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Building Heating, Ventilating, Air-conditioning and Refrigerating (HVAC&R) systems 

usually fail to satisfy performance expectations envisioned at design stage for a variety 

of reasons. FDD (Fault Detection and Diagnosis) methods are needed to identify the 

faults and help put the systems back into normal operation. However, the performance of 

FDD methods applied to HVAC&R systems require sensor measurements, which are 

also susceptible to various faults. Although a great deal of FDD research has been carried 

out on component faults or sensor faults in HVAC&R systems, not much research has 

tackled these two different kinds of faults when they occur simultaneously in HVAC&R 

systems. 

This thesis presents a robust FDD strategy for centrifugal chillers, which are the core of 

building HVAC&R systems. The strategy consists of a basic chiller FDD scheme and a 

PCA-based sensor FDD&E (Fault Detection, Diagnosis and Estimation) scheme, which 

target chiller component faults (called chiller faults hereafter for conciseness) and sensor 

faults, respectively. In implementing the strategy, it is important that the measurements 
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of the sensors crucial to the chiller FDD are validated by the sensor FDD&E scheme 

before the chiller FDD scheme is carried out to detect and diagnose chiller faults.  

The basic chiller FDD scheme employs six performance indexes which have strong 

thermophysical meaning to depict the health status of a typical centrifugal chiller. The 

residual for each performance index is generated by comparing the measured value with 

its benchmark predicted by a simple reference model. Once residuals of one or more 

performance indexes are outside the range defined by the corresponding fault detection 

thresholds, the chiller will be considered to be faulty. Particular faults are diagnosed by a 

fault diagnostic classifier, which is based on the deviation pattern of the performance 

indexes when a chiller fault occurs. Robustness of the scheme is achieved by the 

adoption of an adaptive estimator for the fault detection threshold. The estimator can set 

reasonable fault detection thresholds by taking account of essential influencing factors.    

Because the performance of the basic chiller FDD scheme depends on the quality of 

sensor measurements, a sensor FDD&E scheme is developed to tackle sensor faults. The 

latter scheme uses a PCA method to capture correlations among key variables in 

centrifugal chillers. The Q-statistic is used to measure the variance of the correlations, 

and its upper limit usually defines the normal ranges of the variance. If the Q-statistic 

exceeds the normal ranges, it will indicate that the correlations among variables are 

invalid and the sensors are unreliable. Afterwards, the Q-contribution plot and an 

iterative approach are respectively used to diagnose and correct sensor faults. The PCA-

based sensor FDD&E scheme can detect, diagnose and estimate sensor faults even in the 

presence of most typical chiller faults. The reason for this is that chiller faults are 

pertinent to performance degradations which are physically explainable and belong to the 

variance captured by the PCA model. 
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Each of the two schemes is validated using laboratory data provided by an ASHRAE 

research project as well as field data collected from the BMS of a real building in Hong 

Kong. In particular, it is the first time in the HVAC&R FDD field that a sensor FDD 

method has been verified while taking into consideration the possible effects of typical 

chiller faults. Moreover, validation results of the robust chiller FDD strategy using the 

laboratory data show that the strategy is capable of handling chiller faults and sensor 

faults that exist simultaneously. 

The outcomes of the research reported in this thesis should provide an effective 

prototype for developing robust FDD strategies that can be applied in the HVAC&R 

industry. This will in turn help achieve better Indoor Environmental Quality (IEQ) for 

occupants and lower building energy consumption.    
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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation 

According to the Collaborating Label and Appliance Standards Program of United 

Nations Foundation, energy use for appliances, lighting, and other in-building 

applications accounts for one third of total energy consumption worldwide. In large 

commercial buildings, it was estimated that 10%-20% of the total electricity 

consumption could be ascribed to HVAC&R (Heating, Ventilating, Air-conditioning and 

Refrigeration) systems alone (Huang et al. 1991) and this figure was typically 35-40% in 

Hong Kong (Chan and Yik 2002). From the standpoint of initial and operating costs, 

centrifugal chillers are the core of HVAC&R systems serving commercial, medical and 

residential buildings in hot climates. They also find wide applications in product cooling. 

As Menzer (1997) shows, in the commercial air conditioning sector, centrifugal chillers 

account for 70% of the global installed cooling capacity which has been estimated at 

60×106 tons (211×106 kW). During operation, various faults may occur in centrifugal 

chillers due to abnormal physical changes or aging of components, improper installation 

and operation, as well as inadequate maintenance, which make the chillers fail to satisfy 

performance expectations envisioned at the design stage. Failure to identify these 

performance problems in time results in a great waste of energy, shortened equipment 

life, unscheduled equipment downtime, and a lot of occupant complaint due to degraded 

IEA (Indoor Environmental Quality).  
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Automated fault detection and diagnostics (FDD) for chillers can help remedy the faults 

and enhance chiller operation by automatically identifying performance problems and 

bringing them to the attention of building operators or engineers. Nevertheless, given the 

significance of chillers in building HVAC&R systems from a standpoint of energy 

consumption and occupant comfort, there has been a relatively small body of FDD 

studies directly aimed at chillers. Moreover, the performance of FDD methods for 

chillers depends heavily on the accuracy and reliability of sensors, which however may 

also suffer from various faults, including bias errors, drift errors and complete failure.   

Therefore, it is necessary to develop a systematic chiller FDD strategy that can detect 

and diagnose faults that occur in both chiller components and sensors simultaneously. 

 

1. 2 Background of FDD for Chillers 

1.2.1 Fault Definitions  

In the process and manufacturing industries, there has been a strong drive to produce 

quality products while reducing operating costs and satisfying ever-increasing 

requirements of safety and environment. Although modern controllers in the process can 

maintain satisfactory operation by compensating for the effects of disturbances and 

changes occurred there, there are process changes the controller can not handle 

adequately (Chiang et al. 2001). These changes are called faults. More specifically, a 

fault in the context of HVAC&R systems is defined as an unsatisfactory or unacceptable 
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condition in the operation of a system or subsystem (McIntosh 1999). In the following 

text, faults affecting the performance of subsystems or components of chillers, such as 

refrigerant leakage are called chiller faults, and those affecting the performance of 

sensors, such as a biased temperature measurement, are called sensor faults  

Furthermore, faults in HVAC&R systems can also be grouped into two types in terms of 

fault severity level: soft faults and hard failures. Soft faults cause performance 

degradation in a system and hard failures cause the system to stop functioning.  

 

Soft faults 

Soft faults in components include process parameter changes and disturbance parameter 

changes (Gertler 1998), which happen unnoticeably at a slow rate but progressively 

worsen over a period of time. Overall system performance is not drastically changed 

until the degradation has deteriorated beyond a critical level. Typical examples of 

parameter changes are the fouling of the tubes of condensers and evaporators.  The loss 

of refrigerant and the liquid line restriction are examples of disturbance parameter 

changes. These faults usually result in such adverse outcomes as pressure drops, reduced 

flow rates and heat transfer coefficient, etc.  

Soft faults in sensors, i.e., noise and bias, are one of the typical faults found in chiller 

systems. Because a faulty sensor provides control systems with deceiving signals, it not 

only affects the energy consumption, efficiency monitoring and optimal control in 

chillers, but also misguides the implementation of FDD strategies for chillers (Dexter 
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and Pakanen 2001). Nowadays, sensors are playing a very important role in BMSs 

(Building Management Systems). Because of the complexity of BMS, the number of 

sensors is large and different sensors have different functions. The FDD system for 

sensors has never been more important than it is now. Great contributions in this field are 

made by Wang S.W. and Wang J.B. (1999, 2002a and 2002b). 

In the case of soft faults, it is necessary to get a reference base, the benchmark, which 

defines the performances of system free of faults, and a threshold, below which the fault 

is considered insignificant and above which it is considered desirable to detect the fault. 

This threshold may not be easy to set, and usually it is set empirically. A low threshold 

can benefit the detection of smaller faults and the earlier detection of major faults but 

tends to produce false alarms.   

 

Hard failures 

Seized compressors, broken fan belts and malfunctioning electrical components are 

typical examples of hard component failure. Frozen and jumping readings are typical 

examples of hard sensor failure. An automated FDD system should be able to diagnose 

hard faults. These hard failures are easier to detect, since they occur abruptly and result 

in a sudden failure of some part of the plant (Haves 1999). Adverse impacts of hard 

failures are severe enough to justify the most immediate service.  

Since hard failures are easier to identify than soft faults, soft faults in both chiller 
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component category and sensor category are the prime concern of FDD applications 

within HVAC&R systems. From now on, both chiller faults and sensor faults in this 

thesis, if not specifically stated, refer to the soft faults.  

 

1.2.2 Basic Knowledge of FDD 

Generally speaking, there are three procedures in a FDD system for industrial 

applications and these procedures include fault detection, fault diagnosis and fault 

evaluation (Haves 1999). Fault detection is the determination whether the operation of a 

system is incorrect or unacceptable in some respects. This can be done either by:  

 assessing the performance of all or part of the system over a period of time (e.g. 

from electricity consumption) and then comparing that performance to what is 

expected; 

 monitoring the temperatures, flow rates and electrical power consumptions and 

continuously checking for incorrect operation or unsatisfactory performance. 

Faults may occur over the whole operating range or be confined to a limited region and 

hence only occur at certain times. 

Fault diagnosis, as defined in Webster's New Collegiate Dictionary, is an investigation or 

analysis of the cause or nature of a condition, situation, or problem. It involves 

determining which of the possible causes of faulty behavior are consistent with the 

observed behavior. Automated fault diagnosis usually relies entirely on sensors and so 
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may not be able to identify the nature of the fault exactly. However it can help eliminate 

some of the possible causes and narrow the range of potential causes. 

In addition to finding the physical cause of faulty operation (e.g. fouled heat exchanger, 

overridden control function), it is also desirable to estimate both the cost of fixing the 

fault and the cost of delaying fixing it, which is called fault evaluation. The fault 

evaluation then balances these two costs and provides appropriate recommendations, 

including: let it go, adjust the control to compensate for the fault, schedule service when 

it is convenient, or shut the unit down and repair it now. The basic procedures of FDD in 

HVAC&R applications are shown in Figure 1.1 (Braun 2003). 

 

FDD 
Module

Evaluator
Module

Measurements 

Evaporating temp.

Condensing temp.

Chilled water supply temp.

Fault output

No fault

Condenser fouling 

Refrigerant leakage

Excess oil

Service recommendation

Let it go 

Schedule control

Adjust control

 

Figure 1.1 Procedures of a typical FDD system in HVAC&R applications 

It is worth pointing out that it is not always necessary to implement all three procedures 

in a FDD system even though they may be. Actually, the fault evaluation procedure often 

involves much knowledge beyond the scope of HVAC&R engineering itself. More often 

than not, the goal of a FDD system in HVA&R applications is to consolidate the 

information into a clear picture of equipment status and incorporate the plant operators 
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and engineers into process monitoring efficiently, rather than only automate all the 

procedures. Therefore, the fault detection and diagnosis are virtually the two procedures 

of great concern in the application of FDD system to HVAC&R systems.  

 

1.2.3 State of the Art of FDD in HVAC&R Systems 

As early as the 1960s, engineers and scientists came to realize that faults, even a minor 

malfunction, of critical applications, e.g., nuclear power plants and air craft industries, 

could lead to severe consequences - loss of money, time or even life. These 

considerations led to increasing research into automated (even on-line) fault detection, 

diagnosis (FDD) systems. Automated FDD systems in critical applications have the 

potential to ensure safe operation, improve business productivity, reduce equipment 

down time, and reduce operating costs. For critical applications, safety is an overriding 

consideration and expensive sensors and electronics can be used within FDD system to 

achieve this goal. In chemical process plant, FDD systems can go a long way towards 

reducing downtime and improving production efficiencies (Braun 2003). 

The primary difference between HVAC&R systems and critical applications for FDD is 

the cost-to-benefit ratio. In general, the benefits of FDD for HVAC&R systems are lower 

than for critical applications (Braun 1999). Traditionally, the benefits of FDD in 

HVAC&R systems are reduced operating costs. But now, the ever-rising awareness of 

the effects of IEQ on health, productivity and the quality of life has been greatly 

speeding up the development and deployment of FDD in HVAC&R systems.  
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On the other hand, one of the primary obstacles to the development and deployment of 

FDD in HVAC&R systems has been for a long time the lack of information of target 

systems, as it is not economical to apply many sophisticated electronics to such non-

critical systems. Fortunately, the costs of sensors and control hardware have gone down. 

In addition, the recent advances in network technology and the compatibility of BMS 

network protocols allows the Direct Digital Control (DDC) panels of individual 

HVAC&R devices to be conveniently integrated into the BMS through gateway 

technologies (Hartman 2000). The integration between the individual devices and BMS 

have created the opportunity for the BMS to have rich information of individual devices 

and the whole HVAC&R system, while eliminating the need for duplicating sensing 

components and wiring. This has provided a necessary background and infrastructure for 

the use of quantifiable information for better performance analysis and decision making, 

especially for FDD in HVAC&R systems in buildings.  

Furthermore, the initial, operating and maintenance costs for chillers, especially large-

sized centrifugal chillers, are significantly greater than those for other devices in 

HVAC&R systems. These large components can absorb more added costs associated 

with FDD than others. Moreover, FDD systems for large-sized chillers can be integrated 

into DDC panels of individual chillers and BMS, reducing the added costs in these 

applications even further. Therefore, FDD systems for centrifugal chillers have a high 

benefit-cost ratio and are increasingly attractive for researchers.  
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Up to now, there are many FDD studies on HVAC&R systems. However, there have 

been relatively few studies targeting chillers, considering their importance to thermal 

comfort and energy use. Literature reviews of FDD studies on HVAC&R systems are 

presented in a source book by International Energy Agency (IEA Annex 25 1996), 

Comstock et al. (1999), Reddy et al. (2001), and Dexter and Pakanen (2001). Specific 

contributions made by a few researchers in the development of FDD for chillers will be 

presented in the following subsections.  

Moreover, in the past several years ASHRAE (American Society of Heating, 

Refrigerating and Air-conditioning Engineers) has also been active in sponsoring 

research in the area of FDD for HVAC&R systems. The ASHRAE research specifically 

aimed at diagnostics includes:  

 Small Scale On-Line Diagnostics for an HVAC System (883-RP)  

 Demonstration of Fault Detection and Diagnostic Methods in a Real Building 

(1020-RP) 

 Fault Detection and Diagnostic Requirements and Evaluation Tools for Chillers 

(1043-RP) 

 Development and Comparison of On-Line Model Training Techniques for Model-

Based FDD Methods Applied to Vapor Compression Equipment (1139-RP) 

The cited efforts above have made significant contribution to enabling FDD applications 

within the HVAC&R industry.  
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1.2.4 Fault Survey in Chillers 

One of the first steps in developing a FDD strategy is to identify the most important 

faults, both hard failures and soft faults, which are worth consideration. This section 

concludes with how and why the faults are selected for the development of the FDD 

strategy in this thesis.  

The primary information sources used to determine the faults in chillers come from 

technicians who serve them. Comstock and Braun (1999) conducted a fault survey for 

chillers (screw and centrifugal) by gathering information from service technicians and 

design engineers. Their survey of centrifugal chillers is most pertinent to the study in this 

project. Figure 1.2 shows the normalized frequency results from the service records 

detailing the various kinds of faults that occur in centrifugal chillers. Obviously, the most 

common fault was a problem in the control box or starter. Although these kinds of faults 

are typically easy to detect and fix, they are a nuisance because of the downtime they 

cause. The high frequency of refrigerant leakage is surprising, but is relatively simple to 

correct. Nevertheless, environmental regulations warrant the detection of refrigerant 

leakage as soon as possible. Approximately 56% of the faults have the potential to affect 

the thermodynamic states of the chiller. The results are similar to those reported by 

Breuker (1997) for rooftop air-conditioners.   

 10



 

Figure 1.2 Centrifugal chiller detailed fault survey results normalized by frequency 
(Comstock and Braun 1999) 

Although a large number of possible faults and failures in centrifugal chillers were 

identified by the survey of Comstock and Braun (1999), it is noteworthy that not all of 

them would be of practical significance for the study of FDD in chillers. For example, 

most electrical and compressor failures (e.g. motor burnout, control box/ starter failure, 

and condenser fan loss) do not need sophisticated detection methods, since their presence 

is obvious. In addition, some failures can be easily detected with simple sensors. For 

example, the reduced condenser and evaporator water flow rates can be easily detected 

by the mounted precise flow meters. As for faults associated with lubrication (e.g., faulty 

oil cooler and faulty oil pump), they are not practical for further investigation as part of 

FDD as they can easily detected by measuring oil temperature and oil pressure.  

Soft faults generally lead to a loss of performance, but are otherwise not easily detected 

(since the chiller is often still operational) and cannot normally be detected with a single 
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sensor. For example, the frequency of refrigerant leakage is very high and unnoticeable 

for system operators. This fault needs to be detected as soon as possible due to 

environmental regulations.  

Consequently, the chiller faults chosen for study in this thesis are:  

 Evaporator fouling 

 Refrigerant leakage 

 Excess oil 

 Condenser fouling  

 Non-condensables in refrigerant 

 Degradation of centrifugal compressor 

It was known that some of these fault conditions do not occur very frequently. However, 

they cumulatively account for around 30% of the service calls made and the repair cost. 

It is worth pointing out here that evaporator fouling and compressor degradation - two 

faults are not included in the survey of Comstock and Braun (1999) - are added to the 

above list. The reason for it is that evaporator fouling can occur to a flooded evaporator 

when oil can not return to the compressor properly, and compression degradation 

actually takes faulty impeller/vanes into account.     

It could be expected that the faults chosen for study could change the thermophysical 

states of centrifugal chillers and therefore could be detected by monitoring performance 

indexes that have great thermophysical meaning. The performance indexes indicative of 

soft chiller faults usually do not change abruptly but degrade gradually, which allows 
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operators to notice the degradations easily by tracing them. Moreover, according to 

Breuker’s research (1997), it is possible that many of the detectable faults may serve as a 

warning sign for potential failures that can occur later if the fault is not handled well. 

 

1.3 Literature Review  

1.3.1 FDD Methods for HVAC&R Systems 

Since a fault is actually an unsatisfactory deviation from a normal expectation, 

comparison is the essence of FDD, e.g., selection of parameters (qualitative or 

quantitative) for comparison, construction of benchmarks for comparison, and analysis 

of comparison results. As presented by Gertler (1998), the methods of fault detection and 

diagnosis may be classified into two major groups: model-free FDD methods, which do 

not use an explicit mathematical model of the target system (Figure 1.3), and model-

based FDD methods, which however utilize the model (Figure 1.4). Nevertheless, it 

should be noted that there is no clear boundary between these two definitions and 

sometimes these two methods are used jointly. 

Model-free methods do not need models of the target system. Actually the monitored 

parameters are fed into a fault diagnostic classifier, the outputs of which will indicate the 

presence or absence of a predefined fault. The classifier is usually constructed by rules 

that relate the monitored parameters to the corresponding faults. Although model-free 

methods have a simple structure and can detect and diagnose faults simultaneously, it is 

difficult to construct a series of robust rules for them and evaluate faults effectively. 
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Figure 1.3 Schematic diagram of a model-free FDD method 

The model-free FDD methods range from physical redundancy and special sensors 

through limit-checking to expert system. Of course there is also no strict demarcation 

between the various categories below, as some methods tend to overlap. 

 Physical redundancy uses multiple sensors installed to measure the same physical 

quantity. Frank (1987) described how information redundancy was advisable for 

robust FDD to be achieved. In his study, multiple sensors and actuators were used 

to measure the same quantities. A voting procedure was used to compare 

performance, and faults were detected by a set of majority rules. Even though the 

method can often be effective in sensor FDD, its cost, and the complexity 

associated with installing redundant sensors and limitations in its capability make it 

unattractive in most engineering applications. However, the method is usually used 

in nuclear power plant where safety and reliability are overwhelming concerns.   

 Special sensors may be installed explicitly for fault detection and diagnosis (Gertler 

1998). Examples of special sensors are limit sensors performing limit checking (see 

below) in hardware by measuring temperature or pressure. Other special sensors 
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may measure some fault-indicating physical quantities to detect special faults in 

engineering applications, e.g., leakage of liquid or gas. 

 Limit checking is widely used in engineering applications, where plant 

measurements are compared by computers to preset limits (Wagner and Shoureshi 

1992). Exceeding the threshold indicates a fault condition. In many systems of this 

kind, there are two levels of limits, the first one serving for pre-warning while the 

second one triggers an emergency reaction. 

 An Expert system generates links between observed behaviors and particular faults 

(Han et al. 1999). The development of an expert system, according to Tsutsui and 

Kamimura (1996) involves three main steps: the acquisition of knowledge from 

knowledgeable experts and case histories, the expression of this knowledge 

logically, e.g., using “if-then-else” statements, graphically or in decision table 

format and a method of reasoning, which deals with how to implement the fault 

diagnosis.  Rule-based systems are considered to belong to expert systems. 

Model-based methods utilize a mathematical model or physical model as the reference 

model to describe the system under fault-free operation. The monitored parameters are 

compared to the behavior predicted by the reference model to generate residuals, which 

are then used to indicate occurred faults.    
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Figure 1.4 Schematic diagram of a model-based FDD method 

Model-based FDD methods can be classified into three groups in terms of model 

construction:  

 Data driven models do not incorporate any knowledge of the system. Examples 

of these models include artificial neural networks (ANN) (Peitsman and Bakker 

1996, Bailey, 1998), polynomial regression models (Rossi and Braun 1997, Jia 

2002), autoregressive (AR) models (Peitsman and Bakker 1996), multi-step fuzzy 

models (Dexter 2001), principal component analysis (PCA), etc. Transients are 

often neglected in data driven models used for FDD. An advantage of these 

models is that detailed physical knowledge of the system is not necessary. A 

disadvantage is that these models are reliable only for operating points that 

training data can take into account. In order to get proper models, training data 

containing much information are required. 

 Physical models are largely based on fundamental thermophysical knowledge. 

Examples of physical models include ASHRAE Primary Toolkit Models 

(Bourdouxhe et al. 1997), Gordon-Ng universal chiller models (Gordon et al. 

1995), component physical models (Mclntosh et al. 2000), etc. Physical models 

require less training data, but a deep understanding of the process, which is 
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usually difficult to obtain, is necessary for developing an accurate model. In 

addition, the more detailed the model, the less transportable. 

 Semi-physical models may be partly data driven and partly based on fundamental 

thermophysical knowledge. Actually, these models are data driven models that are 

calibrated by experimental study, e.g., CoolTools/ DOE-2 Model (PG&E, 2001). 

Semi-physical models are more transportable than physical models and require 

less training data than data driven models.  

It is noteworthy that all FDD methods, whether model-based or model-free they are, 

have their own advantages and disadvantages. In this regard, there is no single approach 

that is applicable to all engineering applications. Considering the strong robustness and 

high accuracy of the model-based methods, most investigators have recently shown great 

interest in them. Many efforts have been made to incorporate different FDD methods into 

a hybrid system for better fault detection, diagnosis and evaluation, e.g., data-driven 

models for sensor FDD and semi-physical models for chiller component FDD. 

 

1.3.2 Applications of FDD Method for Chillers   

Model-free FDD methods 

The review of model-free FDD methods shows that those methods were widely 

employed in the early investigation of FDD for small or medium-sized chillers. 

Stallard (1989) developed an expert system for automated FDD applied to refrigerators. 
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Different temperature measurements were used directly as classification features. Feature 

limit checking was used for both detection and diagnostic classification. Fault diagnoses 

were performed by evaluating the direction in which the classification features changed 

from benchmark values and then by matching these changes to expected directional 

changes related to each predefined fault. 

Yoshimura and Ito (1989) used a combination of seven temperature and pressure 

measurements to perform rule-based FDD for packaged air conditioners. The rule-based 

method was used with the thresholds defined as fuzzy variables. They did not utilize any 

preprocessing or statistical rule evaluation.  

A FDD method was developed by Inatsu et al. (1992) by measuring the amount of 

refrigerant in an automotive air-conditioning system. It was concluded that measuring 

the liquid-gas flow ratio could give desirable results and identify up to 40% loss of 

refrigerant charge under medium to high load conditions.   

More recently, McIntosh (1999) made use of redundant physical measurements in 

parallel chillers to detect and diagnose measurement bias errors. This method requires 

another sensor of known accuracy as a reference base. 

 

Model-based FDD methods 

A prototype diagnostic system, which can be used under variable operation conditions, 

has been developed for compression refrigeration plants by Grimmelius el at. (1995). 
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Based on a combination of causal analysis, expert knowledge and simulated failure 

modes, a symptom matrix with many failure modes has been established. The accuracy 

and transplantable capability of the FDD system still need be improved.  

Stylianou and Nikanpour (1996) used a thermodynamic model that was developed by 

Gordon and Ng (1995) as part of their FDD method for a reciprocating chiller. This 

model was used solely for fault detection but not for diagnosis during steady-state 

operation of the chiller. Similar to the approach of Grimmelius et al. (1995), fault 

diagnoses were implemented based on a fault pattern matrix which, as shown in Table 

1.1, relates faults to corresponding changes in measured variables. Among the faults 

tested, it is not known whether the faults were tested at various levels of severity, except 

the liquid line restriction that was introduced at two levels and characterized as a 

pressure drop along the liquid line.  

Table 1.1 Fault patterns used in Stylianou and Nikanpour’s fault diagnostic module 
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Liquid line 
restriction ▲ ▼ ▼ ▼ ▲ ▼ ▼ ▲ 

Refrigerant leakage ▲ ▼ ▼ ▼ ▲ ▼ ▼ ▲ 
Reduced condenser 

water flow rate ▲ ▲ ▲ ▼ ▼ ▼ ▲ ▼ 

Reduced evaporator 
water flow rate ▲ ▼ ▼ ▼ ▼ ▼ ▼ ▼ 

A ‘▲’ signifies an increase in the variable, and a ‘▼’ corresponds to a decrease. 
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Stylianou (1997) developed a FDD method for commercial reciprocating chillers using a 

Statistical Pattern Recognition Algorithm (SPRA). The SPRA requires little 

computational effort and can improve the diagnostic classifier. However, very limited 

evaluation of the FDD method was presented.  

Rossi and Braun (1997) presented an FDD method for packaged air conditioners using 

nine key measurements to detect and diagnose five faults. The FDD technique uses a 

steady-state polynomial regression model to predict temperatures during normal 

operation in order to generate residuals for FDD. The magnitudes of the residuals are 

statistically evaluated to find faulty operation and then compared with a set of fault 

patterns based on directional changes in measured variables (as shown in Table 1.2) to 

perform fault diagnosis. This study did not consider the effect of modeling errors on the 

sensitivity of the FDD method.  

Table 1.2 Fault patterns used in Rossi and Braun’s fault diagnostic module 
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Refrigerant leakage ▼ ▲ ▼ ▼ ▲ ▼ ▼ 

Compressor valve 
leakage ▲ ▼ ▼ ▼ ▼ ▼ ▼ 

Liquid line 
restriction ▼ ▲ ▼ ▲ ▲ ▼ ▼ 

Condenser fouling ▲ ▼ ▲ ▼ ▲ ▲ ▼ 

Evaporator fouling ▼ ▼ ▼ ▼ ▼ ▼ ▲ 

A ‘▲’ signifies an increase in the variable, and a ‘▼’ corresponds to a decrease. 
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Peitsman and Bakker (1996) used black box models to generate residuals for a FDD 

method that was applied to a laboratory chiller. Models were used at the system level to 

detect a fault and at the component level to isolate the fault. Both AR models and neural 

network models were investigated. Only limited evaluation of the FDD method was 

presented.  

Bailey (1998) trained an artificial neural network (NN) using normal and fault data from 

a screw chiller in order to provide direct classification of normal and faulty performance. 

The NN model used a large number of inputs to predict the output classes and therefore 

required a large data set. Although the data collection process appears to have been 

thorough, the sensitivity of the measured variables to the faults introduced was not given. 

Moreover, the ability of the neural network to classify the faults is difficult to deduce 

from the results.  

McIntosh (1999) developed a robust model-based FDD methodology for a centrifugal 

chiller system and found the characteristic quantities that are most appropriate for 

identifying faults. Subsequently, the FDD methodology computed residual errors of 

characteristic quantities and determined their overall significance using the appropriate 

statistical analyses. Robustness of the methodology is obtained by accounting for the 

accuracy (noise errors) of the sensors used in obtaining measurement data. However, the 

accuracy of the sensors was considered independently from the component faults.  

Jia (2002) characterized every primary component of the centrifugal chiller with at least 

one performance parameter, the magnitude of which is indicative of the health of that 
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component. Also, fault detection and fault diagnosis can often be done simultaneously. 

Mathematical models for these characteristic parameters are presented, and how well 

these models can be developed with field-monitored data is illustrated. The proposed 

FDD method was only partially validated using transient data from normal conditions 

but not the data indicative of fault conditions.  

More recently, Li and Braun (2003) proposed an improved statistical rule-based (SRB) 

FDD method based upon the work of Rossi (1995) and Rossi and Braun (1997) for 

packaged air-conditioners. As compared with the original SRB method, the improved 

method does not require the covariance matrix for faulty operation or probability 

calculations but utilizes new fault detection and diagnostic classifiers that are simpler to 

implement and provide improved FDD sensitivity. The FDD method is capable of 

detecting and diagnosing individual faults and can be applied to packaged air-

conditioners that incorporate a fixed expansion device with on/off control of the 

compressor and fixed-speed condenser and evaporator fans 

To sum up, many advanced techniques and algorithms in mathematics, statistics, signal 

processing, process control and monitoring, etc., have been introduced to the 

investigation of FDD in chiller systems and other HVAC&R systems. Due to the 

complexity of FDD in these fields, sometimes different methods are used jointly. 
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1.3.3 Sensor FDD Methods in Engineering Systems 

Sensor faults have been a major concern in engine performance monitoring (Ogaji et al. 

