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ABSTRACT 

The construction industry is among the most labor-intensive sectors, with many tasks 

dependent on manual labor. This heavy reliance on a manual workforce presents challenges in 

managing ongoing projects, which is recognized as a fundamental cause of low productivity in 

construction. Therefore, identifying the worker-related root causes through continuous 

monitoring and assessment of activities is essential to addressing the low productivity issue. 

However, continuous activity monitoring for productivity analysis at the construction sites is 

challenging due to the environmental complexity and the dynamic nature of construction 

projects. Although observational methods are widely used to collect activity-related data, such 

as the locations of tasks performed and types of activities, these methods face criticism for their 

time-consuming and manual nature of data collection. For efficient monitoring of individual 

workers, previous research efforts have argued the need for automated approaches for field 

data collection by using sensing technologies, including cameras and wearable sensors.  

Previous studies have proposed various sensor-based approaches for monitoring workers’ 

activities. Nonetheless, significant challenges persist in identifying productivity issues. Firstly, 

most research in sensor-based activity monitoring categorizes activities based on repetitive 

tasks. However, the unstandardized nature of construction work means these predefined work 

taxonomies are not universally applicable, failing to recognize different working contexts 

essential for identifying core productivity problems. Secondly, existing sensor-based methods 

have primarily been validated in controlled environments, leaving the efficacy of these 

approaches for long-term, continuous activity data collection untested in field conditions. 

Thirdly, existing studies often depend on a single sensor data source, demonstrating acceptable 

accuracy in detecting various construction activities. However, each sensor has inherent 
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strengths and weaknesses, and reliance on a single data source could result in significant errors, 

particularly in challenging environments. 

The current study aims to develop a comprehensive sensor-fusion-based automated activity 

assessment framework to identify potential worker-related productivity issues. The designed 

framework involves continuously collecting activity data using multi-modal sensors, including 

Bluetooth Low Energy (BLE) beacons for location tracking and accelerometers and cameras 

for activity monitoring. Specifically, this study established three objectives to address the 

research challenges outlined in the previous paragraph. The first objective is to design a refined 

taxonomy for construction activities, enhancing worker monitoring accuracy with work context 

information. The second objective is to assess the effectiveness of BLE beacon-based location 

tracking and accelerometer-based activity monitoring in diverse field settings. The third 

objective is to develop and evaluate a sensor fusion method that combines accelerometer and 

video data to improve activity recognition robustness in construction environments. The 

proposed worker activity assessment framework is expected to collect activity and location 

information from construction workers in real-time, aiding in better understanding individual 

worker-level productivity issues and determining the most suitable intervention strategies to 

improve construction productivity.  
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CHAPTER 1 INTRODUCTION 

Construction is one of the most labor-intensive industries, and many construction tasks still 

rely on the manual workforce (Ng & Tang, 2010). High dependency on a manual workforce 

has been recognized as one of the fundamental causes of low productivity in construction 

(Jarkas, 2010). Task-level activity analysis has been utilized in the construction domain to 

identify the root causes of low productivity by continuously monitoring construction activities 

(Gouett et al., 2011). Notably, it quantifies the time spent on diverse activities and categorizes 

them based on their contribution to productivity (e.g., productive or non-productive), aiming 

to identify problematic operations requiring immediate intervention. 

Recently, sensing technologies have shown potential for automatically collecting activity data 

(e.g., activity category and time expenditure) and location information. Collecting field data on 

workers’ activities and locations using sensing technologies enables construction practitioners 

to understand the current status of diverse construction operations from a productivity 

perspective and identify causes of low productivity at the task-level. Previous research efforts 

have concentrated on various sensor-based approaches to automatically collect workers’ 

activity and location data, utilizing machine learning/deep learning algorithms for action 

recognition and location tracking. Such automated action recognition frameworks employing 

machine learning-based classification have been widely used, demonstrating their potential to 

replace human observations with wearable sensors or cameras for continuous activity 

measurement without interfering with ongoing work (Hwang & Lee, 2017).  

In construction activities, each type necessitates varied movements from the workers’ bodies 

and joints, generating distinctive signal patterns (e.g., acceleration signals), which are able to 

be identified by action recognition classifiers. These models are trained using machine learning 

and deep learning algorithms to discern unique patterns from raw data, classifying different 
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construction activities. Therefore, based on time-series acceleration or video data, action 

recognition automatically measures time spent on specific tasks within construction projects. 

Researchers in the field have explored the reliability and validity of automated activity 

recognition through acceleration data gathered in laboratory or construction sites, highlighting 

its significant potential for activity analysis (Akhavian & Behzadan, 2016; Bangaru et al., 

2021b; Cheng et al., 2013; Joshua & Varghese, 2014; Kwapisz et al., 2011; Luís Sanhudo et 

al., 2021; Weiss et al., 2016).  

Meanwhile, various entities, such as workers, equipment, and materials, are involved in 

construction operations. Monitoring and determining the location of construction entities is 

essential for various applications within construction sites, including resource optimization and 

progress monitoring (Dzeng et al., 2014). In particular, the location information acts as 

supplemental information to the activity recognition, resulting in higher classification 

credibility (Cheng et al., 2013). In the meantime, knowing work areas with low productivity 

allows us to understand potential issues related to low productivity. For example, low 

productivity would be affected by an individual worker’s performance and operational factors 

such as lack of proper resources (e.g., workers, materials, and equipment). As a result, locating 

specific work areas with low productivity enables practitioners to immediately solve existing 

operational problems that could lead to low productivity. However, considering the large 

number of related entities working at construction sites, traditional localization with manual 

observation is labor-intensive and error-prone (Zhang et al., 2013), making the automated 

approach essential in tracking construction entities. Among various wireless technologies (e.g., 

Radio Frequency Identification (RFID), Global Positioning Systems (GPS), and Ultra-

Wideband (UWB)) for tracking and locating construction entities, Bluetooth Low Energy (BLE) 

beacons have shown comparative advantages of 1) a low amount of infrastructure setting (J. 

Zhao et al., 2019), 2) flexible installation (Urano et al., 2017), 3) accessible to scalable both 
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indoor and outdoor (Ng et al., 2020), and 4) cost-effective (Park et al., 2017). For example, 

unlike UWB, which requires a continuous power supply, battery-powered BLE beacons are 

more flexible to deploy in fast-changing environments (e.g., construction sites) (Khoury & 

Kamat, 2009). In contrast to wireless technologies, such as RFID and magnetic field, which 

need time-consuming calibration, the BLE beacon is capable of calibrating easily, therefore 

minimizing the infrastructure requirements (Park, Marks, et al., 2016). Due to these advantages 

and unique features of BLE beacons, previous studies have applied beacon-based location 

tracking of diverse construction entities, including construction workers (Park et al., 2017), 

resources (Shen et al., 2008), and vehicles (Lu et al., 2007). 

Despite the potential of sensing technologies for task-level activity analysis, there are several 

remaining challenges in terms of 1) the interpretability of data obtained from sensing 

technologies, 2) the accuracy and reliability of sensor-based approaches, and 3) the sensor 

deployment at construction sites. First of all, as machine learning algorithms for action 

recognition deal with multiclass classification problems, how to define actions would 

significantly impact how to recognize productivity issues and whether machine learning 

algorithms can successfully learn unique data patterns according to activities. In the 

construction domain, the action categories tend to be determined on the basis of representative 

activities of construction tasks that are the most repeatedly performed. However, these 

activities may not provide sufficient information in the context of construction tasks that would 

be needed to understand productivity issues. For example, the delay of construction operations 

could occur due to a longer time for installing materials due to a lack of skilled carpenters, long 

material lead time caused by poorly optimized workspaces, or idling time caused by waiting 

for forms to be delivered to working areas. Even though these causes cannot be directly 

captured from action recognition, the actions should be precisely defined enough to implicitly 

identify these various work contexts associated with potential causes of low productivity. Also, 
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the actions defined for action recognition algorithms often lead to confusion among different 

activities because of a lack of consideration of body movements that will directly affect sensor 

data patterns. Considering the non-standardized nature of field operations, the action 

recognition algorithms frequently suffer from noisy actions (e.g., actions that are unclearly 

predefined and labeled or transitional actions). These issues will be more remarkable in field 

operations where diverse activities are being performed in a continuous manner. In this regard, 

there is a solid need to re-design work taxonomy for action recognition algorithms by 

considering both work contexts and the distinguishability of data.  

Secondly, relying on a single source of sensors to obtain field data for activity analysis would 

be risky, considering the multi-dimensionality of productivity issues and uncertainty caused by 

each sensor-based approach. This has led to the need for sensor-fusion approaches. As 

described above, activity analysis needs worker activity and location data. Thus, sensor fusion 

methods are needed to have the advantages of multiple sensing modalities, such as action 

recognition using wearable sensor- or vision-based approaches and location tracking methods 

such as BLE Beacons. From the activity analysis point of view, multi-modalities of field data 

(e.g., types and locations of activities) would help understand productivity issues better. Also, 

multi-sensor modality for a specific type of field data, such as types of activities, can reduce 

the uncertainty when different data sources (e.g., accelerations and images) are used 

individually (Lahat et al., 2015). For example, acceleration signals from a wearable sensor such 

as a wristband have shown good accuracy for classifying diverse construction activities but 

significant confusion between hand-dominant activities with similar upper-arm movements 

(Ryu et al., 2019). Instead, vision-based action recognition would be able to more accurately 

recognize diverse hand-dominant activities as images can capture whole-body moments. In this 

regard, the fusion of visual and non-visual modalities has been widely explored for human 

action recognition, showing better classification performance. However, most fusion methods 



 

5 

 

for visual and non-visual modalities assume that both data are always available, and thus, 

machine learning algorithms can co-learn with two different modalities. Considering that 

images from construction sites frequently suffer from occlusions, it is expected to have only 

acceleration data at specific time frames, and thus, co-learning approaches are not possible. 

Also, during data fusion, balancing information from different sources is very important as 

each data modality may have different levels of confidence and reliability according to classes  

(Lahat et al., 2015). In this regard, the fusion approach should successfully work even without 

one modality of data, such as images, and maximize the complementarity of multimodality 

from multiple data sources.  

Lastly, consideration of the dynamic nature of construction sites is vital in sensor data 

collection. Despite wearable sensors not being significantly impacted by working 

environments, deploying cameras and BLE Beacons requires careful consideration of site 

conditions. Specifically, signals from BLE Beacons are subjected to dynamic influences by 

various factors, such as distances, site layouts, signal propagation paths, and other 

environmental variables. This differs from cameras where site coverage can be visually 

assessed, thus introducing an additional layer of complexity in data collection.  The typical 

scenario of beacon-based tracking and localization is based on the distance measure (i.e., Rx 

power level approach) between the beacon and the receiver (e.g., smartphone) by using the 

characteristics of beacon signals that the signal strength would gradually decrease during 

propagation (Subhan et al., 2011). By using the estimated distances from multiple beacons (at 

least three), the receiver’s position can be determined through trilateration methods (Elnahrawy 

et al., 2004; Han et al., 2007). However, the distance estimation is not always stable because 

the received signal tends to fluctuate as it is affected by environmental factors such as 

temperature and humidity (Amir Guidara et al., 2018). Also, the designed bandwidth of BLE 

technology does not allow the signal to penetrate obstacles like walls. Therefore, the signal 
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received is the combination of signals from multiple paths, including directly received signals 

or signals reflected by walls, which could lead to inaccurate distance estimation (Faragher & 

Harle, 2014). This issue would be more significant, especially when deploying multiple 

beacons in the same area (Mackey et al., 2018). To mitigate signal frustration, previous studies 

have proposed and tested mathematical approaches to filtering out noisy signals, such as the 

Bayes filter, Kalman Filter (KF), Extended Kalman Filter (EKF), and Particle Filter (PF) (Xu 

et al., 2021). However, most studies mainly focused on signal noise and fluctuation during 

signal propagation without fully considering the impact of diverse environmental conditions 

on beacon signals. 

To address these challenges, this study proposes automated task-level activity analysis by using 

sensor fusion approaches, in particular, focusing on the following research objectives:  

Objective 1. Design a hierarchical work taxonomy for automated activity analysis.  

Objective 2. Validate the feasibility of the proposed work taxonomy for automated action 

recognition using field data.  

Objective 3. Develop a novel sensor fusion approach for action recognition by using both image 

and acceleration data, considering the independence and complementarity of multi-modality.  

Objective 4. Evaluate a BLE beacon-based localization approach at various site conditions.  

As depicted in Figure 1-1, the study begins with designing a work taxonomy that is 

comprehensive and universally applicable to construction tasks (Objective 1). The proposed 

taxonomy focuses on two essential aspects: 1) the potential productivity contribution of 

activities and 2) the existence of distinctive body movements. The first aspect facilitates 

valuable information extraction in the context of activity contribution, thus enhancing the 

interpretability of data analysis. Conversely, the second aspect aids in distinguishing motions 
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through inherent data characteristics, thereby mitigating classification errors from action 

recognition algorithms. Next, the feasibility of this proposed taxonomy was validated for 

automated action recognition utilizing field experiments (Objective 2). The field data were 

collected in an uncontrolled manner from 18 construction workers at two construction sites in 

Hong Kong. Over two months, acceleration data was gathered during concrete work tasks such 

as formwork and rebar installation using an inertial measurement unit (IMU) embedded in a 

smartwatch (e.g., Apple Watch). Subsequently, the acquired data was labeled according to the 

proposed work taxonomy. The validation process incorporated both traditional feature-based 

machine learning and advanced deep learning algorithms, all for acceleration-based action 

recognition. The field experiment was designed to evaluate the validity of the proposed 

taxonomy and the classification accuracy and reliability of the acceleration-based activity 

recognition model. 

Moreover, the present study formulated an action recognition framework that combines vision 

and acceleration-based models using decision-level fusion approaches and confirmed the 

sensor fusion’s complementarity through laboratory experiments (Objective 3). Eight activities 

from the taxonomy designed in Objective 1 were selected in the lab test. Three participants 

were employed to perform each activity five times sequentially. Data were concurrently 

recorded via an Apple Watch used in the previous field test (Objective 2) and three smartphones 

(iPhone) to capture acceleration and three angles’ video data. Initial experiments assessed the 

taxonomy’s effectiveness in a video-based activity recognition model with laboratory-collected 

data. Subsequently, acceleration and video data were utilized to train the model separately. The 

proposed decision-level fusion approaches were then employed to integrate preliminary 

estimates from the models trained from sole-sensor sources. Performance comparison would 

affirm the fusion network’s efficacy and thereby underscore the complementary benefits of 

using the fusion approach in construction activity recognition. 
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Lastly, the current study designed various environmental conditions and scenarios for an in-

depth analysis of BLE beacon signals, thereby understanding the deployment principle of BLE 

beacon for the localization application in the construction site (Objective 4). The proposed 

approach involved varying the beacon installation height, signal receiver position, and the 

indoor environment’s geometry. Field tests were conducted at a construction site, leveraging 

commercial beacon devices. Data were collected using an iOS application and included twelve 

independent trials featuring two different testbeds and 24 unique beacons. The dataset spanned 

a month, providing substantial evidence for signal strength analysis and contributing to 

understanding and improving sensor deployment in varying construction site conditions. 

 

 

Figure 1-1 An overview of the research framework 
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CHAPTER 2 TAXONOMY DESIGN OF TASK-LEVEL 

ACTIVITY ANALYSIS1 

 

2.1 Task-Level Productivity Assessment 

Productivity stands as a crucial determinant of project success in the construction industry, 

with significant influence over cost, time, and quality (Nasirzadeh & Nojedehi, 2013). Despite 

various interpretations, productivity is generally understood as the construction process’s ratio 

of outputs to inputs. In the construction industry, the output is quantifiable in diverse units, 

including components assembled, square meters, or cubic meters of material installed. 

Conversely, labor is the primary input of productivity measurement because of the labor-

intensive nature of construction projects. In this regard, Construction Labor Productivity (CLP), 

defined as the number of work hours required for unit output, is the widely preferred metric for 

construction productivity assessment (Yi & Chan, 2014). Within the construction industry, the 

evaluation of labor productivity occurs at three distinct levels: task-, project-, and industry-

level, each signifying an increasing level of complexity. The task-level assessment, which 

focuses on individual construction activities, is widely employed within the industry. For 

instance, the Construction Industry Institute (CII) utilizes such metric as a benchmark for 

productivity estimation (Chapman et al., 2010). Compared to the project- or industry-level, 

task-level assessment functions as a single-factor productivity measure with controlled 

variables. As a result, the root cause of low productivity can be more efficiently identified by 

                                                 
1 This chapter is partially based on a published study and being reproduced with the permission of Elsevier. 

Gong, Y., Yang, K., Seo, J., & Lee, J. G. (2022). Wearable acceleration-based action recognition for long-term 

and continuous activity analysis in construction site. Journal of Building Engineering, 52, 104448. 
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focusing on individual task tracks rather than the collective trajectory derived from numerous 

task streams within a project. Furthermore, tasks are a construction project’s foundational units 

associated with minimal time investment. As a consequence, task-level productivity 

deficiencies can be identified closest to the time when the issue arises. Such an instant way of 

exposing productivity issues allows immediate intervention to resolve the problem. 

Various productivity assessment methods have evolved, including Productivity Measuring 

Methods (PMMs) and Productivity Improving Methods (PIMs) (Adrian & Boyer, 1976). 

Despite their utility, traditional methods may exhibit drawbacks, such as labor intensiveness 

and failures to deliver accurate and timely responses. Techniques such as activity analysis have 

earned widespread adoption in productivity assessment to overcome such limitations. As a 

developed form of the sampling method, this technique focuses on the identification of activity 

categories while simultaneously tracking the time spent on each activity pattern, which aids in 

the estimation of task-level labor productivity. When applied in the construction industry, it 

enables continuous assessment, serving as productivity feedback that highlights tasks and 

workers requiring further improvements.(Jacobsen et al., 2023).  

The task-level activity analysis serves as a vital tool for improving efficiencies within the 

construction industry. In the assessment procedure, the activity analysis method is employed 

to quantify labor productivity in the context of labor hours spent on physical tasks. Given the 

productivity estimation of target tasks, the productivity assessment facilitates promptly finding 

the exact task inherent to low-productivity issues by focusing on discrete tasks that comprise 

larger projects. As a result, interventions can be initiated to address these productivity 

challenges. Success in resolving such issues leads to improvements in the construction process. 

Despite the crucial importance of task-level activity analysis, its application presents 

considerable challenges. One notable difficulty lies in defining tasks accurately, reasonably, 



 

11 

 

and consistently, which would ensure that measurements at the task level remain objective and 

comparable. 

 

2.2 Literature Review of Activity Taxonomy Design 

Addressing the challenge of applying task-level activity analysis in construction productivity 

assessment requires a robust task definition system, which requires a comprehensive taxonomy 

system explicitly designed for construction activities. A well-designed taxonomy would 

facilitate clearly labeling collected data, reducing confusion and ensuring every data pattern is 

accommodated within the labeling system. In the meantime, the well-structured activity 

taxonomy could facilitate a better understanding of data, thereby enriching the interpretability 

of the resulting analyses.  

In order to find the principles of designing a robust activity taxonomy system, the current study 

investigated the work taxonomy employed in previous activity recognition research. The 

findings are summarized in Table 2-1, showing that action recognition typically classifies 

activities either as 1) movement-oriented tasks such as standing, walking, hammering, and 

screwing or 2) work context-oriented tasks encompassing actions related to masonry work like 

spreading mortar, fetching bricks, and filling joints. The use of body movement characteristics 

for task definition often leads to a more accurate activity classification, given that distinct 

movements create unique responses. This approach, however, may lack semantic properties 

due to the absence of work context information. Conversely, employing work context-oriented 

tasks as labels for action recognition can yield more intuitive knowledge when measuring work 

expenditures during activity analysis, thereby aiding in construction labor assessment and delay 

identification. Such a mode of activity recognition, though, can result in poor classification 

performance when the tasks being classified involve similar body movements. For example, 
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formwork activities viewed from a work context perspective involve both assembling and 

stripping formwork, which shares the common task of hammering. Thus, an activity taxonomy 

for action classification must encompass both movement and work context to deliver high-

performance classification results enriched with comprehensive information on construction 

activities.  

Table 2-1 Activity taxonomy used in the Human Activity Recognition (HAR) domain 

Taxonomy 

criteria 

Activity 

category  

Classification 

model 

Classification 

accuracy 

Data 

collection 

method 

Research  

Motion 

Basic task: 

Connecting, 

covering, cutting, 

digging, 

finishing, 

inspecting, 

measuring, 

placing, planning, 

positioning, 

spraying, 

spreading 

- - Observation 
Everett and 

Slocum (1994) 

Motion 

Walking, 

tying rebar 

guiding crane 

between activities 

- - 
Automation 

(camera) 

Buchholz et al. 

(2003) 

Motion 

Loading, 

pushing, 

unloading, 

returning, idling 

Neural 

network, 

decision trees, 

K-Nearest 

Neighbor 

(KNN), 

logistic 

regression, and 

Support Vector 

Machine 

(SVM) 

87% to 97% 

(user-

dependent) and 

62% to 96% 

(user-

independent) 

Automation 

(smartphone) 

Akhavian and 

Behzadan 

(2016) 

Context 
Work, material, 

travel, and idle 
- - 

Automation 

(location 

sensor and 

accelerometer) 

Cheng et al. 

(2013) 

Context 

Direct work, 

tools and 

materials, 

instructions and 

drawings, crane 

deliveries, minor 

contributory 

work, travel, idle, 

unexplained, 

waiting, no 

contact 

- - Observation 
Thomas and 

Daily (1983) 
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Context 

Effective work, 

essential 

contributory 

work, ineffective 

work 

Decision tree 

90.1% 

(ironwork) and 

77.7% 

(carpentry)  

Automation 

(IMU) 

Joshua and 

Varghese 

(2014) 

Context 

Spreading mortar, 

laying blocks, 

adjusting blocks, 

removing mortar 

 KNN, 

multilayer 

perceptron, 

decision tree, 

and multiclass 

Support Vector 

Machine 

88.1% 
Automation 

(IMU) 

Ryu et al. 

(2019) 

Motion 

Sitting, lying 

down, walking, 

walking upstairs, 

walking 

downstairs, 

stand-to-sit, sit-

to-stand, sit-to-

lie, lie-to-sit, 

stand-to-lie, lie-

to-stand 

Deep Belief 

Network 

(DBN) 

89.6% 
Automation 

(accelerometer) 

Hassan et al. 

(2018) 

Motion 

Jogging, walking, 

upstairs, 

downstairs, 

sitting, standing 

Convolutional 

Neural 

Network 

(CNN) 

97.6% 
Automation 

(accelerometer) 
Ignatov (2018) 

Motion Run, walk, still  CNN 92.7% 
Automation 

(accelerometer) 

Lee et al. 

(2017) 

Motion 

Biological 

Motion Library 

(BML): 

knocking, lifting, 

throwing, 

walking. 

Multimodal 

Human Action 

Database 

(MHAD): 

jumping, jumping 

jacks, bending, 

punching, waving 

(two hands), 

waving (one 

hand), clapping, 

throwing, sit-

down/stand-up, 

sit-down, stand-

up 

Recurrent 

Neural 

Networks 

(RNN) 

99% (BML) 

and 99% 

(MHAD) 

Automation 

(magnetic 

induction 

sensor) 

Golestani and 

Moghaddam 

(2020) 

Motion and 

context 

PAMAP2 

Dataset: lie, sit, 

stand, walk, run, 

cycle, Nordic 

walk, iron, 

vacuum clean, 

rope jump, 

ascend and 

descend stairs, 

watch TV, 

computer work, 

Inception 

neural 

network, 

Recurrent 

Neural 

Network 

94.5% 
Automation 

(accelerometer) 

Xu et al. 

(2019) 
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drive the car, fold 

laundry, clean 

house, play 

soccer 

Motion 

MHEALTH 

Dataset: standing 

still, sitting and 

relaxing, lying 

down, walking, 

climbing stairs, 

waist bends 

forward, frontal 

elevation of arms, 

knees bending, 

cycling, jogging, 

running, jumping 

front and back 

Neural 

networks with 

Simple 

Recurrent 

Units (SRUs) 

and Gated 

Recurrent 

Units (GRUs)  

99.6% 

Automation 

(accelerometer 

and ECG) 

Gumaei et al. 

(2019) 

Motion 

Standing, 

bending-up, 

bending, 

bending-down, 

squatting-up, 

squatting, 

squatting-down, 

walking, twisting, 

working 

overhead, 

kneeling-up, 

kneeling, 

kneeling-down, 

and using stairs 

Long Short-

Term Memory 

(LSTM) 

94.7% 
Automation 

(IMU) 

Kim and Cho 

(2020) 

Motion 

Adjusting jacks, 

carrying 

crossbars, 

carrying jacks, 

carrying scaffold 

plank, carrying 

scaffold frame, 

dragging scaffold 

plank, 

hammering, 

inserting jacks 

into scaffold 

frame, lifting 

scaffold plank 

from elbow to 

overhead, 

walking, 

wrenching, 

climbing, 

downstairs, 

climbing with 

tool bag, 

downstairs with 

tool bag 

Neural network 93.3% 

Automation 

(accelerometer 

and ECG) 

Bangaru et al. 

(2021a) 
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2.3 Comprehensive Construction Activity Taxonomy Designed with a 

Hierarchical Structure 

The prior section investigated that movement characteristics and work context are essential 

principles of designing a well-performed activity analysis taxonomy. Based on these principles, 

a comprehensive activity analysis taxonomy was designed to assess task-level construction 

productivity. The proposed comprehensive activity taxonomy consists of three hierarchical 

levels of activities to extract activity-related information and better understand the work 

context performed by a construction worker (Table 2-2).  

Table 2-2 Construction activity taxonomy designed for worker’s productivity assessment 

Activity 

level 
Activity 

Level 1  Idling Work 

Level 2  
Stationary 

(Ineffective)  
Traveling (Supportive work)  Material Installation (Effective work) 

Level 3 
Standing  

or sitting 
Transportation 

Transferring 

materials and 

tools 

Material 

preparation 

Material 

connecting 

Material 

placing 

Supplement 

work 

Basic 

task 

Standing, 

and sitting 

Horizontal, 

vertical, and 

inclined 

movement, 

jumping, 

striding, going 

upstairs or 

downstairs, 

climbing up or 

down a ladder 

Carrying 

materials in 

horizontal, 

vertical, and 

inclined 

movement, 

carrying 

materials 

while going 

upstairs or 

downstairs 

and climbing 

ladders, 

dynamical 

wrist 

movement 

while 

traveling 

Rebar 

work: 

cutting, 

bending 

Formwork: 

cutting, 

measuring, 

and 

drawing 

Rebar 

work: 

fixing, 

tying, 

installing 

stirrup 

Formwork: 

screwing, 

drilling, 

knocking, 

removing 

nails 

Rebar 

work: 

placing, 

adjusting, 

lifting 

Formwork: 

Attaching, 

adjusting, 

and lifting 

formwork 

Lifting 

materials 

and tools, 

squatting, 

standing up, 

rotating 

trunk, 

transition 

movement 
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The first criterion for categorizing activities is whether the activity is relevant to the production 

process, and the activities are classified into “Idling” (e.g., standing and sitting) or “Work” at 

Level 1. As an offspring activity category of “Work,” activities at Level 2 are defined in 

accordance with activity-related movements, depending on whether they involve hand-

dominant or whole-body-dominant movements. As the acceleration data are collected from a 

smartwatch, the signals will be more dominantly affected by hand movements and less affected 

by whole-body movements. By classifying Level 2 activities into “Traveling,” which involves 

horizontal whole-body movements, and “Material installation,” which is associated with hand-

dominant activities, the acceleration signals from the two activities can be more distinguishable. 

Such a difference is illustrated in Figure 2-1. Meanwhile, three activity categories at Level 2, 

which include “Stationary,” “Traveling,” and “Material installation,” can provide information 

to evaluate the work efficiency of the operations to be monitored. For example, the longer time 

spent on “Material installation” may indicate that the operation will be more efficient for 

producing outputs. The activities at Level 3 focus more on understanding the work context that 

will help identify productivity inhibitors. For this purpose, “Traveling” is further classified into 

“Transportation” and “Transferring materials and tools” at Level 3, and “Material installation” 

is divided into four subactivities, including “Material preparation,” “Material connecting,” 

“Material placing,” and “Supplement work.” Detecting the problematic activities that can lead 

to inefficiency in activities at Level 2 is possible by further classifying activities at Level 3. 

