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Abstract

Mobile computing environments exhibit operating conditions that differ greatly from
their wired counterparts. In particular, the mobile application must be able to tolerate
highly dynamic network conditions and the effects of various computing devices. This
research aims to develop an adaptive middleware system that adapts data flows over
wireless networks to enable overlying applications to operate effectively and optimally in
wireless environments.

To achieve this goal, an adaptive middleware system, MobiGATE, has been designed to
support robust and flexible composition of adaptable services, termed streamlets in this
research study. Significantly, the principle of separation-of-concerns is adopted in the
system to facilitate clear separation of streamlet coordination from the service
computation codes. By this means, the communication codes are completely separated
from streamlet objects and modeled as a new type of object channel. An application
running in this system is then regarded as a number of streamlet instances connected by
channel objects. This has resulted in the formulation of a two-layered MobiGATE
execution platform that supports rapid deployment of service streamlets, while
facilitating adaptive composition in reaction to changing environmental contexts.

To describe application compositions, a coordination language, MCL, is designed. The
language adopts the Multipurpose Internet Mail Extensions, MIME, as the underlying
type definition to represent messages and streamlet interfaces. With this type system, a
fundamental type compatibility check is allowed in the composition activities. In
addition, a semantic model in Z language is defined for MCL to analyze composition
descriptions and detect possible composition errors, such as feedback loops, open circuit,
and mutua exclusions. The applications running in the MobiGATE system can be
anayzed based on the derived semantic model to ensure their consistency in the internal
structures.

A complete design, implementation and evaluation of the system have been fulfilled
successfully on a Java platform, in which common runtime operating system elements are
abstracted as residing either in the coordination or in the computing sub-layers. Initia
experimental results validate the flexibility of the coordination approach in promoting
separation-of-concerns in the reconfiguration of services, while achieving low
computation and delay overheads. The system has proved to be efficient and robust in
adapting to dynamic wireless conditions and can be improved by some recommendation
work in future.



Acknowledgements

Many thanks to my supervisor, Dr. Alvin T. S. Chan, for letting me further my master
study with him, for giving me all the directions | needed to select and extend my topic,
and for teaching me about research, writing, and mobile computing. It's my great

happiness to work under his guidance in the past two years.

| would aso like to thank Dr. Rocky K. C. Chang and Dr. H. V. Leong. Their courses
have greatly enriched my knowledge in the field of internetworking protocols and
distributed computing. Special thank also goes to Mrs. Elaine Anson for helping me
proofread the thesis and teaching me technical writing techniques. Others | would like to
thank include Chuang Siu Nam and Steve W. K. Poon who both provided me with
helpful advice in my past two years of study.

Finaly, | extend the most sincere gratitude to my family. It is their encouragement and

support that have enabled me to follow academic pursuits. Thank you!



Table of Contents

ADSITACE. .. e |
ACKNOWIEAQEMENTS. .. ... I
Table Of CONMENES......covueie et e e e e I
LiSt Of FIQUIES. ... et e e e e e Vi
R 1 01 (00 8o 1o IO TSR 1
11 Background and MOEIVALTON. ........c.ccvreireiree et ettt 1
12 RESEAICN FIEI. ...ttt ettt e ee e et sae st e sae s aeseeeaesmeeneeneeneas 3
1.2.1  TheApproach: Infrastructural ProXY SENVICES.......ccevierieierieneeresieseesesesee e ste e et sve e ene e 3
122  Coordination: Separation Of CONCEIMS ........c.cuereeuireeirerire ettt s ereneenes 5
1.3 OBJECHVE. ..ot eeee s eees e ee s ees e en s es e eeesseee e 7
14 Organization Of the TRESIS.......ccoi i 8
2 REGEAWOIK ..o 10
21 MODIE NEEWOIKING ....c.ecvieetiiese et 11
211 MODITE TPttt e b et beeenn 11
212 WIrElESSTCP — SNOOP -.vvevereereereeiesseseeseesaesaesaessesssssessessessassesesssessessssseseessssseseesensssessensensens 13
213  WIiIrdesSTCP — INAITECE TCP......ciiiiirieiieierieie st st e e 13
22 Adaptive Middlewarein Mobile COMPULING ........coverireerinreineeneeere e 14
221  UCBEKEEY TranSeNd .......ccoviireiriiirieirenee st s nre e 16
2,22 CMU OOYSSEY ...c.eeereeeeiisiresessseeisssssise st ss ettt bbb bbb bbb bbb bbb bbb eb b b eb bbb bbb b en s 16
223 MSU RAPIDWEE ...ttt ettt ettt st s b bttt nb e ese bbb b e b enesre b nne s 18
224 COMPAITSON ...eutieetereeiertetirte st et re et rae st sttt e s et se et e es e R e e e e s st s e e st s s esenres e benenbennerena 19
2.3 Coordination Models and Coordination LangUBGES. ........cccrveuerreerreneeereeereeene s 20
2.3.1  Proteus Configuration LangUaGE. .........cccueereereeirieiineiese st 21
FZC 3 © o o [ oSSR 22
P2 TG T 1 1 - F TR T PV R PP 23
PG |V =0T 0] o TSP SRPS 24
2.35  COMPAITSON ...ttt sttt re ettt ettt e st et r e r e e et s e st s e s e s n s e b nenbennen e e 25
3 Introduction to MobiGATE Architecture...........cccoooeiiiiiiiiicieee 27
31 MODI GATE DESIGN PriNCIPIES. ...ttt 27
3.2 MOobi GATE WOrking ParadigmsS .........ceoeirieirieineinre et e 29



3.3 [V ) oL AN I = A/ 30

GG 5 A @0 To o (10T 1o g 1Y, == T SO SR 31
3.3.2  Stream Coordination PLane..........ccoeiieieeeeeie et et ne e 32
3.3.3  SHEAMIEE MANAGES ..ottt st ettt 32
3.3.4  Streamlet EXECULION PIANE ........ccooiiiiiieiiec bbb 32

G L T Vs 0| =0 o = SR RPRT 34
336 MCL COMPIIES ..ttt sttt ettt ettt et e nn e 34
337 SHEAMIEE DITECIONY ...ttt ettt e 34
34 MODIGATE ClIENL ..viviiectcie sttt ettt s e s bt es e s bt ase e naenas 34
341 MeSSAQE DIStIIDULOL ......oviiieiei e e e s 35
342  Client SIreamIet POO ........c..ooiiiieieeeiee ettt en e se s s e s e ne e e eneenes 35

4  MObiGATE Coordination Language..........ccccueeirieeirieeeniinesieeeieee s 37
4.1 MeSSAZE AN POt TYPING. .. eeveiveieerisieesteseesseseesessesaes e ssesses e ssesaessessessessessessessansessessansessessanes 37
4.2 MCL Language ElEMENTS .......ccoviiiriiireiriene ettt 39
421 SHEAMIEL ..ottt ettt s et et s s st es e s es et es e s s et es e sa et et eneneea et eneneerenennenas 39
422 CRANNEL ..ottt bbbttt b ettt et et te e e a et 41
2.3 SHIEAIM ..ttt ettt e et e e e R AR Rt R e R n e e b e R e et e r e enenn s 43
4.3 Case EXampl@ Of USING MCL .......cuiiieiciese ettt s e st s e saesnenaennens 45
4.4 (D= S o T ST =Y o 1Y 48
441  Compatibility CRECK .......ooveiieiiitciieee e s 49
4.4.2  ReCUrSIVE COMPOSITION .....cveuieieieiieieieiestesee et esee e s esaestesaesaetesaess e tensessessensessessansessessanes 50
RS 1= 001 = S 7= 14 oo TSRS 51

5 MCL SemantiCc MOE .........c.ooeiiieecie e 52
5.1 Formalization of MCL Language ElEMENtS..........cccciveeiiieriese e 52
D11 SHEAMIEL ...ttt bbb et b et b et b et b e bbb b neens 52
5.1.2  CRANNE ...ttt ettt s ettt n et bRt et er et e s aetene s 53
5.1.3  SITBAM cocuiiitcteieietetete sttt se et et e s s e tese st saetesese s s et ese st e s ebese st sa et esesesaeEeRe et et eEe R et en et e eeeaete e et s 53
514  COMPOSITE SIIEAMIEL .....coetiiiieiireeer et 54
5.2 Analysis of Architectural DesCriptionSin MCL ........ccoovveiieniiese e 55
521  Feedback LOOPS DELECION.........ccciveeirererie st st 56
522  OpEN CirCUIt DEIECHION. ......civieieeiirieire sttt nes 56
523  Mutual EXClUSION DELECHION. ......c.eieiieieeieeie et sae e e e seeeas 57
524  Dependency VErifiCaiON. ..o 57
525  Preorder VErifiCaiON.......ccooi ittt bbb 58
53 Case Example of Analyzing MCL DESCriPtIONS.........ccecerrieiirerreriee et 59
6 Development of the MODIGATE SyStem........ccccceeviiiniieiniiee e 61



6.1 The Base Class: SITEAMIEL........cociiiiie ettt ettt b e bbb 62
6.2 The Base Class: MESSAgEQUELIE...........ccueruiiueriereesieiesteseesteaeseesseseessessesaessessessesseseessssseseesesssasens 64
6.3 The Base Class. SITEAM......cuoii et e e e e e e e e e e e e eneese e e eneeseeneeneeneeneaneas 66
6.4 MODIGATE EVENE SYSLEM ...ttt sttt se et e e se e b e e e e aeneeseeseenes 68
6.5 Sender and Receiver Streamlet MaChing..........cccvveieiiiecieie et 72
6.6 MESSA0E LOSS AVOIOANCE.......ccuiiieiiieteie sttt se e et e e se e e e e e esae e e e esaena e e esanseeneeseans 72
6.7 FUPther TMPrOVEMENT ......c.ooviiiiecere et e s e e 73

7 Performance Evaluation.............cccoooeriiiiiiiiin e 75
7.1 TESHING ENVIFONIMENL.......cviiieeiireeiirie sttt e et st s er e ne e 75
7.2 Streamlet OVErhead ANAIYSIS.......c.cciiiciriiit ettt s 76
7.3 Passing by Reference versus Passing by ValUe..........cociieiincceseseecen e 78
74 RECONTIGUIBEION TIMIE ..ottt et nr e en s 79
75 Mobi GATE ENd-t0-End PerfOrmManCe ...........coieirieirieniee et s 81

8 Conclusions and Recommendations............ceeeiveerieeeineresieeesieeesieenn 86
8.1 CONCIUSIONS......ceeeiet ettt ettt b e st b e bt et bt b et b e et sb s e ne b e 86
8.2 RECOMMENBLIONS......ceeeceieee ettt b e b e e b e e b bt se b e seens 87
821  MODIGATE AFChItECIUNE. ... e ene s 87

822 MODbIGATE Coordination LANQUAJE.........c.coereeuiriererieririesesresesresesesese e sreessesesieseseeseesennas 89

8.3 PUBIICELIONS. ... e bbbt ettt bt sb e 90
REFEIENCES: ... e 91



List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2-1.
Figure 2-2:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4.
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4.
Figure 7-5:
Figure 7-6:
Figure 7-7:

INfrastrUCtUre ProXY SYSEEIM......cvcuieieeeiieeeeetee s et e e e s e e e e s aese e e s aese e e eseesae e e e esseneesenseeneesennes 4
A traditional COOPEration EXAMPIE ..........cci ittt e e 6
The application example in the coordination MOEL............cccoveiiriiiieit i 7
Mobile [P datagram FIOW..........ccoeiiiieereerere e e e 11
RAPIDWEIE PrOXY ....veveeieeseesieesseseesseesseseessesssessesssesssessessssssesstesssessesssesssssssessesssessessesssessesssenns 18
The working paradigm of MObi GATE SYSIEM.........ccoviireirerereeee e 29
Architecture Of MODIGATE SEIVES ... .o it se e see e e seesnenne e 31
Architecture of MODIGATE ClIENE. ..o e e e e e 35
Graphical representation of atyPe SYSEEM........ccviiriiiirieiee e 38
BNF notation of the type declaration ............ccoveeeieieciee et 39
BNF notation of the streamlet definition.............coooo i 40
BNF notation of the channel definition ... 42
BNF notation of the stream definition............coooioiriee e e 14
The composition modd of a datatype-specific distillation application .............ccceevevvecerinnenens 46
Streamlet and channEl dESCIIPLIONS.........cccveiie et ens 47
S L= g0 =STor 1 o o] o ST 48
RECUISIVE COMPOSITION ...ttt et et 50
The composition example with afeedback 100P .........ccvveiriiice e 59
The Mobi GATE system Class diagram.........ccccueeieeieierieieisreee et see e s e st saesaaesneas 62
Excerpt fromthe class STEAMIEL..........ccooi e ene s 64
Excerpt from the class MESSAgEQUEUE............coueererieirieiree et 66
Excerpt from the Class SIrEaM..........cco i 67
VLo o T TN I = Y= g ] o= vt RS SRS 70
MODIGATE @VENE SYSEEM ..ottt ettt st e et et et e e e e s e e e te s e nnesaenrennas 70
Excerpt from the class EVENIMANAGEY ..........ccveirerieenieinenesese st 71
Prerequisitesto terminate & SrEBMIEL ............ooveoiieiieie e 73
Excerpt from the method POSt MESSAGE() ..vvveverrerirreirriiiie ettt 74
TESHING ENVITONMENE. ... eitiiee ettt et e e e et esa e s et e sa e e es e ss e e essesee e esseneeneesaenens 76
SreaMIEt OVErNEAN..... .o et eee e 77
Passing by Reference versus Passing BY ValUe.........c.coovie e 78
The addition of aNewW SIFEAMIEL ..o e e 80
Excerpt from the class RECONTIGEXP......veieiirieie et ene s 81
Reconfiguration OVErNEA ..........coeiiiiiic e e 81
The effectiveness of the MObiGATE SYSEM ..o 84

Vi



1 Introduction

This chapter highlights the design issues encompassing the mobile computing operating
over awireless environment. Based on the desire to address these issues and challenges,
the motivation and general objectives of this research study are specified. The
organization of the thesis is given at the end of the chapter as further guidance to the
reader.

1.1 Background and Motivation

Mobile computing is a rapidly emerging technology providing the ability to compute,
communicate, and collaborate anywhere and anytime. With the current deployment of
wireless communication services and advances in mobile computing devices, alarge and
ever increasing number of mobile computers and Personal Digital Assistants (PDA) are
able to exchange data and synchronize with other computing devices across wireless
links. However, mobile computing environments exhibit operating conditions that differ
greatly from their wired counterparts. According to [BadrinathOO, Satyanarayanan95],

mobile computing is characterized by four main constraints:

e Mobile elements are resource-poor relative to static elements.
For a given cost and level of technology, considerations of weight, power, size and
ergonomics will exact a penalty in computational resources such as processor speed,
memory size, and disk capacity. While mobile elements will improve in absolute

ability, they will always be resource-poor relative to static elements.

e Mobile connectivity is highly variable in performance and reliability.
Some buildings may offer reliable, high-bandwidth wireless connectivity while others
may offer only low-bandwidth connectivity. Outdoors, a mobile client may have to
rely on a low-bandwidth wireless network with potential gaps in coverage. Thisisin
sharp contrast to the wired counterpart, where resources are abundant and highly
stable.



e Existing mobile devices are heterogenous.
Cdl phones, persona digita assistants, pamtop computers, digital pagers, digita
cameras and portable computers al have different capabilities and different
requirements. Part of the difficulty of communications in the mobile environment is
not just to deliver data over challenging network conditions, but to deliver such datain

formats suitable for the client devices.

e Mobile elementsrely on a finite energy source.
While battery technology will undoubtedly improve over time, the need to be sensitive
to power consumption will not diminish. Power consumption concerns must span

many levels of hardware and software to be fully effective.

Another concern is the fact that the existing network protocols that have enabled the
Internet revolution are not perfectly suited to the mobile computing environment. TCP,
for example, does not work well on many wireless links, and often behaves poorly over
satellite links owing to long latencies. Researchers have proposed modifications to
existing protocols [Bakred7, Balakrishnan95, Caceresd5] to handle such problems, but
the understanding of networks is insufficient to allow a design of protocols that behave
well in the face of al probable network conditions. Even if such protocols could be
developed, the challenge of converting the enormous installed base of today’s network
infrastructure would have to be addressed. The Internet is distributed, decentralized and
vast, and the simple solution of complete replacement of that existing infrastructure is

daunting to say the least.