2002) for a long time. Research on sensor FDD in engineering systems has been very 

active in recent years. In engineering systems, a sensor fault distinguishes itself from a 

chiller fault in that the latter affects the system performance in the physical while the 

former can’t, if the sensor is not involved in any control of the system. Due to this 

difference, the FDD methods targeting chiller faults may not necessarily handle sensor 

faults and therefore need some modifications when applied to sensor FDD. Basically, 

there are four kinds of methods for sensor FDD: model-based, knowledge-based, 

measurement aberration detection, and physical redundancy, which are briefly described 

as follows.  

 Model-based methods (Patton and Chen 1991, Usoro 1985, Stylianou and Nikanpour 

1996, Wang S.W. and Wang J.B. 1999, Wang and Xiao 2004) examine the implicit 

analytical redundancy in the system. Residuals are generated by comparing 

monitored parameters with those predicted by the system model, and then analyzed 

by decision-making process, resulting in a report of identified faults. 

 Knowledge-based methods use heuristic reasoning to build and manipulate qualitative 

models of the targeted process. Techniques used include an expert system (Tzafestas 

1991), a neural network (Lee et al. 1997), and a fuzzy logic (Vachekov and 

Matsuyama 1992). 

 Measurement aberration detection method analyzes the output of a single sensor 
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while assuming that the true measurement value has certain time and/or frequency 

domain properties and that a fault may occur randomly at any time (Yung and Clarke, 

1989). 

 Physical redundancy methods use several sensors to measure the same physical 

quantity. Any serious discrepancy among the measurements indicates a sensor fault 

(Dorr et al. 1997). Even though this method can often be effective, the cost and 

complexity of incorporating redundant sensors makes this approach less unattractive 

to in less critical applications, e.g., HVAC&R and chemical fields. 

 

1.3.4 Conclusions 

Research on FDD for chiller systems is becoming more and more active because FDD 

plays an important role in improving automatic monitoring and control for chillers, 

benefiting effective preventing maintenance, enhancing energy efficiency of buildings 

and maintaining agreeable IEQ.   

The first and the most important issue to point out is that most recent investigations paid 

attention to only one of these two different types of fault, i.e., chiller faults or sensor 

faults, and have not considered the two simultaneously. However, sensor faults and 

chiller faults might occur simultaneously as components and sensors within a chiller are 

both susceptible to degradation. The existence of sensor faults has a great impact on the 

effective implementation of chiller FDD methods as the implementation depends on the 

reliability and accuracy of measurements from BMS or chiller control panels. Therefore, 
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it is essential to develop a chiller FDD strategy that is capable of handling both sensor 

faults and chiller faults. In order to achieve this goal, it is desirable that before the 

implementation of chiller FDD, sensor FDD should be carried out to validate all 

measurements used in chiller FDD.  

Secondly, the traditional FDD methods for HVAC&R systems usually appointed a great 

number of measurements as fault indicators. The fault diagnostic classifiers of these 

methods use the statistically significant deviations of measurements to detect a fault and 

use their deviation patterns to diagnose the fault. However it is very difficult to 

determine how many and which measurements should be chosen to fulfill the duty as 

there are now a great number of sensors instrumented in a large-sized centrifugal chiller. 

A robust fault diagnostic classifier in FDD should make use of the impacts of faults, 

preferably, on performance indexes that have strong thermophysical meaning, rather than 

on purely numerical measurements from a great number of sensors.  

Moreover, most model-free FDD methods have inevitable shortcomings in dealing with 

complicated large-sized systems as mentioned above, so they are not very popular in the 

engineering field. The performance of FDD methods based on physical models depends 

heavily on accuracy and completeness of the information database, which, however, is 

always difficult to acquire. Semi-physical models combining merits of data driven 

models and physical models are preferable to other models in FDD applications and 

therefore show great potential in engineering applications. However, it is rather difficult 

to determine a proper semi-physical model structure which is easy to identify, and which 
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is physically explainable and robust against measurement errors as well.  

Another fundamental issue in FDD application for chillers is to set appropriate fault 

detection thresholds. The thresholds are usually determined empirically or 

experimentally. A lower threshold can benefit the earlier detection of faults but tends to 

produce false alarms. A higher threshold can effectively reduce the possibility of false 

alarms but tends to miss identifying faults. It is much preferable for a FDD strategy to set 

reasonable thresholds by taking into account as many influencing factors as possible.  

 

1.4 Objectives  

FDD for chillers, especially for large-sized centrifugal chillers, plays an important role in 

improving IEQ, enhancing building energy efficiency, prolonging equipment life and 

reducing maintenance costs and unscheduled equipment downtime. However, given the 

benefits of FDD for chillers mentioned above, current studies on FDD for chillers are not 

sufficient though research efforts in this field are growing continuously. The objectives 

of this thesis are listed as follows.  

The primary objective of this thesis is to develop a robust strategy that is suitable for 

FDD application to centrifugal chillers, when both sensor faults and chiller faults exist 

simultaneously. Since the two kinds of faults have different characteristics, the robust 

FDD strategy will be developed by organically incorporating a sensor FDD&E (Fault 

Detection, Diagnosis and Estimation) scheme with a basic chiller FDD scheme. In the 
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sensor FDD&E scheme, the estimation is to estimate the magnitude of an identified 

sensor error. During implementation, the second scheme will rely on the results of the 

first scheme. More specifically, the sensor FDD&E scheme needs to be capable of 

detecting, diagnosing and estimating sensor faults even in the presence of chiller faults. 

With the aid of data validated by the sensor FDD&E scheme, the basic chiller FDD 

scheme will effectively and accurately identify chiller faults. 

Besides developing this robust strategy, another objective of this thesis is to assess and 

evaluate the performance of the developed FDD strategy using real-life chiller data. The 

data will be representative of a wide variety of both chiller faults and sensor faults, under 

various chiller operating conditions.   

 

1.5 Organization of this Thesis  

The motivation of this research thesis is put forward at the beginning of this chapter and 

then followed by an introduction of the background of FDD for chillers and the 

comprehensive review of FDD applications to HVAC&R systems, especially to chillers. 

Many FDD methods were analyzed and compared with one another. Conclusions drawn 

from the review show that the studies on FDD for chillers are insufficient and thus 

further efforts in this field are needed. All this directs and shapes the research objective 

in this thesis and proves its practical significance. The subsequent chapters follow a 

logical sequence as follows.  
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Chapter 2 reviews the fundamentals of centrifugal chillers. The basic refrigeration cycle, 

primary components and sensors, basic control and typical operating conditions for 

centrifugal chillers are briefly introduced. Also, an overview of the robust FDD strategy 

for centrifugal chillers is outlined in this chapter.    

Chapter 3 presents a basic chiller FDD scheme for centrifugal chillers using a model-

based method. Some performance indexes that have strong thermophysical meaning are 

selected to indicate chiller performance. A set of rules used in the fault diagnostic 

classifier is derived from thermophysical analysis of faults and their impacts on 

performance indexes. In particular, an adaptive estimator for fault detection threshold is 

developed in this chapter on the basis of considering essential influencing factors, 

including measurement quality, model fitness and chiller operating conditions. The 

adaptive threshold estimator provides a quantitative approach to scientifically 

determining thresholds. 

Chapter 4 briefly introduces two test facilities that are used to validate the two FDD 

schemes and the robust FDD strategy developed in this thesis. One facility is a 

laboratory centrifugal chiller in ASHRAE 1043-RP and the other is a chiller plant in a 

real building in Hong Kong.  

Chapter 5 presents validation tests of the basic chiller FDD scheme using data from the 

two test facilities introduced in Chapter 4. The performance of the basic chiller FDD 

scheme in detecting and diagnosing several typical chiller faults is evaluated and 
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assessed. Problems associated with the implementation of the basic chiller FDD scheme 

are put forward. 

Chapter 6 presents a sensor FDD&E scheme based on a PCA model, which is used to 

capture correlations among key variables and to realize automatic detection, diagnosis 

and estimation of sensor faults. The sensor FDD&E scheme aims at validating sensors 

whose measurements are crucial to chiller FDD, energy monitoring and control in 

centrifugal chillers, 

Chapter 7 presents validation tests of the sensor FDD&E scheme using data from the two 

test facilities introduced in Chapter 4. The sensitivity of the PCA model to typical chiller 

faults is investigated using real-life chiller data. The performance of the sensor FDD&E 

in detecting, diagnosing and estimating sensor faults is also evaluated and assessed.  

Based on the validated chiller FDD scheme and sensor FDD&E scheme, Chapter 8 

presents the implementation structure of the robust FDD strategy that incorporates the 

above two schemes so as to achieve our ultimate goal, namely to tackle chiller faults and 

sensor faults simultaneously. The validation results of the robust strategy using chiller 

data from laboratory tests are provided. A software package of the robust strategy is 

developed in the MATLAB 6.1 environment and then its integration with an intelligent 

building management platform is proposed. 

Chapter 9 summarizes the work reported in this thesis, and gives recommendations for 

future applications and research in related areas.  
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CHAPTER 2 CENTRIFUGAL CHILLER SYSTEMS AND 

AN OVERVIEW OF ROBUST FDD STRATEGY 

 

Since the thesis is directly aimed at the FDD for centrifugal chillers, a general 

understanding of their fundamentals and operating characteristics is needed to assist in 

developing FDD methods and avoiding major pitfalls.  

Section 2.1 briefly describes centrifugal chiller systems, including the basic refrigeration 

cycle, primary components and sensors, basic control and interlocks within centrifugal 

chillers, and their typical operating conditions. Section 2.2 briefly describes the FDD 

strategy for centrifugal chillers developed in this thesis. A summary of this chapter is 

given in Section 2.3.   

 

2.1 Centrifugal Chiller Systems 

2.1.1 Basic Refrigeration Cycle 

Centrifugal chillers belong to the category of vapor compression chillers, which utilize a 

vapor compression cycle to remove heat from chilled water and reject the heat from the 

chilled water plus the heat from the centrifugal compressor to the environment. Figure 

2.1 shows the basic refrigeration cycle with a centrifugal compressor. The whole 

refrigeration cycle can be thought to include four processes with appropriate assumptions: 

  1-2  Heat absorption in the evaporator under constant pressure; 
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  2-3  Adiabatic compression in the compressor; 

  2-3  Heat rejection in the condenser under constant pressure; 

  3-4  Throttling across the expansion device under constant enthalpy; 
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Figure 2.1 Schematic diagram of a typical centrifugal chiller refrigeration cycle 
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Figure 2.2 Basic refrigeration cycle shown on a pressure-enthalpy diagram with two 
isotonic and one adiabatic and one isentropic process 

The Pressure-Enthalpy (P-H) diagram is another way of illustrating the refrigeration 
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cycle. Figure 2.2 shows the basic refrigeration cycle of the chiller on a pressure-enthalpy 

cycle, consisting of two isotonic processes (1-2 and 3-4) and one polytropic process (2-3) 

(where, 2-3′ is an ideal adiabatic process), and one isentropic process (4-1), for the same 

refrigeration circuit shown in Figure 2.1.  

The process for each of the components is indicated. From state 1 to state 2, the 

refrigerant changes from a liquid state to a gaseous state and absorbs heat from the 

chilled water while its pressure stays constant. Superheating occurs before reaching state 

2. The line from state 2 to 3 represents the compression process, where an amount of 

power is consumed and converted into heat in the refrigerant. Open drive motors reject 

their winding heat to the mechanical room. Since chiller motors are typically over 95% 

efficient, a little less than 5% of the motor power ends up as heat in the mechanical room. 

The next process takes place in the condenser, from state 3 to state 4. The first section 

(outside the refrigerant dome) is the de-superheating process. Once the refrigerant is 

saturated, condensation occurs and the refrigerant changes from a gas to a liquid. Like 

the evaporator, the line is horizontal indicating constant pressure (or temperature). Note 

the liquid subcooling portion of the condenser to the left of the dome，from state 4' to 4. 

It is easy to see on the P-H diagram that the subcooling improves the total cooling effect 

without an increase in power input. The final process take place in the expansion device, 

which is indicated by the vertical line from state 4 to state 1, indicating the pressure and 

temperature drop that occurs as the refrigerant passes through the thermal expansion 

valve.  
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2.1.2 System Mechanism  

As a vapor compression refrigeration unit, a typical centrifugal chiller consists of the 

following four main components and many sensors. 

 

Evaporator 

The evaporator is a heat exchanger that removes the building heat from the chilled water 

lowering the water temperature in the process. The heat is used to boil the refrigerant, 

changing it from a liquid to a gas. Usually, centrifugal chillers use a flooded type 

evaporator, which is very energy efficient. Flooded evaporators have the chilled water in 

the tubes and the refrigerant in the shell. Large chillers can have over five miles of 

tubing in their heat exchangers. 

 

Compressor 

The centrifugal compressor works very much like a centrifugal fan, compressing the 

refrigerant vapor flowing through it by spinning it from the center of an impeller wheel 

radially outward and allowing centrifugal forces to compress the vapor. Therefore, the 

temperature and pressure of the vapor are increased through the compression. Some 

compressors use multiple impellers to compress the refrigerant in multiple stages. 

Centrifugal chillers can use liquid refrigerant to cool a hermetic compressor or water to 

cool an open one. The centrifugal compressor is a non-positive displacement type. It 

raises the pressure and temperature of the refrigerant by converting kinetic energy into 

pressure. 
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Condenser 

Like the evaporator, the condenser is also a heat exchanger. It removes heat from the 

refrigerant causing it to condense from a gas to a liquid. The heat raises the water 

temperature. The condenser water then carries the heat to the cooling tower where the 

heat is rejected to atmosphere. 

 

Expansion device 

After the refrigerant condenses to a liquid, it passes through a pressure-reducing device. 

This can be as simple as an orifice plate or as complicated as an electronic modulating 

thermal expansion valve.  

 

Sensors instrumentation  

There are a great number of sensors installed in chiller systems and the sensor 

instrumentation is different for different applications. In this study, the sensors crucial to 

chiller efficiency monitoring and control systems are listed in Table 2.1. These sensors 

exist in most centrifugal chiller systems. 
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Table 2.1 Important sensors in a typical centrifugal chiller system 

Measurement Description Unit 

Tchws Chilled-water supply temperature oC 

Tchwr Chilled-water return temperature oC 

Mchw Chilled-water flow rate L/s 

Tecw Entering condenser water temperature oC 

Tlcw Leaving condenser water temperature oC 

Mcw Condenser water flow rate L/s 

Tev Evaporating temperature oC 

Pev Evaporating pressure Pa 

Tcd Condensing temperature oC 

Pcd Condensing pressure Pa 

Tsuc Compressor suction temperature oC 

Tdis Compressor discharge temperature oC 

Welec Motor electrical power input kW 

 

2.1.3 Basic Control  

For minimizing chiller energy use, the entering condenser water set-point should be as 

low as can be provided by outdoor air conditions (i.e., wet bulb temperature). However, 

the control set-point should be at or above the lowest temperature attainable by cooling 

tower at certain air (wet-bulb) temperature to avoid the waste of fan energy trying to 

reach an unobtainable value.  

The chilled water supply temperature control is achieved by inlet guide vane control as 

shown in Figure 2.3. Mounted on the inlet of a centrifugal compressor, the inlet guide 

vanes open or close to change the flow angle of the gas entering the impeller, and then 
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change both the power consumed by the impellor and the cooling effect produced. In this 

way, the chiller can operate down to a claimed 10% of its rated cooling capacity. The 

vane control motor opens or closes the inlet guide vanes by a feedback control module to 

maintain the preset chilled water supply temperature (Jia 2002).  

 

Inlet guide vane
EvaporatorSet-point

Chilled water return Temp. Chilled water supply Temp.

+ -

                                            

Figure 2.3 Control of chilled water supply temperature through inlet guide vane 

 

2.1.4 Safety Interlocks  

An interlock system aims to prevent the compressor motor from being started if any of 

the following conditions exist and stops the compressor if any except the first condition 

occurs:   

 Open suction vane, detected by limit switch;   

 Low water temperature leaving evaporator, near freezing point, sensed by low 

temperature switch;   

 Low water flow rate, sensed by low flow switch;   

 High compressor discharge pressure, sensed by high pressure switch;   

 High motor bearing or winding temperature, detected by high temperature switch;  

 Low oil pressure.   
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Another interlock system guarantees that the following are operating upon starting of the 

compressor: water pump, oil pump and water to oil cooler. The suction vane usually has 

an interlock to be sure it is completely closed when the compressor stops.   

 

2.1.5 Typical Operating Conditions 

The design conditions imposed by most water-cooled HVAC&R systems work very well 

for centrifugal chillers. The Air-Conditioning and Refrigeration Institute (ARI) provides 

test standards and certification for a wide range of HVAC products including centrifugal 

chillers. 

The ARI standard 550/590-2003 (2003) is used to test and rate chillers. Additionally, 

chillers typically have a certification that provides engineers and owners with a third 

party validation that the chiller will meet the performance the manufacturer indicates. 

The ARI test criteria allow an “apples to apples” comparison of different chillers. 

 

Standard rating conditions 

The standard ARI rating conditions are: 

  Leaving chilled water temperature 6.7 oC 

 Chilled water flow rate 0.043L/s per kW 

 Entering condenser water temperature 29.4 oC 

 Condenser water flow rate 0.054L/s per kW 

 1.8×10-5 (m2·oC)/W evaporator fouling factor and 4.4×10-5 (m2·oC)/W condenser  
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fouling factor 

 

Part-load rating conditions 

Water-cooled centrifugal chillers capable of capacity reduction shall be rated at 100% 

and at each step of capacity reduction provided by the refrigeration systems as published 

by the manufacturer. Part-load ratings points are usually presented in the way of IPLV 

(Integrated Part Load Value). As provided by ARI Standard 550/590-2003 (2003), the 

IPLV can be calculated as follows: firstly determine the part-load energy efficiency at 

100%, 75%, 50%, and 25% load points at the conditions specified in Table 2.2, and then 

use the following Equation 2.1 to calculate the IPLV. 

%25%50%75%100 12.045.042.001.0 COPCOPCOPCOPIPLV +++=              (2.1) 

where COP100% is the COP at 100% load, COP75% is the COP at 75% load, and so on.   

 
Table 2.2 Part-load conditions for rating water-cooled centrifugal chillers 

(EWT – entering condenser water temperature) 
 

100% load 
EWT 

75% load 
EWT 

50% load 
EWT 

25% load 
EWT 

Condenser 
water flow rate 

Fouling factor 
allowance 

29.4 oC 23.9 oC 18.3 oC 18.3 oC 0.054L/s per 
kW 

4.4×10-5 
(m2·oC)/W 
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2.2 Overview of Robust FDD Strategy for Centrifugal Chillers 

In the following part of this thesis, a robust FDD strategy for a typical centrifugal chiller 

will be developed and validated. The strategy mainly consists of two FDD schemes - a 

basic chiller FDD scheme and a PCA-based sensor FDD&E scheme, which respectively 

tackles chiller faults and sensor faults. The strategy could achieve the ultimate objective 

of this thesis, namely an overall and robust diagnosis for centrifugal chillers.  

Figure 2.4 gives an overview of the robust FDD strategy. The inputs are measurements 

collected from the chiller system. The results of the strategy are the identified sensor 

faults and chiller faults. The robust strategy is conceptually different from and more 

advanced than those developed by previous researchers in that a sensor FDD&E scheme 

is integrated with a basic chiller FDD scheme. In this way, the quality of sensor 

measurements on which the effectiveness and robustness of the basic chiller FDD 

scheme depend can be ensured. The two schemes are implemented in series. The 

measurements crucial to the chiller FDD scheme are validated by proper approaches 

such as sensor fault estimation, or sensor recalibration/replacement, before the basic 

chiller FDD scheme is carried out to detect and diagnose degraded chiller performance. 
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Figure 2.4 Overview of the robust FDD strategy for centrifugal chillers 

 

2.3 Summary  

This chapter first briefly introduces centrifugal chiller systems. It is clear how primary 

components operate and what variables are measured and involved in control systems 

within a typical centrifugal chiller. Subsequently, the overview of a robust FDD strategy 

for centrifugal chillers is presented to tackle two simultaneously existing fault types, i.e., 

sensor faults and chiller faults. In the following chapters, two important FDD schemes in 

the robust strategy will be respectively developed as well as validated using both 

laboratory and field data.   

 40



CHAPTER 3 BASIC CHILLER FDD SCHEME 

 

As discussed in Chapter 1, model-based FDD methods are widely used in large-scale 

chillers, especially centrifugal chillers, and the FDD methods based on semi-physical 

chiller models have proved more favorable than those based on pure data-driven or 

physical models. A chiller FDD scheme is developed in this chapter as a basic approach 

to identify faults associated with centrifugal chiller system and components.  

Based on the operation characteristics of centrifugal chillers, six performance indexes of 

strong physical meaning are selected to indicate chiller health conditions. The existence 

of a fault is detected when one or more monitored performance indexes significantly 

deviate from their benchmarks (i.e., what is normally expected) by corresponding 

thresholds. The reference models can be called semi-physical ones in that they contain 

some deterministic variables in chillers while needing model development data for model 

identification. Such thresholds for fault detection are not determined empirically but 

estimated by detailed uncertainty analysis. Subsequently, faults are diagnosed by a fault 

diagnostic classifier, which relates each fault to the change pattern of the performance 

indexes when the fault occurs.  

Section 3.1 presents the formulation of the chiller FDD scheme, which includes the 

selection of six performance indexes indicative of various chiller characteristics, the 

construction of reference models of the performances indexes and the deduction of rules 

in the fault diagnostic classifier. Section 3.2 presents the online adaptive estimator of 

fault detection threshold. The threshold estimator takes into account factors that have 

strong influence on the accuracy of fault detection. Such an adaptive estimator can 
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effectively reduce false alarms and avoid missing timely detection. The implementation 

structure of the basic chiller FDD scheme is presented in Section 3.3. Finally, Section 3.4 

summarizes this chapter.  

 

3.1 Development of Basic Chiller FDD Scheme for Centrifugal Chillers 

3.1.1 Performance Indexes of Centrifugal Chillers  

As mentioned in Chapter 1, a fault in HVAC& R is actually an unsatisfactory deviation 

from a performance expectation envisioned at design. In order to produce the deviation, 

namely the residual in FDD applications, it is essential for chiller FDD methods to find a 

cluster of quantities that can describe the performance of chillers. In the early 

development of chiller FDD methods, measurements from sensors and transducers, e.g., 

temperatures, pressures, electric power, etc., are used to indicate chiller performance 

(Comstock and Braun 2001, Rossi and Braun 1997, etc). As shown in Table 1.1 and 1.2, 

rules are constructed to relate each fault to the set of directions that each measurement 

changes when the fault occurs. During FDD implementation, residuals are formed as the 

difference between the measurements and their benchmark values, which are predicted 

by corresponding steady-state models of the measurements. Significant residuals of the 

measurements are used to determine a binary "fault" or "no-fault" output. Subsequently, 

the fault diagnostic classifier that is usually constructed by experimental approaches can 

use the deviation patterns of the measurements to identify the most likely cause of the 

occurred faults (Comstock and Braun 2001). However, an occurred fault usually results 

in changes in many measurements as shown in Table 1.1 and Table 1.2. Moreover, the 

sensitivity of a set of measurements to a chiller fault might be affected by both chiller 
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operating condition and fault severity level. Beyond that, it is also difficult to determine 

how many and which measurements should be picked to construct a fault diagnostic 

classifier as there are a great number of sensors available on large centrifugal chiller 

systems.  

More recently, parameters that can effectively characterize the chiller performance, 

called performance indexes in this thesis, are favored by many researchers in the field of 

chiller FDD (McIntosh et al. 2000 and Jia 2003). In this basic chiller FDD scheme, six 

performance indexes, as shown in Table 3.1, are selected with detailed explanation 

provided.  

Table 3.1 Formulas for calculating the six performance indexes 

Performance indexes Abbreviations Formulations 
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All the measurements used in the calculation of the performance indexes are available on 

the data acquisition system of laboratory chillers and also obtainable from the BMSs in 

modern buildings. The six performance indexes have strong physical meaning and 

therefore are able to depict health conditions of a centrifugal chiller system. By 

comparing the performance indexes with their benchmarks predicted by the reference 

models presented in the following section, the existence of particular faults can be 

detected.  

The advantages of using performance indexes are listed as follows: 

 Since performance indexes have specific physical meaning and can describe chiller 

performance straightforward, one of them might be sensitive to a particular fault but 

insensitive to other faults. For example, LMTDcd is sensitive to condenser fouling 

but not to such faults as evaporator fouling, excess oil, etc. Also, the sensitivity can 

be explained by basic physical principles, e.g., the laws of mass, energy and 

momentum conservation. This characteristic enables performance indexes to 

effectively isolate different chiller faults.  

 Since performance indexes have strong physical meaning, it is both understandable 

and straightforward to use the performance indexes to quantify the severity level of 

an occurred fault. This can benefit preventative maintenance and timely repairs 

when necessary.  

 Performance indexes have the capability of synthesizing the information provided by 

a large number of sensor measurements. Therefore it is easier to construct and 

implement a fault diagnostic classifier based on the deviation patterns of a relatively 

small number of performance indexes than that based on the deviation patterns of a 

large number of sensor measurements. 
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The mathematical formulations of the performance indexes (see Table 3.1) are deduced 

on the basis of the thermodynamic cycle of a standard centrifugal chiller shown in Figure 

2.2 with the assumptions stated as follows: 

 Adiabatic compression in the centrifugal compressor (from state 2 to 3);  

  Heat rejection at constant refrigerant pressure in the flood type condenser (P3=P4); 

 Heat absorption at constant refrigerant pressure in the flood type evaporator (P1=P2); 

 Isenthalpic throttling through the expansion device (h1=h4). 

 

Logarithmic mean temperature difference of condenser and evaporator  

Both the condenser and evaporator in a centrifugal chiller are heat exchangers that 

couple refrigerant with the cooling water and the chilled water, respectively.  Therefore, 

heat transfer relations can describe the performance of these exchangers. Assuming 

steady-state flow conditions, the relations characterizing the heat transfer process in the 

condenser are as follows. 

)( ecwlcwcwpwcd TTMCQ −=                                            (3.1) 

)( 43 hhMQ refcd −=                                                 (3.2)  

cdcdcd TUAQ ∆=                                                    (3.3) 

where Qcd is the load of the condenser, Cpw is the specific heat capacity of water, Mcw is 

the condenser water mass flow rate, Mref is the refrigerant mass flow rate, Tecw is the 

entering condenser water temperature, Tlcw is the leaving condenser water temperature, 

and h3 and h4 are the specific enthalpies of the refrigerant at state 3 and state 4 in Figure 
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2.2, respectively. UAcd is the overall heat transfer coefficient of the condenser and ∆Tcd is 

the average temperature difference along the total effective heat transfer area of the 

evaporator.  

When the logarithmic mean temperature difference approach is applied to Equation (3.3), 

the heat transfer in the condenser can be modeled using its overall heat transfer 

coefficient (UAcd) and the logarithmic mean temperature difference (LMTDcd) as shown 

in Equation (3.4). 

cdcdcd LMTDUAQ =                                                     (3.4)  
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                                                (3.5) 

where Tcd is the condensing temperature which corresponds to the condensing pressure 

Pcd . 

It is worth pointing out that the logarithmic mean temperature difference is originally 

defined for a single-pass counter-flow heat exchanger without phase change. However, it 

can be applied to approximate other types of exchangers (McIntosh et al. 2000) without 

losing much accuracy.  

Similarly, the equations for the heat transfer process in the evaporator can be deduced as 

follows. 

)( chwschwrchwpwev TTMCQ −=                                          (3.6) 
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)( 12 hhMQ refev −=                                                 (3.7) 
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where Qev is the chiller cooling load, Mchw is the chilled water mass flow rate, Tchws is the 

chilled water supply temperature, Tchwr is the chilled water return temperature, and h2 and 

h1 are specific enthalpies of the refrigerant respectively at state 2 and state 1 in Figure 2.2. 

UAev is the overall heat transfer coefficient of the evaporator and Tev is the evaporating 

temperature which corresponds to the evaporating pressure Pev. 

From the above equations, it can be observed that both UA and LMTD of heat 

exchangers can reflect the heat transfer efficiency. In this thesis, the LMTD is chosen as a 

performance index to indicate heat transfer side faults, e.g., exchanger fouling, since its 

calculation is simpler than that of UA as the calculation of the latter requires many 

complicated heat transfer relations. 

 

Mass flow rate of refrigerant   

Many centrifugal chillers do not have expansion valves and large-scale centrifugal 

chillers often use a fixed orifice as the throttling device with no moving part. The 

conservation of mass for a finite control volume results in a constant refrigerant flow rate 

along the whole refrigerant circuit at a specific time.  Actually, the refrigerant flow rate 

is to a great extent affected by the pressure difference between the condenser and 
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evaporator. From Equation (3.6) and Equation (3.7), the refrigerant flow rate can be 

calculated by Equation (3.10). 

12
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M chwschwrchwpw

ref −

−
=                                                  (3.10)

 

The refrigerant mass flow rate can be chosen as a performance index to indicate faults 

which are associated with abnormal pressure difference between the condenser and 

evaporator, or faults related to refrigerant liquid line.  

 

Polytropic efficiency  
 
As described in ASHRAE (1996), the amount of work required to produce a given 

pressure rise depends on the efficiency of the compressor and the thermodynamic 

properties of the refrigerant. For an adiabatic compression process, the work input 

required, named isentropic work, is a minimum if the compression is isentropic. The 

ratio of the isentropic work to the actual work is the isentropic efficiency. Due to the 

thermodynamic properties, a compressor can produce different isentropic results with 

different refrigerants, and also with the same refrigerant at different suction conditions. 

