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Abstract of thesis entitled ‘A Study on Data Compression by
Dynamical System Approach’ submitted by Lam Fung-yee for the
degree of Master of Philosophy at The Hong Kong Polytechnic
University in October 2001.

The importance and demands for data compression have been increasing rapidly,
especially with the growing popularity of Internet access and multimedia personal
entertainment. The ratio and the quality of compression data are main concern when
judging the compression algorithm. Recently, data compression techniques are
dominated by the fast Fourier and wavelet transforms, which approximate the given
sequence as a linear sum of the basis function, by retaining a finite number of

coefficients to achieve the goal of compression.

In this project, we intraduce a dynamical system approach, which compresses data: 2
a totally different way from the ones mentioned above. Taking advantage of the fact
that Leaky-integrator model recurrent neural net can approximate arbitrary finite
sequence, we demonstrate in this thesis how to compress UV and IR spectrum by a
discrete-time recurrent neural net. As this is an initial valued problem, the
information we need to store is the parameters of the system and the initial states.

Compression ratio is also discussed in this thesis.
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Chapter 1

Introduction

We are living in an information dependent society. Efficient delivery of data, audio
and video signals via fixed and mobile networks is becoming increasingly important.
Network transmission time is directly proportional to the file size. Since new audio
and video applications are usually large in size, new and improved signal compression
techniques are needed. In many cases, the exact information is not necessary and ¢ a
approximation of the original data can be transnﬁtted instead, which can be achieved

by some compression techniques.

1.1 Fourier Transform Vs. Wavelet Transform

The conventional Fourier transforms and other orthogonal transforms provide the
frequency information over the entire spectrum of a signal. The irregularities of a
signal are not localized in a Fourier transform domain. Multi-resolution decompo-
sition is a convenient tool to study the time-domain, scale-domain and frequency-

domain aspects of a signal simultaneously. The conventional Fourier transform-based



approaches have a block structure, while the pyramid decomposition and other multi-
resolution-based approaches possess a pyramid or tree structure. A wavelet decom-
position is a multi-resolution decomposition in which a discrete or a continuous signal
at resolution 27 is decomposed into a low-pass (called the approximate signal) at a
resolution 27~! and a high-pass (called the detail signal) version at the same resolution
29~1, The low-pass version of the original signal is again decomposed into a low-pass

at lower resolution and a high pass with the same resolution as the low-pass.

1.2 Scope and Objectives

The investigation, design and analysis of algorithms for lossless one-dimensional data
compression using dynamical system approaches forms the primary objective of this
study. A lot of work has been done in the area of lossy data compression. However,
very little work has been done in Recurrent Neural Network Dynamics method. Since
many signals are records of some dynamic behaviors, in this study, we propose to use

a dynamical system approach to approximate a given data sequence.

Signal types included in this study were results from a chemical experiment. We
demonstrate our approach by compressing two sets of data obtained from Professor
Chau of the Applied Biology and Chemical Technology Department, at The Hong
Kong Polytechnic University. These data were obtained from an experiment which
had been described in Chau [6]. In chemical analysis, signal compression is very
important, especially in setting up digitized spectral library, to minimize the size of

the original database and to reduce the time for spectral searching.



In chemical studies, neural network has been applied successfully to solve problems
in classification, optimization, modeling and mapping. But, to our knowledge, this
mathematical technique has not been used for spectral compression. It is because
the feedforward neural net which is commonly used in chemistry consists of a large
number of hidden neurons and parameters. This leads to a common belief that
neural nets are not suitable for compression purpose. Instead of using the popular
feedforward networks, a small size recurrent neural net with no hidden unit involved
was proposed in this study and applied to compress both synthetic and experimental

spectra successfully.

1.3 Contributions of the thesis

In this project, we propose to use a dynamical systern approach to approximate a
given data sequence. This method is proposed by Li [13, 14, 15]. In this thesis, focus
is directed towards the error analysis of this RNN method and the development of a

new learning algorithm.

1.4 Thesis organization

The thesis is divided into nine chapters. In the first two chapters, we look at the most
popular algorithms, i.e. Fast Fourier Transform and Wavelet Transform. Fast Fourier
Transform and Wavelet Transform approximate the original signal by a linear sum of
basis function. Then the background theory and merits are given when we apply the

Recurrent Neural Network Dynamics method as the compression algorithm, which is

10



a dynamical system approach.

In Chapter [3], the methodology of the dynamical system technique for data com-
pression is discussed. The error estimation for different techniques is also discussed
so that readers will have an idea of how close the approximated signals are to the

original ones.
In Chapter [4], we look at the actual equations used for programming in this study.

In Chapters [5] and [6], the results from the Ultra Violet signals and Infra Red

signals are given respectively.

In Chapter [7], the findings of this project and some concluding statements about
the project as a whole are given. Since this project is at the inception for exploiting
the Recurrent Neural Networks as a new compression methodology, remarks and

suggestions are made for further research work in this area.

Finally, the programs for carrying out data compression in this project are ap-

pended.
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Chapter 2

Literature Review

In this chapter, we describe previous work in the data compression as well as the

classification of data compression.

2.1 Classification of Data Compression

Data compression can be divided into two main categories: lossless and lossy com-

pression.

2.1.1 Lossless compression (or information preserving)

Lossless compression techniques involve no tolerance of distortion in the information;
thus, if data have been losslessly compressed, the original data can be recovered
exactly from the compressed data. They are used mainly for compressing database
records, spreadsheets or word processing files, where exact replications of the originals
are essential. However, the main shortcoming of lossless compression is that the

amount of compression is very limited. Nowadays, most popular algorithms are based

12



on adaptive Huffman, arithmetic coding, or Lempel-Ziv (LZ) methods.

2.1.2 Lossy compression

Lossy compression techniques allow a loss of accuracy in representing the information,
and the reconstructed data are close to, but need not be the same as, the original
one. Instead, decompression produces an approximation dependent on the compres-
sion ratio. The deformation of data makes it possible to have compression ratios
that are typically greater than lossless compression ratios. In fact, these compres-
sion techniques are to construct an approximation to the original information. You

can achieve more compression by allowing the algorithm to control this compression

against quality trade-off.

Lossy compression is more effective when being used to compress graphic images
and digitized voice, where information is in waveform data and losses outside visual
or aural perception can be tolerated. Most lossy compression techniques can be ad-

justed to different quality levels, gaining higher accuracy in exchange for less effective

compression.

