

 i

Abstract

Mobile computing environments exhibit operating conditions that differ greatly from
their wired counterparts. In particular, the mobile application must be able to tolerate
highly dynamic network conditions and the effects of various computing devices. This
research aims to develop an adaptive middleware system that adapts data flows over
wireless networks to enable overlying applications to operate effectively and optimally in
wireless environments.

To achieve this goal, an adaptive middleware system, MobiGATE, has been designed to
support robust and flexible composition of adaptable services, termed streamlets in this
research study. Significantly, the principle of separation-of-concerns is adopted in the
system to facilitate clear separation of streamlet coordination from the service
computation codes. By this means, the communication codes are completely separated
from streamlet objects and modeled as a new type of object channel. An application
running in this system is then regarded as a number of streamlet instances connected by
channel objects. This has resulted in the formulation of a two-layered MobiGATE
execution platform that supports rapid deployment of service streamlets, while
facilitating adaptive composition in reaction to changing environmental contexts.

To describe application compositions, a coordination language, MCL, is designed. The
language adopts the Multipurpose Internet Mail Extensions, MIME, as the underlying
type definition to represent messages and streamlet interfaces. With this type system, a
fundamental type compatibility check is allowed in the composition activities. In
addition, a semantic model in Z language is defined for MCL to analyze composition
descriptions and detect possible composition errors, such as feedback loops, open circuit,
and mutual exclusions. The applications running in the MobiGATE system can be
analyzed based on the derived semantic model to ensure their consistency in the internal
structures.

A complete design, implementation and evaluation of the system have been fulfilled
successfully on a Java platform, in which common runtime operating system elements are
abstracted as residing either in the coordination or in the computing sub-layers. Initial
experimental results validate the flexibility of the coordination approach in promoting
separation-of-concerns in the reconfiguration of services, while achieving low
computation and delay overheads. The system has proved to be efficient and robust in
adapting to dynamic wireless conditions and can be improved by some recommendation
work in future.

 ii

Acknowledgements

Many thanks to my supervisor, Dr. Alvin T. S. Chan, for letting me further my master

study with him, for giving me all the directions I needed to select and extend my topic,

and for teaching me about research, writing, and mobile computing. It’s my great

happiness to work under his guidance in the past two years.

I would also like to thank Dr. Rocky K. C. Chang and Dr. H. V. Leong. Their courses

have greatly enriched my knowledge in the field of internetworking protocols and

distributed computing. Special thank also goes to Mrs. Elaine Anson for helping me

proofread the thesis and teaching me technical writing techniques. Others I would like to

thank include Chuang Siu Nam and Steve W. K. Poon who both provided me with

helpful advice in my past two years of study.

Finally, I extend the most sincere gratitude to my family. It is their encouragement and

support that have enabled me to follow academic pursuits. Thank you!

 iii

Table of Contents

Abstract…………………………….……………….……………..…..……..i

Acknowledgements…..………………..………………………..…………...ii

Table of Contents.......……………..……………………………......……iii

List of Figures……..……………………………………………...…...……vi

1 Introduction..1

1.1 Background and Motivation...1

1.2 Research Field..3

1.2.1 The Approach: Infrastructural Proxy Services ..3

1.2.2 Coordination: Separation of Concerns ..5

1.3 Objective..7

1.4 Organization of the Thesis ...8

2 Related Work ...10

2.1 Mobile Networking..11

2.1.1 Mobile IP...11

2.1.2 Wireless TCP – Snoop ..13

2.1.3 Wireless TCP – Indirect TCP..13

2.2 Adaptive Middleware in Mobile Computing ...14

2.2.1 UC Berkeley TranSend ...16

2.2.2 CMU Odyssey...16

2.2.3 MSU RAPIDware ...18

2.2.4 Comparison ...19

2.3 Coordination Models and Coordination Languages...20

2.3.1 Proteus Configuration Language...21

2.3.2 Conic ...22

2.3.3 Durra ...23

2.3.4 Manifold..24

2.3.5 Comparison ...25

3 Introduction to MobiGATE Architecture ...27

3.1 MobiGATE Design Principles ...27

3.2 MobiGATE Working Paradigms ...29

 iv

3.3 MobiGATE Server...30

3.3.1 Coordination Manager...31

3.3.2 Stream Coordination Plane..32

3.3.3 Streamlet Manager ..32

3.3.4 Streamlet Execution Plane ..32

3.3.5 Event Manager ..34

3.3.6 MCL Complier ..34

3.3.7 Streamlet Directory ...34

3.4 MobiGATE Client ...34

3.4.1 Message Distributor ..35

3.4.2 Client Streamlet Pool ..35

4 MobiGATE Coordination Language ..37

4.1 Message and Port Typing...37

4.2 MCL Language Elements .. 39

4.2.1 Streamlet ...39

4.2.2 Channel ...41

4.2.3 Stream ...43

4.3 Case Example of Using MCL ..45

4.4 Design Issues of MCL..48

4.4.1 Compatibility Check ...49

4.4.2 Recursive Composition ...50

4.4.3 Streamlet Sharing ..51

5 MCL Semantic Model..52

5.1 Formalization of MCL Language Elements...52

5.1.1 Streamlet ...52

5.1.2 Channel ...53

5.1.3 Stream ...53

5.1.4 Composite Streamlet ...54

5.2 Analysis of Architectural Descriptions in MCL ..55

5.2.1 Feedback Loops Detection ..56

5.2.2 Open Circuit Detection..56

5.2.3 Mutual Exclusion Detection..57

5.2.4 Dependency Verification...57

5.2.5 Preorder Verification...58

5.3 Case Example of Analyzing MCL Descriptions ..59

6 Development of the MobiGATE System..61

 v

6.1 The Base Class: Streamlet..62

6.2 The Base Class: MessageQueue...64

6.3 The Base Class: Stream..66

6.4 MobiGATE Event System ...68

6.5 Sender and Receiver Streamlet Matching ..72

6.6 Message Loss Avoidance...72

6.7 Further Improvement ...73

7 Performance Evaluation ...75

7.1 Testing Environment..75

7.2 Streamlet Overhead Analysis...76

7.3 Passing by Reference versus Passing by Value..78

7.4 Reconfiguration Time ..79

7.5 MobiGATE End-to-End Performance ...81

8 Conclusions and Recommendations ...86

8.1 Conclusions..86

8.2 Recommendations..87

8.2.1 MobiGATE Architecture...87

8.2.2 MobiGATE Coordination Language...89

8.3 Publications..90

References: ...91

 vi

List of Figures

Figure 1-1: Infrastructure proxy system..4

Figure 1-2: A traditional cooperation example ...6

Figure 1-3: The application example in the coordination model...7

Figure 2-1: Mobile IP datagram flow..11

Figure 2-2: RAPIDware proxy..18

Figure 3-1: The working paradigm of MobiGATE system...29

Figure 3-2: Architecture of MobiGATE server...31

Figure 3-3: Architecture of MobiGATE client..35

Figure 4-1: Graphical representation of a type system..38

Figure 4-2: BNF notation of the type declaration ...39

Figure 4-3: BNF notation of the streamlet definition..40

Figure 4-4: BNF notation of the channel definition ..42

Figure 4-5: BNF notation of the stream definition..44

Figure 4-6: The composition model of a datatype-specific distillation application46