Therefore, isentropic efficiency is not consistent enough for the purpose of comparison 

in FDD. Generally speaking, the compression process in a centrifugal compressor is near 

a polytropic process (from state 2 to 3 in Figure 2.2), which differs from an adiabatic 

process (from state 2 to 3′ in Figure 2.2) in that the change of state during it does not take 

place at constant entropy. Polytropic work is the reversible work required by a polytropic 

process and is given by Equation (3.11).  
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where the constant γ is the mean polytropic exponent along the polytropic path. v2 is the 

specific volume of refrigerant at the inlet of the compressor and is determined by the 

compressor suction pressure (approximately Pev) and its corresponding temperature (Tsuc). 

v3 is the specific volume of refrigerant at the outlet of compressor and is determined by 

the hot gas discharge pressure (approximately Pcd) and its corresponding temperature 

(Tdis).  

Polytropic efficiency, analogous to the isentropic efficiency, is the ratio of the polytropic 

work to the actual work consumed, and is given by Equation (3.12).   

          
( )

( )23

23

23 ln
)ln(
hh

PP
vPvP
vPvP

W
W

Eff

evcd
evcd

evcd

comp

poly
poly

−

⎥
⎦

⎤
⎢
⎣

⎡ −

=

=

                                   (3.12)                  

where Wcomp is the actual power consumed by the compressor. 

On the whole, the polytropic work and efficiency are more consistent from one 

application to another, because a reversible polytropic process duplicates the actual 

compression between state 2 and 3 in the Figure 2.1 and represents the average stage 

thermodynamic performance (ASHRAE Handbook, 1996). Therefore, the polytropic 

efficiency is preferable to isentropic efficiency as a health indicator for the centrifugal 

compressor. It is sensitive to distortions in the shape of the impeller’s blade and base, the 

shape of vane’s blade and base, and any change in surface smoothness during operation.  
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Drive motor efficiency  

As introduced by Jia (2002), the centrifugal compressor is composed of an impeller and 

inlet vanes. The electric motor in the case of large-scale centrifugal chillers is externally 

mounted on the compressor. There are two main causes of inefficiencies external to the 

compressor: electrical degradation (resulting in a lower power factor) and friction losses 

in the transmission (bearing friction of the shaft, etc.). Other causes of motor degradation 

include improper motor cooling, inadequate insulation of motor winding, etc. Due to the 

above causes, just a part of the electricity drawn by the motor is transferred to the 

compressor and consumed by the compression process there. The ratio of the actual 

power transferred to and consumed by the compressor to the electric power input to the 

compressor motor is defined as motor efficiency, as shown in Equation (3.13), and is a 

good health indicator of the derive motor. It is noteworthy that the motor efficiency is a 

not constant but is a function of chiller operating conditions, e.g., chiller cooling load.  
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where Welec  is the electric power input to the compressor.  

 

Coefficient of performance  

The coefficient of performance (COP) of a chiller, as shown in Equations (3.14) and 

(3.15), is often used by chiller manufacturers to provide a chiller’s design conditions 

along with water temperatures and flow rates in their catalogues.  The continuously 
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monitored COP provides an overall health indicator that can be sensitive to most 

component or subsystem faults in chillers.   

elec
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For a specific chiller, the COP is not a constant during operation but determined by 

operating conditions of the chillers, e.g., cooling load and entering condenser water 

temperature. 
 

 

3.1.2 Rules in Fault Diagnostic Classifier 

Once faults are detected according to significantly deviated performance indexes, it is 

necessary to find the cause of the fault, namely to diagnose the fault. Since different 

performance indexes are sensitive to different faults, the selection of a certain 

combination of performance indexes can help identify a particular fault. A fault 

diagnostic classifier, consisting of a set of rules relating each fault to its impact on each 

performance index, is constructed for fault diagnosis in this thesis. The set of rules not 

only can be derived from basic thermophysical principles for chiller systems but also can 

be examined by using a large number of field and laboratory measurements. As 

mentioned previously, besides being easily understandable, the fault diagnostic classifier 

based on the set of rules also has the advantage of being robust because the performance 

indexes have straightforward physical meaning and can synthesize the information from 

individual measurements.   
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Six typical chiller faults (see Table 3.2) are considered in the basic chiller FDD scheme. 

It is reported that these faults account for a significant part of the service calls made 

according to the survey conducted by Comstock and Braun (2002). In this regard, 

selecting these faults is of great practical significance.  

Each of the faults results in a different combination of changes in performance indexes. 

The rules relating the above six faults to their impacts on the six performance indexes are 

listed in Table 3.2. In the table, “━” indicates that no discernible trend is found in a 

performance index. The sign “▼” indicates the performance index decreases when the 

severity of a fault increases. The sign “▲” indicates that the performance index increases 

when the severity of a fault increases. For instance, condenser fouling generally causes 

the logarithmic mean temperature difference of the condenser (LMTDcd) to increase 

above its normal value and the refrigerant flow rate (Mref) and chiller efficiency (COP) 

decrease below their normal values. The signs in the brackets “( )” describe the trends 

when an expansion valve is stalled and functions well in the chiller. The expansion valve 

in the centrifugal chiller tends to compensate for the adverse effects of some faults on the 

performance indexes, and then makes their residuals less noticeable. However, 

centrifugal chillers using a fixed orifice as the expansion device would exhibit earlier and 

more significant residuals of performance indexes than those using an expansion valve. 

Hence, this issue is worth attention when constructing a fault diagnostic classifier for 

chillers with different expansion devices.  
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Table 3.2 Rules in fault diagnostic classifier for centrifugal chillers  

 

 

Fault Types LMTDev LMTDcd Mref Effpoly Effmotor COP 

Evaporator fouling ▲ ━ ━ ━ ━ ▼ 

Refrigerant leakage ━ ▼ ▼(━) ━ ━ ▼(━) 

Excess oil ━ ━ ━ ━ ▼ ▼ 

Condenser fouling ━ ▲ ▲(━) ━ ━ ▼ 

Non-condensables in 
refrigerant ━ ▲ ━ ━ ━ ▼ 

Degradation of 
compressor ━ ━ ━ ▼ ━ ▼ 

 

The rules in Table 3.2 can be interpreted as follows.  

 Evaporator fouling increases the evaporator water temperature difference and 

therefore increases the logarithmic mean temperature difference of the evaporator, 

LMTDev. Since the expansion valve attempts to keep evaporator pressure and 

temperature nearly constant, their decreases are slight. Also, a reduced COP is 

expected for this fault due to the irreversible energy loss resulting from the increased 

LMTDev. 

 Refrigerant leakage is inherently associated with the chiller for its whole service life. 

Refrigerant leakage results in lower refrigerant flow rate, Mref, and smaller 

logarithmic mean temperature difference of the condenser, LMTDcd, because less 

refrigerant in the system tends to reduce the condenser pressures and condensing 

temperatures. Nevertheless, for a chiller with an expansion valve, the valve is able to 

compensate for the reduction of refrigerant flow by opening further until it cannot 

compensate any more. Thus, the change in the refrigerant flow rate is very slight 
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when the expansion valve functions well. Due to the smaller LMTDcd and the 

decrease of throttling effect on the whole refrigeration cycle, a small increase of 

COP may be observed if the expansion valve is still capable of fulfilling its duty well. 

A chiller using a fixed orifice as the expansion device would suffer such penalties as 

reductions of Mref and COP earlier than that using an expansion valve.  

 Excess oil can not affect the refrigeration system thermodynamically since in the 

centrifugal chiller the refrigerant cycle is independent from the oil cycle. Therefore, 

excess oil simply fills up the compressor cavity and submerges some of the gearing. 

The viscous effects caused by the excess oil lead to increased mechanical losses in 

the compressor. Consequently the motor efficiency, Effmotor, which is the ratio of the 

power consumed by the compression process to the electric power consumed by the 

motor, will decrease. At the same time, COP will also decrease due to the increased 

mechanical losses.    

 Condenser fouling is equivalent to having a smaller condenser and larger heat 

resistance between the water and the refrigerant, resulting in higher condensing 

temperatures and pressures. The difference between the entering condenser water 

temperature and the condensing temperature become larger at the inlet, when the 

entering condenser water temperature holds constant. Therefore, LMTDcd may 

increase. Such an increase in temperature difference results in more irreversible 

energy loss and subsequently makes COP decrease. For a chiller with a fixed orifice, 

Mref will increase due to a larger pressure difference between condenser and 

evaporator. In contrast, an expansion valve in a chiller tends to compensate for the 

increase of refrigerant flow rate, up to a point where the valve can not open further. 

 Non-condensable gases settle in the condenser during operation and make the 

condenser pressure increase substantially. If the acquisition of condensing 
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temperature is calculated from measured condenser pressure, the derived condensing 

temperature is higher than the actual value, thus causing LMTDcd to be 

extraordinarily overstated. If the condensing temperature is measured by a 

thermistor, no significant change will be observed in LMTDcd as this fault has little 

impact on the condensing temperature. As the amount of non-condensables in the 

system increases, the pressure lift across the compressor becomes higher and 

requires more electric power input, which inevitably decreases COP. 

 Degradation of compressor as mentioned before is due to distortions in the shape of 

the impeller’s blade and base, the shape of vane’s blade and base, and any change in 

surface smoothness during operation. It will inevitably lower the polytropic 

efficiency of the compressor, Effpoly, and the chiller COP. This fault does not have 

any influence on the other performance indexes.  

 

3.1.3 Reference Models of Performance Indexes 

Reference models of the six performance indexes are used to characterize the fault-free 

operation of a chiller system under certain operating conditions, namely to generate 

benchmark values for the performance indexes. Therefore, the identification of an 

accurate reference model of chiller performance indexes is a fundamental issue in model-

based FDD applications. As mentioned in Chapter 1, in the HVAC&R field, a great 

amount of effort has been devoted to developing proper chiller models used in optimal 

control, efficiency monitoring and FDD. Among these models, physical models, e.g., 

ASHRAE primary toolkit model (Bourdouxhe et al. 1997), only have advantages when 

detailed information of the target system is available, and therefore is difficult to 

calibrate. Semi-physical models for centrifugal chillers are among the top priorities. A 
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chiller model is called semi-physical when that model is derived from a certain amount 

of physical knowledge and is expressed in terms of one or more regressors (predictor 

variables) and a set of coefficients. 

Assuming constant water flow rate in evaporator and condenser, chiller performance is 

primarily a function of three variables, i.e., the chiller cooling load, the entering 

condenser water temperature and chiller water supply temperature (Gordon et al. 1995, 

Braun 1988 and PG&E 2001). In other words, these three variables are the determinant 

variables of a chiller system. Moreover, catalogue data of most centrifugal chiller 

products are usually provided on the basis of the cooling load, the entering condenser 

water temperature and the chilled water supply temperature. Therefore, polynomial 

regression models using the three variables as regressors are given great preference and 

hereby investigated. 

In this study, a simple chiller model is presented as shown in Equation (3.16). The mean 

and variance of the error term, ε, are assumed to be 0 and σ2
 respectively (i.e. ε～ N (0, 

σ2)) (Montgomery and Runger 1994).  
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The outputs of the polynomial regression models, namely the response variables Y, are 

assigned to the performance indexes (i.e., LMTDev, LMTDcd, Mref, Effpoly, Effmotor, COP ). 

The models are expressions for chiller performance indexes as a function of the cooling 

load (Qev), the chilled water supply temperature (Tchws) and the entering condenser water 

temperature (Tecw). As for model order, generally speaking, higher order polynomial 

models provide better fits to the data, but the fit is not smooth between the points used by 

the regression analysis. Therefore, the primary goal is to find the lowest order model with 
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satisfactory accuracy. Equation (3.16) is a second order model and the validity this model 

will be investigated later in Chapter 5. 

In particular, such a reference model with only three regressors has a great advantage of 

being less susceptible to sensor faults as compared with a mechanistic model with many 

inputs. Since the there are three inputs in the reference model of each performance index, 

sensor faults, if not affecting these three regressors, will not affect the accuracy of the 

output of the reference model.  

These regressors are important for chiller plant control and monitoring and commonly 

available on BMSs or chiller control panels. The coefficients (b0… b7) are assumed to be 

constants, which can be found by linear regression techniques using data indicative of 

chiller normal operation.  

 

3.2 Online Adaptive Estimator of Fault Detection Threshold  

Due to unavoidable errors associated with both sensor measurements and model fitting 

errors, even in the case of fault free operation, there are always residuals between the 

predicted performance indexes and those which are calculated online. The determination 

whether the residuals of a performance index deviate from its benchmark value by an 

allowable amount, called the fault detection threshold in the FDD field, is what FDD 

decisions rely on. An online adaptive estimator of fault detection threshold is formulated 

in this section on the basis of evaluating the uncertainty resulting from the fitting errors 

of the reference models as well as the propagation of measurement errors through the 

mathematical formulas of the performance indexes shown in Table 3.1. 
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The fault detection threshold is in practice determined by the calculation uncertainty of a 

residual at specific operating conditions. Since the residual is the difference between the 

observed (calculated) value and the model predicted value of a performance index, the 

residual uncertainty is subject to both the calculation uncertainty of the performance 

index and the modeling uncertainty of the reference model of the performance index. 

These two kinds of uncertainty are all affected by operating conditions, such as the 

cooling load and the chilled water and cooling water temperatures of a chiller system, in 

addition to measurement errors. Therefore, given a fixed confidence level, thresholds on 

the residuals of performance indexes will vary with operation conditions.  

At a specific operating condition, the modeling uncertainty results from measurement 

errors associated with the model development data as well as errors arising from an 

imperfect mapping between the inputs and the outputs (Breuker and Braun 1998). The 

calculation uncertainty comes from the measurement error propagation. Measurement 

errors result from sensor faults, i.e., noise errors and bias errors. The threshold for the 

residual of a performance index can be estimated online by its uncertainty at a certain 

confidence level, as shown in Equation (3.17).  
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where Th0,i is the threshold of the ith performance index,  ir~  is the estimator of the 

residual of the ith performance index. The residual (ri) is the difference between the 

observed value and model predicted value of the ith performance index. )~( irU  is the 

uncertainty of the residual at a certain confidence level. 2
~

~
rri −σ is determined by Equation 

(3.18) and 
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α  is the value of the t distribution with n-p degrees of freedom at a 

 58



confidence level of (1-α). n is the number of data points used in the model regression and 

p is the number of coefficients estimated from the data.   
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                                             Uncertainty 1               Uncertainty 2 

where gi is the formula for calculating the ith performance index. zj is the jth element in 

the vector of measured variables (z), which is used to calculate the ith performance index 

( ). iY
jzσ  is the standard deviation of zj and 2~

iYσ is the estimated variance of the regression 

error of the ith performance index.  is the vector of regressors for the current 

prediction and  is the transpose of .  is the matrix of regressors associated 

with the model development data and is the transpose of .  
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The detailed derivation of Equation (3.17) and Equation (3.18) is given in Appendix A. 

In the Equation (3.18), Uncertainty 1 presents measurement uncertainty and Uncertainty 

2 represents modeling uncertainty. Also, it is very clear from Equation (3.18) that the 

residual uncertainty of a performance index, at a certain confidence level, varies with 

operation conditions in addition to magnitudes of random measurement errors. 

 

3.3 Implementation Structure of Basic Chiller FDD Scheme 

The implementation structure of the basic chiller FDD scheme, as illustrated in Figure 

3.1, includes two groups of tasks, one for reference model development and the other for 
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online fault detection and diagnosis. The reference model development must be 

accomplished ahead of the online FDD application.     

Adaptive threshold 
estimators

Reference models
of performance indexes

Calculation of 
performance indexes

Results of FDD

Residual < Threshold ?
Yes !

No !

Residuals
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Thresholds No component
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Monitored data
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model development data
from chillers

Data preprocessor

Parameter estimation of 
reference models

Calculation of 
performance indexes

Model development

Chiller FDD

Fault diagnostic classifier

Detected performance indexes
Fault detection

 

Figure 3.1 Flow chart of the basic chiller FDD scheme  
 
 

3.3.1 Data Preprocessing  

It is evident from Figure 3.1 that there are two sets of data used in the implementation of 

the developed basic chiller FDD scheme. One set is collected from chillers under normal 

operation. These data can be regarded as fault free ones and will serve as the model 

development data of each performance index. The other set is the monitoring data that is 

processed by the basic chiller FDD scheme to detect and diagnose faults. The quality of 

both the model development data and the monitored data determines the accuracy and 

sensitivity of the FDD scheme. Usually data acquisition systems collect one set of data 
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from every sensor and transducer at an adjustable interval, e.g., ten seconds or two 

minutes. The collected data, called raw data, contains data representing both transient 

and steady-state operation, as well as erroneous data. Since the proposed reference 

models of performance indexes and the fault diagnostic classifier are both based on the 

steady state operation of centrifugal chillers, a data preprocessor, including three sub-

preprocessors, i.e., a basic validity check, a steady-state filter, and an outlier detector, is 

needed to ensure that steady-state and reliable data are fed into the FDD system. These 

three sub-preprocessors perform in parallel, as shown in Figure 3.2.  

 

Steady-State Filter

Outlier Detector

Basic Validity Check

Inputs
Monitoring data

Data 
preprocessor

To FDD procedure  

Figure 3.2 Schematic diagram of the data preprocessor  

 

Basic validity check  

Basic validity check employs fundamental thermophysical concepts to validate incoming 

data. In water-cooled centrifugal chillers, magnitudes of each temperature measurement 
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and pressure measurement should be subject to some physical laws. It is expected that 

the seven temperatures and the two pressures obey the following two simple 

relationships respectively: 

0<Tev< Tchws < Tchwr < Tlcw < Tecw < Tcd < Tdis 

0<Pev<Pcd

The two rules were programmed to integrate with the other two data sub-preprocessor 

programs to floating errors and those associated with sampling timing.  

 

Steady-state filter 

As for centrifugal chillers, especially those in large buildings, the fluid flow and heat 

transfer dynamics are, in general, much faster than the dynamics of the cooling load and 

ambient conditions which are the main driving forces of the chiller subsystem. This 

makes the chillers stay in quasi-steady-state operation for large portions of their 

operating time.  Therefore, it is reasonable to consider steady-state operation during FDD. 

However, during start-up and shut down time periods or when the driving conditions 

change abruptly, the chillers experience substantial transients and the steady-state 

assumption does not hold. Thus, all data within a one-hour period after the chillers were 

started or shut down are excluded from any subsequent analysis. In addition, a steady-

state filter is needed to filter out data indicative of transients during operation.   

Selecting or defining the quantities capable of indicating existence or occurrence of 

transients is an important issue for detecting steady-state operation of the chiller. Usually, 

some thermophysical variables such as temperatures and flow rates are selected as state 
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characteristics to fulfill the task. There are many classic steady-state filters measuring the 

change rate of a variable with respect to time. Among them, the method that estimates 

the variance of samples of a variable over time using a fixed moving time window length 

is the most popular one. Another method linearly regresses samples of a variable using 

the OLS (Ordinary Least Squares) method with a fixed moving time window length, and 

then obtains the slope of the regression line, which can also indicate the change rate of 

the variable. These two methods and others are summarized by Glass et al. (1996).  

The latter was recommended by (Rossi 1995) and is used in this thesis to construct a 

steady-state filter. Theoretically, only when all variables do not change significantly over 

a certain period of time, can it be concluded that the chiller is under steady-state 

operation. However, only three variables, i.e., the chilled water supply temperature 

(Tchws), the chilled water return temperature (Tchwr) and the entering condenser water 

temperature (Tecw) are selected as the state characteristics. The reason behind this is that 

these three state characteristics, as mentioned in the previous chapter, are the 

deterministic variables for the performance of a chiller with constant water flow rates. 

The chiller might be thought to be under steady-state operation if all the linearly 

regressed slopes of these three variables do not exceed their corresponding threshold 

values, which are respectively determined by the measurement accuracy of each variable.  

 

Outlier detector  

Outliers in measurements are those with abnormal values, such as frozen readings or 

those significantly deviated from the normal. Existence of outliers has a negative effect 

on the data analysis in the FDD and monitoring of chillers. Actually, the steady-state 

filter based on the estimate of moving slopes can help detect and remove part of the 
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outliers, but the effect is not very desirable. A method based on estimating the mean and 

variance of samples of a variable over time using a fixed moving time window is adopted 

in this thesis to detect outliers. After a data point passes the steady-state filter, its value 

will be compared with the estimated mean value. If its value is more than the estimated 

mean value by three times of the estimated variance, the data point will be disposed of as 

an outlier.  

 

3.3.2 Reference Model Development 

During reference model development, the data from an actual system under normal 

operation are used to estimate the model parameters by means of proper statistical 

techniques. In this thesis, the coefficients of the linear polynomial regression model in 

Equation (3.16) are estimated by the OLS method using model development data 

obtained from a centrifugal chiller under normal operation. The OLS method and issues 

concerning its application to chiller data are described as follows. 

Let X be the matrix containing the regressors as row vectors. After adopting matrix 

notation, the linear polynomial regression model in Equation (3.16) can be rewritten as 

follows. 

                      eXbY +=                                                         (3.19) 

where Y is the vector of response variables, b is the vector of regression coefficients 

(b=[b1,b2,b3,b4]T), and e is the error term, i.e., the variation in Y unexplained by X and b, 

which include both measurement errors and model error in both X and Y(Corcoran and 

Reddy 2003). 

 64



The OLS method is the best estimation technique to use when there is no error in 

measurement, when there is no collinearity between regressors, when the model residuals 

have constant variances, and when the errors are normally distributed (Beck, J.V. and 

K.J. Arnold, 1977). In this case, the coefficient vector is determined such that the sum of 

the error squares function reaches its minimal value. This results in the system of normal 

equations on the condition that the matrix (Xreg) is not singular (Draper and Smith, 1981), 

as shown in Equation (3.20). 

                                      (3.20) reg
T
reg
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reg

T
regOLS YX)X(Xb −=

where bOLS is the OLS estimate of b, Xreg is the matrix of regressors associated with the 

model development data, and Yreg is the vector of response variables associated with the 

model development data. 

Problems associated with model under-fitting and over-fitting are usually the result of a 

failure to identify the nonrandom pattern in time series data (Reddy and Andersen 2002). 

Under-fitting does not capture enough of the variation in the response variable for the 

corresponding set of regressors to provide an explanation. Over-fitting means including 

measurement randomness or some regressors which do not contribute to the variation in 

the response variables in the model.  

Since the data from an actual chiller system are used to carry out parameter estimation 

using the OLS method, it is favorable that each data set can help reduce the uncertainty in 

the parameter estimate vector bOLS given by Equation (3.20). However, collecting more 

data for parameter estimation does not ensure that the data can result in a more accurate 

estimate of b. Corcoran and Reddy (2003) recommended that it is best to select regressor 
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values spread uniformly and over the entire range of variation if the model is only 

approximately linear.  

 

3.3.3 Online FDD  

The procedure of online FDD application comprises a data preprocessor, a set of 

reference models with three regressors, an online threshold estimator and a fault 

diagnostic classifier, as shown in Figure 3.1. The data preprocessor handles the 

monitored data and feeds the processed monitoring data to the next procedure. 

Calculated residuals of performance indexes are compared with their corresponding 

thresholds to detect abnormalities in the chiller. Using the deviation pattern of the six 

performance indexes, the fault diagnostic classifier could determine the existence of a 

fault and furthermore find out where and what the fault is.  

 

Fault detection  

Once a set of data passes through the steady-state filter, all performance indexes at this 

sampling instance will be calculated. Meanwhile the benchmarks of the performance 

indexes are also predicted by their corresponding reference models. Thus the residual for 

each performance index is generated by comparing the measured value with its 

benchmark. Each residual is compared with its threshold updated online according to the 

ever-changing operating conditions such as chiller cooling load and water temperatures. 

When the residuals of one or more performance indexes are larger than their thresholds, 

the chiller system is considered to be faulty.   
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Fault diagnosis

Fault diagnosis is performed using a fault diagnostic classifier, which is based on the set 

of rules (see Table 3.2) and built in the form of a simple expert system. As soon as faulty 

operation of the chiller is detected, the diagnostic classifier evaluates the probability that 

each chiller fault applies to the current deviation pattern of the performance indexes.  In 

this thesis, a result of fault diagnosis is only considered valid in the event that the fault 

probability ratio (Breuker and Braun 1998), namely the ratio of the probability of the 

most likely chiller fault to that of the second most likely chiller fault, is greater than a 

specified value. After a chiller fault is identified, a chiller fault alarm will be raised. 

Furthermore, proper suggestions and recommendations regarding systems maintenance 

could be provided on the basis of the identified faults.  

 

3.4 Summary  

This chapter presents a model-based basic chiller FDD scheme to tackle chiller faults in 

centrifugal chillers.   

The scheme is developed based on six performance indexes that have great physical 

meaning. These six performance indexes have the capability of describing health 

conditions of centrifugal chillers and thus accounting for some chiller faults. A set of 

generic rules relating chiller faults to their impacts on the performance indexes are 

deduced from theoretical analysis. The fault diagnostic classifier based on the set of rules 

can help consolidate a great amount of measurement information into a clear and 

coherent picture of equipment status, and therefore is simpler and more effective than 

those using impacts of faults on numerical values of individual measurements. The 
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benchmarks of the performance indexes are provided by a set of simple reference models 

in the form of polynomial regression equations with only three regressors (i.e., the chiller 

cooling load, the entering condenser water temperature and the chilled water supply 

temperature). Fewer regressors in the reference model make it less susceptible to 

measurement errors as compared with a mechanistic model with many inputs. Moreover, 

the model parameter estimation is convenient and time-saving because it employs a 

simple fitting technique, i.e., OLS method.  

In particular, an online adaptive estimator of fault detection threshold is developed, by 

analyzing uncertainty coming from both model-fitting errors and measurement errors 

(sensor noise errors), to scientifically determine thresholds for detecting abnormal 

performance indexes. This adaptive FDD threshold estimator has great potential to help 

operators and engineers identify chiller faults promptly while eliminating as much false 

alarms as possible. With regard to the online implementation of the basic chiller FDD 

scheme, a data preprocessor consisting of three subprograms is developed and employed 

to get rid of undesirable data in the collected data.  

However, what needs to be pointed out is that the basic chiller FDD scheme can only 

tackle faults at the level of chiller components but not sensor faults such as sensor bias 

errors. All sensors involved in the FDD are assumed to be free from abnormality except 

noise error. The bias errors associated with sensors in a typical centrifugal chiller will be 

tackled by the sensor FDD&E scheme which will be developed in Chapter 6. The basic 

chiller FDD scheme developed in this chapter will be validated in Chapter 5 using both 

laboratory data provided by an ASHRAE research project and field data collected from 

the chiller plant in a real building in Hong Kong.  
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CHAPTER 4 TEST FACILITIES 

 

In this thesis, chiller data from two test facilities are employed to validate the basic 

chiller FDD scheme, the sensor FDD&E scheme and the robust FDD strategy developed 

in this study. The two test facilities are a laboratory centrifugal chiller used in a research 

project sponsored by ASHRAE, and a centrifugal chiller plant in a real building in Hong 

Kong, respectively. The chapter briefly introduces these two test facilities. The full name 

of the research project is “Fault Detection and Diagnostic (FDD) Requirements and 

Evaluation Tools for Chillers” referred to as ASHRAE 1043-RP in this thesis. 

Section 4.1 describes the centrifugal chiller test stand which is developed and used in the 

laboratory study in ASHRAE 1043-RP. The test stand produced a database of laboratory 

measurements for normal (fault-free) operation and a number of chiller faults at various 

operating conditions. All chiller faults were tested at different levels of severity to 

produce a database, which can be used to evaluate the sensitivity and accuracy of FDD 

methods for chillers. Section 4.2 introduces the centrifugal chiller plant in a real 

commercial building in Hong Kong. The chiller data retrieved from its BMS over a 

period of time will be used in the validation tests in this thesis. The summary of this 

chapter is given in Section 4.3.  

 

4.1 Laboratory Centrifugal Chiller in ASHRAE 1043-RP 

ASHRAE 1043-RP is the first phase of a three-phase research project, which was 

initiated by ASHRAE in 1998 to address the need for a comprehensive study of 
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automated diagnostics for chillers. During the development of automated FDD for 

chillers, one of the biggest barriers is the lack of data containing typical chiller faults as 

it is difficult to find a chiller on which a number of fault tests are allowed to be carried 

out. The primary objective of ASHRAE 1043-RP is to produce a database of 

measurements of a chiller under various chiller-fault conditions as well as various 

operating conditions. Since the laboratory chiller is representative of many chillers in 

service today, the database can be used in the development and evaluation of FDD 

methods applied to chillers. According to the report from Comstock and Braun (1999), 

the laboratory work is a great improvement over previous research efforts in one or more 

of the categories listed below: 

  The faults were introduced at multiple levels of severity as well as at different 

operating conditions; 

 A wide variety of chiller faults were studied ; 

 A complete suite of sensor data was collected from the chiller at a sampling rate that 

permits transient analysis; 

 The test unit was representative of a typical building chiller installation. 

 

4.1.1 Description of Test Stand 

As presented by (Comstock and Braun 1999), a 90-ton (316kW) centrifugal chiller in the 

test stand is loaded by a hot water loop as a simulated building. The centrifugal chiller is 

small enough for indoor laboratory test with a nearly constant ambient temperature of 72 

oF (22 oC) while being representative of centrifugal chillers used in most applications.  