The most popular compression algorithms, such as Fast Fourier Transform and
Wavelet Transform, fall into the lossy compression category. Similarly, the dynamical

system method that has been proposed in this project also falls into this category.

13



2.2 Conventional Data compression

The late 40’s were the early years of Information Theory, when the idea of developing
efficient new coding methods was just starting to be fleshed out. Ideas of entropy,
information content and redundancy were explored. One popular notion is that if the
probability of symbols in a message were known, there ought to be a way to encode

the symbols so that the message would take up less space.

The first well-known method for the compression of digital signals is now known as
Shannon-Fano coding. Shannon and Fano simultaneously developed the algorithm,
which assigns binary-coded words to unique symbols that appear within a given data
file. While Shannon-Fano coding was a great leap forward, it had the misfortune to

be quickly superseded by an even more efficient coding system: Huffman coding.

Huffman coding (1952) shares all characteristics of Shannon-Fano coding; however
Huffman coding could perform effective data compression by reducing the amount of
redundancy in the coding of symbols. It has been proven to be the most efficient

fixed-length coding method available.

In the last fifteen years, Huffman coding has been replaced by arithmetic coding.
Arithmetic coding bypasses the idea of replacing an input symbol with a specific
code. It replaces a stream of input symbols with a single floating-point output

number. More bits are needed in the output number for longer, complex messages.

Dictionary-based compression algorithms use a completely different method to
compress data. They encode variable-length strings of symbols as single tokens.

The tokens form an index to a phrase dictionary. If the tokens are smaller than the

14



phrases, they replace the phrases and compression occurs.

Two dictionary-based compression techniques called LZ77(Lempel-Ziv [1977]} and
LZ78(Lempel-Ziv [1978]) have been developed. LZ77 is a “sliding window” technique
in which the dictionary consists of a set of fixed-length phrases found in a “window”
in the previously seen text. LZ78 takes a completely different approach to building
a dictionary. Instead of moving fixed-length phrases from a window into the text,
| LZ78 builds phrases up one symbol at a time, adding a new symbol to an existing

phrase when a match occurs.

Recently, many techniques have been developed to compress a given signal (a set
of data). The usual ways include the well-known transformation methods, such as

Fast Fourier Transform and Wavelet Transform that are based on approximating an

arbitrary furction.

Using the Stone Weierstrass’ Theorem, we can approximate a given function or
sequence by a linear sum of the basis functions. These methods integrate the given
signal (data set) over the interval and store the information in terms of a linear sum
of basis transform functions and their corresponding coefficients. The basis functions

are usually orthogonal. Compression methods use the computation time in exchange

for the storage space.

Given a signal z (t) continuous on [a, ] and supposing we have a countable basis of

—0as N -
2

() - 5 afi(t)

=1

functions f; (t) in Lo [a,b]. Then, the difference

will smaller than original
2

2(0)- 5 afi (0

and |¢; f;| — 0, so that the difference

pre-assigned tolerance. As we fix the set of basis {f; (¢)} and ignore the coefficients ¢;
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is within our tolerance,
2

then an approximation of the original signal z (¢) is formed. Since f; (t)’s are already

N
with 'small’ magnitude, such that the error (|2 (t) - ¥ e f;
i=1

specified, we store the information 4 and ¢; instead of the original signal z (¢). Thus,

we may consider these compression techniques as function approximation methods.

In the following sections, brief descriptions of the algorithms on data compression
will be given by using Fast Fourier Transform. As pointed out by Zaknich and
Attikiouzel (1995), most signal processing problems are related to a time or spatial
data series, so we suppose the given sequence is quite smooth in the sense that z (t)
has some intrinsic property that follows some dynamical system locally. We will

discuss the dynamical system approach in the second section.

2.3 Fast Fourier Transforms

The Fourier Transform is based on the discovery that it is possible to take any periodic
function of time z(t) and resolve it into an equivalent infinite summation of sine waves
and cosine waves with frequencies that start at 0 and increase in integer multiples of

a base frequency fo = %, where T is the period of z(¢t). This is what the expansion

looks like:

o0

:c(t) = ap+ Z (ak COS(21Tk'f0t) + bk sin(21rkfot))
k=1

An expression of the form of the right hand side of this equation is called a Fourier
Series. The job of a Fourier Transform is to figure out all the a; and b, values to
produce a Fourier Series, given the base frequency and the function z(t).

16



As it is unrealistic to do an infinite summation, a finite set of sines and cosines
is usually employed. Once the coefficients have been resolved, the corresponding
approximate data can be reproduced. For most compression applications, the most
significant coefficients in the Fourier Series are retained. As for the number of coeffi-

cients used, it depends on the precision required for the restored signals.

Fourier Transforms are one of the fundamental operations in signal processing. In
digital computations, Discrete Fourier Transforms (DFT) are used to describe, rep-
resent and analyze discrete-time signals. However, direct implementation of DF'T is
computationally inefficient. Of the various available high-speed algorithms commonly
used to compute DFT, the Cooley-Tukey algorithm is the simplest. The efficient al-
gorithms to compute DFTs are called Fast Fourier Transforms (FFTs) which are the
algorithm for computing the discrete Fourier Transforms in a faster way and reducing

the number of romputations from approximately O (V?) to O(N log N).

FFTs were first discussed by Cooley and Tukey (1965), although Gauss had actu-
ally described the critical factorization step as early as 1805 (Gergkand 1969, Strang
1993). A DFT can be computed using an FFT by means of the Danielson-Lanczos
Lemma if the number of points NV is a power of two. If the number of points N is
not a power of two, a transform can be performed on sets of points corresponding to
the prime factors of N, which is slightly slower. An efficient real Fourier transform
algorithm or a fast Hartley Transform (Bracewell 1999) gives a further increase in
speed approximately by a factor of two. Base-4 and base-8 fast Fourier transforms
use optimized code, and can be 20-30% faster than base-2 fast Fourier transforms.

Prime factorization is slow when the factors are large, but DFT can be made fast for

17



N=2234,5717,8,11, 13, and 16 using the Winograd Transform Algorithm.

The FFT is a DFT Algorithm which reduces the number of computations needed
for N points from 2N? to 2N lg N, where lg is the base-2 logarithm. If the function
to‘ be transformed is not harmonically related to the sampling frequency, the response
of an FFT looks like a sine function (although the integrated power is still correct).
Aliasing (leakage) can be reduced by apodization using a tapering function. However,

aliasing reduction is at the expense of broadening the spectral response.

