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Abstract

Content-Based Video Retrieval (CBVR) is one of the major applications of
multimedia signal analysis. Although research on this topic has been conducted
for more than twenty years, many problems still remain, and better techniques
for CBVR are needd. Therefore, the objectives of this thesis are to devise and
develop efficient methods for video parsing and video content representation
used in CBVR. In this thesis, different approaches for shot boundary detection
and video content representation are reviewed, Shot boundary detection is the
first step in analyzing and understanding the structure of a video for CBVR.
Their accuracy will directly affect the performance of the refrieval system.
However, since there are various types of transitions iﬁ a video, and the video
may consist of strong motion, sudden change caused by lighting conditions,
etc., the detecion procedure is difficult. Morefwer, video content
representation plays an important role in the retrieval process because it affects
the retrieval performance. Thus, efficient algorithms for CBVR remain a
challenging research topic.

In this research, we have proposed a robust and efficient approach based on
the Colored Pattern Appearance Model (CPAM) to represent a frame for shot

boundary detection. Instead of using color histogram, CPAM represents a



frame by means of global statistics concerning the local visual appearance, and
was originally motivated by studies in human color vision. Then, entropic
thresholding is applied to determine the optimal threshold for shot boundary
detection. After a video is temporally segmented into shots, a feature vector can
be extracted from a shot for video retrieval based on its content. A new video
content representation method has been proposed to represent a shot by
considering the probability of occurrence of those pixels at the corresponding
pixel position among the frames in a video shot. Experimental results show that
our representation scheme outperforms the optimal key frame histogram and
the alpha-trimmed average histograms. Finally, we have also developed a

software library for video retrieval.
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CHAPTER 1

Introduction

The objective of this chapter is to introduce the general concepts of Multimedia
Signal Analysis and its applications. The state-of-the art technology for multimedia
signal analysis will be presented. An overview of the techniques for multimedia signal
analysis, especially for the Content-Based Video Retrieval System (CBVRS) [1, 6, 7,
46] will be presented, and the shot boundary detection algorithm and the video content

representation method for CBVRS proposed in this thesis will also be given.

1.1 Motivation of Multimedia Signal Analysis

Due to the rapid increase in the amount of multimedia documentation generated
and the wide range of multimedia applications, efficient and .effective management of
the data is indispensable. Manual annotation of multimedia documentation is also an
arduous task. Therefore, a number of initiatives have been undertaken whose aims to
efficiently store, access, digest, and retrieve multimedia information from the past two
decades. However, the semantics of a multimedia document are embedded in multiple

forms, such as audio, image and video, which increase its complexity. Hence,



multimedia signal analysis still i1s a chatlenging research topic.

1.2 Introduction to Multimedia Signal Analysis

Multimedia signal analysis [7], which refers to the computerized understanding of
the semantic meanings of a multimedia document, appears to be a natural extension
(or merging) of image signal analysis and audio signal analysis. However, there are'a
number of factors that are ignored when dealing with images which should be dealt
with when using videos. These factors are primarily related to the temporal
information available from a multimedia document. While these factors may
complicate the analysis process, they may also help in characterizing information
useful to the analysis. A video sequence can be viewed as a document organized by
time, and can be parsed into logical units at diﬂ"ergnt levels [1, 7, 39]. The basic unit is
a frame. The concept of a video shot as a group of related consecutive frames in a
video also provides a new idea for handling a video document. Then a story is
composed of a set of scenes, and each scene contains a set of shots {58, 59]. A generic
approach for managing video data is video parsing, which segments a video into shots
by meéns of shot boundary detection. The temporal information also induces the
concept of motion, which is an important attribute of video motion features such as
moments of the motion field, motion histogram, or global motion parameters.

By the way, visual signals also have many features for their characterization [40],



which have been initialised in image signal analysis. Basically, features for image
signals can be categorized into three groups: color [5, 29], texture [29, 38] and shape
[24]. Color is an important attribute for image representations such as colour
histogram. Texture is an important feature of a visible surface where repetition or
quasi-repetition of a fundamental pattern occurs. Co-occurrence matrix representation
and Tamura representation are popular forms of texture representation. Shape features
can be represented using traditional shape analysis techniques such as moment
invariants, Fourier descriptors, autoregressive models, and geometry attributes.

There are many features for the characterization of audio signal analysis [7], such
as total spectrum power, subband powers, brightness, bandwidth, pitch frequency,
mel-frequency éepstral coefficients, linear prediction coefficients, etc. These features

are currently used for content-based audio classification and retrieval.

1.3 Background

Considering the vast amount of video data, the development of a means for the
quick and relevant access of multimedia signals is critical. Video data should be
structured and indexed. A video clip is a sequence of image frames, so indexing each
of the frames as still images will introduce extremely high COmlputation. Video is a
structured medium in which the actions and events in a video program should be

viewed as a document rather than a non-structured sequence of frames.



Content-based video retrieval system analyzes a video in terms of its content by
means of three primary processes: video parsing, content analysis, and abstraction.
Parsing is the process of extracting temporal structure of a video, which involves the
detection of temporal boundaries and identification of story units. The content feature
extraction process is the extraction of visual features that describe pattern, color object
motions, events and actions in video sequences. Abstraction is a process wﬁich
extracts or constructs a subset of video data from the original video, such as
key-frames or key-sequences as entries for shots, scenes or stories. Based on the
content features or meta-data obtained from these three processes, indexes for the
.video can be built through a clustering process, which classifies sequences or shots,
into different visual categories or indexing structures. In this research, efficient
algorithms contributing for video parsing, content analysis and abstraction will be

investigated and developed.

1.4 Investigated Approaches

The objective of this research is to investigate and develop efficient algorithms of
multimedia signal analysis for CBVRS. With mu'ltimedia signals, both audio and
visual features represent the characteristics of the signal. By analysing the correlation
between audio and visual features, algorithms for accurate and efficient multimedia

signal accessing, digesting and retrieving can be devised. However, visual content



contributes more in multimedia signal analysis, while audio content is used to assist in
the analysis process [7 - 9].

For video retrieval, it is almost impossible to use keywords to describe video
sequences. The reasons are that this process requires tremendous manpower, and the
keywords to be used are subjective. Therefore, a content-based retrieval technique is a
solution. A content-based video retrieval system can provide the efficient indexing,
retrieval and browsing of a video sequence.

A generic approach for managing video data is to analyze the temporal structure
of a video [16, 28, 39, 49]. This involves video parsing, which partitions a video into
story, scene or shot levels by identifying their boundary and analyzing their structures.
The shot level is the bottom level, which can be obtained by shot boundary detection.
Scene detection [30, 51] and story segmentation algorithms [7, 55] are based on
analyzing the synthetic structure of a video. Basically, a shot is represented by a
feature vector, which contains the most important visual content of the shot. The
feature vector is then used to represent the video shots for analyzing the synthetic

structure [57], indexing [55, 56] and retrieval.

1.5 Organization of the Thesis

The rest of this thesis will give an overview of existing techniques for multimedia

signal analysis for content-based video retricval system, of our proposed algorithms



for automatic scene break detection, and of video shot representation for video
indexing.

Chapter 2 will present the state-of-the-art technology for shot boundary detection
and video content representation for content-based video retrieval. In Chapter 3, we
propose a robust approach for shot boundary detection using Colored Pattern
Appearance Model (CPAM) [60] as a content representation and an adaptive
thresholding technique, namely entropic thresholding [11}, which determines the
optimal threshold values for locating scene breaks in a video. This approach provides
more reliable results for automatic scene break detection to segment a video into shot.
In Chapter 4, we propose a new content representation of a video shot based on the
concept of the probability of the occurrenée of corresponding pixels from all frames in
a video segment. Finally, a summary of the major developments and the conclusion of

this research work are provided in Chapter 5.



CHAPTER 2
Overview of Shot Boundary Detection and

Video Content Feature Extraction

2.1 Introduction

Content-based Image Retrieval Systems (CBIRS) [1] have started flourishing on

the Web. Their performances are continuously improving and their basic principles are

very diverse. Content-based Video Retrieval Systems (CBVRS) are less common, and

seem at a first glance to be a natural extension of CBIRS. However, a number of

factors that are ignored when dealing with images should be dealt with for videos.

These factors are primarily related to the temporal information available from a video

document. While these factors may complicate the querying system, they may also

help in characterizing useful information for querying video.

