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Abstract 

 

Mobile computing environments exhibit operating conditions that differ greatly from 
their wired counterparts. In particular, the mobile application must be able to tolerate 
highly dynamic network conditions and the effects of various computing devices. This 
research aims to develop an adaptive middleware system that adapts data flows over 
wireless networks to enable overlying applications to operate effectively and optimally in 
wireless environments. 
 
To achieve this goal, an adaptive middleware system, MobiGATE, has been designed to 
support robust and flexible composition of adaptable services, termed streamlets in this 
research study. Significantly, the principle of separation-of-concerns is adopted in the 
system to facilitate clear separation of streamlet coordination from the service 
computation codes. By this means, the communication codes are completely separated 
from streamlet objects and modeled as a new type of object channel. An application 
running in this system is then regarded as a number of streamlet instances connected by 
channel objects. This has resulted in the formulation of a two-layered MobiGATE 
execution platform that supports rapid deployment of service streamlets, while 
facilitating adaptive composition in reaction to changing environmental contexts. 
 
To describe application compositions, a coordination language, MCL, is designed. The 
language adopts the Multipurpose Internet Mail Extensions, MIME, as the underlying 
type definition to represent messages and streamlet interfaces. With this type system, a 
fundamental type compatibility check is allowed in the composition activities. In 
addition, a semantic model in Z language is defined for MCL to analyze composition 
descriptions and detect possible composition errors, such as feedback loops, open circuit, 
and mutual exclusions. The applications running in the MobiGATE system can be 
analyzed based on the derived semantic model to ensure their consistency in the internal 
structures. 
 
A complete design, implementation and evaluation of the system have been fulfilled 
successfully on a Java platform, in which common runtime operating system elements are 
abstracted as residing either in the coordination or in the computing sub-layers. Initial 
experimental results validate the flexibility of the coordination approach in promoting 
separation-of-concerns in the reconfiguration of services, while achieving low 
computation and delay overheads. The system has proved to be efficient and robust in 
adapting to dynamic wireless conditions and can be improved by some recommendation 
work in future. 
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1 Introduction 

This chapter highlights the design issues encompassing the mobile computing operating 

over a wireless environment. Based on the desire to address these issues and challenges, 

the motivation and general objectives of this research study are specified. The 

organization of the thesis is given at the end of the chapter as further guidance to the 

reader.  

 

1.1 Background and Motivation 

Mobile computing is a rapidly emerging technology providing the ability to compute, 

communicate, and collaborate anywhere and anytime. With the current deployment of 

wireless communication services and advances in mobile computing devices, a large and 

ever increasing number of mobile computers and Personal Digital Assistants (PDA) are 

able to exchange data and synchronize with other computing devices across wireless 

links. However, mobile computing environments exhibit operating conditions that differ 

greatly from their wired counterparts. According to [Badrinath00, Satyanarayanan95], 

mobile computing is characterized by four main constraints: 

 

• Mobile elements are resource-poor relative to static elements. 

For a given cost and level of technology, considerations of weight, power, size and 

ergonomics will exact a penalty in computational resources such as processor speed, 

memory size, and disk capacity. While mobile elements will improve in absolute 

ability, they will always be resource-poor relative to static elements. 

 

• Mobile connectivity is highly variable in performance and reliability. 

Some buildings may offer reliable, high-bandwidth wireless connectivity while others 

may offer only low-bandwidth connectivity. Outdoors, a mobile client may have to 

rely on a low-bandwidth wireless network with potential gaps in coverage. This is in 

sharp contrast to the wired counterpart, where resources are abundant and highly 

stable. 
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• Existing mobile devices are heterogenous. 

Cell phones, personal digital assistants, palmtop computers, digital pagers, digital 

cameras and portable computers all have different capabilities and different 

requirements. Part of the difficulty of communications in the mobile environment is 

not just to deliver data over challenging network conditions, but to deliver such data in 

formats suitable for the client devices. 

 

• Mobile elements rely on a finite energy source. 

While battery technology will undoubtedly improve over time, the need to be sensitive 

to power consumption will not diminish. Power consumption concerns must span 

many levels of hardware and software to be fully effective. 

 

Another concern is the fact that the existing network protocols that have enabled the 

Internet revolution are not perfectly suited to the mobile computing environment. TCP, 

for example, does not work well on many wireless links, and often behaves poorly over 

satellite links owing to long latencies. Researchers have proposed modifications to 

existing protocols [Bakre97, Balakrishnan95, Caceres95] to handle such problems, but 

the understanding of networks is insufficient to allow a design of protocols that behave 

well in the face of all probable network conditions. Even if such protocols could be 

developed, the challenge of converting the enormous installed base of today’s network 

infrastructure would have to be addressed. The Internet is distributed, decentralized and 

vast, and the simple solution of complete replacement of that existing infrastructure is 

daunting to say the least. 

 

However, it is important to realize that even if new protocols could be successfully 

deployed, problems would still remain. The real goal of adaptive systems is to provide 

good end-to-end service, where the end points are located in applications [Badrinath00]. 

No adaptive solution at the network level alone can solve the entire problem without 

considering the needs of applications and their users. 
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Therefore, for mobile applications to operate effectively and optimally, the 

communication-related software at the application-level must be able to adapt to those 

mobile constraints at runtime [Chan03, Katz94]. By this it is meant that systems must be 

location and situation-aware, and must take advantage of this information to dynamically 

configure themselves in an appropriate fashion. The challenges that must be faced span a 

wide range of considerations and technical expertise. These include the architecture of 

the communications and information service infrastructure (base stations, network 

protocols, servers) necessary to support mobile communications, various preferences of 

different applications, the correctness and consistency requirement for dynamic 

reconfigurations, and the collection of context information. 

 

1.2 Research Field 

Basic information regarding the two fields in this study, infrastructural proxy-based 

adaptation and the concept of coordination, are given below. 

1.2.1 The Approach: Infrastructural Proxy Services 

One way to meet the above-mentioned challenges in wireless domain is by using a proxy-

based gateway approach to adaptation, in which augmented network services, placed 

between mobile clients and gateway servers, perform aggressive computation and storage 

on behalf of clients [Fox98a, McKinley03]. In such architectures, adaptable applications 

are built from interconnected building blocks and deployed at proxy stations. Each 

building block, or service entity, specializes in a specific task in processing the data flow. 

For example, the task could involve the scaling/dithering of images in a particular format, 

or conversion between specific data formats, or even suitable caching to minimize the 

traffic transiting across a wireless network.  The development of mobile applications may 

extend beyond the end-host process to include the composition of service entities to adapt 

to variations in networks and client resources. 

 

As shown in Figure 1-1, the infrastructural proxy system mainly consists of following 

two network components residing between the wireless end-points:  
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1) A wired-side gateway called the server proxy, commonly deployed at the edge of a 

wired network. 

2) A peer client-side proxy called the client proxy, deployed within the mobile host 

(MH). 

 

 

Figure 1-1: Infrastructure proxy system 

 

The infrastructural proxy architecture supports augmented wireless network services by 

allowing adaptation-based service entities to be deployed at both server and client proxies 

to shield clients from all kinds of variances. Significantly, the architecture inherits the 

principle of interoperability, in which innovative and exciting services can be rapidly 

deployed within the existing networking environment, without causing changes to the 

infrastructure. The kinds of service entities that may be applied to adapt the flow of data 

include transformation (such as filtering, format conversion), aggregation (collecting and 

collating data from various sources), caching (both original and transformed content), and 

customization (maintenance of a per-user preferences database). Studies in this area have 

focused primarily on applying fixed specific service entities to the gateway proxy to 

introduce specific adaptation to data flowing across the wireless environment. A service 

entity based on image transcoding is applied to convert images on-the-fly to reduce the 

bandwidth requirement and have the images displayed on a display-constrained device, 

such as a PDA [Fox98a]. Similarly, experiments deployed based on the architecture of 



 5 

the gateway proxy have been conducted on text-compression, XML streaming [Chan04], 

and caching service entities. 

 

A common approach to implementing the adaptation of services at the gateway proxy is a 

static interaction of service entities by explicitly invoking procedures on a named 

interface. The result is that the system integration code becomes entangled with the 

application-specific codes. Any replacement or modification of a service entity requires 

updating of not only the code for the new service entity to be integrated into the system, 

but also the code of those entities that have a direct relation with the old service entity. 

The tight coupling of service entities, in terms of the strong coordination dependency, 

translates into the need for manual modifications, when the transport service entities are 

deployed into a new environment. In a wireless network, which exhibits highly dynamic 

network conditions, the adaptation of service entities in the form of dynamic composition 

and reconfiguration is considered the norm rather than the exception. 

 

1.2.2 Coordination: Separation of Concerns 

Coordination models are a class of model recently developed to describe concurrent and 

distributed computations. In the area of Programming Languages, coordination is defined 

as the process of building programs by gluing active pieces together. A coordination 

model can therefore be regarded as the glue that binds separate activities into an 

ensemble [Malone94, Papadopoulos96]. A coordination language is the linguistic form of 

a coordination model. Coordination languages offer facilities for controlling the 

synchronization, communication, creation, and termination of computational activities. 

 

The most prominent advantage of applying the coordination theory is that there is a 

complete separation of coordination from computational concerns. This separation is 

usually achieved by defining a new coordination language to describe the architecture of 

the composition. In particular, the coordination system generally consists of two kinds of 

processes: computation and coordination. Computational processes are treated as black 

boxes, while processes communicate with their environment by means of clearly defined 
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interfaces, usually referred to as input or output ports. Producer-consumer relationships 

are formed by setting up channel connections between the producer output ports and the 

consumer input ports.  

 

Consider the following simple example of a concurrent application where the two active 

entities (i.e., processes) p and q must cooperate by exchanging messages in their 

computations. The source code for this concurrent application looks like the code 

presented in Figure 1-2. The most notable point in the code is that it simultaneously gives 

both a description of the computation by p and q, and a description of their cooperation. 

The communication concerns are mixed and interspersed with computation. Thus, in the 

final source code of the application, no isolated piece of code can be considered as the 

realization of the cooperation model and reused in other applications. 

 

process p:

compute m1
send m1 to q
compute m2
send m2 to q
do other things
receive m
do other computation using m

process q:

receive m1
let z be the sender of m1
receive m2
compute m using m1 and m2
send m to z

 

Figure 1-2: A traditional cooperation example 

 

Let us reconsider the above example, and see how it can be implemented in the 

coordination model. This time the code consists of three processes: revised p, revised q, 

and a coordinator process c that is responsible for facilitating the communication of p and 

q. The source code for this version of the application looks something like the code 

presented as follows: 
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process p:

compute m1
wire m1 to output port o1
compute m2
write m2 to output port o2
do other things
read m from input port i1
do other computation using m

process q:

read m1 from input port i1
read m2 from input port i2
compute m using m1 and m2
write m to output port o1

process c:

...
create the channel p.o1  q.i1
create the channel p.o2  q.i2
create the channel q.o1  p.i1
...

 

Figure 1-3: The application example in the coordination model 

 

In this example, the pattern of cooperation between the processes p and q is simple and 

static. Communication concerns are moved out of p and q and into c. However, the 

processes p and q are now oblivious of the source of their input, or the destination of their 

output. They know nothing about the pattern of cooperation in this application; they can 

just as easily be incorporated in any other application, and will do their job provided that 

they receive the right input at the right time. The process c, in turn, knows nothing about 

the details of the tasks performed by p and q. Its only concern is to ensure that they are 

created and connected correctly. 

 

From the above example, it can be seen that removing the communication concerns from 

the computational processes enhances the modularity and the re-usability of the resulting 

software. The coordinator processes are generic and reusable as they know nothing about 

and have absolved nothing of the tasks performed by the processes they coordinate and 

are therefore unimpeded in these processes. 

 

1.3 Objective 

The main objective of this study is to develop an adaptive software system, which adapts 

data flows over dynamic wireless network conditions and various mobile devices.  

 

To achieve this objective, the coordination theory is used in the design of a middleware 

system MobiGATE, to support the service composition and system reconfiguration at 

infrastructural proxies of the wireless domain. This middleware is expected to be context-
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aware, reconfigurable, robust, and most of all, efficient in processing incoming data 

flows. Specific principles on the design of this middleware are given in Section 3.1. 

 

Concurrent with the above is the syntax and semantic definition of a coordination 

language MCL to describe the composition of applications running in the middleware 

system. In addition to all of those common properties described in Section 1.2.2 that are 

shared by existing coordination languages, this newly designed language possesses its 

own type system, the function of compatibility check in the composition activities, and 

the ability of conducting correctness verifications of language descriptions.  

 

1.4 Organization of the Thesis 

Chapter 1 introduces the background and motivation of this study. Based on the 

background described, the objective of this study is identified. 

 

Chapter 2 describes the work related to this study. Several typical adaptation systems: 

TranSend, Odyssey, and RAPIDware, and a comparison with the MobiGATE system are 

described. Some well-known coordination languages are introduced and compared with 

MCL along some important dimensions, such as coordination unit, computational 

language, application domain. The specific characteristics of the MobiGATE system and 

its advantages over other similar works are highlighted. 

 

Chapter 3 is devoted to the architecture of the MobiGATE system. Specific design 

principles and the working paradigm of the whole system are introduced in this chapter. 

The internal structure of the architecture is described from the server side to client side,   

with the emphasis on the function of those important components. 

 

Chapters 4 and 5 focus on the coordination language MCL. In particular, Chapter 4 

describes syntax designs of the language, ranging from its MIME type system, language 

elements definitions, to some specific refinement issues. As a coordination language, 

MCL is designed to provide the abstraction of service interfaces and the types of data 

associated with the messages, and checking compatibility in the composition activities. In 
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addition, it can support the concept of recursive composition and streamlet sharing, which 

also differentiates MCL from other coordination languages. Chapter 5 introduces MCL’s 

semantic model that is defined in the Z language. This semantic design is very important 

to conduct extensive analysis of MCL descriptions. This is not possible using syntax 

design alone. 

 

Chapters 6 and 7 present the specific development work of the MobiGATE system and 

results of a series of experimental studies, which demonstrate the feasibility and validate 

the benefits of MobiGATE in providing adaptive mobile computing. Two operations that 

are most possible to bring overhead into the system are measured independently. A 

complete end-to-end application that fully exercises the system components of 

MobiGATE is set up to evaluate the system performance. The purpose for doing this is to 

demonstrate the use of MobiGATE while verifying the insignificant overheads incurred 

in runtime processing compared with the performance gained in service deployment and 

reconfiguration. 

