

iii

Abstract

In the current World Wide Web (WWW), users find it difficult to locate relevant information

using search engines. This may be due to the fact that the current World Wide Web lacks

semantic markup. One of the possible solutions for this problem is Semantic Web. In the

latest Semantic Web technology, descriptive markup languages, such as Resource Description

Framework (RDF) and Web Ontology Language (OWL), were proposed to model the web

content in a machine-readable way which assists information gathering and automatic

searching by software agents. Since these ontology markup languages deal with ‘hard’

semantics with the description and manipulation of crisp data, they are not capable to

represent uncertain information.

This thesis proposes an extension of the current ontology representation which supports

uncertain information modeling. The extension is called Fuzzy Ontology Map (FOM) which

is based on the integration of fuzzy theory and graph theory. By considering an ontology as a

graph, an ontology graph can be constructed by using a vertex to represent a subject or literal

value and an arrow to represent a predicate. Each edge in the ontology graph has a fuzzy

membership value. A FOM is a connection matrix which collects the membership values

between classes in the ontology graph. Thus, a fuzzy ontology could be created by using the

FOM and the ontology document (RDF/OWL). This research also defines a set of algorithms

for inferring fuzzy relationships in an FOM. It is possible to use an FOM to develop

real-world applications and systems that can deal with imprecise or vague information. To

demonstrate how FOM works, two prototype applications were developed, SemTour:HK and

iJADE FreeWalker (iJFW).

iv

SemTour:HK is a tourist information portal integrating an ontology with the FOM to

allow users to perform fuzzy searches. The average processing time for a fuzzy search is

around 1.9s which is 0.4s longer than the exact match searching. The prototype was tested on

20 novice users. 80% of the users felt that the system can help tourists find tourist information

in Hong Kong. 75% of the users agreed that the fuzzy search function is useful.

 iJFW is an intelligent agent-based tourist guiding system which is used in mobile

devices. It was developed based on the integration of intelligent agent technology (IAT) and

Global Positioning System (GPS) with FOM. There are two FOMs in the system: i) a

preference FOM in the client side and that logs the users’ cuisine interests; ii) an

accommodation FOM in the server side for fuzzy searching of accommodation choices. iJFW

was tested on a 36.6kbit/s wireless connection. The average response time for a fuzzy search

is around 25s. Proportionally, the average processing time for gathering the result for 3G

wireless connections would be 3.4s. 30 candidates were invited to answer a questionnaire

after using the system. 67% of the candidates felt that the fuzzy search function was useful for

finding information about a particular cuisine. 17 candidates thought that iJFW could replace

tourist guidebooks. 13 candidates though that iJFW would be a subsidiary tool for traveling.

v

Publications

Papers Accepted/Published

1. Toby H.W. Lam, ‘Fuzzy Ontology Map - A Fuzzy Extension of the Hard-Constraint

Ontology,’ Proceedings of 2006 IEEE / WIC / ACM International Conference on Web

Intelligence (WI 2006), Hong Kong, China, December 2006, IEEE Computer Society,

pp. 506 – 509.

2. Toby H.W. Lam and Dr. Raymond S.T. Lee (2006), ‘An Intelligent Ontology-based

Agent Framework for Semantic Web Service: Ontia iJADE,’ Knowledge-Based

Intelligent Information and Engineering Systems (LNCS 4252), pp. 637 – 643,

Springer-Verlag, Berlin Heidelberg.

3. Toby H.W. Lam and Dr. Raymond S.T. Lee (2006), ‘iJADE FreeWalker - An

Ontology-based Tourist Guiding System,’ Knowledge-Based Intelligent Information and

Engineering Systems (LNCS 4252), pp. 644- 651, Springer-Verlag, Berlin Heidelberg.

4. Janice W.Y. Hui, Toby H.W. Lam and Dr. Raymond S.T. Lee (2005), ‘The Design and

Implementation of an Intelligent Negotiation Shopping System,’ Multiagent and Grid

Systems, Vol. 1 (3), pp. 131-146

vi

5. Tony W.H. Ao Ieong, Toby H.W. Lam, Alex C.M. Lee and Raymond S.T. Lee (2005),

‘iJADE Tourist Guide : A Mobile Location-Awareness Agent-Based System for Tourist

Guiding,’ Knowledge-Based Intelligent Information and Engineering Systems (LNAI

3681), pp. 671-677, Springer-Verlag Berlin Heidelberg

Paper Submitted

6. Toby H.W. Lam and Raymond S.T. Lee, ‘iJADE FreeWalker – An Intelligent Ontology

Agent-based Tourist Guiding System,’ submitted International Journal of Software

Engineering and Knowledge Engineering (under second review)

7. Toby H.W. Lam and Raymond S.T. Lee, ‘iJADE FreeWalker: The Design and

Implementation of an Ontology Agent Based Tourist Guiding and Servicing System,’

submitted to Multiagent and Grid Systems

vii

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to the following bodies:

1. The Department of Computing of the Hong Kong Polytechnic University for

providing excellent facilities and resources for my studies and research;

2. My academic supervisor, Dr. James N.K. Liu, who has provided unreserved,

constructive, valuable advice and guidance throughout my studies;

3. My ex-supervisor Dr. Raymond S.T. Lee for the useful discussions on my research;

4. My parents, sister and Hera Wong for their continuous and tremendous support,

encouragement, tolerance as well as their patience through the years of my studies;

and

5. Martin Kyle for his tremendous support and patience in proof-reading of my

papers and thesis.

Without the support and assistance of these people, I would not have been able to continue

my study and research, nor complete this thesis.

viii

Table of Contents

CERTIFICATE OF ORIGINALITY...II

ABSTRACT ... III

PUBLICATIONS...V

ACKNOWLEDGEMENTS ...VII

TABLE OF CONTENTS ... VIII

LIST OF FIGURES... XI

LIST OF TABLES .. XIII

CHAPTER 1. INTRODUCTION..1

1.1 MOTIVATION OF RESEARCH ..2
1.2. CONTRIBUTIONS ..3
1.3. ORGANIZATION..5

CHAPTER 2. BACKGROUND ..7

2.1 INTRODUCTION ...7
2.1.1 Organization of the Chapter ..8

2.2 WORLD WIDE WEB...8
2.3 SEMANTIC WEB ..9

2.3.1 Extensible Markup Language (XML)... 11
2.3.2 Resource Description Framework (RDF) and RDF Schema ...12
2.3.3 Web Ontology Language (OWL) ..14

2.4 PROBLEMS IN CURRENT ONTOLOGY MARKUP LANGUAGE ...15
2.5 RELATED WORK ..16
2.6 FUZZY SET THEORY...19
2.7 CONCLUSION ..21

CHAPTER 3. FUZZY ONTOLOGY MAP..23

3.1. INTRODUCTION ..23
3.1.2. Organization of the Chapter ...24

ix

3.2. FUZZY ONTOLOGY MAP (FOM)...24
3.2.1. Theoretical Analysis of Fuzzy Ontology Map (FOM) ...24
3.3.2. Analysis of Fuzzy Ontology Map...44

3.3 IMPLEMENTATION AND EXPERIMENTS...48
3.3.1 Experiments on Synthetic Data ..48
3.3.1 Experiments on Real-life Data ...53

3.4. SUMMARY..57

CHAPTER 4. FUZZY ONTOLOGY MAP IN APPLICATION - SEMTOUR:HK........................59

4.1 INTRODUCTION ...59
4.1.1 Organization of the Chapter ..60

4.2 RELATED WORK ...60
4.3 CONSTRUCTION OF TRAVEL ONTOLOGY ...61

4.3.1 Collection of Structural Information..61
4.3.2 Travel Ontology Design ...64
4.3.3 Properties in Travel Ontology..68
4.3.4 Construction of Fuzzy Ontology Map (FOM) ..69

4.4 SEMTOUR:HK ..72
4.4.1 System Architecture of SemTour:HK..72

4.5 FUZZY SEARCHING BY USING FUZZY ONTOLOGY MAP ...76
4.6 EVALUATION AND USER STUDY ..77
4.6 DISCUSSION AND CONCLUSION...82

CHAPTER 5. IJADE FREEWALKER ..84

5.1 INTRODUCTION ...84
5.1.1 Organization of the Chapter ..85

5.2 BACKGROUND ..85
5.2.1 Agent Technology ...85
5.2.2 Intelligent Java Agent-based Development Environment (iJADE)87
5.2.3 Global Positioning System (GPS) ..88

5.3 IJADE FREEWALKER (IJFW)..89
5.3.1 iJADE FreeWalker Client...91
5.3.2 GPS Agent..92
5.3.3 Fuzzy Search Agent ..93
5.3.4 iJADE Tourist Information Center ...93

5.4 FUZZY ONTOLOGY MAP IN IJADE FREEWALKER ...94
5.4.1 Accommodation Fuzzy Search..94
5.4.2 Cuisine Preference Search ...96

5.5 PERFORMANCE EVALUATION ..98

x

5.6 CONCLUSION AND FUTURE WORK...104

CHAPTER 6. CONCLUSION AND FURTHER RESEARCH..107

6.1 ORGANIZATION OF THE CHAPTER ...107
6.2 SUMMARY OF MAJOR CONTRIBUTIONS...107
6.3 ADVANTAGE OF USING FOM...109
6.4 FURTHER RESEARCH...109

6.4.1 Automatic Fuzzy Ontology Generation ..109
6.4.2 Fuzzy Query Language .. 110

REFERENCES ... 112

xi

List of Figures

FIGURE 2.1. SEMANTIC WEB ARCHITECTURE (SEMANTIC WEB, 2001). ...10
FIGURE 2.2. SAMPLE XML DOCUMENT ...12
FIGURE 2.3. GRAPH REPRESENTATION OF THE EXAMPLE STATEMENT...13
FIGURE 2.4. RDF REPRESENTATION OF THE EXAMPLE STATEMENT ..13
FIGURE 2.5. EXAMPLE OF OWL ..15
FIGURE 2.6. FUZZY MEMBERSHIP FUNCTION FOR A FUZZY SET F ...20
FIGURE 3.1. EXAMPLE OF AN ONTOLOGY GRAPH ...25
FIGURE 3.2. GRAPH OF FUZZY ACCOMMODATION ONTOLOGY..27
FIGURE 3.3. A SIMPLIFIED GRAPH OF FUZZY ACCOMMODATION ONTOLOGY...27
FIGURE 3.4. BASE FORM OF FUZZY ONTOLOGY MAP FOMBASE OF ACCOMMODATION ONTOLOGY28
FIGURE 3.5. (A) FOM WITH VIRTUAL EDGES FOR REACHABLE CLASSES A1 AND A4 BY USING MAX(X,Y) AS

THE COMPARATIVE FUNCTION (B) FOM WITH VIRTUAL EDGES FOR REACHABLE CLASSES A1 AND A4

BY USING MIN(X,Y) AS THE COMPARATIVE FUNCTION...32
FIGURE 3.6. (A) FOM WITH ALL VIRTUAL EDGES FOR REACHABLE CLASSES BY USING MIN(X,Y) AS THE

COMPARATIVE FUNCTION (B) FOM WITH ALL VIRTUAL EDGES FOR REACHABLE CLASSES BY USING

MAX(X,Y) AS THE COMPARATIVE FUNCTION ...33
FIGURE 3.7. (A) FOM WITH ALL VIRTUAL EDGES FOR REACHABLE AND UNREACHABLE CLASSES BY USING

MIN(X,Y) AS THE COMPARATIVE FUNCTION (B) FOM WITH ALL VIRTUAL EDGES FOR REACHABLE

AND UNREACHABLE CLASSES BY USING MAX(X,Y) AS THE COMPARATIVE FUNCTION39
FIGURE 3.8. (A) FINAL FOM WHICH USED MIN(X,Y) AS THE COMPARATIVE FUNCTION (B) FINAL FOM

WHICH USED MAX(X,Y) AS THE COMPARATIVE FUNCTION...41
FIGURE 3.9. (A) FOMT WHICH USED MIN(X,Y) AS THE COMPARATIVE FUNCTION (B) FOMT WHICH USED

MAX(X,Y) AS THE COMPARATIVE FUNCTION ...44
FIGURE 3.10. EXAMPLE OF ONTOLOGY WHICH INSERTS FUZZY MEMBERSHIP INFORMATION TO THE CLASS

INSTANCES DIRECTLY...46
FIGURE 3.11. EXAMPLE OF THE FUZZY XML...47
FIGURE 3.12. DTD FOR THE FUZZY XML..47
FIGURE 3.13. TOTAL PROCESSING TIME VS. NUMBER OF CLASSES ...49
FIGURE 3.14. NUMBER OF EDGES VS. NUMBER OF CLASSES...50
FIGURE 3.15. TIME TO CREATE AN EDGE VS. NUMBER OF CLASS ..52
FIGURE 3.16. SUBSTRATE ONTOLOGY (BUCHE, ET AL., 2005) ..54
FIGURE 3.17. FLOW DIAGRAM FOR CREATING A FUZZY ONTOLOGY MAP ..58
FIGURE 4.1. TRAVEL ONTOLOGY ...65
FIGURE 4.2. THE PARTIAL OWL OF THE TRAVEL ONTOLOGY..66

xii

FIGURE 4.3. CUISINE ONTOLOGY ..67
FIGURE 4.4. AN INSTANCE OF HOTEL ...68
FIGURE 4.5. ACCOMMODATION FUZZY ONTOLOGY MAP...70
FIGURE 4.6. MATRIX OF ACCOMMODATION FUZZY ONTOLOGY MAP...71
FIGURE 4.7. THE CONTENT OF THE FUZZY XML OF FUZZY ONTOLOGY MAP OF ACCOMMODATION71
FIGURE 4.8. SYSTEM ARCHITECTURE OF SEMTOUR:HK ..73
FIGURE 4.9. SCREENSHOT OF SEMTOUR:HK HOMEPAGE ..74
FIGURE 4.10. A SPARQL EXAMPLE USED IN SEMTOUR:HK..75
FIGURE 4.11. SCREENSHOT OF A SHOPPING PAGE IN SEMTOUR:HK ...75
FIGURE 4.12. SCREENSHOT OF FUZZY SEARCHING PAGE ..76
FIGURE 4.13. SEQUENCE DIAGRAM OF FUZZY SEARCH FUNCTION ...77
FIGURE 4.11. PROCESSING TIME FOR EACH PAGE ...79
FIGURE 4.12. PROCESSING TIME IN FUZZY SEARCHING AND EXACT MATCH SEARCHING IN

ACCOMMODATION PAGE...80
FIGURE 5.1. IJADE FRAMEWORK..88
FIGURE 5.2. IJADE FREEWALKER SYSTEM ARCHITECTURE..91
FIGURE 5.3. SCREENSHOT FROM IJADE FREEWALKER CLIENT...92
FIGURE 5.4. A SPARQL EXAMPLE USED IN IJADE FREEWALKER ...94
FIGURE 5.5. SCREENSHOT OF ACCOMMODATION FUZZY SEARCHING IN IJFW ..95
FIGURE 5.6. SCREENSHOT OF ACCOMMODATION FUZZY SEARCH RESULT IN IJFW96
FIGURE 5.7. SCREENSHOT OF CUISINE PREFERENCE PANEL IN IJFW...97
FIGURE 5.8. THE SORTED DINING INFORMATION ..98
FIGURE 5.9. SCREENSHOT OF DINING SEARCH RESULT IN IJFW ...98
FIGURE 5.10. IJADE FREEWALKER...99

xiii

List of Tables

TABLE 2.1. COMPARISON BETWEEN RECENT DEVELOPMENTS..22
TABLE 3.1. THE RATIO BETWEEN THE NUMBER OF EDGES IN FILTERED FOM AND BASE FOM51
TABLE 3.2. AVERAGE PROCESSING TIME FOR CREATING AN EDGE IN FOM...53
TABLE 3.3. FOM PROCESSING TIME IN SUBSTRATE ONTOLOGY AND ACCOMMODATION ONTOLOGY55
TABLE 3.4. NUMBER OF EDGES IN FOM (SUBSTRATE ONTOLOGY) ...56
TABLE 3.5. NUMBER OF EDGES IN FOM (ACCOMMODATION ONTOLOGY) ..56
TABLE 3.6. FILE SIZE OF FOM...57
TABLE 4.1. WEBSITES RELATED TO HONG KONG TRAVEL GUIDES...62
TABLE 4.2. TEN MOST COMMONLY USED CATEGORIES IN HONG KONG TRAVEL GUIDE WEBSITES63
TABLE 4.3. TEN MOST COMMONLY USED CATEGORIES AFTER FILTERING AND GROUPING64
TABLE 4.4. AVERAGE PROCESSING TIME FOR EACH PAGE...79
TABLE 4.5. PROCESSING TIME FOR SEARCHING THE ACCOMMODATION PAGE...81
TABLE 4.6. QUESTIONS USED IN THE INTERVIEW ...81
TABLE 4.7. RESULT OF THE INTERVIEW..81
TABLE 5.1. ROUND TRIP TIME FOR GPS AGENT TO GATHER LOCATION-AWARE INFORMATION100
TABLE 5.2. ROUND TRIP TIME FOR FUZZY SEARCH AGENT TO GATHER DINING INFORMATION101
TABLE 5.3. ROUND TRIP TIME FOR FUZZY SEARCH AGENT TO GATHER ACCOMMODATION INFORMATION

..101
TABLE 5.4: ACCURACY OF THE IJADE TOURIST GUIDE SYSTEM WITH REAL GPS RECEIVER.................103

1

Chapter 1. Introduction

In 2001, Tim Berners-Lee, James Hendler and Ora Lassila published an article about the

vision of semantic web in Scientific American (Berners-Lee, Hendler and Lassila, 2001).

They described Semantic Web as a new form of web content that should be meaningful to

computers (such as software agents), as well as people. The web content in the World Wide

Web can be applied in order to provide ‘truly’ useful applications to the end-users. The future

direction of WWW should aim at this ultimate goal.

In the current World Wide Web, people always find information from the Internet by

using search engines. If a user wants to buy a book from the Internet, he/she may go to

Amazon.com, enter the book title to the search engines, browse the information and then buy

the book. At this stage, it is still not possible to ask a computer to do the whole process for us

automatically. One reason for this is that web pages are designed to display information to

users, instead of computers. This limits the computer to analyzing the content of the web.

Thus, Berners-Lee and other researchers proposed a new form of web, Semantic Web, which

would make the web content accessible and understandable to both machines and people. By

using Semantic Web, computers such as software agents can search information and perform

actions automatically and intelligently. Besides, lots of works can be done by using software

agents. For instance, the software agents can then help the user to find and buy the cheapest

book from the Internet, to arrange a meeting with a client to suit their schedule, find the

shortest path to reach a destination.

At present, web pages are mainly created by HyperText Markup Language (HTML)

2

(HTML, 1999). HTML is a simple markup language used for presenting information to the

users. Since the main focus of HTML is for presentation, it is difficult to let the software

agents process the content or information in a standardized way. Due to this limitation, more

descriptive markup languages, such as Resource Description Framework (RDF) (RDF, 2004)

and Ontology Web Language (OWL) (OWL, 2004), were proposed. These markup languages

are able to model the web content in a machine-readable way which assists information

gathering and searching by software agents in an automatic way. The web resources modeled

by using RDF and OWL are called ontologies. An ontology is a specification of a

conceptualization which is used to describe the objects and the relations between them in a

domain (Gruber, 1993). However, there is a structural problem in these markup languages.

These ontology markup languages only can deal with hard semantics (either true or false and

there is nothing in between) in the description and manipulation of crisp data. Due to this

limitation, it is not possible to represent uncertain information by using current ontology

representation. The fact is that much of our real-world knowledge consists of uncertain or

imprecise information. This thesis shows how to extend the crisp ontology to represent

uncertain information.

The following sections briefly introduce the motivations of the research, contributions

and organization of this thesis.

1.1 Motivation of Research

The two-valued-based logical methods in Semantic Web are not able to process soft semantics.

Fuzzy logic is a good bridge between human ‘soft logic’ and machine ‘hard logic’. This work

is motivated by Zadeh’s concept of Web IQ (WIQ) (Zadeh, 2003), which described Web

intelligence as:

“In moving further into the age of machine intelligence and automated reasoning, we have

3

reached a point where we can speak, without exaggeration, of systems which have a high

machine IQ (MIQ)… In the context of the Web, MIQ becomes Web IQ, or WIQ, for short”

Zadeh showed a view of evolving search engines into some kind of question-answering

systems. Since current Semantic Web and ontology tools are based on bivalent logic, they

have intrinsic limitations on addressing problems especially when the information is

ill-structured, uncertain and imprecise. To further move towards to WIQ, Zadeh

recommended that it is better to abandon the bivalence in current Semantic Web and to adopt

fuzzy logic.

The work described in this thesis is about developing an extension of the current

ontology representation which supports uncertain information modeling. The ontology

markup language was extended so that each path in the ontology graph could include fuzzy

information. Such extension is called Fuzzy Ontology Map (FOM) which is based on the

integration of fuzzy theory and graph theory. A Fuzzy Ontology Map (FOM) has been

developed to provide a solution to enhance the current ontology representation (such as RDF

and OWL). It is not necessary to change the syntax of the current ontology representation.