However, it is important to redize that even if new protocols could be successfully
deployed, problems would still remain. The real goa of adaptive systems is to provide
good end-to-end service, where the end points are located in applications [Badrinath0Q].
No adaptive solution at the network level aone can solve the entire problem without

considering the needs of applications and their users.



Therefore, for mobile applications to operate effectively and optimaly, the
communication-related software at the application-level must be able to adapt to those
mobile constraints at runtime [Chan03, Katz94]. By thisit is meant that systems must be
location and situation-aware, and must take advantage of this information to dynamically
configure themselves in an appropriate fashion. The challenges that must be faced span a
wide range of considerations and technical expertise. These include the architecture of
the communications and information service infrastructure (base stations, network
protocols, servers) necessary to support mobile communications, various preferences of
different applications, the correctness and consistency requirement for dynamic

reconfigurations, and the collection of context information.

1.2 Research Field
Basic information regarding the two fields in this study, infrastructural proxy-based

adaptation and the concept of coordination, are given below.

1.2.1 TheApproach: Infrastructural Proxy Services

One way to meet the above-mentioned challenges in wireless domain is by using a proxy-
based gateway approach to adaptation, in which augmented network services, placed
between mobile clients and gateway servers, perform aggressive computation and storage
on behalf of clients [Fox98a, McKinley03]. In such architectures, adaptable applications
are built from interconnected building blocks and deployed at proxy stations. Each
building block, or service entity, specializes in a specific task in processing the data flow.
For example, the task could involve the scaling/dithering of images in a particular format,
or conversion between specific data formats, or even suitable caching to minimize the
traffic transiting across a wireless network. The development of mobile applications may
extend beyond the end-host process to include the composition of service entities to adapt

to variations in networks and client resources.

As shown in Figure 1-1, the infrastructural proxy system mainly consists of following

two network components residing between the wireless end-points:



1) A wired-side gateway called the server proxy, commonly deployed at the edge of a
wired network.

2) A peer client-side proxy called the client proxy, deployed within the mobile host
(MH).

Traditional wired network

Figure 1-1: Infrastructure proxy system

The infrastructural proxy architecture supports augmented wireless network services by
allowing adaptation-based service entities to be deployed at both server and client proxies
to shield clients from all kinds of variances. Significantly, the architecture inherits the
principle of interoperability, in which innovative and exciting services can be rapidly
deployed within the existing networking environment, without causing changes to the
infrastructure. The kinds of service entities that may be applied to adapt the flow of data
include transformation (such as filtering, format conversion), aggregation (collecting and
collating data from various sources), caching (both original and transformed content), and
customization (maintenance of a per-user preferences database). Studies in this area have
focused primarily on applying fixed specific service entities to the gateway proxy to
introduce specific adaptation to data flowing across the wireless environment. A service
entity based on image transcoding is applied to convert images on-the-fly to reduce the
bandwidth requirement and have the images displayed on a display-constrained device,
such as a PDA [Fox98a]. Similarly, experiments deployed based on the architecture of



the gateway proxy have been conducted on text-compression, XML streaming [Chan04],

and caching service entities.

A common approach to implementing the adaptation of services at the gateway proxy isa
static interaction of service entities by explicitly invoking procedures on a named
interface. The result is that the system integration code becomes entangled with the
application-specific codes. Any replacement or modification of a service entity requires
updating of not only the code for the new service entity to be integrated into the system,
but also the code of those entities that have a direct relation with the old service entity.
The tight coupling of service entities, in terms of the strong coordination dependency,
trandates into the need for manual modifications, when the transport service entities are
deployed into a new environment. In a wireless network, which exhibits highly dynamic
network conditions, the adaptation of service entities in the form of dynamic composition

and reconfiguration is considered the norm rather than the exception.

1.2.2 Coordination: Separation of Concerns

Coordination models are a class of model recently developed to describe concurrent and
distributed computations. In the area of Programming Languages, coordination is defined
as the process of building programs by gluing active pieces together. A coordination
model can therefore be regarded as the glue that binds separate activities into an
ensemble [Malone94, Papadopoul 0s96]. A coordination language is the linguistic form of
a coordination model. Coordination languages offer facilities for controlling the

synchronization, communication, creation, and termination of computational activities.

The most prominent advantage of applying the coordination theory is that there is a
complete separation of coordination from computational concerns. This separation is
usually achieved by defining a new coordination language to describe the architecture of
the composition. In particular, the coordination system generally consists of two kinds of
processes. computation and coordination. Computational processes are treated as black

boxes, while processes communicate with their environment by means of clearly defined



interfaces, usually referred to as input or output ports. Producer-consumer relationships
are formed by setting up channel connections between the producer output ports and the

consumer input ports.

Consider the following simple example of a concurrent application where the two active
entities (i.e., processes) p and q must cooperate by exchanging messages in their
computations. The source code for this concurrent application looks like the code
presented in Figure 1-2. The most notable point in the code is that it simultaneously gives
both a description of the computation by p and g, and a description of their cooperation.
The communication concerns are mixed and interspersed with computation. Thus, in the
final source code of the application, no isolated piece of code can be considered as the

realization of the cooperation model and reused in other applications.

process p: process g:
compute m1 receive ml

send mltoq let z be the sender of m1
compute m2 receive m2

send m2toq compute m using m1 and m2
do other things sendmtoz

receivem

do other computation using m

Figure 1-2: A traditional cooperation example

Let us reconsider the above example, and see how it can be implemented in the
coordination model. This time the code consists of three processes: revised p, revised q,
and a coordinator process c that is responsible for facilitating the communication of p and
g. The source code for this version of the application looks something like the code

presented as follows:



process p:

compute m1
wire m1 to output port ol
compute m2
write m2 to output port 02

process q:

read m1 from input portil
read m2 from input port i2
compute m using m1 and m2
write m to output port o1

process C:

create the channel p.o1-> q.il
create the channel p.o2-> q.i2
create the channel g.01-> p.il

do other things
read m from input port i1
do other computation using m

Figure 1-3: The application example in the coordination model

In this example, the pattern of cooperation between the processes p and q is ssmple and
static. Communication concerns are moved out of p and g and into c. However, the
processes p and q are now oblivious of the source of their input, or the destination of their
output. They know nothing about the pattern of cooperation in this application; they can
just as easily be incorporated in any other application, and will do their job provided that
they receive the right input at the right time. The process c, in turn, knows nothing about
the details of the tasks performed by p and g. Its only concern is to ensure that they are

created and connected correctly.

From the above example, it can be seen that removing the communication concerns from
the computational processes enhances the modularity and the re-usability of the resulting
software. The coordinator processes are generic and reusable as they know nothing about
and have absolved nothing of the tasks performed by the processes they coordinate and
are therefore unimpeded in these processes.

1.3 Objective
The main objective of this study is to develop an adaptive software system, which adapts

data flows over dynamic wireless network conditions and various mobile devices.

To achieve this objective, the coordination theory is used in the design of a middleware
system MobiGATE, to support the service composition and system reconfiguration at

infrastructural proxies of the wireless domain. This middleware is expected to be context-

7



aware, reconfigurable, robust, and most of al, efficient in processing incoming data

flows. Specific principles on the design of this middleware are given in Section 3.1.

Concurrent with the above is the syntax and semantic definition of a coordination
language MCL to describe the composition of applications running in the middleware
system. In addition to all of those common properties described in Section 1.2.2 that are
shared by existing coordination languages, this newly designed language possesses its
own type system, the function of compatibility check in the composition activities, and

the ability of conducting correctness verifications of language descriptions.

1.4 Organization of the Thesis
Chapter 1 introduces the background and motivation of this study. Based on the
background described, the objective of this study is identified.

Chapter 2 describes the work related to this study. Several typical adaptation systems:
TranSend, Odyssey, and RAPIDware, and a comparison with the MobiGATE system are
described. Some well-known coordination languages are introduced and compared with
MCL aong some important dimensions, such as coordination unit, computational
language, application domain. The specific characteristics of the MobiGATE system and

its advantages over other similar works are highlighted.

Chapter 3 is devoted to the architecture of the MobiGATE system. Specific design
principles and the working paradigm of the whole system are introduced in this chapter.
The internal structure of the architecture is described from the server side to client side,

with the emphasis on the function of those important components.

Chapters 4 and 5 focus on the coordination language MCL. In particular, Chapter 4
describes syntax designs of the language, ranging from its MIME type system, language
elements definitions, to some specific refinement issues. As a coordination language,
MCL is designed to provide the abstraction of service interfaces and the types of data

associated with the messages, and checking compatibility in the composition activities. In



addition, it can support the concept of recursive composition and streamlet sharing, which
also differentiates MCL from other coordination languages. Chapter 5 introduces MCL’s
semantic model that is defined in the Z language. This semantic design is very important
to conduct extensive analysis of MCL descriptions. This is not possible using syntax

design aone.

Chapters 6 and 7 present the specific development work of the MobiGATE system and
results of a series of experimental studies, which demonstrate the feasibility and validate
the benefits of MobiGATE in providing adaptive mobile computing. Two operations that
are most possible to bring overhead into the system are measured independently. A
complete end-to-end application that fully exercises the system components of
MobiGATE is set up to evaluate the system performance. The purpose for doing thisisto
demonstrate the use of MobiGATE while verifying the insignificant overheads incurred
in runtime processing compared with the performance gained in service deployment and
reconfiguration.

Finally, Chapter 8 offers conclusions to this study. It also points out some directions for
the future research activities on this topic. Such work is necessary to make the
MobiGATE architecture more complete, secure, and robust for deployment over a wide
scale wireless and mobile environment. In the short term, as further experiences are
gained in using MCL, it is aimed to further refine the language to enrich its syntax to

capture mis-configuration and semantic assertions even during runtime.



2 Related Work

As previoudy stated, this study focuses on adaptive middleware and coordination
languages. This chapter first gives a brief outline of the newly designed middleware
system MobiGATE and its supporting coordination language MCL. A suite of protocols
specific to mobile computing: Mobile IP, snoop protocol, and Indirect TCP, is then
introduced. Based on this introduction, several typical adaptation systems and some well-
known coordination languages are reviewed. The objective of this arrangement is to
enable the reader to compare MobiGATE and MCL with this related work. Finally

attention is drawn to the main areas of comparison acknowledged by the writer.

Before going into details of the related work, an overview of the newly designed
MobiGATE and MCL is given as follows:

e The design and development of a M obile GATEway proxy for the Active deployment
of Transport Entities, or, MobiGATE (pronounced Mobi-Gate), is introduced in this
research study. MobiGATE is a mobile middleware architecture that supports the
robust and flexible composition of transport entities, known as streamlets. The flow of
data traffic is subjected to processing by a chain of streamlets. Each streamlet
encapsulates a service entity that adapts the flow of traffic across the wirel ess network.
A magjor goa of the MobiGATE architecture is to provide an environment, where
programmers can develop new mobile applications through combining some active
service entities (streamlets), while the configuration structure of the application is
completely separated from the computationa activities of individual streamlets. This
architecture has the advantage of supporting ease of dynamic reconfiguration and the

re-usability of streamlets across applications.

e A coordination language called MobiGATE Coordination Language (MCL) is
designed as part of this research. The language possesses some attractive
characteristics to support the composition and reconfiguration of flexible streamletsin

MobiGATE. Firstly, MCL supports the capture of flow types between streamlets and
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allows strong type compatibility checks in the composition activities. MCL employs
Multipurpose Internet Mail Extensions (MIME) [Freed96] specifications to model
streamlet interfaces and message types. MIME possesses a flexible format that easily
accommodates well-known message types such as text, image, video, sound, or other
application-specific data. In addition, MCL supports the notion of recursive
composition. In other words, a composition of streamlets can itself be organized as a
composite streamlet. The recursive structuring of streamlet compositions can be nested
to an arbitrary level to promote modularization and re-usability. The more ambitious
intention is to capture the semantics of MCL using a formal specification approach
based on Z notation [Spivey89] to enable the analysis of the composition for

consistency and to infer non-trivia properties of the language.

2.1 Maobile Networking

This section describes some basic protocols designed to serve the needs of burgeoning
population of mobile computer users who wish to connect to the Internet and maintain

communications as they move from place to place.

211 MobilelP

Mobile IP [Perkins98] is a proposed standard protocol that builds on the Internet Protocol
by making mobility transparent to applications and higher level protocols like TCP. It
extends IP by alowing the mobile computer to effectively utilize two IP addresses. a

fixed home address and a care-of address that change at each new point of attachment.

(2) HA intercepts the .
datagram and tunnels (3) FA detunnels and delievers >

it to the care-of-address the|datagramitojthe|MN l:r
HA A <((<<((((<(((<<-@
(4) The MN sends a _5

-
\ datagram to the CN MN

(1) A datagram to (5)The FA forwards the
the MN arrives on datagram to the CN
the home network using standard IP routing

Figure 2-1: Mobile IP datagram flow
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Mobile IP can be thought of as three mgjor subsystems. First, a discovery mechanism is
defined so that mobile computers can determine their new attachment points (new 1P
addresses) as they move from place to place within the Internet. Second, once the mobile
computer knows the IP address at its new attachment point, it registers with an agent
representing it at its home network. Lastly, mobile IP defines simple mechanisms to

deliver datagrams to the mobile node when it is away from its home network.

The following gives a rough operation outline of the maobile IP protocol, making use of
the above-mentioned operations. Figure 2-1 may be used to help envisage the roles
played by the entities.

(1) Mobility agents make themselves known by sending agent advertisement messages.
A newly arrived mobile node may optionally solicit an agent advertisement message.

(2) After receiving an agent advertisement, a mobile node determines whether it ison its
home network or a foreign network. A mobile node works basically like any other
node on its home network when it is at home.

(3) When a mobile node moves away from its home network, it obtains a care-of address
on the foreign network, for instance, by soliciting or listening for agent
advertisements, or contacting Dynamic Host Configuration Protocol (DHCP) or
Point-to-Point Protocol (PPP).

(4) While away from home, the mobile node registers each new care-of address with its
home agent (HA), possibly by way of aforeign agent (FA).

(5) Datagrams sent to the mobile node's home address are intercepted by its home agent,
tunneled by its home agent to the care-of address, received at the tunnel endpoint (at
either a foreign agent or the mobile node itself), and finally delivered to the mobile
node.

(6) In the reverse direction, datagrams sent by the mobile node are generally delivered to
their destination using standard IP routing mechanisms, not necessarily passing

through the home agent.
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212 WirelessTCP — Snoop

TCPisareliable transport protocol tuned to perform well in traditional networks made up
of links with low bit-error rates. Networks with higher bit-error rates, such as those with
wireless links and mobile hosts, violate many of the assumptions made by TCP, causing
degraded end-to-end performance. The snoop [Balakrishnan95] is a simple protocol that
improves TCP performance in wireless networks. The snoop modifies network-layer
software mainly at a base station and preserves end-to-end TCP semantics. The main idea
of the protocol is to cache packets at the base station and perform loca retransmissions

across the wireless link.

The snoop protocol introduces a module, called the snoop agent, at the base station. The
agent monitors every packet that passes through the TCP connection in both directions
and maintains a cache of TCP segments sent across the link that have not yet been
acknowledged by the receiver. A packet loss is detected by the arrival of a small number
of duplicate acknowledgments from the receiver or by aloca timeout. The snoop agent
retransmits the lost packet if cached, and suppresses the duplicate acknowledgments. In
the classification of the protocols, the snoop protocol is a link-layer protocol that takes

advantage of the knowledge of the higher-layer transport protocol (TCP).

The main advantage of this approach is that it suppresses duplicate acknowledgments for
TCP segments lost and retransmitted locally, thereby avoiding unnecessary fast
retransmissions and congestion control invocations by the sender. Like other link-layer
solutions, the snoop approach could also suffer from not being able to completely shield
the sender from wireless | osses [Bal akrishnan97].

2.1.3 WirelessTCP —Indirect TCP
Indirect TCP [Bakre97] is a split-connection protocol that uses standard TCP for its

connection over the wireless link. It splits each TCP connection between a sender and
receiver into two separate connections at the base station - one TCP connection between
the sender and the base station, and the other between the base station and the receiver.

Like other split-connection proposals, Indirect TCP attempts to separate 10ss recovery
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over the wireless link from that across the wireline network, thereby shielding the

original TCP sender from the wireless link.