2.4 Wavelet Transforms

Wavelets are versatile tools for harmonic analysis. - Because of their many uses, the
word ‘wavelet’ comes with different connotations (and different promises) to users in
different fields. Therefore it is important to state the limite “ion of our approach at

the beginning, so that the user will not be disappointed by unfulfilled expectations.

Wavelets are mathematical functions that divide data into different frequency
components, and then study each component with a resolution matched to its scale.
They have advantages over traditional Fourier methods in analyzing physical situa-
tions where the signal contains discontinuities and sharp spikes. The fundamental
idea behind wavelets is to analyze according to scale. Indeed, some researchers in
the wavelet field feel that, by using wavelets, one is adopting a whole new mindset or

perspective in processing data.

Wavelets are functions that satisfy certain mathematical requirements and are
used in representing data or other functions. Approximation using superposition of

18



functions has existed since the early 1800’s, when Joseph Fourier discovered that he
could superpose sines and cosines to represent other functions. However, in wavelet
analysis, the scale that we use to look at data plays a special role. Wavelet algorithms
process data on different scales or at different resolutions. If we look at a signal with
a large “window,” we notice gross features. Similarly, if we look at a signal with a

small “window,” we notice small features. The result in wavelet analysis to see both

the forest and the trees.

The wavelet analysis procedure is to adopt a wavelet prototype function called
an analyzing wavelet or mother wavelet. Temporal analysis is performed with a
contracted, hjgh-—fréquency version of the prototype wavelet, while frequency analysis
is performed with a dilated, low-frequency version of the same wavélet. Because the
original signal or function can be represented in terms of a wavelet expansion (using
coefficients in a linear combination of the wavelet functions), data oper “tions can be
performed using only the corresponding wavelet coefficients. If we further choose the
best wavelets adapted to our data, or truncate the coefficients below a threshold, our

data are sparsely represented. This sparse coding makes wavelets an excellent tool

in data compression.

To sum up, both of the transform algorithms exlz;ress the signal as a linear sum
of the basic functions. Compression of signals are achieved by retaining the finite

number of coefficients, which reproduce a signal to approximate the original signal.
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2.5 Neural Network

2.5.1 Background

Artificial neural network models (“ANN") or simply ‘neural nets’ are known with
different names such as connectionist model, parallel distributed models, and neuro-
morphic systems. Whatever the name, it can be viewed as circuits of highly inter-
connected parallel processing units called ‘neurons’. Much of the current algorithms
for adjusting interconnection weights adaptively so as to perform the desired classifi-
| cation. There are two main types of models of ANN, namely the feed-forward neural
network and the feed-back neural network. The following two sections will give each

a simple illustration.

2.5.2 Feed-forward Neural Networks

In feed-forward networks, the data flow from input to output units is strictly feed-
forward. The data processing can be extended over multiple (layers of) units, but
no feedback connections (loops) are present, that is, connections extending from out-
puts of units to inputs of units in the same layer or previous layers. This type of
organization is also referred to as bottom-up or bottom-down. A feed-forward neural
network with single hidden layer is denoted as I x H x O, where I, H and O represent
the number of input units, the number of hidden units, and the number of output
units, respectively. Generally there may be multiple hidden layers between the input
and output layers. Figure 2.5 gives a typical fully connected 2-layer feed-forward NN,

which the input layer does not count by convention, with a 2 x 3 x 2 structure.
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Input Layer Hidden Layer Output Layer

Figure 2-1: A 2 x 3 x 2 feed-forward NN

The input units simply pass on the input vector . The units in the hidden layer

and output layer are processing units.

Feed-forward neural network work by training the connection weights with given
examples. A sample pattern (x;,3) is taken from the training set of known data
{(zi,%:) liz1,2,..n} and z; is fed into the input layer of the network. After computing,
an output vector O; based on either none, one or more hidden layer output, then we
- compare the output vector O; with the target value y;. We adjust the weight matrices
so as to minimize the difference between the output vector O; and the target value

¥i, and this process is called learning.

2.5.3 Feed-back (Recurrent) Neural Networks

In feed-back neural network, it coﬁtained feedback connections. It is very powerful
and may be extremely complicated. Contrary to feed-forward networks, the dynami-
cal properties of such networks are important. In some cases, the activation values of
the units undergo a relaxation process such that the network will evolve to a stable

state in which these activations do not change anymore. In other applications, the
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change of the activation values of the output neurons are significant, such that the
dynamical behaviour constitutes the output of the network. Feedback architectures

are also referred to as interactive or recurrent. In figure 2.6, it shows a configuration

of a feed-back NN.

X Y1

Y2

Input Layer Ouiput Layer
Hidden Layer

Figure 2-2: A feedback NN

2.6 Recurrent Neural Networks(“RINN”) in Data

Compression

A simple network has a feed-forward structure: signal flows from inputs, forwards
through any hidden units, eventually reaching the output units. Such a structure has
stable behaviour. However, if the network is recurrent (contains connections back

from later to earlier neurons) the state of the neurons may be unstable, and have

very complex dynamics.

Recurrent networks contain feedback connections. Contrary to feed-forward net-
works, which is independent of time, the dynamical properties of the recurrent net-

work are important in signal compression.
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2.6.1 Neural Network for Signal Processing

According to the Li [15]) “Approzimation Theory and Recurrent Network”, a given tra-
jectory sequence with the corresponding time steps can be represented by a discrete-
time fully connected recurrent neural net. Then the paper had also generalized the
result to approximation of a twice differentiable trajectory on a compact time interval

and show that recurrent nets can be universal approximators of trajectory in R™.

Further explanation of how the method can applied to perform data compression

in this study will be given in the following.

2.6.2 Compression Method

Given signal {2}, where 1 <t < m as a one-dimensional finite sequence, and suppose
that z, are quite smooth. The sequence can then be divided into n segments with p
data in each segment. Place n segments into n row to form a n x p matrix with p
column of data. In the following, we use x (k), where 1 < k < p, to represent the

column vectors of the n x p matrix. To begin with, consider the continuous neural

network dynamic equation:

d
—;{-:—x(t)-i-Wa[x(t)-l-G]+J ................................. (2.1)
Using Euler’s method, the equation is expressed as a function of past time function:
dx (k
x(k+1) =x (k) +h xdi) ....................................... (2.2)

Comparing both equations, the following equation is arrived:

x(k+D=x(k)+h{-x(k)+Wo[x(k)+0]+I}............... (2.3)

where
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x{k) - states of the system at time k € (—1,1)™,

h - step size,

W - the n x n synaptic connection strength matrix,

o - the artificial activation function of the system which is
bounded, monotonic increasing and continuously
differentiable arbitrarily many times,

6 - the bias or threshold vector, n x 1 matrix,

J - external input to the system, n x 1 matrix.