Thus, FOM is suitable for Semantic Web applications. FOM provides a feasible solution for

fuzzy searching. Besides, a user can define his/her own preference FOM for information

filtering. The applications developed based on FOM would give a personalization experience

for the user. The main aim of this research is to investigate and to develop an extension for the

ontology, which can support uncertain knowledge and information representation.

1.2. Contributions

The goal of this work is: i) to define a way to utilize the structure of ontology and the fuzzy

relationships within them, ii) to show how the fuzzy relation inference can be integrated into

applications. The ultimate goal is to create a framework that is suitable to model real-world

knowledge such that the information presented to the user is more useful.

4

 To achieve this goal, first a connection matrix, Fuzzy Ontology Map (FOM), was

defined. FOM collected the membership values between each class in the ontology. In the

ontology graph, each path can have a membership value to represent fuzzy information. The

membership value is a real value between 0 and 1. Fuzzy ontology was defined as an ontology

which supports the representation of uncertain information. The fuzzy ontology is created by

using RDF/OWL with FOM. Then, two types of fuzzy set were also defined: symmetric and

asymmetric. A symmetric fuzzy set is the one in which the fuzzy relation between two classes

is non-directional such as a level of similarity. The degree of similarity is symmetric as there

is no difference between ‘class A similar to class B’ and ‘class B similar to class A’

(non-directional). It means that there is no difference in the two (opposite) direction (A->B =

B->A). An asymmetric fuzzy set is the one in which the fuzzy relation between two classes is

directional such as level of preference. Suppose class A is preferred to class B, then there is a

difference in the opposite direction. It means that if class A is preferred to class B (A->B),

then it is not the same in opposite direction (B->A). By using these definitions and FOM, a set

of algorithms was further derived for inferring fuzzy relationships within the FOM. If two

classes in the ontology are not directly connected, the fuzzy membership values would be

calculated by the paths that connect them in an FOM.

 Two applications were developed to demonstrate how the inferred fuzzy relation in

FOM can be used. The first one is called SemTour:HK, a web-based tourist information portal

which integrates tourist ontology with the accommodation of a FOM. Users are allowed to

perform fuzzy search in the accommodation page. When the user is looking for

accommodation, he/she can perform a fuzzy search to search for similar accommodation type

in the database. The second application is called iJADE FreeWalker (iJFW), a mobile-based

tourist guiding system. It was developed based on the integration of ontology, FOM, agent

technology and GPS technology. There are two FOMs in the system: i) preference FOM on

the client side; ii) accommodation FOM on the server. The preference FOM allows a user to

5

set his/her own cuisine preference. Besides, like the SemTour:HK, it allows users to perform

fuzzy searching to search for similar cuisine types.

 This thesis illustrates how to extend the current crisp ontology representation. FOM is

proposed for extending the crisp ontology. The Author’s contribution can benefit research in

the semantic web, multi-agent systems and fuzzy search systems. To show the feasibility of

FOM, twp prototype systems were implemented to demonstrate various aspects of the FOM

architecture. These systems include i) SemTour:HK – a tourist information portal, ii) iJFW – a

mobile tourist guiding system. Through these works the Author has shown that using

applications developed based on Fuzzy Ontology Map offers fuzzy searching function to the

users.

In summary, the first contribution of this thesis is a novel representation in agent

technology, Fuzzy Ontology Map (FOM), which extends the current crisp ontology. By using

FOM, a fuzzy ontology was developed which supports representations of uncertainty. The

second contribution is a set of algorithms for inferring the fuzzy relations in an FOM. The

third contribution is the technical analysis of how to create an FOM. Most other research

lacks technical information, but this information is significant for implementation. Thus, the

technical details on how to create the FOM and state the reason why FOM is created in that

way are presented. The fourth contribution is the implementation of two prototypes namely

SemTour:HK and iJADE FreeWalker. These prototypes demonstrate how FOM works and the

benefits to end-users.

1.3. Organization

An outline of the structure of this thesis is as follows:

 Chapter 1 presents a general introduction to the whole thesis.

 Chapter 2 introduces the Semantic Web. This chapter provides an overview and

6

motivation of Semantic Web. It also describes the related work about extending

crisp ontology.

 Chapter 3 introduces Fuzzy Ontology Map. This chapter shows how to extend the

crisp ontology to become a fuzzy ontology by using the proposed Fuzzy Ontology

Map (FOM). First, the theoretical details about an FOM and a set of algorithms for

inferring fuzzy relationship in an FOM are presented. Then, the technical details on

how to construct the fuzzy ontology by using FOM is shown. Finally, the

experimental results of the FOM is presented.

 Chapter 4 presents a prototype system – SemTour:HK. SemTour:HK is a tourist

information portal which combines the semantic web technology with the FOM.

By using FOM, SemTour:HK supports fuzzy searching.

 Chapter 5 shows another prototype system – iJADE FreeWalker (iJFW). iJFW is a

mobile tourist guiding system which is developed based on the integration of agent

technology, Semantic Web and FOM. This application uses the FOM to provide

recommendations to users according to the user’s preference.

 Chapter 6 concludes this thesis. It also suggests some future research work.

7

Chapter 2. Background

2.1 Introduction

In the current World Wide Web, users find it difficult to locate relevant information using

search engines. This may be due to the fact that the current World Wide Web lacks semantic

markup. The inventor of the World Wide Web, Tim-Berners Lee, foresaw this problem in

2001. He wrote an article with James Hendler and Ora Lassila to propose a solution, Semantic

Web (Berners-Lee, Hendler and Lassila, 2001). Semantic Web has a number of components

such as agent technology, markup language, and ontology. Ontology is a hierarchical

relationship between terms within a domain that specifies defined terms and the relationships

between those terms. Ontology is modeled by a number of markup languages such as

Resources Description Framework (RDF) (RDF, 2004) and Web Ontology Language (OWL)

(OWL, 2004). These markup languages are World Wide Web Consortium (W3C)

recommended standards for modeling ontologies. However, there are some limitations in

using these markup languages to model ontology. Since the markup language are based on

first-order-logic, one of the limitations is that it is not possible to use these languages to

model uncertain knowledge. In this chapter, first background information about the World

Wide Web and Semantic Web are given. Then, it shows the core limitations of the current

ontology and describes related work on extending the current crisp ontology.

8

2.1.1 Organization of the Chapter

The rest of this chapter describes the background information and related work. Section 2.2

describes background information about the World Wide Web. Section 2.3 illustrates the idea

of Semantic Web and its main components such as Resource Description Framework (RDF)

and Web Ontology Language (OWL). Section 2.4 states the problem of the hard-constraint of

the current ontology markup language. Section 2.5 shows the related work about extension of

the crisp ontology. Section 2.6 presents a brief conclusion.

2.2 World Wide Web

In the current World Wide Web, web pages are created by using a markup language called

HyperText Markup Language (HTML) (HTML, 1999). Using HTML, one can create web

pages with simple hypertext and other information to be displayed in a web browser, since

this markup language was originally designed for information presentation, as a result, the

current web architectures face the problem that machines are unable to process and to

interpret the web information efficiently.

 At present, if one wishes to find specific information on the Internet, one can use

popular search-engines such as Google1, Yahoo2 and AltaVista3. These keyword-based search

engines are the main tools for today’s web. Keyword searching works by using techniques

such as frequency-inverse document frequency (tf-idf) (Salton and Buckley, 1988) to

ascertain the importance of a word in a document. Such approaches, however, have a number

of problems. First, keyword searches locate web pages by using input keywords but without

1 http://www.google.com
2 http://www.yahoo.com
3 http://www.altavista.com

9

reference to semantics. The use of keyword searches leads to a high recall and low precision

rate in the search engines results. In addition, the results are highly sensitive to the input

keywords. If we input incorrect keywords into the search engines, it may lead to low or no

recall in the retrieved pages (Antoniou and van Harmelen, 2004). The use of semantic

information, perhaps in conjunction with frequency-based search methods, could be expected

to produce meaning-based searches that are more directly related to user’s meaning-driven

queries.

 The main obstacle to effective searching is the fact that the content of web pages is not

machine-understandable. One technology that represents web content in a form that is easier

for machines to understand and process is the Semantic Web (Berners-Lee, Hendler and

Lassila, 2001). Semantic Web facilitates semantic searching by using agent technology,

ontology, and a number of standard markup languages such as RDF, and OWL to formally

model information represented in web resources so that it is accessible to humans and

computers working co-operatively, together with the assistance of intelligent network services

such as search agents. These markup languages are adopted to add more structural

information to the web resources (Davies, 2003, Patel et al., 2003). The knowledge

interoperability of the Semantic Web is dependent on ontology, which within computing is a

hierarchical relationship between terms within a domain that specifies defined terms and the

relationships between those terms. A domain-specific ontology is a tool for modeling resource

structures and meanings and that allows software programs to do automated tasks for users,

such as searching, customizing and scheduling, which have as one of their points of reference

the idea of meaning.

2.3 Semantic Web

The development of the Semantic Web proceeds in layers. The main purpose of this layering

10

approach is that it is easier to achieve consensus in each layer. Figure 2.1 visualizes the

Semantic Web architecture of W3C (Semantic Web, 2001). Starting from the bottom of the

“layer cake” of the Semantic Web, Extensible Markup Language (XML) (XML, 2004) is

being used for self-description documents. XML enables data exchange across the web, but it

does not represent any meaning or knowledge embedded in the data. On top of XML, there

are Resource Description Framework (RDF) and RDF Schema (RDFS) (RDFS, 2004). RDF

is a metadata model for making statements about web resources which is in a form of a

subject-predicate-object expression called a triple RDF terminology. Since RDF has an

XML-based syntax, it is located on top of the XML layer. RDFS is a language for describing

vocabularies in RDF. RDFS is a semantic extension of RDF which is a primitive language for

writing ontologies. The upper layer of Semantic Web architecture consists of a logic layer, a

proof layer, and a trust layer. The logic layer is used to enhance the ontology language for

writing application-specific knowledge. The proof layer executes the rules and evaluates

together with the Trust layer mechanism for applications, allowing a decision to be made as to

whether to trust the given proof or not.

Figure 2.1. Semantic Web architecture (Semantic Web, 2001).

 In the following sub-section, a number of layers of the Semantic Web architecture are

11

described in detail. Section 2.3.1 provides more information about XML. Section 2.3.2

provides detail about RDF and RDFS. Section 2.3.3 discusses the idea of a Web Ontology

Language.

2.3.1 Extensible Markup Language (XML)

Hypertext Markup Language (HTML) is derived from Standard Generalized Markup

Language (SGML). It is one of the languages used for creating web pages. The main use of

HTML is to format documents and display information. However, HTML does not contain

any structural information. This leads to problems such as high recall and low precision in

search results (For more details, please refer to Section 2.2).

 XML is a language that allows users to define tags. In HTML, all the tags are

pre-defined and users cannot make any changes or make new definitions. The main aim of

XML is to extend the markup which ensures uniform data exchange format between

applications and supports machine processing of information. During the data communication

between applications, application developers are required to have a consensus on the

vocabularies (tags) used in XML. Otherwise, there will be problems in communications and

collaboration between applications. However, under such an approach, the semantics of XML

documents is only accessible to the people who defined it. Machines have no way to

understand the meaning of the data. Figure 2.2 shows an example of XML document. This

example shows you how to describe a book by using the XML.

 XML is useful for data exchange between applications if the involved parties have

already defined what the data is during communication. If a new communication partner is

involved in the communication, then the model and the mapping must be reengineered

(Jannink et al., 1999, McGuinness et al. 2000). This is mainly because XML only structures

the document. It does not provide any semantic information about the document (Decker et

12

al., 2000). Ultimately, while XML may be suitable for communication and collaboration in a

small community where there are high levels of shared knowledge, it is not appropriate for

global communications involving diverse discourse communities.

<?xml version = "1.0"?>

<book isbn = "12312312">

 <title>Thomson's A Guide to Oracle 8</title>

 <author>

 <firstName>Morrison</firstName>

 <lastName>Jolinel</lastName>

 </author>

 <chapters>

 <preface num = "" pages = "3">A Guide to Oracle 8</preface>

 <chapter num = "1" pages = "22">Introduction to Client/Server Database</chapter>

 <chapter num = "2" pages = "27">Creat and Modify Tables</chapter>

 </chapters>

</book>

Figure 2.2. Sample XML document

2.3.2 Resource Description Framework (RDF) and RDF Schema

RDF has been proposed as one possible way to solve the problem that XML cannot achieve to

support data semantics. RDF is a language, based on XML, for representing information

about resources in the World Wide Web. RDF is a form of subject-predicate-object statement

which is called a triple statement. The triple statement is commonly written as (s, p, o) where

the subject s has an attribute p with value o. For example, there is statement

“Toby is the creator of the webpage http://www.comp.polyu.edu.hk/~cshwlam”.

In triple form, then this statement becomes

(“Toby”, http://www.example.org/creator, http://www.comp.polyu.edu.hk/~cshwlam)

The property “creator” is identified by the URL and the other value is a string. Figure 2.3

shows a graphical representation of this triple. Figure 2.4 shows the RDF representation of

this statement.

13

Figure 2.3. Graph representation of the example statement.

<?xml version = "1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:example="http://www.example.org/my-rdf-ns">

 <rdf:Description rdf:about="http://www.comp.polyu.edu.hk/~cshwlam">

 <example:creator>

 Toby

 </example:creator>

 </rdf:Description>

</rdf:RDF>

Figure 2.4. RDF representation of the example statement

 RDF is a framework for expressing and exchanging information between applications

without loss of meaning. Other than representing information about web resources, RDF

could also be used to represent information about resources that cannot be directly retrieved

from the Web. By using RDF, applications designers can develop using different kinds of

RDF parsers and processing tools. In addition, the information in an application can not only

be used by the user, but also can be used by different applications. This RDF information is

distributed across the web. In addition, RDF allows different people to further extend the

information in it, allowing knowledge reuse and knowledge sharing. However, RDF is limited

as it describes resources by using named properties and values only. RDF Schema (RDFS) is

a semantic extension of RDF. RDFS can describe the relationships between resources and

groups of related resources such as classes, subclasses, domains and ranges. Since RDFS still

http://www.comp.polyu.edu.hk/~cshwlam Toby
creator

14

lacks some important primitives, it is necessary to have another layer on top of RDF/RDFS.

2.3.3 Web Ontology Language (OWL)

RDF and RDFS have a limited expressive power. RDF is limited to binary predicates and

RDFS is limited to a subclass hierarchy and property hierarchy. One proposed solution to this

is the Web Ontology Language (OWL). OWL extends RDF/RDFS to make it easier to express

semantics.

 Before the W3C Web Ontology Working Group defined OWL, a number of researchers

joined together to define a markup language called DAML+OIL (Broekstra et al., 2001,

Fensel et al, 2001, Patel-Schneider, Horrocks, and van Harmelen, 2002). The DAML+OIL

project proposed a standardized and broadly accepted ontology language for the Semantic

Web. W3C found that it was necessary to propose a language to further extend the

expressivity of RDF and RDFS. This led to DAML+OIL being superseded by OWL.

 OWL allows resources to be described in a machine-accessible way. OWL is built upon

RDF and RDFS. In OWL, instances are defined by using RDF descriptions and most RDFS

modeling primitives are reserved in OWL. Compared with XML, RDF and RDFS, OWL is

better for representing machine interpretable contents on to the Web. In addition, OWL

supports machine reasoning by using predicate logic and description logic (Baader et al., 2002,

Horrocks and Sattler, 2001). There are three different sublanguages in OWL: OWL Lite,

OWL DL and OWL Full. OWL Full is the superset of OWL Lite and OWL DL. OWL DL is

based on description logic and its subset OWL Lite is based on the less expressive logic.

OWL Lite supports users’ basic need for hierarchy classification and simple constraints. OWL

DL maximizes expressiveness while retaining computational completeness. OWL Full

maximizes expressiveness but it may increase the computational complexity. Figure 2.5

shows an example of OWL which was used to model the Hong Kong Tourism.

15

…

 <owl:Class rdf:ID="Custom_Tailor">

 <rdfs:subClassOf rdf:resource="#Shop_Type"/>

 </owl:Class>

 <owl:Class rdf:ID="Useful_Telephone_Number">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="General_Information"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Handbags_Shoes_and_Leather_Goods">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Shopping"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Hotel">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Accommodation"/>

 </rdfs:subClassOf>

 </owl:Class>

 </owl:ObjectProperty>…

Figure 2.5. Example of OWL

2.4 Problems in current ontology markup language

Ontology is defined as a specification of concepts and the relationship between those concepts.

This knowledge would be shared and reused in the community. However, the current ontology

markup languages such as RDF and OWL are limited since they are based on the

hard-constraint logic. The knowledge representation in current ontology is either true or false

and there is nothing in between. Thus, the current ontology markup language is not able to

represent uncertain information.

 There are many different types of uncertain information in real-life. For example, people

may describe information vaguely, saying for example that the weather is very hot, that Peter

16

is very tall, that this box is very heavy. In search functions in web application, users are

interested in searching using an inexact or approximate approach such as classification by

genre or by rating the similarity of the search results. The current ontology markup language

cannot support reasoning if only partial information can be obtained. To solve this problem,

one solution is to further extend representations to handle uncertain data. There are a number

of ways to solve this problem, for example, by incorporating fuzzy logic or probabilistic

theory into the ontology.

2.5 Related work

This thesis proposes an extension of the current ontology representation which supports

uncertain information modeling. The extension is called Fuzzy Ontology Map (FOM) which

is based on the integration of fuzzy theory and graph theory. The idea of FOM was inspired

by Fuzzy Cognitive Map (Kosko, 1993, Dickerson and Kosko, 1997). Fuzzy Cognitive Map

(FCM) was proposed by Professor Bart Kosko. The real world can be modeled by using FCM.

We can use FCM to map the consequences of a course of action in a given situation. However,

FCM did not adopt any ontology for concept representation.

In the proposed Fuzzy Ontology Map (FOM), RDF/OWL was adopted for ontology

representation. Instead of predicting how events interact and play out, the proposed FOM

used for modeling uncertain information and generating relationship between different

concepts. The main purpose of the FOM is to let the computers (software agents) for getting

more meaningful information.

There has been a great deal of work on supporting uncertainty in relational models (Dey

and Sarkar, 1996, Fuhur and Rolleke, 1997, Lakshmanan, et al., 1997). However, there has

been little work on supporting uncertainty in ontology. Lee et al. (Lee, Jian and Huang, 2005)

proposed an algorithm to create fuzzy ontology and applied it to news summarization. This

17

work is based on their previous work on ontology-based fuzzy event extraction agents for

Chinese news summarization (Lee, Chen and Jian, 2003). The domain ontology extended to a

fuzzy ontology by including a set of membership values. The created fuzzy ontology is an

extension of the domain ontology which is suitable for solving uncertain reasoning problems.

However, there are still some irrelevant sentences in the summarized passage. Lee et al. (Lee,

Jian and Hsieh, 2005) also proposed an ontology-based genetic fuzzy agent (OFGA) for

Meeting Scheduling System (MSS). The agent uses a set of fuzzy personal ontologies and

meeting schedule ontologies to help the meeting host to find a suitable meeting time.

Tho et al. (Tho, et al., 2006) proposed a Fuzzy Ontology Generation Framework (FOGA)

for fuzzy ontology generation on uncertainty information. This framework is based on the

idea of fuzzy theory (Zadeh, 1975) and Formal Concept Analysis (FCA) (Ganter and Willie,

1999). FCA is a technique for data analysis and knowledge presentation which defines formal

contexts to represent relationships between objects and attributes in a domain. By using

FOGA, it could construct an ontology from uncertain information automatically. The

proposed framework is used to construct Semantic Scholarly Web from a citation database for

scientific publication search. The main focus of FOGA is the construction of an ontology

from uncertain information. In FOGA, the concept hierarchy is represented by using OWL.

Each instance of the ontology includes an element describing about the fuzzy membership

value. By using such an approach, it greatly increases the file size for the OWL. In addition,

each class must contain a minimum of one instance. As a result, it may waste the resource and

the disk space.

Widyantoro and Yen developed a scientific paper search engine similar to that of Tho et al.

They developed a web-based search engine, Personalized Abstract Search Services (PASS),

for searching the abstracts of research paper (Widuantoro and Yen, 2001). The system

constructs the fuzzy ontology for query refinement (Velez et al., 1997) broadening and

narrowing the relationships of the user requested term. In the paper, the authors described the

18

algorithms for building the fuzzy ontology from fuzzy narrower and broader terms. But, it is

not cleared which markup language they have used in the system.

In Semantic Web, social networks trust research has gained interest in recent years.

Friend-Of-A-Friend (FOAF) is one of the most popular representations to describe people’s

relationships (FOAF, 2005). FOAF is developed based on RDF and OWL. Some research has

used FOAF as the basis for the trust in the social network such as FOAF Trust Module4.

Jennifer and Hendler developed a film recommendation website, FilmTrust, which is based on

the FOAF and trust values in social networks (Golbeck and Hendler, 2006). This website

would make recommendations based on the user’s friend’s recommendations. Instead of using

FOAF, Mazzieriei proposed an extension of RDF statement which is called a fuzzy RDF

statement for the representation of trust metadata (Mazzieriei, 2004). A fuzzy RDF statement

is defined as a quadruple statement which extends the RDF triple structure with a fourth

element representing the trust value. The trust value is a value between 0 and 1. However,

using this approach requires changing the syntax of the RDF.

