Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




The Hong Kong Polytechnic University
Department of Mechanical Engineering

Multi-Objective Optimization of Active Constrained
Layer Damping Treatment for Shape Control
| Application

by

HAU Lap Chi

Thesis submitted in partial fulfillment of the requirements for the degree of
MASTER OF PHILOSOPHY
mn

Mechanical Engineering

October 2003

@b Pao Yue-kong Library
Q@ PolyU ° Hong Kong



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge
and belief, it reproduces no material previously published or written nor material which
has been accepted for the award of any other degree or diploma, except where due

acknowledgment has been made in the text.

(Signed)

_HaU iA? ¢CHI  (Nameof student)




ABSTRACT

Vibration and shape control of structures are common subjects among the engineering
community. In vibration control, suppressing the structural vibrations is of primary
concern, while shape control means commanding the structure to take a desired shape
when both subjected to changes of environment or load conditions. The science and
technology developed in the latter topic has found applications in many areas; examples
are in the re-adjustment of the focal point of antenna reflectors, and the improvement of

aerodynamic and hydrodynamic performances of airfoils and blades respectively.

This thesis presents a study conducted to explore the feasibility of utilizing Active
Constrained Layer Damping (ACLD) treatment for shape control of flexible structures.
The key idea is to reduce the complexity and enhance the stability of the control system,
since ACLD patches can not only change the shapes of flexible structures but also
introduce passive damping. The present study deals with the dynamic modeling,

analysis and optimization of an ACLD flexible beam for shape control.

First of all, the dynamic model of a flexible beam with distributed ACLD patches is
formulated by means of the Finite Element Method (FEM). The Golla-Hughes-
McTavish (GHM) model is employed to capture the frequency-dependent characteristic
of the viscoelastic materials. With this model, a parametric study of the ACLD flexible

beam is conducted by computer simulations to understand the effects of treatment length



and location, the layer physical and geometrical properties, and control gain values on

the damping characteristic of the flexible beam,

The optimal performance of the system in this application is defined by several
objective functions. Both open and closed-loop performances are taken into account.
With respect to open-loop control, certain amount of passive damping is necessary for
stability and fail-safe consideration. Meanwhile, a heavy structure is undesirable. For
closed-loop control, the minimization of the error between the desired and achieved
shapes should be another concern. Based on the previous parametric study, specific
design variables in addition to the control gains can be chosen and the inequalities can
be set up for the respective constraints. Instead of aggregating the objectives with a
weighting function, the Multi-Objective Genetic Algorithm (MOGA) is employed, and a

computer code is developed to solve this multi-objective optimization problem.

Pareto solutions are successfully obtained. A clear tradeoff between the total treatment
weight and passive damping is found. Transient behavior is analyzed by numerical
simulations. Results show the feasibility of using ACLD patches for the shape control of
structures. Effects of external disturbances on the shape control system are also
examined by applying different types of loadings to the system. It is demonstrated that
for the loads under consideration, closed-loop control can regulate the actuator voltages
to correct the destroyed shapes. Comparison is also made between open and closed-loop
controls. Simulation results confirm that the closed-loop control outperforms the open-

loop one in terms of disturbance-rejection ability as well as settling time.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

As a consequence of the increasing demand on high-performance system, shape control
of structures becomes more and more contributing, and is a topic of current interest. In
general, shape control means commanding the positions of a certain number of points on
a structure to track the desired values. Most aircraft wings are designed to produce
minimum drag under one particular flying condition, while the flying condition actually
varies continuously throughout the flight. It is therefore expected that the wing shape
should be able to change in response to the change of flying condition. On the other
hand, shape control can also be employed to maintain the precise shape of a structure. In
some large space systems, such as antenna reflectors, maintaining precise surface shape
has been a challenging task. The surface errors are introduced by manufacturing errors,
thermal distortion, moisture and material degradation. When these happen, adjustable
antennas could simply self-correct. The ability for antennas to change shape can solve
another common problem: Earth’s atmosphere scatters satellite signals the same way
water scatters a beam of light. For this reason, not all transmitted information reaches a

target. Standard antennas cannot correct for that, but an adjustable antenna can navigate



signals through turbulent atmospheric conditions like storms. It can deliver more

information using the same amount of power [1].

Traditionally, shape control concept employs axial or translational actuators as truss
elements of active ribs to reshape the structure by deforming it. However, this has a
number of drawbacks. This technique creates discontinuities over the surface. To obtain
a smoother surface, a large amount of actuators are required, thus adding weight and
redundancy to the system. In view of the drawbacks associated with the conventional
actuators, considerable efforts have been devoted to the development of other shape-
change techniques. Recently, the use of compliant mechanisms and smart material
actuators are two common solutions for achieving a smooth shape change. Compliant
mechanisms are one-piece flexible structures, which exploit the inherent mechanical
deformation of materials. They are a class of mechanisms that achieve mobility through
elastic deformation of one or more of their constituent segments. They are light in
weight and generate a variety of precise motions. As for smart material actuators, they
produce displacement and forces when exposed to external energy fields, such as
electricity input or heat. For instance, when a piezoelectric material is attached to the
surface of a flexible structure and expands, the structure surface bends. When it
contracts, the structure surface bends to the other direction. With that movement, the

overall shape of a structure can be changed.

The above-mentioned systems are made of flexible structures. These structures must

sacrifice stiffness in order to achieve the reduced weight requirement. However, low



stiffness can result in structures vulnerable to vibration and hence in reduced precision
and performance. They are also lightly damped because of the low internal damping of
the materials used in their construction, which will cause large amplitude vibration. As a

result, when it comes to flexible structures, another problem necessary to tackle is

vibration suppression.

In this research, an alte@tive approach for shape control of flexible structures is
developed. The proposed approach utilizes the Active Constrained Layer Damping
(ACLD) treatment idea [2] for shape control of flexible structures. In general, ACLD
consists of a viscoelastic layer sandwiched between two piezoelectric layers. This three-
layer composite is bonded to the host structure. This smart constraining layer damping
treatment, as shown in Figure 1-1, has built-in sensing and actuation capabilities. The
sensing is provided by the piezoelectric layer directly bonded to the host structures,
whereas the actuation is generated by the other piezoelectric layer which acts as an
active constraining layer. As the host structure undergoes bending, the viscoelastic layer
undergoes shear deformation and hence provides damping. Based on the sensor
feedback, the controller actuates the piezoelectric constraining layer, by application of
electric field, to further enhance the shear in the viscoelastic layer as well as to exert

active control forces to the host structure.

The advantage of using ACLD treatment for shape control of flexible structures is
obvious. It reduces the complexity and enhances the stability of the control system. It is

superior to conventional actuators for its simple control architecture, since the actuators



are directly attached to the host structures. It is also better than other smart material
actuators, as ACLD patches not only achieve the goal of shape control by providing
strain to the host structures, but also introduce passive damping to the system, thus
enhancing the stability to the system. In other words, ACLD treatment integrates the

vibration and shape control into a single system.

This research also explores the optimization issue of ACLD treatments on flexible
structures. The optimal performance of this shape control system can be defined by
several objective functions, and there are often tradeoffs between different objective
functions. Further, the performance of the system is highly dependent on the selection of
design variables. As a result, designing an ACLD shape control system becomes a
complicated problem. The current research addresses the multi-objective optimization

for the shape control of a flexible beam.

Piezoelectric constraining layer Viscoelastic layer

N

A Y

; Piezo-sensor layer

Figure 1-1 Schematic of ACLD treatment



1.2 LITERATURE REVIEW
This literature review is separated into three sections according to the three main aspects
of this research, namely: shape control of structures, active constrained layer damping

treatment, and optimal design of structures.

1.2.1 Shape Control of Structures
As mentioned above, there are mainly three techniques available to accomplish shape
change in structures. These are (1) conventional axial actuators, (2) compliant

mechanisms, and (3) smart material actuators.

Austin et al. [3-5] did a senies of work, both theoretical and experimental, on the static
shape control for adaptive wings by employing internal translational actuators. A
general method was developed for static shape control of flexible structures with
internal actuators, and a physical model of an adaptive rib was constructed. A finite
element mode! of the structure, without the actuators present, was employed to obtain
the multiple-input, multiple-output control gains for actuator-load control and actuator-
displacement control. Open-loop control experiments of the unloaded structure and

closed-loop control experiments of the load structure were conducted.

Although conventional actuators can create a shape change in the wings, the shape
achieved is not smooth due to the large separation between the actuators. Other shape-
change techniques have thus been developed. The idea of shape change by compliant

mechanisms is that the energy from the actuator is transferred via compliant



mechanisms to deform one given shape to another desired shape. The basic premise is to
distribute the actuation energy of a remote actuator via compliant transmission
(distributed compliance) instead of using a plethora of actuators (distributed actuating
systems) [6]. In fact, the use of compliant mechanisms for shape control of structures
was first proposed by Saggere and Kota {7]. They used compliant mechanisms, which
are powered by a single input actuator, to effectuate desired shape changes in generally
curved beam segments. The key design issue in this approach is the synthesis of a
suitable compliant mechanism for the task. Hence, a systematic procedure for synthesis
of such compliant mechanisms was developed, and was illustrated through an example
of camber shaping of an idealized airfoil. Later, Lu and Kota [8] considered the
simultaneous optimization of the topology and dimensional aspects of a compliant
mechanism for shape-change applications. They proposed a new approach for
synthesizing complaint mechanisms that could change an initial curve shape into a
desired target shape in the same plane. The design domain was initially discrete with a
network of beam elements. Preliminary results were presented for two different

reference shapes, and the optimization was done by Genetic Algorithm (GA).

Smart material actuators are another strategy for shape control. Chaudhry and Rogers
[9] studied the bending and shape control of beams by Shape Memory Alloy (SMA)
actuators. Shape control of Nitinol-reinforced composite beams was studied by Baz et
al. [10]. The mathematical model developed describes the interaction between the shape
memory effect of the composite beams and the thermally induced shape memory effect

of the Nitinol strips. Song [11] presented the design and experimental results of active



position control of a SMA wire and a SMA wire actuated composite beam. The beam
under consideration was aluminum honeycomb with SMA wires embedded in one of its
face sheets for active shape control. Oh et al. [12] proposed a method for shape control
of double-plate structures by combining the concentrated force from SMA wires and
moments from piezoceramic patches. The possibility of shape control was examined by

finite element analysis. Numerical and experimental results were presented.

Irschik [13] provided a comprehensive review of shape control of structures by
piezoelectric actuation. Donthireddy and Chandrashekhara [14] developed a finite
element model to study the shape control of laminated beams with surface bonded or
embedded actuators. The formulation was based on a layer-wise theory and was
applicable for the analysis of both thin and thick laminated beams. With specified
applied voltages, the influences of stacking sequence and boundary conditions on the
change in shape were examined. Jenkins [15] designed an intelligent controller based on
feedback error learning, which is capable of extracting performance information from
precise membrane and subsequently using this information to achieve maximum surface
precision. The solutions of the deflection of a beam simultaneously induced by
piezoelectric actuators and other external actions for different boundary conditions were
given analytically by Yang and Ngoi [16]. It was shown that the piezoelectric actuators
could only deform a beam by a quadratic or cubic curve due to their actuation bending
moments occurring at the ends of the actuators in a pair form. Kekana [17] proposed a

control model simulating the effects of the control potential on the static configuration



of a piezo-elastic structure. A simply supported composite beam attached with

collocated piezoelectric elements for measuring and actuating was considered.

Some researchers employed shape control to prevent the structure shapes from being
distorted by extemal disturbances. Wang et al. [18] formulated a finite element model
for the plate with distributed piezoelectric sensors and actuators. Based on this model, a
general method was developed for the static shape control of the intelligent structure.
The plate was originally flat and was simply supported along two parallel edges and free
on other two edges. The plate was deformed into a curve shape by a force. Also, two
cases were given. The first used passive control by directly apply voltages to the piezo-
actuators, while the second used active control system by implementing the feedback
control law. Tong et al. [19] presented analytical models and FEM solution for a thin
composite plate with piezoelectric actuators surface embedded or bonded in a bimorph
arrangement. Three shape optimization control problems — the applied voltage, actuator
layout, and actuator number optimization, were formulated and solved. Two numerical
examples were presented as well. Lin and Hsu [20] proposed a novel scheme capable of
controiling deflection shape of laminated beam plates without relying on information of
external loads and boundary conditions. Layers of piezoelectric sensors and actuators
trimmed to sine shapes were embedded in the laminated beam plate. An adaptive control
algorithm was used for achieving expected control effects. Clamped-clamped and
simply support beam plates under arbitrary loads were used for illustrative purposes.
Bruch et al. [21] implemented the shape control of beams under general loading

conditions by using piezoelectric actuators to provide the control forces. In a paper by



Adali et al. [22], the shape of a laminated beam was controlled by an optimally placed
piezo-actuator so as to minimize its maximum defection. In their studies, the locations
and magnitudes of the external loads were not known a priori and belonged to a
specified load uncertainty domain. Numerical results were given to assess the effect of
load uncertainty and actuator length on the actuator location and the design efficiency
which was defined with respect to the corresponding uncontrolled beam. Sheng and
Kapania [23] used piezoelectric actuators to correct the surface thermal distortions, by
employing the genetic algorithms to find out the appropriate locations for the piezo-

actuators.

On the other hand, some researchers utilized piezoelectric actuators to drive the
structures to a given shape. Chandrasekhara and Varadarajan [24] developed a finite
element model for beams with piezoelectric actuators. To allow for the effect of
transverse shear deformation, the third order shear deformation theory was adopted.
Their work included both open and closed loop control of the beam shape. In a follow-
up paper (25], they extended their work to consider the plate structures. Agrawal and
Treanor [26] presented both analytical and experimental results on optimal placement of
piezoelectric actuators for shape control of beam structures. Wang ef al. [27]} used
analytical expressions and optimality conditions for determining the input voltages
required in shape matching of a cantilevered laminated beam integrated with
piezoelectric patch actuators. To cater for the effect of transverse shear deformation, the

first order shear deformation beam theory was adopted in the formulation. The



expressions were used to generate bending results and input voltages for shape matching

of cantilever beams with various symmetric and non-symmetric lamination designs.

The models developed from the above studies are static. This means that direct
application of voltages to the piezoelectric actuators can lead to a successful shape
change, but causes transient vibrations of the structures during the shape change
process. Fitzpatrick [28] proposed a mathematical framework for the deformation of a
flexible beam to a desired shape using piezoceramic patch control. LQR control was
applied to obtain a control law for driving the beam from an initial shape to a desired
shape. The numerical test was made on an Euler-Bernoulli cantilever beam. Kalaycioglu
“ and Silva [29] proposed a method for the minimization of vibrations of spacecraft

appendages during shape control using piezoceramic actuators.

1.2.2 Active Constrained Layer Damping (ACLD) Treatment

Active Constrained Layer Damping (ACLD) treatment is an extension of the original
Passive Constrained Layer Damping (PCLD) idea. In a typical ACLD treatment, a
viscoelastic layer is sandwiched between a piezoelectric (such as piezoceramic) layer
and the host structure. This configuration has been studied by numerous researchers. In
this configuration, as shown in Figure 1-2, when the structure vibrates, it introduces
passive shear deformation field in the viscoelastic layer. If an active signal is used to
control the length of the constraining piezoelectric layer, an active shear field can be
introduced. If this active shear deformation is phased such that it adds to the passive

shear deformation, the total shear deformation in the viscoelastic layer would become
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higher than that of traditional PCLD treatment. This means higher damping
performance. Also, the piezoelectric layer applies active forces on the structure and
hence could introduce some direct active damping. Benjeddou [30] has given a

comprehensive review on hybrid active-passive structural vibration control.

Conventional constraining layer

Piezo-electric strain Piezoelectric constraining layer

Piezoelectric constraining layer

Piezo-electric strain

Conventicnal constraining layer

(b)

Figure 1-2 Operating principle of ACLD treatment
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Plump and Hubbard [31] developed a sixth order partial differential equation (PDE) for
an active constrained layer (ACL) damper which used PVF2 as the constraining layer.
No analysis and experimental results were presented. Agnes and Napolitano [32]
illustrated that the use of an ACL could significantly improve the performance of a

passive constrained layer (PCL) damping treatment.

Baz and Ro [33] proposed an ACL configuration with an additional piezoelectric sensor
layer between the host structure and the viscoelastic layer. They demonstrated the
feasibility and merits of the ACL concepts and indicated that the ACL treatment using
proportional and derivative (PD) control was superior to the PCL system. Baz and Ro
[34] also developed a beam finite element model, and presented the performance
characteristics of the ACL treatment, both analytically and experimentally. Baz and Ro
[35] conducted a study on a beam with partial ACLD treatment. The effects of treatment
lengths, locations and control gains were investigated. Ray and Baz [36] extended the

application of ACLD treatment to control the nonlinear vibration of beams.

Shen [37] derived eighth order differential equations which govern the bending and
axial vibrations of a beam. Compared to the PCL treatments, numerical results showed
that the ACL could produce significant damping. In addition, the bending vibration
control of composite and isotropic plates through the use of ACL treatment was studied
by Shen [38]. Shen [38] also formulated ACL systems through a variational approach to

study the work-energy relation of ACL and to identify the damping mechanisms of ACL
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treatments. The observability, controllability, and stability of ACL systems were also

investigated [39].

Nostrand and Inman [40] developed a beam finite element model, using the Augmenting
Thermodynamic Fields (ATF) method to model the viscoelastic layer in time domain.
Several control schemes applied to the ACL system were examined, Some experiments
were implemented to verify the simulation results. Lesieutre and Lee {(41] developed a
finite element model for beams having segmented ACL treatment. The Anelastic
Displacement Fields (ADF) method was used to model the viscoelastic fayer in time
domain. Trindade et al. [42, 43] developed an electromechanically coupled finite
element model to handle the active-passive damped multi-layer sandwich beams. The
frequency-dependence of the viscoelastic material was captured through the ADF
method. Both Lam et al. [44] and Liao and Wang [45] used the Golla-Hughes-Mc¢Tavish
(GHM) method to model the viscoelastic behavior in the ACL configuration. Lim ef al.
[46] developed a three-dimensional finite-element closed-loop model to predict the
effects of active-passive damping on a vibrating structure. Lee and Kim [47] formulated
a spectral finite element model for beams with ACLD treatment. They compared the

frequency responses predicted by analytical representation with those by GHM models.