A schematic diagram of a 2-neuron RNN is given in Figure 2.3.

Figure 2-3: The 2-neuron recurrent neural net with input (Jy, J).

In this RNN scheme, X (t) represents the two neurons z, (t) and x: (t) which
changes with the time variable where ¢t = 1,2, .... Asan example in applying Equation

(2.3), let the step size h be 0.5 and @ be the zero vector,
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w1 Un2 1 2
W= = P (2.4)

W Woe -1 3
and the initial state X (1) having values of

X(1) = S I e (2.5)

282(1) -1

The next state X (2) can be generated by Equation (2.3) as,

1 (2)
X((2)=
z2 (2)
2 2 1 2 2
= +05¢— + log
-1 -1 -1 3 -1
-1
F 1 (2.6)
1

Similarly, other states X (3), X (4), ...X (p) can be generated by using Equation
(2.3) repeatedly. In this 2-neuron net, data needed to be stored are the system
quantities X (1} and the RNN parameters, h, W, 8 and J vectors and their numbers
of data involved are 2, 1, 4, 2 and 2, respectively. The universal approximation
properties of recurrent networks as mentioned above are important for compressing
any sequence or signal in this investigation. Li (1992) has shown that , for any
arbitrary discrete finite sequence or signal {z (t) € R}, there always exists a

discrete-time RNN as defined by Equation (2.3) to general z (f) accurately.

Further explanation of how the equations are applied to perform data compression

in this study will be given in the following chapter.
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Chapter 3

Methodology

In the early sections of this chapter, the detailed methodology for asserting the com-
pression capability of recurrent neural network will be shown systematically. The

detailed steps leading to finding the compression parameters will be given as well.

In the followinz section of this chapter, some error analysis and estimation of the

discrete recurrent neural network method will be discussed.

3.1 RNN Algorithm

Consider the task of compressing a given sequence z (t) of length m by a fully con-
nected RNN of network size n, i.e. n neurons, with iterative dynamics as given in
Equation (2.3). We define here that a dynamical system is exactly capable for com-
pression if there exists some neural parameters W, 8, J and h such that the error
between the system output z (¢) and z () is zero. If the least square error between the
output of the system and the smoothed sequence is less than a pre-assigned tolerance,
e.g. ¢ = 1074, then the network is considered to be good for compression.
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The RNN algorithm, as proposed in this project, are carried out in three steps as
described below. In the first stage, if the signal is noisy, it is smoothened by using
the moving average method or other pre-processing methods to deliver a better per-

formance. For convenience, instead of z (¢), y (t) will be adapted to be a smoothened

sequence in the following discussion.

After smoothing, ¥ (¢) is normalized within the range of —1 to 1 (instead of 0
to 1) and with this, we can assume that the parameters @ and J are zero vectors,
hence, save memory space. According to the Li (1992) “Approximation Theory and
Recurrent Network”, this setting has very little effect on the compression ratio and

error of data compression.

-In the second stage, y(t) of length m is divided into n equal subsequences or
segments having length p each (i.e., m = np). Then n neurons of z; (¢), =3 (¢}, ...,
Z, (t) are used in the RNN treatment with a network size n. It is assumed that m is
divisible by n. (If not, the remaining data will be retained and will be not used in the
RNN computation.) In the UV spectra under study, the remaining data are on the
high energy side and contain no spectral information. Hence, neglect of these data

do not affect the quality of the regenerated spectra. This is justified by the results

obtained.

For an n-neuron RNN, the first neuron z, (t) of X (t) (see the example Equa-
tion (2.5}) is related to the first subsequence or segment of x, (1}, z, (2), ..., z; (p),
the second one z, (t) to the second subsequence of z, (p + 1), z2 (p + 2), ..., 22 (2p),
and so on. Before RNN treatment, the initial states z; (1), z2 (1) and z, (1) of
X (1) are assigned to have the same values as z (1), z(p+1), z((n—1)p+1) of
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the original signal, respectively. Then {z, (2), ..., z; (p)}, {z2(2), ..., z2 (D)}, ...
and {zn,(2), ..., Z» (p)} can be generated via Equation (2.3) with given values of
the RNN parameters h, W, 8 and J. By varying these RNN quantities systemi-
cally, one may obtained the calculated output (or the regenerated spectrum) X (¢)(=
{z:(1), ..., 21 (), .., Zu (1), ... , Zn (P)}) to have the smallest discrepancies with re-
spect to the original speci;rum. Then, the optimized RNN quantities together with
X (1) are achieved as the compressed data set R and will be used to regenerate the
original signal. The number of data involved in A, W, @ and J and X (1) are 1, n?,
n, n and n respectively. Thus, the total number of data retained is (n? + 3n+ 1)
compared to m (or np) of the original spectrum. If the number of the original data
is not divisible by n and the number of remaining data r not being used in the
RNN computation is non-zero, then the total number of data retainéd is equal to

(n?+3n+1+1) compared to (np + ).

Once the network size n is fixed, the goal in the third stage is to optimize the
set of RNN parameters &, W, € and J so that the discrepancy between z (¢) and -
X (t) is minimized. As usual, the root mean square error (RMSE) was used in this
investigation as an indicator of the discrepancy. RMSE is defined as follows:

RMSE = [;El i’;l 1 {2, (t) —z((i—l)p+t)}2r.

To adjust the RNN parameters so as to minimize the RMSE, an iterative process
called learning algorithm was adopted. Many researchers applied the learning algo-
rithm based on gradient descent method derived by William and Zipser. Here, we use
a different algorithm because the RNN involved has no hidden neuron. Learning the

optimal values of the RNN parameters were obtained using the method described in
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Li (1996) for finding the fixed points of Equation (2.3). Like other gradient descent
methods, there is no guarantee for obtaining the global minimum of the RMSE be-
cause the error function may contain a lot of local minimums. Further, we are not
sure we can get the global minimum if RMSE # 0 as the problem is highly non-linear
and the capability of RNN is still under-develop. However, the compression results
obtained from our RNN study are good enough when compare to those results by

Wavelet Transform, and in some cases, even better,

Once the optimized RNN parameters h, W, 8 and J are obtéined, these quantities
together with the initial state of the system X (1) are collected as the compressed data
R as mentioned previously. In order to increase the compression efficiency further,
the parameters @ and J are assumed to be zero vectors. Thus, thé total number
of compressed data is reduced to (n®+n + 1+ r). For instance, a UV spectrum of
length 1024 being treated by an 8neuron RNN, the parameters n, m, p and r have
values of 8, 1024, 128 and 0, respectively, and the total number of data retained is
(8% + 8 + 14 0) = 73 compared to 1024 of the original sequence. In regenerating the

whole spectrum X (¢), the compressed set R is used together with Equation (2.3).