To analyze a video document, the primary process is to perform video parsing

which is the process of extracting the temporal structure of a video. The basic unit of

temporal structure of a video signal is a shot, which is defined as a sequence of frames

that are continuously captured from the same camera. However, the definition of a

shot change is difficult to make. Pronounced object or camera motions may change



the content of successive video frames drastically. [deally, a shot can encompass pans,
tilts, or zooms. Therefore, shot boundary detection is not only a challenging process,
but also the first step in the content-based analysis of a video document. Content
analysis {3] is a process that extracts content features from a shot, scenes or stories.
Figure 2.1 illustrates the overall structure of a CBVR system. Feature vectors
extracted from video shots are then used to represent the content information about the
shots for clustering and indexing. Meta-data refers to the information of the semantic
structure of the video documents and their content features for retrieval and browsing.
The performance of CBVR is quite dependent on the accuracy of shot boundary
detection and the representative power of the feature used to represent the video shots.
In other words, a reliable method for detecting the shot boundaries and an efficient
feature for representing the video shots are indispensable to such applications. In this
chapter, various approaches for shot boundary detection and video content feature

extraction are reviewed.
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Figure 2.1 The overall structure of a CBVR system.
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2.2 Problems of Shot Boundary Detection

The task of identifying shot boundaries from a video sequence is a challenging
process. Shot change detection refers to identify shot changes in a video sequence. It
is not only a step to segment a video sequence into shots, but also to facilitate
indexing the video sequence for fast browsing and retrieval of subsequences of
interest to the users. The major difference between image signal and video signal is
that a video signal consists of temporal information, which introduces the concept of
object mofion and includes camera motion. As a result, shot change detection may be
corrupted by significant object and camera motion. Apart from these, shot change may
occur in a variety of ways: abrupt transition, which refers to camera cut that is an
instantaneous change from one shot to another; or gradual transitions such as
cross-dissolve, fade-in, fade-out, and wipe, which are graphical editing effects used to
accord varying semantic significance. A dissolve superimposes two shots where one
shot gradually appears while the other fades out slowly. A wipe is a moving transition
of a frame across the screen that enables one shot to gradually replace another. Figure

2.2 (a), (b) and (c) show examples of camera cut, dissolve and wipe, respectively.

12



(b) Dissolve

(c) Wipe

Figure 2.2 Examples of cut dissolve and wipe.



2.3 Shot Boundary Detection

Shot Boundary Detection can be divided into two parts; feature extraction and
shot change identification. Figure 2.3 shows the block diagram for video shot -
detection. Feature extraction refers to extracting useful data to represent the raw video
data. The feature may be spatial information, histogram-based representation, etc., and
can also be extracted from compressed domain directly. Shot change identification
determines a shot change based on the extracted feature. Shot change can be occurred
in different ways such as, abrupt change and gradual change. Several approaches have
been developed to handle different kinds of gradual changes. These involve

thresholding technique, statistical measure, graphical information, etc.

Feature Feature Shot
Extraction Distance Boundary
Measure Detection

Figure 2.3 Block Diagram for Shot Boundary Detection
2.3.1 Spatial Matching Approach

Spatial matching approach [10] directly uses spatial information as feature to
perform video shot detection. It temporally segments a video by identifying a large

difference between two consecutive frames based on pixel-by-pixel difference or

counting the number of different blocks [4, 43, 62]. The pixel-by-pixel difference and

14



the block-by-block difference measure the pixel difference and the total number of
changed blocks, respectively. The total number of changed blocks is obtained by
counting the number of corresponding blocks in two consecutive frames which have
different. Then, abrupt change detection is performed by means of a threshold. If the
number is larger than the predetermined threshold, these two frames will be

considered being captured from different shots, and a shot change can be identified.

2.3.2 Twin-Comparison Approach

Due to the characteristic of gradual change, boundary detection with a large
threshold cannot determine a gradual change. However, it is clear that certain changes
are occurred during the gradual change. The twin-comparison approach [1, 4] was
proposed to detect gradual change. This approach uses two thresholds to determine the
beginning and the ending of a gradual change, as shown in Figure 2.4. This approach
consists of two measures; the frame difference (Tg) and the accumulated difference
(Tp). The frame difference is used to identify the starting frame of a gradual change
and activate the accumulated difference measure where the frame difference is larger
than a beginning threshold. The accumulated difference is used tb identify the ending
frame of a gradual change by an ending threshold. Therefore, a gradual change can be

detected, as well as its beginning frame (F;) and ending frame (F7).
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Figure 2.4 Operation of the Twin-Comparison Approach.
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2.3.3 Statistical Approach

Statistical approach [4, 15, 44] is used to detect the dissolve special effect. A
dissolve connects the boundaries of two shots s'mooth]y. The connected shots share a
blurred boundary region. A dissolve is denoted as the intensity function of a scan
" superimposed by two shots having intensity functions S\(x,),1) with £<t; and S>(x,y,f)
with >4 respectively. It can be modeled as

Dissolve(x, y,t) = (L - a(t))S,(x, y,£) + a(t)S, (x, y,1) 2.1)
where a(t)=(t-t,)/(1,-t,) varies linearly with ¢ in the range [0,1]. Denote x(¢) as
the mean intensity of a frame during the interval ¢, <t <(,, then we have

w6 = 15 @O + (g (0 - 15 O)ar) (22)
where 4% () is the mean intensity of a frame at time ¢ that belongs to a shot. Taking

the first derivative 4'(t) = (du,(t)/dt), we have

PRIORVAI0Y 23

H()= Lot

Assuming 2% (¢) and #* () remain unchanged during dissolve, u'(f) is a
constant value. Figure 2.5 illustrates the mean difference and variance of two

dissolves in a video sequence.

17
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2.3.4 Histogram-based Approach

Histogram-based approach [10, 13] for temporal video segmentation represents
each frame of a video by a color histogram. Similar to the spatial matching approach,
both abrupt change and gradual change can be detected by the same measurement
techniques. Color is the most expressive of all the visual features and has been
extensively studied in the research of image retrieval during the last decade. Color
histogram is commonly used to analyze or represent visual content. Change detection
is then performed based on the extracted color histograms. However, many different
color spaces [29] can be used, such as monochrome, YCrCb, HSV and HMMD. RGB
is defined as reference chromaticity primaries in the following because it is available

from the capture process.
2.3.4.1 HSV Color Space

HSYV color space is a popular choice for manipulating color. The HSV color space
is developed to provide an intuitive representation of color and to approximate the
way in which humans perceive and manipulate color. RGB to HSV is a nonlinear, but
reversible, transformation. Figure 2.6 shows the space model of HSV color. The hue
(H) represents the dominant spectral component — color in its pure form, as in green,

red, and yellow. Adding white to the pure color changes the color: the less the white,

19



the more saturated the color is. This corresponds to the saturation (S). The value (V)
corresponds to the brightness of a color. The coordinate system is cylindrical, and is
often represented by a subspace defined by a six-sided inverted pyramid. The top of
the pyramid corresponds to V = 1, with the “white™ at the center. The hue is measured
by the angle around the vertical axis, with red corresponding to 0. The saturation S
ranges from 0 at the center to | on the surface of the pyramid. An inverted cone is also

used to denote the subspace instead of the pyramid.

Value

Saturation

Red

Cyan

lagenta

Figure 2.6 The space model of HSV color
2.3.4.2 HMMD Color Space
A new color space, the HMMD color space, is also supported in MPEG-7. This

color space is formed by hue (H), saturation (S), and diff (D). The hue the saturation

have the same meaning as in the HSV space, and max and min are the maximum and

20



minimum among the R, G and B values, respectively. The diff component is defined
as the difference between max and min. Only three of the four components are
sufficient to describe the HMMD space. This color space can be depicted using the

double cone structure as shown in Figure 2.7.

Diff

Saturation

Figure 2.7 The space model of HMMD color.

2.3.5 Edge-based Approach

The idea of edge-based approach [30] is that new intensity edges appear far from
the locations of old edges during a cut or dissolve. This approach detects the
appearance of intensity edges that are distant from edges in the previous frame and
appears to be more accurate at detecting and classifying scene change detection points
that are difficult to detect with color histograms. However, a global motion

computation is used to handle camera or object motion. This approach is

21



compute-intensive, and additional computation time is highly undesirable.
2.3.6 Compressed Domain Approach

Due to the large amount of data, video sequences are often compressed for
efficient transmission or storage on-line. For efficient video storage and management,
it is essential for us to have more intelligent video manipulating techniques. MPEG
compressed streams are the most common approach for video data compressed and
storage. However, shot change detection must be performed prior to all other
processes. Most of the current shot change detection algorithms operate on
uncompressed video sequences. For efficient shot change detection, it should be
preformed in the compressed domain. Three types of information can be directly
achieved from a MPEG compressed stream: type of macro block [27], motion vectors
of each macro block [23], and DCT coefficients [26, 36]. One possible approach is to
directly extract visual feature from compressed domain [32-35, 41]. [25] proposed an
algorithm which was made possible by a new mathematical formulation for deriving
the edge information directly from the discrete cosine transform coefficients. The idea
of this algorithm is to derive binary edge maps from the AC coefficients in blocks,
which have been discrete-cosine transformed. Then, edge orientation, strength and
offset using correlation between the AC coefficients in the derived binary edge maps

can be measured by the new mathematical formulation. Finally, a scene change can be

22



detected by comparing the histograms of these features of two consecutive frames.
Another approach [31] determines shot boundaries using macroblock type information

of MPEG compressed video bitstreams.

