Review 11

2.1 Collaborative Edge Learning Framework 11

2.1.1 Federated Learning . 11

2.1.2 Split Learning . 12

2.2 Heterogeneity on Edge . 12

2.2.1 Resource Heterogeneity . 13

2.2.2 Statistical Heterogeneity . 14

2.3 Age of Foundation model . 15

xiii

2.3.1 Foundation Model . 15

2.3.2 Prompt Training . 16

3 Tree Learning: Towards Promoting Coordination in Scalable Multi-
Client Training Acceleration 17

3.1 Introduction . 17

3.2 Preliminaries . 21

3.2.1 Configuration Categories . 21

3.2.2 Limitations of current collaborative learning paradigms 22

3.3 Tree Learning Design . 23

3.3.1 Training scenario . 23

3.3.2 Tree aggregation scheme . 24

3.3.3 Pipeline Parallelism . 25

3.4 Partition Algorithm for Tree Learning 28

3.5 Theoretical Interpretation . 33

3.5.1 Preliminary . 33

3.5.2 Convergence Analysis . 36

3.6 Evaluation . 39

3.6.1 Methodology . 40

3.6.2 Training Speed . 42

3.6.3 Acceleration Ratio across clients and cluster 43

3.6.4 Convergence Analysis . 44

3.6.5 Resource Efficiency . 44

3.6.6 Ablation Study . 44

3.7 Chapter Summary . 48

4 PromptFL: Let Federated Participants Cooperatively Learn Prompts
Instead of Models — Federated Learning in Age of Foundation

xiv

Model 51

4.1 Introduction . 51

4.2 Preliminaries . 54

4.2.1 Foundation Model . 54

4.2.2 Federated Learning . 55

4.3 Prompt-Based Federated Learning . 56

4.3.1 Prompt Engineering . 57

4.3.2 Framework to Learn Prompts in FL 58

4.3.3 System Feasibility . 60

4.3.4 Privacy Concerns . 64

4.4 Experiments . 66

4.4.1 Experimental Setup . 67

4.5 Chapter Summary . 72

5 pFedPrompt: Learning Personalized Prompt for Vision-Language Mod-
els in Federated Learning 73

5.1 Introduction . 73

5.2 Preliminaries . 76

5.2.1 User Heterogeneity . 76

5.2.2 Personalized Federated Learning 77

5.2.3 Prompted Vision-Language Models 78

5.2.4 Attention Mechanism . 79

5.3 Prompt Personalization . 80

5.3.1 pFL – Straightforward But Insufficient 80

5.3.2 pFedPrompt – Unleashing Multimodality 83

5.4 Experiments . 87

5.4.1 Experimental Setup . 87

xv

5.4.2 Performance Evaluation . 90

5.5 Chapter Summary . 93

6 Explore and Cure: Unveiling Sample Effectiveness with Context-
Aware Federated Prompt Tuning 95

6.1 Introduction . 95

6.2 Preliminaries . 98

6.2.1 Vision-Language Pre-trained Models 98

6.2.2 Prompt Training . 99

6.2.3 Federated Learning . 99

6.3 How the Prompting Works . 103

6.3.1 Observation 1: Performance Saturated in Prompt Learning . . 104

6.3.2 Observation 2: Random Examples Result in Fluctuated Per-
formance . 104

6.3.3 Observation 3: Arithmetic Operations Benefit Prompt Learning105

6.3.4 Inspiration: Prompt Leverages Knowledge Inside Models In-
stead of Augmenting Them 106

6.4 Methodology . 106

6.4.1 Federated Prompting . 107

6.4.2 Ensure Your Data for Federated Prompting 108

6.5 Evaluation . 110

6.5.1 Dataset . 110

6.5.2 Baselines . 111

6.5.3 Implementation Details . 111

6.5.4 Overall Result . 112

6.5.5 Analysis with Interpretations 114

6.6 Related Work . 114

6.7 Chapter Summary . 116

xvi

7 Conclusions and Suggestions for Future Research 119

7.1 Conclusions . 119

7.2 Future Directions . 121

References 123

xvii

xviii

List of Figures

1.1 Illustration of federated learning system. In federated learning system,
each client owns a complete model as the server. Each client first use
their own data to train on edge for a few epochs. After that some
clients are selected to upload their model parameters for aggregation.
And the new model parameters will be distributed after the aggre-
gation each round. After several rounds, the collaborative training
process is complete. 2

1.2 Illustration of split learning system. In split learning system, each
client owns part of the neural network model, and the remaining part
is placed on the cloud. During the training process, local model first
perform forward propagation with the local data. After that, local
client transmit feature maps to the server. The remaining model on
the server then takes the feature maps as input and then continues
the forward propagation. Backward propagation likewise. Combining
the previous steps, constitute the whole process. 3

1.3 Research Framework of this thesis. We organize the positioning of this
thesis within the field of collaborative edge learning and connect the
learning objective and the contributions we focus on for each chapter. 4

2.1 Resource heterogeneity. Computation capacity varies as the mem-
ory and storage differs among various edge devices. Common smart
watches only has 4 GB storage, while that of laptop owns to the or-
der of magnitude in terabytes. Thus, if we want to train the two
tyeps of edge devices together, challenges regarding resources should
be addressed. 13

2.2 Data quality and statistical heterogeneity. The bottom of the figure
shows the data quality heterogeneity on each client. Different corrup-
tion may appears on some of the data, thus, not all data are equal.
The top shows the statistical heterogeneity on each client, where not
all labels appears for a single client. 14

xix

3.1 Tree-Aggregation Structure of Tree Learning . Three segments have
been divided though the whole framework: Clients Layers, Aggre-
gation Layers and Merged Layers. Dashed lines indicate parallelism
between clients and server using delayed gradients. 18

3.2 Horizontal mode v.s. vertical mode: Horizontal: Each client has
a set of sample batches. Vertical: Each client has a unique set of
features. 23

3.3 Delayed Gradients: A use the delayed gradients from last round when
B performing Forward Propagation. After receiving the gradients
from B in this round, A save it for the usage of next iteration. 26

3.4 Split Learning Baseline Training: Sequential training order performing
between clients and server. (a)Round-robin manner is performed in
horizontal mode with clients take turns to interact with the server.
(b)Server waits to receive feature maps for all clients to aggregate and
then continue to perform forward and backward propagation on server. 27

3.5 Tree Learning Training: Parallelism training with optimal split points
selected with algorithm 1. (a)Tree Learning enabled with only optimal
split point assigned. (b)Tree Learning enabled with both optimal split
point as well as parallelism between clients and server. 29

3.6 Time versus Accuracy of Tree Learning Training: Blue lines
represent Tree Learning, green lines represent Tree Learning
without best split point, and yellow lines represent the baseline SL.
From the figure we can observe that Tree Learning converges fastest
against the other two baselines, and can reach above 3x faster than
Split Learning. 41

3.7 Training speed acceleration across different clusters and clients:
We also implement on various clients and clusters and observe that
more clients need more training time on SL but similar time on Tree
Learning, which result in a higher speed-up ratio. 46

3.8 Ablation study of parallelism and optimal split point: Com-
parison of training time between Tree Learning , Tree Learning w/o
partition strategy and SL. The difference between SL and Tree Learn-
ing w/o partition strategy represents the effectiveness of parallelism,
and the difference with Tree Learning further shows the superiority of
proposed partition strategy. 47

xx

3.9 Time Breakdown per-epoch of the Training: The figure shows
the comparison of breakdown of time spend on each period between
Tree Learning and SL. We can observe that although the breakdown
seems similar in Tree Learning and SL, the overall time of Tree Learn-
ing is much smaller than that of Sl. 48

3.10 Ablation Study with Dropout Scenario: The figure shows the
performance comparison of Tree Learning with or without the dropout
situation. We can observe that although encountering dropout of some
clients, the performance of Tree Learning still remains good in both
the horizontal and vertical scenarios, which validate the robustness of
our proposed system. 49

4.1 Framework and workflow of PromptFL. Each client includes a prompt
learner (with only a small amount of trainable parameters) and an
out-of-the-box CLIP (with backbone frozen). The federated server
aggregates only the parameter updates of prompt learners over mul-
tiple users, and transmit the updated parameters back to each user. . 57

4.2 Performance of PromptFL with different class distribution.
We evaluate the performance on seven datasets and record the average
performance. X-axis represents the number of classes on each client.
Bars represent accuracy and lines indicate F-1 score. We place random
fixed number of classes on each client and range the number from 5
to10 to 20. As the number of classes on client gets larger, performance
on both the accuracy and the F1 value improve. Furthermore, as the
number of classes becomes sufficient, the improvement speed gets slower. 63

4.3 Performance of PromptFL with different shots. We deploy the
experiments on seven datasets and record the average one. X-axis
represents the number of shots for each class, ranging from 1 to 2
to 4 to 8. Bars represent the local accuracy and lines represent the
global accuracy, which implies the personalization and generalization
ability respectively. As the number of shots increasing, the local per-
formance improves. However, global performance is not affected much
by the variation of number of shots, as we can observe that the global
performance remains stable as shots increase. 64

xxi

4.4 Performance of PromptFL with different clients. X-axis rep-
resents the number of clients during the training, ranging from 20 to
50 to 100. For each setting, we set the same participation rate of
r “ 10%. The overall performance does not obey the strict increas-
ing or decreasing trend as the number of clients changes. We observe
that the personalization ability may bed affected when the number of
clients gets larger, since the clients which do not engage in the training
increase. Also, too few clients may lead to insufficient diverse of the
training classes, thus lead to under representative of generalization
ability. 65

4.5 Comparison of computation and communication cost of PromptFL
and Finetuning FL. We measure the communication cost by the
size of uploaded data per round, and observe that finetuning FL takes
up to 110 times of cost more than PromptFL. Furthermore, fine-
tuning and training from scratch take 2 to 3 times of round more
than PromptFL for training, which exacerbate the communication
expenses. We also utilize GPU memory usage, training GPU time
and training data usage to evaluate the computational cost. Training
GPU time is calculated by the time of training 50 epoch and train-
ing data usage is reported by training food101, which we can observe
that finetuning require 250ˆ more than PromptFL. We can see that
PromptFL surpasses the existing framework in the entire aspects of
communication and computation efficiency. 66

5.1 Stages of using pre-trained models with prompt in federated learning:
(1) pre-trained vision-language models contain general knowledge that
is transferable across a wide range of user modeling; (2) prior work
activates the knowledge of pre-trained models by training prompt in
the word embedding space so as to model user consensus; (3) our work
aims to personalize prompt and further adapt the user consensus to
the user’s local features. 76

5.2 Illustration of baseline methods for personalized prompt for
vision-language models in federated learning. The left above
part shows the detailed structure of models on clients, which con-
tains textual and visual encoders which are frozen and prompt which
is learnable. To simplify the illustration of client model on for each
method, we only utilize the learnable prompt to represent. Four per-
sonalized prompt learning techniques are introduced: a) local fine-
tuning of prompt performed after obtaining global prompt, b) base
vectors are aggregated while personalized vectors update locally, c)
regularization is performed between global prompt and local prompt,
d) clients relationship is leveraged for better personalization. 77

xxii

5.3 Illustration of pFedPrompt of personalized prompt for vision-
language models in federated learning.The right part shows the
workflow of pFedPrompt and the left part shows the detailed topog-
raphy and pipeline of local model on the client. During the training
process, only learnable prompt on each client is uploaded to capture
the global user consensus. After obtaining the global prompt, textual
encoder on each client is leveraged to generate the common textual
features. On the other hand, each client maintains a non-parametric
personalized attention module respectively, and combines with the vi-
sual encoder to generate the local personalized spacial visual features
additionally. In this way, GUC and LFA work together to achieve
superior performance for all clients under the heterogeneity setting. . 83

5.4 Peformance of different personalized approaches over six datasets.
Average Local Test Accuracy is reported with different methods and
number of shots. In each subplot, horizontal axis represents number
of shots and vertical axis represents the corresponding test accuracy.
We range the number of shots on each client from 1, 2, 4, 8 to 16.
We observe that pFedPrompt strongly outperforms alternatives across
datasets, as shown in the red line. Furthermore, when the number of
shots decreases, the gap widens between pFedPrompt and other meth-
ods. Compared with the alternatives, pFedPrompt remains robust and
outstanding performance against the variation of number of shots. . . 93

6.1 Explore the paradigm of prompt tuning mechanism on pre-trained
vision-language models (VLMs). Prompt serves as the informative
vectors to instruct the query direction for the knowledge retrieval.
Samples serve as condition that contribute to the formation of infor-
mative vectors. 100

6.2 Performance of prompt tuning with increasing shots. We show
the performance of prompt tuning as shots increasing across six differ-
ent datasets. 1) The overall performance enhanced as the number of
shots increasing regardless of the margin. 2) However, as the shots be-
come larger, the improvement of the performance saturates. 3) Most
datasets do not change much during the process. 101

6.3 Performance comparison between prompt vectors with or
without arithmetic operation. Yellow bar shows the test accu-
racy of prompt learning model when vectors incorporate with each
other, while the blue one learns with individual tasks locally. We can
observe that by engaging with the prompt vectors from other tasks,
performance of their own enhanced. 102

xxiii

6.4 Distribution summary of model performance with random sampling.
We display the performance distribution for groups of random sampled
data. The orange box shows the values spread and the blue dash line
shows the trend of group gap over shots. Model performance fluctuates
when shots are small and gradually reaches stable when shots get larger.103

6.5 Comparison of context-unaware and context-aware frame-
work. Existing context-unaware approach employ a context unaware
mechanism and directly applies random sampling in the visual space to
select the random samples for prompt tuning. However, such behavior
treats all the samples equal and may lead to fluctuated performance.
Our method, instead, measures the retrieval ability of prompts con-
dition on each sample with V-information on each client. After that,
we deliberately select the top-k representative samples with awareness
that boost the formation of informative vectors to the right direction
for further federated prompting. 107

6.6 Performance Comparison between Context-unaware and aware
Federated Prompt Tuning. We record the performance of PromptFL
and CaFPT, and observe the worst case we sampled during the eval-
uation. We randomly sample five times for each shot setting and
display the performance distribution. The red line and orange line
represents CaFPT and PromptFL respectively. The pink area shows
the accuracy that CaFPT can achieves randomly, while the yellow
area indicates for PromptFL. The gold dash line stands for the worst
case that PromptFL obtains during the evaluation. We can conclude
that performance fluctuates largely in PromptFL. However, CaFPT
outbeats its context-unaware counterpart from both performance and
stability. 115

xxiv

List of Tables

3.1 Performance Comparison between Tree Learning and Split
Learning: The table shows the comparison of performance on four
representive backbone models, MobileNet, VGG, AlexNet and ResNet
with different settings and client numbers. All the settings are trained
towards convergent and we record the per-epoch training time for Tree
Learning and Split Learning. Best split point and Speed ratio are
given. We can observe that the acceleration ratio can reach up to at
most 4.61x and the average ratio is around 3x regardless the clients
number and scenarios. 40

3.2 Resource Efficiency Comparison between Tree Learning and
Federated Learning: We observe the resource efficiency of Tree
Learning in terms of GFlops, communication bandwidth needed,
and learable parameters on the client. The results show the outstand-
ing efficiency against the Federated Learning framework. 45

3.3 Performance Comparison between simulation and testbed
environment: We validate the effectiveness of Tree Learning by em-
ploying the experiments on the testbed environment and compare the
performance against the simulation one with the epoch of 50. We
can observe that the performance of Tree Learning on real testbed
environment can achieve similar performance as simulation. 46

4.1 System cost comparison. Assumes 32 local training batch size, 1 local
training epoch, 100 total communication rounds for FL. Assumes 196
input sequence length, full precision for PromptFL and FL. 59

xxv

4.2 Performance of PromptFL against existing FL framework
with iid data distribution. The table report the accuracy, F-1 score
and learnable parameters according to the corresponding backbone
and method under the iid data distribution. We report the best score
of each group with respect to method and model and annotate in bold.
Compared with finetuning and training from the scratch, PromptFL
only update 0.01% „ 0.1% parameters, however, still outperforms
other methods in most cases. Despite encountering suboptimal cases,
our method still approaches the optimal performance with small gap. 61

4.3 Performance of PromptFL against existing FL framework
with non-iid data distribution. The table report the accuracy
and F-1 score according to the corresponding backbone and method
under the non-iid data distribution. We report the best score of each
group with respect to method and model and annotate in bold. Other
than the iid scenario in Tab. 4.2, our method surpasses the alternatives
method by a significant margin across all datasets under the non-iid
settings, with only updating 0.01% „ 0.1% parameters. By contrast,
finetuning and training from scratch are not able to address shifted
class distribution problem caused by non-iid setting. 62

5.1 Performance of pFedPrompt against adapted baselines on the
pathological Non-IID Setting 1: The table reports the average
test accuracy according to six diversified datasets. Six baselines are
selected for comparison. Among them, PromptFL [44] is the novel
paradigm for FL with vision-language model and the other four of
them are adapted from the latest pFL researches. Here we use the
extreme Non-IID setting, where 10 clients are simulated here with
r “ 100% participation rate and non-overlapping class on each client,
which means that each class only appears once among clients. The
best score of each group appears in bold. Compared with the adapted
baseline methods, pFedPrompt outperforms other methods across datasets. 89

5.2 Performance of pFedPrompt against adapted baselines on the
pathological Non-IID Setting 2: The table report the average
test accuracy corresponding datasets and methods as stated in Tab.
5.1. Each baseline method is recorded with their optimal performance.
100 clients are simulated here and r “ 10% of clients are selected to
participate in each round. 5 random classes are selected on each client,
which means that same classes may encounter overlapping on different
clients. The best score of each group appears in bold. Compared
with the adapted baseline methods, pFedPrompt not only reaches
supreme performance on the extreme case with 10 clients setting in
Tab. 5.1, but also outperforms other methods with more general case. 89

xxvi

5.3 Ablation results on effect of hyper-parameter α and buffer
size. The best α for corresponding shots are reported. As shots de-
crease, model takes more advantage of the local personalized features
for personalization. Compared with the performance before reshape
of the buffer size, the decrease of average test accuracy after reshape
is negligible. 94

5.4 Efficiency Analysis for pFedPrompt. Training overhead with the
corresponding accuracy of pFedPrompt against the two baselines
are reported. The adaptation overhead is negligible while gain is con-
siderable. 94

6.1 Robustness Comparison between Context-unaware and aware
Prompt Tuning. We record the performance and robustness indi-
cator of CaFPT and PromptFL. ∆ shows the discrepancy between
the two paradigm in terms of random and the worst case respectively.
‘Gap’ represents the intra-group gap, which indicates the discrepency
between the worst case and the random case. Both ‘Gap’ and ‘Var’
indicates the turbulence of the method, the lower the better. As we
can observe, CaFPT outperforms the existing PromptFL by high per-
formance and strong stability. 112

xxvii

xxviii

Chapter 1

Introduction

Collaborative edge learning enables users with personal data to learn a global or

personalized model in a private and distributed way, which has permeated in to peo-

ple’s daily life and played a significant part in many sectors like finance, medical and

education system. However, computation and communication burdens are usually

the bottleneck of the collaborative learning, with the heterogeneity of local edge de-

vices, resources and statistical challenges manifest. This thesis explores effective and

efficient collaborative training framework towards the personalization on heteroge-

neous environment. In this chapter, we first introduce the overview of our research

problems in section 1.1. Next, we describe the challenges of this research topic in

section 1.2. Then, we present the sketch of our research framework in section 1.3.

After that, we present the main contributions of this thesis in section 1.4. Finally,

we give the organization of the thesis in section 1.5.

1.1 Overview

With the advancement of hardware technique and machine learning, diverse edge de-

vices, e.g, laptops, cell phones and smart phones emerge and play an important part

in people’s daily aspects. However, as the computation and memory capability is

restricted on edge, previous researchers dedicate to find a more efficient way to train

1

Server

Client

Model parameters

Upload
Download

Figure 1.1: Illustration of federated learning system. In federated learning system,
each client owns a complete model as the server. Each client first use their own data
to train on edge for a few epochs. After that some clients are selected to upload
their model parameters for aggregation. And the new model parameters will be
distributed after the aggregation each round. After several rounds, the collaborative
training process is complete.

for the data on edges. Driven by the development of big data, researchers have de-

veloped a collaborative training paradigm that enables local users to collaboratively

learn a shared prediction model while keeping all the training data on device with

the help of secure and robust cloud infrastructures. With the collaborative training,

isolated data can be utilized, which is beneficial for both global administrator and

local users. As time progresses, two main paradigms developed, Federated Learning

(FL) [65, 74, 6] and Split Learning (SL) [45, 103, 133].

2

Feature Maps

Predicted Labels

Server

Client

Forward
Backward

Figure 1.2: Illustration of split learning system. In split learning system, each client
owns part of the neural network model, and the remaining part is placed on the
cloud. During the training process, local model first perform forward propagation
with the local data. After that, local client transmit feature maps to the server.
The remaining model on the server then takes the feature maps as input and then
continues the forward propagation. Backward propagation likewise. Combining the
previous steps, constitute the whole process.

Federated learning [6, 145, 71] is a relative mature collaborative paradigm pro-

posed by Google in recent years. Such paradigm enables multiple clients in training a

shared neural network model using their local data without sharing with the server.

Each client shares the same model with the server, and train the model by updat-

ing the model parameters. In each training round, all the clients first update their

weights locally with their local private data, and then transmit the parameters to

3

Data
Heterogenity

Resource
Heterogenity

Communication
Efficiency

Computation
Efficiency

Chapter 3: Tree
Learning

Chapter 4:
PromptFL

Chapter 5:
pfedprompt

Chapter 6:
CaFPT

Collaborative Edge Learning

Split Learning Federated Learning

GeneralizationPersonalization

Contribute on

Learning Objective

Performance

Figure 1.3: Research Framework of this thesis. We organize the positioning of this
thesis within the field of collaborative edge learning and connect the learning objec-
tive and the contributions we focus on for each chapter.

the server for aggregation. After that, the averaged model will be distributed to all

clients and substitute the original weights. As the model size becomes larger, not

only it would be difficult to accommodate the whole model locally, the communi-

cation burden increases. We show the operation framework of federated learning

in 1.1.

Unlike federated learning, split learning [45, 103, 133] splits the neural network

into two parts and places each part on client and server respectively. Split learning

transmits feature map instead of whole model parameters to constitute a complete

feed forward process with the server. Since the client-side needs to train only parts

of the model, SL can significantly reduce the computation overhead for clients during

the training phase. As only the feature map needs to be transmitted to the server,

the communication cost can also be significantly reduced. We show the operation

framework of split learning in 1.1.

4

1.2 Challenges

Although federated learning and spit learning are able to provide significant benefit

towards collaborative learning and edge devices, several challenges and limitations

arise. First of all, collaborative edge learning requires the the communication be-

tween the edges and server. Large transmitted size results in heavy communication

burden and subsequently lead to poor efficiency. Second, edge devices own lim-

ited computational resources. So it would be unbearable to train a large model

locally. Third, collaborative learning leverages local data collected from distributed

resources, which makes it reasonable that data on each client does not share identi-

cal distribution. Forth, different edge devices posse various hardware resource. For

example, smart watch may have relative smaller computation capacity compared to

the laptop. In summary, it is indispensable to explore novel personalized paradigm

with high communication and computation efficiency.

1.3 Research Framework

Our thesis on the other hand aims to solve the above challenges and propose new

frameworks for collaborative edge learning. The structural outline of my thesis is

shown in Fig. 1.3.

As shown in Fig. 1.3, we categorize our works into two base categories in current

collaborative edge learning, i.e, federated learning and split learning, and indicate

the origin and mutation of which category. Further more, we assign the learning

objective and the challenges that have been addressed for each work.

Tree Learning raised to deal with the resource heterogeniety of edge devices dur-

ing the collaborative edge learning. For example, smart watches, cell phones and

laptops may have distinct training capabilities. The aim of this work is to achieve

high communication and computation efficiency for the whole framework. This work

5

targets the personalization problem, especially obtain the model personalization on

local.

PromptFL raised as the product of the time of foundation models. To better lever-

age the benefits of foundation models, we shift the paradigm of prompt leaning from

centralized to decentralized manner. This work aims to obtain a balance between

efficiency, computation and performance with the help of large vision-language mod-

els. This work brings a novel framework and perspective to the FL society improves

a general ability of federated learning.

Since PromptFL is a newly emerged framework, many challenges regarding the

paradigm is under developed. pFedPrompt was proposed to address the data het-

erogeneity problem under the federated setting. This work aims to achieve high

local performance for each client with few computational cost. This work attains

a comprehensive research to discuss the non-iid data distribution problems on dif-

ferent clients in federated prompting scenarios and come up with a unique solution.

Thus, this work targets on the peronalization problem with the data distribution

heterogenity problem.

Existing federated prompting randomly choose few samples to instruct the down-

stream tasks, however, noisy data may exists and be chosen. Ensure your data for

federated prompting was proposed to filter out the bad examples and choose the

representative one for federated prompting. This work aims to achieve better perfor-

mance with fewer high quality data. Thus, this work targets on the generalization

ability with the data quality heterogenity problem.

1.4 Thesis Contributions

We briefly summarize the contribution of this thesis as follows:

1. Tree Learning: Towards Promoting Coordination in Scalable Multi-

6

Client Training Acceleration.

To tackle the resource heterogeneity for rapidly growing edge devices, we pro-

pose an efficient collaborative training framework to promote coordination in

scalable multi-client training. We adopt a tree-aggregation structure with an

adaptive partition and ensemble strategy to achieve optimal synchronization

and fast convergence at scale. To find the optimal split point for heterogeneous

clients, we also design a novel partitioning algorithm by minimizing the idle-

ness during communication. In addition, a parallelism paradigm is proposed

to unleash the potential of optimum synchronization between the clients and

server. Furthermore, we theoretically prove that our framework can achieve

better convergence rate than state-of-the-art CL paradigms. We conduct ex-

tensive experiments and show that our framework is 4.6ˆ in training speed as

compared with the traditional methods, without compromising training accu-

racy.

2. PromptFL: Let Federated Participants Cooperatively Learn Prompts

Instead of Models — Federated Learning in Age of Foundation Model.

Recent FL inherently entailing numerous rounds and data for training. Such

behavior suffers even more with the combined effect of a long training process

and unfavorable factors such as non-IID data, limited communication band-

width Foundation models (FMs) are large models trained on massive amounts

of data in a self-supervised manner, often out-of-the-box or with minimal ef-

fort, which are largely used for downstream tasks in the centralized manner.

We rethink the question of applying FMs to FL to address the above chal-

lenges and propose PromptFL, a framework that replaces existing federated

model training with prompt training. PromptFL ships an off-the-shelf public

CLIP to the user device and applies prompting as the adaptation technique to

7

unleash the power of the FM in FL. We analyze the PromptFL empirically

and experimentally, and show its qualifications in terms of system feasibility,

privacy, and performance competitiveness.

3. pFedPrompt: Learning Personalized Prompt for Vision-Language Mod-

els in Federated Learning.

Current prompt training in FL mainly focuses on modeling user consensus

and lacks the adaptation to user characteristics, leaving the personalization

of prompt largely under-explored. To address the personalization problems

in federated prompting, we adapt personalized FL (pFL) approaches over the

past few years to prompt training for heterogeneous users. Unfortunately, we

find that with the variation of modality and training behavior, directly apply-

ing the pFL methods to prompt training leads to insufficient personalization

and performance. To bridge the gap, we present pFedPrompt, which leverages

the unique advantage of multimodality in vision-language models by learning

user consensus from a linguistic space and adapting to user characteristics in

visual space in a non-parametric manner. Through this dual collaboration,

the learned prompt will be fully personalized and aligned to the user’s local

characteristics. We conduct extensive experiments across various datasets un-

der the FL setting with statistical heterogeneity. The results demonstrate the

superiority of our pFedPrompt against the alternative approaches with robust

performance.

4. Explore and Cure: Unveiling Sample Effectiveness with Context-

Aware Federated Prompt Tuning.