However, as the activity categories at Level 3 are based on general work contexts, they can be 

applicable to any other construction operations that involve delivering and installing materials 

for specific building components. However, some activities, including intermittent or 

supportive activities for other activities at Level 3, are unclearly classified on the basis of work 

contexts. These activities are included in “Supplement work”. Table 2-2 shows examples of 

the basic tasks that can be included in activities at Level 3 for rebar work and formwork that 
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are operations to be tested in this study. For example, “Material preparation,” which refers to 

producing components for further operation, can include several basic tasks, such as cutting, 

bending, and drilling. “Material connecting” is the assembling tasks, including fixing, tiling, 

screwing, and knocking, and material placing represents the lifting and adjusting of associated 

components. “Supplement work” includes all supportive movements that occur during the 

installation process. The basic tasks can be used for a better categorization of the activity 

taxonomy in this study and for precisely recognizing the labeling procedure. Such segmentation 

of tasks for activities in Level 3 will help understand the context of activities but will also 

increase the uncertainty of an automated activity classification using a wearable sensor. 

Specifically, the classification of Level 3 activities is questionable due to the similarity and 

dissimilarity of acceleration signals from different activities. For instance, knocking and cutting 

movements are the offspring activities of “Material installation” that will generate cyclic 

acceleration data with repetitive hand movements. Consequently, distinguishing the Level 3 

activities for “Material installation” solely by hand movements is difficult because each 

category of the operation comprises dynamic and complex hand movements. Transportation 

and transferring of materials/tools will have different hand movements. The hand will swing 

periodically in “Transportation” activities (e.g., walking) or sway (e.g., adjusting tool while 

walking) mildly (e.g., holding material steady while walking) in “Material or tool transferring” 

activities. These facts lead to this research investigating the activity classification performance 

with a proposed activity taxonomy (Table 2-2).  
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Figure 2-1 Acceleration signals of hand-dominant activity and body-dominant activity 
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CHAPTER 3 FIELD VALIDATION OF ACCELERATION-

BASED TASK-LEVEL WORKER PRODUCTIVITY 

ASSESSMENT2 

 

3.1 Background 

Recently, the construction sector witnessed the introduction of automated action recognition 

techniques using sensors facilitated by machine learning methods. The application has shown 

its potential to replace human observers for continuous activity measurement without 

interfering with ongoing work (Hwang & Lee, 2017). Despite its usefulness, a few challenges 

have been identified concerning its practical implementation in ongoing construction tasks. 

Nonetheless, a few challenges associated with its implementation in ongoing construction tasks 

have been highlighted. Specifically, the definition of activities poses a significant influence on 

the performance of automatic activity recognition. 

In the construction domain, the action categories tend to be determined on the basis of 

representative activities of construction work that are the most repeatedly performed. However, 

confusion among different activities frequently occurs because of the lack of consideration of 

body movements that will directly affect the pattern of motion signals from body-attached 

sensors. Considering the nonstandardized nature of field operations, the action recognition 

algorithms frequently suffer from noisy actions (e.g., actions that are unclearly predefined and 

                                                 
2 This chapter is based on a published study and being reproduced with the permission of Elsevier. 

Gong, Y., Yang, K., Seo, J., & Lee, J. G. (2022). Wearable acceleration-based action recognition for long-term 

and continuous activity analysis in construction site. Journal of Building Engineering, 52, 104448. 



 

20 

 

labeled or transitional actions). These issues will be more remarkable in data that are 

continuously collected in unstructured settings, such as actual construction sites.  

To address the limitations, the authors of this study propose a new work taxonomy that 

considers movement and work contexts (Table 2-2). This taxonomy aims to extract useful 

information for activity analysis and reduce classification errors from action recognition 

algorithms. The proposal of a comprehensive and universally applicable work taxonomy for 

construction tasks considers 1) the potential of activities to contribute to productivity and 2) 

the engagement of activities in unique body movements that may generate distinguishable 

acceleration signals, liable to serve as features for classification. However, the effectiveness of 

this proposed taxonomy in analyzing construction activity remains uncertain. Hence, this 

chapter seeks to validate its effectiveness by analyzing worker activity data collected from the 

construction field. The validation employed the acceleration sensor, which is widely used in 

the human activity recognition domain and is ideally suitable for construction demand. Diverse 

construction activities involve specific body movements of construction workers, and these 

movements create unique acceleration signals. Acceleration-based action recognition tries to 

automatically capture these unique patterns from the signals by using machine learning 

algorithms and classify diverse construction activities. As action recognition is performed on 

the basis of a set of time-series acceleration data, the classification results can be used to 

measure the time spent on specific activities in any construction tasks automatically. Several 

researchers in construction have examined the reliability and validity of automated activity 

recognition by using acceleration data collected in laboratory settings or construction sites and 

demonstrated its great potential for activity analysis (Akhavian & Behzadan, 2016; Bangaru et 

al., 2021b; Cheng et al., 2013; Joshua & Varghese, 2014; Kwapisz et al., 2011; Luís Sanhudo 

et al., 2021; Weiss et al., 2016).  



 

21 

 

In the validation, both traditional feature-based machine learning and deep learning algorithms 

for acceleration-based action recognition were used. In particular, acceleration data are 

collected from 18 construction workers from two construction sites in an uncontrolled manner 

by using an inertial measurement unit (IMU) embedded in a smartwatch (i.e., Apple Watch) 

during concrete work (e.g., formwork and rebar installation) for two months. The collected 

data are labeled in accordance with the proposed work taxonomy to evaluate the validity of the 

taxonomy and the classification performance by applying various machine learning algorithms. 

On the basis of the action classification results, the usefulness of the proposed work taxonomy 

and its appropriate level of detail are discussed. Future research directions to enhance the 

practicability of automated activity recognition and activity analysis in a construction 

workplace are explored. 

 

3.2 Methodology 

This research proposes a comprehensive activity taxonomy considering the characteristics of 

workers’ movements and the work context that will serve as action labels for acceleration-

based recognition algorithms and investigates the validity of the algorithms in practice by using 

continuously collected field data. Figure 3-1 illustrates the overall research framework. A 

comprehensive activity taxonomy aiming to effectively measure activities required for 

identifying productivity issues while minimizing possible confusion in action classification 

was proposed. For field validation, two local construction sites in Hong Kong were recruited, 

and continuous acceleration data during construction works (e.g., rebar and formwork) were 

collected by using an IMU-embedded smartwatch. The videos were simultaneously recorded 

by using a chest-mounted portable video camera for labeling activities. Machine learning-based 

classification algorithms were applied to the collected acceleration data to classify diverse 
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activities that were defined on the basis of the proposed activity taxonomy. Thereby, the 

validity of the proposed activity taxonomy for action recognition and its applicability for 

productivity assessment were examined on the classification performance.  
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Figure 3-1 Research framework of acceleration-based worker productivity assessment 

3.2.1 Collecting and preprocessing of data 

    

Figure 3-2 Site photos for data collection 

Data collection was performed during formwork and rebar work (Figure 3-2) to study the 

validity of the proposed activity taxonomy and the performance of the acceleration-based 

activity recognition approach. Nineteen individual periods were involved in the data collection, 

and each period lasted a whole workday. A large-scale dataset that included 498 h of videos 

and 2.8 billion samples of acceleration data was constructed from 18 construction workers. 

Each participant was equipped with an Apple Watch embedded with a sensor in the dominant 

hand to record cumulatively 3D acceleration data through a self-developed watchOS app. The 

frequency of data collection was set to 100 Hz, indicating that the wearable sensor recorded 

100 acceleration data sets for each second. A chest-mounted GoPro camera was used to record 

simultaneous hand movements for the data labeling. The videos were recorded at 30 FPS, 

allowing the ground truth of activity information to be captured and stored in a stable and 

durable manner. The data collection was conducted for two sessions per day (i.e., morning 

session and afternoon session), and each session lasted two hours or so. 

The equipment was taken off during the lunch break because the device needed to be calibrated 

again before starting the afternoon session. The collected acceleration signals were labeled for 
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each data point based on the researchers’ observations on video recordings. Each video frame 

was labeled by using one of the activities defined at each level of the proposed activity 

taxonomy based on the observer’s judgment. Corresponding acceleration signals were labeled 

by comparing time information for each data point. In some video scenes, workers’ hand 

activities were unclearly captured. In this case, the activities were determined on the basis of 

the observations of overall sequences of activities. However, one of the challenges for data 

labeling is to judge the boundary of consecutive activities. The boundary was determined on 

the basis of the starting time of the following activity for consistent labeling. If there are 

significant transitions between two consecutive activities, then these transitional activities were 

labeled as “Supplement work” considering their work contexts. Unqualified data, such as those 

collected under suboptimal lighting conditions or data recorded during a break in the restroom, 

were omitted from subsequent processing to avoid possible confusion caused by bad judgment 

on ongoing activity. 

 

3.2.2 Machine learning-based activity recognition  

Traditional machine learning and deep learning algorithms were applied to test the applicability 

of the proposed activity taxonomy. A sliding window technique was applied when segmenting 

labeled acceleration signals into patterns of equal size because any human activity should last 

for a particular duration (Banos et al., 2014). In the current study, a 50% overlap was adopted 

to reduce the transition noise (Su et al., 2014). The length of the window was determined by 

considering the nature of the construction activity. On the basis of the experience of previous 

research (Ryu et al., 2019), this study tested multiple window lengths (i.e., 0.5, 1.0, 1.5, 2.0, 

2.5, 3, 3.5, and 4.0 s) and determined the optimal window length in accordance with the 

classification accuracy. The activity labels of each segmented data were determined on the 
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basis of the majority voting rule when data points with multiple activity labels were found 

within the window (Ballabio et al., 2019).  

For classifiers of different activities, this study investigated traditional feature-based machine 

learning and deep learning approaches for performance comparison. As traditional machine 

learning classifieds, we selected three classifiers that had been widely applied for activity 

recognition, namely, 1) ensemble bagged trees (Dietterich, 2000), 2) support vector machine 

(Hsu & Lin, 2002), and 3) k-nearest neighbor (Sutton, 2012). The Classification Learner app 

in MATLAB (2019a, MathWorks) was utilized to train and test the models for identifying the 

best-performing classifier and corresponding hyperparameters, aiming to validate the 

feasibility of the proposed taxonomy. Typical features applied in activity recognition were 

time-domain features and frequency-domain features (Preece et al., 2009). Time-domain 

features interpret the statistical characteristics of motion signals, including but not limited to 

the mean, maximum, median, and variance of the signals (Figo et al., 2010). Specifically, this 

study used eight time-domain features that consist of mean value, minimum value, maximum 

value, range, standard deviation, kurtosis, correlation, and skewness of acceleration signals in 

the X, Y, and Z axis. Two frequency-domain features, energy and entropy, were used to capture 

the acceleration streams in terms of frequency, which evaluate action complexity in 

acceleration-based activity analysis (Ryu et al., 2019). Fast Fourier transform was applied to 

extract frequency-domain features from raw signals (Preece et al., 2009). This study tested 

deep learning algorithms that had the comparative benefits of eliminating the need for hand-

crafted features and can save time and effort in the selection and optimization of features and 

the reduction of human bias (Krizhevsky et al., 2012). This study implemented a Bidirectional 

Long Short-Term Memory (BiLSTM), one of the deep learning algorithms known to provide 

reliable classification performance for acceleration-based action recognition (Yang et al., 2020). 

The designed architecture is shown in Figure 3-3. 
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Figure 3-3 Architecture of the deep learning algorithm for acceleration-based activity 

recognition 

Two types of cross-validation techniques were applied to evaluate the performance of 

classifiers for each level of activities: 1) leave-one-out cross-validation (LOOCV) and 2) 

Leave-One-Subject-Out cross-validation (LOSOCV). For leave-one-out cross-validation, the 

whole data set was randomly separated into five exclusive subsets of equal sizes. Each subset 

was utilized as testing data for each trial of validation, and the remaining datasets were used 

for training the machine learning models. The average prediction accuracy of the five 

validation tests was regarded as the classification performance of the designed algorithm, 

indicating the overall accuracy of the trained model (Refaeilzadeh et al., 2009). To investigate 

subject-to-subject variation, we conducted the LOSOCV, which selects one worker’s data as 

testing data once at a time and the data from other workers for training the models (Berrar, 

2019). The classification models were trained and tested using different activity data levels 

(Levels 1, 2, and 3) to examine whether the classification results at each level will be accurate 

and reliable for understanding productivity issues during construction operations. The action 

classification results at each work taxonomy level are presented using the confusion matrices, 

where each row represents actual classes, and each column corresponds to predicted classes 

(Mantyjarvi et al., 2001). In particular, recall quantifies the fraction of positive observations 

correctly predicted, while precision calculates the ratio of correct predictions that are indeed 

positive (Davis & Goadrich, 2006). These metrics can be calculated using Equations (3-1) and 

(3-2), where TP denotes True Positive, FP stands for False Positive, and FN represents False 
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Negative. The F1 score provides a balance between these two metrics, especially when there 

is an uneven class distribution (Equation (3-3)). 

   Precision =
TP

TP+FP
  (3-1) 

   Recall =
TP

TP+FN
  (3-2) 

   F1 =
2×(Precision×Recall)

Precision+Recall
  (3-3) 

In addition to randomly selecting the training and testing data, this study tested the algorithms 

with continuous data. In particular, the continuous pattern of acceleration data was used for 

training models, and the trained model was evaluated with strictly continuous acceleration 

signals. As continuous acceleration signals reflect actual construction tasks better than 

randomly selected data, the prediction results are supposed to show more realistic action 

recognition performance in practice. Postprocessing techniques were applied to benefit from 

this additional information of continuous data (Gil-Martín et al., 2020). On the basis of our 

preliminary examination of the results, some errors were frequently observed in the middle of 

ongoing work for a specific activity, and the misclassified data were relatively short, lasting 

only for 1 or 2 s. Considering the context of the construction activities, this intermittent class 

found in the classification results will likely be an error. Thus, if the predicted class of the 

activity 1) lasts less than the unit length of the sliding window and 2) the class is observed in 

the middle of other continuously lasting activities, then this intermittent class was regarded as 

a misclassified class, and the class was modified as adjacent classes. After the postprocessing 

procedure, the study then calculated how much time was spent on each activity, which can 

potentially help evaluate the productivity of each worker. 
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3.3 Result  

3.3.1 Accuracy of the trained models 

Window size is a crucial parameter for accelerometer-based activity recognition. This study 

investigated the window size through pretesting, and the optimal window size was determined 

as 1.5 s after multiple tests. In the meantime, the study employed a five-fold cross-validation 

strategy, wherein each trained model was evaluated using the testing dataset to obtain its testing 

accuracy. Consequently, this approach yielded five testing accuracies corresponding to each of 

the trained models. The average testing accuracy served as the primary metric for evaluation 

and is documented in Table 3-1, which shows the performance of classification results for three 

levels of activities according to 1) classifiers (i.e., traditional machine learning and deep 

learning algorithms), 2) validation methods (i.e., LOOCV and LOSOCV), and 3) data sampling 

(i.e., discrete data and continuous data). According to the results from LOOCV, Level 1 

classification shows excellent performance with over 90% accuracy, while the deep learning 

model (i.e., BiLSTM) shows slightly better accuracy than the machine learning model (i.e., 

Ensemble Bagged Trees). At Level 2, classification results from LOOCV range between 80% 

and 90%, with the deep learning model demonstrating superior accuracy, particularly for 

formwork tasks. At Level 3, the deep learning model showed significantly higher classification 

performance than traditional machine learning, indicating that the use of deep learning 

algorithms would be recommended to classify complex construction activities. However, the 

overall accuracy at Level 3 was about 77.0% and 74.9% for formwork and rebar work, 

respectively, even when using the deep learning model. Evaluating classifiers with continuous 

data, either through LOOCV or LOSOCV, reveals a significant decrease in overall testing 

accuracy compared to results obtained from LOOCV with the discrete data. Such a decline 

suggests considerable variations in data related to collection times and subjects involved. 

Table 3-1 Models performance overview 



 

29 

 

Work division Formwork Rebar work 

Testing data selection 

 

LOOCV 

with 

discrete 

data 

LOOCV 

with 

continuous 

data 

LOSOCV 

 

LOOCV 

with 

discrete 

data 

LOOCV 

with 

continuous 

data 

LOSOCV 

Average 

Testing 

Accuracy 

Machine 

Learning 

(Ensemble 

Bagged 

Trees) 

Level 1 

Activity 
96.2% 95.3% 93.7% 95.7% 96.1% 93.5% 

Level 2 

Activity 
83.8% 81.2% 78.5% 79.5% 74.6% 76.6% 

Level 3 

Activity 
61.3% 50.3% 42.9% 57.1% 45.3% 44.7% 

Deep 

Learning 

(BiLSTM) 

Level 1 

Activity 
98.7% 98.9% 94.7% 98.6% 98.3% 97.2% 

Level 2 

Activity 
90.6% 81.6% 77.8% 86.6% 79.3% 77.2% 

Level 3 

Activity 
77.1% 55.7% 49.0% 74.9% 57.7% 55.6% 

*LOOCV: leave-one-out cross-validation, LOSOCV: leave-one-subject-out cross-validation 

Based on the results from LOOCV with discrete data, the confusion matrices of all formwork 

and rebar work activities, the predicted category, actual category, precision, recall, and F1 score 

of each activity are presented in Table 3-2 and Table 3-3. As shown in the Level 2 confusion 

matrix, the majority of incorrect predictions of traveling are reported as coming from rebar 

installation or form installation. For instance, the Level 2 classification in Table 3-2 shows that 

82.6% of the predictions are “Form installation,” but such results actually belong to “Traveling.” 

The prediction errors (98.0%) of form installation are misclassifications between form 

installation and traveling. Given such consequences, the most significant errors are caused by 

confusion between traveling and rebar or form installation at Level 2 activities. In the Level 3 

confusion matrices, the fractions of activity that are misclassified as “Supplement work” are 

73.4%, 80.5%, 82.6%, 76.5%, and 83.7% in the negative predictions of “Form placing,” “form 

connecting,” “Form preparation,” “Transferring materials and tools, and transportation,” 

respectively. As shown in Table 3-3, the same issue is also observed in the activity recognition 
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for rebar work. In this regard, “Supplement work” at Level 3 activities is the most dynamic 

activity that caused considerable confusion with traveling-related activities and other “Material 

installation” activities. Such facts might imply that the confusion between “Form” or “Rebar 

installation” and “Traveling” at Level 2 is mainly due to the confusion between “Supplement 

work” and traveling-related activities at Level 3.  

Table 3-2 Confusion matrix of formwork activity classification 

Level 1 Activity Predicted category W I Recall (%) 

True category 
W 25894 380 98.6 

I 1183 12759 91.5 

 Precision (%) 95.6 97.1  

 F1 Score 1.0 0.9  

* W: Work, I: Idling 

Level 2 Activity Predicted category W_FI W_TR I_SS Recall (%) 

True category 

W_FI 19889 545 459 95.2 

W_TR 4431 845 89 15.8 

I_SS 995 16 12947 92.8 

 Precision (%) 78.6 60.1 95.9  

 F1 Score 0.9 0.3 0.9  

* W_FI: Form installation, W_TR: Traveling, I_SS: Stand/sit 

Level 3 

Activity 

Predicted 

category 
W_FI_SP W_FI_PL W_FI_CT W_FI_PA W_TR_MT W_TR_SP I_SS_ST 

Recall 

(%) 

True 

category 

W_FI_SP 7863 2 529 738 36 468 372 78.6 

W_FI_PL 643 13 73 100 2 16 42 1.5 

W_FI_CT 2818 1 1557 374 8 121 180 30.8 

W_FI_PA 3039 2 277 1005 9 118 234 21.5 

W_TR_MT 1256 0 73 110 82 131 72 4.8 

W_TR_SP 2338 1 149 196 1 4 834 109 22.9 

I_SS_ST 477 0 58 126 5 25 13283 95.1 

Precision 

(%) 
42.3 68.4 57.0 37.6 52.6 48.0 92.9  

 F1 Score 0.6 0.0 0.4 0.3 0.1 0.3 0.9  

* W_FI_SP: Supplement work, W_FI_PL: Form placing, W_FI_CT: Form connecting, W_FI_PA: Form preparation, W_TR_MT: 

Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 

 

Table 3-3 Confusion matrix of rebar work activity classification 
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Level 1 Activity Predicted category W I Recall (%) 

True category 

W 25001 301 98.8 

I 812 9622 92.2 

Precision (%) 96.9 97.0  

 F1 Score 1.0 1.0  
* W: Work, I: Idling 

 

 

Level 2 Activity Predicted category W_RI W_TR I_SS Recall (%) 

True category 

W_RI 16568 1200 303 91.7 

W_TR 4911 2212 104 30.6 

I_SS 682 42 9714 93.1 

 Precision (%) 74.8 64.0 96.0  

 F1 Score 0.8 0.4 1.0  

* W_RI: Rebar installation, W_TR: Traveling, I_SS: Stand/sit 

 
 

Level 3 

Activity 

Predicted 

category 
W_RI_SP W_RI_PL W_RI_CT W_RI_PA W_TR_MT W_TR_SP I_SS_ST 

Recall 

(%) 

True 

category 

W_RI_SP 1498 73 362 26 3 434 103 59.9 

W_RI_PL 414 240 211 14 1 169 46 21.9 

W_RI_CT 665 86 688 22 0 236 69 39.0. 

W_RI_PA 307 39 148 92 0 172 52 11.4 

W_TR_MT 73 5 13 3 21 98 3 9.7 

W_TR_SP 696 43 205 17 2 1188 56 53.8 

I_SS_ST 135 13 39 9 0 53 3059 92.5 

Precision 

(%) 
39.5 48.1 41.3 50.0 77.8 50.6 90.3  

 F1 Score 0.5 0.3 0.4 0.2 0.2 0.5 0.9  

* W_RI_SP: Supplement work, W_RI_PL: Rebar placing, W_RI_CT: Rebar connecting, W_RI_PA: Rebar preparation, W_TR_MT: 

Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 

 

3.3.2 Activity time estimation  

The activity time estimation was performed to further examine the applicability of the action 

recognition approach for more detailed activity analysis in the construction field. For the 

performance measurement, the duration of each activity was first calculated on the basis of the 

recorded video data. The average duration of formwork was 2.8 h, and the average length of a 

rebar work was 1.9 h. This study cumulated the prediction results to measure the time spent on 

each activity category. With the estimated duration of each activity and the ground truth, the 
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performance of activity time estimation was calculated. As shown in Table 3-4, the average 

estimation accuracy of Level 1 activities is 99.5% and 99.4% for formwork and rebar work, 

respectively. The trained models can determine the working time of formwork and rebar work 

with accuracies of 96.6% and 92.0%, respectively. The estimation accuracy of Level 3 

activities is 65.2% and 74.4%, respectively. Such results imply the feasibility of monitoring 

the progress of each activity by utilizing wearable data from the construction environment. In 

particular, the proposed time estimation method contributes to the precise distinction between 

effective and ineffective work, and such facts offer an opportunity to implement 

countermeasures to the activity in question.  

Table 3-4 Spending time estimation of Level 1 activity 

Work division Sample # 
Time (hour) 

Accuracy (%) 
Work Idling 

Formwork 

1 
Ground truth 1.9 0.9 

99.2 

Estimation 1.9 0.9 

2 
Ground truth 1.9 0.9 

99.8 

Estimation 1.9 0.9 

3 
Ground truth 1.9 0.9 

99.6 

Estimation 1.9 0.9 

4 
Ground truth 1.9 0.9 

99.9 

Estimation 1.9 0.9 

5 
Ground truth 1.7 1.1 

98.7 

Estimation 1.7 1.1 

Average 99.5 

Rebar work 

1 
Ground truth 1.1 0.9 

99.3 

Estimation 1.1 0.9 

2 
Ground truth 1.1 0.9 

99.7 

Estimation 1.1 0.9 

3 
Ground truth 1.1 0.8 

99.3 

Estimation 1.1 0.9 
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4 
Ground truth 1.1 0.8 

99.0 

Estimation 1.1 0.8 

5 
Ground truth 1.1 0.8 

99.8 

Estimation 1.1 0.8 

Average 99.4 

 

Table 3-5 Spending time estimation of Level 2 activity 

Work division Sample # 
Time (hour) Accuracy 

(%) W_MI* W_TR I_SS 

Formwork 

1 
Ground truth 1.5 0.4 0.9 

97.2 

Estimation 1.5 0.4 0.9 

2 
Ground truth 1.5 0.4 0.9 

97.4 

Estimation 1.5 0.4 0.9 

3 
Ground truth 1.5 0.4 0.9 

93.1 

Estimation 1.5 0.3 0.9 

4 
Ground truth 1.4 0.4 0.9 

99.0 

Estimation 1.4 0.4 0.9 

5 
Ground truth 1.3 0.4 1.1 

96.5 

Estimation 1.4 0.3 1.1 

Average 96.6 

Rebar work 

1 
Ground truth 0.7 0.4 0.9 

96.8 

Estimation 0.7 0.3 0.9 

2 
Ground truth 0.7 0.4 0.9 

95.2 

Estimation 0.7 0.3 0.9 

3 
Ground truth 0.7 0.4 0.8 

96.2 

Estimation 0.8 0.3 0.8 

4 
Ground truth 0.7 0.4 0.8 

89.2 

Estimation 0.8 0.3 0.8 

5 
Ground truth 0.7 0.4 0.8 

82.6 

Estimation 0.9 0.3 0.8 

 Average 92.0 

 

* W_MI: Material (formwork and rebar) installation, W_TR: Traveling, I_SS: Stand/sit 

 
 

Table 3-6 Spending time estimation of Level 3 activity 
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Work 

division 
Sample # 

Time (hour) 
Accurac

y (%) 
W_FI

_SP* 

W_FI_

PL 

W_FI_

CT 

W_FI_

PA 

W_TR_

MT 

W_TR

_SP 

I_SS_

ST 

Form 

work 

1 

Ground 

truth 
0.6 0.0 0.4 0.5 0.2 0.2 0.9 

59.3 

Estimation 1.0 0.0 0.3 0.2 0.1 0.3 0.9 

2 

Ground 

truth 
0.6 0.0 0.4 0.5 0.2 0.2 0.9 

67.0 

Estimation 0.9 0.0 0.4 0.2 0.1 0.3 0.9 

3 

Ground 

truth 
0.6 0.0 0.4 0.5 0.2 0.2 0.9 

61.0 

Estimation 0.9 0.0 0.3 0.2 0.1 0.3 0.9 

4 

Ground 

truth 
0.6 0.1 0.4 0.4 0.2 0.2 0.9 

67.8 

Estimation 0.7 0.0 0.3 0.3 0.1 0.4 1.0 

5 

Ground 

truth 
0.0 0.5 0.0 0.2 0.5 0.1 0.3 

70.4 

Estimation 0.0 0.7 0.1 0.4 0.2 0.1 0.3 

Average 65.2 

Rebar 

work 

Sample # 
W_RI

_SP** 

W_RI_

PL 

W_RI_

CT 

W_RI_

PA 

W_TR_

MT 

W_TR

_SP 

I_SS_

ST 

Accurac

y (%) 

1 

Ground 

truth 
0.2 0.1 0.2 0.2 0.0 0.4 0.9 

84.6 

Estimation 0.2 0.0 0.2 0.2 0.0 0.4 0.9 

2 

Ground 

truth 
0.2 0.1 0.2 0.2 0.0 0.4 0.9 

91.4 

Estimation 0.2 0.1 0.2 0.2 0.0 0.3 0.9 

3 

Ground 

truth 
0.2 0.2 0.2 0.2 0.0 0.4 0.8 

66.2 

Estimation 0.0 0.4 0.1 0.2 0.0 0.0 0.4 

4 

Ground 

truth 
0.2 0.2 0.2 0.2 0.0 0.4 0.8 

68.2 

Estimation 0.0 0.3 0.1 0.3 0.0 0.0 0.4 

5 

Ground 

truth 
0.2 0.2 0.2 0.2 0.0 0.4 0.8 

61.8 

Estimation 0.0 0.4 0.2 0.3 0.0 0.0 0.3 

Average 74.4 
* W_FI_SP: Supplement work, W_FI_PL: Form placing, W_FI_CT: Form connecting, W_FI_PA: Form preparation, W_TR_MT: 

Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 

** W_RI_SP: Supplement work, W_RI_PL: Rebar placing, W_RI_CT: Rebar connecting, W_RI_PA: Rebar preparation, W_TR_MT: 

Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 

 

3.4 Discussions 

3.4.1 Feasibility of acceleration-based activity recognition in the construction field 

Previous research showed the potential of acceleration-based activity recognition to recognize 

diverse construction activities. However, the applicability of field activity detection has not 

been validated in terms of 1) the reliability of activity recognition in field conditions and 2) the 

defining of construction activities. The activity recognition algorithms in previous studies have 
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been tested with discrete or independent data that ignore the noise and sequence characteristics 

of continuous acceleration signals collected from construction job sites. Construction activities 

in previous research are categorized on the basis of single standards, such as the nature of 

movement or contribution of tasks. Therefore, the derived classification results have limitations 

in providing information for measuring the efficiency of construction workers or for finding 

low productivity areas in the construction field concerned. We propose a new taxonomy to 

address these issues with consideration of movement and work context and subsequently 

validate it by using extensive field data.  