 Other than using fuzzy theory to extend the ontology, Ding and Peng (Ding and Peng,

2004) proposed a probabilistic extension to ontology language OWL that used Bayesian

networks (Peral, 1988). The extended OWL supports the representation of uncertain ontology,

reasoning, and mapping. Ding and Peng defined a number of OWL classes such as

PriorProbObj, CondProbObjectT and CondProbObjF for markup probabilities in OWL files.

However, there is a limitation in that the ontology should not have any cycle. Since cycles are

not allowed in Bayesian networks, it is necessary to have pre-processing to detect and remove

the cycle in the ontology. Fukushige (Fukushige, 2004) took a similar approach, proposing a

vocabulary for representing probabilistic knowledge in RDF and a framework for calculating

probabilities using RDF and Bayesian networks.

 OWL is derived from DAML+OIL, where DAML+OIL is developed based on

4 FOAF Trust Module, http://trust.mindswap.org/ont/trust.owl

19

description logic, which is a subset of first-order-logic (Horrocks, 2002). Thus, OWL is also

based on description logic. A number of research works have extended description logic with

probabilistic logic (Heinsohn, 1994, Jaeger, 1994). Koller et al. developed a probabilistic

extension of the description logic, CLASSIC, which is based on Bayesian Networks and is

called P-CLASSIC (Koller, Levy and Pfeffer, 1997). Giugno and Lukasiewicz extended the

description logic SHOQ(D) to develop a probabilistic description logic P-SHOQ(D) (Giugno

and Lukasiewicz, 2002). The description logic of DAML+OIL is SHOQ(D) (Horrocks and

Sattler, 2001). Other than using probabilistic logic, there is also fuzzy extension for the

description logic, e.g. Fuzzy OWL (FOWL) (Stoilos et al. 2005, Stoilos et al. 2006). FOWL is

an fuzzy extension of OWL. It can capture imprecise and vague knowledge by using a new

representation language called Fuzzy OWL’s DL language. Stoilos and his researchers have

already developed a prototype platform, Fuzzy Reasoning Engine (FiRE), for fuzzy reasoning.

A comparison between FOM and some recent developments was shown in Table 2.1.

2.6 Fuzzy set theory

The proposed Fuzzy Ontology Map (FOM) is motivated by Fuzzy Set Theory (Zadeh, 1965).

As mentioned in the previous section, real world knowledge is imprecise or vague. It is not

practical to model knowledge by using crisp logic which must be either true (1) or false (0).

Fuzzy set theory offers one way of dealing with this uncertainty.

Fuzzy set theory, an extension of traditional set theory, is used to account for the vague

or imprecisely represented information. Fuzzy set theory uses a membership functionµ to

allow an item in a set to be any real number between 0 and 1. A fuzzy set F of X is

characterized by the membership function)(xFµ and the membership values are in the unit

interval [0, 1].

}|))(,{ XxxxF F ∈= µ (1)

The value)(xFµ shows the degree of membership of x relative to F. If 0)(=xFµ , then x is

20

not a member of F. If 1)(0 << xFµ , then it is uncertain that x belongs to F. If 1)(=xFµ ,

then x belongs to F. In general, the larger the membership value)(xFµ , the more the certainty

that x belongs to F. Figure 2.6 illustrates an example of the membership function of a fuzzy

set)(xFµ . In general, the function)(xFµ is a bounded function with a label F. The label F

is a term, such as tall and young, which the fuzzy sets refer to. For example, if the label F is

tall, then the value of x is the height. When X is continuous, a fuzzy set F can be written as

∫=
X

F xxF /)(µ (2)

µF

Fuzzy set F

1.0

0 x

Membership function µF(x)

Figure 2.6. Fuzzy membership function for a fuzzy set F

In some situations, the membership function is discrete and it is not possible to draw a

fuzzy membership figure like Figure 2.6. For example, we might say that Apple is similar to

Orange with a degree of confidence in the similarity of 0.5. But since no scale is provided for

this degree of similarity, it is not possible to draw a fuzzy membership figure. When X is

discrete, a fuzzy set F can be written as

∑= iiF xxF /)(µ (3)

or

NNFFF xxxxxxF /)(.../)(/)(2211 µµµ +++= (4)

 Fuzzy logic is a superset of crisp logic. Fuzzy logic (Zadeh, 1975) is based on fuzzy set

21

theory which is developed for approximate representation and reasoning with imprecise

information. Fuzzy logic has been applied to several areas such as information retrieval and

expert systems. However, it has not yet been fully developed for use in Semantic Web. FOM

is proposed to extend the ability of the current Semantic Web to deal with real world

information. Current methods for ontological representations such as RDF and OWL can only

match data exactly, for example, in listing all the instance information in the Hotel class (see

figure 2.4). However, using FOM, it is possible to do a fuzzy search such as listing all the

accommodation information which is similar to the class Hotel.

2.7 Conclusion

The background information about Semantic Web and the problem of the current ontology

markup language are presented in this Chapter. Crisp ontology is limited, in as much as it is

not capable of representing approximate and uncertain information effectively. An extension

of the crisp ontology, Fuzzy Ontology Map (FOM), is proposed to solve such

‘hard-constraint’ problems. The algorithm and the implementation details about FOM are

shown in Chapter 3.

22

Table 2.1. Comparison between recent developments

Fuzzy Ontology Map

(FOM)

Fuzzy Cognitive Map

(FCM)

Ontology-based

Genetic Fuzzy Agent

(OGFA)

Fuzzy Ontology

Generation

Framework (FOGA)

Fuzzy OWL (FOWL)

Main purpose

 Extends the

current crisp

ontology

 Generate

relationship

between different

concepts

 Model uncertain

information

 Predict how

events interact

and play out

 Help to meeting

host to find a

suitable timeslot

for the meeting

 The agent has

learning ability

(preference)

 Model uncertain

information

 Extends the

current crisp

ontology

 Model uncertain

information

Adopted Technique

 Graph theory

 Fuzzy logic

 Ontology

 Agent

 Graph theory

 Fuzzy logic

 Fuzzy logic

 Genetic algorithm

 Ontology

 Agent

 Formal Concept

Analysis (FCA)

 Fuzzy logic

 Description Logic

 Fuzzy Logic

Required to Change

the Ontology Syntax

 No Nil No No No

Fuzzy Information

Manipulation

 Store in an XML

document

 Nil Store in the

ontology

document directly

 Store in the

ontology

document directly

 Stored in a new

language called

Fuzzy OWL’s DL

Language

(RDF/XML)

23

Chapter 3. Fuzzy Ontology Map

3.1. Introduction

As mentioned before, Semantic Web is based on a number of technologies such as agent

technology and ontologies. An ontology is a representation of domain knowledge. In general,

an ontology is a hierarchical relationship between terms within a domain that specifies

defined terms and the relationships between those terms. W3C has a number of markup

language recommendations for modeling ontologies, such as Resources Description

Framework (RDF) and Web Ontology Language (OWL). These markup languages are mainly

based on bivalent logic, facts are represented as either true or false. Therefore, a subject in

RDF/OWL is either a member of a class or not.

Although the main aim of Semantic Web is to solve problems of information retrieval,

the proposed markup languages are currently not entirely practical for real-life applications.

The Semantic Web uses ontologies with hard constraints (either true or false and there is

nothing in between) to describe and manipulate knowledge. The expression of real-world

knowledge, however, is often uncertain and imprecise. For example, we may say that the

weather is very hot rather than saying that the temperature is 37.81 degrees. Current markup

languages for modeling ontology cannot process these soft semantics.

In the current ontology representation, it is not possible to model uncertain information.

24

In this research work, Fuzzy Ontology Map (FOM) is proposed for extending the capability of

the current ontology to model real world vague information. By using FOM with the ontology,

it is possible to develop real-world applications and systems that can deal with imprecise or

vague information.

3.1.2. Organization of the Chapter

The rest of this chapter describes the Fuzzy Ontology Map (FOM) in detail. Section 3.2

shows the details of the Fuzzy Ontology Map. Section 3.3 describes the implementation

details and experimental results. Section 3.4 provides a brief summary of this chapter.

3.2. Fuzzy Ontology Map (FOM)

Fuzzy Ontology Map (FOM) is a connection matrix which collects the fuzzy membership

values between each class in an ontology. The ontology is a hierarchal relationship between

concepts within a domain which is modeled by using certain markup language such as

Resource Description Language (RDF) and Ontology Web Language (OWL). The constructed

ontology can be viewed as a graph. FOM is developed based on the ontology graph and fuzzy

logic. Section 3.2.1 shows the theoretical details of FOM. Section 3.2.2 shows the how to

construct a FOM.

3.2.1. Theoretical Analysis of Fuzzy Ontology Map (FOM)

This section describes the theoretical detail of how to develop a FOM. For ease of explanation,

RDF is adopted to illustrate how to construct a FOM. Since OWL uses the RDF mechanisms

for data values, it is also capable of developing a FOM from OWL.

Definition 1. An ontology Ω is defined as a finite set of triples <s, p, o> where s is a

subject name, p is a predicate name and o is an object name (which could be another subject

25

name). In general, the predicate p is defined as “a kind of” relation between the subject s and

object o.

 An ontology document (RDF/OWL) is a collection of triple statements. The directed and

labeled graph is one of the representations for displaying ontology data. A graph is a

collection of vertices connected by edges. In a directed and labeled graph, the edges point

from one vertex to another and each edge has a label.

Definition 2. Suppose V be a finite set of vertices, VVE ×⊆ be a set of edges and

LEl →: be a mapping from edges to a set L of strings called labels. The triple

),,(lEV=Ω is a directed and labeled graph. OSV ∪= where S is the set of subject

names s and O is the set of object names o.

Accommodation

HotelHoliday Camp Guesthouse

Figure 3.1. Example of an ontology graph

In an ontology graph, a vertex represents a subject or literal value and an arrow

represents a predicate. Figure 3.1 illustrates an example of an ontology graph. Since the

current ontology markup language is developed based on crisp logic, in order to support

modeling vague or imprecise real world knowledge, a fuzzy extension of ontology is

26

proposed.

Definition 3. Suppose V be a finite set of vertices, VVE ×⊆ be a set of edges. The

edges E are assigned by a continuous fuzzy value and a label F. []1,0: →EFµ is the

continuous membership value. LEl →: is a mapping from edges to a set L of strings

called labels. The fuzzy ontology graph is a quadruple),,,(' FlEV µ=Ω .

The fuzzy set F would be used to describe different kinds of relationship such as

similarity and preference. The fuzzy relationship would be defined by the creator of the

ontology during the ontology modeling stage or defined by the users who apply the ontology.

Figure 3.2 illustrates the graph of fuzzy accommodation ontology. In Figure 3.2, the fuzzy

membership value describes the similarity between two concepts. For instance, A2 Hotel is

similar to A1 Accommodation with fuzzy membership value 0.8. A3 Guesthouse is similar to

A1 Accommodation with fuzzy membership value 0.6. This means that A2 Hotel would be

more similar to A1 Accommodation than A3 Guesthouse. This example will be used

throughout this chapter. Figure 3.3 shows the simplified version of this fuzzy ontology.

27

A1. Accommodation

A2. Hotel

A5. Serviced
Appartment

A6. Holiday
Camp A3. Guesthouse

 0.
8

 0.6

A4. Bed &
Breakfast

0.9 0.7

0.5

0.5

Figure 3.2. Graph of fuzzy accommodation ontology

A1.

A2.

A5.

A6. A3.

 0.
8 0.6

A4.

0.9 0.7

0.5

0.5

Figure 3.3. A simplified graph of fuzzy accommodation ontology

A fuzzy ontology map is a connection matrix which illustrates the links between classes.

The fuzzy ontology can be used to create a fuzzy ontology map FOM . Figure 3.4 shows the

fuzzy ontology map which is created from the fuzzy accommodation ontology.

28

 A1 A2 A3 A4 A5 A6

 A1 - 0 0 0 0 0

 A2 0.8 - 0 0 0 0

 A3 0.6 0 - 0 0 0

FOMbase= A4 0 0.9 0.7 - 0 0

 A5 0 0 0 0.5 - 0

 A6 0.5 0 0 0 0 -

Figure 3.4. Base form of fuzzy ontology map FOMbase of accommodation ontology

In the FOM, the i-th row lists the membership value of the edges eik from the class Ai.

The i-th column lists the fuzzy value of the edges eki directed into Ai, In this example, the

membership value represents the similarity between classes. In general, the matrix shown in

Figure 3.4 would be treated as the base form of fuzzy ontology map FOMbase.

In this example, the fuzzy set is similarity. A3 (Guesthouse) is similar to A1

(Accommodation) with membership value 0.6 (eA3,A1 = 0.6) and A4 (Bed & Breakfast) is

similar A3 (Guesthouse) with membership value 0.7 (eA4,A3 =0.7). In some sense, A4 (Bed &

Breakfast) is similar to A1 (Accommodation) indirectly.

Definition 4. Suppose A, B, C are the classes in FOM. There is an edge eBA connected from

class B to class A with membership value µBA and an edge eCB connected from class C to class

B with membership value µCB. As a result, class A is reachable from class C by class B. If there

is no direct edge from class C to class A, then we would derive a virtual edge eCA with

membership value µCA, i.e.

BACBCA µµµ ×= (5)

29

In Definition 4, the real edges are the edges with membership values greater than 0 in

the base form of FOM FOMbase. Any created edge that does not previously exist in the base

form of FOM FOMbase is called a virtual edge. The reachable classes mean that one class can

be reached by another class by using the real edges. The main purpose of Definition 4 is to

create edges for the reachable classes. Thus, by using Definition 4, it could make relationship

for the reachable classes. Algorithm 1 shows how to create virtual edges for reachable classes

in a fuzzy ontology map.

Algorithm 1: Create_virtual_edge_for_reachable_classes(FOM)

Input: Fuzzy Ontology Map FOM

Output: Fuzzy Ontology Map with virtual edge FOMV

C = classes in FOM;

FOMV = empty matrix with the same size as FOM;

 for each class I of C do

 for each class J of C do

 for each class K of C do

 if (I is not the same as J AND J is not the same as K) then

 if (edge ekj and edge eji exists in FOM) then

 if (FOMV [i, k] exists)

 FOMV [i, k] = COMP(FOMV [i, k], µkj *µji)

 else

 FOMV [i, k] =µkj *µji;;

endif

 endif

30

 endif

 endfor

 endfor

 endfor

FOMV = FOMV + FOM;

return FOMV;

* COMP(x, y) is a comparative function.

During the creation of virtual edges, there is a chance that more than one virtual edge

exists between two classes. To handle this, Algorithm 1 contains a comparative function,

called COMP(x, y), for selecting a suitable virtual edge. We can choose one of the following

measures:

⎩
⎨
⎧ >

==
otherwisey

yxifx
yxyxCOMP

)(
),max(),((6)

⎩
⎨
⎧ <

==
otherwisey

yxifx
yxyxCOMP

)(
),min(),((7)

When more than one virtual edge, each virtual edge should have membership value

which can be used for comparison. If the fuzzy relationship between classes is tight and

restricted in the ontology, the relationship between classes should not be created easily, e.g.

preference, then it is recommended that min(x, y) be used as the comparative function. The

virtual edge with smaller membership value is created by using min(x,y). Hence, it can retain

the relationship between classes of the ontology in tight condition. If the fuzzy relationship

between classes is flexible, i.e. the relationship between classes could be created easily, then it

is recommended that max(x,y) be used as the comparative function. The choice between

Equations 6 and 7 depends on the user. Figures 3.5a and 3.5b show the FOM with virtual

edges for reachable classes between A1 and A4 by using max(x,y) and min(x,y) as the

comparative function respectively.

31

To create virtual edges for all reachable classes in a fuzzy ontology map, Algorithm 1 is

processed recursively. Algorithm 2 shows how to create virtual edges for all reachable classes.

The algorithm tries to create virtual edges for all reachable classes until no virtual edge is

created. Figures 3.6a and 3.6b show the FOM with all virtual edges for reachable classes by

using max(x,y) and min(x,y) as the comparative function respectively.

Algorithm 2: Create_ virtual_edge_for_all_reachable_classes(FOM)

Input: Fuzzy Ontology Map FOM

Output: Fuzzy Ontology Map with virtual edge FOMV

Step1: FOMv= FOM

Step2: FOMv=Create_virtual_edge_for_reachable_classes(FOMv)

Step3: if virtual edge(s) is created in step 2, return to step 2

Step4: return FOMv

A1. Accommodation

A2. Hotel

A5. Serviced
Appartment

A6. Holiday
Camp A3. Guesthouse

 0
.8

 0.6

A4. Bed &
Breakfast

0.9 0.7

0.5

0.5

0.72

a.

32

A1. Accommodation

A2. Hotel

A5. Serviced
Appartment

A6. Holiday
Camp A3. Guesthouse

 0
.8

 0.6

A4. Bed &
Breakfast

0.9 0.7

0.5

0.5

0.
42

b.

Figure 3.5. (a) FOM with virtual edges for reachable classes A1 and A4 by using max(x,y) as the

comparative function (b) FOM with virtual edges for reachable classes A1 and A4 by using min(x,y) as

the comparative function

33

A1. Accommodation

A2. Hotel

A5. Serviced
Appartment

A6. Holiday
Camp A3. Guesthouse

 0
.8

 0.6
A4. Bed &
Breakfast

0.9 0.7

0.5

0.5

0.45

0.
35

0.
42

0.
21

a.

A1. Accommodation

A2. Hotel

A5. Serviced
Appartment

A6. Holiday
Camp A3. Guesthouse

 0
.8

 0.6

A4. Bed &
Breakfast

0.9 0.7

0.5

0.5

0.45

0.
35

0.72

0.
36

b.

Figure 3.6. (a) FOM with all virtual edges for reachable classes by using min(x,y) as the comparative

function (b) FOM with all virtual edges for reachable classes by using max(x,y) as the comparative

function

We defined that there are two types of fuzzy set: symmetric and asymmetric. A

symmetric fuzzy set is the one in which the fuzzy relation between two classes is

34

non-directional such as a level of similarity. The degree of similarity is symmetric as there is

no difference between ‘class A similar to class B’ and ‘class B similar to class A’

(non-directional). It means that there is no difference in the two (opposite) direction (A->B =

B->A). An asymmetric fuzzy set is the one in which the fuzzy relation between two classes is

directional such as level of preference. Suppose class A is preferred to class B, then there is a

difference in the opposite direction. It means that if class A is preferred to class B (A->B),

then it is not the same in opposite direction (B->A). In the fuzzy accommodation ontology

example, the fuzzy set is similarity. It can be stated that the fuzzy set is symmetric.

In the accommodation example, there is an edge from A2 (Hotel) to A1

(Accommodation) with a membership value 0.8 and an edge from A3 (Guesthouse) to A1

(Accommodation) with a membership value 0.6. In some sense, A2 is similar to A3 in some

level. This means that if there are two classes (e.g. A and B) which point to the same class (e.g.

C), then a virtual edge would be created between two classes by using definition 5. Definition

5 is applied when the fuzzy set is symmetric. If the fuzzy set is asymmetric, then definition 6

is applied.

Definition 5. Suppose A, B, C are the classes in FOM and the fuzzy set is symmetric. There is

an edge eBA connected from class B to class A with the membership value µBA and an edge eCA

connected from class C to class A with the membership value µCA. If there is no edge between

class B and class C (either from class B to class C or from class C to class B), then two

virtual edges eBC and eCB would be derived with the membership value µ, i.e.

),max(
),min(),(

CABA

CABA
CABAsim

µµ
µµµµµ == (8)

The unreachable class means that one class cannot be reached by another class by using

the real and virtual edges. The main purpose of Definition 5 is to create relationship for

35

unreachable classes. Definition 5 can only be applied if the fuzzy set is symmetric. If the

fuzzy set is asymmetric, then Definition 6 should be adopted. When the fuzzy set is

symmetric, if two unreachable classes are pointed to the same class, in some sense, these two

unreachable classes have a relationship with each other. Equation 8 is proposed to calculate

the fuzzy value between the two unreachable classes by ratio.

Definition 6. Suppose A, B, C are the classes in FOM and the fuzzy set is asymmetric. There

is an edge eBA connected from class B to class A with the membership value µBA and an edge

eCA connected from class C to class A with the membership value µCA. If there is no edge

between class B and class C (either from class B to class C or from class C to class B), then

two virtual edges eBC and eCB would be derived with the membership value µBC and µCB by:

),max(
),(

BA

CBACA

CA

CABA

CA

CABA

CABABC asymm

µ
µµ

µ
µµ
µ

µµ

µµµ
−−

−

== (9)

),max(
),(

BA

BACA

CA

CABA

BA

BACA

BACACB asymm

µ
µµ

µ
µµ
µ

µµ

µµµ
−−

−

== (10)

where max(a,b) is a function to select the maximum value between value a and value b.

Similar to Definition 5, the main purpose of Definition 6 is to create relationship for

unreachable classes. However, Definition 6 can only be adopted if the fuzzy set is asymmetric.

Since the fuzzy set is asymmetric, the membership values should be calculated separately for

both directions. For example, the fuzzy set is preference. If the membership value is 0.1 from

class B to class A, and the membership value is 0.9 from class C to class A. First, we calculate

the absolute difference between two membership values and then divide by the other

membership value. As the fuzzy set is asymmetric, to reserve the directional information, the

absolute difference should divided by the other membership value, i.e.
CA

CABA

µ
µµ −

 and

36

BA

BACA

µ
µµ −

. These values maybe greater than one, hence it is required to

normalization (see Equation 9 and 10). Thus, the membership value from class B to

class C is 0.11 and the membership value from class C to class B is 1.