 

Finally, Chapter 8 offers conclusions to this study. It also points out some directions for 

the future research activities on this topic. Such work is necessary to make the 

MobiGATE architecture more complete, secure, and robust for deployment over a wide 

scale wireless and mobile environment. In the short term, as further experiences are 

gained in using MCL, it is aimed to further refine the language to enrich its syntax to 

capture mis-configuration and semantic assertions even during runtime. 
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2 Related Work 

As previously stated, this study focuses on adaptive middleware and coordination 

languages.  This chapter first gives a brief outline of the newly designed middleware 

system MobiGATE and its supporting coordination language MCL. A suite of protocols 

specific to mobile computing: Mobile IP, snoop protocol, and Indirect TCP, is then 

introduced. Based on this introduction, several typical adaptation systems and some well-

known coordination languages are reviewed. The objective of this arrangement is to 

enable the reader to compare MobiGATE and MCL with this related work. Finally 

attention is drawn to the main areas of comparison acknowledged by the writer.  

 

Before going into details of the related work, an overview of the newly designed 

MobiGATE and MCL is given as follows: 

 

• The design and development of a Mobile GATEway proxy for the Active deployment 

of Transport Entities, or, MobiGATE (pronounced Mobi-Gate), is introduced in this 

research study. MobiGATE is a mobile middleware architecture that supports the 

robust and flexible composition of transport entities, known as streamlets. The flow of 

data traffic is subjected to processing by a chain of streamlets. Each streamlet 

encapsulates a service entity that adapts the flow of traffic across the wireless network. 

A major goal of the MobiGATE architecture is to provide an environment, where 

programmers can develop new mobile applications through combining some active 

service entities (streamlets), while the configuration structure of the application is 

completely separated from the computational activities of individual streamlets. This 

architecture has the advantage of supporting ease of dynamic reconfiguration and the 

re-usability of streamlets across applications. 

 

• A coordination language called MobiGATE Coordination Language (MCL) is 

designed as part of this research. The language possesses some attractive 

characteristics to support the composition and reconfiguration of flexible streamlets in 

MobiGATE. Firstly, MCL supports the capture of flow types between streamlets and 
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allows strong type compatibility checks in the composition activities. MCL employs 

Multipurpose Internet Mail Extensions (MIME) [Freed96] specifications to model 

streamlet interfaces and message types. MIME possesses a flexible format that easily 

accommodates well-known message types such as text, image, video, sound, or other 

application-specific data. In addition, MCL supports the notion of recursive 

composition. In other words, a composition of streamlets can itself be organized as a 

composite streamlet. The recursive structuring of streamlet compositions can be nested 

to an arbitrary level to promote modularization and re-usability. The more ambitious 

intention is to capture the semantics of MCL using a formal specification approach 

based on Z notation [Spivey89] to enable the analysis of the composition for 

consistency and to infer non-trivial properties of the language. 

 

2.1 Mobile Networking 

This section describes some basic protocols designed to serve the needs of burgeoning 

population of mobile computer users who wish to connect to the Internet and maintain 

communications as they move from place to place. 

2.1.1 Mobile IP 

Mobile IP [Perkins98] is a proposed standard protocol that builds on the Internet Protocol 

by making mobility transparent to applications and higher level protocols like TCP. It 

extends IP by allowing the mobile computer to effectively utilize two IP addresses: a 

fixed home address and a care-of address that change at each new point of attachment. 

 

(5)The FA forwards the
datagram to the CN

using standard IP routing

MN

(1) A datagram to
the MN arrives on
the home network

(3) FA detunnels and delievers
the datagram to the MN

(2) HA intercepts the
datagram and tunnels

it to the care-of-address
FAHA

CN

(4) The MN sends a
datagram to the CN

 

Figure 2-1: Mobile IP datagram flow 
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Mobile IP can be thought of as three major subsystems. First, a discovery mechanism is 

defined so that mobile computers can determine their new attachment points (new IP 

addresses) as they move from place to place within the Internet. Second, once the mobile 

computer knows the IP address at its new attachment point, it registers with an agent 

representing it at its home network. Lastly, mobile IP defines simple mechanisms to 

deliver datagrams to the mobile node when it is away from its home network. 

 

The following gives a rough operation outline of the mobile IP protocol, making use of 

the above-mentioned operations. Figure 2-1 may be used to help envisage the roles 

played by the entities. 

 

(1) Mobility agents make themselves known by sending agent advertisement messages. 

A newly arrived mobile node may optionally solicit an agent advertisement message. 

(2) After receiving an agent advertisement, a mobile node determines whether it is on its 

home network or a foreign network. A mobile node works basically like any other 

node on its home network when it is at home. 

(3) When a mobile node moves away from its home network, it obtains a care-of address 

on the foreign network, for instance, by soliciting or listening for agent 

advertisements, or contacting Dynamic Host Configuration Protocol (DHCP) or 

Point-to-Point Protocol (PPP). 

(4) While away from home, the mobile node registers each new care-of address with its 

home agent (HA), possibly by way of a foreign agent (FA). 

(5) Datagrams sent to the mobile node's home address are intercepted by its home agent, 

tunneled by its home agent to the care-of address, received at the tunnel endpoint (at 

either a foreign agent or the mobile node itself), and finally delivered to the mobile 

node. 

(6) In the reverse direction, datagrams sent by the mobile node are generally delivered to 

their destination using standard IP routing mechanisms, not necessarily passing 

through the home agent. 
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2.1.2 Wireless TCP – Snoop 

TCP is a reliable transport protocol tuned to perform well in traditional networks made up 

of links with low bit-error rates. Networks with higher bit-error rates, such as those with 

wireless links and mobile hosts, violate many of the assumptions made by TCP, causing 

degraded end-to-end performance. The snoop [Balakrishnan95] is a simple protocol that 

improves TCP performance in wireless networks. The snoop modifies network-layer 

software mainly at a base station and preserves end-to-end TCP semantics. The main idea 

of the protocol is to cache packets at the base station and perform local retransmissions 

across the wireless link.  

 

The snoop protocol introduces a module, called the snoop agent, at the base station. The 

agent monitors every packet that passes through the TCP connection in both directions 

and maintains a cache of TCP segments sent across the link that have not yet been 

acknowledged by the receiver. A packet loss is detected by the arrival of a small number 

of duplicate acknowledgments from the receiver or by a local timeout. The snoop agent 

retransmits the lost packet if cached, and suppresses the duplicate acknowledgments. In 

the classification of the protocols, the snoop protocol is a link-layer protocol that takes 

advantage of the knowledge of the higher-layer transport protocol (TCP). 

 

The main advantage of this approach is that it suppresses duplicate acknowledgments for 

TCP segments lost and retransmitted locally, thereby avoiding unnecessary fast 

retransmissions and congestion control invocations by the sender. Like other link-layer 

solutions, the snoop approach could also suffer from not being able to completely shield 

the sender from wireless losses [Balakrishnan97]. 

2.1.3 Wireless TCP – Indirect TCP 

Indirect TCP [Bakre97] is a split-connection protocol that uses standard TCP for its 

connection over the wireless link. It splits each TCP connection between a sender and 

receiver into two separate connections at the base station - one TCP connection between 

the sender and the base station, and the other between the base station and the receiver. 

Like other split-connection proposals, Indirect TCP attempts to separate loss recovery 
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over the wireless link from that across the wireline network, thereby shielding the 

original TCP sender from the wireless link.  

 

The basic idea behind the indirect protocol model is as follows: whenever an interaction 

between two hosts on the internetwork, such as between a mobile host and a stationary 

host, involves communication over two drastically different kinds of media (i.e., wireless 

and wired), the protocol splits such an interaction into two separate interactions—one for 

each kind of communication medium. An indirect transport layer interaction between a 

Mobile Host (MH) and a Fixed Host (FH) consists of a fixed network protocol (i.e., TCP) 

used for communication between the FH and the Mobility Support Router (MSR); and a 

wireless protocol (i.e., wireless TCP) for communication between the MH and the MSR. 

The highest protocol layer at which indirection occurs is determined by the MH 

application—an indirect transport layer can be used in conjunction with end-to-end 

session and presentation layer. On the other hand, if presentation requirements are 

different over wireless and wired links, then an indirect presentation layer protocol can be 

used. Furthermore, application layer proxies running on MSRs that support MH 

applications are examples of application layer indirection. 

 

Notice that even though the indirect model replaces an interaction between a mobile host 

(MH) and a fixed host (FH) with one interaction between the MH and its MSR and 

another between the MSR and the FH, the FH does not see the MSR as its 

communicating peer. It sees the MH itself as its actual peer host. The MSR fakes an 

image of the MH which is used to communicate with the fixed hosts. This image is 

handed over to a new MSR in case the MH engaged in an indirect interaction switches 

cells. 

 

2.2 Adaptive Middleware in Mobile Computing 

Middleware is necessary for distributed systems. It provides an abstract interface that 

gives an application developer a uniform view of low-level operating systems and 

networks. In the traditional systems, middleware is a means for gluing together 

application components that comply with certain interoperability requirements. However, 
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in mobile computing one consequence of mobility is that the environment in which an 

application performs may also be changing dynamically. For example, different fault 

tolerance and security properties may be enforced in different execution environments. 

The mobile environment also introduces other complications: such as heterogeneity in the 

communicating devices. This has been discussed deeply in Section 1.1. As a 

consequence, in a wireless environment, middleware must be sufficiently flexible to 

enable adaptation to changes in the underlying operating systems and networks, as well 

as to changes in application requirements. 

 

One general class of solutions to solving this problem is to allow various forms of 

network traffic adaptation. Such solutions allow hardware or software to alter the 

protocols or the data content being transmitted, to provide a better quality of service to 

users. Data flows over networks can be usefully adapted in many ways [Badrinath00]: 

 

• The underlying protocol can be altered to handle difficult conditions. The Berkeley 

snoop protocol improves TCP over high error rate links [Balakrishnan95]; an 

adaptation mechanism can automatically initiate the snoop protocol and establish the 

necessary links to alleviate the poor traffic conditions over the wireless network. 

[Allman97]. 

 

• The data can be altered in a lossless way. Various systems allow data compression or 

encryption across links with poor connectivity, without any application involvement. 

 

• Lossy adaptations can be used to obtain better compression of data over limited links 

by dropping inessential portions of the information, or sending a low-fidelity version. 

For example in TranSend, performance improvement by an order of magnitude is 

achieved through the effective application of lossy compression [Fox98a]. 

 

• Data can be automatically converted to formats better suited to the end systems or the 

intermediate networks. For example, the Top Gun Wingman browser [Fox98b] 

converts Web images into 2-bit grayscale bitmap displays before sending them to 
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Palm Pilots. This configuration has the effect of significantly reducing the bandwidth 

requirements, while adapting the images to better map to the small display size of 

handheld devices. 

2.2.1 UC Berkeley TranSend 

UC Berkeley’s TranSend Web accelerator proxy [Fox96] was one of the earliest projects 

to explore adaptation proxies aggressively. TranSend intercepts HTTP requests from 

standard Web clients and applies data type specific lossy compression, when possible; for 

example, images can be scaled down or down sampled in the frequency domain, long 

HTML pages can be broken up into a series of short pages. TranSend’s primary goal was 

to provide network adaptation for users of slow links. 

 

TranSend supports a wireless vertical handoff mechanism. When a client equipped with 

multiple wireless interfaces switches between wireless networks, the client side vertical 

handoff software (which is completely independent of TranSend) generates a notification 

packet containing some essential characteristics (e.g., estimated expected throughput) of 

the new network. This packet is sent to a special UDP port on TranSend where the 

notification is processed and stored in a per-client profile. TranSend then processes future 

requests from that client in accordance with the new network type; for example, 

aggressive image down sampling is performed for clients connecting with an expected 

throughput of 15–25 Kb/s, whereas compression is much less aggressive (and in some 

cases disabled) for Wave LAN clients connecting at about 1 Mb/s. 

 

The main problem with TranSend is that it cannot support peer-to-peer, collaborative 

services. Supporting such services is clearly important; doing so will allow direct support 

of peer-to-peer systems. Ways to reinforce the MobiGATE system with this important 

function are being investigated. 

2.2.2 CMU Odyssey 

Odyssey is a system built at Carnegie Mellon University to support challenging network 

applications on portable computers [Noble97]. Odyssey particularly focuses on resource 

management for multiple applications running on the same machine. Odyssey was 



 17 

designed primarily to run in wireless environments characterized by changing and 

frequently limited bandwidths, but the model was found to be sufficient in handling many 

other kinds of challenging resource management issues, such as battery power or cache 

space. The goal of the system is to provide all applications on the portable machine with 

the best quality of service consistent with available resources and the needs of other 

applications. 

 

Odyssey is an application-aware approach to adaptation intended primarily to assist 

client/server interactions. The Odyssey system consists of a viceroy, an operating system 

entity in charge of managing the limited resources for multiple processes, a set of data 

type-specific wardens that handle the intercommunications between clients and servers, 

and applications that negotiate with Odyssey to receive the best level of service available. 

Applications request from Odyssey the resources they need, specifying the window of 

tolerance required for the desired operation. If resources within that window are currently 

available, the request is granted and the client application is connected to its server 

through the appropriate warden for the data type to be transmitted. Wardens can handle 

issues like caching or pre-fetching in manners specific to their data type, to make best use 

of the available resource. If resources within the requested window are not available, the 

application is then notified and can request a lower window of tolerance and 

corresponding level of service. As conditions change and previously satisfied requests 

can no longer be met (or, more happily, conditions improve dramatically), the viceroy 

uses upcalls, registered by the applications, to notify these applications that they must 

operate in a different window of tolerance, subsequently possibly causing them to alter 

their behavior. 

 

One interesting aspect of Odyssey with regard to the adaptation framework is that much 

of the adaptation in this model is, in fact, done by the applications, which interact with 

Odyssey. For example, Odyssey itself does not decide that color video frames should be 

converted to black-and-white, but rather instructs the application that some action is 

required. The application itself decides how adaptation should occur, and typically 

instructs the server to make the adjustment. This aspect highlights a big difference 
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between Odyssey and the MobiGATE system that completely shields the applications 

from the adaptation work. 

2.2.3 MSU RAPIDware 

The MSU RAPIDware [McKinley03] project addresses the design and implementation of 

middleware services for dynamic, heterogeneous environments. A major goal of the 

RAPIDware project is to develop adaptive mechanisms and programming abstractions 

that enable middleware frameworks to execute in an autonomous manner, instantiating 

and reconfiguring components at runtime, in response to the changing needs of client 

systems. 

 

 

Figure 2-2: RAPIDware proxy 

 

Figure 2-2 depicts an example of RAPIDware proxy and its configuration for processing 

a single data stream. The proxy receives and transmits the stream on EndPoint objects, 

which encapsulate the actual network connections. Each EndPoint has an associated 

thread that reads or writes data on the network, depending on the configuration of the 

EndPoint. A ControlThread object is responsible for managing the insertion, removal, 

and ordering of the filters associated with the stream. In this example, the proxy is 

comprised of three filters, F1, F2, and F3. The key support mechanisms are detachable 

stream objects, namely, DetachableInputStream (DIS) and DetachableOoutputStream 
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(DOS). The DIS and DOS are used for all communication among filters and between 

filters and EndPoints. DIS and DOS can then be stopped, disconnected, and reconnected, 

enabling the dynamic redirection and modification of data streams. The I/O stream 

abstraction provides a convenient way to separate adaptive behavior from the application 

and other parts of the middleware.  