The understanding of the exclusive characteristics of different human activities is challenging 

due to the complex nature of human activities, which can induce classification confusion. 

Therefore, defining activities with a clear and comprehensive understanding of their nature is 

necessary for developing useful activity taxonomy (Bulling et al., 2014). Previous attempts in 

activity definition have primarily oriented toward a single principle (e.g., nature of the 

movement or contribution of work), and classifications of construction activities based on such 

principle have been validated in many previous studies. (Akhavian & Behzadan, 2016; Joshua 

& Varghese, 2014; Ryu et al., 2019; Weiss et al., 2016). Although movement-based activity 

taxonomy has a high classification accuracy, it still has several limitations when dealing with 

practical problems. First, depending on the context, similar movements can be delivered from 

different activities. In this case, the classification algorithms will perform poorly, especially 

when the activities being classified have largely similar movement characteristics. Second, a 

movement-based activity taxonomy (e.g., lifting, sitting, and walking) cannot deliver sufficient 

information to solve practical problems, such as identifying low-productivity operations in the 

field.  
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To overcome these issues, researchers in several studies have introduced a context-based 

activity taxonomy. The taxonomy categorizes construction activities based on their 

contributions to the project (Forde & Buchholz, 2004; Hallowell & Gambatese, 2009; Joshua 

& Varghese, 2014), allowing for the evaluation of productivity in a rough manner. However, 

most construction activities consist of diverse tasks (e.g., the effective work of an ironworker 

includes fetching, adjusting, and tying rebar). Previous context-based activity taxonomies are 

insufficient to reveal the root causes of low productivity due to the lack of detailed information 

about ongoing activities. In an attempt to solve such problems, this study considered 

movement- and context-based taxonomy when defining an activity. Theoretically, acceleration 

signals collected from the dominant hand are regarded as an integrated response of whole-body 

movements and hand movements (Ryu et al., 2019). Therefore, a different combination of body 

and hand movement is an intuitive standard for identifying activities that share a distinct 

acceleration response. However, activities that have similar movements (e.g., lifting material 

from the ground, squatting, and standing up) are difficult to identify accurately in accordance 

with the movement-based system. The context standard was introduced to enrich the textural 

information of the activity and to extend the classification categories. In this regard, the 

capability of activity recognition for identifying low productivity issues is enhanced. 

The construction activities are formatted as a three-level taxonomy with a hierarchical structure 

(Table 2-1), which allows classifying specific activities by zooming in or out the action level 

and identifying the optimal classification level by trading off between performance (i.e., 

accuracy) and outcomes (i.e., information extracted from the results) (Blanke & Schiele, 2010; 

Krishnan et al., 2013). On the basis of the result shown in Table 3-1, the neural network 

algorithms can train more powerful classifiers. The classification accuracy at Level 1 (i.e., 

“Idling” and “Work”) shows over 90% accuracy because “Idling” involves mostly no 

movement of hands, which can be easily distinguished from “Work,” which involves significant 
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arm and body movements and has substantial changes in acceleration signals. At Level 2, we 

further divide “Work” into two subcategories, 1) traveling and 2) installing tasks, considering 

that they have different work contexts (e.g., traveling is a supportive activity, and installing 

material is a value-added task) and body movements (e.g., “Traveling” involves abundant body 

movements and few cyclic movements from hands, and “Installing” involves abundant hand 

movements and few body movements). The classification accuracy at Level 2 is over 80%, and 

the algorithm can differentiate between horizontal whole-body movements (e.g., “Traveling”) 

and hand-dominant activities (e.g., “Material installation”). In accordance with the confusion 

matrix at this level (Table 3-2 and Table 3-3), the most significant errors result from the 

confusion between “Traveling” and “Material installation” because “Material installation” 

frequently involves a temporal allocation (e.g., moving 1–2 m to pick up materials), which has 

a large similarity with “Traveling” (e.g., moving to another work zone). The accuracy of Level 

3 activity classification is lower than that of Level 1 and Level 2, showing 50%–60% accuracy 

because more detailed work contexts were contained. The classification results show that 

significant confusion within the offspring categories of Level 2 activity, “Material installation,” 

occurs. This finding may indicate that the proposed algorithm cannot recognize the considerable 

interclass variability in Level 3 activities due to the similar nature of body and hand movements 

for these activities. As the types of activities at Level 3 were more frequently changed during 

the operation, the acceleration signals may include the noise data from transition patterns 

between activities. However, in terms of measuring spending time for Level 3 activities, the 

accuracy increased up to approximately 75% (Table 3-6), showing the potential for being used 

to understand productivity issues during construction operations. 

The classification results at Level 2 are accurate, allowing the identification of productivity 

issues by providing meaningful information, such as the time expenditure of workers. For 

instance, two continuous patterns of acceleration data were sampled from two form workers 
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who were at the same site and worked simultaneously. The activity percentage values were 

calculated on the basis of the spending time estimation method in section 3.3.2, and the 

percentages were plotted in a time series domain, as shown in Figure 3-4. In particular, the 

activity percentages of the two form workers were calculated on the basis of 10 min. The 

productivity of form worker No.2 was higher in the selected 100 min because his effective work 

rate remained relatively high without any huge drop by comparing Figure 3-4 (a) and Figure 

3-4 (b). The cause of the low productivity issues can be exposed. The effective work rate of 

worker No.1, as shown in Figure 3-4 (a), dropped from 30 min to 40 min, while the ineffective 

rate increased significantly in the same period. This finding indicates that the increasing 

proportion of ineffective work is the cause of the low productivity issue in the selected period. 

The root cause of the low productivity issue of form worker No.2 from 50 min to 60 min can 

be recognized as the increasing percentage of supportive work by using the same method. 

Considering the ineffective work is not dominant, and the effective work rate remains at 40%, 

the worker was on short travel between two installation trades. 

  

            a. Form worker No.1     b. Form worker No.2 

Figure 3-4 Time series line plot illustrating activity percentage every 10 min 
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3.4.2 Remaining challenges to enhance the classification performance 

Although the classification result at Level 2 activity can distinguish low productivity issues, it 

is insufficient to expose the root cause. In this regard, the Level 3 activity is necessary to find 

the cause of the delay. However, the current performance of Level 3 activity classification does 

not satisfy the demand in the construction field because recognizing a sequence of activities 

from an uncontrolled environment (i.e., the construction field) is challenging. In addition to the 

human variability, several remaining challenges exist, and they are 1) difficulty in handling the 

transition effect between activities, 2) inaccurate segmentation of time-series movement data, 

and 3) information loss during the machine learning process. The first challenge deals with the 

transition moment in continuous human activities (Minnen et al., 2006). In Figure 3-5 (a), 

sequence A refers to a real activity stream, which indicates that a transition pattern (i.e., pattern 

from t1 to t3) shall exist between two explicit activities (e.g., traveling and lifting), considering 

that human activity changes gradually. However, such transition has been disregarded in this 

study because 1) the duration of the transition activities is relatively short compared with other 

activities that are explicitly defined in the taxonomy in Table 2-2 (Lara & Labrador, 2012); 2) 

the temporal boundaries of transitions are difficult to determine by human observation because 

the transition activity and its neighboring activities share similar movements as recorded in 

videos. A sample of a labeled sequence (i.e., sequence B) can be found in Figure 5 (a), which 

shows that activity 1 lasts from t1 to t2, and the following activity (i.e., activity 2) lasts from t2 

to t4. A comparison between the real sequence (i.e., sequence A) and the recognized sequence 

(i.e., sequence B) shows that the two transition patterns (i.e., activity from t1 to t2 and activity 

from t2 to t3) are mistakenly recognized as activity no.1 and activity no.2, respectively. 

Considering the transition effect is widespread in the continuous activity patterns, the massive 

mislabeling of the activity category induces significant errors when training the dataset and the 
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ground truth. Thus, the misclassification rate is considerably high, and the classification system 

is unacceptable for field productivity evaluation.  

One of the alternatives is to regard “Transition” as an extra activity to address this issue (Zhang 

et al., 2010). In previous research, Rednic et al. (2013) used a transition filter to improve 

classification accuracy and stability. On the basis of the assumption that more recent posture 

has a higher correlation with the actual posture, the weighted-voting methods can filter out 

unreasonable postural vibrates located in the high-frequency domain. The filtering process is 

validated as useful for increasing the certainty of the transition boundaries. However, the 

improvement in accuracy is limited. Rather than setting clear-cut boundaries, some researchers 

(Abonyi et al., 2005) introduced the idea of fuzzy clustering (i.e., data points can belong to 

more than one cluster) that helps to determine the fuzzy boundaries of time-series data (e.g., 

the continuous acceleration data). Fuzzy segmentation (i.e., setting fuzzy boundaries for the 

activity pattern) is then adopted in the activity recognition to overcome the transition effect 

(Zhang et al., 2014). The researchers defined the fuzzy boundaries with Gaussian membership 

and a time variable and translated the segmenting issue into an optimizing problem. The bias 

caused by the transition effect can be restricted by solving the optimization problem. In future 

research, we will apply the proposed approaches and test the feasibility of reducing transition 

effect in continuous field data. 

In the classification of human activities, continuous sensor data are segmented into sequences 

for the feature extraction process. However, the setting of data windows of activities without 

introducing any classification errors is still a challenging task (Bao & Intille, 2004). A sliding 

window technique for data segmentation was primarily applied, investigated, and validated in 

previous research (Bulling et al., 2014). Similar to previous studies, we used a sliding window 

technique with a fixed window size. As shown in Figure 3-5 (b), the acceleration data collected 

during construction activities (i.e., activities from T0 to T5) are segmented into three windows 
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(i.e., independent activity pattern). Specifically, window No.1 lasts from T0 to T2, window No.2 

lasts from T1 to T3, and window No.3 lasts from T2 to T4. The duration of the windows (i.e., T0 

to T2, T1 to T3, T2 to T4) is constant, and the overlapping between two consequent windows is 

set to 50%. However, the use of the fixed-size sliding window can induce considerable 

misclassification due to two causes of errors (Gu et al., 2009). The duration of the different 

activity categories is diverse due to the different natures of human movement. Spending time 

on the same type of activity can vibrate during work. In these regards, a fixed-size window 

cannot purely and fully include a single type of activity, leading to extreme errors when 

preparing training data and testing data. Therefore, enhancing classification performance by 

window size optimization is difficult (Huynh & Schiele, 2005). Previous research 

demonstrated that the algorithms could perform better if the features and length of windows 

were considered as separate activity categories.  

The multiclass problem is another observed issue related to the sliding window approach (Yao 

et al., 2018). As shown in Figure 3-5 (b), multiple categories of activity can be found in the 

same window (e.g., window No.1 consists of activity no.1 and activity no.2; and window No.2 

includes activity no.1, activity no.2, and activity no.3). However, following the majority voting 

principle, a single activity label should be assigned to each data window, which can bring about 

a significant loss of activity information and result in considerable misclassification. The 

ground truth of the activity may be disturbed because the true label is different from the label 

selected for the window. For instance, the data for activity no.2 was labeled as activity no.1 in 

the segmenting process in window No.1 in Figure 3-5 (b). Therefore, the data of activity no.1 

were accidentally polluted by the activity 2 data, resulting in the misleading of the algorithms. 

Laguna et al. (2011) proposed a dynamic segmenting approach to address these limitations. In 

this approach, the starting and end times of the window and the window length are concluded 

as core parameters to determine the windows dynamically. Therefore, changes in activities are 
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integrated into formulas as a significant variable for indicating the beginning and ending points 

of the window. The results show that the dynamic window approach effectively reduces 

classification confusion. Yao et al. (2018) proposed a dense labeling scheme that labels each 

data point rather than labeling the data segment. Each data point can be regarded as a “window” 

that includes only one datum. The data point is assigned a unique label that any vote-based 

filtering will not adjust. Therefore, the problems of information loss and label confusion caused 

by the sliding window method can be overcome.  

The last issue of the current model is that the sequential characteristic of continuous 

construction activity is still ignored. In a sequential activity for construction (i.e., activities that 

occur in a certain order), an activity can affect the action that occurs after it. For instance, if 

the prior activity is “Sitting,” then the subsequent behavior cannot be “Walking” or “Running” 

because the activity “Standing up” cannot be avoided between “Sitting” and “Walking.” A 

transition from “Walking” to “Standing up” is also impossible based on the context. In this 

study, such unreasonable sequences are frequently observed from the classification model, 

resulting in significant errors. To overcome this issue, Panahandeh et al. (2013) introduced the 

continuous Hidden Markov Model (HMM) to analyze gait phase and joint activity via IMU 

measurements. Five individual activities, namely, going upstairs, going downstairs, running, 

standing, and walking, are discussed in the study. The HMM model integrates the activity 

influence through two objects: 1) a discrete chain of activities, which reflects the order and 

relationship between activities, and 2) probability density functions of the future variables, 

which add the influence on the classification algorithms. The final classification accuracy of 

this probabilistic activity ranges from 90% to 99%, indicating a great potential for solving the 

continuous human activity classification problem. Future research can test the continuous 

HMM with the field-collected data to reduce any unreasonable sequences existing in the 

classification results. 
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   a. transition effect   b. sliding window approach 

Figure 3-5 Illustration of errors induced by transition effect and segment method 

 

3.5 Conclusions 

This study investigated the validity of action recognition algorithms with a newly proposed 

comprehensive and universally applicable work taxonomy that was designed considering 

movement and construction contexts. In particular, the performance of the proposed approach 

was studied by using acceleration data collected in a construction site during unstructured 

ongoing concrete work. Acceleration signals during formwork and rebar work were labeled 

with activities defined at three hierarchical levels based on the proposed activity taxonomy and 

used for testing traditional machine learning- and deep learning-based action recognition 

algorithms. The testing results show that the classification performance for Level 1 activities 

for formwork and rebar work is relatively reliable, with accuracy higher than 95%, and the 

prediction accuracy ranges from 74.6% to 83.8% for Level 2 activity classification. The 

classification accuracies for Level 3 activities vary from 45.3% to 61.3%.  
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The classification results for activities at Level 1 and Level 2 demonstrate that 1) the proposed 

taxonomy can convey comprehensive activity information (i.e., activity context information 

and movement information) and reduce confusion among the categories in the same level, and 

2) the performance of acceleration-based activity recognition algorithm is acceptable when 

dealing with noisy data (i.e., long-term and continuous data collected directly from the 

construction site). However, the rather low accuracy for activities at Level 3 may indicate the 

limitation of the use of acceleration signals for micro-level activity analysis. This study 

evaluated the spending time estimation of long-term continuous signals collected from the field, 

which reported high accuracies in measuring the activity duration of Level 1 and Level 2 

activity. On the basis of the duration data, the time spent ratio of each activity can be evaluated 

through the timeline. Therefore, evaluating the work efficiency is possible by comparing it with 

the benchmark. The root cause of the low-efficiency problem can be exposed by analyzing the 

time spent ratio, which will help optimize the construction trade to improve productivity.  

Measuring workers’ activities can provide quantitative evidence for identifying productivity 

issues from the perspective of individual workers. Acceleration-based action recognition is 

regarded as a useful means for automated activity analysis, but it suffers from a 

nonstandardized definition of activities and a lack of validity in a practical setting. This study 

may provide a solid foundation for automated activity analysis by proposing a practical 

approach to defining and analyzing construction activities using acceleration data. The 

comprehensive validation of action recognition algorithms using unstructured field data in this 

study can convince practitioners about the reliability of acceleration-based action recognition 

for Level 1 and Level 2 activities in practice.  
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CHAPTER 4 SENSOR FUSION-BASED CONSTRUCTION 

WORKER ACTIVITY RECOGNITION 

 

4.1 Background 

Activity recognition utilizing sensor data has become increasingly prevalent in the construction 

industry (Sherafat et al., 2020). This rise can be attributed to advancements in sensor 

technology, which have analyzed complex construction activities more easily and accurately 

(Zhang et al., 2017). Despite the promise of sensor technology, there are inherent limitations 

when it comes to activity recognition in the dynamically changing environment of a 

construction site. For example, the effectiveness of surveillance cameras can be compromised 

by physical obstructions, leading to data missing issue These challenges are primarily due to 

the limitations of individual sensors in adapting to the diverse demands of a construction 

environment. 

One innovative solution to overcome these limitations is the multisensor fusion approach. This 

transformative method integrates inputs from various sensors to form a unified model, 

enhancing precision and reliability. By employing multisensor fusion, the strengths of each 

sensor type are harnessed, effectively countering the deficiencies observed in single-sensor 

systems (Ayed et al., 2015; Khaleghi et al., 2013; Kokar et al., 2004). Sensor fusion has gained 

prominence in the construction industry (Rao et al., 2022), where sensor-based approaches are 

increasingly used to analyze construction workers’ operations timely through advancements in 

sensor technology (Akhavian & Behzadan, 2016; Luis Sanhudo et al., 2021). Despite the 

sophistication of sensor technologies, the inherent limitations of specific sensors restrict their 

capability to collect accurate and reliable data, especially in dynamic environments such as 

construction sites, thereby compromising the integrity of data analysis. For instance, the 
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efficacy of surveillance cameras can be compromised by obstructions, leading to data loss 

(Bohn & Teizer, 2010). The multisensor fusion approach has been proposed to mitigate such 

constraints, integrating inputs from diverse sensors into a cohesive model. Employing the 

sensor fusion strategy enhances the precision and reliability of the sensor network’s inferences. 

This approach leverages the strengths of each sensor, compensating for the limitations inherent 

in single-sensor systems (Hall & Llinas, 1997; Khaleghi et al., 2013). 

However, the effectiveness of sensor fusion networks in construction for worker activity 

recognition remains unexplored. Furthermore, the potential for accelerometer and camera data 

to complement each other and thereby enhance sensor fusion effectiveness is unknown. To 

address these issues, this study introduces a sensor fusion framework specifically designed for 

construction sites. This framework integrates acceleration and vision sensors into a cohesive 

network. Based on the Dempster-Shafer theory of evidence, it incorporates weight 

modifications to address the issue of uneven credibility in sensor results. The efficacy of this 

novel framework has been confirmed through laboratory tests, demonstrating its potential to 

improve activity recognition in construction environments significantly. 

 

4.2 Sensor Fusion Definition 

Data fusion is a collection of techniques combining data from numerous sources, aiming to 

enhance the performance of specific tasks, such as accuracy, stability, and efficiency, compared 

to using a single data source (Malhotra, 1995; White, 1987). In the 1960s, data fusion 

terminology was first found in mathematical models for processing data (Esteban et al., 2005). 

In the 1970s, the data fusion technique gained attention from the US Department of Defense 

(DoD), which established the Data Fusion Sub-Panel of the Joint Directors of Laboratories 

(JDL) in order to unify terminology, build principles, address issues, and develop software 
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(Hall & Llinas, 1997). Therefore, data fusion was first implemented for military purposes, such 

as target identification and tracking, threat recognition, and battlefield monitoring (Abidi & 

Gonzalez, 1992). With the technology transferred from the military domain, data fusion 

technology has also flourished in the civilian domains, such as traffic monitoring (Liu et al., 

2013), fault detection (Sarkar et al., 2014), navigation (Qu et al., 2021), autonomous driving 

(Yeong et al., 2021), and Human Activity Recognition (Qiu et al., 2022). In recent years, the 

rapid development of sensor technologies has allowed data acquisition to become efficient, 

accurate, and automated (Sathe et al., 2013; Tubaishat & Madria, 2003). In this regard, the 

terms “sensor fusion” and “data fusion” are mentioned as being equal when using sensor data 

as the data source (Elmenreich, 2002). Meanwhile, an extended terminology, “multi-sensor 

data fusion,” was proposed as a technology that concerns how to combine data from multiple 

sensors, which is the recent definition of sensor-based data fusion (i.e., sensor fusion) (Hall & 

McMullen, 2004; Waltz & Llinas, 1990). Therefore, this research uses the terms data fusion, 

sensor fusion, and multisensor data fusion synonymously. 

 

4.3 Sensor Fusion Architectures 

Various methods of multisensor fusion have been proposed and validated across a broad 

spectrum of domains (Ayed et al., 2015; Kong et al., 2020; Qiu et al., 2022; Shao et al., 2021). 

The previous applications suggested that each fusion method has different feasibility toward 

different tasks. The fusion performance is also prone to be affected by data sources. Therefore, 

choosing an appropriate fusion approach plays an essential role in ensuring the effectiveness 

of applying multi-sensory fusion. Previous researchers have established various multi-sensor 

fusion architectures based on the characteristics and applicability of fusion methods (Ayed et 

al., 2015), resulting in an efficient pipeline to select a suitable fusion method. One of the earliest 
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structures is the well-known JDL model, which was proposed by White (1987) with the help 

of the DoD. The conceptual architecture, as depicted in Figure 4-1, comprises three principal 

components: the data source, the data fusion module, and the Human-Computer Interface. The 

data fusion module also includes data preprocessing, four steps of data processing (i.e., object 

refinement, situation refinement, threat refinement, and process refinement), and a database 

management system (De Boer, 2002).  

 
Figure 4-1 Diagram of JDL fusion architecture 

The JDL model initially focuses on military applications, such as ocean surveillance, target 

identification, and improvement of battlefield situational awareness. Due to the existing gap 

between military and civilian purposes, additional revisions have been made to utilize the 

civilian domain system (Blasch & Plano, 2002; Llinas et al., 2004; Steinberg & Bowman, 2017; 

Steinberg, 1999). For instance, Bowman and Morefield (1980) investigated the duality between 

resource management and data fusion, specifically in Level 2 of the JDL architecture, and then 

designed a two-level architecture for the resource management demand. Despite its widespread 

use, the JDL model focuses more on the input and output data rather than processing them. 

Alternatively, Luo and Kay (1988) proposed a hierarchical multi-sensory fusion architecture 

that includes the data processing level, known as signal-level, pixel-level, feature-level, and 

symbol-level, from low to high level (Figure 4-2). The scale on the right side of the diagram 
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interprets the data processing level, and the left side introduces the fusion process. As shown 

in the figure, n sensors (i.e., S1, S2, ... Sn) are installed in the environment, and their data are 

denoted as x1, x2, …, xn, respectively. The fusion node 1 in the left hand represents a lower 

level (e.g., signal-level) fusion process, which integrates the raw data from S1 and S2 into a new 

output, x1,2. The raw data x3 could also be fused with x1,2 in the subsequent fusion node, 

resulting in a new representation x1,2,3 at a higher level. Likewise, each sensor data can be 

integrated into the system at the demand level. Besides the fusion level, multiple external 

parameters could affect the fusion results in practice. Luo and Kay (1988) introduced them as 

an integration system in their fusion architecture comprising three main functions: 1) sensor 

selection, 2) world model, and 3) data transformation. The sensor selection refers to the optimal 

configuration of the sensor network, including but not limited to sensor types, numbers, and 

deployment. The authors recommended two approaches toward the most appropriate sensor 

network construction: preselection and real-time selection. The preselection method suggests 

setting up an initial sensor network first and then adding or moving the sensor nodes by 

considering the available sensor elements and actual geometric environments (Beni et al., 

1983). In contrast to preselection, the real-time selection approach allows subsequent sensors 

to be arranged with a minimum initialization expense (e.g., one sensor) (Hutchinson et al., 

1988). The world model is used to store the data associated with the possible operating 

environments. The stored data includes both the priori data and the newly collected data. 

Sensory data processing is more convenient with the given information and environment, 

particularly in high-level fusion applications (e.g., symbol-level and feature-level) (Luo et al., 

2002). Meanwhile, the data transformation function is designed to unify data modalities so that 

the data acquired from different sources can be fused at the designed level. The signal-level 

fusion is also known as low-level fusion, data-level, or raw data-level fusion in other literature 

(Blasch et al., 2010; Kaempchen et al., 2005; Kam et al., 1997), which attempts to integrate the 
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sensory data directly and propagate the information to fusion modules as the input (Figure 4-3 

a). Previous studies suggested that homogeneous groups of data sources are preferred as an 

input of the signal-level fusion method. For example, the pixel-level input in Luo and Kay 

(1988) structure targets image data operation, such as segmentation tasks. Subsequently, 

features derived from signals or pixels function as fused objects at the feature-level. This 

process is designed to enhance the precision of feature measurement.  

Feature-level fusion, also identified as medium- and characteristic-level fusion in the context 

of information representation (Figure 4-3 b), coexists with symbol-level fusion. The latter 

focuses on integrating outcomes derived from numerous classifiers into a singular resolution. 

Hence, symbol-level fusion is alternatively referred to as decision-level fusion (Kirstein, 2013; 

Xu et al., 2016). The framework of decision-level fusion is illustrated in Figure 4-3 c. 

 

Figure 4-2 Diagram of Luo and Kay (1988)Architecture 
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Figure 4-3 Three multisensor fusion schemes in terms of data processing level 

 

Another general conceptualization was proposed by Dasarathy (1994), who defined the fusion 

process as a data flow classified by input and output properties. Therefore, this architecture is 

also named as I/O-Based characterization, which includes five classes: Data In-Data Out (DAI-

DAO) fusion, Data In-Feature Out (DAI-FEO) fusion, Feature In-Feature Out (FEI-FEO) 

fusion, Feature In-Decision Out (FEI-DEO) fusion and Decision In-Decision Out (DEI-DEO) 

fusion. Other researchers also proposed novel work related to fusion architecture. For instance, 
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Laboratory Analysis Architecture Systems (LAAS) were introduced in 1998. The system was 

designed to support the implementation of mobile robots in real-time. Another comprehensive 

work was conducted by Kokar et al. (2004), who used the category theory to establish a general 

formalization of the fusion system. The proposed system is supposed to cover all kinds of 

fusion methods, including data-, feature-, and decision-level fusion. Since the 1980s, various 

architectures have been developed for multisensory fusion, and comparison work among the 

architectures has been conducted in previous work (Ayed et al., 2015). Upon reviewing the 

architectures mentioned, the system developed by Luo and Kay (1988) is found to be more 

frequently utilized in multisensory fusion research. Their taxonomy emphasizes the sensors 

and categorizes methods according to the processing level of sensor data. This study employs 

the widely-adopted taxonomy developed based on Luo and Kay (1988) structure, which is a 

three-level hierarchy of fusion systems: 1) data-level, 2) feature-level, and 3) decision-level 

fusion. 

 

4.4 Sensor Fusion Techniques Selection 

Data-level fusion relies on each sensor to capture raw data, which are then integrated for further 

analysis. In order to successfully fuse data at this level, the raw data are required to be 

commensurate and associated properly before fusing. As a result, the computational cost is 

higher than the feature- and decision-level fusion methods (Kulkarni & Rege, 2020). Feature-

level fusion architecture is concerned with extracting and fusing feature vectors from each 

sensor’s observations. The feature vectors are synthesized into a single, comprehensive feature 

vector, which is then processed using techniques such as neural networks and offers a 

comprehensive output based on the fused feature vectors from all sensors (Hall & Llinas, 1997). 

Using feature engineering approaches, such as a dimensionality reduction method, the 
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complexity and computational cost of the feature-level approach could be lower than the data-

level fusion. In addition, this sensitivity to data compatibility is lower than the data-level 

method. However, this approach may suffer from sacrificing data during the feature selection 

or filtering process, resulting in potential data loss issues (Badrinath & Gupta, 2009; Vakil et 

al., 2021). Decision-level fusion architecture is characterized by an individualized approach 

whereby each sensor generates a preliminary result based on its data. The final result is obtained 

by integrating the preliminary results of all sensors using techniques such as classical inference, 

Bayesian inference, or Dempster-Shafer’s method (Hall & Llinas, 1997). It is worth noting that 

this approach offers several advantages, such as computational efficiency and system diversity. 