Algorithms 3 and 4 are further created for creating virtual edge for unreachable classes

for symmetric fuzzy set and asymmetric fuzzy set, respectively. Figures 3.7a and 3.7b shows

the FOM with all virtual edges for reachable classes by using max(x,y) and min(x,y) as the

comparative function respectively.

Algorithm 3: [Symmetric Fuzzy Set] Create_virtual_edge_for_unreachable_classes(FOM)

Input: Fuzzy Ontology Map with virtual edge FOMv (reachable classes)

Output: Fuzzy Ontology Map with virtual edge FOMw (reachable and unreachable classes)

C = classes in FOMv;

FOMw = empty matrix with the same size as FOMv;

 for each class I of C do

 for each class J of C do

 for each class K of C do

 if (I is not the same as J AND J is not the same as K) then

 if (edge eji and edge eki exists in FOMv) then

 if (FOMw [j, k] exists AND FOMw [k, j] exists)

 FOMw [j, k] = COMP(FOMw [j, k],sim(µji, µki))

 FOMw [k,j] = FOMw [i, k]

 else

 FOMw [j, k] = sim(µji, µki);

 FOMw [k, j] = FOMw [j, k];

endif

37

 endif

 endif

 endfor

 endfor

 endfor

FOMw= FOMV + FOMw;

return FOMw;

Algorithm 4:[Asymmetric Fuzzy Set] Create_virtual_edge_for_unreachable_classes(FOM)

Input: Fuzzy Ontology Map with virtual edge FOMv (reachable classes)

Output: Fuzzy Ontology Map with virtual edge FOMw (reachable and unreachable classes)

C = classes in FOMv;

FOMw = empty matrix with the same size as FOMv;

 for each class I of C do

 for each class J of C do

 for each class K of C do

 if (I is not the same as J AND J is not the same as K) then

 if (edge eji and edge eki exists in FOMv) then

 if (FOMw [j, k] exists OR FOMw [k, j] exists)

 FOMw [j, k] = COMP(FOMw [j, k],asymm(µji, µki))

 FOMw[k,j] = COMP(FOMw [j, k],asymm(µki, µji);

 else

 FOMw[j, k] = asymm(µji, µki);

 FOMw[k,j] = asymm(µki, µji);

endif

38

 endif

 endif

 endfor

 endfor

 endfor

FOMw= FOMV + FOMw;

return FOMw;

In Figure 3.7, we can see that each class in FOM is nearly connected to all classes. If the

fuzzy set is symmetric, then it is possible to further create opposite directed edges. Definition

7 shows how to create a virtual edge if the fuzzy set is symmetric. However, if the fuzzy set is

asymmetric, it is impossible to create opposite directed edges, for example, if the asymmetric

fuzzy set is preference. Suppose class A is preferred to class B with a membership value 0.8,

since the class A has a higher preference level than class B, it is not possible to create a virtual

edge from class B to class A using the same approach as in definition 7. Algorithm 5 shows

how to create the opposite edge for classes which have only one directed edge. Note that

algorithm 5 is applied for symmetric fuzzy sets only. Figure 3.8 shows the final fuzzy

ontology map of the accommodation ontology.

39

A1.

A2.

A5.

A6. A3.

 0.8

 0.6

A4.

0.9

0.7

0.5

0.5

0.63 0.75

0.84

0.3
5

0.45

0. 21

0.4 2

0.42

0.83

 A1 A2 A3 A4 A5 A6

A1 - 0 0 0 0 0

A2 0.8 - 0.75 0 0 0.63

A3 0.6 0.75 - 0 0 0.83

A4 0.42 0.9 0.7 - 0 0.84

A5 0.21 0.45 0.35 0.5 - 0.42

A6 0.5 0.63 0.83 0.84 0.42 -

a.

A1.

A2.

A5.

A6. A3.

 0.8
 0.6

A4.

0.9

0.7

0.5
0.5

0.63 0.75

0.69

0.3
5

0.45

0. 3 6

0.7 2

0.72

0.83

 A1 A2 A3 A4 A5 A6

A1 - 0 0 0 0 0

A2 0.8 - 0.75 0 0 0.63

A3 0.6 0.75 - 0 0 0.83

A4 0.72 0.9 0.7 - 0 0.69

A5 0.36 0.45 0.35 0.5 - 0.72

A6 0.5 0.63 0.83 0.69 0.72 -

b

Figure 3.7. (a) FOM with all virtual edges for reachable and unreachable classes by using min(x,y) as

the comparative function (b) FOM with all virtual edges for reachable and unreachable classes by using

max(x,y) as the comparative function

40

Definition 7. Suppose A and B are classes in FOM and the fuzzy set is symmetric. If there is

an edge starting from class A and ending at class B with the membership value µAB and there

is no edge in the opposite direction, then we can create a virtual edge from class B to class A

with the membership value µsymm, i.e.

ABsymm µµ = (11)

Algorithm 5: Create_virtual_edge_for_classes_only_have_one_directed_edge(FOM)

Input: Fuzzy Ontology Map with virtual edge FOMw (reachable and unreachable classes)

Output: Fuzzy Ontology Map with virtual edge FOMF

C = classes in FOMw;

FOMF = empty matrix with the same size as FOMw;

 for each class I of C do

 for each class J of C do

 if (I is not the same as J) then

 if (edge eji exists in FOMw AND edge eij not exists in FOMw) then

 FOMF [i, j] = FOMw [j, i]

 endif

 endif

 endfor

 endfor

FOMF = FOMF + FOMw;

return FOMF;

41

A1.

A2.

A5.

A6. A3.

 0.8

 0.6

A4.

0.9

0.7

0.5

0.5

0.63 0.75

0.84

0.3
5

0.45

0. 21

0.4 2

0.42

0.83

0.5 0.6

0.8

0.9
0.5

0.7

 A1 A2 A3 A4 A5 A6

A1 - 0.8 0.6 0.42 0.21 0.5

A2 0.8 - 0.75 0.9 0.45 0.63

A3 0.6 0.75 - 0.7 0.35 0.83

A4 0.42 0.9 0.7 - 0.5 0.84

A5 0.21 0.45 0.35 0.5 - 0.42

A6 0.5 0.63 0.83 0.84 0.42 -

a.

A1.

A2.

A5.

A6. A3.
 0.8

 0.6

A4.

0.9

0.7

0.5

0.5

0.63 0.75

0.69

0.3
5

0.45

0. 36

0.7 2

0.72

0.83

0.5
0.6

0.8

0.9
0.5

0.7

 A1 A2 A3 A4 A5 A6

A1 - 0.8 0.6 0.72 0.36 0.5

A2 0.8 - 0.75 0.9 0.45 0.63

A3 0.6 0.75 - 0.7 0.35 0.83

A4 0.72 0.9 0.7 - 0.5 0.69

A5 0.36 0.45 0.35 0.5 - 0.72

A6 0.5 0.63 0.83 0.69 0.72 -

b

Figure 3.8. (a) Final FOM which used min(x,y) as the comparative function (b) Final FOM which used

max(x,y) as the comparative function

The fuzzy ontology map created by algorithm 4 is called final FOM FOMF. The final FOM

FOMF would be used to enhance the RDF search function. However, if the final FOM FOMF

is used directly for searching, the computation time would be very great as there are many

entries in FOMF. To further reduce the computation complexity, a threshold T is proposed for

removing the virtual edges with small membership values (see Eqn. (12)). The threshold T

42

would be any numeric value between 0 and 1. Doing this would further reduce the searching

size and speed up the searching speed. Eqn. (13) – Eqn. (15) suggests some methods for

determining the value T. Figure 3.9 shows the FOMT with threshold T = 0.4. Algorithm 6

shows how to filter the virtual edges with threshold T. The filtered FOM is a FOM which is

initially a fully-connected FOM and is subsequently pruned by using the threshold T. The

fuzzy ontology map created by Algorithm 6 is called FOMT. Figure 3.9 shows the filtered

fuzzy ontology map FOMT of the accommodation ontology.

⎩
⎨
⎧ ≥

==
otherwise

TjiFOMifjiFOM
TjiFOMTHRESHjiFOM

0
)],[(],[

)],,[(],[(12)

)(
)(

FOMMAX
FOMMINT = (13)

2
)()(FOMMINFOMMAXT −

= (14)

CC

jiFOM
T

C

i

C

j

*

],[
1 1
∑∑
= ==

(15)

where MIN returns the smallest value, which must be greater than zero, in the fuzzy ontology

map, MAX returns the largest value in the fuzzy ontology map and C is the total number of

class in the FOM.

Algorithm 6: Filtering_Virtual_Edges (FOM, T)

Input: Fuzzy Ontology Map FOMF

Output: Fuzzy Ontology Map FOMT

C = classes in FOMF;

FOMT = empty matrix with the same size as FOMF;

 for each class I of C do

 for each class J of C do

43

 if (I is not the same as J) then

 if (edge eij exists in FOMF AND edge eij is virtual) then

 FOMT [i, j] = THRESH(FOMw [i, j], T)

 endif

 endif

 endfor

 endfor

return FOMT;

* THRESH(x, T) is a threshold function. For more details, see Eqn. (12)

44

A1.

A2.

A5.

A6. A3.

 0.8

 0.6

A4.

0.9

0.7

0.5

0.5

0.63 0.75

0.84

0.45

0.4 2

0.42

0.83

0.5 0.6

0.8

0.9
0.5

0.7

 A1 A2 A3 A4 A5 A6

A1 - 0.8 0.6 0.42 0 0.5

A2 0.8 - 0.75 0.9 0.45 0.63

A3 0.6 0.75 - 0.7 0 0.83

A4 0.42 0.9 0.7 - 0.5 0.84

A5 0 0.45 0 0.5 - 0.42

A6 0.5 0.63 0.83 0.84 0.42 -

a.

A1.

A2.

A5.

A6. A3.

 0.8

 0.6

A4.

0.9

0.7

0.5

0.5

0.63 0.75

0.69

0.45

0. 72

0.72

0.83

0.5
0.6

0.8

0.9
0.5

0.7

 A1 A2 A3 A4 A5 A6

A1 - 0.8 0.6 0.72 0 0.5

A2 0.8 - 0.75 0.9 0.45 0.63

A3 0.6 0.75 - 0.7 0 0.83

A4 0.72 0.9 0.7 - 0.5 0.69

A5 0 0.45 0 0.5 - 0.72

A6 0.5 0.63 0.83 0.69 0.72 -

b.

Figure 3.9. (a) FOMT which used min(x,y) as the comparative function (b) FOMT which used max(x,y)

as the comparative function

3.3.2. Analysis of Fuzzy Ontology Map

The technical approach to constructing the fuzzy ontology map (FOM) is shown in this

45

section. As shown in the previous sub-section, the fuzzy membership value is one of the main

components for creating a FOM. However, in current W3C standards, an RDF statement is a

triple statement which contains subject, predicate and object. Although it would be easy to

create a fuzzy ontology by adding a fuzzy membership value to the triple statement, it would

be necessary to change the syntax of the statement.

After adding a fuzzy membership value, the triple statement would become a quadruple

statement composed of a subject, predicate, object and fuzzy membership value. This is a

straightforward way to create a fuzzy ontology. However, this also leads to a compatibility

problem. Although adding an element to the statement is a clear way to solve the problem, the

system developed by quadruple statement may not be applicable in other domains.

Since it is not practical to change the syntax of the RDF, another possible solution would

be to include the fuzzy membership information in the class instances directly. Figure 3.10

shows how to include the fuzzy information in the instance. But using such an approach

would require each class instance to insert data such as the fuzzy membership value, class

relation information (e.g. related to which class, related from which class). This would greatly

increase the document file size since there is a lot of duplicated data. Besides, there is a

limitation that each class must at least have one instance. Again, it is also not practical to

insert the fuzzy membership information directly in the instance of the class in the ontology.

46

…

 <Hotel rdf:ID="Hotel_1">

 <hasFuzzyValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

 >0.9</hasFuzzyValue>

 <relatedFrom rdf:resource="#Hotel_1"/>

 <relatedTo rdf:resource="#Bed_n_Breadfast_1"/>

 </Hotel>

 <Guesthouse rdf:ID="Guesthouse_1">

 <relatedTo rdf:resource="#Bed_n_Breadfast_1"/>

 <hasFuzzyValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

 >0.8</hasFuzzyValue>

 <relatedFrom rdf:resource="#Guesthouse_1"/>

 </Guesthouse>

…

Figure 3.10. Example of ontology which inserts fuzzy membership information to the class instances

directly

To ensure applicability and compatibility, the fuzzy ontology map which has the fuzzy

information between classes is proposed to create as a XML document. One of the advantages

of using XML for modeling fuzzy information is that it is a W3C standard. Another advantage

is that XML provides a surface syntax for structured documents which are mainly used for

describing data. As a result, in our proposed algorithm, a fuzzy ontology is created using two

files: a RDF/OWL document for the domain concept hierarchy and a XML document for the

fuzzy information. Figure 3.11 shows an example of a fuzzy XML document. The use of such

an approach ensures backward compatibility. If the system did not support fuzzy searching, it

47

would still use the RDF/OWL document for exact match searching. Figure 3.12 shows the

Document Type Definition (DTD) which used to validate the syntax of the XML. Note that

the generated FOM is also stored as a fuzzy XML document.

<?xml version="1.0" encoding="ISO-8859-1"?>

<fuzzy>

 <fuzzyset name="similarity" issymm="true" />

 <fuzzyrelation fromclass="hotel">

 <toclass membershipvalue="0.9">accommodation</toclass>

 </fuzzyrelation>

</fuzzy>

Figure 3.11. Example of the fuzzy XML

<!DOCTYPE fuzzy[

 <!ELEMENT fuzzy (fuzzyset, fuzzyrelation*)>

 <!ELEMENT fuzzyset EMPTY>

 <!ATTLIST fuzzyset

 name CDATA #REQUIRED

 issymm (true | false) "true">

 <!ELEMENT fuzzyrelation (toclass*)>

 <!ATTLIST fuzzyrelation fromclass ID #REQUIRED>

 <!ELEMENT toclass (#PCDATA)>

 <!ATTLIST toclass membershipvalue CDATA #REQUIRED>

]>

Figure 3.12. DTD for the fuzzy XML

48

3.3 Implementation and Experiments

This section shows in detail how the fuzzy ontology map is implemented and describes a

number of tests for evaluating the performance of the FOM.

The algorithm of fuzzy ontology map (FOM) was implemented by using JAVA. The

input of the program is the fuzzy ontology (RDF/OWL document and fuzzy XML document).

The output of the program is the FOM which is also stored as an XML file with the same

structure as the fuzzy XML. To evaluate the performance of the proposed algorithm, the

algorithm was tested on both synthetically generated and real-life ontologies. All experiments

were run on a PC with 1.82 GHz CPU, 768MB memory and Windows XP platform.

3.3.1 Experiments on Synthetic Data

Experiment I: Processing time for creating a FOM

In this experiment, a number of ontology graphs were randomly generated by using a JAVA

program. In these synthetic ontology graphs, the number of classes ranges from 10 to 2000

with a step of 10. Furthermore, the fuzzy membership value between connected edges is also

randomly generated by using the program. Eqn. (13) – Eqn. (15) were used to determine the

threshold T for filtering the virtual edges in the FOM. In this experiment, the fuzzy

relationship is assumed to be symmetric. For each ontology graph, the processing time for

generating a FOM was recorded.

)(
)(

FOMMAX
FOMMINT = (13)

2
)()(FOMMINFOMMAXT −

= (14)

CC

jiFOM
T

C

i

C

j

*

],[
1 1
∑∑
= ==

(15)

where MIN returns the smallest value, which must be greater than zero, in the fuzzy ontology

49

map, MAX returns the largest value in the fuzzy ontology map and C is the total number of

class in the FOM.

Total Processing Time VS Number of Classes

0

50

100

150

200

250

300

350

10 80 15
0

22
0

29
0

36
0

43
0

50
0

57
0

64
0

71
0

78
0

85
0

92
0

99
0

10
60

11
30

12
00

12
70

13
40

14
10

14
80

15
50

16
20

16
90

17
60

18
30

19
00

19
70

Number of Classes

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

)

threshold was determined by Eqn. 13 threshold was determined by Eqn. 14 threshold was determined by Eqn. 15

Figure 3.13. Total Processing Time Vs. Number of Classes

 Figure 3.13 shows the processing time for creating a FOM. The total processing

increases non-linearly with the number of classes in the ontology. The total processing time

for different threshold determination methods are nearly the same. The increase in the

processing time is mainly due to creating a FOM which depends on the number of classes in

the ontology. Thus, the relationship between total processing time and the number is class is

exponential. Since the algorithm attempts to create virtual edges for each class, the processing

time would be increased if more classes exist in the ontology.

Experiment II: Number of Edges in the filtered FOM

The experimental setup was the same as in Experiment I. This time, the number of edges in

the initial and final FOM were recorded. As mentioned in Section 3.2 (P.40), the filtered FOM

is a FOM which is initially a fully-connected FOM and is subsequently pruned by using the

threshold T. Figure 3.14 illustrates the number of edges in the FOM as a function of the

50

number of classes. Note that Eqn. (13) – Eqn. (15) were adopted to determine the threshold T

for filtering the virtual edges. Compared with other threshold determination methods, if Eqn.

(13) was adopted, the FOM has the greatest number of edges. If Eqn. (14) was adopted for

determining the threshold T, the FOM has the smallest number of edges.

Number of Edges VS Number of Classes

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

10 80 15
0

22
0

29
0

36
0

43
0

50
0

57
0

64
0

71
0

78
0

85
0

92
0

99
0

10
60

11
30

12
00

12
70

13
40

14
10

14
80

15
50

16
20

16
90

17
60

18
30

19
00

19
70

Number of Classes

N
um

be
r o

f E
dg

es

threshold was determined by Eqn. 13 threshold was determined by Eqn. 14 threshold was determined by Eqn. 15

Figure 3.14. Number of Edges Vs. Number of Classes

 The ratio between the number of edges in filtered FOM and base FOM was tabulated in

Table 3.1. When the threshold was determined by Eqn. (13), the average ratio between the

number of edges in the filtered FOM and base FOM is 3.99. When the threshold was

determined by Eqn. (14), the number of edges in the filtered FOM is nearly 1.51 times more

than the number of the edges in the base FOM. When the threshold was determined by Eqn.

(15), the average ratio between the number of edges in the filtered FOM and base FOM is

1.77. In this experiment, the ratios between the number of edges in filtered FOM and base

FOM were consistent over the entire range.

51

Table 3.1. The ratio between the number of edges in filtered FOM and base FOM

Threshold was determined by Ratio between the number of edges

in filtered FOM and base FOM Eqn. (13) Eqn. (14) Eqn. (15)

Min 3.12 1.48 1.75

Max 4.08 1.8 2.04

Average 3.99 1.51 1.77

Experiment III: Average processing time for creating an edge in the FOM

In this experiment, the average processing time required for creating an edge in the FOM was

investigated. The total processing time and number of edges in the base and filtered FOM

were recorded. The average processing time for creating an edge was calculated by the total

processing time over the number of edges created in filtered FOM. Table 3.2 shows part of the

experimental results. Figure 3.15 shows the time for creating an edge in with respect to

different number of classes. It shows that the time is positive proportional to the number of

classes. However, in some classes, the processing time for creating an edge fluctuated. It is

probably because the most membership values in base form of FOM were greater than the

threshold value T. In addition, the threshold value is one of the factors that affects the

processing time. In this experiment, when the threshold was determined by Eqn. 13, the time

to create an edge in FOM is smallest.

52

Time to create an Edge VS Number of Class

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

10 80 15
0

22
0

29
0

36
0

43
0

50
0

57
0

64
0

71
0

78
0

85
0

92
0

99
0

10
60

11
30

12
00

12
70

13
40

14
10

14
80

15
50

16
20

16
90

17
60

18
30

19
00

19
70

Number of Class

Ti
m

e
fo

r c
re

at
in

g
an

 E
dg

e
(s

)

threshold was determined by Eqn. 13 threshold was determined by Eqn. 14 threshold was determined by Eqn. 15

Figure 3.15. Time to Create an edge Vs. Number of Class

From Experiments I – III, it showed that there is no great difference in total processing time

for creating a FOM by using various approaches to determine the threshold T. However, when

the threshold T was determined by Eqn. (13), the number of edges in filtered FOM is largest

and the time for creating an edge is smallest. The main purpose of the threshold is to

minimize the number of edges of the FOM. By doing so, this would further reduce the

searching size and speed up the searching speed. Eqn. (13) – Eqn. (15) are suggestions to

calculate the threshold value in a more flexible way. From the experimental results, by using

Eqn. (13) for the threshold value, it could create more edges within the similar total

processing time. Thus, it would retain more class relation information in the FOM. It depends

on the user to adopt which threshold determination methods. If the system requires a small

number of class relation information, then Eqn. (14) and Eqn. (15) are good choices. If the

system requires a higher accuracy which need a large number of class relation information,

then Eqn. (13) is a good choice. The purposed Eqn. (13) – Eqn. (15) for calculating threshold

is not the optimal threshold. They are suggestions for determine the threshold value instead of

giving a threshold value between 0 and 1 casually.