The basic idea behind the indirect protocol model is as follows: whenever an interaction
between two hosts on the internetwork, such as between a mobile host and a stationary
host, involves communication over two drastically different kinds of media (i.e., wireless
and wired), the protocol splits such an interaction into two separate interactions—one for
each kind of communication medium. An indirect transport layer interaction between a
Mobile Host (MH) and a Fixed Host (FH) consists of afixed network protocol (i.e., TCP)
used for communication between the FH and the Mobility Support Router (MSR); and a
wireless protocol (i.e., wireless TCP) for communication between the MH and the MSR.
The highest protocol layer at which indirection occurs is determined by the MH
application—an indirect transport layer can be used in conjunction with end-to-end
session and presentation layer. On the other hand, if presentation requirements are
different over wireless and wired links, then an indirect presentation layer protocol can be
used. Furthermore, application layer proxies running on MSRs that support MH

applications are examples of application layer indirection.

Notice that even though the indirect model replaces an interaction between a mobile host
(MH) and a fixed host (FH) with one interaction between the MH and its MSR and
another between the MSR and the FH, the FH does not see the MSR as its
communicating peer. It sees the MH itself as its actual peer host. The MSR fakes an
image of the MH which is used to communicate with the fixed hosts. This image is
handed over to a new MSR in case the MH engaged in an indirect interaction switches
cells.

2.2 Adaptive Middlewarein Mobile Computing

Middleware is necessary for distributed systems. It provides an abstract interface that
gives an application developer a uniform view of low-level operating systems and
networks. In the traditional systems, middleware is a means for gluing together

application components that comply with certain interoperability requirements. However,
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in mobile computing one consequence of mobility is that the environment in which an
application performs may aso be changing dynamicaly. For example, different fault
tolerance and security properties may be enforced in different execution environments.
The mobile environment also introduces other complications. such as heterogeneity in the
communicating devices. This has been discussed deeply in Section 1.1. As a
consequence, in a wireless environment, middleware must be sufficiently flexible to
enable adaptation to changes in the underlying operating systems and networks, as well

as to changes in application reguirements.

One general class of solutions to solving this problem is to alow various forms of
network traffic adaptation. Such solutions alow hardware or software to alter the
protocols or the data content being transmitted, to provide a better quality of service to

users. Data flows over networks can be usefully adapted in many ways [BadrinathOQ]:

e The underlying protocol can be dtered to handle difficult conditions. The Berkeley
snoop protocol improves TCP over high error rate links [Balakrishnan95]; an
adaptation mechanism can automatically initiate the snoop protocol and establish the
necessary links to aleviate the poor traffic conditions over the wireless network.
[Allman97].

e The data can be altered in alossless way. Various systems alow data compression or

encryption across links with poor connectivity, without any application involvement.

e Lossy adaptations can be used to obtain better compression of data over limited links
by dropping inessential portions of the information, or sending a low-fidelity version.
For example in TranSend, performance improvement by an order of magnitude is
achieved through the effective application of lossy compression [Fox98a].

e Data can be automatically converted to formats better suited to the end systems or the
intermediate networks. For example, the Top Gun Wingman browser [Fox98b]

converts Web images into 2-bit grayscale bitmap displays before sending them to
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Palm Pilots. This configuration has the effect of significantly reducing the bandwidth
requirements, while adapting the images to better map to the small display size of
handheld devices.

2.2.1 UC Berkeley TranSend

UC Berkeley's TranSend Web accelerator proxy [Fox96] was one of the earliest projects
to explore adaptation proxies aggressively. TranSend intercepts HTTP requests from
standard Web clients and applies data type specific lossy compression, when possible; for
example, images can be scaled down or down sampled in the frequency domain, long
HTML pages can be broken up into a series of short pages. TranSend' s primary goal was

to provide network adaptation for users of slow links.

TranSend supports a wireless vertical handoff mechanism. When a client equipped with
multiple wireless interfaces switches between wireless networks, the client side vertical
handoff software (which is completely independent of TranSend) generates a notification
packet containing some essential characteristics (e.g., estimated expected throughput) of
the new network. This packet is sent to a special UDP port on TranSend where the
notification is processed and stored in a per-client profile. TranSend then processes future
requests from that client in accordance with the new network type; for example,
aggressive image down sampling is performed for clients connecting with an expected
throughput of 15-25 Kb/s, whereas compression is much less aggressive (and in some
cases disabled) for Wave LAN clients connecting at about 1 Mb/s.

The main problem with TranSend is that it cannot support peer-to-peer, collaborative
services. Supporting such services is clearly important; doing so will allow direct support
of peer-to-peer systems. Ways to reinforce the MobiGATE system with this important
function are being investigated.

2.2.2 CMU Odyssey

Odyssey is a system built at Carnegie Mellon University to support challenging network
applications on portable computers [Noble97]. Odyssey particularly focuses on resource
management for multiple applications running on the same machine. Odyssey was
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designed primarily to run in wireless environments characterized by changing and
frequently limited bandwidths, but the model was found to be sufficient in handling many
other kinds of challenging resource management issues, such as battery power or cache
space. The goal of the system is to provide all applications on the portable machine with
the best quaity of service consistent with available resources and the needs of other

applications.

Odyssey is an application-aware approach to adaptation intended primarily to assist
client/server interactions. The Odyssey system consists of a viceroy, an operating system
entity in charge of managing the limited resources for multiple processes, a set of data
type-specific wardens that handle the intercommunications between clients and servers,
and applications that negotiate with Odyssey to receive the best level of service available.
Applications request from Odyssey the resources they need, specifying the window of
tolerance required for the desired operation. If resources within that window are currently
available, the request is granted and the client application is connected to its server
through the appropriate warden for the data type to be transmitted. Wardens can handle
issues like caching or pre-fetching in manners specific to their data type, to make best use
of the available resource. If resources within the requested window are not available, the
application is then notified and can request a lower window of tolerance and
corresponding level of service. As conditions change and previously satisfied requests
can no longer be met (or, more happily, conditions improve dramatically), the viceroy
uses upcalls, registered by the applications, to notify these applications that they must
operate in a different window of tolerance, subsequently possibly causing them to alter
their behavior.

One interesting aspect of Odyssey with regard to the adaptation framework is that much
of the adaptation in this model is, in fact, done by the applications, which interact with
Odyssey. For example, Odyssey itself does not decide that color video frames should be
converted to black-and-white, but rather instructs the application that some action is
required. The application itself decides how adaptation should occur, and typically
instructs the server to make the adjustment. This aspect highlights a big difference
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between Odyssey and the MobiGATE system that completely shields the applications
from the adaptation work.

2.2.3 MSU RAPIDware
The MSU RAPIDware [McKinley03] project addresses the design and implementation of

middleware services for dynamic, heterogeneous environments. A magjor goa of the
RAPIDware project is to develop adaptive mechanisms and programming abstractions
that enable middleware frameworks to execute in an autonomous manner, instantiating
and reconfiguring components at runtime, in response to the changing needs of client

systems.

PROXY

Control

\ Thread

ﬁ End-

point

Fl

DIS DOS

Control
—> Internal Data Flow EEE) External Data Flow

Figure 2-2: RAPIDware proxy

Figure 2-2 depicts an example of RAPIDware proxy and its configuration for processing
a single data stream. The proxy receives and transmits the stream on EndPoint objects,
which encapsulate the actua network connections. Each EndPoint has an associated
thread that reads or writes data on the network, depending on the configuration of the
EndPoint. A ControlThread object is responsible for managing the insertion, removal,
and ordering of the filters associated with the stream. In this example, the proxy is
comprised of three filters, F1, F2, and F3. The key support mechanisms are detachable
stream objects, namely, DetachablelnputSream (DIS) and DetachableOoutputStream
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(DOS). The DIS and DOS are used for all communication among filters and between
filters and EndPoints. DIS and DOS can then be stopped, disconnected, and reconnected,
enabling the dynamic redirection and modification of data streams. The 1/O stream
abstraction provides a convenient way to separate adaptive behavior from the application
and other parts of the middleware.

The RAPIDware system is similar to the MobiGATE system in many ways, such as the
concept of filters and streams, the function of ControlThread, and the communication
through a specia object. However, owing to the definition of its DIS and DOS objects,
RAPIDware can only support the linear composition of filters. Furthermore, it cannot
check the “composability” of proxylets. Supporting the branch composition and

consistency checks are two important advantages of MobiGATE over RAPIDware.

2.24 Comparison

Table 2-1 offers a comparison of the MobiGATE system and the above-introduced
adaptive systems. The notable points are shown below:

e Application Awareness in these adaptive middleware systems can be application aware
and application transparent, depending on whether the application is informed that
adaptation is occurring and perhaps expected to provide an application-level response,
or the system attempts to completely shield the application from this fact.

e Adaptation Range is the collection of applications supported by the system. Some
systems provide general machinery to support a collection of unrelated applications,
while others probably only support a specific application or narrowly-defined class of
applications.

e Adaptation Location describes where the adaptation machinery resides. It can bein the

client, in the server, in one or more intermediate proxies, or all of these.
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e Adaptation Compositions refers to the possibility of composing adaptations in the
adaptation machinery. In other words, it points out whether the adaptation can occur at
multiple levels.

e Mechanismis the primary technology used in the adaptation. As far as the MobiGATE

system is concerned, the separation of concerns (coordination theory) is the unique

principle adopted in the design of the middleware system.

e Descriptionisageneral summary of the middleware system.

The comparative features below are discussed further in Chapter 3.

TranSend Odyssey RAPIDware MobiGATE
Application Application Application aware Application Application
Awar eness transparent transparent transparent
Adaptation Appllca_l on- Appllc_ar_uon General General
Range specific specific
Adapta}non Proxy Client & Server Proxy & Client Proxy & Client
L ocation
Adaptation Partial No Partial Yes
Compositions
M echanism Data-type specific Resource Detachable stream Separation of
distillation management objects concerns
Applying
: Application-aware Web-based coordination
:/t:/r%i achcc?l ate;tanoerj adaptation by collaborationin theory in the
Description e<g:i ficlo yp multiple heterogeneous service
P - Sy applications using wireless composition and
compression ) .
diverse datatypes environments system
reconfigurations

Table 2-1: A comparison of adaptive systems

2.3 Coordination Models and Coordination L anguages

With recent advances in the coordination theory, a number of coordination languages
have become available, such as PCL [Sommerville96], Conic [Magee89], Durra
[Barbacci93], and Manifold [Arbab96]. As introduced in Section 1.2.2, these languages
share many common characteristics. In particular, the coordination system generally
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consists of two kinds of processes. computation and coordination. Computational
processes are treated as black boxes, while processes communicate with their
environment by means of clearly defined interfaces, usually referred to as input or output
ports. Producer-consumer relationships are formed by setting up channel connections

between the producer output ports and the consumer input ports.

While these existing coordination languages support primitive constructs to enable a
connection to be established between coordinated processes in the form of a high-level
architectural description, they lack the linguistic support to capture the input and output
types associated with the ports. As a result, interconnected processes must be manually
established to ensure compatibility of type when messages are exchanged between the
respective input and output ports. However, the computing architecture that requires the
coordination of process to be dynamically composed and reconfigured at runtime requires
the intrinsic support of typed messages, which allow the programmer to capture the

intended compatibility between input-output ports, and to exercise runtime safety checks.

The following subsections describe these existing languages that are designed to address

the issue of coordination and architectural descriptions.

2.3.1 Proteus Configuration Language

Proteus Configuration Language (PCL) [Sommerville96] is alanguage designed to model
the architecture of multiple versions of computer-based systems. Coordination in PCL is
understood as a configuration; the unit of configuration is a family entity, representing a
set of versions of a logica component or system. A family entity has various kinds of
associated information, namely a classification section, an attribute section, an interface
section, a parts section, a physical section specifying the entity name implementing the
entity, and arelationship section that sets out the rel ationships between PCL entities.

Another major element of the configuration paradigm is the ports used to represent either

provided or required service. A component may have a number of required and/or

provided ports. Inter-component communication is facilitated indirectly by transmitting
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messages through bindings, where a binding is used to connect two ports.
Communication can either be synchronous or asynchronous. In addition, port connections
are effectively unlimited buffers. If component replacement is to take place, any
outstanding messages not yet delivered to a to-be-replaced component are retained by the

run-time system and eventually forwarded to the component’ s replacement.

Finally, PCL supports a clear distinction between the configuration component (namely
PCL) and what is being configured (i.e., computational components written in any
conventional programming language). Furthermore, components are context independent
since inter-component interaction and communication is achieved only by means of
indirect interfaces comprising ports connected by means of bindings. Thus, a separation
is achieved between the functiona description of individual component behaviors and a

global view of the formed system as a set of processes with interconnections.

2.3.2 Conic

Conic [Magee89] is another language where coordination is viewed as configuration. A
key idea in Conic is the concept of logica node. A logical node is the system
configuration unit comprising sets of tasks that execute concurrently within a shared
address space. Configured systems are constructed as sets of interconnected logical

nodes; these sets are referred to as groups.

The programming subcomponent of Conic is based on the notion of task module types,
which are self-contained, sequentia tasks; these are used at run-time by the Conic system
to generate respective module instances, which exchange messages and perform various
activities. The modules’ interface is defined in terms of strongly typed ports. An exitport
denotes the interface at which message transactions can be initiated and provides a local
name and type holder in place of the destination name and type. An entryport denotes the
interface at which message transactions can be received and provides a loca name and
type holder in place of the source name and type. A link between an exitport and an
entryport is realized by means of invoking the message passing facilities of the

programming subcomponent. The system supports both unidirectional asynchronous and
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bi-directional synchronous communication. Since all references are to local objects, there
is no direct naming of other modules or communication entities. Thus each programming
module is oblivious to its environment, which renders it highly reusable, simplifies
reconfiguration, and clearly separates the activities related to the latter from purely

programming concerns.

Conic supports alimited form of dynamic reconfiguration. First of al, the set of tasks and
group types from which alogical node type is constructed is fixed at node compile time.
The number of task and group instances within a node is fixed at the time a node is
created. Dynamic changes to link set-ups can be achieved by explicitly invoking a
configuration manager through the unlink command. Another limitation of the dynamic
reconfiguration functionality of Conic is related to the very nature of the links that are
being established between entryports and exitports. In particular, these links are not
viewed as (unbounded) buffer areas. Thus, when alink is severed between apair of ports,
the module instances involved in communication must stop exchanging messages,
otherwise information may be lost and inconsistent states may result. Finally in Conic a
user is constrained by using a single programming language (the Pascal like Conic

programming subcomponent).

2.3.3 Durra

Durra [Barbacci93] is yet another architecture configuration language. A Durra
application consists of a set of components (application tasks and communication
channels) and a set of configurations specifying how the components are interrelated.
Tasks are active components that initiate all message-passing operations, and channels
are passive components that wait for and react to requests from the tasks. These tasks and
channel implementations are linked to run-time support packages and configuration
tables generated by the Durra compiler to form executable programs called clusters. The
runtime support portion of a cluster is called the cluster manager, which is responsible for
starting and terminating application processes and links, for passing messages between
components, for monitoring reconfiguration conditions, and for carrying out

reconfigurations.
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The basic building blocks of Durra are the task description, which specifies the properties
of an associated subprogram or subsystem, and channel description, which specifies the
properties of a package implementing a communication facility. An application can be
described by a compound description that contains components, structure, and
reconfiguration sections.

The main concern of Durra is how to coordinate resources, such as load and execute
programs, route data, and reconfigure application. As with al the other members in this
family of coordination languages, it makes a clear distinction between application
structure and behavior. Tasks implement the functionality of the application, whereas
channels implement communication facilities. Thus it is taillored more to support rapid
prototyping of distributed heterogeneous applications and test different configuration
strategies, rather than as a means to actually implement these applications. Unrestricted
dynamic creation of task instances is not possible.

2.3.4 Manifold

Manifold [Arbab96] is one of the latest developments in the evolution of control-driven
or process-oriented coordination languages. As is the case in most of the other members
of this family, Manifold coordinators are clearly distinguished from computational
processes that can be written in any conventional programming language augmented with
some communication primitives. Manifolds (Manifold coordinators) communicate by
means of input/output ports, connected by means of streams. Evolution of a Manifold
coordination topology is event-driven based on state transitions. More pertinently, a
Manifold coordinator process is at any moment in time in a certain state where typically
it has set up a network of coordinated processes communicating by sending and/or
recelving data via stream connections established between respective input/output ports.
Upon observing the raising of some event, the process in question breaks off the stream
connections and evolves to some other predefined state, where a different network of
coordinated processes is set up. Note that, unlike the case with other coordination

languages featuring events, Manifold events are not parameterized and cannot be used to
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carry data— they are used purely for triggering state changes and causing the evolution
of the coordinated apparatus.