Figure 4-7: Streamlet and channel descriptions ..47

Figure 4-8: Stream description..48

Figure 4-9: Recursive composition ...50

Figure 5-1: The composition example with a feedback loop ..59

Figure 6-1: The MobiGATE system class diagram...62

Figure 6-2: Excerpt from the class Streamlet ..64

Figure 6-3: Excerpt from the class MessageQueue...66

Figure 6-4: Excerpt from the class Stream..67

Figure 6-5: MobiGATE event object ...70

Figure 6-6: MobiGATE event system ...70

Figure 6-7: Excerpt from the class EventManager ...71

Figure 6-8: Prerequisites to terminate a streamlet...73

Figure 6-9: Excerpt from the method postMessage() ..74

Figure 7-1: Testing environment...76

Figure 7-2: Streamlet overhead...77

Figure 7-3: Passing by Reference versus Passing by Value..78

Figure 7-4: The addition of a new streamlet ...80

Figure 7-5: Excerpt from the class ReconfigExp...81

Figure 7-6: Reconfiguration overhead ..81

Figure 7-7: The effectiveness of the MobiGATE system ...84

 1

1 Introduction

This chapter highlights the design issues encompassing the mobile computing operating

over a wireless environment. Based on the desire to address these issues and challenges,

the motivation and general objectives of this research study are specified. The

organization of the thesis is given at the end of the chapter as further guidance to the

reader.

1.1 Background and Motivation

Mobile computing is a rapidly emerging technology providing the ability to compute,

communicate, and collaborate anywhere and anytime. With the current deployment of

wireless communication services and advances in mobile computing devices, a large and

ever increasing number of mobile computers and Personal Digital Assistants (PDA) are

able to exchange data and synchronize with other computing devices across wireless

links. However, mobile computing environments exhibit operating conditions that differ

greatly from their wired counterparts. According to [Badrinath00, Satyanarayanan95],

mobile computing is characterized by four main constraints:

• Mobile elements are resource-poor relative to static elements.

For a given cost and level of technology, considerations of weight, power, size and

ergonomics will exact a penalty in computational resources such as processor speed,

memory size, and disk capacity. While mobile elements will improve in absolute

ability, they will always be resource-poor relative to static elements.

• Mobile connectivity is highly variable in performance and reliability.

Some buildings may offer reliable, high-bandwidth wireless connectivity while others

may offer only low-bandwidth connectivity. Outdoors, a mobile client may have to

rely on a low-bandwidth wireless network with potential gaps in coverage. This is in

sharp contrast to the wired counterpart, where resources are abundant and highly

stable.

 2

• Existing mobile devices are heterogenous.

Cell phones, personal digital assistants, palmtop computers, digital pagers, digital

cameras and portable computers all have different capabilities and different

requirements. Part of the difficulty of communications in the mobile environment is

not just to deliver data over challenging network conditions, but to deliver such data in

formats suitable for the client devices.

• Mobile elements rely on a finite energy source.

While battery technology will undoubtedly improve over time, the need to be sensitive

to power consumption will not diminish. Power consumption concerns must span

many levels of hardware and software to be fully effective.

Another concern is the fact that the existing network protocols that have enabled the

Internet revolution are not perfectly suited to the mobile computing environment. TCP,

for example, does not work well on many wireless links, and often behaves poorly over

satellite links owing to long latencies. Researchers have proposed modifications to

existing protocols [Bakre97, Balakrishnan95, Caceres95] to handle such problems, but

the understanding of networks is insufficient to allow a design of protocols that behave

well in the face of all probable network conditions. Even if such protocols could be

developed, the challenge of converting the enormous installed base of today’s network

infrastructure would have to be addressed. The Internet is distributed, decentralized and

vast, and the simple solution of complete replacement of that existing infrastructure is

daunting to say the least.

However, it is important to realize that even if new protocols could be successfully

deployed, problems would still remain. The real goal of adaptive systems is to provide

good end-to-end service, where the end points are located in applications [Badrinath00].

No adaptive solution at the network level alone can solve the entire problem without

considering the needs of applications and their users.

 3

Therefore, for mobile applications to operate effectively and optimally, the

communication-related software at the application-level must be able to adapt to those

mobile constraints at runtime [Chan03, Katz94]. By this it is meant that systems must be

location and situation-aware, and must take advantage of this information to dynamically

configure themselves in an appropriate fashion. The challenges that must be faced span a

wide range of considerations and technical expertise. These include the architecture of

the communications and information service infrastructure (base stations, network

protocols, servers) necessary to support mobile communications, various preferences of

different applications, the correctness and consistency requirement for dynamic

reconfigurations, and the collection of context information.

1.2 Research Field

Basic information regarding the two fields in this study, infrastructural proxy-based

adaptation and the concept of coordination, are given below.

1.2.1 The Approach: Infrastructural Proxy Services

One way to meet the above-mentioned challenges in wireless domain is by using a proxy-

based gateway approach to adaptation, in which augmented network services, placed

between mobile clients and gateway servers, perform aggressive computation and storage

on behalf of clients [Fox98a, McKinley03]. In such architectures, adaptable applications

are built from interconnected building blocks and deployed at proxy stations. Each

building block, or service entity, specializes in a specific task in processing the data flow.

For example, the task could involve the scaling/dithering of images in a particular format,

or conversion between specific data formats, or even suitable caching to minimize the

traffic transiting across a wireless network. The development of mobile applications may

extend beyond the end-host process to include the composition of service entities to adapt

to variations in networks and client resources.

As shown in Figure 1-1, the infrastructural proxy system mainly consists of following

two network components residing between the wireless end-points:

 4

1) A wired-side gateway called the server proxy, commonly deployed at the edge of a

wired network.

2) A peer client-side proxy called the client proxy, deployed within the mobile host

(MH).

Figure 1-1: Infrastructure proxy system

The infrastructural proxy architecture supports augmented wireless network services by

allowing adaptation-based service entities to be deployed at both server and client proxies

to shield clients from all kinds of variances. Significantly, the architecture inherits the

principle of interoperability, in which innovative and exciting services can be rapidly

deployed within the existing networking environment, without causing changes to the

infrastructure. The kinds of service entities that may be applied to adapt the flow of data

include transformation (such as filtering, format conversion), aggregation (collecting and

collating data from various sources), caching (both original and transformed content), and

customization (maintenance of a per-user preferences database). Studies in this area have

focused primarily on applying fixed specific service entities to the gateway proxy to

introduce specific adaptation to data flowing across the wireless environment. A service

entity based on image transcoding is applied to convert images on-the-fly to reduce the

bandwidth requirement and have the images displayed on a display-constrained device,

such as a PDA [Fox98a]. Similarly, experiments deployed based on the architecture of

 5

the gateway proxy have been conducted on text-compression, XML streaming [Chan04],

and caching service entities.