Azvine et al. [48)] presented a concept for an ACL configuration in which the
piezoelectric actuator is bonded to (not replacing) the constraining layer. They
considered the effect of actuator location on modal damping of a cantilever beam using

velocity feedback. Veley and Rao [49) showed that all of the active, passive, and hybrid
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damping techniques could be appropriate when designing a damped structure. Lam ef al.
[50, 51] investigated the treatment of a beam with separate active and passive
constrained layer elements. Two new hybrid variations were introduced. Yellin and
Shen [52] analyzed the self-sensing ACL treatment originally proposed by Dosch and
Inman [53]. In this treatment, the piezoelectric constraining layer was used

simultaneously as both a sensor and actuator,

Liao and Wang [54] conducted a study comparing the ACL treatment with the purely
active and passive approaches. With a LQR (linear quadratic regulator) optimal control
fomu]aﬁon, analysis illustrated that the active piezoelectric action with proper feedback
controls will enhance the damping ability of the baseline passive system. On the other
hand, it was also shown that the viscoelastic layer would reduce the direct control
authorities from the active source to the host structure. With some parameter
combinations, the ACL configuration could require more control effort while achieving
less vibration reductions as compared to a purely active system. Liao and Wang [45]
further investigated the viscoelastic material effects on ACL based structures. Specific
interests are on how the viscoelastic parameters would influence the passive damping
ability, the active action authority, and their effect on active damping in an ACL
configuration. The study identified the viscoelastic parameter regions that would
provide the best active-passive hybrid actions. The results of this research could be used
to synthesize optimal ACL structures and could outperform both the purely passive and

active systems.
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The Enhanced Active Constrained Layer (EACL) damping treatment idea was
developed to further improve the performance of ACL treatment [55]. In this treatment,
the PZT constraining layer is directly connected to the base structure by using a set of
edge elements at the end of the treatments. [t was demonstrated that these edge elements
could increase the transmission of active control forces from the PZT to the base
structure. Later, Liu and Wang [56] conducted a non-dimensional parametric study of

EACL damping treatments,

1.2.3 Optimal Design of Structures

Extensive efforts have been made to optimally design passive and active constrained
layer damping treatments of vibrating structures. These efforts aim to maximize the
modal damping ratios and modal strain energies by determining the optimal material
and geometric parameters of the treatments, or minimize weight by selecting the optimal
length and location. Marcelin et al. [57, 58] used genetic algorithms and beam finite
elements to maximize the damping factor for partially treated beam. The design
variables were the dimensions and locations of the patches. Chen and Huang [59]
studied the optimal placement of constrained layer damping (CLD) treatment on a
rectangular plate. A restriction of total treatment thickness was assumed. An objective
function including structural damping ratios, resonant frequency shift and CLD
thickness was designed, where the structural damping was the main performance index
and the frequency shift and CLD thickness played as penalties. Topographical and
complex optimal solution techniques were employed in searching for the optimal value

of CLD treatment. Pau et al. [60] compared several optimization algorithms for CLD
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patch layout to minimize the maximum vibration response of the odd modes of a
simply-support beam. The design variables were the CLD patch location and length.
Baz and Ro [61] used Univariate Search Method (USM) to optimize the performance of
the ACLD treatments by selecting the optimal thickness and shear modulus of the
viscoelastic layer as well as the control gain for a fully treated beam when proportional
and derivative controllers are used. In a later study, Ro and Baz [62] extended their
previous work to consider the optimum design and control of partial ACLD treatments.
Huang et al. [63] studied the optimal size, length, and thickness of treatment subjected
to a total thickness restriction for cases of ACL, PCL, and pure active control. They
showed that the ACL treatment provides better vibration suppression than PCL, and

even outperforms pure active control for low gain applications.

On the other hand, in designing piezoelectric active structures, it is known that many
factors can affect the system performance. Thus efforts to optimize these parameters are
essential to obtain high performance system. Clark and Fuller [64] studied the location
of a piezoelectric actuator and both the size and location of a PVDF sensor for active
structural acoustic control. An optimization study on design of length and placement of
bonded piezo-actuators in active control of a flexible beam was performed by Devasia ef
al. [65] in which collocated actuators and only strain piezo-sensor were used. Wang et
al. [66] presented a formulation of the optimization problem for the placement and
sizing of piezoelectric actuators in adaptive control system. Main et al. [67] studied the
optimum thickness of a piezo-actuator embedded within or bonded onto a flexible

structure, and also studied its optimum distance from structural centre line. They used
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the induced moment producing a bending curvature as the cost function. In a paper by
Nam ef al. [68], optimization technique was applied to determine the best geometry
(placement, thickness, width and length) of piezo-actuators for flutter suppression.
Kapania and Sheng [69] used the genetic algorithm to solve an optimization problem to
find the locations of piezoelectric actuators and the corresponding voltages that gave the
best correction to the surface thermal distortions under a given type of thermal loads.
Kim et al. [70] and Varadan et al. [71] determined the optimally designed piezoelectric
actuators in terms of location, size and applied voltage. Bruch et al. [21] determined the
optimal locations and lengths of piezo-actuator for the min-max deflection of beams.
They showed that the optimal voltage applied to the actuators depends on the actuator
length and location. Agrawal and Treanor [26] studied the optimization for the shape
control of beam structures. The objective was to determine the optimum piezoceramic
actuator locations and voltages to minimize the error between the desired and achieved

shapes, using embedded Nader and Mead simplex algorithms.

Regarding the fact that piezoelectric actuator placement affects both the structural
parameter and the control parameter, integrated structural and control optimization is
indispensable. The optimal design of a smart structure featuring a piezoelectric actuator,
sensor and a simple controller was studied by Kim and Ko [72]. The locations and sizes
of the piezoelectric actuator and sensor as well as the negative feedback gain were taken
as design variables in the optimal design procedure. The objective function was to
minimize the total radiated sound power from the structure. Yousefi-koma and

Vukovich [73] developed an optimization procedure for finding the optimal location and
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dimensions of piezo-actuators in active control systems. Three criteria — (1) maximizing
the overall damping ratio of the closed loop system, (2) minimizing the overall real part
of the dominant eigenvalues of the controlled system, and (3) minimizing LQR cost
function, were used and compared, which led to an optimal configuration of the
actuators when the weight and geometry limitations were important. Wang et al. [74]
presented a new approach for simultaneous optimization of the intelligent structure and
the control system to suppress the vibration of the structure. They converted the problem
into a multi-objective optimization problem in which the structural variables and the
feedback gain were both treated as independent design variables. The vibration control
performance index was chosen as the objective function, and the constraints include
structural mass, eigenvalues of the closed-loop system, and the actuator force. Zhang et
al. [75] studied the problem of the integrated optimization of piezoelectric actuator and
sensor location and feedback gains for the active control of vibrations. The performance
function developed was based on the maximization of the dissipation energy due to a
control action. To deal with the nonlinear optimization problem, a float-encoded genetic
algorithm (FGA) and the corresponding genetic operations were proposed. Beri et al.
[76] developed a multi-objective optimization procedure to address the integrated
structures/control design of composite plates with surface bonded segmented active
constrained layer damping treatment by using the Kresselmeier-Steinhauser (KS)
function approach. Objective functions and constraints included damping ratios,
structural weight and natural frequencies. Design variables included the ply stacking
sequence, dimensions and placement of segmented ACL. The optimal designs showed

improved plate vibratory characteristics and led to a reduction in structural weight. Liu
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and Wang [77] investigated the feasibility of integrating the EACL and active-passive
hybrid constrained layer (HCL) treatments to achieve a better combination of the system
closed-loop damping and open-loop (fail-safe) damping. The focus was to maximize the
system closed-loop damping while maintaining an open-loop damping margin for fail-
safe reasons. Optimization routines were used to search for the best design parameters:
the optimal control gain, the stiffness of the edge elements and the active material
coverage ratio in the constraining layer. Maxwell and Asokanthan [78] proposed a
method to determine the optimal placement and controller design for multiple
distributed actuators to reduce the vibrations of flexible structures. In particular,
application of piezoceramic patches to a horizontally slewing single-link flexible
manipulator was investigated. The optimization method used simulated annealing and
allowed placement of any number of distributed actuators of unequal length. They also
designed a liner-quadratic-regulator controller as part of the optimization procedure. The
measures of performance used were the total mass of the system and the time integral of

the absolute values of the hub and tip position errors.
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1.3 RESEARCH OBJECTIVE

The overall objective of this research is to explore the feasibility of adding ACLD
treatments to flexible structures for shape control application. The studies of ACLD
treatments for vibration suppression have shown promising results, but the application
of such treatment for shape control is an unexplored topic. Designing such kind of shape
control system is challenging, since there are coupling effects and interactions between
the structural variables and the controller. In this study, two main issues are
investigated. First, the influences of the ACLD treatment parameters as well as the
control gains on the system performance are determined. Second, the design of the
ACLD treatments is treated as a multi-objective optimization problem such that both the
structural and control design objectives are optimized without weighting among them.
This combination is challenging, as the two problems often have different criteria, and

there exist tradeoffs between them.

To achieve the above-stated objective, the major tasks to be accomplished have been

identified and are listed below:

(1} To establish a dynamic model of the flexible beam with distributed ACLD patches.
Predicting dynamic behaviour of a system is indispensable for control design. It is
therefore essential to first develop a mathematical model which describes the
dynamic behavior of the ACLD flexible beam. Considering the distributed nature of
the ACLD patches, and to facilitate time-domain analysis, the finite element method,
in conjunction with the Golla-Hughes-McTavish (GHM) viscoelastic model, is

employed to formulate the dynamic model.
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(2) To study the effects of the ACLD treatment parameters on the system performance.
The effect of treatment patch length and location, the layer physical and geometrical
properties as well as the control gains on the system performance are determined by
numerical simulations. With this study, specific design variables in addition to the
control gains can be chosen and the inequalities can be set up for the respective

constraints to be imposed on the design of the system.

(3) To formulate the integrated structural and control optimization problem by using the
Multi-Objective Genetic Algorithm (MOGA).
The design is treated as a multi-objective optimization problem. In order to avoid
local minima, and weighting the objective functions, a stochastic approach, called
MOGA, is used to solve the optimization problem. To implement the optimization, a
program, with the commercial software package MATLAB as the working

environment, is developed.

(4) To evaluate the feasibility of the design method by numerical simulations.
A parabolic shape function is considered. Static and dynamic loadings are applied
separately to the system, so as to show the effects of external disturbances on the

control systems.
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1.4 THESIS OUTLINE
This thesis consists of six chapters,

Chapter 1 gives the background information, literature review and research objective of

this thesis.

Chapter 2 describes the formulation of the finite element based mathematical model of a
flexible beam structure with distributed ACLD patches. The mathematical model
developed is verified by comparison with other models in the literature and the results

are presented.

Chapter 3 presents the results of the parametric study. The effects of the thickness of the
viscoelastic and piezoelectric constraining layers, the length and location of the ACLD

treatment on the vibration characteristics of the flexible beam are shown and analyzed.

Chapter 4 contains the description of the optimization formulation. It introduces the
objective functions, design variables and the constraints used for the design of shape

control system as well. The idea and philosophy of MOGA is also outlined.

Chapter 5 presents and discusses the optimization results of the multi-objective design

problem. The effects of external loads on the shape control system are studied.

Chapter 6 gives a conclusion summarizing the present study and some suggestions for

future work.
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CHAPTER 2

MATHEMATICAL MODEL DEVELOPMENT

In this chapter, a finite element model of a flexible beam with distributed Active

Constrained Layer Damping (ACLD) treatment is developed, based on the sandwich

theory. The energy approach, based on Hamilton’s principle, is used to derive the

equations of motion. The Golla-Hughes-McTavish (GHM) method is employed to

account for the frequency-dependent characteristic of the viscoelastic material.

Comparisons are made with other models available in the literature in order to validate

the present model.

2.1 ASSUMPTIONS

The finite element model is developed based on the following assumptions:

(D

@

(3)

@

(%)

The shear deformations in both the base beam and piezoelectric layer are
negligible.

The rotary inertia is negligible.

The transverse displacement is the same for all layers.

The Young’s modulus of the viscoelastic layer is negligible compared to those of
the beam and piezoelectric materials.

Linear theories of elasticity, viscoelasticity and piezoelectricity are used.
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(6) There is perfect continuity at the interface, and no slip occurs between the layers.
{7) The applied voltage is uniform throughout the piezoelectric constraining layer.

(8) The physical properties are uniform over the beam.

(9) The piezoelectric sensor and the base beam are considered to be perfectly bonded

and reduced to a single equivalent layer.

2.2 FINITE ELEMENT FORMULATION
The beam model with distributed ACLD patches is divided into two types of elements

(1) ACLD beam elements and (ii} plain beam elements.

2.2.1 Kinematics Relationships

The geometry and deformation of an ACLD beam element is shown in Figure 2-1.

Ny
X

Figure 2-1 Geometry and deformation of a beam with ACLD patch



Let the axial displacements of the neutral axis of the base beam, the viscoelastic layer,

and the piezoelectric constraining layer be u,, u,,and u, respectively. The subscripts

b, v, and p refer to the base beam, the viscoelastic layer and the piezoelectric

constraining layer respectively. The transverse displacement is denoted by w, the

rotation by (= %’-), the shear angle of the viscoelastic layer y (= ‘Zuz" ), and the shear

strain of the viscoelastic layer by y . They are related by the following equation.
O=y+y (2.1)

With perfect bonding conditions, the following kinematics relations can be derived:

t, ot
=y —Lp_ v 22
U, =u, =02y (2.2)
L+
u,=u, —[—'1-2—-3-)9 —t (2.3)

Substituting Eq. (2.1) into Eqgs. (2.2) and (2.3),

", =, - (’b—;—’lje + [%)y .4)
+2t, +t,
u,=u, - — a4ty (2.5)

where ¢,, t,, and 1, are the thickness of the base beam, the viscoelastic layer, and the

piezoelectric constraining layer respectively.
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Figure 2-2 Nodal displacements of an ACLD beam element

2.2.2 Shape Functions

Figure 2-2 shows an ACLD beam element. Nodal displacements are given by
{q}, ={u, w, 0, 7, uyw, 0,7} (2.6)
The local shape functions are chosen to be cubic polynomial in x for transverse
displacement w and linear polynomial in x for axial displacement u, and shear
angle y (for satisfying the boundary conditions of a finite element). Therefore, the axial
displacement of the base beamu, , the transverse displacement w, the rotation &, and the
shear strain of the viscoelastic layer y are expressed in the nodal displacements by
finite element shape functions as
u, =[N, Ng}. w=[N, g}, O=[N,]{g}. 7=(N,1{g). (2.7a-d)

where the shape functions are given by

e €

NV, ]1=[1-= 000 £ 00 0ol [(N]=[o 00 1-X 000 X
» L L, ’ L L,
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[ 0 l [ 0 )
X X x 2
=3 + 2 -6(F)+6(z—3)
. x x X,
AV -4+ 3=
x (L,)+L§ (L,) (Le)
0 0
[N,] = 0 [NB]T = 0 (2.7e-h)
x X 2
3G -2y 6(3)~6(3)
x* X x X
Xy 23X
(‘Le)+(Li (L¢)+ (Le)
A 0 | I 0 ]

and Z, is the element length. From Egs. (2.4) and (2.5), u, and u , can also be expressed

in the nodal displacements as follows:

u =[N, )}, u,=IN, ]}, (2.8, b)
where
v 1 [ttt 1,
[N, 1=V, ] [ . )[N9]+(2J[N,,]
[N.,,,J=[N.,,1—["’—+i§i'iJ[N,1+r,[N,1 (2.8, d)

2.2.3 Potential Energies
Base Beam

The potential energy of the base beam due to axial displacement;

L
JEabCEY dv=2 @)K ),

M=
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i,
(K= Efyb [N, 17[N, ] dx (2.9, b)
0
The potential energy of the base beam due to transverse displacement:

1 L 62w 2 __l_ T
3 J‘ Ey(=) de == gL 1K, g

L
(K, ]=E,1, I[Nw]“r[Nw]" dx (2.10a, b)

where E,, I,, and b are the Young’s modulus, the moment of inertia about the neutral

axis, and the width of the base beam respectively.

Piezoelectric Constraining Layer

The potential energy of the piezoelectric layer due to axial displacement:

11"' 6up 2 1 T
3 ! E 1 b5 de=—{q) (K, ){a).

L,
[K,)=E,t,b [N, 17[N, 1 dx (2.11a, b)

The potential energy of the piezoelectric layer due to transverse displacement:

1% Fwy, 1, .

2 Bl G de = @K 1),
I,

[K,,1=E,1, [[N,]7[N,]" dx (2.12a, b)
0

where E,, and / are the Young’s modulus, and the moment of inertia about the neutral

axis of the constraining layer respectively.
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Viscoelastic Layer

The potential energy of the viscoelastic layer due to shear:

Lt Gr by de= LigiTx
3 !G'”" =19}k, 1),

I
(K, ]=Gtb I[N,]T[N,] dx (2.13a, b)

where G is the shear modulus of the viscoelastic layer.

The total potential energy of an ACLD beam element:

U, =5 )KL g}, +3 @)K, L), . 142)
where [K], =[K,,]+[K,,]+[K,]+[K,,]and [K ], =[K,] (2.14b, ¢)
2.2.4 Kinetic Energies

Base Beam

The kinetic energy of the base beam due to axial displacement:

lL' Ou 2 1 . T :
> oj pitib(= ) de=—{a} M, 1{g).

I
[M,.]= pytsb [[N, T[N, ] dx (2.153, b)
Q
The kinetic energy of the base beam due to transverse displacement:

15 owy, o 1 .7 ;
Eprtbb(—a}—) dx—'E{q}e [Mbw]{q}e

L,
[M,,)= ptb [N,V IN,] de (2.16a, b)
0

29



where p, is the density of the base beam.

Piezoelectric Constraining Layer

The kinetic energy of the piezoelectric layer due to axial displacement:

L ou
> [ot by ax= @m0,

L,
[M,,)=p,t.b [[N, '[N, ]dx (2.17a, b)
]
The kinetic energy of the piezoelectric layer due to transverse displacement:

15 Ow, , 1 .1 ;
3 J’ P ) de =2 {ak M, 1{4),

L,
[M,,]=p,t,b j [N, TIN,] dx (2.18a, b)

where p, is the density of the piezoelectric layer.

Viscoelastic Layer

The kinetic energy of the viscoelastic layer due to axial displacement:

L
> [oab eyt ax =1 @)m, 1 4),

i,
[M,1=pa.b [N, TN, ] dx (2.192, b)
]
The kinetic energy of the viscoelastic layer due to transverse displacement:
L,
ow .. .
[Pt b)Y dx=—(g)[M,, )44},
; ot 2

1
2
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L
[M,]=p4b [IN,T[N,] dx (2.20a, b)

where p, is the density of the viscoelastic layer.

The total kinetic energy of an ACLD beam element: 7, = %{Q}:[M 1.{4}. (2.21a)
where [M], =[M,,1+[M,,1+(M,,1+IM,,]1+[M, ) +[M,,] (221b)
2.2.5 Work Done

Piezoelectric Constraining Layer

For one-dimensional structures with uni-axial loading, the constitutive equations of

piezoelectric materials can be written as [79]:

£ si, dy o
’:DJ=[dsl 5373:”:‘5] @22

where D is the electrical displacement (charge per unit area in the beam vertical

direction), £ is the electric field, ¢ is the mechanical strain in the x direction, and o is

the mechanical stress in the x direction. s/ is the elastic compliance constant, &y, 1s the
dielectric constant, and 4, is the piezoelectric constant. Based on the above constitutive

equations, the stress-strain relation is given by

e=sio+d,E (2.23)
= o=E(¢-d,E) (2.24a)
where E, =, £ = 7<) (2.24b, )

Su »

and V_(¢} is the voltage applied to the piezoelectric constraining layer.
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The work done by the induced strain in the piezoelectric layer:

“ ou
w,= | Epdnbm(f-} dr =@} (£, (225)
o X

where {f,}, is the nodal piezoelectric force vector and is given by:

L,
{£). =E,ddV, 1) [N, 17 ax

External Load

The work done by external disturbance force {f,}:

L
Wy = [ f(x)wxn,e) de={gy {£,} (2.26)

Note that it is usually more convenient to consider the effects of such force at the global

level.