One important advantage of Manifold isits support of recursive composition. This means
that any coordinator can also be used as a higher-level or meta-coordinator, to build a
sophisticated hierarchy of coordination protocols. Such higher-level coordinators are not
possible in most other coordination languages and models. However, Manifold does not
support type compatibility check, which translates to the inability to perform automatic
checking for type compatibility and operation consistency in the event of adaptation and
reconfiguration.

2.3.5 Comparison

PCL Conic Durra Manifold MCL
CoorS:l?tatlon Family entities | Logical nodes Components Processes Streamlets
Computational | Conventional Pascal-like Ada C, Fortran Language
L anguage language language Independent
M essage Synchronous Synchronous Synchronous Synchronous
. Asynchronous
Passing Asynchronous | Asynchronous | Asynchronous Asynchronous
Dynamic Partial Partial Yes Yes Yes
Reconfiguration
Compatlplllty No Partial No No Yes
Checking
Recurs_n_/e No No No Yes Yes
Composition
N Z-notation
Formalization No No No No Formalization
Application Model system Af_typl Caj Application Component Wird Essproxy
Domain versions configuration prototyping based SErVICes
language development composition

Table 2-2: A comparison of coordination languages

Table 2-2 offers a comparison of existing coordination languages and MCL along eight
dimensions: Coordination Unit is the basic unit in terms of which the configuration is
performed; Computational Language provides the name of the languages supported by
the coordination language to program individual computational entities, Message Passing

in these coordination models can be synchronous, asynchronous or both, depending on
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the underlying communication channels, Dynamic Reconfiguration describes the ability
to dynamically change the composition structure and to create/destroy coordinated object
instances at runtime; Compatibility Checking and Recursive Composition are as described
above; Formalization is the ability to formalize the language by developing a semantic
model; Application Domain refers to the application of languages in a domain for which
it is designed. Discussions on the above comparative features are given in Chapters 4 and
5.
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3 Introduction to MobiGATE Architecture

This chapter focuses on the design of the MobiGATE framework. It introduces basic
design principles and the working paradigm of the whole system. Based on this
introduction, an overview of the MobiGATE server and client is given with the emphasis

onitsinternal structure.

As stated in Section 1.3, the main objective of the MobiGATE system is to adapt data
flows over dynamic wireless network conditions and various mobile devices in the
application level. Strictly following this goal, the design principles and whole working

paradigms are introduced in following sections.

3.1 MOobiGATE Design Principles

As an adaptive middleware in the mobile computing environment, the MobiGATE
system is expected to be context-aware, reconfigurable, robust, and efficient in
processing incoming data flows. The concept of separation of concerns forms the
underlying and unifying principle in the provision of adaptive composition of services.
This is regarded as one of the important contributions of this study. The core design

principles of the MobiGATE system are summarized as follows:

e Firstly, the MobiGATE system should be context-aware. In other words, the system
must possess the ability to collect contextual information, such as network bandwidth,
transmission error rate, and client resources, and to adjust its own behavior
appropriately. The principle of context-awareness fundamentally facilitates streamlets
and streams to react adaptively to the operating conditions of the surroundings. One
popular solution [Chan03, Fox96, Noble97] for this is to employ an entity called
Event Manager responsible for receiving environment messages that will alter
behavior of the system. These messages can originate from local operating system
services and remote clients. The MobiGATE system extends this mechanism by
allowing applications to choose and subscribe the context messages of interest, while

filtering away those which are not necessary.
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e In addition, the newly designed system must be reconfigurable. In this context,
reconfigurable means that the composition structure of applications running in the
middleware system can be changed dynamically in response to different conditions.
More ambitiously, the system should ideally support the dynamic reconfiguration of
each service entity bound to associated applications. For example, the behavior of a
service entity may be changed or adapted by altering its meta-representation at

runtime.

e Significantly, MobiGATE is a middleware supporting the separation of concerns,
advocated by the coordination theory. Firstly, the system possesses the ability of
composing adaptation services. Secondly, the communication codes are completely
separated from those computational activities in the composition of adaptations. Each
service entity should be completely independent of its running environment. The main
difficulty, in this respect, lies in the abstraction of environmental dependencies from

those service entities while at the same time maintaining an acceptable performance.

e In contrast to some existing adaptive middleware, such as TranSend introduced in
Section 2.2, the MobiGATE system is expected to support peer-to-peer, collaborative
adaptation services. To achieve this goal, MobiGATE needs a client-side system to
reversely process data flows from the server for the purpose of adaptation, such as
decompression and decryption. Because of the constrained resources and power of
most mobile devices, this MobiGATE client system must follow a thin-client model,

which means there cannot be as much workload as on the server side.

e Asfar as performance is concerned, the system should be efficient in processing data
flows. With the increase in the number of running applications and mobile clients, an
acceptable performance should still be obtained. It is also important to note that this
system must be robust and maintain a relatively stable throughput most of the time.

The am is for al of these performance requirements to be satisfied with the
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development of severa related technologies, such as carrier resource and instance

pooling, which are introduced in following sections.

3.2 MobiGATE Working Paradigms

The MobiGATE system consists of two parts: MobiGATE server and MobiGATE client.
The MobiGATE server, where adaptations of data flows are composed, resides in the
intermediate proxy between the data sender and receiver. The MobiGATE client, in most
cases, stands in the position of data receiver, responsible for processing received

messages reversely.

Sender Receiver

Figure 3-1: The working paradigm of MobiGATE system

Figure 3-1 shows a simple data flow with a single sender (S) and receiver (R). The data
flows across various links and nodes in the network. The thick line represents the wired
network and the dashed line suggests the wireless part. Access Point (labeled AP in the
figure) is located at the edge of the wired network to support communications between
the fixed sender and its mobile receiver. At some point in the network, the MobiGATE
Server (MS) imposes various adaptation services on the data flow, which is then
processed reversely by the MobiGATE Client (MC) at the receiver side.

To some extent, Figure 3-1 is asimplification of real world. It shows a simple data flow
and it does not illustrate problems, such as delivery deadlines or security concerns, nor
does it suggest the level of complexity possible in even a single network flow. But the
figure captures the root of the problem. A stream of data flows from a source to a
destination across a network, using links of different conditions. Altering the data flows

in various ways could lead to better overal results, in terms of lowering bandwidth
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requirements, alleviating error condition, encoding secured data, generic compression,
and transcoding. The aim of the MobiGATE system is not to provide specific services or
configuration of services, but rather to provide a general platform to facilitate ease of
deployment of services across the wireless links by providing core mechanisms and

system services.

It is important to note that the MobiGATE server may reside in mobile nodes, while the
MobiGATE client is placed at proxies in the wired network. This situation, upstream
transmission (client-to-server), happens when the data sender is a mobile device, while
the recelver is a fixed node in the wired network. However, there is an inherent
asymmetry in the wireless communications: the bandwidth in the downstream direction
(server-to-client) is much greater than that in the upstream direction (client-to-server).
For this reason, more and more mobile-aware applications have now adopted the push-
based (downstream direction) data dissemination model [Barbara99]. In this thesis, the
MobiGATE system primarily focuses on solving problems in downstream direction
communications. As discussed, the architecture is sufficiently flexible to be used to

address upstream communications as well.

3.3 MObIiGATE Server

There exists in MobiGATE a clear distinction between the activities of coordination and
computation. Figure 3-2 shows the architecture of MobiGATE server, which is organized
into two executing planes. The Stream et Executi on Pl ane is responsible for
scheduling streamlet instances for computation, while the St r eam Coor di nati on
Pl ane is responsible for maintaining the interaction and relationship between the
coordinated streamlets. The Coor di nati on Manager maintains a configuration
table for each instance of streamlet composition. The configuration table serves to
contain meta-information on the composition of streamlets, message type constraints,
port connections, and routing constraints. The table is derived from the compilation of the
MCL script, which the Coor di nati on Manager uses to control the stub generation
and the channel objects and to facilitate the exchange of messages among the streamlets.

In short, the coordination plane can be viewed as a routing plane, where coordination
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activities and interaction are abstracted from the streamlet codes. This leads to a highly
reconfigurable system where interconnections and relationships between service entities

can be composed dynamically in anon-intrusive way.

On another plane, the St r eam et Manager controls the execution of instances of a
streamlet. During the setup process, the manager is required to locate the classes of
streamlets and allocate necessary computational resources for execution. The Event
Manager isresponsible for generating system events in reaction to different conditions.
Finally, there is a Stream et Directory, where the streamlet providers can

advertise their services. This directory provides code-level implementations of streamlets

a runtime. Below, various components of the MObiGATE server architecture are
described in detail.

i

Streamle Streaml el reaml St &
14 A2 A 3 A i d

Streamlef'{ Execuﬁ on;

Coordination
Manager

MCL
compiler

Figure 3-2: Architecture of MobiGATE server

Stream Coordination

3.3.1 Coordination M anager

The Coor di nati on Manager controls the generation of stubs and channel objects
and facilitates the message exchange among the streamlets. It maintains a configuration
table for each running coordination stream, defining the specific message flow route in

these streams. From the perspective of networking, the role of the Coor di nati on
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Manager is somewhat similar to that of a router, while the configuration table acts as
the routing table. Another important function of the Coor di nati on Manager isto
filter events from the Event Manager and to broadcast them among coordination

streams. This may invoke dynamic reconfiguration actions.

3.3.2 Stream Coordination Plane

The St r eam Coor di nati on Pl ane is the layer where coordination activities take
place. In this plane, a stream object is modeled as streamlet stubs connected by channels,
with the composition structure defined by the configuration table held by the
Coor di nati on Manager. Stubs do not contain any service logic. Instead, they
implement whatever operations are necessary to forward requests to streamlet instances
and receive results. The exchange of data among the stubs is currently done through
channels. The channels transport data by using a frequently used method, carrier
resource, where a repository or carrier resource, accessible to both producer and user
stubs, is created. Producer stubs write the data to the shared carrier. User stubs read the
data from the shared carrier. The carrier resources can be written only after they have

been read by consumers.

3.3.3 Streamlet Manager

The St reanml et Manager manages the execution of various streamlets. It intercepts
service requests from the St ream Coor di nati on Pl ane, passes the incoming
message to the corresponding streamlet instance for processing, and finally returns the
result message. If the requested streamlet has not yet been initiated, the manager creates
an instance for it from the St r eam et Di r ect or y; otherwise the manager directly

deliversthe messagetothe St r eani et Executi on Pl ane.

3.3.4 Streamlet Execution Plane

All the computation activities take place in the St reaml et Executi on Pl ane. In
this plane, individual streamlets run independent of others and focus on imposing

services on the incoming messages. Two kinds of streamlets, Sateless and Stateful, are
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distinguished depending on whether state information is to be kept for the requesting

coordinator processes.

One of the fundamental benefits of using the MobiGATE architecture is that it is able to
handle a heavy workload while maintaining a high level of performance. There is a
relationship between the number of streams and the number of streamlets that are
required to service them. As the stream population increases, that is, as the number of
applications increases, the number of streamlets required increases correspondingly. At
some time, the increase in the number of streamlets will have an impact on performance
and diminish the throughput. MobiGATE explicitly supports a mechanism called
streamlet pooling that makes it easier to manage large numbers of streamlets in the

Stream et Execution Pl ane.

The concept of pooling resources is not new. A commonly used technique is to pool
database connections so that the business objects in the system can share access to the
database. This mechanism reduces the number of database connections that are needed,
which, in turn reduces the consumption of resources and increases throughput. The
MobiGATE Stream et Execution Plane aso applies resource pooling to
streamlets; this technique is called streamlet pooling. Streamlet pooling reduces the
number of streamlet instances, and therefore, the resources needed to service requests
from the St r eam Coor di nati on Pl ane. It is also less expensive to reuse pooled

streamlet instances than to frequently create and destroy instances.

Streamlet pooling is applicable to streamlets that are considered Stateless. In other words,
since Stateless streamlets are never associated with a specific stream, there is no
fundamental reason to keep a separate copy of each streamlet for each stream instance.
Thus, the system can keep a much smaller number of streamlets, reusing each streamlet
instance to service the different requests. By this means the resources actually needed to
service al the requests are greatly reduced.

33



3.3.5 Event Manager

The Event Manager is responsible for generating system events in reaction to
different conditions. These events may be caused by client requests, changes to the
system environment, or by exceptions in streamlet executions. Coordinating the
publication of events is fundamental to the realization of adaptive processing in a mobile

middleware system, such as MobiGATE.

3.3.6  MCL Complier

The MCL Conpi | er controls the compilation of the MCL coordination script and
generates the necessary configuration tables to define the message flow routes in
coordination streams. It is also responsible for any compile-time validation work such as
compatibility checks. Incompatible connections in the script are returned by the compiler
with adetailed error message.

3.3.7 Streamlet Directory

The Stream et Directory serves as the repository where streamlet providers can
advertise their services. In addition, it serves as a central storage for streamlet codes in
which the Streanl et Manager may locate the relevant streamlets and create
instances for execution. Note that it is possible for a streamlet itself to be represented as
an MCL coordination script. This defines a recursive composition of other native
streamlets.

3.4 MOobiGATE Client
Figure 3-3 depicts the operational flow and architecture of the MobiGATE client. In

contrast to the server, the MobiGATE client system has no concept of channel or
coordination. All the composition information is aready recorded in the incoming
message header. The system at the client side needs simply to read the message header
and distribute the message to corresponding client streamlets for reverse processing. The
resultant messages are then sent to higher layered applications. This asymmetry
mechanism has greatly liberated MobiGATE client systems from heavy coordination



logic, and trandates into a much lower consumption of computing resources and energy

on the client side. The details of the comprising components are given below.

streamlet 1 streamlet 2 streamlet N

Client Streamlet Pool

M essage
Distributor

Application

Figure 3-3: Architecture of MobiGATE client

34.1 Message Distributor

The main task of the Message Distributor is to parse the incoming MIME
messages and distribute them to each corresponding client streamlet for reverse
processing. An important characteristic of the Message Di stri but or isthat it can
support multiple threads at runtime. This is similar to the characteristics of the serviet in
the J2EE architecture. Whenever a new message arrives, the system tries to find an
avallable Message Di stri but or thread to parse the message. If this fails, the

system creates a new thread to service the incoming message.

3.4.2 Client Streamlet Pool

The function of the Client Stream et Pool is quite smilar to that of the
Stream et Directory at the server side. The difference is that here the system

maintains peer streamlets, instead of original streamlets maintained at the server side. In
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addition, the Cient Stream et Pool is aso responsible for creating and
destroying client streamlet instances to service the incoming messages forwarded by the

Message Distributor.
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4 MobiGATE Coordination Language

This chapter describes the MobiGATE Coordination Language (MCL) used to compose
applications running in the MobiGATE system. The syntax design of the language is
introduced in detail, including the type system, language elements, and the important
design characteristics that differentiate MCL from other coordination languages. A case
example using MCL to compose applications out of existing services, is aso given to
demonstrate the effectiveness of this newly designed language. Based on the syntax
design, the formalization of the language with a semantic model is then introduced in
Chapter 5.

4.1 Message and Port Typing

The type system in programming languages defines the type of data and structura
representation of information to be processed. The typed information represents the
characteristics of the data intended by the developer of the program and is
correspondingly treated as such during compilation and execution. In MobiGATE, the
typed messages exchanged between streamlets and the definition of port types is viewed
as fundamenta in enabling the flexible and robust composition of streamlets.
Significantly, it allows the developer to concisely capture the intended message types,
bound to the streamlet ports. Runtime checking, in the form of matching the message
types to the streamlet ports, can be exercised to ensure consistency during operations. In
this project, the adoption of the Multipurpose Internet Mail Extensions (MIME) 1.0
Internet standard is proposed as the underlying type definition, to represent messages and
declarations of port type. As such, messages, exchanged in the system, are formatted
based on MIME. This assumption is reasonable and valid considering the fact that MIME
has evolved to become the de facto formatting standard for many network services,

including email, news and the World Wide Web.
Figure 4-1 shows a graphica representation of the MCL type system. A fundamental
property is that, each given type has multiple associated direct subtypes or supertypes.