A common approach to implementing the adaptation of services at the gateway proxy is a

static interaction of service entities by explicitly invoking procedures on a named

interface. The result is that the system integration code becomes entangled with the

application-specific codes. Any replacement or modification of a service entity requires

updating of not only the code for the new service entity to be integrated into the system,

but also the code of those entities that have a direct relation with the old service entity.

The tight coupling of service entities, in terms of the strong coordination dependency,

translates into the need for manual modifications, when the transport service entities are

deployed into a new environment. In a wireless network, which exhibits highly dynamic

network conditions, the adaptation of service entities in the form of dynamic composition

and reconfiguration is considered the norm rather than the exception.

1.2.2 Coordination: Separation of Concerns

Coordination models are a class of model recently developed to describe concurrent and

distributed computations. In the area of Programming Languages, coordination is defined

as the process of building programs by gluing active pieces together. A coordination

model can therefore be regarded as the glue that binds separate activities into an

ensemble [Malone94, Papadopoulos96]. A coordination language is the linguistic form of

a coordination model. Coordination languages offer facilities for controlling the

synchronization, communication, creation, and termination of computational activities.

The most prominent advantage of applying the coordination theory is that there is a

complete separation of coordination from computational concerns. This separation is

usually achieved by defining a new coordination language to describe the architecture of

the composition. In particular, the coordination system generally consists of two kinds of

processes: computation and coordination. Computational processes are treated as black

boxes, while processes communicate with their environment by means of clearly defined

 6

interfaces, usually referred to as input or output ports. Producer-consumer relationships

are formed by setting up channel connections between the producer output ports and the

consumer input ports.

Consider the following simple example of a concurrent application where the two active

entities (i.e., processes) p and q must cooperate by exchanging messages in their

computations. The source code for this concurrent application looks like the code

presented in Figure 1-2. The most notable point in the code is that it simultaneously gives

both a description of the computation by p and q, and a description of their cooperation.

The communication concerns are mixed and interspersed with computation. Thus, in the

final source code of the application, no isolated piece of code can be considered as the

realization of the cooperation model and reused in other applications.

process p:

compute m1
send m1 to q
compute m2
send m2 to q
do other things
receive m
do other computation using m

process q:

receive m1
let z be the sender of m1
receive m2
compute m using m1 and m2
send m to z

Figure 1-2: A traditional cooperation example

Let us reconsider the above example, and see how it can be implemented in the

coordination model. This time the code consists of three processes: revised p, revised q,

and a coordinator process c that is responsible for facilitating the communication of p and

q. The source code for this version of the application looks something like the code

presented as follows:

 7

process p:

compute m1
wire m1 to output port o1
compute m2
write m2 to output port o2
do other things
read m from input port i1
do other computation using m

process q:

read m1 from input port i1
read m2 from input port i2
compute m using m1 and m2
write m to output port o1

process c:

...
create the channel p.o1 q.i1
create the channel p.o2 q.i2
create the channel q.o1 p.i1
...

Figure 1-3: The application example in the coordination model

In this example, the pattern of cooperation between the processes p and q is simple and

static. Communication concerns are moved out of p and q and into c. However, the

processes p and q are now oblivious of the source of their input, or the destination of their

output. They know nothing about the pattern of cooperation in this application; they can

just as easily be incorporated in any other application, and will do their job provided that

they receive the right input at the right time. The process c, in turn, knows nothing about

the details of the tasks performed by p and q. Its only concern is to ensure that they are

created and connected correctly.

From the above example, it can be seen that removing the communication concerns from

the computational processes enhances the modularity and the re-usability of the resulting

software. The coordinator processes are generic and reusable as they know nothing about

and have absolved nothing of the tasks performed by the processes they coordinate and

are therefore unimpeded in these processes.

1.3 Objective

The main objective of this study is to develop an adaptive software system, which adapts

data flows over dynamic wireless network conditions and various mobile devices.

To achieve this objective, the coordination theory is used in the design of a middleware

system MobiGATE, to support the service composition and system reconfiguration at

infrastructural proxies of the wireless domain. This middleware is expected to be context-

 8

aware, reconfigurable, robust, and most of all, efficient in processing incoming data

flows. Specific principles on the design of this middleware are given in Section 3.1.

Concurrent with the above is the syntax and semantic definition of a coordination

language MCL to describe the composition of applications running in the middleware

system. In addition to all of those common properties described in Section 1.2.2 that are

shared by existing coordination languages, this newly designed language possesses its

own type system, the function of compatibility check in the composition activities, and

the ability of conducting correctness verifications of language descriptions.

1.4 Organization of the Thesis

Chapter 1 introduces the background and motivation of this study. Based on the

background described, the objective of this study is identified.

Chapter 2 describes the work related to this study. Several typical adaptation systems:

TranSend, Odyssey, and RAPIDware, and a comparison with the MobiGATE system are

described. Some well-known coordination languages are introduced and compared with

MCL along some important dimensions, such as coordination unit, computational

language, application domain. The specific characteristics of the MobiGATE system and

its advantages over other similar works are highlighted.

Chapter 3 is devoted to the architecture of the MobiGATE system. Specific design

principles and the working paradigm of the whole system are introduced in this chapter.

The internal structure of the architecture is described from the server side to client side,

with the emphasis on the function of those important components.

Chapters 4 and 5 focus on the coordination language MCL. In particular, Chapter 4

describes syntax designs of the language, ranging from its MIME type system, language

elements definitions, to some specific refinement issues. As a coordination language,

MCL is designed to provide the abstraction of service interfaces and the types of data

associated with the messages, and checking compatibility in the composition activities. In

 9

addition, it can support the concept of recursive composition and streamlet sharing, which

also differentiates MCL from other coordination languages. Chapter 5 introduces MCL’s

semantic model that is defined in the Z language. This semantic design is very important

to conduct extensive analysis of MCL descriptions. This is not possible using syntax

design alone.

Chapters 6 and 7 present the specific development work of the MobiGATE system and

results of a series of experimental studies, which demonstrate the feasibility and validate

the benefits of MobiGATE in providing adaptive mobile computing. Two operations that

are most possible to bring overhead into the system are measured independently. A

complete end-to-end application that fully exercises the system components of

MobiGATE is set up to evaluate the system performance. The purpose for doing this is to

demonstrate the use of MobiGATE while verifying the insignificant overheads incurred

in runtime processing compared with the performance gained in service deployment and

reconfiguration.

Finally, Chapter 8 offers conclusions to this study. It also points out some directions for

the future research activities on this topic. Such work is necessary to make the

MobiGATE architecture more complete, secure, and robust for deployment over a wide

scale wireless and mobile environment. In the short term, as further experiences are

gained in using MCL, it is aimed to further refine the language to enrich its syntax to

capture mis-configuration and semantic assertions even during runtime.