 

The RAPIDware system is similar to the MobiGATE system in many ways, such as the 

concept of filters and streams, the function of ControlThread, and the communication 

through a special object. However, owing to the definition of its DIS and DOS objects, 

RAPIDware can only support the linear composition of filters. Furthermore, it cannot 

check the “composability” of proxylets. Supporting the branch composition and 

consistency checks are two important advantages of MobiGATE over RAPIDware. 

2.2.4 Comparison 

Table 2-1 offers a comparison of the MobiGATE system and the above-introduced 

adaptive systems. The notable points are shown below: 

 

• Application Awareness in these adaptive middleware systems can be application aware 

and application transparent, depending on whether the application is informed that 

adaptation is occurring and perhaps expected to provide an application-level response, 

or the system attempts to completely shield the application from this fact. 

 

• Adaptation Range is the collection of applications supported by the system. Some 

systems provide general machinery to support a collection of unrelated applications, 

while others probably only support a specific application or narrowly-defined class of 

applications. 

 

• Adaptation Location describes where the adaptation machinery resides. It can be in the 

client, in the server, in one or more intermediate proxies, or all of these. 

 



 20 

• Adaptation Compositions refers to the possibility of composing adaptations in the 

adaptation machinery. In other words, it points out whether the adaptation can occur at 

multiple levels. 

 

• Mechanism is the primary technology used in the adaptation. As far as the MobiGATE 

system is concerned, the separation of concerns (coordination theory) is the unique 

principle adopted in the design of the middleware system. 

 

• Description is a general summary of the middleware system. 

 

The comparative features below are discussed further in Chapter 3. 

 

 TranSend Odyssey RAPIDware MobiGATE 

Application 
Awareness 

Application 
transparent 

Application aware 
Application 
transparent 

Application 
transparent 

Adaptation 
Range 

Application-
specific 

Application 
specific 

General General 

Adaptation 
Location 

Proxy Client & Server Proxy & Client Proxy & Client 

Adaptation 
Compositions 

Partial No Partial Yes 

Mechanism 
Data-type specific 

distillation 
Resource 

management 
Detachable stream 

objects 
Separation of 

concerns 

Description 

Web acceleration 
through datatype-

specific lossy 
compression 

Application-aware 
adaptation by 

multiple 
applications using 
diverse data types 

Web-based 
collaboration in 
heterogeneous 

wireless 
environments 

Applying 
coordination 
theory in the 

service 
composition and 

system 
reconfigurations 

Table 2-1: A comparison of adaptive systems 

 

2.3 Coordination Models and Coordination Languages 

With recent advances in the coordination theory, a number of coordination languages 

have become available, such as PCL [Sommerville96], Conic [Magee89], Durra 

[Barbacci93], and Manifold [Arbab96]. As introduced in Section 1.2.2, these languages 

share many common characteristics. In particular, the coordination system generally 
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consists of two kinds of processes: computation and coordination. Computational 

processes are treated as black boxes, while processes communicate with their 

environment by means of clearly defined interfaces, usually referred to as input or output 

ports. Producer-consumer relationships are formed by setting up channel connections 

between the producer output ports and the consumer input ports.  

 

While these existing coordination languages support primitive constructs to enable a 

connection to be established between coordinated processes in the form of a high-level 

architectural description, they lack the linguistic support to capture the input and output 

types associated with the ports. As a result, interconnected processes must be manually 

established to ensure compatibility of type when messages are exchanged between the 

respective input and output ports. However, the computing architecture that requires the 

coordination of process to be dynamically composed and reconfigured at runtime requires 

the intrinsic support of typed messages, which allow the programmer to capture the 

intended compatibility between input-output ports, and to exercise runtime safety checks. 

 

The following subsections describe these existing languages that are designed to address 

the issue of coordination and architectural descriptions. 

2.3.1 Proteus Configuration Language 

Proteus Configuration Language (PCL) [Sommerville96] is a language designed to model 

the architecture of multiple versions of computer-based systems. Coordination in PCL is 

understood as a configuration; the unit of configuration is a family entity, representing a 

set of versions of a logical component or system. A family entity has various kinds of 

associated information, namely a classification section, an attribute section, an interface 

section, a parts section, a physical section specifying the entity name implementing the 

entity, and a relationship section that sets out the relationships between PCL entities. 

 

Another major element of the configuration paradigm is the ports used to represent either 

provided or required service. A component may have a number of required and/or 

provided ports. Inter-component communication is facilitated indirectly by transmitting 
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messages through bindings, where a binding is used to connect two ports. 

Communication can either be synchronous or asynchronous. In addition, port connections 

are effectively unlimited buffers. If component replacement is to take place, any 

outstanding messages not yet delivered to a to-be-replaced component are retained by the 

run-time system and eventually forwarded to the component’s replacement. 

 

Finally, PCL supports a clear distinction between the configuration component (namely 

PCL) and what is being configured (i.e., computational components written in any 

conventional programming language). Furthermore, components are context independent 

since inter-component interaction and communication is achieved only by means of 

indirect interfaces comprising ports connected by means of bindings. Thus, a separation 

is achieved between the functional description of individual component behaviors and a 

global view of the formed system as a set of processes with interconnections. 

2.3.2 Conic 

Conic [Magee89] is another language where coordination is viewed as configuration. A 

key idea in Conic is the concept of logical node. A logical node is the system 

configuration unit comprising sets of tasks that execute concurrently within a shared 

address space. Configured systems are constructed as sets of interconnected logical 

nodes; these sets are referred to as groups. 

 

The programming subcomponent of Conic is based on the notion of task module types, 

which are self-contained, sequential tasks; these are used at run-time by the Conic system 

to generate respective module instances, which exchange messages and perform various 

activities. The modules’ interface is defined in terms of strongly typed ports. An exitport 

denotes the interface at which message transactions can be initiated and provides a local 

name and type holder in place of the destination name and type. An entryport denotes the 

interface at which message transactions can be received and provides a local name and 

type holder in place of the source name and type. A link between an exitport and an 

entryport is realized by means of invoking the message passing facilities of the 

programming subcomponent. The system supports both unidirectional asynchronous and 
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bi-directional synchronous communication. Since all references are to local objects, there 

is no direct naming of other modules or communication entities. Thus each programming 

module is oblivious to its environment, which renders it highly reusable, simplifies 

reconfiguration, and clearly separates the activities related to the latter from purely 

programming concerns. 

 

Conic supports a limited form of dynamic reconfiguration. First of all, the set of tasks and 

group types from which a logical node type is constructed is fixed at node compile time. 

The number of task and group instances within a node is fixed at the time a node is 

created. Dynamic changes to link set-ups can be achieved by explicitly invoking a 

configuration manager through the unlink command. Another limitation of the dynamic 

reconfiguration functionality of Conic is related to the very nature of the links that are 

being established between entryports and exitports. In particular, these links are not 

viewed as (unbounded) buffer areas. Thus, when a link is severed between a pair of ports, 

the module instances involved in communication must stop exchanging messages, 

otherwise information may be lost and inconsistent states may result. Finally in Conic a 

user is constrained by using a single programming language (the Pascal like Conic 

programming subcomponent). 

2.3.3 Durra 

Durra [Barbacci93] is yet another architecture configuration language. A Durra 

application consists of a set of components (application tasks and communication 

channels) and a set of configurations specifying how the components are interrelated. 

Tasks are active components that initiate all message-passing operations, and channels 

are passive components that wait for and react to requests from the tasks. These tasks and 

channel implementations are linked to run-time support packages and configuration 

tables generated by the Durra compiler to form executable programs called clusters. The 

runtime support portion of a cluster is called the cluster manager, which is responsible for 

starting and terminating application processes and links, for passing messages between 

components, for monitoring reconfiguration conditions, and for carrying out 

reconfigurations. 
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The basic building blocks of Durra are the task description, which specifies the properties 

of an associated subprogram or subsystem, and channel description, which specifies the 

properties of a package implementing a communication facility. An application can be 

described by a compound description that contains components, structure, and 

reconfiguration sections.  

 

The main concern of Durra is how to coordinate resources, such as load and execute 

programs, route data, and reconfigure application. As with all the other members in this 

family of coordination languages, it makes a clear distinction between application 

structure and behavior. Tasks implement the functionality of the application, whereas 

channels implement communication facilities. Thus it is tailored more to support rapid 

prototyping of distributed heterogeneous applications and test different configuration 

strategies, rather than as a means to actually implement these applications. Unrestricted 

dynamic creation of task instances is not possible. 

2.3.4 Manifold 

Manifold [Arbab96] is one of the latest developments in the evolution of control-driven 

or process-oriented coordination languages. As is the case in most of the other members 

of this family, Manifold coordinators are clearly distinguished from computational 

processes that can be written in any conventional programming language augmented with 

some communication primitives. Manifolds (Manifold coordinators) communicate by 

means of input/output ports, connected by means of streams. Evolution of a Manifold 

coordination topology is event-driven based on state transitions. More pertinently, a 

Manifold coordinator process is at any moment in time in a certain state where typically 

it has set up a network of coordinated processes communicating by sending and/or 

receiving data via stream connections established between respective input/output ports. 

Upon observing the raising of some event, the process in question breaks off the stream 

connections and evolves to some other predefined state, where a different network of 

coordinated processes is set up. Note that, unlike the case with other coordination 

languages featuring events, Manifold events are not parameterized and cannot be used to 
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carry data — they are used purely for triggering state changes and causing the evolution 

of the coordinated apparatus. 

 

One important advantage of Manifold is its support of recursive composition. This means 

that any coordinator can also be used as a higher-level or meta-coordinator, to build a 

sophisticated hierarchy of coordination protocols. Such higher-level coordinators are not 

possible in most other coordination languages and models. However, Manifold does not 

support type compatibility check, which translates to the inability to perform automatic 

checking for type compatibility and operation consistency in the event of adaptation and 

reconfiguration.  

2.3.5 Comparison 

 PCL Conic Durra Manifold MCL 

Coordination 
Unit 

Family entities Logical nodes Components Processes Streamlets 

Computational 
Language 

Conventional 
language 

Pascal-like 
language 

Ada C, Fortran 
Language 

Independent 
Message 
Passing 

Synchronous  
Asynchronous 

Synchronous  
Asynchronous 

Synchronous 
Asynchronous 

Asynchronous 
Synchronous 

Asynchronous 
Dynamic 

Reconfiguration 
Partial Partial Yes Yes Yes 

Compatibility 
Checking 

No Partial No No Yes 

Recursive 
Composition 

No No No Yes Yes 

Formalization No No No No 
Z-notation 

Formalization 

Application 
Domain 

Model system 
versions 

A typical 
configuration 

language 

Application 
prototyping 

Component 
based 

development 

Wireless proxy 
services 

composition 

Table 2-2: A comparison of coordination languages 

 

Table 2-2 offers a comparison of existing coordination languages and MCL along eight 

dimensions: Coordination Unit is the basic unit in terms of which the configuration is 

performed; Computational Language provides the name of the languages supported by 

the coordination language to program individual computational entities; Message Passing 

in these coordination models can be synchronous, asynchronous or both, depending on 
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the underlying communication channels; Dynamic Reconfiguration describes the ability 

to dynamically change the composition structure and to create/destroy coordinated object 

instances at runtime; Compatibility Checking and Recursive Composition are as described 

above; Formalization is the ability to formalize the language by developing a semantic 

model; Application Domain refers to the application of languages in a domain for which 

it is designed. Discussions on the above comparative features are given in Chapters 4 and 

5. 
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3 Introduction to MobiGATE Architecture 

This chapter focuses on the design of the MobiGATE framework. It introduces basic 

design principles and the working paradigm of the whole system. Based on this 

introduction, an overview of the MobiGATE server and client is given with the emphasis 

on its internal structure. 

 

As stated in Section 1.3, the main objective of the MobiGATE system is to adapt data 

flows over dynamic wireless network conditions and various mobile devices in the 

application level. Strictly following this goal, the design principles and whole working 

paradigms are introduced in following sections. 

 

3.1 MobiGATE Design Principles 

As an adaptive middleware in the mobile computing environment, the MobiGATE 

system is expected to be context-aware, reconfigurable, robust, and efficient in 

processing incoming data flows. The concept of separation of concerns forms the 

underlying and unifying principle in the provision of adaptive composition of services. 

This is regarded as one of the important contributions of this study. The core design 

principles of the MobiGATE system are summarized as follows: 

 

• Firstly, the MobiGATE system should be context-aware. In other words, the system 

must possess the ability to collect contextual information, such as network bandwidth, 

transmission error rate, and client resources, and to adjust its own behavior 

appropriately. The principle of context-awareness fundamentally facilitates streamlets 

and streams to react adaptively to the operating conditions of the surroundings. One 

popular solution [Chan03, Fox96, Noble97] for this is to employ an entity called 

Event Manager responsible for receiving environment messages that will alter 

behavior of the system. These messages can originate from local operating system 

services and remote clients. The MobiGATE system extends this mechanism by 

allowing applications to choose and subscribe the context messages of interest, while 

filtering away those which are not necessary. 
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• In addition, the newly designed system must be reconfigurable. In this context, 

reconfigurable means that the composition structure of applications running in the 

middleware system can be changed dynamically in response to different conditions. 

More ambitiously, the system should ideally support the dynamic reconfiguration of 

each service entity bound to associated applications. For example, the behavior of a 

service entity may be changed or adapted by altering its meta-representation at 

runtime. 

 

• Significantly, MobiGATE is a middleware supporting the separation of concerns, 

advocated by the coordination theory. Firstly, the system possesses the ability of 

composing adaptation services. Secondly, the communication codes are completely 

separated from those computational activities in the composition of adaptations. Each 

service entity should be completely independent of its running environment. The main 

difficulty, in this respect, lies in the abstraction of environmental dependencies from 

those service entities while at the same time maintaining an acceptable performance. 

 

• In contrast to some existing adaptive middleware, such as TranSend introduced in 

Section 2.2, the MobiGATE system is expected to support peer-to-peer, collaborative 

adaptation services. To achieve this goal, MobiGATE needs a client-side system to 

reversely process data flows from the server for the purpose of adaptation, such as 

decompression and decryption. Because of the constrained resources and power of 

most mobile devices, this MobiGATE client system must follow a thin-client model, 

which means there cannot be as much workload as on the server side. 

 

• As far as performance is concerned, the system should be efficient in processing data 

flows. With the increase in the number of running applications and mobile clients, an 

acceptable performance should still be obtained. It is also important to note that this 

system must be robust and maintain a relatively stable throughput most of the time. 

The aim is for all of these performance requirements to be satisfied with the 
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development of several related technologies, such as carrier resource and instance 

pooling, which are introduced in following sections. 

 

3.2 MobiGATE Working Paradigms 

The MobiGATE system consists of two parts: MobiGATE server and MobiGATE client. 

The MobiGATE server, where adaptations of data flows are composed, resides in the 

intermediate proxy between the data sender and receiver. The MobiGATE client, in most 

cases, stands in the position of data receiver, responsible for processing received 

messages reversely. 