2.3.7 Spatio-temporal Slice Approach

Analysis of spatio-temporal slices for computational vision tasks has been
proposed since 1985 [14]. A video can be arranged as a volume with image
dimensions and temporal dimension. We can view the volume as formed by a set of
2D temporal slices each with dimension x and f or y and ¢. Each spatio-temporal slice
is a collection of scans in the same selected position of every frame as a function of
time. The slice is used to extract an indicator to capture the motion coherency of the
video. Figure 2.8 shows three spatio-temporal video slices (horizontal slice, vertical
slice and diagonal slice) taken from an image volume along the temporal dimension.
Each slice contains several spatially uniform color-texture regions, and each region is
considered having unique rhythm. Shot boundaries are located at places where the
color and texture in a slice show dramatic changes. The shape and orientation of the
dramatic changcé are affected by the types of shot changes: a cut results in a vertical
boundary line, a wipe results in a slanted boundary line, and a dissolve results in a
slow transition which shows a burred boundary. Apart from these, camera motion and

muitiple motions can be determined by analyzing the texture of the slice [12].
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Figure 2.8 Spatio-temporal slice patterns generated by various types of camera

breaks.



2.4 Problems of Video Content Feature Extraction

Video content representation aims to effectively classify and index video shot for
video browsing and retrieval. Retrieval and browsing require that the source material
first be effectively indexed. A video document can be decomposed into three structural
levels: stories, scenes and shots. Content-based indexing of video with visual features
is still an open research problem. Visual features can be divided into two levels:
low-level image features, and semantic features based on objects and events. The
semantic level includes name, appearance, motion, and temporal variation of
characteristics of constituent objects at different times and the contributions of all
these attributes and relationships to the story being presented in a video sequence.
Low-level feature indexing has been far more successful than that of semantic
indexing in image database. However, the biggest problem with indexing video using
the low-level image feature of every frame is its enormous volume, while uniform

subsampling may reduce some data, but risky for losing important frames.
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2.5 Video Content Feature Extraction

Key-frame representation for video indexing is a viable solution, but the problem
becomes how to obtain the key-frames automatically from video sources. Some
methods simply pick from every shot one or more frames in predetermined temporal
locations [13], while other employ color and/or motion-based criteria for appropriate
key frame selection [19-21]. In order to avoid the variations in the color description of
a shot due to the inherent arbitrariness of key frame selection, a more favorable
approach is to consider the color content of all the frames within a shot for color

histogram computation.

2.5.1 Key-frame-based Representations

Key-frame-based approach use one or more key frames to represent a shot. The
selected key frames are then used to represent the shot for video indexing, browsing

and retrieval.

2.5.1.1 Predetermined Temporal Location

This approach simply selects the key frame(s) from a video shot based on
predetermined temporal locations, such as the: first frame, middle frame and/or last
frame. This method is very simple and is suitable for static shot, but it may not select

the most optimal frame for a shot that consists of strong temporal variations.
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2.5.1.2 Optimal Key Frame Selection

Optimal key frame histogram [18] approach selects appropriate key frame based
on color and/or motion-based criteria. Key frame is selected by optimizi-rig the
distortion function as shown below:

N-L

Dlk,) =2 S @ = 1)’ 2.4)
where f{i) denotes the feature extracted from frame /.

This method considers the content of each shot to determine a suitable key frame
for the shot. When a shot consists of strong motions, it can select a more suitable key
frame for representing the shot. When the shot does not consist of strong motion, all
frames from the shot are very similar. This method will therefore require more

computation than the predetermined key frame selection.
2.5.1.3 Dynamic Key Frame Selection

Dynamic key frame selection aims to represent a video shots with different
lengths and activities by using different number of key frames and the positions of key
frames that could reflect the dynamics of a video shot. Similar to the optimal key
frame selection, a set of appropriate key frame is selected based on different criteria

such as color, motion, etc.
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2.5.1.4 Compressed-Domain Approach

As mentioned Section 2.3.6, compressed-domain approach provides a more
efficient way for shot boundary detection. Key frame extraction can also be performed
based on the feature extracted from the compressed domain [42]. [22] measures visual
content complexity of a shot by motion patterns which are extracted from the
information about motion vector from a MPEG video stream. A motion pattern of a
shot 1s usually composed of a motion acceleration process, followed by deceleration
process. Such a motion pattern usually reflects an action in events. To extract key
frames based on motion patterns, a motion model is built to reflect the motion

activities in video shots for guiding the selection of key frames.

2.5.2 Shot-based Representations

Features extracted from key-frame-based representation cannot provide sufficient
event-based classification and retrieval because the features themselves do not capture
motion and temporal information in a shot. A more favorable approach is to use
shot-based representation for classification and retrieval. This approach does not only
provide a representation, which consists of temporal ihf‘ormation of the shot, but also
avoid the variations in the feature of a shot due to the inherent arbitrariness of key

frame selection.
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2.5.2.1 Histogram-based Representation

Histogram-based representation can be an extension of the key-frame-based
representations. After a set of appropriate key frames is located, the video shot is then
represented by histograms extracted from the key frames. However, in order to avoid
the variations in the color description of a shot due to the inherent arbitrariness of key
frame selection, a more favorable approach is to consider the color content of all the
frames within a shot for color histogram computation. Average color histogram [18]
may be considered as an appropriate choice. However, the average color histogram
becomes vulnerable to outlier frames within a shot. Therefore, the alpha trimmed
average histogram {18] was proposed to overcome the presence of outlier frames,
which may skew the color representation unfavorably. The alpha trimmed average
histogram considers all the corresponding histogram bin values from all the frames
within the shot, and is generated using the trimmed mean operator. To obtain an
alpha-trimmed average histogram, the corresponding bin values are sorted in either
ascending or descending order, and then the average value for each bin is computed
from the central members of the ordered array. Therefore, the value of bin j in the

alpha-trimmed average histogram is computed as follows:

1 M-laM | o
TrimHist, (j,a) = ————— i h;(m) ‘ (2.5)
' M-2{aM |, G
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where, /,(m) represents the ordered array of bin values, and the trimming parameter a,
where 0 < a < (.5, controls the number of bin values excluded from the average
computation. When « is equal to zero, the resulting histogram is equivalent to the
average histogram. On the contrary, when a is equal to 0.5, the resulting histogram is

equivalent to the median histogram, as shown in Figure 2.9.

2500 . .
a0 1 — Alpha = 0 (Average)
——Alpha=0.15
J Alpha = 0.25
1500 | —— Alpha = 0.5 (Median)

254

Figure 2.9 The alpha-trimmed average histograms of a video shot.

2.5.2.2 Temporal Slice Based Representation

Based on the analysis of spatio-temporal image volumes, an effective
motion-based content representation was proposed in [17]. In the spatio-temporal

slices of image volumes, motion is depicted as oriented patterns as shown in Figure

30



2.10. Using a tensor histogram computation algorithm, motion can be characterized
efficiently. Not only the camera motion in a video can be annotated as static, pan, tilt,
zoom, etc., but also the moving object can be segmented and tracked efficiently in the

spatio-temporal images of video shots.

Boundary Horizontal Slice Vertical Slice
Type

Static i P i s 11458271

Strong Motion

L 4\

Figure 2.10 Motion patterns in horizontal and vertical spatio-temporal slices extracted

from the center of an image volume.

2.5.2.3 Object-based Representation

As a Content-based query may involve an object in a video clip, the video
frame-based representation may not provide sufficient resolution to support such
query. Therefore, object-based representation can facilitate video content
representation when dealing with queries about objects and their motion. Objects in
clips can be represented by two types of information: Descriptive data and

Motion_data. Descriptive data refers to object features like the identity of an object,
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its color, shape, types, etc. Motion_data contains the center point locations of
minimum bounding rectangles for the frames, and the widths and the heights of the
object. Many works have been done in object-based representation schemes [23].
However, the problem of this approach is how to group a set of candidate regions to
form an object automatically. This is still an area of ongoing research and is a
challenging work. The motion-based approach uses the object motion information in
order to characterize the events to allow subsequent retrieval. Based on the translation,
spatial and temporal scale invariance properties, eight cases have been classified for

Motion-based video indexing and retrieval.
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2.6 Summary of Review

Shot boundary detection is an important step for video parsing, video indexing
and video coding. However, the locations of shot boundaries in a video are very
difficult to detect accurately. The performance to detect the boundary is affected by
several variables, such as motions of objects, global motion (pan, zoom or tlt) and
sophisticated transitions including dissolve, fade-in, fade-out and wipes, etc. In order
to solve these problems, various approaches to shot boundary detection such as the
spatial matching detection, twin-comparison approach, statistical approach,
histogram-based approach, edge-based approach, and compressed domain approach
have been introduced.

For video content feature extraction, one of the approaches is to extract features
from the key frames that are selected from the shot based on several criteria. This
method can facilitate shot representation for video indexing and retrieval, but it does
not capture motion and temporal information in a shot for event-based classification
and retrieval. Other approaches for video content feature extraction are shot-based
representation, which extracts features by considering the temporal information of a
shot. Both frame-based and object-based approaches to feature extraction have been

presented.
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CHAPTER 3
An Evaluation of Low-Level Visual Feature

for Automatic Shot Boundary Detection

3.1 Introduction

[n Chapter 2, the problem of shot boundary detection and its applications have
been addressed. Various approaches to shot boundary detection, such as spatial
matching approaches, histogram-based approaches, edge-based approaches and
compressed domain approaches, have been considered with a view to solve the
problem. In this chapter, several histogram-based approaches will be evaluated, and- a
reliable and robust representation for shot boundary detection using the Colored
Pattern Appearance Model (CPAM) will be introduced.