 10

2 Related Work

As previously stated, this study focuses on adaptive middleware and coordination

languages. This chapter first gives a brief outline of the newly designed middleware

system MobiGATE and its supporting coordination language MCL. A suite of protocols

specific to mobile computing: Mobile IP, snoop protocol, and Indirect TCP, is then

introduced. Based on this introduction, several typical adaptation systems and some well-

known coordination languages are reviewed. The objective of this arrangement is to

enable the reader to compare MobiGATE and MCL with this related work. Finally

attention is drawn to the main areas of comparison acknowledged by the writer.

Before going into details of the related work, an overview of the newly designed

MobiGATE and MCL is given as follows:

• The design and development of a Mobile GATEway proxy for the Active deployment

of Transport Entities, or, MobiGATE (pronounced Mobi-Gate), is introduced in this

research study. MobiGATE is a mobile middleware architecture that supports the

robust and flexible composition of transport entities, known as streamlets. The flow of

data traffic is subjected to processing by a chain of streamlets. Each streamlet

encapsulates a service entity that adapts the flow of traffic across the wireless network.

A major goal of the MobiGATE architecture is to provide an environment, where

programmers can develop new mobile applications through combining some active

service entities (streamlets), while the configuration structure of the application is

completely separated from the computational activities of individual streamlets. This

architecture has the advantage of supporting ease of dynamic reconfiguration and the

re-usability of streamlets across applications.

• A coordination language called MobiGATE Coordination Language (MCL) is

designed as part of this research. The language possesses some attractive

characteristics to support the composition and reconfiguration of flexible streamlets in

MobiGATE. Firstly, MCL supports the capture of flow types between streamlets and

 11

allows strong type compatibility checks in the composition activities. MCL employs

Multipurpose Internet Mail Extensions (MIME) [Freed96] specifications to model

streamlet interfaces and message types. MIME possesses a flexible format that easily

accommodates well-known message types such as text, image, video, sound, or other

application-specific data. In addition, MCL supports the notion of recursive

composition. In other words, a composition of streamlets can itself be organized as a

composite streamlet. The recursive structuring of streamlet compositions can be nested

to an arbitrary level to promote modularization and re-usability. The more ambitious

intention is to capture the semantics of MCL using a formal specification approach

based on Z notation [Spivey89] to enable the analysis of the composition for

consistency and to infer non-trivial properties of the language.

2.1 Mobile Networking

This section describes some basic protocols designed to serve the needs of burgeoning

population of mobile computer users who wish to connect to the Internet and maintain

communications as they move from place to place.

2.1.1 Mobile IP

Mobile IP [Perkins98] is a proposed standard protocol that builds on the Internet Protocol

by making mobility transparent to applications and higher level protocols like TCP. It

extends IP by allowing the mobile computer to effectively utilize two IP addresses: a

fixed home address and a care-of address that change at each new point of attachment.

(5)The FA forwards the
datagram to the CN

using standard IP routing

MN

(1) A datagram to
the MN arrives on
the home network

(3) FA detunnels and delievers
the datagram to the MN

(2) HA intercepts the
datagram and tunnels

it to the care-of-address
FAHA

CN

(4) The MN sends a
datagram to the CN

Figure 2-1: Mobile IP datagram flow

 12

Mobile IP can be thought of as three major subsystems. First, a discovery mechanism is

defined so that mobile computers can determine their new attachment points (new IP

addresses) as they move from place to place within the Internet. Second, once the mobile

computer knows the IP address at its new attachment point, it registers with an agent

representing it at its home network. Lastly, mobile IP defines simple mechanisms to

deliver datagrams to the mobile node when it is away from its home network.

The following gives a rough operation outline of the mobile IP protocol, making use of

the above-mentioned operations. Figure 2-1 may be used to help envisage the roles

played by the entities.

(1) Mobility agents make themselves known by sending agent advertisement messages.

A newly arrived mobile node may optionally solicit an agent advertisement message.

(2) After receiving an agent advertisement, a mobile node determines whether it is on its

home network or a foreign network. A mobile node works basically like any other

node on its home network when it is at home.

(3) When a mobile node moves away from its home network, it obtains a care-of address

on the foreign network, for instance, by soliciting or listening for agent

advertisements, or contacting Dynamic Host Configuration Protocol (DHCP) or

Point-to-Point Protocol (PPP).

(4) While away from home, the mobile node registers each new care-of address with its

home agent (HA), possibly by way of a foreign agent (FA).

(5) Datagrams sent to the mobile node's home address are intercepted by its home agent,

tunneled by its home agent to the care-of address, received at the tunnel endpoint (at

either a foreign agent or the mobile node itself), and finally delivered to the mobile

node.

(6) In the reverse direction, datagrams sent by the mobile node are generally delivered to

their destination using standard IP routing mechanisms, not necessarily passing

through the home agent.

 13

2.1.2 Wireless TCP – Snoop

TCP is a reliable transport protocol tuned to perform well in traditional networks made up

of links with low bit-error rates. Networks with higher bit-error rates, such as those with

wireless links and mobile hosts, violate many of the assumptions made by TCP, causing

degraded end-to-end performance. The snoop [Balakrishnan95] is a simple protocol that

improves TCP performance in wireless networks. The snoop modifies network-layer

software mainly at a base station and preserves end-to-end TCP semantics. The main idea

of the protocol is to cache packets at the base station and perform local retransmissions

across the wireless link.

The snoop protocol introduces a module, called the snoop agent, at the base station. The

agent monitors every packet that passes through the TCP connection in both directions

and maintains a cache of TCP segments sent across the link that have not yet been

acknowledged by the receiver. A packet loss is detected by the arrival of a small number

of duplicate acknowledgments from the receiver or by a local timeout. The snoop agent

retransmits the lost packet if cached, and suppresses the duplicate acknowledgments. In

the classification of the protocols, the snoop protocol is a link-layer protocol that takes

advantage of the knowledge of the higher-layer transport protocol (TCP).

The main advantage of this approach is that it suppresses duplicate acknowledgments for

TCP segments lost and retransmitted locally, thereby avoiding unnecessary fast

retransmissions and congestion control invocations by the sender. Like other link-layer

solutions, the snoop approach could also suffer from not being able to completely shield

the sender from wireless losses [Balakrishnan97].

2.1.3 Wireless TCP – Indirect TCP

Indirect TCP [Bakre97] is a split-connection protocol that uses standard TCP for its

connection over the wireless link. It splits each TCP connection between a sender and

receiver into two separate connections at the base station - one TCP connection between

the sender and the base station, and the other between the base station and the receiver.

Like other split-connection proposals, Indirect TCP attempts to separate loss recovery

 14

over the wireless link from that across the wireline network, thereby shielding the

original TCP sender from the wireless link.