However, it also poses some challenges, including the risk of unreliable decision-making and 

a lack of data detail. The advantages and disadvantages of data-, feature-, and decision-level 

fusion are summarized in Table 4-1. 

Table 4-1 Comparison of data-, feature-, and decision-level fusion 

Fusion type Advantages Disadvantages 

Data-level fusion 
Comprehensive data 

preservation 

High computational power 

and data compatibility 

Feature-level fusion 
Dimensionality reduction and 

incompatible data tolerance 

Critical feature choice and 

potential data loss 

Decision-level fusion 
Computational efficiency and 

high system diversity 

Unreliable decision risk and 

lack of data detail 

 

Among these three fusion approaches, decision-level fusion exhibits a significant comparative 

advantage for recognizing construction workers’ activities, as it remains the least susceptible 

to data loss (Tzirakis et al., 2019). Compared to early-stage fusion approaches like data-level 

and feature-level fusion, decision-level fusion offers a distinct advantage by being less sensitive 

to data incompleteness. It leverages local decisions from individual models as inputs, ensuring 

system functionality even when modalities encounter issues. This method eliminates the need 

for complex data completeness assurance systems, thus reducing additional effort. Decision-
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level fusion allows action recognition algorithms to classify activities even when a data source 

is missing, such as in cases of occluded images. Furthermore, it requires less precise data 

alignment than lower-level fusion methods, easing the complexity of data preprocessing. The 

overall complexity of decision-level fusion is also lower, requiring fewer interconnections 

between modalities. Therefore, using a decision-level fusion approach, particularly in 

integrating two heterogeneous data sources, is more straightforward than fusing at an early 

level of data processing (C. Chen et al., 2017). This fusion approach also facilitates easy 

updating of data and models, as modifications can be easily made independently without 

affecting the existing sensor network. From this aspect, the flexibility of the system constructed 

based on a decision-level fusion approach is higher than other approaches (Gunes & Piccardi, 

2005). Considering the applicability, feasibility, and flexibility, the current study implements 

sensor fusion using the decision-level fusion approach. Traditional decision-level fusion 

methods employ mathematical theories to integrate the information from multimodal data. 

Some of the widely used theories adopted in decision-level fusion are probabilistic theory (e.g., 

Bayesian theory), evidential belief theory (e.g., Dempster-Shafer theory), and rough set-based 

fusion (Castanedo, 2013; Hall & Llinas, 1997). The current study denotes this branch of 

decision-level techniques as a theory-based approach. Also, considering that machine learning 

is commonly used for data analytics for multimodality data, this approach is commonly called 

a learning-based method for decision-level fusion (Meng et al., 2020). Details on each 

mathematical theory for decision-level fusion are described below.  

 

4.4.1 Majority voting and weighted voting 

The majority voting method integrates the output from multiple predictions, estimates, or 

classifications. The voting function allows the most often occurred result as a final result in the 

fusion process, which could be illustrated in Equation (4-1). The Xi is the ith sensor, and Xj 
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represents the jth hypothesis result from a 1×k decision vector. Take a multiclass classification 

problem as an example. Xj refers to the prediction of the jth label. Then Xi,j, for j=1 to k, is a 

row vector that contains the prediction from one set of observations. By using the argmax 

function Equation (4-2), the fused decision could be obtained when the likelihood reaches the 

largest value (Sinha et al., 2008).  

 𝑌𝑗 = ∑ 𝑋𝑖,𝑗  ∀𝑗 = 1: 𝑘𝑛
𝑖=1   (4-1) 

 𝑑 = argmax 𝑌𝑗  (4-2) 

The majority voting method would be valid only when the decision from each sensor shares 

the same reliability, uncertainty, and contribution. In other words, all the sensor outputs should 

have equal priori probabilities. In order to overcome such limitations, the concept of weight is 

introduced into the voting system (Benediktsson & Kanellopoulos, 1999). The formula is 

thereby updated as Equation (4-3), where wi quantifies the weight toward sensor Xi, and the 

sum of weights (i.e., wi, for i = 1 to n) is supposed to be one.  

 𝑌𝑗 = ∑ 𝑤𝑖𝑋𝑖,𝑗  ∀𝑗 = 1: 𝑘𝑛
𝑖=1   (4-3) 

The voting principle is commonly used in decision-level fusion in the multisensory network. 

For instance, Bahrepour et al. (2011) used the majority voting method for Parkinson patients’ 

falling detection. The authors collected acceleration and gyroscope data from participant’s feet, 

shank, thigh, and trunk. Sensor data, initially generated from each source, formed the 

preliminary detection results. These results were then transformed into a final decision via the 

implementation of a majority voting rule. Statistical evaluation underscored that the fusion 

framework offers higher accuracy than outcomes reliant on individual sensors. 
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4.4.2 Bayesian decision fusion 

Bayesian inference, which is one of the widely used mathematical approaches for decision-

level fusion, allows the integration of multiple pieces of evidence following the Bayesian 

theory of probability. In this formalism, the uncertainty of one event is represented as 

conditional probabilities whose values lie between zero and one. A value of zero signifies a 

total absence of belief, while a value of one denotes absolute certainty. The fundamental 

concept of Bayesian fusion involves utilizing a posterior probability hypothesis as a 

representation of the belief in fusion results. In specific, P(Y|X) represents the posterior 

probability of hypothesis Y given the X, which means the probability of event Y occurring given 

that X is true (Kendall, 1948). Assuming that Y is independent of X, then the P(Y|X) could be 

calculated by the Bayes rule (Equation (4-4)) with a given value of the prior probability of 

hypothesis Y, denoted P(Y)  (Pan et al., 1998).  

 𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)P(Y)

𝑃(𝑋)
  (4-4) 

Likewise, the Bayesian rule allows establishing a posteriori probability under multiple 

conditions (e.g., X1, X2, …, Xn). Expanding this framework into the multisensory problem, the 

decision generated from each sensor could serve as a priori probability under one condition. 

Therefore, the Bayesian combination of multiple data sources represents a fused likelihood that 

the result falls in the hypothesis. As a result, the final decision could be obtained when the 

fused likelihood achieves maximum value, which could be calculated with an argmax function 

(Equation  (4-5)), 

 𝑑 = argmax(𝑃(𝑌|𝑋1, 𝑋2, … , 𝑋𝑛))  (4-5) 

Despite the widespread usage of the Bayesian method, several challenges exist when utilizing 

the Bayesian inference in the decision-level fusion process. The first and most significant 

concern is the difficulty of obtaining priori probabilities, which could essentially impact the 
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fusion reliability and performance (Steinberg & Bowman, 2017). In practice, expert knowledge 

is required to determine the reasonable prior probabilities with given conditions. As a trade-off 

scenario, setting the priori probabilities as equal, i.e., 1/n, could also be widely used when all 

priori probabilities are unknown. For instance, Zappi et al. (2007) put nineteen acceleration 

sensors in the body of workers when manufacturing automobiles. The measured acceleration 

signals led to training Hidden Markov Models (HMMs) for classifying ten activity classes of 

car production. The authors then employed majority voting and Naive Bayesian to fuse the 

classification results from sensors at the decision level. The classification accuracy is around 

50% when using a single sensor, but adding two additional sensors increased the accuracy up 

to 80% by using this method. Additionally, the authors constructed a larger sensor fusion 

system with fifty-eight sensor nodes and achieved an accuracy of 98%. The results thereby 

validated that fusing additional sensors into the sensor network increases the classification 

accuracy of sensor networks. The test also indicated that the Naive Bayes approach performs 

better than majority voting in the task.  

 

4.4.3 Dempster–Shafer Theory of evidence fusion 

Dempster-Shafer Theory (DST) is a mathematical theory that was initially proposed by 

(Dempster, 1967) in the statistics domain. This theory was further developed by Shafer (1976), 

who introduced a mathematical object named belief function as a measurement of uncertain 

events rather than using possibility. Dempster-Shafer Theory is, therefore, also known as 

evidence theory or theory of belief. In traditional probability theories, probability is associated 

with a specific event. For instance, P(A) represents the probability that event A happened, and 

the probability that event A does not happen is denoted as 1- P(A) according to the opposite 

event rule. In contrast, the evidence in DST adopted the degrees of belief to measure the 

possibility, which could be associated with multiple events. This means that the traditional 
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probability theory requires the probabilities for each question of interest to calculate an event’s 

probability, while the belief functions in DST allow obtaining the belief degrees from 

subjective probabilities for a related one (Shafer, 1992). Therefore, the Dempster-Shafer 

Theory can illustrate higher-level abstraction without additional assumptions inside the 

evidence sets, resulting in DST as a generalization of probability theory (e.g., Bayesian theory) 

(Sentz & Ferson, 2002). Due to the weaker requirement of assumptions, adopting DST in fusing 

the results from different sensors, particularly in the multi-modality sensor system, is more 

flexible for generating theoretically reliable results (Castanedo, 2013). For example, Bayesian 

inference requires given values of priori probabilities, while the DST has no such requirement 

in the decision-fusion application, thereby waiving the basis caused by hand-crafted priori 

information (Cobb & Shenoy, 2003). In the study conducted by Chen et al. (2014), two sensor 

modalities were incorporated: a depth camera and an inertial sensor, aiming to enhance the 

Human Activity Recognition (HAR) system. The authors utilized data from the Berkeley 

Multimodal Human Action Database (Berkeley MHAD) by Ofli et al. (2013), which is a well-

known public database containing depth images and corresponding acceleration signals of 

human activity. Using these data and the Collaborative Representation Classifier (CRC), an 

eleven-activity recognition model was trained in the research. 

Moreover, two types of fusion, namely, feature-level and decision-level, were explored in Chen 

et al. (2014) study. The features derived from both sensor modalities were merged prior to 

classification when conducting the feature-level fusion. Conversely, the decision-level fusion 

protocol employed the Dempster-Shafer theory to integrate the outcomes from each sensor-

based classifier. As per the results, an increase in activity recognition accuracy ranging between 

2% and 23% was noted when compared to the performance of using individual sensors.  

The Dempster-Shafer (D-S) theory has also been applied in the construction domain for 

multiple topics, in which risk assessment and safety monitoring are the most widely used areas. 



 

59 

 

Ding and Zhou (2013) developed a web-based risk early warning system for urban metro 

construction. The designed data fusion system consists of a two-stage platform. The system 

employs the D-S theory in the second stage to fuse independent assessments obtained from 

measurement, prediction, and inspection states, thereby improving the reliability and accuracy 

of safety risk assessment. Therefore, the proposed model can automatically make early warning 

decisions. Zhang et al. (2017) introduced a comprehensive method for assessing tunnel-induced 

risk during the initial stages of construction. This approach combines Fuzzy Matter Element 

(FME) analysis, Monte Carlo simulation techniques, and Dempster-Shafer (D-S) evidence 

theory into a hybrid framework and was validated at the Wuhan Yangtze Metro Tunnel project 

in China. In the case study, fourteen influential parameters were considered when using the 

measurements in FME to construct the Basic Probability Assignments (BPAs). In particular, 

the D-S theory was utilized to merge the BPAs across various risk scenarios, allowing a more 

reliable evaluation of safety risk awareness. 

 

4.4.4 Limitations of the decision-level fusion methods 

The mentioned decision-level fusion techniques in the previous sections have limitations in 

their applications. The majority voting rule is not functional when multiple objects are counted 

as the most significant or most frequent. For instance, the fusion of two sensors at the decision 

level is intricate if each sensor earns the same trust level. The Bayesian fusion requires the 

priori probabilities, which are usually absent. Either assigning the equal probability or 

assuming the priori value under expert knowledge is prone to import basis in calculating. In 

the meantime, the fundamental assumption of using the Bayesian formula is that combined 

entities are independent of each other. However, such an assumption is rarely valid in the 

applications, undermining the reliability of fusion results (Kuncheva, 2014). In addition, using 

the Dempster–Shafer (DS) combination to combine multiple corresponding results sometimes 
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causes event conflict, resulting in invalid fusing outcomes (Smarandache & Dezert, 2015). In 

order to overcome the technique limitations of the conventional DS rule of combination, 

several modified rules are proposed, including Yager’s rule (Yager, 1987), Dubois and Prade’s 

(Dubois & Prade, 1988), and Murphy’s rule (Murphy, 2000). The researchers also attempt to 

construct a comprehensive approach with multiple decision fusion methods. For instance, 

Sebbak and Benhammadi (2017) introduced the majority voting principle into the Dempster–

Shafer Theory-based decision fusion sensor network, which was adopted in the Internet of 

Things (IoT)-based indoor healthcare system. The author used the simulated environment to 

produce the human activity signal in multiple modalities and predicted the posture into four 

classes (i.e., falling, sleeping, exercising, and watching TV) with different classifiers. The 

proposed fusion framework then processed the corresponding predictions, indicating that the 

merged strategy (i.e., majority voting plus Dempster–Shafer method) earned better and more 

intuitive classification results. 

Besides the fusion technique’s limitation, the difference in sensor sources should also be taken 

into account. In particular, the priori assumption of directly fusing sensor estimates (e.g., 

Dempster-Shafer combination Equation (4-13) is that each sensor produces results with the 

equivalent credibility. However, the assumption is constantly violated in real situations because 

various sensors, particularly sensors of different modalities and their associated classifiers, are 

hardly able to provide estimates with the same accuracy level (Ding et al., 2019). From the 

perspective of evidence theory, Shafer (1976) utilized the concept of discounting to explain the 

varying levels of trust in information sources before combining evidence. There could be 

situations where a support function is considered inaccurate because it does not account for 

uncertainties affecting the evidence. In such cases, it would be reasonable to discount the 

degrees of support provided by the function. When applying such a concept in the specific 

multisensory fusion domain, the differences in credibility between sensor estimates are the 
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leading cause of the discounting of support degrees. Because of the inherent nature difference 

of sensors, they perform differently in certain circumstances. Additionally, sensors of the same 

type could also produce varying levels of credibility due to manufacturing differences and 

environmental factors such as time and temperature. Therefore, assigning the sensor estimates 

moderate weights is an alternative to adjusting uneven trust capability (Wu et al., 2002). 

 

4.5 Methodology  

This section presents a novel method for action recognition of diverse construction tasks based 

on both acceleration and image data by using a decision-level fusion approach, as shown in 

Figure 4-4. In particular, based on the previous discussion of the limitations inherent in existing 

decision-level fusion approaches and the biases introduced by unequal sensor trust, this study 

developed a comprehensive framework of weighted Demster-Shafer decision-level fusion to 

address these challenges. The proposed method employs the Demster-Shafer Theory as the 

baseline model, aiming to maximize the compatibility of the fusion framework. Meanwhile, 

this method also utilizes a weighting mechanism from prior knowledge on strengths of 

acceleration- and vision-based action recognition to balance the unequal trust problem 

associated with multiple sensors. This study intends to enhance the overall performance and 

robustness of decision-level fusion by using this comprehensive framework, thereby 

overcoming the previously identified limitations and biases. 
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Figure 4-4 Proposed comprehensive decision-level fusion framework 

 

4.5.1 Developing deep learning algorithms for action recognition 

4.5.2 Data processing 

1.  Data segmentation 

Acceleration data 

When using acceleration data for Human Activity Recognition (HAR) tasks, segmentation is a 

necessary preprocessing step since 1) acceleration signals fluctuate over time, and 

segmentation could balance abnormal vibrations (Zheng et al., 2018), and 2) a complete human 

activity pattern shall last for a particular duration (e.g., 1.0 second). Segmenting signal 
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sequences allows for acquiring the maximum information on human activity (Banos et al., 

2014). The current study adopted the sliding window technique, a widely used signal 

segmentation method, to convert the consecutive time-series acceleration into smaller patterns 

(Dietterich, 2002). Considering the simplicity of implementation, this study segmented the 

acceleration data into fixed-size windows (Preece et al., 2009). A 50% overlap was also 

adopted when sliding the windows in order to reduce the transition noise from adjacent 

windows (Su et al., 2014).  

The sliding window of a fixed size means that all the windows have identical durations. Since 

wearable sensors collect acceleration data with a constant frequency, the segmented windows 

are supposed to contain an equal amount of acceleration data sets. In the current study, the 

frequency of collecting acceleration data was set as 100 Hz in Apple Watch, and thus, one 

hundred data points per second were recorded. Assuming the window size is 1.5 seconds, each 

window would comprise 150 sets of acceleration data. However, the data hardly matched the 

designed numbers in one slide window due to hardware errors, such as missing storage and 

timestamp delay (Teh et al., 2020). Under such circumstances, the current study processed the 

data as follows:  

1) If the counted number is less than expected, e.g., 148 data counted in a 1.5-second 

window, this study appended the N at the tail of the window, where the N refers to the 

number of missed data (N equals 2 in this example). Specifically, the added data shall 

repeat the patterns seen before the added position (Datar et al., 2002); 

2) If the counted number is more than expected, e.g., 152 data counted in a 1.5-second 

window, this study sliced the first K data, where the integer number K refers to the 

expected number of data in the selected window, and in this example, the K is supposed 

to be 150. The extra data usually appears at the last window, as the total duration of raw 

data may not be able to be divided into an integer number of windows. Also, when the 
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time lag is significant, the data belonging to the early pattern could be shifted to the 

latter part, resulting in missing data in the previous window and extra data in the current 

window. 

Video data 

In the data preprocessing phase, the video data does not need to be segmented like the 

acceleration signals for learning algorithms. However, the segmentation of video data would 

also be needed from a data fusion point of view. Since the decision-level fusion purely 

combines the results from different models, the data processing of each model is not required 

to remain the same. However, a meaningful fused decision requires that all input decisions 

represent the same context, which means the data inputted to the individual model shall serve 

the identical event. For example, there are two decisions, a and b, which are predicted results 

obtained from different sensors. The requirement for applying decision-level fusion methods 

is that decision a and decision b represent the same event that happened at the same time. If 

the decisions, i.e., prediction results, are generated from time-series data sequences, the 

durations recorded by the two sensors should also remain identical. At the fusion phase, 

therefore, the video sequence is required to be segmented in order to synchronize with the 

acceleration data, thereby representing the identical activity event for the fusion purpose. The 

sliding operation towards acceleration and video data includes duration synchronization and 

time synchronization, which will be illustrated in the following section.  

 

2.  Data synchronization 

Data synchronization is a processing strategy to align multiple data into a singular event, which 

is a necessary process before fusing the data from different sensor sources (Amundson et al., 

2008). As previously discussed, video and acceleration data segmentation is compulsory before 
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incorporating them into the decision-level fusion framework. In this regard, both timestamp 

synchronization and duration synchronization are applied in data processing. Firstly, an internal 

synchronization approach (Olson, 2010) was used to obtain a consistent time clock across two 

types of sensor data. Secondly, the sliding window technique was applied to divide raw data 

(acceleration data and videos) into uniform windows with identical sizes and overlapping 

settings, and the starting time of the sliding window is the unified time of both data. The 

synchronization process is described in Figure 4-5, the activity started at acc_tstart and 

video_tstart in the clock system of the accelerometer and camera clock, respectively. The 

window sizes of the acceleration pattern and video pattern before synchronizing are denoted as 

dacc and dvideo, respectively. It is worth noting that the data for synchronization are already 

accurately labeled, which means the acc_tstart and video_tstart are the accurate times of activity 

started, which is extremely important. Otherwise, the entire synchronization system would be 

biased. Furthermore, in order to ensure that the labeling procedure is well-designed and 

operated, the detailed procedure will be illustrated in the data labeling section. Since the sensors 

store associated timestamps of activity in their local time systems, and the clock systems are 

not initially identical, acc_tstart and video_tstart may differ. The local times coordinates are 

transformed into a single system first, and then the timestamps from different modality sensor 

data are aligned. As presented in this example, the starting time of acceleration data and video 

are synchronized as an identical value, i.e., tstart. Then, the data streams are sliced into windows 

under the same size and overlapping settings. Considering the starting time of both data streams 

is the same, such setting of window size and overlapping could ensure that the sliced window 

patterns have the exact pattern sizes. This means that the synchronized acceleration and video 

data include the same pattern length and count, thereby ensuring the equivalent input data size 

and number to activity recognition algorithms.  
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Figure 4-5 Illustration of data synchronization 

 

Acceleration-based action recognition algorithm 

Previous research used BiLSTM to train the action recognition classifier using acceleration 

data and achieved acceptable performance (Gong et al., 2022). The current study intends to 

utilize a similar activity taxonomy as that used in the mentioned research (i.e., Table 2-2). The 

identical BiLSTM algorithm described in Chapter 3 is utilized in this study.  
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Vision-based action recognition algorithm 

The current study employed the ResNet framework to train the video-based action recognition 

classifier. The ResNet, i.e., Residual Networks, is a robust video classification architecture 

proposed by He et al. (2016), which was then widely used in multiple domains with a good 

performance, such as semantic segmentation and object detection (Dai et al., 2016; Wang et 

al., 2018). Though ResNet is a fundamental structure for classifying activity through videos, 

more advanced architectures could achieve higher detection accuracy. However, this study 

focused on validating the capability of the decision-level fusion method, particularly the 

complementarity of the fusion method. In this context, the basic architecture of the algorithm 

can effectively reveal the potential of the fusion method. This argument reaffirms the choice 

of ResNet as the foundational architecture for the current study. 

ResNet is one of the most popular architectures when building a deep neural network computer 

vision domain because it addresses the degradation problem. In practice, stacking deeper layers 

is regarded as a standard option to increase network performance. However, an overly 

increasing network layer was found to be harmful to the network’s accuracy, which is called a 

degradation problem (Srivastava et al., 2015). ResNet introduced residual mapping other than 

the underlying mapping for the layers to fit. For instance, the desired underlying mapping was 

denoted as H(x), and the corresponding residual mapping is H(x) – x. Therefore, the original 

mapping becomes F(x) + x when letting the stacked layers fit F(x) = H(x) – x. Also, as shown 

in Figure 4-6 (a), the residual block in the deep residual learning framework comprises another 

essential component called shortcut connection, which enables bypassing the input from the 

block top to the tail. In particular, the identity mapping algorithm is used as a shortcut 

connection, which directly copies the results from the previously learned models. The purpose 

of shortcut connections is to ignore the additional stacked layer if the degradation issue appears, 

resulting in the training performance of the deeper network being no worse than the shallower 
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one  (He et al., 2016). The shortcut connections add no additional parameter to the network, 

thereby adding no extra computation cost. As a result, compared to optimizing layer depth, the 

deep residual learning framework is a cost-friendly alternative to solve the degradation problem 

(He & Sun, 2015). 

 

Figure 4-6 Example of residual blocks 

In the ResNet architecture, the selection of superparameters, such as the depth of layers (i.e., 

the number of layers) and the residual block’s dimensions, remain challenging. He et al. (2016) 

tested the ResNet structure on different recognition tasks in multiple public libraries (e.g., 

ImageNet, PASCAL, and MS COCO) and proposed sophisticated structures based on their test 

results, including 18-layer, 34-layer, 50-layer, 101-layer, and 152-layer structure, which are 

also known as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152, respectively. 

The proposed ResNet-n structure has been widely used as the backbone of an advanced deep-

learning network and has shown good generalization capability (Benali Amjoud & Amrouch, 

2020). For instance, ResNet-50 has been used to develop BlitzNet (Dvornik et al., 2017) and 

RetinaNet (Lin et al., 2017). The ResNet-101 is employed in the structure of R-FCN (Dai et 

al., 2016). In this regard, the ResNet framework is regarded as suitable for the current study’s 
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video-based human activity recognition task. ResNet-50 architecture is illustrated in Figure 4-7, 

where a 3-layer block, named bottleneck block (Figure 4-6 b), replaces the basic block in the 

residual learning framework. The kernel size and kernel numbers are described as k × k, n in 

the stacked layer, such as 7 × 7, 64 in the first convolutional layer. This study also adopts a 

default stride size of 2 for all the stacked layers.  

 

 

Figure 4-7 Architecture of ResNet-50 
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4.5.3 Decision-level fusion framework 

In order to fuse the results predicted by acceleration-based and video-based models, the current 

study adopts the theory-based decision-level fusion methods that utilize the Dempster–Shafer 

Theory (DST) of evidence combination as the basic structure. However, to address the 

limitations of the existing DST fusion method, this study proposes novel weighting approaches, 

including 1) the Weighted Dempster–Shafer Theory (WDST) of evidence combination, 2) the 

Topk Weighted Dempster-Shafer (TopkWDS) method, and 3) the Thresholding Weighted 

Dempster-Shafer (TWDS) method.  

Fusion input 

A decision-level fusion framework has been proposed to amalgamate prediction probabilities 

from diverse sources, wherein the input of the fusion method originates from the acceleration-

based and video-based activity recognition models corresponding to identical patterns of 

activity data. Within this framework, an activity recognition model trained on either 

acceleration or video data is expected to yield a single label as a prediction for any given input 

data. This structure, however, gives rise to two challenges. Firstly, the predicted label lacks 

probability information, which hinders the mathematical computations of the fusion method. 

Secondly, the scale of prediction is also a concern as the existing model produces only one 

label per data input, inhibiting the fusion approach from conducting a logical combination 

when the acceleration and video models predict differing labels for the same activity data. 

Hence, the final output (i.e., predicted label) from the individual sensor-based deep learning 

activity recognition model is unsuitable as the fusion method’s input, necessitating 

modifications in the trained activity recognition model. 

The proposed fusion method, grounded in mathematical theory, yields a final decision by 

generating a probability union. This process heavily relies on decimal scores drawn from 
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participating sensor models. Therefore, targeted inputs for the activity recognition model 

should be those capable of producing decimal scores for each activity category within the 

provided dataset. Upon examining the neural network topology depicted in Figure 4-8, it 

becomes evident that the activated output obtained from an activation function is optimally 

positioned to serve as the input for the decision-level fusion method proposed in this research.  

 

 

Figure 4-8 An example of neural network architecture designed for multiclass classification 

The activation function in the artificial neural network serves as a transformer between layers, 

which translates the input signal into output information and passes it to the next layer (Sharma 
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et al., 2017). Such transformation is particularly crucial in the output layer, where the desired 

predictions are derived from previous layers. Nwankpa et al. (2018) compared the popular 

activation functions, which include the Softmax Function, Sigmoid, Hyperbolic Tangent 

Function (Tah), and Rectified Linear Unit (ReLU) Function. Among those activation functions, 

the Softmax Function is widely used in the output layer when building a multiclass 

classification model (Badrinarayanan et al., 2017). As presented in Figure 4-8, this function 

converts the calculated amount into a probability distribution, with each number in the resulting 

output representing the estimated probability of a specific class given input by the model 

(Krizhevsky et al., 2012). It is also suggested to set the sum of decimal probabilities of 

prediction as 1.0 in order to speed up the convergence rate (Islam et al., 2018). The 

mathematical definition of the Softmax function is provided in Equation (4-6), where σ is the 

Softmax function, z⃑ represents the input vector to the Softmax function, k denotes the number 

of classes in the multiclass classification model, and ezi is the exponential function of each 

element of the input vector z⃑. The term σ(z⃑)i refers to the prediction probability of ith category 

in one prediction, further serving as the input for decision-level fusion methods. The fusion 

process is therefore could be translated as following mathematic problem: with given multiple 

probability sets from different sources (i.e., Pi,S1, Pi,S2, where i represent the event number and 

ranges from 1 to n, S1 and S2 refers two source), combine the probabilities representing the 

same event into comprehensive results (i.e., Pi,S1&2). In the current study, the theory-based 

decision-level fusion would be denoted by the mathematical method, as illustrated in the 

following chapters. 

The fusion process can be mathematically conceptualized as the integration of various 

probability sets, each derived from distinct sources. These sources are represented as Pi,S1, Pi,S2, 

where i represents the event number ranges from 1 to n, and S1 and S2 correspond to two distinct 

sources. These multiple sets fuse to form comprehensive results depicted as Pi,S1&2. The present 
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research employs this decision-level fusion to perform such integration, with specifics to be 

illustrated in the subsequent chapter. 