Existing federated prompting has shown great potential in collaborative learn-

ing by offering significant benefits in computation, communication, and privacy

8

over existing frameworks. However, existing researches overlook the internal

mechanisms underlying federated prompt tuning and comply with the tra-

ditional context-unaware tuning mechanism. Our experiments, on the other

hand, demonstrate that federated prompting is a data-efficient but data-sensitive

paradigm, and therefore, the samples that involved in the prompt tuning pro-

cess hold significant importance. To address the above issue, we propose

Context-aware Federated Prompt Tuning (CaFPT), which facilitates the re-

trieval process by conditioning on the examples capable of activating the most

pertinent knowledge inside the pre-trained models with information theory.

Moving in this direction steers the behavior of pre-trained neurons precisely

and improves performance on the local task. Informative vectors are built by

pruning clients’ training data based on their V-usable information. The study

shows that these vectors can be updated and combined through operations like

FedAVG, and the resulting model’s behavior is steered accordingly on multiple

clients’ tasks. Extensive experiments have demonstrated that informative vec-

tors offer promising robustness, making it a simple yet effective way to enhance

the performance of federated prompting.

1.5 Thesis Organization

The rest of the thesis consists of six chapters and is organized as follows. Chapter

2 gives a brief introduction of the background of collaborative edge learning in the

heterogeneous environment and study the existing literature in this field. Chapter

3 introduces Tree Learning, an acceleration framework in promoting coordination

in scalable multi-client training. Chapter 4 presents PromptFL, a commutation

and communication efficient framework by replacing existing federated model train-

ing with prompt training. Chapter 5 discuss the the personalization of federated

9

prompting and propose pFedPrompt, which learns user consensus from linguistic

space and adapts to user characteristics in visual space to achieve personalization.

Chapter 6 focuses on the data sensitivity of federated prompting and propose a data

efficient approach by selecting the representative examples and specifying the most

informative direction in the weight space of a vision-language model. Chapter 7

concludes the thesis and discusses future research directions.

10

Chapter 2

Background and Literature Review

This chapter reviews the background of current framework of collaborative edge

learning. Chapter 2.1 introduces the existing framework category from macroscopic

perspective. Chapter 2.2 discloses the problems in heterogeneity environment. Chap-

ter 2.3 presents foundation models and prompt training.

2.1 Collaborative Edge Learning Framework

With the proliferation of edge devices such as smart phones and wearable-devices, as

well as the increasing volume of user data, collaborative learning over multiple parties

without aggregating their private data has attracted growing research attentions.

There are two mainstream CL schemes, i.e., Federated Learning [65, 74, 6] and Split

Learning [45, 103, 133]. In this section, we introduce two kinds of collaborative edge

learning framework: 1) federated learning and 2) split learning.

2.1.1 Federated Learning

Federated Learning [6, 145, 71] is an emerging CL paradigm, which enables multiple

clients in training a shared neural network model using their local data without

sharing with the server. Each client owns the complete model as the one on the server.

In each training round, all the clients first update their weights locally with their

11

local private data, and then transmit the parameters to the server for aggregation.

After that, the averaged model will be distributed to all clients and substitute the

original weights. As the size of model increases, accommodating the whole model

may be unaffordable for resource constrained devices.

2.1.2 Split Learning

Split learning is another CL method that trains machine learning models among

client(s) and a server [45, 103, 133]. SL splits the neural network into two parts

and places one part with fewer layers on the client side, and the remaining part

on the server side. As the whole model is not shared by all entities, and the raw

data can be kept locally, the user privacy can be better protected than in federated

learning. During the training process, the clients first upload feature maps after

local training and then aggregate them on the server for the following propagation.

Since the client-side needs to train only parts of the model, SL can significantly

reduce the computation overhead for clients during the training phase. As only the

feature map needs to be transmitted to the server, the communication cost can also

be significantly reduced.

In this thesis, we improve and reform the split learning framework in chapter 3

and revamp based on the federated learning framework in chapter 4, chapter 5 and

chapter 6.

2.2 Heterogeneity on Edge

Collaborative learning enables local users to collaboratively train a neural network

model without sharing their local data. However, clients are not identical and are het-

erogeneous in different aspects, e.g, communication bandwidth, computation capa-

bility and statistical heterogeneity. Thus, the fundamental federated or split learning

framework is not applicable in the heterogeneous environment, so it is more practical

12

to come up with more comprehensive solutions. In this section, we mainly describe

two heterogeneity: 1) Resource Heterogeneity, as shown in [?] and 2) Statistical

Heterogeneity, as shown in [?].

Memory

Storage

16GB

~TB

4GB

256GB

512MB

4GB
Figure 2.1: Resource heterogeneity. Computation capacity varies as the memory and
storage differs among various edge devices. Common smart watches only has 4 GB
storage, while that of laptop owns to the order of magnitude in terabytes. Thus, if we
want to train the two tyeps of edge devices together, challenges regarding resources
should be addressed.

2.2.1 Resource Heterogeneity

Artificial intelligence has gradually infiltrated into people’s daily life and has engaged

into the decision and routine tasks. With the combining development of both hard-

ware and software technologies, edge devices become diverse. For example, smart

watches, cell phones and laptops are the most common edge devices around us.

Although collaborative edge learning allows to train neural network models jointly

with their own data across distances, resource heterogeneity of the local devices

may influence the model performance lies in the following aspects. 1) Computa-

tion capacities are different; Different edge devices own different memory and stor-

age, so it would be unwise to allocate the same neural network models on different

clients. Researchers achieve personalization by customizing model design for each

client [4, 79, 45, 133, 128]. 2) Communication bandwidth differs; Communication

13

Data quality
heterogeniety

Statistical
heterogeniety

Figure 2.2: Data quality and statistical heterogeneity. The bottom of the figure shows
the data quality heterogeneity on each client. Different corruption may appears
on some of the data, thus, not all data are equal. The top shows the statistical
heterogeneity on each client, where not all labels appears for a single client.

cost between clients and server serves as an important factor in affecting the training

efficiency. Furthermore, communication bandwidth differs regarding hardware and

network situations. Thus, researches dedicate to alleviate the transmission size, e.g,

compression of model updates by either quantization [3, 110, 153] or sparsification

[12, 85]

2.2.2 Statistical Heterogeneity

Other than resource challenges, local devices always suffer from statistical challenges

since data is gathered from various origins. Data heterogeneity lies in the 1) data

quality heterogeneity and 2) data distribution heterogeneity. 1) Current collabora-

14

tive learning framework assumes and depends on high-quality data available on the

clients. However, low-quality data can easily appears with wrong labels or blurring

images. Thus, recent researchers committed to eliminate the bad influence caused by

these noisy samples [131, 141, 16, 144]. 2)Stochastic gradient descent is widely used

in training deep neural networks with good performance and assuming that data on

clients follow the iid sampling. However, it is not always the case in practice, data

on different clients may own different labels assembly or have different distribution

within the same labels. Recent researches propose strategies to improve performance

on non-iid data [123, 57, 94, 125].

In this thesis, we address the resource heterogeneity in chapter 3 and chapter 4

and address the statistical heterogeneity in chapter 5 and chapter 6.

2.3 Age of Foundation model

2.3.1 Foundation Model

AI is going through a paradigm shift with the rise of models (e.g., BERT, GPT-

3, CLIP, DALL-E¨2 [25, 9, 105, 108]) trained on broad data using self-supervision

at scale that can be adapted to a wide range of downstream tasks. Researchers call

these models foundation models (FMs) to emphasize their key core. From a technical

standpoint, FMs are not new. Foundation models have first taken shape in the field

of natural language processing, which follows the idea to leverage the knowledge

from the pretrained task to the another downstream tasks [25, 9]. However, the

sheer size and scope of FMs over the past few years has expanded our imagination of

what is possible. In terms of the representative GPT family, GPT-3 grows up to 175

billion parameters compared with 1.5 billion parameters of GPT-2. Furthermore,

foundation models have developed from the language field to the vision-language

field by superving the visual models from the language manner the with tremendous

15

data pairs, i.e, CLIP and ALIGN [105, 59]. For example, the CLIP model trained

on 400,000,000 labeled images. The training process took 30 days across 592 V100

GPUs. This would have cost $1,000,000 to train on AWS on-demand instances.

FMs are scientifically interesting for their impressive performance and capabilities,

but what makes them critical to research is that they are rapidly being integrated

into real-world deployments of AI systems, with profound implications for users.

2.3.2 Prompt Training

Prompt learning has become an emerging paradigm with the rise of pretrained mod-

els, which origins from natural language processing by directly adapts the pretrained

language models with ‘cloze’ style prompt to another task. As the development of

foundation models in vision, techniques of prompt also moves from language to vi-

sion. The pretrained vision-language models like CLIP consist of an image encoder

and a text encoder to predict the pairing relationship between images and texts.

Therefore, these models can be converted to an image classifier. The users may con-

vert all [class] to prompt such as “this is a photo of [class]” and predict the caption

class the model estimates the best pairing with the given image. Previous research

has involved prompt engineering [35, 77, 118, 146], in which human engineers or

algorithms search for the best template for the classes.

16

Chapter 3

Tree Learning: Towards Promoting

Coordination in Scalable
Multi-Client Training Acceleration

3.1 Introduction

There have been growing interests regarding the collaborative machine learning

paradigm, especially for mobile edge devices [114, 1, 39]. Compared with traditional

centralized machine learning [22], collaborative learning (CL) [136, 147] allows train-

ing a large neural model over a wide range of clients based on their isolated datasets,

e.g., Federated learning (FL) [74, 6, 145] and Split Learning (SL) [100, 134, 2], which

have emerged as promising mechanisms to conduct distributed learning over multiple

parties.

However, neither FL nor SL work well for resource-constrained edge devices.

First, FL employs an iterative update mechanism that requires all users to update

the entire model repeatedly via exchanging the parameters with the server, which

can cause significant communication overhead. Second, users have to accommodate

the entire model locally that requires non-negligible memory space and computing

17

Input Image

label

Feature Maps

Predicted Labels

Server

Ag
gr

eg
at

io
n

La
ye

rs
M

er
ge

d
La

ye
rs

Cl
ie

nt
La

ye
rs

Client

Activation
Gradients
Delayed
Gradients

Figure 3.1: Tree-Aggregation Structure of Tree Learning . Three segments have been
divided though the whole framework: Clients Layers, Aggregation Layers and Merged
Layers. Dashed lines indicate parallelism between clients and server using delayed
gradients.

capacity for local training, and thus limits the further application of FL to a wide

range of resource constrained mobile devices, e.g., smart watches, cell phones, and

18

Internet of things, IOT devices which often have limited computing and commu-

nication resources, yet are expected to support various artificial intelligence (AI)

applications [65, 74, 6]. To achieve lightweight overhead for resource constrained

clients while still maintain efficient collaborative learning, existing works have pro-

posed to improve the FL performance, e.g, compression of model updates by either

quantization [3, 110, 153] or sparsification [12, 85]. However, the efficiency is im-

proved often at the cost of compromising the model accuracy and introducing extra

computing overhead.

Split learning is considered as an alternative solution for distributed and collab-

orative learning over edge clients. Although SL can deal with the resource scarcity

problem by offloading most computing of the neural networks to the server, there are

some inherent limitations. First, clients have to follow a sequential order to interact

with the server in each iteration, i.e., neither elements of the network can be updated

until their dependencies have been executed. Such a locking mechanism allows only

one element to stay active at a time and prevents the whole system from updating

the model in parallel, leading to under-utilization of the distributed computing re-

sources. Furthermore, when aggregating multiple feature maps from different clients,

the server has to wait until all of them are received before the next iteration. Efficient

and effective training methods for multiple clients with limited resources are missing

from status quo. [45, 133, 117].

In this paper, we present Tree Learning , a systematic framework that can acceler-

ate the collaborative learning among resource constrained devices and the server by

splitting the neural network model with optimal synchronization pattern and exag-

gerating simultaneously training with full parallelism mode. Compared with status

quo CL paradigms, e.g., peer-to-peer FL or traditional SL, which may suffer from

a dragged training process when clients have disparate computing capacities, Tree

Learning employs a tree-aggregation structure to optimize the aggregation process

19

with minimum overhead. Besides, the backward propagation is unlocked to allow

simultaneous training between clients and server sides. The clients rely on delayed

gradients from the previous round, instead of the one from the server-side in cur-

rent round, such that the idle computing resources can be better utilized. For two

typical scenarios, i.e., the horizontal mode with data samples distributed across dif-

ferent clients, the vertical mode, with features of data samples vertically partitioned

among multiple clients [133, 134, 45], we design corresponding pipeline mechanisms

to parallelize the clients and server’s training process. To adapt to the various client

resource levels, a dynamic partitioning algorithm is proposed to find the optimal

split layer for each client considering both the clients’ computing capacity and the

model structure.

To the best of our knowledge, Tree Learning is the first framework to improve

the training efficiency of collaborative training by minimizing the synchronization

overhead with automatic pipeline parallelism without sacrificing any model accuracy.

And we are the first to propose the hierarchical aggregation scheme to comply with

the novel tree structure. The main contributions of this paper are summarized as

follows:

• We propose Tree Learning , a system-algorithm co-design framework for col-

laborative training acceleration, which adopts a novel aggregation scheme with

a tree structure and dynamically allocates different layers to heterogeneous

clients according to their different computation capacities, via the self-adapting

partition and ensemble strategy;

• We propose a general solution for this framework by selecting the optimal split

layers for heterogeneous clients and successfully facilitate all the participants

to achieve the minimum synchronization overhead via a global level parallelism

scheme;

20

• We theoretically prove the effectiveness of Tree Learning by providing the rig-

orous theoretical analysis of convergence and accuracy guarantee, which shows

that the training process can be enhanced without compromising the original

model performance;

• We conduct extensive experiments across various datasets and models to eval-

uate the performance of Tree Learning , which shows that Tree Learning can

achieve 4.6x in training speed as compared with existing frameworks, without

compromising model performance.

3.2 Preliminaries

3.2.1 Configuration Categories

Considering practical scenarios of collaborative machine learning, there are two main

configurations based on the dataset partition criterion and type, i.e., horizontal learn-

ing and vertical learning.

Traditional federated learning [74] and split learning [45] are usually referred to

as horizontal learning, where each client share different identity of data samples but

with complete feature space. For example, two banks from different regions may

have different groups of users, but they all share the same group features, e.g., name,

bank account and deposit amount, such that the collaboration of more clients will

enhance the model training by providing mode isolated data samples. The training

architecture is illustrated in Fig. 3.2(a).

Vertical learning [82, 14] appears later as an orthogonal complement to the tradi-

tional horizontal learning [145, 133]. In the vertical configuration, instead of owning

the entire feature group, each client shares exclusive features, which is common in

practical cases. Consider a hospital case where hospital A holds records of MRI

scan images of patients, hospital B holds the blood test results of the same group of

21

patients, and both hospitals have common information such as the names and social

security numbers but are unwilling to share sensitive data with each other. In this

scenario, collaborative training of vertical learning can help to capture the complete

features of the target subject without sharing sensitive information with one another,

as illustrated in Fig. 3.2(b).

3.2.2 Limitations of current collaborative learning paradigms

Current collaborative learning, i.e., FL and SL, first emerges as an innovative ap-

proach to solving the challenges of fully utilizing isolated data across spacial regions

while protecting local data privacy. Though highly effective, each of the paradigm

has its own limitations. The intrinsic definition of FL [111] requires that each client

downloads the current model from the cloud and collaboratively learns a shared

model, while keeping all the training data on devices. Such approach highly limits

the potential of training a large neural network, restricting the model performance.

SL, on the other hand, can subtly address the problem, by offloading the majority of

model compares to the server. It preserves the former part on the client, which can

achieve privacy protection to some extent by not sharing raw data while alleviating

the hardware resource pressure on clients. However, it suffers from two limitations.

First, due to the inherent sequential procedure of forward and backward propaga-

tion, only one party can stay active at a time. This backward locking constrains the

model updates from parallelism and underutilizes the computation resources. Sec-

ond, given the circumstance of disparity in hardware resources of different clients,

identical model or layers located in all clients may result in a prolonged waiting time

for aggregation. Thus, it is necessary to develop a new solution to address the lim-

itations. The collaborative learning solution should aim at higher efficiency, better

performance, and adaptive personalization for each client.

22

Input
Image:
Sample ID:

ID:01

ID:02
ID:03

ID:04

ID:05

ID:06

Waiting Processing

Updating and
Averaging
Parameters

Client1 Client2

h1 h2

𝛿1 𝛿2

FeatureMaps

Input
Image:
Sample ID:

ID:01 ID:02

Processing

Client1 Client2

h1

𝛿1
𝛿2

ID:03 ID:04 ID:05 ID:06

ID:01 ID:02 ID:03 ID:04 ID:05 ID:06

h2

FeatureMaps

a) Horizontal Mode b) Vertical Mode

Processing

Figure 3.2: Horizontal mode v.s. vertical mode: Horizontal: Each client has a
set of sample batches. Vertical: Each client has a unique set of features.

3.3 Tree Learning Design

In this section, we present the design of Tree Learning , to address the above-

mentioned limitations of th e existing CL frameworks. First, we introduce the train-

ing scenario of Tree Learning , then we elaborate the design of the Tree Aggregation

Scheme and Pipeline Parallelism of Tree Learning .

3.3.1 Training scenario

Definition 3.1 (Tree Learning). Consider n edge clients that collaboratively train a

model with their distributed datasets. The data samples of client i is denoted by di,

so that D “ d1, d2, . . . , dn denotes the total data space. The entire model, ϕ, has l

layers and can be splitted into two parts with ϕ “ ϕC ˝ϕS, where ϕC denotes the part

at client side and ϕS the part at the server side. Tree Learning can adjust the split

position and thus can adaptively accommodate the client part with different layers

23

according to the capacity of each client. The model from the perspective of client i is

ϕi “ ϕC
r0´ks ˝ ϕS

pk´ls, k P p0, lq,

where ϕ1 “ ϕ2 ¨ ¨ ¨ “ ϕi ¨ ¨ ¨ “ ϕn holds for the proposed Tree Learning.

3.3.2 Tree aggregation scheme

Traditional collaborative training methods have two stages in each iteration, i.e., one

at the client side and the other at the server side, while the aggregation operation is

required for each iteration. Such mechanism requires the server to synchronize the

updates from all clients, and thus can cause an excessive waiting time if clients are

of different computation capacity and communication bandwidth, i.e., a potential

straggler would greatly slow down the training process. The proposed Tree Learning

applies a novel tree-aggregation architecture with multiple meeting points during

the aggregation process, which can adapt to different resource levels of the edge

clients. When the feature maps reach the meeting point, they aggregate together

and continue to the following layers on the server.

The structured view of the Tree Learning aggregation process is shown in Fig. 3.1.

Due to different choices of the cut layer, n clients may have an identical or partially

different model structure for the collaborative training. The entire model is parti-

tioned into two parts, i.e., the client part and the server part. At the server side,

there are two categories of layers, i.e., aggregation layers and merged layers. The

training process consists of the following four steps:

• Step 1 Profile and select the best partition layer for each client according to

its computation and communication levels with the partition algorithm;

• Step 2 Clients locally perform forward propagation with local data and send

the intermediate feature maps to the server;

24

• Step 3 When clients approach the first meeting point, they aggregate the

feature maps and go through the following layers. After that, the feature map

of the following layer will join the activation of some other clients at the next

meeting point. This process will continue to the last meeting point at the

bottom of the joint model of server;

• Step 4 The server sends back and splits gradients to all individual participants

and for clients’ local model updating.

We integrate a pipeline parallelism for step 4 to further improve the training effi-

ciency, as shown in the following section 3.3.3. Furthermore, to avoid the fluctuation

due to huge communication jam or client disruption, we propose the Adaptive Sub-

stitute Mechanism in section 3.3.3 to address the situation. Furthermore, we can

monitor and recalculate the optimal split point for given epochs with algorithm 2,

according to different tasks and training status. And continue for the remaining

training process. Since we use the branch-and-bound method for early exit and uti-

lize the latest best solution for initialization, the solution space is largely reduced.

Compared with the training overhead, the cost for searching the optimal split point

is negligible.

3.3.3 Pipeline Parallelism

Delayed Gradients Mechanism: The chain-rule in the back propagation process

of the training iteration can be the bottleneck in CL and can limit the training

efficiency significantly. It is because either side can continue until the preceding

layers is updated, e.g., the clients have to wait until the gradients are acquired from

the server. We apply the delayed gradients policy to break the lock of backward

propagation by decoupling the dependency relationship.

As shown in Fig. 3.3, after a client finishes the forward propagation and sends

25

F
P

B
P

h: Activation

𝛿!"#$ 𝛿!"

1 2

33

A B

ℎ!%

𝛿: Error
Gradient

Figure 3.3: Delayed Gradients: A use the delayed gradients from last round when B
performing Forward Propagation. After receiving the gradients from B in this round,
A save it for the usage of next iteration.

activation to the server, it continues forward propagation on the remaining layers.

In the meantime, the client executes backward propagation with delayed gradients

updated from the server in the last round, instead of waiting for the gradients of

this round from the server. In each iteration, a client uses the delayed gradients

from the last round and saves the gradients coming around for the next round, while

the server still uses the real-time data. In this way, the training efficiency is highly

improved, without sacrificing accuracy. We show that the model convergence of the

delayed gradients policy is theoretically guaranteed, which is given in Section 3.5.

Pipeline Parallelism: Normally, the server has abundant computation resources,

while edge clients may suffer from resource insufficiency. As a result, more layers

should be placed at the server side, with less layers at the client side. We discuss the

optimal partition layer selection in Section 3.6.

To apply the preceding mechanism in Tree Learning , we illustrate the pipeline

in Fig. 5.2 and Fig. 3.5. In the original case, as shown in Fig. 5.2, we present the

two cases in baseline Split Learning. Specifically, (a) represents the horizontal mode

where the interaction between clients and server are in the round-robin manner. (b)

represents the vertical mode where features from each clients are required to wait

26

Forward Propagation Backward Propagation Activation Transmission Gradient Transmission

Client

Server

a) Traditional SL: Vertical
time

Client

Communication

Client

Server

a) Traditional SL: Horizontal
time

Client

Communication

Figure 3.4: Split Learning Baseline Training: Sequential training order performing
between clients and server. (a)Round-robin manner is performed in horizontal mode
with clients take turns to interact with the server. (b)Server waits to receive feature
maps for all clients to aggregate and then continue to perform forward and backward
propagation on server.

for each other in each iteration before the aggregation process on server. In both

cases, only one client or the server is activated as discussed in the previous section,

due to the dependencies in backward pass. After breaking the lock of backward

propagation, pipeline parallelism aims to maximize the number of active entities at

any given time slot.

From the pipeline parallelism below, we enable the clients to execute forward

propagation and send activation to the server. When the server receives feature

maps and continues forward propagation, the clients execute back propagation with

its delayed gradients at the same time, which enables the parallelism of both the

server and clients.

Furthermore, the transmission of the activation and gradients leads to multiple

bubbles in both client and server sides during the training. We propose to use a

multi-thread method to overlap the activation transmission with backward propa-

gation and gradient transmission with forward propagation, respectively. Fig. 3.5

27

shows the improvement of Tree Learning from both (a)the optimal split point effect

only and (b)the overall effect with parallelism. And as shown in Fig. 3.5 (a), when

the client executes forward pass, it can also receive the gradients of last iteration

from the server. When the server executes backward pass, it can also receive the

activation of next iteration from the client. With the overlapping of computation

and communication, the time utilization of both server and client is improved.

Adaptive Substitute Mechanism During the training process, dropout of clients

may happen due to communication instability or other reasons. Hence, we propose

an adaptive substitute mechanism to handle the dropout situations. During each

iteration between clients and server, clients locally perform forward propagation with

local data and send the intermediate feature maps to server, as in Step 2. Server

records the intermediate feature maps for the corresponding batch and update the

value for each round. Server also maintains an average waiting time for each client

by recording and updating the average waiting time each round. For each round,

server will check the current waiting time. If current waiting time is larger than the

current average waiting time, server will use the latest stored value to continue the

following step, instead of waiting for the arrival of the new value. Otherwise, server

will wait for all input to arrive.

3.4 Partition Algorithm for Tree Learning

In order to find the optimal spilt points in the complex structure with the interaction

of tree aggregation and pipeline parallelism, we need to minimize the overall time

of the entire training process across clients and the server. The synchronization

procedure of Tree Learning is given in Algorithm 1. We have c clients i1, i2, ..., ic,

and a server, s, each client having its own dataset di. In each round, every client

passes through its own client model Mi and sends its intermediate output hi to the

28

Client

Server

b) Tree Learning with Pipeline

time

Client

Communication

Client

Server

a) Tree Learning without Pipeline
time

Client

Communication

Forward Propagation Backward Propagation Activation Transmission Gradient Transmission

Figure 3.5: Tree Learning Training: Parallelism training with optimal split points
selected with algorithm 1. (a)Tree Learning enabled with only optimal split point
assigned. (b)Tree Learning enabled with both optimal split point as well as paral-
lelism between clients and server.

server. After uploading the feature maps, clients can perform backward propagation

and use gradients git´1 from the last round, which realizes parallelism between clients

and server. As in Fig. 3.1, the server side consists of two parts. The first part

is the aggregation layers lk P rlfirst, llasts, where each layer has several inputs either

from previous layers or directly from some clients with corresponding models. After

aggregating all the intermediate features as input, forward propagation continues by

passing through all the aggregation layers with the same manner. The second part is

merged layers shown as the top component in Fig. 3.1, where forward propagation

is carried out layer by layer.

Since the whole training model remains intact regardless the selection of split

layers, the partition strategy has little impact on model accuracy. Thus, we can

optimize the whole framework performance by improving the training efficiency and

minimizing the total training time. Given heterogeneity in hardware resources of the

clients, we propose a partition algorithm to assign different layers at each client in

29

Algorithm 1 Synchronization Mechanism in Tree Learning. Client model Mc,
Server model Ms, Layer index i, Client index c, Intermediate output h.

1: initialize ωc, ωs. Stepsize sequence γt
2: for each round t “ 1, 2... do
3: Forward propagation in each client c, get hc “ Mcpdcq.
4: Send xi to server.
5: if round t is not first round then
6: Use previous gradient gct´1 to update parameters:
7: ωc

t`1 Ð ωc
t ´ γt ¨ gct´1

8: else
9: Use current gradient gct to update parameters:
10: ωc

t`1 Ð ωc
t ´ γt ¨ gct

11: end if
12: for each aggregation layer k P rkfirst, klast] do
13: if aggregation layer k receives all input demand in this layers then
14: Aggregate hk “ concatph1

k´1, h
2
k´1, ...q

15: else
16: Wait until all input arrive
17: end if
18: end for
19: Forward propagation from klast layer to the final classification layer and

complete y “ Msphcq

20: Back propagation from the final classification layer to klast layer and backup
the corresponding gradients:

21: gct .backup()
22: for each aggregation layer k P rklast, kfirst] do
23: Split gradients to nodes in k ´ 1 layers
24: end for
25: end for

order to minimize the overall training time of the overall model. We have objective

function and the constrains from Eq. 3.1 to Eq. 3.6. Consequently, we can find the

optimal solution to this problem using the branch and the bound method.

The objective function, Tmin, depends on the training time from the clients to

the last layer of the aggregation layers, denoted by T last, and the training time

after aggregation layers until the final classification layer of the server model, i.e.,

the merged layers, which is decided by the calculation amount of each layer Qlast

and the calculation speed Vs of the server. last P r2, ns represents the index of last

30

aggregation layer ranges from the second layer to the final layer, which means at least

one layer should be placed on the clients. Hence, we have the objective function:

Tmin “ min
lastPr2,ns

pT last
`

řN
lastQ

k

Vs

q (3.1)

where T last is decided by two components, the part that directly comes from the

clients and the part from the previous layers. The latter part can be represented by

the minimum training time from (last ´ 1) layer plus the time go through the last

layer. That is,

T last
“ maxptlast, p

Qlast´1

Vs

` T last´1
qq (3.2)

tlast represents the maximum training time within c clients with last´1 layers which

directly join the last layer on the server, given by

tlast “ max
iPr0,cs

p

řlast´1
1 Qk

Vi

`
F last´1

Bi

q ˆ xlast
i , (3.3)

where the first term is the computation time on clients, decided by the calculation

amount of each layer Qlast and the calculation speed Vs of the server. And the second

is the communication time between clients and the last layer on the server, decided by

forward feature transmitted size and current communication speed; xlast´1
i represents

whether this layer is split point or not, equal to 1 if it is a split layer and otherwise

0.