Content-based video indexing (CBVI) has been an extensively researched area in
the computer vision community for the past decade, and many approaches have been
developed and published. A general approach to CBVI is to temporally segment a
video into shots based on the extracted low-level visual features, and to use the visual
features for indexing and providing a high-level understanding of the video. Low-level

representation of multimedia signals has been commonly used in segmentation,
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indexing, retrieval, etc.

Temporal video segmentation plays a very important role in content-based video
indexing. This process provides a fundamental understanding of indexing a video
efficiently. Basically, it involves the detection of both abrupt and gradual transitions.
In general, the detection of these ki.nds of transition involves two procedures: content
representation and decision-making. In the content representation process, a video is
represented by low-level features, such as DC image [37], edge image, monochrome
histogram, color histogram in different color spaces, etc., which can be analyzed
efficiently. In the decision-making process, thresholding technique is usually used to
detect and identify the transitions. There are two ways to set the threshold: one is to
pre-set it by experiments, the other is to set it adaptively.

In our approach, we use Colored Pattern Appearance Model (CPAM) as a frame
representation for shot boundary detection, in which a scene is represented by means
of global statistics of the local visual appearance, and was originally motivated by
studies in human color vision. We will also evaluate the performances of different
kinds of histogram-based low-level representation for automatic detection of abrupt
transitions, so that the most effective and reliable one can be identified. There are
many possible low-level visual features for representing video contents. With a

particular representation, there may also be many ways to determine an abrupt
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transition. The entropic thresholding technique is chosen in our analysis; it can
provide an optimal and automatic solution in determining the threshold for detecting
shot boundaries. The performance of our approach is then compared to several
histogram-based approaches, such as RGB color histogram, monochrome color
histogram, HSV color histogram, HMMD color histogram and opponent color
histogram. In our experiments, the two video sequences in the MPEG-7 content set are
used to evaluate the performances of the CPAM and the histogram-based methods.
Experimental results show that our proposed model outperforms other

histogram-based approaches in shot boundary detection.
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3.2 Shot Boundary Detection Using Colored Pattern

Appearance Model (CPAM)
3.2.1 Colored Pattern Appearance Model (CPAM)

The main problem with shot boundary detection is the existence of strong noises
and motion in the video data. Therefore, it is not easy to have a single representation
that is efficient, reliable a‘nd robust for scene cut detection. The colored pattern
appearance model (CPAM) which has two channels capturing the characteristics of the
chromatic and achromatic spatial patterns of small image regions has been used to
compile content descriptors for content-based still image retrieval [57]. The CPAM is

shown in Figure 1.

N |—. IMean l
% > ® . |
Vorrts,

Figure 3.1 The CPAM algorithm.
In this model, the visual appearance of a small image block is modeled by three

components: the stimulus strength, the spatial pattern and the color pattern. The
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YCbCr space is used, and the stimulus strength S is approximated by the local mean
of the Y component. The pixels in Y normalized by S form the achromatic spatial
pattern (ASP) vector. Because Cy, and C; have lower bandwidth, they are sub-sampled.
The sub-sampled pixels of C, and C, are normalized by S, and then concatenated
together to form the chromatic spatial pattern (CSP) vector. There are two reasons to
normalize the pattern and colour channels by the strength. First, from the coding point
of view, removing the DC component makes the representation more efficient. Second,
from the image indexing point of view, this can remove, to a certain extent, the effect
of lighting conditions. This is because this process can make the visual appearance
model somewhat “colour constant”, which can therefore improve the indexing and
retrieval berformance, especially in the case of retrieving similar surfaces under
different light conditions. The formulations for extracting S, ASP vector and CSP
vector are as follows:

LetY={y(i),i=0,1,2,...,m,j=0,1, 2, ..., n} be the m by n Y image block, The

stimulus strength of a block is calculated as

[T SR ST
S=——2 2y )) 3.1

i=l =0

Then the ASP pattern vector, ASP = {asp(iy), i=0,1,2,...,m,j=0,1,2, ..., n} of

the block, is formed as

asp(i, j) = %’) ' (3.2)
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Then the CSP pattern vector, CSP = {csp(k), i = 0, 1, 2, ..., 2M} is formed by
concatenating SCp and SC..
The sub-sampled Cy signal, SCy = {sco(k,0), k=0, 1,2, ..., m/2,1=0, 1,2, ..., n/2}

is obtained as

l miln/l

= 2k+120+ j 33
"5 =0cb( ) (3.3)

[

Similarly, the sub-sampled C; signal, SC, = {sc{k,)), k=0,1,2,..., m/2,[=0,1,2, ...,

n/2} is obtained as

mi2nll

ch Qk+120 + j) (3.4

r-O J=0

In order to use the representation scheme in content-based temporal video
segmentation, vector quantization (VQ) is used to estimate statistically the most
representative feature vectorsl in the feature space. A 256-codeword quantizer for the
ASP vectors and a 256-codeword quantizer for the CSP vectors are generated by
means of the frequency sensitive competitive learning (FSCL) algorithm [60]. Figure
3.2 shows how to generate the 256 codewords for the CSP vector and the 256
codewords for the ASP vector. Therefore, each frame can be represented by a 256-bin
ASP histogram and/or a 256-bin CSP histogram. Figure 3.3 shows the block diagram
of how to extract the ASP histogram and the CSP histogram of a frame. The training
samples are based on the MIT Media Labs VisTex image database, which consists of

images of different texture appearance. The codeword generated based on this
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database can provide a general representation for different kinds of images/videos.

FD C—> | P CodeBook
L{> . > | CCodeBook

Figure 3.2 Block Diagram for Codebook Generation.

Training
Sample

:> P Histogram

Video
Sequence

P CodeBook

C CodeBook

L:> ' E_'__> C Histogram

Figure 3.3 Block Diagram for Extracting P & C Histogram.
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3.2.2 Frequency Sensitive Competitive Learning (FSCL)

Vector Quantization is a mature method of lossy signal compression/coding in
which statistical techniques are used to optimize distortion/rate trade-offs. In this study,
we used a specific neural network-training algorithm, the frequency sensitive
competitive learning (FSCL) to design our codebook. According to [57], FSCL is
insensitive to the initial choice of codeword, and the codeword designed by FSCL are
more efficiently utilized than those designed by methods such as the LGB algorithm.
The FSCL method can be briefly described as follows:

1. [nitialize the codeword, C{0), i = 1, 2, ..., |, to random numbers and set the

counters associated with each codeword to 1, i.e., n{0} = 1.

2. Present the training sample, X(¢), where t is the sequence index, and calculate
the distance between X{f) and the codeword, D{#) = D(X(r), C{t)), and
modify the distance according to D) = n{6)D(1).

3. Find j, such that D'(f) < D’(¢) for all 1, update the codeword and counter

Cft + 1) = C() + a[X(t) - C{D)} (3.5)
n{t+)=n+1, (3.6)
where 0 < a < is the training rate.

4, Repeat by going to 2.
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3.3 Low-Level Feature Video Content Representation

An abrupt transition is usually induced by a camera break in a video. This change
can be detected by computing the differences between the visual features of the
consecutive frames. Many kinds of features for representing an image/frame have
been proposed. Monochrome histograms and color histograms with different color
spaces are the most commonly used methods for image representation. In MPEG-7,
the color descriptors use different color spaces [29], such as monochrome, RGB, HSV,
YCrCb, and HMMD. The opponent color space can also represent an image well for
image indexing, and its transformation from the RGB color space is simple. In our
evaluation, performances of these histogram-based representations will be compared
with our approach and extraction procedures of these histogram-based representations

are illustrated.

3.3.1 RGB Color Histogram

The RGB color space is the most common representation of color information. To
generate a color histogram in RGB color space, the R, G and B components of each
pixel in a frame are quantized into 256 color indices by vector quantization This

256-bin color histogram Hy (k) is then formed as follows:

HRGB(k)= 25( R,G,B(‘Ri,j’Gi.j’Br',j)— k) (3.7)
i
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for 0 <k <255

1 for i=j

5(;‘—}‘)={0 for i

where /, j are the co-ordinates of a pixel, and Orgs( ) represents the color quantization

function which quantizes a color to one of the 256 color indices.

3.3.2 HSV Color Histogram

The HSV color space shown in Figure 2.4 can represent color information in the
form most similar to human perception. RGB to HSV transformation is a nonlinear
but reversible process. In order to quantize the HSV space into 256-bins, fixed
quantization is used. The H, S and V values are coded into 4 bits, 2 bits and 2 bits,
respectively. The 256-bin HSV color histogram Hy s (k) is then formed as follows:

HHSV (k) =Za(LH.S.V(Hi.J"Si.j’Vr‘.j)m k), (3.8)

Y
for 0 <k <255

where Ly s () represents the color index of a pixel in the HSV color space.

3.3.3 HMMD Color Histogram

The HMMD color space shown in Figure 2.5 is a new color space supported in
MPEG-7. Three components, Diff, Sum and Hue, are used to describe a color in the
HMMD space. The Hue (H) has the same meaning as in the HSV space. The Diff (D)

and Sum (S) components are defined as the difference between max and min and the
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average of max and min, respectively, where max and min are the maximum and
minimum among the R, G and B values. The H, D and S values are quantized into 4
bits, 2 bits and 2 bits, respectively, by a fixed quantization scheme according to

MPEG-7 standard.