53

Table 3.2. Average processing time for creating an edge in FOM

Threshold was determined by
num of class

Eqn. 13 Eqn.14 Eqn.15

100 2.01911E-06 2.4181E-05 7.88177E-06

200 6.79134E-06 3.96717E-05 2.60038E-05

300 9.28126E-06 5.9343E-05 3.63182E-05

400 1.53995E-05 9.28126E-05 6.09468E-05

500 1.5854E-05 9.57121E-05 6.25092E-05

600 1.94292E-05 0.000115789 7.79896E-05

700 2.22179E-05 0.000132523 8.74022E-05

800 3.18411E-05 0.000196199 0.000128466

900 3.66147E-05 0.000216077 0.000143361

1000 4.05698E-05 0.00024437 0.000161775

1100 3.64438E-05 0.000217588 0.000146037

1200 4.91891E-05 0.000294815 0.000196563

1300 4.332E-05 0.000258789 0.000173758

1400 5.59652E-05 0.000297139 0.000230647

1500 6.12197E-05 0.000402766 0.000244716

1600 7.0386E-05 0.000424356 0.000278641

1700 7.26884E-05 0.000433858 0.000290843

1800 6.28201E-05 0.000379007 0.00025263

1900 6.62585E-05 0.000400317 0.000263803

2000 7.83842E-05 0.000432746 0.000328913

3.3.1 Experiments on Real-life Data

Two real life ontologies were adopted to test the performance of the proposed algorithm. The

first is the accommodation ontology which was presented before. The other was borrowed

from Buche (Buche, et al., 2005) and is a substrate ontology. The substrate ontology has 5

levels with 14 classes. Figure 3.16 shows the ontology graph. The fuzzy set in the substrate

ontology was defined as preference. For example, the user prefers food made by Fresh Cheese

to food made by Cheese with membership value 1.

54

Animal food and
animal products

Milk and milk
products

Fresh
cheese

Egg and egg
products

Meat and meat
products

 0 0

Milk for
consumption

0

0

Cheese

0.9

Soft
cheese

Pressed
cheese

Melted
cheese

1.0 0.8

0.9 0.9

Pasteurized
fresh cheese Camembert

Soft cheese
with washed

crust

Cooked and
pressed
cheese

1.0 0.8 0.8
0.9

Figure 3.16. Substrate ontology (Buche, et al., 2005)

Experiment IV: Processing time for creating a FOM

The proposed FOM algorithm was applied to these two ontologies. The FOM was created 10

times for each ontology. The processing time for creating a FOM was recorded and the results

were tabulated (see Table 3.3). In this experiment, Eqn. (13) was adopted to determine the

threshold T for filtering the virtual edges in the FOM.

In the base form of these FOMs, the number of classes in the substrate and

accommodation ontologies is 14 and 6 respectively. Recall that base form FOM means that

the original FOM without creating any edges by inference. Filtered FOM means that some

edges in FOM were filtered by using a threshold value. The average processing time for

creating a filtered FOM in substrate and accommodation ontology were 923.5ms and 884.3ms

respectively. Although the number of classes in the substrate ontology is about twice the

number in the accommodation ontology in base FOM, there is no great difference in the

processing time.

According to the synthetic data test, the processing time for 20 classes is smaller than 1

55

ms. In real life data, the processing time for these two ontologies was around 1000 ms. This is

probably because most of the processing time was spent on I/O processes such as reading and

writing the XML document.

Table 3.3. FOM Processing Time in Substrate Ontology and Accommodation Ontology

No.
FOM Processing Time in

Substrate Ontology (ms)

FOM Processing Time in

Accommodation Ontology (ms)

1 938 891

2 953 875

3 922 890

4 953 875

5 922 875

6 906 891

7 907 875

8 906 875

9 922 890

10 906 906

Experiment V: Number of edges in FOM with different threshold values

The impact of the threshold value in creating FOM was shown in this experiment. The

number of edges in base and filtered FOM was recorded. The threshold value T ranged from

0.1 to 1 with a step of 0.1. Tables 3.4 and 3.5 show the number of edges in FOM for substrate

and accommodation ontology respectively. When the threshold is 0.1, the ratio between the

number of edges in filtered FOM and the number edges in base FOM is around 9 times and 5

times in substrate and accommodation ontology respectively.

By using Eqn. (13), the threshold value for substrate ontology is 0.12 and the number of

edges in filtered FOM is 63. In accommodation ontology, the threshold value is 0.39 and the

number of edges in final FOM is 26. This shows that Eqn. (13) for calculating the threshold

value T is acceptable for filtering the edges.

56

Table 3.4. Number of Edges in FOM (Substrate Ontology)

Threshold Value Num of edges (initial) Num of edge (final)

0.1 9 65

0.2 9 47

0.3 9 33

0.4 9 29

0.5 9 25

0.6 9 19

0.7 9 17

0.8 9 15

0.9 9 12

1 9 10

Table 3.5. Number of Edges in FOM (Accommodation Ontology)

Threshold Value Num of edges (initial) Num of edge (final)

0.1 6 30

0.2 6 30

0.3 6 30

0.4 6 26

0.5 6 24

0.6 6 22

0.7 6 17

0.8 6 10

0.9 6 7

1 6 6

Experiment VI: File size of FOM

The file size of a document is also a main concern for system development. In this experiment,

the file size of the Base and Filtered FOM were compared. Again, Eqn. (13) was adopted to

calculate the threshold value for filtering the virtual edges of FOM. The experimental results

are tabulated in Table 3.6. The file size of the filtered FOM is around 3 times of the base FOM.

The file size of filtered FOM is 5.47KB for substrate ontology and 2.24KB for

accommodation ontology.

57

Table 3.6. File size of FOM

Ontology Base FOM file size (KB) Filtered FOM file size (KB)

Substrate 2.28 5.47

Accommodation 1.26 2.24

3.4. Summary

In this chapter, the algorithm of fuzzy ontology map (FOM) is presented. Figure 3.17 shows

the flow diagram of how to create a FOM. The purpose of the proposed algorithm is to solve

the problem of the hard constraints inherent in current semantics markup languages. By using

FOM, we are able to develop an application which supports fuzzy searching.

A fuzzy ontology would be created by using the RDF/OWL document with the FOM. In

general, the FOM is a connection matrix which collects the fuzzy information in the ontology.

To ensure the applicability and capability, the FOM is written as an XML file. A data-type

definition (DTD) was defined to validate the syntax of the XML.

To evaluate the performance of the proposed algorithm, a number of tests are done on

syntactic and real-life data for evaluation. In coming chapters, the framework of information

filtering by using the fuzzy ontology will be shown. A number of semantic web applications

were implemented to show the capability and applicability of FOM.

58

Create Virtual Edges for All Reachable
Classes

Create Virtual Edges for All Unreachable
Classes

Ontology

<fuzzy>
....
.....
</fuzzy>

Fuzzy Info.

Fuzzy Ontology

Create Opposite Directed Edges

Filtering Virtual Edges

Fuzzy Ontology Map

<fuzzy>
....
.....
</fuzzy>

Fuzzy set is symmetric?

false

true

Figure 3.17. Flow diagram for creating a fuzzy ontology map

59

Chapter 4. Fuzzy Ontology Map in Application -

SemTour:HK

4.1 Introduction

The theoretical and technical idea of fuzzy ontology map (FOM) was presented in Chapter 3.

The next step is to apply the FOM in applications. In this chapter, a description of the

SemTour:HK information portal is presented. SemTour:HK is a travel information portal

which combines the Semantic Web technology with the FOM. Unlike other travel information

portals, SemTour:HK does not use exact match searching. Rather, users can use fuzzy search

functions. SemTour:HK makes use of a travel ontology for storing travel information. One

way to model a domain ontology is to reuse or extend an existing ontology, if two domains

are sufficiently similar. It is difficult, however, to model a domain ontology completely from

scratch. The most common way to model a fresh ontology is to invite an expert in ontology to

model the domain ontology. In this chapter, instead of inviting an expert to model the whole

travel ontology for the information portal, the travel ontology was modeled by collecting and

analyzing the structural information from a number of travel related websites. The travel

ontology was modeled by using OWL and RDF. The travel information portal, SemTour:HK,

was developed by using the travel ontology and FOM. A small user study was conducted.

Some evidence is also established that a user could benefit by using fuzzy search.

60

4.1.1 Organization of the Chapter

The rest of this chapter describes the travel information portal, SemTour:HK, in detail.

Section 4.2 shows some related work. Section 4.3 describes the details of the travel ontology.

Section 4.4 describes the system architecture of SemTour:HK. Section 4.5 shows the fuzzy

searching by using Fuzzy Ontology Map in SemTour:HK. Section 4.6 shows the user study

and presents a brief conclusion with discussion.

4.2 Related Work

There are a number of research projects related to the travel domain. However, most of them

are guiding systems rather than tourist information portals. CRUMPET is a research project

funded by the European Union. The main aim is to create user-friendly and personalized

mobile services for Tourism (Poslad, et al., 2001). CRUMPET adopted multi-agent

technology and GPS technology to create a context-aware system. CRUMPET provides

tourists with two different kinds of information: static and dynamic. Static information is

information collected according to the user’s profile and request. Dynamic information is

information gathered according to the user’s location. CRUMPET also learns user preferences

and interests to further filter irrelevant information. CRUMPET does not adopt reuse

knowledge from other domains.

 Cyberguide (Abowd, et al., 1997) is a personalized tourist guide for museum visitors.

The tourist guiding system provides information to users based on the data of user’s position

and orientation. There are two different types of Cyberguide: indoor and outdoor. However,

like CRUMPET, it has weak support for knowledge sharing and reasoning.

MyCampus (Sadeh, et al., 2002) is a research project developed at Carnegie Mellon

University. MyCampus is a Semantic Web environment for context-aware mobile services.

The current implementation of MyCampus combines a number of technologies such as OWL,

61

reasoning, context-aware agent and OWL Rule Extension. The system can provide

location-based movie recommendations and weather information. MyCampus is a

user-friendly and intelligent application. It fully utilizes the latest Semantic Web technologies.

 Johanna and Schubert (Lim and Foo, 2003) created a web-based virtual exhibition

system (VES) based on an XML-based digital archive. They defined a rich layered set of

metadata of image and text artifacts. These metadata ease the development and maintenance

of the content in the system. The idea of a virtual exhibition system is similar to our proposed

portal. VES uses XML for processing, which provides syntax for structured documents but

has no semantic constraints such as string literals. The following sections show how to

integrate a tourist information portal with the latest Semantic Web Technology

4.3 Construction of Travel Ontology

4.3.1 Collection of Structural Information

The structural information from a number of travel related web sites was collected. This

included terms used in the site map and the website menu. Web developers often group

related contents into categories. The site structure is a common way for people to define a

domain (e.g. travel). Instead of inviting an ontology expert to model the ontology, the

structural information from a number of websites were collected and recorded for analysis.

A number of websites that related to Hong Kong Travel from Google Web Directory and

Open Directory (domz.org) were collected. In Google Web Directory, there are 27 websites

related to Hong Kong Travel (Regional > Asia > Hong Kong > Travel and Tourism > Travel

Guides). In Open Directory, there are 31 websites that are related to Hong Kong Travel

(Regional > Asia > Hong Kong > Travel and Tourism > Travel Guides). Since Google Web

Directory integrates its search technology, PageRank (Brin and Page, 1998), with Open

Directory for searching, some websites in Open Directory are duplicated in the Google

62

Directory. After removing duplicates, there are 32 websites (2 being unreachable). Table 4.1

shows information about these websites. The recorded structural information contains 153

terms. After filtering and grouping similar terms, the most commonly used term is

“Shopping”. Twelve websites contained this term. Table 4.2 shows the top ten most common

used terms in Hong Kong Travel-related websites. The terms are further filtered and grouped

together with similar meanings (See Table 4.3) and this information was adopted to model the

upper-level travel ontology.

Table 4.1. Websites related to Hong Kong Travel Guides.

No. Name Address

1 Lonely Planet - Hong Kong http://www.lonelyplanet.com/dest/nea/hong.htm

2 Footprint Guides Hong Kong http://www.footprintguides.com/Hong-Kong/

3 Regi Tour http://www.regit.com/regitour/hongkong/regitour.htm

4 Dr Martin Williams http://www.drmartinwilliams.com

5 Walk The Talk http://www.walkthetalk.hk/

6 Arthur Frommer's Budget Travel

Online

http://www.frommers.com/destinations/hongkong/

7 rec.travel Guide to Hong Kong http://www.math.toronto.edu/~joel/hongkong.html

8 Hong Kong Tourist Guide + http://www.yp.com.hk/yptourist_e03/en/html/tourist_index.a

spx

9 PassPlanet.com - Hong Kong + http://www.passplanet.com/HK/index.htm

10 Hong Kong Hotels Guide http://www.hong-kong-hotels-guide.com/

11 12hk : The Unofficial Guide http://www.12hk.com

12 Hong Kong FastFacts http://www.hkfastfacts.com/

13 Hong Kong Travel http://www.hong-kong-travel.org/

14 Writing, Photography and Nature

Tourism in East Asia

http://martinwilliams.tripod.com/index.html

15 Travelocity's Destination Guide http://dest.travelocity.com/DestGuides/geo_main/0,1743,TR

AVELOCITY|2771,00.html

63

16 Stuie's Hong Kong Page http://uk.geocities.com/expatbeamish/SB/HK/

17 Hong Kong Tong http://www.hongkongtong.net/

18 Hong Kong Travel Guide http://www.luketravels.com/hong-kong/

19 Hong Kong on Web http://www.hongkongonweb.net/

20 Hong Kong Help http://www.hongkonghelp.com/

21 Visiting Hong Kong http://www.visitinghongkong.co.uk/

22 Hong Kong Travellers http://home4u.hongkong.com/lifestyle/travel/hktravellers

23 Discover Sai Kung http://www.discoversaikung.com/

24 Travallo: Hong Kong http://www.travallo.de/laender/asia/china/hongkong.html

25 Worldsurface.com - Hong Kong

Guide

http://www.worldsurface.com/browse/location-country.asp?l

ocationid=112

26 BootsnAll http://www.BootsnAll.com/asiatravelguides/hk/hk.shtml

27 CNN City Guides: Hong Kong http://www.whatsontheplanet.com/wow/ptnr/cnn/page.jsp?fx

=destination&loc_id=147486&xml_set=wow.city

28 Asia Friends Network - Hong

Kong Tourism

http://www.countries.asiafriendsnetwork.com/HongKong/

29 Explore Sai Kung http://www.exploresaikung.com/

30 Hong Kong Streets http://www.hkstreet.com/

31 I Love Hong Kong http://free.hostdepartment.com/i/ihearthk/

32 UnRealHongKong.com http://www.unrealhongkong.com/

+ - unreachable

Table 4.2. Ten most commonly used categories in Hong Kong travel guide websites

Rank Category Term Frequency

1 Shopping 12

2 Hotels 6

3 Getting Around 6

4 Link 6

5 Food 5

6 History 5

7 Attractions 5

8 Festivals 5

9 Accommodation 5

10 Transportation 4

64

Table 4.3. Ten most commonly used categories after filtering and grouping

Rank Category Term Frequency

1 See / Sightseeing / Sights / Spots / Unique Sights / Interesting Places /

Attractions / Landmarks / Places to visit / Getting Around / Go Around

18

2 Food / Cruises / Restaurant / Dining / Eat / Bars and Restaurants / Eating

and Drinking / Food & Drink

16

3 Shopping / Shops / Shopping & Malls / Buy 15

4 General Information / General / Overview / General HK Info / City Facts &

Info / Country Info / History

14

5 Accommodation / Places to stay / Sleep / Hotels 13

6 News & Events / News / Events / Festivals and Events / Festival / Festivals

and Holidays / Public Holidays

11

7 Transportation / Transport / Getting There 10

8 Others / Misc / Link 6

9 Nightlife / Night 5

10 Weather / Local Weather 4

4.3.2 Travel Ontology Design

To ensure that the ontology would be reused and shared with others, an upper-level travel

ontology was modeled. An upper-level ontology is an ontology that provides a set of basic

concepts. If an ontology contained all the concepts, the ontology would be too specific and

would not be reused by others. After collecting and analyzing the structural information, an

upper-level travel ontology was defined. The travel ontology contains seven main classes,

each with subclasses. Figure 4.1 shows details of the class relationships in the travel ontology.

To allow the ontology to be reused by others, the travel ontology was modeled in Web

Ontology Language (OWL) by using Protégé5. Protégé is a free, open-source platform with a

friendly user interface that provides a set of tools for constructing domain model and

knowledge-based applications with ontologies. Figure 4.2 depicts a partial OWL of the travel

ontology. Three other ontologies: Cuisine, Shop and District were also defined to enhance the

functionality of SemTour:HK. Figure 4.3 shows the class relationships of the cuisine

5 Protégé, http://protege.stanford.edu/

65

ontology.

Travel

Accommodation

General
Information

Dining

News and
Event

Shoppin
g

Sightseeing

Transportation

Useful Telephone
Number

Ferry

Railway Subway

Tram Taxi

Holiday
Camp

Guesthouse

Modern
Landmark

Colonial
Attraction

District
Highlight

Event

Event
Highlight

Bed &
Breadfast

Chinese
Food

Western
Food

Other Asian
Food

Other

Custom
Tailors

Computers

Arts and
Crafts

Audio/Video/
Photographic

Equipment and
Other Appliances

Clothing and
Accessories

General
Merchandise and

Miscellaneous
Goods

Furniture/Home
Decoration and

Household
Products

Cosmetics/
Skin Care
Products

Department
Stores

Handbags
Shoes and

Leather Goods

Jewellery
and WatchesTelecommuncation

Equipments

Optical
Equipments

Musical
Instruments

Most Popular

Foodstuffs

Hotel

News

Legend:

owl:Class

owl:subClassOf

Service
Appartment

Figure 4.1. Travel Ontology

66

…

 <owl:Class rdf:ID="Custom_Tailor">

 <rdfs:subClassOf rdf:resource="#Shop_Type"/>

 </owl:Class>

 <owl:Class rdf:ID="Useful_Telephone_Number">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="General_Information"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Handbags_Shoes_and_Leather_Goods">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Shopping"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Hotel">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Accommodation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasCusine">

 <rdfs:range rdf:resource="#Cuisine_Type"/>

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Chinese_Food"/>

 <owl:Class rdf:about="#Other_Asian_Food"/>

 <owl:Class rdf:about="#Western_Food"/>

 <owl:Class rdf:about="#Other"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 </owl:ObjectProperty>

...

Figure 4.2. The partial OWL of the travel ontology

67

Figure 4.3. Cuisine Ontology

68

<Hotel rdf:ID="THE_MARCO_POLO_HONGKONG_HOTEL">

 <hasTelephoneNumber rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >2113 0088</hasTelephoneNumber>

 <hasFaxNumber rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >2113 0011</hasFaxNumber>

 <hasEmailAddress rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >hongkong@marcopolohotels.com </hasEmailAddress>

 <hasURL rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >www.marcopolohotels.com </hasURL>

 <hasDistrict rdf:resource="#Tsim_Sha_Tsui"/>

 <hasRoom rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >710</hasRoom>

 <hasStar rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

 >5.0</hasStar>

 <hasStreet rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Canton Road</hasStreet>

 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >The Marco Polo Hongkong Hotel</hasName>

 <hasAddress rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Harbour City, 3 Canton Road, Tsimshatsui, Kowloon</hasAddress>

 <hasStandardRoomPrice rdf:datatype="http://www.w3.org/2001/XMLSchema#float"

 >1050.0</hasStandardRoomPrice>

 </Hotel>

Figure 4.4. An instance of hotel

4.3.3 Properties in Travel Ontology

There are a number of class properties in the travel ontology and seven main classes. Each

class has its own subclasses and class properties such as:

- hasDesc: Description about the resource

- hasName: Name of the resource

- hasTelephoneNumber: Telephone number of the resource

- hasEmailAddress: Email address of the resource

69

- hasFaxNumber: Fax number of the resource

- hasOpeningHours: Opening hours of the resource

- hasRoom: Number of room of the resource

- hasStar: Rank (number of star) of the resource

- hasURL: URL about the resource

There were more than twenty properties in the travel ontology. Some class properties, such as

hasName and hasDesc, were used by different classes. The cuisine ontology has four

subclasses; each subclass having a number of instances. The travel ontology dining subclass

has a property called hasCuisine which refers to these instances. The travel ontology has

around 420 instances among seven main classes for demonstration and evaluation. Figure 4.4

shows a hotel instance in the travel ontology.

4.3.4 Construction of Fuzzy Ontology Map (FOM)

The purpose of FOM is to further extend the functionality of the current Semantic Web

application. As mentioned before, the ontology markup language is based on bivalent logic.

As a result, a subject in RDF/OWL either belongs to a member of a class or it does not.

However, real-world information is vague or imprecise. In this research work, a FOM is

constructed to extend the capability of the current ontology to model real world vague

information.

In general, searching in RDF/OWL is exact match searching. This limitation would be

extended by using FOM. In this application, an accommodation FOM was developed. The

fuzzy set for this FOM is similarity. By using this FOM, the ontology would include

information about the similarity between classes. By using this FOM, a fuzzy search function

for accommodation would be developed. Figure 4.5 shows the fuzzy ontology of

accommodation class (which is the same as the accommodation example). In this

70

accommodation FOM, the class Holiday Camp is similar to the class Accommodation with

membership value 0.5. The greater the membership value, the greater the similarity.