The design of the test stand can satisfy the specifications of ARI Standard 550/590 (ARI 
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2003) for centrifugal and rotary screw water-cooled packages. The refrigerant flow 

circuit in the chiller is essentially the same as the centrifugal chiller system introduced in 

Chapter 2. Internal chiller controls, e.g., capacity control and condenser water 

temperature control, are realized by the onboard chiller controller, namely, a MicroTech 

controller in the test stand. In addition, power consumption to the compressor can be 

artificially restricted by the MicroTech controller, which in turn inhibits the opening of 

the vanes, and can cause the chiller to be unable to meet the chilled water setpoint unless 

the load is reduced. Figure 4.2 depicts the important equipment contained within the 

chiller test facility and indicates their approximate relative locations. The abbreviation 

‘HX’ in the figure stands for ‘heat exchanger’.  
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Figure 4.1 Schematic diagram of the laboratory chiller test layout  
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4.1.2 Instrumentation of Test Stand 

A comprehensive suite of sensor information is collected by the MicroTech controller 

mounted on the chiller as part of its typical installation package. Data are relayed to the 

PC from the MicroTech controller through a RS-232 connection. The test stand is 

controlled by a group of three Johnson Controls Inc. Air Handling Unit (JCI AHU) 

controllers on RS-485 network, which in turn is connected to the PC via a RS-485 to RS-

232 converter as shown in Figure 4.2.  

 

RS-485

RS-232 to RS-485 
Converter

PC Running VisSim

Centrifugal Chiller with 
MicroTech Controller

JCI AHU controllers

 

Figure 4.2 Schematic diagram of chiller test stand and its control interface 

 

Both the MicroTech and JCI AHU controllers are interfaced on the PC via VisSim - a 

visual simulation software package with customizable features that allow various 

communication protocols to be enabled simultaneously. The program developed within 
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VisSim collects all the data gathered by the two controllers and exports it to a tab 

delimited text file. This program also imports data used to automatically control the test 

sequence and operating conditions. VisSim samples the data at a 10-second interval and 

makes control adjustments. Table 4.1 gives the consolidated data set of the key variables 

along with their measurement uncertainties.   Detailed information is available in the 

report presented by Comstock and Braun (1999). 

 

Table 4.1 Listing of key measured and calculated variables with corresponding absolute 
uncertainties. 

Designation Source Uncertainty 

Tchws,set MicroTech ±0.03 oC 

Tchwr MicroTech ±0.11 oC 

Tchws MicroTech  ±0.11 oC 

Tecw MicroTech  ± 0.11 oC 

Tlcw MicroTech  ±0.11 oC 

Welec JCI AHU  ±1.8 kW 

Mcw JCI AHU  ±0.1767 GPM 

Mchw JCI AHU  ±0.1388 GPM 

Tev MicroTech  ± 0.17 oC 

Pev MicroTech  ± 2.067 kPa 

Tcd MicroTech  ± 0.17 oC 

Pcd MicroTech  ±3.445 kPa 

Tsub MicroTech ±0.3 oC 

Tsuc MicroTech  ±0.11 oC 

Tdis MicroTech  ± 0.11 oC 
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4.1.3 Test Sequence Matrix 

Soon after commissioning the chiller test stand, tests were run at various temperature and 

loading extremes to determine the operating envelope of the chiller. In order to follow 

ARI Standard 550 and still operate in the safe operating range of the centrifugal chiller, 

chilled water temperatures were controlled to be 40°F, 45°F, and 50°F (4.4 oC, 7.2 

oC and 10 oC), which could be easily achieved. At the same time, the entering condenser 

water temperatures were controlled between 60°F (15.6 oC ) and  85°F (29.4 oC) . The 

cooling load of the chiller ranged from 25% to 100% of the rated cooling capacity.  

Since fault testing relies on comparisons of different test runs, the test sequence was 

constructed in a manner that was consistent for all the faults tested. That is to say once 

the test sequence was selected, it was kept unchanged for all the tests performed later. 

The three control variables chosen were the chilled water supply temperature (Tchws), the 

entering condenser water temperature (Tecw), and the chiller cooling load (Qev). Using 

these three variables each at three levels resulted in a 3x3x3 test matrix of 27 different 

tests for each fault level.  

A steady state is usually reached within 5 to 15 minutes after a change in operating 

setpoints. Changes in the chilled water setpoint led to the slowest response to reach 

steady state; therefore, the test matrix was designed so that this variable was changed the 

least frequently. Each of the 27 tests was allowed at least 30 minutes to reach steady 

state, with 45 minutes being allocated to those tests where the chilled water setpoint was 

changed. This provided between 15 and 25 minutes of steady state operation for each test 

case. Results of an actual test run at normal (fault free) conditions are shown in Figure 

4.3, where the sampling interval is 2 minutes.  
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Figure 4.3 Data from an actual test run meeting all 27 operating conditions 

 

4.1.4 Fault Tests 

This subsection presents the faults are tested and how they are simulated in the test stand. 

Table 4.2 gives the different faults tested and the levels of severity of each fault. The 

tests of the five types of fault which were identified in the fault survey in Chapter 1 are 

presented in this section, although a total of 8 types of fault were investigated in 

ASHRAE 1043-RP. Among these faults, refrigerant leakage was simulated by removing 

known amounts of refrigerant from the refrigerant circuit. Excess oil was simulated by 

adding known amounts of oil to the centrifugal compressor. Condenser fouling was 
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obtained by blocking known numbers of tubes in the condenser. Non-condensables in the 

refrigerant were simulated by adding nitrogen to the refrigerant circuit. The refrigerant 

overcharge fault was not on the fault survey, but it was tested since it is a fault that can 

theoretically occur due to improper servicing. In order to compare normal tests with 

corresponding fault tests, the normal tests were implemented before each group of fault 

tests. Among these normal tests, the first test, described as the “Normal Test” where all 

operating conditions were met was selected in the thesis as the benchmark test for 

comparison. If a fault test did not satisfactorily meet the test conditions, the test would be 

repeated. It is worth pointing out that the excess oil and non-condensable gases in 

refrigerant were the only two faults that could not be quantified precisely. Although the 

excess oil added to the refrigerant circuit could be accurately measured, the nominal 

amount of oil in the circuit is difficult to quantify since it is impossible to drain all the oil 

from the compressor. The amount of non-condensables in refrigerant could be calculated. 

However, the calculation uncertainty was rather high since there was rather small 

amount of nitrogen existing in the system, e.g., about 0.23 kg nitrogen even at the worst 

fault level.  

 

4.1.5 Normal Tests 

Since fault detection is based on comparison, all the data from each fault test would be 

meaningless without normal (fault free) data taken from a benchmark test, where no fault 

was present. In addition, many FDD methods also need normal data for model training. 

A group of normal tests are recommended in ASHRAE 1043-RP for benchmark tests. 

Two normal tests, described as “Normal” and “Normal NC” respectively, are selected in 

this thesis as two benchmark tests for comparison.   



Fault Simulation 
approach 

Nominal 
Value Level 1 Level 2 Level 3 Level 4 

Refrigerant leak Reducing 
charge 

300lb 
(136kg) 

10% reduction in 
charge (270 lbs) 

20% reduction in 
charge (240 lbs) 

30%reduction in 
charge (210 lbs) 

40% reduction in 
charge (180 lbs) 

Refrigerant 
overcharge 

Increasing 
charge 

300lb 
(136kg) 

10% increase in 
charge 

20% increase in 
charge 

30% increase in 
charge 

40% increase in 
charge 

Excess oil Increasing 
oil 22lb(10kg) 14% increase in 

charge (25 lbs) 
32% increase in 
charge (29 lbs) 

50% increase in 
charge( 33 lbs) 

68% increase in 
charge (37 lbs) 

Condenser fouling 
Blocking 
condenser 

tubes 

164 
unblocked 

tubes 

12% reduction in 
tubes (20 blocked 

tubes) 

20% reduction in 
tubes (33 blocked 

tubes) 

30% reduction in 
tubes (49 blocked 

tubes) 

45% reduction in 
tubes (74 blocked 

tube) 

Non-condensables Adding 
nitrogen No Nitrogen 0.10 pounds 

(1.0%) 
0.16 pounds 

(1.7%) 
0.22 pounds 

(2.4%) 
0.54 pounds 

(5.7%) 

Table 4.2 Characterization of Tests of chiller faults  

77

 

 

 



4.2 Centrifugal Chiller Plant in a Real Building in Hong Kong 

In order help push the FDD technology closer to field application, chiller data from a 

chiller plant in a real building is also needed to validate the developed FDD 

schemes/strategy in this thesis. The second test facility introduced in this chapter is the 

chiller plant of the central cooling system in a real building in Hong Kong. The building 

is a twin tower office complex with a total gross floor area of 116,000 square meters in 

Taikoo Place, a famous grade A office district on Hong Kong island. It consists of Hong 

Kong Telecom Tower, a 43-storey office tower with a footprint of about 1,500 square 

meters, and Dorset House, a 40-storey office tower with a similar size floor plate. Four 

levels of basement provide 400 parking spaces.  

 

4.2.1 Chilled Water System  

The central cooling system services the whole building with chilled water produced by a 

chiller plant consisting of five York water-cooled centrifugal chillers. Among them, 

three are identical 1540-ton centrifugal chillers (see Figure 4.4) for Day Mode and two 

are identical 500-ton centrifugal chillers for Night Mode/Holiday Mode. Each of the 

chillers uses a fixed orifice as the expansion device. The condenser water is provided by 

11 identical open cooling towers which are located on the roof level. In this paper, the 

data collected from a 1540-ton centrifugal chiller will be used as test data to validate 

FDD schemes developed. 
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Figure 4.4 A York water-cooled 1540-ton centrifugal chiller in a real building  
in Hong Kong 

 

The chilled water system can be divided into two loops: the primary system which is also 

called the production system - the place where chilled water is produced, and the 

secondary system which is also called the distribution system because its function is to 

convey the chilled water to the load side. The chilled water in this cooling system is 

pumped by a typical constant primary – variable secondary pumping system. Figure 4.5 

shows the schematic of the chilled water system. The rationale for this configuration is 

straightforward. On the primary system, chiller manufacturers recommend that the flow 

through the evaporator of a chiller should be constant, since high flow rates could cause 

damage to evaporator tubes and low rates could result in unsteady controls. Therefore, 

each chiller is serviced by a constant-speed primary pump. On the secondary system, 

variable-speed pumps are preferred in that they can save pumping energy at part load 
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conditions. Thus, five identical variable-speed pumps are configured in a parallel 

arrangement in the secondary system. In addition, each chiller is associated with a 

constant-speed condenser water pump in the condenser water loop. Two identical 

condenser water pumps and two identical primary chilled water pumps, all constant-

speed, are used for standby. The central cooling system operates day and night, including 

public days.  
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Figure 4.5 Schematic diagram of the chilled water system in a real building in  
Hong Kong (5 chillers) 

 

4.2.2 Basic System Control 

There are two operating modes in the sequencing control. One is Day Mode and the 

other is Night /Holiday Mode. Each mode is defined by a predetermined time schedule. 

Chillers and associated pumps should operate under the sequencing control with equal 

running hours in either of the two modes. Normally, one chiller set, including a chiller, a 
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condenser water pump and a primary water pump, will be started after the sequencing 

control is activated for minimum building cooling load. One more chiller set will be 

started if one of the following conditions occurred in Day Mode: 

 The building cooling load is equal to or larger than the total load of the operating 

chiller(s); 

 The return chilled water temperature is higher than 14oC;   

 A negative water flow rate larger than 10 liter/second is detected in the bypass pipe.     

One chiller set will be stopped if one of the following conditions occur in Day Mode:  

 The cooling load of operating chiller(s) exceeds the building cooling load by 110% 

of the rated capacity of a single chiller; 

 A positive water flow rate larger than 110% of the maximum flow rate of a single 

chiller is detected in the bypass pipe.  

As for Night /Holiday Mode, the second chiller set will only be started if the return 

chilled water temperature is higher than 14oC and stopped if the temperature is less than 

13.5oC.  

When a control command is sent to start a chiller set, the associated cooling tower will 

be started first and then the condenser water pump will be started. Subsequently, the 

primary water pump will be started. After 1 minute, the chiller will be started. The above 

sequence will be reversed when stopping a chiller set.  

The primary concern in the control of secondary pumps is to ensure that the number of 

pumps put into operation and their speed must have adequate capacity to deliver the 

required amount of chilled water to the load side, i.e., AHUs. The sequence and the 
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speed control of the secondary water pumps are carried out according to the differential 

pressure of the secondary water loop. For conciseness, the details of the control are not 

provided in this thesis. Each AHU on the load side is equipped with a PID controller, 

which controls the supply air temperature by adjusting the chilled water flow through the 

cooling coil. A two-way modulating valve is used.  

 

4.2.3 BMS Monitoring Sensors 

The BMS monitoring sensor in the chiller plant are shown in Figure 4.5. Resistance 

thermometers accurate to ±0.05 °C are installed for the building supply water 

temperature, the chilled water supply and return temperatures of each chiller. Magnetic 

flow meters accurate to ±1% of full scale are available for the total building supply water 

flow rate, the bypass flow rate and the water flow rate of each chiller. Kilowatt meters 

accurate to ±0.5% of full scale are installed to measure the instantaneous electric power 

input to each chiller and its associated primary water pump. Condenser water 

temperature sensors are installed at the inlet and outlet of the condenser of each chiller. 

In addition, measurements from internal sensors and transducers in each chiller are 

available on the BMS as control panels of individual chillers are integrated with the 

BMS through gateway technologies. On control panels of individual chillers, 

temperatures were measured by resistance thermometers accurate to ±0.05 °C, water 

flow rates by magnetic flow meters accurate to ±1% and pressures by pressure 

transducers accurate to ±0.4% of full scale. Therefore, measurements from all sensors 

and transducers in the cooling system can be collected from the BMS. The sample 

interval of the measurements collected from the BMS is one minute.  
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4.3 Summary  

Two test facilities in different environments, namely laboratory and field, were 

introduced in this chapter. The schemes/strategy developed in this thesis will be tested on 

these two facilities.  

The first test facility is a laboratory centrifugal chiller in an ASHRAE research project 

whose primary objective is to produce a database which can be used in the development 

and evaluation of FDD methods applied to centrifugal chillers. In particular, the 

availability of chiller data from fault tests at different levels of severity can help 

determine the sensitivity and accuracy of FDD methods in detecting the given fault.  

The second test facility represents a typical application of centrifugal chillers in large 

commercial buildings. Chiller data can be collected from the BMS of the building for a 

certain period of time and used to validate the schemes/strategy developed in this thesis 

in terms of field applications.  
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CHAPTER 5 VALIDATION OF BASIC CHILLER FDD 

SCHEME 

 

The basic chiller FDD scheme developed in Chapter 3 to identify chiller faults in 

centrifugal chillers is validated in this chapter using both laboratory data and field data, 

which were respectively collected from the two test facilities introduced in Chapter 4.  

Section 5.1 presents the validation results of the basic chiller FDD scheme using data 

from the laboratory chiller in ASHRAE 1043-RP. The reference model in the basic FDD 

scheme was developed by the data collected from a normal test. The data collected from 

four fault tests under different levels of severity and various operating conditions were 

employed to evaluate the effectiveness and sensitivity of the basic FDD scheme. In a 

similar way, Section 5.2 partially validates the basic FDD scheme using the field data 

collected from the BMS of a real building in Hong Kong. The summary of this chapter is 

given in Section 5.3.  

 

5.1 Validation Using Laboratory Data from ASHRAE 1043-RP  

5.1.1 Test Conditions   

The basic chiller FDD scheme was validated using laboratory data from a centrifugal 

chiller in ASHRAE 1043-RP, which is introduced in Chapter 4. The normal data from the 
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“Normal” test in ASHRAE 1043-RP were used to estimate the parameters in the 

reference model of each performance index. The data of the “Normal” test are provided 

on the CD that is attached as an appendix. After the reference models had been 

developed, the data from four chiller-fault tests were employed as test data to verify 

whether the chiller faults could be found by the basic chiller FDD scheme. The selected 

chiller-fault tests for validation tests in this chapter are listed as follows.  

 Refrigerant leakage 

 Excess oil 

 Condenser fouling 

 Non-condensable gases in refrigerant 

It is worth noting that all these faults are considered in the set of rules in the fault 

diagnostic classifier (see Section 3.1.3). However, in this thesis the basic chiller FDD 

scheme is not validated against another two chiller faults that are considered in the fault 

diagnostic classifier, i.e., evaporator fouling and degradation of compressor, as the data 

for these two chiller faults are not available in ASHRAE 1043-RP. For each of the 

chiller-fault tests used, the fault characterization and fault severity levels are shown in 

Table 4.2. In addition, the data from the “Normal NC” test were also directly used to 

verify the basic chiller FDD scheme. Therefore, there are a total of five test cases. 

Among them, one case represents normal (fault-free) chiller performance, and the other 

four test cases, each targeting one chiller fault, represent faulty chiller performance. 
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5.1.2 Reference Model Development and Validation  

After going through a well designed data preprocessor developed in Section 3.3.1, 159 

out of the original 433 sample points which were collected at a two-minute sampling 

interval during the “Normal” test remained. The remaining sample points as indicated by 

“*” in Figure 5.1 could be thought to have the capability to describe the normal (fault-

free) and steady-state operation of the chiller. The remaining data were therefore used to 

regress the reference models of the six performance indexes. The noise errors associated 

with individual measured data (refer to Table 4.1) were assumed to be a Gaussian 

distribution with mean zero and standard deviation equal to half of the measurement 

accuracy specified by instrument manufacturers 
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Figure 5.1 Sample points from “Normal” test meeting all 27 operating conditions 
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It can be seen from Figure 5.1 that the range of variations of the individual variables are 

rather large and they are reasonably distributed over all typical operating conditions of 

the chiller. This arrangement of the model development data, just as presented by 

Corcoran and Reddy (2003), makes it possible to obtain sound reference models of the 

performance indexes. The OLS method was employed to estimate the coefficients of the 

reference models in the form of Equation (3.16). The regression statistics are 

summarized in Table 5.1 and the coefficients in the reference model are summarized in 

Table 1 in Appendix B.  

 

Table 5.1 Regression statistics of reference models for performance indexes regressed by   
laboratory data from ASHRAE 1043-RP  

(159 sets of steady-state data from “Normal” Test)  

 LMTDev LMTDcd Mref Effpoly Effmotor COP 
RMSE 0.152K 0.238K 0.002kg/s 0.81% 1.33% 0.05 
CV% 3.24% 6.94% 0.17% 1.60% 1.64% 1.32% 

R2 99.06 % 97.07% 99.99% 99.42% 98.07% 99.63% 
Adj-R2 99.05% 97.03% 99.99% 97.41% 98.04% 99.62% 

RMSE - Root Mean Square Error;    CV% - Coefficient of Variation 
R2 - Coefficient of Determination;   Adj-R2 - Adjusted R2 

The R2 in Table 5.1 is an indicator of how well the reference model with three regressors 

fits the model development data. An R2 close to 1.0 indicates that one has accounted for 

almost all of the variability with the variables specified in the model. The R2 would 

never decrease if one adds more independent variables to a regression model, even when 

the new variable causes the model to become less efficient (worse). The Adj-R2 however 

has the advantage over the R2 (Montgomery and Runger 1994). It will not always 
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increase when more variables are added, but only increases if the added variables 

contribute significantly to the regression model.  

From Table 5.1, it can be seen that the adjusted R2 is a little lower than the R2, which 

normally means that no explanatory variable(s) is missing in the regression model 

(Montgomery and Runger 1994). Furthermore, the maximum CV% of 6.94% and the 

minimum R2 of 97.03% for performance indexes are two indicators showing a desirable 

goodness of fit of the regression models. Comparisons between predicted and calculated 

performance indexes are shown in Figure 5.2. From the analysis above, it can be 

concluded that OLS is applicable to the parameter estimation of the reference models 

though the independent variables here have evidence of collinearity, e.g., the cooling 

load is correlated with the chilled water supply temperature as the latter is involved in 

the calculation of the former.  
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Figure 5.2 – (a) Model predicted LMTDev and calculated LMTDev
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Figure 5.2 - (b) Model predicted LMTDcd and calculated LMTDcd
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Figure 5.2 -(c) Model predicted Mref and calculated Mref
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Figure 5.2 - (d) Model predicted Effpoly and calculated Effpoly 
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Figure 5.2 - (e) Model predicted Effmotor and calculated Effmotor
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Figure 5.2 - (f) Model predicted COP and calculated COP 

Figure 5.2 Comparison between predicted and calculated values of performance indexes 
using laboratory data from “Normal” test 

 

5.1.3 Effects of Operating Conditions on Fault Detection Threshold 

As analyzed earlier in Chapter 3, the chiller operating conditions affect the uncertainty in 

the calculation of residuals of performance indexes, and then affect the threshold for 

fault detection at a certain confidence level. The laboratory data were used to verify the 

effects of the operation conditions on the fault detection thresholds and check if it is 

necessary to adopt the online adaptive estimator of fault detection threshold.  

The results showed that for each performance index the threshold determined at a certain 

confidence level changed with operating conditions, i.e., the cooling load, the entering 

condenser water temperature and chilled supply water temperature. In particular, the 
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performance indexes, including Mref, Effmotor and COP, changed significantly with the 

operating conditions, while the performance indexes, including LMTDev, LMTDcd and 

Effpoly, were less susceptible to the operating conditions. The threshold of the 

performance index, Effmotor, is chosen in this section to illustrate such effects. As shown 

in Figure 5.3, the variation of the thresholds of Effmotor is significant when the cooling 

load (Qev) and the entering condenser water temperature (Tecw) change under the 

condition of a constant chilled water supply temperature (Tchws).  
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Figure 5.3 Estimated threshold of a performance index (Effmotor) affected by chiller 

cooling load (Qev) and entering condenser water temperature (Tecw) under the condition 
of constant chilled water supply temperature (Tchws) 

 

5.1.4 Test Results  

The basic chiller FDD, as shown in Figure 3.1, was implemented to process the test data 

from one selected normal test and four chiller- fault tests. The results are provided as 

follows. 
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Test case using normal laboratory data from “Normal NC” 

The performance indexes were calculated and subtracted from their normal values, 

which were predicted by the corresponding reference models. That resulted in the 

residuals of each performance index, which are depicted in Figure 5.4. The dots in the 

figures represent the residual values. The solid lines in the figures indicate the thresholds, 

which were ever updated by Equation (3.17) with a confidence level of 95%. Obviously, 

almost all residuals of each performance index for this normal test were inside its 

individual threshold band. It is worth pointing out that there were a few residuals of two 

performance indexes, i.e., LMTDev and LMTDcd, locating outside their thresholds. 

However, the distribution of the residuals of the two performance indexes was not in one 

direction and quite random, which meant that these deviations were not due to a specific 

chiller faults. Therefore, it can be concluded that there was no chiller fault in the chiller 

system. 
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(b) Plot of residuals of LMTDcd

(f) Plot of residuals of COP

(a) Plot of residuals of LMTDev

(c) Plot of residuals of Mref (d) Plot of residuals of Effpoly

(e) Plot of residuals of Effmotor  

Figure 5.4 Residuals of performance indexes for “Normal NC” test – no fault detected 

 

Test case using normal laboratory data from chiller-fault tests 

The test data were generated by arranging the data from each chiller-fault test in 
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increasing order of severity (from level 1 to level 4). Residuals and thresholds of each 

performance index were obtained in the same way mentioned above. In the following 

figures, the number of steady sample points from each fault level is not exactly the same. 

Roughly speaking, fault level l includes sample point 1 to 160, fault level 2 includes 

sample point from 161 to 320, fault level 3 includes sample point 321 to 480 and fault 

level 4 includes sample point 481 to the last one. The dots in the figures represent the 

residual values.  

With regard to the refrigerant leakage test, the residual of the performance index, 

LMTDcd , began to deviate beyond its upper thresholds at fault level 2 as shown in Figure 

5.5-(a). The residual values are illustrated by the solid dots and the fault detection 

threshold values are indicated by the solid lines. The confidence level of threshold 

estimation was also 95%. As shown in Figure 5.5-(b), there was almost no residual of 

Mref locating outside thresholds at low fault levels, but a very few residuals were 

observed below its lower thresholds. In addition, a slight increase of COP was observed 

at level 2 and level 3, as shown in Figure 5.5-(c). But this increase of COP would soon 

be offset by the ever-increasing negative effects resulting from the fault when the fault 

severity level reached 4. No discernible residual of the other performance indexes was 

observed and not presented in this section. The fault diagnostic classifier, according to 

the rules presented in Table 3.2, identified the existence of refrigerant leakage 

As for the excess oil test, only some residuals of Effmotor and COP deviated beyond their 

lower thresholds at higher fault severity levels, as shown in Figure 5.6, while no 
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discernible residual of the other performance indexes was found. With the aid of 

continuous monitoring of the trend of residuals of each performance index, the fault 

diagnostic classifier identified the existence of excess oil when it was at fault severity 

level 4. Admittedly, the deviations of Effmotor and COP were not very obvious. This is 

because excess oil was slightly introduced to the chiller for protecting the compressor.  

Similarly, in the case of condenser fouling, some residuals of two indexes, LMTDcd and 

COP deviated from their corresponding thresholds even when the fault severity level was 

low, as shown in Figure 5.7. Due to the compensation effect of the expansion valve, few 

deviated residuals of Mref were observed at low fault levels. However, when the fault 

level was high, e.g., level 4, the expansion valve could not compensate any more and 

significantly deviated residuals of Mref appeared. Accordingly, the fault diagnostic 

classifier identified the existence of condenser fouling.  

With regard to the test of non-condensables in refrigerant, the residuals of three indexes, 

LMTDcd and COP began to obviously deviate from their corresponding thresholds at 

fault level 1, as shown in Figure 5.8. Thus, non-condensables in refrigerant could be 

identified with the aid of the fault diagnostic classifier. 

It can also be seen from Figure 5.5 to Figure 5.8 that the thresholds of the performance 

indexes, Mref, Effmotor, COP, change significantly when the operating conditions change 

while those of the performance indexes, LMTDev , LMTDcd and Effploy are less susceptible 

to the operating conditions. 

To sum up, the four typical chiller faults in the laboratory centrifugal chiller, e.g., 
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condenser fouling and excess oil, can be diagnosed by the basic chiller FDD scheme 

developed in Chapter 3.  
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Figure 5.5- (a) Residuals of LMTDcd 
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Figure 5.5- (b) Residuals of Mref 
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Figure 5.5 - (c) Residuals of COP 

Figure 5.5 Deviated residuals of performance indexes for refrigerant leakage from fault 
severity level 1 to level 4 
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Figure 5.6 - (a) Residuals of Effmotor
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Figure 5.6 - (b) Residuals of COP 

Figure 5.6 Deviated residuals of performance indexes for excess oil from fault severity 
level 1 to level 4 
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Figure 5.7 - (a) Residuals of LMTDcd
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Figure 5.7 - (b) Residuals of Mref 
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 Figure 5.7 - (c) Residuals of COP 

Figure 5.7 Deviated residuals of performance indexes for condenser fouling from fault 
severity level l to level 4 
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Figure 5.8 - (a) Residuals of LMTDcd
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Figure 5.8- (b) Residuals of COP 

Figure 5.8 Deviated residuals of performance indexes for non-condensables in 
refrigerant from fault severity level l to level 4 
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5.2 Validation Using Field Data from a Real Building in Hong Kong  

5.2.1 Test Conditions  

Apart from the data from chiller-fault tests in ASHARE 1043-RP, the field data collected 

from a 1540-ton centrifugal chiller in the chiller plant introduced in Section 4.2 were 

also used to validate the basic chiller FDD scheme. The validation tests using field data 

can help push the scheme closer to widespread commercialization based on BMS.   

The chiller data collected on July 4th, 2001 were used to regress the reference models. 

The sampling interval was one minute. Since the whole chiller plant just went through a 

routine process of re-commissioning, healthy and fault-free operations of the 

components, sensors, controller, actuator, etc., could be ensured. Thus, the collected data 

sets could be thought to be able to describe the fault-free operation of the centrifugal 

chillers. The data collected during 30 days after July 4th, 2001 (from July 5th, 2001 to 

August 3rd, 2001) were used as test data to test the performance of the chiller FDD 

scheme in identifying chiller faults. Since the condenser water in the system is provided 

by open cooling towers, continuous contact of the water with air introduces impurities 

and concentrated materials. Therefore, the fouling of the condenser, without regular 

purging during the period of 30 days, developed gradually. This fault is expected to be 

diagnosed by the basic chiller FDD scheme. During the implementation of the scheme, 

the noise errors associated with individual measurements were assumed to be a Gaussian 

distribution with mean zero and standard deviation equal to half of the measurement 

accuracy specified by instrument manufacturers 
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5.2.2 Reference Model Development and Validation 

The data used for reference model development, i.e., for the parameter estimation of the 

reference models, went through the well-designed data preprocessor first. The data sets 

were selected prudently from the steady-state data such that the range of variation of the 

individual variables was as large as possible for identifying sound reference models and 

they were reasonably distributed over the whole operating range. The OLS method was 

also employed to estimate the parameters of the reference models in the form of 

Equation (3.16). 