3.3.4 Opponent Color Histogram

The opponent color space [5] is a brightness-independent chromaticities space.
This color space has the advantage of reducing the histogram dimensionality from 3-D
to 2-D. The transformation of RGB to RgBy is simple. The opponent chromaticities

are defined in terms of the r, g and b chromaticities:

r+
(Rg, By) = (r -8 £ —b} 3.9)
R
where -
R+G+ B
G
8= R+G+B
_ B
" R+G+B

A 2-D color histogram is then formed with 32 bins per color axis.
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3.4 Entropic Thresholding for Shot Boundary Detection

Thresholding technique is commonly used in segmentation and classification.
With a selected threshold, an abrupt transition is declared if the histogram difference is
larger than this threshold; otherwise, no abrupt transition occurs. The main problem
here is how to determine the optimal threshold for different situations. Basically, there
are two forms of the methods that can set the threshold. One is to preset the threshold
by experimental results; the other is to set the threshold automatically based on the
input data (video) itself. In shot boundary detection, it is difficult to pre-set a fixed
threshold because different directors may have different styles and the videos may
have different natures. Adaptive thresholding plays an important role in determination
of the threshold under different situations. One of the optimal approaches is called
entopic thresholding, which finds the optimal threshold by applying information
theory. The entropic thresholding method has been extended to find the optimal
threshold for spatial and temporal video segmentation. Two entropies are obtained
from two separate probability distributions: one is for the in-class; the other is for the
non in-class. The threshold used for segmentation is selected 'in such a way that the
total entropy is maximized. In our experiments, entropic thresholding was used to
determine the optimal thresholds for the different low-level video representations.

After extracting each of the low-level representations, the differences between
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successive frames of a video will be computed. The histograms f of successive frame

differences can be formed as follows:

G-l
dH, =Y |H. ()~ H.()) for i=1,2,...,L~1 (3.10)
=0
W=r_‘r§‘1a)$ |{d ,.} 3.1
L-1
fo =D, 8(dH, - k) for 0<k<W (3.12)
i=0 - A

where G is the total number of color levels in an image, L is the total number of
frames in the video sequence, and dH represents the histogram difference between

successive frames.

For shot boundary detection, the optimal threshold is calculated as follows:

P()=—T 0<isT, (3.13)
Zkaof* .
P ()= Wf" , T+1<i<W. (3.14)

Zk:]"ﬂ f *

P.(i) and Py(i) represent the probability for the frames with the non-scene cut
relationship with their successive frames and the probability for the frames with the
scene cut relationship, respectively. The cotresponding entropies for these two classes
are:
-
E,(T)==Y P, ()log P, (), (3.15)
i=0
W
E,(T)=-2 F,()logP,®) (3.16)

i=T+1

E,{T) and E«T) represent the entropies for these two classes regions separated by a
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threshold 7. The optimal threshold 7, is chosen to satisfy the following criterion:

(T)+ E(T)} (3.17)

¥

E(Top-’) = r:ﬂ,?}-.”’ {E

Pao Yue-kong Library
PolyU « Hong Kong
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3.5 Experimental Results

Many shot boundary detection schemes have been proposed and evaluated using
different video sequences. This makes it difficult to compare the performances of the
different detection schemes. In our experiments, the two home video sequences,
namely Lgerca_1.mpg and Lgerca_2.mpg, from the MPEG-7 content set were used.
These two video sequences have strong noises and motion. Each of the sequences
consists of 42 scene cuts, which have been marked manually by the Requirements
Group of the MPEG-7 standard committee.

The objective of our experiment is to seek the best representative low-level
feature for automatic shot boundary detection. The histograms of monochrome, RGB,
HSV, YCrCb, HMMD, RgBy, and CPAM were extracted from the videos, and their
successive frame differences were then computed. For CPAM, the histograms based
on the ASP, CSP, and joint ASP & CSP were considered. The entropic thresholding
technique is then applied to each of the approaches such that their optimal thresholds
for a video based on the frame difference values are selected. Recalls and Precisions
of each of the representations were then m;aasurcd. The formulations of the recall and

precision are shown as follow:

Recall = _L_ (3.18)
CD+ FP
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Precision = _CD : (3.719)
CD+ FN

where CD, FP and FN denote the correct detection, false positive and false negative,
respectively. FP represents the number of false detection of scene break while FN
represents the number of scene breaks missed in the detection.

The experimental results for the two video sequences are shown in Tables 3.1 and
3.2. Recall and Precision will be the basis of our analysis. The ranges of recall and
precision are both between 0 and 1. When recall is equal to 1, no missing occurs. A
higher value of precision represents a lower false alarm rate. For shot boundary
detection, it is difficult to have an algorithm that can provide perfect segmentation in
terms of human perception. Nevertheless, the algorithm can help pre-segment the
video, and so reduce the workload of the human operator. Therefore, an algorithm that
can provide no missed detection and the minimum false alarms is highly desirable.
These results show that the precisions of all the approaches are low due to the
existence of strong noise and motion in the video sequences, and approaches based on
the HSV color space and CPAM achieve the highest recall values. More importantly;
these two methods can achieve zero missing in video sequence 1. From the results
with video sequence 1, HSV and all representations using CPAM can obtain the

highest recall rate, and the joint ASP & CSP method also achieves the highest level of

precision. Therefore, it is clear that the joint ASP & CSP method outperforms other
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methods. From the results with video sequence 2, monochrome, HSV and joint ASP &

CSP achieve the highest recall rate, while the joint ASP & CSP method also obtains

the highest precision level. In other words, the joint ASP & CSP method achieves the

best performance level in automatic scene cut detection.

Lgerca 1.mpg

Low-level Representations ICD FN FP Recall Precision
Monochrome 41 ] 73 0.9762 0.3596
Color Space

256 RGB Color 23 19 88 0.5476 0.2072
64 RGB Color 21 21 125 0.5 0.1438
32x32 RgBy 39 3 51 0.9286 0.4333
HSV 42 0 66 1 0.3889
HMMD 41 1 44 0.9762 0.4824
CPAM

ASP 42 0 115 1 0.2375
CSP 42 0 83 1 0.3360
Joint ASP & CSP 42 0 39 1 0.5063

Table 3.1 Performances of different low-level representations for scene cut detection

based on video sequence 1.

50




Lgerca_2.mpg

Low-level Representations ICD FN FP Recall Precision
Monochrome 38 4 162 0.9048 0.1900
Color Space

256 RGB Color 28 14 82 0.6667 0.2545
64 RGB Color 24 18 134 0.5714 0.1519
32x32 RgBy 35 7 320 0.8333 0.0986
HSV 38 4 177 0.9048 0.1767
HMMD 36 6 133 0.8571 0.2130
CPAM

ASP 32 10 94 0.7619 0.2540
CSP 37 5 222 0.8810 0.1429
Joint ASP & CSP 38 4 150 0.9048 0.2021

Table 3.2 Performances of different low-level representations for scene cut detection

based on video sequence 2.
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3.6 Conclﬁsion

In this chapter, we have introduced the idea of using CPAM for scene representation
and shot boundary detection. In our experiments, the entropic thresholding technique
was used to determine the optimal threshold, and the two MPEG-7 video sequences
were used to gvaluate the performances of the CPAM and several histogram-based
low-level representations. The experimental results show that the CPAM method
outperforms other methods in terms of shot boundary detection. The CPAM does not
lonly detect shot boundary accurately, but also improve efficiéncy of shot content
representation of a shot due to the reduction of noise of suffered from neighborhood
shot. In next chapter, we will present a new video content representation scheme based
on global statistics for video shot retrieval. This is the next step of video signal

analysis for CBVR.
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CHAPTER 4
A New Content Representation

for Video Segment Retrieval

4.1 Introduction

In Chapter 3, we presented an efficient and reliable approach for shot boundary
detection. Based on the detected boundary, the video can be temporally segment into
shot. For content-based video retrieval system, the content of a shot is then
represented by a feature vector or clustering [28, 51] is then applied for indexing,
searching and retrieval. Color histogram representation is commonly used in image
retrieval, which can also provide a motion invariant representation for video retrieval
as mentioned in Chapter 2. Also, key frame approach and content-based approach for
video segment representation have been reviewed. In this Chapter, we will present an
optimal key frame representation scheme based on global statistics for video shot
retrieval. Each pixel in this optimal key frame is constructed by considering the
probability of occurrence of those pixels at the corresponding pixel position among
the frames in a video shot. Therefore, this constructed key frame is called “Temporally