 σ(z⃑)i=
ezi

∑ eziK
j=1

    𝑓𝑜𝑟 𝑖 =  1, . . . , 𝑛  (4-6) 

 

Fusion implementation 

The current study took the flexibility of the Dempster-Shafer Theory (DST) into account and 

adopted the DST’s combination rule to fuse the decisions from multiple sources. Using the 

DST in decision-level fusion consists of two steps. The first step is to obtain the belief degrees 

of the target events. According to Shafer (1992), the degree of belief for one question could be 

estimated from the subjective probabilities of related questions. The second step is to aggregate 

information (i.e., degree of belief for each question) from multiple sources using Dempster’s 

rule of combination. In the Dempster-Shafer formalism, the degree of belief is represented by 

the belief function or mass function. The calculation of the belief function is attached as follows 

(Castanedo, 2013; Sentz & Ferson, 2002): 

1) Given an exhaustive and mutually exclusive frame of discernment, T. The power set 𝛩 

of T contains all possible state 𝜃𝑖, i.e., 𝛩 = {𝜃1, 𝜃2, ⋯ 𝜃𝑁};  

2) A hypothesis, denoted H, which is a subset of the power set, i.e., 𝛩. For example, 

assume that 𝑇 = {𝑎, 𝑏}, then 𝛩 = {{∅}, {𝑎}, {𝑏}, {𝑎, 𝑏}}, and H equals to {∅}, {a} or {b} 

or {a, b}. The belief degree of H is represented by the Basic Belief Assignment (BBA) 

or the mass function. The mass function meets the following requirements.  

First, the empty set’s mass value is zeros, as shown in Equation (4-7), 

 𝑚(∅) = 0  (4-7) 
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Second, the value of the probability mass function ranges from 0 to 1, shown in 

Equation (4-8)  

 𝑚: 2Θ → [0,1]  (4-8) 

Third, the masses of all the hypotheses add up to a total value of one.  

 ∑ 𝑚(𝐻){𝐻∈Θ} =  1  (4-9) 

Consider A as a partial component, i.e., a subset, of hypothesis H. Therefore, the 

relationship between A and H is 𝐴 ⊆ 𝐻. The DST defines the belief of H as the sum of 

all the subset’s masses, which is shown in Equation (4-10): 

 𝑏𝑒𝑙(𝐻) = ∑ 𝑚(𝐴) 𝐴⊆𝐻    (4-10) 

In the meantime, the plausibility, denoted pl(H), is defined as Equation (4-11), which 

represents the sum of all the masses (or BBA) of the sets A that intersect the set of H. 

 𝑝𝑙(𝐻) = ∑ 𝑚(𝐴)𝐴∩𝐻=∅   (4-11) 

Moreover, the belief and plausibility represent the lower and high bounds of the 

probability mass function of hypothesis H, which is illustrated in Equation (4-12) 

 𝑏𝑒𝑙(𝐻) ≤ 𝑃(𝐻) ≤ 𝑝𝑙(𝐻)  (4-12) 

By using the listed equations, the results from multiple sources could be represented as the 

corresponding degree of belief. Then, the next step is to aggregate the information beliefs by 

adopting Dempster’s rule of combination, also known as joint mass (Halpern, 2017). In 

particular, assume m1 and m2 are two mass functions, and B, B’, C, and C’ are subsets of H, the 

combination rule is defined as Equation (4-13): 

   𝑚{1,2}(𝐻) = 𝑚1 ⊕ 𝑚2 =  
1

1−𝐾
 ∑ 𝑚1(𝐵)𝑚2(𝐶) {𝐵∩𝐶 =𝐻}    (4-13) 

where  
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 𝐾 =  ∑ 𝑚1(𝐵′)𝑚2(𝐶′) {𝐵∩𝐶 =∅}   (4-14) 

The combination also has the following properties: 

 𝑚{1,2}(∅) = 0 and 𝐻 ≠ ∅  (4-15) 

Following the procedures, the present study first determines the degree of belief, which is 

transferred from the activity recognition model’s estimations. Secondly, the DST’s 

combination rule is employed to integrate the multi-sensor estimates at a higher level, aiming 

to obtain results with higher confidence. Considering the practical constraints of the current 

application, this study formulated the following assumptions before assigning mass function 

value to the individual sensor’s estimates: 

1) The frame of discernment is constructed based on predefined activity categories. 

Assume the group of defined activity categories, i.e., the group of true labels in the 

classification model, includes “Traveling,” “Lifting Brick,” “Lifting Rebar,” 

“Measuring Rebar,” and “Tying Rebar”. Then the frame of discernment T = {Traveling, 

Lifting Brick, Lifting Rebar, Measuring Rebar, Tying Rebar}; 

2) As established in the prior section, the activated result serves as the input for the fusion 

method (i.e., the DST combination). This outcome displays probability scores, each 

corresponding to a specific category within the predicted activities. However, such 

prediction scores lack the probabilities associated with subsets comprising multiple 

categories, such as {Traveling or Lifting Brick}, {Lifting Rebar, Measuring Rebar, or 

Tying Rebar}. Thus, the prediction model is limited to single categories only, and the 

probability estimation, such as either Lifting Rebar or Measuring Rebar, is deemed 

invalid under this assumption. Therefore, the hypothesis space Θ is restricted to 

singleton subsets exclusively derived from T. 
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In the meantime, the null or void set (i.e., Ø or {}) is excluded in this scenario because the 

designed algorithm for multi-class classification is guaranteed to produce a single predicted 

class as the output. Based on the assumptions, the hypothesis space in this example has 

been formulated, consisting of five situations enumerated as follows: 

Θ = {{Traveling}, {Lifting Brick}, {Lifting Rebar},  

 {Measuring Rebar}, {Tying Rebar}}  (4-16) 

After constructing the hypothesis space, the subsequent task involves assigning belief degrees 

derived from the prediction probabilities of activity classes obtained from the neural network 

through the individual sensor estimations. Initially, the mass function of the estimations from 

the accelerometer and camera are defined as ma and mv, respectively. Next, as stated in the data 

processing section, the complete dataset, encompassing both acceleration and videos, is divided 

into uniformly sized windows for classification. As a result, each data window corresponds to 

a distinct set of prediction probabilities and, consequently, a corresponding mass function. 

Therefore, for a given data window, a set of probabilities pi is generated and subsequently 

designated as the mass function mi, where i ranges from 1 to n, indicating the index of data 

windows. Thus, the mass functions from the accelerometer and video sources for the ith data 

window are represented as ma, i, and mv, i, respectively.  

Consider a specific pattern of acceleration data, acci, as an instance. It is input into the 

acceleration-based action recognition algorithm (Figure 3-3), which produces a preliminary 

decision using the activation function in the output layer shown in Figure 4-8.  Considering a 

five-category taxonomy, “Traveling,” “Lifting Brick,” “Lifting Rebar,” “Measuring Rebar” 

and “Tying Rebar,” Considering a five-category taxonomy Equation (4-6). This formulation 

yields the prediction probability series: Pi = {pTraveling,a,i, pLifting Brick,a,i, pLifting Rebar,a,i, pMeasuring 

Rebar,a,i, pTying Rebar,a,i}. Following this, the probabilities set is employed for determining the 
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corresponding data pattern’s mass function value, denoted as ma,i,. Specifically, ma,i, is 

represented by {mTraveling,a,i, mLifting Brick,a,i, mLifting Rebar,a,i, mMeasuring Rebar,a,i, mTying Rebar,a,i}. By 

performing the same framework, the mass function of each video data and acceleration data 

pattern can be calculated and denoted as ma,i, and mv,i, respectively, where i is the index of the 

data pattern and ranges from 1 to n. 

The next step is to integrate the estimates from various sources. Specifically, the mass functions 

from two sources can be combined using the Demspter-Shafer rule of combination (Equation 

(4-13) and (4-14)) when they correspond to the same event. For this purpose, strict 

synchronization of the acceleration and video data is necessary to ensure that the combined 

components ma,i, and mv,i occur in the identical timestamps of the unified timeline. Then, with 

a given pair of ma,i and mv,i, the combined degree of belief is calculated as follows: 

   𝑚{𝑎,𝑣},𝑖(𝐴) = 𝑚𝑎,𝑖 ⊕ 𝑚𝑣,𝑖 =  
1  

1−𝐾
∑ 𝑚𝑎,𝑖(𝐸𝑎)𝑚𝑣,𝑖(𝐸𝑣)𝐸𝑎∩𝐸𝑣 =𝐴   (4-17) 

   𝐾 =  ∑ 𝑚𝑎,𝑖(𝐸𝑎′)𝑚𝑣,𝑖(𝐸𝑣′)𝐸𝑎′∩𝐸𝑣′ =∅   (4-18) 

where Ea and Ea’ represent the evidence observed by the accelerometer. ma, i(Ea) and ma, i(Ev’) 

refer to the associated mass function for Ea and Ea’. Similarly, the Ev and Ev’ mean the camera’s 

observations, and their corresponding mass functions are denoted as mv,i(Ev) and mv,i(Ev’). In 

addition, A stands for the intersection of the hypothesis that combined the accelerometer and 

the camera’s observations. Note that A, Ea, Ea’, Ev, and Ev’ are all the subsets of the hypothesis 

space Θ, representing our case’s predicted construction activity category. For instance, in order 

to determine the belief degree of the predicted activity being “Tying Rebar” by combining the 

acceleration and video estimations of ith data pattern, the mass function of mi,{a,v}(Tying Rebar), 

needs to be calculated.  
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Per Equations (4-17) and (4-18), the calculation of joint mass function requires the summation 

of all possible combinations that satisfy. 𝐸𝑎 ∩ 𝐸𝑣 = Tying Rebar, and 𝐸𝑎′ ∩ 𝐸𝑣′ =  Ø. When 

the hypothesis space Θ is the power set of T, each sensor observation can map to multiple 

predictions, for example, {Tying Rebar, Measuring Rebar}, meaning the predicted activity is 

Tying Rebar or Measuring. Therefore, 𝐸𝑎 ∩ 𝐸𝑣 =  Tying Rebar could consist of various 

situations, such as Ea = {Tying Rebar, Lifting Brick} and Ev = {Tying Rebar}. Similarly, Ea∩

Ev= Ø also has multiple alternatives, such as Ea = {Lifting Brick} and Ev = {Traveling, Idling}. 

The current study has assumed that each hypothesis is a singleton subset and exclusive to other 

hypotheses. In this regard, 𝐸𝑎 ∩ 𝐸𝑣 =  Tying Rebar only contains unique situations: Ea = 

{Tying Rebar} and Ev = {Tying Rebar}, i.e., Ea=Ev=A. In the meantime, Ea’ ∩Ev’ = Ø indicates 

that the accelerometer and camera produce different readings. As a result, Equation (4-17) can 

be simplified in this case. Consider  

   𝑚𝑖,{𝑎,𝑣}(𝐴) = 𝑚𝑎,𝑖 ⊕ 𝑚𝑣,𝑖 =  
1  

1−𝐾
𝑚𝑎,𝑖(𝐴)𝑚𝑣,𝑖(𝐴)  (4-19) 

   𝐾 =  ∑ 𝑚𝑎,𝑖(𝐸𝑎′)𝑚𝑣,𝑖(𝐸𝑣′)𝐸𝑎′∩𝐸𝑣′ =∅   (4-20) 

The singleton assumption employed in the current study more accurately reflects the reality of 

the monitored construction activity, thereby streamlining calculations and enhancing the 

study’s applicability to real-world contexts. 

The framework of the Dempster–Shafer fusion method is shown in Figure 4-9. The pv,1, pv,2, …, 

pv,n refer to the probability set of video data 1, 2, …, n gained from the video algorithm. So, 

the pv,n is a one-dimension vector whose length equals the total number of classes. Likewise, 

the probability sets from the acceleration algorithm are denoted as pa,1, pa,2, …, pa,n, where the 

numbers 1, 2, …, n in the subscript represent the data number. Since the video and acceleration 

data are synchronized before being inputted into its action recognition algorithm, the obtained 
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probability set of ith acceleration data, i.e., pa,i serves the same hypothesis as pv,i do, thereby the 

pa,i and pv,i could be fused to Beli without additional adjustment. After balancing the fused 

values, the final decision would be determined and denoted as FRi. The presented DS approach 

served as the baseline method in the current study.  

 

Figure 4-9 Dempster–Shafer decision-level fusion framework 

 

Method 1 - Weighted Dempster–Shafer (WDST) method 

The fusion techniques themselves introduce certain biases to the fusion performance. Another 

notable source of fusion error is caused by the disparate credibility levels associated with 

different information sources, i.e., sensors and their corresponding algorithms. The current 

research adopts a discounting approach that assigns weights to balance various sources’ 

influence, thereby effectively addressing the unequal credibility issue in the sensor system. 

Since the Dempster-Shafer Theory-based combination approach is applied in the study as a 

baseline model to combine the results from different sources, the modified method is named 

the Weighted Dempster–Shafer Theory (WDST) method after introducing the discounting 

variables. This approach suggests evaluating the sensor performance in the historical data and 

calculating the weights, which are then assigned to the sensor result for balancing the trust level. 
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Hence, the previous combination formula, i.e., Equation (4-19), is modified to the following 

formula: 

   𝑚𝑖,{𝑎,𝑣}(𝐴) = 𝑚𝑎,𝑖 ⊕ 𝑚𝑣,𝑖 =  
1  

1−𝐾
𝑤𝑎,𝑖𝑚𝑎,𝑖(𝐴) × 𝑤𝑤,𝑖𝑚𝑣,𝑖(𝐴)  (4-21) 

Where m1(B) is the observation from sensor 1, m2(C) is the observation from sensor 2, and w1 

and w2 represent the calculated weights for sensors 1 and 2, respectively. The weight of each 

sensor corresponds to a series of discounting amounts for each category, representing the 

credibility of the sensor model in classifying that particular category of activity. With a given 

prediction, the decimal probability of each category is assigned its corresponding discounting 

variable. These weighted values are then fused using the DS combination rule, the procedure 

of which is visually represented in Figure 4-10. 

 

Figure 4-10 Weighted Dempster–Shafer decision-level fusion framework 

As presented in the weighted method formula, the performance of the proposed weighted 

approach relies on the weights’ reliability. In order to obtain reasonable weights, Wu et al. 

(2002) suggested extracting such correctness variables from the historical data, and the more 

similar the sensor application situation to the current circumstance, the more accurate the 

weight. This study utilizes information obtained from the training process and prior knowledge 

to derive appropriate weights for fusing sensor estimates rather than replicating similar 

experiments to collect historical data. The current study splits the whole dataset into the training, 
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validation, and testing data for classifier training and testing purposes. The model was trained 

using the training data during the training process, and the validation dataset was employed to 

assess training performance and prevent overfitting. In this regard, validation accuracy 

indicates a model’s actual performance more accurately than training accuracy. Consequently, 

the current study selects the validation performance as the weight for sensor estimates. 

When selecting weights for machine learning classification models, it is essential to consider 

accuracy and classification metrics such as precision, recall, and F1 score. The definitions and 

calculations of these metrics are delineated from Equation (3-1) to Equation (3-3). Each metric 

provides insight into classifier performance: Precision calculates the accuracy of positive 

predictions against total positives; recall evaluates the classifier’s ability to identify all actual 

positives; and the F1 score balances precision and recall, which are crucial in imbalanced class 

distributions. The current study aims to examine the influence of varying weight selections on 

fusion outcomes through the analysis of all three metrics. 

 

Method 2 – Topk Weighted Dempster-Shafer (TopkWDS) method 

The examination indicates that prediction scores for categories are not evenly dispersed. A 

significant portion of prediction scores for a category tends towards extremely low values. For 

instance, classification scores corresponding to categories “Drilling,” “Tying rebar,” “Lifting 

rebar,” “Measuring rebar,” “Hammering,” “Idling,” “Lifting brick,” and “Traveling” are 

{0.998, 1.267×10-3, 2.477×10-4, 1.723×10-4, 9.686×10-5, 4.458×10-5, 2.257×10-5, 4.172×10-6}, 

respectively These extremely small values represent a negligible chance of classification for 

the corresponding categories. Such small values would not significantly affect the classification 

results when using a single sensor source. However, in the DS combination process, the 

decimal possibilities of each category significantly would have an important role in the 
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weighted method calculation according to Equation (4-21). For instance, both 10-5 and 10-7 

indicate a low probability of being predicted as a particular category. They have a substantial 

difference of two orders of magnitude when the weights are incorporated into the formula. To 

mitigate such an impact, one approach is setting the value to zero. However, the 

implementation of activation functions, such as the Softmax function, prevents the prediction 

score from reaching zero. To address the minimal value impact in the weighting process, the 

current study proposes filtering the weights before utilizing them to adjust the prediction 

reliability in the decision-level fusion procedure. Inspired by the concept of top-k accuracy, the 

study introduces a filtering weight method called top-k weighted selection. This method 

involves sorting the possibilities in descending order and selecting the k largest possibilities as 

the primary discounting components. In the given example, if k is set to 5, the filtered 

prediction scores would be  

{0.998, 1.267×10-3, 2.477×10-4, 1.723×10-4, 9.686×10-5} 

representing the decimal possibilities for the predicted categories “Drilling,” “Tying rebar,” 

“Lifting rebar,” “Measuring rebar,” and “Hammering,” respectively. 

Additionally, the DS theory requires that all mass functions sum to 1. The study suggests 

combining the dumped possibilities into one non-singleton set to represent the dumped 

category to fulfill this requirement. The prediction score would be the sum of the dumped 

values. In this case, the filtered prediction example after using the top-k method would be 

{0.998, 1.267×10-3, 2.477×10-4, 1.723×10-4, 9.686×10-5, 7.082×10-5} 

The corresponding prediction category set would be  

{{Drilling}, {Tying rebar}, {Lifting rebar}, {Measuring rebar}, {Hammering}, {Idling, 

Lifting brick, Traveling}}. 
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The filtered weighted would then be inputted into the discounting process, as shown in Figure 

4-10. 

 

Method 3 – Thresholding Weighted Dempster-Shafer (TWDS) method 

The Thresholding Weighted Dempster-Shafer (TWDS) method is proposed to mitigate the 

impact of extreme weight values. Similar to the Topk method discussed earlier, the TWDS 

method also arranges the prediction scores in descending order and filters out weights below a 

given threshold, such as 0.99. The remaining possibilities and corresponding prediction 

categories are combined into a subset, following the TopK method. For instance, the prediction 

scores for the categories “Drilling,” “Tying rebar,” “Lifting rebar,” “Measuring rebar,” 

“Hammering,” “Idling,” “Lifting brick,” and “Traveling” are {0.998, 1.267×10-3, 2.477×10-4, 

1.723×10-4, 9.686×10-5, 4.458×10-5, 2.257×10-5, 4.172×10-6}, respectively. With a given 

thresholding of 0.99, the filtered result should be: 

{0.998, 1.267×10-3, 5.889×10-4} 

The corresponding prediction category set would be  

{{Drilling}, {Tying rebar}, {Lifting rebar, Measuring rebar, Hammering, Idling, Lifting 

brick, Traveling}}. 

The weights obtained directly from the validation process will be replaced with the filtered 

values, which will then be inputted into the discounting process, as shown in Figure 4-10. 

 

4.6 Data Collection Through Experimental Settings 

4.6.1 Testing conditions 

Experimental settings 
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This study, aiming to simulate the construction activity conducted on sites, deployed entities 

(materials, equipment, and workers) akin to those found on construction sites. In particular, a 

2.4m (length) × 0.9m (width) × 0.9m (height) rebar form was placed in the testing lab. The 

participants were asked to conduct designed activities in the surroundings of the specimen. In 

this regard, the background of collected data, particularly the videos, is noisy. Though the noise 

makes building well-performed models difficult, the data collected in such experiment settings 

are closer to the raw data from the construction sites. The photos of the testbed can be found in 

Figure 4-11, and the layout is attached in Figure 4-12. 

     

Figure 4-11 Photos of the testbed (right side view, front view, and left side view) 

 

Figure 4-12 Experiment layout 

Participants 

In the experiment, three research personnel (two male and one female) from The Department 

of Building and Real Estate, Hong Kong Polytechnic University, were recruited to perform the 

designed construction activities. When experimenting, the participants are asked to wear an 
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entire set of safety gear (i.e., safety vest, helmet, and boots) during the whole testing period 

(Figure 4-13) in order to 1) keep the participant safe and 2) simulate the real construction 

environment. 

     

Figure 4-13 Right-side view photos of participants 1, 2, and 3 in the test  

 

4.6.2 Data collection procedures 

Acceleration measurements 

The current study adopted the Apple Watch as the acceleration data collection sensor, which is 

widely applied in obtaining human activity data (Ashry et al., 2020; Kwon & Choi, 2018). In 

this experiment, one Apple Watch (Series 4, 40mm Aluminum & Ceramic Case) was attached 

to the participant’s dominant hand (Figure 4-14) to collect the acceleration signals. The size of 

the watch is 40mm (height) × 34mm (width) × 10.7mm (depth), and the weight is 30.1g, as 

instructed. The researcher group also developed a data collection App in the watchOS platform 

to collect, store, and transfer the acceleration signal (Figure 4-14). When the experiment starts, 

the user is supposed to activate the embedded Inertial Measurement Unit (IMU) through the 

App and record the three-axis acceleration signals. The data are stored in the Apple Watch’s 

hard drive with its operation timestamp. Meanwhile, a wireless module in the developed App 

will then help transfer the stored data to a paired machine, such as an iPhone or desktop. In 

order to minimize the data bias caused by the device, participants used the same Apple Watch 

in the entire experiment. The selected watch was initialized and tested as functional before the 

tests, and no further calibration is needed. 
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Figure 4-14 The Apple Watch placement (right) and data collection interface (left) 

  

Video measurements 

In the meantime, the current study used three iPhones to record the videos because 1) it is 

portable and flexible to install in designed positions; 2) it is a widely used commercial-grade 

device that also supports recording high-resolution video; 3) it brings convenience and 

consistency of data processing when collecting both video data and acceleration data in the 

same platform (i.e., Apple platform) (Chen et al., 2021). As shown in Figure 4-12, the 

smartphones are deployed in three positions so that the researchers can simultaneously collect 

the videos (i.e., front view, side view, and 45-degree view) from three points of view. 

Meanwhile, each smartphone is installed on tripods, and tripod height or position modification 

is not allowed during the whole experiment. In this regard, the videos collected in the 

investigation are strictly from fixed spots. 
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Experiment design and procedure 

In order to validate the sensor fusion approach in construction activity for developing a more 

effective and stable framework of worker monitoring, typical activities from essential 

construction tasks are designed and conducted in the laboratory. Inspired by the proposed 

taxonomy in 0, the experiment designed eight different types of construction activities from 

the group of Level 3 Activity. Detailed information can be found in Table 4-2. 

Table 4-2 Activity taxonomy used in the decision-level fusion experiment  

Activity ID Level 3 Activity Level 2 Activity 

1 Traveling Traveling 

2 Lifting Brick Effective work 

3 Lifting Rebar Effective work 

4 Measuring Rebar Effective work 

5 Tying Rebar Effective work 

6 Hammering Effective work 

7 Drilling Effective work 

8 Idling Non-effective work 

 

The current study, therefore, designed eight different types of construction activities (Figure 

4-15): “Traveling,” “Lifting Brick,” “Lifting Rebar,” “Measuring Rebar,” “Tying Rebar,” 

“Hammering,” “Drilling,” “Idling.” The “Traveling” required the participants to walk around 

the rebar specimen at a consistent speed (Figure 4-15 a). Also, the participants were required 

to carry brick and rebar when conducting such circus walking in order to perform the activities 

“Lifting Brick” (Figure 4-15 b) and “Lifting Rebar” (Figure 4-15 c), respectively. In addition, 

“Measuring Rebar” and “Tying Rebar” required the participants to measure the rebar grid 

(Figure 4-15 d) and tie the steel wire (Figure 4-15 e) along the rebar specimen, which contains 

abundant hand movement, resulting a longer duration compared to the pure movement jobs 

(i.e., “travel”) and moving materials jobs (i.e., “Lifting brick” and “Lifting Rebar”). Apart from 

the activities conducted around the rectangular rebar form, “Hammering,” “Drilling,” and 
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“Idling (including sitting and standing)” were performed in a constrained area in front of it. 

“Hammering” involved repeat knocking activity on the brick (Figure 4-15 f). The “Drilling” 

required participants to drill holes in the wooden slab by using the drilling machine (Figure 

4-15 g). The “Idling” required to keep stationary in the spot. As shown in Figure 4-15 h and 

Figure 4-15 e, the “Idling” consists of two types of action, i.e., “Sitting” and “Standing”. 

Participants were allowed to make minor physical adjustments like swinging a leg or raising a 

hand but not aggressive movements like jumping or standing up to maintain consistency and 

accuracy in the experiment. 

     
   a. Traveling    b. Lifting Brick        c. Lifting Rebar 
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        d. Measuring Rebar       e. Tying Rebar       f. Hammering 

 

     
     g. Drilling     h. Idling (Sitting)   i. Idling (Standing)   

Figure 4-15 Photos of performing designed construction activity 

The current study adopted a repeated measures design in a single test. As shown in Figure 4-16, 

each participant was required to repeat each activity five times in a continuous sequence. After 

finishing all five actions, the participants returned to the starting spot, which is a fixed position 

for the entire experiment. The researchers helped deactivate the data collection app in Apple 
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Watch, stopped video recording from three iPhones, and then stored the collected data (i.e., 

both acceleration data and video data) in the hardware. In order to minimize data collection 

bias, the examination of sensor positions is necessary before starting the data collection of the 

next activity. Specifically, the Apple Watch is required to be attached to the exact position of 

the wrist.  

The direction of the watch is also placed in the same direction so that the collected acceleration 

data share the same reference coordinate system. Also, the position and height of tripods remain 

constant to ensure the videos are recorded from a fixed point of view. Then, the researchers re-

activated the data collection function in smartwatches and smartphones to collect the motion 

data of the subsequent construction activity. 

Before starting the experiment, the participants were required to observe the representative 

activity performed by the researcher for a better understanding of the designed activities. 

Thereby, participants could perform the same activity similarly. The experimental procedures 

(Figure 4-16) were instructed to the participants before testing. When executing the experiment, 

the participants were asked to perform tasks at their own comfortable pace. They were also 

suggested to take a break after finishing the data collection of one category of activities in order 

to reduce fatigue. During the break, the researchers stored the data and prepared the device for 

the next activity data collection session. 

 

Figure 4-16 Repeated measure design of simulated experiment 
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Data labeling 

As instructed in the experimental procedure (Figure 4-16), the five-trial data of one activity are 

stored before performing the next one, resulting in instant data labeling for both acceleration 

and video data. For instance, after Participant No.1 finished the fifth trial of Activity No.1, the 

researchers were supposed to help stop the video and acceleration recording. In the meantime, 

the acceleration data were stored in the Apple Watch’s local memory, and the filmed videos 

were stored in the photo album of the iPhones. In Apple Watch’s platform, the event name (i.e., 

activity 1) associated with the participant ID (i.e., Participant No.1) is included in the name of 

the stored file. Likewise, the event and operator information of videos could also be typed into 

the video instructions in the iPhone’s system. By extracting the event type from the file name, 

the researchers were able to label time-series acceleration data and video data, which will then 

serve as the ground truth in the model training and testing procedure. 

During the testing sessions, the sensors (i.e., Apple Watch and iPhones) started recording 

before performing the activity and terminated data collection after finishing the entire trial 

sequence, ensuring that complete data of the activity were recorded. Because of such 

arrangement, the sensor-collected data comprise invalid signals or videos that happened in the 

following time intervals (Figure 4-17): 1) activation time of sensor to starting time of designed 

activity (i.e., ts, sensor to ts, activity); 2) deactivation time of sensor to terminating time of designed 

activity (i.e., te, sensor to te, activity). In order to label the data accurately, identifying and removing 

the invalid data patterns is necessary, which makes locating precise timestamps of starting and 

accomplishing activity crucial. 
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Figure 4-17 Illustration of invalid data in sensor-collected data 

The required time information of video events could be directly obtained by reviewing raw 

videos. The manual observation is, however, time-consuming and not accurate due to 

inconsistent judgment from the reviewers. Though the timestamp judgment error in a single 

video clip is small (e.g., 10-millisecond level), the cumulated errors are significant, considering 

that the experimental activities were repeated continuously. In order to acquire accurate 

timestamps in an efficient manner, the researchers added additional actions right before 

performing the designed activity. Such warm-up action aims to introduce a strong signal before 

starting the activity, thereby guiding researchers to record the timestamps more efficiently and 

accurately. The current study required the participants to count down five seconds loudly and 

then conduct the activity immediately. By checking on the audio-time plot, the author could 

precisely locate the starting timestamp of the experimental activity. Furthermore, the author 

extracted the audio tracks from collected videos and plotted them in time. With the help of an 

audio analyzing algorithm, the precise starting time could be automatically located by 

searching the significant magnitude of the audio pulse at the beginning part. 

Unlike videos presenting the experiment context, the acceleration data lacks attributes that 

allow the researchers to understand participants’ states (i.e., whether the activity started or not). 