The basic idea behind the indirect protocol model is as follows: whenever an interaction

between two hosts on the internetwork, such as between a mobile host and a stationary

host, involves communication over two drastically different kinds of media (i.e., wireless

and wired), the protocol splits such an interaction into two separate interactions—one for

each kind of communication medium. An indirect transport layer interaction between a

Mobile Host (MH) and a Fixed Host (FH) consists of a fixed network protocol (i.e., TCP)

used for communication between the FH and the Mobility Support Router (MSR); and a

wireless protocol (i.e., wireless TCP) for communication between the MH and the MSR.

The highest protocol layer at which indirection occurs is determined by the MH

application—an indirect transport layer can be used in conjunction with end-to-end

session and presentation layer. On the other hand, if presentation requirements are

different over wireless and wired links, then an indirect presentation layer protocol can be

used. Furthermore, application layer proxies running on MSRs that support MH

applications are examples of application layer indirection.

Notice that even though the indirect model replaces an interaction between a mobile host

(MH) and a fixed host (FH) with one interaction between the MH and its MSR and

another between the MSR and the FH, the FH does not see the MSR as its

communicating peer. It sees the MH itself as its actual peer host. The MSR fakes an

image of the MH which is used to communicate with the fixed hosts. This image is

handed over to a new MSR in case the MH engaged in an indirect interaction switches

cells.

2.2 Adaptive Middleware in Mobile Computing

Middleware is necessary for distributed systems. It provides an abstract interface that

gives an application developer a uniform view of low-level operating systems and

networks. In the traditional systems, middleware is a means for gluing together

application components that comply with certain interoperability requirements. However,

 15

in mobile computing one consequence of mobility is that the environment in which an

application performs may also be changing dynamically. For example, different fault

tolerance and security properties may be enforced in different execution environments.

The mobile environment also introduces other complications: such as heterogeneity in the

communicating devices. This has been discussed deeply in Section 1.1. As a

consequence, in a wireless environment, middleware must be sufficiently flexible to

enable adaptation to changes in the underlying operating systems and networks, as well

as to changes in application requirements.

One general class of solutions to solving this problem is to allow various forms of

network traffic adaptation. Such solutions allow hardware or software to alter the

protocols or the data content being transmitted, to provide a better quality of service to

users. Data flows over networks can be usefully adapted in many ways [Badrinath00]:

• The underlying protocol can be altered to handle difficult conditions. The Berkeley

snoop protocol improves TCP over high error rate links [Balakrishnan95]; an

adaptation mechanism can automatically initiate the snoop protocol and establish the

necessary links to alleviate the poor traffic conditions over the wireless network.

[Allman97].

• The data can be altered in a lossless way. Various systems allow data compression or

encryption across links with poor connectivity, without any application involvement.

• Lossy adaptations can be used to obtain better compression of data over limited links

by dropping inessential portions of the information, or sending a low-fidelity version.

For example in TranSend, performance improvement by an order of magnitude is

achieved through the effective application of lossy compression [Fox98a].

• Data can be automatically converted to formats better suited to the end systems or the

intermediate networks. For example, the Top Gun Wingman browser [Fox98b]

converts Web images into 2-bit grayscale bitmap displays before sending them to

 16

Palm Pilots. This configuration has the effect of significantly reducing the bandwidth

requirements, while adapting the images to better map to the small display size of

handheld devices.

2.2.1 UC Berkeley TranSend

UC Berkeley’s TranSend Web accelerator proxy [Fox96] was one of the earliest projects

to explore adaptation proxies aggressively. TranSend intercepts HTTP requests from

standard Web clients and applies data type specific lossy compression, when possible; for

example, images can be scaled down or down sampled in the frequency domain, long

HTML pages can be broken up into a series of short pages. TranSend’s primary goal was

to provide network adaptation for users of slow links.

TranSend supports a wireless vertical handoff mechanism. When a client equipped with

multiple wireless interfaces switches between wireless networks, the client side vertical

handoff software (which is completely independent of TranSend) generates a notification

packet containing some essential characteristics (e.g., estimated expected throughput) of

the new network. This packet is sent to a special UDP port on TranSend where the

notification is processed and stored in a per-client profile. TranSend then processes future

requests from that client in accordance with the new network type; for example,

aggressive image down sampling is performed for clients connecting with an expected

throughput of 15–25 Kb/s, whereas compression is much less aggressive (and in some

cases disabled) for Wave LAN clients connecting at about 1 Mb/s.

The main problem with TranSend is that it cannot support peer-to-peer, collaborative

services. Supporting such services is clearly important; doing so will allow direct support

of peer-to-peer systems. Ways to reinforce the MobiGATE system with this important

function are being investigated.

2.2.2 CMU Odyssey

Odyssey is a system built at Carnegie Mellon University to support challenging network

applications on portable computers [Noble97]. Odyssey particularly focuses on resource

management for multiple applications running on the same machine. Odyssey was

 17

designed primarily to run in wireless environments characterized by changing and

frequently limited bandwidths, but the model was found to be sufficient in handling many

other kinds of challenging resource management issues, such as battery power or cache

space. The goal of the system is to provide all applications on the portable machine with

the best quality of service consistent with available resources and the needs of other

applications.

Odyssey is an application-aware approach to adaptation intended primarily to assist

client/server interactions. The Odyssey system consists of a viceroy, an operating system

entity in charge of managing the limited resources for multiple processes, a set of data

type-specific wardens that handle the intercommunications between clients and servers,

and applications that negotiate with Odyssey to receive the best level of service available.

Applications request from Odyssey the resources they need, specifying the window of

tolerance required for the desired operation. If resources within that window are currently

available, the request is granted and the client application is connected to its server

through the appropriate warden for the data type to be transmitted. Wardens can handle

issues like caching or pre-fetching in manners specific to their data type, to make best use

of the available resource. If resources within the requested window are not available, the

application is then notified and can request a lower window of tolerance and

corresponding level of service. As conditions change and previously satisfied requests

can no longer be met (or, more happily, conditions improve dramatically), the viceroy

uses upcalls, registered by the applications, to notify these applications that they must

operate in a different window of tolerance, subsequently possibly causing them to alter

their behavior.

One interesting aspect of Odyssey with regard to the adaptation framework is that much

of the adaptation in this model is, in fact, done by the applications, which interact with

Odyssey. For example, Odyssey itself does not decide that color video frames should be

converted to black-and-white, but rather instructs the application that some action is

required. The application itself decides how adaptation should occur, and typically

instructs the server to make the adjustment. This aspect highlights a big difference

 18

between Odyssey and the MobiGATE system that completely shields the applications

from the adaptation work.

2.2.3 MSU RAPIDware

The MSU RAPIDware [McKinley03] project addresses the design and implementation of

middleware services for dynamic, heterogeneous environments. A major goal of the

RAPIDware project is to develop adaptive mechanisms and programming abstractions

that enable middleware frameworks to execute in an autonomous manner, instantiating

and reconfiguring components at runtime, in response to the changing needs of client

systems.