The regression statistics are summarized in Table 5.2. It can be seen from Table 5.2 that 

the adjusted R2 is a little lower than R2, which means that no explanatory variable(s) is 

likely missing in the regression model (Montgomery and Runger 1994). Furthermore, the 

maximum CV% of 8.43% and the minimum R2 of 90.06% are two important indicators 

showing a strong goodness-of-fit of the regression models. Comparisons between 

predicted and calculated performance indexes are shown in Figure 5.9. Good agreement 

found in the comparisons also represents desirable goodness-of-fit of the reference 

models. The coefficients in the polynomial regression model are given in Table 2 in 

Appendix B. 
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Table 5.2 Regression statistics of reference models for performance indexes regressed by 
field data from a real building in Hong Kong  

(301 sets of steady-state data on July 4th, 2001) 

 LMTDev LMTDcd Mref Effpoly Effmotor COP 
RMSE 0.256K 0.195K 0.052kg/s 0.32% 1.06% 0.085 
CV% 8.43% 4.15% 0.19% 0.44% 1.32% 1.60% 

R2 90.06% 95.44% 99.99% 98.92% 98.62% 94.86% 
Adj_R2 90.03% 95.43% 99.99% 98.91% 98.61% 94.85% 

RMSE - Root Mean Square Error;    CV% - Coefficient of Variation 
R2 - Coefficient of Determination;   Adj-R2 - Adjusted R2 
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Figure 5.9 - (a) Model predicted LMTDev and calculated LMTDev 
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Figure 5.9 - (d) Model predicted Effpoly and calculated Effpoly
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Figure 5.9 - (e) Model predicted Effmotor and calculated Effmotor
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Figure 5.9 - (f) Model predicted COP and calculated COP 

Figure 5.9 Comparisons between predicted and calculated performance indexes using 
field data collected from a real building on July 4th, 2001 

 

5.2.3 Test Results  

The basic chiller FDD, as shown in Figure 3.1, was also implemented to process the data 

collected after July 4th
, 2001. The residuals of the six performance indexes were 

calculated and then compared with their corresponding fault detection thresholds. The 

trend and amount of the residuals would be used by the fault diagnostic classifier to 

diagnose particular chiller faults. 
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Test cases using field data collected from July 5th to July 24th 

In the first 20 days, for each performance index, there were a very few residuals located 

outside their bands defined by the corresponding thresholds. The residuals of the six 

performance indexes on July 5th, 2001 are plotted in Figure 5.10 as an example. The dots 

in the figures represent the residual values. The dots in the figures represent the residual 

values. The solid lines in the figures indicate the thresholds, which are ever updated by 

Equation (3.17) with a confidence level of 95%. Since a very small number of residuals 

go beyond thresholds, the scheme concluded that there was no abnormality in the chiller 

system on that day. 
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(b) Plot of residuals of LMTDcd

(f) Plot of residuals of COP
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Figure 5.10 Residuals of performance indexes using field data collected from a real 
building on July 5th, 2001- no fault detected 

 

Test cases using field data collected after July 24th

After July 24th, 2001, the FDD scheme started to find significant residuals in LMTDcd 
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and COP, and these residuals became more serious gradually. During the same period, 

there was no discernible residual in the other four performance indexes. The significantly 

deviated residuals of the performance indexes on July 31st 2001 (28 days after system 

commissioning and calibration) are presented in Figure 5.11 to illustrate FDD results of 

the basic scheme. The thresholds were also ever-updated by Equation (3.17) with a 

confidence level of 95%. It was clear that the residuals of LMTDcd and Mref increased 

beyond the thresholds, while the residuals of COP decreased below the thresholds. 

Therefore, the fault diagnostic classifier concluded that the occurred fault was condenser 

fouling. This conclusion agreed well with the foregoing expectation that the condenser 

water provided by open cooling towers would foul the condenser gradually. Due to the 

constraints in operating system, no other faults were artificially introduced into the 

chiller system to test the basic chiller FDD scheme.    
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Figure 5.11 - (a) Residuals of LMTDcd 
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Figure 5.11 - (b) Residuals of Mref 
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Figure 5.11 - (c) Residuals of COP

Figure 5.11 Deviated residuals of performance indexes using field data collected from a 
real building on July 31st, 2001 
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5.3 Summary 

To sum up, this chapter validated the basic chiller FDD scheme developed in Chapter 3, 

using both laboratory data from a centrifugal chiller in ASHRAE 1043-RP and field data 

collected from the BMS of a real building in Hong Kong. The validation results show 

that it is possible to differentiate between the tested chiller faults using the basic FDD 

scheme.  

First of all, the fitness of the reference models affects the accuracy of the chiller FDD 

scheme. As for the validation tests using laboratory data, the model development data 

were collected from a normal test with 27 different operating conditions. Therefore, these 

data contain rich system information needed to identify sound reference models of the 

performance indexes. As for the validation tests using field data, chiller data collected 

over a period of one day immediately after system routine maintenance and 

commissioning were used to identify reference models of the performance indexes. 

Although the chiller only experienced a small range of operating conditions during the 

one-day period, the identified reference model would still be accurate enough for 

subsequent applications as the operating and control patterns of the chiller remained 

almost unchanged during the whole period of validation.  

In addition, the set of rules in the fault diagnostic classifier that is deduced from basic 

physical knowledge was proved to be an effective fault diagnosis tool. However, not all 

chiller faults can lead to significantly deviated performance indexes such as the case of 

excess oil. Therefore, continuous monitoring of the trend of residuals of each 
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performance index can help the FDD scheme find existing chiller faults especially in the 

case that the scheme is not very sensitive to a chiller fault. 

More importantly, it is clear from the test results that the threshold estimator can give a 

reasonable threshold band for each performance index by taking into account the model 

fitting errors, the chiller operating conditions and the noise errors associated with the 

sensors. These well defined thresholds can help ensure desirable performance of the basic 

chiller FDD scheme. The effect of operating conditions on thresholds can be clearly 

illustrated by comparing the changes of thresholds in Figure 5.4 with those in Figure 5.10. 

Because the laboratory chiller experienced a wider range of operating conditions during a 

test than the field chiller did during one-day operation, the thresholds in Figure 5.4 

changed much more than those in Figure 5.10. 

However, it is worth noting that the basic chiller FDD scheme does not take into account 

sensor faults and all the chiller data used in the validation tests were thought to be free of 

sensor faults. In practice, sensor faults may occur to every sensor in centrifugal chillers. In 

order to enhance the accuracy, effectiveness and robustness of the chiller FDD scheme, a 

sensor FDD scheme capable of finding the possible existence of sensor faults and 

correcting faulty sensors is absolutely needed and will be presented in Chapter 6.   
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CHAPTER 6 SENSOR FDD&E SCHEME 

 

The reliability and quality of measurements in centrifugal chillers play a very important 

role in the implementation of chiller FDD, efficiency monitoring and optimal control. 

Therefore, sensor faults need to be detected, diagnosed and corrected/replaced so as to 

ensure successful implementation of the above tasks. Based on the PCA (principal 

component analysis) method, a sensor FDD&E (Fault Detection, Diagnosis and 

Estimation) scheme for centrifugal chillers is developed. This chapter presents the sensor 

FDD&E scheme to handle sensor faults which might occur to sensors in centrifugal 

chillers. In the context of this chapter, the sensor fault estimation is an investigation of 

the deviation magnitude of a sensor fault from its true measurement. The PCA model-

based sensor FDD&E is an important and indispensable part of the robust FDD strategy.   

Section 6.1 identifies the problems associated with the implementation of the chiller 

FDD scheme and then proposes the need for a sensor FDD&E scheme. A sensor FDD&E 

scheme to deal with the problems is thus put forward in Section 6.2, where a PCA 

method, after a brief literature review of sensor FDD&E, is adopted to detect, diagnose 

and more importantly estimate sensor errors associated with the key measurements. 

Considering the thermophysical characteristics of the water-cooled centrifugal chillers, a 

PCA model is built to capture the correlations among the measurements. Two statistical 

approaches, i.e., Q-statistic plot and Q-contribution plot, are used to detect and diagnose 

sensor faults, respectively. In addition, an iterative approach is employed to estimate true 
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measurements as well as magnitudes of sensor bias errors.  

Based on the methods developed in Section 6.2, the implementation structure of the 

sensor FDD&E scheme is proposed in Section 6.3. The summary of this chapter is given 

in Section 6.4.   

 

6.1 The Need for Sensor FDD&E Scheme  

At present, there are a great number of sensors installed in centrifugal chillers for various 

purposes such as efficiency monitoring, local-loop and supervisory control, and chiller 

FDD.  

It can be observed in Chapter 3 and Chapter 5 that the performance of the basic chiller 

FDD scheme depends heavily on the quality of measurements from sensors. During 

reference model development, accurate measurements from all relevant sensors can help 

identify a reference model with desirable goodness-of-fit. In the course of online FDD 

implementation, accurate measurements also contribute greatly to reducing the 

uncertainty band of the residual of each performance index, and therefore help identify 

chiller faults accurately and promptly. Also, the measurements are often utilized by 

chiller control strategies to maintain chiller operation as expected and optimize it (Wang 

and Burnett 2001). Moreover, the continuous and accurate measurements of temperature, 

flow rate, electric power, refrigerant pressure, etc., are also essential to safety interlocks 

in chillers, quantification of effectiveness of energy-efficiency improvements (Phelan, J. 
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et al. 1997) and efficiency monitoring (Hartman T. B. 2001) in chillers. More detailed 

conclusions were presented in the IEA project, Annex 34 (Computer Aided Evaluation of 

HVAC System Performance).  

Unfortunately, sensors in chillers are also subject to degradation and different faults may 

occur in them. As introduced in Chapter 1, faults associated with a sensor can be divided 

into two main categories, i.e., hard failures (complete failure) and soft faults. Soft faults 

can be further divided into the bias error which is the fixed or systematic component of 

the total error (McIntosh 1999), and the noise error which is the random fluctuating 

component of the total error. Although hard failures are very harmful to chiller 

monitoring and control, it is easy to handle them by using the data preprocessor 

developed in Section 3.3.1. As for noise errors, they can be taken into account and 

handled by the uncertainty analysis as presented in Chapter 3. However, little research 

has addressed sensor bias errors, which cannot be handled by the data preprocessor. The 

existence of sensor biases might result in great deficiency or even malfunctioning of 

chiller monitoring, control, optimization and FDD. For example, a direct way of 

measuring chiller cooling load by the product of the differential chilled water 

temperature and flow rate (∆T×Mchw) is widely adopted in the calculation of chiller COP 

and in the chiller sequencing control (namely, determining the time of switching on or 

off a chiller). In typical chilled water systems in buildings, the differential chilled water 

temperature, ∆T, is usually small with a design value of around 5K. A bias error of 1K in 

both supply and return water temperature sensors alone may result in up to 40% error in 

the total cooling load calculation. Undoubtedly, both calculation of chiller COP and 
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chiller sequencing control will be susceptible to such sensor faults. An example of 

unfavorable effects of sensor bias errors on the implementation of chiller FDD follows. 

When LMTDcd is monitored to evaluate the performance of a condenser, the calculated 

LMTDcd will be unreliable if there is an error associated with the sensor measuring the 

leaving condenser water temperature. Therefore, the erroneous LMTDcd will make the 

chiller FDD scheme fail to get the true performance of the condenser and then draw 

incorrect FDD conclusions.        

To sum up, in order to develop a robust FDD strategy, the errors associated with sensors, 

especially those involved in the basic chiller FDD scheme, should be properly tackled.  

In order to achieve this goal, a sensor FDD&E scheme needs to be implemented ahead of 

the implementation of the basic chiller FDD scheme.  

 

6.2 Development of Sensor FDD&E Scheme 

6.2.1 Background of Sensor FDD in HVAC&R Applications 

To date, there have been relatively few applications of sensor FDD in HVAC&R systems 

as compared with the applications of component FDD in HVAC&R systems. Stylianou et 

al. (1996) studied a model-based method to detect soft sensor faults, aiming to make 

measurements reliable when monitoring the performance of a laboratory chiller. Lee et al. 

(2004) used general regression neural-network modes to investigate the detection and 

automatic recovery of a faulty supply air temperature sensor in an AHU (air handling 
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unit). These methods were designed to detect/diagnose only part of the sensors in the 

systems. Validating all or most of the sensors in the field is a much heavier and more 

complicated task. As for sensor faults in building cooling systems, e.g., sensor faults 

associated with building supply water temperature, building return water temperature 

and water flow rate in primary/secondary systems, a rule-based diagnosis and validation 

strategy was studied by Wang et al. (1999, 2002a, 2002b). Although the PCA method has 

been used in many engineering fields (Lennox et al. 2002, Pranatyasto et al. 2001 ), it 

was only recently introduced by Wang and Xiao (2004) into sensor FDD in AHUs (Air 

Handling Units) and proved to be an efficient means to generate useful residuals for 

sensor FDD. However, it is noteworthy that up to now there has been little published 

research directly aimed at sensor FDD for chillers. FDD for sensors in other HVAC&R 

systems, as mentioned above, has been investigated by many researchers. In centrifugal 

chiller systems, the measurements of temperature, pressure and electrical power 

consumption are the variables of greatest concern. Usually the variations of these 

variables in large water-cooled systems are relatively small when compared with 

measurements in other HVAC applications such as small chillers and AHUs, which are 

more susceptible to the ever-changing ambient conditions. Moreover, these variables are 

strongly correlated with each other through the cycling of refrigerant which interacts 

with compressor, chilled water and cooling water in the system. It might be expected that 

PCA’s strong capability of capturing the correlations among these variables can make it 

applicable for sensor fault detection, diagnosis and estimation in chiller systems. 
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6.2.2 Characteristics and Advantages of PCA Method 

The PCA method is one of the popular SPC (Statistical Process Control) methods which 

can simultaneously deal with the correlations among multiple system variables. In PCA 

methods, statistics are used to measure normal variance of the correlations among 

variables in a process. The upper and lower limits define the normal range of the 

variance of process variables. If the statistics exceed the normal range, it indicates that 

the correlations among the variables are destroyed and some abnormality has occurred.  

The comparison between PCA-based FDD methods and conventional model-based FDD 

methods is shown in Figure 6.1. The PCA model can be considered as a kind of black 

box model, to help understand the PCA method without going into details of the PCA 

method. Since the PCA method uses a pure data-driven model to describe the target 

system, not much internal information about the system is required. Nevertheless, the 

PCA method is different from the FDD methods based on the conventional data-driven 

models like the neural network model. The latter basically has two groups of information, 

i.e., the inputs and the outputs, and the relationship between the two groups is mapped by 

the model. Residuals are generated as the differences between the model outputs and the 

real systems outputs with the same inputs. Significantly deviated residuals from a certain 

threshold indicate abnormality in the system. As for the PCA method, it regards all 

variables of concern as the inputs of the PCA model. Instead of simulating the real 

process, the PCA model captures correlations among the variables by using training data, 

which are representative of normal operation. The residual vector is generated as the 
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variances that cannot be captured by the PCA model trained by normal data. Usually, the 

Square Predicted Error (SPE) of the residual vector is used as a fault index. If the SPE 

violates a certain threshold which is also determined by the training data beforehand, it 

might be concluded that some abnormality has occurred.  

 

Inputs Outputs

ResidualsSystem Model

Real System

+

-

 

Figure 6.1 - (a) Schematic diagram of a conventional model-based FDD method 

Real System PCA model

All variables 
of concern SPE

 

Figure 6.1 - (b) Schematic diagram of the PCA method 

Figure 6.1 Comparison between the PCA model and a conventional model-based FDD 
method 

 

It can be seen from the above comparison analysis that the PCA-based FDD method 

catches the correlations among system variables in a more straightforward way than 

conventional model-based FDD methods do. Thanks to this advantage, the time-

consuming work associated with building and training complex physical or mathematical 

models as well as analyzing generated residuals can be avoided.   
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6.2.3 Outline of PCA Method 

PCA is a multivariate statistical analysis technique, in which a group of correlated 

variables is transformed into a new group of variables which are uncorrelated or 

orthogonal to each other (Edward 1991 and Jolliffe 1986). By projecting the original 

correlated data into a lower-dimensional space using linear transformations, PCA is 

optimal in terms of capturing the variability of the data, and can greatly simplify and 

improve process monitoring procedures, instead of analyzing all the process variables. 

PCA can separate the observation space into two subspaces. One captures the systematic 

variations of the process and the other accounts for the random noise in the process. The 

applications of PCA in process monitoring, e.g., FDD, is motivated by its characteristic 

that applying a certain measure to each of the two subspaces can help indicate the 

sensitivity of the process monitoring method to a fault.   

A data set of n observations and m process variables is used to construct a sample matrix 

Z ( ), which is assumed in the following context to help illustrate the principle 

of using the PCA method in sensor FDD applications. Since variables in engineering 

systems usually have different units, these data need to be transformed into standard 

units by subtracting from each observation its mean and dividing by its standard 

deviation. This normalization makes the covariance matrix and the correlation matrix of 

Z the same. The mean of the ith variable, M

mn×ℜ∈Z

i, (corresponding to the ith column vector in 

the training matrix) is calculated by Equation (6.1). The standard deviation of the ith 

variable, σi, is calculated by Equation (6.2). The normalized sample matrix is then 
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calculated by Equation (6.3) and is denoted by matrix X ( ).  mn×ℜ∈X
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where zj,i is an element of matrix Z and xj,i is an element of matrix X. 

The covariance matrix of X can be obtained by Equation (6.4).  

1−
=

n

T XXS                                  (6.4) 

The eigenvalue decomposition of the covariance matrix S is obtained by similar 

transformation of S, as shown in Equation (6.5).  

TUUΛS =                                   (6.5) 

where the Λ, as shown in Equation (6.6), is a diagonal matrix of non-negative real 

eigenvalues with decreasing magnitude (λ1>λ2> …> λm). U ( ) is a matrix 

whose columns are the corresponding eigenvectors. Where, UU

mm×ℜ∈U

T=I and I is a m- 

dimensional unit matrix.  
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In order to effectively capture the system variations while minimizing the effect of 

random noise corrupting the PCA representation, only those eigenvectors in U associated 

with the first a (a<m) largest eigenvalues, are retained in the PCA model. In the PCA 

method, the retained eigenvectors and the number of the retained eigenvectors are called 

the loading vectors and the number of retained PCs (Principal Components), 

respectively. There are many ways to determine an optimal number of PCs, such as the 

proportion of trace explained method and the SCREE test (Jolliffe 1986).  

The proportion of trace explained method chooses the number of a, i.e., the number of 

the loading vectors when the CPV (Cumulative Percent Variance) of the first a largest 

eigenvalues reaches a predetermined limit, CPVα, e.g.,95%, as shown in Equation (6.7) 
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where is the sum of the eigenvalues and is equal to the trace of covariance 

matrix, , which indicates the total system variance. ∑  is the sum of sample 

variance of the a PCs corresponding to the first a largest eigenvalues.  
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The SCREE test is a graphical technique plotting all of the eigenvalues in one graph in 
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decreasing order. The value of the eigenvalue is the ordinate and the number is the 

abscissa. There will be a break or knee between the first a largest values and the 

remaining ones. That is an effective clue for choosing the optimal number of a.  

After the optimal number of retained vectors in U (also the number of retained PCs in the 

PCA method) is determined, e.g., to be a, a loading matrix, P ( ) can be 

obtained with its columns corresponding to the retained loading vectors in U. Therefore, 

the projections of the observations in X into the lower-dimensional space Y ( ) 

are shown as follows.  

am×ℜ∈P

am×ℜ∈Y

XPY =                               (6.8) 

For the ith loading vector pi  

ii Xpy =                              (6.9)                  

where the transformed variable yi is called the ith principal component of X.  

The projection of Y back into the m-dimensional observation space, X , which is called 

the score subspace, is shown by Equation (6.10). It is commonly accepted with certain 

assumptions that the portion of the score subspace corresponding to the first a largest 

eigenvalues describes most of the system variations occurring in the process (Wise et al. 

1990). In this regard, X  is an accurate representation of the process under normal 

operation (Chiang et. al 2001). 

ˆ

ˆ

TT XPPYPX ==ˆ                         (6.10) 
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The difference between X and X  is indicated by the residual matrix E, which is called 

the residual subspace where abnormal variation and noise may occur.  

ˆ

                          (6.11)                  )PPX(IXPPXXXE TT −=−=−= ˆ

For a new observation (row vector) after normalized into x, the difference between x and 

its estimate, x  (shown in Equation (6.12)), is the residual vector e, as shown in Equation 

(6.13). The difference, e, is also a projection of x into its residual subspace. Therefore, x 

can be decomposed into two orthogonal vectors, i.e., x and e, as shown in Figure 6.2. 

ˆ

xCxPPx == Tˆ                             (6.12) 

where C is equal to PPT and is called identity matrix.  

                                    (6.13) C)x(IPPIxxxe −=−=−= )(ˆ T
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Figure 6.2 Decomposition of new sampled vector x 

The PCA method implicitly assumes that the observation at one time instant is 

statistically independent of observations at past time instants. For most typical industrial 
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and engineering processes, this assumption is valid only for long sampling intervals. 

Kourti and MacGregor (1996) pointed out that in practice the presence of serial 

correlations in the data does not compromise the effectiveness of the static PCA method 

when there are sufficient data representing all the normal variations of the system. 

 

6.2.4 PCA Method in Sensor FDD Applications 

With respect to the applications of PCA to FDD, either the T2-statistic (Hotelling 1947 

and Kresta et al. 1991) or the Q-statistic (Edward and Mudholkar 1979), also known as 

the Squared Prediction Errors (SPE), can be used as an index of faulty conditions.  

 

Statistic I: Q-statistic 

As shown in Equation (6.14), the Q-statistic is defined as the squared sum of the residual 

vector which is actually the difference between an observation vector (x) and its PCA 

estimate ( ).   x̂

( ) 22ˆ TTSPEstatisticQ PPIxxxee −=−===−           (6.14) 

When there is no fault in the new observation vector (x), the correlations among 

measurements in the new observation vector will still remain unchanged from those 

captured in the PCA model. Therefore, the Q-statistic will be less than its threshold, , 

as shown in Equation (6.15). However, when faults exist in the new observation vector, 

αQ
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the correlations among measurements will be destroyed and the Q-statistic will go 

beyond . αQ

αQstatisticQ ≤−                          (6.15) 

where Qα is the threshold determined by Equation (6.16) (Edward 1991).. 
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αc  is the confidence limit for the α−1  percentage in a normal distribution; a is the 

number of principal components; m is the number of variables and jλ  are the 

eigenvalues of the covariance matrix. Given a certain level of confidence, α, the 

threshold for Q-statistic, , can be computed using Equation (6.16). αQ

 

Statistic II: Hotelling T 2 

The Hotelling T 2-statistic is the earliest multivariate statistic, which is a quantity 

indicating the overall conformance of an individual sample vector to its mean or an 
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established standard or reference.  

Supposing X is the matrix of samples (rows) of the original variables (columns) after 

normalization, the T

n m

2 -statistic can be given by Equation (6.19) (Tracy et al 1992). 

XSX 12 −= TT                          (6.19) 

where S is the covariance matrix of X as shown in Equation (6.5). 

Assuming the observations are randomly sampled from a multivariate normally 

distributed process, an upper control limit on the T2 is given by Equation (6.20).  

)mn,m(F
)mn(n

)1n)(1n(mT UCL
2 −

−
+−

= α             (6.20)  

where is the upper 1-α percentage critical point of the F distribution with m 

and n-m degrees of freedom. A new multivariate sample that produces a T

)mn,m(F −α

2-statistic 

greater than the upper control limit will indicate that the process is out of control and 

faults exist in the process.  

Substituting the similar transformation equation of S in Equation (6.19) for Equation (6.5) 

yields:  
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If only the loading vectors corresponding to the first a largest eigenvalues are used in the 

Equation (6.21), the equation will be rewritten as Equation (6.22). 
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where is the diagonal matrix whose diagonal elements are corresponding to the first a 

largest eigenvalues retained in the PCA method. The upper limit of the T

aΛ

2-statistic can 

also be determined by Equation (6.20), while substituting a for m. 

The Hotelling T2-statistic also assumes that the observation at one time instant is 

statistically independent of observations at other time instants. This can be a bad 

assumption for a short sampling interval in most engineering processes. However, if 

there are enough data in the training set to capture the normal system variations, the T2-

statistic will be an effective tool for process monitoring even if there are deviations from 

normality or the statistical independence assumption (Russell et al. 2000).  

From the above introduction of the two popular statistics which can be used as indexes 

of faulty conditions, it is obvious that faults in the process can cause both the Q-statistic 

and the T2- statistic to increase. An increase in T2-statistic alone indicates that the change 

is consistent with the model; it may be just a shift of operating region (Dunia R. and Qin 

S.J. 1998). For example, when a chiller plant begins to run or stop, the change of water 

flow rate, which is actually not a fault, will increase T2-statistic but not the Q-statistic. 

Considering the ambiguity of the T2-statistic in discriminating faults from normal 

operation changes, the Q-statistic is used as the index for fault detection in this study.  

Once a fault is detected using the Q-statistic, the next step is to identify the cause behind 

the fault. The aim of sensor fault diagnosis is to determine which process variable is 

most relevant to the fault and therefore to focus the operators and engineers on the place 
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where the fault occurred. Admittedly, the process of diagnosing a fault is rather 

complicated and challenging when the number of process variables is large. 

Up to now, a PCA model used in FDD applications is constructed. It is not represented 

by some equations or logical descriptions as most conventional models introduced in 

Chapter 1. Actually, a PCA model involves several basic elements, including the loading 

vectors of the PCs which are used to decompose the observation space, the mean and 

standard deviation vectors which define a statistical average operation condition, and the 

threshold of the Q-statistic which is used to detect faults.  

 

 

6.2.5 Sensitivity Analysis of PCA-based FDD&E Scheme 

It is not always right to say that a sensitive sensor FDD method is preferable to a less 

sensitive one. If a sensor FDD method is very sensitive to faults, it will be at the same 

time very sensitive to normal system disturbances and measurement noise errors, which 

might result in many false alarms during applications of the sensor FDD method. On the 

other hand, if the method is too insensitive to faults, slight faults will not be detected 

promptly, let alone the need for preventative maintenance. Therefore, there is always a 

tradeoff between the sensitivity and the effectiveness of sensor FDD methods.   

The factor which affects the sensitivity of the PCA-based FDD method most is the 

number of retained PCs in the PCA model. The more PCs are retained, the more 
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information about the correlations among concerned variables that is retained. However, 

it is worth pointing out that retaining more PCs also means more trivial and unstable 

correlations retained in the model. In this regard, the PCA model will be less sensitive. 

Therefore, there is an optimal number of retained PCs which can effectively capture the 

system variations while minimizing the effect of random noise on the PCA 

representation. Methods such as the proportion of trace explained method and the 

SCREE test are applicable to get the optimal number of the retained PCs (see Section 

6.2.3). In addition, for a certain number of retained PCs, the smaller the confidence level 

at which the threshold of the Q-statistic is calculated, the lower the threshold will be and 

more sensitive the PCA model will be to faults. The confidence level of 95% or 97.5 % is 

an acceptable one for most engineering applications. 

Moreover, the sensitivity of the PCA-based FDD method is also affected by the quality 

of the training data. A sufficient amount of training data is required to effectively capture 

the correlations among variables and to satisfy the requirements for defining the Q-

statistic.  

In order to improve the quality of training data and consequently obtain favorable 

sensitivity of the PCA model, training data need to be carefully selected. Data under 

steady state are used because under such a state the governing laws and rules are 

correctly reflected and the correlations among variables are more stable and consistent. 

Admittedly, there is seldom an optimal rule regarding the selecting of the training data. 

Some practical experience can help make such a choice. For example, the training data 
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should just cover as much typical operating conditions of centrifugal chillers as possible.  

  

6.2.6 PCA Model of Centrifugal Chillers 

As mentioned in Chapter 2, there are a lot of variables measured in a typical centrifugal 

chiller, and some of these measurements are closely correlated. However, it is very 

difficult and unnecessary to validate all the measurements because not all of them are 

crucial to basic chiller FDD, performance monitoring and optimal control. With 

reference to Table 2.1 in Chapter 2, the 13 variables, i.e., Tchws, Tchwr, Tev, Pev, Tlcw, Tecw, 

Tcd, Pcd, Tsuc , Tdis , Mchw , Mcw,, Welec, are those of main concern in the basic chiller FDD, 

performance monitoring and optimal control. Therefore, these variables need to be 

considered in the sensor FDD&E. Among these variables, both Mchw and Mcw, i.e., the 

chilled water flow rate and the cooling water flow rate, are usually maintained constant 

in a centrifugal chiller. Using the average of the historical measurements of these two 

variables is a simple and effective way to detect and diagnose faults associated with the 

flow meters. Therefore, the chilled water flow rate and condenser water flow rate are not 

considered in the PCA-based sensor FDD&E scheme in this thesis. The PCA model in 

this thesis includes the other 11 variables only. After various combinations of these 

variables were tested, it was found that including all the 11 variables in a single PCA 

model could produce satisfactory performance in the sensor fault detection, diagnosis 

and estimation. Matrix A represents the original matrix with n samples of the variables.  
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The strong correlations among the variables in matrix A can be explained as follows. For 

a specific chiller system with constant chilled water and cooling water flow rates, the 

temperatures of chilled water (Tchws , Tchwr) as well as the entering condenser water 

temperature (Tecw) are the determinant variables for operating conditions and 

performance of a centrifugal chiller with constant water flows (Braun 1988 and PG&E 

2001). Clearly, these three deterministic variables, i.e., Tchws , Tchwr and Tecw, are included 

in matrix A. At the same time, the 11 variable in matrix A are involved in the calculation 

of the performance indexes which indicate the chiller performance (see Table 3.1 in 

Chapter 3).  

In addition, due to energy balance of the chiller under steady state, there are strong 

correlations among these 7 variables: Welec , Mchw , Tchws , Tchwr , Mcw , Tecw and Tlcw, ,as 

shown in Equation (6.24 ) and (6.25).                                       

0=−+ condevapcomp QQW                       (6.24) 

    0)()( ≈−−−+ ecwlcwpwcwchwschwrpwchwelec TTCMTTCMW            (6.25) 

According to the above analysis, it might be concluded that all the variables in matrix A 

are strongly correlated with each other from a perspective of thermophysics, and the 

correlations might be captured by the PCA method.   

 

6.3 Implementation Structure of PCA-based Sensor FDD&E Scheme  

The implementation structure of the PCA-based sensor FDD&E scheme is shown in 

Figure 6.3. It basically consists of two major groups of tasks, i.e., the training of PCA 
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models, and the online sensor FDD&E scheme. The PCA models should be obtained 

prior to the online application. After the online sensor FDD&E scheme is carried out, 

conclusions about the performance of the sensors can be made. Also, corresponding 

suggestions can be given in relation to sensor recalibration or replacement.      
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Figure 6.3 Flow chart of the sensor FDD&E scheme 

 

6.3.1 Data Preprocessing   

Two kinds of data are used in the implementation of the PCA-based sensor FDD&E 

scheme. One is the training data and the other is the monitored data. Their quality 
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determines the sensitivity and accuracy of the PCA method. Different methods are used 

to improve the equality of these two kinds of data.  