The remaining option is to visualize the time-series acceleration data and conduct a secondary 

analysis. For instance, Figure 4-18 shows the acceleration signals that refer to the “Hammering” 
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performed by Participant No.1. An apparent magnitude of the signal pulse could be found after 

a silent period, leading to finding the exact starting time of “Hammering” (i.e., dash line in 

Figure 4-18) in the local clock. However, the acceleration signal vibrations are not significant, 

such as the “Lifting Brick” acceleration signal shown in Figure 4-19, resulting in considerable 

timestamp errors when determining the starting time. In order to overcome such limitation, the 

author also designed a warm-up action exclusive for acceleration data collection, which 

required the participants to wave the dominant hand (i.e., the hand that wore the Apple Watch) 

a couple of times. The strenuous movement of the wrist caused a cyclical and significant 

magnitude of signal pulse in the acceleration-time plot (Figure 4-19), which allows for 

precisely locating warming-up time in the internal clock system and gives a timestamped 

anchor to all the activity events in the acceleration data. Since cameras also record such 

warming-up actions, the offset of the time system between sensors could be calculated by 

subtracting the timestamp of the waving hand read in acceleration data and video data. 

Therefore, the common time system was established based on the calculated time offset. The 

timestamps were then transformed into the timestamp frame, thereby synchronizing the time 

from multiple sources of sensors. 

 

Figure 4-18 Example acceleration signals collected from “Hammering” activity  
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Figure 4-19 Example acceleration signal of “Lifting Brick” 

 

4.6.3 Classifier training and evaluation 

The current study tests various window lengths to achieve the best performance and, afterward, 

determines the optimal size based on model performance. The previous practice conducted by 

the author showed that the 1.5-second window size is an optimal setting for obtaining an 

accurate action recognition model (Gong et al., 2022). Due to the different data natures and 

experiment settings, the current study chose to test window length in a wide range rather than 

directly using the 1.5-second window. Therefore, the current study tested multiple window 

sizes that range from 0.5 seconds to 4.0 seconds with a step size of 0.5 seconds (i.e., 0.5, 1.0, 

1.5, 2.0, 2.5, 3, 3.5, and 4.0 s). Considering the minimum window required for an activity task 

and the test experience, the window size was set into multiple values for further testing. The 

window sizes started from 0.5 seconds to 4.0 seconds with a strip of 0.5 seconds. 

The data collected in this experiment is in the form of a time series, with each observation 

having a timestamp, thereby including temporal features. In such cases, the forward-chaining 

or expanding window cross-validation is a commonly used method for validating time-series 

models due to its consideration of the temporal dependence between observations. Specifically, 

this method employs earlier data for model training and later data for validation and testing. 

Warm-up signals 
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However, this method is inappropriate when significant temporal dependence in the residuals 

or later observations significantly depends on earlier observations. Based on the repetitive 

temporal features of experiment data, this study recommends cross-validation for testing the 

effectiveness of proposed algorithms. In this method, the original data is divided into exclusive 

subsets of approximately equal size, with each subset being used once for validation and the 

other subsets used for model training. In this method, the original data is divided into exclusive 

subsets of equal size, with each subset being used once for validation and the other subsets 

used for model training. The proposed validation approach, aiming to minimize overfitting 

errors, divides the entire dataset into three subsets for training, validation, and testing purposes. 

In this study, one subset is reserved as the testing data, while the first three of the remaining 

four subsets are utilized for training, and the fourth subset is kept for validating the training 

results. Each data subset in the scenario can represent a full trial of the required activity 

performed during the experiment, ensuring equal size requirement and representation of the 

entire dataset. The consistency is due to participants being required to perform the same activity 

repeatedly for five trials, each lasting approximately the same duration. As a result, five models 

are generated, and associated validation error estimates are produced, which can be utilized to 

evaluate the performance of designed models and associated construction activity recognition 

framework. The evaluation process will be described in the following paragraphs, which 

include identifying the optimal size of the data pattern and evaluating the classifier’s 

performance.  

 

4.7 Result 

In the current study, we tested the proposed framework using the data collected through 

laboratory experiments described above. The test’s primary objective is to validate the 
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effectiveness of decision-level fusion frameworks by comparing their classification 

performance to that of the single-sensor classification framework. The optimal window size is 

determined by analyzing the individual sensor’s performance under different window sizes to 

achieve this. The identical window size is then adopted for conducting the fusion framework. 

The classification performance of the proposed decision-level fusion approach and the 

individual sensor’s framework is evaluated using metrics such as classification accuracy, 

confusion matrix, precision, recall rate, and F1 score. By evaluating the fusion framework using 

three different fusion approaches, this study aims to recognize construction activities better and 

assess the efficacy of the proposed decision-level fusion framework. 

 

4.7.1 Enhancing sensor-based action recognition: evaluating performance through 

optimized window size 

The study evaluates the performance of two construction action recognition models based on 

individual sensor inputs, following the identical data processing, model training, and evaluation 

procedures illustrated in the previous section. Both tables present window sizes ranging from 

0.5 to 4.0 seconds with a 0.5-second window increment and provide evaluation metrics such 

as average training accuracies, validation accuracies, testing accuracies, and standard deviation 

of testing accuracies. The optimal window size for the construction activity recognition model 

is determined through performance assessment using varying window sizes. 

Table 4-3 shows the overall performance of the acceleration-based construction action 

recognition model with various window sizes. The model was trained, validated, and tested on 

segmented data, and the presented results demonstrate that the model achieved high average 

training accuracies across all window sizes, ranging from 98.73% to 99.29%. The highest 

average training accuracy of 99.29% was achieved with a window size of 4.0. Meanwhile, the 
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model achieved the highest average testing accuracy of 73.64% with a 3.5-second window, 

followed by 73.12% with a 2.5-second window. The standard deviation of testing accuracy for 

the 3.5-second window is 0.73, which is lower than the 1.48 observed for the 2.5-second 

window. The average testing accuracy of 72.58% was observed for a 3.0-second window, 

which was the third-highest accuracy among all window sizes. However, the 3.0-second 

window setting generates a relatively high standard deviation of 1.34 for the testing accuracies. 

On the other hand, the model’s average testing accuracy with a 1.0-second window size was 

70.96%, which was relatively moderate compared to the other window sizes. Nonetheless, the 

1.0-second window achieved the lowest standard deviation of 0.61, indicating its consistent 

performance and higher reliability across the dataset. 

Table 4-4 for the video-based model. The current study employed segmented data for training, 

validation, and testing purposes in the acceleration-based model. Conversely, the video-based 

model used segmented signals only for testing. The mechanism can be found in the previous 

section, which elaborates on the data processing procedures. Therefore, the average training 

and validation accuracies for all window sizes are identical, which were found to be 92.33% 

and 76.69%, respectively, on average of five times evaluation. The table shows that the video-

based construction action recognition model achieved the highest average testing accuracy of 

71.24% with a window size of 3.5 seconds. The range of average testing accuracies is relatively 

small, with a difference of only 0.89% between the highest and lowest average testing values, 

which indicates that the model’s performance was consistent across different window sizes. 

Additionally, the standard deviation variation for testing accuracies was relatively small, 

ranging from 3.03 to 3.62 for all window sizes. However, these standard deviation values were 

significant, suggesting moderate performance consistency when using different parts of the 

dataset. 
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Comparing Table 4-3 and Table 4-4 showed that the video-based model exhibited relatively 

low variation of average testing accuracies and their standard deviations compared to the 

acceleration-based model. Such a result indicates a more stable performance of the video-based 

model across varying window sizes and dataset selection. Therefore, the selection of window 

size for the video-based model did not significantly affect its performance. Conversely, a high 

variation of average testing accuracies and its standard deviation for the acceleration-based 

model was found in Table 4-3, revealing the high demand to optimize the window size. Hence, 

the window size optimization problem can be simplified as the optimization of window size 

for the acceleration model in the current study. Upon investigation of the results, it was found 

that a larger window size generally led to higher accuracy scores. Nonetheless, it is essential to 

consider the standard deviation of the testing accuracies to enhance the model’s reliability 

across varying datasets. Furthermore, the utilization of a smaller window size can result in a 

more significant number of data points, which can lead to a better performance of the model 

by providing a representative sample of the population and mitigating the possible overfitting 

issue. After carefully considering the advantages and disadvantages of various window sizes, 

it is recommended to select the 1.0-second window as it presents a balanced and optimal choice 

for the study. 

Table 4-3 Overall performance of acceleration-based construction action recognition model 

with different window sizes 

Window size (s) 

Average 

training 

accuracies (%) 

Average 

validation 

accuracies (%) 

Average testing 

accuracies (%) 

Test accuracies 

standard 

deviation (%) 

0.5 98.94 62.94 66.06 1.35 

1.0 98.73 74.58 70.96 0.61 

1.5 98.94 68.49 65.47 0.89 

2.0 99.02 71.86 67.17 1.00 

2.5 98.99 77.29 73.12 1.48 

3.0 98.96 78.63 72.58 1.34 

3.5 99.22 79.10 73.64 0.73 

4.0 99.29 77.72 72.69 1.95 
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Table 4-4 Overall performance of video-based construction action recognition model with 

different window sizes 

Window size (s) 

Average 

training 

accuracies (%) 

Average 

validation 

accuracies (%) 

Average testing 

accuracies (%) 

Test accuracies 

standard 

deviation (%) 

0.5 

92.33 76.69 

70.35 3.13 

1.0 71.49 3.03 

1.5 70.53 3.16 

2.0 70.78 3.42 

2.5 70.89 3.18 

3.0 70.84 3.32 

3.5 71.24 3.04 

4.0 71.12 3.62 

 

4.7.2 Activity recognition results by using individual sensors’ data 

Despite the disparity in their data modalities and algorithm architectures, both models were 

subjected to the same dataset and scenario of training and testing, thereby providing a 

compelling comparative analysis method. In particular, a 1.0-second window size is advised as 

the optimal data segmentation choice for both models. In the meantime, a five-fold cross-

validation approach was applied during the training process. The overall classification 

performance obtained from the individual sensors was presented in Table 4-5, including the 

average training, validation, and testing accuracies for accelerometer and video camera data 

sources. Upon reviewing the table, the accelerometer-based model showed higher overall 

performance with an average testing accuracy of 70.96% compared to the video camera-based 

model, which showed an average testing accuracy of 71.49%. Overall accuracy, mainly testing 

accuracy, is a widely used metric for evaluating the performance of classification models. At 

the same time, it has limitations in providing a detailed understanding of how the model 

performs for each class. In order to facilitate a deeper comprehension of the model’s 

performance in classifying each activity, the current study examined the classification 
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outcomes in the manner of confusion matrices. In this regard, Table 4-6 and Table 4-7 show 

the confusion matrices of the best-performing classifiers of an acceleration-based action 

recognition model and a video-based action recognition model, respectively. In the confusion 

matrixes, the actual category (columns) and predicted category (rows) are listed for each of the 

activities, including Traveling (TL), Lifting Brick (LB), Lifting Rebar (LR), Measuring Rebar 

(MR), Tying Rebar (TR), Hammering (HR), Drilling (DR), and Idling (ID). Each entry in the 

matrix corresponds to the intersection of a specific predicted activity with the actual activity, 

and its value indicates the number of instances in which the model made that specific 

prediction-actual pair. The matrix also includes additional classification metrics such as recall, 

precision, and the F1 score for each activity to evaluate the model’s performance 

comprehensively. Specifically, high precision suggests that the model accurately predicts a 

category when it claims to do so, indicating fewer false positives (predicted instances 

incorrectly). Meanwhile, low precision means the model often mistakenly identifies an activity 

as a particular category, indicating a higher rate of false positives. Also, a high recall indicates 

that the model is good at identifying a particular category when it appears in the dataset, 

suggesting fewer false negatives, i.e., missed actual instances. In contrast, low recall implies 

that the model often fails to detect the category, indicating a high rate of false negatives. The 

F1 Score is taken into account as a balance metric of precision and recall. A high F1 score 

represents a robust model with a good balance between precision and recall. A low F1 score 

suggests that the model performs poorly in either precision, recall, or both, implying a need for 

improvement.  

As presented in Table 4-6, the acceleration-based model demonstrates remarkable precision of 

above 88.0% in classifying “Traveling” (TL), “Lifting Brick” (LB), and “Lifting Rebar” (LR), 

which demonstrates superior performance in minimizing false positives for TL, LB, and LR. 

The precision accuracies for “Tying Rebar” (TR) and “Drilling” (DR) are lower than 60%, 
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indicating space for refinement in classifying TR and DR. Particularly, the DR’s precision is 

lower than 50%, meaning that more than half the time when the model predicted an activity as 

DR, it was incorrect. In the meantime, “Tying Rebar” (TR), “Lifting Brick” (LB), and 

“Hammering” (HR) were the top-performing categories with recall values of 88.8%, 87.5%, 

and 87.0%, respectively, which suggests a strong model performance in correctly identifying 

instances of TR, LB, and HR. Conversely, “Idling” (ID) fared the worst in the recall metric, 

with 16.5%, indicating that the model struggled to identify ID instances correctly. The F1 Score, 

which balances precision and recall, reaches high values for “Lifting Rebar” (LB) and 

“Hammering” (HR) at 0.88 and 0.85, respectively, suggesting overall optimal performance for 

these activity categories by the acceleration-based model.  

Similarly, the confusion matrix in Table 4-7 represents the five-fold cross-validation results 

from the best-performed video-based action recognition model (300 epoch training with a 1.0-

second window). The model exhibits exceptional precision in recognizing “Lifting Brick” (LB), 

“Hammering” (HR), and “Drilling” (DR), all of which show a precision exceeding 90%. The 

results emphasize the model’s strength in classifying such activity categories with a low ratio 

of false positives. However, “Idling” (ID) and “Lifting Rebar” (LR) exhibit lower precision, 

below 60%, implying that these categories need model improvements for precise classification. 

In terms of recall, “Drilling” (DR) is the leading category with a recall of 94.9%, indicating the 

model’s substantial success in accurately identifying instances of DR. TL, LB, LR, and TR 

also show impressive recall values of the above 80%, meaning the model’s robustness in 

correctly identifying instances of these activities. Conversely, “Hammering” (HR) has the 

lowest recall value, at 60.5%, signifying that the model faces challenges in correctly identifying 

HR instances. The F1 Score suggests satisfactory performance for “Drilling” (DR), with an F1 

Score of 0.97. So that the model optimally recognizes the “Drilling” (DR) activity. 
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Nevertheless, the F1 Score for “Measuring Rebar” (MR) is 0.62, indicating a relatively low 

overall classification performance that could be improved for this category. 

 Table 4-5 Performance of individual sensor-based construction action recognition models 

using 1.0-second windows 

 

Table 4-6 Confusion matrix of acceleration-based action recognition result (1.0-second 

window) 

Activity 
True 

category 
TL LB LR MR TR HR DR ID 

Recall 

(%) 

Predicted 

category 

TL 96 3 0 18 21 0 6 0 66.7 

LB 3 168 3 15 3 0 0 0 87.5 

LR 0 12 147 9 30 0 6 0 72.1 

MR 0 0 3 187 26 0 3 4 83.9 

TR 2 2 4 14 198 1 1 1 88.8 

HR 0 0 0 18 0 141 0 3 87.0 

DR 0 0 6 21 9 0 90 12 65.2 

ID 6 6 3 15 49 27 76 36 16.5 

Precision 

(%) 
89.7 88.0 88.6 63.0 58.9 83.4 49.5 64.3  

F1 Score 0.76 0.88 0.79 0.72 0.71 0.85 0.56 0.65  

* Traveling: TL, Lifting Brick: LB, Lifting Rebar: LR, Measuring Rebar: MR, Tying Rebar: TR, Hammering: HR, Drilling: DR, Idling: ID 

 

Table 4-7 Confusion matrix of video-based action recognition result (1.0-second window, 

300 epoch training) 

Activity 
True 

category 
TL LB LR MR TR HR DR ID 

Recall 

(%) 

Predicted 

category 
TL 116 13 12 0 3 0 0 0 80.6 

Sensor source 
Average training 

accuracy (%) 

Average validation  

accuracies (%) 

Average testing 

accuracies (%) 

Accelerometer 98.73 74.58 70.96 

Video camera 92.33 76.69 71.49 
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LB 6 167 14 0 5 0 0 0 87.0 

LR 11 0 170 15 8 0 0 0 83.3 

MR 5 0 5 125 88 0 0 0 56.1 

TR 2 0 1 40 180 0 0 0 80.7 

HR 0 0 0 0 0 98 0 64 60.5 

DR 0 0 0 0 0 0 131 7 94.9 

ID 33 0 96 0 0 0 0 89 40.8 

Precision 

(%) 
67.1 92.8 57.0 69.4 63.4 100.0 100.0 55.6  

F1 Score 0.73 0.90 0.68 0.62 0.71 0.75 0.97 0.70  

* Traveling: TL, Lifting Brick: LB, Lifting Rebar: LR, Measuring Rebar: MR, Tying Rebar: TR, Hammering: HR, Drilling: DR, Idling: ID 

 

4.7.3 Activity recognition results by using the decision-level fusion method 

Table 4-8 presents a detailed summary of the average testing accuracies of construction activity 

recognition models, which utilize a decision-level fusion of results derived from multiple 

sensor sources. For comparative analysis, the table also lists the classification results generated 

by employing a single sensor source. As shown in the table, the acceleration-based model 

yielded an average testing accuracy of 70.96%, and the video-based classifier delivered an 

average accuracy of approximately 71.49%.  

As for the decision-level fusion methods, the present research incorporates the Dempster-

Shafer method (DS) as the foundational model and then expands to include variations such as 

the Weighted Dempster-Shafer method (WDS), the Topk Weighted Dempster-Shafer method 

(TopkWDS), and the Thresholding Weighted Dempster-Shafer method (TWDS). Multiple 

weighing alternatives are available in each of these weighted methodologies, encompassing 

precision, recall, and F1 score obtained from the validation process, depending upon the 

specific demand of research. It should be noted that for the TopkWDS and TWDS, the 



 

104 

 

parameters for weights are also included in Table 4-8. The conventional Dempster-Shafer 

method (DS) notably increased testing accuracy to 80.43%, outperforming individual sensor 

processing approaches. The performance was relatively similar when using the Weighted 

Dempster-Shafer method (WDS). The accuracies reached 80.36%, 80.24%, and 80.46%, 

respectively, when setting the precision, recall, and F1 scores as weights. The Topk Weighted 

Dempster-Shafer method (TopkWDS) showed further improvements. This method assigned 

weights based on the top-k values, where k was defined separately for acceleration (kacc) and 

video (kvd) data. For kacc = 2 and kvd = 7, this method achieved testing accuracies over 83%. In 

particular, when using recall accuracy as the weight, the testing accuracy achieved the highest 

accuracy of 83.67%. According to the table, the Thresholding Weighted Dempster-Shafer 

method (TWDS) was the most effective in the current experiment. The method used weights 

derived from threshold values set for acceleration (eacc) and video (evd) data. With parameter 

settings of eacc = 0.87 and evd = 1.00, the TWDS method led to a testing accuracy of 85.39% 

when adopting the precision value as the weight towards each activity category.  

Table 4-8 Overall performance of construction action recognition model using different 

methods 

Method Testing accuracies (%) 

Individual sensor processing  

(Sensor source – algorithm architecture) 

Acceleration-BiLSTM 70.96 

Video-ResNets 71.49 

  

Decision-level fusion of multi-sensor results 

Dempster-Shafer method (DS) 80.43 

Weighted Dempster-Shafer method (WDS) 

weight = Precision 80.36 

weight = Recall 80.24 

weight = F1 80.46 

Topk Weighted Dempster-Shafer method (TopkWDS) 

weight = Precision (kacc = 2, kvd = 7) 83.36 

weight = Recall (kacc = 2, kvd = 7) 83.67 
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weight = F1 (kacc = 2, kvd = 7) 83.62 

Thresholding Weighted Dempster-Shafer method (TWDS) 

weight = Precision (eacc = 0.87, evd = 1.00) 85.39 

weight = Recall (eacc = 0.87, evd = 1.00) 85.32 

weight = F1 (eacc = 0.87, evd = 1.00) 85.37 

 

To better illustrate the performance of each decision-level fusion method mentioned in Table 

4-8, representative examples of corresponding confusion matrices can be found in Table 4-9 

through Table 4-12. The parameter selection is the same as that shown in Table 4-8. 

Table 4-9 displays the performance of the Dempster-Shafer (DS) method for action recognition. 

The method exhibits impressive precision levels for activities such as “Traveling” (93.3%), 

“Lifting Brick” (92.1%), and “Lifting Rebar” (91.2%), demonstrating its effectiveness in 

reducing false positives for classifying the mentioned activities. However, the precision 

accuracy for “Drilling” (55.3%) falls below 60%, indicating a need for improvement in this 

category. On the recall front, “Hammering” performs the best with 95.1%, followed by “Lifting 

Brick” at 91.1%, and “Tying Rebar” at 87.5%, showing the method’s robust capability in 

correctly identifying instances of these activities. Conversely, “Idling” exhibits poor 

performance in the recall metric, scoring just 36.2%, signifying the DS method’s difficulty in 

correctly identifying ID instances. The F1 Score, a measure balancing precision and recall, 

attains high values for “Lifting Brick” (0.92), “Hammering” (0.92), and “Traveling” (0.90), 

suggesting an overall robust performance of the DS method for these activity categories. 

Table 4-10 indicates the performance of the F1-Weighted Dempster-Shafer (F1-WDS) method, 

using F1 scores for validation as weights for each activity category in the DS combination. The 

table shows that the WDS method shows modest improvement compared to the baseline 

Dempster-Shafer (DS) model. Similar to the DS method, the WDS method demonstrates 

reliable performance in mitigating false positives for activities such as “Traveling” (93.3%), 

“Lifting Brick” (92.1%), and “Lifting Rebar” (91.2%). On the recall spectrum, “Hammering” 
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excels with a score of 95.1%. However, “Idling” performs poorly, with a recall of 35.8%. The 

F1 Score presents high values for “Lifting Brick,” “Hammering,” and “Traveling,” indicating 

a balanced performance for these activities. 

Table 4-11 displays a confusion matrix for the decision-level fusion action recognition model, 

which employs the Topk Weighted Dempster-Shafer (TopkWDS) method. In the given 

example, the weights assigned during the fusion process were derived from the recall values 

calculated from the validation result. The TopkWDS model demonstrates commendable 

precision levels exceeding 90% for activities such as “Traveling” (92.8%), “Lifting Brick” 

(94.8), and “Hammering” (91.9%). Nevertheless, the precision for “Drilling” is notably lower 

at 61.3%, suggesting a need for enhancement in this area. When viewed from recall values, 

“Lifting Brick” (94.3%) and “Hammering” (91.4%) emerge as the highest-performing 

categories, both exceeding 90%. These high precision scores highlight the model’s proficiency 

in accurately classifying instances of “Traveling” (TL), “Lifting Brick” (LB), and “Hammering” 

(HR). However, “Idling” (ID) has the lowest recall ratio at 50%, indicating that the model 

misclassified half of the actual ID instances, suggesting difficulties in identifying this category. 

In terms of the F1 Score, “Lifting Brick” (LB) is notable, with an impressive score of 0.95, 

indicating high accuracy and efficiency in identifying LB instances. Furthermore, both 

“Traveling” (TL) and “Drilling” (DR) also exhibit excellent performance, as evidenced by their 

F1 scores surpassing 0.90, indicating a solid balance between precision and recall in classifying 

these activities. In contrast, the F1 Score for DR is at 0.70, the lowest among all categories in 

the given model, underscoring a need for improvement in this area. 

Table 4-12 offers insight into a decision-level fusion model based on the Thresholding 

Weighted Dempster-Shafer (TWDS) technique, focusing primarily on identifying construction 

activities. The weight used in this example is the precision value of each category in the 

validation process. Notably, the model’s precision is particularly prominent in activities such 
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as “Lifting Brick” (LB), “Hammering” (HR), and “Traveling” (TL), with corresponding 

precision values of 94.4%, 93.5%, and 89.6%. Notably, the precision measurements for 

identifying “Lifting Rebar” and “Drilling” in construction practices are relatively low, with a 

score of 74.3% and 78.6%, respectively. A survey of the recall values reveals “Lifting Brick” 

(LB) at an impressive 95.8%, closely followed by “Traveling” (89.6%) and “Lifting Rebar” 

(89.2%), further underscoring the TWDS technique’s effectiveness. However, a performance 

downturn corresponding to the “Idling” (ID) category is found, which executes a low recall 

value of 53.7%, pointing to potential identification challenges applying the TWDS framework 

in construction activity recognition. Lastly, the F1 Score assigns high scores to LB (0.95), TL 

(0.90), and HR (0.91), confirming the robustness of the model in these categories by effectively 

minimizing both false positives and false negatives in predictions. Conversely, LR, DR, and 

ID show weak classification performance with potential for optimization. The classification of 

LR scored 0.81, while DR and ID scored slightly better, with 0.83 and 0.84, respectively. 

 

Table 4-9 Confusion matrix of decision-level fusion action recognition using the Dempster-

Shafer (DS) method 

Activity 
True 

category 
TL LB LR MR TR HR DR ID 

Recall 

(%) 

Predicted 

category 

TL 126 2 0 6 4 0 6 0 87.5 

LB 2 175 8 7 0 0 0 0 91.1 

LR 1 9 165 6 16 1 6 0 80.9 

MR 0 0 0 193 28 0 0 2 86.5 

TR 0 0 3 16 203 0 1 0 91.0 

HR 0 0 0 5 0 154 0 3 95.1 

DR 0 0 3 6 1 0 110 18 79.7 
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ID 6 4 2 8 26 17 76 79 36.2 

Precision 

(%) 
93.3 92.1 91.2 78.1 73.0 89.5 55.3 77.5  

F1 Score 0.90 0.92 0.86 0.82 0.81 0.92 0.65 0.79   

* Traveling: TL, Lifting Brick: LB, Lifting Rebar: LR, Measuring Rebar: MR, Tying Rebar: TR, Hammering: HR, Drilling: DR, Idling: ID 

 

Table 4-10 Confusion matrix of decision-level fusion action recognition using F1 score-

Weighted Dempster–Shafer method (F1-WDS) 

Activity 
True 

category 
TL LB LR MR TR HR DR ID 

Recall 

(%) 

Predicted 

category 

TL 126 2 0 6 4 0 6 0 87.5 

LB 2 175 8 7 0 0 0 0 91.1 

LR 1 9 165 6 16 1 6 0 80.9 

MR 0 0 0 193 29 0 0 1 86.5 

TR 0 0 3 16 203 0 1 0 91.0 

HR 0 0 0 5 0 154 0 3 95.1 

DR 0 0 3 6 1 0 110 18 79.7 

ID 6 4 2 8 26 18 76 78 35.8 

Precision 

(%) 
93.3 92.1 91.2 78.1 72.8 89.0 55.3 78.0  

F1 Score 0.90 0.92 0.86 0.82 0.81 0.92 0.65 0.79   

* Traveling: TL, Lifting Brick: LB, Lifting Rebar: LR, Measuring Rebar: MR, Tying Rebar: TR, Hammering: HR, Drilling: DR, Idling: ID 

 

Table 4-11 Confusion matrix of decision-level fusion action recognition using Recall-Topk 

Weighted Dempster-Shafer method (Recall-TopkWDS) 

Activity 
True 

category 
TL LB LR MR TR HR DR ID 

Recall 

(%) 

Predicted 

category 

TL 128 1 3 4 4 0 4 0 88.9 

LB 2 181 4 5 0 0 0 0 94.3 
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LR 1 8 176 4 10 0 5 0 86.3 

MR 0 0 1 195 26 0 0 1 87.4 

TR 0 0 3 16 203 0 1 0 91.0 

HR 0 0 0 5 0 148 0 9 91.4 

DR 0 0 3 4 0 0 114 17 82.6 

ID 7 1 21 3 2 13 62 109 50.0 

Precision 

(%) 
92.8 94.8 83.4 82.6 82.9 91.9 61.3 80.1  

F1 Score 0.91 0.95 0.85 0.85 0.87 0.92 0.70 0.81   

* Traveling: TL, Lifting Brick: LB, Lifting Rebar: LR, Measuring Rebar: MR, Tying Rebar: TR, Hammering: HR, Drilling: DR, Idling: ID 

 

Table 4-12 Confusion matrix of decision-level fusion action recognition using Precision-

Thresholding Weighted Dempster-Shafer method (Precision-TWDS) 

Activity 
True 

category 
TL LB LR MR TR HR DR ID 

Recall 

(%) 

Predicted 

category 

TL 129 2 5 2 3 0 3 0 89.6 

LB 2 184 1 5 0 0 0 0 95.8 

LR 1 8 182 1 9 0 3 0 89.2 

MR 1 0 1 193 27 0 0 1 86.5 

TR 0 0 2 12 208 0 1 0 93.3 

HR 0 0 0 4 0 144 0 14 88.9 

DR 0 0 3 2 0 0 121 12 87.7 

ID 11 1 51 2 0 10 26 117 53.7 

Precision 

(%) 
89.6 94.4 74.3 87.3 84.2 93.5 78.6 81.3  

F1 Score 0.90 0.95 0.81 0.87 0.89 0.91 0.83 0.84   

* Traveling: TL, Lifting Brick: LB, Lifting Rebar: LR, Measuring Rebar: MR, Tying Rebar: TR, Hammering: HR, Drilling: DR, Idling: ID 
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4.8 Discussions 

In the current study, four decision-level fusion methodologies were developed in construction 

action recognition, including the Dempster-Shafer method (DS), the Weighted Dempster-

Shafer method (WDS), the Topk Weighted Dempster-Shafer method (TopkWDS), and the 

Thresholding Weighted Dempster-Shafer method (TWDS). In order to validate the fusion 

methods, this study conducted an experiment that simulated eight construction site activities. 