We can see that the equation forms a recursion which is defined in terms of itself

or of its type. So we need a terminating scenario that does not use recursion to

produce an answer. Thus, we have the initialization for T 2 to calculate maximum

training time for the last aggregation layer on the second layer, given by

T 2
“ t2 “ max

iPr0,cs
p
Q1

Vi

`
F 1

Bi

q ˆ x2
i (3.4)

31

xi
c “

#

0 i “ 1, c P r0, Cs

0 or 1 i ą 1, c P r0, Cs
(3.5)

N
ÿ

i“0

xi
c “ 1, @c P r0, Cs (3.6)

Let xi
c be an indicator for each client c. If the value equals 1, the ith layer is the split

layer of client c. Layers below the split layer are placed on clients, while the split

layer and the above layers remain on the server. Since the first layer of the model

must be placed on clients, x0
c = 0. Also, as only one split point is allowed for each

client, so the sum of xi
c equals 1.

To solve the problem in (1) - (6), we apply the Branch and Bound method

for various client numbers. In general the Branch and Bound algorithm is to find

a value, x, that maximizes or minimizes the value of an objective function, fpxq,

among some set of search space S. Here, we have an 0-1 integer model with variable

xi
c selected between 0 and 1, with the objective function in (1) and constraints in

(5) - (6). We also set bounds for an early exit to eliminate candidate solutions on

branches that cannot provide an optimal solution. Obviously, a client with weaker

computation capacity cannot handle more layers than a stronger one. Thus, we

accelerate the searching speed by skipping the layers lower than the split layer for

the client with slower calculation speed. Also, during the searching process, node

with larger training time than current optimal training time should be early exited

without further growing. The algorithm of solving the optimal split partition problem

is given in Alg. 2.

During the solving process, a solution space tree will be generated. Each of the

tree level represents the client starting from the weakest calculation capacity to the

strongest one, as shown in line 2 in Alg. 2. To begin with, we first initiate an activeset

32

of tHu, which maintains the nodes for each level of the tree. We have C clients and

N ´ 1 possible split points for each client. Obviously, clients with weaker calculation

capacity can not process more layers than the stronger one, thus the start point of

child node can not be larger than it’s predecessor, which greatly narrow down the

range of possible split points for each client. As the algorithm begins, we obtain

a current best solution as a bound for early exit. And as the tree grows, if the

current solution results more time than the current given best time, we terminate

the process and kill the node. Otherwise, we add the node into the activeset to

continue the search process. Furthermore, if the node reach to the last level of the

tree, i.e, split points for all clients have been explored, we will update the current

best outcome and the current best solution as in line 12 to 14. Though the whole

process, we manage to find the optimal solution to incur the least training time.

3.5 Theoretical Interpretation

To evaluate the efficiency of our proposed algorithm, in this section, we theoretically

analyze the convergence rate of Tree Learning . First, we formulate the problem and

define the annotations throughout the section. Next, under the assumptions made,

we present the theoretical guarantee under the non-convex objective functions.

3.5.1 Preliminary

Problem Formulation In this paper, the optimization problem targets to mini-

mize the sum of expected loss among all clients through non-convex objectives, i.e.,

min
ωPRd

F pωq “
1

C

C
ÿ

i“1

Fipωq (3.7)

where M refers to the number of clients, and the data among clients are heterogeneous

such that ErFipωqs ‰ F pωq.

33

Algorithm 2 Solving Optimal Partition Strategy in Tree Learning. C clients, N ´ 1
possible choices for each client. activeset contains nodes in the tree that are active.
timemin is the optimal training time now. clientset contains all clients.

1: Initialize activeset “ tHu, timemin “ 8, currentbest “ NULL
2: Sort from the slowest client speed to the highest client speed, each client

corresponding to the level of tree from top to the bottom, clientsetsorted “

sortpclientsetq
3: Denote currentbest “ tl0, l1, . . . , lCu where Tspliq “ Tspliq, i P r0, Cs

4: Let timemin “ timepcurrentbestq
5: while activeset is not empty do
6: Choose a branching node, k P activeset
7: Remove node k from activeset
8: Generate the children of node k, child i P rl, ns represents the possible parti-

tion layer for each client Ź Each child comes from the next element of
clientsetsorted

9: for i “ l, ..., n ´ 1 do
10: if timepcurrentq is larger than timemin then
11: Kill the child i
12: else if Child i is a complete solution then
13: Update timemin as the time for this solution
14: Record currentbest as the path to child i from root
15: else
16: Add child i to the activeset
17: end if
18: end for
19: end while

Annotations,

• ∇F pwq, ∇cF pwq and ∇sF pwq refer to the entire, client and server part of the

gradient (i.e., partial derivative of F with respect to w), respectively;

• w
piq
t and w

psq

t refer to the weights on client i P t1, ...Mu and the server at time

t, respectively;

• }¨}2 indicates ℓ2 norm of a vector.

Assumptions. The following assumptions are commonly adopted in the previous

studies [78, 58] to analyze the convergence rate:

34

Assumption 1. For any i P t1, ...,Mu, loss function Fip¨q is differentiable and with

L-Lipschitz gradients, where

}∇Fipwq ´ ∇Fipvq}2 ď L }w ´ v}2 (3.8)

Based on Assumption 1, objective function F in Equation 3.7 is an L-smooth

function. In addition, following Cauchy–Schwarz inequality, we have

}∇F pwq ´ ∇F pvq}
2
2 “

›

›

›

›

›

1

M

M
ÿ

i“1

p∇Fipwq ´ ∇Fipvqq

›

›

›

›

›

2

2

ď
1

M

M
ÿ

i“1

}∇Fipwq ´ ∇Fipvq}
2
2

ď L }w ´ v}
2
2

(3.9)

Accordingly, we have the following lemma.

Lemma 3.1. Under Assumption 1, the following inequality holds:

F pwq ´ F pvq ď x∇F pvq, w ´ vy `
L

2
}w ´ v}

2
2

Proof. Based on Assumption 1, we have

F pwq “ F pvq `

ż 1

0

BF pv ` tpw ´ vqq

Bt
dt

“ F pvq `

ż 1

0

∇F pv ` tpw ´ vqq ¨ pw ´ vqdt

“ F pvq ` ∇F pvqpw ´ vq

`

ż 1

0

p∇F pv ` tpw ´ vqq ´ F pvqq ¨ pw ´ vqdt

ď F pvq ` ∇F pvqpw ´ vq

`

ż 1

0

L}tpw ´ vq}2}w ´ v}2dt

35

ď F pvq ` ∇F pvqpw ´ vq `
L

2
}w ´ v}

2
2

Therefore, the inequality holds.

Assumption 2. There exists a scalar, G ě 0, that is the bound of the second norm

of the gradient of Fip¨q, where

}∇FipW q}
2
2 ď G2 (3.10)

3.5.2 Convergence Analysis

With Algorithm 1, the following analysis is based on the hypothesis that the server

does not simultaneously receive the gradients from more than one client. We con-

struct the mathematical model in accordance with the flow of server update. When

server parameters are updated from t ´ 1 to t, the recursive functions for client and

server are given by:

Client: ω
pitq

t “ ω
pitq

jptq ´ ηit∇cFit

´

ω
pitq

jpjptqq
, ω

psq

jptq´1

¯

Server: ω
psq

t “ ω
psq

t´1 ´ η∇sFit

´

ω
pitq

jptq, ω
psq

t´1

¯

(3.11)

where it indicates which client sends the feature maps to server at time t ´ 1, jptq is

a function indicating the last time that client it sends its feature maps to the server.

Using ω̄t to represent the averaged client models, i.e., ω̄
pcq

t “

´

řM
i“1 ω

piq
t

¯

{M , the

recursive function between two successive iterations is:

ωt :“
´

ω̄
pcq

t , ω
psq

t

¯

“ ωt´1 ´
ηit
M

∇cFit

´

ω
pitq

jpjptqq
, ω

psq

jptq´1

¯

´ η∇sFit

´

ω
pitq

jptq, ω
psq

t´1

¯

.

(3.12)

According to the update between ωt and ωt´1, we derive the following convergence

guarantee.

36

Theorem 1. Denote the optimal model and the initial model by ω˚ and ω0, respec-

tively. Let stepsize η be O
´

1{
?
G2T

¯

. The average ℓ2 norm of the gradients using

Algorithm 1 is

1

T

T´1
ÿ

t“0

E }∇F pωtq}
2
2 ď O

ˆ

G
?
T

˙

` O

ˆ

τ 2

T

˙

(3.13)

where τ is the maximum staleness, i.e., τ “ maxtPt0,...,T´1upt ´ jptqq. When T is

sufficiently large, i.e., T ě τ 4{G2, the convergence rate is dominated by O
´

G?
T

¯

.

Proof. According to [32], the expectation value for pωt ´ ωt´1q can be expressed as

follows:

Eit

´

∇cFit

´

ω
pitq

jpjptqq
, ω

psq

jptq´1

¯

` ∇sFit

´

ω
pitq

jptq, ω
psq

t´1

¯¯

“ ∇cF
´

ω
pcq

jpjptqq
, ω

psq

jptq´1

¯

` ∇sF
´

ω
pcq

jptq, ω
psq

t´1

¯

(3.14)

Since the partial derivative of loss function F p¨q follows L-Lipschitz, we have the

following inequality based on Lemma 3.1:

E pF pωtqq ´ F pωt´1q

ď E x∇F pωt´1q, ωt ´ ωt´1y `
L

2
E }ωt ´ ωt´1}

2
2

“ ´ηE
A

∇F pωt´1q,∇cF
´

ω
pcq

jpjptqq
, ω

psq

jptq´1

¯

` ∇sF
´

ω
pcq

jptq, ω
psq

t´1

¯E

`
Lη2

2
E

›

›

›
∇cFit

´

ω
pitq

jpjptqq
, ω

psq

jptq´1

¯

` ∇sFit

´

ω
pitq

jptq, ω
psq

t´1

¯
›

›

›

2

2

“ ´
η

2
}∇F pωt´1q}

2
2

´
η

2

›

›

›
∇cF

´

ω
pcq

jpjptqq
, ω

psq

jptq´1

¯

` ∇sF
´

ω
pcq

jptq, ω
psq

t´1

¯
›

›

›

2

2

`
η

2
Q1 `

Lη2

2
Q2

(3.15)

37

where Q1 and Q2 are given by:

Q1 “ E
›

›

›
∇F pωt´1q ´ ∇cF

´

ω
pcq

jpjptqq
, ω

psq

jptq´1

¯

´ ∇sF
´

ω
pcq

jptq, ω
psq

t´1

¯›

›

›

2

2

Q2 “ E
›

›

›
∇cFit

´

ω
pitq

jpjptqq
, ω

psq

jptq´1

¯

` ∇sFit

´

ω
pitq

jptq, ω
psq

t´1

¯
›

›

›

2

2

Next, we find the bound for Q1 and Q2, respectively. For Q1, we have

Q1 “ E
›

›

›
∇F pωt´1q ´ ∇F

´

ω
pcq

jptq, ω
psq

t´1

¯

`∇cF
´

ω
pcq

jptq, ω
psq

t´1

¯

´ ∇cF
´

ω
pcq

jpjptqq
, ω

psq

jptq´1

¯›

›

›

2

2

ď 2E
›

›

›
∇F pωt´1q ´ ∇F

´

ω
pcq

jptq, ω
psq

t´1

¯
›

›

›

2

2

` 2E
›

›

›
∇cF

´

ω
pcq

jptq, ω
psq

t´1

¯

´ ∇cF
´

ω
pcq

jpjptqq
, ω

psq

jptq´1

¯›

›

›

2

2

ď 2L2E
›

›

›
ω

pcq

t´1 ´ ω
pcq

jptq

›

›

›

2

2
` 4L2

›

›

›
ω

pcq

jptq ´ ω
pcq

jpjptqq

›

›

›

2

2

` 4L2
›

›

›
ω

psq

t´1 ´ ω
psq

jptq´1

›

›

›

2

2

ď 6L2η2pt ´ jptqq
2G2

` 4L2η2pjptq ´ jpjptqqq
2G2

ď 10L2η2τ 2G2 (3.16)

Besides, under Assumption 2, we have

Q2

paq

ď 2
›

›

›
∇cFit

´

ω
pitq

jpjptqq
, ω

psq

jptq´1

¯
›

›

›

2

2

` 2
›

›

›
∇sFit

´

ω
pitq

jptq, ω
psq

t´1

¯
›

›

›

2

2

ď 2
›

›

›
∇Fit

´

ω
pitq

jpjptqq
, ω

psq

jptq´1

¯
›

›

›

2

2
` 2

›

›

›
∇Fit

´

ω
pitq

jptq, ω
psq

t´1

¯
›

›

›

2

2

ď 2G2
` 2G2

“ 4G2

where (a) follows for }a ` b}22 ď 2}a}22 ` 2}b}22. Therefore, plugging Q1 and Q2 back

38

to Equation 3.15, we have

E pF pωtqq ´ F pωt´1q

ď ´
η

2
}∇F pωt´1q}

2
2 ` 5L2η3τ 2G2

` 2Lη2G2
(3.17)

Given the initial weights of model ω0 and the last model ωT , where T is the number

of iterations, we can obtain the following inequality by summing up the all Equation

3.17 from t “ 1 to T :

EpF pωT qq ´ F pω0q

ď

T
ÿ

t“1

E pF pωtqq ´ F pωt´1q

ď ´
η

2

T
ÿ

t“1

}∇F pωt´1q}
2
2 ` 5L2η3τ 2G2T ` 2Lη2G2T

(3.18)

Denoting by ω˚ is the optimal solution to the objective function F , we have

F pω˚q´F pω0q ď EpF pωT qq´F pω0q. Therefore, by setting appropriate learning rate,

i.e., O

ˆ

b

F pω0q´F pω˚q

G2LT

˙

, the convergence boundary holds:

1

T

T´1
ÿ

t“0

E }∇F pωtq}
2
2 ď O

˜

G

c

LpF pω0q ´ F pω˚qq

T

¸

` O

ˆ

Lτ 2pF pω0q ´ F pω˚qq

T

˙

(3.19)

3.6 Evaluation

In this section, we demonstrate the effectiveness of Tree Learning by conducting the

experiments with different cluster settings over multiple backbone models. First,

we introduce the Testbed and experiments setting for evaluation. Then, we analyse

the experiment results in terms of training speed, accuracy, convergence analysis

39

with various scenarios and settings. Furthermore, we analyse the advantage of Tree

Learning over existing collaborative machine learning and conduct an ablation study

to demonstrate the effectiveness of Tree Learning .

3.6.1 Methodology

Testbed. In order to evaluate the performance of Tree Learning , we perform our

experiments by simulating multiple clients with a lower calculation speed and a

server with much higher computation capacity. We use two different clusters for

our experiments. we use NVIDIA RTX3080 GPU with 10GB device memory for

the server’s configuration, and pure CPU for clients. Furthermore, we use NVIDIA

RTX3090 GPU with 24GB device memory and A100 GPU with 40GB device memory

Table 3.1: Performance Comparison between Tree Learning and Split
Learning: The table shows the comparison of performance on four representive
backbone models, MobileNet, VGG, AlexNet and ResNet with different settings and
client numbers. All the settings are trained towards convergent and we record the
per-epoch training time for Tree Learning and Split Learning. Best split point and
Speed ratio are given. We can observe that the acceleration ratio can reach up to
at most 4.61x and the average ratio is around 3x regardless the clients number and
scenarios.

Models User
Horizontal Vertical

Split Tree Best Ratio Split Tree Best Ratio
Learning Learning split point Learning Learning split point

MobileNet

1 192.1 41.8 [2] 4.61x 192.1 41.8 [2] 4.61x
2 196.2 55.1 [2,2] 3.56x 278.8 103.3 [3,4] 2.70x
4 203.7 74.7 [2,2,3,4] 2.73x 500.1 233.8 [2,3,3,4] 2.14x
6 260.7 84.1 [1,1,1,2,2,3] 3.10x 771.48 357.9 [1,1,1,1,2,2] 2.16x

VGG

1 116.6 57.4 [2] 2.03x 116.6 57.4 [2] 2.03x
2 130.4 65.2 [2,3] 2.01x 242.4 86.7 [2,4] 2.80x
4 177.1 78.6 [1,2,2,4] 2.25x 638.9 168.0 [2,3,2,4] 3.80x
6 249.5 87.1 [1,1,1,2,2,4] 2.87x 817.4 249.6 [1,1,1,2,2,2] 3.28x

AlexNet

1 240.1 116.2 [3] 2.06x 240.1 116.2 [3] 2.06x
2 253.5 123.9 [2,3] 2.04x 545.3 301.1 [2,2] 1.81x
4 533.6 124.6 [2,2,3,3] 4.28x 3805.7 1581.5 [1,2,2,3] 2.41x
6 545.8 142.3 [1,2,2,3,3,3] 3.84x 4940.3 2075.6 [1,2,2,2,3,3] 2.38x

ResNet

1 1025.6 536.4 [1] 1.91x 1025.6 536.4 [1] 1.91x
2 1197.7 364.9 [1,2] 3.28x 2990.2 1205.7 [1,1] 2.48x
4 1204.8 555.2 [1,1,2,2] 2.17x 13650.3 6757.5 [1,1,1,2] 2.02x
6 1296.1 638.5 [1,1,1,2,2,3] 2.03x 15782.9 7971.2 [1,1,1,2,2,3] 1.98x

40

0 2000 4000 6000 8000 10000
Time (s)

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

MobileNet Vanilla

Baseline Acc
Tree Learning w/o optimal split Acc
Tree Learning Acc
Baseline Loss
Tree Learning w/o optimal split Loss
Tree LearningLoss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0 2000 4000 6000 8000 10000
Time (s)

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

MobileNet Horizontal

Baseline Acc
Tree Learning w/o optimal split Acc
Tree Learning Acc
Baseline Loss
Tree Learning w/o optimal split Loss
Tree Learning Loss

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0 2000 4000 6000 8000 10000 12000
Time (s)

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

MobileNet Vertical

Baseline Acc
Tree Learning w/o optimal split Acc
Tree Learning Acc
Baseline Loss
Tree Learning w/o optimal split Loss
Tree Learning Loss

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

0 1000 2000 3000 4000 5000 6000
Time (s)

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

VGG Vanilla

Baseline Acc
Tree Learning w/o optimal split Acc
Tree Learning Acc
Baseline Loss
Tree Learning w/o optimal split Loss
Tree Learning Loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

0 2000 4000 6000
Time (s)

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

VGG Horizontal

Baseline Acc
Tree Learning w/o optimal split Acc
Tree Learning Acc
Baseline Loss
Tree Learning w/o optimal split Loss
Tree Learning Loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

0 2000 4000 6000 8000 10000 12000
Time (s)

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

VGG Vertical

Baseline Acc
Tree Learning w/o optimal split Acc
Tree Learning Acc
Baseline Loss
Tree Learning w/o optimal split Loss
Tree Learning Loss

0.0

0.2

0.4

0.6

0.8

Lo
ss

Figure 3.6: Time versus Accuracy of Tree Learning Training: Blue lines
represent Tree Learning, green lines represent Tree Learning without best split
point, and yellow lines represent the baseline SL. From the figure we can observe that
Tree Learning converges fastest against the other two baselines, and can reach
above 3x faster than Split Learning.

as our server’s configurations for more clients experiments. Both the servers run

on on Ubuntu 18.04 LTS OS. For client setting, we simulate clients with different

calculation speeds to imitate a practical scenario with heterogeneous edge devices.

Benchmark Models. We use Cifar10 [66] as our dataset, since the performance

improvement of experiments is hardly relevant with input data and the resource

constraints on edge devices when using large scale datasets such as ImageNet [23].

Two different DNN models are used in our experiments: 1) MobileNet [53], which

is a typical model suitable for mobile and edge devices; 2) VGG [116], which is one

of the classic models used for deep learning. 3) Alexnet [67], one of the first deep

learning model to improve the ImageNet contest. 4) Resnet [50], one of the first

deep learning model with residual blocks. We train the all models using SGD with

a momentum of 0.9 and an initial learning rate at 0.001.

Baselines. We evaluate two configurations, the horizontal one and the vertical one.

41

The horizontal one separates training data in batch perspective, while the vertical

one splits features of data samples between clients but keeps the total amount of

samples invariant, as introduced in Sec. 3.2. For each category, we select the existing

SL as our baseline and choose clients with different calculation speeds to simulate

the practical resource diversity of edge devices, i.e., smart watch, mobile phone and

personal laptop. We compare Tree Learning against baseline and Tree Learning

without optimal split layer. For baseline, split points for all the clients are the

same, we place around half of the partition layers on the client and half of them

on the server. We use a mini-batch size of 16 for MobileNet, 18 for VGG and

12 for AlexNet and ResNet. In the experiments, we measure the time when the

advertised validation accuracy is achieved. We also show the advantage of Tree

Learning from the perspective of model complexity and extra computation burden

incurred by comparing with existing collaborative learning works [145].

3.6.2 Training Speed

To evaluate the training speed of Tree Learning , we conduct experiments for both

our Tree Learning and the baselines, with different calculation speeds for each clients.

Furthermore, to ensure the current split point is optimal, we monitor the training

status and re-calculate the best split point according to current computation and

communication speed of each client and perform step one every fixed epoch, depends

on the task difficulty. As shown in Table. 3.1, we implement Tree Learning in the

scenarios of horizontal and vertical configuration and each of them trained with the

four backbone models with the server of RTX3080. We record the best split point

as the most frequently combination, and as we observed, optimal split point rarely

changed given the stable local computation speed and adaptive substitute mechanism

for communication turbulence. We list 4 client setting given to space constraints

and server capacity in Tab. 3.1, and we can observe that most of the settings can

42

reach over 2x or 3x speed up and some settings can even obtain over 4x speed up

with superiority, which largely demonstrates the effectiveness of our method. We

also explore more clients scenarios within the following paragraph. We compare the

optimal partition configuration of Tree Learning with the partition strategy of the

baseline model over the corresponding training time with similar accuracy when they

converge. We can see that, without compromising any accuracy, Tree Learning can

achieve up to 361% speed-up in training speed as compared with existing model

parallelism. Another observation is that Tree Learning has robust performance in all

the circumstances, regardless of the neural network model, scenario configuration,

and number of clients.

3.6.3 Acceleration Ratio across clients and cluster

To further validate the scalability effectiveness of Tree Learning of different con-

figurations, we carry out our experiments on three different machines, RTX3080,

RTX3090 and A100 with different amount of clients, ranging from 1 to 20, as shown

in Fig. 3.7. For a small number(1-2) of clients, we use RTX3080 as the server. To

accommodate more clients, we use more powerful machine as the server. We deploy

4-10 clients with RTX3090 and 16-20 clients with A100. We simulate clients with

different levels of computing speed for each setting. For example, we assign 4 clients

with a relatively low speed, 2 clients with a medium speed and 2 clients with a high

speed in the setting of 8 clients in order to simulate smart watches, phones and

personal laptops. Fig. 3.7 shows that Tree Learning can reach 4.61x with only one

client and 16.07x with 20 clients. More clients result in exaggerated increase in the

training time in traditional framework, but lead to consistent or a slow increase of

the training time in Tree Learning .

43

3.6.4 Convergence Analysis

Despite the significant improvement in training efficiency, one of the common as-

sumptions for a training accelerating algorithm is the cost of diminishing accuracy.

However, instead of compromising any accuracy during training, Tree Learning can

achieve the same accuracy even with less time. Fig. 3.6 illustrates the results of three

scenarios and two models , with x axis as the training time and y axis as the accuracy.

From each subplot, we can see that among the configurations of vanilla, horizontal

and vertical, Tree Learning converges faster and achieves superior time-to-accuracy

as compared with the others.

3.6.5 Resource Efficiency

As we proved the outstanding performance and training efficiency in the previous

evaluation, We further conduct a comparison of Tree Learning against Federated

Learning to validate the advantage of resource efficiency of our proposed method.

We leverage mobilenet as backbone in both methods and observe several indicators.

As shown in Tab. 3.2, we share more comparisons on computing resources in GFlops

and communication bandwidth in MB required by these techniques. We also record

the learnable parameters on client for each method. We can see that Tree Learning

requires a lower bandwidth, fewer GFlops and learnable parameters on client, which

largely alleviates the resource overhead compared with Federated Learning. In real

case, the overhead depends on the dataset size and the partition layer.

3.6.6 Ablation Study

We conduct an ablation study to show the experiment results of separate improve-

ments with different components against the complete Tree Learning and baseline

model in terms of acceleration ratio.

Efficacy of Real Embedded Device Environment. In order to evaluate the

44

Table 3.2: Resource Efficiency Comparison between Tree Learning and
Federated Learning: We observe the resource efficiency of Tree Learning in
terms of GFlops, communication bandwidth needed, and learable parameters on the
client. The results show the outstanding efficiency against the Federated Learning
framework.

Method GFlops
Communication Learnable
Bandwidth(MB) Parameters

Tree Learning 847.77 1.5 1344

Federated Learning 28218.70 21.88 3228170

performance of Tree Learning on real edge devices, we implement the proposed

framework via commercial off-the-shelf devices and compare it with simulation. As

in a practical environment of embedded devices, we deploy Tree Learning on four

NVIDIA Jetson Nano with 4GB device memory and 16GB storage, Rasparry Pi 4

Model B with 8G device memory and 64G storage as heterogeneous clients with

different computing capacity. We use a 1 Gbps bandwidth Ethernet to connect the

clients with the server. All the devices are operated with Ubuntu 18.04LTS with

ARMv8 Processor. We can see from Table. 3.3 that Tree Learning shows superior

performance in the testbed environment as well as in simulation settings.

Efficacy of Partition Algorithm. To further validate the effectiveness of Dynamic

Partition Algorithm, we conduct the experiments on the static partition, employing

our partition algorithm with agents of different computation capacity. We also vali-

date their individual performance on the testbed environment with epoch of 50 and

different configurations. Both of the experiments result show that Partition Algo-

rithm significantly accelerates the training process. As shown in Fig. 3.8, in spite of

satisfying acceleration made by Tree Learning without optimal split layers, the full

Tree Learning can further expedite the training process.

Efficacy of Overlapping between Communication and Computation. We

conduct experiments to show the execution overlapping of the client and server when

45

1 2 4 8 10 16 20
Number of clients

0

500

1000

1500

2000

2500

3000

3500

Tr
ai

ni
ng

 T
im

e
pe

r e
po

ch
(s

)

RTX3080-Baseline
RTX3090-Baseline
A100-Baseline
RTX3080-Tree Learning
RTX3090-Tree Learning
A100-Tree Learning

4

6

8

10

12

14

16Speed Ratio

Figure 3.7: Training speed acceleration across different clusters and clients:
We also implement on various clients and clusters and observe that more clients need
more training time on SL but similar time on Tree Learning, which result in a
higher speed-up ratio.

Table 3.3: Performance Comparison between simulation and testbed en-
vironment: We validate the effectiveness of Tree Learning by employing the ex-
periments on the testbed environment and compare the performance against the
simulation one with the epoch of 50. We can observe that the performance of Tree
Learning on real testbed environment can achieve similar performance as simula-
tion.