3.1.1 Pre-processing

In order to make a neural network produces accurate fitting curve, the selected raw
data must be pre-processed. Two widely used pre-processing methods which are

known as “Transformation” and “Normalization”.

Transformation is used to manipulate one or more raw data inputs to generate a
single network input. Normalization is a transformation which will distributes data
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evenly and scales it into an acceptable range for network usage. Decisions made

during this phase are:

e What transformations should be applied to the data?
e Should these transforms include standard technical analysis indicators?

e How should the data be normalized?

As with the selection of raw data inputs, domain knowledge is critical to the
choice of pre-processing methods. Pre-processing are needed so as to remove the
noise embedded in the signal so that the signals are smoother and to normalize the
signal range within operable range of neural network. The method of pre-processing

- depends very much on the success of the approximation of the signal.

Transformation
Smoothing Techniques

To reduce the influence of noise in the data set and improve the compression perfor-
mance when the original data set is chaotic or has a lot of vibrations, three techniques

are used in this project. They are Cyclic Transformation, Leveling and Bounding.

Cyclic Transformation The Cyclic Transformation techniques is used to ‘trans-

form’ the data set to become a cycle that is the first and the last input data are the

same.
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The formula for transforming each data value z; which represents the actual

data set (1 < i < N), to an input value y; which represents the processed data

set (1 <1< N), is:

. Iy — T
Tig1 = Ly — 1 X WTI ........................................ (31)

where zy and z;are the last and the first raw input data respectively.

Leveling This technique is to make the data set having the mathematical be-

havior of summing up to zero.

The formula of leveling for each data value z; which represents that the actual

data (1 <1 < N), is given by:
where Z,...n 18 the mean of the data set.

Bounding It helps to make the data set having.the mathematical behavior of

being bounded by one.

The formula of bounding for each data value z; > 0 which represents that actual

data set (1 < i < N), is given by:
where Toax 1S the maximum of the data set.

Normalization

The goal of the normalization is to ensure that the distribution of values for each net

input and output is in a roughly uniform. If this is not done, and input with, say,
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a normal distribution and small variance is used, then the net will only see a small
number of occurrences of facts away from the central tendency. Such a net will not
perform well on such data in the future as the fluctuating property will still affect too.
much in the dynamical system. The values should also be scaled to match the range
of the input neurons. Therefore, in addition to any other transformations (weighted
moving average) performed on network inputs, each should be normalized. Besides,

according to the “Approrimation Theory of Continuous-time Recurrent Networ

(Li, 1992), the data set is re-scaled from R to (—1,1).

The formula for transforming each data value z; which represents the actual data

set (1 € ¢ < m), to an input value T; which represents the processed data set

(1 <i<m),is:
Ii — Tmin .
T; = (—-—I— - xmin) xamplitude .......................... (3.4)
Tmax — Tmin

where ZTpin, Tmax and amplitude are minimum maximum and new range amplitude
respectively. This method of normalization can scale input data into the new range,

but does not increase its uniformity. Let us call this method as simple linear scaling

normalization here.

—T
is chosen as the uni-

x
. L . —e
In addition, the sigmoid function o = tanh (z) = £ -°
polar activation function for this project. One can easily see that the sigmoid function
o is just the logistic function transformed by stretching the z and y axes by a factor
of two and sliding the resulting curve down so that the working range for compression

must be equal to or less than [-1, 1].

In this project, range is chosen randomly and the data were normalized between
[-0.5,0.5]. Therefore, it is convenient to set the working range of the sigmoid function
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in [~0.5,0.5], so that the data are normalized between [—0.5, 0.5].

3.1.2 Segmentation

Given a one-dimensional finite signal sequence {z;} of length m, let z, (1) = 2,
22 (1) = zpy1, 23(1) = 22p41, and 2, (1) = 2Z(n_1)p41, Where 1 < ¢t < m. If the
sequence was divided into n segments with p data in each segment, then the system
(2.3) iterates p times to generate an approximation of {z;}. Here the initial state is

the exact values 2, of at the corresponding t’s.

If the Root Mean Square Error (I3 error) between the output of the system and the
smoothed sequence is less than a pre-decided tolerance, then the dynamical sysfem is
said to be capable of compression. It will be exactly achieved if the error is zero for
some neural parameters W, 8, J and h. As the system stat> is exactly eqvé.l to the
iniiial state and need not be the desired sequence after iterations, it is reasonable to
assume that the error between the actual trajectory and the system state accumulates
with the number of iterations. With an aim of reducing the error, further subdividing
each subsequence into shorter sub-segments, says length &, and restarting the system
at an exact initial state after (k — 1) iterations were done. The cost of the multiple

segmentation increases the storage of the corresponding initial states.

3.1.3 The Neural Network Dynamic Equation

The following vector differential equation is used for the purpose of compression. The
states of the equation is the column vectors of the one dimensional signal (n x 1)

after dividing into n X p matrix, where p = —. The applicability of the equation to
n
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compression is possible if:

1. the segments are correlated, i.e. there exists some kind of relationships between

the segments, and

2. the signals are non-chaotic, in other words, the signals have some intrinsic

properties that follow some dynamical system locally.

According to the Li [15] “Approzimation Theory and Recurrent Network” and
Li [14] “Data Compression By Recurrent Neural Network Dynamics”, the recurrent

-neural nets can be universal approximators of trajectory in R".

In order to.compress the given data, in particular, we consider the Leaky-integrator

model:
d’;f) X () EWO K (&) 4 O]+ Teneoeeeeeeeeeeeeeeees, (3.5)
where
h - step size,
x (t) - states of the system at time t € (—1,1)"
W - n X n synaptic correction weight matrix,
o - Dbias or threshold, n x 1 matrix,
J - external input to the system, n x 1 matrix,
o - sigmoid (activation), which is a bounded, monotonic

increasing differentiable function.

et —e™*
{o (z) = tanh(z) = ————— is chosen as activation function.}
el‘ — e—z
For simplicity, we take a, b to be the identity matrices in the project. Then

equation (2.1) was obtained.
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By Euler’s forward approximation, the next states could be expanded in the fol-

lowing equation:

dx (t)
T (3.6)

xX(t+1)=x(t)+h

where h is the step size.