Acceleration and videos were collected simultaneously, and learning algorithms were used to 

train action recognition models using single sensor sources, resulting in one acceleration-based 

and one video-based model. The preliminary results obtained from these two models were then 

input into the proposed decision-level fusion framework, and the effectiveness of the fusion 

methods was evaluated by comparing the testing accuracy and confusion matrix. 

 

4.8.1 Decision-level fusion validation 

The acceleration-based model demonstrated an average testing accuracy of 70.96%, while the 

video-based model slightly outperformed it with an average testing accuracy of 71.49%. In 

addition, the decision-level fusion methods, namely DS, WDS, TopkWDS, and TWDS, 

exhibited superior performance compared to the individual sensor-based models, validating the 

effectiveness of the fusion strategy. The DS method notably enhanced testing accuracy to 

80.43%, while the WDS method achieved accuracies of 80.36%, 80.24%, and 80.46% when 

precision, recall, and F1 scores were set as weights, respectively. The TopkWDS method 

further improved upon these results, achieving testing accuracies over 83%, with the highest 

accuracy reaching 83.67% when using recall accuracy as the weight (Recall-TopkWDS). 

However, the most effective method in this study was the TWDS method, which achieved the 

highest testing accuracy of 85.67%. In the meantime, the DS method demonstrated high 
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precision for “Traveling” (93.3%), “Lifting Brick” (92.1%), and “Lifting Rebar” (91.2%) but 

struggled with “Drilling” (55.3%) and “Idling” (36.2% recall). The WDS method maintained 

similar precision levels and slightly improved “Idling” recall (35.8%). TopkWDS exceeded 

90% precision for “Traveling” (92.8%), “Lifting Brick” (94.8), and “Hammering” (91.9%) but 

fell short in “Drilling” (61.3%) and “Idling” (50% recall). TWDS showed high precision for 

“Lifting Brick” (94.4%), “Hammering” (93.5%), and “Traveling” (89.6%) but faced challenges 

in “Lifting Rebar” (74.3%) and “Drilling” (78.6%), with a low recall for “Idling” (53.7%). In 

terms of F1 scores, DS, F1-WDS, and TopkWDS, the models achieved high values for “Lifting 

Brick” (0.92, 0.92, 0.95 respectively), “Hammering” (0.92, 0.92, 0.91), and “Traveling” (0.90, 

0.90, 0.90), indicating a balanced performance in classifying these activities. However, 

“Drilling” consistently scored lower, with the lowest score observed in TopkWDS (0.70). 

Upon comparative analysis, it is evident that all four decision-level fusion methods, DS, F1-

WDS, TopkWDS, and TWDS, outperform the model trained solely on single-sensor data. 

Specifically, the WDS method exhibits a modest enhancement in performance relative to the 

DS method. Meanwhile, the introduction of weight filtering processes in the TopkWDS and 

TWDS methods yields substantial augmentations in overall testing accuracies when compared 

with the WDS method. The system’s superior performance can be attributed to the effective 

implementation of the fusion method at the decision level, which leverages the unique strengths 

inherent in both acceleration and video data, thereby outperforming the single-sensor method. 

These findings validate the effectiveness of decision-level fusion methods but also highlight 

the need for further optimization to enhance poor performance activity types, such as “Iding.” 

 



 

112 

 

4.8.2 Sensor credibility and weight selection 

The preceding section validates the effectiveness of the decision-level fusion method, 

suggesting that this approach could serve as a feasible alternative to enhance the performance 

of the entire sensor system by overcoming the variability inherent in individual classifiers. 

However, the modest improvement observed with the DS method over the single-sensor model 

indicates that further optimization is required. This leads to considering another critical factor 

in sensor system development, which is the unequal trust levels associated with different 

sensors. 

The confusion matrices of the acceleration-based and video-based models reveal distinct 

performance characteristics (e.g., precision, recall, and F1 score) for each activity category 

despite similar overall testing accuracy levels (around 70%). This discrepancy suggests that the 

credibility or trust level of a sensor may vary for different activity events. Generally, each 

sensor type has its strengths and weaknesses in detecting specific activity patterns. For instance, 

as shown in Table 4-6, the acceleration model exhibits poor precision for “Drilling” (49.5%), 

while the video model achieves 100% precision for the same activity using identical testing 

data. The contrast can be attributed to the inherent nature of the data. In specific, the “Drilling” 

activity in the experiment, which involves holding a drilling machine to drill a wood slab, 

includes minimal wrist movement. Such a pattern is detectable in the acceleration signal but 

can also be found in other activities involving minor wrist vibrations, such as “Idling,” leading 

to significant misclassification errors. Conversely, the video model primarily identifies 

activities based on image information. The “Drilling” activity in this experiment has a distinct 

characteristic - the presence of a drilling machine. If the model detects the drilling machine in 

the test video, it is highly likely to classify the activity as “Drilling.” This example underscores 

the significance of considering each sensor type’s credibility when developing a sensor system. 
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The current study introduces a weighted method using the Dempster-Shafer approach, termed 

WDS, to address the errors introduced by the unequal trust levels of sensors. However, the 

marginal improvement observed between WDS and DS underscores the limitations of directly 

applying weights to balance unequal sensor trust, suggesting that the direct application of 

weights may need to adequately account for the inherent variability and uncertainty in sensor 

data. In response to this challenge, the study proposes a weight filtering process prior to the 

assignment of weights in the combination of sensor estimates. The rationale for this approach 

stems from the mechanism of the DS combination, which considers all uncertainties, including 

extremely small values representing improbable events in possibility theory. These small 

values are factored into the combination calculation, thereby undermining the influence of 

high-probability predictions and amplifying the influence of low-probability predictions. To 

mitigate this issue, two methods, TopK and Thresholding, are proposed to filter out extremely 

small values in the single prediction from each sensor. Specifically, TopK involves selecting 

the largest k predictions, while Thresholding involves selecting predictions with a possibility 

greater than a predetermined value. The unselected portion is combined into a single instance 

to maintain the integrity of the DS method. The introduction of weight filtering processes in 

the TopkWDS and TWDS methods results in substantial improvements in overall testing 

accuracies compared to the WDS method. This finding demonstrates the essential role of 

weight filtering in balancing sensor credibility and emphasizes the potential of such processes 

to enhance model performance. 

In the current study, we explored using precision, recall, and F1 score metrics calculated from 

the validation results during training. The rationale for using metrics derived from the 

validation set, as opposed to those from the testing or training results, is to prevent exposure of 

testing data set information. This exploration of different metrics aims to understand the 

differential impacts of using various weight types. The results reveal minimal differences when 
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employing different metrics. Despite these minor variations, the choice of metric as a weight 

can still be important based on specific needs. For instance, in safety-related topics such as 

identifying hazardous activities during construction, minimizing false negatives (missed alarms) 

is more critical than reducing false positives (false alarms), which implies a higher priority for 

recall in safety cases. Therefore, the selection of metrics, serving as an alternative weight, can 

be customized based on specific requirements in future applications, thereby enhancing the 

adaptability and effectiveness of the model. 

 

4.8.3 Limitations 

Despite implementing decision-level fusion and introducing filtered weights to balance both 

model bias and sensor credibility biases, the prediction performance for specific categories, 

such as “Idling,” remains poor. The poor performance is mainly due to the fundamental 

limitations in the base predictions from the acceleration and video models. While the proposed 

fusion method has slightly improved performance, the limitations can be primarily attributed 

to data constraints and base model restrictions. Despite conducting this study in a controlled 

lab environment, the study tried to simulate conditions as close as possible to a real construction 

site. For instance, the background was intentionally made disorderly, which posed initial 

classification challenges. As for model limitations, we sought to leverage the primary 

advantage of decision-level fusion, i.e., integrating multiple sources without spending 

excessive computational costs. Consequently, the study employed basic models in the activity 

recognition deep learning algorithms. Another potential limitation lies in fully exploiting the 

benefits of decision-level fusion. As discussed in the previous chapter, decision-level fusion 

not only enhances computational efficiency but also provides substantial flexibility for 

constructing large sensor fusion networks. Such flexibility implies a high level of resilience, 

ensuring the availability of the final output even if several sensor nodes malfunction. However, 
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current research has yet to validate the resilience aspect of decision-level fusion, highlighting 

an area for future exploration. 

 

4.8.4 Future research 

Future studies will first focus on collecting more data from laboratory environments to 

overcome the limitations caused by the dataset’s limited size, thereby ensuring that models 

generalize more effectively, minimize overfitting, and mirror real-world patterns more 

accurately. The current study has recruited three additional participants (excluding the existing 

participants) to perform the same activities designed under the identical experimental setup, 

utilizing smartphones to record videos from three perspectives and smartwatches to collect 

acceleration data simultaneously. This expanded test, conducted in a new laboratory 

environment, introduces background variations in the videos, aiming to achieve a more 

generalized model. Additionally, the feasibility of the proposed fusion framework will be 

assessed in actual construction sites using video and acceleration data from workers on ongoing 

projects. 

The current study utilizes data from three participants, recorded from three different points of 

view. It adopted a five-fold cross-validation strategy to train and validate the model, where the 

satisfactory testing accuracies underscore the model’s generalizability across video recording 

angles. However, generalizability across participants has not been validated. Future research 

will employ a Leave-One-Subject-Out Validation (LOSOV) approach with the expanded 

dataset to overcome this limitation. Specifically, in each iteration, one participant’s data will 

be designated as the testing data, another as the validation data, and the remaining four 

participants’ data will serve as the training dataset. This process, repeated six times with unique 

combinations of training, testing, and validation datasets, aims to address variances from 
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individual participants, recording angles, and backgrounds. Should the model achieve 

acceptable average testing accuracy across these iterations, as per the LOSOV framework, it 

will affirm its capability to generalize across different individuals, angles, and backgrounds, 

bolstering sensor fusion methods’ effectiveness. 

Considering the dynamic environment of construction sites, a comprehensive sensor network 

employing various types of sensors is essential. Given that sensors on construction sites are 

prone to damage, this study opts not to pursue high-performance algorithms that rely on single 

sensor data—these often entail complex structures, high computational costs, and lower 

resilience. Instead, it aims to leverage the full potential of diverse sensor resources through 

fusion methods to achieve optimal monitoring results. This study employed a Dempster-Shafer 

theory-based approach as the baseline model, with plans to evaluate additional models beyond 

the DS method. Furthermore, future research will investigate fusion performance at data-level, 

feature-level, and hybrid-level levels to develop an optimal sensor network resistant to noise 

and environmental variations. Furthermore, the current study utilized the validation accuracy 

of each category from different models to represent the credibility of a specific data source for 

a particular activity. In future research, additional methods for measuring the uncertainty of the 

same event from different resources will be explored, including the entropy method. In addition 

to classification accuracy, future validation will assess the fusion network’s stability, resilience, 

and flexibility. A potential approach involves using the Monte Carlo method to randomly omit 

specific data points, enabling a comparison of decision-level fusion methods’ resilience with 

and without missing data, thereby demonstrating their robustness. 
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4.9 Conclusions 

This study developed and evaluated four decision-level fusion methodologies for construction 

action recognition: the Dempster-Shafer method (DS), the Weighted Dempster-Shafer method 

(WDS), the Topk Weighted Dempster-Shafer method (TopkWDS), and the Thresholding 

Weighted Dempster-Shafer method (TWDS). These methods were tested using data from an 

experiment simulating eight construction site activities, with acceleration and video data 

collected simultaneously. The results demonstrated that decision-level fusion methods 

outperformed the single-sensor models, validating the effectiveness of the fusion strategy. 

However, the performance of specific activity types, such as “Idling,” remained suboptimal, 

indicating the need for further optimization. 

The study also explored the impact of sensor credibility and weight selection on the 

performance of the fusion methods. The results highlighted the limitations of directly applying 

weights to balance unequal sensor trust and proposed a weight-filtering process to address this 

issue. This process, implemented in the TopkWDS and TWDS methods, led to substantial 

improvements in overall testing accuracies, underscoring the potential of such processes to 

enhance model performance. 

Despite these advancements, the prediction performance for specific categories could have 

improved due to fundamental limitations in the base predictions from the acceleration and 

video models. Future research will aim to address these limitations by collecting more data, 

preferably from real construction sites, and segmenting larger window sizes. Additionally, 

future studies will seek to validate the flexibility of decision-level-based sensor fusion 

networks and explore other fusion methods, including data-level, feature-level, and hybrid-

level fusion methods. These efforts will contribute to developing an optimal sensor network 
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that is highly resistant to noise and environmental variations, thereby enhancing the robustness 

and applicability of sensor fusion methods in real-world scenarios. 
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CHAPTER 5 FIELD VALIDATION OF BEACON-BASED 

INDOOR TRACKING AND LOCALIZATION SYSTEM FOR 

CONSTRUCTION WORKERS3 

 

5.1 Background 

Since construction operations require various construction entities (e.g., workers, equipment, 

and materials) to engage, tracking and locating these entities are necessary for multiple 

applications in construction sites, such as safety management (Cai & Cai, 2020; Khoury & 

Kamat, 2009), resource optimization (Dzeng et al., 2014), and progress monitoring (Cheng et 

al., 2013). For example, knowing the geographic positions of workers, equipment, and 

hazardous zones allows us to identify and analyze the proximity of these entities. The workers 

will be alarmed when excessive proximity is identified during the operation, and therefore, the 

potential near-miss accident could be prevented (Liu et al., 2018; Papaioannou et al., 2016). 

Considering the large number of related entities and the large scale of the construction site, 

traditional localization with manual observation is labor-intensive and error-prone (Zhang et 

al., 2013), which makes the automated approach an essential role in tracking construction 

entities on the site. 

Among various wireless technologies (e.g., Radio Frequency Identification (RFID), Global 

Positioning Systems (GPS), and Ultra-Wideband (UWB)) for tracking and locating 

construction entities, Bluetooth Low Energy (BLE) beacons have comparative advantages of 

1) a low amount of infrastructure setting (Zhao et al., 2019), 2) flexible installation (Urano et 

                                                 
3  This chapter is based on the manuscript titled “Field Validation of Beacon-Based Indoor Tracking and 

Localization System for Construction Workers” which has been submitted to the KSCE Journal of Civil 

Engineering and is currently under review, with the thesis author serving as the first author of the paper. 
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al., 2017), 3) accessible to scalable both indoor and outdoor (Ng et al., 2020), and 4) cost-

effective (Park et al., 2017). For example, unlike UWB, which requires a continuous power 

supply, a battery-less BLE beacon is more flexible to deploy in a fast-changing environment 

(e.g., a construction site) (Khoury & Kamat, 2009). In contrast to wireless technologies, such 

as RFID and magnetic field, that need time-consuming calibration, the BLE beacon is capable 

of calibrating easily, therefore minimizing the infrastructure requirements (Park, Marks, et al., 

2016). Due to these advantages and unique features of BLE beacons, previous studies have 

applied beacon-based tracking to construction workers (Park et al., 2017), resources (Shen et 

al., 2008), and vehicles (Lu et al., 2007). 

Despite the advantages of BLE beacons, one of the critical issues is the accuracy and reliability 

of beacon-based tracking and localization. The typical scenario of beacon-based tracking and 

localization is based on the distance measure (i.e., Rx power level approach) between the 

beacon and the receiver (e.g., smartphone) by using the characteristics of beacon signals that 

the signal strength would gradually decrease during propagation (Subhan et al., 2011). By using 

the estimated distances from multiple beacons (at least three), the receiver’s position can be 

detected through trilateration methods (Elnahrawy et al., 2004; Han et al., 2007). However, the 

distance estimation is not always stable because the received signal tends to fluctuate as it is 

affected by environmental factors such as temperature and humidity (Guidara et al., 2018). 

Also, the designed bandwidth of BLE technology does not allow the signal to penetrate 

obstacles like walls. Therefore, the signal received is the combination of signals from multiple 

paths, including directly received signals or signals reflected by walls, which could lead to 

inaccurate distance estimation (Faragher & Harle, 2014). This issue would be more significant, 

especially when deploying multiple beacons in the same area (Mackey et al., 2018). To mitigate 

signal frustration, previous studies have proposed and tested mathematical approaches to filter 

out noisy signals, such as the Bayes filter, Kalman Filter (KF), Extended Kalman Filter (EKF), 
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and Particle Filter (PF) (Xu et al., 2021). However, most studies mainly focused on signal noise 

and fluctuation during signal propagation without fully considering the impact of diverse 

environmental conditions on beacon signals. 

In this regard, the influence of diverse environmental conditions and various application 

scenarios on signal strength at construction sites has been examined through multiple field tests. 

Beacon signals were collected from widely employed commercial beacon devices (specifically, 

Estimote) at the construction site, with variations in field settings. The modifications included 

changes in 1) beacon installation height, 2) signal receiver position, and 3) the geometry of the 

indoor environment. Then, the signals were analyzed with box plots to quantitatively examine 

the impact of diverse conditions. Based on the results, an examination was conducted into the 

fundamental causes of beacon signal variations attributable to these factors. Concurrently, 

potential strategies to enhance the accuracy of beacon-based tracking and localization were 

proposed. 

 

5.2 Literature Review On Construction Entitles Tracking and Localization 

Application 

5.2.1 Tracking and localization technologies in construction 

Previous research has proposed various methods for automatically obtaining the location data 

of construction entities. These can be broadly classified into 1) vision-based and 2) radio-based 

techniques. Vision-based approaches aim to locate and track construction entities through the 

analysis of 2D images from cameras or 3D data from laser scanning (Brilakis et al., 2010; 

Brilakis et al., 2011). For example, Yang et al. (2010) developed a 2D image-based tracking system 

to monitor the movements of construction workers. Also, Lee and Park (2019) employed a 3D 

stereo camera to track construction machinery and workers, further refining the tracking 
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precision using the entity matching step. Though vision-based techniques offer precise tracking 

and localization with the added advantage of context, they require unobstructed views of the 

targets, making the methods susceptible to occlusions (Teizer, 2015). In active construction 

sites, the vulnerability becomes pronounced due to inevitable blind spots that arise from limited 

camera coverage, abundant site obstacles, and the consistent movement of entities (Zhang et 

al., 2020). So, employing the vision-based tracking and localizing construction objects presents 

challenges. Meanwhile, identity issues make the vision-based approach challenging in 

providing accurate tracking and locating information (Cai & Cai, 2020). Specifically, the IDs 

of tracking targets are difficult to associate correctly when the objects share similar shapes in 

the videos (e.g., multiple construction workers with the same uniforms and helmets) (Li et al., 

2016), and they are also prone to switch when they are in close proximity (Zhang et al., 2021).  

In contrast to the vision-based approach, the radio-based approaches exhibit fewer 

vulnerabilities to occlusions and ensure more dependable identity data. Such systems utilize 

signals transmitted between wireless communication devices to measure distance. 

Subsequently, the location is derived by processing distances through positioning algorithms 

such as the trilateration method (Brena et al., 2017). Various signal sources have been utilized 

in widely adopted radio-based tracking techniques, including Wi-Fi, Radio Frequency 

Identification (RFID), Ultra-Wideband (UWB), and Bluetooth (Fang et al., 2016).  Among 

these, UWB is characterized by its short signal pulses and expansive bandwidth, which makes 

it less susceptible to site interferences such as walls, rebar meshes, and human interference. 

This ensures that UWB-based tracking maintains a commendable accuracy (Mahfouz & Kuhn, 

2011). Notably, Maalek and Sadeghpour (2016) constructed a UWB Real-Time Location 

Estimation System (RTLS) in the lab and validated its accuracy to be less than 1.0 m for moving 

object tracking. UWB sensors have also been integrated with construction entities for real-time 

resource monitoring (Cheng & Teizer, 2013). However, such sensors demand significant 
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infrastructure expenditure due to their limited signal range and high unit cost (Park, Kim, & 

Cho, 2016). The Wi-Fi-based positioning is another prominent alternative in construction. Woo 

et al. (2011) integrated Wi-Fi generators in a shield tunnel project. The process commenced 

with noise reduction using a filter algorithm, followed by the creation of a reference dataset. 

Location estimation was finalized by matching locations in this dataset. The researchers 

documented a positioning accuracy of five meters in an underground tunnel site in Guangzhou, 

China. However, Wi-Fi devices have continuous power demands, leading to frequent 

reallocations in ever-changing environments. Such adjustments result in a comprehensive 

calibration process (Obeidat et al., 2021), complicating their application in large-scale sites. 

Studies have also explored the potential of RFID-based tracking in construction. For instance, 

Cai et al. (2014) employed RFID to formulate a 3D location estimation algorithm for 

construction resources, achieving an accuracy of 2.5m. Additionally, Montaser and Moselhi 

(2014) proposed a cost-effective system for indoor location identification and material tracking. 

By installing RFID tags at reference positions, they ensured continuous monitoring of passing 

workers and materials, facilitating near-real-time tracking.  

Of the myriad advancements in radio-based indoor positioning, Bluetooth low-energy (BLE) 

sensor stands out as the most apt for construction site applications due to the following 

advantages: 

 Cost-efficiency: BLE sensors like Estimote provide a more affordable alternative than 

UWB and indoor GPS (Li & Becerik-Gerber, 2011). Their compatibility with 

commercial-grade smartphones, which adhere to the Bluetooth protocol, ensures a cost-

effective tracking solution. 

 Energy efficiency: BLE beacons, powered by button cells, have extended lifespans and 

demonstrate reduced energy consumption compared to Wi-Fi-based protocols. 
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 Flexible deployment: The compact design of BLE beacons, augmented by their button 

cell power sources, guarantees consistent performance and facilitates placement in 

ever-changing construction sites, obviating the need for a constant power supply (Fang 

et al., 2016). 

 Data transmission convenience: Leveraging the iBeacon protocol, these sensors 

seamlessly connect to smartphones, enabling efficient message relays via Bluetooth. 

Given these advantages, BLE beacons have found applications across various domains, as 

delineated in Table 5-1. Researchers have introduced beacon technology in construction, 

primarily for safety monitoring. For instance, Park, Kim and Cho (2016) showcased the 

practicality of a beacon-oriented positioning system by amalgamating it with the Building 

Information Model (BIM). Multiple strategies, such as fingerprinting and triangulation 

(Faragher & Harle, 2015; Martin et al., 2014), have been introduced to determine an object’s 

location within the beacon signal mesh. Luo et al. (2011) also conducted tests on construction 

sites to validate the efficiency of different localization algorithms. 

Table 5-1 Beacon applications review table 

Construction 

Stage 
Method Purpose 

Research 

domain 

Environment 

Setting 

Related 

literature 

Construction 

Phase 

Localization 

 

Tracking of 

construction 

entities 

(workers, 

materials, 

equipment) 

Building 

information and 

construction 

Outdoor 

(Li et al., 2014; 

Lu et al., 2007; 

Luo et al., 2011; 

Park & Cho, 

2017; Park et al., 

2017; Teizer et 

al., 2020; Vähä 

et al., 2013; 

Zhao et al., 

2019)  

Indoor 
(Park & Cho, 

2017) 
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Safety alerts 

(construction 

equipment, 

fall detection, 

alarms) 

Construction Outdoor 

(Baek & Choi, 

2018; Gómez-

de-Gabriel et al., 

2019) 

Proximity 

Detection 

Object 

tracking 
Mobile sensing Outdoor 

(Ferreira et al., 

2018) 

Emergency 

safety 

assessment 

Building 

information 
Indoor (Li et al., 2015) 

Beacon signal 

evaluation 
Electronics Indoor 

(Varsamou & 

Antonakopoulos, 

2014) 

Post-

Construction 

Phase 

Localization 

Indoor 

tracking 
Electronics 

Indoor 

(Chen et al., 

2016; Dinh et 

al., 2020; 

Palumbo et al., 

2015; Varsamou 

& 

Antonakopoulos, 

2014) 

Optimization 

of placement 
Electronics 

(Rezazadeh et 

al., 2018) 

Integration 

with Internet 

of Things 

systems 

Electronics 

(He et al., 2015; 

Jeon et al., 2018; 

Ma & Cha, 

2020) 

Detection of 

indoor 

activities 

Building 

information 

(Chen et al., 

2019) 

Proximity 

detection 

Indoor 

proximity-

based 

tracking 

Electronics 

Indoor 

(Zafari et al., 

2017) 

Health 

(Kashimoto et 

al., 2017; Komai 

et al., 2016) 
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Detection of 

movement 

patterns 

Mobile sensing 
(Vigneshwaran 

et al., 2015) 

Augmentation 

of context-

awareness in 

public 

transportation 

Smart city 

(Transportation) 
Outdoor 

(Cianciulli et al., 

2017) 

 

5.2.2 BLE beacon-based positioning methods 

Among the Bluetooth-based positioning approaches (e.g., Angle of Arrival (AOA), Time of 

Arrival (TOA), Cell Identity (CI), Time Difference of Arrival (TDOA)), the Received (RX) 

power level-based mechanism stands out because of its flexibility of deployment and ease of 

calibration (Dimitrova et al., 2012).  This method utilizes the signal propagation model. 

Within this framework, the received signal strength, quantified by the Received Signal 

Strength Indicator (RSSI) (Kotanen et al., 2003), exhibits an inverse correlation with the 

distance separating the beacon and the receiver (Kim et al., 2008). Such a relationship can be 

illustrated as follows in Equation (5-1) 

 RSSI = − (10 × n) log10(d) – a  (5-1) 

In the equation, n represents a constant reflecting the propagation strength, d is the distance 

between the beacon and the receiver, and a stands for an offset value of RSSI (dBm) typically 

taken one meter from the beacon (Dong & Dargie, 2012). The RSSI values can be directly 

retrieved from the Bluetooth device’s Host Controller Interface (HCI) (Bluetooth, 2001). 

Hence, once n, d, and a are determined, the estimated distance d can be computed by inserting 

the RSSI into the above formula (Pelant et al., 2017). However, determining the precise 

distance using this approach presents challenges. While Equation (5-1) depicts the Line-Of-

Sight (LOS) propagation, which relates distance to the LOS path and the corresponding RSSI 

to the beacon’s signal strength, it does not account for disruptions like multipath fading. The 
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fading occurs when signals traverse multiple paths before reaching a receiver, which 

diminishes the accuracy of calculations (D. Chen et al., 2017). Additionally, the power of the 

received is considerably affected by environmental factors. Common materials like metal, 

water, concrete, and glass can degrade the RSSI value due to reflections and attenuations 

(Vieira et al., 2019). On construction sites, the continuous alterations of components, including 

rebar mesh and concrete walls, can adversely influence RSSI consistency, leading to imprecise 

and unreliable distance estimations. 

Numerous studies have recommended the use of signal filters to mitigate signal degradation 

caused by multipath fading and environmental influences. For instance, Canton Paterna et al. 

(2017) applied Kalman filtering to reduce the noise signal and adopted the trilateration 

technique to pinpoint the position of stationary objects, achieving an accuracy of 0.7 meters. 