Models Scenarios Setting Baseline
Tree

Ratio
Learning

MobileNet
Horizontal

Simulate 9809.8 2753.3 3.56x
Testbed 15597.8 4485.6 3.47x

Vertical
Simulate 13942.1 5164.3 2.69x
Testbed 27794.2 8944.4 3.10x

VGG11
Horizontal

Simulate 8857.4 3931.2 2.25x
Testbed 46001.2 19848.7 2.32x

Vertical
Simulate 31942.8 8401.4 3.80x
Testbed 62512.2 20432.3 3.06x

46

Horizontal Vertical
MobileNet

0

2500

5000

7500

10000

12500

Tr
ai

ni
ng

 T
im

e(
s)

Horizontal Vertical
VGG11

0

2500

5000

7500

10000

12500

Traditional SL
Tree Learning w/o best split
Tree Learning

Figure 3.8: Ablation study of parallelism and optimal split point: Compar-
ison of training time between Tree Learning , Tree Learning w/o partition strategy
and SL. The difference between SL and Tree Learning w/o partition strategy repre-
sents the effectiveness of parallelism, and the difference with Tree Learning further
shows the superiority of proposed partition strategy.

using Tree Learning versus using the traditional SL methods after the partition

algorithm. The two configuration use the same batch size and split point to control

variables. Fig. 3.9 shows the execution time of client and server, the communication

time and the overall execution time when training the models with 1 epoch. We

observe that, the overall execution time approximately equals to the sum of the other

three times because there is no overlapping during the training. On the contrary,

in Tree Learning , in spite of the similar client execution time, server execution time

and communication time, the overall execution time is largely reduced because of two

reasons: (1) the overlapping of the execution times between the clients and the server;

(2) the overlapping of the computation and communication times. Furthermore, we

notice that small discrepancy of training time on clients and server will result in

better performance of Tree Learning .

47

Efficacy with Dropouts To further validate the effectiveness of our method when

encountering dropout situation, we conduct experiments to simulate the dropout

situation. We randomly select 10% of clients to drop out of the system for 5 rounds

during the training process, as shown in Fig. 3.10. We employ on both horizontal

and vertical scenarios for comparison, and observe that even with the dropout of

clients, the performance of our system remains outstanding.

Traditional SL Tree Learning
Training Metrics

0

20

40

60

80

100

120

140

160

180

Tr
ai

ni
ng

 T
im

e(
s)

Server Time
Client Time
Communication Time
Overall Time

Figure 3.9: Time Breakdown per-epoch of the Training: The figure shows the
comparison of breakdown of time spend on each period between Tree Learning and
SL. We can observe that although the breakdown seems similar in Tree Learning and
SL, the overall time of Tree Learning is much smaller than that of Sl.

3.7 Chapter Summary

In this chapter, we have proposed Tree Learning , a novel system-algorithm co-design

framework which can accelerate the collaborative training over resource constrained

devices while maintaining training accuracy. We have applied a tree-aggregation

scheme to optimize the synchronization overhead and a parallelism mechanism be-

48

Horizontal Vertical
0

20

40

60

80

100

Tr
ai

ni
ng

 A
cc

w/o dropout
w/ drop

Figure 3.10: Ablation Study with Dropout Scenario: The figure shows the
performance comparison of Tree Learning with or without the dropout situation. We
can observe that although encountering dropout of some clients, the performance of
Tree Learning still remains good in both the horizontal and vertical scenarios, which
validate the robustness of our proposed system.

tween the clients and server to realize the fully parallelism of the system. We have

also proposed a general solution for the Tree Learning framework to find the optimal

aggregation layers through an optimization formulation. The effectiveness of Tree

Learning is demonstrated via extensive experiment result, not only from simulations,

but also using real embedded devices. This work has established a constructive to-

wards a diversified collaborative machine learning paradigm, which provides some

insights for future collaborative learning research and development.

49

50

Chapter 4

PromptFL: Let Federated

Participants Cooperatively Learn

Prompts Instead of Models —

Federated Learning in Age of

Foundation Model

4.1 Introduction

The ever-growing edge devices, e.g., smart phones, autonomous vehicles, etc., have

become the dominant computing platforms today. These devices generate vast

amounts of valuable data while providing hidden insights into the human world.

Artificial intelligence (AI) nowadays has shown its success to mine the big edge data

and produce accurate models that can replace human decisions timely and properly.

However, analyzing large amounts of data using sophisticated machine learning al-

gorithms requires significant computing power. Therefore, traditional AI paradigms

require to gather all raw data to a cloud center for centralized training, which can

incur significant communication overhead and potential privacy leakage, and thus

are not desirable for edge users [154, 114, 1].

51

Federated learning (FL) [80, 6, 145]has emerged to conduct distributed machine

learning that allows multiple edge users to jointly train a shared model without

sharing their raw data, which has been demonstrated great success in many edge

applications, e.g., input word prediction, voice assistant, etc. [49, 79], that can

mine massive distributed data without exposing users’ privacy, and thus are widely

applied in various edge scenarios. The FL training process comprises of two iterative

phases, i.e., local training and global aggregation. Thus the learning performance

is determined by both the effectiveness of the parameters from local training and

smooth aggregation of them. However, these two requirements are not easy to satisfy

in edge environment, i.e., edge users often have limited bandwidth and insufficient

data, which can cause inefficient parameters aggregation, excessive training time and

reduced model accuracy. Despite the rich opportunities offered by FL, fundamental

research problems still need to be addressed before FL can be readily applied to

real-world deployments.

Existing research efforts have focused on improving the FL optimization process

[74, 149] or refining model architectures [104], but this does not change that FL

inherently entails a large number of communication rounds and a large amount of

labeled data for training, which are often unavailable for edge users. Such challenges

are particularly salient under the combined effect of a long training process and un-

favorable factors such as non-IID and unbalanced data [73], limited communication

bandwidth, and unreliable and limited device availability. Therefore, there is an ur-

gent need to explore alternative solutions that can mitigate the challenges of existing

FL paradigm and make it more feasible to edge users.

We revisits the question of how FL mines the distributed data in iterative train-

ing rounds, and exploit the emerging foundation model (FM) to optimize the FL

training. FM refers to large neural model that trained on large scale data and has

strong adaptation capability for various downstream tasks. We let federated partic-

52

ipants cooperatively learn prompts instead of models to unleash the power of FM

in a distributed way, whereby both the local training and global aggregation can be

significantly accelerated. Our paper aims to provide a new perspective by rethinking

if FMs can be applied to FL as a new paradigm of training.

We investigate the behavior of the nascent model in a standard FL setting using

popular off-the-shelf FMs, e.g., CLIP, and methods for FM adaptation. We pro-

pose PromptFL, a novel federated framework that leverages the benefit of large

vision-language model. PromptFL trains the prompt instead of the whole model

parameters, which can simultaneously exploit the insufficient local data and reduce

the aggregation overhead. PromptFL ships an off-the-shelf public CLIP to users

and apply continuous prompts (a.k.a. soft prompts) for FM adaptation, which re-

quires very few data samples from edge users. The framework is technically very

simple but effective, and such insight sheds light on the development of the feder-

ated society with more possibilities. The focus of our investigation is whether it

meets the key principles:

• Feasibility. What are the system costs? We examine the feasibility of PromptFL

on modern hardware, focusing conservatively on personal cell phones. We

demonstrate the feasibility of the system in terms of overhead in communica-

tion, training, and inference dimensions.

• Performance. Are PromptFL competitive with FL? FL does not base-

line against any such approach, so we implement a proof-of-concept in the

framework, spanning a range of popular image classification tasks. We observe

PromptFL competitive with strong FL baselines.

• Privacy. Is PromptFL privacy-preserving? We show that PromptFL keeps

data on each device private, aiming to learn global prompts updated only by

53

communicating gradients rather than the data itself, and thus not less private

than FL.

4.2 Preliminaries

4.2.1 Foundation Model

AI is going through a paradigm shift with the rise of models (e.g., BERT, GPT-

3, CLIP, DALL-E¨2 [25, 9, 105, 108]) trained on broad data using self-supervision

at scale that can be adapted to a wide range of downstream tasks. Researchers

call these models foundation models (FMs) to emphasize their key core. From a

technical standpoint, FMs are not new. However, the sheer size and scope of FMs

over the past few years has expanded our imagination of what is possible. FMs

are scientifically interesting for their impressive performance and capabilities, but

what makes them critical to research is that they are rapidly being integrated into

real-world deployments of AI systems, with profound implications for users.

CLIP Contrastive Language-Image Pre-Training (CLIP) is a neural network

trained on hundreds of millions of (image, caption) pairs [105]. CLIP encodes images

and captions separately as vectors, enabling users with visual modality samples to

retrieve, score, or classify samples from textual modalities. Models are often very

fragile and only know very specific things you trained them to do. CLIP extends

the knowledge of classification models to a wider range of things by leveraging se-

mantic information in text. Standard classification models completely discard the

semantic meaning of class labels and simply enumerate numeric classes behind the

scenes; CLIP works by understanding the meaning of the classes. ALIGN is another

CLIP-like vision-language pre-training [59].

Image Classification with CLIP CLIP pre-trains an image encoder and a

text encoder to predict which images are paired with which texts. We can use this

54

behavior to convert the CLIP to an image classifier. We may convert all [class] to

captions such as “picture of [class]” and predict the caption class CLIP estimates

the best pairing with the given image. In many previous works, this has involved

prompt template engineering, in which human engineers or algorithms search for the

best template for each class [35, 77, 118, 146].

4.2.2 Federated Learning

Recent neural models require large amounts of training data [26], and users typically

hold limited-scale labeled data. To address the challenge of lack of sufficient data

for individual users, federated learning of data across multiple privacy spheres (i.e.,

users) has become a popular framework.

The term federated learning was introduced by [87]. In a centralized setting, the

federated server initially sends global model parameters to each client. After train-

ing with local data, the participants are only required to share gradients for model

updates. Then the server aggregates the gradients and transmits the updated model

back to each client. More specifically, federated learning is a machine learning setting

where a set of n clients (e.g., mobile devices) collaboratively train a model under the

orchestration of a federated server (e.g., service provider), while the training data of

clients is stored locally and not exchanged [60]. The federated server orchestrates

the collaborative training process, by repeating the following steps until training is

converged:

Client Selection Given the unstable client availability, for the round t of fed-

erated learning, the federated server samples a small subset of m clients meeting

eligibility requirements out of all n clients to participate in the learning.

Local Training Upon notification of being selected at the round t, each selected

client downloads the current parameters θ of global model and a training program

from the federated server. Each selected client locally computes an update to the

55

global model on its local training data by executing the training program. More

specifically, the gradients updated at one client (denoted as G), are computed by

BℓpX,y,θq

Bθ
, where X, y denote the batches of training data and corresponding labels,

and ℓp¨q refers to the loss function.

The gradients G in typical federated learning settings are the minimum that must

be shared to the server, corresponding to FedSGD method. In FedAVG [87], models

are consecutively updated on more batches of local data, which can be several epochs

of training, and then shared. We note that a common way is to share the updated

model θ ` G, but this practically amounts to sharing G since all participants know

θ.

Global Aggregation Upon having received local updates from m clients, the

federated server aggregates these updates and update its global model, and initiates

next round learning. In addition to the federated learning framework that relies on

the centralized server node, there are also some federated learning implementations

based on the decentralized framework [112, 68, 55]. This means that the aggregation

of gradients does not necessarily occur in a fixed federation server, but may also

occur in some clients.

4.3 Prompt-Based Federated Learning

We hypothesize that an off-the-shelf public CLIP-like model is shipped to the user

device. The CLIP-like model is a powerful image classifier that utilizes linguistic

knowledge to classify images. In other words, CLIP already knows a lot about the

content of images. But to unleash the power of CLIP in FL, we need to take advan-

tage of something called prompt engineering that was mentioned in the preliminaries.

56

Image

Encoder

CLIP Backbone

Classification Logits

Text

Encoder
Loss

Prompt Learner

Learnable

Parameters

Prompt
Vectors

[Class]

User 1

...

C
L

IP
 B

ack
b

o
n
e

Prompt Learner
Prompt
Vectors

[Class]

API

API

Logits

Secure
Inference

User n

Aggregation

Federated Server

Param UpdateParam Update

Tuned Frozen

Server Update

 Local Update

Cos

Figure 4.1: Framework and workflow of PromptFL. Each client includes a prompt
learner (with only a small amount of trainable parameters) and an out-of-the-box
CLIP (with backbone frozen). The federated server aggregates only the parameter
updates of prompt learners over multiple users, and transmit the updated parameters
back to each user.

4.3.1 Prompt Engineering

The prompting function fpromptp¨q is applied to modify the class label y into a prompt

y1 “ fpromptpyq. The most natural form of implementing a prompting function is to

manually create an intuitive template based on human introspection. For example, as

referred in [9] we may manually craft prefix prompts to handle an image classification

task by using templates like “picture of [class]” or “a photo of a [class]”. Based on

that, many approaches have been proposed to automate the template design process.

Specifically, the automated prompting can be further separated into discrete

prompts (a.k.a. hard prompts), where the prompt is an actual text string, and

continuous prompts (a.k.a. soft prompts), where the prompt is performed directly

in the embedding space of the model [81]. Discrete prompts constraint that the em-

beddings of template words be the embeddings of natural language words [115, 37].

Thus, discrete prompting is a clear way to visualize what “word” are learned for the

vectors [24].

Our paper adopts continuous prompts instead of discrete prompts in FL for the

57

reason that (1) Our purpose of prompt construction is to find a way to enable FL

to efficiently perform the image classification tasks, not for human interpretation,

there is no need to limit prompts to human-interpretable natural language. (2)

The templates have their own parameters that can be tuned based on training data

from the user, which is a natural compatibility connecting FL and prompting. More

related topics of continuous prompts can refer to [76, 69, 130, 46, 150].

4.3.2 Framework to Learn Prompts in FL

The framework of PromptFL is presented in Figure 4.1. Each FL client consists

of a prompt learner and an out-of-the-box CLIP model. PromptFL introduces

only a small amount of trainable parameters in the prompt learner while keeping the

CLIP backbone frozen. In other words, during local training, only the parameters of

the prompt learner are updated while the whole CLIP model turns off gradients in

both the image and the text encoder. The federated server is designed to aggregate

only the parameter updates of prompt learners over multiple users, and transmit the

updated parameters back to each user. Thus, PromptFL evolves the goal of FL

from model training to prompt learner training.

The CLIP backbone comprises two encoders, one for images and the other for

texts. The image encoder will map high-dimensional images into a low-dimensional

embedding space. The network of the image encoder can take the form of a CNN

such as ResNet50 [50] or Vision Transformer [27]. The text encoder will generate

text representations from input. The network of the text encoder is a Transformer

[132].

Prompt Learner Given a pre-trained CLIP backbone, the input to the text

encoder is designed in the form of [prompt vectors][class]. Inspired by the simple

and straightforward prompt design in [150], we introduce a set of p continuous em-

beddings of dimension d in the [prompt vectors]. d is same as the dimension of

58

Table 4.1: System cost comparison. Assumes 32 local training batch size, 1 local
training epoch, 100 total communication rounds for FL. Assumes 196 input sequence
length, full precision for PromptFL and FL.

Dimensions
Frameworks PromptFL

(150M parameter model)
Federated Learning

(100M parameter model)
Modern Mobile Phone Hardware

[30]

Communication
600 MB File Download

1.4 Minutes

40 GB File Download +
40 GB File Upload
Totally 9 Hours

54 Mbps Downstream RateLimit
12 Mbps Upstream RateLimit

[93]
Training Much Less 4 TFLOPs 1.5 TFLOPs, 8 GB RAM
Inference 60 GFLOPs 40 GFLOPs 1.5 TFLOPs, 8 GB RAM
Storage 600 MB on Disk 400 MB on Disk 1 TB on Disk

word embeddings in the text encoder, thus 512 by default. p is a hyperparameter

specifying the number of embeddings. In a word, [prompt vectors] are p learnable

d-dimensional vectors.

Given a batch of image-text pairs, CLIP will maximize the cosine similarity for

matched pairs while minimize the cosine similarity for all other unmatched pairs.

Since CLIP is pre-trained to predict whether an image matches a textual description,

it can compute the classification loss and logits by aligning the two embedding spaces

for images and texts (i.e., [prompt vectors][class]) respectively. Formally, let gp¨q

and hp¨q be the feature extraction function of the image and text encoder. Let

wi “ hpP,Kiq be the weight vector generated by the text encoder, where i P r1, ks.

k denotes the number of classes and each pP,Kiq is derived from the prompt in the

form of [prompt vectors][class]i, where [class]i is replaced by the word embedding

vector of specific class label name. Let cosr¨|¨s denote the cosine similarity used

by CLIP. By forwarding a pP,Kiq and an image x, the classification prediction

probability and logits are computed as

ppy “ i|xq “
exp pcosrgpxq|hpP,Kiqsq

řk
j“1 exp pcosrgpxq|hpP,Kjqsq

, (4.1)

where P is the only part that is updated in local back propagation and aggregated

in the federated server.

Prompting are particularly useful in the FL case, as using prompts to push the

59

model in the correct direction is particularly effective. This feature enables prompting

to converge quickly in FL, requires less data per user, and is less affected by adverse

factors in the process, e.g., non-IID and unbalanced data, limited communication

bandwidth, and unreliable and limited device availability. In this paper, the prompt

learner employed in PromptFL though simple and straightforward as a bridge to

our core idea is easy to follow. We also envision that more complex and effective

bridges would be there to replace the role and should be a valuable direction.

4.3.3 System Feasibility

We examine the feasibility of PromptFL on modern hardware, focusing conserva-

tively on personal cell phones. We notice that users can access GPUs from their

mobile phones. Enterprise users have more abundant resources. Without loss of

generality, we take a 100M parameter model for FL and 150M parameter CLIP

backbone for image similarity-search of PromptFL. The prompt learner introduces

only a small number of parameters, that can be ignored. We assume that the FL

configures 32 local training batch size, 1 local training epoch, and 100 total com-

munication rounds, which suggested in [104]. We also assume that both FL and

PromptFL configure 196 input sequence length and the full precision. The system

cost comparison is summarized in Table 4.1 along the following dimensions:

Communication The average download speed within the globe for mobile in-

ternet was 54 Mbps, and the average upload speed for mobile internet was 12 Mbps

that reported by 2021 [93]. PromptFL requires locally downloading while FL re-

quires communicating the model repeatedly between users and the federated server.

Thus, the communication cost in terms of file transfer volume is that it takes only 1.4

minutes to transfer 600MB for PromptFL, and 9 hours for FL to transfer 40GB.

Training and Inference FL requires FLOPs computed by (2ˆ3ˆmodel parametersˆlocal

training epochˆlocal training batch sizeˆinput sequence length) for training, while

60

Table 4.2: Performance of PromptFL against existing FL framework with
iid data distribution. The table report the accuracy, F-1 score and learnable pa-
rameters according to the corresponding backbone and method under the iid data dis-
tribution. We report the best score of each group with respect to method and model
and annotate in bold. Compared with finetuning and training from the scratch,
PromptFL only update 0.01% „ 0.1% parameters, however, still outperforms other
methods in most cases. Despite encountering suboptimal cases, our method still ap-
proaches the optimal performance with small gap.

(a) Caltech101

Method Model Acc F-1 Para

From Scratch
Rn50 32.4 10.5 100
Vit 32.5 12.9 100

Finetuning
Rn50 90.0 84.7 100
Vit 93.1 89.1 100
Rn50 90.2 86.1 0.1

PromptFL
Vit 94.7 91.8 0.01

(b) Flowers102

Method Model Acc F-1 Para

From Scratch
Rn50 33.2 25.7 100
Vit 38.0 32.5 100

Finetuning
Rn50 92.6 91.6 100
Vit 91.9 90.7 100
Rn50 88.2 87.6 0.1

PromptFL
Vit 90.5 90.1 0.01

(c) OxfordPets

Method Model Acc F-1 Para

From Scratch
Rn50 10.3 7.6 100
Vit 8.7 8.3 100

Finetuning
Rn50 90.4 90.1 100
Vit 92.1 91.9 100
Rn50 88.5 88.5 0.1

PromptFL
Vit 92.9 92.8 0.01

(d) Food101

Method Model Acc F-1 Para

From Scratch
Rn50 21.1 19.8 100
Vit 21.0 19.9 100

Finetuning
Rn50 69.3 69.1 100
Vit 76.7 76.9 100
Rn50 78.0 77.9 0.1

PromptFL
Vit 85.8 85.7 0.01

(e) DTD

Method Model Acc F-1 Para

From Scratch
Rn50 10.4 7.4 100
Vit 12.1 9.9 100

Finetuning
Rn50 67.8 68.2 100
Vit 70.6 70.0 100
Rn50 55.0 53.9 0.1

PromptFL
Vit 58.6 57.8 0.01

(f) UCF101

Method Model Acc F-1 Para

From Scratch
Rn50 19.7 16.9 100
Vit 19.6 18.7 100

Finetuning
Rn50 74.1 72.9 100
Vit 80.5 79.6 100
Rn50 66.4 64.0 0.1

PromptFL
Vit 75.6 74.4 0.01

(g) Sun397

Method Model Acc F-1 Para

From Scratch
Rn50 10.0 7.9 100
Vit 9.8 8.2 100

Finetuning
Rn50 57.6 57.2 100
Vit 64.1 63.8 100
Rn50 66.4 65.9 0.1

PromptFL
Vit 70.9 70.1 0.01

(h) Average

Method Model Acc F-1 Para

From Scratch
Rn50 19.6 13.7 100
Vit 20.2 15.8 100

Finetuning
Rn50 77.4 76.2 100
Vit 81.3 80.3 100
Rn50 76.1 74.8 0.1

PromptFL
Vit 81.3 80.4 0.01

61

Table 4.3: Performance of PromptFL against existing FL framework with
non-iid data distribution. The table report the accuracy and F-1 score according
to the corresponding backbone and method under the non-iid data distribution. We
report the best score of each group with respect to method and model and annotate in
bold. Other than the iid scenario in Tab. 4.2, our method surpasses the alternatives
method by a significant margin across all datasets under the non-iid settings, with
only updating 0.01% „ 0.1% parameters. By contrast, finetuning and training from
scratch are not able to address shifted class distribution problem caused by non-iid
setting.

(a) Caltech101

Method Model Acc F-1 Para

From Scratch
Rn50 11.9 2.9 100
Vit 12.1 3.5 100

Finetuning
Rn50 29.8 12.2 100
Vit 29.9 12.2 0.1
Rn50 88.7 84.0 0.1

PromptFL
Vit 94.1 90.5 0.01

(b) Flowers102

Method Model Acc F-1 Para

From Scratch
Rn50 16.4 6.1 100
Vit 18.4 7.9 100

Finetuning
Rn50 24.4 10.7 100
Vit 24.5 11.2 100
Rn50 66.3 60.1 0.1

PromptFL
Vit 74.8 69.1 0.01

(c) OxfordPets

Method Model Acc F-1 Para

From Scratch
Rn50 8.3 3.8 100
Vit 6.8 3.4 100

Finetuning
Rn50 24.8 11.3 100
Vit 25.3 11.9 100
Rn50 87.0 86.9 0.1

PromptFL
Vit 89.5 88.5 0.01

(d) Food101

Method Model Acc F-1 Para

From Scratch
Rn50 14.1 7.1 100
Vit 11.9 5.9 100

Finetuning
Rn50 22.9 10.2 100
Vit 23.8 10.7 100
Rn50 78.1 78.0 0.1

PromptFL
Vit 85.9 85.8 0.01

(e) DTD

Method Model Acc F-1 Para

From Scratch
Rn50 7.4 2.9 100
Vit 8.5 3.2 100

Finetuning
Rn50 42.4 37.3 100
Vit 36.3 31.2 100
Rn50 44.4 42.3 0.1

PromptFL
Vit 47.5 45.4 0.01

(f) UCF101

Method Model Acc F-1 Para

From Scratch
Rn50 7.4 2.9 100
Vit 8.5 3.2 100

Finetuning
Rn50 42.4 37.3 100
Vit 36.3 31.2 100
Rn50 44.4 42.3 0.1

PromptFL
Vit 47.5 45.4 0.01

(g) Sun397

Method Model Acc F-1 Para

From Scratch
Rn50 6.5 2.7 100
Vit 5.8 2.4 100

Finetuning
Rn50 23.5 15.0 100
Vit 22.1 12.2 100
Rn50 61.1 59.9 0.1

PromptFL
Vit 66.9 65.5 0.01

(h) Average

Method Model Acc F-1 Para

From Scratch
Rn50 10.6 4.3 100
Vit 10.5 4.4 100

Finetuning
Rn50 30.0 18.9 100
Vit 28.3 17.0 100
Rn50 70.0 67.4 0.1

PromptFL
Vit 75.6 73.3 0.01

62

5 10 2085

86

87

88

89

90

Ac
cu

ra
cy

 %
87.5

88.5
89.2

80

81

82

83

84

85

86

F-
1

%

Caltech101

5 10 20

66

68

70

72

Ac
cu

ra
cy

 %

66.3

67.4

71.2

60

62

64

66

68

70

F-
1

%

Flowers102

5 10 2085

86

87

88

89

90

Ac
cu

ra
cy

 % 88.2 88.5
89

86

87

88

89

90

F-
1

%

OxfordPets

5 10 2075

76

77

78

79

80

Ac
cu

ra
cy

 % 77.8
78.2 78.5

75

76

77

78

79

80

F-
1

%

Food101

5 10 2040.0

42.5

45.0

47.5

50.0

52.5

55.0

Ac
cu

ra
cy

 %

42.2

49.2

53.3

35

40

45

50

F-
1

%

DTD

5 10 20

60

62

64

66

Ac
cu

ra
cy

 %
60

62.6

64.6

56

58

60

62

F-
1

%

UCF101

5 10 2055

56

57

58

59

60

61

Ac
cu

ra
cy

 %

58

59.1
59.7

55

56

57

58

59

60

F-
1

%

Sun397

5 10 20

66

68

70

72

74

Ac
cu

ra
cy

 %

68.6

70.5

72.2

65

66

67

68

69

70

71

F-
1

%

Average

Figure 4.2: Performance of PromptFL with different class distribution. We
evaluate the performance on seven datasets and record the average performance. X-
axis represents the number of classes on each client. Bars represent accuracy and
lines indicate F-1 score. We place random fixed number of classes on each client and
range the number from 5 to10 to 20. As the number of classes on client gets larger,
performance on both the accuracy and the F1 value improve. Furthermore, as the
number of classes becomes sufficient, the improvement speed gets slower.

the training FLOPs of PromptFL is much smaller and negligible compared to FL.

For both PromptFL and FL, inference requires FLOPs computed by (2ˆmodel

parametersˆinput sequence length), in the setting where the key and value vectors

for attention computation are cached. Compared to the acceptable computational

and storage costs, the RAM on the modern cell phones is a key bottleneck. We

believe that this bottleneck will no longer be a problem in the near future as the

techniques evolve: (1) Out-of-the-box offloading inference [106]. (2) Trends for more

RAM [98] and tiny CLIPs [119]. (3) Inference with quantization methods [38].

Compatibility Existing CLIP-based backbone in our method focuses on the

classification task. However, apart from image classification, many different vision

tasks are compatible with PromptFL, such as object detection [40], video under-

standing [140] and visual question answering [113] by changing different backbone

models. This means that the system cost of PromptFL is shared by many tasks.

63

1 2 4 885

86

87

88

89

90
Lo

ca
l A

cc
ur

ac
y

%

85.6

86.6
87.3

89.1

85

86

87

88

89

90

Gl
ob

al
 A

cc
ur

ac
y

%

Caltech101

1 2 4 860

65

70

75

80

85

Lo
ca

l A
cc

ur
ac

y
%

66.4
69.9

76.5

81.3

60

65

70

75

80

85

Gl
ob

al
 A

cc
ur

ac
y

%

Flowers102

1 2 4 880

82

84

86

88

90

Lo
ca

l A
cc

ur
ac

y
%

83.1 83.6
84.5

86.2

80

82

84

86

88

90

Gl
ob

al
 A

cc
ur

ac
y

%

OxfordPets

1 2 4 870

72

74

76

78

80

Lo
ca

l A
cc

ur
ac

y
%

75.4
76.5 76.7

79.4

70

72

74

76

78

80

Gl
ob

al
 A

cc
ur

ac
y

%

Food101

1 2 4 845

50

55

60

65

Lo
ca

l A
cc

ur
ac

y
%

49.9

53.5
56.3

62.4

45

50

55

60

65
Gl

ob
al

 A
cc

ur
ac

y
%

DTD

1 2 4 860

65

70

75
Lo

ca
l A

cc
ur

ac
y

%

62.8
65.1

68.4

73.9

60

65

70

75

Gl
ob

al
 A

cc
ur

ac
y

%

UCF101

1 2 4 855

60

65

70

75

80

Lo
ca

l A
cc

ur
ac

y
%

60.3
63.1

67

75.4

55

60

65

70

75

80

Gl
ob

al
 A

cc
ur

ac
y

%

Sun397

1 2 4 855

60

65

70

75

80

Lo
ca

l A
cc

ur
ac

y
%

69.1
71.2

73.8

78.2

55

60

65

70

75

80

Gl
ob

al
 A

cc
ur

ac
y

%

Average

Figure 4.3: Performance of PromptFL with different shots. We deploy the
experiments on seven datasets and record the average one. X-axis represents the
number of shots for each class, ranging from 1 to 2 to 4 to 8. Bars represent the local
accuracy and lines represent the global accuracy, which implies the personalization
and generalization ability respectively. As the number of shots increasing, the local
performance improves. However, global performance is not affected much by the
variation of number of shots, as we can observe that the global performance remains
stable as shots increase.