Then, putting the differential equation into equation (2.1) and get:
X+ =x@)+h{-x@)+Woxt)+0]+T}...cooooooo.L. (3.7)
Now, consider the case when the state of the equation is the column vectors of

the one-dimensional signal (n x 1) after dividing into n X p matrix, where p = iy
i

Besides, rearranging the equation (3.7) such that the unknowns (W, @, and h)

are grouped on the left hand side:

x(t+ lf)L =X e t)ee SO (3.8)

For simplify, let @ = 0, J = 0, as these two parameters are not dominating factors

Wo(x(t)+ 6]+ =

for the output !. Then, the above equation becomes:

t+ 1}1 X ) (3.9)

If the new variables and are introduced,

_x(t+1) —x(1)

Wox (t)] = =

Vi

and

Hence, the above equation can be written as:

V=W Vot U=[U;- Up]

1The parameters can be used to refine the results of compression. As closing to zeros as they
are, as higher compression ratio as they can be obtained.
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and

Since there is no guarantee that the inverse matrix will exist, so in practical,
-1
if [UUT] does not exist, then we can consider to substitute the inverse matrix
-1 -1
[UUT] by a positive definite matrix [c I+ UUT] for some constant ¢ > 0, e.g.

c=10"10

3.1.4 Learning Algorithm

Given a one dimensional finite sequence y(s) as our data set, then we divide the given
sequence into n segments with p data in each segment (for simplicity, we assume that
m = np). Then, w place n segments into n rows to form an n x p matrix with p
columns of data (i.e. z;(t),1 £t <p, 1 <i < n). Assume that for n-neuron RNN
algorithm (as mention before), when given the io tial value z; (t} and appropriate J,
0 and step size h, there exists a matrix W that can exactly re-generate the original
data set y(s) if p=n+1. If p > n+ 1, we approximate the given sequence by

choosing suitable parameters with our learning algorithm.

After the network size has been chosen, the most important thing is to find the
optimal neural parameters W, J, @ and A with dimensions n x n, n, n and 1 respec-
tively. Thus, we set up an error function (Root Mean Square Error (I3 error)) so as to

measure the performance of the RNN algorithm. The problem becomes a non-linear

optimization problem.

In practice, as we have fixed the step size h and pre-processed the data within the
range of 1, we can neglect the parameter J and @ so as to reduce the number of
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variables. In that case, J and @ are zero vectors. Then, after proceeding the data set
y(s) with an n-neuron RNN algorithm, we get a neural parameter W* and a set of
approximate data set z(s) which is the approximation trajectory to the original data
set y(s). After that we evaluate the RMSE error between y(s) and z(s) and then

apply a learning process so as to improve the result, the details are as follows.

Recently, many researchers use William and Zipser (1989) algorithm or other
gradient descent based lga.rning algorithm for discrete RNN. These algorithms need
to compute the derivative along the trajectory which costing and time consuming.
There are a lot of learning algorithms in neural networks because minimize the error
function is a non-linear optimization problem and there is no simple way to guarantee
to obtain the minimum. Our learning algorithm involves convex linear combination
of the original sequence and the system output, so that no derivative is computed. In
addition, there is no hidden neuron urs2d in all our examples. of this project, we use a

new learning algorithm to train our RNN algorithm.

In our approach, if there exist a neural parameter W that can exactly regenerate
the original trajectory y(s) € [~1,1]" by RNN dynamic, we will find the neural
parameter W at the first trial. If not, our learning algorithm is to construct a convex
linear combination of original trajectory y(s) and the approximation trajectory z(s)
to form a new data set y/(s) € [—-1,1]™, where z(s) is generated by the RNN dynamic
and y/(s) is the data sequence to be approximated. Geometrically, we try to find a
convex combination of these two sequences, such that the new sequences ¥'(s) can
also be generated by the RNN dynamic with a new W. And that approximation

trajectory will be around some neighborhood of the original trajectory y(s) that can
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be generated by the discrete dynamic of an RNN for some W.
This learning algorithm divided into 2 stages:
1. We find the W that satisfies the equation (3.13).

2. After that, we generate the sequence by the RNN dynamic, and then adjust

the sequence by the convex linear combination as follows:

| Y(8) = (1= a)y(8) + @z(8) e v (*)

Instead of approximate y(s) directly, we approximate 3/(s) in the next iteration.
Hence, we repeat all the steps above with the new data set y/(s) and get another
new neural parameter W and a set of approximate data set 2’ (s} which is also the

approximation trajectory to the original data set y(s).

Compute and record the RMSE error again. The learning algorithm repeated the
iterations by using the original data set y(s) and the new approximation trajectory.
The error was computed in each iteration and only the best solution was stored.
Howeve;, this algorithm has just been in the initial stage, the proper fraction « and
the necessarily parameter £ is obtained by trial and error method. Further analysis

such as convergence, error bound of this learning algorithm is still under development.

3.2 The Error Analysis and Estimation

In this section, the error analysis, the errors and compression ratio estimations will

be discussed.

38



3.2.1 Dynamic System Method

Consider
le=mn-p : number of original data, given that le is divisible by n;
n : number of segments divided;
£ : maximum one-directional propagation error;
E;; : sum of squared error when using i segments,

7 initial points;
Ri; : compression ratio when using ¢ segments,
j initial points;
The compression ratio is defined as following:

R = total number of original data
7" number of data that required for regenerating the approximate data

In view of Iterativ: Approach

Suppose that there is a original signal sequence {z}, 1 <t <le = n - p, where

n : number of segments divided;

p : length of each segment;
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Hence, after segmentation, the original sequence becomes:

( F4 22 Tt Zp
' zp+l zp+2 P 221’
(z1...... z,.p)lxnp segmentation
\ Hn-lp+1 Zn-lpr2 C Znp }nxp

Error Bounds

Consider the case when there is a sequence {m}, 1 <t < n.-p=le, which is
an approximation of the original signal sequence {z}. Define |z,4; — 2] = & where

t=1,23,...,np, and Maz |g,] = . Then the worst case occurs when the maximum

error £ accumulates uniformly with the iteration, i.e. &, =¢-¢.