A1. Accommodation

A2. Hotel

A5. Service
Appartment

A6. Holiday
Camp A3. Guesthouse

 0.
8

 0.6

A4. Bed &
Breakfast

0.9 0.7

0.5

0.5

Legend:

owl:Class

owl:subClassOf

Figure 4.5. Accommodation fuzzy ontology map

 A FOM of accommodation is created by using the proposed algorithm (for more details,

please refer to Chapter 3). The membership threshold value was set to 0.0 and min(x,y) is

adopted as the comparative function. Figure 4.6 shows the matrix of accommodation FOM.

The FOM is saved as a fuzzy XML document. Figure 4.7 shows part of the content of the

accommodation FOM. The FOM was applied together with the travel ontology to develop the

SemTour:HK portal.

71

A1.

A2.

A5.

A6. A3.

 0.8

 0.6

A4.

0.9

0.7

0.5

0.5

0.63 0.75

0.84

0.45

0.4 2

0.42

0.83

0.5 0.6

0.8

0.9
0.5

0.7

 A1 A2 A3 A4 A5 A6

A1 - 0.8 0.6 0.42 0 0.5

A2 0.8 - 0.75 0.9 0.45 0.63

A3 0.6 0.75 - 0.7 0 0.83

A4 0.42 0.9 0.7 - 0.5 0.84

A5 0 0.45 0 0.5 - 0.42

A6 0.5 0.63 0.83 0.84 0.42 -

Figure 4.6. Matrix of accommodation fuzzy ontology map

<fuzzy>

<fuzzyset name="similarity" issymm="true" />

<fuzzyrelation fromclass="Accommodation">

<toclass membershipvalue="0.8">Hotel</toclass>

<toclass membershipvalue="0.6">Guesthouse</toclass>

<toclass membershipvalue="0.42000002">Bed_n_Breakfast</toclass>

<toclass membershipvalue="0.5">Holiday_Camp</toclass>

</fuzzyrelation>

<fuzzyrelation fromclass="Hotel">

<toclass membershipvalue="0.8">Accommodation</toclass>

<toclass membershipvalue="0.75">Guesthouse</toclass>

<toclass membershipvalue="0.9">Bed_n_Breakfast</toclass>

<toclass membershipvalue="0.45">Service_Appartment</toclass>

<toclass membershipvalue="0.625">Holiday_Camp</toclass>

</fuzzyrelation>

…

</fuzzy>

Figure 4.7. The content of the fuzzy XML of fuzzy ontology map of accommodation

72

4.4 SemTour:HK

The details of the semantic tourist information portal – SemTour:HK are shown in this section.

In Section 4.4.1, the system architecture of SemTour:HK is shown. In Section 4.4.2,

information on how to use fuzzy ontology map to develop a fuzzy searching in SemTour:HK

is shown.

4.4.1 System Architecture of SemTour:HK

SemTour:HK is a tourist information portal which allows tourists to search for information

about accommodation, sightseeing, and dining in Hong Kong. The portal was developed

based on the latest Semantic Web technology and implemented in Java on the Jena Semantic

Framework. Figure 4.8 depicts the system architecture of SemTour:HK. Users can access the

information portal through the web browser. Figure 4.9 shows the homepage of SemTour:HK.

The tourist information server is a web server that handles user requests.

In this prototype, Apache Tomcat6 was employed as the tourist information server. After

the information server receives the user request, the information server forwards the request

to Jena Framework (Carroll et al., 2004) to gather the related information. Jena is an open

source Java framework for building Semantic Web applications. It offers a number of APIs for

handling RDF, RDFS and OWL. The main purpose of using Jena is to parse and query the

travel ontology. Jena searches for the data from the travel ontology by using the Simple

Protocol And RDF Query Language (SPARQL). SPARQL is a query language and protocol

for accessing RDF designed by the W3C RDF Data Access Working Group. Figure 4.10

shows an example of SPARQL that is used to get related information about Guesthouse. The

search returns as an RDF graph and is sent back to the tourist information server. Then, the

server generates a result page and displays this to the user. Figure 4.11 shows a screenshot of

6 Apache Tomcat, http://tomcat.apache.org/

73

a shopping page in SemTour:HK.

User Web Browser

SemTour:HK
Tourist Information Server

Dining

Accommodation General
Information

Shopping Sightseeing

News
and Event

Transportation

Travel Ontology

Jena Framework

SPARQL

FOM

Figure 4.8. System architecture of SemTour:HK

74

Figure 4.9. Screenshot of SemTour:HK Homepage

75

Select related information about Guesthouse

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX travel: <http://www.comp.polyu.edu.hk/~cshwlam/ontology/travel.owl#>

SELECT ?URI ?NAME ?ADDRESS ?DISTRICT ?ROOM ?URL ?EMAIL ?PRICE ?FAX ?PHONE

WHERE { ?URI rdf:type travel:Guesthouse .

?URI travel:hasName ?NAME .

?URI travel:hasAddress ?ADDRESS .

?URI travel:hasDistrict ?DISTRICTURI .

?DISTRICTURI travel:districtName ?DISTRICT .

?URI travel:hasRoom ?ROOM .

OPTIONAL {?URI travel:hasURL ?URL } .

OPTIONAL {?URI travel:hasEmailAddress ?EMAIL }.

OPTIONAL {?URI travel:hasStandardRoomPrice ?PRICE } .

OPTIONAL {?URI travel:hasFaxNumber ?FAX }.

OPTIONAL {?URI travel:hasPhoneNumber ?PHONE }

}

Figure 4.10. A SPARQL example used in SemTour:HK

Figure 4.11. Screenshot of a shopping page in SemTour:HK

76

4.5 Fuzzy Searching by using Fuzzy Ontology Map

SemTour:HK supports fuzzy searching by using the fuzzy ontology map. A questionnaire is

designed for users to proceed to fuzzy searching. Users can use the questionnaire to find

similar accommodation to a particular class. Figure 4.12 shows a screenshot of the fuzzy

searching page. The page which contains two fields for users to enter data into. The first one

is the relation from and the other is the minimum level. The relation from field is used to let

the user select the accommodation type that he/she would like to search for. For example, if

the user would like to find accommodation which is similar to a hotel, then the relation from

field should select hotel. The minimum level lets the user filter the search result. The search

result must be greater than or equal to the select value. To ease user understanding, five levels

of similarity are defined: similar (1.0), very similar (0.8), more or less similar (0.5), not very

similar (0.2) and not similar (0.0).

Figure 4.12. Screenshot of fuzzy searching page

 After the user selects the fuzzy searching criteria and submits it to the tourist

information server, the server locates the accommodation fuzzy ontology map. After the

server finds the FOM, it tries to parse the FOM. After this, the server tries to locate the

77

relation from accommodation in the FOM. The class related to this accommodation is

retrieved for further processing. Classes with a smaller membership value than the user

selected are removed. The filtered classes are sorted in descending order according to their

membership value. After this, a number of SPARQL queries is generated depending on the

number of filtered classes. These SPARQL queries send to JENA to query the database. The

server collects the query result for each class and then displays it to the user. Figure 4.13

shows the sequence diagram of the fuzzy search function.

Sequence Diagram: Fuzzy Search

1.fuzzy search request

2. search request

10. dynamic HTML page

Fuzzy Ontology
Map

Tourist Information
Server

Browser

3. result set

5. sort the result set

4. filter the result set

6. [for each class in result set]
send SPARQL query

JENA Ontology

7. query ontology

8. result set
9. result set

Figure 4.13. Sequence diagram of fuzzy search function

4.6 Evaluation and User Study

A prototype of a tourist information portal, SemTour:HK, was developed using Java Server

Pages (JSP) based on a Jena framework. The tourist information server is installed in a P4

1.8GHz computer with 768MB memory. The main objective of the experiment is to evaluate

the performance of the fuzzy ontology map.

78

Experiment I: Processing Time for exact match searching

SemTour:HK has six main pages: home, accommodation, dining, shopping, sightseeing, and

transportation. The processing time required for generating the result page is recorded. Each

page is requested 10 times and the processing time is recorded. Figure 4.11 shows the

processing time for each page. The home page has the longest processing time. The average

processing time for the home page is 3240.5ms. The transportation page has the shortest

processing time. The average processing time for the transportation page is around 829.6ms.

The home page has the longest processing time as it shows four different classes of

information. The home page of SemTour:HK has four different classes of information: About

Hong Kong, News, Event Highlight and Events Calendar. They mainly come from the News

and Event and General Information classes in the travel ontology. Since the home JSP page

required four different SPARQL queries to get the related information, the processing time is

longer that of the others. The transportation page has the shortest processing time as the

SPARQL query is simple compared with other pages. Transportation has a smaller number of

instances than other classes. Table 4.4 shows the average processing time for each page.

79

Processing Time in Each Page

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

No. of requests

Pr
oc

es
si

ng
 T

im
e

(m
s) Home

Accommodation
Dining
Shopping
Sightseeing
Transportation

Figure 4.11. Processing time for each page

Table 4.4. Average processing time for each page

Name of the page Average Processing Time (in ms)

Home 3464

Accommodation 1514.1

Dining 2350.2

Shopping 2185.9

Sightseeing 1270.3

Transportation 872

Experiment II: Processing Time for fuzzy searching

In this experiment, the processing time for fuzzy searching in the accommodation page was

recorded. The processing time for fuzzy searching was compared with the exact match

searching. Fuzzy searching with different minimum levels of similarity were sent to the server

10 times. The processing time was recorded. The fuzzy searching criterion of relation from

was set to Hotel. Figure 4.12 shows the processing time for fuzzy searching with different

80

minimum levels of similarity and exact match searching of the accommodation page.

Processing Time in Searching in Accommodatin Page

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

No. of requests

Pr
oc

es
si

ng
 T

im
e

(m
s) Exact Match Searching

Fuzzy Searching (m.l. = 1.0)
Fuzzy Searching (m.l. = 0.8)
Fuzzy Searching (m.l. = 0.5)
Fuzzy Searching (m.l. = 0.2)
Fuzzy Searching (m.l. = 0.0)

Figure 4.12. Processing time in fuzzy searching and exact match searching in accommodation page

The processing for fuzzy searching depends on the minimum level of the similarity.

When the minimum level of the similarity was not similar (0.0), the fuzzy searching tries to

find all the data that is related to the class Hotel. As a result, the processing time was much

longer than others, with an average processing time of around 2.79s. When the minimum

level of the similarity was more or less similar (0.5), the average processing time for fuzzy

searching is nearly the same as the exact match searching which is around 1.4s. This is

probably because the number of search results is nearly the same as in the exact match

searching. When the minimum level of the similarity was similar (1.0), the average processing

time was around 0.4s. Since there is no class similar to Hotel with a membership value equal

to 1.0, no data was retrieved. As a result, there is a great drop in the processing time. Table 4.5

shows the average processing time for fuzzy searching with different minimum levels of

similarity.

The processing time affects the performance of the system. To further reduce the

81

processing time, the accommodation FOM would be filtered with a higher threshold value

(current threshold value is 0). However, using such an approach, there is some data loss.

Table 4.5. Processing time for searching the accommodation page

Type of Search Average Processing Time (in ms)

Exact Match Searching 1445.1

Fuzzy Searching (m.l. = 1.0) 402.2

Fuzzy Searching (m.l. = 0.8) 1261.5

Fuzzy Searching (m.l. = 0.5) 2413.5

Fuzzy Searching (m.l. = 0.2) 2798.2

Fuzzy Searching (m.l. = 0.0) 2795.4

* m.l. = minimum level

Experiment III: User Acceptance Test

To test the effectiveness of the system, 20 people aged 18 to 25 were invited to use the system

and answer interviewer questions. Users were invited to browse the website and then asked to

answer the questions shown in Table 4.6.

Table 4.6. Questions used in the interview

Question Choice

1. Can the system help tourist to find related tourist information in Hong Kong? Yes / No

2. Is the loading time acceptable? Yes / No

3. Is Fuzzy Searching useful for tourist? Yes / No

4. Is the system easy to use? Yes / No

5. Will you recommend this website if your friend will visit to Hong Kong? Yes / No

Table 4.7. Result of the interview

Question Number
Answer

1 2 3 4 5

Yes 16 (80%) 12 (60%) 15 (75%) 18 (90%) 15 (75%)

No 4 (20%) 8 (40%) 5 (15%) 2 (10%) 5 (15%)

82

The results of the survey are shown in Table 4.7. Most of the interviewees agreed that

the system can help tourists find tourism related information in Hong Kong. However, nearly

half of those interviewed felt that the loading time was not acceptable, especially the home

page. 75% of the interviewees agreed that the Fuzzy Search function is useful for them to find

similar accommodation. 75% of the interviewees would recommend this portal site to a friend

coming to Hong Kong.

Most of the users felt that the fuzzy search function should be employed on other pages,

especially the Dining page. Since there are lots of choices in cuisine, it is difficult for them to

get the cuisine they are interested in by using exact match searching. They are required to

spend time browsing all the different kinds of cuisine. However, if fuzzy search was

employed on the Dining page, then once the user selects a specific cuisine (e.g. Traditional

Hong Kong), then the system would give recommendations to the user with similar cuisines

(e.g. Chiu Chow). This would help to further reduce the browsing time.

4.6 Discussion and Conclusion

A tourist information portal based on the latest Semantic Web technology was implemented.

The fuzzy search function developed by using a fuzzy ontology map was successfully

developed. Most users felt the fuzzy search function in the portal was useful. The portal is

easy to use and can provide tourist information related to Hong Kong. A number of the

interviewees found the loading time unacceptable. In the future, the whole portal site will be

re-designed and re-implemented. To reduce page loading times, the coming version of

SemTour:HK will have less information on the first page and will fine tune the JSP program .

In addition, the fuzzy search function will be added in other kinds of pages such as Dining

and Shopping.

83

This chapter described how to model a travel ontology by collecting and analyzing

structural information from a number of travel related websites. Using Google Directory and

Open Directory, 32 Hong Kong related travel guide websites were collected. The terms used

in the structural information were collected for analysis. After grouping and filtering terms

with similar meanings, seven main classes were defined in the travel ontology. Each class had

its own subclasses and properties. Based on the travel ontology, around 400 instances were

input. To demonstrate how the ontology works, Java and Jena Semantic Framework were

employed to develop a semantic tourist information portal called SemTour:HK. A fuzzy

searching function was developed in the accommodation page to allow users to find similar

accommodation. The user study showed the fuzzy search function was useful for the user to

reduce browsing time.

In conclusion, a new approach to modeling a domain ontology is proposed. A travel

ontology was successfully modeled and a semantic web application was developed by using

the modeled ontology. In addition, a fuzzy search function based on fuzzy ontology map was

successfully developed. The feedback for this fuzzy search function has been quite positive.

84

Chapter 5. iJADE FreeWalker

5.1 Introduction

Recent developments in communication systems and Information Technology have had a

profound influence on different industries. These technologies have changed customer

behaviors. For example, more and more tourists now gather information from the Internet and

plan their own tours. There are some applications such as personalized pricing (priceline.com)

and recommendation systems for tourists. However, these applications are only useful for

tourists planning their travels. Moreover, there are many wireless devices such as PDA and

mobile phone on the market. These mobile devices are small, lightweight and long lasting. It

is a good idea for the tourists to use their mobile device as a personal tourist guide. In this

chapter, a new mobile application specialized for tourists, iJADE FreeWalker (iJFW), is

presented.

iJADE FreeWalker (Ao Ieong et al., 2005, Lam and Lee, 2006) is developed based on

the intelligent agent-based platform, iJADE7. A number of systems have already been

developed based on iJADE such as an authentication system (Lee, 2002), a surveillance

system (Lee, 2003), a web mining system (Lee and Liu, 2004a), a stock advisor system (Lee,

2004) and a weather forecasting system (Lee and Liu, 2004b). iJFW is a location-aware

application which utilizes the Global Positioning System (GPS) to gather geographic

information. iJFW not only provides positioning information, it is also integrated with

7 http://www.ijadk.org

85

different intelligent agents to enhance the functionality of the guidance system. Furthermore,

the system adopts the fuzzy ontology map to provide recommendations to users according to

the their preferences.

5.1.1 Organization of the Chapter

The rest of this chapter describes the iJADE FreeWalker (iJFW) in detail. Section 5.2

describes background information about iJFW. Section 5.3 describes the system architecture

of iJFW. Section 5.4 shows the fuzzy ontology map in iJFW. Section 5.5 shows the

experimental results. Section 5.6 presents a brief conclusion and future work.

5.2 Background

iJFW is an intelligent agent-based tourist guide system based on the integration of several

cutting-edge technologies including ontology agents technology and the Global Positioning

System (GPS) technology. iJFW is developed based on iJADE. In this section, the

background information about iJFW is presented. Section 5.2.1 shows an overview of agent

technology. Section 5.2.2 presents the system architecture of iJADE. Section 5.2.3 shows

information about the Global Positioning System.

5.2.1 Agent Technology

An agent is a complex software entity which is situated in an environment to achieve goals

for a user (Jennings, Sycara and Wooldridge, 1998). It can perceive and response upon its

environment autonomously which its behavior depends partially on its own experience.

Professor Michael Wooldridge defines agent is a computer system that is capable of

86

independent action on behalf of its user or owner. (Wooldridge , 2002) Unlike an arbitrary

program, the agent is goal-orientated, persistent, reacts to the environment and is autonomous

(Franklin and Graesser, 1996). There are different types of agents such as

1. Symbolic reasoning agents / deliberative agents – contain an explicitly represented,

symbolic model of the world which can make decisions by symbolic reasoning

2. Reactive agents – do not have any internal symbolic models, act by stimulus-response to

the current state of the environment.

3. Hybrid agents – combine the best of reasoning and reactive agents

4. Mobile agents – migrate from one machine to another and execute in a

platform-independent environments

5. Information agents – manage and manipulate the information from distributed sources.

It can be mobile or static.

Recently, scientists tried to build intelligent agents that can mimic human intellectual

behavior for the purposes of problem solving, scheduling, data mining and to generally assist

humans in all of their activities. The developers of agents have implemented various

multi-agent systems such as planning and scheduling (Pechoucek et al., 2006). Compared

with traditional client-server technologies and code-on-demand technologies, systems which

are developed by using agent technology have the following advantages (Lange and Oshima,

1999):

1. Reduce network load – Traditional distributed systems mainly rely on the

communication protocols involving multiple interactions to complete a task. This leads

to a lot of network traffic. It is possible for users to package conversation with an agent

and dispatch it to a destination host. Using such approaches could greatly reduce the

network load.

2. Reduce network latency – Real time responses are critical for control systems. Network

latencies have a great impact on control systems. By using agent technology, we can

87

dispatch autonomous agents to the controller of the system. The agent executes

commands directly with respect to the external environments.

3. Asynchronous process – Agents can be dispatched into different hosts throughout the

network. After dispatch, the agents are independent and can operate asynchronously and

autonomously.

4. Heterogeneous – Agents work on their execution environments. This enables the agents

to work on different hardware and software configurations. It provides a seamless

environment for heterogeneous system integration.

5.2.2 Intelligent Java Agent-based Development Environment (iJADE)

iJADE is an intelligent agent-based development environment which is able to develop a fully

integrated intelligent multi-agent based system. It is a basic framework and development

environment for intelligent agent-based applications. iJADE is a contemporary conceptual

model for intelligent agents. It consists of four layers (see Figure 5.1):

1. Application Layer: This is the uppermost layer that consists of different intelligent

agent-based applications. This layer accepts the data result from the conscious layer and

is connected to external applications.

2. Conscious Layer: This is an intelligent layer that includes a Sensory Area, Logic

Reasoning Area and Analytical Area.

3. Technology Layer: This layer provides all the necessary mobile agent implementation

APIs for the development of intelligent agent components in the 'Conscious Layer'.

4. Supporting Layer: This layer provides a programming language and protocols to support

the development of the ‘Technology Layer’.

88

Figure 5.1. iJADE Framework

iJFW is an agent-based tourist guiding system which is developed based on this iJADE

platform. For details about iJFW, please refer to Section 5.3.

5.2.3 Global Positioning System (GPS)

GPS is used to gather geographical information. GPS receivers are not expensive and are

widely used. There are some consumer products developed for outdoor usage such as hiking,

flying and sailing. Furthermore, the receivers can also be used for route guiding. The GPS is

adopted to develop our tourist guiding system as it is convenient to use and accurate. Using

GPS allows the identification of the coordinates of the user’s position.

 GPS was designed by the United States Department of Defense in 1978. At first, GPS

was used for military positioning and navigation. In 1984, due to the crash of a Korean

Airlines fight, part of GPS was made available for public use. In 1995, the system was

operational with degraded accuracy (around 100 meters). In 2000, the system was operational

89

with an accuracy of around 15m. This spurred the development of the GPS applications8.

 However, since the US Military have the right to turn off the GPS signal on a regional

basis at any time, it would greatly affected the performance of the GPS applications such as

car navigation system, tracking, traffic and fleet management system. As a result, another

position system called GALILEO was begun9. GALIEO is a global navigation infrastructure

under civil control. It consists of 30 satellites, 6 more than the GPS. The main aim of

GALIEO is to provide an open service with the same performance and service guarantees as

GPS.