 

 

Figure 3-1: The working paradigm of MobiGATE system 

 

Figure 3-1 shows a simple data flow with a single sender (S) and receiver (R). The data 

flows across various links and nodes in the network. The thick line represents the wired 

network and the dashed line suggests the wireless part. Access Point (labeled AP in the 

figure) is located at the edge of the wired network to support communications between 

the fixed sender and its mobile receiver. At some point in the network, the MobiGATE 

Server (MS) imposes various adaptation services on the data flow, which is then 

processed reversely by the MobiGATE Client (MC) at the receiver side.  

 

To some extent, Figure 3-1 is a simplification of real world. It shows a simple data flow 

and it does not illustrate problems, such as delivery deadlines or security concerns, nor 

does it suggest the level of complexity possible in even a single network flow. But the 

figure captures the root of the problem. A stream of data flows from a source to a 

destination across a network, using links of different conditions. Altering the data flows 

in various ways could lead to better overall results, in terms of lowering bandwidth 
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requirements, alleviating error condition, encoding secured data, generic compression, 

and transcoding. The aim of the MobiGATE system is not to provide specific services or 

configuration of services, but rather to provide a general platform to facilitate ease of 

deployment of services across the wireless links by providing core mechanisms and 

system services. 

 

It is important to note that the MobiGATE server may reside in mobile nodes, while the 

MobiGATE client is placed at proxies in the wired network. This situation, upstream 

transmission (client-to-server), happens when the data sender is a mobile device, while 

the receiver is a fixed node in the wired network. However, there is an inherent 

asymmetry in the wireless communications: the bandwidth in the downstream direction 

(server-to-client) is much greater than that in the upstream direction (client-to-server). 

For this reason, more and more mobile-aware applications have now adopted the push-

based (downstream direction) data dissemination model [Barbara99]. In this thesis, the 

MobiGATE system primarily focuses on solving problems in downstream direction 

communications. As discussed, the architecture is sufficiently flexible to be used to 

address upstream communications as well.  

 

3.3 MobiGATE Server 

There exists in MobiGATE a clear distinction between the activities of coordination and 

computation. Figure 3-2 shows the architecture of MobiGATE server, which is organized 

into two executing planes. The Streamlet Execution Plane is responsible for 

scheduling streamlet instances for computation, while the Stream Coordination 

Plane is responsible for maintaining the interaction and relationship between the 

coordinated streamlets. The Coordination Manager maintains a configuration 

table for each instance of streamlet composition. The configuration table serves to 

contain meta-information on the composition of streamlets, message type constraints, 

port connections, and routing constraints. The table is derived from the compilation of the 

MCL script, which the Coordination Manager uses to control the stub generation 

and the channel objects and to facilitate the exchange of messages among the streamlets. 

In short, the coordination plane can be viewed as a routing plane, where coordination 
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activities and interaction are abstracted from the streamlet codes. This leads to a highly 

reconfigurable system where interconnections and relationships between service entities 

can be composed dynamically in a non-intrusive way. 

 

On another plane, the Streamlet Manager controls the execution of instances of a 

streamlet. During the setup process, the manager is required to locate the classes of 

streamlets and allocate necessary computational resources for execution. The Event 

Manager is responsible for generating system events in reaction to different conditions. 

Finally, there is a Streamlet Directory, where the streamlet providers can 

advertise their services. This directory provides code-level implementations of streamlets 

at runtime. Below, various components of the MobiGATE server architecture are 

described in detail. 
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Figure 3-2: Architecture of MobiGATE server 

 

3.3.1 Coordination Manager 

The Coordination Manager controls the generation of stubs and channel objects 

and facilitates the message exchange among the streamlets. It maintains a configuration 

table for each running coordination stream, defining the specific message flow route in 

these streams. From the perspective of networking, the role of the Coordination 
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Manager is somewhat similar to that of a router, while the configuration table acts as 

the routing table. Another important function of the Coordination Manager is to 

filter events from the Event Manager and to broadcast them among coordination 

streams. This may invoke dynamic reconfiguration actions. 

3.3.2 Stream Coordination Plane 

The Stream Coordination Plane is the layer where coordination activities take 

place. In this plane, a stream object is modeled as streamlet stubs connected by channels, 

with the composition structure defined by the configuration table held by the 

Coordination Manager. Stubs do not contain any service logic. Instead, they 

implement whatever operations are necessary to forward requests to streamlet instances 

and receive results. The exchange of data among the stubs is currently done through 

channels. The channels transport data by using a frequently used method, carrier 

resource, where a repository or carrier resource, accessible to both producer and user 

stubs, is created. Producer stubs write the data to the shared carrier. User stubs read the 

data from the shared carrier. The carrier resources can be written only after they have 

been read by consumers. 

3.3.3 Streamlet Manager 

The Streamlet Manager manages the execution of various streamlets. It intercepts 

service requests from the Stream Coordination Plane, passes the incoming 

message to the corresponding streamlet instance for processing, and finally returns the 

result message. If the requested streamlet has not yet been initiated, the manager creates 

an instance for it from the Streamlet Directory; otherwise the manager directly 

delivers the message to the Streamlet Execution Plane.  

3.3.4 Streamlet Execution Plane 

All the computation activities take place in the Streamlet Execution Plane. In 

this plane, individual streamlets run independent of others and focus on imposing 

services on the incoming messages. Two kinds of streamlets, Stateless and Stateful, are 
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distinguished depending on whether state information is to be kept for the requesting 

coordinator processes. 

 

One of the fundamental benefits of using the MobiGATE architecture is that it is able to 

handle a heavy workload while maintaining a high level of performance. There is a 

relationship between the number of streams and the number of streamlets that are 

required to service them. As the stream population increases, that is, as the number of 

applications increases, the number of streamlets required increases correspondingly. At 

some time, the increase in the number of streamlets will have an impact on performance 

and diminish the throughput. MobiGATE explicitly supports a mechanism called 

streamlet pooling that makes it easier to manage large numbers of streamlets in the 

Streamlet Execution Plane. 

 

The concept of pooling resources is not new. A commonly used technique is to pool 

database connections so that the business objects in the system can share access to the 

database. This mechanism reduces the number of database connections that are needed, 

which, in turn reduces the consumption of resources and increases throughput. The 

MobiGATE Streamlet Execution Plane also applies resource pooling to 

streamlets; this technique is called streamlet pooling. Streamlet pooling reduces the 

number of streamlet instances, and therefore, the resources needed to service requests 

from the Stream Coordination Plane. It is also less expensive to reuse pooled 

streamlet instances than to frequently create and destroy instances. 

 

Streamlet pooling is applicable to streamlets that are considered Stateless. In other words, 

since Stateless streamlets are never associated with a specific stream, there is no 

fundamental reason to keep a separate copy of each streamlet for each stream instance. 

Thus, the system can keep a much smaller number of streamlets, reusing each streamlet 

instance to service the different requests. By this means the resources actually needed to 

service all the requests are greatly reduced. 
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3.3.5 Event Manager 

The Event Manager is responsible for generating system events in reaction to 

different conditions. These events may be caused by client requests, changes to the 

system environment, or by exceptions in streamlet executions. Coordinating the 

publication of events is fundamental to the realization of adaptive processing in a mobile 

middleware system, such as MobiGATE. 

3.3.6 MCL Complier 

The MCL Compiler controls the compilation of the MCL coordination script and 

generates the necessary configuration tables to define the message flow routes in 

coordination streams. It is also responsible for any compile-time validation work such as 

compatibility checks. Incompatible connections in the script are returned by the compiler 

with a detailed error message. 

3.3.7 Streamlet Directory 

The Streamlet Directory serves as the repository where streamlet providers can 

advertise their services. In addition, it serves as a central storage for streamlet codes in 

which the Streamlet Manager may locate the relevant streamlets and create 

instances for execution. Note that it is possible for a streamlet itself to be represented as 

an MCL coordination script. This defines a recursive composition of other native 

streamlets. 

 

3.4 MobiGATE Client 

Figure 3-3 depicts the operational flow and architecture of the MobiGATE client. In 

contrast to the server, the MobiGATE client system has no concept of channel or 

coordination. All the composition information is already recorded in the incoming 

message header. The system at the client side needs simply to read the message header 

and distribute the message to corresponding client streamlets for reverse processing. The 

resultant messages are then sent to higher layered applications. This asymmetry 

mechanism has greatly liberated MobiGATE client systems from heavy coordination 
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logic, and translates into a much lower consumption of computing resources and energy 

on the client side. The details of the comprising components are given below. 
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Figure 3-3: Architecture of MobiGATE client 

 

3.4.1 Message Distributor 

The main task of the Message Distributor is to parse the incoming MIME 

messages and distribute them to each corresponding client streamlet for reverse 

processing. An important characteristic of the Message Distributor is that it can 

support multiple threads at runtime. This is similar to the characteristics of the servlet in 

the J2EE architecture. Whenever a new message arrives, the system tries to find an 

available Message Distributor thread to parse the message. If this fails, the 

system creates a new thread to service the incoming message. 

3.4.2 Client Streamlet Pool 

The function of the Client Streamlet Pool is quite similar to that of the 

Streamlet Directory at the server side. The difference is that here the system 

maintains peer streamlets, instead of original streamlets maintained at the server side. In 
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addition, the Client Streamlet Pool is also responsible for creating and 

destroying client streamlet instances to service the incoming messages forwarded by the 

Message Distributor. 
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4 MobiGATE Coordination Language 

This chapter describes the MobiGATE Coordination Language (MCL) used to compose 

applications running in the MobiGATE system. The syntax design of the language is 

introduced in detail, including the type system, language elements, and the important 

design characteristics that differentiate MCL from other coordination languages. A case 

example using MCL to compose applications out of existing services, is also given to 

demonstrate the effectiveness of this newly designed language. Based on the syntax 

design, the formalization of the language with a semantic model is then introduced in 

Chapter 5. 

 

4.1 Message and Port Typing 

The type system in programming languages defines the type of data and structural 

representation of information to be processed. The typed information represents the 

characteristics of the data intended by the developer of the program and is 

correspondingly treated as such during compilation and execution. In MobiGATE, the 

typed messages exchanged between streamlets and the definition of port types is viewed 

as fundamental in enabling the flexible and robust composition of streamlets. 

Significantly, it allows the developer to concisely capture the intended message types, 

bound to the streamlet ports. Runtime checking, in the form of matching the message 

types to the streamlet ports, can be exercised to ensure consistency during operations. In 

this project, the adoption of the Multipurpose Internet Mail Extensions (MIME) 1.0 

Internet standard is proposed as the underlying type definition, to represent messages and 

declarations of port type. As such, messages, exchanged in the system, are formatted 

based on MIME. This assumption is reasonable and valid considering the fact that MIME 

has evolved to become the de facto formatting standard for many network services, 

including email, news and the World Wide Web.  

 

Figure 4-1 shows a graphical representation of the MCL type system. A fundamental 

property is that, each given type has multiple associated direct subtypes or supertypes. 

This is useful in facilitating the checking process for type compatibility of activities of 
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which the architecture is composed. Another interesting property of the defined type 

system comes from the extensible nature of the MIME type media system, meaning that 

it is not difficult to introduce a new message type into the system. 
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Figure 4-1: Graphical representation of a type system 

 

Based on the MIME type system, the Backus Normal Form (BNF) notation of a type 

declaration in MCL can be defined as shown in Figure 4-2. Note that this definition is 

generated from a simplification of a standard MIME Content-Type header field definition 

with some modifications. 
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type-declaration ::= type “/” subtype | intermediate

  ; Matching of media type and subtype

  ; is ALWAYS case-insensitive

intermediate ::= “port” | discrete-type | composite-type | type

type ::= discrete-type | composite-type

discrete-type ::= “text”|“image”|“audio”|“video”|“application”

composite-type ::= “multipart”|“message”

subtype ::= <A publicly-defined extension token. Tokens of this form

must be registered with IANA as specified in RFC 2048>
 

Figure 4-2: BNF notation of the type declaration 

 

4.2 MCL Language Elements 

MCL is an underlying declarative language for describing dynamically changing 

networks of active concurrent processes. It is comprised of several important abstractions 

including streamlets, channels, and streams. Collectively, the abstractions, labeled 

constructs, constrained typing, and definitions form the building blocks for describing the 

composition of the streamlets and their architectural description. The important elements 

representing the core abstractions are described in the following sections. 

4.2.1 Streamlet 

Streamlets in this study represent the main functional elements of an application and 

work as coordination units, as listed in Table 2-2. They own a set of ports, through which 

they interconnect with the rest of the system. Interconnections among streamlets are 

explicitly represented as separate language elements, called channels. Streamlets must 

always connect to one another through channels. As a consequence, every streamlet port 

must be connected to a compatible channel port based on the definition of MIME type. 

 

Within the context of a streamlet, ports play the role of placeholders. This means they 

will not be affected by the computation of the streamlet. Streamlets read/write messages 

from/to their associated input/output ports by using read/write primitives. They do not 

need to have explicit knowledge of the real source/destination of messages. The 
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separation and externalization of the interconnections of the streamlets promote their 

independence and reusability. In MCL the notation p.i is used to refer to port i of a 

streamlet instance p.  

 

streamlet-definition ::=“streamlet”streamlet_name description
streamlet_name ::= token

;is ALWAYS case-insensitive
description ::= “{” ports attributes“}”
ports ::= “port”“{”

port_declaration
   “}”

attributes ::= “attribute”“{”
streamlet type
implementation
description

     “}”
port_declaration ::= dir port_name“:”type-declaration“;”
dir ::= “in”|“out”
port_name ::= token

; is ALWAYS case-insensitive
streamlet type ::= “type”“=”“STATELESS”|“STATEFUL”“;”
implementation ::= “library”“=”value“;”
description ::= “description”“=”value“;”
value ::= quoted-string
token ::= *(<any (US-ASCII) CHAR except SPACE, CTLs, or tspecials>)
tspecials ::= “(”|“)”|“<”|“>”|“@”|“,”|“;”|

“:”|“\”|<”>“/”|“[”|“]”|“?”|“=”
 

Figure 4-3: BNF notation of the streamlet definition 

 

Streamlets are defined as sets of ports and attributes, which describe streamlets’ core 

functions and capabilities to interconnect with the rest of the system, as shown in Figure 

4-3. The Establishment of the type of an input/output port is required as part of the port 

declaration. Notice that as identification, each streamlet may have more than one 

input/output port, each of which is associated with the name of a specific port. The 

attribute declaration describes three important properties:  
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• Type. Type indicates whether the streamlet needs to keep information on 

corresponding application states. Based on this attribute, streamlets are distinguished 

as Stateless or Stateful.  

 

• Library. The library connects streamlets with code-level components that implement 

their intended functionality. Examples of code-level components include executable 

programs, and source code models. 

 

• Description. Description provides some general descriptive information about 

streamlets. 