Wisanmongkol et al. (2019)  introduced a two-stage weighted average filtering technique that 

initially minimizes noise before amalgamating RSSI values from various BLE beacons. This 

method curtailed the estimation error to two meters. Furthermore, Mackey et al. (2020) 

employed three distinct Bayesian filtering methods to better align with the BLE signal distance 

equation, taking into account diverse error types. Their comparative tests showcased significant 

adjustments across two distinct settings, revealing a 30% boost in estimation accuracy. In a 

more recent development, Xu et al. (2021) introduced a real-time signal filtering approach, 

which yielded an average positional accuracy of approximately 0.8 meters. In addition to 

filtering signals, researchers have strived to simplify signal calibration using reference RSSI 

values. As noted by Caballero et al. (2008), the pre-calibrated relationship between received 

signal strength (RSSI) and distance is commonly adopted but often compromises the accuracy 

of distance estimations. Such models, often crafted by hardware manufacturers post-laboratory 

tests, typically follow the path loss formulation shown in Equation (5-1), with pre-determined 

parameters like the attenuation coefficient n and offset a. Ma et al. (2017) extracted these from 
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beacon manuals by matching them with specific receiver models, such as LG Nexus 5. 

However, the variability of RSSI due to environmental factors such as temperature, humidity, 

and signal interferences (e.g., walls, furnishings, human presence) questions the direct 

applicability of pre-calibrated models in target environments (Guidara et al., 2018). In this 

regard, recalibrating the RSSI-distance equation is essential before deploying beacons in a 

distinct environment. Dong and Dargie (2012) proposed two methods for this recalibration. 

The first method uses RSSI values, taken one meter from the beacons, as constant value a in 

the signal propagation model, subsequently determining the variable n with various RSSI-

distance value pairs. The second method involves recording RSSI values by distance and 

performing curve-fitting approaches using the on-site data. 

Establishing a reliable RSSI-distance relation is pivotal for determining the optimal worker 

localization model using BLE beacons, especially given the sensitivity of beacon signals. To 

achieve this goal, researchers assessed the reliability of pre-calibrated, calibrated, and curve-

fitted models using actual data from construction sites. Concurrently, environmental factors 

potentially influencing the signal were scrutinized. Such analyses provided insights into the 

environmental impacts on the RSSI-distance relationship, directing refined beacon placements 

to reduce localization inaccuracies. 

 

5.3 Field Data Collection 

The research evaluated the reliability of pre-calibrated, calibrated, and curve-fitted models by 

utilizing RSSI data derived from BLE beacons on a construction site. Moreover, environmental 

variables such as the beacon’s installation height, the signal receiver’s condition, and the 

construction site’s geometric layout were examined. This analysis illuminated the influence of 

environmental contexts on the RSSI in relation to distance. Such revelations informed more 
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strategic beacon deployment aimed at minimizing signal vibration error. As a result, 

advancements in RSSI and beacon deployment methodologies were made, contributing to 

improved site localization reliability and stability.  

In order to assess the signal performance of the BLE beacon in the construction site, the current 

study collected the beacon signal strength (i.e., RSSI) from the construction site located in St. 

Paul Secondary School, Hong Kong Island, Hong Kong SAR, managed by Able Engineering. 

The research spanned two indoor testbeds (Figure 5-1).Testbed 1 covers an area of 5.6 m × 8.5 

m. The longer dimension, 8.5 m, corresponds to the distance between walls, while the 5.6 m 

side indicates an open space, underscoring the beacon deployment range. This arrangement 

includes eight beacons and 63 data collection points, as illustrated in Figure 5-2. Conversely, 

Testbed 2 is designed as a corridor, measuring 2.5 m in width and 8.5 m in length. The length 

represents the beacon deployment range and is bordered by open spaces at both ends. This 

setup accommodates seven beacons and includes 18 data acquisition points, as depicted in 

Figure 5-3. Beacons were installed across both testing arenas, with multiple units positioned 

within the designated testbeds. The research comprehensively covered the test areas, 

systematically recording signal intensities under various conditions. To log beacon signal 

strengths during the evaluations, an iOS software named “BLE Logger” was installed on an 

iPhone 7, serving as the primary instrument. This setup ensured each RSSI value was 

associated with a timestamp and hardware information, as detailed in Table 5-2.  

During the data collection process, the smartphone used to capture signal strength readings was 

kept stationary at a predetermined location, 1.2 meters above the floor. Signal stability from 

the beacons, typically achieved within 30 seconds to one minute, prompted the iOS app to 

begin recording RSSI metrics from various beacons. Each trial concluded after the researcher 

navigated all designated data collection points, for example, the 63 points in Testbed 1, and 

logged the RSSI readings. Initially, beacons were placed at floor level (0.0 meters) before being 
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elevated to 1.2 meters on columns to optimize signal reception. The dataset, collected from the 

experiment and comprising over 200,000 data points, originated from 12 distinct trials across 

two testbeds and involved 24 individual beacons. 

  

(a) Testbed 1 Rectangular chamber   (b) Testbed 2 Corridor 

Figure 5-1 Site photos 
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Figure 5-2 Testbed 1 Dimension and experiment setting 
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Figure 5-3 Testbed 2 Dimension and experiment setting 

 

Table 5-2 Exhibit of raw data  

From: example@connect.polyu.hk 

Subject: BLE Log History 722 

Date: October 22, 2019, at 4:43:31 PM GMT+8 

Beacon UUID: C504C2AD-F107-12BE-A7D3-E03DB541DB6F 

 

Time RSSI Value 

15/10/2019 18:11:30 -82 

15/10/2019 18:11:34 -88 

15/10/2019 18:11:37 -87 

15/10/2019 18:11:39 -87 

15/10/2019 18:11:40 -87 

15/10/2019 18:11:44 -87 
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Based on the signal propagation theory (Seybold, 2005), the RSSI values expounded upon 

using the Log Distance Path Loss model, i.e., RSSI = a×log (d) + b. Parameters a and b 

encapsulate the compounded effects of both environmental and hardware factors (Goldhirsh & 

Vogel, 1998). Following the manufacturer’s instructions, this study established the pre-

calibrated line. Using the collected RSSI values and the distance between the beacon and the 

test spot, two more path loss models were identified: calibrated and fitted. The experiments 

also assessed the impact of height by comparing signal performance under two different 

scenarios. Furthermore, tests were conducted with the smartphone in two positions, inside and 

outside the pocket, to evaluate the influence of clothing texture. 

 

Table 5-3 Beacons layout  

  Beacon spot 
Beacon ID 

Wall (1.2 m)1 Floor (0 m) 

Testbed 1 

1 Beacon 05  Beacon08 

2 Beacon 06  Beacon09 

3 Beacon 07  Beacon10 

4 Beacon 11   

5 Beacon 12   

6 Beacon 13  Beacon21 

7 Beacon 15  Beacon14 

8 Beacon 18  Beacon16 

9 Beacon 20  Beacon19 

Testbed 2 

1 Beacon05 Beacon18 

2 Beacon07 Beacon19 

3 Beacon08 Beacon20 

4 Beacon10 Beacon21 

5 Beacon12 Beacon22 

6 Beacon13 Beacon23 

7 Beacon16 Beacon24 

Note1: Due to the sufficient number of beacons, two sets of beacons were installed at the same location, sharing 

identical coordinates on the ground. One set of beacons was installed on the wall (1.2 m high), while the other set 

was placed on the floor (0 m high). 
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Table 5-4 Experiment specifications  

Trial Number of beacons Beacon height Receiver condition Testbed 

1 8 Floor (0 m) Out of pocket 1 

31 8 Column (1.2 m) Out of pocket 1 

4 8 Column (1.2 m) In the pocket 1 

5 8 Floor (0 m) In the pocket 1 

7 16 
Column (1.2 m)  

+ Floor (0 m)2 
Out of pocket 1 

8 16 
Column (1.2 m)  

+ Floor (0 m) 
In the pocket 1 

9 7 Column (1.2 m) Out of pocket 2 

10 7 Column (1.2 m) In the pocket 2 

11 14 
Column (1.2 m)  

+ Floor (0 m) 1 
Out of pocket 2 

12 14 
Column (1.2 m)  

+ Floor (0 m) 1 
In the pocket 2 

13 7 Floor (0 m) Out of pocket 2 

14 7 Floor (0 m) In the pocket 2 
Note1: The data collected from Trials 2 and 6 were discarded due to their low quality. However, the data 

anticipated from Trials 2 and 6 were successfully collected during the follow-up data collection. 

Note2: The researcher installed two sets of beacons (from the same manufacturer) in the same layout. One set of 

beacons was placed on the floor, while the other set was mounted on the wall (1.2 m high). 

 

5.4 RSSI Data Analysis 

The current study yielded three distinct models to describe the RSSI-distance relationship. 

Firstly, the pre-calibrated model represents the default relationship provided by the beacon 

manufacturer. Secondly, the calibrated model, derived from site-specific data, utilized RSSI 

values obtained at a 1.0-meter distance from the beacon and is articulated as RSSI = -12.6 log(d) 

-68.9 dBm (Dong & Dargie, 2012). The third model, the fitted model, incorporates all the 

collected RSSI data from the site. This model is expressed as RSSI = -6.2 log(d) -68.8 dBm 

through a comprehensive curve-fitting method, underscoring its derivation from an exhaustive 

dataset. 
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5.4.1 Signal strength and stability over distance 

As shown in Figure 5-4, the pre-calibrated model exhibits a smaller RSSI (dBm) than the actual 

RSSI (dBm) from the site at given distances, particularly within 6 meters, indicating that the 

pre-calibrated model tends to underestimate distances at the provided RSSI (dBm) values. In 

contrast, the fitted model displays smaller RSSI (dBm) values at given distances compared to 

the calibrated model based on on-site data. Notably, the calibrated model, which uses actual 

RSSI (dBm) data from the site, presents the closest alignment with site data, especially within 

a range of 6 meters. These observations indicate potential errors when relying solely on the 

manufacturer’s pre-calibrated model for estimating distances based on BLE beacons’ RSSI 

(dBm) values. For reliable tracking and localization using BLE beacons, further calibration is 

advised. 

  

Figure 5-4 RSSI models for signal loss 

 

5.4.2 Impact of beacon installation height 

The comparative experiments were structured to discern the effect of installation height on the 

RSSI-distance relationship. Except for the variance in installation height, all other 
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environmental variables, such as the beacon’s location and signal acquisition point, were kept 

consistent. Notably, the receiving device was kept out of pocket to guarantee consistency in 

signal reception conditions. Then, two sets of RSSI signals were identified, each associated 

with varying beacon installation heights. The experiment investigated signal performance 

across two contrasting spatial environments, a rectangular room, and a corridor, to clarify how 

signals behave in different settings. The signal-distance relationship for the rectangular room 

is displayed in Figure 5-5 (a), and the data from the corridor is presented in Figure 5-5 (b). In 

both the rectangular room and the corridor, a t-test was conducted to assess the effect of 

installation height on RSSI values. The test compared RSSI readings from two heights in each 

setting. P-values were 5.5×10-34 and 0.02 for the rectangular room and corridor, respectively. 

As both are below the 5.0% significance level, it indicates a significant influence of installation 

height on RSSI in both environments. 

As presented in Figure 5-5, the signal performance conforms to the established signal 

propagation model across most of the plot. However, it is noted that at an elevation of 1.2 

meters, RSSI values exhibit significant fluctuations when the receiver is close to the beacon, 

for example, within a distance of one meter. In contrast, beacons placed at floor level manifest 

minimal variance at short proximities. The RSSI readings become pronounced beyond an 8-

meter expanse in a rectangular room. This finding is at odds with corridor data, where the 

placement of beacons at floor level is correlated with an RSSI amplification at a 5-meter 

threshold. However, such signal jump does not occur with beacons positioned at 1.2 meters. 

Accordingly, a specific effective range for RSSI can be determined where it follows the 

expected behavior of the signal propagation model. Upon analysis of the RSSI values within 

the prescribed effective distance, it is evident that signals captured at 1.2 meters and floor level 

exhibit a similar interquartile range aligned with the median in the rectangular space. Notably, 

the data from a height of 1.2 meters exhibit a broader range, suggesting a more significant 
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variability and a higher likelihood of outliers. Conversely, in the corridor, the dataset obtained 

from the 1.2-meter elevation reveals a reduced interquartile range, indicative of enhanced 

signal stability and a diminished frequency of extreme data points. 

 

 

(a) Signal performance in the rectangular room       (b) Signal performance in the corridor 

Figure 5-5 RSSI- distance plot with the different beacon installation height 

 

5.4.3 Impact of receiver condition  

Consistent variables such as beacon installation height and the geometry of the indoor 

environment were controlled to investigate the impact of user interference on RSSI values. 

Specifically, the influence of smartphone positioning, whether kept in-pocket or out-of-pocket, 

was analyzed. It is critical to note that the smartphone’s height was maintained at 1.2 meters 

during the experiment. The RSSI data were represented as box plots in Figure 5-6, with the left 

graph illustrating readings from a rectangular room (testbed 1) and the right graph depicting 

data from a corridor (testbed 2). Expecting the RSSI values to exhibit a normal distribution due 

to the extensive dataset, a t-test was conducted to evaluate the significance of the variation 

caused by the smartphone being in a pocket. The p-values obtained from the RSSI data for the 

rectangular room and the corridor were 6.2×10-11 and 1.9×10-18, respectively. Given that both 

values fall well below the 5.0% significance level, the data suggests that the smartphone in a 
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pocket exerts a considerable effect on RSSI readings within the specific indoor environments 

of a construction site.  

As depicted in Figure 5-6, the signal adheres to the expected signal propagation law within a 

specific effective range, analogous to the patterns depicted in Figure 5-5. The stable range for 

RSSI signals extends from one to seven meters in the rectangular room, whereas in the corridor, 

the consistent RSSI-distance relationship is observed from one meter up to six meters. The 

signal strength demonstrates significant variability when assessed outside this established 

range, including at nearer and farther proximities. The dataset analysis, notably when the 

smartphone was enclosed in a pocket, showed an increased frequency of outliers. However, the 

central data points were characterized by a narrower interquartile range, illustrating a higher 

level of consistency in signal reception among the core data points. 

 

 

Figure 5-6 RSSI- distance plot under different receiver conditions 

 

5.4.4 Impact of environment geometry  

Figure 5-7 presents contour plots of beacon signal strength with the signals collected by 

beacons installed at a height of 1.2 meters. Subplot (a) depicts results from the rectangular 

room, while subplot (b) portrays signal distributions within the corridor. Within these plots, 

points on the same contour curve possess equivalent signal strength values, as denoted on the 
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curves. These contour intervals remain consistent, with color variations representing signal 

strength, transitioning from light to dark as the RSSI diminishes, indicating weaker signal 

strength. Based on their placement, beacons were divided into three categories: center, edge, 

and corner beacons. Center beacons were strategically positioned at the geometric center of the 

floor, distant from the walls. In contrast, edge beacons were placed proximal to a single wall, 

and corner beacons were situated near the doorway corners. 

Oval-like or serrated-like contour lines within the signal contour plot signify a uniform signal 

distribution, typically observed in proximity to the beacon. However, as distance increases, 

these contours begin to deviate into more irregular shapes. As illustrated in Figure 5-7, the 

center beacon in the rectangular room exhibits the most consistent and uniform signal contour 

compared to its edge and corner counterparts. The uniform distribution of the rectangular 

room’s corner beacon concludes when the RSSI value drops below -80 dBm, mirroring the 

edge beacon’s pattern. Nevertheless, the coverage of the stable signal from the corner beacon 

is approximately half that of the edge beacon. Only corner and edge beacons were installed 

within the corridor’s narrower confines. Signal distributions between these beacon types 

appeared relatively comparable, though the contour intervals for the edge beacon were 

noticeably tighter than those of the corner beacon. 
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(a) Signal contours in a rectangular room       (b) Signal contours in a corridor 

Figure 5-7 Beacon signal contours map 

 

5.5 Discussion 

Utilizing a pre-calibrated model for distance estimation is advised in practice as it mitigates the 

extensive workload associated with calibration (Barsocchi et al., 2009). Nevertheless, the 

distance errors using the pre-calibrated line are more significant than those observed with the 

fitted and calibrated lines (Figure 5-4). While indicative of the signal-distance relationship 

specific to the actual site, the fitted model necessitates considerable data acquisition efforts. 

Given these demands, the curve-fitting approach is not recommended for beacon signal 

calibration in construction sites. In contrast, the calibrated model, though necessitating less 

setup effort, demonstrates a robust congruence with the site-specific data, surpassing the 

performance of the fitted model. The calibrated model is endorsed for subsequent tracking and 

localization endeavors.  

Center beacon Corner beacon Edge beacon 

Corner beacon Edge beacon 
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The subsequent analysis indicates that signals do not consistently adhere to the propagation 

model, as depicted in Figure 5-6 and Figure 5-6. The effective distance range, wherein the 

RSSI measurements comply with the signal propagation law, spans from one to seven meters 

in the rectangular room and one to six meters in the corridor. Beyond these effective ranges, 

significant variations in beacon signal strength occur when the beacon is either exceedingly 

close to or far from the receiver. Accordingly, to accurately utilize the model for distance 

estimation, the beacons should be positioned within the ascertained effective range relative to 

the target, tailored to the specific environmental context.  

Comparative analysis of RSSI performance at varying installation heights reveals that the 

placement of beacons significantly affects the stability of RSSI readings and, consequently, the 

accuracy of distance estimation. The statistical outcomes highlight the significant effect of 

ground reflections on RSSI stability. As demonstrated in Figure 5-5, deploying the beacon at 

floor level in more expansive spaces results in compact data distribution, evidenced by the 

condensed box plot. Such configuration implies diminished variability and improved signal 

stability, crucial for reliable distance estimation amidst signal fluctuations. Conversely, in more 

confined spaces such as corridors, the result supports a preference for beacon placement at 

elevated heights, where RSSI measurements display a smaller spread, enhancing measurement 

consistency and reliability. 

Furthermore, placing a smartphone in a pocket statistically significantly affects the RSSI. 

Comparative analysis reveals that the incidence of outlier measurements increases when the 

signal receiver is enclosed within a pocket. Despite this, the central tendency of the data 

remains robust, with readings aggregating more densely around the median for both 

environments under study. In applications such as tracking construction workers, the 

convenience of pocket storage for smartphones is unavoidable. In these instances, using 

sophisticated signal filters becomes crucial to mitigate the effects of outliers, thereby ensuring 
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a more uniform and dependable dataset. However, filtering signals outlier incurs a response 

delay. In situations requiring swift reaction and minimal outlier frequency, particularly within 

hazardous zone alarm systems, it is advised not to place receivers in pockets to avoid delays 

and preserve data credibility.  

The current study then mapped signal contours to analyze signal distribution across varied 

environments. Figure 5-7 illustrates that beacons positioned at corners and edges exhibit more 

uniform and consistent contour shapes, denoting stable RSSI-distance relationships within a 

short range, particularly within a proximate radius of up to four meters. Beacons at corners gain 

the advantage of two walls serving as reflective surfaces, while those at edges benefit from a 

single wall. In contrast, a centrally located beacon relies solely on the ground as a reflective 

surface. The findings elucidate that proximity to multiple reflective planes correlates with more 

uniform contour patterns close to the beacon, signifying a dependable signal strength gradient 

with incremental distances, thereby enhancing distance estimation accuracy. For open areas 

such as Testbed 1, installing beacons at corners or edges is recommended to ensure a reliable 

RSSI distance relationship within a four-meter range. Central beacons, however, are not 

advised due to their less dependable performance. In the absence of walls, establishing manual 

solid reflective planes near the beacon may stabilize the signal, ensuring that reflections near 

the beacon predominate. In environments lacking such controlled conditions, multiple factors 

influence the signal, leading to a complex interplay that complicates the characterization of 

signal behavior. Conversely, in confined spaces like the corridor in Testbed 2, the signal 

contour exhibits a stable and homogenized signal gradient, offering the potential for distance 

estimation using RSSI. The advised range for employing this model is limited to four meters. 

The study’s recommendation for the calibrated model, while minimizing setup efforts, is not 

without constraints, as it requires a careful balance between practicality and the precision of 

site-specific calibrations. Additionally, the delineated effective distance range for beacon 
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placement implies a limitation in spatial application, particularly in areas beyond the identified 

range. To mitigate this limitation, deploying multiple beacons at intervals within the effective 

range determined by the study is recommended. The investigation also brings to light the 

limitations of RSSI stability with varied environmental factors, such as the impact of 

smartphone storage on signal quality, which could affect the practical deployment of RSSI-

based tracking systems. However, the current research evaluates three significant factors 

influencing signal stability and does not encompass a comprehensive list of potential variables. 

Future studies should aim to identify additional influencing factors. Furthermore, the current 

experiment does not incorporate mobile objects or construction entities within the test 

environment, which could affect signal behavior. Consequently, ensuing research could 

enhance the validity of findings by including such dynamic elements in the testbed 

configuration, thereby providing a more robust assessment of RSSI stability across varied 

environmental conditions and contributing to the development of more resilient RSSI-based 

tracking systems. 

 

5.6 Conclusion 

The current study aims to validate the feasibility of using BLE beacon-based systems for 

tracking and locating within construction sites. Moreover, it seeks to delineate the effects of 

diverse factors on the RSSI-distance model, thereby formulating deployment guidance for 

practical application in construction environments. This study examined three path loss models: 

the pre-calibrated model, the calibrated model, and the fitted model. The latter two, derived 

from the gathered RSSI values and the corresponding distances between the beacon and the 

test locations, provided a more customized signal propagation assessment. According to the 

results, the calibrated model is recommended for tracking and localization in construction sites 
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because it combines robust performance with reduced setup effort, offering a practical and 

accurate solution. This model is described by the equations RSSI = -12.6 log(d) -68.9 dBm. 

The comprehensive test results also reveal that the RSSI maintains a stable signal path loss 

model exclusively within a specific distance range. Such stability is observed from one to four 

meters in the construction environment. 

Utilizing a calibrated model for distance estimation necessitates environment-specific 

adaptations when implementing such models. Consequently, the present study validates the 

environmental parameters affecting signal distance models’ stability and precision. The 

statistical testing reveals that the height at which beacons are installed above the ground and 

the texture of the surrounding environment significantly influence signal reception. This study 

recommends placement strategies tailored to different environments to establish a BLE beacon 

network capable of generating a stable signal mesh for accurate distance estimation. In open 

areas, positioning beacons at ground level is preferable. Conversely, elevating the beacon to a 

specific height in confined spaces proves to be more effective. When the receiver must be 

carried in a pocket, the data indicate an increased likelihood of signal anomalies, which are 

unsatisfactory for applications requiring immediate response, such as alarm systems. Moreover, 

installing beacons adjacent to sturdy and smooth surfaces, like walls, can facilitate a stable 

RSSI-distance relationship within a short range, typically between one to four meters, where 

reflections are predominant.  

In conclusion, the current research delineates the feasibility and challenges of implementing 

beacon signal-based tracking and localization systems within indoor construction 

environments. The findings are crucial for optimizing beacon placement, thereby establishing 

a more stable signal network. This groundwork paves the way for future research endeavors to 

explore various influencing factors and more complex scenarios. 
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CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH 

The construction industry, characterized by its intensive reliance on manual labor, faces 

significant productivity challenges due to this dependence. Task-level activity analysis is 

crucial for identifying the root causes of low productivity issues, involving monitoring and 

categorization of activities based on their impact on productivity. The integration of advanced 

sensing technologies has significantly improved the process of monitoring construction 

activities by facilitating the collection of activity and location data in real time. Leveraging 

machine learning and deep learning algorithms, researchers can construct models for 

recognizing actions and tracking locations, thereby analyzing task-level activity in an 

automated, accurate, and timely manner and also offering a comprehensive, data-driven insight 

into operational efficiencies. Despite the promising potential of sensor-based construction task-

level activity analysis, challenges related to data interpretability, concerns about the accuracy 

and reliability of sensor-based methods, and the complexities of implementing these 

technologies in unstructured environments like construction sites are significant barriers to 

their widespread application. 

Therefore, the current study developed four steps to address the challenges and complete the 

application framework. As shown in Figure 1-1, a hierarchical work taxonomy tailored for 

task-level activity analysis was designed, laying the groundwork for the objective evaluation 

of construction tasks. This taxonomy, essential for the analysis, emphasized the productivity 

potential of activities and the distinctiveness of body movements, enhancing data 

interpretability and reducing the likelihood of misclassification in action recognition. 

Subsequently, the practical applicability of the work taxonomy was validated through rigorous 

field experiments involving eighteen construction workers across two sites in Hong Kong, 

focusing on concrete work tasks and formwork tasks, which are essential and representative 
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works in construction. Utilizing an inertial measurement unit (IMU) in a smartwatch, 

acceleration data were collected and analyzed, applying both traditional and advanced machine 

learning algorithms for action recognition. This validation not only tested the taxonomy’s 

feasibility but also its effectiveness in real-world conditions. The research findings indicate 

that the proposed taxonomy effectively classifies construction activities with high accuracy for 

Level 1 (above 95%) and acceptable accuracy for Level 2 (74.6% to 83.8%), demonstrating the 

taxonomy’s capability to convey comprehensive activity information and handle noisy data. 

Additionally, the study successfully estimated the duration of activities in Level 2, allowing 

for the assessment of work efficiency and identification of causes behind low productivity, 

thereby facilitating potential improvements in construction tasks. 

Further advancing the study, a novel sensor fusion approach for action recognition was 

introduced, integrating image and acceleration data to leverage the unique strengths of each 

modality. Through laboratory experiments, the complementary benefits of decision-level 

fusion approaches in recognizing construction activities were demonstrated, underscoring the 

enhanced accuracy and reliability achieved by combining data from diverse sensors. The study 

developed four decision-level fusion methods, specifically the Dempster-Shafer (DS), 

Weighted Dempster-Shafer (WDS), Topk Weighted Dempster-Shafer (TopkWDS), and 

Thresholding Weighted Dempster-Shafer (TWDS), significantly outperformed individual 

acceleration and video-based models in construction action recognition, with TWDS achieving 

the highest accuracy of 85.67%, marking a 13.9% and 4.43% increase compared to solely using 

video and acceleration models, respectively. 

Lastly, the application of BLE beacon-based localization under various site conditions was 

explored to better understand the principles of deploying BLE beacons for construction site 

localization. The investigation into different environmental setups and beacon configurations 

provided valuable insights into optimizing sensor deployment for accurate and efficient site 
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monitoring. The study confirms the effectiveness of BLE beacon-based systems for tracking 

and localization in construction sites, particularly advocating for the calibrated model due to 

its balance of robust performance and ease of setup. The model derived from the site’s collected 

data is RSSI = -12.6 log(d) -68.9 dBm. It highlights the impact of environmental factors like 

beacon height and surrounding textures on signal accuracy, recommending environment-

specific beacon placement for stable signal transmission. 

The study also highlights limitations in action recognition for construction activities using 

acceleration signals, especially at Level 3, where classification accuracy significantly decreases 

due to the complexity of micro-level analysis and the challenge of distinguishing between 

similar movements. Future research should aim to enhance the transition between activities, 

optimize time-series data segmentation for more accurate classification, and employ additional 

techniques, such as dynamic and fuzzy segmentation, to manage continuous and overlapping 

activity data better. Furthermore, the study suggests further validation of the proposed work 

taxonomy and action recognition algorithms with more extensive field data to improve the 

reliability and practical applicability in construction settings. It also acknowledges the 

challenges in accurately predicting specific activities like “Idling” despite improvements from 

decision-level fusion and filtered weights. Future efforts will focus on improving data 

collection in both laboratory and real-world environments, involving more participants with 

diverse backgrounds to enhance model generalization, and employing Leave-One-Subject-Out 

Validation (LOSOV) to address individual variances, making the developed framework more 

applicable to various construction scenarios. Additionally, future research will explore the 

resilience and flexibility of decision-level fusion under different conditions and with various 

sensor types to ensure robustness against sensor failures and environmental variations. The 

study on BLE beacon signal in-site validation endorses the calibrated model as the preferred 

approach for beacon signal calibration in construction sites due to its minimal setup 
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requirements and strong performance despite data limitations and calibration challenges. It also 

notes that the effective distance range for beacon placement is limited, impacting RSSI stability 

and accuracy in distance estimation, with factors like smartphone storage affecting signal 

quality. Future research will further investigate factors influencing RSSI stability, including 

the impact of mobile objects in the environment, to develop more dependable RSSI-based 

tracking systems. 

In conclusion, this study contributes to the field of construction management by advancing the 

understanding and application of sensor-based activity analysis and localization techniques. 

Through rigorous methodology and comprehensive data analysis, this work enhances the 

exposure of causes for low productivity issues in construction projects. Furthermore, the 

integration of advanced technologies and data-driven approaches will continue to play a pivotal 

role in overcoming industry challenges and achieving operational excellence. 
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