2.2.6 Sensor Equation
Assume that there is no external electric field applied to the piezoelectric sensor layer.
From Eq. (2.22), the charge induced is:

D=d,o (2.27)
D=d,Ee, (2.28)
where E and ¢, are the Young’s modulus and the strain of the piezoelectric sensor layer

respectively. If a piezoelectric sensor layer is extending on the beam from x = xtox =x,
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(x, <x,), the corresponding electric charge 0 induced is equal to the integral of the

electric displacement over the piezoelectric sensor layer, i.e.

Q:ijdx

L]

0= [Edyeb dr
X

® O*w
0= j—E,d,,bhg dx

®

where h=(tb+t’)
2

The output voltage from the piezoelectric sensor layer is given by:

y--2
C,
E,dhb
v, =-”C—(W'(xz)-W'(x.))

where C, is the capacitance of the piezoelectric sensor layer.

2.2.7 Equations of Motion of an ACLD Beam Element

(2.29)

(2.30)

(2.31a)

(2.31b)

(2.32)

(2.33)

Defining the quantity(7, - U, +W,)as the Lagrangian of the system and expressing it

asL,ie.L=T —-U,+W,, the Lagrange’s equations of motion are:

oL d oL
Olg), drolg},

From Egs (2.14), (2.21) & (2.25),
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L=~ @Y KL {0), 3 H K, L@, + - GIML G, + @ (1), 239)

Therefore,
S~ a3 WKL, - K, L+ a0, o) (.
=—[K1{g}. - [K,, ). {g}, + (.}, (2362, b)
and
X .0 (——{q} (KL (g}, =5 @YK, LAa), + G M ), + (g {f}J
oG o,
=[M].{4}. (2.37a,b)
Consequently,
oL d oL

—_—— = _K - K _ M - =0 2_38
s, o, KM@K, L)+ ))-IML @), (2.38)

Finally, the equations of motion are:

[M].4g3. +[K]Aq}, +[K,, ). Ag}. = {1}, (2.39)

2.2.8 Golla-Hughes-McTavish (GHM) Method

The Golla-Hughes-McTavish (GHM) [80, 81] approach is now used to account for the
damping due to the frequency-dependent viscoelastic layer. This is achieved by adding
internal dissipation coordinates to the system. The GHM method represents the shear
modulus of viscoelastic materials as a series of mini-oscillator terms in the Laplace

domain:

~ N 2 s
sG(s)= G| 1+3 6, > T 2oaDes (2.40)
k=1 5T +20,0,5+d,
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The factor G* corresponds to the equilibrium value of the modulus — the final value of
the relaxation function G(f). The positive constants &,, &, and £, govem the shape of

the modulus function over the complex s-domain. The number of terms, N, retained in

the expression is determined from the degree of frequency dependence of the modulus.
Also, the GHM parameters (G*, &,, &, and ’ . ) are determined by curve fitting of the

experimental data (shear storage modulus and loss factor against frequency).

From Eq. (2.39),

[M14G()}, +(K1.{g()}, +GIK,, 1, {g(®)}, = {f ().} (2.41a)
. L
where [K,,], =,b [[N,]'[N,] dx. (2.41b)

Eq. (2.41) is now generalized to the case of viscoelasticity by replacing the constant

shear modulus G by a linear stress-strain law [82]. i.e.: Replace G[I?W]e{q(t)}e by
_[G(t— r)[[?vr 1.{g(7)}, dr, which is a standard convolution integral. G(¢) is the material
0

relaxation function — the stress response to a unit-step strain input. This stress relaxation

represents energy loss from the material, hence damping. When taking Laplace

transform, it becomes: [IZ’W,]E (.}'(s)s{é}e or sé(s)[[?w 1.{g}.. The GHM method in fact

represents the term sG(s) as a series of mini-oscillator terms in the Laplace domain, as

Eq. (2.40). Therefore, Eq. (2.41a) becomes:

(M40}, +[K1 L@}, + GOIR,, Lig(O)}, + [Gu~DIK,, L), dr =)},
(2.42)
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Eq (2.42) can be expressed in the Laplace domain as:

SIM) G, +IK1LAG), +sG()K, .46}, = (/).

(2.43)

For demonstration, consider a GHM material modulus function with a single mini-

oscillator term, i.e.

2 o
sG(s) =G| 14412605
| 5*+ 2005 +&°

Eq (2.43) then becomes:

s? +286s

s +20Hs+6

s'[M14G)}, +[K1, (g, + G~ [1 +é J[&,L . ={f)

Introduce a column vector of dissipation coordinates,

an)z

&-—2
st +20ds+0° 4

= {5}, +26bs(Z), + (8}, - & {G), = {0}
From Eq (2.45),

aA)Z

- J[&, L@, ={f

S IMLG), +[K)AG) + G| 1+ G- ————
$°+200s + &

a~)2

s’ [M1,4§). +[K1.(G}, + 1+ &)G°[K, 1.{G}. - o‘eG‘"[l%v,]e(

Using Egs (2.46a) and (2.48),

s’ [M1{G}, +1K14G}. + G (1 + @)K, 1, (@}, -aG”[K, 1.2}, = {£.).

Multiplying Eq. (2.46b) by %[EW )., where [1?,, ], = G“[KW 1:
@
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(2.44)
(2.45)

(2.462)

(2.46b)

(2.47)

]= {7}
(2.48)

(2.49)



§ d%u?v,], 6, +5 228 (R, 1), + 81K, L. (), - 41K, LD, =0 (2.50)

Hence, the governing equations become:

SA[M1, 4G}, +1K). @}, +(+ @)K, 1§, -4lK,, 1.}, = (£}, (2.51)
a.)i (1.5}, +s_9"[1< 1.6, +4lk, 1, (), -4l 1), = 0} @52)
In matrix form,

[ 1o N [0 [0 JIKL+IR, La+d) -&[E,,],] {{§}=}={

[0] %{E] [0] 2“4 2%, ~&(K,), ak,. |[ 6.

(2.53)
In time-domain,
[M),{g}, +[D1,4@}, +[KL @}, = ([} (2.54a)
where
_ [, 101 U
M1 = 5 D] = Y
M=l 2k, | PR 22 )
o W

_ [IKL+IK, La+8) -alkK,)] . [t@) -, [k
K = = ; 2.54b-
[K], = [ I [K]} @, {{é}e} (.1 {{0}} (2.54b-f)

Since the elastic element stiffness matrix [fvr ], is usually positive semi-definite (one or

more zero eigenvalues represents rigid body motion), the “mass” matrix in this

formulation will not usually be positive definite. To remedy this situation, spectral

decomposition of the elastic stiffness matrix [I?,T]e is used [81].

(K,). =G°[K, 1, = G°[RI[AIR] (2.55)
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Here, [A] is a diagonal matrix of the non-zero (necessarily positive) eigenvalues of
matrix [I&W ].- The corresponding orthonormalized eigenvectors form the columns of the
matrix [ﬁ] , and [R]T[ﬁ] =I. To achieve the objective of fewer dissipation coordinates
and a positive-definite mass matrix, it is necessary to factor the equilibrium modulus
G” back into the diagonal eigenvalue matrix [f\] , l.e. [A]=G°°[f\]. Then, let
{z}, =[R]"{#), and (R]=[R][A] . Substituting these into Eq. (2.54), and pre-

multiplying the bottom row by [R]” :

[[M], [0] } {m} [[0] [0] J @
_a:_ nTr - + 2&5 A = { A ‘}_'_
|0 FIRTIK L @] [0 —=RVIK,,), [l 2.56)
[KL+[K,L0+&) -4(K,), {{q},}: {{fc}e}
-alRY'[K,], &lRY'(K,], |li8.] | ©
il A 'y T = _a_"_ P17 or D A D17 2
| [0 ZFIRVGTIRIAIRY | [{2). ] |[0) ==[R) G[RIANAY" ||}, 2.57)
[ [K1+[K,.0+&) -GG [RAAT {{q},} _ {{f;},}
| —&[RY G=[RI[ANRY &LRT G=[RIIAIRT | {2}, {0}
F[ML 5 [0] J{{q}e}+[[0] 2"5[0] J{{q}e}+
©w T “ L AT A
(07 ZFANRY (a0 —=(AlAT (e 2.58)
(K] +[K,,).(1+a) -G[RIAJRY {{q},}= {{f;},}
—G[AIRT GIANRY |3 {0}
(M 100 ey [0 19 ]
0 2|l o agllen St
i & ‘ & ‘ (2.59)
1K, +[K,,1.(1+4) _d[R]J {{q},} ) {{fc},}
-a[RY alA] |({z}. {0}
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[M]1,44}, +1D1, 4G}, +(R1.(3}, = /). (2.60a)

where
(ML @] [0 [
M] = ¥ D] = Ly
M o Lpay| P 284,
[1)] o
o [KL+IK,La+8) -alRT] .. (@) ... ({7}
g =| Bl tE, L - - . 2.60b-
K], [ jyas c'em]] @, {{z}e} ). { {0}} (2.60b-f)

The above case of single mini-oscillator can easily be extended to a multi-oscillator

model. The general form of the mass, damping and stiffness matrices are given by:

[[M], 0 - 0 0 0 0
0 %[A] 0 2“'4 Z45LA] 0
[M], = 5 o o [D].,=5 0 0
0 0 -g%[z\]J 0 0 %[A]
L N L a)N _]
(KL +[K,L.0+>.&) -&[R]  -G,[R]
(K], = -G, [RY &lA] 0 0
: 0 .0
~ay[R]" 0 0 a,fA]]
[ {g}. {3
tie 7 0
{é},=4{25} {f)e= {:} . (2.61a-€)
..{ZN}e {0}
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2.2.9 Curve Fitting of GHM Parameters
After expressing Eq. (2.44) — the GHM material modulus function, into a frequency-

dependent complex modulus form, the GHM parameters can be found by using the
nonlinear least squares method. When sé(s) is evaluated along the imaginary axis of
the s-plane, it yields the complex modulus: G'(a;)siwé(iw)=G'(l+iq) , where
G'(w) and n(w) are the shear storage modulus and loss factor of the viscoelastic
material. They can be expressed in terms of the GHM parameters as:

G'(@) = RefiwG(iw)}

N 4 21 gy o202
=614 3 g, 21U VB0 (2.62)
= @ +2024, - Do, o + é,
Im{iwG(io
R N(D)
Gl(w)
LA 28 dw '
=D Gy 610, 3 (2.63)
= (+a)e" +[4(1+a,); -lo,0” +d,

Now, considering three-term GHM ( N =3}, the curve fitting tool box of MATLAB is

used to fit the measured data of the 3M viscoelastic material ISD 112 at 27 °C from 20
to 5000 Hz. As a result of the computation, the GHM parameters are: G = 5.032 x 10°,
@, =0.786; &, =4.027; &, =43.354; £, =6.27; ¢, =5.81; £, =2.66; &, =6309.23;
@,=50788.2 and @,=338422.17. The curve fit for the storage modulus and loss factor is

shown in Figure 2-3. It can be seen that the found GHM parameters yields a good

approximation to the measured material curves within the frequency range of interest.
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2.2.10 Global Equations of Motion
Plain Beam Elements

The stiffness and mass matrices of plain beam elements have dimensions of 6 x 6, and

are similar to those given by Egs. (2.9), (2.10), (2.15) and (2.16).

Boundary Condition
For a clamped-free beam, the equations of motion are subjected to the following

boundary conditions: Atx=0, w=0; % =0; u,=0.

. Assembly

In assembling ACLD beam element, compatibility constraints are applied only to the
physical coordinates ({g}, ), exactly as in the corresponding elastic case [80]. There are
no additional compatibility constraints for the dissipation coordinates ({z,},,-*{z,}.)-

In fact, all dissipation coordinates are retained in the assembled system. Besides, a
rearrangement of the coordinates at the element ]éve] is needed before assembly. Lastly,
boundary conditions are only applied to the physical coordinates, exactly as in the
corresponding elastic case.

The following global equations of motion can be obtained:
Mg} +[Dl{g}+[KNg} = {3+ {/3} (2.64)
where [M], [D]and [K] are the global mass, damping, and stiffness matrix

respectively. {f.} is the global piezoelectric force vector, and {f,} is the global load

vector.
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2.3 MODEL VALIDATION

To validate the present model, comparisons with the results available in literature (Shi et
al. [83]; Lee and Kim [47]) are given in this section. An aluminum beam (261.6 mm x
12.7 mm x 2.286 mm) is considered and an ACLD patch (101.6 mm x 12.7 mm} is
bonded at 27 mm' from the fixed end. The ACLD patch consists of a viscoelastic
damping layer (3M ISD 112) and a piezoelectric constraining layer (PKI 502) with
thickness of 0.254 mm and 0.762 mm respectively. Other system parameters are given
in Table 2-1. Shi ef al. [83] used this patched ACLD beam in their studies. For the
purpose of comparison, a one-term GHM model is first considered, as done by the
above authors. The first five eigenvalues calculated using the present model and those
given in Shi et al. [83] are listed in Table 2-2. It can be found that all the five
eigenvalues obtained by using the present model (one-term GHM) are close to those by
Shi e al. [83). Table 2-3 shows the relative percentage difference of the real and
imaginary parts between the two models. However, in the above models, a single-term
GHM model is considered, leading to unreal material behaviour [43]. It is thus
necessary to use multi-term GHM model to enhance the accuracy of the present model.
Using the spectral element method, Lee and Kim [47] established a model for the above
patched ACLD beam, in which the same parameters are used, except the Young’s
modulus of the piezoelectric constraining layer is 64.9 GPa instead of 74 GPa. Since the
spectral element model (SEM) is developed in the frequency domain, the analytical
damping representation (expressing the complex modulus as a function of frequency)
introduced by Soovere and Drake [84] can directly be used in conjunction with the

SEM. Besides, in general SEM provides accurate dynamic characteristics for both
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passive and active ACLD beams, compared with the conventional finite element model
(FEM). As a result, comparisons are made with the SEM with analytical damping
model. The frequency response functions (FRFs) obtained by using the present model
with three GHM terms and Young’s modulus of 64.9 GPa for the piezoelectric
constraining layer for the patched (Figure 2-4) and fully covered (Figure 2-5) ACLD
beams are close to those by Lee and Kim [47] (Appendix A). For both ACLD beams,
the FRFs by one-term GHM model are found to deviate significantly from those by
three-term GHM model, especially at high frequency. In general, the three-term GHM
model is found to yield the FRFs of lower peaks with lower natural frequencies,
compared to one-term GHM model. Thus, the results confirm that a single internal
dissipation coordinate (i.e. one-term GHM) is not enough for the GHM model to fully
represent the damping characteristics of the viscoelastic layer. Table 2-4 presents the
first five modal frequencies and modal damping ratios of the patched ACLD beam and
fully covered ACLD beam. In short, all the above results presented are not only a
reflection of the validity but also an indication of the accuracy of the present model to

predict the dynamic behaviour of an ACLD treated beam.

Table 2-1 System parameters of the ACLD beam

P, 7600kgm’> E, 74x10°Pa & 6.0
p, 1250kg/m’ E, 71x10°Pa & 10000 rad/s

Py 2700kgm® G® 5x10°Pa £ 40

44



Table 2-2 The first five eigenvalues obtained by the present model (one-term GHM) and
those given in Shi et al. (2001)

Eigenvalues

Modes
Present model Shi et al., 2001

1 -2.2474£175.184  -2.24244175.124
2 -13.082+944.724  -13.006+944.466
3 -39.725+£2778.641  -39.206+2776.994
4 -24.514+5209.34  -24.368+5207.037
5 -22.248+8936.316  -22.105+8932.071

Table 2-3 Relative percentage difference of the real and imaginary parts between the
present model (one-term GHM) and Shi et al. (2001)

Relative difference (%)

Modes
Real part Imaginary part
I 0.214 0.034
2 0.584 0.027
3 1.324 0.059
4 0.599 0.044
5 0.647 0.048
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Table 2-4 Modal frequencies and damping ratios of the first five modes of the patched
and fully covered ACLD beams

Modal frequencies (Hz) Modal damping (%)
Modes

Full Patched Full Patched
1 27.846 27.859 3.8333 0.7361
2 149.825 149.026 7.2013 0.8654
3 402917 432.286 8.2296 2.8935
4 781.880 821.735 6.9087 1.8765
5 1309.511 1418.125 5.5616 2.1437

Magnitude (mm/N)

1000
Frequency (Hz)

2000

Figure 2-4 Frequency response functions of a patched ACLD beam
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Figure 2-5 Frequency response functions of a fully covered ACLD beam
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CHAPTER 3

PARAMETRIC STUDY OF ACLD TREATMENTS

In this chapter, a parametric study is conducted to determine the effects of different
ACLD treatment parameters on the damping performance of the system. The variables

considered include the control gains, K , (proportional) and K, (derivative), the
thicknesses of the constraining and viscoelastic layers, t,and ¢, the equilibrium value

of the shear modulus, G, as well as the treatment length, /, and location, P - the
distance between the fixed-end and the left hand side of the ACLD patch. Both passive

and hybrid damping of the system are studied for the first three modes of vibration.

3.1 SYSTEM DESCRIPTION AND ANALYSIS

For the purpose of this study, an aluminum beam (300 mm x 15 mm x 2 mm} is
considered. An ACLD patch (100 mm x 15 mm) is bonded at 30 mm from the fixed end
(Figure 3-1). The ACLD patch consists of a viscoelastic damping layer (3M ISD [12)
sandwiched between two piezoelectric layers (PKI 502). The upper one acts as the
active constraining layer, while the lower one serves as the sensor layer. Other system
parameters are given in Table 3-1. The present study focuses on the first three vibration
modes. Table 3-2 presents the first three modal frequencies and modal damping ratios of

the ACLD beam.
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Piezoelectric constraining layer
\l/ / Viscoelastic layer
Piezo-sensor Base beam
el &~

Figure 3-1 A patched ACLD beam

AONONNNNN

Table 3-1 System parameters of patched ACLD beam

P, 7600kg/m® £  025mm a, 3.237

2, 1250kg/m® ¢, 0.025 mm @, 50618.8 rad/s
Py 2700kg/m® G= 5x10°Pa s, 538

E, 74x10°Pa @& 0742 & 41654

E, 71x10°Pa & 65029rad's @&, 352782rad/s

? 1 mm ¢, 697 g; 2.56

Table 3-2 Modal frequencies and damping ratios of the first three modes of the ACLD
beam

Modes Modal frequencies (Hz) Modal damping (%)

1 19.032 0.6331
2 98.02 0.5221
3 278.314 29167
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To examine the actuating ability of the system, the ACLD beam is excited by the
actuator. The beam response at the free end is observed (Figure 3-2). It is obvious that
large amplitude indicates higher actuator authority [85]. Similarly, to examine the
sensing ability of the system, the ACLD beam is excited by a force in transverse
direction at the free end. The sensing voltage from the piezoelectric sensor layer is
measured. Figure 3-3 shows the frequency response of the sensor voltage over the
applied force. The open loop system response, as shown in Figure 3-4, is obtained by
applying a disturbance to the beam tip, and the output is transverse displacement there

as well. Figure 3-5 is the impulse response of the open loop system.