The training data should be collected under normal operation of chillers without either 

sensor faults or chiller component faults. Therefore, commissioning and maintenance are 

needed before sampling training data. Moreover, in order to remove transient data and 

outliers, both the training data and the monitored data must go through the data 

preprocessor developed in Section 3.3.1.  

 

6.3.2 PCA model Training 

The original training matrix in the form of matrix A is constructed using measurements 

when the sensors and chiller system are all in normal condition. The training of the PCA 

model includes three main steps: (i) decomposing of the covariance matrix of normalized 

training data; (ii) retaining loading vectors; (iii) determining the threshold of the Q-

statistic. The mean of the ith variable (corresponding to the ith column in the original 

training matrix) is calculated using Equation (6.1), and the variance of the variable is 

calculated using Equation (6.2). Because different variables in chiller systems have 

different units, columns of the training matrix need to be normalized by the calculated 

means and standard deviations into zero mean and unit variance. The purpose for this is 

to set all variables to a comparable magnitude so as to prevent a variable of larger 

numerical value from dominating the Q-statistic. Subsequently, the general procedures 

of the PCA method introduced previously are carried out as shown in the left part of 
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Figure 6.2.  The eigenvalues and eigenvectors of the covariance matrixes of the 

normalized training matrix X can be obtained through its eigenvalue decompositions.  

It is commonly accepted with certain assumptions that the loading vectors corresponding 

to the larger eigenvalues describe most of the system variations in the process, and the 

loading vectors corresponding to the smaller eigenvalues describe the random noise 

(Wise et al. 1990). In order to decouple the system variations from the random noise 

effectively, the optimal number of loading vectors should be retained in the PCA model. 

In this thesis, the number of loading vectors retained is determined by the proportion of 

trace explained method. The threshold of the Q-statistic is calculated by Equation (6.16) 

with a certain confidence level.  

 

6.3.3 Online sensor FDD&E 

The sensor FDD and the subsequent sensor fault estimation for centrifugal chillers can 

not only detect and diagnose faulty sensors but also obtain correct measurements and 

resume chiller FDD and optimal control there. The sensor fault FDD&E involves five 

main steps: (i) preprocessing of incoming data; (ii) calculation of the Q-statistic of the 

model; (iii) sensor fault detection by comparing Q-statistic against its threshold; (iv) 

sensor fault diagnosis by the Q-contribution plot; (v) sensor fault estimation using an 

iterative approach.  

 

 136



Fault detection 

The sensor fault detection is made straightforward and understandable when the Q-

statistic introduced previously is employed. After the monitored data pass through the 

data preprocessor, the remaining data are normalized by the means and standard 

deviations obtained during the PCA model training. The Q-statistic for each normalized 

sample will be calculated using the PCA model trained beforehand. When the Q-statistic 

is below its threshold calculated at a certain confidence level, it can be concluded that 

there is no faulty sensor in the chiller system. A faulty sensor condition is detected when 

the Q-statistic goes beyond the threshold, and a fault report/warning will be generated 

after a certain number of consecutive samples have been detected to contain abnormal 

measurements.   

 

Fault diagnosis 

Once a faulty sensor condition is detected, the contribution of individual variables to the 

Q-statistic is estimated as shown in Equation (6.26). 

statisticQ
ei

i −
=

2

η                                     (6.26) 

where ei presents the ith element of the residual vector e and ηi is the contribution of the 

ith variable to the squared sum of the residual vector, i.e., the Q-statistic. In principle, the 

larger the contribution a variable makes to the Q-statistic, the higher the possibility of a 
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fault in the variable. The Q-contribution plot is therefore generated and used to reduce 

the possible fault sources and thus focus on the most probable faulty sensor. The sensor 

is diagnosed to be faulty one when its Q-contribution value is the largest in the Q-

contribution plot. 

 

Fault estimation  

The objective of sensor fault estimation is to estimate the magnitude of the bias error and 

to acquire the true measurement value (x*) of the observation vector (x), by using the 

remaining measurements in the observation vector, the constructed PCA model and the 

detected fault direction. If this procedure can be successfully implemented, the chiller 

FDD and control will be put back into normal operation even in the presence of sensor 

faults. 

Three methods have been presented for the correction of a faulty sensor, namely the 

estimate of the true measurement value of the sensor. They are the iterative approach 

(Dunia et. al 1996), the missing data replacement approach (Martens and Naes, 1989) 

and the optimization approach (Wise and Ricker 1991). Actually, the three 

reconstruction methods give almost identical reconstructed results. In this study, the 

iterative approach is employed and explained as follows.  
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As introduced in the outline of PCA, the Equation (6.12) can be used to estimate the ith 

variable (xi) from the observation vector (x). The estimated ith variable ( ) is used as 

the reconstruction of , which can be expressed by Equation (6.27). 
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where,              

[ ]m21
T cccPPC L==                          (6.28) 
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miii2i1ii ccccc +−== cc c LL               (6.29)                 

The subscripts -i and +i in Equation (6.29) denote a shorter row vector formed by the 

first i-1 and the last m-i elements of the original vector, respectively. The drawback of 

this approach is that the faulty sensor contained in x is used in the estimate. Therefore, 

the estimate is somewhat contaminated by the fault. To eliminate the effect of the faulty 

sensor, the estimate of the ith variable ( ) is fed back again to the input and iterated 

until it converges to a value ( ).  

ix

*
ix

The iteration can be represented by Equation (6.30). 

[ ] ii
old
i

T
ii
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i cxx ˆ0ˆ += +− ccx                     (6.30) 

As addressed by Dunia et al. (1996, 1998), the iteration in Equation (6.30) always 

converges. The converged value ( ), regardless of the initial condition, for *
ix 1<iic  is 
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and,  for . In this case, ii xx =* 1=iic

[ ]T
i 0100 LL=c                      (6.32) 

is the ith column of the identity matrix (C). This is the case where xi is not correlated to 

the other sensors, but only to itself. In this case, the true measurement of this sensor 

cannot be reconstructed from the measurements from the other sensors. In this case, the 

sensor should not be included in the PCA model.  

 

6.4 Summary  

Besides chiller faults, sensor faults may also exist in centrifugal chillers. The existence 

of the sensor faults will not only lead to incorrect monitoring and unreliable control but 

also affect the reliability and accuracy of the implementation of chiller FDD schemes. 

This chapter presents the sensor FDD&E scheme using the PCA method for a typical 

centrifugal chiller. The PCA method provides a good means of generating useful 

residuals for sensor fault detection and diagnosis. Another advantage of the PCA method 

in sensor FDD application is that the thresholds for fault detection can be easily 

calculated, at a specified confidence level, rather than empirically designated.  

The PCA method demands that all variables in the PCA model should be closely 

correlated. Fortunately, the key variables in typical centrifugal chillers are closely 
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correlated with each other due to the cycling of refrigerant there. Therefore, these 

variables can be grouped into a PCA model which is capable of capturing the 

correlations among them. Moreover, since the PCA method is based on steady-state 

operation of the chiller, a data preprocessor is needed to eliminate transient data and 

outlier in the training and new monitoring data. The Q-statistic, the Q-contribution plot 

and an iterative approach are respectively used as tools for fault detection, diagnosis and 

estimation. The sensor FDD&E scheme will be validated in the following chapter using 

laboratory data from a centrifugal chiller in ASHRE 1043-RP.    
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CHAPTER 7 VALIDATION OF SENSOR FDD&E SCHEME 

 

The PCA-based sensor FDD&E scheme presented in Chapter 6 is validated in this 

chapter using both laboratory data and field data respectively from the two test facilities 

introduced in Chapter 4. The validation results show that the sensor FDD&E scheme has 

great potential to enhance the accuracy of measurements from sensors in chillers, and 

therefore can provide a reliable premise for the implementation of the basic chiller FDD 

scheme.  

Section 7.1 presents the validation tests of the sensor FDD&E scheme in the case where 

there are no chiller faults. The data from the one normal test in ASHRAE 1043-RP are 

used to train the PCA model and the data from another normal test were added with bias 

errors to generate data containing sensor faults. The generated data are used to evaluate 

the performance of the sensor FDD&E scheme in the case of no chiller fault. Similarly, 

the validation tests using field data from the chiller plant in a real building in Hong Kong 

are given in Section 7.2.   

Section 7.3 examines the sensitivity of the sensor FDD&E scheme to typical chiller 

faults. In order to investigate whether simultaneous chiller faults could disturb the 

implementation of the sensor FDD&E scheme, the chiller data from different chiller-fault 

tests at various severity levels in ASHRAE 1043-RP were employed to test the 

sensitivity of the scheme to typical chiller faults, including excess oil, refrigerant leakage, 

refrigerant overcharge, condenser fouling and non-condensables in refrigerant Section 
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7.4 provides the validation of the sensor FDD&E scheme in the presence of chiller faults. 

The chiller data from each chiller-fault test at various severity levels were artificially 

corrupted with predetermined sensor bias errors to generate test data containing both 

chiller faults and sensor faults. The generated test data were then used to test the sensor 

FDD&E scheme. The summary of this chapter is given in section 7.5.  

 

7.1 Validation Using Laboratory Data from ASHRAE 1043-RP  

The validation tests on the PCA-based sensor FDD&E scheme are presented in this 

section. The tests were conducted using chiller data from the laboratory chiller in 

ASHRAE 1043-RP under the condition that there was no chiller fault but only sensor 

faults in the chiller. 

 

7.1.1 Test Conditions 

The chiller data from a normal operation test, called the “Normal” test in ASHRAE 

1043-RP, which provides normal data for the parameter estimation of the reference 

models in Section 5.1.1, were also used in this section to train the PCA model. After the 

PCA model was trained, chiller data representative of sensor fault conditions were 

needed to validate the sensor FDD&E scheme. Many validation tests were conducted by 

adding various bias errors to the chiller data collected from normal tests provided in 

ASHRAE 1043-RP. As for the validation tests presented in this section, the chiller data 
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from a normal test, called “Normal NC”, were used to generate test data. The generated 

test data were then used to test the accuracy and sensitivity of the sensor FDD&E 

scheme in the case of no chiller fault. 

 

7.1.2 PCA model Training 

Using the normal data for the “Normal” test, the model training procedure in the sensor 

FDD&E scheme, as shown in Figure 6.2, was carried out to obtain the PCA model. Since 

the PCA-based FDD&E scheme is based on steady-state operation of the chiller system, 

both the PCA model training and the implementation of the scheme should use steady-

state data. The data preprocessor developed in Section 3.3.1.is also employed in this 

chapter to preprocess data.  

The number of original samples collected from the “Normal” test was 433.  After the 

original samples passed through the data preprocessor, 159 samples remained. These 

samples were then used to construct a training matrix with a size of 159×11. 

Subsequently, the mean and standard deviation of each of the 11 variables were 

calculated. The variables in the matrix were afterwards transformed into standard units 

by subtracting from each observation its mean and dividing by its standard deviation. 

The loading vectors and their corresponding eigenvalues were then obtained by solving 

an eigenvalue decomposition of the covariance matrix of the normalized training matrix. 

To determine the optimal number of maintained loading vectors, namely the number of 
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principal components, the proportion of trace explained method was adopted. This 

method is easy to understand and manipulate. The proportion of trace explained by the 

principal components is shown in Table 7.1. It is clear that the first three PCs explain 

99.2356％of the total variance of the system. Therefore the first three largest PCs are 

retained in the PCA model. The threshold of Q-statistic at the confidence level of 95% is 

calculated to be 0.2985. Figure 7.1 shows the Q-statistic plot of the “Normal” test under 

normal sensor and component conditions. The Q-statistics of all samples are below the 

threshold value and no sample is detected to be abnormal. This shows that the PCA 

model is capable of capturing the major correlation and variance among the concerned 

11 variables. 

Table 7.1 Proportion of trace explained by PCs  

The ith principal 
component Eigenvalues Variance explained 

(%) 
Cumulative variance 

explained (%) 
1 6.0351 54.8645 54.8645 
2 3.3370 30.3363 85.2008 
3 1.5438 14.0348 99.2356 
4 0.0521 0.4733 99.7089 
5 0.0239 0.2172 99.9261 
6 0.0045 0.0405 99.9666 
7 0.0015 0.0133 99.9799 
8 0.0012 0.0108 99.9907 
9 0.0006 0.0053 99.996 
10 0.00025 0.0023 99.9983 
11 0.00019 0.0018 100 
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Figure 7.1 Q-statistic plot of training data from “Normal” test in ASHRAE 1043-RP 

 

7.1.3 Generation of Test Data 

Various predetermined bias errors were added to the corresponding measurements from 

the “Normal NC” test to generate test data containing sensor faults. The magnitudes of 

the bias errors added to these measurements are described in Table 7.2. Only one sensor 

was set to be biased at a time as the chance of simultaneous multiple sensor faults is low. 

Also, only the sensors which are not involved in any feedback control of the chiller were 

added with biases. The reason for this arrangement is clear: it is impossible to simulate 

the real operation of the chiller system by simply adding a bias to a variable used in a 

feedback control loop without simulating its effects on other variables. Since the chilled 

water supply water temperature (Tchws) and the entering condenser water temperature 
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(Tecw) are usually involved in chiller control, only one of the rest nine sensors, i.e., Tchwr, 

Tev, Pev, Tlcw, Tcd, Pcd, Tsuc, Tdis and Welec , was added with a bias error in each test. In 

addition, the data from the “Normal NC” test were also directly used to test the sensor 

FDD&E scheme. Therefore, there are a total of ten test cases. Among them, one case has 

only normal sensor condition, and the other nine cases, each targeting one selected 

sensor, test faulty sensor conditions. 

 

7.1.4 Test Results 

The sensor FDD&E procedure, as shown in Figure 6.2, was implemented to process the 

generated test data.  

 

Test case using normal laboratory data from the “Normal NC” 

The Q-statistic plot of the test data directly from the “Normal NC” test is shown in 

Figure 7.2. Clearly, almost all Q-statistic values in this normal test were below the 

threshold. Therefore, it can be concluded that no sensor fault existed in any sensor. 
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Figure 7.2 Q-statistic plot of test data directly from “Normal NC” test in ASHRAE 
1043-RP – no sensor was biased 

 

Test cases using test data containing sensor faults 

The general test results of the nine test cases using test data containing sensor faults are 

given in Table 7.2. In this table, the “Detection ratio” is the ratio of the number of 

samples whose, Q-statistic values go beyond the threshold, to the total number of 

samples used in the test. The “Diagnosis ratio” is the ratio of the number of samples 

which are successfully diagnosed to the number of samples which are detected to contain 

a fault. The “Relative estimation error” is the ratio of the absolute difference between the 

estimated bias error and the added bias error to the added bias error. The “Estimated 

bias” is the average value of the estimated biases of all the samples which are 

successfully diagnosed.  
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Table 7.2 General results of validation tests using test data generated from “Normal NC” 
test in ASHRAE 1043-RP 

 Added bias Detection 
ratio 

Diagnosis 
ratio 

Estimated 
bias 

Relative 
estimation 

error 
Tchwr +2.2oC 100% 95.97% +2.37oC 7.64% 
Tev +1.2oC 99.32% 98.64% +1.06oC 11.90% 
Pev +20kPa 100% 100% +18.42kPa 7.88% 
Tlcw +3.5oC 100% 100% +3.64oC 3.90% 
Tcd +3.5oC 91.90% 100% +3.56oC 1.58% 
Pcd +75kPa 100% 100% +74.30kPa 0.93% 
Tsuc +1.5oC 95.27% 100% +1.61oC 7.11% 
Tdis +7oC 93.92% 100% +7.21oC 3.00% 

Welec +12kW 48.28% 100% +13.17kW 9.71% 

 

The added bias error to each sensor is around 15% of the average of the measurements 

from the sensor. It can be found from Table 7.2 that most of the added biases can be 

estimated accurately with all “Relative estimation error” values not more than 11.90%. 

Also, almost all added bias errors were detected and diagnosed with all “Detection ratio” 

values not less than 91.90% and diagnosed with all “Diagnosis ratio” not less than 

95.97%, except the one added to the electrical power input whose “Detection ratio” 

values is 48.28%. This might be explained as follows. The electrical power input is more 

affected by the determinant variables such as the chilled water temperature and cooling 

load than other measurements. Since the determinant variables (also the control variables 

in the laboratory chiller) experienced significant changes during the tests, the electrical 

power input tended to experience a wider range of variation, which is difficult for the 

PCA model to allow for. Therefore, if there is a bias error with the measurement of the 

electrical power input, it is relatively difficult for the PCA-based sensor FDD&E scheme 
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to tackle the fault. However, in practical applications, the measurement of electrical 

power is much more accurate and more reliable than temperature and pressure 

measurements. 

The Q-statistic and Q-contribution plots in the test cases for three sensors, Tchwr, Pev and 

Welec, are presented respectively in this section to illustrate the results of the validation 

tests. The test cases for the other sensors are given in the attached CD and similar 

conclusions can also be drawn from them.  

Figure 7.3 gives the Q-statistic plot of the test data generated by adding a bias error of 

+2.2oC to Tchwr in the data from the “Normal NC” test. Clearly, most Q-statistic values in 

this test were above the threshold when +2.2oC bias error was added to the sensor of 

Tchwr. Figure 7.4 shows the results of sensor fault diagnosis using the Q-contribution plot 

of the test data. It should be pointed out that each column in the figure represents a mean 

of the contribution values of five samples which were consecutively detected to be faulty. 

The purpose of this handling was to eliminate as much as possible the effect of system 

noise on the fault diagnosis. It can be observed in Figure 7.4 that the Q-contribution of 

Tchwr , signified by “ ” , was much higher than that of other sensors when a bias error 

of +2.2°C existed in Tchwr. Therefore, the biased sensor, Tchwr, was identified correctly. 

The bias of the faulty sensor was also estimated accurately by the fault estimation 

approach with a relative error of 7.64%, and the results are shown in Table 7.2.  
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Similarly, the Q-statistic plots in the test cases with bias errors of +20kPa and +12kW 

respectively added to Pev and Welec are shown in Figure 7.5 and Figure 7.7, and the 

corresponding Q-contribution plots are given in Figure 7.6 and Figure 7.8, respectively.    
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Figure 7.3 Q-statistic plot of test data from “Normal NC” test in ASHRAE 1043-RP 
 - Tchwr was biased with +2.2oC 
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Figure 7.4 Q-contribution plot of test data from “Normal NC” test in ASHRAE 1043-RP 
- Tchwr was biased with +2.2oC 
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Figure 7.5 Q-statistic plot of test data from “Normal NC” test in ASHRAE 1043-RP  
– Pev was biased with +20kPa 
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Figure 7.6 Q-contribution plot of test data from “Normal NC” test in ASHRAE 1043-RP 

– Pev was biased with +20kPa 
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Figure 7.7 Q-statistic plot of test data from “Normal NC” test in ASHRAE 1043-RP 
– Welec was biased with +12kW 
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Figure 7.8 Q-contribution plot of test data from “Normal NC” test in ASHRAE 1043-RP 
– Welec was biased with +12kW 

 

7.2 Validation Using Field Data from a Real Building Chiller System 

7.2.1 Test Conditions 

The PCA-based sensor FDD&E scheme was also validated using field data from the real 

building chiller plant introduced in Chapter 4, as part of efforts to push the scheme closer 

to field application. The chiller plant of the building operates all day. The data collected 

from the BMS on July4th, 2001 were used to train the PCA model. The operation of the 

whole chiller plant could be guaranteed to be normal and fault-free as it had just gone 

through routine maintenance services before. Data three days, i.e., July 5th, 10th and 13th , 

were used to generate test data. Totally, 24 (8 sensors/day×3 days) validations tests 
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were conducted using the generated test data to test the fault detectability and isolability 

of the sensor FDD&E scheme. For conciseness, only the test results using the data 

collected on July 5th, 2001 are presented in this thesis. For results of other test cases, 

please refer to the attached CD. During such a short operating period of one day, the 

determinant variables of centrifugal chillers, e.g., the chilled water supply temperature 

and the entering condenser water temperature, varied within a small range due to the 

internal control of the chillers and the slowly changing ambient conditions. The PCA 

method could easily capture the systems trend because the determinant variables did not 

vary significantly.  

 

7.2.2 PCA model Training 

Using the data from July 4th, 2001, the PCA model training procedure in the sensor 

FDD&E scheme, as shown in Figure 6.2, was implemented to train the PCA model. The 

number of original samples used for model training was 894. After passing through the 

data preprocessor, 301 samples remained. These samples were used to train the PCA 

model. Note, since the measurement from Tsuc was not available in the BMS of the 

building, this variable was not included in the training matrix A and the number of 

sensors investigated in this validation was 10.  

The number of principal components (a=3) and the Q-statistic threshold of 95% 

confidence level (Qα=0.58341) were determined in the same way as described in Section 

7.1.2. The three principal components corresponding to the first three largest eigenvalues 
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explain 98.1846％of the total variance of the system. Figure 7.9 shows the Q-statistic 

values of 92.03 % samples were below the threshold. The total number of samples 

detected to be abnormal was 24 (7.97 %). That means that the PCA model can also 

capture the major correlations among these key variables in the field centrifugal chiller.  

Table 7.3 Proportion of trace explained by PCs  

The ith principal 
component 

Eigenvalue Variance explained 
(%) 

Cumulative variance 
explained (%) 

1 7.1727 71.727 71.727 
2 2.3245 23.245 94.972 
3 0.32126 3.2126 98.1846 
4 0.13481 1.3481 99.5327 
5 0.020754 0.20754 99.74024 
6 0.011327 0.11327 99.85351 
7 0.0074549 0.074549 99.92806 
8 0.0039825 0.039825 99.96788 
9 0.002594 0.02594 99.99382 
10 0.00053718 0.0053718 100 
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Figure 7.9 Q-statistic plot of training data from a real building in Hong Kong  
on July 4th, 2001  
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7.2.3 Generation of Test Data 

Various predetermined bias errors were added to the corresponding measurements 

collected from the BMS on July 5th, 2001 so as to generate test data containing sensor 

faults. The magnitudes of the bias errors are described in Table 7.2. For the same reason 

given in section 7.1.3, only one sensor was set biased at a time and only readings from 

the sensors not used for feedback control were added with bias errors. That is to say, the 

measurements from one of Tchwr, Tev, Pev, Tlcw, Tcd, Pcd, Tdis and Welec were respectively 

added with a bias error in each test. Moreover, the data collected on July 5th, 2001 were 

also directly used to test the sensor FDD&E scheme. Therefore, there are a total of 9 test 

cases. Among them, one case tested normal sensor condition, and 8 cases, each targeting 

one selected sensor, tested faulty sensor conditions. 

 

7.2.4 Test Results  

The sensor FDD&E procedure in the sensor FDD&E scheme was implemented to 

process the test data after the training of the PCA model, as shown in Figure 6.2. 

 

Test case using field data collected on July 5th

The Q-statistic plot of the test data directly collected on July 5th, 2001 is shown in Figure 

7.10. Obviously, almost all the Q-statistic values in this test were below the threshold 
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and that means no sensor fault existed in any sensor. The explanation is that the test data 

used were free from faults as they were collected immediately after routine maintenance.   
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Figure 7.10 Q-statistic plot of test data directly from a real building on July 5th, 2001 – 
no sensor was biased 

 

Test cases using test data containing sensor faults 

General results of the validation tests are provided in Table 7.4. The added bias error to 

each sensor is around 15% or less of the average of measurements from the sensor. It is 

clear from Table 7.4 that most of the added sensor biases could be estimated accurately 

with all “Relative estimation error” values not more than 10.03%. Moreover, almost all 

added bias errors were detected and diagnosed with all “Detection ratio” values not less 

than 82.93% and all “Diagnosis ratio” value not less than 94.82%. Obviously, the test 
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results shown in Table7.4 are better than those shown in Table 7.2. The reason for this is 

that the slowly changing ambient conditions of the field chiller allow better performance 

of the PCA-based sensor FDD&E scheme.  

Just as in Section 7.1, only the Q-statistic and Q-contribution plots of the test cases 

concerning the three sensors, Tchwr, Pev and Welec, are presented in this section to illustrate 

the results of the validation tests, and those in relation to the other sensors are presented 

in the attached CD. 

 

Table 7.4 General results of validation tests using test data generated from field data 
collected from a real building in Hong Kong on July 5th, 2001 

 Added bias Detection 
ratio 

Diagnosis 
ratio 

Estimated 
bias 

Relative 
estimation 

error 
Tchwr +1.8oC 100% 99.73% +1.62oC 10.03 % 
Tev +0.8oC 99.46% 94.82% +0.75oC 6.48% 
Pev +50kPa 100% 100% +49.14kPa 1.72% 
Tlcw +3oC 100% 100% +3.00oC 0.15% 
Tcd +3oC 100% 100% +3.00oC 0.01% 
Pcd +100kPa 100% 100% +100.19kPa 1.90% 
Tdis +7oC 100% 100% +7.15oC 2.17% 

Welec +90kW 82.93% 95.75% +97.32kW 8.14% 

 

Figure 7.11 shows the Q-statistic plot of test data, which were generated by adding a bias 

error of +1.8oC to Tchwr in the field data collected on July 5th. It can be observed that 

nearly all the Q-statistics values were above the threshold. The sensor faults were 

successfully detected. Figure 7.12 shows the results of sensor fault diagnosis using the 

Q-contribution plot of the PCA model. When a bias error existed in Tchwr, the Q-
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contribution of it was much higher than those of other sensors at the same time. In order 

to avoid the effects of systems noise, each column in the figure was designed to 

represents a mean of the contribution values of ten samples which are consecutively 

detected to be faulty. The biases of the faulty sensors were also estimated correctly and 

the results are shown in Table 7.4.  

Similarly, the Q-statistic plots in the test cases that bias errors of +20kPa and +12kW 

were respectively added to Pev and Welec are shown in Figure 7.13 and Figure 7.15, and 

their corresponding Q-contribution plots are given in Figure 7.14 and Figure 7.16, 

respectively.  
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Figure 7.11 Q-statistic plot of test data from a real building on July 5th, 2001  
- Tchwr was biased with +1.8oC 
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Figure 7.12 Q-contribution plot of test data from a real building on July 5th, 2001  
- Tchwr was biased with +1.8oC 
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Figure 7.13 Q-statistic plot of test data from a real building on July 5th, 2001  
- Pev was biased with +50kPa 
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Figure 7.14 Q-contribution plot of test data from a real building on July 5th, 2001  
- Pev was biased with +50kPa 
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Figure 7.15 Q-statistic plot of test data from a real building on July 5th, 2001 
 – Welec was biased with +90kW 
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Figure 7.16 Q-contribution plot of test data from a real building on July 5th, 2001 
 - Welec was biased with +90kW 

 

7.3 Sensitivity of the Output of PCA Model to Chiller Faults 

As mentioned in Chapter 1, both sensor faults and chiller faults can occur simultaneously 

in chillers. The sensor FDD&E scheme based on the PCA model is proposed with the 

aim to ensure measurement quality of the variables, which are crucial to chiller FDD and 

optimal control. Naturally, a series of questions rise as follows. Does the existence of 

chiller faults affect the output (i.e, the Q-statistic) of the PCA model and the 

implementation of the sensor FDD&E scheme? If the answer is affirmative, then what is 

the extent of the effect? To guarantee favorable reliability and accuracy of the sensor 

FDD&E and the subsequent chiller FDD, it is essential to answer these questions. And, 

the kernel of the problem is to find out whether and to what extent the Q-statistics of the 
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PCA model are sensitive to chiller faults. If the Q-statistics is immune to the chiller 

faults, it would be expected that the implementation of the PCA-based sensor FDD&E 

scheme would be immune from the chiller faults. Therefore, the sensor FDD&E scheme 

would be capable of successfully fulfilling its duty regardless of the existence of chiller 

faults. Otherwise, a supplementary approach is needed to differentiate sensor faults from 

chiller faults.  

The chiller data containing various typical chiller faults are absolutely needed for the 

sensitivity test. In this thesis, the chiller data from various fault tests in ASHRAE 1043-

RP were employed to study the sensitivity of the Q-statistics to typical chiller faults, 

which include refrigerant leakage, refrigerant overcharge, excess oil, condenser fouling, 

and non-condensables in refrigerant. Please note that a fault, namely refrigerant 

overcharge, was not selected for investigation in the basic chiller FDD scheme in 

Chapter 3. Including this additional chiller fault in the sensitivity analyses can help us 

find out whether this chiller fault would have some unexpected effects on the Q-statistic. 

For each chiller fault, the laboratory data from 4 different levels of fault severity were 

used to study the sensitivity of the Q-statistic to the chiller fault as well as the impact of 

fault severity levels on the sensitivity.  

During the sensitivity tests, the PCA model used was trained by the same training data 

used in Section 7.1.2. The number of principal components (a=3) and the Q-statistic 

threshold of 95% confidence level (Qα=0.2985) were determined in the same way as 

described in Section 7.1.2. 
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Figures 7.15 to 7.19 show the Q-statistic plots of test data from the five chiller-fault tests 

each at 4 different levels of fault severity. It is very clear from these figures that most Q-

statistic values under the conditions of most chiller faults, at different levels of severity, 

are below the threshold. There are two exceptions in the tests. One is the non-

condensables in refrigerant and the other is refrigerant overcharge at higher levels of 

severity. However, it is unusual to see refrigerant overcharge at higher severity levels, 

say greater than 30% overcharge. The strong sensitivity of the Q-statistic to non-

condensables in the refrigerant can be explained as follows. The condensing pressure is 

increased substantially when non-condensable gases settle in the condenser during 

operation, but the actual temperature increases by only a small amount. The collected 

condensing temperature is derived from condensing pressure using saturation tables. 