 At present, GPS devices are quite common. Some mobile devices already have a

build-in GPS receiver. But GPS has some shortcomings when receiving satellite signals.

Since the satellites are located at a high earth orbit, the transmitted signal is very weak when

received on earth. When the GPS receivers are located under cover of bridges, or between tall

buildings, the performance is greatly reduced. In addition, the performance of the receiver

depends on the weather and GPS does not work inside buildings. In iJFW, GPS technology is

adopted to receive the user’s geographical information. The system provides location-aware

information for the users. In Section 5.3, the system architecture about iJFW is presented.

5.3 iJADE FreeWalker (iJFW)

iJADE FreeWalker (iJFW) integrates agent technology and ontology to form an intelligent

tourist guide system. In general, location awareness means the execution of services can be

dynamically adapted depending on a user’s current location. Location-aware mobile tourist

guide systems have been designed using two major approaches. One of the approaches is a

8 Office of the Press Secretary, The White House –
http://www.navcen.uscg.gov/news/archieve/2000/may/SA.htm
9 GALILEO – European Satellite Navigation System,
http://europa.eu.int/comm/dgs/energy_transport/galileo/index_en.htm

90

client-server communication model which uses a remote procedure call (RPC) technique to

transmit the data. The second one uses agent technology.

 In a client-server communication approach, two separate computers communicate with

each other over the network by sending and receiving messages. These messages are either

requests from clients or responses from a server. By using this approach, the network traffic is

quite large (Karnik and Tripathi, 1998) since the responses often contain a large volume of

data.

Agent technology has three advantages over the client-server communication approach.

First, agents can transmit over the Internet with a varying degree of autonomy. In a

heterogeneous network environment, the agent can migrate freely as it performs tasks on

behalf of users. Second, agents can perform assigned tasks for users even when the user is

off-line. Third, agents reduce network traffic and communication delay significantly as it is

not necessary to transfer large amounts of data over the network. Hence, the network

bandwidth is utilized in a more effective way.

 Mobile devices, such as mobile phones and PDA, have limited storage, bandwidth and

calculation power, making agents suitable for handheld devices. To ensure the usability of the

system, the proposed tourist guiding system was developed under an agent platform. The

location awareness agent was developed. The agent captures the geographical information by

using the GPS system. An ontology-based context model was proposed to represent tourist

information. The context model enables knowledge sharing and context reasoning in the

tourist domain.

 iJADE FreeWalker is composed of four major components: 1) iJADE FreeWalker Client,

2) GPS Agent, 3) Fuzzy Search Agent, and 4) iJADE Tourist Information Center. Figure 5.2

shows the system diagram of iJADE FreeWalker.

91

Figure 5.2. iJADE FreeWalker System Architecture

5.3.1 iJADE FreeWalker Client

The iJADE FreeWalker Client is a graphical user interface for displaying maps and tourist

information for users. The client gathers the user’s location information by using the GPS

receiver. The GPS receiver is employed to receive simultaneous GPS data and to ascertain the

user’s location. The GPS receiver is connected with a pocket PC via Bluetooth. Figure 5.3

shows a screenshot from the iJADE FreeWalker Client.

92

Figure 5.3. Screenshot from iJADE FreeWalker Client

5.3.2 GPS Agent

Mobile devices have a narrow bandwidth in wireless connection. This is a critical problem in

developing a mobile information retrieval system. To overcome such problem, agent

technology is utilized in iJADE FreeWalker. In a single request, the agent can conduct

multiple interactions with different information database systems. The results are then sent

back to the device so as to reduce the network load.

The GPS Agent is an intelligent agent which can freely migrate from one host to another.

First, the GPS Agent captures the user location information from a GPS receiver. Then, it

migrates from the client (end-user handheld device) to a remote iJADE Tourist Information

Center through GPRS communication. When the GPS Agent reaches the information center, it

uses SPAQRL to query the server to collect the tourist information with respect to the user’s

geographical information. Finally, the GPS Agent returns to the client with related tourist

information. The client collects the information from the GPS Agent and shows the context

information to the user.

93

5.3.3 Fuzzy Search Agent

iJFW has two fuzzy search functions to help users find their accommodation and dining

information. There are two fuzzy ontology maps in iJFW. The cuisine preference FOM is

located in the client side (Pocket PC) and the accommodation FOM is located in the sever

side (Tourist Information Center). The Fuzzy Search Agent collects the search criteria which

is entered by the user and is then dispatched to the server side to search for related

information. Section 5.4 shows details of the fuzzy search function.

5.3.4 iJADE Tourist Information Center

The Tourist Information Centre has two core components: an iJADE server and a Jena

Framework (Carroll et al., 2004). Jena is an open source Java framework for building

Semantic Web applications. It offers a number of APIs for handling RDF, RDFS and OWL.

The main purpose of using Jena is to parse and query the travel ontology. Jena searches the

data from the travel ontology by using the SPARQL Protocol and RDF Query Language

(SPARQL). Figure 5.4 shows an example of SPARQL that is used to get information about

Guesthouses. The search returns as an RDF graph and sends back to the tourist information

server.

 iJADE Server acts as a communication platform. It is a container for receiving and

sending GPS Agents through GPRS. When the GPS Agent arrives at the information center, it

uses SPARQL statements to parse OWL. The related tourist information will be sent back to

client. After processing, the client displays the tourist information to the user.

94

Select related information about Guesthouse

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX travel: <http://www.comp.polyu.edu.hk/~cshwlam/ontology/travel.owl#>

SELECT ?URI ?NAME ?ADDRESS ?DISTRICT ?ROOM ?URL ?EMAIL ?PRICE ?FAX ?PHONE

WHERE { ?URI rdf:type travel:Guesthouse .

?URI travel:hasName ?NAME .

?URI travel:hasAddress ?ADDRESS .

?URI travel:hasDistrict ?DISTRICTURI .

?DISTRICTURI travel:districtName ?DISTRICT .

?URI travel:hasRoom ?ROOM .

OPTIONAL {?URI travel:hasURL ?URL } .

OPTIONAL {?URI travel:hasEmailAddress ?EMAIL }.

OPTIONAL {?URI travel:hasStandardRoomPrice ?PRICE } .

OPTIONAL {?URI travel:hasFaxNumber ?FAX }.

OPTIONAL {?URI travel:hasPhoneNumber ?PHONE}

}

Figure 5.4. A SPARQL example used in iJADE FreeWalker

5.4 Fuzzy Ontology Map in iJADE FreeWalker

iJFW has two fuzzy search functions for the user: 1) Accommodation Fuzzy Search and 2)

Cuisine Preference Search. These fuzzy search functions use the Fuzzy Ontology Map

(FOM).

5.4.1 Accommodation Fuzzy Search

Accommodation fuzzy search helps the user find similar accommodation. This function is the

same as the fuzzy search function in SemTour:HK (Chapter 4). Figure 5.5 shows a screenshot

of the questionnaire-like form for users to proceed to fuzzy searching. The form contains two

95

fields. The first is the relation from and the other is the minimum level. The relation from

field is used to let the user select the accommodation type that he/she would like to search for

such as Guesthouse, Hotel, Holiday Camp. The minimum level lets the user filter the search

result. five levels were defined: Similar (1), Very Similar (0.8), More or Less Similar (0.5),

Less Similar (0.2) and Not Similar (0).

Figure 5.5. Screenshot of accommodation fuzzy searching in iJFW

 After users select the search criteria and click the “Fuzzy Search” button, a Fuzzy

Search Agent is created. This agent, with the users’ search criteria, dispatches itself to the

Tourist Information Server. After the agent arrives, the server locates the accommodation

fuzzy ontology map for searching. Then, the server tries to locate the relation information in

the Accommodation FOM. After this, the server queries the database. The Fuzzy Search agent

collects the results, dispatches it back to the client and displays the information to the user.

Figure 5.6 shows a screenshot of the accommodation fuzzy search.

96

Figure 5.6. Screenshot of accommodation fuzzy search result in iJFW

5.4.2 Cuisine Preference Search

Cuisine Preference Search is another function which adopts FOM for searching. The purpose

of this function is to help users find their favorite restaurant. Figure 5.7 shows a screenshot of

the Cuisine Preference Search. There are four types of cuisine that users can select: Asian,

Chinese, Other, and Western. The users can select different levels of preference for each

cuisine. There are five levels for preference: much more than average, more than average,

average, less than average and much less than average. The fuzzy membership for these

preferences are 1 (much more than average), 0.8 (more than average), 0.5 (average), 0.2 (less

than average) and 0 (much less than average) respectively.

97

Figure 5.7. Screenshot of cuisine preference panel in iJFW

 After the user selects the preferences and presses the “Save Preference” button, a fuzzy

ontology map is created and stored for the user. After updating the preference information,

there is a change in the information panel. The dining information in the information panel is

sorted according to the users’ preference. Figure 5.8 shows a screenshot of the information

panel when the user has selected “much more than average” in Asian Cuisine, “More than

average” in Chinese Cuisine and “average” for others. Other than the change of information

panel, the user can carry out a fuzzy search by using the preference FOM. After selecting the

preference and pressing the “Fuzzy Search” button, a Fuzzy Search agent is created. Again,

this agent, with preference FOM, is dispatched to the Information Server to retrieve the dining

information for the user. Unlike the accommodation fuzzy search, instead of using server side

FOM, the Fuzzy Search agent searches using the client’s FOM. Therefore, every user can

have his/her own preference FOM and carry out customized fuzzy searches. Figure 5.9 shows

the search result screen by using user’s preference FOM.

98

Figure 5.8. The sorted dining information

Figure 5.9. Screenshot of dining search result in iJFW

5.5 Performance Evaluation

This section describes the experiments which were used to determine the performance of

99

iJFW. O2 XDAII Pocket PC with Java Virtual Machine was used as the mobile device. The

GPS receiver is a Holux GR-230 model. The pocket PC and the GPS receiver are connected

using Bluetooth. The iJADE platform and the iJADE Tourist Guide are installed in the Pocket

PC. Figure 5.10 shows the iJADE FreeWalker running in the mobile device. The tourist

information center is installed in a P4 1.8GHz computer with 768MB memory.

Figure 5.10. iJADE FreeWalker

Experiment I: Response Time for gathering location-aware information

This experiment seeks to evaluate the efficiency of the GPS Agent in iJFW in terms of the

whole round trip time (RTT) of the GPS Agent. The RTT is the total time that the GPS Agent

takes to travel to the Information Center with the users’ GPS information, get the

location-aware information such as shopping and dining information from the center, return to

the client and display the results to the user.

 This test used two different setups. Setup One situated iJFW client and the iJADE

Tourist Information Center within the same LAN. Setup Two connects iJFW client to the

iJADE Tourist Information Center by using a 36.6kbit/s wireless network connection. Table

5.1 shows results of the RTT after 50 trials for each setup.

100

Table 5.1. Round trip time for GPS Agent to gather location-aware information

Time (ms)

Setup One. Within

Same LAN

Setup Two. 36.6k Wireless

Connection

Min RTT 238 8800

Max RTT 475 9948

Average RTT 393.84 8920.68

The average response time for location-aware information for Setup One is around 0.4

seconds and for Setup Two is around 9 seconds. The response time is slow when the iJFW

client is connected to the internet using a wireless network, since the speed of the wireless

network is only 36.6kbit/s. This is one of the main factors affecting the response time. In

addition, the outdoor environment (weather and buildings) may affect the wireless network

signal and hence the results of the experiment. One possible way to decrease the response

time is to use a higher speed wireless network such as 3G.

The average response time for GPS Agent to gather geographical information is

393.84ms (within the same LAN) and 8920.68ms (36.6k wireless connection). Suppose the

time used for sending data to and from the server is zero if the Pocket PC and the server

placed within the same LAN. Thus, 393.84ms is the time used for processing in the server. As

a result, in 36.6k wireless connection, the time used for sending data to and from the server is

8920.68 - 393.84 = 8526.84ms = 8.53s. 3G technology has a transmission speed at 2Mbit/s.

Proportionally, in 3G wireless connection, the time used for sending data to and from the

server is around (36.6 * 1000 * 8.5) / (2 * 1000 * 1000) ~ 0.16s. The transmission response

time would be decreased by 98% proportionally if we adopted 3G technology for the

experiments.

101

Experiment II: Response Time for fuzzy searching

This experiment evaluates the performance of the Fuzzy Search Agent in iJFW. As in

Experiment I, it records the whole round trip time (RTT) of the Fuzzy Search Agent. Two

experimental setups are also adopted in this experiment. For the searching criteria of

accommodation fuzzy search, the value of relation from is guesthouse and the value of the

minimum level is more or less similar. For the searching criteria of cuisine fuzzy search, the

value of Asian cuisine is much more than average, the value of Chinese cuisine is more than

the value of the other cuisine and Western cuisine is average. Results of the RTT for cuisine

searching and accommodation searching after 50 trials for each setup are shown in Table 5.2

and Table 5.3 respectively.

Table 5.2. Round trip time for Fuzzy Search Agent to gather dining information

Time (ms)

Setup One Within

Same LAN

Setup Two. 36.6k Wireless

Connection

Min RTT 2188 25664

Max RTT 2597 30314

Average RTT 2420.6 26240.7

Table 5.3. Round trip time for Fuzzy Search Agent to gather accommodation information

Time (ms)

Setup One. Within

Same LAN

Setup Two. 36.6k Wireless

Connection

Min RTT 2959 22110

Max RTT 3556 36003

Average RTT 3243.5 24212.4

 The average response time for cuisine searching for Setup One and Setup Two is 2.4

seconds and 26.2 seconds. The average response time for accommodation searching for Setup

One and Setup Two is 3.4 seconds and 24.2 seconds. When the client is connected to the

102

server with 36.6k wireless network, it leads to longer response times. As mentioned before,

one of the factors is the slow wireless network connection speed. It could be improved if the

experiments adopted a higher speed network.

 In this experiment, the number of search result items is limited to 50. When the Fuzzy

Search Agent dispatches the results from the information centre to the client, it may require a

long time due to the large result data size. Another possible way to decrease the response time

is to limit the number of search result items to a much smaller amount such as 10 or 20.

Experiment III. Precision test

This test evaluates the precision of received geographical information. In our proposed system,

GPS coordinates are used to locate the position of user and nearby landmarks. 30 candidates

were invited to use the system and then ask these them to do a survey on the accuracy of the

system. In this study, candidates are required to visit a number of places in Tsim Sha Tsui

(Hong Kong) by using the iJADE FreeWalker. During the test, the system is connected to the

GPS receiver to receive real time GPS location, and then gathers context tourist information

by agents. The results are tabulated in Table 5.4.

17 candidates felt that the location-aware tourist information shown in iJFW is accurate.

6 candidates failed to receive the GPS data, and 7 candidates thought there was error in the

result. The failed cases were analyzed and concluded that there is a variation in receiving the

valid GPS data for two reasons: 1) candidates used the GPS receiver improperly and 2) the

poor weather conditions. The performance of the GPS receiver depended on the weather and

outdoor environment. The Author believes that a new generation of GPS receiver could

overcome these problems. 57% of candidates agreed that the system provided them with

accurate location aware tourist information by using the iJFW.

103

Table 5.4: Accuracy of the iJADE Tourist Guide System with real GPS receiver

Do you think the iJADE Tourist Guide system is

accurate?

Number of candidates

Very accurate 2

Accurate 10

Normal 5

inaccurate 7

Very inaccurate 6

Experiment IV. Usability test

This test evaluated the effectiveness of iJFW. After the previous test, 30 candidates were

given a questionnaire to ask whether the system is suitable for tourists. 17 candidates thought

that iJFW could replace tourist guidebooks. 13 candidates thought that iJFW would be a

subsidiary tool for traveling. The results showed that most candidates agreed the system can

help tourists find tourism-related information. The system was able to receive the categorized

and location-aware tourist information according to their geographical information. 20 of the

candidates felt that the fuzzy search function is useful for finding a particular cuisine.

However, most of the users (23 candidates) felt that the accommodation search function is

useful. One of the main reasons is that the users did not understand the purpose of this

function. It would be better to have some explanation of the fuzzy search function in the

future iJFW.

For the ontology in iJFW, users could find out the information they want by using the

categorization tree (ontology) in the information panel. 25 candidates thought the

categorization very detailed and 5 candidates thought the information not precise enough. 5

candidates suggested that the system should provide detailed information (i.e. coupon,

discount) for each restaurant and shop. Since iJADE FreeWalker can run on handheld devices

104

(i.e. palm, PPC), all candidates agreed that the system supports a high degree of mobility and

flexibility.

5.6 Conclusion and Future work

This chapter has described how to develop an agent-based location-aware tourist guide

system – iJADE FreeWalker (iJFW). iJFW was developed based on the intelligent Java Agent

Development Environment (iJADE). iJFW adopted a number of Semantic Web technologies

such as an ontology and agents. In addition, it applied our proposed fuzzy ontology map to

assist users in finding dining and accommodation information.

 iJFW has four main components: a iJFW client, a GPS Agent, a Fuzzy Search Agent and

a Tourist Information Center. The prototype of iJFW was developed based on a JAVA program.

The client of iJFW was deployed on a O2 XDAII Pocket PC with Java Virtual Machine and

iJADE platform. The iJFW client was connected to the GPS receiver to gather the

geographical information by using Bluetooth. The tourist information center is installed in a

P4 1.8GHz computer with 768MB memory. The Tourist Information Center employed a Jena

framework for parsing and querying the tourist database which is in OWL format.

 A number of tests were done for performance evaluation. The average response time for

gathering the location-aware tourist information is around 0.3 seconds (within the same LAN)

and 9 seconds (36.6kbit/s wireless network connection). The average response time for fuzzy

searching is around 3 seconds (within the same LAN) and 25 seconds (36.6kbit/s wireless

network connection). When the iJFW Client connected to the Tourist Information Center with

36.6kbit/s wireless network connection, the response time was quite long. There are a number

of factors that affect the response time.

In the experiments, the wireless connection for the iJFW is 36.6kbit/s which is quite

slow. To further decrease the response time, the iJFW will adopt a higher speed wireless

105

connection network such as Enhanced GPRS 10 (EGPRS) and third-generation (3G 11)

technology. The bandwidth for EDGE can be up to 236.8kbit/s and 3G can be up to 2Mbit/s.

Proportionally, the average processing time for gathering location-aware information for

EDGE and 3G would be 1.6 seconds and 0.45 second respectively. The average response time

would be greatly reduced by using these wireless technologies. Another possible way to

reduce the response time is to limit the number of fuzzy search results to a smaller amount

such as 20 or 10.

This chapter showed how to develop a tourist guide system in a mobile device. The

system adopted a number of Semantic Web technologies such as Agent and Ontology and

integrated a fuzzy ontology map with iJFW to support fuzzy searching for the user. The user

acceptance tests showed that most of the users made positive comments on iJFW. They felt

that the system was innovative and useful for tourists. Since the iJFW is still in the

preliminary development stage, its functionalities are very limited. According to user

comment, the Author summarized the suggestions for future enhancement:

1. Voice interface - To extend the usability and interaction, a voice interface would be used

as the input for the system. The system uses Automatic Speech Recognition as the

communication tool to mimic a human-like tourist guide. Users can chat with the tourist

guide and query the relevant tourist information by using a voice interface.

2. Learn user preferences – To further increase the usability and functionality of the system,

a Neural Network (NN) module would be added to learn users’ preferences as to the

tourist information.

3. Route recommendation – To optimize the tourist route from a set of itinerary with time

and money constraints.

4. Fuzzy searching – To provide more fuzzy search functions which can show the

10 EDGE – high-speed data in GSM/GPRS networks,
http://www.ericsson.com/technology/whitepapers/edge_wp_technical.pdf
11 Telecom Resources – 3G, http://www.freewebs.com/telecomm/3g.html

106

customized tourist information based on the user’s criteria/preferences.

In conclusion, a mobile ontology-based location-aware agent-based tourist guide

system – iJADE FreeWalker has been successfully developed. This integrates GPS and agent

technology to provide a location-aware tourist information retrieval system. It provides

well-organized tourist information by using ontology. In addition, it supports fuzzy searching

for the users by using a fuzzy ontology map. Tourists can access the nearby tourist

information anywhere and anytime using a small handheld device with limited computational

power and limited network bandwidth. In the future, the Author will further improve the

system with features such as using voice interface, learning user preferences and route

recommendation.

107

Chapter 6. Conclusion and Further Research

6.1 Organization of the Chapter

This chapter concludes the thesis and is organized in two sections. Section 6.2 summarizes the

major contributions of the thesis. Section 6.3 suggests possible further research on FOMs.

6.2 Summary of Major Contributions

A fuzzy ontology map is proposed for extending the current hard semantics ontology. The

goals of this work are i) to define a way to utilize the structure of ontology and the fuzzy

relationships within them, ii) to show how the fuzzy relation inference can be integrated into

applications.

 The major contributions of this thesis can be summarized in three areas: i) Fuzzy

Ontology Map – an extension of the crisp ontology, ii) Fuzzy Relation Inference Algorithms,

iii) Prototypes of application.