Magnitude (m/V)

10 ] 1 1 ] L 1
0 50 100 150 200 250 300 330
Frequency (Hz)

10

Figure 3-2 Frequency response for actuating ability
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Figure 3-3 Frequency response for sensing ability

Magnitude (m/N)

| 1 | 1 1
0 50 100 150 200 250 300 350
Frequency (Hz)

Figure 3-4 Frequency response of open loop system
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Time ()

Figure 3-5 Impulse response of beam tip transverse displacement

3.2 DAMPING CHARACTERISTICS
3.2.1 Effect of Control Gains

Figure 3-6 and 3-7 show the root locus diagrams of the first three modes of the system
for proportional control (¥, =-K V) and derivative control (¥, = -K V) respectively.
It is clear that as the control gains (both K and X, ) increase from zero to infinity, the

open loop poles move toward the open loop zeros. The decrease of the angle ¢, as
defined in Figure 3-6(b), implies the increase of modal dampings. The ciosed-loop poles

forK, =500 and K, =5 are also presented in the figures.
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Figure 3-6 Root locus diagram for proportional control
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Figure 3-7 Root locus diagram for derivative control
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It can be seen that for proportional control, the dampings of all the three modes can be
enhanced with the increase of gain value. However, when the proportional control gain
is increased beyond 500, the dampings of the first and second modes will decrease on

further increasing K ,. As for the derivative control (Figure 3-7), the effects of X, on
the first and second modes are similar to those of K, . For the third mode, since ¢

decreases monotonically with K, the increase of X, will always enhance the third

mode damping. However, large derivative control gain can overdamp the third mode. As

shown in Figure 3-7, the third mode becomes an overdamped mode when X, is greater

than 400.

In the practical implementation of ACLD structures, the control gains are limited to
prevent voltage saturation of the piezoelectric actuators. Also, spillover problem is also
necessary to be taken into account. In order to demonstrate the effectiveness of ACLD
treatments, an arbitrary combination of proportional and derivative gains is selected

(K,= 300 and K,=3). Figure 3-8 shows that with active control, the peak values are

reduced, without exciting the fourth and fifth modes. It means that the dampings of the
first three modes are increased, as compared to PCLD. Figure 3-9 shows the impulse
responses of PCLD treated and ACLD treated beam. It is obvious that the ACLD
outperforms the PCLD. It is worth mentioning that due to stability consideration, the

values of K and K, are not kept the same for the study of the effects of layer physical

and geometrical properties.
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Figure 3-8 Comparison of frequency response functions between PCLD and ACLD
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Figure 3-9 Comparison of impulse responses of beam tip transverse displacements
between PCLD and ACLD
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3.2.2 Effect of Layer Physical and Geometrical Properties
Constraining Layer Thickness

K, . 5 t, © 025mm P : 30mm

K,: 001 !/ : 100mm G*: 5x10°Pa

It is found from Figure 3-10 that reducing the constraining layer thickness toward zero
leads to a decrease in the damping of all the three modes. This is in agreement with the
existing knowledge on the passive constrained layer damping treatment [86]. A thick
piezoelectric layer increases the stiffness of the constraining layer and hence increases
the passive damping. As for the hybrid damping, a thick piezoelectric layer means better
active control authority, thus improving the hybrid damping. Although an increase in
constraining layer thickness monotonically increases the damping, meaning that the
thicker the layer, the higher the damping, it should be noted that there is a tradeoff

between the increase in constraining layer and weight.
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Figure 3-10(a) Effect of constraining layer thickness on the first mode damping
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Figure 3-10(b) Effect of constraining layer thickness on the second mode damping
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Figure 3-10(c) Effect of constraining layer thickness on the third mode damping

Yiscoelastic Layer Thickness

K. : 30 [, © I mm P : 30mm

P P

K,: 001 7 : 100mm G™: 5x10°Pa

Results, presented in Figure 3-11, indicate that for thin viscoelastic layer, the increase of
layer thickness increases the damping rapidly. However, the damping reaches a
maximum value and further increase of viscoelastic layer thickness causes a decrease in
damping. In other words, there is an optimal thickness of viscoelastic layer, meaning

that neither too thin nor too thick viscoelastic layers leads to effective hybrid damping.
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It can also be seen that for the first and second modes, the modal dampings are optimal
for relatively thin cores, while for the third mode, the optimal thickness is higher. Figure
3-11 also illustrates that increasing the viscoelastic layer thickness reduces the
transmissibility between the piezoelectric constraining layer and the base beam. This is
the reason for the decrease in the ACLD performance with the increase of viscoelastic

layer thickness.

—_
(3]

=
'S

—
i)

First mode damping (%)

08

06

04

0_2 - i 1 1 i M PR 1 J. I i A 4 4 n 1
10?2 10" 1d"

Viscoelastic layer thickness (mm)

Figure 3-11(a) Effect of viscoelastic layer thickness on the first mode damping
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Figure 3-11(c) Effect of viscoelastic layer thickness on the third mode damping
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The first mode passive damping of the system is presented in Figure 3-12 for various
viscoelastic and constraining layer thickness. It can be seen that the optimal value of the
viscoelastic layer disappears as the constraining layer thickness approaches to zero. The
reason for this is that an unconstrained layer damping treatment is forming, as the
thickness of the constraining layer is reducing. For unconstrained layer damping

treatment, the thicker the viscoelastic layer, the higher the damping is obtained.

First mode damping (%)

Constraining layer thiclness (mon) 100 10 Viscoelastic layer thickness (mm)

Figure 3-12 Passive damping of the first mode for various viscoelastic and constraining
layer thicknesses
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Shear Modulus

K,» 160 t, : 1mm ! : 100 mm

P

K, 001 ¢t : 025mm P : 30mm

It has been shown that the shear modulus is proportional to G® [45]. It means that
varying the equilibrium value of shear modulus G* is equivalent to varying the shear
modulus. It can be observed from Figure 3-13 that both the passive and active damping
increase with G* up to certain level and afterwards decrease with further increase in
G”. In other words, there exits an optimal G value for maximum damping. It can be
attributed to the fact that for a given shear stress and a constant material loss factor, the
energy dissipation in the viscoelastic layer is proportional to the magnitude of G* as
well as to the square of the shear strain amplitude. For a compliant viscoelastic layer
(low G* value), shear strain amplitude is high, yet there is little energy dissipationl due

to the low shear modulus. On the other hand, for a stiff viscoelastic layer (high G
value), owing to the low shear strain amplitude; there is still little energy dissipation,
Only intermediate values of G™ can give both sufficiently large shear loss modulus and
shear strain amplitude to provide a large damping. The first mode passive damping of
the system is presented in Figure 3-14 for various viscoelastic layer thicknesses and the
equilibrium value of shear modulus. It can be seen that the optimal value of shear

modulus shifts to a higher value as the viscoelastic layer thickness increases.
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3.2.3 Effect of ACLD Patch Arrangements

Treatment Location

K_: 300 f,  1lmm { : 100 mm

p

K,: 001 t : 025mm G*: 5x10°Pa

It can be observed from Figure 3-15(a) that for the first mode, as the ACLD patch
moves from the root of the beam to the tip, both the passive and hybrid damping simply
decrease. For the second mode, as shown in Figure 3-15(b), the damping ratio initially
increases with the departure of the patch, and then decreases with further departure. It
can be seen from Figure 3-15(c) that the third mode damping oscillates through out the
movement of the ACLD patch. In fact, the damping of all the three modes show
characteristics of their mode shapes as the patch is moved along the length of the beam.
This is due to the fact that high damping is best achieved when the viscoelastic layer is
subjected to large bending stress. Besides, for all the modes, it can be found that the
hybrid damping is more effective for a patch location with higher passive damping. It
can also be concluded that the degree of improvement in damping of individual modes

depends on the ACLD patch location.
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Treatment Length
K,: 300 f,: Imm P : 30mm

K,: 001 ¢t : 025mm G*: 5x10°Pa

The effects of varying the length of the ACLD patch on the first three dampings are

shown in Figure 3-16. It is evident that short treatments generally are not effective in

vibration reduction. Increasing the length results in enhancing the damping ratios,

especially for hybrid damping. As far as a clamped-free beam is concerned, the highest

bending strains (proportional to the value of curvature) occur near the root and center of
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the beam for the first and second modes respectively (Figure 3-15(a) and (b)). This is
the reason why once the largest damping is reached, further enhancement in the
treatment length makes no improvement to the damping. For the third mode, the high
bending strains distribute over the entire beam (Figure 3-15(c)). Therefore, increasing
the ACLD treatment coverage means covering more high bending strain regions, thus
increasing damping. However, it can also be seen from Figure 3-16 that there are
slightly decreases in hybrid dampings in both the first and second modes, when the
hybrid dampings attain their highest values. It is due to the fact that an increase in
treatment length causes an increase in weight of the structure, which in turn, increases

the modal frequencies. Hence, the hybrid damping performance is deteriorated.
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Figure 3-16(a) Effect of treatment length on the first mode damping
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3.3 SUMMARY

The above findings can be summarized as follows:

()

(i)

(iii)
(iv)

V)

(vi)

The selection of control gains is important since improper gain values can decrease
the modal dampings, and even lead to destabilization of systems.

The best location for the damping treatment is the one with the highest bending
strains.

The most effective location of the damping treatment is mode dependent.

An increase in the constraining layer thickness increases both the passive and
hybrid dampings.

There is an optimal thickness of the viscoelastic layer to obtain maximum
damping.

There exists an optimal value of shear modulus for maximum damping,
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CHAPTER 4

OPTIMIZATION OF ACLD TREATMENT FOR
SHAPE CONTROL USING MULTI-OBJECTIVE
GENETIC ALGORITHM

In this chapter, based on the previous parametric study of ACLD treatment, the shape
control system design is formulated. The design is treated as a multi-objective
optimization problem. The solution is done in an integrated manner to give optimal
values of both the design variables and the control gains, by using Multi-objective

Genetic Algorithm (MOGA) searching technique [87].

4.1 SHAPE CONTROL PROBLEM
In this study, the shape control problem under consideration is to drive the structure
from its initial shape to the desired shape and prevent it from being distorted by external
disturbances. The shape of the beam is described by the shape of the mid-plane of the
beam, which in turn is described by the transverse displacement w of beam nodes [27].
The desired shape of the mid-plane is given by:

W, = () @.1)
where w, is the desired transverse displacement at 2 point on the beam and ¢ defines the

desired shape as a function of x. £'(x) is continuous and differentiable.
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Figure 4-1 Beam shape configuration

4.1.1 Error Function

The error function is defined as:
e=2 (G -w) =28 (4.2)
k=1 k=1

where n is the total number of nodes; w, is the actual transverse displacement of
the k* node; ¢, is the corresponding desired displacement and &, is the displacement

error at the £” node. However, the error function defined in Eq. (4.2) does not consider

the extension of the middle plane, i.e. . To allow for this extension, consider a node A
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on the original mid-plane atx; , as shown in Figure 4-1. On the application of voltages,
point A on the original surface moves to pointB' on the achieved surface. BB' is the z-
coordinate of the point B' and B is the point on the desired surface which corresponds to
pointB'on the achieved surface. BB" is the z-coordinate of the point B" and (x, + dx, } is
the x-coordinate of both B' and B"' . Thus the error is given by:

5, =BB -BB' (4.3)
or

Oy =¢(x )+ (6% ) - w, (4.4)

where u,0r (dx, ) is the axial displacement of the " node.

In the present study, the desired shape function under consideration is a parabolic shape
function [88], given by:

w,(x) = Cx* (4.5)
It is selected due to its mathematical simplicity and its applicability to common
structures such as antennas. This shape function has uniform curvature C over the

length of the beam.
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4.1.2 Control Law
The block diagram for the whole system with two ACLD patches (for illustration) is
shown in Figure 4-2.

The control laws are given by:
Ve _ Kp) 0 AV, + K, 0 m(IAVsl dt + Kp, 0 AV:I
v, 0 K, |\ar, 0 K, JJAVﬂ d| | 0 K, \ap,

k k' K)o
PUIAV. +| " AV, de+| 9 |AV 4.6
+[k] . [k )f g +[k g (4.6)

p2 i2 d2 /

where V, is the control voltage, X, , K, and K, are respectively the proportional,
integral and derivative gains for the piezoelectric sensor feedback; k, , &, and k, are

respectively the proportional, integral and derivative gains for the tip position sensor

feedback; AV is the difference between the actual piezo-sensor output and the desired
sensor output ¥, which is obtained by using Eq. (2.31). Suffices 1 and 2 denote patch

number 1 and 2 respectively. For instance, for the first patch,

_ E,dy b
dl C

a

(w,'(x,)-w,(x)) (x and x,are the two edge positions of the first

patch); AV, is the difference between the position sensor output and the desired position

sensor output, ¥, .
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Figure 4-2 Block diagram of shape control system with two ACLD patches
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4.2 MULTI-OBJECTIVE DESIGN PROBLEM AND GENETIC ALGORITHM
4.2.1 Concept of Multi-objective Optimization

A general constrained multi-objective optimization problem can be defined
mathematically as:

Minimize fid) = {f,(d),..., /;(d),..., £, (d)}

subjectto d e D {4.7)
D={d:g (d)<0, j=1..J, h(d)=0, k=1,.,K},

where d is an nx 1 design variable vector, f{d) is an m x 1 vector of design objectives

that are at least partly conflicting, g ;(d) is the j* inequality constraint and h.(d) is the

k™ equality constraint. The set of design vectors that satisfies all equality and inequality

constraints constitutes the feasible domain D . Mathematically, a design solution &' € D

is said to be Pareto optimal if there does not exist another solution 4 € D such that

fi(d) < fi{d ) for all i =1,...,m with strict inequality for at least onei. Any other feasible

solution d € Dwith f,(d")< fi(d)forall i=1,....m, is an inferior solution.

4.2.2 Background of Genetic Algorithm

Genetic Algorithms (GA) were invented and developed, initially by J. Holland and his
associates at the University of Michigan in the 1960s and 1970s [89], to mimic some of
the processes observed in natural selection. GAs are a form of randomized search, in
that the way in which strings are chosen and combined is a stochastic process. This is a
radically different approach to the problem solving methods used by more traditional

algorithms, which tend to be more deterministic in nature, such as the gradient methods
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used to find minima in graph theory. GA exploits the idea of “survival of the fittest” and
an interbreeding population to create a novel and innovative search strategy. A
population of strings {or chromosomes), representing solutions to a specified problem, is
maintained by the GAs. The GAs then iteratively create new populations from the old
by ranking the strings and interbreeding the fittest to create new strings, which are
probably closer to the optimum solution of the problem at hand. So in each generation,
the GAs create a set of strings from the bits and pieces of the previous strings,
occassionally adding random new data to prevent the population from stagnating. The
end result is a search strategy that is tailored for vast, complex, multimodal search
spaces. The idea of survival of the fittest is of great importance to GAs. GAs use a
fitness function in order to select the fittest string that will be used to create new, and
conceivably better, populations of strings. The fitness function takes a string and assigns
a relative fitness value to the string. The method by which it does this and the nature of
the fitness value do not matter. The only thing that the fitness function must do is to
rank the strings in some way by producing the fitness value. These values are then used

to select the fittest strings.

GAs start with a random creation of a population of strings and then generates
successive populations of string that improve over time (evolution). Traditionally,
strings (chromosomes) are simple binary vectors. The processes involved in the

generation of new populations mainly consist of the followings:
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Reproduction: it is a process in which individual strings are copied according to their
fitness (objective) function values. Strings with a higher fitness value have a probability
of contributing one or more offspring in the next generation. The reproduction operator
may be implemented in an algorithmic form in a number of ways such as roulette wheel
selection [90] and stochastic universal sampling [91]. Once a string has been selected
for reproduction, an exact replica of the string is made. This string is then entered into

the mating pool, a tentative new population for further genetic operator action.

Crossover: it is considered as the primary operator that makes GAs converge to an
optimum, After reproduction, simple crossover may proceed in two steps. First,
members of newly reproduced strings in the mating pool are mated at random. Second,
each pair of strings undergoes crossing over as follows: an integer 4 along the string is
selected uniformly at random between 1 and string length / minus one. Two new strings
are crested by swapping all the characters between positions (4 +1) and / inclusively, as
illustrated in Figure 4-3(a). This crossover operation is not necessarily performed on all

strings in the population. Instead, it is applied with a probability P.(or crossover rate)

when the pairs are chosen for breeding.

Mutation: it is a complementary operator that prohibits converging to a local optimum.
Mutation is a random alteration of the value of a string position. In binary coding, this
means changing a 1 to 0 and vice versa (Figure 4-3(b)). Like crossover, mutation is

applied to the chromosomes with a probability P, (or mutation rate). In GAs, its
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probability of occurrence rate would lead to a loss of important data. GAs, with 100%

mutation rate, become random search in the solution space.

1jo|rf1lrf1]1{o|1]1
o)

Figure 4-3 Schematic representations of basic genetic algorithm operations
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4.2.3 Multi-objective Genetic Algorithm

In fact, GAs have been mainly applied to single-objective optimization problems.
However, in real-world optimization, the multi-objective optimization is often required
rather than the single-objective optimization since there exist tradeoffs between various
objectives in general. As described in the previous section, the solution to a multi-
objective optimization problem is not a single point. It consists of a family of points, the
Pareto-optimal set, which describes the trade-offs available in the problem. Each point
in this set is such that no improvement can be achieved in any one objective without

degrading in at least one of the remaining objectives.

GAs have many attractive advantages to solve multi-objective problems. Since GAs
seek optimal solutions in parallel, multiple Pareto solutions can be obtained
simultaneocusly without specifying weights between objectives. The multi-objective
genetic algorithms (MOGAs) were first introduced by Fonseca and Fleming [87]. The
main difference between a conventional GA and a MOGA resides in the assignment of
fitness. Once fitness has been assigned to individuals, selection can be performed and

genetic operators applied as usual.

For each generation, the dominant value of an individual or a point in the population is

calculated as follows. For a set of points in the objective space, P = (Pys--s P,,), the
dominant value of a point p,(p, € P)is defined as the number of all other points in the

set Pthat dominates p,. For example, if npoints in the set P dominate the point P>
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the dominant value of the point p, is quantified as n (Figure 4-4). The individuals with

zero dominant value are identified. These individuals are called the non-inferior
individuals. Note that while these individuals are non-inferior for the current population,
they are most likely non-Pareto for the problem in an absolute sense. These non-inferior
individuals are given the highest rank in the current population. With the highest
probability, these non-inferior individuals will become parents to produce offspring, and
the process is repeated. As such, the population is gradually improved as it approaches

the final population and the corresponding Pareto set for the problem.
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Figure 4-4 Examples of dominant value assignment
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4.3 OPTIMIZATION PROBLEM FORMULATION
4.3.1 Objective Functions
When selecting the proper design objectives, both open and closed-loop requirements
are considered. With respect to open-loop, certain amount of passive damping is
necessary for stability and fail-safe consideration. Thus, it is reasonable that the
maximization of the passive damping should be a design objective. Meanwhile, a heavy
structure is undesirable, so the minimization of treatment weight is necessary. On the
other hand, when it comes to closed-loop, the minimization of the error between the
desired and achieved shapes is another concern. As a result, the objective functions used
in this study can be stated as follows:
(1) Minimizing the error function at steady state.