Maximum Occurrence Frame” (TMOF), which is an optimal representation of all the
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frames in a video shot. The retrieval performance of this representation scheme is
further improved by considering the & pixel values with the largest probabilities of
occurrence and the highest peaks at each pixel position for a video shot. The
corresponding schemes are called #-TMOF and &-pTMOF, respectively. These key
frame representation schemes are compared to other histogram-based techniques for
video shot representation and retrieval. In the experiments, the three video sequences
in the MPEG-7 content set were used to evaluate the performances of the different key
frame representation schemes. Experimental results show that our proposed
representations outperform the alpha-trimmed average histogram for video retrieval,

which have been mentioned in Chapter 2.
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4.2 Temporally Maximum Occurrence Frame (TMOF)
Traditionally, the key frames can be simply selected from predetermined temporal
locations such as the first, middle or last frame. However, these selected frames may
not be optimal in representing the corresponding video shots. Other methods extract
an appropriate key frame based on the color/motion-based criteria. However, all these
methods may still not provide an optimal representation of the video shots concerned.
The alpha-trimmed average histogram can provide a robust description of a GoF, and
is therefore considered an optimal histogram representation. However, it possesses the
same drawback as the histogram-based representation — it cannot provide spatial
information about the frame represented by the histogram. The spatial information or
structure of a GoF is particularly important for video retr'ieval because the query
usually has a similar structure to the frames in the GoF. Therefore, it is desirable to
construct a key frame or extract a key frame representation which contains all the
visually important information within the video shot. The algorithm proposed in this
paper is to construct a key frame representation which contains most of the significant
visua] contents in a shot. This idea is illustrated in Figure 4.1, where a video shot has

six frames.
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Within this shot, a vehicle stops at the bottom left corner and a helicopter is
landing during the first three frames, then the vehicle drives away and the helicopter
remains on the root-top during the last three frames. Obviously, the representative
frame for this video shot should contain both the vehicle stopping near the house and
the helicopter stopping on the house, as shown in Figure 4.1(g). However, existing

approaches cannot capture all this important information in the frames.
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Figure 4.1 An ideal representative frame for a shot with six frames.
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[n view of this, our proposed representative frame, called the “Temporally
Maximum Occurrence Frame” (TMOF), is constructed based on the probability of
occurrence of pixel values at each pixel position for all the frames within a video shot.
Figure 4.2 illustrates the simplified algorithm of how to obtain our proposed

representative frame.

b
Color Level

Color Level

Color Level

Figure 4.2 The construction of the TMOF for a video shot.

A lﬁstogram is formed based on the pixel values at each corresponding pixel
position in the GoF, and is smoothed using a rGaussian function. Then, the value at a
pixel position in a TMOF is the bin value whose frequency of occurrence, or count, is
a maximum in the smoothed histogram. Therefore, the pixels of the TMOF are

computed as follows:
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TMOF(i,j)=b,,, 0<i<W~1 and 0<j<H-I, @.1)

where WxH is the size of a frame, and bopt is chosen as follows:

b,, =arg mfix{H'U (b)}, for0<b<B, 4.2)

The smoothed histogram is obtained by using a Gaussian filter as follows:
H‘r'.j ()= Hr',j (b)*G(o,b),

where G(s, b) is a Gaussian function with variance s,

N1
H,,(6)=2.56(f,G,/))—b) for0<b< B, (4.3)
n=0
i form=n,
and d(m—n)=
{O form#n.

Hi; is the histogram formed by the corresponding pixels at pixel position (i, j}, f«(i, /)
represents the pixel level at coordinates (i, j) in frame n, N is the total number of
frames in the GoF, and B is the number of bins in the histogram. Normally, the number
of bins in a histogram is equal to the number of intensity levels for a pixel. However,
in order to maintain a good estimation of the value in the TMOF when the video shot
is short in length, the number of bins for the histogram of a pixel position may be
decreased, depending on the variations of the bin values in the histogram. In our
experiments with 3 video sequences, the shortest video segment contains 48 frames,
while the average shot length is 282. The frames within a GoF are similar to each
other, so are the corresponding pixels at the same pixel position. Therefore, the value

at a pixel position in the TMOF can be determined accurately even if the shot length is
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short. Figures 4.3 and 4.4 illustrate two video shots extracted from a home video and a
news program, and their corresponding TMOFs. The video shot shown in Figure 4.3 is
rather static. The background and the girl shown in the video shot are clearly extracted
to construct the TMOF. The video shot demonstrated in Figure 4.4 comprises both
camera motions and object motions. The camera is following a group of people who
are walking. Our proposed schemes can also effectively extract the major objects from

the video shot to form the TMOF.
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Frame 2882

Frame 2948
A

Frame 2990 Frame 3023 Frame 3074 Frame 3116 Frame 3158

(a) The video shot from a home video.

(b) Representative frame (TMOF) constructed with the pixel value with the maximum
frequency of occurrence or the highest peak at each pixel position.

(c) Representative frame of a GoF constructed with the pixel value with the second maximum
frequency of occurrence at each pixel position for 2-TMOF.

(d) Representative frame of a GoF constructed with the pixel value of the second highest peak
at each pixel position for 2-pTMOF.

Figure 4.3 The video shot, and its TMOF/2-TMOF/2-pTMOF of a home video.
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Frame 754

Frame 809 Frame 820 Frame 831 Frame 842 Frame 853

(a) The video shot from a news program

(b) Representative frame (TMOF) constructed with the pixel value with the maximum
frequency of occurrence or the highest peak at each pixel position.

(c) Representative frame of a GoF constructed with the pixel value with the second maximum
frequency of occurrence at each pixel position for 2-TMOF.

(d) Representative frame of a GoF constructed with the pixel value of the second highest peak
at each pixel position for 2-pTMOF.

Figure 4.4 The video shot, and its TMOF/2-TMOF/2-pTMOF of a news program.



To further improve the representation power of TMOFs, we propose that each
pixel position of the TMOF contains & possible values. Two different types of & values
are proposed. The first set is the corresponding k£ pixel values with the maximum
frequencies of occurrence at the pixel position. This representation scheme is called
“k-TMOF>. The second type is where the & values are equal to the & highest peaks in a
histogram. A peak occurs when a bin value is higher than its two adjacent bins.
Suppose that H;(b) represents the value of bin k at pixel position (4, /). Then H;{b) is
a peak if H;{b)> H;{b—1) and H;{b)> H;{b+1). If m consecutive histogram bins have
the same value while this value is larger than that of the two adjacent bins of these m
bins, i.e. H;{b) = Hi(b+1) = ... = Hi{b+tm—1), and H;{b) > H;(b—-1) and H;{(b) >
H; {b+m), then the middle value of these m consecutive bins is defined as the peak,.
This scheme is called “A-pTMOEF”. These representatioﬁs have much more power than
those with a single value for each pixel position. When £ = 1, both &-TMOF and
k-pTMOF will be equivalent to the TMOF. Figures 4.3(c) and 4.4(c) illustrate the
representations constructed based on the 2™ pixel values with the maximum
frequencies of occurrence (i.e. 2-TMOF), while Figures 4.3(d) and 4.4(d) show the
corresponding representations based on the 2™ highest peaks (i.e. the 2-pTMOF). The
two representative frames shown for k = 2 for each of the two schemes are only two of

the possible frames that can be represented. Figure 4.5 illustrates the selections of
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pixel values for 2-TMOF and 2-pTMOF. Suppose that the size of the frame is HxL,
the number of possible frames that can be generated from a &~-TMOF or k&-pTMOF is
¥, To measure the distance between a query input and a &-TMOF/k-pTMOF, we
have to consider the distance between each pixel in the query and the corresponding k&
values in the &-TMOF/k-pTMOF. The proposed representation schemes are trying to
extract the most important color information at each pixel position within a shot for
content-based video retrieval. The & values at each pixel position represent the most
representative pixel values among the frames in a GoF. Among the & values, the one
.nearest to the pixel value of the query input should be selected in measuring the
distance between the query and the key-frame representation. Therefore, to measure
the distance between the query input and representative frame, the minimum distance

measure D, is used and is defined as follows:

H W

Dy, (=Y min{q(i, /)~ R, G, ju)) foru=1,...k, (44)
i=0 j=0

where (i, /) and {R{i, j, ), u = 1, ..., k} represent the pixel intensities of the

query at (i, j) and the & values of the &-TMOP or k-pTMOP of the ™ video shot in the

database, respectively.
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(a) Selection of pixel values using 2-TMOF.

A

(b) Selection of pixel values using 2-pTMOF.

Figure 4.5 Selections of pixel values using 2-TMOF and 2-pTMOF.
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4.3 Computational Complexity Analysis

In this section, the computational complexities of the TMOF and the
alpha-trimmed average histogram will be analyzed. For both of these approaches, the
computations required are divided into two parts: one is for the construction of the key
frame representation, which is an offline process, while the other one is the
computations required for retrieval. For the alpha-trimmed average histogram,
construction of the representative histogram can be divided into 3 parts: histogram
constructions, sorting for each bin, and averaging. The number of operations required
to construct the histograms in a GoF having ¥ frames with frame size of WxH is in the
order of O(N-W-H). The corresponding values for the same bin of the N histograms
are sorted, and the computation required is in order of O(N,-NlogN ), where N, is the
number of bins in a histogram. Finally, depending on the value of a, the average of
(1 — 2a)N numbers is computed for a bin and the order of operations required for this
part is O{(1 — 2a)NN;). Therefore, the total computations required to construct the
alpha-trimmed average histogram of a GoF is O(N-W-H) + O(Nj,-NlogaN ) + O ((1 -
2a)NNp).