 

In addition, a distinction is made between the descriptions of streamlets and their 

instances in MCL. In this study, a streamlet is defined as an instance and a streamlet 

definition is its description. Streamlets (or streamlet instances) can be created from a 

definition using the new-streamlet primitive or destroyed using the remove-streamlet 

primitive.  

4.2.2 Channel 

Channels describe relationships of interconnection and constraints among streamlets. 

Traditional programming languages do not support a distinct abstraction for representing 

such relationships, and implicitly encode support for component interconnections inside 

their abstractions for components. In contrast, all streamlet interconnections, in MCL, are 

explicitly represented, using channels. Channels, like streamlets, own ports. These ports 

must be connected to compatible streamlet ports. 
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channel-definition ::=“channel”channel_name description
channel_name ::= token

         ;is ALWAYS case-insensitive
description ::= “{” ports attributes“}”
ports ::= “port”“{”“in”“:”type-declaration“;”

    “out”“:”type-declaration“;”
“}”

attributes ::= “attribute”“{”
channel_type
category
buffer_size

“}”
channel_type ::= “type”“=”value1“;”
category ::= “category”“=”value2“;”
buffer_size ::= “buffer”“=”value3“;”
value1 ::= “SYN”|“ASYN”
value2 ::= “S”| “BB”|“BK”|“KB”|“KK”
value3 ::= *(DIGIT)“Kbytes”
token ::= *(<any (US-ASCII) CHAR except SPACE, CTLs, or tspecials>)
tspecials ::= “(”|“)”|“<”|“>”|“@”|“,”|“;”|

“:”|“\”|<”>“/”|“[”|“]”|“?”|“=”
 

Figure 4-4: BNF notation of the channel definition 

 

A channel represents a reliable, directed, and optionally buffered flow of information in 

time. Reliable means that all messages placed into a channel are guaranteed to flow 

through without loss, error, or duplication, with their order preserved. Directed means a 

channel always has two identifiable ends: an in and an out. Once a channel is established 

between two streamlets, it operates autonomously and transfers the message from its 

input to its output port. Figure 4-4 shows the formal definition of the channel. Like the 

streamlet, it is also defined by port declarations and certain important attributes: 

 

• Type. Two channel types are distinguished: synchronous and asynchronous. 

Synchronous channels are zero-length buffers and can receive a value only if they can 

be delivered immediately, while asynchronous channels are unbounded FIFO buffers. 
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• Category. The possibility of pending units existing in a channel makes it meaningful 

for a channel to remain connected at one of its ends, after it is disconnected from the 

other. Based on this property, channels are distinguished as S, BB, BK, KB, and KK. 

The S channel guarantees that there are never any pending units in the channel. The 

BB (break-break) channel is automatically disconnected from the other of its 

streamlets, as soon as it is disconnected from one. The BK (break-keep) channel does 

not disconnect from its target streamlet when it is disconnected from its source 

streamlet. The KB (keep-break) channel simply reverses the semantics of the BK. The 

KK channel cannot be disconnected at either side of the connection. 

 

• Buffer. The buffer size in the channel is specified in units of Kbytes. Ideally, an 

asynchronous channel should have an unbounded buffer, as introduced above. 

However, in reality, a large buffer size is generally chosen to simulate this property. 

 

As with streamlets, there is a differentiation between channels and channel definitions in 

MCL. Channels (or channel instances) can be created from a definition, using the new-

channel primitive or destroyed, using the remove-channel primitive. 

4.2.3 Stream 

A stream is purely a composition script, also known as a coordination script, running on 

the coordinator side. It is within a stream that different streamlet and channel instances 

are created, network topologies are constructed, and actions in response to different 

events, are specified. Streams can be viewed as streamlets connected by channels with 

the ability to perform adaptations. Simultaneously, a stream can also be viewed as a 

“streamlet” with input/output ports, which come from the stream’s inner streamlet ports 

and are unsatisfied by any inner connections. Figure 4-5 is the formal definition of a 

stream object. 

 

In addition to the primitive new-streamlet, remove-streamlet, new-channel, and remove-

channel introduced above, there also are connect, disconnect, and disconnectall 

primitives to set up/break down connections in stream descriptions. For example, connect 
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(p.o, q.i, c) is written to set up a connection between the port o of the streamlet p and the 

port i of the streamlet q, using the channel c. For simplicity connect (p.o, q.i) can be used 

instead, whereby the system automatically creates a channel instance of an asynchronous 

BK type with 100 Kbytes of buffer to connect between the ports. 

 

stream-definition ::=“stream”stream_name declaration
stream_name ::= token

;is ALWAYS case-insensitive
declaration ::= “{”

*(streamlet_instantiation)
*(channel_instantiation)
*(connection_setup)

 “}”
streamlet_instantiation ::= “streamlet” str_instance“=”

“new-streamlet”“(”streamlet_name“)”“;”
channel_instantiation ::= “channel” chan_instance “=”

“new-channel”“(”channel_name“)”“;”
connection_setup ::= “connnect”“(”port_ID“,”

<port_ID>“,”<chan_instance>“)”“;”
port_ID ::= str_instance“.”port_name

 

Figure 4-5: BNF notation of the stream definition 

 

Dynamic reconfiguration is another important task that needs to be addressed in the 

description of a stream. It’s also an important advantage of MCL over most existing 

coordination languages, as shown in Table 2-2. The interaction model in MCL is event-

driven. That is, a coordinator process waits for an occurrence of a specific event to 

stimulate entry to a predefined state and perform some actions. These actions typically 

consist of setting up or breaking off connections of ports and channels. The coordinator 

then remains in that state until it observes the occurrence of some other related events. 

 

System events are generated by the Event Manager, an important component in the 

MobiGATE environment that facilitates the adaptation of the streamlets. Several types of 

events in MCL have been predefined. Such events are introduced and described in 

Section 6.4. They represent external events that can be subscribed to initiate the 
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adaptation through reconfiguration of the composition of the streamlets. The selection of 

the event types include LOW_ENERGY (Client devices running out of power), 

LOW_BANDWIDTH (Poor network bandwidth), LOW_GRAYS (Client devices 

supporting only shallow grayscale), and END (End of application). Note that, unlike 

other coordination languages featuring events, MCL events are not parameterized and 

cannot be used to carry data – they are used purely for triggering the evolution of the 

composition of coordinated streamlets in response to contextual events. 

 

There is an important primitive in descriptions of a stream, when (event) {…actions…}, 

identifying reactions to different events. In principle, the coordinator picks up any 

broadcast event; in practice, however, only a subset of the potential receivers is usually 

relevant to an event as these receivers specify actions in the corresponding when sections. 

 

4.3 Case Example of Using MCL 

A pragmatic example of the composition of service entities based on MCL is presented in 

this section. To illustrate and highlight the robustness of the language in regulating 

complex adaptations in response to evolving wireless and mobile operating 

environments, a modified datatype-specific distillation application, which was deployed 

at U.C. Berkeley [Fox98a], is adopted. The service entities, in the form of streamlets, 

used in this example are listed below. 

 

• Switch: Dividing incoming messages based on the semantic type of the data; 

• Image Down Sampling: Lossy compression of an image by reducing the sample rate; 

• Map to 16 grays: Reducing images to 16 grays to support shallow grayscale displays; 

• PostScript-to-Text: Discarding some information on format and converting documents 

to rich-text supported by most devices; 

• Text Compressor: A generic text compressor; 

• Merge: Integrating different types of information into a whole body; 

• Power Saving: A power-saving mechanism as discussed in [Anastai02]. 
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Figure 4-6: The composition model of a datatype-specific distillation application 

 

Figure 4-6 shows the composition model of the application. The rectangle boxes 

represent the service entities modeled as streamlets associated with input ports (black 

points) and output ports (white points). Lines between different ports embody 

intermediate channel objects. Note that the dashed parts are optional, which means they 

will be included in the architecture only when certain specific events take place. For 

example, the power-saving entity is invoked when the system subscribes and 

correspondingly receives the LOW_ENERGY signal from the hardware abstraction driver. 

The abstraction of the stream application streamApp, which exercises recursive 

composition, contains the composition of the streamlets. The composite streamApp 

streamlet has its own input/output ports, derived from those internal ports, not satisfied 

by any internal connections. Therefore, from the outside the streamApp can also be 

regarded as a streamlet object and can be graphically represented in the form of an 

encapsulated box and ports to be reused in other stream applications. The concept of 

recursive composition is discussed in detail later in this thesis. 

 

Below is a description of individual streamlets in MCL. Considering the large size of 

image data, a channel with a buffer of 1024 Kbytes is created specifically to connect 

image-related streamlets, while for others the default 100 Kbyte-sized channel is used. 
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streamlet switch{
port{

in pi : multipart/mixed;
out po1: image;
out po2: application/PostScript;

}
attribute{

type = STATELESS;
library = “/general/switch.class”;
description =
“Divide incoming message based on
the semantic type of the data.”;

}
}
streamlet img_down_sample{

port{
in pi : image;
out po : image;

}
attribute{

type = STATELESS;
library = “/image/downSample.class”;
description =
“reduce sample rate of the image”;

}
}
streamlet map_to_16_grays{

port{
in pi : image;
out po : image;

}
attribute{

type = STATELESS;
library = “/image/mapGrays.class”;
description =
“To support clients with shallow

grayscale displays”;
}

}
streamlet powerSaving{

port{
in pi : multipart/mixed;
out po : multipart/mixed;

}
attribute{

type = STATEFUL;
library = “/general/powerSaving.class”;
description =
“Power saving mechanism.”;

}
}

streamlet postscript2text{
port{

in pi : application/PostScript;
out po : text/richtext;

}
attribute{

type = STATELESS;
library = “/text/p2t.class”;
description =
“Convert PostScript material to

richtext document.”;
}

}
streamlet text_compress{

port{
in pi : text;
out po : text;

}
attribute{

type = STATELESS;
library = “/text/Compressor.class”;
description =
“a generic text compressor.”;

}
}
streamlet merge{

port{
in pi1 : image;
in pi2 : text;
out po : multipart/mixed;

}
attribute{

type = STATELESS;
library = “/general/merge.class”;
description =
“Merge messages together.”;

}
}

channel largeBufferChan{
port{

in : image;
out : image;

}
attribute{

type = ASYN;
category = KB;
buffer = 1024 Kbytes;

}
}

 

Figure 4-7: Streamlet and channel descriptions 
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Based on these streamlet descriptions, the final composition script for the stream 

streamApp is written as follows: 

 

stream streamApp{
streamlet s1 = new-streamlet (switch);
streamlet s2 = new-streamlet (img_down_sample);
streamlet s3 = new-streamlet (map_to_16_grays);
streamlet s4 = new-streamlet (powerSaving);
streamlet s5 = new-streamlet (postscript2text);
streamlet s6 = new-streamlet (text_compress);
streamlet s7 = new-streamlet (merge);

channel c1, c2, c3 = new channel (largeBufferChan);

connect (s1.po1, s2,pi, c1);
connect (s1.po2, s5,pi);
connect (s2,po, s7.pi1,c2);
connect (s5.po, s6.pi);
connect (s6.po, s7.pi2);

when(LOW_ENERGY){
connect (s7.po, s4.pi);

}
when(LOW_GRAY){

disconnect(s2.po, s7.pi1);
connect(s2.po, s3.pi, c2);
connect(s3.po, s7.pi1, c3);

}
}

 

Figure 4-8: Stream description 

 

As shown in Figure 4-8, the occurrence of LOW_ENERGY triggers the reconfiguration of 

the stream by introducing streamlet powerSaving. Similarly, the occurrence of 

LOW_GRAY triggers the insertion of a new streamlet map_to_16_grays to provide 

transcoding of colour images to grey scale images.  

 

4.4 Design Issues of MCL 

The MCL design is greatly influenced by a set of core design issues. These issues, in a 

way, differentiate MCL from existing and general coordination languages. It has specific 
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focus as an underlying coordination language to facilitate robust composition and support 

for dynamic reconfiguration in a mobile and wireless environment.   

4.4.1 Compatibility Check 

In a manner analogous to the type checking in programming languages, it is desirable to 

be able to perform the limited static checking of compatibility when connecting or 

transforming the composition of service entities. Such controls facilitate the construction 

of correct and consistent architectures while helping designers focus their attention on 

more complex issues. MCL provides such a mechanism, based on the matching of 

streamlet port types. 

 

MCL imposes several semantic restrictions and constraints on the ability of streamlets to 

connect to each other. The two most important restrictions are: 

• Streamlet ports can only connect to channel ports (and vice versa). 

• Sink ports can only connect to source ports that are equal to or are a specialization of 

the sink ports. 

 

It is desirable to encode such restrictions and constraints so that a number of 

compatibility tests can be automatically performed by the language at the time of 

compilation. Since all MCL connections are between ports, it is desirable to be able to 

perform compatibility checks at the port level. 

 

The first restriction is relatively easy to validate by language. Before establishing a 

connection, MCL checks the source of two ports. If both are from streamlets, or channels, 

the connection is considered illegal. For the second restriction, MCL bases its 

compatibility check on port types. As introduced above, multiple associated direct 

subtypes or supertypes can be assigned to a port type. These subtype/supertype relations 

are used to specify the second restriction on compatibility. To establish a connection, 

MCL performs a match of port types: if the type of source port is equal to or is a subtype 

of a type of sink port, the connection is considered legal. In the application shown in 

Figure 4-6, the connection between the PostScript-to-Text output port and the Text 
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Compressor input port is valid, since the source port type text/richtext is a subtype of the 

sink port type text. 

4.4.2 Recursive Composition 

As mentioned above, the stream and streamlet processes are indistinguishable, in terms of 

their abstraction, as boxes with associated input/output ports. Thus, a stream object can 

logically be regarded as a streamlet written in native MCL composition languages and 

reused in another stream application. This is known as recursive composition. In addition, 

the key word main is included to indicate the highest-level stream object in a 

coordination script. The system can thus start to execute an MCL application by locating 

a stream object that is labeled main in the coordination script. 

 

To support this recursive composition, the composition of a separate description of 

streamlets associated with each stream object is needed. Based on these descriptions, the 

system instantiates instances of streamlets and sets up connections to each streamlet, just 

as it does for common streamlets. For example, the example stream discussed above can 

be reused as follows. 

 

streamlet streamApp{
port{

in pi : multipart/mixed;
out po : multipart/mixed;

}
attribute{

type = STATEFUL;
library = “/general/streamApp”;
description =
“match the stream object streamApp to

a streamlet”;
}

}

main stream compositeStream{
streamlet s1 = new-streamlet (cache);
streamlet s2 = new-streamlet (streamApp);

connect (s1.po, s2.pi);
}

streamAppcache

compositeStream

 

Figure 4-9: Recursive composition 

 

As shown in Figure 4-9, compositeStream is oblivious to the internal structure of the 

stream streamApp. From the view point of compositeStream, this stream object is just a 
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common streamlet implemented in MCL. In a similar manner, compositeStream can also 

be reused in another higher-level stream object, as a common streamlet object. 