I. Fuzzy Ontology Map (Chapter 3)

A Fuzzy Ontology Map is proposed for the construction of the fuzzy ontology. Since current

ontology markup languages are based on the bivalent logic/first order logic, they are not

capable of modeling uncertain and imprecise information. A Fuzzy Ontology Map (FOM), an

XML format document, is proposed to extend the crisp ontology. The ontology is treated as a

108

graph. Each path in the ontology graph would include fuzzy information (fuzzy membership

values). A FOM is a connection matrix in which each matrix entry is the fuzzy membership

value of the path in the ontology graph. It is possible to create a fuzzy ontology by using an

FOM with ontology markup languages such as RDF and OWL.

II. Fuzzy Relation Inference Algorithms (Chapter 3)

A set of algorithms for fuzzy relation inference are proposed for the FOM. Two types of

fuzzy set were defined: symmetric and asymmetric. A symmetric fuzzy set is one where the

fuzzy relation is non-directional between classes in the ontology. For example, the level of

similarity is symmetric as there is no difference between class A similar to class B and class B

similar to class A (non-directional). An asymmetric fuzzy set is one where the fuzzy relation

is directional between classes in the ontology. For example, the level of preference is

asymmetric since there is a difference between class A is preferred to class B (A>B) and class

B is preferred to class A (B>A) (directional). By using the fuzzy relation inference algorithms,

if two classes in the ontology are not directly connected, the fuzzy membership value would

be calculated by the paths that connect them in an FOM.

III. Prototypes of applications (Chapter 4 and 5)

Two applications prototypes were developed to demonstrate how the fuzzy ontology works.

These prototypes are SemTour:HK and IJADE FreeWalker (iJFW).

 A prototype, SemTour:HK, was developed to demonstrate how an FOM works in a

web-based tourist information portal. It shows how to fuzzy search using an FOM (Chapter 4).

20 interviewees were invited to do a user acceptance test. 80% of the interviewees agreed that

the system can help tourists find tourism related information in Hong Kong. 75% of them

agreed that the fuzzy search function is useful for finding accommodation.

 iJADE FreeWalker (iJFW) is a context-aware agent-based tourist guiding system for

109

mobile devices (Chapter 5). The average response time for gathering location-aware tourist

information is around 0.3 seconds (within the same LAN) and 9 seconds (36.6kbit/s wireless

network connection). A cuisine fuzzy searching was implemented. 20 of the 30 candidates felt

that the fuzzy search function is useful to find their cuisine of choice. The average response

time for fuzzy searching is around 3 seconds (within the same LAN) and 25 seconds

(36.6kbit/s wireless network connection).

6.3 Advantage of using FOM

As mentioned in Section 1.1 Motivation of Research, the current two-valued-based logical

methods in Semantic Web are not able to process soft semantics. The work described in this

thesis is about developing an extension of the current ontology representation which supports

uncertain information modeling. The ontology markup language was extended so that each

path in the ontology graph could include fuzzy information. From the experimental results of

the prototypes, most users felt that the fuzzy search function was useful for the user to reduce

the browsing time. It provides a more convenient way for searching. In addition, by using

FOM, it can help to get the right search result in a short period of time. An extension of the

crisp ontology was achieved in this work.

6.4 Further Research

There are two directions for further enhancement of this work. One direction is the automatic

generation of fuzzy ontologies. The other is to further extend or modify existing query

languages to support fuzzy queries.

6.4.1 Automatic Fuzzy Ontology Generation

In this thesis, the fuzzy ontology is created by the ontology developer. The fuzzy relation

110

between classes depends on the view of the developer. Since different people may have

different views of an ontology, there is a limitation that the fuzzy ontology map only

represents the developer’s view. The fuzzy ontology in the current proposal is quite subjective.

In addition, constructing a fuzzy ontology for a certain domain is difficult. It is a good

direction to create the fuzzy ontology in an automatic approach. By doing so, the created

ontology is more objective. In addition, it could shorten the construction time. There are a

number of works about ontology generation from various data types such as textual data

(Maedche and Staab, 2001, Navigli, Velardi and Gangemi, 2003), dictionary (Morin, 1999)

and relational schemata (Rubin et al., 2002, Stojanovic, Stojanovic and Volz, 2002). Tho and

his researchers proposed an idea to create a fuzzy ontology automatically using fuzzy

conceptual clustering (Tho et al., 2006). Since there is still little work on fuzzy ontology

construction, this is one of the core further research directions in this area.

6.4.2 Fuzzy Query Language

In this thesis, a Fuzzy Ontology Map is proposed for creating fuzzy ontology. Using a fuzzy

ontology allows fuzzy searching. The results of the fuzzy search are ranked according to the

fuzzy membership value in an FOM. The results are sorted by membership values. The higher

the membership value (nearer to 1), the better the result. The results are filtered by a threshold

(minimum level of membership value). In the implementation, the related classes are first

selected and sorted. Then each related class is queried using SPARQL. Finally, all the search

results are combined and returned to the user. The processing time of this approach is quite

long since it must submit a number of queries to the server. To further improve the efficiency

of the system, it is better to extend or modify the current ontology query language to support

fuzzy queries. There are a number of research work in fuzzy query language for relational

databases. For example, SQLf (Bosc and Pivert, 1995) and FQUERY97 (Zadrozny and

Kacprzyk, 1998).

111

 As mentioned before, there has been little work done on fuzzy ontologies. Thus,

findings about query language for fuzzy ontology are also limited. To achieve the ultimate

goal of creating an intelligent question-and-answer or Web IQ system, it is necessary to

develop a fuzzy query language for fuzzy ontology. In the future, based on the work of this

thesis, the Author will further research these two interesting areas.

112

References

Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R. and Pinkerton, M. (1997).
Cyberguide: A mobile context-aware tour guide, ACM Wireless Networks, Vol. 3(5), pp.
421-433

Antoniou, G., and van Harmelen, F. (2004). A Semantic Web Primer. MIT Press.

Baader, F., Calvanese, D., McGuinness, D. Nardi, D., and Patel-Schenider, P. (2002). The

Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press.

Berners-Lee, T., Hendler. J., and Lassila, O. (2001). The Semantic Web, Scientific American,

pp.34-43.

Bosc, P. and Pivert, O. (1995). SQLf: A relational database language for fuzzy querying, IEEE

Transactions on Fuzzy Systems, Vol. 3(1), pp.1-17.

Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine,

Computer Networks, Vol. 30, pp.107-117

Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., and Horrocks, I. (2001).

Enabling knowledge representation on the Web by Extending RDF Schema, Proceedings of
the 10th World Wide Web Conference (WWW10), Hong Kong, China, May 2001, pp.
467-478

Buche, P., Dervin, C., Haemmerle, O. and Thomopoulos, R. (2005), Fuzzy querying of

incomplete, imprecise, and heterogeneously structured data in the relational model using
ontologies and rules, IEEE Transactions on Fuzzy Systems, Vol. 13 (3), pp. 373-383

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A. and Wilkinson, K (2004).

Jena: Implementing the Semantic Web Recommendations, Proceedings of the 13th
international World Wide Web conference (WWW 2004), New York, USA, May 2004, pp.
74-83

113

Davies, J., and Fensel, D. (2003). Towards the semantic web: ontology-driven knowledge

management. Wiley.

Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J., Erdmann, M.,

and Horrocks, I. (2000). The Semantic Web: The Roles of XML and RDF, IEEE Internet
Computing, Vol. 4(5), pp. 63-73.

Dey, D. and Sarkar, S. (1996). A probabilistic relational model and algebra, ACM

Transactions on Database Systems, Vol. 21(3), pp. 339-369.

Dickerson, J.A. and Kosko, B. (1997). Fuzzy Engineering. Prentice Hall.

Ding, Z. and Peng, Y. (2004). A probabilistic extension to ontology language OWL,

Proceedings of the 37th Hawaii International Conference on System Sciences (HICSS’ 04),
Track 4, Volume 4.

Fensel, D. Horrocks, I., van Harmelen, F., McGuinness, D., and Patel-Schneider, P.

(2001).OIL: An Ontology Infrastructure for the Semantic Web, IEEE Intelligent Systems,
Vol. 16(2), pp. 38-45.

FOAF (2005), FOAF vocabulary specification, http://xmlns.com/foaf/0.1/.

Franklin, S., and Graesser, A (1996). Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents, Proceedings of the Third International Workshop on Agent Theories,
Architecture and Languages, Springer-Verlag.

Fuhr, N. and Rolleke, T. (1997). A probabilistic relational algebra for the integration of

information retrieval and database systems, ACM Transaction on Information Systems, Vol.
15(1), pp. 32-66.

Fukushige, Y. (2004). Representing Probabilistic Knowledge in the Semantic Web, Position

paper for the W3C Workshop on Semantic Web for Life Sciences, Cambridge, MA, USA,
Oct. 2004.

Ganter, B. and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations.

Springer.

114

Giugno, R. and Lukasiewicz, T. (2002). P-SHOQ(D): A probabilistic extension of SHOQ(D)
for probabilistic ontologies in the semantic web, INFSYS, Wien, Austria, Research Report
1843-02-06.

Golbeck, J. and Hendler, J. (2006) FilmTrust: movie recommendations using trust in

web-based social networks, Proceedings of the 3rd IEEE Consumer Communications and
Networking Conference (CCNC 2006), Las Vegas, Nevada, USA, Jan. 2006, Vol. 1, pp.
282- 286.

Gruber, T. (1993). What is an ontology ?

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html.

Handschuh, S., and Staab, S. (2003a). Annotation for the semantic web. IOS Press.

Handschuh, S., and Staab, S. (2003b). CREAM – Creating metadata for the semantic web,

Computer Networks, Vol. 42, pp. 579-598.

Heinsohn, J. (1994). Probabilistic description logics, Proceedings of the 10th Conference on

Uncertainty in Artificial Intelligence, Washington, USA, July 1994, pp. 311–318.

Horrocks, I. (2002). DAML+OIL: A description logic for the semantic web, IEEE Data

Engineering Bulletin, Vol. 25(1), pp. 4-9.

Horrocks, I., and Sattle, U. (2001). Ontology Reasoning in the SHOQ(D) Description Logic.

Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI
2001), Seattle, Washington, USA, Aug. 2001, pp. 199-204.

HTML (1999). HTML 4.01 Specification, http://www.w3.org/TR/html401/

Islam, M.Z., and Brankovic, L. (2004). A Framework for Privacy Preserving Data Mining,

Proceedings of Australasian Workshop Data Mining and Web Intelligence (DMWI 2004),
Dunedin, New Zealand, Jan. 2004, pp. 163-168.

Jaeger, M. (1994). Probabilistic reasoning in terminological logics, Proceedings of the KR-94,

4th International Conference on Principles of Knowledge Representation and Reasoning,
Morgan Kaufmann, San Mateo, pp. 305–316.

115

Jannink, J., Mitra, P., Neuhold, E., Pichai, S., Studer, R., and Wiederhold, G. (1999). An
algebra for semantic interoperation of semistructured data, Proceedings of IEEE Knowledge
and Data Engineering Exchange Workshop (KDEX’ 99), Chicago, Nov. 1999.

Jennings, N.R., and Wooldridge, M. (1998). Applications of Intelligent Agents, Agent

technology: Foundations, applications and markets. Springer.

Jennings, N.R., Sycara K., and Wooldridge, M.J. (1998). A roadmap of agent research and

development, Autonomous Agents and Multi-Agents Systems, Vol. 1(1), pp.7-38.

Karnik, N.M. and Tripathi, A.R. (1998). Design Issues in Mobile-Agent Programming

Systems, IEEE Concurrency, Vol. 6(3), pp. 52-61.

Koller,D., Levy, A. and Pfeffer,A. (1997). P-CLASSIC: A tractable probabilistic description

logic, Proceedings of the AAAI Fourteenth National Conference on Artificial Intelligence,
Providence, Rhode Island, Aug. 1997, pp. 390–397.

Kosko, B. (1993). Fuzzy Thinking. Hyperion/Disney Books.

Lakshmanan, V.S., Leone, N., Ross, R. and Subrahmanian, V.S. (1997). ProbView: A flexible

probabilistic database system, ACM Transactions on Database Systems, Vol. 22(3), pp.
419-469.

Lange, D.B. and Oshima, M. (1999). Seven good reasons for mobile agents, Communications

of the ACM, Vol. 42(3), pp.88-89.

Lam, T.H.W. and Lee, R.S.T. (2006). iJADE FreeWalker - An Ontology-based Tourist

Guiding System, Knowledge-Based Intelligent Information and Engineering Systems
(LNCS 4252), pp. 644- 651.

Lee, C.S., Chen, Y.J. and Jian, Z.W. (2003). Ontology-based fuzzy event extraction agent for

Chinese e-news summarization, Expert Systems With Applications, Vol. 25(3), pp.
431–447.

Lee, C.-S., Jiang, Z.-W., Hsieh, T.-C. (2006). A Genetic Fuzzy Agent Using Ontology Model

for Meeting Scheduling System, Information Sciences, Vol. 176, no. 9, pp. 1131-1155.

116

Lee, C.-S., Jian, Z.-W., Huang, L.-K. (2005). A fuzzy ontology and its application to news
summarization, IEEE Transactions on Systems, Man and Cybernetics (Part B), Vol. 35(5),
pp. 859- 880.

Lee, R.S.T. (2002). iJADE Authenticator - An Intelligent Multi-agent based Facial

Authentication System, International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 16(4), pp. 481-500.

Lee, R.S.T. (2003). iJADE Surveillant - An Intelligent Multi-resolution Composite

Neuro-Oscillatory Agent-based Surveillance System, Pattern Recognition, Vol. 36, pp.
1425-1444.

Lee, R.S.T. (2004). iJADE Stock Advisor: An Intelligent Agent based Stock Prediction

System using Hybrid RBF Recurrent Network, IEEE Transactions on Systems, Man and
Cybernetics (Part A), Vol. 34(3), pp. 421-428.

Lee, R.S.T. (2005). Fuzzy-neuro approach to agent applications: From the AI perspective to

modern ontology. Springer.

Lee, R.S.T. and Liu, J.N.K. (2004a). iJADE Web-miner : An Intelligent Agent Framework for

Internet Shopping, IEEE Transactions on Knowledge and Data Engineering, Vol. 16(4),
pp.461-473.

Lee, R.S.T. and Liu, J.N.K. (2004b). iJADE WeatherMAN: A Weather Forecasting System

using Intelligent Multi-Agent Based Fuzzy-Neuro Network, IEEE Transactions on Systems,
Man and Cybernetics (Part C), Vol. 34(3), pp. 369-377.

Lim, J. C. and Foo, S. (2003). Creating virtual exhibitions from an XML-based digital archive,

Journal of Information Science, Vol. 29(3), pp. 143-157

Maedche, A. (2002). Ontology learning for the semantic web. Kluwer Academic Publishers.

Maedche, A. and Staab, S. (2001). Ontology learning for the Semantic Web, IEEE Intelligent

Systems, Vol. 16(2), pp. 72-79.

Mazzierei, M. (2004). A fuzzy RDF semantics to represent trust metadata, Proceedings of the

1st Workshop on Semantic Web Applications and Perspectives (SWAP 2004), Ancona, Italy,
Dec. 2004.

117

McGuinness, D.L., Fikes, R., Rice, J., and Wilder, S. (2000). The Chimaera Ontology

Environment, Proceedings of the 17th National Conference on Artificial Intelligence (AAAI
2000), Texas, USA, July 2000, pp. 1123-1124.

Morin, E. (1999). Automatic acquisition of semantic relations between terms from technical

corpora, Proceedings of the 5th International Congress on Terminology and Knowledge
Extraction (TKE 1999), Innsbruck, Austria, Aug. 1999, pp. 268-278.

Navigli, R., Velardi, P. and Gangemi, A. (2003). Ontology learning and its application to

automated terminology translation, IEEE Intelligent Systems, Vol. 18(1), pp.22-31.

OWL (2004). OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features

Patel, C., Supekar, K., Lee, Y., and Park, E.K. (2003). OntoKhoj: A semantic web portal for

ontology searching, ranking and classification, Proceedings of the 5th ACM International
Workshop on Web Information and Data Management, Louisiana, USA, Nov. 2003, pp.
58-61.

Patel-Schneider, P., Horrocks, I., and van Harmelen, F. (2002). Reviewing the Design of

DAML+OIL: An Ontology Language for the Semantic Web, Proceedings of the 18th
National Conference on Artificial Intelligence (AAAI 2002), Alberta, Canada, July 2002, pp.
792-797.

Patel, M., and Duke, M. (2004). Knowledge discovery in an agents environment, Proceedings

of the First European Semantic Web Symposium (ESWS 2004), Crete, Greece, May 2004,
pp. 121-136.

Pechoucek, M., Thompson, S.G., Baxter, J.W., Horn, G.S., Koen Kok Warmer, C.,

Kamphuis, R., Marik, V., Vrba, P., Hall, K.H., Maturana, F.P., Dorer, K., Calisti, M.
(2006). Agents in Industry: The Best from the AAMAS 2005 Industry Track, IEEE
Intelligent Systems, Vol. 21(2), pp. 86-95.

Peral, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann.

118

Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P. and Zipf, A. (2001). CRUMPET:
creation of user-friendly mobile services personalized for tourism, Proceedings of 3G
2001-Second International Conference on 3G Mobile Communication Technologies,
London, UK, pp. 62-74

RDF (2004). Resource Description Framework (RDF): Concepts and Abstract Syntax,

http://www.w3.org/TR/rdf-concepts/

RDFS (2004). RDF Vocabulary Description Language: RDF Schema,

http://www.w3.org/TR/rdf-schema/

Rubin, D.L., Hewett, M., Oliver, D.E., Klein, T.E. and Altman, R.B. (2002). Automating data

acquisition into ontologies from pharmacogenetics relational data sources using declarative
object definitions and XML, Proceedings of the 7th Pacific Symposium on Biocomputing,
Hawaii, USA, Jan. 2002, pp. 88-99.

Sadeh, N., Chan, E., Shimazaki, Y. and Van, L. (2002). MyCampus: an agent-based

environment for context-aware mobile services, Proceedings of AAMAS02 Workshop on
Ubiquitous Agents on Embedded, Wearable, and Mobile Devices, Bologna, Italy, July 2002,
available at: http://autonomousagents.org/ubiquitousagents/2002/papers/papers/29.pdf

Salton, G., and Buckley, C. (1998). Term-weighting approaches in automatic text retrieval,’

Information Processing & Management, Vol. 24(5), pp. 513–523.

Schreiber, A.T., Dubbeldam, B., and Wielemaker, J. (2004). Ontology-based photo annotation,

IEEE Intelligent Systems, Vol. 16(3), pp. 66-74.

Semantic Web (2001). W3C Semantic Web, http://www.w3.org/2001/sw/

Soo, V.W., Lee, C.Y., and Li, C.C. (2003). Automated semantic annotation and retrieval based

on sharable ontology and case-based learning techniques. Proceedings of the 2003 Joint
Conference on Digital Libraries, Texas, USA, May 2003, pp. 61-72.

Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I. (2005). Fuzzy OWL:

Uncertainty and the Semantic Web, Proceedings of International Workshop OWL:
Experiences and Directions, Galway, Ireland, Nov. 2005, available at:
http://image.ntua.gr/papers/398.pdf

119

Stoilos, G.; Simou, N.; Stamou, G.; Kollias, S. (2006). Uncertainty and the Semantic Web,
Intelligent Systems, Vol. 21 (5), pp. 84-87.

Stojanovic, L., Stojanovic, N. and Volz, R. (2002). Migrating Data-Intensive Web Sites into

the Semantic Web, Proceedings of the ACM Symposium on Applied Computing (SAC),
Madrid, Spain, March 2002, pp. 1100-1107.

Tho, Q.T., Hui, S.C., Fong, A.C.M., Cao,T.H. (2006). Automatic Fuzzy Ontology Generation

for Semantic Web, IEEE Transactions on Knowledge and Data Engineering, Vol. 18(6), pp.
842- 856.

Velez, B., Weiss, R., Sheldon, M.A. and Gifford, D.K. (1997). Fast and effective query

refinement, Proceedings of the 20th ACM Conference on Research and Development in
Information Retrieval (SIGIR 97), Philadelphia, USA, July 1997, pp. 6-15.

Widuantoro, D.H., and Yen, J. (2001). A Fuzzy Ontology-Based Abstract Search Engine and

Its User Studies, Proceedings of the 10th IEEE International Conference on Fuzzy Systems,
Melbourne, Australia, Dec 2001, pp. 1291-1294.

Wooldridge, M. (2002). An Introduction to Multiagent Systems. Wiley.

XML (2004). Extensible Markup Language (XML) 1.1, http://www.w3.org/TR/xml11/

Zadeh, L. (1965), Fuzzy sets, Information and Control, Vol. 8, pp. 338-353

Zadeh, L. (1975), Fuzzy logic and approximate reasoning, Synthese, Vol. 30, pp. 407-428

Zadeh, L.A. (2003). Web Intelligence and Fuzzy Logic – The concept of Web IQ (WIQ),

Invited talk at the 2003 IEEE/WIC Int. Conference on Web Intelligence (WI 2003),
available at: www.comp.hkbu.edu.hk/IAT03/InvitedTalk1.htm

Zadrozny, S. and Kacprzyk, J. (1998). Implementing fuzzy querying via the internet/WWW:

Java applets, activeX controls and cookies, Proceedings of the 3rd International Conference
on Flexible Query Answering Systems, Roskilde, Denmark, May 1998, pp. 382-392

	theses_copyright_undertaking
	b2094035x