This is useful in facilitating the checking process for type compatibility of activities of
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which the architecture is composed. Another interesting property of the defined type
system comes from the extensible nature of the MIME type media system, meaning that

it is not difficult to introduce a new message type into the system.

port
discrete- composite-
type type
/ A \ / \
text image audio video application multipart message

7 ¥ ¥ £ £ ¥ 'y
[pian | [(ipeg | [ ‘basic | [ ‘mpeg ] [ octet-stream ] IE’XE IE'QE
|ricr|1text|| gi1|‘ | [ aternative | | partia |

digest

Figure 4-1: Graphical representation of atype system

Based on the MIME type system, the Backus Normal Form (BNF) notation of a type
declaration in MCL can be defined as shown in Figure 4-2. Note that this definition is
generated from a simplification of a standard MIME Content-Type header field definition

with some modifications.
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((/7}

type-declaration ::= type subtype | intermediate
; Matching of mediatype and subtype
; ISALWAY S case-insensitive
intermediate ::= “port” | discrete-type | composite-type | type
type ::= discrete-type | composite-type
discrete-type::= “text” | “image” | “audio” | “video” | “application”
composite-type ::= “multipart” | “message”
subtype ::= <A publicly-defined extension token. Tokens of this form
must be registered with IANA as specified in RFC 2048>

)

Figure 4-2: BNF notation of the type declaration

4.2 MCL Language Elements

MCL is an underlying declarative language for describing dynamically changing
networks of active concurrent processes. It is comprised of severa important abstractions
including streamlets, channels, and streams. Collectively, the abstractions, labeled
constructs, constrained typing, and definitions form the building blocks for describing the
composition of the streamlets and their architectural description. The important €l ements

representing the core abstractions are described in the following sections.

421 Streamlet

Streamlets in this study represent the main functional elements of an application and
work as coordination units, as listed in Table 2-2. They own a set of ports, through which
they interconnect with the rest of the system. Interconnections among streamlets are
explicitly represented as separate language elements, called channels. Streamlets must
always connect to one another through channels. As a consequence, every streamlet port

must be connected to a compatible channel port based on the definition of MIME type.

Within the context of a streamlet, ports play the role of placeholders. This means they
will not be affected by the computation of the streamlet. Streaml ets read/write messages
from/to their associated input/output ports by using read/write primitives. They do not
need to have explicit knowledge of the real source/destination of messages. The
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separation and externalization of the interconnections of the streamlets promote their
independence and reusability. In MCL the notation p.i is used to refer to port i of a

streamlet instance p.

streamlet-definition ::= “streamlet” streamlet_name description
streamlet_name ::= token
;iISALWAY S case-insensitive
description ::= “{” ports attributes “} ”
ports::= “port” “{”
port_declaration
“} »
attributes ::= “attribute” “{”
streaml et type
implementation
description
{(} »
port_declaration ::= dir port_name “:” type-declaration “;”
dir ;= “in” | “out”
port_name ::= token
; ISALWAY S case-insensitive
streamlet type::= “type” “=" “STATELESS” | “STATEFUL” “;”
implementation ::= “library” “=" value “;”
description ::= “description” “=” value “;”
value ::= quoted-string
token ::=*(<any (US-ASCII) CHAR except SPACE, CTLSs, or tspecias>)
tspecidls = “(7 [ €)7 | “< [>T €@ |4 |
A A S R Rl Ry

Figure 4-3: BNF notation of the streamlet definition

Streamlets are defined as sets of ports and attributes, which describe streamlets core
functions and capabilities to interconnect with the rest of the system, as shown in Figure
4-3. The Establishment of the type of an input/output port is required as part of the port
declaration. Notice that as identification, each streamlet may have more than one
input/output port, each of which is associated with the name of a specific port. The

attribute declaration describes three important properties:
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e Type. Type indicates whether the streamlet needs to keep information on
corresponding application states. Based on this attribute, streamlets are distinguished
as Sateless or Sateful.

e Library. The library connects streamlets with code-level components that implement
their intended functionality. Examples of code-level components include executable

programs, and source code models.

e Description. Description provides some general descriptive information about

streamlets.

In addition, a distinction is made between the descriptions of streamlets and their
instances in MCL. In this study, a streamlet is defined as an instance and a streamlet
definition is its description. Streamlets (or streamlet instances) can be created from a
definition using the new-streamlet primitive or destroyed using the remove-streamlet

primitive.

4.2.2 Channd

Channels describe relationships of interconnection and constraints among streamlets.
Traditional programming languages do not support a distinct abstraction for representing
such relationships, and implicitly encode support for component interconnections inside
their abstractions for components. In contrast, al streamlet interconnections, in MCL, are
explicitly represented, using channels. Channels, like streamlets, own ports. These ports

must be connected to compatible streamlet ports.
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channel-definition ::= “channel” channel_name description
channel_name ::= token

;iISALWAY S case-insensitive
description ::= “{” ports attributes “}”
ports::= “port” “{” “in” “:” type-declaration “;”

€« OUt ”» €« ” type'da:l aratlon €« , ”
(‘} ”»
attributes ::= “attribute” “{ ”
channel_type
category
buffer_size

[ (R

channel_type::= “type” “=" vauel “;”
category ::= “category” “=" value2 “;”
buffer size::= “buffer” “=" value3 “;”
valuel := “SYN” | “ASYN”
Value2: “S” | “BB” | “BK” |“KB’7 | “KK”
value3 ::=*(DIGIT) “Kbytes”
token ::=*(<any (US-ASCII) CHAR except SPACE, CTLSs, or tspecias>)
tSpeCIa|S: “(” |“)’7 | “<” |“>” | “@” |“”7 | “;” |
“:” | “\” |<” > “/” | “[” | “]” I “?” | “:”

Figure 4-4: BNF notation of the channel definition

A channel represents a reliable, directed, and optionally buffered flow of information in
time. Reliable means that al messages placed into a channel are guaranteed to flow
through without loss, error, or duplication, with their order preserved. Directed means a
channel aways has two identifiable ends: an in and an out. Once a channel is established
between two streamlets, it operates autonomously and transfers the message from its
input to its output port. Figure 4-4 shows the formal definition of the channel. Like the

streamlet, it is also defined by port declarations and certain important attributes:

e Type. Two channe types are distinguished: synchronous and asynchronous.
Synchronous channels are zero-length buffers and can receive a value only if they can
be delivered immediately, while asynchronous channels are unbounded FIFO buffers.
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e Category. The possibility of pending units existing in a channel makes it meaningful
for a channel to remain connected at one of its ends, after it is disconnected from the
other. Based on this property, channels are distinguished as S, BB, BK, KB, and KK.
The S channel guarantees that there are never any pending units in the channel. The
BB (break-break) channel is automatically disconnected from the other of its
streamlets, as soon as it is disconnected from one. The BK (break-keep) channel does
not disconnect from its target streamlet when it is disconnected from its source
streamlet. The KB (keep-break) channel simply reverses the semantics of the BK. The
KK channel cannot be disconnected at either side of the connection.

e Buffer. The buffer size in the channel is specified in units of Kbytes. Idedly, an
asynchronous channel should have an unbounded buffer, as introduced above.

However, inreality, alarge buffer size is generally chosen to simulate this property.

As with streamlets, there is a differentiation between channels and channel definitionsin
MCL. Channels (or channel instances) can be created from a definition, using the new-

channel primitive or destroyed, using the remove-channel primitive.

4.2.3 Stream

A stream is purely a composition script, also known as a coordination script, running on
the coordinator side. It is within a stream that different streamlet and channel instances
are created, network topologies are constructed, and actions in response to different
events, are specified. Streams can be viewed as streamlets connected by channels with
the ability to perform adaptations. Simultaneously, a stream can also be viewed as a
“streamlet” with input/output ports, which come from the stream’s inner streamlet ports
and are unsatisfied by any inner connections. Figure 4-5 is the formal definition of a
stream object.

In addition to the primitive new-streamlet, remove-streamlet, new-channel, and remove-

channdl introduced above, there also are connect, disconnect, and disconnectall

primitives to set up/break down connections in stream descriptions. For example, connect
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(p.o, q.i, €) iswritten to set up a connection between the port o of the streamlet p and the
port i of the streamlet g, using the channel c. For simplicity connect (p.o, g.i) can be used
instead, whereby the system automatically creates a channel instance of an asynchronous
BK type with 100 Kbytes of buffer to connect between the ports.

stream-definition ::= “stream” stream_name declaration
stream_name ::= token
;iSALWAY S case-insensitive
declaration ::= “{”
*(streamlet_instantiation)
*(channel _instantiation)
*(connection_setup)
“} ”
streamlet_instantiation ::= “streamlet” str_instance “="
“new-streamlet” “(” streamlet_name “)” “;”
channel_instantiation ::= “channel” chan_instance “="
“new-channel” “(” channel_name “)” “;”
connection_setup ::= “connnect” “(” port_ID “,”

{324 ({224 ({32

<port_ID> “,” <chan_instance> ;

[ {24

port_ID ::=str_instance “.” port_name

Figure 4-5: BNF notation of the stream definition

Dynamic reconfiguration is another important task that needs to be addressed in the
description of a stream. It's also an important advantage of MCL over most existing
coordination languages, as shown in Table 2-2. The interaction model in MCL is event-
driven. That is, a coordinator process waits for an occurrence of a specific event to
stimulate entry to a predefined state and perform some actions. These actions typically
consist of setting up or breaking off connections of ports and channels. The coordinator

then remainsin that state until it observes the occurrence of some other related events.

System events are generated by the Event Manager , an important component in the
MobiGATE environment that facilitates the adaptation of the streamlets. Severa types of
events in MCL have been predefined. Such events are introduced and described in
Section 6.4. They represent external events that can be subscribed to initiate the
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adaptation through reconfiguration of the composition of the streamlets. The selection of
the event types include LOW _ENERGY (Client devices running out of power),
LOW BANDWIDTH (Poor network bandwidth), LOW _GRAYS (Client devices
supporting only shallow grayscale), and END (End of application). Note that, unlike
other coordination languages featuring events, MCL events are not parameterized and
cannot be used to carry data — they are used purely for triggering the evolution of the

composition of coordinated streamlets in response to contextual events.

There is an important primitive in descriptions of a stream, when (event) {...actions...},
identifying reactions to different events. In principle, the coordinator picks up any
broadcast event; in practice, however, only a subset of the potential receivers is usually

relevant to an event as these receivers specify actions in the corresponding when sections.

4.3 Case Exampleof Using M CL

A pragmatic example of the composition of service entities based on MCL is presented in
this section. To illustrate and highlight the robustness of the language in regulating
complex adaptations in response to evolving wireless and mobile operating
environments, a modified datatype-specific distillation application, which was deployed
at U.C. Berkeley [Fox98d], is adopted. The service entities, in the form of streamlets,
used in thisexample are listed below.

¢ Switch: Dividing incoming messages based on the semantic type of the data;

¢ Image Down Sampling: Lossy compression of an image by reducing the sample rate;

e Map to 16 grays. Reducing images to 16 graysto support shallow grayscale displays;

e PostScript-to-Text: Discarding some information on format and converting documents
to rich-text supported by most devices;

e Text Compressor: A generic text compressor;

e Merge: Integrating different types of information into a whole body;

e Power Saving: A power-saving mechanism as discussed in [Anastai02].
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Figure 4-6: The composition model of a datatype-specific distillation application
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Figure 4-6 shows the composition model of the application. The rectangle boxes
represent the service entities modeled as streamlets associated with input ports (black
points) and output ports (white points). Lines between different ports embody
intermediate channel objects. Note that the dashed parts are optional, which means they
will be included in the architecture only when certain specific events take place. For
example, the power-saving entity is invoked when the system subscribes and
correspondingly receives the LOW_ENERGY signd from the hardware abstraction driver.
The abstraction of the stream application streamApp, which exercises recursive
composition, contains the composition of the streamlets. The composite streamApp
streamlet has its own input/output ports, derived from those internal ports, not satisfied
by any interna connections. Therefore, from the outside the streamApp can aso be
regarded as a streamlet object and can be graphically represented in the form of an
encapsulated box and ports to be reused in other stream applications. The concept of

recursive composition is discussed in detail later in thisthesis.
Below is a description of individual streamlets in MCL. Considering the large size of

image data, a channel with a buffer of 1024 Kbytes is created specifically to connect
image-rel ated streamlets, while for others the default 100 Kbyte-sized channel is used.
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streamlet switch{

port{
in pi multipart/mixed;
out pol: image;

out po2: application/PostScript;
}
attribute{
type = STATELESS;
library = “/general/switch.class” ;
description =
“Divide incoming message based on
the semantic type of the data.” ;
}
}
streamlet img_down_samplg{
port{
in pi
out po :
}
attribute{
type = STATELESS;
library = “/image/downSample.class” ;
description =
“reduce sample rate of theimage” ;

image;
image;

}
}
streamlet map_to_16_grays{
port{
inpi :image;
out po :image;
}
attribute{
type = STATELESS;
library = “/image/mapGrays.class”
description =
“To support clients with shallow
grayscale displays” ;

}
}
streamlet powerSaving{
port{
inpi: multipart/mixed;
out po : multipart/mixed;
}
attribute{
type= STATEFUL;
library = “/general/powerSaving.class”
description =
“Power saving mechanism.” ;

streamlet postscript2text{

port{
inpi : application/PostScript;
out po : text/richtext;

}

attribute{

type = STATELESS;
library = “/text/p2t.class” ;
description =

“Convert PostScript material to
richtext document.” ;

}
}
streamlet text_compress{
port{
inpi: text;
out po : text;
}
attribute{
type = STATELESS;
library = “/text/Compressor.class” ;
description =
“ageneric text compressor.” ;
}

}
streamlet merge{
port{
inpil image;
inpi2 : text
out po : multipart/mixed;
}
attribute{
type = STATELESS;
library = “/general/merge.class” ;
description =
“Merge messages together.” ;
}

}

channel

port{
in : image
out : image;

}

attribute{
type=ASYN;
category = KB;
buffer = 1024 Kbytes;

}

largeBufferCharf

}

Figure 4-7: Streamlet and channel descriptions
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Based on these streamlet descriptions, the final composition script for the stream

streamApp is written as follows:

stream streamA pp{
streamlet s1 = new-streamlet (switch);
streamlet s2 = new-streamlet (img_down_sample);
streamlet s3 = new-streamlet (map_to_16_grays);
streamlet s4 = new-streamlet (powerSaving);
streamlet s5 = new-streamlet (postscript2text);
streamlet s6 = new-streamlet (text_compress);
streamlet s7 = new-streamlet (merge);

channel cl, c2, c3 = new channél (largeBufferChan);

connect (sl.pol, s2,pi, cl);
connect (s1.po2, s5,pi);
connect (s2,po, s7.pil,c2);
connect (s5.po, s6.pi);
connect (s6.po, s7.pi2);

when(LOW_ENERGY ){
connect (s7.po, s4.pi);

}

when(LOW_GRAY )}
disconnect(s2.po, s7.pil);
connect(s2.po, s3.pi, c2);
connect(s3.po, s7.pil, c3);

}

}

Figure 4-8: Stream description

As shown in Figure 4-8, the occurrence of LOW_ENERGY triggers the reconfiguration of
the stream by introducing streamlet powerSaving. Similarly, the occurrence of
LOW_GRAY triggers the insertion of a new streamlet map to 16 grays to provide

transcoding of colour imagesto grey scale images.

4.4 Design Issuesof MCL

The MCL design is greatly influenced by a set of core design issues. These issues, in a

way, differentiate MCL from existing and general coordination languages. It has specific
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focus as an underlying coordination language to facilitate robust composition and support

for dynamic reconfiguration in a mobile and wirel ess environment.

4.4.1 Compatibility Check

In a manner analogous to the type checking in programming languages, it is desirable to
be able to perform the limited static checking of compatibility when connecting or
transforming the composition of service entities. Such controls facilitate the construction
of correct and consistent architectures while helping designers focus their attention on
more complex issues. MCL provides such a mechanism, based on the matching of
streamlet port types.

MCL imposes severa semantic restrictions and constraints on the ability of streamlets to

connect to each other. The two most important restrictions are:

e Streamlet ports can only connect to channel ports (and vice versa).

e Sink ports can only connect to source ports that are equal to or are a specialization of
the sink ports.

It is desirable to encode such restrictions and constraints so that a number of
compatibility tests can be automatically performed by the language at the time of
compilation. Since all MCL connections are between ports, it is desirable to be able to
perform compatibility checks at the port level.

The first restriction is relatively easy to validate by language. Before establishing a
connection, MCL checks the source of two ports. If both are from streamlets, or channels,
the connection is considered illegal. For the second restriction, MCL bases its
compatibility check on port types. As introduced above, multiple associated direct
subtypes or supertypes can be assigned to a port type. These subtype/supertype relations
are used to specify the second restriction on compatibility. To establish a connection,
MCL performs a match of port types: if the type of source port is equal to or is a subtype
of a type of sink port, the connection is considered legal. In the application shown in
Figure 4-6, the connection between the PostScript-to-Text output port and the Text
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Compressor input port is valid, since the source port type text/richtext is a subtype of the

sink port type text.