Figure 2-2: RAPIDware proxy

Figure 2-2 depicts an example of RAPIDware proxy and its configuration for processing

a single data stream. The proxy receives and transmits the stream on EndPoint objects,

which encapsulate the actual network connections. Each EndPoint has an associated

thread that reads or writes data on the network, depending on the configuration of the

EndPoint. A ControlThread object is responsible for managing the insertion, removal,

and ordering of the filters associated with the stream. In this example, the proxy is

comprised of three filters, F1, F2, and F3. The key support mechanisms are detachable

stream objects, namely, DetachableInputStream (DIS) and DetachableOoutputStream

 19

(DOS). The DIS and DOS are used for all communication among filters and between

filters and EndPoints. DIS and DOS can then be stopped, disconnected, and reconnected,

enabling the dynamic redirection and modification of data streams. The I/O stream

abstraction provides a convenient way to separate adaptive behavior from the application

and other parts of the middleware.

The RAPIDware system is similar to the MobiGATE system in many ways, such as the

concept of filters and streams, the function of ControlThread, and the communication

through a special object. However, owing to the definition of its DIS and DOS objects,

RAPIDware can only support the linear composition of filters. Furthermore, it cannot

check the “composability” of proxylets. Supporting the branch composition and

consistency checks are two important advantages of MobiGATE over RAPIDware.

2.2.4 Comparison

Table 2-1 offers a comparison of the MobiGATE system and the above-introduced

adaptive systems. The notable points are shown below:

• Application Awareness in these adaptive middleware systems can be application aware

and application transparent, depending on whether the application is informed that

adaptation is occurring and perhaps expected to provide an application-level response,

or the system attempts to completely shield the application from this fact.

• Adaptation Range is the collection of applications supported by the system. Some

systems provide general machinery to support a collection of unrelated applications,

while others probably only support a specific application or narrowly-defined class of

applications.

• Adaptation Location describes where the adaptation machinery resides. It can be in the

client, in the server, in one or more intermediate proxies, or all of these.

 20

• Adaptation Compositions refers to the possibility of composing adaptations in the

adaptation machinery. In other words, it points out whether the adaptation can occur at

multiple levels.

• Mechanism is the primary technology used in the adaptation. As far as the MobiGATE

system is concerned, the separation of concerns (coordination theory) is the unique

principle adopted in the design of the middleware system.

• Description is a general summary of the middleware system.

The comparative features below are discussed further in Chapter 3.

 TranSend Odyssey RAPIDware MobiGATE

Application
Awareness

Application
transparent

Application aware
Application
transparent

Application
transparent

Adaptation
Range

Application-
specific

Application
specific

General General

Adaptation
Location

Proxy Client & Server Proxy & Client Proxy & Client

Adaptation
Compositions

Partial No Partial Yes

Mechanism
Data-type specific

distillation
Resource

management
Detachable stream

objects
Separation of

concerns

Description

Web acceleration
through datatype-

specific lossy
compression

Application-aware
adaptation by

multiple
applications using
diverse data types

Web-based
collaboration in
heterogeneous

wireless
environments

Applying
coordination
theory in the

service
composition and

system
reconfigurations

Table 2-1: A comparison of adaptive systems

2.3 Coordination Models and Coordination Languages

With recent advances in the coordination theory, a number of coordination languages

have become available, such as PCL [Sommerville96], Conic [Magee89], Durra

[Barbacci93], and Manifold [Arbab96]. As introduced in Section 1.2.2, these languages

share many common characteristics. In particular, the coordination system generally

 21

consists of two kinds of processes: computation and coordination. Computational

processes are treated as black boxes, while processes communicate with their

environment by means of clearly defined interfaces, usually referred to as input or output

ports. Producer-consumer relationships are formed by setting up channel connections

between the producer output ports and the consumer input ports.

While these existing coordination languages support primitive constructs to enable a

connection to be established between coordinated processes in the form of a high-level

architectural description, they lack the linguistic support to capture the input and output

types associated with the ports. As a result, interconnected processes must be manually

established to ensure compatibility of type when messages are exchanged between the

respective input and output ports. However, the computing architecture that requires the

coordination of process to be dynamically composed and reconfigured at runtime requires

the intrinsic support of typed messages, which allow the programmer to capture the

intended compatibility between input-output ports, and to exercise runtime safety checks.

The following subsections describe these existing languages that are designed to address

the issue of coordination and architectural descriptions.

2.3.1 Proteus Configuration Language

Proteus Configuration Language (PCL) [Sommerville96] is a language designed to model

the architecture of multiple versions of computer-based systems. Coordination in PCL is

understood as a configuration; the unit of configuration is a family entity, representing a

set of versions of a logical component or system. A family entity has various kinds of

associated information, namely a classification section, an attribute section, an interface

section, a parts section, a physical section specifying the entity name implementing the

entity, and a relationship section that sets out the relationships between PCL entities.

Another major element of the configuration paradigm is the ports used to represent either

provided or required service. A component may have a number of required and/or

provided ports. Inter-component communication is facilitated indirectly by transmitting

 22

messages through bindings, where a binding is used to connect two ports.

Communication can either be synchronous or asynchronous. In addition, port connections

are effectively unlimited buffers. If component replacement is to take place, any

outstanding messages not yet delivered to a to-be-replaced component are retained by the

run-time system and eventually forwarded to the component’s replacement.

Finally, PCL supports a clear distinction between the configuration component (namely

PCL) and what is being configured (i.e., computational components written in any

conventional programming language). Furthermore, components are context independent

since inter-component interaction and communication is achieved only by means of

indirect interfaces comprising ports connected by means of bindings. Thus, a separation

is achieved between the functional description of individual component behaviors and a

global view of the formed system as a set of processes with interconnections.

2.3.2 Conic

Conic [Magee89] is another language where coordination is viewed as configuration. A

key idea in Conic is the concept of logical node. A logical node is the system

configuration unit comprising sets of tasks that execute concurrently within a shared

address space. Configured systems are constructed as sets of interconnected logical

nodes; these sets are referred to as groups.

The programming subcomponent of Conic is based on the notion of task module types,

which are self-contained, sequential tasks; these are used at run-time by the Conic system

to generate respective module instances, which exchange messages and perform various

activities. The modules’ interface is defined in terms of strongly typed ports. An exitport

denotes the interface at which message transactions can be initiated and provides a local

name and type holder in place of the destination name and type. An entryport denotes the

interface at which message transactions can be received and provides a local name and

type holder in place of the source name and type. A link between an exitport and an

entryport is realized by means of invoking the message passing facilities of the

programming subcomponent. The system supports both unidirectional asynchronous and

 23

bi-directional synchronous communication. Since all references are to local objects, there

is no direct naming of other modules or communication entities. Thus each programming

module is oblivious to its environment, which renders it highly reusable, simplifies

reconfiguration, and clearly separates the activities related to the latter from purely

programming concerns.