The prompt learner incurs these costs per personal task specific user subset requires.

PromptFL is thus competitive in terms of economics.

4.3.4 Privacy Concerns

As we have outlined in the framework, PromptFL achieves to train prompts in

concert with the federated server. Each participant user only needs to upload its

local parameter update of the prompt learner rather than the raw data of images.

Such a method avoids leakage of raw images, thereby better adapting to the privacy-

preserving settings of the FL. On the other hand, the parameters of prompt learner

only describes the correlation between classes and textual prompts, and do not di-

rectly contain any visual feature embeddings. Also, the parameters of prompt learner

are static (i.e., input-agnostic) across the training data. This is useful when faced

with a server that wants to recover the raw data from an update [155].

64

20 50 10080

82

84

86

88

90

92

Lo
ca

l A
cc

ur
ac

y
% 89.4

86.6

84.1

80

82

84

86

88

90

92

Gl
ob

al
 A

cc
ur

ac
y

%

Caltech101

20 50 10064

66

68

70

72

Lo
ca

l A
cc

ur
ac

y
%

68.2

69.9

67.6

64

66

68

70

72

Gl
ob

al
 A

cc
ur

ac
y

%

Flowers102

20 50 10080

81

82

83

84

85

Lo
ca

l A
cc

ur
ac

y
%

84
83.6

81.1

80

82

84

86

88

90

Gl
ob

al
 A

cc
ur

ac
y

%

OxfordPets

20 50 10070

72

74

76

78

80

Lo
ca

l A
cc

ur
ac

y
% 77.6

76.5

72.7

70

72

74

76

78

80

Gl
ob

al
 A

cc
ur

ac
y

%

Food101

20 50 100
46

48

50

52

54

56

Lo
ca

l A
cc

ur
ac

y
%

52.7
53.5

48.6

46

48

50

52

54

56

Gl
ob

al
 A

cc
ur

ac
y

%

DTD

20 50 10060

62

64

66

68

Lo
ca

l A
cc

ur
ac

y
%

63.6

65.1

62

60

62

64

66

68

Gl
ob

al
 A

cc
ur

ac
y

%

UCF101

20 50 100

56

58

60

62

64

Lo
ca

l A
cc

ur
ac

y
%

63.1 63.1

59.5

56

58

60

62

64

Gl
ob

al
 A

cc
ur

ac
y

%

Sun397

20 50 100

66

68

70

72

74

Lo
ca

l A
cc

ur
ac

y
%

71.6 72.2

70.3

66

68

70

72

74

Gl
ob

al
 A

cc
ur

ac
y

%

Average

Figure 4.4: Performance of PromptFL with different clients. X-axis repre-
sents the number of clients during the training, ranging from 20 to 50 to 100. For each
setting, we set the same participation rate of r “ 10%. The overall performance does
not obey the strict increasing or decreasing trend as the number of clients changes.
We observe that the personalization ability may bed affected when the number of
clients gets larger, since the clients which do not engage in the training increase.
Also, too few clients may lead to insufficient diverse of the training classes, thus lead
to under representative of generalization ability.

Inference APIs While pre-trained CLIPs are available for download at the time

of writing this paper, high-performance models in these domains are often costly to

train. For example, the CLIP model trained on 400 million labeled images. The

training process took 30 days across 592 V100 GPUs [105]. This would have cost

million dollars to train on AWS on-demand instances. The value of these models

and their exposure over publicly-accessible APIs make us rethink the framework of

PromptFL. As illustrated in Figure 4.1, we hypothesize that the model APIs typi-

cally return low-dimensional outputs like confidence scores or logits, so information

leakage is significantly reduced [29]. In such a case, the prompt learner can still

be trained normally, because the CLIP backbone is kept frozen during the training

process. The difference is that users need to make queries to the model APIs with

their private images. Some lightweight secure inference techniques like [83] can be

used in the framework to protect privacy.

65

6.3 6.3

191

693.3

Resnet50 Vit

M
B

pe
rr

ou
nd

Communication Cost
PromptFL Finetuning

2444

90767189

21674

Reset50 Vit

Se
co

nd
pe

r5
0

ep
oc

h

Training GPU time
PromptFL Finetuning

9039

5949

13168

7815

Resnet50 Vit

M
B

GPU Memory Usage
PromptFL Finetuning

202

50500

Training Data Usage

N
um

be
r

Training Data Usage
PromptFL Finetuning

Figure 4.5: Comparison of computation and communication cost of
PromptFL and Finetuning FL. We measure the communication cost by the size
of uploaded data per round, and observe that finetuning FL takes up to 110 times
of cost more than PromptFL. Furthermore, finetuning and training from scratch
take 2 to 3 times of round more than PromptFL for training, which exacerbate the
communication expenses. We also utilize GPU memory usage, training GPU time
and training data usage to evaluate the computational cost. Training GPU time
is calculated by the time of training 50 epoch and training data usage is reported
by training food101, which we can observe that finetuning require 250ˆ more than
PromptFL. We can see that PromptFL surpasses the existing framework in the
entire aspects of communication and computation efficiency.

4.4 Experiments

Our experiments aim to answer the following research questions that are important

for the practical deployment of FL methods, while also contributing to our under-

standing of the PromptFL paradigm.

• Is PromptFL able to train a competitive performance in FL as compared to

which have been the de-facto method on image classification tasks?

• Is PromptFL capable of handling heterogeneous data distributions (a.k.a.

non-IID settings) across clients?

• Is PromptFL competitive with the de-facto method in terms of computational

communication overhead?

• What is the difference between PromptFL and the fine-tuning of visual pre-

trained models in FL?

66

• What practical tips help the service provider and participants deploy PromptFL

in FL?

4.4.1 Experimental Setup

Datasets We select a representative collection of recognition datasets used in CLIP

as our benchmarks. General Objects: Caltech101 [33] for general object detec-

tion. Fine-grained Categories: Flowers102 [92], OxfordPets [96] and Food101

[7] for fine-grained classification from diversified categories. Action Recognition:

UCF101 [120]. Texture Classification: DTD [19]. Scene Recognition: Sun397

[139] for scene recognition.

Baselines As compared to our proposed PromptFL, we choose current repre-

sentative framework in FL, FedAVG, by updating and averaging the model weights

collaboratively among server and clients. We compare both training from the scratch

and fine-tuning with pretrained models as our baseline method. We select the most

prevailing models, Vit b16 and Retnet50, as our backbone in both our image encoder

of PromptFL and the corresponding backbone in the baseline method.

Fine-tuning vs. Prompting How does the prompting differ from the existing

adaptation method in FL? Currently in vision, the standard adaptation method is

fine-tuning. Therefore we consider fine-tuning as the de-facto way of adapting visual

pre-trained models in FL. Fine-tuning is highly flexible in its usage: it can adapt

the pre-trained models to new input domains or new tasks with different output

semantics. Yet it also requires some level of access to the pre-trained models: often

entire parameters. Unlike fine-tuning, prompting adapts the inputs to a pre-trained

model by modifying the model’s inputs. This opens up unique applications: the

input-space adaptation puts control in the hands of the FL user; FL users only need

to find the prompts, they don’t need to control the pre-trained model itself while

training and testing. In this way, FL users can provide adapted images and prompts

67

to an online API that can only operate on their inputs. On the other hand, fine-

tuning is typically conditioned on inputs. Its update also directly contains some

embeddings of visual feature information. In contrast, the prompts we explore in

this paper are input-agnostic across the training data. So the prompting can prevent

leaking of user’s private information from FL update to a certain extent.

CLIP PromptFL For CLIP, an image-language model, PromptFL organizes

users to collaboratively learn prompts as the CLIP’s output transformation function.

Given a frozen pre-trained CLIP F and a task dataset Dtpxm,ymqu across clients,

the target of PromptFL is to learn a single, static, task-specific prompting fprompt

on class space parameterized by [prompt vectors]. Image classes are represented

by labels (e.g., ‘panda’) which are then prompted (i.e., ‘[prompt vectors][panda]’)

to specify the context of the user’s task. We follow CLIP’s protocol and compute

the cosine similarity of the embeddings for each class, normalized to a probability

distribution via softmax. The class with the highest probability is selected as the

model output. The prompting is added to the class space to form a prompted output

y`vf . During training, PromptFL will maximize the likelihood of the correct label

y,

max
fprompt

pF ;fprompt
py ` vf |xq, (4.2)

while the gradient updates are applied only to the [prompt vectors] vf and the CLIP

parameters F remain frozen. During validation, the optimized prompt is added to

all test-time classes, Dtesttpxm,ym ` vf qu, which will be then processed through the

frozen F .

Training Details To validate the effectiveness of our method, we compare the

performance of PromptFL with existing framework by 1) training the collaborative

model from the scratch and 2) fine-tuning the full model with pretrained weights.

We evaluate the performance on seven representative datasets used in CLIP across

68

various categories like general objects, fine-grained classification, action recognition,

texture classification and scene recognition. We report the performance with two

representative and influential backbone, Resnet50 (38.3M parameters) and Vit b16

(86.6M parameters). All experiments are conducted with Pytorch on GeForce RTX

3090 GPU. Training is performed with SGD with 0.001 learning rate.

For the evaluation metrics, we select three aspects to assess the performance

of each method, 1) representative Top-1 accuracy on the test set, 2) F1 score to

measure the weighted and unified average of precision and recall, which is more

useful especially on unbalanced class distribution, 3) as well as the computational

and communication cost reported in Fig. 4.5. We presuming that higher result on

accuracy and F-1 score as well as lower result on computation latency will lead to

better a framework, detailed comparison results show the superior if PromptFL in

Tab. 4.2 and Tab. 4.3.

Main Results Tab. 4.2 and Tab. 4.3 measures the overall performance of PromptFL

against existing framework from the perspective of two data distribution settings. 1)

For the iid setting, each client shares the same classes, and the shots for each class

on client is identical. We can see that from 4.2, PromptFL obtains superior results

with similar or better accuracy and F1 value, but with only 0.01% „ 0.1% learnable

parameters with the iid setting. Specially, for Vit-b16 served backbone, PromptFL

surpasses the alternatives over the average across benchmarks with only 1 % 100 of

the learnable parameters compared to the others. While for the Resnet50, although

PromptFL does not achieve the optimal performance one some datasets, the gap

is negligible. 2) For the extreme non-iid setting, each client owns the independent

and non-overlapping classes. We can observe that from Tab. 4.3 that PromptFL

achieves competitive performance on both accuracy and efficiency, and outbeats the

existing framework comprehensively across all benchmarks by a large margin under

the with the non-iid setting. Superior outcome on both settings manifest the ad-

69

vantage of our proposed PromptFL. What’s more, the outstanding generalization

ability exhibited in PromptFL under the non-iid scenarios further validate the ef-

fectiveness of our method. We further analyze the ability with the non-iid setting in

the following sections. On the contrary, existing framework shows miserable stability

when encountering shifted class distribution other than unified mode by observing

the Tab. 4.3.

Data Distribution Analysis After obtaining the decent performance in both

extreme iid and non-iid settings, we hope to further testify the stability of PromptFL

and figure out the impact of different data distribution on clients to the performance

of PromptFL. Inspired by the previous personalized work, we consider the patho-

logical non-iid setting in our experiments. Here we set n “ 50 clients with r “ 10%

participation. To observe the intermediate status, we select a fixed number p of

classes on each client, ranging from 5 to 10 to 20, which means that random num-

ber of p classes appears on each client. Fig. 4.2 reports the general test accuracy

and F1 with corresponding distribution. From the result, we observe that as the

number of classes on each client increases, the performance of both test accuracy

and the corresponding F1 value improves. The observation implies that the lack of

certain classes may empire the the overall performance, which is in consistent with

our training logistic. We also notice that as the data for the whole training system

reaches sufficient status, the performance becomes stable, as we can see that the gap

decreases as the number of classes large enough.

Impact of number of shots Following the few-shot evaluation setting adopted

in CLIP, we further explore the effect of number of shots within PromptFL. We

select fixed number of shots on each client from 1, 2, 4, 8 during the training process

and validate the performance with corresponding test sets. We not only observe

the generalization ability of PromptFL, but also place significant emphasis on the

personalization aspect. We record the two indicators as global accuracy and local

70

accuracy. From the result in Fig. 4.3, we observe that as the number of training ex-

amples per class increases, personalized local performance of PromptFL enhanced.

However, general global performance remains stable as the number of shots fluc-

tuates. The observation implies that the number of training data only influence

the personalization performance of the local model, while has little impact over the

generalization ability.

Comparison with different clients Further, to explore the possible impact

caused by different clients, we further study the performance of PromptFL with

different clients from 20 to 50 to 100, with the non-iid data distribution and r “ 10%

participation for each mode. We set the fixed shots for different mode, here we

set s “ 2. From the result in Fig. 4.4, we observe that for different number of

clients, performance with relatively large clients will be harmed. This phenomenon

is more server in the local personalized data performance other than the general

global performance. The reason is that as the number of clients becomes larger, the

number of clients which may not be chosen during the training increases. Thus, the

local performance is more likely to be affected. On the other hand, for some tasks

such as fine-grained categories, action recognition and texture classification, limited

clients implies shortage of available data sources which may restrict the diversity of

of training data. Thus, the general performance in some cases reaches unsatisfactory

with fewer clients. However, the number of clients will not influence the performance

trend caused by different data distribution or number of shots as shown in Fig. 4.3

and Fig. 4.2.

Computation and Communication Cost Analysis We also analyse the ef-

ficiency of PromptFL with regard to the computation and communication cost

during training. We measure the communication cost by the size of uploaded data

per round, and the total round to be transmitted. For the computation cost, we

calculate the GPU memory utilization and training GPU time for given steps. Fig.

71

4.5 shows the comparison between existing finetuning framework and our proposed

PromptFL. We observe that PromptFL can save at most 110 times commu-

nication cost per round compared to existing prevailing method, let alone that

PromptFL takes half of rounds to reach convergence, which makes a wider dis-

parity in communication cost between them. As for the computation cost, we report

the comparison of GPU time as in the same given steps, where PromptFL remains

outperform existing framework around 3 times. Further more, there is huge advan-

tage that PromptFL consumes far less GPU memory during training, which can

alleviate the system burden in practical.

4.5 Chapter Summary

Overall, there are many unknowns about PromptFL and this paper sets out to

investigate its feasibility. In summary: (1) We demonstrate the system feasibility of

PromptFL on modern hardware, in terms of overhead in communication, training,

and inference. (2) We show that PromptFL keeps data on each device private,

aiming to learn global prompts updated only by communicating gradients rather

than the data itself, and thus not less private than FL. (3) We implement a proof-

of-concept in the framework, spanning a range of popular image classification tasks.

We find PromptFL to be competitive with strong FL baselines.

72

Chapter 5

pFedPrompt: Learning Personalized

Prompt for Vision-Language

Models in Federated Learning

5.1 Introduction

User modeling has been widely employed in Federated Learning (FL) by collabo-

ratively capturing the latent characteristics of users from their behaviors with the

exchange of locally obtained parameters [138, 60]. Meanwhile, such cooperative

ecosystem has been applied in various scenarios to realize benefits, including recom-

mendation [143], medicine [101], and finance [84].

However, with the significant increase in user data and model capacity, the com-

munication and computational overhead generated by the FL co-modeling process

will become increasingly unbearable for users [104]. Even worse, when the model

is large, achieving the model’s performance inherently requires the user to expose

copious amounts of private data to the system [26]. This private information can be

recovered from the exchanged parameters or intermediate results, raising potential

privacy risks [90, 89, 155].

73

Fortunately, as pretrained vision-language models like CLIP [105] show great po-

tential in learning representations, a recently proposed method called Contextual

Optimization (CoOp) [152] introduces the concept of training prompt for adapting

pretrained vision-language models. Based on the lightweight nature of this adap-

tation, researchers [44] have shifted the paradigm of CoOp to FL to overcome the

problems outlined above. Their core idea is to use CoOp at each client to convert

context words in prompt into a set of learnable vectors, and to optimize prompt via

standard FL algorithm. According to [81, 152], activating the pre-trained knowledge

via training prompt is both data- and parameter-efficient, thereby greatly benefiting

FL over existing frameworks in terms of computation, communication, and privacy.

Although using prompt in FL to activate the pre-trained knowledge is a promising

direction, a major challenge for deploying such approaches in FL is the heterogeneity

of users. In this paper, we show that current prompt training is essential to model

the user consensus. When the learned consensus is applied to the user’s task, the sig-

nificant gap between them will reduce the effectiveness of user modeling [149, 73, 75].

Research over the past few years has applied personalized FL (pFL) approaches to

customizing models for heterogeneous users. These model-based pFL methods can be

categorized into four types: local fine-tuning [17, 124, 135], parameter decomposition

[4, 20, 10], regularization [74, 47, 48, 123], and clustering [57, 148]. We investigate a

range of vanilla methods by directly applying ideas of personalized methods in the

paradigm of pre-trained models and prompt. Such vanilla methods easily inherit

advances of pFL, yet are unable to capture the multimodality of vision-language

models, thereby leading to insufficient personalization and performance.

As the first attempt to learn personalized prompt in FL, we propose pFedPrompt,

which takes advantage of the multimodality of vision-language models through two

components. Specifically, the Global User Consensus (GUC) component allows full

exploration in the word embedding space by globally optimizing continuous vectors,

74

which facilitates the learning of general user consensus. The Local Feature Attention

(LFA) component leverages a local personalized attention module by interacting with

the spatial visual features in the visual space to dynamically lookup user-relevant

features, which adapts the consensus knowledge encoded in GUC by feature retrieval.

By incorporating the knowledge retrieved from GUC and LFA, the learned prompt

turns out to be personalized according to users’ features, so that the user achieves

improved accuracy in practical FL classification tasks. Since FL does not exist

baseline against any such personalized approach, we implement pFedPrompt and

other pFL methods in the framework as baselines. Extensive experiments spanning

a range of popular image classification tasks are conducted under the FL setting. We

find that pFedPrompt beats baselines with competitive and robust performance. To

summarize, the main contributions of this paper are four-fold:

• We find that current prompt training in FL is essentially to model the user

consensus and lacks adaptation to user characteristics. We thus propose the

problem of learning personalized prompt in FL (see figure 5.1).

• We survey existing model-based approaches in pFL and adapt them into the

prompt training manner. We find that these existing personalized techniques

cannot capture the multimodality of vision-language models, thereby leading

to insufficient personalization and performance.

• To unleash the multimodality, we present pFedPrompt, which learns user con-

sensus in linguistic space and adapts to user features on each client in visual

space respectively. By incorporating the knowledge retrieved from multimodal-

ity, the challenge of user statistical heterogeneity is addressed.

• We evaluate pFedPrompt against the existing personalized techniques on widely-

adopted datasets. Extensive experiments and ablation studies demonstrate the

75

superiority of our methods.

Pretrained Models

Capturing General Features

training prompt in FL
Prompt + Pretrained Models

Features of User Consensus

adaptation to

Prompt + Pretrained Models
adaptation to

User's Local Features

prompt personalization

CLIP Backbone

learnable prompt

CLIP Backbone

learnable prompt

CLIP Backbone

learnable prompt

CLIP Backbone

learnable prompt

Parameter Aggregation

CLIP Backbonevisual embedding

word embeddingprompt: this is a photo of [?]

this is a photo of [panda]

cosine_similarity(vision|word)

user consensus

Figure 5.1: Stages of using pre-trained models with prompt in federated learning:
(1) pre-trained vision-language models contain general knowledge that is transferable
across a wide range of user modeling; (2) prior work activates the knowledge of pre-
trained models by training prompt in the word embedding space so as to model
user consensus; (3) our work aims to personalize prompt and further adapt the user
consensus to the user’s local features.

5.2 Preliminaries

5.2.1 User Heterogeneity

The fundamental challenge in addressing user heterogeneity is the presence of non-

IID data [60], so we begin by investigating this issue and highlight potential mitiga-

tions. While the meaning of IID is generally clear, data can be non-IID in many ways

[73]. The most common sources of non-IID data are due to each user correspond-

ing to a particular device, web service, geographic location, and/or time window.

For example, users in different regions may have very different disease distributions.

There may be more skin cancer patients in southern hemisphere countries than in

the northern hemisphere due to the ozone hole. Thus, the label distribution varies

76

… …

… …

local fintuning

decouple

base+personalized
…

…global prompt

local prompt
… …

𝛿 𝜉!𝜃!+ 𝜉"𝜃"+ …+ 𝜉#𝜃#

𝜃! 𝜃"

prompt parameter

aggregationv1 v2 … vp [class] Textual
Encoder

Visual
Encoder

input image

input prompt

⨀
logits

a) Local Fine-tuning

b) Parameter Decomposition c) Regularization d) Similarity

Model structure on clients

: learnable

: fixed

Figure 5.2: Illustration of baseline methods for personalized prompt for
vision-language models in federated learning. The left above part shows the
detailed structure of models on clients, which contains textual and visual encoders
which are frozen and prompt which is learnable. To simplify the illustration of
client model on for each method, we only utilize the learnable prompt to represent.
Four personalized prompt learning techniques are introduced: a) local fine-tuning
of prompt performed after obtaining global prompt, b) base vectors are aggregated
while personalized vectors update locally, c) regularization is performed between
global prompt and local prompt, d) clients relationship is leveraged for better per-
sonalization.

from user to user. Another example is that users have different writing styles. In this

case, the feature distributions of the users are different. In this paper, we consider

differences in the data or feature distribution on each user. According to previous

research [54, 62, 75], non-IID data settings reduce the effectiveness of user modeling

in FL.

5.2.2 Personalized Federated Learning

Federated Learning. The term federated learning was introduced by [87]. In

a centralized setting, the federated server initially sends global model parameters

to each user. Then the server aggregates the user’s parameters and transmits the

updated model back to each user. In addition to centralized federated learning,

there are also some implementations of federated learning based on decentralized

77

frameworks, where the aggregation of parameters occurs in some users [112, 68, 55].

The utilization of stochastic gradient descent (SGD) [21, 8] in FL makes it prone to

face statistical challenges, since IID sampling of the training data is important to

ensure the unbiased estimate of the full gradient [107]. In practice, it is unrealistic

to assume that each user’s local data is always IID.

Personalized FL. In recent years, personalized federated learning has received

increasing attention due to its potential in handling user statistical heterogeneity.

The core idea of model-based pFL is to produce customized model structures or

parameters for different users. Existing model-based pFL methods can be catego-

rized into two types according to the number of global models applied in the server,

i.e., single global model, and multiple global models. Single global model type is a

close variant of conventional FL algorithms like FedAVG [87], that combines global

model optimization process with additional local model customization, and consists

of three different kinds of approaches: local fine-tuning [17, 124, 135], parameter

decomposition [4, 20, 10], and regularization [74, 47, 48, 123]. These pFL methods

apply a single global model and thus limit the customized level of the local model

on the user side. Some researchers recommend training multiple global models on

the server, where users are clustered into several groups according to their similarity

and different global models are trained for each group [57, 148, 126]. We will discuss

more details in section 5.3.1 how to directly apply existing pFL methods to prompt

training.

5.2.3 Prompted Vision-Language Models

Vision-Language Models. The most trendy vision-language models like CLIP

[105] and ALIGN [59] are neural networks pretrained on hundreds of millions of

image and caption pairs. These models encode images and captions separately as

vectors, enabling users with visual modality samples to retrieve, score, or classify

78

samples from textual modalities. In other words, these models extend the knowledge

of classification models to a wider range of things by leveraging semantic information

in text.

Prompt Training. The pretrained vision-language models like CLIP consist of

an image encoder and a text encoder to predict the pairing relationship between im-

ages and texts. Therefore, these models can be converted to an image classifier. As

shown in figure 5.1, the users may convert all [class] to prompt such as “this is a photo

of [class]” and predict the caption class the model estimates the best pairing with the

given image. Previous research has involved prompt engineering [35, 77, 118, 146],

in which human engineers or algorithms search for the best template for the classes.

Prior work [44] proposes a federated prompt engineering framework and optimizes

the prompt collaboratively via standard FL algorithm. The federated server aggre-

gates only the parameter updates of the prompt across users, and keeps the CLIP

backbone frozen locally. Therefore, using prompt training in FL incurs significant

less computation and communication overhead than conventional FL. Nevertheless,

the current prompt training in FL is essentially to train the user consensus (see fig-

ure 5.1). Different from previous research, our work aims to personalize prompt and

further adapt the user consensus to the user’s local features.

5.2.4 Attention Mechanism

Attention was first presented in the [5] and later emerged from [132] as an important

component in the transformer architecture to decouple the long-range dependency of

sequences, in the field of neural language processing. Nowadays, attention mechanism

has developed vigorously in the field of computer vision by adaptively weighting

features according to the importance of the input, and has shown its advantage in

deep feature representation for visual tasks [42]. Other than the above training-based

attention mechanisms which aims to select the important channels [56], branches [15]

79

or spatial regions [11] inside the neural network, we inspire by [41] and propose a

non-parametric attention module to capture the global data context for the local

adaptation.

5.3 Prompt Personalization

In this section, we first investigate the under-explored methods of how to apply

existing advances of pFL (as referred to in section 5.2.2) to prompt training in a

straightforward manner. Unfortunately, these vanilla methods cannot capture the

multimodality of vision-language models, thereby leading to insufficient personaliza-

tion. We then present pFedPrompt, which can unleash and incorporate the knowledge

retrieved from the multimodality.

5.3.1 pFL – Straightforward But Insufficient

Local Fine-tuning. ”FL training + local adaptation” is usually regarded as a

simple yet effective personalization paradigm by the FL community [124, 60, 86].

After obtaining a collaboratively trained global model, each client adapts their local

model through additional training with local datasets. Recently, the significance and

effectiveness of this two-step paradigm have been brought up and emphasized by [17].

Similar in our case, when learning on heterogeneous data, all the clients train

collaboratively by aggregating only the parameters of prompts but freezing the cor-

responding textual and visual backbone. After reaching a global user consensus

prompt, each client fine-tunes the global prompt with its own few-shot data and

obtains a personalized prompt. Personalized prompts are utilized with previously

frozen backbones for further inference.

Parameter Decomposition. Parameter Decomposition is an architecture-

based approach which aims to address the personalization problem by decoupling

the personalized parameters from the global ones. [4] believes that deep learning

80

model can be divided into two parts, ”base layers” and ”personalization layers”.

Base layers are uploaded to join the formation of global model, while the personal-

ized layers are kept locally by each client. [20] shares the same idea with different

training procedures.

Inspired from [4, 20], here we intend to achieve personalization by viewing the

learnable vector as base + personalization vectors and intend to decouple the person-

alized one from the base one. We presume that the former vectors act on common

effects and intend to lead to a general performance, while the latter vectors which

next to the class token emphasize on the specific performance related to the labels.

Thus, during each iteration, we only transmit and aggregate the parameters of base

vectors to the server and leave the personalized vectors on the local.

Regularization. Regularization is always employed in controlling the model ex-

pression ability during the training process [64]. In federated learning, regularization-

based techniques are alleviated to address the client shift problem due to data het-

erogeneity by controlling the relationship between clients and global model. [74]

introduced a proximal term on the local objective function to effectively limit the

capability of local updates by restricting them to the current local model.