Objective function 1 D,: e
(2) Minimizing the total weight of treatment on the structure.

Objective function 2@, : (p,1,0(L, + L, + L))+ (p,0,0(L, + L, + L))

(3) Minimizing the reciprocal of the weighted damping of the first three modes.

1
Objective function 3¢, : ———8M—
’ VLGS

h L S

where &, f are the damping ratio and frequency, and the suffices 1, 2 and 3 denote

the first, second and third mode respectively.
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4.3.2 Design Variables

From the previous parametric study, it is known that the thicknesses of both the
piezoelectric constraining (/,) and viscoelastic layers (¢,) have contribution to the
treatment weight and directly affect the damping performance of the structure. Besides,
in addition to the control gains (K, ,K,,K,,k,,k,and k,), the locations (P), spacing

() and length (L) of the ACLD patches also have influences on the precision of shape

change. Thus, it is obvious that they should be chosen as the design variables.

4.3.3 Constraints

The transient behavior of the beam is specified by the constraints on the maximum

overshoot (O, ) and the settling time (7,) of the beam tip transverse response, which in

turn, is a constraint on system stability. Another constraint is imposed on the applied

electric field.
[ Binary - coded = Real - coded |
0(1]1]{0] ......... oftjofole, ¢! & | &, | Kplk, | & |k,

Figure 4-5 Chromosome representation

4.4 OPTIMIZATION USING MULTI-OBJECTIVE GENETIC ALGORITHM

4.4.1 Chromosome Representation
In the present work, both binary encoding and real encoding are used to form the

chromosome, as shown in Figure 4-5. The former is used to represent the patch
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arrangement (P and S ), since they are discrete values. On the other hand, considering
the wide searching ranges of the thickness of the constraining and the viscoelastic layers
as well as the control gains, the length of the chromosome will have to be made
sufficiently long so as to preserve a certain degree of precision, thus degrading the
performance of GA. To overcome this difficulty, these variables are encoded in real

numbers.

4.4.2 Fitness Assignment and Constraints Handling
The following procedure, proposed by Kurpati et @/, [92], is used to handle constraints

during the fitness assignment stage of the present MOGA.

Stepl: Evaluate the constraints for every chromosome.

Step2: Identify feasible and infeasible chromosomes in the current population.

Step3: Assign a high (i.e. bad) rank to all infeasible chromosomes (» = 0.95 x N, where
ris the rank and N is the population size).

Stepd4: Assign a moderate rank to all feasible chromosomes (r = 0.5 x N ).

StepS: Evaluate the objective functions for all feasible chromosomes.

Step6: Identify the non-inferior chromosomes among the feasible chromosomes.

Step7: Assign a low (i.e. good) rank to feasible non-inferior chromosomes (» = 1).

Step8: Obtain fitness values for all chromosomes using the following equation.
F=C_ —(C..—C..)r-1D/N~-1), (4.8)

where C_,, =1.2; C,,, =0.8.

min
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4.4.3 Reproduction
Once the fitness values are assigned, the roulette-wheel-selection procedure is adopted
to select the chromosomes for reproduction. The following genetic operations [91, 93]

are executed.

4.4.4 Crossover

For the case where crossover occurs in the binary-coded region, the conventional

crossover executes. Let the randomly selected parents s,and s; participate in crossover
to produce their offsprings s,' and s;'in a random position. The following change
occurs:

8y = (&) 0, | By +8;)

2= 6 | By bD)

U
53 = (B b | By )
sy = (b7 B | By -8, ),

where /, is the total number of binary bits of the string and &,, (0 or ) is the m” bit.

For the case where crossover occurs in real-coded region, the modified simple crossover

is used and described as follows:

1
=00 raen)

2 2.2
;=0 ny )
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57" = (5 B [y een),
where 7 = An +(1-A)r}; 72 =Ar? +(1-4,)r', and r, represents the n* parameter,
{ is the total number of real-coded parameters, and A,, 4, are uniformly distributed

random numbers between 0 and 1.

4.4.5 Mutation
For the case where mutation occurs in the binary-coded region, the standard mutation is

enforced and the mechanism of it in a string is illustrated as follows:

(B--b, b)) = (b "‘E."'b;,),

where b_ represents the flipped bit of 5, i.e. from 0 to 1 or from I to 0.

For the case where mutation occurs in real-coded region, the principle of uniform
mutation is used.

(Renyen )= (T,

"

where 7, =A(r, ~r)+r, and 7, €[r’,r] is a mutated n" gene and Aef0]1] is a

”

random number. 7" and r,’ are the lower and upper limit of r, respectively,
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4.5 COMPUTER CODE DEVELOPMENT AND VALIDATION

It is necessary to develop a program to implement the principle of MOGA, as explained
in Section 4.3. The finite element model, which is used to simulate the dynamic
behavior of the ACLD treated beam, is established with the commercial software
package, MATLAB. To allow the MOGA and the finite element analysis running in the
same computation environment, the MOGA is also developed with MATLAB by using

the built-in commands and programming logic of it. Figure 4-6 is the flowchart of the

START

Generation

MOGA process.

ing & ,
e .

I

Selection &
Reproduction

!

Crossover &
Mutation

:

New generation

Figure 4-6 Flowchart of MOGA operations
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Figure 4-7 Two-bar truss

To demonstrate the searching ability, the developed program is applied to an
engineering design problem adopted from Kalyanmoy [94], in which the penalty
function approach was used to handle the constraints. A truss (Figure 4-7) has to carry a
certain load without elastic failure. Thus, in addition to the objective of designing the
truss for minimum volume (V" ), there are additional objectives of minimizing the stress

in AC. Given constraints: the stresses in AC and BC (o, and o,.) should not exceed

100,000 kPa and the total volume of materials should not exceed 0.1 m>, The following
two-objective optimization problem, for three variables — y (vertical distance between B
and C in m), and x; and x, (cross-sectional areas of AC and BC respectively, mz), is

constructed.

89



Minimize ¥ (xy, Xz, y) = xi(16+y%)"* + xp(1+y%)"

20016 + y*)"*

Minimize o, (x), y) =

80(1+ yz)o's
¥Xx,

Subjectto V < 0.1, o, < 100000, oy < 100000, where o, =
This problem is solved by the program developed in the present work with the following
MOGA parameters. Population size: 200, crossover probability: 0.8, mutation
probability: 0.05, number of generation: 200. Results are shown in Figure 4-8. As can be
seen from Figure 4-8(a), the population starts with a non-uniform set. After 200
generations, the Pareto set seems to have been reached, and the values of both objectives
have been improved. Moreover, the Pareto-optimal solutions obtained by Kalyanmoy
(94] for the same two-bar truss problem are included in Appendix B. As shown in the
figure, apart from the uniformity, the optimum solutions obtained by the present MOGA
code and those by Kalyanmoy [94] are very similar in terms of extreme value, In other

words, the present MOGA code can be used to find out the Pareto optimum solutions,
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CHAPTER 5

OPTIMIZATION RESULTS AND DISCUSSIONS

This chapter presents the results of the implementation of the multi-objective
optimization formulated in the previous chapter. The Pareto solutions are discussed. For
a given solution, the shape control problem is studied numerically and its transient
behavior is analyzed. Effects of external disturbances on the shape control systems are
also examined by applying different types of loadings (static/impulsive and
point/distributed loads) to the system. Comparison is also made between open loop and

closed loop controls.

5.1 SYSTEM DESCRIPTION

A graphite/epoxy beam (1000 mm x 20 mm x 2 mm) is considered. It is necessary to
perform a transient analysis for every chromosome in every generation so that the
MOGA can work according to its philosophy. Therefore, the computation load required
is heavy. With respective to this, the beam is evenly divided into twenty finite elements.
It is obvious that neither one nor two ACLD patches are enough to give a fine parabolic
shape. On the other hand, the more patches are used, the more redundant the control
system will be. Besides, for a twenty-finite-element beam, if four or more ACLD

patches are used, the choices of lengths and locations of the patches will be limited. In
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other words, it is meaningless to optimize these variables. As a result, three ACLD
patches are used to accomplish the shape change. The coefficient C in Eq. (4.5) is
chosen to be 0.0001. Other system parameters and material properties are given in Table
5-1. The structural design variables include the position of the first patch, P, the spacing
between patches — S, (first and second), S, (second and third), the lengths of the three
patches (L, , L, and L,), the thickness of the piezoelectric constraining (¢,) and
viscoelastic (¢, ) layers. The control variable are the gain values —-X,,X,,K, and
k,,k;,k,. The former group of gains is for piezo-sensor feedback while the latter one is

for tip position sensor feedback. Since there are three ACLD patches, the total number
of control gains is eighteen. Constraints on the system and ranges of design variables are
described in Table 5-2. In this study, the following MOGA parameters are used. The
population size is 200. The crossover and mutation probability are 0.8 and 0.05

respectively. The MOGA is terminated when the number of generation reaches 100.

Table 5-1 System parameters

P, 7600 kg/m’ d, -0175x10°m/V &, 3237

P, 1250 kg/m’ t,  0.025mm @, 50618.8 rad/s
P, 1600 kg/m? G° 5x10°Pa £, 538

E, 649x10°Pa & 0742 &, 41654

E, 150x10°Pa @ 6502.9 rad/s @, 352782 rad/s
e 15x10°Fm £ 697 £, 256
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Table 5-2 Constraints on shape control system

Electric field < 1000 (V/mm)
Settling time <3(s)
Maximum overshoot <10 (%)
Number of ACLD patch 3

Length of ACLD patch 0.1 -0.25 (m)
Position of 1* patch 0-0.15(m)
Spacing between patches 0.05-0.4 (m)
Thickness of constraining layer 0.01 - 1 (mm)
Thickness of viscoelastic layer 0.01 -1 (mm)
Proportional gains (piezo-sensor) 0-500
Integral gains {(piezo-sensor) 0-10
Derivative gains (piezo-sensor) 0-500

Proportional gains (position sensor) 0 - 500

Integral gains (position sensor) 0-10
Derivative gains (position sensor) 0 - 500
5.2 PARETO SOLUTIONS

In this section, the derived Pareto optimum solutions are discussed. In Figures 5-1, 5-2
and 5-3, the derived solutions are projected on weight-damping (®, — @, ), damping-
error (®, — P, ) and error-weight (®, — @, ) surfaces respectively. From figure 5-1, a

clear tradeoff relation is found. It means that there exists a conflict between the
treatment weight and summation of passive damping. It is worth mentioning that the

tradeoff relation between them is convex. It means that the change of damping with the
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change of treatment weight is not constant. There exists a critical point, below which the
change of damping with the change of weight is drastic, beyond which the change of
damping with the change of weight is minor. According to the findings in Chapter 3,
this convex relationship is due to the fact that initially when the patch length increases,
the dampings of all the three modes increase. Consequently, the increase of weight
makes a rapid enhancement of the damping. On the other hand, after the length has
extended to a certain value and increases further, the damping of the first and second
mode decrease and only the third mode damping increases. The overall effect is that the
increase of weight only leads to a little change of damping. For the remaining surfaces
(damping-error and error-weight), results show that the tradeoffs are not as clear as that

of weight-damping surface.
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Figure 5-4 Pareto solutions and design candidates

The solutions that have the best and worst value of weight and damping objective
functions, as shown in Figure 5-4 (A, B, and G), are given in Table 5-3 to 5-5. The
different colors in the color bar represent the values of error for different solutions. The
deepest (brown) represents small value of error, while the lightest (white) represents
large value of error. In the solution with the smallest value of weight (solution B), the
constraining layer is relatively thin. Also, the lengths of the patches are relatively short,
so the damping is small. On the other hand, solution G, with the smallest value of the
reciprocal of damping, both the piezoelectric constraining and viscoelastic layers are

relatively thick (converging to the upper limit). Nevertheless, although A is a solution
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that has the largest value of the reciprocal of damping, it does not represent the solution
with the lightest weight. These can be due to the fact that the viscoelastic thickness
contributes much to the weight, but damping does not monotonically increase with its
thickness. Also, the patch locations have effects on the damping as well. Finally,
solution C, D, E and F have relatively small values of error, as they are deep in color in

Figure 5-4. Therefore, they all are reasonable choices for the present shape control

system.

Table 5-3 Design values of solution A

Design variable Value
P 0.05 (m)
S, 0.1 (m)
S, 0.2 (m)
L 0.15 (m)
L, 0.2 (m)
L, 0.1 (m)
!, 0.257 (mm)
t 0.635 (mm)
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Table 5-4 Design values of solution B

Design variable Value
R 0 (m)
S, 0.2 (m)
S, 0.1 (m)
L 0.1 (m)
L, 0.15 (m)
L, 0.1 (m)
t, 0.291 (mm)
t 0.282 (inm)

Table 5-5 Design values of solution G

Design variable Value
P 0 (m)
S, 0.1 (m)
S, 0.05 (m)
L 0.25 (m)
L, 0.25 (m)
L, 0.25 (m)
t, 0.965 (mm)
t 0.952 (mm)
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Table 5-6 Design values of solution F

Design variable Value Design variable Value
P 0 (m) K., K., K, 47.506, 30.342, 44,565
S, 0.15 (m) K, K, K, 1.05, 4.456, 3.542
S, 0.1 (m) Kpys Kpyy Koy 200.9, 286.6, 183.76
L 0.2 (m) Kops Kpps Koy 11.557, 24.299, 38.105
L, 0.15 (m) ky, k. ki, 4.301, 3.408, 3.824
L, 0.15 (m) kys kyny ko 222.86, 436.69, 399.6
f, 0.486 (mm) !, 0.512 (mmy)

5.3 TRANSIENT ANALYSIS

To evaluate the shape change performance, solution F, with an error of 6.9622 x 102
m?, is chosen. The values of other objective functions and design variables are listed in
Table 5-6. Two cases are considered. CASE I refers to the situation that the beam

changes from flat to the parabolic shape, while CASE II is the reverse situation; i.e. the

beam changes from parabolic to flat shape.

5.3.1 CASE I: Flat to Parabolic Shape
Figures 5-5 to 5-8 are the results for CASE 1. From Figure 5-5, it can be seen that the
final achieved shape is close to the desired shape. Figure 5-6 shows the tip transverse

displacement of the beam. It is clear that the tip of the beam settles down within three
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seconds, thus satisfying the constraint on settling time. Also, the maximum overshoot is
below 10 %. As shown in Figure 5-7, all the three input voltages to the piezoelectric
constraining layers are below the break down value during the whole shape control
process. Therefore, it can be concluded that the control gains obtained from solution D

are effective.
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Figure 5-5 Desired and achieved shapes of the beam after 5 seconds — CASE [
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Figure 5-8 Time history of sensor output voltages of ACLD patches — CASE I

5.3.2 CASE II: Parabolic to Flat Shape

For CASE II, at the beginning, the shape is in parabolic form. After one second, the
system is commanded to change to flat shape. Figures 5-9 to 5-12 show the transient
behavior of the system during this process. It can be interpreted from these figures that,
similar to CASE I, the system violates none of the constraints imposed on it. It is also

obvious that the control system can bring the beam to the original shape smoothly.
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5.3.3 Comparison between Open and Closed Loops

In fact, in the absence of loading, both open and closed-loop controls can achieve the
desired shape with no significant difference. The main discrepancy between open and
closed loop controls is the time required to finish the process or the settling time. In the
case of open-loop control, the beam vibrates rapidly and it takes a long time to settle
down to the final status (the final achieved shape). This can be interpreted from the tip
response of the beam (Figure 5-13), in which the steady-state control voltages (closed
loop) are directly applied to the three actuators (for CASE I). Hence, compared with the
short settling time (around 2.5 seconds) of the closed-loop control, it is clear that the

performance of open-loop control is unsatisfactory.
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5.3.4 Discussion on ACLD and AC for Shape Control

It is known that the vicoelastic layers of the ACLD patches deteriorate the control
actions from the piezoelectric constraining layers to the host structure. It other words,
more control voltages are required to obtain the same bending effect to the host
structure, when compared with purely active control (AC) — the piezoelectric layers are
directly bonded to the host structure. Therefore, it seems that AC is better than ACLD,
when it comes to shape control of structures. However, when fail-safe issue is taken into
account in the design, ACLD is obviously preferred. Consider a break down situation
occurs, in the case of AC, the structure vibrates rapidly due to the flexible nature of the
host structure. Yet, for ACLD, the passive damping introduced alleviates the vibration

problem and thus minimizes the adverse effects.

5.4 EFFECT OF DISTURBANCE
Effects of external disturbances on the shape control system is also examined by
applying various types of loadings (static/impulsive and point/distributed) at different

occastons — (a) the shape change is in process, and (b) the shape change is finished.