 

The support of the recursive composition model corresponds to the spirit of the 

coordination theory in facilitating organized composition. As MobiGATE evolves and, 

coupled with the proliferation of streamlets, a need to provide a coordinated and 

structured organization of streamlets is envisaged to promote ease of use and 

management. This is reflected in MCL through the support of the hierarchical modeling 

of streamlet composition based on recursive coordination. 

4.4.3 Streamlet Sharing 

Another important issue of this study is the concept of streamlet sharing. Each streamlet 

is oblivious to the source or destination of the messages and is concerned only with 

imposing its computation on incoming messages and producing response messages. The 

complete decoupling of coordination from computation makes it possible to share 

instances of streamlets between different streams.  

 

The question is, how can messages be distributed to their corresponding streams when the 

messages are generated on the output ports of the shared instances of streamlets? In other 

words, how can messages belonging to different stream instances be identified? 

 

As introduced previously, streamlets, exchange messages based on MIME. In the MIME 

message format, a header exists called the MIME-extension-field for applications to 

define their own application-specific headers. A new field in the message header to 

identify messages from different streams is defined, using this feature. 

session ::= “Content-Session” “:”session-id 

Before executing a coordination stream, the system automatically generates a unique 

session ID for each instance of a stream. Subsequently, all messages belonging to this 

stream are labeled with the assigned session ID in their “Content-Session” field. By this 

means, the system can easily differentiate messages from different streams. 
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5 MCL Semantic Model 

The definition of a formal language includes two parts: the specification of the proper 

construction of sentences, the syntax; the specification of the meaning of sentences, the 

semantics [Kolman96]. 

 

The primary focus in Chapter 4 is on formal definitions of the architecture descriptions in 

the syntax domain. Definitions of basic elements, such as streamlets, channels, and 

streams, are given. While these descriptions may provide useful documentation, the 

current level of informality limits their usefulness. In particular, the syntax does not 

capture the intrinsic semantic properties of the language, thus rendering analysis of the 

architecture for consistency impossible. 

 

In this chapter, MCL is formalized by means of the development of a semantic model. 

The model specifies precisely all the language elements introduced previously, and is 

described by using the specification language Z. The Z schemas, which can be regarded 

as generalized type definitions, are used to represent the basic constructs. These schemas 

provide semantics that permit the formal verification of properties of the model. 

Additional details on Z can be found in [Spivey89]. 

 

5.1 Formalization of MCL Language Elements 

It is assumed that sets [ENTITY, DATA, PORT] exist. The ENTITY identifiers represent 

global names. Name clashes between distinct streamlets and streams are disallowed. The 

set DATA includes different data types defined by MIME media type representation, as 

discussed in Section 4.1. The PORT members are the streamlet interfaces and are also 

introduced as a given set in the model. 

5.1.1 Streamlet 

In order to define the behavior of a streamlet, its input and output data ports and the data 

type that may be passed along each data port must be known. This latter information is 

represented by a (partial) function from data ports to their data types. In addition, a 



 53 

streamlet is identified with a unique id. This streamlet information is formalized in the 

schema streamlet. 

I

U

 

Some enforced constraints on streamlets are 

• Input and output data ports are distinct (first predicate); 

• Each port is associated with a data type (second predicate). 

5.1.2 Channel 

The streamlet data ports are connected by channels, modeled as typed data streams. Each 

channel has a distinct source and sink for receiving and sending data. Recall that PORT 

represents an input or an output of a particular streamlet. Thus a channel represents a data 

transmission from one streamlet to another. 

≠

 

5.1.3 Stream 

A stream can now be modeled as a set of streamlets connected by channels. More 

formally, a stream now agglomerates a set of streamlets together with a set of channels. 
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Stream
streamlets : P Streamlet
channels : P Channel

∀ s1, s2 : streamlets | s1 ≠ s2 • s1.id ≠ s2.id
∀ c1, c2 : channels | c1 ≠ c2 • c1.id ≠ c2.id
∀ • •c : channels ∃ s1, s2 : streamlets

c.source ∈ s1.outputs
c.sink ∈ s2.inputs
s1.port-type(c.source) ⊆ c.type∧

∧

 

Because the ENTITY identifiers represent global names, name clashes between distinct 

streamlets and channels are disallowed. It also is important to point out that the port type 

of two connected streamlets must be compatible with that of the intermediate channel. In 

other words, the port type must be equal to, or a subtype of, that of the intermediate 

channel. This is specified by the last precondition in the above definition. 

5.1.4 Composite Streamlet 

As introduced previously, recursive composition allows streams to be considered as 

streamlets and reused in the composition of other high level streams. The main problem 

here concerns the resulting streamlet type, since the resulting streamlet should not be 

independent of the associated architecture. Consequently, the input and output types 

declared at the composite level are selected first. All the inner architecture types not 

concerned with any inner connection, are then added. The resulting composite streamlet 

is then formalized as follows. 
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I

U

∀ ∈ •∃ ∈ • ∈
U

∧ ∀ ∈ • ≠

∀ ∈ •∃ ∈ • ∈
U

∧ ∀ ∈ • ≠

 

The most difficult part of the formal definition concerns the definitions of the sets InnerIn 

and InnerOut. For simplicity, the process of selecting the unsatisfied input types are 

formalized as being those that are not concerned with any connection involving the inner 

components. 

 

5.2 Analysis of Architectural Descriptions in MCL 

Based on the semantic model defined in Section 5.1, different kinds of analysis and 

checking are now considered. In this section some representative examples of analysis 

supported by the formal framework displayed in this study are presented. To address the 

topological requirements, a stream configuration is considered as a directed graph in 

which two streamlets are connected if any of their ports are attached to a common 

channel, as shown below. 
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↔

×
∃ ∈ •

∈ ∧

∈

 

5.2.1 Feedback Loops Detection 

An important restriction on the definition of stream configurations is that the architecture 

has no feedback loops, or the connection graph is acyclic. Informally, in terms of 

streamlets, this means data processed by a streamlet will never re-enter the streamlet. The 

acyclic can be defined as follows: 

I

 

5.2.2 Open Circuit Detection 

In addition, it is highly possible that some intermediate output ports might, by mistake, be 

left unconnected during the composition activities, possibly resulting in the loss of 

incoming messages entering the corresponding streamlet. This is called an open circuit 

problem and must be detected and avoided during stream configurations. Based on the 

definition of StreamGraph, a formal definition of the open circuit problem is provided as 

follows: 
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∃

∀ ∈ • ≠
∧ ∉

 

5.2.3 Mutual Exclusion Detection 

It is worthy of note that in the MobiGATE system there are some streamlets that are 

mutually exclusive. Thus in the stream compositions, the incoming messages cannot be 

processed by these exclusive streamlets simultaneously. That is to say, the exclusive 

streamlets cannot be deployed in the same path from the START to the END of the 

stream configurations. This exclusion relationship can be represented as a partial function 

from the streamlets set to its power set in its formal definition, as shown below. 

→

∀ ∈ •

∉

∈

 

5.2.4 Dependency Verification 

In contrast to mutual exclusion restrictions, in some situations when a streamlet is added 

to the stream configuration, a set of closely related streamlets should also be included. In 

other words, these streamlets are said to be mutually dependent. This assurance is a 

desirable enforced constraint in the stream composition. The formalization of this 

requirement is described as follows: 
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→

∀ ∈ •

∈
∨ ∈

∈

 

5.2.5 Preorder Verification 

The deployment order of the streamlets in the composition is another composition 

restriction. Some streamlets are predefined to impose their services on the incoming 

messages in a specific order. For example, encryption and compression are two 

independent service entities, and generally the encryption must be deployed before the 

compression entity. If it is not so, it is necessary for the system to be able to detect this 

order error. This PreOrder restriction is defined below. 

↔

I

 

 

One virtue of the semantic model defined above is that it has proven to be an excellent 

way to obtain an in-depth understanding of MCL, and may even result in discovering 

MCL features that were not apparent from a textual description. With these formal 

definitions of system properties, many existing tools for Z notation can be utilized to 

automate the analysis process, such as Z/EVES [Saaltink97]. This is analogous to the use 

of type checking to guarantee that all uses of procedures are consistent with their 

programming language definitions.  
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5.3 Case Example of Analyzing MCL Descriptions 

In this section, a simple example is used to demonstrate the usefulness of the MCL’s 

semantic model in verifying the correctness of system compositions. Figure 5-1 shows a 

composition example comprising three streamlets: s1, s2, and s3. A feedback loop is part 

of this composition architecture. As discussed in Section 5.2.1, this loop must be detected 

and avoided in the definition of stream configurations. How the MCL semantic model is 

used to find and correct this composition mistake is shown below. 

 

 

Figure 5-1: The composition example with a feedback loop 

 

In MCL, the above composition model can be simply described as follows: 

 

connect (s1.out, s2.in); 

connect (s2.out, s3.in); 

connect (s3.out, s1.in); 

 

Based on the definitions of StreamGraph, the above description can be mapped into the 

semantic domain as follows: 

 

s1,s2,s3∈streamlets ∧  (s1,s2)∈connect ∧  (s2,s3) ∈connect ∧ (s3,s1) ∈connect  

 

As connect + stands for the strongest or smallest transitive relation containing connect 

[Spivey89], it is not difficult to deduce the following statement from the above: 

 

(s1,s1), (s2,s2), (s3,s3)∈  connect +  
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But : (s1,s1), (s2,s2), (s3,s3) ∈id streamlets 

Thus: id streamlets I  connect + ≠Ф  

 

Obviously this conflicts with the definition of the acyclic requirement for a stream 

description. The conflict is indicated in the validation process, a process, which for other 

system properties, is quite similar. 

 

The above example shows that a semantic model can be used to analyze application 

architecture to ensure that it is consistent in its internal structure. This is not possible 

using syntax descriptions alone. It has been found that a large amount of effort is 

involved in validating a given application configuration. In contrast, the semantic model 

defined in this chapter, has made the correctness verification of MCL descriptions 

feasible and much easier.  

 

The derived MobiGATE semantic model has proved to be effective in providing an in-

depth understanding of MCL and given an insight into the complexity of configuration 

semantics. Of importance in this respect is that the MCL composer’s intended meaning of 

streamlet and channel descriptions and composition semantics can be captured precisely. 

As a result, the overall MCL description can be validated to ensure that potential conflicts, 

such as open circuit and mutual exclusion introduced in the previous section, are resolved 

at compilation time and also during runtime. A more ambitious aim is to develop a 

complete theory of architecture description that allows reasoning about the behavior of 

the system as a whole. 
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6 Development of the MobiGATE System 

This chapter describes the design and development of the MobiGATE system that 

supports the necessary framework for streamlets in order that they may be easily 

composed, inserted and removed. This system forms the underlying runtime execution 

environment where streamlets are deployed and executed on the proxies residing between 

the two ends of the wireless link. The MobiGATE runtime model is implemented on a 

Java platform, in which common runtime operating system elements are abstracted as 

either residing in the coordination or computing sub-layers. Significantly, the runtime 

system is designed to promote maximum reusability of system services while minimizing 

overheads that may be incurred due to streamlet operations. The aim is to provide a 

general and flexible system that supports rapid development and deployment of streamlet 

applications without dictating how the streamlet operation flows. 

 

The low-level details of the implementation codes are not discussed here. Rather, the 

chapter highlights three major abstract classes that are pervasive in the MobiGATE 

model. 

 

• Streamlet base class is the core abstraction of a streamlet that implements and 

manages the lifecycle operations associated with a streamlet object, such as pause, 

activate, and end.  

 

• MessageQueue abstracts the communication among all streamlets residing in 

MobiGATE. Importantly, it provides a convenient way to separate the communication 

parts from the computation codes in a streamlet application. 

 

• Stream base class is responsible for managing the insertion, removal, and replacement 

of streamlets that are composed within a stream.  
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Figure 6-1: The MobiGATE system class diagram  

 

Figure 6-1 shows the greatly simplified but representative class diagram of the complete 

implementation. The following sections briefly describe the main classes that make up 

the MobiGATE infrastructure. 

 

6.1 The Base Class: Streamlet 

An excerpt of the Streamlet base class is shown in Figure 6-2. Any streamlet that is to be 

deployed within the MobiGATE infrastructure needs to extend this base class. The 

Streamlet class extends the Thread class and thus is inherently runnable. The author of a 

specific streamlet is required to write the functional code within the processMsg() 

method, which will be invoked by the run() method in the Streamlet class. The 
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Streamlet class contains an In and an Out object, along with their corresponding standard 

references to manipulate the stream connections. A group of methods (e.g. setIn, 

setOut, getIn, getOut) is used to establish reference to the In and Out objects in the 

Streamlet code itself. In addition, several lifecycle methods are also defined in the 

Streamlet class, such as pause(), activate(), and end(), to manage streamlets 

lifecycle operations during runtime. 

 

The computing model can be used to define general types of streamlets by providing the 

developer with the flexibility to include any application-specific processing by overriding 

the streamlet’s processMsg() method. For example, streamlets can be rapidly 

developed to provide important services such as image down sampling, color to gray 

conversion, compression, and encryption. Connection between streamlets in the Streamlet 

instance is achieved through the use of the In and Out object abstractions. 
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public class Streamlet extends Thread implements Serializable, Cloneable {

//The Streamlet identifier
private String id;

//The input port
public MessageQueue In;

//The output ports
public MessageQueue Out;

//The setIn and setOut methods allow on to set up their own
// references names to the actual message queue
public void setIn(MessageQueue input){

In = input ;
input.incr_cCount();

}
public void setOut(MessageQueue output){

Out = output;
output.incr_pCount();

}

// specific processing logic goes here
// waiting to be override by developers
public void processMsg(MimeMessage msg){}

//Life cycle methods
public void pause() { ... }
public void activate() { ... }
public void end() { … }

}
 

Figure 6-2: Excerpt from the class Streamlet 

 

6.2 The Base Class: MessageQueue 

MessageQueue is used to manage the communications among streamlets on a given 

stream. In the class, there is a message vector msgQueue, accessible to the producer and 



 65 

consumer streamlets and holding references to the passing MIME messages. The main 

concern with the vector is how to synchronize producer and consumer activities. The 

class implements methods postMessage() and fetchMessage() and obtains the 

synchronization in two ways. First, the two threads must not simultaneously access the 

msgQueue. A Java thread can prevent this from happening by locking an object. When an 

object is locked by one thread and another thread tries to call a synchronized method on 

the same object, the second thread blocks until the object is unlocked. Second, the 

producer must have some way to indicate to the consumer that the message is ready and 

the consumer must have some way to indicate that the value has been retrieved. The 

Thread class provides a collection of methods--wait, notify, and notifyAll--to help threads 

wait for a condition and notify other threads of when that condition changes.  