In our context, we aim to maintain the general instructive ability of prompt, but

also allow them to approach the performance of their own local data distribution.

Thus, we apply the method of [74] on learnable prompt by restricting the update of

local prompt to not deviate too much from the current global prompt.

Similarity. Other than the above methods, similarity-based approaches are

commonly used by leveraging the relationship and data distribution between clients.

[57] propose a similarity-based mechanism to enforce that FL clients with similar

data distributions collaborate intensely with each other, while clients with different

data distributions have less impact on each other. Specifically, in each iteration,

each client will maintain a cloud model which is the linear combination of the other

81

clients, after obtaining the new model each client will perform local training with its

private data.

Here we follow the idea of weight combination in prompt learning. Specifically,

each client obtains a personalized prompt as a linear combination of the other local

prompts, uc “ ξc,1θ1`¨ ¨ ¨`ξc,mθm where
ř

mPC ξc,m “ 1. C is the set of local prompts,

ξ is the coefficient that should be applied on θ, and θ is the weight parameter of other

local prompts. For each round we obtain the above new prompt for each client and

then update them locally, we perform this two-step interactively.

Limitations. The above methods are novel personalized prompt attempts for

vision-language models when encountering data heterogeneity. However, problems

may be encountered when transferring the setting from traditional model architecture

to learnable prompt. First, parameters are few. Compared with the backbone

model, the amount of the learnable parameters is very small, which lets us think if the

above personalized techniques suit well for models with small parameters? Second,

shots are few. Few-shot learning is employed in prompt learning instead of the

traditional large amount of data, which might incur poor effect to the techniques

that are data-driven. Third, two modalities exist. Other than the single modality

which only trains for images, vision-language models leverage the alignment of both

textual and visual modality to enhance the performance of visual tasks with zero-

shot or few-shot applications. However, the existing approaches only focus on the

update of the prompt. i.e., the input of the text encoder, which raises a question

that if it is enough to only adapt the single modality. Based on the above thinking,

we employ several experiments in Sec. 5.4 and propose the following pFedPrompt

approach.

82

v1 v2 … vp [class] Textual
Encoder

Visual
Encoder

input image

input prompt

logits

Personalized
Attention ⊕

𝐹$ ∈ 𝑅%×'

𝐹(∈ 𝑅)×*×'

Norm(𝐹()

𝐷+ 𝐷,

query
attention map

⊗

⊗

… …

…
GUC:

LFA:

pFedPrompt: GUC + LFA

LFA:

∈ 𝑅%×' ∈ 𝑅%×%

: learnable

: fixed

K : # of classes

Figure 5.3: Illustration of pFedPrompt of personalized prompt for vision-
language models in federated learning.The right part shows the workflow of
pFedPrompt and the left part shows the detailed topography and pipeline of local
model on the client. During the training process, only learnable prompt on each
client is uploaded to capture the global user consensus. After obtaining the global
prompt, textual encoder on each client is leveraged to generate the common textual
features. On the other hand, each client maintains a non-parametric personalized
attention module respectively, and combines with the visual encoder to generate the
local personalized spacial visual features additionally. In this way, GUC and LFA
work together to achieve superior performance for all clients under the heterogeneity
setting.

5.3.2 pFedPrompt – Unleashing Multimodality

Motivation. As we survey the existing approaches on vision-language models in

federated learning, several attempts have been explored to capture user consensus

through prompt training [44, 137]. However, user characteristics, especially heteroge-

neous data distribution with real-world scenarios have been neglected so far. What’s

more, we observe that all the attempts, including the personalized techniques above,

are conducted with prompts according to the existing paradigm, leaving both textual

and visual encoder fixed.

Although achieving adequate performance by collaborative prompt training dur-

ing the learning process, we notice that visual feature has not been leveraged for

adaptation at all. This finding leads us to presume that there is still a room for im-

provement since the semantic gap incurred by local dataset is much larger between

83

visual features than the one between text features.

Design. To capture the general features for all clients as well as adapting to the

local personalization on each client, we present pFedPrompt, which contains two

parts, Global User Consensus (GUC) and Local Feature Attention (LFA). GUC is

captured through the textual space by global optimization of the learnable prompt.

After obtaining the GUC, local personalization is realized on each client with the

help of LFA through parameter-free attention to capture the additional personalized

features and merge them to the final logits. The pipeline of pFedPrompt is shown in

fig 5.3, which unleashes the modality in vision-language models. We will introduce

GUC and LFA in detail as follows:

Global User Consensus (GUC). Each client is given a pre-trained vision-

language model, with a fixed textual and visual encoder. Instead of the hand-craft

prompt in[105], we introduce a set of p continuous vectors with d-dimension to form

a learnable prompt that can be optimized through training. Here we use p “ 16 and

d “ 512 as the word embedding in the text encoder.

Let gp¨q and hp¨q be the feature extraction function of the image and text encoder,

k denotes the number of classes and each Pi is derived from the prompt in the form

of [v1][v2]...[vp][class]i, where [class]i is replaced by the word embedding vector of the

corresponding ith class label name. By forwarding the image-text pairs, each vision-

language model will maximize the cosine similarity of the correct pairs and minimize

the remaining incorrect pairs. The prediction probability on each client is computed

as follows:

ppy “ i|xq “
exp pcosrgpxq|hpPiqsq

řk
j“1 exp pcosrgpxq|hpPjqsq

, (5.1)

where Pi is the only part that can be updated during training. Each client

84

optimizes local prompt for iterations between rounds.

After obtaining the latest updated prompt on each communication round, selected

prompts will be uploaded to the server for aggregation. At each communication round

t ` 1, Ck is the set of selected clients in joining in this round, and k is the client

index. The aggregated prompt Pt`1 for each round can be expressed as:

Pt`1 “
1

nk

ÿ

kPCk

Pk
t`1. (5.2)

Global prompt after aggregation will be downloaded to each client from the server.

After several rounds between server and clients, global user consensus is captured

collaboratively.

Local Feature Attention (LFA). After achieving global user consensus through

the textual part, we leverage the visual counterpart to adapt personalization on

each client, which precisely makes use of the modality advantages of vision-language

model. For each input image, we obtain the intermediate spatial visual feature

Fs P RHˆWˆC extracted by visual encoder, and leverage the visual feature Fs to in-

teract with a non-parametric attention module for the additional personalized logits.

We propose an external non-parametric attention module named local person-

alization attention, which computes the attention between the input visual feature

Fs and an external memory unit M . M contains two parts, Mk and Mv, e.g., the

key-value pairs, as our prior knowledge. To directly compensate the semantic gap in

visual feature, we regard M as a memory of the local few-shots training data. For

Mk, we first reshape the intermediate spatial visual feature Fs from RHˆWˆC into

a 1D vector sequence RHWˆC , and then use the normalized features as our keys in

Mk. And as for Mv, we use the corresponding ground-truth label Ltrain after one-hot

operation as our values in Mv. Given K class and N shots images per class, the

dimension of Mk should be NK ˆ C. To maintain a stable and negligible overhead,

we disentangle the buffer size with shots number and reshape the dimension of Mk

85

to K ˆ C on each client.

Mk “ NormpReshapepFsptrainqqq, (5.3)

Mv “ OneHotpLtrainq. (5.4)

After obtaining the external memory unit M , we calculate the pair-wise affinity

between the input visual feature Fs and Mk to get the attention map A. To be

concise, A is the additional attention map inferred from the affinity between the

prior local knowledge and the current input features, which can be obtained through

a query function. Here we use cosine similarity as our query function. Afterwards,

the personalized feature can be generated as AMv.

A “ cospFs,Mkq, (5.5)

Fpersonalized “ AMv. (5.6)

Thus, the final logits can be expressed as the original logits obtained by the

interaction between textual features Ft P RKˆC and visual features Fs P RHˆWˆC ,

with the additional personalized features generated by the additional non-parametric

attention:

logits “ FsF
t
t ¨ expptq ` α ¨ Fpersonalized, (5.7)

where α represents the weight for the additional personalized logits. If the local

data generates a large semantic gap between the local and global prompt, the value

should be large, otherwise, the value should be small. Specifically, in echo with the

above consideration, the final logits is also composed of two parts: 1) the original

logits represent the global user consensus (GUC) captured by the participation of

collaborative trained prompt, and 2) the additional personalized logits realized by

local feature attention (LFA) with the adaption of local data on each client.

86

5.4 Experiments

In this section, we numerically evaluate our proposed method in the scenarios of

heterogeneous data distribution and conduct comprehensive experiments.

5.4.1 Experimental Setup

Datasets. We select 6 representative image classification datasets used in CLIP

[105] as our benchmark, which consists of various classification tasks. General objects:

Caltech101 [33]. Fine-grained Categories: Flower102 [92], OxfordPets [96], Food101

[7]. Action Recognition: UCF101 [120]. Texture Classification: DTD [19].

Models. As for the local vision-language model, we use the same architecture

with CLIP [105], which consists of an image encoder and a text encoder for feature

extraction respectively. We use ResNet50 [50] as the backbone for image encoder and

transformer [132] as the textual encoder. To quick-adjust and exploit the capacity

of the pre-trained vision-language model, we follow the predecessor [152] to keep the

prompt learnable and the two encoder freeze instead the complete zero-shot inference

in CLIP.

Baselines. Since personalized techniques for the vision-language model is under-

explored when encountering the heterogeneous scenarios [44]. We absorb the concept

in traditional pFL techniques and adapt them to the scenarios of vision-language

model as our baselines. We compare our method with the existing PromptFL

and five adapted baseline methods, e.g., Local, PromptFL+Finetuning [17],

PromptPer [4], PromptProx [74] and PromptAMP [57], as introduced in Sec

5.3.1.

87

Heterogeneity Simulation. Combined with previous works setting and practical

situations of few-shot learning in our scenarios, we consider two pathological Non-IID

settings in our experiments. In the pathological Non-IID setting, each client will be

assigned only a specified number of labels, e.g. 5 random labels as shown in Tab.

5.2. Practical Non-IID setting with specific data distribution among clients is also

a common setting in traditional personalized federated learning, however, since few-

shots are employed here, this setting is not applicable in this scenario. Concerning

different clients number n, participation rate r and Non-IID data distribution, we

simulate the following two settings: 1) n “ 10 clients with r “ 100% participation,

each client shares a completely disjoint random class with each other. 2) n “ 100

clients with r “ 10% participation, and S “ 5 random classes are assigned to each

client, thus repetition will appear in each class among clients.

Implementation Details. We implement all the methods in Pytorch and all ex-

periments are conducted on GeForce RTX 3090 GPU. We use SGD optimizer with

0.001 learning rate with all methods except FedProx, which uses the corresponding

modified optimizer with the stated best hyper-parameters reported in the preceding

works. We set a local epoch E “ 5 for both cases, while for the global communica-

tion round, we perform a R “ 10 for n “ 10 clients case and R “ 30 for n “ 100

clients case. For the fine-tuning baseline, we conduct an additional adaption epoch

AE “ 10 for n “ 10 clients case and AE “ 30 for n “ 100 clients case.

For the setting of soft learnable prompt, we introduce a set of p continuous

embeddings of dimension d in consist of the [prompt vectors]. d is the same as

the dimension of word embeddings in the text encoder, i.e., 512 by default. p is a

hyperparameter specifying the number of embeddings. Here we use p “ 16 vectors

as the best case shown in [152, 44]. We also follow the precedent to place the class

token in the end of the of the prompt.

88

Table 5.1: Performance of pFedPrompt against adapted baselines on the
pathological Non-IID Setting 1: The table reports the average test accuracy ac-
cording to six diversified datasets. Six baselines are selected for comparison. Among
them, PromptFL [44] is the novel paradigm for FL with vision-language model and
the other four of them are adapted from the latest pFL researches. Here we use
the extreme Non-IID setting, where 10 clients are simulated here with r “ 100%
participation rate and non-overlapping class on each client, which means that each
class only appears once among clients. The best score of each group appears in
bold. Compared with the adapted baseline methods, pFedPrompt outperforms other
methods across datasets.

Dataset Caltech101 Flowers102 Pets101 Food101 DTD UCF101

(Setting) (10 clients, non-overlapping)

Local Training 87.37 ˘ 0.44 70.14˘ 0.76 83.21˘ 1.30 70.43˘2.42 44.23˘0.63 62.53˘ 0.09

PromptFL [44] 89.70 ˘ 1.99 72.80˘1.14 90.79˘ 0.61 77.31˘1.64 54.11˘ 0.22 67.87˘0.74

PromptFL+FT [17] 89.70 ˘ 0.25 72.31˘ 0.91 91.23˘0.50 77.16˘ 1.56 53.74˘1.36 66.36˘0.65

PromptPer [4] 86.72 ˘ 1.45 72.11˘ 1.35 89.50˘1.62 71.29˘ 1.87 50.23˘0.82 65.81˘1.42

PromptProx [74] 89.41 ˘ 0.55 66.40˘ 0.29 89.24˘ 0.41 76.24˘ 1.94 44.26˘1.11 63.27˘ 1.20

PromptAMP [57] 87.31˘ 1.60 69.10˘ 0.13 80.21˘0.44 74.48˘1.71 47.16˘0.92 62.37˘0.81

pFedPrompt (Ours) 96.54 ˘ 1.31 86.46˘ 0.15 91.84˘ 0.41 92.26˘ 1.34 77.14˘0.09 86.22˘1.02

Table 5.2: Performance of pFedPrompt against adapted baselines on the
pathological Non-IID Setting 2: The table report the average test accuracy cor-
responding datasets and methods as stated in Tab. 5.1. Each baseline method is
recorded with their optimal performance. 100 clients are simulated here and r “ 10%
of clients are selected to participate in each round. 5 random classes are selected on
each client, which means that same classes may encounter overlapping on different
clients. The best score of each group appears in bold. Compared with the adapted
baseline methods, pFedPrompt not only reaches supreme performance on the ex-
treme case with 10 clients setting in Tab. 5.1, but also outperforms other methods
with more general case.

Dataset Caltech101 Flowers102 Pets101 Food101 DTD UCF101

(Setting) (100 clients, 5 random class)

Local Training 85.50˘ 0.32 72.8˘ 0.59 85.50 ˘0.63 77.51˘0.29 55.06˘0.38 66.80˘0.74

PromptFL [44] 82.92˘ 0.43 69.08˘0.74 84.49˘1.06 73.35˘1.11 52.49˘1.59 66.56˘0.22

PromptFL+FT [17] 84.45˘ 0.29 71.04˘ 0.57 85.49˘ 0.49 74.61 ˘0.82 56.20˘0.51 68.40˘0.21

PromptPer [4] 82.19˘0.61 69.52˘ 0.23 83.66˘0.85 73.72˘0.84 53.34˘1.44 66.78˘0.53

PromptProx [74] 85.52˘ 0.42 67.63˘1.10 85.76˘0.80 73.36˘2.12 46.23˘0.18 62.31˘0.11

PromptAMP [57] 88.30˘ 0.71 75.01˘0.91 87.50˘0.51 77.70˘0.36 57.30˘0.46 69.80˘0.51

pFedPrompt (Ours) 92.24 ˘ 0.31 85.72˘0.18 87.31˘0.32 90.11˘0.60 73.44˘0.96 85.97˘0.42

89

5.4.2 Performance Evaluation

Comparison with state-of-the-art. To show the effectiveness of our method,

we compare our proposed pFedPrompt with corresponding adapted state-of-the-arts

methods across six representative datasets. And as stated in the above section, both

the selection of the baseline methods and datasets aims to guarantee the generosity

and comprehensiveness of our evaluation. Due to the newly emergence of prompt

training in FL, personalized problems and techniques in this scenario have not been

considered and developed yet, which causes the lack of corresponding baselines for

comparison. To make up for this deficiency, we utilize various state-of-the-art per-

sonalized techniques and adapt them in the form of prompt learning as our baseline.

To enhance the persuasiveness of our proposed method, we select approaches from

diversified categories for adaptation, e.g., Local Adaptation, Parameter Decoupling,

Regularization-based and Similarity-based approaches. As for the datasets, we cover

several categories including general objects, fine-grained objects, action recognition,

and texture classification.

We report the performance of pFedPrompt against baselines for the two hetero-

geneous setting in Tab. 5.1 and 5.2. All the baselines are performed under their

optimized setting. In almost all cases, pFedPrompt strongly outperforms the alterna-

tives. Comparing the two tables, Tab. 5.2 shares more classes between clients since

that classes are randomly shared, while classes are fully independent between clients

in Tab. 5.1. As a result, the performance gap is wider in Tab. 5.1 than that of Tab.

5.2 as local data distribution become more extreme. When more classes are shared

between clients, individual client possesses a greater possibility to benefit with each

other. However, even though dissatisfaction appears in other approaches when het-

erogeneity increases, our proposed pFedPrompt remains robust performance across

datasets. Within the Table, we observe that, for the other personalized approaches,

90

the performance deteriorates strongly as datasets type change from general objects

to fine-grained objects or other specific tasks. While for our method, the degradation

process is comparatively slow, which on the other hand verifies the effectiveness and

robustness of pFedPrompt.

Analysis of Number of Shots. Under the setting of few-shots learning, we also

want to find out how is the number of shots in training data will affect the overall

performance. To analyze the effect of the number of shots, we vary the shots in [1,

2, 4, 8, 16]. In Fig. 5.4, we report six datasets and with each dataset, we record

the performance of the five different shots setting. The horizontal axis shows the

shots number and the vertical axis shows the average test accuracy. Heterogeneity

simulation 2 is employed here.

We observe that in most cases, pFedPrompt already achieves promising perfor-

mance when the number of training data is small, even within one shot. However,

alternative approaches appear poor performance when shots are small. And as the

number of shots increases, the corresponding performance will enhance gradually,

but still can not beat the top-performance of pFedPrompt. Such phenomenon ex-

actly verifies our concerns above that current personalization approaches only applies

with the large amount training data. To be concise, pFedPrompt remains robustness

against the variation of number of shots in comparing with the alternative methods,

which exactly in accordance with the our purpose to propose a unique personalized

technique which suits our particular few-shot scenarios.

Effects of Hyper-Parameter α. Apart from the above superiority of pFedPrompt,

we also want to find out to what extent does the final performance benefit from the

local feature attention. As mentioned above, α serves as the indicator to control the

balance of the general user consensus(GUC) and local personalized feature(LFA).

91

Larger value of α denotes to integrate more knowledge from local personalized fea-

ture and vice versa.

Within each number of shots, we vary the value of α from 0.0 to 5.0, and select

the best α value that can produce the best performance. Tab. 5.3 reports the best

α with the according number of shots, we can observe that as the number of shots

increase, the demand for additional local feature information gradually decrease,

which means that global prompt tuning can capture more user characteristics when

given more data. And when the number of shots is small, the overall performance

may benefit more from the local feature attention, which from the side proves that

the local personalized attention module plays an important part in adjusting the

personalization within the few-shot learning behavior.

Effects of Buffer Size. To guarantee the additional memory overhead is limited

and negligible, we resize the dimension of buffer size of Mk from NK ˆ C to K ˆ

C, which means that regardless of how many shots are utilized in training, the

memory for the attention still remains for the same dimension of K, e.g, number of

classes. To achieve this purpose, we aggregate and average the spatial visual feature

of local training data to maintain that each class only exists one aggregated features

as Mk. Tab. 5.3 shows the performance before and after reshape with different

training shots of 1, 2, 4, 8 and 16. We can find out that even after reshape, the

performance of pFedPrompt still outperforms other methods and the accuracy drop

is negligible(around 1%) compared with the original one.

Computational Efficiency Analysis. We further analyse the computational over-

head to ensure the efficiency of our method. We observe the required training epochs

against the achieved test accuracy and compare it with the same local adaptation

category method PromptFL+FT. However, unlike PromptFL+FT which needs extra

92

1 2 4 8 16
82

84

86

88

90

92

94
Ac

cu
ra

cy
 %

Caltech101

1 2 4 8 16

65

70

75

80

85

90

Ac
cu

ra
cy

 %

Flowers102

1 2 4 8 16
82

84

86

88

90

Ac
cu

ra
cy

 %

OxfordPets

1 2 4 8 16
70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

Ac
cu

ra
cy

 %

Food101

1 2 4 8 16
45

50

55

60

65

70

75

Ac
cu

ra
cy

 %

DTD

1 2 4 8 16
60

65

70

75

80

85

Ac
cu

ra
cy

 %

UCF101

PromptFL Local training PromptFL+FT PromptPer PromptProx PromptAMP pFedPrompt

Figure 5.4: Peformance of different personalized approaches over six
datasets. Average Local Test Accuracy is reported with different methods and
number of shots. In each subplot, horizontal axis represents number of shots and
vertical axis represents the corresponding test accuracy. We range the number of
shots on each client from 1, 2, 4, 8 to 16. We observe that pFedPrompt strongly out-
performs alternatives across datasets, as shown in the red line. Furthermore, when
the number of shots decreases, the gap widens between pFedPrompt and other meth-
ods. Compared with the alternatives, pFedPrompt remains robust and outstanding
performance against the variation of number of shots.

local training for the adaptation, pFedPrompt adapts instantly during inference,

which do not incur additional training overhead but still achieve extraordinary per-

formance, as shown in Tab 5.4.

5.5 Chapter Summary

Large pre-trained vision-language models have shown great potential in federated

learning. However, challenges when encountering real-world problems like data het-

erogeneity have not been well-addressed. To solve the problem, we first explore

the existing personalized technique and adapt them to the prompt training manner.

93

Table 5.3: Ablation results on effect of hyper-parameter α and buffer size.
The best α for corresponding shots are reported. As shots decrease, model takes
more advantage of the local personalized features for personalization. Compared
with the performance before reshape of the buffer size, the decrease of average test
accuracy after reshape is negligible.

7 shots 1 2 4 8 16

best α value 3.77 2.55 2.06 1.08 0.59

original accuracy 93.98 92.24 92.33 93.97 94.94

reshape accuracy 93.98 91.32 91.09 93.01 94.12

Table 5.4: Efficiency Analysis for pFedPrompt. Training overhead with the
corresponding accuracy of pFedPrompt against the two baselines are reported.
The adaptation overhead is negligible while gain is considerable.

Method
Global Local

Accuracy Gain
(round) (epoch)

PromptFL 30 0 82.92 -

PromptFL+FT 30 30 84.45 + 1.53

pFedPrompt 30 0 92.24 + 9.32

As few-shot learning and relatively limited learnable parameters are employed here,

available methods achieve inadequate performance in this particular scenario. To

bridge the gap, our research proposes pFedPrompt, which uniquely addresses the

above challenge by leveraging both the textual and visual modality at the same

time. pFedPrompt learns the global user consensus in the linguistic space with the

collaboratively updating of prompt and adapts to user features in visual space with

the local personalized attention module. Since the personalized attention module is

non-parametric, the additional overhead is negligible. By incorporating the knowl-

edge retrieved from multimodality, the challenge of user statistical heterogeneity is

addressed. Our research provides a novel insight and direction in addressing the

personalization problem in this scenario, which made an important step forward to

the development and application of pre-trained vision-language models in federated

learning.

94

Chapter 6

Explore and Cure: Unveiling

Sample Effectiveness with

Context-Aware Federated Prompt

Tuning

6.1 Introduction

In recent years, Federated Learning (FL) has experienced rapid growth as a decen-

tralized machine learning framework that keeps user privacy intact by not sharing

raw data with a remote server [87]. FL serves as an ecosystem for parties to derive

benefits and has been applied in a range of scenarios including finance [84], medicine

[101], and recommendation [143].

With the increase in user data and model capacity, the communication and com-

putational overhead necessary for collaborative processes in FL will become increas-

ingly burdensome for users [104]. Furthermore, when the model is large, achieving

its desired performance typically involves disclosing a vast amount of private data

to the system [26]. This private information can be extracted from the parame-

ters or intermediate results exchanged, which poses a potential risk to user privacy

95

[89, 90, 155].

The promising performance of pre-trained vision-language models like CLIP [105]

has spurred interest in learning representations. A new method, Contextual Opti-

mization (CoOp) [152], introduces the training prompt to adapt pre-trained vision-

language models. CoOp’s lightweight nature has shifted the paradigm for researchers

to explore its use in FL [44, 43, 122]. They have demonstrated its considerable ad-

vantages over existing frameworks in terms of computation, communication, and

privacy. The core concept behind this approach is to apply CoOp at each client to

transform context words in prompts into learnable vectors and optimize the prompts

using standard FL algorithms.

Previous studies, while promising, have overlooked a fundamental issue: how

does the prompt vector affect the behavior of pre-trained neural networks? Our study

delves into this issue and proposes that prompt training helps the prompt vector

locate a previously learned task, rather than acquiring new knowledge. We support

our argument by noting that prompt training is a data-efficient method, with per-

formance saturation as the number of shots increases. Our experiments also demon-

strate that federated prompting is a data-efficient but data-sensitive paradigm, mak-

ing it crucial to carefully select participating data. The previous underestimation of

the results of precisely steering neural networks is a key finding of our study.

Inspired by these findings, we propose a new framework, coined Context-aware

Federated Prompt Tuning (CaFPT), which facilitates the retrieval process by con-

ditioning on the examples capable of activating the most pertinent knowledge inside

the pre-trained models. Our work focuses on using trained prompts to precisely lo-

cate the domain of previously learned tasks by utilizing a local data selection strategy

based on informative vectors. These vectors identify the most informative direction

in the weight space, enabling precise control over pre-trained neural network behav-

ior and improving performance on the client task. We conducted experiments that

96

demonstrate the ability to update and combine these informative vectors through

arithmetic operations such as FedAVG, resulting in behavior that is precisely steered

for multiple client tasks in vision-language models. To create informative prompt

vectors, CaFPT samples from candidate dataset for each client based on their V-

usable information [142], a variational extension of Shannon’s information theory.

Such indicator measures how much guiding information that prompt can leverage

in retrieving the knowledge within the pre-trained model. The resulting informative

vectors offer promising robustness, making them a simple yet effective way to en-

hance the performance of federated prompting. Extensive experiments have shown

the improvement and robustness our method can provide, leading to stable and

strong performance across various benchmarks.

In this study, we contribute to the field by:

• We revisit the local pre-trained vision-language models (VLMs) as knowledge

bases and explore the training mechanism behind prompt tuning. We argue

that instead of acquiring new knowledge, prompt tuning retrieves previous

learned knowledge inside the models, targeting on the information most rel-

evant to the present task. This underscores the importance of the retrieval

trajectory during the searching process. (§6.3)

• We propose that prompting is a data-efficient but data-sensitive paradigm, and

classify federated prompt tuning into two categories, context-unaware prompt

tuning, i.e, PromptFL and context-aware prompt tuning, i.e, CaFPT. Through-

out the tuning process, samples act as the contextual foundation upon which

the prompt can be conditioned, which determines the quality of retrieval during

the process. (§6.4)

• Recognizing the crucial role of samples involving in the tuning process, we

propose a context aware framework based on V-information. Our experiments

97

demonstrate that this strategy identifies the most informative direction in the

weight space of the local task and extends its effect to multiple clients’ tasks

through operations like FedAVG, making it a simple yet effective method to

improve the performance of federated prompting. (§6.4)

• We evaluate our method by conducting extensive experiments on various datasets

following the standard federated setting of CLIP and CoOp. These experiments

cover a range of visual classification tasks, such as generic objects, scenes, ac-

tions, fine-grained categories, and more. The significant improvement in results

obtained from these experiments demonstrates that our method is effective in

learning robust and comprehensive prompts in FL. (§6.5)

6.2 Preliminaries

6.2.1 Vision-Language Pre-trained Models

Recent years have witnessed rapid advancements in transformer technology [132],

resulting in the pre-eminent role of pre-trained models in natural language process-

ing (NLP) and computer vision (CV). Vision-language pre-trained models, which

combine both modalities in large-scale models, have received considerable attention.