4.4.2 Recursive Composition

As mentioned above, the stream and streamlet processes are indistinguishable, in terms of
their abstraction, as boxes with associated input/output ports. Thus, a stream object can
logically be regarded as a streamlet written in native MCL composition languages and
reused in another stream application. Thisis known as recursive composition. In addition,
the key word main is included to indicate the highest-level stream object in a
coordination script. The system can thus start to execute an MCL application by locating
astream object that islabeled main in the coordination script.

To support this recursive composition, the composition of a separate description of
streamlets associated with each stream object is needed. Based on these descriptions, the
system instantiates instances of streamlets and sets up connections to each streamlet, just
as it does for common streamlets. For example, the example stream discussed above can
be reused as follows.

streamlet streamApp{

port{
in pi : multipart/mixed;

out po : multipart/mixed;
cache streamApp }
attribute{

type = STATEFUL;
compositeStream library = “/general/streamApp” ;
description =

“match the stream object streamApp to
astreamlet” ;

main stream compositeStreamy{
streamlet s1 = new-streamlet (cache);
streamlet s2 = new-streamlet (streamApp);

connect (s1.po, s2.pi);
}

Figure 4-9: Recursive composition

As shown in Figure 4-9, compositeStream is oblivious to the internal structure of the

stream streamApp. From the view point of compositeStream, this stream object is just a
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common streamlet implemented in MCL. In a similar manner, compositeStream can also

be reused in another higher-level stream object, as a common streamlet object.

The support of the recursive composition model corresponds to the spirit of the
coordination theory in facilitating organized composition. As MobiGATE evolves and,
coupled with the proliferation of streamlets, a need to provide a coordinated and
structured organization of streamlets is envisaged to promote ease of use and
management. This is reflected in MCL through the support of the hierarchical modeling

of streamlet composition based on recursive coordination.

443 Streamlet Sharing

Another important issue of this study is the concept of streamlet sharing. Each streamlet
is oblivious to the source or destination of the messages and is concerned only with
imposing its computation on incoming messages and producing response messages. The
complete decoupling of coordination from computation makes it possible to share

instances of streaml ets between different streams.

The question is, how can messages be distributed to their corresponding streams when the
messages are generated on the output ports of the shared instances of streamlets? In other

words, how can messages belonging to different stream instances be identified?

As introduced previously, streamlets, exchange messages based on MIME. In the MIME
message format, a header exists called the MIME-extension-field for applications to
define their own application-specific headers. A new field in the message header to
identify messages from different streamsis defined, using this feature.
session ::= “Content-Session” “:”session-id

Before executing a coordination stream, the system automatically generates a unique
session ID for each instance of a stream. Subsequently, all messages belonging to this
stream are labeled with the assigned session ID in their “Content-Session” field. By this
means, the system can easily differentiate messages from different streams.
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5 MCL Semantic Model

The definition of a formal language includes two parts: the specification of the proper
construction of sentences, the syntax; the specification of the meaning of sentences, the
semantics [Kolman96].

The primary focus in Chapter 4 ison formal definitions of the architecture descriptionsin
the syntax domain. Definitions of basic elements, such as streamlets, channels, and
streams, are given. While these descriptions may provide useful documentation, the
current level of informality limits their usefulness. In particular, the syntax does not
capture the intrinsic semantic properties of the language, thus rendering analysis of the

architecture for consistency impossible.

In this chapter, MCL is formalized by means of the development of a semantic model.
The model specifies precisely al the language elements introduced previoudly, and is
described by using the specification language Z. The Z schemas, which can be regarded
as generalized type definitions, are used to represent the basic constructs. These schemas
provide semantics that permit the formal verification of properties of the model.
Additiona details on Z can be found in [ Spivey89].

5.1 Formalization of MCL Language Elements

It is assumed that sets[ENTITY, DATA, PORT] exist. The ENTITY identifiers represent
globa names. Name clashes between distinct streamlets and streams are disalowed. The
set DATA includes different data types defined by MIME media type representation, as
discussed in Section 4.1. The PORT members are the streamlet interfaces and are also

introduced as a given set in the model.

5.1.1 Streamlet

In order to define the behavior of a streamlet, its input and output data ports and the data
type that may be passed along each data port must be known. This latter information is
represented by a (partial) function from data ports to their data types. In addition, a

52



streamlet is identified with a unique id. This streamlet information is formalized in the

schema streaml et.

Streamlet

id : ENTITY
inputs, outputs : P PORT
port-type : PORT —H> P DATA

inputs () outputs =@
dom port-type = inputs | J outputs

Some enforced constraints on streamlets are
¢ Input and output data ports are distinct (first predicate);
e Each port is associated with a data type (second predicate).

5.1.2 Channel

The streamlet data ports are connected by channels, modeled as typed data streams. Each
channel has a distinct source and sink for receiving and sending data. Recall that PORT
represents an input or an output of a particular streamlet. Thus a channel represents a data

transmission from one streaml et to another.

Channel

id : ENTITY
sink, source : PORT
type : P DATA

sink # source

5.1.3 Stream

A stream can now be modeled as a set of streamlets connected by channels. More

formally, a stream now agglomerates a set of streamlets together with a set of channels.
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Sream

streamlets : P Streamlet
channels : P Channel

Vv sl,s2: streamlets | sl # s2 e sl.id # s2.id
Vv cl,c2: channels|cl # c2 e cl.id # c2.id
V c: channels ¢ 3 S1, S2: streamlets ¢
c.source e sl.outputs
ACSNk € S2.inputs
A Sl.port-type(c.source) < c.type

Because the ENTITY identifiers represent global names, name clashes between distinct
streamlets and channels are disallowed. It dso is important to point out that the port type
of two connected streamlets must be compatible with that of the intermediate channel. In
other words, the port type must be equa to, or a subtype of, that of the intermediate
channel. Thisis specified by the last precondition in the above definition.

5.1.4 Composite Streamlet

As introduced previously, recursive composition allows streams to be considered as
streamlets and reused in the composition of other high level streams. The main problem
here concerns the resulting streamlet type, since the resulting streamlet should not be
independent of the associated architecture. Consequently, the input and output types
declared at the composite level are selected first. All the inner architecture types not
concerned with any inner connection, are then added. The resulting composite streaml et

is then formalized as follows.



Composite Streamlet

id : ENTITY

inputs, outputs : P PORT
port-type : PORT —H> P DATA
streamlets : P Streamlet
channels : P Channel

inputs = BasicIn | Innerln
Vin € Innerlneds € streamlets ® in € s.inputs
AY ¢ e channels o in # c.sink
outputs = BasicOut ) InnerOut
Yout € InnerOut e3 s € streamlets o out € S.outputs
AY ¢ € channels e out # c.source
inputs () outputs =@
dom port-type = inputs | outputs

The most difficult part of the formal definition concerns the definitions of the sets Innerin
and InnerOut. For simplicity, the process of selecting the unsatisfied input types are
formalized as being those that are not concerned with any connection involving the inner

components.

5.2 Analysisof Architectural Descriptionsin MCL

Based on the semantic model defined in Section 5.1, different kinds of analysis and
checking are now considered. In this section some representative examples of anaysis
supported by the formal framework displayed in this study are presented. To address the
topological requirements, a stream configuration is considered as a directed graph in
which two streamlets are connected if any of their ports are attached to a common

channel, as shown below.
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StreamGraph

Stream
connect : streamlets < streamlets

connect =
{(s1, s2): streamlets x streamlets |
Jce channels o

c.source € sl.outputs A

c.sink e s2.inputs }

5.2.1 Feedback L oops Detection

An important restriction on the definition of stream configurations is that the architecture
has no feedback loops, or the connection graph is acyclic. Informally, in terms of
streamlets, this means data processed by a streamlet will never re-enter the streamlet. The

acyclic can be defined as follows:

Acyclic

StreamGrapah

id streamlets connect = @

5.2.2 Open Circuit Detection

In addition, it is highly possible that some intermediate output ports might, by mistake, be
left unconnected during the composition activities, possibly resulting in the loss of
incoming messages entering the corresponding streamlet. This is called an open circuit
problem and must be detected and avoided during stream configurations. Based on the
definition of StreamGraph, a formal definition of the open circuit problem is provided as

follows:
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OpenCircuit

StreamGraph

ds : streamlets |

Y S'e streamlets o s'id# s.id

A (s, 8) ¢ connect

5.2.3 Mutual Exclusion Detection

It is worthy of note that in the MobiGATE system there are some streamlets that are
mutually exclusive. Thus in the stream compositions, the incoming messages cannot be
processed by these exclusive streamlets smultaneoudly. That is to say, the exclusive
streamlets cannot be deployed in the same path from the START to the END of the
stream configurations. This exclusion relationship can be represented as a partial function

from the streamlets set to its power set in itsformal definition, as shown below.

MutualExclusion
StreamGrapah

repel : streamlets +> P streamlets

Vx e dom(repel) yerepel(x) o
(x,y), (v,X) ¢ connect™

5.24 Dependency Verification

In contrast to mutual exclusion restrictions, in some situations when a streamlet is added
to the stream configuration, a set of closely related streamlets should aso be included. In
other words, these streamlets are said to be mutually dependent. This assurance is a
desirable enforced constraint in the stream composition. The formalization of this

requirement is described as follows:
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MutualDependency
StreamGrapah

depend : streamlets +> P streamlets

Vx e dom(depend) ye depend(x) e

(x,y) € connect ™+

v (v,x) € connect ™

5.25 Preorder Verification

The deployment order of the streamlets in the composition is another composition
restriction. Some streamlets are predefined to impose their services on the incoming
messages in a specific order. For example, encryption and compression are two
independent service entities, and generally the encryption must be deployed before the
compression entity. If it is not so, it is necessary for the system to be able to detect this
order error. This PreOrder restriction is defined below.

PreOrder
StreamGrapah

preorder : streamlets <> streamlets

preorder (| (connect™)™ = @

One virtue of the semantic model defined above is that it has proven to be an excellent
way to obtain an in-depth understanding of MCL, and may even result in discovering
MCL features that were not apparent from a textual description. With these formal
definitions of system properties, many existing tools for Z notation can be utilized to
automate the analysis process, such as Z/EVES [Saaltink97]. This is anaogous to the use
of type checking to guarantee that all uses of procedures are consistent with their

programming language definitions.
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5.3 Case Exampleof Analyzing MCL Descriptions

In this section, a ssimple example is used to demonstrate the usefulness of the MCL’s
semantic model in verifying the correctness of system compositions. Figure 5-1 shows a
composition example comprising three streamlets: s1, s2, and s3. A feedback loop is part
of this composition architecture. As discussed in Section 5.2.1, this loop must be detected
and avoided in the definition of stream configurations. How the MCL semantic model is

used to find and correct this composition mistake is shown below.

Figure 5-1: The composition example with afeedback loop

In MCL, the above composition model can be simply described as follows:
connect (sl.out, s2.in);
connect (s2.out, s3.in);

connect (s3.out, sl.in);

Based on the definitions of StreamGraph, the above description can be mapped into the

semantic domain as follows:
s1,52,s3e streamlets A (s1,52)e connect A (S2,S3) € connect A (S3,s1) € connect

As connect * stands for the strongest or smallest transitive relation containing connect

[Spivey89], it is not difficult to deduce the following statement from the above:

(s1,s1), (s2,82), (s3,s3)e connect *
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But : (s1,51), (2,52), (s3,53) € id streamlets

Thus: id streamlets () connect © # @

Obvioudly this conflicts with the definition of the acyclic requirement for a stream
description. The conflict isindicated in the validation process, a process, which for other

system properties, is quite similar.

The above example shows that a semantic model can be used to analyze application
architecture to ensure that it is consistent in its internal structure. This is not possible
using syntax descriptions aone. It has been found that a large amount of effort is
involved in validating a given application configuration. In contrast, the semantic model
defined in this chapter, has made the correctness verification of MCL descriptions

feasible and much easier.

The derived MobiGATE semantic model has proved to be effective in providing an in-
depth understanding of MCL and given an insight into the complexity of configuration
semantics. Of importance in this respect is that the MCL composer’s intended meaning of
streamlet and channel descriptions and composition semantics can be captured precisely.
As aresult, the overall MCL description can be validated to ensure that potential conflicts,
such as open circuit and mutual exclusion introduced in the previous section, are resolved
at compilation time and aso during runtime. A more ambitious aim is to develop a
complete theory of architecture description that allows reasoning about the behavior of

the system as awhole.
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6 Development of the MobiGATE System

This chapter describes the design and development of the MobiGATE system that
supports the necessary framework for streamlets in order that they may be easly
composed, inserted and removed. This system forms the underlying runtime execution
environment where streamlets are deployed and executed on the proxies residing between
the two ends of the wireless link. The MobiGATE runtime model is implemented on a
Java platform, in which common runtime operating system elements are abstracted as
either residing in the coordination or computing sub-layers. Significantly, the runtime
system is designed to promote maximum reusability of system services while minimizing
overheads that may be incurred due to streamlet operations. The aim is to provide a
general and flexible system that supports rapid development and deployment of streamlet
applications without dictating how the streamlet operation flows.

The low-level details of the implementation codes are not discussed here. Rather, the
chapter highlights three major abstract classes that are pervasive in the MobiGATE
model.

e Sreamlet base class is the core abstraction of a streamlet that implements and
manages the lifecycle operations associated with a streamlet object, such as pause,
activate, and end.

e MessageQueue abstracts the communication among all streamlets residing in
MobiGATE. Importantly, it provides a convenient way to separate the communication

parts from the computation codes in a streamlet application.

e Stream base class is responsible for managing the insertion, removal, and replacement

of streamlets that are composed within a stream.
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MobiGATE System

Streamlet Client

MessagePool

Streamlet(Instance)

Stream(Instance)

processMsg() : boolean

[ Distribute
Message

MsgDistributor

streamlets: Vecotr

distribute(); void
msgToFile() : void
run(); void

Log

filename: String
printer: PrintWriter

writeln(): void
close() : MimeMessage

initConfig() : void

SessionManager

sessions: Vecotr

newSession(): void
destroySession() : void
get(): Stream

htab : Hashtable P processMsg() : boolean on_energy changed() : void
S l(v;lztg releaseResource() : boolean on:grayfcﬂanged() - void
ge t().: MimeMessage A on_ﬁbandwidthichanged() :
remove() : void extend void
tend
Streamlet T exien
Core Classes id- String Stream
In : MessageQueue
MessageQueue Out : MessageQueue §treamlets : Hashtable
isAlive : boolean in : MessageQueue
msgQueue : Vector Fetch | running : boolean out : MessageQueue
max_size : int st Start(); void
type: String run(): void monitor() : void
pCount : int pause() : void € | new-streamlet() : String
cCount : int acgva?e()_:d void connect() : void
postMessage(): void end() : voi insert() : void_
fetchMessage() : String remove() : void
replace() : void
create end(): void
A
SystemManager ereate
streams : Vector EventManager
ConnManager log: Lo
g: -og LOW_ENERGY : boolean
clients: Hashtable L LOW_BANDWIDTH :
] P start(): void - boolean
addConn(): void _ o | end(): void event || o GRAY : boolean
removeConn() : void el onEvent() : void —
send(): void »| loadStream() : void getBvent() : void
receive()): String removeStream() : void broadeast() : void

:

6.1 TheBase Class; Streamlet

An excerpt of the Streamlet base class is shown in Figure 6-2. Any streamlet that is to be
deployed within the MobiGATE infrastructure needs to extend this base class. The

Sreamlet class extends the Thread class and thus is inherently runnable. The author of a
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Figure 6-1: The MobiGATE system class diagram

Figure 6-1 shows the greatly simplified but representative class diagram of the complete
implementation. The following sections briefly describe the main classes that make up
the MobiGATE infrastructure.

specific streamlet is required to write the functional code within the pr ocessMsg()

method, which will be invoked by the run() method in the Streamlet class. The



Sreamlet class contains an In and an Out object, along with their corresponding standard
references to manipulate the stream connections. A group of methods (e.g. set | n,
set Qut, get | n, get Qut ) isused to establish reference to the In and Out objectsin the
Sreamlet code itself. In addition, severa lifecycle methods are also defined in the
Sreamlet class, such as pause(), acti vat e(), and end(), to manage streamlets

lifecycle operations during runtime.