 

In particular, two important integer-typed attributes have been included in the class 

MessageQueue, producer count pCount and consumer count cCount, which respectively 

represent the number of producers and consumers attached to a queue object. By 

increasing the corresponding pCount by 1, the system assumes that a producer streamlet 

has been connected to the channel. If the value of pCount is 0, the system assumes that 

the channel does not at the moment have a producer attached. For the variable cCount, 

the representation is similar. The code segment below is excerpted from the 

MessaeQueue class. 
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public class MessageQueue{

//The Message Vector
private Vector msgQueue;
private int max_size = MAX_SIZE;
private String type = "*/*";

//Poducer/Consumer Count
private int pCount = 0;
private int cCount = 0;

//The method to insert messages
public synchronized void postMessage(String msgID){ … }

//The method to read&remove messages
public synchronized String fetchMessage(){ … }

}
 

Figure 6-3: Excerpt from the class MessageQueue 

 

6.3 The Base Class: Stream 

The Stream class is the base class that serves to manage stream applications in the 

MobiGATE infrastructure. Unlike the Streamlet class, Stream is responsible for 

managing the stream of composed streamlets. Its concern is not the operations of the 

streamlets, but how the streamlets are composed and their interactions with one another. 

The three primary tasks of the Stream class are initializing connection setup, 

reconfiguration of the system in response to different events, and definition of 

composition primitives. The initializing connection setup method provides an opportunity 

for developers to allocate and initialize stream specific parameters in preparation for the 

stream to be deployed.  To support the reconfiguration setup, an important method 

onEvent() is abstracted to allow developers to override and react to external 

contextual events. The composition primitives are fundamental to the Stream class in that 



 67 

they provide method calls to support dynamic streamlet compositions.  In particular, the 

class implements methods for inserting and removing streamlets from the stream, as well 

as methods for creating new streamlet instances in the stream. All these defined 

primitives are used in the composition of specific stream applications. Figure 6-4 is 

excerpted from the class Stream. 

 

 

Figure 6-4: Excerpt from the class Stream 
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In expressing a stream for an application, the developer is required to capture in MCL the 

streamlets’ composition, which essentially captures the initial connection topology and 

reconfiguration schemes. On deploying the stream application within the MobiGATE 

infrastructure, the system automatically creates the corresponding stream instances from 

these descriptions by extending the base class Stream and overriding the related methods 

(e.g. initConfig(), onEvent(ContextEvent evt), where evt represents the 

contextual event). Importantly, the composition model greatly relieves programmers of 

complex and low-level streamlet programming and system activities, such as event 

listening or resource recollection. In short, the clear separation of concerns in terms of the 

computation and composition enhances the modularity and flexibility of the system, 

while facilitating ease of service reconfiguration through dynamic stream composition. 

 

6.4 MobiGATE Event System 

The generation and propagation of system events is another important issue that needs to 

be considered especially in the design of the MobiGATE system. Today’s Internet clients 

vary widely with respect to both hardware and software properties: screen size, color 

depth, effective bandwidth, processing power, and the ability to handle different data 

formats. To build a dynamically adaptable system, the various client variations must be 

captured and modeled into a standard and recognizable form, before some further actions 

are taken to respond to them. 

 

The MobiGATE event system, where each client variation is modeled as an object called 

MobiGATE Event, has been designed for this purpose. In the system, all the client 

variations have been classified into four different categories: System Command, Network 

Variation, Hardware Variation, and Software Variation, each of which represents one 

axis along which clients may vary. It is necessary to point out that each category may 

have more than one event defined. For example, there are three events PAUSE, 

RESUME, and END in the System Command category. The category and its 

corresponding event list are shown in Table 6-1. 
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Category EventID Description 

PAUSE Pause the stream application 
RESUME Resume the paused application System Command 

END End the whole application 
LOW_BANDWIDTH The effective bandwidth < 100Kb/s 

NORMAL_BANDWIDTH The effective bandwidth ≥ 100Kb/s 
HIGH_ERROR High error rate 

NORMAL_ERROR Normal error rate 
LONG_DEALY The transmission delay ≥ 1s 

Network Variation 

NORMAL_DEALY The transmission delay < 1s 
LOW_GRAY The shallow grayscale display 

LOW_ENERGY The client is under low energy mode Hardware Variation 
NORMAL_ENERGY The client is under normal energy mode 

JPEG_ONLY The client device only supports Jpeg image 
GREY_ONLY The client does not support colored display Software Variation 
PS_TO_TEXT The client does not support PostScript 

Table 6-1: MobiGATE event definition 

 

Note that, unlike the case with other systems featuring events, MobiGATE events are not 

parameterized and cannot be used to carry data – they are used purely for triggering the 

evolution of the coordinated streamlets. As shown in Figure 6-5, each MobiGATE event 

object is associated with three primary attributes: 

• eventID:  The identity of the event object. 

• categoryID: The category the event object belongs to.  

• evtSource: The source of the event. In other words, which stream application 

does the event object belong to? 
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Figure 6-5: MobiGATE event object  Figure 6-6: MobiGATE event system 

 

Figure 6-6 shows the MobiGATE event system diagram.  A kernel entity, called Event 

Manager, was designed to control the operation of the event system including event 

subscription, triggering, and monitoring. The Event Manager monitors the underlying 

client variations and composes corresponding events in response to various situations. 

Simultaneously, the Event Manager multicasts events among different stream 

applications, whose method onEvent() will then be invoked upon the reception of these 

events. 

 

To avoid overheads incurred in processing the flood of events, individual stream 

applications may subscribe to events of interest and react to these events by performing 

appropriate reconfiguration, while ignoring those events that they consider superfluous. 

To support this function, the Event Manager maintains an array subscriberList to 

hold subscribers for different event categories. Each element of this array is vector-typed, 

which holds a collection of subscribers of the corresponding event category. The 

EventManager class is equipped with the method subscribeEvent() for stream 
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applications to register events of their interests. Figure 6-7 is excerpted from the class 

EventManager.  

 

public class EventManager extends Thread{

//maintain subscribers of different categories
private Vector[] subscriberList;

void EventManager(){
categoryList = new Vector[EventUtility.CategoryCount];
for(int i=0;i<EventUtility.CategoryCount;i++){

categoryList[i] = new Vector();
}

}

public void subscribeEvt(int categoryID, Stream app){
categoryList[categoryID].add(app);

}

public void unsubscribeEvt(int categoryID, Stream app){
categoryList[categoryID].remove(app);

}

public void multicastEvent(ContextEvent evt){
try{

int id = evt.getCategoryID();
for (Enumeration e = categoryList[id].elements() ; e.hasMoreElements() ;){

((Stream)e.nextElement()).onEvent(evt);
}

} catch (Exception e){}
}

public void run(){
//Monitor the underlying resources
//Compose new event objects in response to various situations

}

}
 

Figure 6-7: Excerpt from the class EventManager 
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Thus when a new event object is generated, the Event Manager is required to check 

the attribute evtSource of the event and verify whether the corresponding stream 

application has subscribed to the event category. If they have, the event is forwarded to 

the stream for processing; otherwise it is ignored. 

 

6.5 Sender and Receiver Streamlet Matching 

Each streamlet, if necessary, has associated with it a unique peerID, which is used to 

identify a peer streamlet on the other side of the communication channel. Given a 

streamlet that performs some processing on an outgoing message, its peer streamlet 

performs the reverse processing on incoming messages. For example, a text Compressor 

streamlet on the sending end of a connection requires a DeCompressor streamlet on the 

receiving end. Each streamlet on the sending side of a connection adds a header field to 

the messages before writing them to its output port. The field identifies the peer streamlet 

needed at the receiver. When a message arrives at the receiving side, it is first distributed 

to a message distributor, where the peerID of the streamlet is checked. If the distributor 

can find a streamlet whose identification matches the peerID contained in the incoming 

message, then the distributor will deliver the message to the streamlet. Once a message 

has been processed by all necessary peer streamlets, it is delivered to the application. 

 

6.6 Message Loss Avoidance 

In the process of stream configuration, it is not unusual for messages to be queued in a 

streamlet buffer, while waiting to be processed. As a result, it is necessary that 

MobiGATE exercises message loss avoidance to prevent unprocessed messages being 

discarded owing to the removal and insertion of streamlets. It is important to note that 

MobiGATE does not attempt to facilitate peer-to-peer streamlet synchronization during 

the removal process. While it provides mechanism for peer-to-peer streamlets to pass 

control messages, it is the responsibility of the peer streamlets to ensure that state 

information and data are appropriately handled before MobiGATE removes the peer 

streamlets from the stream. 
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To avoid pre-mature termination of streamlets and avoidance of message loss during the 

reconfiguration process, the system checks if the pre-established conditions have been 

satisfied for the target streamlet. The conditions are depicted in Figure 6-8. If the 

conditions are satisfied, the streamlet can be removed safely. Otherwise the system has to 

wait some time or take special actions, until all conditions are satisfied. 

 

 

Figure 6-8: Prerequisites to terminate a streamlet 

 

By adopting this mechanism, incoming messages can be guaranteed to ultimately appear 

at the output port in a stream under normal operations. Though it is still possible to lose 

messages in some very special conditions (such as streamlets processing speed mismatch, 

a problem that is discussed later), it is argued that some further actions can be taken to 

minimize the occurrence, which forms part of future work in the implementation of the 

MobiGATE system. 

 

6.7 Further Improvement 

As introduced in Chapter 3, MobiGATE has a number of desirable properties. First, it 

maintains the intuitive flow of processing. Second, it supports reusability by promoting 

strong modularity between streamlets and decoupling of coordination from computation. 

New functions are easily added to the system by inserting streamlets at the appropriate 

point in the processing sequence. Third, it supports ease of modification, since streamlets 

are logically independent of other streamlets. In implementing the MobiGATE system, 

there exist several challenges and issues that may significantly impact the system’s 

performance and usability. One of the major issues pertains to the incurrence of 

potentially large latency overheads caused by message copying across streamlets. 
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Furthermore, different streamlets may run at radically different speeds: it is unacceptable 

to slow one streamlet down because another streamlet is still processing data. 

 

To handle these problems, the MobiGATE infrastructure employs a centralized message 

storage management, while utilizing memory references to pass messages between 

streamlets. In particular, the system maintains all incoming messages by storing them in a 

message pool and passing them between different streamlets by their associated message 

identifier. In other words, the system employs the passing by reference instead of value. 

The benefit of significantly reducing the copying overheads is demonstrated and 

discussed in the performance evaluation chapter. In addition, the system permits 

messages to be ignored by slow streamlets if they are in the middle of processing other 

messages. This is obtained by modifying the method postMessage() in the class 

MessageQueue, as shown in Figure 6-9. 

 

public synchronized void postMessage(String msgID){

while(msgQueue.size() >= max_size){
try{

//if the message is full / the downstream streamlet is a slow one
wait(T);
// if still full after T , drop the message
if (msgQueue.size() >= max_size){

System.out.println("Queue full, message "+msgID+" was dropped!!!");
return;

}
} catch (InterruptedException e) {
}

}

//add the message id into the queue
msgQueue.add(msgID);

}
 

Figure 6-9: Excerpt from the method postMessage() 
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7 Performance Evaluation 

In order to study the operation and performance of the MobiGATE system, a set of 

experiments on an emulated and controlled wireless environment is conducted. 

Significantly, these experiments provide a unique opportunity to measure the potential 

computation overheads that may be incurred by the MobiGATE system in providing 

active transport services, while allowing the collection of empirical data on the 

performance of the system. By analyzing and comparing the results, further insights into 

the characteristics of MobiGATE are expected. It is also hoped to thoroughly exercise the 

interactions between the software components with the ultimate aim of validating the 

functionality of the system. 

 

The experiments begin with testing the MobiGATE streamlet in isolation, measuring the 

overhead brought by each streamlet when serving incoming messages. A set of 

experiments on the reconfiguration time was then conducted. These experiments enabled 

validation of the effectiveness of MobiGATE in facilitating context-aware computing 

through streamlet reconfiguration, together with the collection of empirical results on 

overheads incurred during reconfiguration. Finally, a case example with a particular 

application reacting to a changing bandwidth was studied to demonstrate the use of 

MobiGATE while verifying the insignificant overheads incurred in runtime processing. A 

comparison was made with the performance gained in service deployment and 

reconfiguration. 

 

7.1 Testing Environment 

As shown in Figure 7-1 the setup includes the use of three PCs: one acts as the 

MobiGATE server residing on the wired departmental LAN, a second acts as the mobile 

node, and the third is configured to act as a wireless router for emulating a wireless 

operating environment. The MobiGATE server and the Linux router are located on the 

same fixed LAN (158.132.11) within the campus network.  Any requests to hosts outside 

the campus have to go through the transparent campus proxy server.  The mobile node is 
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connected to the second network interface of the Linux router using different network 

identification (10.0.0). 

 

 

Figure 7-1: Testing environment 

 

7.2 Streamlet Overhead Analysis 

For a specific streamlet, ignoring the service processing time, the incurred overheads 

primarily come from two sources: 

• The added work to parse and unparse incoming messages. 

• The additional overhead in transmitting messages to and from other streamlets. 
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In this experiment, a special streamlet, named redirector, has been designed. Its primary 

logic is to read and parse incoming messages from its input port, encapsulating the 

necessary headers and sending the messages to its relevant output port. Significantly, the 

redirector streamlet contains core service codes that can be evaluated for overheads 

incurred in maintenance and execution over the MobiGATE runtime. Delay times can 

easily be captured by measuring the time needed for a size-specific message to pass 

through a configured number of streamlet redirectors. Considering the fact that the 

primary overheads incurred by the redirector streamlet are inherent in any streamlet for 

processing incoming messages, it is argued that the experiment setup is reasonable and 

realistic. The experimental results are shown in Figure 7-2. 
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Figure 7-2: Streamlet overhead 

 

The above figure shows that the delay overhead increases linearly with the increase in the 

number of streamlets the messages passed through. On average, the overhead is about 12 

ms per streamlet. It is believed that the overhead can be further reduced with improved 

hardware configuration such as increasing the processor speed and increasing the 

available memory. Furthermore, in the realistic deployment of services, it is unlikely that 

more than ten streamlets will be used. That is to say, the overhead brought by these 

streamlets can safely be bound to about 100 ms, which is relatively acceptable compared 

with the potentially long transmission delay incurred in wireless transmissions. 
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7.3 Passing by Reference versus Passing by Value 

The MobiGATE system maintains all incoming messages by storing them in a message 

pool and passing the messages between different streamlets by their associated message 

identifier. In other words, the system employs passing by reference instead of value. 

Figure 7-3 shows the experimental results when buffer management of MobiGATE is 

implemented based on reference passing versus value passing. In this experiment, several 

messages of different sizes were prepared and made to pass through a number of 

streamlet redirectors (thirty in the experiment) successively. 
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Figure 7-3: Passing by Reference versus Passing by Value 

 

As expected, the experiment clearly indicates an increase in processing overheads with a 

progressive increase in the message size. The rate of increase is more prominent as the 

message size increases beyond 200K bytes. Across different message sizes, the 

processing latency is significantly lower for messages that are passed by reference 

compared to messages that are passed by value. In the former case, new incoming 

messages are copied into the message buffer pool once, while message headers and 

identifiers are treated as meta-data and references to be passed between streamlets. While 
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the message header size may increase as more streamlets are chained in the stream, the 

size is still significantly lower than that of the actual message data. Avoiding copying of 

actual message data across streamlets also significantly reduces the amount of memory 

required by MobiGATE. This has the benefit of keeping messages stored and cached on 

fast memory, avoiding the need to swap between resident memory and secondary storage. 