Therefore, the collected condensing temperature is higher than its actual value, and from 

this perspective, this fault is in fact a kind of sensor fault to which the PCA model is 

sensitive.  

Chiller faults are pertinent to performance degradations that are physically explainable 

and belong to systems variations captured by the PCA model. Therefore, the output of 

the PCA model, i.e., Q-statistic, is insensitive to these chiller faults. Therefore, it can be 

concluded that when there is no sensor fault, the Q-statistic will remain below the 

threshold even in the case of typical chiller faults. That is to say, the output of the PCA 

model on which the sensor FDD scheme is based is insensitive to most typical chiller 

faults but sensitive to sensor faults only. Thanks to this fact, the Q-statistic can be used 

as an index to differentiate sensor faults from chiller faults. 
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Based on the above test results, it might be expected that the PCA-based sensor FDD&E 

scheme would still be capable of detecting and diagnosing sensor faults even in the 

presence of chiller faults. This tentative conclusion will be validated by tests in the 

following section.    
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Figure 7.17 Q-statistic plots of test data from refrigerant leakage test at different levels 

of fault severity 
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Figure 7.18 Q-statistic plots of test data form refrigerant overcharge test at different 

levels of fault severity 

0 20 40 60 80 100 120 140 160
0

0.5

1

Sample Point

Q
-s

ta
tis

tic

0 20 40 60 80 100 120 140 160
0

0.5

1

Sample Point

Q
-s

ta
tis

tic

0 20 40 60 80 100 120 140 160
0

0.5

1

Sample Point

Q
-s

ta
tis

tic

0 20 40 60 80 100 120 140 160
0

0.5

1

Sample Point

Q
-s

ta
tis

tic

Fault level 1 (detection ratio=0%)

Fault level 2 (detection =0%) 

Fault level 3 (detection ratio=0%) 

Fault level 4 (detection ratio=4.69%) 

 
Figure 7.19 Q-statistic plots of test data from excess oil test at different levels of fault 

severity 
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Figure 7.20 Q-statistic plots of test data from condenser fouling test at different levels of 

fault severity 
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Figure 7.21 Q-statistic plots of test data from non-condensables in refrigerant test at 

different levels of fault severity 
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7.4 Validation Using Laboratory Data from ASHRAE 1043-RP under 

Conditions of Chiller Faults  

Although it was proved in the previous section that the PCA model used by the sensor 

FDD&E scheme is not sensitive to most typical chiller faults of concern in this thesis, it 

does not necessarily ensure that sensor faults can be successfully found by the scheme 

when both sensor faults and chiller faults occur simultaneously. This section provides the 

validation tests of the sensor FDD&E scheme using test data containing both a chiller 

fault and a sensor fault. The test data were generated using chiller data from chiller-fault 

tests in ASHRAE 1043-RP. 

 

7.4.1 Test Conditions  

The PCA model trained in Section 7.1.2 was also employed in the tests. The chiller data 

from four chiller-fault tests, i.e., refrigerant leakage, refrigerant overcharge, excess oil, 

and condenser fouling, at different fault severity levels (from level 1 to level 4), were 

used to generate test data that contain both sensor faults and chiller faults. The test of 

non-condensables in refrigerant is not used here as the Q-statistic is sensitive to this fault. 

Considering that chiller faults at high fault severity levels would seldom happen if the 

robust FDD strategy presented in this thesis could be successfully implemented in time, 

only results of tests in relation to chiller-fault tests at severity level 2 are presented in this 

thesis and results of other tests are given in the attached CD.  

 169



7.4.2 Generation of Test Data 

Similar to the generation of test data in previous validation tests, various predetermined 

bias errors were added to the corresponding measurements from the four chiller-fault 

tests, each at fault severity level 2, to generate test data. For the same reason given in 

section 7.1.3, only the sensors not used for feedback control had biases added. Thus, the 

involved sensors are Tchwr, Tev, Pev, Tlcw, Tcd, Pcd, Tsuc, Tdis and Welec. The bias error added 

to each sensor, as described in Table 7.5, is around 15% of the average of measurements 

from the sensor. Since all 9 sensors each had a bias error added for each of the four 

chiller-fault tests, there were a total of 36 sets of test data. 

 

7.4.3 Test Results 

The sensor FDD&E scheme was applied to the generated test data, and produced test 

results for 36 test cases accordingly. Table 7.5 gives the general results of the 36 test 

cases. Table 7.5 shows that all the test cases were detected as faulty in the case of chiller 

faults. More importantly, for all the test cases, most of the introduced sensor biases were 

accurately diagnosed and estimated with all “Diagnosis ratio” values not less than 

74.83% and all “Relative estimation error” values not more than13.45%. 

Only the Q-statistic and Q-contribution plots for the four test cases where a known bias 

error was added to the measurements of Tchwr are presented in this section to illustrate the 

results. From Figures 7.22, 7.24, 7.26 and 7.28, it is apparent that, for each test case, the 
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Q-statistic values increased significantly and exceeded the threshold determined at a 

confidence level of 95%. At the same time, the Q-contribution plots in Figures 7.23, 

7.25, 7.27 and 7.29 and 7.31 all suggest that the measurement of Tchwr provided the 

largest contribution to the Q-statistic and Tchwr was the most probably faulty sensor. 

Similar to the Q-contribution plots in Section 7.1.4, each column in a Q-contribution plot 

represents a mean of the contribution values of five samples which were consecutively 

detected to be faulty.  

From the test results, it can be concluded that the proposed PCA-based sensor FDD&E 

scheme for centrifugal chillers is capable of detecting and diagnosing faulty sensors as 

well as estimating the magnitudes of the bias errors regardless of the existence of a 

typical chiller fault including refrigerant leakage, refrigerant overcharge, excess oil, 

condenser fouling. Since non-condensables in the refrigerant overstates the measurement 

of condensing temperature and then result in a kind of sensor fault, the sensor FDD&E 

can not diagnosis sensor faults in the case of this chiller fault. Except for non-

condensable in refrigerant, the hypothesis made in the previous chapter has been verified, 

namely, the successful implementation of the sensor FDD&E scheme based on the PCA 

model is immune to the existence of a chiller fault.  
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Table 7.5 General results of validation tests using test data generated from four fault tests 
each at severity level 2 in ASHRAE 1043-RP 

 (Q-statistic values are determined with a confidence level of 95%) 

Sensor and 
added bias 

Results 
Refrigerant 

leakage 
Refrigerant 
overcharge 

Excess oil 
Condenser 

fouling 

Detection ratio 98.60% 99.39% 93.46% 98.15% 

Diagnosis ratio 89.36% 93.25% 93.71% 90.57% 

Estimated bias +2.38oC +2.34oC +2.21oC +2.27oC 
Tchwr

+2.2oC 

Relative estimation error 7.97% 6.14% 0.61% 3.20% 

Detection ratio 100% 100% 100% 100% 

Diagnosis ratio 80.58% 76.69% 99.35% 99.39% 

Estimated bias +1.05oC +0.96oC +1.09oC +1.11oC 
Tev

+1.2oC 

Relative estimation error 12.53% 19.74% 9.38% 7.60% 

Detection ratio 100% 100% 100% 100% 

Diagnosis ratio 99.30% 98.77% 100% 100% 

Estimated bias 18.14kPa 17.36kPa 19.43kPa 19.67kPa 
Pev

+20K 

Relative estimation error 9.28% 13.21% 2.86% 1.66% 

Detection ratio 100% 100% 100% 100% 

Diagnosis ratio 100% 98.15% 100% 100% 

Estimated bias +3.75oC +3.21oC +3.5 oC +3.44oC 
Tlcw

+3.5oC 

Relative estimation error 7.12% 8.41% 2.59% 1.64% 

Detection ratio 92.31% 100% 96.69% 99.38% 

Diagnosis ratio 98.848% 100% 100% 100% 

Estimated bias +3.38oC +3.87oC +3.46oC +3.67oC 
Tcd

+3.5oC 

Relative estimation error 3.19% 10.69% 1.19% 4.98% 

Detection ratio 96.50% 100% 100% 100% 

Diagnosis ratio 97.10% 98.77% 100% 100% 

Estimated bias +71.92kPa +83.00kPa +73.72kPa +77.75kPa 
Pcd 

+75kPa 

Relative estimation error 4.10% 10.68% 1.70% 3.67% 

Detection ratio 97.90% 100% 99.34% 87.50% 

Diagnosis ratio 100% 100% 100% 100% 

Estimated bias +1.67oC +1.71oC +1.60oC +1.54oC 
Tsuc

1.5oC 

Relative estimation error 11.66% 14.11% 6.75% 2.63% 

Detection ratio 84.62% 99.38% 74.83% 79.37% 

Diagnosis ratio 100% 100% 100% 100% 

Estimated bias +7.72oC +8.09oC +7.67oC +7.94oC 
Tdis

+7oC 

Relative estimation error 10.33% 15.69% 9.57% 13.45% 

Detection ratio 66.43% 59.26% 67.55% 60.62% 

Diagnosis ratio 87.37% 87.50% 100% 100% 

Estimated bias +12.63kW +12.83kW +13.38kW +13.59kW 
Welec

+12kW 

Relative estimation error 5.29% 6.92% 11.505 13.28% 
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Figure 7.22 Q-statistic plot of test data from refrigerant leakage test at fault severity level 
2 - Tchwr was biased with +2.2oC 
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Figure 7.23 Q-contribution plot of test data from refrigerant leakage test at fault severity 
level 2 - Tchwr was biased with +2.2oC 
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Figure 7.24 Q-statistic plot of test data from refrigerant overcharge test at fault severity 
level 2 - Tchwr was biased with +2.2oC 
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Figure 7.25 Q-contribution plot of test data from refrigerant overcharge test at fault 
severity level 2 - Tchwr was biased with +2.2oC 
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Figure 7.26 Q-statistic plot of test data from excess oil test at fault severity level 2  
- Tchwr was biased with +2.2oC 
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Figure 7.27 Q-contribution plot of test data from excess oil test at fault severity level 2  
- Tchwr was biased with +2.2oC 
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Figure 7.28 Q-statistic plot of test data from condenser fouling test at fault severity  
level 2 - Tchwr was biased with +2.2oC 
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Figure 7.29 Q-contribution plot of test data from condenser fouling test at fault severity 
level 2 - Tchwr was biased with +2.2oC 
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7.6 Summary  

First of all, the results of validation using laboratory chiller data from ASHRAE 1043-

RP as well as field chiller data from a real building in Hong Kong confirmed that the 

sensor FDD&E scheme can successfully detect, diagnose and estimate a single sensor 

fault in a centrifugal chiller when the chiller is free of chiller faults. Except for sensor 

faults in connection with the chilled water supply temperature (Tchws) and the entering 

condenser water temperature (Tecw), sensor faults in connection with all the rest variables 

were tested by using the field and the laboratory data. In particular, the PCA model 

consisting of a set of key variables in a centrifugal chiller was proved capable of 

capturing the correlations among the variables and effectively decoupling the systematic 

variations of centrifugal chillers from random noises. The uses of the Q-statistic plot, the 

Q-contribution plot and the iterative approach, respectively, as tools of fault detection, 

diagnosis and estimation, respectively, were tested to be effective in dealing with sensors 

in chillers. 

More importantly, the validation tests also show that the PCA model is insensitive to 

typical chiller faults, including refrigerant leakage, refrigerant overcharge, excess oil and 

condenser fouling. The presence of any one of these chiller faults does not compromise 

the effectiveness and capability of the sensor FDD&E scheme. However, there is an 

exception, namely non-condensable gases in refrigerant. This fault makes the scheme fail 

to fulfill its duty as it can extraordinarily overstate the condensing temperature. In this 

regard, it is recommended to collect the condensing and evaporating temperatures by 
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temperature sensors rather than by deriving from condensing pressure using refrigerant 

saturation tables.  

Since the sensor FDD&E scheme is proved to be able to fulfill its duty regardless of the 

existence of some typical chiller faults, the implementation of the scheme can ensure 

accurate and reliable measurements on which other BMS-based diagnosis and control 

tools hinge. Therefore, it can be expected that the joint use of the sensor FDD&E scheme 

and the basic chiller FDD scheme, efficiency monitoring and optimal control tools would 

significantly improve the reliability of BMS as well as enhance the overall energy 

efficiency of chiller plants. 
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CHAPTER 8 ROBUST CHILLER FDD STRATEGY AND ITS 

VALIDATION AND APPLICATION SOFTWARE PACKAGE 

 

In the previous chapters, this thesis presents the development and validation of a basic 

chiller FDD scheme targeting chiller faults as well as those of a sensor FDD&E 

scheme targeting sensor faults in centrifugal chillers. The second scheme can ensure 

reliable and accurate sensor measurements that are prerequisite to the successful 

implementation of the first scheme. Therefore, it is feasible to construct a chiller FDD 

strategy that is capable of tackling both chiller faults and sensor faults. This chapter 

presents the implementation structure of such a robust FDD strategy for centrifugal 

chillers. This strategy distinguishes itself from the basic chiller FDD scheme developed 

in Chapter 3 by taking into account sensor faults and employing a PCA-based sensor 

FDD&E scheme to tackle sensor faults. More importantly, the performance of the 

robust FDD strategy is verified by the laboratory data from ASHRAE 1043-RP. On the 

platform of MATLAB 6.1, the software package of the robust FDD strategy is built up. 

When this software package is integrated with BMS, online FDD for centrifugal 

chillers can be carried out.   

Section 8.1 gives the implementation structure of the robust FDD strategy for 

centrifugal chillers and the issues concerning its online applications. Section 8.2 

validates the robust FDD strategy using test data from the laboratory centrifugal chiller 

in ASHRAE 1043-RP. Section 8.3 describes a software package of the robust strategy 
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on the platform of MATLAB 6.1 and its integration with an intelligent building 

management platform. The software package is built up according to the corresponding 

schemes and approaches in the robust FDD strategy as well as its implementation 

structure. Section 8.4 summarizes this chapter. 

 

8.1 Implementation Structure of Robust Chiller FDD Strategy  

Figure 8.1 gives the implementation structure of the robust chiller FDD strategy. The 

inputs to the robust FDD strategy are measurements obtained from the BMS or chiller 

control panels.  

After passing through the data preprocessor, the measurements are fed into the sensor 

FDD&E scheme where the sensor faults will be detected, diagnosed and estimated by a 

series of approaches, respectively. Note, in order to avoid false alarms, an alarm 

regarding a sensor fault is sent out only after a sensor is diagnosed to be faulty for a 

certain number of consecutive samples, e.g., 5 consecutive samples. Once a sensor is 

diagnosed to be faulty, the faulty sensor will be corrected by using the fault estimation 

approach to get the true measurement from the sensor. Subsequently, the corrected 

measurements are fed into the chiller FDD scheme, where all performance indexes at 

each sampling instant are calculated. Meanwhile, benchmarks of the performance 

indexes are also predicted by their corresponding reference models. Thus the residual 

for each performance index is generated by comparing the measured value with its 

benchmark. Each residual is compared with the corresponding fault detection threshold. 
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When the residuals of one or more performance indexes are larger than their fault 

detection thresholds, the chiller system is considered to be faulty. Furthermore, specific 

chiller faults are diagnosed by a fault diagnostic classifier according to the amount and 

direction of the deviation of the performance indexes, and a chiller fault alarm will be 

raised.  

If the sensor FDD&E scheme does not find any sensor fault, no change will be made to 

the measurements and they are directly fed into the chiller FDD scheme for analysis. In 

the end, proper suggestions and recommendations concerning sensor calibration or 

system maintenance will be generated by analyzing the implementation results of the 

robust FDD strategy. 
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Figure 8.1 Flow chart of the robust chiller FDD strategy 
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8.2 Validation of Robust Chiller FDD Strategy Using Laboratory Data 

from ASHRAE 1043-RP 

Each of the two FDD schemes in the robust strategy has been validated in the previous 

chapters. But an important question still remains: Can the robust chiller FDD strategy 

effectively detect and diagnose occurred chiller faults in the presence of sensor faults? 

This is the ultimate problem this research is dedicated to solving. Therefore, the 

emphasis of the validation tests here is to evaluate the performance of the robust strategy 

in detecting and diagnosing chiller faults after correcting faults associated with the key 

sensors.  

 

8.2.1 Test Conditions 

The “Normal” test in ASHRAE 1043-RP, were used for the reference model 

development in the chiller FDD scheme and the PCA model training in the sensor 

FDD&E scheme, respectively. Similar to the validation tests in the previous chapter, the 

laboratory data from a normal operation test, called “Normal NC”, and three other 

chiller-fault tests in ASHRAE 1043-RP were employed to generate test data. The three 

chiller-fault tests include refrigerant leakage, excess oil, condenser fouling, all 

considered in the basic chiller FDD scheme. Two chiller faults, including degradation of 

the compressor and non-condensables in the refrigerant, were not tested in this chapter 

though these two chiller faults are considered in the basic chiller FDD scheme. The 

reason is that the data concerning degradation of the compressor are not available in 

ASHRAE 1034-RP, and the sensor FDD&E scheme can not tackle sensor faults in the 

event of non-condensables in refrigerant as the Q-statistic is sensitive to this chiller fault. 
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8.2.2 Generation of Test Data 

In order to validate the robust FDD strategy as comprehensively as possible, the test data 

should include the data free of faults, the data containing sensor faults only, the data  

containing chiller faults only, and the data containing both chiller faults and sensor faults.   

Accordingly, four groups of such test data, called groups A, B, C and D, respectively, 

were generated using laboratory data from ASHRAE 1043-RP. Group A comprises the 

data directly from “Normal NC” test and can be regarded as the data free of faults. 

Group B was generated by adding various bias errors to the corresponding measurements 

from “Normal NC” and thus can be regarded as the data containing sensor faults only. 

Group C comprises the data directly from the three chiller fault tests and thus can be 

regarded as the data containing chiller faults only. As for group D, it was generated by 

adding various bias errors to the measurements from the three chiller-fault tests, each of 

them arranged in an increasing order of severity (from level 1 to level 4). Thus, the group 

can be regarded as the data containing both chiller faults and sensor faults at the same 

time. The magnitudes of the bias error added to each measurement are the same as 

described in Table 7.2. For the same reason given in the previous chapter, nine sensors, 

i.e, Tchwr, Tev, Pev, Tlcw, Tcd, Pcd, Tsuc, Tdis and Welec, were added with a bias error to 

generate sensor faults. Tchws and Tecw are usually involved in any feedback control of the 

chiller, so bias error was not added to them. 

After the test data were generated, the robust chiller FDD strategy was applied to the 

four data groups, i.e., group A, group B, group C and group D, to find out whether the 

strategy could successfully detect and diagnose the chiller faults after correcting sensor 

faults associated with the key sensors in chillers. That results in 4 groups of test results, 

accordingly.    
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8.2.3 Results of Tests Using Fault-free Test Data  

When the robust FDD strategy was applied to data group A, the Q-statistic values of the 

test data were first calculated and compared with the corresponding threshold. The Q-

statistic plot of this group of test data was the same as shown in Figure 7.2. The plot 

clearly indicated that all Q-statistic values were below the threshold. That means all 

sensors in the chiller are free of sensor faults. Subsequently, the test data, without any 

change, were directed into the next procedure, i.e., the chiller FDD scheme. As expected, 

no significantly deviated residual of any performance index was observed. The plots of 

residuals of the six performance indexes were the same as shown in Figure 5.4. 

Therefore, it can be concluded that there are no chiller faults or sensor faults within the 

chiller, which coincides well with what is anticipated.      

 

8.2.4 Results of Tests Using Test Data Containing Sensor Faults Only  

Since each of the 9 sensors was added with a bias error individually, there were 9 sets of 

data in group B. The robust FDD strategy was applied to each data set in data group B, 

resulting in 9 test cases. For each test case, most Q-statistic values of the test data were 

above the corresponding threshold, indicating the existence of a sensor fault in the chiller. 

The Q-contribution plot and iterative approach were then activated to find faulty sensors 

and estimate the magnitudes of sensor faults, respectively. Since the test data in group B 

are the same as those used in Section 7.1, the general results of the sensor FDD&E 

procedure are the same as given in Table 7. 4. After that, the test data were fed into the 

chiller FDD scheme, where no significantly deviated residuals of performance indexes 

were observed. Hence the conclusion that the chiller is free of chiller faults but suffers 

from sensor faults, tallies with what was anticipated.  
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8.2.5 Results of Tests Using Test Data Containing Chiller Faults Only 

There were three sets of data in group C and each of them came from one chiller fault.  

The robust FDD strategy was applied to each of the three data sets, resulting in 3 test 

cases. For each test case, most Q-statistic values of the test data were below the 

threshold, as shown in Figure 8.2, Figure 8.3 and Figure 8.4. The Q-statistic values of 

85.08% of the samples from refrigerant leakage test were below the threshold, and this 

figure was 98.32% for excess oil and 93.68% for condenser fouling. All these means that 

there is no sensor fault within the chiller. Without any change to the test data, they were 

subsequently fed into the chiller FDD scheme for further analysis. Because the test data 

are the same as those used in Section 5.1, the results of the chiller FDD procedure for the 

three test cases are the same as given in Figure 5.5, Figure 5.6 and Figure 5.7. 

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sample Point

Q
-s

ta
tis

tic

increasing severity level 

 

Figure 8.2 Q-statistic plot of test data group C- Refrigerant leakage test from fault 
severity level 1 to 4 

 186



0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sample Point

Q
-s

ta
tis

tic

increasing severity level 

 

Figure 8.3 Q-statistic plot of test data group C- Excess oil test from fault severity level 1 
to 4 
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Figure 8.4 Q-statistic plot of test data group C- Condenser fouling test from severity 
level 1 to 4 
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8.2.6 Results of Tests Using Test Data Containing Both Sensor Faults and Chiller 

Faults 

Since each of the 9 sensors was added with a bias error for each of the three fault tests, 

there were a total of 27 sets of data in group D. The robust FDD strategy was applied to 

each data set, resulting in 27 test cases, respectively. Most Q-statistic values in each test 

case were above the Q-statistic threshold, indicating that the chiller suffered from sensor 

faults. Accordingly, the Q-contribution plot and iterative approach were activated to 

identify faulty sensors and estimate the magnitudes of sensor faults, respectively. Results 

of sensor FDD&E for the 27 test cases are summarized in Table 8.1. It can be observed 

from the table that in each test case, bias errors were accurately detected, diagnosed and 

estimated by the sensor FDD&E scheme with no “Diagnosis ratio” values less than 

89.04% and no “Relative estimation error” values higher than 14.79%.  
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Table 8.1 General results of validation tests using test data generated from three fault 
tests each from severity level 1 to 4 in ASHRAE 1043-RP 

(Q-statistic values are determined with a confidence level of 95%) 

Sensor and 
added bias 

Results 
Refrigerant 

leakage 
Excess oil 

Condenser 
fouling 

Detection ratio 98.78% 95.97% 99.04% 

Diagnosis ratio 89.04% 94.92% 89.95% 

Estimated bias +2.32oC +2.21oC +2.29oC 

Tchwr

+2.2oC 

Relative estimation error 5.35% 0.61% 3.93% 

Detection ratio 99.85% 99.83% 99.84% 

Diagnosis ratio 93.75% 98.32% 96.10% 

Estimated bias +1.11oC +1.13oC +1.11oC 

Tev

+1.2oC 

Relative estimation error 7.58% 5.76% 7.87% 

Detection ratio 100% 99.84% 100% 

Diagnosis ratio 99.39% 96.10% 100% 

Estimated bias +18.70kPa +19.09kPa +18.71kPa 

Pev

+20kPa 

Relative estimation error 6.52% 4.55% 6.47% 

Detection ratio 100% 100% 99.84% 

Diagnosis ratio 100% 100% 96.59% 

Estimated bias +3.96oC +3.61oC +3.33 oC 

Tlcw

+3.5oC 

Relative estimation error 13.17% 3.17% 4.82% 

Detection ratio 83.56% 98.83% 99.35% 

Diagnosis ratio 96.17% 100% 100% 

Estimated bias +3.30oC +3.45oC +3.80oC 

Tcd

+3.5oC 

Relative estimation error 5.81 1.52% 8.52% 

Detection ratio 91.63% 99.83% 100% 

Diagnosis ratio 94.52% 99.16% 99.84% 

Estimated bias +69.10kPa +72.93kPa +81.20kPa 

Pcd 

+7.5kPa 

Relative estimation error 7.87% 2.76% 8.26% 

Detection ratio 99.09% 99.66% 96.11% 

Diagnosis ratio 99.85% 100% 98.31% 

Estimated bias +1.43oC +1.6oC +1.59oC 

Tsuc

+1.5oC 

Relative estimation error 9.53% 7.13% 6.03% 

Detection ratio 81.58% 80.37% 93.35% 

Diagnosis ratio 100% 100% 100% 

Estimated bias +7.40oC +7.58oC +7.00oC 

Tdis

+7oC 

Relative estimation error 5.71% 8.33% 12.87% 

Detection ratio 70.02% 65.77% 60.62% 

Diagnosis ratio 92.83% 99.23% 95.89% 

Estimated bias +12.81kW +13.14 kW +13.77 kW 

Welec

+12kW 

Relative estimation error 6.77% 9.53% 14.79% 
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The corrected measurements were then fed into the chiller FDD scheme of the robust 

strategy, where chiller faults were successfully detected and diagnosed. For the sake of 

conciseness, only the chiller FDD results for the three test cases related to Tchwr are 

presented in this section to illustrate the details. The chilled water return temperature is 

involved in the calculation of three performance indexes: LMTDev and Mref  and COP. 

The bias error added to the sensor was +2.2oC. During each test case, chiller faults were 

identified by the chiller FDD scheme after the FDD&E scheme had identified the faulty 

sensor and corrected it. All the test results coincide with our anticipation. 

 

Test case 1: Refrigerant leakage with biased chilled water return temperature sensor 

In this test case, most Q-statistic values went beyond the threshold of a confidence level 

of 95% when Tchwr was biased with +2.2 oC, as shown in Figure 8.5-(a). Thus, the sensor 

FDD&E scheme was activated to tackle sensor faults. The biased Tchwr was successfully 

identified with a “Detection ratio” value of 98.78% and a “Diagnosis ratio” value of 

89.04%, and the biased error was estimated to be +2.32oC with a “Relative estimation 

error” value of 5.35%, as shown in Table 8.1. After measurements from Tchwr in the test 

data were corrected, each performance index would be calculated and compared with its 

threshold which was determined online with a confidence level of 95%. Figure 8.5-(b) 

shows that the residuals of LMTDcd, deviated from its low thresholds with increasing 

fault severity levels, while only a few residuals of Mref , as shown in Figure 8.5-(c), under 

its lower thresholds at fault level 4. Figure 8.5-(d) shows there are a very few residuals of 

COP under its lower thresholds. In these figures, the residual values are indicated by the 

solid dots and threshold values are indicated by the solid lines in the figures. The 

explanation for the slightly degraded COP is that the Tchwr was overcorrected with an 
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estimated bias of +2.32oC instead of a true value of +2.2 oC, which resulted in lower 

calculated cooling load and lower calculated COP. No discernible residuals of the rest 

performance indexes were found and therefore they are not presented in this section. 

Considering the fact that an expansion valve was used in the chiller, the fault diagnostic 

classifier identified the existence of refrigerant leakage.  

(a) Plot of Q-statistic (b) Plot of residuals of LMTDcd

(d) Plot of residuals of COP
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(c) Plot of residuals of Mref  

Figure 8.5 Plots of Q-statistic and deviated residuals of performance index using test 
data group D - Refrigerant leakage test from fault severity level 1 to 4 with biased Tchwr 

 

Test case 2: Excess oil with biased chilled water return temperature sensor 

Similarly, most Q-statistic values went beyond the threshold, as shown in Figure 8.6-(a).  

Subsequently, the sensor FDD&E scheme was activated to tackle sensor faults. The 
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biased Tchwr was successfully identified with a “Detection ratio” value of 95.97% and a 

“Diagnosis ratio” value of 94.92%, and the biased error was estimated to be 2.21oC with 

a “Relative estimation error” value of 0.61%, as shown in Table 8.1. During the 

implementation of the chiller FDD scheme, only the residuals of Effmotor and COP 

deviated from their corresponding thresholds with the increasing fault severity levels, as 

shown in Figure 8.6-(b) and (c), while no discernible residual of the other performance 

indexes was found. The fault diagnostic classifier identified the existence of excess oil. 

(a) Plot of Q-statistic

(b) Plot of residuals of Effmotor
(c) Plot of residuals of COP
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Figure 8.6 Plots of Q-statistic and deviated residuals of performance index using test 
data group D- Excess oil from fault severity level 1 to 4 with biased Tchwr
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Test case 3: Condenser fouling with biased chilled water return temperature sensor 

In the case of condenser fouling, the sensor FDD&E procedure was accordingly 

activated to tackle sensor faults as most Q-statistic values also went beyond the threshold, 

as shown in Figure 8.7-(a). The biased Tchwr was successfully identified with a 

“Detection ratio” value of 99.04% and a “Diagnosis ratio” value of 89.95%, and the 

biased error was estimated to be 2.29 oC with a “Relative estimation error” value of 

3.93%, as shown in Table 8.1. As for the chiller FDD procedure, the residuals of three 

indexes, LMTDcd,, Mref, and COP deviated from their corresponding thresholds with the 

increasing fault severity levels, as shown in Figure 8.7-(b), (c) and (d). Therefore, the 

fault diagnostic classifier identified the existing fault as condenser fouling. 