Due to the segmentation method shown above, there are a total of p iterations
for each segment and the total of n segments. Therefore, the accumulated error for a
single segment is:

E; = z g2 53_:1 ) (3.14)

wherei =1,2,...... , .

The total error is bounded as a function of n, p, and € because

S E=FF (e <net fo= 2P+ D@+l (3.15)

i=1 i=1t=1 6

Thus, the RMSE becomes:

J% [ Ezp(p+1)(2p+l)J%
np

RMSE:[ Z}E 6

np i=1

_ [(p+ 1)é2p+ 1)52] %
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3.2.2 Recurrent Neural Network System Method

The number of data required for regenerating the original data contains the following

variables:
W - which is an n X n matrix . n?
@ - which is an n x 1 matrix > on
J - which is an n X 1 matrix :n
h - step size of the different equation : 1
initial value - which is an n x 1 matrix : n
n?+3n+1

Hence, the compression ratio becomes:

In addition, the number of propagation is:

s=(%p-1)=p—1 ........................................... (3.17)

Consider there is a sequence {1}, 1 < t < np which is the approximation of the
original signal sequence {2;}. Assume that ¢ = max|y: — 2|, V¢t € [1,np], and the
error is in uniform propagation that ¢; = ke, then the sum of all square of errors is

bounded by E,,, i.e.

Eq\ > (ke)? = s(s+1) @s + 1)n52 ........................ (3.18)

i=lk=1 6

Improvement as the network size increases

Increasing the network size from n to (n + 1)

Consider the case of n + 1, the compression ratio becomes:

: np np
= e i 3.19
Rnt11 mt ) 13t D rl mtonts (3.19)

41



Hence, the estimated error bound becomes:

sn ( sn 1)( 2sn 1)
+ +
1 1 1
n+l\n+ n+ (n+1)52

En+1_1 = 5 \nRTile...eeiieenene (320)
Then the improvement in estimated error bound relate to E,, is:
sn sn_ ( 2sn 1)
+ +
n+1 (n +1 ) n+1
Erria _ = (n+1)e?
E 1 - a(s+1)(2s+1) ,
n, 7] nc
_ntnt D@sntntl) (3.21)
(s+1)(2s+1)(n+1)
Since s = p — 1, then after substitution it becomes:
Eng _(pn+1)(2pn—n+1) (pn+1)(2pn—n+1) n?
Ena p(2p - 12) (n+1)° (pn+n)(2pn—n) (n+1)°
T
o sl T A 3.22
(n + 1) ( )

The number of data required = [(n +12+3(n+1)+ 1] = n? + 5n + 5, which
is (2n + 4) data more than that in using n segment. Roughly speaking, when one

more segment is used, the number of data required for compression in two cases have

2
no significant difference. However, the error will reduce by approximately ( :l_ 1)
n

compared to the case of using n-segment.

Double the number of segments

Now, consider the case of 2n, the estimated error bound then becomes:

S /s 2s 1
2 (5 +1) (5 +1)
E?n,l = 6 2nec = ZEﬂ ....................... (323)

i.e. the error reduces by approximately 75% compared to the case before segment

doubling.

Hence, the compression ratio becomes:

np _ np ~l
2n)2+3(2n)+1 4n?+6n+1 4

R?n,l =
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Doubling the segment will not only reduce the error, but also reduce the compres-

sion ratio by approximately to a quarter.

The number of data required = [(2%)2 +3(2n) + 1] = 4n? + 6n + 1, which is

(3n? + 3n) more when comparing to simplest n-segment method.
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Chapter 4

Equation and Techniques for

programming

In order to demonstrate our compressing technique, we apply our technique through
computer simulation and compress the UV and IR spectra data provided by Professor
Chau of the Applied Biology and Chemical Technology Departmeat, at The Hong

Kong Polytechnic University.

In this project, we use the software “Matlab for Windows” to handle all the

programming matters,

4.1 The neural network equations for program-
ming
Recall the discrete recurrent neural network equation in chapter [3].

x(n+1)=x(n)+h{-x(n)+Wox(n)+0]+I}.............. (4.1)
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where x (n) represents the data sequence after preprocessing. If the sequence is
divided into n segments and is defined the n-dimensional sequence as x,, then the

above equation becomes:

Xs(n + 1) = x,(n) + h {—x,(n) + Wo [x,(n) + 8]+ T} ....... e (4.2)

In this equation x, is already known, and h can be estimated by trial and error.

The remaining neural parameters required to be calculated are W, J and 6.

With some simple rearrangements, and letting S = o (x, (n) + 8), then the fol-

lowing equations can be used for the purpose of programming ;

W = {[x’("+ li_x’(”) + Xa(n) —J] s‘} {sst} . (4.3)

where n = 1 to m, which is the total number of patterns.

When the weight matrix W is found, then J and @ can be calculated with the

following equations:

J = %1 ngl {xs(n+ 1})1— Xs(n) + x4(n) — Wao [x, (n) + 9]} ... (4.9)

{a—l [w—l (x’(” 1) =xs(n) _ J)] - xs(n)} ........... (4.5)

5!

0 —
h

2
itge

In the equations, the finding of W, J and @ are still unknown. There are several

schemes can be applied for finding those parameters.

e set @ = 0 and J = 0, then find W, then @, then J, and then W. The cycle

goes for several times.

e set 8 = a(median) + (1 — a) mean and J = 0, then find W, then @, then J,

and then W. Also the cycle goes for several times.

45



median
mean

o fix 8 = and J = 0, then find W, then 8, then J, and then W. This

cycle also goes for several times.

To implement, the parameters # and J were set to be zero in this project, i.e.

@=0and J=0.

4.2 Techniques for Learning Algorithm

For the purpose of minimizing the timing for learning, we only may apply the learning
algorithm in the recurrent neural network. It means that pre-processing techniques
such as normalization, cyclic transformation, leveling and bounding techniques will

be applied before learning algorithm.

On the basis of the learning algorithm equation mentioned in previous chapter,
let y(s) be the original data segment after pre-processing and segmentation. Then
putting this original data set into the process of the recurrent neural network, the
approximating data set z (s) will be generated. Hence, with the aim of training the
weight matrix W, using the following equation to produce a new data set 3/ (s) and
putting it into the process of the network again until the acceptable tolerance Root
Mean Square Error (“RMSE”)(l> error) while compared to the actual original data

segments have been achieved.