For the TMOF, the process of generating a key frame representation for a GoF
can also be divided into 3 parts: down-scaling a frame to a size of N, histogram

construction for each pixel position, and determining the pixel value with the
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maximum count. The_down-scaling process divides a frame into N, regions and
computes the average values for each of these regions. Therefore, the computation
required is in the order of O(W-H-N,). The total number of operations for constructing
the histograms at each pixel position is O(N,-N). To construct the TMOF for a GoF,
the number of operations required to determine the pixel values with maximum count
is in the order of O(N;-N). Therefore, the total computation required for the TMOF 1s
O(W-H-N,) + O(Ny-N) + O(Nj-N). In general, the computations required by the two
approaches are very similar. Experimental results show that the average runtimes are
1.094 seconds and 1.012 seconds per GoF for constructing the representation for an
alpha-trimmed average histogram and a TMOF, respectively.

For retrieval, the computations required are much less than those required to
construct the representative frames. For a histogram-based distance measure, the
computation for comparing a query to a representation of a GoF is in the order of
O(N;). With the &-TMOF and k-pTMOF schemes, the dimension of the feature
representation is also Nj, but there are k values for each of the Nj, elements. Therefore,

the computation required is O(kN;) for a GoF.
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4.4 Experimental Results

Our experiments were conducted based on 427 shots extracted from the three
video sequences of the MPEG-7 content set. The selected video data consist of a
complete news program and two edited home videos. The shot boundaries have been
identified manually, and queries are selected as the first, middle and last frames of
each shot. Each segmented video shot is represented by different representation
schemes, which include the alpha trimmed average histogram, TMOF, +-TMOF,
k-pTMOF, histogram representations of k&-TMOF and k-pTMOF, etc. Video retrieval is
then based on the measured distances between the feature vectors of the query and
each video shot represented by the different representation schemes as follows:

D,()=dV,.V;) fori=12.3,...,N, (4.5)
where ¥, is the feature vector of the query, V; the feature vector representing the i-th
video shot, and N the total number of video éhots considered.

To evaluate the respective performances of the key frame representation schemes,
the Average Recall (4R) and the Average Normalized Modified Retrieval Rank
(ANMRR) [2] are used. These were developed by the MPEG Video Group for the
evaluation of MPEG-7 core experiments. The range of both AR and ANMRR is
between 0 and 1. These measures determine the number of correct GoFs retrieved and

where they rank among the retrievals. To measure these two terms, the following
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parameters are defined:
ng(g) denotes the number of ground truth GoFs for a query ¢, and
nr{q) denotes the number of correctly retrieved items in the top K retrievals,
where GTM = max{ng(g)}, is the maximum number of ground truth GoFs over all

defined querics and K = min{4xng(q), 2xGTM}.

The recall for query g and the average recall are then computed as follows:

_nr(g) 18
R(g) = @) and AR= o > R(g). (4.6)

9=l

respectively. A higher value of AR implies a better retrieval performance. To obtain the
ANMRR, the Average Retrieval Rank (A RR) should be computed first.

ngiq} :
ARR(G) =3, é% | 6.7)

Then the modified retrieval rank is computed as follows:

MRR(q) = ARR(q) -”—gz(-@-o.s, (6.8)

Rank Each of the ng(q) in the top X retrievals,

where r{i)=
r@) {K+} Otherwise.

The MRR(q) is then normalized to the range [0,1] to obtain the NMRR(q), as shown

below:
NMRR(q) = —RR@) (6.9)
k-89 o5
2

The average of NMRR(q) is calculated as follows:

1 &
ANMRR =§ZNMRR(q). (6.10)

q=1

A lower value of ANMRR implies a higher retrieval rate, with the relevant items
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ranked at the top positions.

[n the experiments, the proposed representation schemes were compared with the
optimal key frame histogram [1] and the alpha-trimmed average histogram with six
difterent values of the alpha parameter. For histogram-based representations, the L,
distance measure is used because it can provide the best result in video retrieval [1].
Our experiments are divided into three parts. First, gray-level alpha-trimmed
histograms and the optimal key frame histograms with different numbers of bins are
evaluated to obtain the optimal histogram for video retrieval. Qur proposed schemes
are then compared with the optimal histogram-based representation scheme. Second,
the minimum distance measure is used to evaluate the representation performances of
the k-TMOP and ’k-pTMOF with different value—s of k for video retrieval. Finally, the
respective performances of our proposed schemes using histogram representation are
then evaluated and compared with that of the optimal histogram-based representation

scheme based on the first set of experiments.
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4.4.1 Optimum alpha-trimmed average histogram and TMOF

The objective of this set of experiments is to compare the performances of our
proposed representation scheme (TMOF) and the optimal histogram-based
representation for video retrieval. To obtain the optimal histogram-based
representation, we used two different numbers of bins for the optimal key frame
histogram and the alpha-trimmed average histogram with six different values of & =
{0, 0.1, 0.15, 0.20, 0.25, 0.50}. To compare the performances of TMOF and
histogram-based schemes, each frame for TMOF is divided into a number of blocks of
equal size and each block is represented by its corresponding mean. This number is set
as equal to the number of bins used in the histogram representation, so we can
compare the performances of the different key frame representations with the same
feature vector size. Table 4.1 shows the AR and the ANMRR of the respective
histogram representation schemes with two different numbers of bins. The number of
queries used is 1281. The alpha-trimmed average histogram achieves the best
performance when o = 0.15 with 256 bins. The corresponding AR and ANMRR values
are 0.5950 and 0.4451, respectively. In addition, TMOF outperforms the
histogram-based representations, whose AR and ANMRR values are 0.7088 and 0.3315,
respectively. Figures 4.6 and 4.7 illustrate the ANMRR and AR of our proposed

representation scheme and the optimal alpha-trimmed average histogram, while the
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number of queries was varied from 1 to 1281. Experimental results show that our
proposed representations result in a slightly lower ANMMR and a higher AR compared
to the alpha-trimmed average histogram, i.e. the retrieval performance of TMOF is

better than that of the optimal alpha-trimmed average histogram.

ANMRR AR
L, Distance with 256 bins
Average Histogram 0.4520 0.5885
0.10 Alpha Histogram 0.4464 0.5942
0.15 Alpha Histogram 0.4451 0.5950
0.20 Alpha Histogram 0.4462 0.5944
0.25 Alpha Histogram 0.4468 0.5957
Median Histogram 0.4453 0.5968
Optimal Key Frame Histogram 0.4593 0.5735
L, Distance with 128 bins
Average Histogram 0.4518 0.5872
0.10 Alpha Histogram 0.4461 0.5957
0.15 Alpha Histogram 0.4460 0.5952
0.20 Alpha Histogram 0.4453 0.5948
0.25 Alpha Histogram 0.4453 0.5955
Median Histogram 0.4468 0.5965
Optimal Key Frame Histogram 0.4562 0.5770
TMOF 0.3315 0.7088
3-TMOF 0.2912 0.7545
3-pTMOF 0.2609 0.7891

Table 4.1 The respective performances of the optimal key frame histogram, the
alpha-trimmed average histograms with a = {0, 0.10, 0.15, 0.20, 0.25, 0.5}, and the

TMOF, the 3-TMOF, and the 3-pTMOF.
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Figure 4.6 The overall average normalized modified retrieval rank of TMOF and the

optimum alpha-trimmed average histogram when the number of queries varied from 1

to 1281.
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Figure 4.7 The overall average recall of TMOF and the optimum alpha-trimmed

average histogram when the number of queries varied from 1 to 1281.
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4.4.2 Performances of &-TMOF and k-pTMOF

In this set of experiments, we evaluate the performances of A-TMOF and
k-pTMOF using the minimum distance measure with different values of k. Both the
k-TMOF and k-pTMOF are divided into 16x16 blocks to form a 256-D feature vector.
Experimental results with different values of k are illustrated in Figure 4.8. When the
value k increases, the representational powers of both the ~-TMOF and k-pTMOF
schemes become higher. However, when £ is larger than a certain value, it is found
that the performance will be degraded. The reason is that when & is large, the number
of false alarms will also be higher, so the performance degrades. Experimental results

show that these two representation schemes achieve the best performance when & is 3.
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Figure 4.8 The performances of &-TMOF and k-pTMOF using the minimum distance

measure with different values of k.
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4.4.3 Histogram Representation of A-TMOF and k-pTMOF

The k-TMOF and k-pTMOF can also be represented by histograms for video
retrieval. According to the number £, each of the corresponding histogram bins will
contain k different values in their representations. However, the design of k-TMOF
and &-pTMOF is not optimal for histogram representation, and the spatial information
is also lost. Therefore, the histogram representations for &-TMOF and 4-pTMOF will
result in a degradation of retrieval performance. Nevertheless, the k--TMOF and
k-pTMOF histograms can still achieve comparable performances to the optimal
alpha-trimmed average histogram.