5.4.1 Comparison between Static and Impulsive Loads

Firstly, a point load, with magnitude leading to around 0.01 (mm) tip deflection (when
the beam is in flat shape), is acting at the middle to the beam at 0.5 second (when the
structure is changing from flat to parabolic shape). For static case, the point load is
always present once acting on. For impulse case, the point load acts on the beam for

only 0.5 second. Figure 5-14 and 5-15 are the results given for the static case, while
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figure 5-16 and 5-17 are those for the impulse case. For both cases, the shape can be
recovered to the unloaded shape due to the closed loop control actions. However, with
respect to the static case, the steady input voltages are increased in order to maintain the
achieved shape. As shown in Figure 5-15, the input voltages of the first and second
patches are also increased respectively from 5.59 V to 6.45 V and from 48.45 V to 51.71
V. Conversely, the input voltage of the third patch is decreased from 26.59 V to 25.40
V. For the impulse case, the input voltages increase initially due to the effect of
impulsive load, but finally return to the unloaded level, as the load vanishes (Figure 5-

17).
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Figure 5-14 Closed loop loaded and unloaded shapes for static load
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Figure 5-15(a) Comparison between loaded and unloaded applied voltages of 1* patch
for static load
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Figure 5-15(b) Comparison between loaded and unloaded applied voltages of 2™ patch
for static load
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Figure 5-15(c) Comparison between loaded and unloaded applied voltages of 3™ patch
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Figure 5-17(a) Comparison between loaded and unloaded applied voltages of 1* patch
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Figure 5-17(b) Comparison between loaded and unloaded applied voltages of 2 patch
for impulsive load
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Figure 5-17(c) Comparison between loaded and unloaded applied voltages of 3™ patch
for impulsive load

5.4.2 Comparison between Open and Closed Loops

On the other hand, the abilities of open and closed-loop control to maintain the achieved
shape under the influence of external loading are compared. Figure 5-18 shows the
open-loop loaded and closed-loop loaded shapes. A distributed load, which reduces the
tip transverse displacement by about 0.01 (mm) (when the beam is in flat shape) is
acting on the beam, when the beam is in parabolic shape. The errors of the open-loop
loaded, closed-loop loaded and closed-loop unloaded shapes are summarized in Table S-
7. It can be seen that in the case of open-loop control, the external load deforms the

achieved shape into the open-loop loaded shape. It is also found that the error is
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increased substantially. However, when closed-loop control is used, the mismatch
between the desired shape and distorted shape results in sensor output signals (both
piezo-sensors and tip position sensor). These signals are fed to the control system, which
will regulate the actuator, thus correcting the distorted shape. As shown in figure 5-19,
all the three actuator voltages are increased. It is also evident from Figure 5-18 that the
errors of the closed loop loaded (6.98 x 10"'2 m?) and unloaded (6.96 x 10™'? m?) shapes
are almost the same. On the whole, it can be concluded that the closed-loop system

outperforms the open-loop system, as far as disturbance—rejection ability is concerned.
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Figure 5-18 Comparison between open-loop loaded and closed-loop loaded and
unloaded shapes for static distributed load — parabolic shape
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Table 5-7 Summary of errors for static distributed load — parabolic shape

Node Open-loog loaded Closed-logp loaded Closed-loog unloaded
erTor {m") (m°) (m°)
57 5.54x 10" 492x 107 501x 10"
82 1.38x 107 3.48x 10" 3.57x 1073
52 9.34 x 107 6.13x 10" 6.38x 107"
52 3.38x 10" 6.83 x 10°° 7.27x 10"
57 843 x 10" 893x 10" 9.67x 10"
52 1.71 x 1072 1.30x 10" 1.42x 10"
X 3.05x 10" 1.71x 107 1.89x 107
82 4,97 x 102 1.83x 107 2.05x 107
52 7.59 x 1072 1.52x 10 1.76 x 10"
8 1.08 x 107" 1.46 x 107 1.73x 10
¥ 1.42x 10" 3.04x 10 3.47x 10
52 1.74 x 107" 9.84x 107 1.07 x 1072
82 2.02x 107" 2.81x 10" 2.96x 10"
5 2.29 x 10" 6.05x 10 63x 10"
5% 2.61x10™ 9.96 x 10" 1.03x 1072
S 3.04x 10 1.26 x 1072 1.3x10™"
5% 3.75x 107" 1.09x 102 1.14x 1072
5 495x 10" 439x 10" 4.67x 107"
A 6.97x 10" 1.52x 107 1.02x 107"
52 1.03x 10 1.90 x 1072 1.84 x 1072
m:"égz) 1.03 x 107 1.90 x 10 1.84 x 102
e=> 5" 420x 10" 6.98 x 102 6.96 x 107"
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5.4.3 Discussion on ACLD and PCLD for Shape Control

When the beam is in flat shape, open-loop control refers to PCLD, while closed-loop
control means ACLD. Consider a point load same as the one in Section 5.4.1. The errors
of the open-loop loaded and closed-loop loaded are summarized in Table 5-8. The error
of open-loop control is much larger than that of closed-loop control. Moreover, it can be
seen from Figure 5-21 that for open-loop control, apart from the distortion of the
achieved shape (Figure 5-20), the beam vibrates with a first mode damping ratio of 2.20
x 107 about its equilibrium position. Figure 5-22 and Table 5-8 reveal that when closed-
loop control is used, the loaded shape can return to the original shape with negligible

error (i.e. 2.61 x 102 m?) and a settling time of less than 2.5 seconds.

The open-loop or PCLD can be regarded as the break down situation of the ACLD
control system. The beam eventually settles down to an equilibrium position despite of
damped oscillations. On the other hand, the break down of the AC beam will lead to
sustained vibration due to the absence of the viscoelastic layer. This justifies the use of

ACLD in the shape control application.
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Table 5-8 Summary of errors for static distributed load — flat shape

Node Open—loog loaded Closed-logp loaded
error (m®) {m®)

5t 2.55x 10 3.22x 107
52 3.80x 10 4.45x 107
81 1.80x 10" 1.92x 10
3t 537x 10" 519x 10%
5? 1.25x 102 1.09 x 10°%
52 246 x 107" 1.94 x 10"
52 429x 102 3.05x 102
82 6.82x 102 438x 10
52 1.01 x 10" 591x 107
52 1.41x 10" 7.60 x 10
52 1.89 x 107" 9.48 x 107
52 2.45x 107" 1.16x 107
5 3.08 x 107" 1.40 x 10
&2 3.77x 10" 1.68 x 107
52 453x 10" 2.00x 102

- 8L 536x 10" 237x 103
8 6.25x 10! 2.79x 103
52 7.21x 10" 3.25x 102
o 8.23x 107 3.76 x 107
52 9.32x 107" 431x 103
mix((s?:) 932x 10" 431x 107
e=>0"  561x10" 2.61 x 107

117



x10

2 T T T T T T T T
0 [ —
------- Unloaded shape
E .l —— ClosedHoop loaded shape | |
E — Open-loop loaded shape
§
2
a- .
2 -4
[*]
g
[
B o1 T
-8+ .
_10 1 i 1 L i Ny 1 1 1
0 0.1 0.2 0.3 04 05 0.6 07 08 0.9 1

Longitudinal position (m)

Figure 5-20 Comparison between open loop and closed loop loaded shapes for static
distributes load ~ flat shape

o
o
T

-
T

Tip transverse displacement (m)

-~
N
T
——
e
—
———
-—
—_—
1

R 2 s 1 L L 1 1 L 1 1 i
o 1 2 3 4 S L] 7 8 ] 10
Time (s}

Figure 5-21 Effect of static distributed load on beam tip transverse displacement — open-
loop

118



T T T T T T T T T
1] M
1k -
a
£
-3 -
L'
]
£ -
B
=
s} J
B i
7 Il L I 1 1 1 I ]
0 05 1 13 2 25 3 a5 4 45 5

Time (3)
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5.5 DISCUSSION ON CONTROL VOLTAGE

It is clear that treating also the control energy (the total control voltages required to
maintain the achieved shape at steady state) as another objective function makes the
design more thorough, since both open and closed-loop performances can be optimized.
Hence, a four-objective optimization is also performed, with the same MOGA
parameters used before. The fourth objective function is;

(4) Minimizing the summation of the squares of control voltages at steady state.

Objective functiond @, : ¥V + V2 + V>
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The optimization results are given in Figures 5-23 to 5-26. It can be seen that the
distribution of solutions (Figures 5-23 to 5-25) are similar to those in the three-objective
case (Figures 5-1 to 5-3). As shown in Figure 5-26, reasonable Pareto solutions can be
found in error and voltage surfaces. However, the error values become larger because of
the inclusion of the control voltages in the objective functions. A solution, with the
smallest value of error, is selected. It is shown, from Figure 5-27, that the achieved
shape encounters a large derivation from the desired shape. Consequently, it can be
concluded that considering the control voltages as one of the objective functions

scarifies significantly the accuracy of the achieved shape.
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5.6 SUMMARY
The above findings are summarized below.

(1) Pareto solutions for this multi-objective optimization problem are successfully
found. There exists a clear tradeoff between the treatment weight and summation
of passive damping.

(il  ACLD patches can drive the structure to the desired shape smoothly.

(iii)) For the loads under consideration in this study, the closed loop control
outperforms the open loop control in terms of disturbance-rejection ability and
settling time.

(iv)  ACLD is better than AC for shape control of structures, when taking fail-safe

issue into account in the design.
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CHAPTER 6

CONCLUSIONS

6.1 CONCLUDING REMARKS

In this thesis, feasibility of utilizing ACLD treatments for shape control application was
investigated, and results were presented. The studies of ACLD treatments for vibration
suppression have shown promising results, but the application of such treatments for
shape control is an unexplored topic. The optimization issue of such kind of system was
addressed, and the performance was also evaluated numerically. The major work done

in this thesis is summarized below.

(i) In order to predict the dynamic behavior of the flexible beam with distributed
ACLD patches for design purpose, a mathematical model is required. In this
model, some assumptions were made to simplify the complexity of the structure.
Besides, considering the distributed nature of the ACLD patches, and to facilitate
time-domain analysis, the finite element method (FEM), in conjunction with the
Golla-Hughes-McTavish (GHM) viscoelastic model, was employed. Comparisons
were made with other models available in the literature. It is shown that analysis
results by the present model are in close agreement with those given by other

models.
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(i)

(iii)

To obtain an overall view on the damping characteristic of the ACLD treated
beam, a parametric study was conducted using the developed model. The objective
was to identify the effects of treatment length and location, the layer physical and
geometrical properties as well as the control gains on the damping performance. It
is demonstrated that proper selections of control gains are crucial for active
damping and system stabilization. The effective location is mode dependent. It is
also found that, unlike the constraining layer thickness that the damping
monotonically increases with it, both the viscoelastic layer thickness and shear

modulus exhibit optimal values for maximum damping.

The shape control design problem was formulated. When selecting the proper
design objectives, both open and closed-loop requirements were considered. With
respect to open loop, certain amount of passive damping is necessary for stability
and fail-safe consideration. Thus, it is reasonable that the maximization of the
passive damping should be a design objective. Meanwhile, a heavy structure is
undesirable, so the minimization of treatment weight is necessary. On the other
hand, when it comes to closed loop, the minimization of the error between the
desired and achieved shapes is another concern. Also, the transient behavior is
specified by imposing the constraints on the settling time and maximum overshoot
of the beam tip. Therefore, the design is no longer a single objective problem.
Instead, it is treated as a muiti-objective optimization problem. Appropriate design

variables and constraints are identified as well, based on the study in (ji).
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(iv)

V)

(V)

To solve the multi-objective optimization problem stated in (iii), the stochastic
approach, MOGA, was used. A program was developed, with the aid of the
commercial software package MATLAB, to implement the principle and
philosophy of MOGA so that solutions can be obtained. A simple multi-objective

engineering design problem was used to test and debug the developed program.

The multi-objective design problem, described in (iv) was solved by the MOGA
algorithm developed in the present work. Pareto solutions were successfully
obtained. A clear conflict between the total treatrnent weight and summation of
passive damping was found. They also exhibit a convex tradeoff relation. Since the
most important aspect of multi-objective optimization problem is to provide
alternatives, several Pareto solutions were chosen for the final evaluation based on

their shape errors,

Lastly, the shape control problem was studied numerically by selecting a solution,
with smallest value of error, obtained from the MOGA. The performance was
evaluated by analyzing its transient behavior, Simulation results demonstrated the
feasibility of using ACLD patches for the shape change of structure. Effects of
external disturbances on the shape control were also examined. Several types of
load, including static/impulsive and point/distributed loads (with magnitude
leading to around 0.01 mm tip deflection), were applied on the structure under
different occasions. It is shown that for the loads under consideration, the closed-

loop control could regulate the actuator voltages to correct the distorted shape.
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Finally, comparison was made between open and closed-loop controls. It is
evident that the closed-loop control outperforms the open-loop one in terms of

disturbance-rejection ability and settling time.

6.2 RECOMMENDATIONS
Although this work has shown encouraging results, more work is necessary to be done
to make the proposed idea — utilizing ACLD treatments for shape control of structures,

implement in real-life application. Some suggestions are listed below.

(1)  Extending the application of the ACLD patches for shape control to other types of
engineering structures is encouraged, such as piates, shells and curved structures.
Besides, it is essential that models of the above structures be non-dimensionalized,

so that the design results can be applicable to the general beam-like structures.

(i) The control used in the present work is the common Proportional-Integral-
Denvative (PID) control. In fact, with the rapid development in control techniques,
more advanced controllers can be applied to the present shape control problem,
such as the robust control, fuzzy-logic control, and variable-structure control. It is
hoped that these can help to enhance the disturbance rejection ability of the

system.
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(iii) It is also recommended that more design variables and objectives be considered in

(iv)

the optimization problem. Environmental protection is now a global issue, and one
of the philosophies of it is resource saving. Therefore, minimization of the
voltages used during the control process should also be the design objective. Also,
in terms of material saving, number of ACLD patches should also be considered as
the design variables, which will inevitably lead to more complicated problems due

to the interactions between the structural and control designs.

Experimental verification is expected to be performed in due course. The
performance evaluation and analysis on the shape control problem are confined
only in numerical work so far. It means that many factors, that may affect the
implementation of the shape control, are ignored during the analysis. With
experimental work, the difficulties associated with the real implementation of
shape control of ACLD structure can be identified. Solutions can then be proposed

to tackle the problems.
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APPENDIX A
FREQUENCY RESPONSE RESULTS (LEE AND KIM, 2001)

The following frequency response functions are extracted from Lee and Kim [47).
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APPENDIX B
PARETO-OPTIMAL SOLUTIONS (KALYANMOY, 2001)

The following Pareto-optimal solutions are extracted from Kalyanmoy [94].
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APPENDIX C
COMPUTER CODE OF MOGA

format short -
evo_no=200;

Unconstraint=zeros(evo _no,1);
Max_value=zeros{evo_no,3);
Min_value=zeros(evo_no,3);
Average_value=zeros(evo_no,3);

for Big_loop=1:evo_no

%*******************##**%

% Loading I from Generation %
%************#*******#**%

load Generation;
lold=I;

PI1=zeros(size(lold,1),1);
PI2=zeros(size(lold,1),1);
PI3=zeros(size(lold,1),1);
Fitness=zeros(size(lold,1),1);

%t********%

% Decoding %

ALTILLETTTYA

Vlb=[l, 1 ;1 :2’2!2];
Wb=[2,4,4s55555];
bits=[132)2)2’2!2];

for i=1:sum(bits)
Icode(:,D)=Iold(:,i);
end

[Idecode]=Decode(Icode,vib,vub,bits);

for gen_no=1:size(Iold,1)
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gen_no
Out=0;

ASIIESII T SIT 2L LTLTVA

% Obtain Information %

%*************##**%
Pl=round(Idecode(gen_no,1));
S2=round(Idecode(gen_no,2});
S3=round(ldecode(gen_no,3));
L1=round(Idecode(gen_no,4));
L2=round(Idecode(gen no,5));
L3=round(Idecode(gen_no,6));

tc=Iold(gen_no,sum(bits)+1)*10"-3;
tv=Iold(gen_no,sum(bits)+2)*10"-3;
KIl=lold(gen_no,sum(bits}+3);
KI2=lold(gen_no,sum(bits}+4);
KI3=Iold(gen_no,sum(bits)+5);
KDI=lold(gen_no,sum(bits)+6);
KD2=lIold(gen_no,sum(bits)+7);
KD3=lIold(gen_no,sum(bits)+8);
kil=lold(gen_no,sum(bits)+9);
ki2=lold(gen_no,sum(bits)+10),
ki3=lIold(gen_no,sum(bits)+11);
kd1=Iold(gen_no,sum(bits)+12);
kd2=Iold(gen_no,sum(bits)+13);
kd3=Iold(gen_no,sum(bits)+14);

P2=P1+S2+L1;
P3=P2+S3+L2;

type=ones(1,20);

for i=0:L1-1
type(P1+i)=2;

end

for 1=0:L2-1
type(P2+1)=2,

end

for i=0:L3-1
type(P3+i)=2;

end

%*******************%

% Invaild Configuration %
%*******************%

patch no=0;
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patch_length=zeros;
signal=0;

countL=];
countN=];

for i=1:20
if {type(l,i}=1 & signal==1)
signal=0;
countlL=1;
countN=countN+1;
elseif (type(1,i)==2)
patch_length(countN)=countL;
countL=countL+1;
patch_no=countN;
signal=1;
end
end

if (patch_no~=3)
Fitness(gen no,1)=0.2;
Out=1;

end

if (P3+H(L3-1)>20)
Fitness(gen_no,1)=0.2;
Out=1;

end

if (Out==0)

%*************%

% FEM Analysis %

AR L ITE LIT T

[Error,Weight,Sum_damping]=FEM(type,tc,tv,KI1,KI2,KI3,KD1,KD2,KD3 kil,
ki2 ki3 kd1,kd2,kd3,P1,P2,P3,L1,L.2,L3);

PIl{gen_no,1)=Error;
PI2(gen_no,1)=Weight;
PI3(gen_no,1)=Sum_damping;

if (P11(gen_no,1)~=0 & PI2(gen_no,1)~=0 & PI3(gen_no,l)}~=0)
Fitness(gen_no,1)=1.2-((0.4*((0.5*size(Iold, 1))-1))/(size(Told,1)-1));
else
Fitness(gen_no,1)=1.2-((0.4*((0.95*size(lold,1))-1))/(size(Told, 1)-1));
end
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end

end

%********#*****#**%

% Fitness Assignment %
%***********t****t%

% %
% Identifying Feasible Gene %
% %
feasible=zeros;

s=1;

for i=1:size(lold,1)
if (Fitness(i,1)==1.2-((0.4*((0.5*size(lold, 1))-1})/(size(lold, 1)-1)))
feasible(s)=1;
s=s+1;
end
end

if (feasible~=0)

domainance=0;

for i=1:length(feasible)
for j=1:length(feasible)
if (feasible(i}~=feasible(}))
if (PI1(feasible()),1)<=PI1(feasible(i),1)

PI2(feasible(j), 1)<=PI2(feasible(i),1) & PI3(feasible(j),1)<=PI3(feasible(i), 1))

domainance=domainance+1;
end
end
end
if (domainance==0)
Fitness(feasible(i),1)=1.2;
end
domainance=0;
end

end
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%*******#*#***t%

% Saving I to Evo %
%****#*********%

Irecord=Iold;

if (feasible~=0)
Unconstraint(Big_loop, | }=length(feasible);
Max_value(Big_loop,1)=max(PI1(feasible,1));
Max_value(Big_loop,2)=max(PI2(feasible,1));
Max_value(Big_loop,3}=max(PI3(feasible,1));
Min_value(Big_loop,1)=min(PI1(feasible,1));
Min_value(Big_loop,2)=min(PI2(feasible,1});
Min_value(Big_loop,3)=min(PI3(feasible,1));
Average value(Big_loop,1)=mean(PI1(feasible,1));
Average_value(Big_loop,2)=mean(PI2(feasible,1));
Average_value(Big_loop,3)=mean(PI3(feasible,1));
else
Unconstraint(Big_loop,1)=0;
Max_value(Big_loop,1)=0;
Max_value(Big_loop,2)=0;
Max_value(Big_loop,3)=0;
Min_value(Big_loop,1)=0;
Min_value(Big_loop,2)=0;
Min_value(Big_loop,3)=0;
Average_value(Big_loop,1)=0,
Average value(Big_loop,2)=0;
Average value(Big_loop,3)=0;

end

save Evo200 Irecord PI1 PI2 PI3 Fitness feasible

feasible
Iga=lold;

%*****#t%

% MOGA %

%*#**#**%

[Inew]=MOGA(Iga,Fitness);

Dk kAR AR R KRR RN

% Saving I to Generation %
O %A R AAAR AR AR AR AR RO,

=Inew;
save Generation [

end
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save Data Unconstraint Max_value Min value Average value
function[Error,Weight,Sum_damping]=FEM(type,tc,tv,KI1,KI2,KI3,KD1,KD2,KD3 ki
1,ki2 ki3 ,kd1,kd2 kd3,P1,P2,P3,L1,1.2,13);

KP1=0;
KP2=0;
KP3=0;
kp1=0;
kp2=0;
kp3=0;

KP=[KP1,0,0;0,KP2,0;0,0,KP3];
KI=[K11,0,0;0,K12,0;0,0,KI3];
KD=[KD1,0,0;0,KD2,0;0,0,KD3};
kp=[kp1,0,0;0,kp2,0;0,0,kp3];
ki=[ki1,0,0:0,ki2,0;0,0,ki3];
kd=[kd1,0,0;0,kd2,0;0,0,kd3];