Their pre-training methods can be categorized based on their objectives, which in-

clude reconstruction [72, 63, 52, 28], contrastive matching [105, 59], or a combination

of both [70, 61]. The extensive pre-training of vision-language models on image-text

corpora has led to the acquisition of universal cross-modal representations, which

have translated to superior performance on downstream tasks. An illustration of this

is CLIP [105], which uses 400 million image-text pairs for contrastive matching and

has demonstrated remarkable results in visual recognition tasks [36, 152, 151, 13, 43],

making it the primary focus of this paper. In addition to recognition, these models

display immense potential in other downstream applications, including dense predic-

98

tion [109], image generation [97, 91, 108], and action understanding [127].

6.2.2 Prompt Training

A pre-trained vision-language model like CLIP comprises of an image encoder and a

text encoder to predict image-text pairs (i.e. Image-Text Retrieval). As such, CLIP

can be adapted to function as an image classifier. The prompting function fpromptp¨q

is used to alter the class captions (or labels) Y into a prompt Y 1 “ fprompt(Y).

Previous research has centered on designing prompts by utilizing the expertise of

human engineers or using algorithms to identify the most suitable template [9, 146,

81, 118]. Our work is most closely related to methods of continuous prompting,

which optimize continuous vectors in the word embedding space [77, 69, 130, 46].

Contextual Optimization (CoOp), a recently proposed continuous prompting method

[152], is a straightforward yet efficient technique specifically designed for adapting

CLIP for visual recognition tasks. Researchers [44, 43, 122] have also moved the

CoOp paradigm to FL, revealing its superior performance in terms of computation,

communication, and privacy compared to existing frameworks.

6.2.3 Federated Learning

Federated Learning, a term first introduced in [87], is a machine learning technique

where a group of n clients, such as mobile devices, work together to train a model

under the direction of a federated server, such as a service provider. The clients’

training data remains on their local devices and is not shared [60]. The federated

server coordinates the collaborative training process by repeatedly performing the

following steps until convergence is achieved:

• Client Selection. Due to the unpredictability of client availability, for round

t of federated learning, the federated server selects a small group of m clients

99

Sample Conditional-
based Prompt Tuning

Prompt-based
Retrival

Pretrained Vision-
Language Model as
Knowledge Bases

Input serves
as condition

Prompt serves as
Informative Vectors

…

Output

Figure 6.1: Explore the paradigm of prompt tuning mechanism on pre-trained vision-
language models (VLMs). Prompt serves as the informative vectors to instruct the
query direction for the knowledge retrieval. Samples serve as condition that con-
tribute to the formation of informative vectors.

out of the total n clients that meet certain qualifications to participate in the

learning process.

• Local Training. When notified of their selection for round t, each chosen

client retrieves the current parameters V of the global model and a training

program from the federated server. They then compute updates to the global

model on their local training data by running the training program. Specifi-

cally, each client calculates the update θ by computing BℓpX,Y,Vq

BV , where X, Y

represent the batches of training data and corresponding labels, and ℓp¨q refers

to the loss function. FedAVG method [87] updates the model consecutively

using multiple batches of local data, which can be several rounds of training

and then shared. A common practice is to share the updated model V ` θ, but

this is equivalent to sharing the update θ only, since all the clients are aware

100

1 2 4 8 16
Shots

0

20

40

60

80

100

Ac
cu

ra
cy

 %

caltech101
oxford_flowers
oxford_pets
dtd
ucf101
food101

Figure 6.2: Performance of prompt tuning with increasing shots. We show
the performance of prompt tuning as shots increasing across six different datasets.
1) The overall performance enhanced as the number of shots increasing regardless
of the margin. 2) However, as the shots become larger, the improvement of the
performance saturates. 3) Most datasets do not change much during the process.

of V .

• Global Aggregation. After receiving local updates from m clients, the fed-

erated server combines these updates and updates its global model, and then

begins the next round of learning.

How to adapt pre-trained vision-language models to the field of FL and im-

prove downstream task performance becomes an emerging practice. Researchers

[44, 43, 122] have adapted the CoOp paradigm to FL and optimized the prompts

using the standard FL algorithm. The goal of federated prompt training is to learn

a specific prompting function fprompt on the word space, using the parameterized

[prompt vectors], given a pre-trained CLIP V and a task dataset DpX, Y q distributed

101

Caltech101
Flowers102

OxfordPets DTD
UCF101

Food101
0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

With Arithmetic Add Operation
Without Arithmetic Add Operation

Figure 6.3: Performance comparison between prompt vectors with or with-
out arithmetic operation. Yellow bar shows the test accuracy of prompt learning
model when vectors incorporate with each other, while the blue one learns with indi-
vidual tasks locally. We can observe that by engaging with the prompt vectors from
other tasks, performance of their own enhanced.

across clients. Image classes, represented by labels such as “panda”, are prompted

by [prompt vectors][panda]. During training, FL aims to maximize the likelihood of

the correct labels Y ,

max
fprompt

PV;fpromptpY ` Φ|Xq, (6.1)

while the parameter updates are only applied to the prompt vectors Φ, and the

CLIP’s parameters V stay frozen. During validation, the optimized prompt is added

to all test-time classes, DtestpX, Y ` Φq, which will be then passed through the frozen

V . While federated prompt training has shown impressive performance on down-

stream tasks, previous research has neglected to address a critical issue: how do

prompt vectors affect the behavior of pre-trained neural networks? We seek to fur-

ther investigate this problem.

102

1 2 4 8 16
Shots

86

88

90

92

Ac
cu

ra
cy

 %

Caltech101

0

1

2

3

4

Va
r

1 2 4 8 16
Shots

70

80

90

Ac
cu

ra
cy

 %

Flowers102

1

2

3

4

5

Va
r

1 2 4 8 16
Shots

82

84

86

Ac
cu

ra
cy

 %

OxfordPets

0.0

0.5

1.0

1.5

2.0

Va
r

1 2 4 8 16
Shots

40
45
50
55
60
65

Ac
cu

ra
cy

 %

DTD

2

4

6

Va
r

1 2 4 8 16
Shots

60

65

70

75

Ac
cu

ra
cy

 %

UCF101

0.5

1.0

1.5

2.0

2.5

Va
r

1 2 4 8 16
Shots

68

70

72

74

76

Ac
cu

ra
cy

 %

Food101

0
2
4
6
8
10

Va
r

Figure 6.4: Distribution summary of model performance with random sampling. We
display the performance distribution for groups of random sampled data. The orange
box shows the values spread and the blue dash line shows the trend of group gap
over shots. Model performance fluctuates when shots are small and gradually reaches
stable when shots get larger.

6.3 How the Prompting Works

To understand how prompt works, we employed extensive experiments with vari-

ous shots and datasets to investigate the operation principle of prompt during the

learning and inference process. We achieve the following three observations from the

experiments and come up with the thought-provoking inspiration: Other than tradi-

tional downstream tasks where training data aims to learn new knowledge, prompt

works as informative vectors to activate the existing knowledge inside the pretrained

models.

103

6.3.1 Observation 1: Performance Saturated in Prompt Learn-
ing

To examine how shot numbers affect prompt learning performance, we conduct exper-

iments with various shots from 1, 2, 4, 8, 16, 32 to 64, and observe the performance

variation as shot increase, as shown in Fig. 6.2. We observe the experiments on

six representative datasets with various tasks as our benchmark, Caltech101 [33],

Flowers102 [92], OxfordPets [96], DTD [19], UCF101 [120] and Food101 [7].

As shown in Fig. 6.2, we can observe that all six dataset performance enhanced as

the labelled samples increase. However, improvement saturated as the shots become

larger, even with almost no progress in the end. Furthermore, most of the exper-

imented datasets show negligible enhancement benefit from the increased training

samples from the start with regard to the test accuracy, given the tendency line is

nearly parallel with the x-axis.

6.3.2 Observation 2: Random Examples Result in Fluctu-
ated Performance

According to the existing paradigm of prompt learning techniques, random sampling

of training data is performed before actual training. Such behavior results in a

determinant effect of the quality of selected samples to the final performance, with

the following two reasons. 1) Not all training data are created equal. Some of the

samples contain more representative features than the others, which can provide more

positive information towards the correct classification. Furthermore, noisy samples

or wrongly-labelled samples may provide misleading information and deteriorate the

overall performance. 2) Prompt learning leverages few samples in training other than

the whole training datasets like traditional machine learning, which aggravate the

dependency between the final result with the quality of selected samples. In other

words, the choice of samples has significant impact on the model performance.

104

To validate the above assumption, we experiment random samples for 1, 2, 4, 8,

and 16 shots, and choose five random groups for each shot, as shown in Figure 6.4.

We record the test accuracy distribution summary via box plot and variance within

groups. We observe that the performance with fewer shots shows relatively unsta-

ble results, e.g., test accuracy of 1 shot prompt tuning express turbulent and large

variance. However, as the shot get larger, the turbulence as well as the variance

narrows down. The red box represents the distribution summary, and the dash line

indicates the variance. We can observe that the box range shrinks as the number of

shots grows larger, so as the variance line decreases, which validates the fluctuated

performance of random samples.

6.3.3 Observation 3: Arithmetic Operations Benefit Prompt
Learning

To explore the impact of prompt vectors, we investigate the interactions between

prompt vectors with different tasks. We set five parties with each learns prompt vec-

tors for different tasks and data. To find out whether different tasks may benefit each

other. We compare the performance of two scenarios. 1) all five parities learn their

own prompt vectors with local data and use the trained prompt vectors to instruct

their own tasks. 2) prompt vectors incorporate others information by implementing

arithmetic add operation with other prompt vectors for training and then use the

trained prompt vectors to instruct their own tasks.

We record and compare the experiment results of the two scenarios above across

six datasets, as shown in Fig. 6.3. We observe that the performance with arithmetic

add operation employed is better than the one without it across all settings. Such

observation result shows that the arithmetic operation like add operation manages

to enhance the generalization ability of prompt vectors thereby improve the overall

performance.

105

6.3.4 Inspiration: Prompt Leverages Knowledge Inside Mod-
els Instead of Augmenting Them

From the above three observations, we can reach the following conclusions. First,

unlike traditional model where performance improvement is largely driven by the

training set size, performance of prompt learning model does not improve much as

the number of shots increasing. From this point, We infer that pre-trained vision-

language model serves as knowledge base and prompt vectors serve as key or query

to instruct the retrieval of relative knowledge inside the pre-trained model. Second,

training samples have great impact over the formation of prompt vectors, hence

influence the instruction of retrieval of specific model knowledge, especially in the

fewer shots cases. Thus, it is indispensable to quantify individual differences between

data points and select the most informative data samples that can help to instruct the

formation of prompt vectors. Third, we observe that the arithmetic add operation

is beneficial across different tasks. Therefore, it comes to us that is it possible to

apply the scenario of federated learning since the combining and updating of prompt

vectors with add operation can be realized through FedAVG with multiple clients.

We show the relationship between samples and prompt in Figure 6.1.

6.4 Methodology

The overview of our approach is shown in Fig. 6.5. First, we talk about federated

prompting. Then, we present the ideology and technical details of our method. We

categorize them into two categories, the context-unaware one like PromptFL and

context-aware one like our method. Our method, can serve as a plug-in component

to enhance the performance and generalization ability of existing federated prompting

methods.

106

… …

… Parameter
aggregation

…

Prompt vectors

Ineffective sample

Instructive sample

Conetx-aware

Step 1: Pre-measure and calculate
samples with v-information locally

Step 2: Quantifying the gudiance ability
of samples according to the value

Context-unaware

Step 3: Select corresponding
instructiive examples

Step 4: Federated Prompt Tuning

Shiba

Cat

？ ？ ？ ？= = =

Figure 6.5: Comparison of context-unaware and context-aware framework.
Existing context-unaware approach employ a context unaware mechanism and di-
rectly applies random sampling in the visual space to select the random samples for
prompt tuning. However, such behavior treats all the samples equal and may lead
to fluctuated performance. Our method, instead, measures the retrieval ability of
prompts condition on each sample with V-information on each client. After that, we
deliberately select the top-k representative samples with awareness that boost the
formation of informative vectors to the right direction for further federated prompt-
ing.

6.4.1 Federated Prompting

Recently, researches have witnessed the development of vision-language foundation

models (e.g. CLIP [105], ALIGN [70]) and have made efforts to adapt the models to

a more widely applied down-stream tasks (e.g. CoOp [152], CoCoop [151]). Further-

more, migration from centralized to decentralized manner like federated learning has

also been explored in recent studies [44].

Here we re-describe federated prompting in our study. Each client possesses a pre-

trained CLIP-based vision-language model, which consists of a visual encoder gp¨q

and a textual encoder hp¨q. Both the two encoders are frozen, i.e, the parameters

concerning to them can not be changed during the learning process. Consequently,

prompt vectors Pi can be learnt and updated during the training, with the form of

[v1][v2]...[vp][class]i, where [class]i is replaced by the word embedding vector of the

107

corresponding ith class label name. Given a batch of data x, the similarity between

corresponding image-text pairs is maximized. Let cosr¨|¨s be the similarity we used,

and gp¨q and hp¨q be the feature extraction function of the image and text encoder,

we have the prediction probability computed as:

ppy “ i|xq “
exp pcosrgpxq|hpPiqsq

řk
j“1 exp pcosrgpxq|hpPjqsq

, (6.2)

During the federated prompting, Pi is the only part that can be transmitted for

aggregation in the communication round. After epochs of local training on clients,

sampled clients transmit their prompt vectors to server for aggregation. The aggre-

gated vectors are then leveraged to update the parameters on clients for the next

round. Assuming that we are at the communication round t ` 1, and Ck repre-

sents the selected clients set. Thus the updated prompt vectors at this point can be

described as:

Pt`1 “
1

nk

ÿ

kPCk

Pk
t . (6.3)

6.4.2 Ensure Your Data for Federated Prompting

Federated prompting is a data-efficient method which can leverage the knowledge

inside the pre-trained model with only a few labeled samples in the federated man-

ner. However, as we discussed above, the existing federated prompting still adopts

random sampling for the selection of labelled training samples, which may incur poor

performance since data on client is insufficient and not equal. Hence, we argue that

good examples for federated prompting may bring better performance.

What Makes Good Examples. To clarify the definition of good examples,

we propose some potential criterion here. The limited labeled samples help to train

prompt vectors, where the prompt vectors are then utilized to retrieve the relative

108

information inside the model. Thus, it is reasonable to select the samples x 1) contain

more information about the corresponding label y, and 2) that can be easier utilized

by the given model V . We achieve the above goal by utilizing V-information from

[142].

Definitions of V-information. As defined in [142]: Consider inputs X and

labels Y . Let V be a predictive model family, here V represents the vision-language

backbone and P be the prompt vectors. The predictive V-entropy and the conditional

V-entropy are defined as:

HVpY q “ inf
fPV

Er´log2f rH, P spY qs. (6.4)

HVpY |Xq “ inf
fPV

Er´log2f rX,P spY qs. (6.5)

where f P V and f rHspY q and f rXspY q represent the probability measure on

Y given side information X or without side information H, using model from V .

Further, similar with Shannon mutual information, V-information can be defined as:

IVpX Ñ Y q “ HVpY q ´ HVpY |Xq. (6.6)

Measuring Good Examples with V-information. The above theorem re-

flects how much information can be extracted from input samples X about labels

Y , under the constraint of model V . However, to select good examples, we need to

obtain the information from individual instance. Thus, by extending definition from

[31], the pointwise V-information for individual instance can be defined as:

PV Ipx Ñ yq “ ´log2grH, pspyq ` log2grx, p1
spyq. (6.7)

where g P V , p P P s.t. Er´log2f rH, P spY qs “ HVpY q and p1 P P s.t. ´Erlog2grx, p1spyqs “

HVpY |Xq.

109

Since V here represents the frozen visual and textual encoder, p1 and p be the

prompt vectors after the model trained with or without the input respectively with

a few epochs. Examples with higher scores will be selected as good examples for

training on each client. The amount of examples selected depends on the number of

shots is set in the experiment setting.

As shown in Fig. 6.5, examples are selected according to the v-information be-

tween individual examples and the corresponding labels. We select the examples with

the higher scores, i.e., containing more v-information. Other than random sampling,

our method select good examples used for training. After that, selected examples

from all clients are leveraged to train the prompt vectors collaboratively with each

other. We validate the effectiveness of our proposed approach in sec. 6.5.

6.5 Evaluation

In this section we conduct comprehensive experiments to validate our approach under

the federated scenarios with heterogeneous data distributed on each client. We aim

to answer the following research questions by conducting the evaluation part.

• RQ1: The instability of the existing federated context-unaware prompt tuning

and the necessity of addressing the issue.

• RQ2: How effective is CaFPT contributing on the performance of federated

prompt tuning?

• RQ3: How effective if CaFPT contributing on the robustness of federated

prompt tuning?

6.5.1 Dataset

We select six representative image classification datasets used in CLIP as our bench-

mark, as following [44, 152, 151], which consists of various classification tasks. Gen-

110

eral objects: Caltech101 [33]. Fine-grained Categories: Flower102 [92], OxfordPets

[96], Food101 [7]. Action Recognition: UCF101 [120]. Texture Classification: DTD

[19].

6.5.2 Baselines

We investigate the most representative context-unaware mechanism in current fed-

erated prompting category, PromptFL[44]. During the process, visual and textual

encoder from the pretrained CLIP models are fixed, while the only learnable part

is the prompt vectors. PromptFL employs the few-shot training protocol that ran-

domly select the training samples and update the prompt vectors on them. Both

visual and textual encoder are kept locally, only the prompt vectors are aggregated

and updated by server in each communication iteration. Such mechanism is data-

sensitive and largely depends on the data sampled, which leads to the turbulence

of performance. CaFPT on the other hand addresses the above challenge and offers

stability and robustness in federated prompt tuning.

6.5.3 Implementation Details

We conduct all the experiments on Ubuntu 20.04 with Pytorch on GeForce RTX

3090. The training is performed using SGD optimizer with 0.001 learning rate. To

fit for the practical situation in federate learning, and address the data heterogeneity

problem of it, we consider Non-IID setting in our experiments. We simulate n “ 50

clients with r “ 10% participation, each client is assigned with s “ 5 random classes.

We measure the instance level V ´ information on each client before training with

a few epochs. And then leverage the selected examples for federated prompting. We

set a local epoch E “ 5. And for the global communication round, we set R “ 20.

For the prompt vectors setting, we use p “ 16 vectors for the CoOp-based setting,

as the best case shown in [152, 44]. We use ResNet-50 here as the backbone of the

111

Table 6.1: Robustness Comparison between Context-unaware and aware
Prompt Tuning. We record the performance and robustness indicator of CaFPT
and PromptFL. ∆ shows the discrepancy between the two paradigm in terms of
random and the worst case respectively. ‘Gap’ represents the intra-group gap, which
indicates the discrepency between the worst case and the random case. Both ‘Gap’
and ‘Var’ indicates the turbulence of the method, the lower the better. As we can
observe, CaFPT outperforms the existing PromptFL by high performance and strong
stability.

(a) Caltech101

Acc ∆ Gap Var

PFL-min 82.60 – – –
PFL 85.20 – 2.60 4.34
CaFPT-min 86.25 3.65 – –
CaFPT 87.51 2.32 1.26 0.99

(b) Flowers102

Acc ∆ Gap Var

PFL-min 60.05 – – –
PFL 62.67 – 2.62 4.72
CaFPT-min 63.18 3.13 – –
CaFPT 65.41 2.74 2.24 2.89

(c) OxfordPets

Acc ∆ Gap Var

PFL-min 80.65 – – –
PFL 84.91 – 4.26 10.47
CaFPT-min 87.45 6.80 – –
CaFPT 87.85 2.95 0.40 0.18

(d) DTD

Acc ∆ Gap Var

PFL-min 29.13 – – –
PFL 41.05 – 11.93 50.16
CaFPT-min 43.28 14.15 – –
CaFPT 46.09 5.04 2.82 5.93

(e) UCF101

Acc ∆ Gap Var

PFL-min 55.65 – – –
PFL 58.30 – 2.65 5.01
CaPT-min 60.28 4.63 – –
CaPT 61.64 3.34 1.36 1.48

(f) Food101

Acc ∆ Gap Var

PFL-min 67.20 – – –
PFL 73.72 – 6.52 22.19
CaFPT-min 76.43 9.23 – –
CaFPT 77.17 3.45 0.74 0.56

visual encoder. We also choose to place the class token in the end of the of the

prompt as before.

6.5.4 Overall Result

We summarize the overall performance of CaFPT and PromptFL in Table 6.1 and

Figure 6.6. We record the test accuracy of CaFPT and PromptFL and the corre-

112

sponding worst case we encounter.

Analysis on Federated Prompting (RQ1) Existing researches training with

the framework of PromptFL follows a context-unaware tuning by randomly sampling

the training examples and tuning the soft prompt on each client, and upload the

vectors for aggregation. However, the specialty of few shots samples and few param-

eters of the learnable prompt introduce unfairness of such evaluation metrics when

employing in prompt tuning, resulting in unstable outcomes. To validate the afore-

mentioned assumption, we record the test accuracy of PromptFL as well as its worst

performance, recorded as ‘PromptFL’ and ‘PromptFL-min’ respectively. As antici-

pated, PromptFL can obtain the relatively poor performance that is notably distant

from the reported one. In Figure 6.6, the yellow filled area shows the gap between the

worst case against the usually reported one, i.e, the gap between ‘PromptFL-min’

and ‘PromptFL’, which is large enough to result in turbulence. From Table 6.1, we

can observe that for certain datasets, i.e, DTD, the performance of prompt tuning

on certain samples is too poor for the prediction on the downstream task. Thus, we

investigate the possibility in addressing the instability.

Effectiveness of CaFPT (RQ2) We leverage CaFPT to address the afore-

mentioned issue. As shown in Table 6.1, we can observe that CaFPT outperforms

PromptFL in both average and the worst scenarios by a large margin. For example,

in datasets DTD, CaFPT obtains large performance gains over PromptFL by 12.2%

in the random scenario and 48.6% in the worst scenario. We further record the

performance as the shots increase in Figure 6.6, where CaFPT shows in red while

PromptFL shows in orange. As the shots become larger, the performance of CaFPT

enhance, surpassing PromptFL in nearly all cases.

Robustness of CaFPT (RQ3) Besides the outstanding overall performance,

CaPT provides robustness and stability. The pink and yellow area in Figure 6.6

represents the range of test accuracy for each shots of CaFPT and PromptFL re-

113

spectively. We can observe that the area of yellow region is larger than the pink

one to a large extent. In most dataset, the pink area is nearly shrink into a line

along with the CaFPT red line, which shows the advantage of robustness in CaFPT

against PromptFL. Furthermore, we investigate the turbulence indicators comparison

between the two. For each method, we randomly samples five times and record the

‘Gap’ and ‘Var’ of each benchmark in Table 6.1. ‘Gap’ represents the intra-group gap,

which indicates the discrepency between the worst case and the averaged one. ‘Var’

stands for variance. Both ‘Gap’ and ‘Var’ indicates the turbulence of the method,

the lower the better. In conclusion, CaFPT not only offers better performance but

also provides robustness and stability.

6.5.5 Analysis with Interpretations

We investigate whether the informative vectors reflect the effectiveness of samples

and validate the correction of the selection. We leverage the BPE representation

used in CLIP for tokenization, and find the nearest meaning words for interpreta-

tion based on the Euclidean distance. In Food101, we observe ‘harvest’ (1.2273),

‘fresh’ (0.8280) ‘eating’ (0.7234) in the top-3 observation of each tokens with our

method, which is meaningful and steers the right direction for extracting the related

knowledge. CoOp on the other hand, obtains meaningless or task-unrelated sub-

words like, ‘declined’ (0.9331), ‘cheeks’ (0.8678), ‘secretary’ (0.6472). Thus, the

interpretation of prompt further validate the effectiveness of our method.

6.6 Related Work

Data Pruning. The field most closely related to this paper is data pruning. Re-

cent studies [129, 34, 18, 99, 88] have established the feasibility of this approach

by proposing various metrics to rank training examples based on their difficulty or

significance, from easy or redundant examples to difficult or essential ones, and by

114

1 2 4 8
Shots

78
80
82
84
86
88
90

Ac
cu

ra
cy

 %

Caltech101

CaFPT
CaFPT-min
PromptFL
PromptFL-min

1 2 4 8
Shots

57.5

60.0

62.5

65.0

67.5

Ac
cu

ra
cy

 %

Flowers102

CaFPT
CaFPT-min
PromptFL
PromptFL-min

1 2 4 8
Shots

75.0

77.5

80.0

82.5

85.0

87.5

Ac
cu

ra
cy

 %

OxfordPets

CaFPT
CaFPT-min
PromptFL
PromptFL-min

1 2 4 8
Shots

30

35

40

45

50

Ac
cu

ra
cy

 %

DTD

CaFPT
CaFPT-min
PromptFL
PromptFL-min

1 2 4 8
Shots

54

56

58

60

62

Ac
cu

ra
cy

 %

UCF101

CaFPT
CaFPT-min
PromptFL
PromptFL-min

1 2 4 8
Shots

65

70

75

Ac
cu

ra
cy

 %

Food101

CaFPT
CaFPT-min
PromptFL
PromptFL-min

Figure 6.6: Performance Comparison between Context-unaware and aware
Federated Prompt Tuning. We record the performance of PromptFL and CaFPT,
and observe the worst case we sampled during the evaluation. We randomly sample
five times for each shot setting and display the performance distribution. The red
line and orange line represents CaFPT and PromptFL respectively. The pink area
shows the accuracy that CaFPT can achieves randomly, while the yellow area in-
dicates for PromptFL. The gold dash line stands for the worst case that PromptFL
obtains during the evaluation. We can conclude that performance fluctuates largely
in PromptFL. However, CaFPT outbeats its context-unaware counterpart from both
performance and stability.

pruning datasets by keeping a portion of the most challenging examples. However,

these studies leave questions unresolved: Under what conditions and why is success-

ful data pruning possible? Intuitively, problematic examples may also be those that

are difficult in the sense that learning them would require the algorithm to contra-

dict other training examples or to increase its complexity. Acquiring these difficult

examples may result in the algorithm’s inability to generalize well or to overfit. The

new discovery in [121] is that keeping easy examples rather than hard ones is more

effective when data is scarce.

115

V-information. An information-theoretic framework called V-usable informa-

tion [142] has been adopted by researchers, which quantifies the degree of information

contained in a representation that is accessible to a model family V . It can be quanti-

fied within a framework called predictive V-information, which generalizes Shannon

information to determine the amount of information that can be gleaned from X

about Y when limited to functions V , denoted as IVpX Ñ Y q. The higher the

IVpX Ñ Y q, the simpler the dataset is for V . If V is the set of all functions - that

is, under unrestricted computation - V-information reduces to Shannon information.

More recently, there has been a growing adoption of V-information in NLP. It has

been utilized to investigate the context features that Transformers actually employ

[95], as well as to filter out information for interpretability techniques based on prob-

ing [102, 51]. It has also been applied for evaluating the complexity of NLP datasets

[31].

Our study discovers that a significant portion of the enhancement originates from

a specific elimination of the data utilized in prompt training. The trimmed dataset

would offer a more robust guidance signal for training informative vectors to precisely

identify the previously acquired task in the pre-trained neural networks.

6.7 Chapter Summary

Is it possible for a training example to have a negative impact on federated prompt

training? Based on the habitual random sampling in existing federated prompt tun-

ing mechanism, none of the researches consider this issue. However, experiments

show that the unawareness of samples involved in the federated prompt tuning leads

to significant poor and unstable performance. In other words, the relevance of the

examples is crucial. We investigate a context-aware method, CaFPT, to deliber-

ately select samples that are beneficial for prompting to achieve superior robustness.

116

This technique is intended as a pre-training step to acquire improved data for fur-

ther training. The method involves generating informative prompt vectors from

client’s dataset, each of which is affected differently by individual examples. The

opinions of multiple clients regarding which examples are informative are mediated

by a V-information mechanism. Extensive experiments demonstrates the significant

improvement and robustness that CaPT offers. Moreover, our research makes an

important step in taking the input level into consideration for enhancing pre-trained

vision-language models in federated environments.