The computing model can be used to define general types of streamlets by providing the
developer with the flexibility to include any application-specific processing by overriding
the streamlet’'s processMsg() method. For example, streamlets can be rapidly
developed to provide important services such as image down sampling, color to gray
conversion, compression, and encryption. Connection between streamletsin the Sreaml et
instance is achieved through the use of the In and Out object abstractions.
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public class Streamlet extends Thread implements Serializable, Cloneable {

[[The Streamlet identifier
private String id;

/[The input port
public MessageQueue In;

//The output ports
public MessageQueue Out;

/IThe setln and setOut methods allow on to set up their own
/I references names to the actual message queue
public void setln(MessageQueue input){
In=input;
input.incr_cCount();
}
public void setOut(M essageQueue output){
Out = outpult;
output.incr_pCount();
}

I specific processing logic goes here
// waiting to be override by developers
public void processM sg(MimeM essage msg){ }

//Life cycle methods
public void pause() { ... }
public void activate() { ... }
publicvoidend() { ...}

Figure 6-2: Excerpt from the class Sreamlet

6.2 TheBase Class. MessageQueue

MessageQueue is used to manage the communications among streamlets on a given

stream. In the class, there is a message vector msgQueue, accessible to the producer and
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consumer streamlets and holding references to the passing MIME messages. The main
concern with the vector is how to synchronize producer and consumer activities. The
class implements methods post Message() and f et chMessage() and obtains the
synchronization in two ways. First, the two threads must not simultaneously access the
msgQueue. A Javathread can prevent this from happening by locking an object. When an
object is locked by one thread and another thread tries to call a synchronized method on
the same object, the second thread blocks until the object is unlocked. Second, the
producer must have some way to indicate to the consumer that the message is ready and
the consumer must have some way to indicate that the value has been retrieved. The
Thread class provides a collection of methods--wait, notify, and notifyAll--to help threads

wait for a condition and notify other threads of when that condition changes.

In particular, two important integer-typed attributes have been included in the class
MessageQueue, producer count pCount and consumer count cCount, which respectively
represent the number of producers and consumers attached to a queue object. By
increasing the corresponding pCount by 1, the system assumes that a producer streamlet
has been connected to the channdl. If the value of pCount is O, the system assumes that
the channel does not at the moment have a producer attached. For the variable cCount,
the representation is similar. The code segment below is excerpted from the

MessaeQueue class.
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public class M essageQueug(

//[The Message V ector

private Vector msgQueue;

private int max_size= MAX_SIZE;
private String type = "*/*";

//Poducer/Consumer Count
private int pCount = 0;
private int cCount = 0;

/IThe method to insert messages
public synchronized void postMessage(String msgID){ ... }

//The method to read& remove messages
public synchronized String fetchMessage(){ ... }

Figure 6-3: Excerpt from the class MessageQueue

6.3 TheBase Class. Stream

The Sream class is the base class that serves to manage stream applications in the
MobiGATE infrastructure. Unlike the Streamlet class, Stream is responsible for
managing the stream of composed streamlets. Its concern is not the operations of the
streamlets, but how the streamlets are composed and their interactions with one another.
The three primary tasks of the Sream class are initializing connection setup,
reconfiguration of the system in response to different events, and definition of
composition primitives. Theinitializing connection setup method provides an opportunity
for developers to allocate and initialize stream specific parameters in preparation for the
stream to be deployed. To support the reconfiguration setup, an important method
onEvent () is abstracted to alow developers to override and react to externa

contextual events. The composition primitives are fundamenta to the Stream class in that
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they provide method calls to support dynamic streamlet compositions. In particular, the
class implements methods for inserting and removing streamlets from the stream, as well
as methods for creating new streamlet instances in the stream. All these defined
primitives are used in the composition of specific stream applications. Figure 6-4 is

excerpted from the class Sream.

public class Stream implements Serializable, Cloneable{

// member streamlets hash table
protected Hashtable htab;

// life cycle methods
public void start(){ ... }
public void end() { ... }

// environment monitor
public void monitor() { ... }

// 1nitial configuration setup, to be override by stream developer
public void initConfig(){

}

// reconfiguration activities, to be override by stream developer
protected void onEvent(ContextEvent evt){}

// composition primitives definition

protected String new_streamlet(String name){ ... }

protected void connect(String p, String ¢, MessageQueue channel){ ... }
protected void insert(String p, String ¢, String 1){ ... }

protected void remove(String t, String p){ ... }

protected void replace(String old, String alt){ ... }

Figure 6-4. Excerpt from the class Sream
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In expressing a stream for an application, the developer is required to capture in MCL the
streamlets composition, which essentially captures the initia connection topology and
reconfiguration schemes. On deploying the stream application within the MobiGATE
infrastructure, the system automatically creates the corresponding stream instances from
these descriptions by extending the base class Stream and overriding the related methods
(eg. i nitConfig(), onEvent (Cont ext Event evt), where evt represents the
contextual event). Importantly, the composition model greatly relieves programmers of
complex and low-level streamlet programming and system activities, such as event
listening or resource recollection. In short, the clear separation of concernsin terms of the
computation and composition enhances the modularity and flexibility of the system,

while facilitating ease of service reconfiguration through dynamic stream composition.

6.4 MObiGATE Event System

The generation and propagation of system events is another important issue that needs to
be considered especially in the design of the MobiGATE system. Today’ s Internet clients
vary widely with respect to both hardware and software properties: screen size, color
depth, effective bandwidth, processing power, and the ability to handle different data
formats. To build a dynamically adaptable system, the various client variations must be
captured and modeled into a standard and recognizable form, before some further actions

are taken to respond to them.

The MobiGATE event system, where each client variation is modeled as an object called
MobiGATE Event, has been designed for this purpose. In the system, al the client
variations have been classified into four different categories: System Command, Network
Variation, Hardware Variation, and Software Variation, each of which represents one
axis aong which clients may vary. It is necessary to point out that each category may
have more than one event defined. For example, there are three events PAUSE,
RESUME, and END in the System Command category. The category and its
corresponding event list are shown in Table 6-1.
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Category Eventl D Description
PAUSE Pause the stream application
System Command RESUME Resume the paused application
END End the whol e application

LOW_BANDWIDTH

The effective bandwidth < 100K b/s

NORMAL_BANDWIDTH

The effective bandwidth > 100K b/s

Network Variation HIGH_ERROR High error rate
NORMAL_ERROR Normal error rate
LONG DEALY The transmission delay > 1s
NORMAL_DEALY The transmission delay < 1s
LOW_GRAY The shallow grayscal e display
Hardware Variation LOW ENERGY The client is under low energy mode
NORMAL_ENERGY The client is under normal energy mode
JPEG_ONLY The client device only supports Jpeg image
Software Variation GREY_ONLY The client does not support colored display
PS TO TEXT The client does not support PostScript

Table 6-1: MobiGATE event definition

Note that, unlike the case with other systems featuring events, MobiGATE events are not

parameterized and cannot be used to carry data — they are used purely for triggering the

evolution of the coordinated streamlets. As shown in Figure 6-5, each MobiGATE event

object is associated with three primary attributes:

o eventlD:
e categorylD:
e eviSource:

The identity of the event object.
The category the event object belongs to.
The source of the event. In other words, which stream application

does the event object belong to?
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public class ContextEvent{ Stream 1: onEvent()
private String eventID; Stream 2: onEveD
private int categorylD; :
private String evtSource;
Stream N: onEvent()

ContextEvent(String evtlD, int cglD, String src){

eventlD = evtID; multicastEvent()

categorylD = ¢cglD; T

evtSource = sr¢;
) composeEvent()

A4

public String getEventID(){ subscribeEvent() /

return eventlD; .

unsubscribeEvent()
} Event
Manager

public int getCategoryl D(){

return categorylD; l
}

monitor()

public String getSource(){

return evtSource; System Network Hardware Software
} Command | Variation Variation Variation

} Client Variation
Figure 6-5: MobiGATE event object Figure 6-6: MoObiGATE event system

Figure 6-6 shows the MobiGATE event system diagram. A kernel entity, called Event

Manager , was designed to control the operation of the event system including event
subscription, triggering, and monitoring. The Event Manager monitors the underlying
client variations and composes corresponding events in response to various situations.
Simultaneously, the Event Manager multicasts events among different stream
applications, whose method onEvent () will then be invoked upon the reception of these

events.

To avoid overheads incurred in processing the flood of events, individua stream
applications may subscribe to events of interest and react to these events by performing
appropriate reconfiguration, while ignoring those events that they consider superfluous.
To support this function, the Event Manager maintains an array subscriberList to
hold subscribers for different event categories. Each element of this array is vector-typed,
which holds a collection of subscribers of the corresponding event category. The

EventManager class is equipped with the method subscri beEvent () for stream
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applications to register events of their interests. Figure 6-7 is excerpted from the class
EventManager.

public class EventManager extends Thread{

/Imaintain subscribers of different categories
private Vector[] subscriberList;

void EventManager(){
categoryList = new Vector[ EventUtility.CategoryCount];
for(int i=0;i<EventUtility.CategoryCount;i++){
categoryL.ist[i] = new Vector();
}
}

public void subscribeEvt(int categoryl D, Stream app){
categoryList[categoryl D].add(app);
}

public void unsubscribeEvt(int categorylD, Stream app)X{
categoryL.ist[categoryl D].remove(app);
}

public void multicastEvent(ContextEvent evt){
try{
int id = evt.getCategoryID();
for (Enumeration e = categoryList[id].elements() ; e.hasMoreElements() ;){
((Stream)e.nextElement()).onEvent(evt);
}
} catch (Exception €){}
}

public void run(){
//Monitor the underlying resources
//Compose new event objects in response to various situations

}

Figure 6-7: Excerpt from the class EventManager

71



Thus when a new event object is generated, the Event Manager is required to check
the attribute evtSource of the event and verify whether the corresponding stream
application has subscribed to the event category. If they have, the event is forwarded to

the stream for processing; otherwise it isignored.

6.5 Sender and Receiver Streamlet Matching

Each streamlet, if necessary, has associated with it a unique peerID, which is used to
identify a peer streamlet on the other side of the communication channel. Given a
streamlet that performs some processing on an outgoing message, its peer streamlet
performs the reverse processing on incoming messages. For example, a text Compressor
streamlet on the sending end of a connection requires a DeCompressor streamlet on the
receiving end. Each streamlet on the sending side of a connection adds a header field to
the messages before writing them to its output port. The field identifies the peer streamlet
needed at the receiver. When a message arrives at the receiving side, it isfirst distributed
to a message distributor, where the peerID of the streamlet is checked. If the distributor
can find a streamlet whose identification matches the peerID contained in the incoming
message, then the distributor will deliver the message to the streamlet. Once a message
has been processed by al necessary peer streamlets, it is delivered to the application.

6.6 Message L oss Avoidance

In the process of stream configuration, it is not unusual for messages to be queued in a
streamlet buffer, while waiting to be processed. As a result, it is necessary that
MobiGATE exercises message loss avoidance to prevent unprocessed messages being
discarded owing to the remova and insertion of streamlets. It is important to note that
MobiGATE does not attempt to facilitate peer-to-peer streamlet synchronization during
the remova process. While it provides mechanism for peer-to-peer streamlets to pass
control messages, it is the responsibility of the peer streamlets to ensure that state
information and data are appropriately handled before MobiGATE removes the peer
streamlets from the stream.
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To avoid pre-mature termination of streamlets and avoidance of message loss during the
reconfiguration process, the system checks if the pre-established conditions have been
satisfied for the target streamlet. The conditions are depicted in Figure 6-8. If the
conditions are satisfied, the streamlet can be removed safely. Otherwise the system has to

wait some time or take special actions, until all conditions are satisfied.

Prerequisites to terminate a streamlet

¢ All producers of the streamlet are stopped or suspended. (New messages
will not arrive at its input port any more)

* The input port of the streamlet is empty. (No messages to process)

* The streamlet is not processing any messages. (Not on message)

Figure 6-8: Prerequisites to terminate a streaml et

By adopting this mechanism, incoming messages can be guaranteed to ultimately appear
at the output port in a stream under normal operations. Though it is still possible to lose
messages in some very special conditions (such as streamlets processing speed mismatch,
a problem that is discussed later), it is argued that some further actions can be taken to
minimize the occurrence, which forms part of future work in the implementation of the
MobiGATE system.

6.7 Further Improvement

As introduced in Chapter 3, MobiGATE has a number of desirable properties. First, it
maintains the intuitive flow of processing. Second, it supports reusability by promoting
strong modul arity between streamlets and decoupling of coordination from computation.
New functions are easily added to the system by inserting streamlets at the appropriate
point in the processing sequence. Third, it supports ease of modification, since streamlets
are logically independent of other streamlets. In implementing the MobiGATE system,
there exist severa chalenges and issues that may significantly impact the system’s
performance and usability. One of the maor issues pertains to the incurrence of

potentially large latency overheads caused by message copying across streamlets.
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Furthermore, different streamlets may run at radically different speeds: it is unacceptable
to slow one streamlet down because another streamlet is still processing data.

To handle these problems, the MobiGATE infrastructure employs a centralized message
storage management, while utilizing memory references to pass messages between
streamlets. In particular, the system maintains all incoming messages by storing themin a
message pool and passing them between different streamlets by their associated message
identifier. In other words, the system employs the passing by reference instead of value.
The benefit of significantly reducing the copying overheads is demonstrated and
discussed in the performance evaluation chapter. In addition, the system permits
messages to be ignored by slow streamlets if they are in the middle of processing other
messages. This is obtained by modifying the method post Message() in the class
MessageQueue, as shown in Figure 6-9.

public synchronized void postM essage(String msglD){

while(msgQueue.size() >= max_size){
try{
/lif the message is full / the downstream streamlet is a slow one
wait(T);
/1 if still full after T, drop the message
if (msgQueue.size() >= max_size){
System.out.printin("Queue full, message "+msglD+" was dropped!!!");
return;
}
} catch (InterruptedException €) {
}
}

/ladd the message id into the queue
msgQueue.add(msgI D);

Figure 6-9: Excerpt from the method post Message()
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7 Performance Evaluation

In order to study the operation and performance of the MobiGATE system, a set of
experiments on an emulated and controlled wireless environment is conducted.
Significantly, these experiments provide a unique opportunity to measure the potential
computation overheads that may be incurred by the MobiGATE system in providing
active transport services, while alowing the collection of empirical data on the
performance of the system. By analyzing and comparing the results, further insights into
the characteristics of MobiGATE are expected. It is also hoped to thoroughly exercise the
interactions between the software components with the ultimate aim of validating the
functionality of the system.

The experiments begin with testing the MobiGATE streamlet in isolation, measuring the
overhead brought by each streamlet when serving incoming messages. A set of
experiments on the reconfiguration time was then conducted. These experiments enabled
validation of the effectiveness of MobiGATE in facilitating context-aware computing
through streamlet reconfiguration, together with the collection of empirical results on
overheads incurred during reconfiguration. Finally, a case example with a particular
application reacting to a changing bandwidth was studied to demonstrate the use of
MobiGATE while verifying the insignificant overheads incurred in runtime processing. A
comparison was made with the performance gained in service deployment and

reconfiguration.

7.1 Testing Environment

As shown in Figure 7-1 the setup includes the use of three PCs. one acts as the
MobiGATE server residing on the wired departmental LAN, a second acts as the mobile
node, and the third is configured to act as a wireless router for emulating a wireless
operating environment. The MobiGATE server and the Linux router are located on the
same fixed LAN (158.132.11) within the campus network. Any requests to hosts outside

the campus have to go through the transparent campus proxy server. The mobile node is
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connected to the second network interface of the Linux router using different network
identification (10.0.0).

Campus Prpxy Server

O ———— Depértmental LAN | )
network id: 158.132.11

network id: 10.0.0

MobiGATE Linux router
Proxy server using NIST =
network MobiGATE
emulator Proxy client

Figure 7-1: Testing environment

7.2 Streamlet Overhead Analysis

For a specific streamlet, ignoring the service processing time, the incurred overheads
primarily come from two sources:

e The added work to parse and unparse incoming messages.

e The additional overhead in transmitting messages to and from other streamlets.
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In this experiment, a specia streamlet, named redirector, has been designed. Its primary
logic is to read and parse incoming messages from its input port, encapsulating the
necessary headers and sending the messages to its relevant output port. Significantly, the
redirector streamlet contains core service codes that can be evaluated for overheads
incurred in maintenance and execution over the MobiGATE runtime. Delay times can
easily be captured by measuring the time needed for a size-specific message to pass
through a configured number of streamlet redirectors. Considering the fact that the
primary overheads incurred by the redirector streamlet are inherent in any streamlet for
processing incoming messages, it is argued that the experiment setup is reasonable and

realistic. The experimental results are shown in Figure 7-2.