Conic supports a limited form of dynamic reconfiguration. First of all, the set of tasks and

group types from which a logical node type is constructed is fixed at node compile time.

The number of task and group instances within a node is fixed at the time a node is

created. Dynamic changes to link set-ups can be achieved by explicitly invoking a

configuration manager through the unlink command. Another limitation of the dynamic

reconfiguration functionality of Conic is related to the very nature of the links that are

being established between entryports and exitports. In particular, these links are not

viewed as (unbounded) buffer areas. Thus, when a link is severed between a pair of ports,

the module instances involved in communication must stop exchanging messages,

otherwise information may be lost and inconsistent states may result. Finally in Conic a

user is constrained by using a single programming language (the Pascal like Conic

programming subcomponent).

2.3.3 Durra

Durra [Barbacci93] is yet another architecture configuration language. A Durra

application consists of a set of components (application tasks and communication

channels) and a set of configurations specifying how the components are interrelated.

Tasks are active components that initiate all message-passing operations, and channels

are passive components that wait for and react to requests from the tasks. These tasks and

channel implementations are linked to run-time support packages and configuration

tables generated by the Durra compiler to form executable programs called clusters. The

runtime support portion of a cluster is called the cluster manager, which is responsible for

starting and terminating application processes and links, for passing messages between

components, for monitoring reconfiguration conditions, and for carrying out

reconfigurations.

 24

The basic building blocks of Durra are the task description, which specifies the properties

of an associated subprogram or subsystem, and channel description, which specifies the

properties of a package implementing a communication facility. An application can be

described by a compound description that contains components, structure, and

reconfiguration sections.

The main concern of Durra is how to coordinate resources, such as load and execute

programs, route data, and reconfigure application. As with all the other members in this

family of coordination languages, it makes a clear distinction between application

structure and behavior. Tasks implement the functionality of the application, whereas

channels implement communication facilities. Thus it is tailored more to support rapid

prototyping of distributed heterogeneous applications and test different configuration

strategies, rather than as a means to actually implement these applications. Unrestricted

dynamic creation of task instances is not possible.

2.3.4 Manifold

Manifold [Arbab96] is one of the latest developments in the evolution of control-driven

or process-oriented coordination languages. As is the case in most of the other members

of this family, Manifold coordinators are clearly distinguished from computational

processes that can be written in any conventional programming language augmented with

some communication primitives. Manifolds (Manifold coordinators) communicate by

means of input/output ports, connected by means of streams. Evolution of a Manifold

coordination topology is event-driven based on state transitions. More pertinently, a

Manifold coordinator process is at any moment in time in a certain state where typically

it has set up a network of coordinated processes communicating by sending and/or

receiving data via stream connections established between respective input/output ports.

Upon observing the raising of some event, the process in question breaks off the stream

connections and evolves to some other predefined state, where a different network of

coordinated processes is set up. Note that, unlike the case with other coordination

languages featuring events, Manifold events are not parameterized and cannot be used to

 25

carry data — they are used purely for triggering state changes and causing the evolution

of the coordinated apparatus.

One important advantage of Manifold is its support of recursive composition. This means

that any coordinator can also be used as a higher-level or meta-coordinator, to build a

sophisticated hierarchy of coordination protocols. Such higher-level coordinators are not

possible in most other coordination languages and models. However, Manifold does not

support type compatibility check, which translates to the inability to perform automatic

checking for type compatibility and operation consistency in the event of adaptation and

reconfiguration.

2.3.5 Comparison

 PCL Conic Durra Manifold MCL

Coordination
Unit

Family entities Logical nodes Components Processes Streamlets

Computational
Language

Conventional
language

Pascal-like
language

Ada C, Fortran
Language

Independent
Message
Passing

Synchronous
Asynchronous

Synchronous
Asynchronous

Synchronous
Asynchronous

Asynchronous
Synchronous

Asynchronous
Dynamic

Reconfiguration
Partial Partial Yes Yes Yes

Compatibility
Checking

No Partial No No Yes

Recursive
Composition

No No No Yes Yes

Formalization No No No No
Z-notation

Formalization

Application
Domain

Model system
versions

A typical
configuration

language

Application
prototyping

Component
based

development

Wireless proxy
services

composition

Table 2-2: A comparison of coordination languages

Table 2-2 offers a comparison of existing coordination languages and MCL along eight

dimensions: Coordination Unit is the basic unit in terms of which the configuration is

performed; Computational Language provides the name of the languages supported by

the coordination language to program individual computational entities; Message Passing

in these coordination models can be synchronous, asynchronous or both, depending on

 26

the underlying communication channels; Dynamic Reconfiguration describes the ability

to dynamically change the composition structure and to create/destroy coordinated object

instances at runtime; Compatibility Checking and Recursive Composition are as described

above; Formalization is the ability to formalize the language by developing a semantic

model; Application Domain refers to the application of languages in a domain for which

it is designed. Discussions on the above comparative features are given in Chapters 4 and

5.

 27

3 Introduction to MobiGATE Architecture

This chapter focuses on the design of the MobiGATE framework. It introduces basic

design principles and the working paradigm of the whole system. Based on this

introduction, an overview of the MobiGATE server and client is given with the emphasis

on its internal structure.

As stated in Section 1.3, the main objective of the MobiGATE system is to adapt data

flows over dynamic wireless network conditions and various mobile devices in the

application level. Strictly following this goal, the design principles and whole working

paradigms are introduced in following sections.

3.1 MobiGATE Design Principles

As an adaptive middleware in the mobile computing environment, the MobiGATE

system is expected to be context-aware, reconfigurable, robust, and efficient in

processing incoming data flows. The concept of separation of concerns forms the

underlying and unifying principle in the provision of adaptive composition of services.

This is regarded as one of the important contributions of this study. The core design

principles of the MobiGATE system are summarized as follows:

• Firstly, the MobiGATE system should be context-aware. In other words, the system

must possess the ability to collect contextual information, such as network bandwidth,

transmission error rate, and client resources, and to adjust its own behavior

appropriately. The principle of context-awareness fundamentally facilitates streamlets

and streams to react adaptively to the operating conditions of the surroundings. One

popular solution [Chan03, Fox96, Noble97] for this is to employ an entity called

Event Manager responsible for receiving environment messages that will alter

behavior of the system. These messages can originate from local operating system

services and remote clients. The MobiGATE system extends this mechanism by

allowing applications to choose and subscribe the context messages of interest, while

filtering away those which are not necessary.

 28

• In addition, the newly designed system must be reconfigurable. In this context,

reconfigurable means that the composition structure of applications running in the

middleware system can be changed dynamically in response to different conditions.

More ambitiously, the system should ideally support the dynamic reconfiguration of

each service entity bound to associated applications. For example, the behavior of a

service entity may be changed or adapted by altering its meta-representation at

runtime.