117

118

Chapter 7

Conclusions and Suggestions for

Future Research

This chapter summarizes the original contributions of the entire thesis in Section 7.1

and proposes possible future directions of our research in Section 7.2.

7.1 Conclusions

Tremendous edge devices have emerged in the past decade and has changed and

benefit people’s daily life and societal sectors. To better make use of the isolated

personal data, collaborative edge learning enables the possibility to learn a neural

network jointly with the effort of multiple edge devices within a long range with pri-

vacy and security. Federated learning and split learning emerges as the mainstream

frameworks in supporting current collaborative edge learning system. Although made

great impact, each paradigm has it own limitations, especially in the heterogeneous

environment. In this thesis, we focus on the efficiency and personalization of collab-

orative edge learning in the heterogeneous environment.

We propose four frameworks in improving the existing collaborative edge learning

from the perspective of communication efficiency, computation efficiency, resource

heterogeneity and data heterogeneity.

First, we analyze the challenges of existing split learning when encountering edge

119

devices with different memory and storage capabilities. To alleviate the idleness

of training parities during the training process and improve the training efficiency,

we propose Tree Learning, a system-algorithm co-design framework for collabora-

tive training acceleration. Such framework adopts a tree aggregation scheme and

dynamically allocates different layers to heterogeneous clients according to their dif-

ferent local capacities. To assign the appropriate layers for heterogeneous clients,

we propose a partition algorithm for our framework. We also performs a global

level parallelism scheme to enable the minimum synchronization overhead among

participants.

Second, we rethink the iterative training procedure of existing federated learning,

and provide a new perspective by rethinking if foundation models can be applied to

FL as a new paradigm of training. We propose PromptFL, a framework that

replaces existing federated model training with prompt training, i.e., FL clients train

prompts instead of a model. During the local training, backbones on each client are

frozen and the only trainable part is the prompt vectors. During the communication

between clients and server, local client transmit the weight of learnt prompt vectors

other than the whole model, which can simultaneously exploit the insufficient local

data and reduce the aggregation overhead.

Third, current frameworks of federated prompting focus on modeling user consen-

sus, leaving the personalization of prompt under-explored. Although using prompt

in FL to activate the pre-trained knowledge shows tremendous benefits, a major

challenge for deploying such approaches in FL is the heterogeneity of users. To

alleviate the influence caused by statistical heterogeneity, we carefully examine the-

state-of-arts pFL techniques and adapt them to the federated prompting scenarios.

However, none of these methods leverage the natural advantages of multimodality

of vision-language models. We propose pFedPrompt, which learns user consensus in

linguistic space and adapts to user features on each client in visual space respectively.

120

By incorporating the knowledge retrieved from multimodality, the challenge of user

statistical heterogeneity is addressed.

Forth, current federated prompting framework leverages random selection of the

examples to guide the decision direction of the pretrained models. However, our

experiments discover the data sensitivity in federated prompting, which larges influ-

ence the model performance. Local data on the other hand is not equal, given to the

distributed origin of it. To recognize the importance of being discerning in selecting

the data for participation in the process, we propose some potential criterion here

to decide what makes good examples. We propose an information-based strategy to

select representative data samples to prompt while filter out the noisy one.

7.2 Future Directions

We close this thesis with the discussion of future direction in which the current

research can be advanced.

First, in terms of the tree Lesrning, two direction can be further developed. In

this thesis, we alleviate a more stable method to achieve the best split points during

the training process. Thus, one direction is to further develop a more dynamic

and efficient way to reschedule the split point for each client during the training.

Furthermore, although our method achieves outstanding performance on extensive

cnn-based neural network, generalization to other types of neural networks like rnn

can also be explored.

Second, the development of federated prompting is still in its infancy stage. Our

thesis considers the general prompt during the training to obtain the user consensus.

In the next step, first, we consider to decompose the prompt into two part, i.e, the

general prompt and the specific prompt. The general prompt control the common

knowledge while the specific prompt guide the additional knowledge to different

121

domains, which can be effective in the scenarios of out of domain problems. Next,

we consider to add more semantic and context information to the prompt. In this

thesis, we leverage soft prompt while do not give much detailed information of the

classes. To improve the interpertability of prompt, we will leverage the help of the

large language models and give more side information to describe the class. With the

help of semantic information, federated prompting can be more interpretable with

human’s understanding and enhanced performance. Further, although the ensemble

of all the prompts with context information may improve the model performance,

however, the communication and computation efficiency have been scarified, which

the most important factors during the collaborative edge learning. Further, not all

the prompts are useful, most information can be represented with only small fraction

of the prompts. Thus, we will explore the pruning of prompts during the federated

prompting.

122

References

[1] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge com-
puting: A survey. IEEE Internet of Things Journal, 5(1):450–465, 2017.

[2] Ali Abedi and Shehroz S Khan. Fedsl: Federated split learning on distributed
sequential data in recurrent neural networks. arXiv preprint arXiv:2011.03180,
2020.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.
Qsgd: Communication-efficient sgd via gradient quantization and encoding.
Advances in Neural Information Processing Systems, 30:1709–1720, 2017.

[4] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and
Sunav Choudhary. Federated learning with personalization layers. arXiv
preprint arXiv:1912.00818, 2019.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[6] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzoc-
chi, H Brendan McMahan, et al. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046, 2019.

[7] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining
discriminative components with random forests. In Proceedings of the European
Conference on Computer Vision (ECCV), 2014.

[8] Léon Bottou. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

123

Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[10] Duc Bui, Kshitiz Malik, Jack Goetz, Honglei Liu, Seungwhan Moon, Anuj
Kumar, and Kang G Shin. Federated user representation learning. arXiv
preprint arXiv:1909.12535, 2019.

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. End-to-end object detection with trans-
formers. In Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part I 16, pages 213–229. Springer,
2020.

[12] Chen Chen, Hong Xu, Wei Wang, Baochun Li, Bo Li, Li Chen, and Gong
Zhang. Communication-efficient federated learning with adaptive parameter
freezing. In Proc. IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 1–11, 2021.

[13] Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and
Kun Zhang. Plot: Prompt learning with optimal transport for vision-language
models. In International Conference on Learning Representations (ICLR),
2023.

[14] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: A method of vertical
asynchronous federated learning. arXiv preprint arXiv:2007.06081, 2020.

[15] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and
Zicheng Liu. Dynamic convolution: Attention over convolution kernels. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pages 11030–11039, 2020.

[16] Yiqiang Chen, Xiaodong Yang, Xin Qin, Han Yu, Biao Chen, and Zhiqi Shen.
Focus: Dealing with label quality disparity in federated learning. arXiv preprint
arXiv:2001.11359, 2020.

[17] G Cheng, K Chadha, and J Duchi. Fine-tuning in federated learning: A simple
but tough-to-beat baseline. arXiv, 2021.

[18] Kashyap Chitta, José M Álvarez, Elmar Haussmann, and Clément Farabet.
Training data subset search with ensemble active learning. IEEE Transactions
on Intelligent Transportation Systems, 2021.

124

[19] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and
Andrea Vedaldi. Describing textures in the wild. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3606–3613, 2014.

[20] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Ex-
ploiting shared representations for personalized federated learning. In Interna-
tional Conference on Machine Learning, pages 2089–2099. PMLR, 2021.

[21] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large
scale distributed deep networks. Advances in neural information processing
systems, 25, 2012.

[22] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal dis-
tributed online prediction using mini-batches. Journal of Machine Learning
Research, 13(1), 2012.

[23] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In Proc. IEEE conference on
computer vision and pattern recognition,, pages 248–255, 2009.

[24] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo,
Tianmin Shu, Meng Song, Eric P Xing, and Zhiting Hu. Rlprompt: Op-
timizing discrete text prompts with reinforcement learning. arXiv preprint
arXiv:2205.12548, 2022.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[26] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi,
and Noah Smith. Fine-tuning pretrained language models: Weight initializa-
tions, data orders, and early stopping. arXiv preprint arXiv:2002.06305, 2020.

[27] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

[28] Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan
Wang, Chenguang Zhu, Pengchuan Zhang, Lu Yuan, Nanyun Peng, et al. An
empirical study of training end-to-end vision-and-language transformers. In

125

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18166–18176, 2022.

[29] Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan,
and Nicolas Papernot. On the difficulty of defending self-supervised learning
against model extraction. In Proceedings of the International Conference on
Machine Learning (ICML), 2022.

[30] Andrew E. Freedman. Apple a15 bionic powers iphone 13 and ipad mini, 2021.

[31] Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding
dataset difficulty with V-usable information. In International Conference on
Machine Learning, pages 5988–6008. PMLR, 2022.

[32] Cong Fang and Zhouchen Lin. Parallel asynchronous stochastic variance re-
duction for nonconvex optimization. In Proc AAAI Conference on Artificial
Intelligence, volume 31, 2017.

[33] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual mod-
els from few training examples: An incremental bayesian approach tested on
101 object categories. In Proceedings of IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2004.

[34] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and
why: Discovering the long tail via influence estimation. Advances in Neural
Information Processing Systems, 33:2881–2891, 2020.

[35] Andreas Fürst, Elisabeth Rumetshofer, Viet Tran, Hubert Ramsauer, Fei Tang,
Johannes Lehner, David Kreil, Michael Kopp, Günter Klambauer, Angela
Bitto-Nemling, et al. Cloob: Modern hopfield networks with infoloob out-
perform clip. arXiv preprint arXiv:2110.11316, 2021.

[36] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng
Zhang, Hongsheng Li, and Yu Qiao. Clip-adapter: Better vision-language
models with feature adapters. arXiv preprint arXiv:2110.04544, 2021.

[37] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language
models better few-shot learners. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2021.

[38] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney,
and Kurt Keutzer. A survey of quantization methods for efficient neural net-
work inference. arXiv preprint arXiv:2103.13630, 2021.

126

[39] Lin Gu, Weiying Zhang, Zhongkui Wang, and Deze Zeng. Service management
and energy scheduling toward low-carbon edge computing. IEEE Transactions
on Sustainable Computing, 2022.

[40] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object
detection via vision and language knowledge distillation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

[41] Meng-Hao Guo, Zheng-Ning Liu, Tai-Jiang Mu, and Shi-Min Hu. Beyond self-
attention: External attention using two linear layers for visual tasks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[42] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao
Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng,
and Shi-Min Hu. Attention mechanisms in computer vision: A survey. Com-
putational Visual Media, 8(3):331–368, 2022.

[43] Tao Guo, Song Guo, and Junxiao Wang. pfedprompt: Learning personalized
prompt for vision-language models in federated learning. In Proceedings of the
ACM Web Conference, 2023.

[44] Tao Guo, Song Guo, Junxiao Wang, and Wenchao Xu. Promptfl: Let federated
participants cooperatively learn prompts instead of models–federated learning
in age of foundation model. arXiv preprint arXiv:2208.11625, 2022.

[45] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network
over multiple agents. Journal of Network and Computer Applications, 116:1–8,
2018.

[46] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-
level adversarial reprogramming. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2021.

[47] Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and Peter Richtárik. Lower
bounds and optimal algorithms for personalized federated learning. Advances
in Neural Information Processing Systems, 33:2304–2315, 2020.

[48] Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global
and local models. arXiv preprint arXiv:2002.05516, 2020.

[49] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ra-
mage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

127

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[51] John Hewitt, Kawin Ethayarajh, Percy Liang, and Christopher D Manning.
Conditional probing: measuring usable information beyond a baseline. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 1626–1639, 2021.

[52] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen
Gould. Vln bert: A recurrent vision-and-language bert for navigation. In
Proceedings of the IEEE/CVF conference on Computer Vision and Pattern
Recognition, pages 1643–1653, 2021.

[53] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[54] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[55] Chenghao Hu, Jingyan Jiang, and Zhi Wang. Decentralized federated learning:
A segmented gossip approach. arXiv preprint arXiv:1908.07782, 2019.

[56] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
7132–7141, 2018.

[57] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian
Pei, and Yong Zhang. Personalized cross-silo federated learning on non-iid
data. In AAAI, pages 7865–7873, 2021.

[58] Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropa-
gation with convergence guarantee. In International Conference on Machine
Learning, pages 2098–2106. PMLR, 2018.

[59] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham,
Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and
vision-language representation learning with noisy text supervision. In Pro-
ceedings of the International Conference on Machine Learning (ICML), 2021.

128

[60] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, et al. Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[61] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan
Misra, and Nicolas Carion. Mdetr-modulated detection for end-to-end multi-
modal understanding. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 1780–1790, 2021.

[62] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Se-
bastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled av-
eraging for federated learning. In International Conference on Machine Learn-
ing, pages 5132–5143. PMLR, 2020.

[63] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language trans-
former without convolution or region supervision. In International Conference
on Machine Learning, pages 5583–5594. PMLR, 2021.

[64] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences, 114(13):3521–3526,
2017.

[65] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[66] Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on
cifar-10. Unpublished manuscript, 40(7):1–9, 2010.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Communications of the ACM,
60(6):84–90, 2017.

[68] Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar.
Fully decentralized federated learning. In Proceedings of the NeurIPS Workshop
on Bayesian Deep Learning, 2018.

[69] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for
parameter-efficient prompt tuning. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), 2021.

129

[70] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming
Xiong, and Steven Chu Hong Hoi. Align before fuse: Vision and language
representation learning with momentum distillation. Advances in neural infor-
mation processing systems, 34:9694–9705, 2021.

[71] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in feder-
ated learning. Computers & Industrial Engineering, page 106854, 2020.

[72] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang.
Visualbert: A simple and performant baseline for vision and language. arXiv
preprint arXiv:1908.03557, 2019.

[73] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on
non-iid data silos: An experimental study. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE), pages 965–978. IEEE, 2022.

[74] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine, 37(3):50–60, 2020.

[75] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang.
On the convergence of fedavg on non-iid data. In International Conference on
Learning Representations, 2019.

[76] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2021.

[77] Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing
Shao, Fengwei Yu, and Junjie Yan. Supervision exists everywhere: A data
efficient contrastive language-image pre-training paradigm. In Proceedings of
the International Conference on Learning Representations (ICLR), 2021.

[78] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and
Ji Liu. Can decentralized algorithms outperform centralized algorithms? a
case study for decentralized parallel stochastic gradient descent. arXiv preprint
arXiv:1705.09056, 2017.

[79] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach,
David Brent, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think lo-
cally, act globally: Federated learning with local and global representations.
arXiv preprint arXiv:2001.01523, 2020.

130

[80] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao,
Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated
learning in mobile edge networks: A comprehensive survey. IEEE Communi-
cations Surveys & Tutorials, 22(3):2031–2063, 2020.

[81] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi,
and Graham Neubig. Pre-train, prompt, and predict: A systematic sur-
vey of prompting methods in natural language processing. arXiv preprint
arXiv:2107.13586, 2021.

[82] Yang Liu, Xiong Zhang, and Libin Wang. Asymmetrical vertical federated
learning. arXiv preprint arXiv:2004.07427, 2020.

[83] Zhijian Liu, Zhanghao Wu, Chuang Gan, Ligeng Zhu, and Song Han. Datamix:
Efficient privacy-preserving edge-cloud inference. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2020.

[84] Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning
for open banking. In Federated learning, pages 240–254. Springer, 2020.

[85] WANG Luping, WANG Wei, and LI Bo. Cmfl: Mitigating communication
overhead for federated learning. In proc. IEEE (ICDCS), pages 954–964, 2019.

[86] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three
approaches for personalization with applications to federated learning. arXiv
preprint arXiv:2002.10619, 2020.

[87] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and statistics,, pages 1273–
1282. proc., 2017.

[88] Kristof Meding, Luca M Schulze Buschoff, Robert Geirhos, and Felix A Wich-
mann. Trivial or impossible—dichotomous data difficulty masks model dif-
ferences (on imagenet and beyond). In International Conference on Learning
Representations, 2022.

[89] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
Exploiting unintended feature leakage in collaborative learning. In 2019 IEEE
symposium on security and privacy (SP), pages 691–706. IEEE, 2019.

[90] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks against

131

centralized and federated learning. In 2019 IEEE symposium on security and
privacy (SP), pages 739–753. IEEE, 2019.

[91] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam,
Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards
photorealistic image generation and editing with text-guided diffusion models.
In International Conference on Machine Learning, pages 16784–16804. PMLR,
2022.

[92] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification
over a large number of classes. In Proceedings of the Indian Conference on
Computer Vision, Graphics and Image Processing (ICVGIP), 2008.

[93] S. O’Dea. Average global mobile and fixed broadband download & upload
speed worldwide, 2021.

[94] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards en-
hanced representation for federated image classification. arXiv preprint
arXiv:2106.06042, 2021.

[95] Joe O’Connor and Jacob Andreas. What context features can transformer
language models use? In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), pages 851–864,
2021.

[96] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats
and dogs. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[97] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischin-
ski. Styleclip: Text-driven manipulation of stylegan imagery. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 2085–
2094, 2021.

[98] Blake Patterson. Blake’s ios device specifications grid, 2022.

[99] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning
on a data diet: Finding important examples early in training. Advances in
Neural Information Processing Systems, 34:20596–20607, 2021.

[100] Diego Peteiro-Barral and Bertha Guijarro-Berdiñas. A survey of methods for
distributed machine learning. Progress in Artificial Intelligence, 2(1):1–11,
2013.

132

[101] Bjarne Pfitzner, Nico Steckhan, and Bert Arnrich. Federated learning in a
medical context: a systematic literature review. ACM Transactions on Internet
Technology (TOIT), 21(2):1–31, 2021.

[102] Tiago Pimentel and Ryan Cotterell. A bayesian framework for information-
theoretic probing. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2869–2887, 2021.

[103] Maarten G Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-
Cramer, Rajiv Gupta, and Ramesh Raskar. Split learning for collaborative
deep learning in healthcare. arXiv preprint arXiv:1912.12115, 2019.

[104] Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia, Feifei Wang, Ehsan
Adeli, Li Fei-Fei, and Daniel Rubin. Rethinking architecture design for tackling
data heterogeneity in federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[105] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision.
In Proceedings of the International Conference on Machine Learning (ICML),
2021.

[106] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yux-
iong He. Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (HPCA), 2021.

[107] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient
descent optimal for strongly convex stochastic optimization. In Proceedings
of the 29th International Coference on International Conference on Machine
Learning, pages 1571–1578, 2012.

[108] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022.

[109] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu,
Guan Huang, Jie Zhou, and Jiwen Lu. Denseclip: Language-guided dense
prediction with context-aware prompting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18082–18091,
2022.

133

[110] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and
Ramtin Pedarsani. Fedpaq: A communication-efficient federated learning
method with periodic averaging and quantization. In International Confer-
ence on Artificial Intelligence and Statistics, pages 2021–2031. PMLR, 2020.

[111] Google Researches. Federated learning: Collaborative machine learning with-
out centralized training data, 2017. Last accessed April 6, 2017.

[112] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and
Christian Wachinger. Braintorrent: A peer-to-peer environment for decentral-
ized federated learning. arXiv preprint arXiv:1905.06731, 2019.

[113] Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach,
Kai-Wei Chang, Zhewei Yao, and Kurt Keutzer. How much can clip benefit
vision-and-language tasks? In Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

[114] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge com-
puting: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646,
2016.

[115] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer
Singh. Autoprompt: Eliciting knowledge from language models with auto-
matically generated prompts. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020.

[116] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[117] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar.
Detailed comparison of communication efficiency of split learning and federated
learning. arXiv preprint arXiv:1909.09145, 2019.

[118] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wo-
jciech Galuba, Marcus Rohrbach, and Douwe Kiela. Flava: A foundational
language and vision alignment model. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2022.

[119] Vinay Sisodia. Distillation of clip model and other experiments, 2021.

[120] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A
dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

134

[121] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S
Morcos. Beyond neural scaling laws: beating power law scaling via data prun-
ing. arXiv preprint arXiv:2206.14486, 2022.

[122] Shangchao Su, Mingzhao Yang, Bin Li, and Xiangyang Xue. Cross-domain
federated adaptive prompt tuning for clip. arXiv preprint arXiv:2211.07864,
2022.

[123] Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning
with moreau envelopes. Advances in Neural Information Processing Systems,
33:21394–21405, 2020.

[124] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personal-
ized federated learning. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[125] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and
Chengqi Zhang. Fedproto: Federated prototype learning across heterogeneous
clients. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 8432–8440, 2022.

[126] Xueyang Tang, Song Guo, and Jingcai Guo. Personalized federated learning
with contextualized generalization. In Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-22, pages 2241–2247,
2022.

[127] Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-
Or. Motionclip: Exposing human motion generation to clip space. In European
Conference on Computer Vision (ECCV), 2022.

[128] Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe,
and Lichao Sun. Splitfed: When federated learning meets split learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
8485–8493, 2022.

[129] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler,
Yoshua Bengio, and Geoffrey J Gordon. An empirical study of example for-
getting during deep neural network learning. In International Conference on
Learning Representations, 2019.

[130] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals,
and Felix Hill. Multimodal few-shot learning with frozen language models.

135

Advances in Neural Information Processing Systems (NeurIPS), 34:200–212,
2021.

[131] Vasileios Tsouvalas, Aaqib Saeed, Tanir Ozcelebi, and Nirvana Meratnia. Fed-
erated learning with noisy labels. arXiv preprint arXiv:2208.09378, 2022.

[132] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in Neural Information Processing Systems (NeurIPS), 30, 2017.

[133] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar.
Split learning for health: Distributed deep learning without sharing raw patient
data. arXiv preprint arXiv:1812.00564, 2018.

[134] Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, and
Abhimanyu Dubey. No peek: A survey of private distributed deep learning.
arXiv preprint arXiv:1812.03288, 2018.

[135] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise
Beaufays, and Daniel Ramage. Federated evaluation of on-device personaliza-
tion. arXiv preprint arXiv:1910.10252, 2019.

[136] Qiyun WAnG. Design and evaluation of a collaborative learning environment.
Computers & Education, 53(4):1138–1146, 2009.

[137] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Privacy-
preserving, efficient, and effective machine learning. 2022.

[138] Jinze Wu, Qi Liu, Zhenya Huang, Yuting Ning, Hao Wang, Enhong Chen,
Jinfeng Yi, and Bowen Zhou. Hierarchical personalized federated learning for
user modeling. In Proceedings of the Web Conference 2021, pages 957–968,
2021.

[139] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Tor-
ralba. Sun database: Large-scale scene recognition from abbey to zoo. In 2010
IEEE computer society conference on computer vision and pattern recognition,
pages 3485–3492. IEEE, 2010.

[140] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan,
Florian Metze, Luke Zettlemoyer, and Christoph Feichtenhofer. Videoclip:
Contrastive pre-training for zero-shot video-text understanding. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2021.

136

[141] Jingyi Xu, Zihan Chen, Tony QS Quek, and Kai Fong Ernest Chong. Fedcorr:
Multi-stage federated learning for label noise correction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10184–10193, 2022.

[142] Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon.
A theory of usable information under computational constraints. arXiv preprint
arXiv:2002.10689, 2020.

[143] Liu Yang, Ben Tan, Vincent W Zheng, Kai Chen, and Qiang Yang. Federated
recommendation systems. In Federated Learning, pages 225–239. Springer,
2020.

[144] Miao Yang, Hua Qian, Ximin Wang, Yong Zhou, and Hongbin Zhu. Client se-
lection for federated learning with label noise. IEEE Transactions on Vehicular
Technology, 71(2):2193–2197, 2021.

[145] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu.
Federated learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 13(3):1–207, 2019.

[146] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng
Gao, Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A
new foundation model for computer vision. arXiv preprint arXiv:2111.11432,
2021.

[147] Deze Zeng, Lin Gu, Song Guo, Zixue Cheng, and Shui Yu. Joint optimization
of task scheduling and image placement in fog computing supported software-
defined embedded system. IEEE Transactions on Computers, 65(12):3702–
3712, 2016.

[148] Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Al-
varez. Personalized federated learning with first order model optimization. In
International Conference on Learning Representations, 2020.

[149] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

[150] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to
prompt for vision-language models. arXiv preprint arXiv:2109.01134, 2021.

137

[151] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional
prompt learning for vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16816–16825,
2022.

[152] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to
prompt for vision-language models. International Journal of Computer Vision,
130(9):2337–2348, 2022.

[153] Qihua Zhou, Song Guo, LIU Yi, Jie Zhang, Jiewei Zhang, GUO Tao,
XU Zhenda, and Zhihao Qu. Hierarchical channel-spatial encoding for
communication-efficient collaborative learning. In Advances in Neural Infor-
mation Processing Systems.

[154] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge
intelligence: Paving the last mile of artificial intelligence with edge computing.
Proceedings of the IEEE, 107(8):1738–1762, 2019.

[155] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances
in Neural Information Processing Systems (NeurIPS), 32, 2019.

138

	Coverpage
	Declaration
	Abstract
	Abstract
	Publications
	Publications arsing from the thesis
	Acknowledgement
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Challenges
	1.3 Research Framework
	1.4 Thesis Contributions
	1.5 Thesis Organization

	2 Background and Literature Review
	2.1 Collaborative Edge Learning Framework
	2.1.1 Federated Learning
	2.1.2 Split Learning

	2.2 Heterogeneity on Edge
	2.2.1 Resource Heterogeneity
	2.2.2 Statistical Heterogeneity

	2.3 Age of Foundation model
	2.3.1 Foundation Model
	2.3.2 Prompt Training

	3 Tree Learning: Towards Promoting Coordination in Scalable Multi-Client Training Acceleration
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Configuration Categories
	3.2.2 Limitations of current collaborative learning paradigms

	3.3 Tree Learning Design
	3.3.1 Training scenario
	3.3.2 Tree aggregation scheme
	3.3.3 Pipeline Parallelism

	3.4 Partition Algorithm for Tree Learning
	3.5 Theoretical Interpretation
	3.5.1 Preliminary
	3.5.2 Convergence Analysis

	3.6 Evaluation
	3.6.1 Methodology
	3.6.2 Training Speed
	3.6.3 Acceleration Ratio across clients and cluster
	3.6.4 Convergence Analysis
	3.6.5 Resource Efficiency
	3.6.6 Ablation Study

	3.7 Chapter Summary

	4 PromptFL: Let Federated Participants Cooperatively Learn Prompts Instead of Models — Federated Learning in Age of Foundation Model
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Foundation Model
	4.2.2 Federated Learning

	4.3 Prompt-Based Federated Learning
	4.3.1 Prompt Engineering
	4.3.2 Framework to Learn Prompts in FL
	4.3.3 System Feasibility
	4.3.4 Privacy Concerns

	4.4 Experiments
	4.4.1 Experimental Setup

	4.5 Chapter Summary

	5 pFedPrompt: Learning Personalized Prompt for Vision-Language Models in Federated Learning
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 User Heterogeneity
	5.2.2 Personalized Federated Learning
	5.2.3 Prompted Vision-Language Models
	5.2.4 Attention Mechanism

	5.3 Prompt Personalization
	5.3.1 pFL – Straightforward But Insufficient
	5.3.2 pFedPrompt – Unleashing Multimodality

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Performance Evaluation

	5.5 Chapter Summary

	6 Explore and Cure: Unveiling Sample Effectiveness with Context-Aware Federated Prompt Tuning
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Vision-Language Pre-trained Models
	6.2.2 Prompt Training
	6.2.3 Federated Learning

	6.3 How the Prompting Works
	6.3.1 Observation 1: Performance Saturated in Prompt Learning
	6.3.2 Observation 2: Random Examples Result in Fluctuated Performance
	6.3.3 Observation 3: Arithmetic Operations Benefit Prompt Learning
	6.3.4 Inspiration: Prompt Leverages Knowledge Inside Models Instead of Augmenting Them

	6.4 Methodology
	6.4.1 Federated Prompting
	6.4.2 Ensure Your Data for Federated Prompting

	6.5 Evaluation
	6.5.1 Dataset
	6.5.2 Baselines
	6.5.3 Implementation Details
	6.5.4 Overall Result
	6.5.5 Analysis with Interpretations

	6.6 Related Work
	6.7 Chapter Summary

	7 Conclusions and Suggestions for Future Research
	7.1 Conclusions
	7.2 Future Directions

	References