Streamlet Overhead Analysis
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Figure 7-2: Streamlet overhead

The above figure shows that the delay overhead increases linearly with the increase in the
number of streamlets the messages passed through. On average, the overhead is about 12
ms per streamlet. It is believed that the overhead can be further reduced with improved
hardware configuration such as increasing the processor speed and increasing the
available memory. Furthermore, in the realistic deployment of services, it is unlikely that
more than ten streamlets will be used. That is to say, the overhead brought by these
streamlets can safely be bound to about 100 ms, which is relatively acceptable compared

with the potentially long transmission delay incurred in wireless transmissions.
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7.3 Passing by Reference versus Passing by Value

The MobiGATE system maintains all incoming messages by storing them in a message
pool and passing the messages between different streamlets by their associated message
identifier. In other words, the system employs passing by reference instead of value.
Figure 7-3 shows the experimenta results when buffer management of MobiGATE is
implemented based on reference passing versus value passing. In this experiment, several
messages of different sizes were prepared and made to pass through a number of

streamlet redirectors (thirty in the experiment) successively.

60000

—e— Message Passing by Reference
50000 , »
—m— Message Passing by Value

40000
30000 /
20000 =
10000 /

20K 40K 80K 120K 200K 400K 600K 1M

Time Overhead (ms)

Message Size (Byte)

Figure 7-3: Passing by Reference versus Passing by Vaue

As expected, the experiment clearly indicates an increase in processing overheads with a
progressive increase in the message size. The rate of increase is more prominent as the
message size increases beyond 200K bytes. Across different message sizes, the
processing latency is significantly lower for messages that are passed by reference
compared to messages that are passed by value. In the former case, new incoming
messages are copied into the message buffer pool once, while message headers and
identifiers are treated as meta-data and references to be passed between streamlets. While
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the message header size may increase as more streamlets are chained in the stream, the
sizeis still significantly lower than that of the actual message data. Avoiding copying of
actual message data across streamlets also significantly reduces the amount of memory
required by MobiGATE. This has the benefit of keeping messages stored and cached on

fast memory, avoiding the need to swap between resident memory and secondary storage.

7.4 Reconfiguration Time

Dynamic reconfiguration in MobiGATE aims to maximize the performance of wireless
access under a vigorously changing context environment. However, the reconfiguration
process of service composition brings a certain number of performance penalties that are
unavoidable. Reconfiguration time is the time taken for the MobiGATE system to adapt
to changes in the wireless environment. In other words, reconfiguration time is the
amount of time during which a user will find the MobiGATE system inactive due to

reconfiguration.

Before going into the details of the experiment, the addition of a new streamlet is used as
an example to illustrate a complete reconfiguration process. Figure 7-4 shows the steps of
this processin detail:

1. Three streamlets: A, B, and C. A and B are initially connected by a channel m.
Assuming the need to insert C between A and B.
Suspend streamlet A.
Detach A from the channel m.
Attach C to the channel m.

Create a new channel n between A and C.

o g bk~ w N

Activate streamlet A and the reconfiguration is finished!
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Figure 7-4: The addition of a new streamlet

From the above illustration, it is not difficult to derive the reconfiguration time, which
involves the following factors:
J Zk: S - Suspension of k streamlets
i=1
e nc - Creation (or Deletion for removal operation) of n channels
J Zk:q - Activation of suspended streamlets
i=1

Thus, the reconfiguration time (T) can be represented as:

k k
T=>s+nc+ > a. --- Equation 7-1
i=1 i=1

To evauate the time required to reconfigure using the MobiGATE system, several
reconfiguration actions were performed. Specifically, a stream application ReconfigExp
was designed. It reacts to the LOW_BANDWIDTH event, which is defined in Table 6-1,
by inserting a number of streamlets redirectors. As shown in Figure 7-5, the time Ts is
recorded once at the beginning of the method and then, after a series of actions, the time
Te is recorded again as the ending time of the reconfiguration. By varying the number of
streamlets inserted (the variable InsertCount in Figure 7-5), different numbers of
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reconfigurations can be measured and Te - Ts will be the resultant time cost. Figure 7-6

shows the result of the experiment.

public class ReconfigExp extends Stream {

protected on_bandwidth _changed{

// record initial time
recordTime(Ts),

Reconfiguration Overhead

10 20 40 60 80 100

Reconfiguration Times

// reconfiguration actions
if (LOW_BANDWIDTH){
for(int i—0;i<InsertCount;i++){

©
o

[o5)
o

s — new_streamlet("redirector”);
insert(init,tail,s);
tail =s;
}
}

~
o

a o
[oNe]

w
o

n
o

// record end time
recordTime(Te)

Time Overhead (ms)
N
o

=
o

o

-

Figure 7-5: Excerpt from the class ReconfigExp ~ Figure 7-6: Reconfiguration overhead

Notice that when the number of added streamlets is less than 10, the reconfiguration time
is less than 20 ms. Even when the number of streamlet additions reaches 100, the
reconfiguration overhead is till less than 100 ms. This is a noteworthy and promising
result considering that the reconfiguration rate is likely to be comparatively low (typically
in terms of tens of seconds to minutes, depending on the contextual changes of the
wireless environment) and the reconfiguration time is insignificant. The good
reconfiguration performance is the result of an extensive use of multi-threading and
object code sharing across streamlets, and of the separation of coordination from

computation to accelerate and support ease of reconfiguration.

7.5 MOobiGATE End-to-End Performance
After evaluating the overheads of key MobiGATE mechanisms, this section describes the

overal system performance of MobiGATE from an end-to-end perspective. In particular,

it isamed to fully exercise the MobiGATE system components by setting up a redistic
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test bed in the form of a stream application operating over an emulated wireless network.
The purpose is to verify the benefits of the MobiGATE system by asserting that the
operations overhead is small compared with the improvement in performance that comes

from using this system in a wireless environment.

Traditionally, if the MobiGATE system is not utilized, the time cost to transmit a certain

amount of information can simply be represented like this:

T, = BS—ZZ, where Sze represents the amount of information to transmit, and Band
an

represents the bandwidth value.

By using the MobiGATE system, the information size for transmission can be greatly
reduced’, but this will also bring some overhead into the system, as introduced in
previous sections.

Sze Sze-Sze Sze Sze
- + T - reduced T - +T _ reduced
2 Band overhead Band overhead Band overhead —Ban d
— SZereduced H
= T1 + (Toverhead - ——redueed ) --- Equation 7-2

Band

To justify the effectiveness of the MobiGATE system, the time costs T; and T, need to be
evauated for the same amount of information to be transmitted over wireless links. That
is to say, the system throughput for these two different schemes must be compared to

draw a conclusion.

For this purpose, a case study of an application that reacts to changes in bandwidth has
been prepared. The application speeds up web surfing over slow links by including the
following streamlets:

" Note that MobiGATE is not restricted to introducing services that optimize the amount of data to be sent
across a wireless link. However, this is a direct and visible example to demonstrate the benefit of

MobiGATE in terms of reducing transmission latency and improving link performance.
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e Switch: Dividing incoming messages based on the semantic type of the data;

e Gif2Jpeg: Converting incoming image messages into Jpeg format;

¢ Image Down Sampling: Lossy compression of an image by reducing the sample rate;

e Communicator: Sending messages onto the network;

e Text Compressor: A generic text compressor. This streamlet has the potential to
reduce the data size by up to 75%. Importantly, this streamlet is activated only if the
bandwidth of the wireless link falls below 100 Kb/s. This setup provides the
opportunity both to test the responsiveness of MobiGATE to context changes and to

exercise the reconfiguration mechanisms.

In the application, an amount of real image and text messages are generated continuously.
Image messages are processed by the streamlets Switch, Gif2Jpeg, Image Down
Sampling, and Communicator successively from the start to the end, whereas the situation
is different for text messages. Under normal conditions (bandwidth >100 Kb/s), the text
messages only pass through the streamlets Switch and Communicator. But when the
bandwidth fals below 100 Kb/s, the third streamlet, Text Compressor, is inserted
between the above two streamlets to adapt to the poor bandwidth. After recording the
sending and receiving time of each message, the time cost to transmit each message can
be calculated and the overall system throughput is then obtained.

In the experiment, the system throughput under the bandwidth of 20Kb/s, 50Kb/s,
100K b/s, 200K b/s, 500K b/s, 750K b/s, IMb/s, and 2Mb/s was measured successively. For
each bandwidth setup, three different transmission delays, <1ms, 50ms, and 100ms, were
adjusted to evaluate the performance of the system. The final results are shown in Figure
7-7.
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Figure 7-7: The effectiveness of the MobiGATE system

The above results can be analyzed from the following points:

1. A noticeable improvement in system throughput has been obtained with the
MOobiGATE system as compared with a setup for direct transfer of messages

. . . . Sze
across the wireless link. Back to Equation 7-2, that is: (Toverhead - ——2d ) < Q

Band
and T, < Ty.

2. When the bandwidth is about 2Mb/s, the system throughput difference is not very
large with/without the MobiGATE system. This can be explained from Equation
7-2. When the bandwidth is relatively large (near 2Mb/s), for the same size of

transmission, (Toverhead - S?—e“ge“) will approach 0, and T, approach T;. Thusthe
an

difference in the system throughput is minimal. But with a decreasing bandwidth,
this difference becomes larger and larger. This is expected since the effect of
applying streamlet services to reduce the amount of required bandwidth begins to
take prominence.

3. When the bandwidth approaches 200K b/s, which is arelatively low bandwidth for
transmission, the difference in the system throughput becomes unnoticeable

again. This is because the time costs T; and T, at this moment are very large,



causing both system throughputs to be relatively poor. Hence their differences can

not be seen clearly from the result diagram. However, it does exist.

4. In an event when the bandwidth falls below 100 Kb/s, a special reconfiguration
mechanism is invoked, in which the streamlet Text Compressor is inserted into
the stream. The result indicates that the system throughput improves greatly. By
comparison, the system throughput without the MobiGATE continuously drops
with the decrease of the bandwidth.

The experiments clearly indicate the benefit of the MobiGATE system and its ability to
offset processing overheads that may be incurred in deploying the streamlet application.
This is particular true if MobiGATE is deployed in an environment where resource

availability is dynamic and scarce.
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8 Conclusions and Recommendations

In this study, a middleware system MobiGATE and its supporting coordination language
MCL are proposed in order to adapt network data flows in the wireless domain. The
focus of the work is to apply the coordination theory in the adaptation service
composition and system reconfiguration at infrastructural proxies. This approach has a
number of desirable properties, including reusability, ease of modification, and

maintenance of the intuitive flow of processing.

8.1 Conclusions

A reconfigurable and adaptive system for mobile computing is expected to continue to
take a prominent role in alleviating the poor traffic conditions of wireless links and
resource limited mobile devices. The research study described in this thesis ams to
develop a highly adaptable and reconfigurable middleware to adapt data flows across a
wireless and mobile environment. To achieve this goal, an adaptive middleware,
MobiGATE, has been designed, implemented, and verified to support robust and flexible
composition of adaptable services, termed streamlets. Streamlets form the basic building
blocks of a stream that adapts the flow of data across the wireless link. To achieve utmost
flexibility and management of service adaptation, MobiGATE adopts the principle of
separ ation-of-concerns to facilitate clear separation of streamlets’ coordination from the
service computation codes. This has resulted in the formulation of a two-layered
MobiGATE execution platform that supports rapid deployment of service streamlets,
while facilitating adaptive composition in reaction to changing environmenta contexts.
Additionally, MobiGATE is equipped with the necessary mechanisms and system
services to support peer-to-peer streamlet collaborations with its thin-client model, which
sets the MobiGATE system apart from other existing adaptive middleware. The design of
MobiGATE is validated through the complete implementation of the system on a Java
platform. Empirical experimental results conducted on the system demonstrated the
effectiveness of the middleware in adapting data flows over an emulated wireless link,

while incurring insignificant computational overheads in its execution environment.
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MobiGATE Coordination Language (MCL) plays an important role in providing bridging
between streamlets’ computation and their interdependencies. The language providesrich
constructs to support the definition of compositions, with constrained type validation and
checking. In the description of the coordination, each service entity is regarded as a black
box with well-defined interfaces. MCL enables the core functional pieces of an
application to be clearly separated from its application-specific patterns of
interdependencies. This is supported by two distinct language elements: streamlets, for
representing core functiona service entities; and channels, for representing relationships
of interconnection among streamlets. The novel features of MCL include the modeling of
service interfaces based on an MIME media type system, support for a check on the
compatibility of the compositions, support for recursive compositions, and the concept of
streamlet sharing. Significantly, the language is reinforced with a semantic model in Z
language. Based on the derived semantic model, the applications running in the
MobiGATE system can be analyzed to ensure that they are consistent in their internal

structures.

8.2 Recommendations

As in most research work, the progress made in this study undoubtedly has not covered
al new and interesting directions, but suggestions for future work to further enhance the
performance of MobiGATE are given below. The future work can generally be organized

into two parts: the Mobi GATE architecture and its supporting language MCL.

8.2.1 MOobiGATE Architecture

Throughout this thesis, the important function of the MobiGATE architecture in
supporting MCL composition and providing runtime environment is especialy
emphasized. The separation of concerns is the underlying theme of this system. To make

MobiGATE more complete and powerful, the following work is necessary:
« Dynamic inclusion of new event objects. In the current MobiGATE system, all the

event objects are predefined and assumed to be recognized by al of the application

developers. However, the future inclusion of the function of the dynamic addition of
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new event objects for the system is planned. By this means, application developers

can propose their own event objects and define the corresponding event handlers.

The mechanism to support a wireless handoff. When a mobile client equipped with
multiple wireless interfaces switches between wireless networks, also known as a
wireless handoff, a specific mechanism is needed to enable these mobile clients to
use the MObIGATE system consistently. This mechanism may include the
notification of the characteristics of the new network, the migration of adaptation
services if necessary, and the synchronization of the application status. With the
separation-of-concerns fulfilled in the design of MobiGATE, streamlet adaptation
services can run independently of the environment and other streamlets. It is argued
that this advantage can greatly facilitate the implementation of the handoff

mechanisms in the future.

Communications between streamlets and the coordinator. According to the current
design, streamlets communicate with the external environment only through their
data ports. In the future, it is expected to associate each streamlet with a control
interface that alows the external coordinator to set operation parameters for the
streamlets. For example, the text compression streamlet might have parameters that
determine compression rate. These inputs serve as configuration parameters for the
whole application. In this way, each streamlet will have two methods to
communicate with the external world: data ports to communicate with other
streamlets for message processing, and control interfaces to receive parameter setting

information from the coordinator.

Security and transaction concerns. As a middieware system, MobiGATE needs to
consider many system issues, far more than separation of concerns discussed in depth
in previous chapters. System security and transaction control are such two important
topics necessitating future exploration before MObiIGATE can be redistically

deployed in an open and wide area environment.
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o Other problems open to the future. There are till some problems left in the current
system to be solved, such as the problem of the processing speed mismatch between
streamlets, and the synchronization of peer-to-peer streamlets during the removal
process. The fina resolution of these problems depends on the success of

implementation of the work discussed above.

8.2.2 MOobiGATE Coordination Language

No programming language design is ever complete. As more experience is gained with a
programming language, additional features are added and existing features are modified
to enrich its expressive power. MCL is expected to be the same. Below some immediate

areas of future enhancements of MCL areidentified:

o Experience with MCL. The most pressing short term need for research on MCL isto
gain usage experience. To this date, only a sample application architecture is
characterized using MCL, as introduced in Section 4.3. The applicability of MCL is
explored with this application and how MCL'’s facilities can be of benefit in the
system reconfiguration is shown. However, the case study described here does not
capture the architecture properties of interest completely. A limitation is that this
work has been carried out in an academic setting. MCL remains largely untested in

actual practicein the work place.

« More automated tools. As discussed in Chapter 5, some automated tools based on Z
notation have already existed for the analysis process. However, they are still too
general to be used directly on MCL descriptions. It is planned in the near future to
develop tools that are specific to the MCL language and can provide automated
checking of the propertiesfor at least a subset of MCL.

o More systematic expression of architectural assumptions. MCL uses attribute
definitions for expressing architectural assumptions. Although attribute definitions
seem to be powerful enough to express a number of relationships and constraints, the

current system does not provide systematic guidelines on how and when to use them.

89



More research is needed to classify architectural assumptions, and standardize the

way these assumptions are expressed in MCL.

8.3 Publications
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