Out=0;

%*************#*%

% Node Estimation %
%***************%
node=zeros(1,20);
if (type(1)==1)
countn=2;
else countn=_8;
end
for i=1:20
if (i<20)
node(i)=countn;
if (type(i}=1)
if (type(i+1)==1)
countm=3;
else countm=10;
end
countn=countn+countm;
else
if (type(i+1)==1)
countm=4;
else countm=10;
end
countn=countn+countm,
end
else
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if (type(20)==1)
node(20)=countn;
else node(20)=countn;
end
end
end

AL EITI SII IS R SIT RS L LIt

% Material and Geometric Properties %
%*****#**#**#**#*t#***********%
%%% Height & Width %%%

tb=0.002;

ts=0.000028;

b=0.020;

Ls1=0.05*L1;

Ls2=0.05*L2;

Ls3=0.05*L3;

% %% Young's Modulus %%%
Eb=150*10"9;
Ec=64.9*10"9;

%% % Desity %%%
pb=1600;
pv=1250;
pc=7600;

%%% GHM Parameters %%%
Gv=5*10"5;
parw!=6502.9;
parw2=50618.8;
parw3=352782;
parz1=6.97,
parz2=5.38;
parz3=2.56;
paralphal=0.742;
paralpha2=3.237;
paralpha3=41.654;
d31=-1.75*10"-10;
K3t=1.5*10"-8;

O/ 3 sk Aok AR R AR O

% Moment of Inertia %
%****##**********%
Ib=(b*(tb~3))/12;
Iv=(b*(tv*3))/12;
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Ie=(b*(tc"3))/12;

O R EERRERRR R ERRRR RO,

% Compute tnel, type & length %
%**t*****#**********#**#t%
tnel=20;

length=0.05*ones(1,20);

ASIEEITIZ LETIEII L L L YA

% Calculation of Vsd & Wd %
%*********************#%
Vsd1=-((Ec*d31*ts*(ts+(tb/2)))/(K3t*Ls1))*(0.0002*Ls1);
Vsd2=-({Ec*d31*ts*(ts+(tb/2)))/(K3t*Ls2))*(0.0002*Ls2);
Vsd3=-((Ec*d31*ts*(ts+(tb/2)))/(K3t*Ls3))*(0.0002*Ls3);
Wsd=0.0001;

Dk koK kR RO

% Compute OriginalSize %
%*******************%
TempSize=0;
OriginaiSize=0;
for n=1:tnel-1
if (type(n)=1)
TempSize=TempSize+3;
else
if (type(nt1)==1)
TempSize=TempSize+11;
else
TempSize=TempSize+10;
end
end
end
if (type(tnel)=1)
OriginalSize=TempSize+6;
else
OriginalSize=TempSize+14;
end
MM=zeros(OriginalSize,OriginalSize);
DD=zeros(OriginalSize,OriginalSize);
KK=zeros(OriginalSize,OriginalSize);
BBcl=zeros(OriginalSize,1);
BBc2=zeros(OriginalSize,1);
BBc3=zeros(OriginalSize, 1);
BBc=zeros(OriginalSize,3),
CCcl=zeros{1,0riginalSize),
CCc2=zeros(1,0riginalSize);
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CCc3=zeros(1,0riginalSize);
CCc=zeros(3,0riginalSize);

%tt***ttttt#**t%
% Obtaine MD K %
%*ttt*##ttti‘#*%
Ls=Lsl;
row=0;
flag=0;
i=1;
for m=1:tnel

=

if (type(m)==1)

L=length(m);

ALLIII IR ST PRSI

% Case I: Pure Element %

%***************t#*%

[Mbeam,Dbeam,Kbeam,BBcbeam,CCcbeam]=Beam Matrix(Eb,pb,tb,Ib,b,L),

else
L=length(m);

%********#***#********%

% Case II: ACLD Element %

QR R R R R RO

[Macld,Kacld,KacldV]=ACLD_Matrix(Eb,Ec,Gv,pb,pc,pv,tb,tc,tv,Ib,Ic,b,L);

%% %% Spectral Decomposition %%%
[Ae,Re]=Decomposition(Gv,KacldV);

D B EH R AR AR AKX R AN KO

% Rearrange for Assembly %

%***************t*t*#*%

[MMacld,DDacld,KKacid]=Arrange{Macld,Kacld,KacldV,parw parz],paralphal ,parw
2,parz2 paralpha2 parw3,parz3,paralpha3,Gv,Ae,Re);

BBcacld=[-Ec*d31*b;0;Ec*d3 1 *b*(tv+((tb+tc)/2));-
Ec*d31*b*tv;0;0;0;0;0;0;Ec*d31*b;0;-
Ec*d31*b*(tv+((tb+tc)/2));Ec*d31*b*tv];

CCcacld=[0,0,(Ec*d31*ts*(ts+(tb/2)))/(K3t*Ls),0,0,0,0,0,0,0,0,0,-
(Ec*d31*ts*(ts+(tb/2)))/(K3t*Ls),0];

end
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% Assembly MD and K %

ASIITII I L ETT LIl L VA

if (type(m)=—1)
index(1)=y;
index(2)=j+1;
index(3)=j+2;
index(4)=j+3+flag;
index(5)=j+4-+flag;
index(6)=j+5+flag;
edof=6;
for ir=1:edof;
irs=index(ir);
for ic=1:edof;
ics=index(ic);
KK({irs,ics)=KK(irs,ics)+*Kbeam(ir,ic);
DIDXirs,ics)=DD(irs,ics)+Dbeam(ir,ic);
MM(irs,ics)=MM(irs,ics)+Mbeam(ir,ic),
end
if (row==0)
BBcl(irs,1)=BBcl(irs,1)+BBcbeam(ir, 1),
CCcl(1,irs)=CCcl{(l,irs}*+CCcbeam(1,ir);
elseif (row=1)
BBc2(irs,1)=BBc2(irs,1)+BBcbeam(ir, 1),
CCc2(1,irs)=CCc2(1,irs)+CCcbeam(1,ir);
else
BBc3(irs,1)=BBc3(irs,1)+BBcbeam(ir, 1);
CCc3(1,irs)=CCc3(1,irs}+CCcbeam(1,ir),
end
end
else
index(1)=j;
index(2)=j+1;
index(3)=j+2;
index(4)=j+3;
index(5)=j+4,
index(6)=+5;
index(7)=j+6;
index(8)=j+7;
index(9)=j+8;
index(10)=j19;
index(11)=j+10;
index(12)=)+11;
index{13)=j+12;
index(14)=j+13;
edof=14;
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for ir=1:edof’
irs=index(ir);
for ic=1:edof;
ics=index(ic);

KK(irs,ics)=KK(irs,ics)+KKacld(ir,ic);
DD(irs,ics)=DD(irs,ics)+DDacld(ir,ic);
MM(irs,ics)=MM(irs,ics)+MMacld(ir,ic);

end

if (row==0)
BBcl(irs,1)=BBcl(irs,1)+BBcacld(ir, 1 );
CCcl(l,irs}=CCcl{1,irs)+CCcacld(1,ir);

elseif (row=—1)
BBc2(irs,1)=BBc2(irs, | )+BBcacld(ir,1);
CCc2(1,irs)=CCc2(1,irs)*+CCcacld(1,ir);

else
BBc3(irs, 1 )=BBc3(irs, ! }+BBcacld(ir, 1);
CCc3(1,irs)=CCc3(1,irs)+CCcacld(1,ir);

end

end
end

if {type(m)==1)
if (flag—1)
i=i+4;
flag=0;,
else
i=i+3;
end
else
if (m<tnel)
if (type(m+1)=2)
i=1+10;
else
i=i+10;
flag=1;
row=row+];
if (row—1)
Ls=Ls2;
else Ls=Ls3;
end
end
end
end

end
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BBc(:,1)=BBcl;
BBc(:,2)=BBc¢2;
BBc(:,3=BBc3;
CCe(1,:)=CCcl;
CCc(2,:)=CCc2;
CCe(3,:)=CCc3;

ARIIIS I I LI ST LT L IYA

% Boundary Conditions %
%t****t#t**#**#t***%
if (type(1)==1)

bound=3;
else

bound=4;
end

BoundarySize=0riginalSize-bound;

M=zeros(BoundarySize,BoundarySize);
D=zeros(BoundarySize,BoundarySize);
K=zeros(BoundarySize,BoundarySize);
Bce=zeros(BoundarySize,3),
Bd=zeros(BoundarySize,1);
Cc=zeros(3,BoundarySize);
Cd=zeros(1,BoundarySize});

for i=1:BoundarySize
for j=1:BoundarySize
M(i,j)=MM(i+bound,j+bound);
D(i,j)=DD(i+bound,j+bound);
K(i,j)=KK(i+bound,j+bound),
Be(i,1)=BBc(i+bound,1);
Bce(i,2)=BBc{i+bound,2);
Be(i,3)=BBc(i+bound,3);
Cc(1,1)=CCc(1,i+bound);
Ce(2,1)=CCc(2,i+bound);
Cc(3,1)=CCc(3,i+bound);
end
end

Bd(node,1)=1;
Cd(1,node(20))=1;

A=[(0*eye(BoundarySize),eye(BoundarySize);-inv(M)*K,-inv(M)*D];

B1=[0*ones(BoundarySize,3);(inv(M)*Bc¢)];
B2=[0*ones(BoundarySize, 1);(inv(M)*Bd));
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C1=[Cc,0*ones(3,BoundarySize)];
C2=[Cd,0*ones(1,BoundarySize)];

%*#**#**##%

% (Weight) %

%******#*l%

Weight=(pv*b*tv*(Ls1+Ls2+Ls3))+(pc*b*tc*(Ls1+Ls2+Ls3));

%*#***********t%
% (Sum_damping) %
%****##********%
Osys=ss(A,B1,C1,0);
[Wn,Z,P]=damp(Osys);

count_damp=0;
i=1;

for j=1:size(P,1)
if (count_damp<3)
if (Z(i)=1)
i=i+l1;
else damping_ratio(count_damp+1)=(Z(i)*100)/(Wn(i)/(2*pi));
i=it+2;
count_damp=count_damp+1;
end
end
end

Sum_damping=1/sum(damping_ratio);

O R BB AR A AR RO

% Trainsient Analysis %
%********#***#****%

[V, W]=eig(K,M);
U=zeros(BoundarySize,3);
UG, D=V(,1),
U(;,2)=V(:,2);
U(,3)=V(,3);
%U(:,4)=V(:,4);
%U(:,5)=V(,5);

Mbar=U*M*U;
Dbar=U"™*D*U;
Kbar=U"*K*U;
Bcbar=U"Bc;
Bdbar=U"*Bd,
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Ccbar=Cc*U,
Cdbar=Cd*U;

Abar=[0*eye(3),eye(3);-inv(Mbar)*Kbar,-inv(Mbar)*Dbar];
Blbar=[0*ones(3,3);(inv(Mbar)*Bcbar)];
B2bar=[0*ones(3,1);(inv(Mbar)*Bdbar)];
Clbar=[Ccbar,0*ones(3,3)];

C2bar={Cdbar,0*ones(1,3)];

[n,m]=size(B | bar);
time=0:0.0001:3.1-0.0001;
nc=max(size(time)),

Ts=time(2)-time(1);
Phi=expm(Abar*Ts);
Gammal=inv({Abar)*(Phi-eye(n))*B1bar;
GammaZ2=inv(Abar)*(Phi-eye(n))*B2bar;

x=zeros(ne,n);
tx=zeros(n,1);
x0=zeros(n,1);
x1=x0;
txX=xi;

Vs=zeros(3,nc);
VsDot=zeros(3,nc);
DeltaVs=zeros(3,nc);
DeltaVsDot=zeros(3,nc);
InDeltaVs1=0;
InDeltaVs2=0;
InDeltaVs3=0;

Ws=zeros(3,nc);
WsDot=zeros(3,nc);
DeltaWs=zeros(3,nc);
DeltaWsDot=zeros(3,nc);
InDeltaWs=0;

Vec=zeros{3,nc),

Vsd=[Vsdl;Vsd2;Vsd3),
Fd=0;

Transfer=[U,0*eye(BoundarySize,3);0*eye(BoundarySize,3),U];

for i=1:n¢
x(1,:)=tx";
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Temp=Transfer*tx;
Vs(:,i)=[Cc,0*ones(3,BoundarySize)]*Temp;
VsDot(:,i)=[0*ones(3,BoundarySize),Cc]*Temp;
DeltaVs(:,1)=Vsd-Vs(.,i};
DeltaVsDot(:,i)=-VsDot(:,1);
InDeltaVsl=InDeltaVs1+DeltaVs(1,1);
InDeltaVs2=InDeltaVs2+DeltaVs(2,1);
InDeltaVs3=InDeltaVs3+DeltaVs(3,1);
Ws(:,i)=[Cd,0*ones(1,BoundarySize)]*Temp;
WsDot(:,i)=[0*ones(1,BoundarySize),Cd]*Temp;
DeltaWs(:,1)=Wsd-Ws(:,1);
DeltaWsDot(:,i)=-WsDot(:,i);
InDeltaWs=InDeltaWs+DeltaWs(:,1);

Ve(:,i)=((KP*DeltaVs(:,i))+H{(KD*DeitaVsDot(:,i)H(KI*[InDeltaVs1;InDeltaVs2
;InDeltaVs3]))+H(kp*DeltaWs(:,i))+(kd*DeltaWsDot(:,i))+(ki*InDeltaWs));
tx=Phi*tx+Gammal *Vc¢(:,i+Gamma2*Fd;
end

p=Transfer*x';

for i=1:1000
ts1=(abs(Vs(1,30000)-Vs(1,30000+1)))/Vs(1,30000);
if (abs(ts1)<=0.001)
goodl=1;
else good1=0;
end
end
for j=1:1000
ts2=(abs(Vs(2,30000)-Vs(2,30000+1))/Vs(2,30000);
if (abs(ts2)<=0.001)
good2=1;
else good2=0;
end
end
for k=1:1000
ts3=(abs(Vs(3,30000)-Vs(3,30000+k)))/Vs(3,30000);
if (abs(ts3)<=0.001)
good3=1;
else good3=0;
end
end

if (max(abs(Vs(1,:)))>=1000000)
good1=0;
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end

if (max(abs(Vs(2,:)))>=1000000)
good2=0;

end

if (max(abs(Vs(3,:)))>=1000000)
good3=0;

end

if (good1=0 | good2==0 | good3=0)
Out=l;
end

if (Out==0)

%*******%

% (Error) %

%lk e e e o *%
node_error=zeros(20,1);

for i=1:20
node_error(i, 1)=((0.0001*(0.05*i)"2)-(p(node(i),nc)))"2;
end
total_error=sum(node_error);
Error=total_error;

else
Weight=0;
Sum_damping=0;
Error=0;

end

function[Macld,Kacld,KacldV]=ACLD_Matrix(Eb,Ec,Gv,pb,pc,pv,tb,tc,tv,Ib,Ic,b,L);

KacldUb=Eb*tb*b*[1/L,0,0,0,-1/L,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
-1/L,0,0,0,1/L,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0);
KacldWb=Eb*Ib*[0,0,0,0,0,0,0,0:
0,12/1.73,6/L72,0,0,-12/L°3,6/L2,0:
0,6/LA2,4/1,0,0,-6/1./2,2/L,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;

147



0,-12/L°3,-6/L.42,0,0,12/L*3,-6/L2,0;
0,6/L"2,2/L,0,0,-6/L*2,4/L,0;
0,0,0,0,0,0,0,0];

MacldUb=pb*tb*b*[1/3*L,0,0,0,1/6*L,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
1/6*L,0,0,0,1/3*L,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0];

MacldWb=pb*tb*b*[0,0,0,0,0,0,0,0;
0,13/35*L,11/210%L"2,0,0,9/70*L,-13/420%L"2,0;
0,11/210%L2,1/105%L*3,0,0,13/420*L2,-1/140*L3,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,9/70*L,13/420%L2,0,0,13/35*L,-11/210%L2,0;
0,-13/420%L42,-1/140%LA3,0,0,-11/210*L2,1/105*L3,0:
0,0,0,0,0,0,0,0];

KacldUc=Ec*tc*b*[1/L,0,-1/L*(1/2*tb+tv+1/2*tc),tv/L,-1/L,0,1/L*(1/2*tb+tv+1/2*tc),-
tv/L;
0,12*(1/2%tb+tv+1/2%tc) 2/1.73,6*%(1/2*tb+tv+1/2*tc)*2/L.42,0,0,-
12*(1/2*tb+tv+1/2%tc)"2/L"3,6*(1/2*tb+tv+1/2%tc) 2/L"2,0;

VL*(172%tbHv+1/2%c),6%(1/2*th+tv+1/2*tc) 2/L"2,4%(1/2*tb+tv+1/2*tc) 2/L,
-tv/L¥*(1/2%th+tv+1/2%tc), 1/L*(1/2*tb+tv+1/2*tc),-
6*(1/2%tb+tv+1/2%1c)"2/L72,2*(1/2* tb+tv+1/2%tc) 2/L tv/L*(1/2*tb+tv+1/2%tc);

tv/L,0,-tv/L*(1/2*tb+tv+1/2*tc),tv 2/L -tv/L 0, tv/L*(1/2*th+tv+1/2*tc), -
tv2/L;

-1/L,0,1/L*(1/2*tb+tv+1/2*tc),-tv/L,1/L,0,- L/L*(1/2*tb+tv+1/2*tc),tv/L;

0,-12*(1/2*tb+tv+1/2*tc) 2/L"3,-
6*(1/2*tb+tv+1/2*tc)*2/L"2,0,0,12*(1/2*tb+tv+1/2%tc) 2/L"3, -
6%(1/2*tb+tv+1/2*tc)2/L"2,0;

VL*(1/2*tb+tv+1/2%tc),6*(1/2*th+Hv+1/2%tc) 2/L"2,2%(1/2 *tb+tv+ 1/2%tc)™2/L,t
vIL*(1/2%tb+tv+1/2*tc),- 1/L*(1/2*tb+tv+1/2*tc),-
6*(1/2*tb+tv+1/2%tc) 2/LA2,4%(1/2*tb+tv+1/2*tc) 2/L -
tv/L*(1/2*thb+tv+1/2*tc);
-tv/L,0,tv/L*(1/2*%tb+tv+1/2*tc),-tv2/L,tv/L,0,-
tv/L*(1/2*tb+tv+1/2*1c),tv 2/L);
KacldWce=Ec*Ic*[0,0,0,0,0,0,0,0;
0,12/1.73,6/1.72,0,0,-12/1.3,6/L"2,0;
0,6/1.72,4/L,0,0,-6/1.72,2/L.,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
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0,-12/L3,-6/L°2,0,0,12/L"3,-6/L"2,0;
0,6/L22,2/L,0,0,-6/L"2,4/L.0;
0,0,0,0,0,0,0,0];
MacldUc=pc*tc*b*[1/3%L, 1/4*th+1/2%tv+1/4*tc, 1 1/12%(1/2*th+tv+1/2%c)*L-
1/2#tb*L-L*tv-1/2%tc*L, 1/3*L*tv, 1/6*L, - 1/4*tb-1/2*tv-
1/4*tc,1/12%(1/2*tb+v+1/2%c)*L, 1/6*L*tv;