YE)=1—a)y(s)+az(s) oo (4.6)

where
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a - the trial and error proper fraction for the original and
approximating data,
y(s) - the original data set,

z(s) - the approximating data set by the recurrent neural network,

y'(s) the new original data set.
The proper fraction value o was different in different chemical combination, i.e.

different UV spectra have different o. Since there is no particular method to find o,

trial and error method has been used in this project.

The equations and techniques have been discussed thoroughly in this chapter and
also in Chapter [3], it is time to implement the algorithms with computer programs.
In order to increase the compression efficiency further, the parameters & and J were
assumed to be zero vectors in this project.

Hence the compression ratio becomes:

The lists of the program are given in Chapter [9] Appendices. The results of UV
and IR spectra will be presented as diagrams in the subsequent two chapters, i.e.
Chapter [5] and Chapter [6]. The errors calculated will be tabulated for easy com-
parison between the chemicals and different techniques used. As there are different

pre-processing techniques are used together to find out the best results, different flow

charts will also be given for easy following.
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Chapter 5

Results from Ultra Violét Spectra

In the first section of this chapter, we will discuss the results of the original data
set and data sets with different noise added by one-directional propagation. In the

second section, comments on the results will be given.

5.1 Results- UV Spectra using Learning algorithm

The following diagrams show the result of original data sets and approximated data
sets when learning algorithm (“L”} with several network being used. Besides, cyclic
transformation, leveling, bounding and normalization were used as the pre-processing

techniques. The flow chart of the program for those results of 5.1 is shown in Figure

3.1.

In order to compare the data more easily, the value of 0.3 was added to the original
data. In the diagrams, the upper curves are the original curves which were printed in

red, and the lower curves are the approzimation curves which were printed in blue.
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Figure 5-1: Flow chart for the results of Section 5.1.
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The corresponding maximum absolute error(iy, error), mean absolute error(l; error),
root mean square error (“RMSE”) (l; error) and their relative error percentages(%)

are calculated and tabulated in the tables shown below.

In addition, the compression ratio:

_ total number of original data
"~ number of data that required for regenerating the approzimate data

Ri;

where ¢ - number of segments;

Jj - number of initial point.

have also been calculated.
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5.1.1 Single initial values using 4 segments
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5.1.2 Single initial values using 5 segments
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5.1.4 Single initial values using 7 segments
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5.1.5 Single initial values using 8 segments
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Single initial values using 9 segments
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5.1.7 Single initial values using 10 segments
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5.2 Results - UV Spectra with some noise using

Learning algorithm

The following diagrams show the result of original data sets and approximated data
sets when learning algorithm (“L”) with network size of 8 was used. Besides, cyclic
-transformation, leveling, bounding and normalization were used as the pre-processing

techniques. The flow chart of the program for those results of 5.2 is shown in Figure

9.2

In order to compare the data more easily, the value of 0.3 was added to the original
data. In the diagrams, the upper curves are the original curves which were printed

in red, and the lower curves are the recovered curves which were printed in blue.

The corresponding maximum absolute error(l,, error), mean absolute error(!, error),
root mean squs re error (“RMSE”) (I, error) and their relative error percentages(%)

are calculateti and tabulated in the tables shown below.

In addition, the compression ratio:

_ total number of original data
number of data that required for regenerating the approzimate data

Ri;

where i - number of segments;

j - number of initial point.
have also been calculated.
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5.2.1 Single initial values using 8 segments for UV in a
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5.2.2 Single initial values using 8 segments for UV in b
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5.2.3 Single initial values using 8 segments for UV in ¢
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5.3 Results - UV Spectra (without/with Learning

algorithm)

The following diagrams show the result of original data sets and approximated data
sets either with using learning algorithm (“L”) or without using learning algorithm,
both of which were based on the same network size of 8. Normalization were used-as
- the pre-processing techniques. The flow chart of the program for those results of 5.3 -

is shown in Figure 5.3 and 5.4.

In order to compare the data more easily, the extra value was added to the data.

Moreover the curves were printed in different colors.

The value of 0.3 was added to the recovered curves in relation to the results of
without using learning algorithm. In the lef: hand side of the diagrams, the upper
curves are the covered curves which were printed in blue, and the lower curves are

- the original curves which were printed in red.

As regards the results of using learning algorithm, the value of 0.3 was added to
the original data. In the right hand side of the diagrams, the upper curves are the
original curves which were printed in red, and the lower curves are the recovered

curves which were printed in blue.

The corresponding maximum absolute error{l., error), mean absolute error(l; error),
root mean square error (“RMSE”) (I error) and their relative error percentages(%)

are calculated and tabulated in the tables shown below.
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In addition, the compression ratio:

B total number of original data
" number of data that required for regenerating the approzimate data

Ry

where i - number of segments;

j - number of initial point.
have also been calculated.
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5.3.1 Single initial values using 4 segments for UV Spectra
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5.3.2 Single initial values using 8 segments for UV Spectra
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UVina  2.08631e05 35371800 7.20423e06  0.00:H1 0.00040 00083
UVinh 0.44537Te-058 106136056 1.89217n-05 (L0107 (0.00120 MO0Z2106
UVine 23629503 B.89291e-05 2.5387Te-(M 0. 26061 0.01015 0.02897
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Table 5.13: Errors of the UV spectra when 8 segments, with or without learning,
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U g eg+1

1




5.4 Comments on the results:

The following comments are obtained from the results mentioned in Section 5.1 to

5.3:-

1. By comparing the errors obtained in Section 5.1 with different segments, all
UV in a, b, ¢ or d showed improvement while the number of segments were

increased. Besides, UV in d showed obviously worse result in all segments.

2. By comparing the errors obtained in Section 5.2 with some noise in UV in
a, b, ¢ or d, it seems that although the shape is not change severely, all the

approximation errors are obviously drop down if different levels of noise were

added.

3. By comparing the errors obtained in Section 5.3.1 and Section 5.3.2 with using
and not using learning algorithm, it showed improvement obviously in almost

all chemicals as our learning algorithm was added.
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Chapter 6

Results from Infra Red Spectra

In chapter (5], the results from UV spectra have been shown. The UV spectra are
relatively simple and short in length and so compression of those signals is quite

successful.

In this chapter, a second set of data from Infra Red spect: a will be presented. The
signal lengths of IR spectra are longer than those of UV spectra and the waveforms
are much more complicated than those of UV. So compressing IR spectra is not so
easy and simple as those compressing UV spectra. Besides, the results from two
different segmentation will also be presented. In the first half of this chapter, the
results from 8 segments are presented. In the second half of the chapter, the results
from 9 segment