In this experiment, our proposed schemes are compared to the 256-bin
alpha-trimmed average histogram with & = 0.15. As illustrated in the first experiment,
the best performance can be achieved with this setting. Table 4.2 shows the
performances of the &-TMOF and &-pTMOF with 256 bins, and that of the optimal
alpha-trimmed average histogram. From Table 4.2, the x~-pTMOF with & higher than 1
outperforms the optimal alpha-trimmed average histogram in terms of the retrieval
performances, while the optimal alpha-trimmed average histogram achieves a better

performance level than that of the &~-TMOF for ail £.
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k ANMRR AR
k-TMOF Histograms
1 0.5363 05110
2 0.4689 0.5942
3 0.4532 0.6056
4 0.4513 0.6114
5 0.4464 0.6200
6 0.4475 0.6167
k-pTMOF Histograms
1 0.5248 0.5228
2 0.4400 0.6201
3 0.4209 0.6317
4 0.4081 0.6478
5 0.4027 0.6525
6 0.4058 0.6489
0.15 Alpha Histogram with 256 bins
0.4451 0.5950

Table 4.2 The performances of the ~-TMOF and k-pTMOF represented as 256-bin

histograms, and that of the optimum alpha-trimmed average histogram.
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4.5 Conclusion

In this chapter, we have presented a new representative frame, namely
“Temporally Maximum Occurrence Frame” (TMOF), for video retrieval. This TMOF
can capture the most significant visual contents within a video shot. The
representational power of the TMOF is further enhanced by considering the & most
frequently-oc;:urring values and the & highest peaks of the probability distribution at
each of its pixel positions. Our proposed schemes are compared with the family of
alpha-trimmed average histograms, which is a video segment descriptor in MPEG-7.
Our proposed schemes have a similar computatiopal complexity as compared to the
alpha-trimmed average histogram method. In our experiments, 427 shots extracted
from the four MPEG-7 content set video sequences were used to evaluate the
respective performances of the schemes. Experimental results show that both the
k-TMOF and k-pTMOF can achieve the best performance when k = 3, and this scheme

outperforms the alpha-trimmed average histogram representation for video retrieval.
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CHAPTER 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, we have provided an overview of CBVR and a variety of existing
techniques for video structure parsing and video content representation using visual
features for CBVR. For shot boundary detection, the spatial matching detection,
twin-comparison approach, statistical approach, histogram-based approach,
edge-based approach, spatio-temporal slice approach and compressed domain
approach have all been reviewed. For abrupt transition, the spatial matching approach,
histogram-based approach, and edge-based approach can achieve a good detection
result while the video does not consist of strong motion and noise. For gradual
transition, the twin-comparison approach is a simple and effective method, but it
cannot classify the type of gradual changes. The statistical approach is particularly
designed to detect dissolve, fade-in and fade-out based on the equation for generating
this kind of special effect. The spatio-temporal slice approach captures a collection of
scans in the same selected position of every frame as a function of time. Abrupt and

gradual transitions can be detected by analyzing the rhythm of slices.
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For Video content feature extraction, key-frame-based representation and
shot-based representation were presented in Chapter 2. Key-frame-based
representation selects one or more frames from a video shot to represent that shot by
various criteria, such as color change, motion energy, etc. Shot-based representation
extracts a feature vector from a video shot by considering its statistical information or
captured spatio-temporal slices to represent the video shot for video retrieval.

In our research, we have proposed efficient methods for shot boundary detection
and video content representation for video retrieval. Our efficient approach for
detecting a shot boundary consists of two stages. Firstly, each frame of a video is
represented by a feature vector, which can be the color histogram in different color
space or our proposed CPAM histogram. The differences between two consecutive
frames are then calculated by mean of their feature vectors. Entropic thresholding is
then applied to determine the optimal threshold for shot boundary detection. A shot
boundary can be identified by thresholding based on the determined threshold.
Experimental results show that our method can provide a better performance level
than other histogram-based methods. The major advantage of this method is that it is
less sensitive to lighting conditions and motion.

A new video content representation scheme has also been proposed. This scheme

constructs a new frame or a set of new frames to represent a video shot by considering
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the probability of occurrence of those pixels at the corresponding pixel position
among the frames in a video shot. This scheme is also compatible with existing
histogram representation methods. Experimental results show that this scheme can
provide a better performance level than that of alpha-trimmed histogram
representation.

In conclusion, we have developed different techniques for representing video
frames, detecting shot boundaries, and representing video shots. To facilitate the use
of these techniques, we have built a software library based on the work for this thesis.
The library is called “ Video Retrieval Library” and an overview of this library is
presented in the Appendix. The major purpose of this library is for users to develop
their own video retrieval techniques and systems e;asily and efficiently based on this

library.
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5.2 Future works

The employment of visual information to strengthen video management systems is
an important application. In this thesis, we have reviewed various methods and have
proposed two methods for the video management system: one for shot boundary
detection and the other for video content representation. However, these methods
involve visual information only. The performance still suffers from strong motion and
noise. As the audio signal is supplementary to the video signal, the retrieval
performance of the overall system can be further improved by considering the audio
and visual information jointly for video analysis. Audio information can also be used
in video parsing because the characteristics and style of audio from different programs
are usually not similar. Based on speech recognition, we can also identify an actor or
actress from a video. Therefore, by identifying the correlation of the audio and visual

features, a more reliable and efficient CBVRS can be developed.
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Appendix

Overview of the Video Retrieval Library (VideoRetL)

A software library called Video Retrieval Library (VideoRetL) was developed
based on this study. The objective of this library is to help application developers to
build a video management system efficiently. The VideoRetL provides function calls
for video frame feature extraction, video scene break detection, and video shot
representation for video retrieval.

The VideoRetL provides algorithms for video management and retrieval. In this
library, function calls for represenating the frames in a video, calculating frame
difference between two frames, segmenting a video into a series of video shots,
representing video shots for retrieval, etc. are provided. The following is a list of
classes and their function calls provided in this library:

CFrameDescriptor:
RGBHist( ), HSVHist( ), HMMDHist( ), OppHist( ), CPAMHist( ).
CHistDistanceMeasure:

HistTotalCount( ), NormalHist( ), NL | HistDistance( }, NL2HistDistance( ),
NHistIntersect( ), NHistChi2( ).

CThresholdDetermination:
EntropicThreshold( ).
CSceneBreakDetection:

FrameHistDifY( ), FramePixelDiff( }, FrameBlockDift( ),
SceneBreakThresholding( ).
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CShotRepresentation:

OptKeyFrameHist( ), AlphaTrimAvgHist( ), TMOF( ), TempVariKeyFrame( ).

CFrameDescriptor

The Class CFrameDescriptor provides the function calls for frame description.
The color histograms or descriptors may be constructed based on different color
spaces, such as RGB, HSV, YCrCb, and HMMD. The opponent color space can also
represent an image well for image indexing, and its transformation from the RGB
color space is simple. The details of these color spaces can be found in Chapter 3. In
this Class, the function calls provided for extracting these frame descriptors based on
the RGB histogram, HSV histogram, HMMD histogram, opponent color histogram
and CPAM histogram, are RGBHist( ), HSVHis{( ), HMMDHist( ), OppHist( ),
CPAMHist( ), respectively.

CHistDistanceMeasure:

Two color images with corresponding histograms 7 and Q can be compared using
different metrics metrics. In this Library, the distance measures provided include the
Ly, Ly, normalized histogram intersection, and ’. The respective distance measures
are defined as follows:

L,-distance: du(l,Q)=i|I,. -0 (A-1)

=1

L,-distance: 4, 0,Q=3(,-0,) (A-2)
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[ntersection: d. (1,Q)= i min(/,,0,) (A-3)
i1

X 7(1,0)= Z% (A-4)

In this Class, the function calls provided for computing these histogram distance
measures: the L;, L, ~normalized histogram intersection, and y 2 are
NLIHistDistance( ), NL2HistDistance( ), NHistlntersec ), and NHistChi2( ),
respectively. To compare images of different sizes, the count for each bin is divided by
the total number of pixels in the image. Hence, this normalized color histogram can be
considered as the probability density function of the color values. Two function calls
are provided to normalize a histogram. The function call, HistTotalCount( ), calculates
the sum of counts of all the bins in a histogram, and NormalHist( ) normalizes a
histogram based on its total count.
CSceneBreakDetection

In this Class, three simple methods for detecting scene break are provided.
FramePixelDiff( ), FrameBlockDiff ) and FrameHistDiff{ ) are used to detect scene
break by comparing the difference in pixel intensities of corresponding pixels, the
statistical characteristics of corresponding regions, and histogram difference between
two successive frames, respectively. The function call SceneBreakThresholding( ) is

provided to determine scene breaks by thresholding.

CThresholdDetermination
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The entropic thresholding has been described in Chapter 3. In this Class, the
function call EntropicThreshold( ) is provided to determine this optimal threshold
value for scene break detection.

CShotRepresentation

In this Class, the function calls for four shot representation schemes are provided.
The function calls, OptKeyFrameHist( ), AlphalrimAvgHist( ) and TMOF( ), are
provided to extract the optimal key frame histogram, the alpha trimmed average
histogram and the temporal maximum occurrence frame of a shot, which have been
described in Chapter 4. The function call, TempVariKeyFrame( ), is used to
determine the key frames in a video shot based on a specific threshold. This function
call takes the first frame of each shot as a key frﬁme. The differences of the image
features between this key frame and the consequent frames are computed. The farther
away the current frame is from the key frame, the larger the difference should be.
Whenever this difference is larger than a certain threshold, the corresponding current

frame will be considered to be a key frame.
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