1/4%th+1/2%tv+1/4%c,6/5%(1/2*tb+tv+1/2%tc) 2/L, 1/10*(1/2*tb+tv+1/2%tc)"2,1/
2#(1/2%tb+Hv+1/2*%tc)*tv, | /4*tb+1/2%tv+1/4%1c, -
6/5%(1/2*tb+v+1/2%c) 2/, 1/10%(1/2*b+v+1/2%c)2, 1/2*(1/2*tb+tv-+1/2%tc)
*ty;

11/12%(1/2*tb+tv+1/2%tc)*L-1/2*tb*L-L *tv-
1/2%tc*L, 1/10%(1/2*tb+tv+1/2*tc)"2,2/1 5*(1/2*tb+tv+1/2%tc) 2*L -
1/12%(1/2*%tbHv+1/2%c)*L*tv, 1/12%(1/2*tb+tv+1/2%tc)*L,-
110%(1/2*%tb+v+1/2%c)2, -
1/30%(1/2%tb+tv+1/2*c) 2*L, 1/12%(1/2*¥tb+tv+1/2*c)*L*tv;

1/3%L*v, 1/2%(1/2%tb+v+1/2 5ty *tv, -
1/12%(1/2*to+tv+1/2%tc)*L*tv, 1/3%tvA2*L, 1 /6*L*tv,-
1/2%(1/2%tbHv+1/2%tc)*tv, 1/12%(1/2*tb-+tv+1/2*tc) L Atv, 1 /6 ¥tvA2*L;

1/6%L, 1/4%tb+1/2%tv+1/4%c,1/12%(1/2%tb+v+1/2*tc)*L, 1/6*L *tv, | /3*L,-
1/4*th-1/2%tv-1/4%tc,-1/12%(1/24tb+tv+1/2%tc) *L, 1/3* L *tv;

~1/4*tb-1/2%tv-1/4*c,-6/5*(1/2*tb+tv+1/2*tc) 2/L,-
1/10%(1/2%tb+tv+1/2*c)*2,-1/2%(1/2*th+tv+1/2%tc)*tv,-1/4*th-1/2*tv-
1/4%c,6/5%(1/2%tb+tv+1/2*tc) 2/L,-1/10%(1/2*tb+tv+1/2%tc)2, -
1/2%(1/2%tb+tv+1/2%c)*tv;

1/12%(1/2%tb+tv+1/2%c)*L, 1/10%(1/2*tb+tv+1/2%c)2,-
1/30%(1/2*tb+tv+1/2%tc) 2*L, 1/12%(1/2*tb+tv+1/2%tc)*L *tv,-
1/12%(1/2*tb+tv+1/2%tc)*L, -
1/10%(1/2*tb+tv+1/2%c)*2,2/1 5*(1/2*th+tv+1/2%tc) 2*L -
/12%(1/2*tb+tv+1/2%c)*L*tv;

1/6*¥L*tv,1/2*(1/2*%tb+tv+1/2*tc)*tv, 1/12%(1/2*tb+Hv+1/2*tc Y L*tv, 1 /6% v 2¥L,

1/3*L*tv,-1/2*(1/2%tb+tv+1/2*tc)*tv,-

1/12%(1/2*tb+tv+1/2*tc)*L*tv,1/3*tv*2*L];

MacldWc=pc*tc*b*[0,0,0,0,0,0,0,0;

0,13/35*%L,11/210*L~2,0,0,9/70*L,-13/420*1.*2,0;
0,11/210*L"2,1/105*L."3,0,0,13/420*L"2,-1/140*L"3,0;
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0;
0,9/70*L,13/420*L.~2,0,0,13/35*L,-11/210*L"2,0;
0,-13/420*L"2,-1/140*L"3,0,0,-11/210*L"2,1/105*L.~3,0;
0,0,0,0,0,0,0,0];

KacldVv=Gv*tv*b*[0,0,0,0,0,0,0,0;

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0;
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0,0,0,1/3*L,0,0,0,1/6*L;
0,0,0,0,0,0,0,0;
0,0,0,6,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,1/6*L,0,0,0,1/3*L];
MacldUv=pv*tv*b*[1/3*L,1/4*tb+1/4*tv,11/12*(1/2%tb+1/2*tv)*L-1/2*tb*L-
1/2*L*tv,1/6*¥L*tv,1/6*L,-1/4*tb-1/4*tv,1/12*(1/2*th+1/2*tv)*L,1/12*L*tv;

1/4%th+1/4%tv,6/5*(1/2%tb+1/2%tv) /L, 1/10%(1/2*tb+1/2%tv) 2, L /4*(1/2*tb+1/2
*Hv)*tv, 1/4*th+1/4%tv,-
6/5*(1/2%tb+1/2*tvY 2/L, 1/10%(1/2%b+ 1/2%tv)2, 1/4%(1/2%tb+1/2*tv)*tv;

11/12%(1/2#tb+1/2*tv)*L-1/2*tb*L-
1/2*L*tv,1/10%(1/2*tb+1/2%tv)*2,2/15%(1/2%tb+ 1/2*tv) 2L -
1/24*(1/2*tb+1/2*tv)*L*tv, 1/12%(1/2*tb+1/2%tv)*L,- 1/10*(1/2%tb+1/2*tv)"2,-
1/30%(1/2*%tb+1/2*tv) 2¥L, 1/24*(1/2*tb+1/2*tv)*L*tv;

1/6*L*tv, 1/4*(1/2*tb+1/2%tv)*tv,-
1/24%(1/2%tb+1/2*tv)*L*tv, /125w 2*L, 1/12*L*tv,-
1/4%(1/2%tb+ /2%ty )¥tv, 1/24%(1/2%tb+1 /2% tv)*L*tv, 1 /24*tv 2L ;

1/6%L,1/4*tb+1/4*tv, 1/12%(1/2%tb+1/2*tv)*L, 1/12%L *tv, 1/3*L-1/4*tb-
1/4%tv,-1/12%(1/2*tb+1/2*tv)*L, 1 /6*L*tv;

~1/4%tb-1/4%tv,-6/5*(1/2*tb+1/2*tv) 2/L - 1/10%(1/2%tb+1/2*tv)"2, -
1/4%(1/2%tb+1/2*tv)*tv,-1/4*tb-1/4*tv,6/5%(1/2%tb+1/2*tv) /L -
1/10%(1/2*tb+1/2*tv)"2,- 1/4*(1/2%tb+1/2*tv)*tv;

1/12%(1/2%th+1/2%tv)*L, 1/10*(1/2*tb+1/2%tv)"2, -
1/30%(1/2%tb+1/2%tv) 2% L, 1/24*(1/2*tb+1/2*tv)*L*tv,-
1/12%(1/2%b+1/2%tv)*L,- 1/10%(1/2%tb+1/2%tv)*2,2/1 5*(1/2*tb+1/2%tv)"25L -
1/24*(1/2%tb+1/2*tv)*L*tv:

11251, 1/4%(1/2%tb+1/2*tv)*tv, 1/24%(1/2%tb+1/2*tv)* L*tv, 1/24*tv"2*L, 1 /6*
L*tv,-1/4%(1/2%th+1/2*tv)5tv,- 1/24*(1/24b+1/2*tv)*L*tv, 1/ 12*tv*2*L];
Macld Wv=pv*tv*b*[0,0,0,0,0,0,0,0;
0,13/35%L,11/210%L"2,0,0,9/70%L,-13/420%L2,0;
0,11/210%LA2,1/105%L3,0,0,13/420%12,-1/140%LA3,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,9/70%L,13/420%L/2,0,0,13/35%L,-11/210*L2,0;
0,-13/420*L2,-1/140*L."3,0,0,-11/210*L"2,1/105%L3,0;
0,0,0,0,0,0,0,0];

Kacld=(KacldUb+KacldUc)+(KacldWb+KacldWc);
Macld=(MacldUb+MacldUv+MacldUc)+(MacldWb+MacldWv+MacldWc);
KacidvV=KacldVv;

function[Mbeam,Dbeam,Kbeam,BBcbeam,CCcbeam]=Beam Matrix(Eb,pb,tb,Ib,b,L);

KbeamU=Eb*tb*b*[1/L,0,0,-1/L,0,0;
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0,0,0,0,0,0;
0,0,0,0,0,0;
-1/L,0,0,1/L,0,0;
0,0,0,0,0,0;
0,0,0,0,0,0];

KbeamW=Eb*Ib*[0,0,0,0,0,0;
0,12/L."3,6/L.72,0,-12/L."3,6/L"2,
0,6/L"2,4/L,0,-6/1L.72,2/L;
0,0,0,0,0,0;
0,-12/1.3,-6/1.72,0,12/L."3,-6/L"2;
0,6/1.72,2/L,0,-6/1.72,4/L];

MbeamU=pb*tb*b*[1/3*L,0,0,1/6*L,0,0;
0,0,0,0,0,0;
0,0,0,0,0,0;
1/6*L,0,0,1/3*L,0,0;
0,0,0,0,0,0,
0,0,0,0,0,01;

MbeamW=pb*tb*b*[0,0,0,0,0,0;
0,13/35*L,11/210*L"2,0,9/70*L,-13/420*L"2;
0,11/210*1L"2,1/105*L"3,0,13/420%L"2,-1/140*L"3;
0,0,0,0,0,0;
0,9/70*L,13/420*%L"2,0,13/35*L,-11/210*L"2;
0,-13/420*L"2,-1/140*L"3,0,-11/210*L"2,1/105*L*3];

Kbeam=KbeamU+KbeamW,;
Mbeam=MbeamU+MbeamW;
Dbeam=zeros(6,6);

BBcbeam=zeros(6,1);

CCcbeam=zeros(1,6);
function[Ae,Re]=decomposition(Gv,KacldV),
KacldVbar=(1/Gv)*KacldV;
[U,S,V]=svd(KacldVbar);

Abar=S§;
Rbar=U;

lamda=diag(Abar);

count=0;
flag=1;

for i=1:8;
if (lamda(i)<=0)
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count=count;

else
Ae(flag,flag)=lamda(i);
Re(:,flag)=Rbar(:,i);

end
count=count+1;
flag=flag+1,

end

function[fMMacld,DDacld,KKacld]=arrange(Macld,Kacld,Kacldv,parw1 parz1,paralpha
1,parw2,parz2,paralpha2,parw3,parz3,paralpha3,Gv,Ae Re);

MMacld=zeros(14,14),
DDacld=zeros(14,14);
KKacld=zeros(14,14);

wl=parwl;
w2=parw2;
w3=parw3;
zl=parzl;
22=parz2,
z3=parz3;
arl=paralphal;
ar2=paralpha?;
ar3=paralpha3;

A=Gv*Ae,
R=Re*A;
Rt=R";

KK=Kacld+(1+arl+ar2+ar3)*Kacldv,

%%% Compute MMacld %%%
for ir=1:2;
irs=ir+4;
for ic=1:2;
ics=ict4,;
MMacld(irs,ics)=MMacld(irs,ics)+((arl/w12)*A(ir,ic));
end
end
forir=1:2;
irs=ir+6;
for ic=1:2;
ics=ict+6;
MMacld(irs,ics)=MMacid(irs,ics)+({(ar2/w2"2)* A(ir,ic));
end
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end
for ir=1:2;
irs=ir+8;
for ic=1:2;
ics=ic+8;
MMacld(irs,ics)=MMacld(irs,ics)+((ar3/w3"2)* A(ir,ic)});
end
end

for ir=1:4;
foric=1:4;
MMacld(ir,ic)-MMacld(ir,ic)+Macld(ir,ic);
end
end

for ir=1:4;
for ic=5:§;
ics=ict+6;
MMacld(ir,ics)=MMacld(ir,ics}+Macld(ir,ic);
end
end

for ir=5:8;
irs=ir+6;
for ic=1:4;
MMacld(irs,ic)=MMacld(irs,ic)+Macld(ir,ic);
end
end

for ir=5:8;
Irs=ir+6;
for ic=5:8,;
ics=ic+6;
MMacld(irs,icsy=MMacld(irs,ics)+Macld(ir,ic);
end
end

%% % Compute DDacld %%%
for ir=1:2;
irs=ir+4;
foric=1:2;
1cs=ic+4;
DDacld(irs,ics)=DDacld(irs,ics)+((2*ar1 *z1/w1)*A(ir,ic));
end
end
for ir=1:2;
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irs=ir+6;
for ic=1:2;
ics=ic+6;
DDacld(irs,ics)=DDacld(irs,ics)+({(2*ar2*z2/w2)* A(ir,ic));
end
end
for ir=1:2;
irs=ir+8;
for ic=1:2;
ics=ic+8;
DDacld(irs,ics)=DDacld(irs,ics)+((2*ar3*z3/w3)* A(ir,ic));
end
end

%%% Compute KKacld %%%
for ir=1:2;
irs=ir+4;
for ic=1:2;
ics=ict+4;
KXacld(irs,ics)=KKacld(irs,ics)Har1 *A(ir,ic));
end
end
for ir=1:2;
irs=ir+6;
for ic=1:2;
1cs=ic+6;
KKacld(irs,ics)=KKacld(irs,ics)+(ar2 * A(ir,ic));
end
end
for ir=1:2;
irs=ir+8;
for ic=1:2;
ics=ic+8;
KKacld(irs,ics)=KKacld(irs,ics)+(ar3*A(ir,ic));
end
end

for ir=1:4;
for ic=1:4;
KXKacld(ir,ic)=KKacld(ir,ic)+KK(ir,ic);
end
end
for ir=1:4;
for ic=5:8;
ics=ic+6;
KKacld(ir,ics)=KKacld(ir,ics}+KK(ir,ic);
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end
end
for ir=5:8;
irs=ir+6;
for ic=1:4;
KKacld(irs,ic)=KKacld(irs,ic)+KK(ir,ic);
end
end
for ir=5:8;
irs=ir+6;
for ic=5:8;
ics=ic+6;
KKacld(irs,icsy=KKacld(irs,ics)+KK(ir,ic);
end
end

for ir=1:4;
for ic=1:2;
ics=ic+4;
KKacld(ir,icsy=KKacld(ir,ics)-(ar1 *R(ir,ic));
end
end
forir=1:4;
for ic=1:2;
ics=ic+6;
KKacld(ir,ics)=KKacld(ir,ics)-(ar2*R(ir,ic));
end
end
for ir=1:4;
for ic=1:2;
ics=ic+8;
KKacld(ir,ics)=KKacld(ir,ics)-(ar3 *R(ir,ic));
end
end

for ir=5:8;
Irs=ir+6;
for ic=1:2;
ics=ic+4,
KKacld(irs,ics)=KKacld(irs,ics)-(ar | *R(ir, ic));
end
end
for ir=5:8;
Irs=ir+6;
for ic=1:2;
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ics=ic+6;
KKacld(irs,ics)=KKacld(irs,ics)-(ar2*R(ir,ic));
end
end
for ir=5:8;
irs=ir+6;
for ic=1:2;
ics=ic+8;
KXacld(irs,ics)=KKacld(irs,ics)-(ar3*R(ir,ic));
end
end

for ir=1:2;
irs=ir+d;
for ic=1:4;
KKacld(irs,ic)=KKacld(irs,ic)-(ar ] *Rt(ir,ic));
end
end
for ir=1:2;
Irs=ir+6;
for ic=1:4;
KKacld(irs,ic)=KKacld(irs,ic)-(ar2 *R(ir,ic));
end
end
for ir=1:2;
irs=ir+8;
for ic=1:4;
KKacld(irs,ic)=KKacld(irs,ic)-(ar3 *Rt(ir,ic));
end
end

for ir=1:2;
irs=ir+4,
for ic=5:8;
ics=ic+6;
KKacld(irs,ics)=KKacld(irs,ics)-(ar] *Rt(ir,ic));
end
end
for ir=1:2;
irs=ir+6;
for ic=5:8;
ics=ic+6;
KKacld(irs,ics)=KKacld(irs,ics)-(ar2 *Rt(ir,ic));
end
end
for ir=1:2;
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irs=ir+8;
for ic=5:8;
ics=ic+6;
KKacld(irs,ics)=KKacld(irs,ics)-(ar3 *Rt(ir,ic));
end
end

function[Inew]=MOGA(Iga,Fitness);

% %
% Selection for reproduction %
% %

norm_fit=Fitness/sum(Fitness);
selected=rand(size(Iga,1),1);
sum_fit=0;

for i=1:length(Fitness)
sum_fit=sum_fit+nomm_fit(i);
index=find(selected<sum_fit),
selected(index)=i*ones(size(index));
end

Iselected=Iga(selected,:);

% %
% Reordering for Crossover %
% %

[juck,order]=sort(rand(size(Iga,1),1));
Iordered=Iselected(order,:);

A %
% Crossover %
O mammn o

sites=ceil(rand((size(1ga,1)/2),1)*(size(1ga,2)-1));
sites=sites.*(rand(size(sites))<0.8);
for i=1:length(sites);
if (sites(i)<=11 & sites(i}~=0)
Icrossed([(2*1)-1  2*i],:)=[lordered([(2*i)-1  2*i],1:sites(i)),Jordered([2*i
1],sites(i)+1:size(Iga,2)));
elseif (sites(i)>11 & sites(i)~=0)
Icrossed([(2*i)-1  2*i],))=[Tordered([(2*i)-1  2*i],1:sites(i)),lordered([2*i
1],sites(i)+1:size(Iga,2))];
V1=rand(1),
V2=rand(1);
Icrossed((2*i)-1,sites(i))}=(V 1*lordered((2*i)-1,sites(i)))+((1-
V1)*Tordered(2*i,sites(i)));
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Icrossed(2*1,sites(i))=(V2*lordered(2*i,sites(i))}+((1-V2)*Iordered((2*i)-1,sites(i)));
else

Icrossed((2*i)-1,:)=lordered(2*i,:);

Icrossed(2*i,:)=Iordered((2*i)-1,:);

end
end
Icrossed;
g %
% Mutation %
e %

Imutated=Icrossed;
mutate=find(rand(size(Iga))<0.05);

for i=1:length(mutate)

if (mutate(1)<=2200)
Imutated(mutate)=1-Icrossed{mutate);

end

V=rand(1);

if (mutate(i)>=2201 & mutate(i)<=2400)
Imutated(mutate(i))=(V*(1-0.01))}+0.01;

end

if (mutate(i)>=2401 & mutate(i)<=2600)
Imutated(mutate(i))=(V*(1-0.01))+0.01;

end

if (mutate(1)>=2601 & mutate(i)<=3200)
Imutated(mutate(i))=(V*(3-0))+0;

end

if (mutate(i)>=3201 & mutate(i)<=3800)
Imutated(mutate(i))=(V*{500-100))+100;

end

if (mutate(i)>=3801 & mutate(i)<=4400)
Imutated(mutate(i))=(V*{20-0))+0;

end

if (mutate(i)>=4401 & mutate(i)<=5000)
Imutated(mutate(i))=(V*(500-100))+100;

end
end
% %
% New Generation %
% %
Inew=Imutated;
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