(a) Plot of Q-statistic (b)  Plot of residuals of LMTDcd

(c)  Plot of residuals of Mref (d)  Plot of residuals COP
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Figure 8.7 Plots of Q-statistic and deviated residuals of performance index using test 
data group D - Condenser fouling from fault severity level 1to 4 with biased Tchwr
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8.3 Application Software Package of Robust Chiller FDD Strategy  

8.3.1 Formation of FDD Application Software Package  

The application software package of the robust FDD strategy was developed on the 

platform of MATLAB 6.1, which is a high-level technical computing language and 

interactive environment for algorithm development, data visualization, data analysis, and 

numerical computation. The application software package mainly comprises an 

initialization subprogram and a FDD main program incorporating three subprograms, 

including a data preprocessor subprogram, a sensor FDD&E subprogram and a chiller 

FDD subprogram, as shown in Figure 8.8. All subprograms are built up on the basis of 

the corresponding schemes and approaches which have already been developed and 

validated in the previous chapters. It is worth pointing out that this application software 

package is, to a great extent, a prototype application of the robust FDD strategy proposed 

in this thesis. Both normal (fault-free) data and monitored data are saved in the working 

directory as the binary “MAT” files with a suffix of “.mat”. These data may be retrieved 

using a simple MATLAB function “LOAD”.  

The initialization subprogram is responsible for building up the PCA model and the 

reference model of each performance index. System configuration information, including 

the sensor configuration and component configuration, is contained in the program. The 

sensor configuration defines the accuracy of sensors and which sensors are considered in 

the PCA model as well as their measurement sequence. The sensor configuration may be 

different for different applications, but, for a specific application, the sequence of 

measurements in the training matrix and in the new samples (new monitored data) must 

be the same. Component configuration defines information concerning system 

component and subsystem, e.g., refrigerant and water properties. Normal data are 
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prepared in a “*.mat” file beforehand. If they are not prepared, the data from the first day 

after system commissioning will be used as normal data. The data preprocessor (see 

Section 3.3.1) is embedded in the initialization subprogram to eliminate undesirable data 

as much as possible. Certainly, the initialization subprogram should be implemented 

before starting the main program.   

FDD Main 
Program

Initialization 
Subprogram

Data Preprocessor 
Subprogram

Sensor FDD&E 
Subprogram

Outputs 
figures and a structure 
variable in MATLAB 6.1

Detection Threshold 
Estimation Module

Sensor Fault 
Estimation Module

Monitored Data 
in “*.mat”

Normal Data 
in “*.mat”

Chiller FDD
subprogram Fault Diagnosis

Module 

 

Figure 8.8 Schematic diagram of the structure of the FDD application software package 
in MATLAB 6.1 

 

The main FDD program organizes the implementation sequence of three subprograms 

and calls them in a specified order when a certain number of samples from the monitored 

data are available. 
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The data preprocessor subprogram is called first of all to preprocess the incoming 

samples. Subsequently, using the trained PCA model from the initialization subprogram, 

the sensor FDD&E subprogram carries out PCA modeling, e.g., calculation of the Q-

statistic and Q-contribution. Sensor faults, if present, can be detected and diagnosed. 

Moreover, the sensor fault estimation module is called to correct identified sensor faults.  

The chiller FDD subprogram will be called by the main FDD program after the samples 

are validated. The subprogram not only uses the corrected sample measurements to 

calculate the current performance indexes, but also employs the regressed reference 

models from the initialization subprogram to predict benchmark values of the 

performance indexes. Meanwhile, the chiller FDD subprogram calls a functional module, 

i.e., fault detection threshold estimation module, to update the fault detection threshold 

for each sample. Both residuals and fault detection thresholds of each performance index 

are outputted accordingly. The residuals are compared with corresponding thresholds to 

find out whether there is a chiller fault within the chiller system. Once a chiller fault is 

detected, the fault diagnosis module in the form of a simple expert system will be called 

to diagnose particular chiller faults. The simple expert system compares the current 

deviation pattern of the performance indexes against the fault diagnostic rules (see Table 

3.2) and tries to find a match among them.  

The implementation results, including the Q-statistics/threshold, the Q-contribution of 

each sensor measurement, and the residuals/thresholds are plotted on figures and saved 

along with diagnosed faults in a structure variable in MATLAB 6.1. In addition, the 

estimated magnitudes of sensor bias errors are also outputted and saved in the structure 

variable, and those can be used to further assess the severity of sensor faults as well as 

determine which measure, e.g., sensor recalibration or replacement, should be taken to 

tackle them.  
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8.3.2 Integration of FDD Application Software Package with IBmanager 

The FDD application software package is integrated with an Intelligent Building 

management platform, namely IBmanager, as an application example of its integration 

with BMSs.  

The IBmanager is an open IB (Intelligent Building) management platform based on 

middleware technologies. It can communicate with various BA (Building Automation) 

systems like LonMark and BACnet, and inter-operate with BMS (Building Management 

System) and FDD application software package with IP (Internet Protocol) integration. 

IBmanager server (as shown in Fig. 8.9) can be implemented on Intranet and Internet. 

 

BACnetLonMark

Other interfacesIBmanager Server

Intranet/Internet

IBmanager Client 
(Windows or 

Web Application)

 

Figure 8.9 Schematics of IBmanager server 
 

Figure 8.10 shows the schematic diagram of the integration of the FDD application 

software package with the IBmanager. Computer and network technologies are 

employed to build various standard interfaces between the IBmanager, the FDD 
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application software package, remote clients as well as the simulated building system. 

Except for the virtually simulated building system, the other components are real. Just 

like BMSs, the IBmanager server samples chiller data at a fixed interval from the 

simulated building system and monitors its operation.  
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Figure 8.10 Schematic diagram of integration of the FDD application software package 
with the IBmanager sever 

 
 

A script is coded and added to the IBmanager server to customize the chiller FDD 

application. The script mainly assumes functions of scheduling and communication.  It 

sends variables to the FDD application software package in the format as it demands, 

and then the FDD application software package is executed by the IBmanager server. 

The FDD results are saved to the IBmanager server automatically. The local and remote 

user/clients can use network tools, e.g., Internet Explorer, to view FDD results on the IB 

manager server.  
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8.4 Summary 

During chiller operation, two kinds of faults, i.e., sensor faults and chiller faults, may 

exist simultaneously. The implementation structure of the robust chiller FDD strategy, 

organically combining the basic chiller FDD scheme with the sensor FDD&E scheme, is 

presented in this chapter, aiming to carry out overall chiller fault detection and diagnosis. 

With the aid of real-life chiller data from ASHRAE 1043-RP, this chapter presents results 

of validation tests of the robust chiller FDD strategy on the platform. The test results 

prove that the robust strategy has the capability to detect and diagnose typical chiller 

faults after correcting sensor faults.  

In addition, the robust FDD strategy was also tested using the field data from the real 

building introduced in Chapter 4. However, these tests are not presented in this thesis due 

to the following facts. Firstly the results of the tests using laboratory data have strong 

evidence to make the favorable conclusion on the performance of the robust FDD 

strategy. Secondly and more importantly, there is a lack of data containing known chiller 

faults (only the data containing condenser fouling are available), which however are 

needed to carry out tests and draw the conclusion at the same level of confidence as the 

laboratory data do. In fact, during the validation tests using the field data, the PCA model 

in the sensor FDD&E scheme was trained by more normal data, say the data from July 

4th, 2001 to July 6th, 2001 instead of those from July 4th, 2001 only as in Section 7.2.2, so 

as to obtain a PCA model which can account for as many normal system variations as 

possible. Bias errors were added to the data collected on July 31st, 2001 to generate test 

data containing both sensor faults and a chiller fault (condenser fouling). As expected, 

the robust FDD strategy successfully tackled these two kinds of fault.   

Besides validation tests of the robust FDD strategy using real life chiller data, the 
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application software package of the strategy developed on the platform of MATLAB 6.1 

is presented in this chapter. As an application example of its integration with BMSs, the 

software package is integrated with the IBmanager, which is a versatile intelligent 

building management platform.     
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CHAPTER 9 SUMMARIES AND RECOMMENDATIONS 

 

This final chapter summarizes the key features of the robust FDD strategy for centrifugal 

chillers and the main findings of this research work. Recommendations are also provided 

for utilizing the strategy as well as for future work in FDD within the HVAC&R 

industry. 

A chiller involves many subsystems, components and sensors, all of which might be 

susceptible to faults. Chiller faults, i.e., faults associated with subsystems or components 

of chillers, if not detected or corrected, would result in increased operating costs and 

poor indoor environment quality. In addition, sensor faults, i.e., faults associated with 

sensors could lead to unreliable control, inaccurate efficiency monitoring as well as the 

failure of chiller FDD for chillers. To achieve efficient and effective operation and 

maintenance of chiller systems, a chiller FDD strategy capable of handling sensor faults 

and chiller faults simultaneously is highly desirable.  

This thesis presents a basic chiller FDD scheme, a sensor FDD&E scheme, as well as a 

robust chiller FDD strategy organically incorporating the two schemes together. The 

basic chiller FDD scheme can effectively tackle six typical chiller faults, including 

evaporator fouling, condenser fouling, refrigerant leakage, excess oil, non-condensables 

in refrigerant and compressor degradation. The sensor FDD&E scheme can handle bias 

errors associated with temperature sensors, pressure sensors, and electric power meters in 

centrifugal chillers. After the two schemes were respectively validated by both 

laboratory data and field data, the robust chiller strategy organically incorporating the 

two schemes was developed. The strategy is called a robust one in that it is capable of 
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both diagnosing a chiller fault in the presence of a sensor fault, and diagnosing and 

estimating a sensor fault in the presence of a chiller fault. The robust strategy was tested 

and validated using laboratory data from ASHRAE 1043-RP.  

 

9.1 Conclusions on Main Contributions 

The primary contribution of this thesis is that a robust FDD strategy was developed to 

tackle two kinds of faults, i.e., sensor faults and chiller faults, which may simultaneously 

exist in a typical centrifugal chiller. Applicable algorithms for implementing the strategy 

were also formulated, which can be easily integrated with current BMSs. The developed 

strategy was validated using laboratory data from an ASHRAE research project whose 

main objective is to provide a database for the development and evaluation of FDD 

methods. In order to evaluate the applicability of the strategy in relation to on-line 

implementation, both schemes in the robust strategy were validated using field data 

collected from the BMS of a real building in Hong Kong.   

Firstly, a basic chiller FDD scheme was developed based on six performance indexes 

indicative of chiller health conditions. The performance indexes have straightforward 

and strong thermophysical meaning and can synthesize information provided by 

individual measurements from a number of sensors in chillers. The fault diagnostic 

classifier in the basic chiller FDD scheme is constructed on the basis of a set of rules that 

relates each chiller fault to its impact on the performance indexes. Therefore, the fault 

diagnostic classifier is more understandable during construction and more effective 

during implementation, as compared with those based on rules relating each chiller fault 

to its impact on numerical measurements from sensors. More importantly, an online 

adaptive estimator of fault detection threshold has been developed. The estimator can 
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update the fault detection threshold according to the chiller operating conditions as well 

as the degree of sensor noise and the magnitude of fitting error of the reference model.  

It is worth pointing out that the basic chiller FDD scheme fails to fulfill its duty when 

sensor faults occur in chillers.  In order to cope with this shortcoming, a PCA-based 

FDD&E scheme was developed for the fault detection, diagnosis, and estimation of soft 

sensor faults. The PCA method is capable of capturing system variations of centrifugal 

chillers. Thanks to the fact that most chiller faults belong to system variations which can 

be captured by the PCA model whereas sensor faults do not, the output of PCA method, 

namely Q-statistic, is sensitive to sensor faults but insensitive to most chiller faults.  

Therefore, the sensor FDD&E scheme based on the PCA method can still successfully 

fulfill its duty even in the presence of these chiller faults.  

 

9.2 Summary on Performance of the Basic Chiller FDD scheme 

The major function of the basic chiller FDD scheme developed in this study is to 

consolidate the information from chillers into a clear and coherent picture of chiller 

status, which can help building operators detect existing faults and identify the cause. 

Various FDD methods were analyzed and compared after an extensive literature review. 

A model-based FDD method was finally chosen because it is suitable for fault detection 

and diagnosis for centrifugal chillers. 
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9.2.1 Performance Indexes 

Six performance indexes, namely, logarithmic mean temperature difference of the 

evaporator and condenser (LMTDev and LMTDcd), refrigerant mass flow rate (Mref), 

compressor polytropic efficiency (Effpoly), drive motor efficiency (Effmotor) and coefficient 

of performance (COP), were selected to indicate the health of a typical centrifugal chiller. 

In a thermophysical perspective, these performance indexes give a more comprehensive 

picture of the chiller than a great number of measurements from sensors do.  

 

9.2.2 Reference Model and Its Identification  

A reference model in the form of a polynomial with only three regressors (independent 

variables) is used in this study to predict benchmark values for each performance index 

of a centrifugal chiller. The reference model, after trained by normal data, can effectively 

capture the relationship between determinant variables and the performance indexes. In 

this way, the reference model is able to describe the baseline behavior of the chiller.   

The reference model has the following advantages. The few regressors in the polynomial 

regression model not only make the model structurally simple but also make it less 

vulnerable to measurement errors associated with the variables. Furthermore, the 

identification of the reference model can be accomplished by a simple parameter 

estimation method, e.g., OLS, with the aid of a mount of normal data.  

With regard to the normal data used in the model identification, it is recommended to 

select regressor values spreading uniformly over their whole range of variation.  
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9.2.3 Fault Diagnostic Classifier 

The fault diagnostic classifier is based on a set of rules that relates each fault to the 

direction in which each performance index changes when the fault occurs. Such rules are 

deduced from theoretical analyses based on thermophysical principles. However, it 

should be mentioned that there is no universal fault diagnostic classifier and it needs to 

be carefully tailored to specific applications. For example, chillers using an expansion 

valve have a different fault diagnostic classifier from that of chillers using a fixed orifice, 

as shown in Table 3.2. In addition, since the set of rules in the fault diagnostic classifier 

defines qualitatively but not quantitatively the changing trends of the performance 

indexes when a fault occurs, continuous monitoring of chiller operation is highly 

recommended so as to help find such trends during the implementation basic chiller FDD.    

 

9.2.4 Fault Detection Threshold 

It is now generally accepted that setting an appropriate threshold for fault detection is a 

fundamental issue in FDD applications. A lower fault detection threshold can benefit the 

earlier detection of major faults but tends to produce false alarms, and vice versa. The 

adaptive estimator of fault detection threshold developed in this thesis takes into account 

essential influencing factors, e.g., chiller operating conditions on fault detection 

threshold, and can set reasonable thresholds accordingly. Therefore, the robustness of 

FDD can be enhanced.  
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9.2.5 Fault Detection and Diagnosis  

The detection and diagnosis of faults involves comparison of online performance indexes 

with the corresponding benchmark values at the same operating conditions. Residuals for 

each performance index are generated from the comparison and then compared with the 

ever-updated fault detection threshold. When a specific portion of the residuals of one or 

more performance indexes are larger than their thresholds, the chiller system is 

considered to be faulty. Specific faults can be diagnosed by the fault diagnostic classifier 

according to deviation patterns of the performance indexes.     

 

9.2.6 Validation Tests 

The basic chiller FDD scheme was validated using both laboratory data and field data. 

Since the laboratory data come from an ASHRAE research project which is specifically 

designed to generate data for the development and evaluation of FDD methods, the 

validation tests based on such data should give us great confidence in the FDD scheme 

although not all the chiller faults considered in the scheme were tested. In addition, the 

validation test using the field data from the BMS in a real building convinced us of the 

feasibility of implementing the scheme on BMSs.  

 

9.3 Summary on Performance of the Sensor FDD&E Scheme 

The primary objective of the sensor FDD&E scheme is to tackle bias errors associated 

with key sensors whose measurements are crucial to chiller FDD, efficiency monitoring 
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and optimal control. The sensor FDD&E scheme includes three major function groups: 

sensor fault detection, sensor fault diagnosis and sensor fault estimation.  These three 

groups enable the sensor FDD&E scheme not only to find abnormal sensor conditions 

and identify faulty sensors but also to estimate bias errors in the faulty sensor and correct 

them. Therefore, the chiller data after being processed by the sensor FDD&E scheme can 

be thought of as free of sensor faults. It should be mentioned that the scheme can detect a 

fault condition when one or more sensors is faulty, but the scheme is invalid for fault 

diagnosis and estimation when more than one sensor is faulty at the same time. In the 

case of multiple sensor faults, using PCA models comprising fewer variables would 

narrow the fault-searching range and help insolate faulty sensors. In addition, since the 

chance of more than one sensor going faulty simultaneously is slim, the scheme 

proposed in this thesis is still of significance in most engineering applications.  

 

9.3.1 PCA Model  

The basic method employed in the sensor FDD&E scheme is the PCA method. The PCA 

method was chosen on the one hand because it is insensitive to chiller faults at the 

component or system level, and on the other hand, because of its strong capability in 

capturing the correlations among a number of variables, which is particularly suitable for 

sensor FDD in chillers. Measurements in large-scale chillers such as a centrifugal chiller 

are heavily correlated with one another due to the cycling of refrigerant that interacts 

with compressor, chilled and cooling water in the system. However it is difficult to 

represent all these correlations precisely using mechanistic models because of complex 

thermodynamic processes. Moreover, the variations in measurements from sensors in a 

centrifugal chiller are relatively small as compared with those in other HVAC&R 
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systems, some of which, such as AHUs, are more susceptible to ever-changing 

environmental conditions. Therefore, it is easy for the PCA method to catch correlations 

among the number of variables. 

The PCA method uses the correlation matrix to depict correlations among variables in a 

process. It does not require complex physical models of the dynamic and nonlinear air-

conditioning system and its components, nor does it need to construct and train complex 

mathematic models such as black-box models. Problems caused by model uncertainty 

and training complexity can be avoided.  

In order to apply the PCA method to centrifugal chillers, a PCA model including 

variables that are crucial to chiller FDD, performance monitoring and control was built. 

These measurements include the chilled water supply water temperature (Tchws), the 

chilled water return temperature (Tchwr), the evaporating temperature (Tev), the 

evaporating pressure (Pev) the leaving condenser water temperature (Tlcw), the entering 

condenser water temperature (Tecw), the condensing temperature (Tcd), the condensing 

pressure (Pcd), the compressor suction temperature (Tsuc), the compressor discharge 

temperature (Tdis), and the electrical power input to the compressor (Welec).  

 

9.3.2 Fault Detection, Diagnosis and Estimation  

Sensor faults were detected using the Q-statistic, in the form of squared prediction error, 

which measures the magnitude of the projection of a measurement vector onto the 

residual subspace. An abnormal condition can be detected when the calculated Q-

statistic is larger than its threshold, which is determined at a certain confidence level.  

 208



The Q-contribution plot can be used to identify the faulty sensor after the Q-statistic 

detects an abnormality. It can help reduce the possible fault sources and thus focus on a 

narrower fault-search range. Since determining the true measurements of the sensor is 

crucial to providing reliable data for the subsequent chiller FDD, the procedure of sensor 

fault estimation is of great importance in the scheme and the robust FDD strategy. The 

estimation is realized using an iterative approach, which always converges if only each 

variable in the PCA model is correlated with others.   

 

9.3.3 Validation Tests 

The sensitivity of the output of the PCA model, i.e., the Q-statistic to typical chiller 

faults was tested using laboratory chiller data from ASHRAE 1043-RP. The results of 

the sensitivity test shows that the Q-statistic is insensitive to the typical chiller faults 

including refrigerant leakage, refrigerant overcharge, excess oil, and condenser fouling. 

Furthermore the sensor FDD&E scheme was roundly validated by test data containing 

sensor faults as well as those containing both a sensor fault and a chiller fault. Validation 

results show the scheme can tackle a bias error as low as or even less than 15% of the 

average of sensor measurements.  It is the first time in the HVAC&R field that a sensor 

FDD method has been tested using test data generated from real-life data to evaluate its 

performance while taking into consideration the possible effects of typical chiller faults. 

Moreover, the validation tests using field data from the BMS in a real building show that 

the sensor FDD&E scheme is also promising for future integration with BMSs.   
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9.4 Summary on Performance of Robust FDD Strategy  

The robust FDD strategy for centrifugal chillers has been developed on the basis of 

incorporating the basic chiller FDD scheme with the sensor FDD&E scheme. Thus, the 

summaries of the basic chiller FDD scheme and the sensor FDD&E also apply to the 

robust FDD strategy. The validation tests of the robust strategy were implemented using 

different groups of test data generated from various tests in ASHRAE 1043-RP. These 

groups of test data respectively represent chiller normal operation conditions, sensor-

fault conditions, chiller-fault conditions, as well as both sensor-faults and chiller-fault 

conditions. The test results show that the robust strategy is capable of identifying a 

chiller fault, after identifying and correcting a sensor fault.  

Moreover, the data preprocessor that was first developed in Section 3.3.1 and widely 

used in all validation tests plays an important role in the implementation of the robust 

FDD strategy. The scope of the research work in this thesis focuses on the steady-state 

operation centrifugal chillers which are widely used in larger buildings. Since the 

dynamics of the fluid flow and heat transfer in centrifugal chillers are generally much 

faster than those of the chiller load and ambient conditions such as ambient temperatures, 

the steady-state operation can be assumed. In order to obtain data representative of 

steady-state operation, a steady-state filter, an outlier detector and a basic validity check 

were respectively designed to remove the transients, outliers and abnormalities in the 

data for both model development/training and online implementation. Undoubtedly, a 

well-designed data preprocessor consisting of these three tools is a prerequisite to the 

successful implementation of the basic chiller FDD scheme, the sensor FDD&E scheme 

and the robust FDD strategy.  
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9.5 Expandability and Transportability  

The proposed robust FDD strategy is expandable in that it is able to accommodate more 

complicated abnormalities in chillers, no matter whether they belong to chiller faults or 

sensor faults. Additional performance indexes representative of an extra process or 

component that may need to be investigated can be added easily. Also, the PCA model 

can be expanded to include a larger number of sensors or shrunk to contain a smaller 

number of sensors according to practical applications. Moreover, the robust FDD 

strategy is transportable in the sense that it uses fundamental thermophysical principles 

to process data in the basic chiller FDD scheme and utilizes a pure data-driven PCA 

method to process data in the sensor FDD scheme. This characteristic allows the robust 

strategy to be applied to a variety of chillers, e.g., reciprocating chillers and rotary screw 

chillers, with a little modification if necessary.    

 

9.6 Recommendations and Further Work 

Research efforts made as part of this thesis have primarily concentrated on the 

development of robust chiller FDD strategy conceptually. It would be very desirable and 

valuable to make further efforts on a few aspects related to the research presented in this 

thesis.  

1. Although the prototype schemes and strategy have been verified predominantly with 

laboratory data and field data, extensive field test of them on centrifugal chillers 

must still be carried out to secure greater confidence in the conclusions and 

recommendations made on the basis of this research work, and to promote their 

application in BMSs in real buildings. 
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2. The proposed schemes are expandable and transportable in the sense of being able to 

accommodate other chiller faults or sensor faults and may be applied to other vapor 

compression equipment. Additional performance indexes representative of chiller 

operation can be added. Also, additional sensors such as flow meters can be added to 

the PCA model so as to have a more comprehensive sensor FDD scheme. 

3. An overall FDD system should be able to evaluate the impact of the faults and 

afterwards recommend a course of action. If a fault has been identified but the 

current operation is not adversely affecting the equipment life, the energy efficiency, 

or the environment, then the best decision should come from a tradeoff between 

costs associated with maintenance service and energy costs associated with the fault. 

Maintenance service costs money but reduces energy costs. Therefore, a method 

involving optimal maintenance scheduling is also needed in the future. That, of 

course, would require more knowledge beyond the HVAC&R technology itself. 

4. In this paper, either the fault detection sensitivity of the chiller FDD scheme to 

chiller faults or the sensitivity of the sensor FDD&E scheme to sensor faults is 

discussed and evaluated qualitatively only but not quantitatively. Therefore, the 

investigation of the fault detection sensitivity of the schemes would be an important 

research topic in the future, which might involve an improved fault classifier and test 

data indicative of more faulty operating conditions.  
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APPENDIX A 

 

Derivation of Equation (3.17) and Equation (3.18) - Estimating Variance of the   

Residual of a Performance Index  

According to the principle of OLS, the observed value of the ith performance index (Yi) 

corresponding to a specific observed regressor vector should satisfy Equation (1). 

ichwsecwevii TTQfY ε+= )ˆ,ˆ,ˆ(                                                   (1) 

where  and represent the observed (measured) values of Qecwev TQ ˆ,ˆ
chwsT̂ ev, Tecw and Tchws, 

respectively. iε  is normally distributed error with a mean of zero and a variance of . 

 is the variance of the regression error of ith performance index, namely the square of 

the SEE (Standard Error of Estimate) of . f

2
iYσ

2
iYσ

iY i ( ) represents the polynomial regression 

model of the ith performance index.  

Therefore, the normal distribution of Yi has a mean value of  and a 

variance of , as illustrated by Equation (2).  
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2
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iYchwsecwi TTQfNY σ                                 (2) 

Also, the output of the corresponding reference model ( ) at the same observed 

regressor vector is normally distributed with a mean value of and a 

variance of  (Montgomery and Runger 1994). That can be illustrated 

by Equation (3).  
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The true value of the residual of the ith performance index, ri, can be given by Equation 

(4).  

  iii Ygr −= )(z                                                                 (4)                  

where  presents the calculation formula of the ith performance index (see Table 3.1) 

and z is the vector of true values of relevant variables. 

)(⋅ig

 

However, due to measurement and modeling uncertainty, the residual of the ith 

performance index is estimated as shown in Equation (5).  

                                                                  (5)                  iii Ygr ~)ˆ(~ −= z

where ir~ is the estimate of ri and  is the vector of measured values of variables 

concerned.  is the ith performance index calculated using ẑ . By replacing  

with  plus the first-order item in its Taylor expansion while neglecting the second 

and higher order, Equation (5) can be further deduced as shown in Equation (6). 

ẑ
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)(zig

ij
j j
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∂
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+≈ ∑ δz                                                  (6)                  

where zj is the jth element in z, jzδ is zero mean Gaussian noise associated with zj and its 

standard deviations are
jzσ .       

By subtracting Equation (4) from Equation (6), Equation (7) is derived.  

                                                   )~()(~
iij

j j

i
ii YYz

z
g

rr −−
∂
∂

=− ∑ δ                                        (7) 

Since jzδ , iY~  and  are independent of each other (Montgomery and Runger 1994), the 

mean and variance of 

iY

ii rr −~ can be respectively given by Equation (8) and Equation(9) 

while referring to Equation (2) and Equation (3). 

                                 0)~( =− ii rrE                                                          (8)           
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Therefore, ii rr −~  is can been assumed to be normally distributed with mean zero and 

variance 
ii rr −~σ  as shown in Equation (10). 
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When in Equation (9) is replaced with its unbiased estimate,2
iYσ 2~

iYσ , which is given by 

Equation (12), the unbiased estimate of 2
~

~
ii rr −σ can be obtained by Equation (13).   
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where is the kth response variable in the model development data andkY kY~ is the output of 

the reference model. n is the number of observations in the model regression and p is the 

number of coefficients estimated from the model development data.   

Now, it can be concluded that 
ii rr

ii rr

−

−
~

~
~

σ
has a t distribution with n-p degree of freedom 

(Montgomery and Runger 1994) as shown in Equation (14). 
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This leads to a (1-α) confidence interval for the predictor of the residual of the ith 

performance index ( ), which is shown in Equation (15). ir
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During implementation of FDD, the uncertainty of the predictor of ri with a (1-α) 

confidence level is given in Equation (16). 

ii rrpni trU −−
±= ~,2
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APPENDIX B  

 

Coefficients of reference models  

 

Table 1 Coefficients of reference models for performance indexes regressed by 
laboratory data from ASHRAE 1043-RP  

 LMTDev LMTDcd Mref Effpoly Effmotor COP 
b0 -1.1434e+0 8.2319e-1 -1.4914e-3 1.0136e-2 3.9392e-1 1.2979e+0 
b1 3.8130e-1 -1.8205e-1 1.1724e-3 -2.1175e-2 6.3934e-3 2.8785e-2 
b2 -1.6299e-2 1.1000e-3 8.5315e-5 1.0832e-2 4.5674e-3 -2.3601e-2
b3 2.3194e-2 1.9652e-2 4.8725e-3 2.8316e-3 2.1561e-3 2.9253e-2 
b4 1.2399e-3 5.3341e-3 -5.9017e-5 2.7584e-4 -1.9924e-4 -1.3106e-3
b5 3.9263e-4 3.7342e-4 -2.5335e-5 4.2543e-5 -1.7412e-5 2.3538e-4 
b6 -2.9814e-4 -3.6158e-4 4.3487e-5 -3.5885e-5 -1.8657e-6 -3.2290e-4
b7 -1.4647e-5 1.9673e-6 6.4895e-7 -2.8723e-6 -2.2315e-6 -3.5574e-5

 

Table 2 Coefficients of reference models for performance indexes regressed by field data 
from a real building in Hong Kong  

 LMTDev LMTDcd Mref Effpoly Effmotor COP 
b0 -3.0609e+1 2.4870e+1 -3.3868e+0 2.0176e+0 5.3509e+0 5.3675e+1 
b1 2.9431e+0 4.3414e-1 1.0836e+0 -1.9718e-1 -7.1897e-1 -6.6236e+0
b2 7.4667e-1 -7.8776e-1 1.2969e-01 -3.8817e-2 -2.1438e-1 -2.0318e+0
b3 3.0375e+1 -2.4330e+1 1.6969e+1 -4.3845e-1 1.3349e+0 5.0349e+0 
b4 -3.3003e-2 -4.3876e-2 -4.0575e-2 4.5395e-3 3.0749e-2 2.5830e-1 
b5 -2.4401e+0 7.7810e-1 -8.7548e-2 5.3131e-2 -1.9582e-1 -8.1082e-1
b6 -7.2190e-1 9.9646e-1 2.8513e-1 1.6583e-2 1.9602e-2 2.8446e-1 
b7 5.1804e+0 -1.6415e+0 1.4434e+0 -1.3641e-1 -9.5938e-2 -3.0818e+0
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