 

7.4 Reconfiguration Time 

Dynamic reconfiguration in MobiGATE aims to maximize the performance of wireless 

access under a vigorously changing context environment. However, the reconfiguration 

process of service composition brings a certain number of performance penalties that are 

unavoidable. Reconfiguration time is the time taken for the MobiGATE system to adapt 

to changes in the wireless environment. In other words, reconfiguration time is the 

amount of time during which a user will find the MobiGATE system inactive due to 

reconfiguration. 

 

Before going into the details of the experiment, the addition of a new streamlet is used as 

an example to illustrate a complete reconfiguration process. Figure 7-4 shows the steps of 

this process in detail: 

1. Three streamlets: A, B, and C. A and B are initially connected by a channel m. 

Assuming the need to insert C between A and B. 

2. Suspend streamlet A. 

3. Detach A from the channel m. 

4. Attach C to the channel m. 

5. Create a new channel n between A and C. 

6. Activate streamlet A and the reconfiguration is finished! 
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Figure 7-4: The addition of a new streamlet 

 

From the above illustration, it is not difficult to derive the reconfiguration time, which 

involves the following factors: 

• ∑
=

k

i
is

1

- Suspension of k streamlets 

• nc - Creation (or Deletion for removal operation) of n channels 

• ∑
=

k

i
ia

1

- Activation of suspended streamlets 

Thus, the reconfiguration time (T) can be represented as:  

T = ∑
=

k

i
is

1

+ nc + ∑
=

k

i
ia

1

.      --- Equation 7-1 

 

To evaluate the time required to reconfigure using the MobiGATE system, several 

reconfiguration actions were performed. Specifically, a stream application ReconfigExp 

was designed. It reacts to the LOW_BANDWIDTH event, which is defined in Table 6-1, 

by inserting a number of streamlets redirectors. As shown in Figure 7-5, the time Ts is 

recorded once at the beginning of the method and then, after a series of actions, the time 

Te is recorded again as the ending time of the reconfiguration. By varying the number of 

streamlets inserted (the variable InsertCount in Figure 7-5), different numbers of 
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reconfigurations can be measured and Te - Ts will be the resultant time cost. Figure 7-6 

shows the result of the experiment. 
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Figure 7-5: Excerpt from the class ReconfigExp       Figure 7-6: Reconfiguration overhead 

 

Notice that when the number of added streamlets is less than 10, the reconfiguration time 

is less than 20 ms. Even when the number of streamlet additions reaches 100, the 

reconfiguration overhead is still less than 100 ms. This is a noteworthy and promising 

result considering that the reconfiguration rate is likely to be comparatively low (typically 

in terms of tens of seconds to minutes, depending on the contextual changes of the 

wireless environment) and the reconfiguration time is insignificant. The good 

reconfiguration performance is the result of an extensive use of multi-threading and 

object code sharing across streamlets, and of the separation of coordination from 

computation to accelerate and support ease of reconfiguration. 

 

7.5 MobiGATE End-to-End Performance 

After evaluating the overheads of key MobiGATE mechanisms, this section describes the 

overall system performance of MobiGATE from an end-to-end perspective. In particular, 

it is aimed to fully exercise the MobiGATE system components by setting up a realistic 
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test bed in the form of a stream application operating over an emulated wireless network. 

The purpose is to verify the benefits of the MobiGATE system by asserting that the 

operations overhead is small compared with the improvement in performance that comes 

from using this system in a wireless environment. 

 

Traditionally, if the MobiGATE system is not utilized, the time cost to transmit a certain 

amount of information can simply be represented like this: 

T1 = 
Band

Size
, where Size represents the amount of information to transmit, and Band 

represents the bandwidth value. 

 

By using the MobiGATE system, the information size for transmission can be greatly 

reduced*, but this will also bring some overhead into the system, as introduced in 

previous sections. 

T2 = 
Band

Size '

 + Toverhead = 
Band

SizeSize reduced−
 + Toverhead = 

Band

Size
+ Toverhead - 

Band

Sizereduced  

    = T1 + (Toverhead  - 
Band

Sizereduced )     --- Equation 7-2 

 

To justify the effectiveness of the MobiGATE system, the time costs T1 and T2 need to be 

evaluated for the same amount of information to be transmitted over wireless links. That 

is to say, the system throughput for these two different schemes must be compared to 

draw a conclusion. 

 

For this purpose, a case study of an application that reacts to changes in bandwidth has 

been prepared. The application speeds up web surfing over slow links by including the 

following streamlets: 

                                                 
* Note that MobiGATE is not restricted to introducing services that optimize the amount of data to be sent 

across a wireless link. However, this is a direct and visible example to demonstrate the benefit of 

MobiGATE in terms of reducing transmission latency and improving link performance. 
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• Switch: Dividing incoming messages based on the semantic type of the data; 

• Gif2Jpeg: Converting incoming image messages into Jpeg format; 

• Image Down Sampling: Lossy compression of an image by reducing the sample rate; 

• Communicator: Sending messages onto the network; 

• Text Compressor: A generic text compressor. This streamlet has the potential to 

reduce the data size by up to 75%. Importantly, this streamlet is activated only if the 

bandwidth of the wireless link falls below 100 Kb/s. This setup provides the 

opportunity both to test the responsiveness of MobiGATE to context changes and to 

exercise the reconfiguration mechanisms. 

 

In the application, an amount of real image and text messages are generated continuously. 

Image messages are processed by the streamlets Switch, Gif2Jpeg, Image Down 

Sampling, and Communicator successively from the start to the end, whereas the situation 

is different for text messages. Under normal conditions (bandwidth >100 Kb/s), the text 

messages only pass through the streamlets Switch and Communicator. But when the 

bandwidth falls below 100 Kb/s, the third streamlet, Text Compressor, is inserted 

between the above two streamlets to adapt to the poor bandwidth. After recording the 

sending and receiving time of each message, the time cost to transmit each message can 

be calculated and the overall system throughput is then obtained. 

 

In the experiment, the system throughput under the bandwidth of 20Kb/s, 50Kb/s, 

100Kb/s, 200Kb/s, 500Kb/s, 750Kb/s, 1Mb/s, and 2Mb/s was measured successively. For 

each bandwidth setup, three different transmission delays, <1ms, 50ms, and 100ms, were 

adjusted to evaluate the performance of the system. The final results are shown in Figure 

7-7. 
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Figure 7-7: The effectiveness of the MobiGATE system 

 

The above results can be analyzed from the following points: 

 

1. A noticeable improvement in system throughput has been obtained with the 

MobiGATE system as compared with a setup for direct transfer of messages 

across the wireless link. Back to Equation 7-2, that is: (Toverhead  - 
Band

Sizereduced ) < 0 

and T2 < T1. 

 

2. When the bandwidth is about 2Mb/s, the system throughput difference is not very 

large with/without the MobiGATE system. This can be explained from Equation 

7-2. When the bandwidth is relatively large (near 2Mb/s), for the same size of 

transmission, (Toverhead  - 
Band

Sizereduced ) will approach 0, and T2 approach T1. Thus the 

difference in the system throughput is minimal. But with a decreasing bandwidth, 

this difference becomes larger and larger. This is expected since the effect of 

applying streamlet services to reduce the amount of required bandwidth begins to 

take prominence. 

 

3. When the bandwidth approaches 200Kb/s, which is a relatively low bandwidth for 

transmission, the difference in the system throughput becomes unnoticeable 

again. This is because the time costs T1 and T2 at this moment are very large, 
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causing both system throughputs to be relatively poor. Hence their differences can 

not be seen clearly from the result diagram. However, it does exist. 

 

4. In an event when the bandwidth falls below 100 Kb/s, a special reconfiguration 

mechanism is invoked, in which the streamlet Text Compressor is inserted into 

the stream. The result indicates that the system throughput improves greatly. By 

comparison, the system throughput without the MobiGATE continuously drops 

with the decrease of the bandwidth. 

 

The experiments clearly indicate the benefit of the MobiGATE system and its ability to 

offset processing overheads that may be incurred in deploying the streamlet application. 

This is particular true if MobiGATE is deployed in an environment where resource 

availability is dynamic and scarce. 
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8 Conclusions and Recommendations 

In this study, a middleware system MobiGATE and its supporting coordination language 

MCL are proposed in order to adapt network data flows in the wireless domain. The 

focus of the work is to apply the coordination theory in the adaptation service 

composition and system reconfiguration at infrastructural proxies. This approach has a 

number of desirable properties, including reusability, ease of modification, and 

maintenance of the intuitive flow of processing. 

 

8.1 Conclusions 

A reconfigurable and adaptive system for mobile computing is expected to continue to 

take a prominent role in alleviating the poor traffic conditions of wireless links and 

resource limited mobile devices. The research study described in this thesis aims to 

develop a highly adaptable and reconfigurable middleware to adapt data flows across a 

wireless and mobile environment. To achieve this goal, an adaptive middleware, 

MobiGATE, has been designed, implemented, and verified to support robust and flexible 

composition of adaptable services, termed streamlets. Streamlets form the basic building 

blocks of a stream that adapts the flow of data across the wireless link. To achieve utmost 

flexibility and management of service adaptation, MobiGATE adopts the principle of 

separation-of-concerns to facilitate clear separation of streamlets’ coordination from the 

service computation codes. This has resulted in the formulation of a two-layered 

MobiGATE execution platform that supports rapid deployment of service streamlets, 

while facilitating adaptive composition in reaction to changing environmental contexts. 

Additionally, MobiGATE is equipped with the necessary mechanisms and system 

services to support peer-to-peer streamlet collaborations with its thin-client model, which 

sets the MobiGATE system apart from other existing adaptive middleware. The design of 

MobiGATE is validated through the complete implementation of the system on a Java 

platform. Empirical experimental results conducted on the system demonstrated the 

effectiveness of the middleware in adapting data flows over an emulated wireless link, 

while incurring insignificant computational overheads in its execution environment.  
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MobiGATE Coordination Language (MCL) plays an important role in providing bridging 

between streamlets’ computation and their interdependencies. The language provides rich 

constructs to support the definition of compositions, with constrained type validation and 

checking. In the description of the coordination, each service entity is regarded as a black 

box with well-defined interfaces. MCL enables the core functional pieces of an 

application to be clearly separated from its application-specific patterns of 

interdependencies. This is supported by two distinct language elements: streamlets, for 

representing core functional service entities; and channels, for representing relationships 

of interconnection among streamlets. The novel features of MCL include the modeling of 

service interfaces based on an MIME media type system, support for a check on the 

compatibility of the compositions, support for recursive compositions, and the concept of 

streamlet sharing. Significantly, the language is reinforced with a semantic model in Z 

language. Based on the derived semantic model, the applications running in the 

MobiGATE system can be analyzed to ensure that they are consistent in their internal 

structures. 

 

8.2 Recommendations 

As in most research work, the progress made in this study undoubtedly has not covered 

all new and interesting directions, but suggestions for future work to further enhance the 

performance of MobiGATE are given below. The future work can generally be organized 

into two parts: the MobiGATE architecture and its supporting language MCL. 

8.2.1 MobiGATE Architecture 

Throughout this thesis, the important function of the MobiGATE architecture in 

supporting MCL composition and providing runtime environment is especially 

emphasized. The separation of concerns is the underlying theme of this system. To make 

MobiGATE more complete and powerful, the following work is necessary: 

 

 Dynamic inclusion of new event objects. In the current MobiGATE system, all the 

event objects are predefined and assumed to be recognized by all of the application 

developers. However, the future inclusion of the function of the dynamic addition of 
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new event objects for the system is planned. By this means, application developers 

can propose their own event objects and define the corresponding event handlers. 

 

 The mechanism to support a wireless handoff. When a mobile client equipped with 

multiple wireless interfaces switches between wireless networks, also known as a 

wireless handoff, a specific mechanism is needed to enable these mobile clients to 

use the MobiGATE system consistently. This mechanism may include the 

notification of the characteristics of the new network, the migration of adaptation 

services if necessary, and the synchronization of the application status. With the 

separation-of-concerns fulfilled in the design of MobiGATE, streamlet adaptation 

services can run independently of the environment and other streamlets. It is argued 

that this advantage can greatly facilitate the implementation of the handoff 

mechanisms in the future. 

 

 Communications between streamlets and the coordinator. According to the current 

design, streamlets communicate with the external environment only through their 

data ports. In the future, it is expected to associate each streamlet with a control 

interface that allows the external coordinator to set operation parameters for the 

streamlets. For example, the text compression streamlet might have parameters that 

determine compression rate. These inputs serve as configuration parameters for the 

whole application. In this way, each streamlet will have two methods to 

communicate with the external world: data ports to communicate with other 

streamlets for message processing, and control interfaces to receive parameter setting 

information from the coordinator. 

 

 Security and transaction concerns. As a middleware system, MobiGATE needs to 

consider many system issues, far more than separation of concerns discussed in depth 

in previous chapters. System security and transaction control are such two important 

topics necessitating future exploration before MobiGATE can be realistically 

deployed in an open and wide area environment. 
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 Other problems open to the future. There are still some problems left in the current 

system to be solved, such as the problem of the processing speed mismatch between 

streamlets, and the synchronization of peer-to-peer streamlets during the removal 

process. The final resolution of these problems depends on the success of 

implementation of the work discussed above. 

8.2.2 MobiGATE Coordination Language 

No programming language design is ever complete. As more experience is gained with a 

programming language, additional features are added and existing features are modified 

to enrich its expressive power. MCL is expected to be the same. Below some immediate 

areas of future enhancements of MCL are identified: 

 

 Experience with MCL. The most pressing short term need for research on MCL is to 

gain usage experience. To this date, only a sample application architecture is 

characterized using MCL, as introduced in Section 4.3. The applicability of MCL is 

explored with this application and how MCL’s facilities can be of benefit in the 

system reconfiguration is shown. However, the case study described here does not 

capture the architecture properties of interest completely. A limitation is that this 

work has been carried out in an academic setting. MCL remains largely untested in 

actual practice in the work place. 

 

 More automated tools. As discussed in Chapter 5, some automated tools based on Z 

notation have already existed for the analysis process. However, they are still too 

general to be used directly on MCL descriptions. It is planned in the near future to 

develop tools that are specific to the MCL language and can provide automated 

checking of the properties for at least a subset of MCL. 

 

 More systematic expression of architectural assumptions. MCL uses attribute 

definitions for expressing architectural assumptions. Although attribute definitions 

seem to be powerful enough to express a number of relationships and constraints, the 

current system does not provide systematic guidelines on how and when to use them. 
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More research is needed to classify architectural assumptions, and standardize the 

way these assumptions are expressed in MCL. 

 

8.3 Publications 
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