• Significantly, MobiGATE is a middleware supporting the separation of concerns,

advocated by the coordination theory. Firstly, the system possesses the ability of

composing adaptation services. Secondly, the communication codes are completely

separated from those computational activities in the composition of adaptations. Each

service entity should be completely independent of its running environment. The main

difficulty, in this respect, lies in the abstraction of environmental dependencies from

those service entities while at the same time maintaining an acceptable performance.

• In contrast to some existing adaptive middleware, such as TranSend introduced in

Section 2.2, the MobiGATE system is expected to support peer-to-peer, collaborative

adaptation services. To achieve this goal, MobiGATE needs a client-side system to

reversely process data flows from the server for the purpose of adaptation, such as

decompression and decryption. Because of the constrained resources and power of

most mobile devices, this MobiGATE client system must follow a thin-client model,

which means there cannot be as much workload as on the server side.

• As far as performance is concerned, the system should be efficient in processing data

flows. With the increase in the number of running applications and mobile clients, an

acceptable performance should still be obtained. It is also important to note that this

system must be robust and maintain a relatively stable throughput most of the time.

The aim is for all of these performance requirements to be satisfied with the

 29

development of several related technologies, such as carrier resource and instance

pooling, which are introduced in following sections.

3.2 MobiGATE Working Paradigms

The MobiGATE system consists of two parts: MobiGATE server and MobiGATE client.

The MobiGATE server, where adaptations of data flows are composed, resides in the

intermediate proxy between the data sender and receiver. The MobiGATE client, in most

cases, stands in the position of data receiver, responsible for processing received

messages reversely.

Figure 3-1: The working paradigm of MobiGATE system

Figure 3-1 shows a simple data flow with a single sender (S) and receiver (R). The data

flows across various links and nodes in the network. The thick line represents the wired

network and the dashed line suggests the wireless part. Access Point (labeled AP in the

figure) is located at the edge of the wired network to support communications between

the fixed sender and its mobile receiver. At some point in the network, the MobiGATE

Server (MS) imposes various adaptation services on the data flow, which is then

processed reversely by the MobiGATE Client (MC) at the receiver side.

To some extent, Figure 3-1 is a simplification of real world. It shows a simple data flow

and it does not illustrate problems, such as delivery deadlines or security concerns, nor

does it suggest the level of complexity possible in even a single network flow. But the

figure captures the root of the problem. A stream of data flows from a source to a

destination across a network, using links of different conditions. Altering the data flows

in various ways could lead to better overall results, in terms of lowering bandwidth

 30

requirements, alleviating error condition, encoding secured data, generic compression,

and transcoding. The aim of the MobiGATE system is not to provide specific services or

configuration of services, but rather to provide a general platform to facilitate ease of

deployment of services across the wireless links by providing core mechanisms and

system services.

It is important to note that the MobiGATE server may reside in mobile nodes, while the

MobiGATE client is placed at proxies in the wired network. This situation, upstream

transmission (client-to-server), happens when the data sender is a mobile device, while

the receiver is a fixed node in the wired network. However, there is an inherent

asymmetry in the wireless communications: the bandwidth in the downstream direction

(server-to-client) is much greater than that in the upstream direction (client-to-server).

For this reason, more and more mobile-aware applications have now adopted the push-

based (downstream direction) data dissemination model [Barbara99]. In this thesis, the

MobiGATE system primarily focuses on solving problems in downstream direction

communications. As discussed, the architecture is sufficiently flexible to be used to

address upstream communications as well.

3.3 MobiGATE Server

There exists in MobiGATE a clear distinction between the activities of coordination and

computation. Figure 3-2 shows the architecture of MobiGATE server, which is organized

into two executing planes. The Streamlet Execution Plane is responsible for

scheduling streamlet instances for computation, while the Stream Coordination

Plane is responsible for maintaining the interaction and relationship between the

coordinated streamlets. The Coordination Manager maintains a configuration

table for each instance of streamlet composition. The configuration table serves to

contain meta-information on the composition of streamlets, message type constraints,

port connections, and routing constraints. The table is derived from the compilation of the

MCL script, which the Coordination Manager uses to control the stub generation

and the channel objects and to facilitate the exchange of messages among the streamlets.

In short, the coordination plane can be viewed as a routing plane, where coordination

 31

activities and interaction are abstracted from the streamlet codes. This leads to a highly

reconfigurable system where interconnections and relationships between service entities

can be composed dynamically in a non-intrusive way.

On another plane, the Streamlet Manager controls the execution of instances of a

streamlet. During the setup process, the manager is required to locate the classes of

streamlets and allocate necessary computational resources for execution. The Event

Manager is responsible for generating system events in reaction to different conditions.

Finally, there is a Streamlet Directory, where the streamlet providers can

advertise their services. This directory provides code-level implementations of streamlets

at runtime. Below, various components of the MobiGATE server architecture are

described in detail.

Coordination
Manager

Streamlet
 Manager

Streamlet
1

Streamlet
2

Streamlet
3

Streamlet
N

Stream Coordination
Plane

Streamlet Execution
Plane

Stub

Stub

Stub

Stub

Streamlet
Directory

Event Manager

MCL script MCL
compiler

Figure 3-2: Architecture of MobiGATE server

3.3.1 Coordination Manager

The Coordination Manager controls the generation of stubs and channel objects

and facilitates the message exchange among the streamlets. It maintains a configuration

table for each running coordination stream, defining the specific message flow route in

these streams. From the perspective of networking, the role of the Coordination

 32

Manager is somewhat similar to that of a router, while the configuration table acts as

the routing table. Another important function of the Coordination Manager is to

filter events from the Event Manager and to broadcast them among coordination

streams. This may invoke dynamic reconfiguration actions.

3.3.2 Stream Coordination Plane

The Stream Coordination Plane is the layer where coordination activities take

place. In this plane, a stream object is modeled as streamlet stubs connected by channels,

with the composition structure defined by the configuration table held by the

Coordination Manager. Stubs do not contain any service logic. Instead, they

implement whatever operations are necessary to forward requests to streamlet instances

and receive results. The exchange of data among the stubs is currently done through

channels. The channels transport data by using a frequently used method, carrier

resource, where a repository or carrier resource, accessible to both producer and user

stubs, is created. Producer stubs write the data to the shared carrier. User stubs read the

data from the shared carrier. The carrier resources can be written only after they have

been read by consumers.

3.3.3 Streamlet Manager

The Streamlet Manager manages the execution of various streamlets. It intercepts

service requests from the Stream Coordination Plane, passes the incoming

message to the corresponding streamlet instance for processing, and finally returns the

result message. If the requested streamlet has not yet been initiated, the manager creates

an instance for it from the Streamlet Directory; otherwise the manager directly

delivers the message to the Streamlet Execution Plane.

3.3.4 Streamlet Execution Plane

All the computation activities take place in the Streamlet Execution Plane. In

this plane, individual streamlets run independent of others and focus on imposing

services on the incoming messages. Two kinds of streamlets, Stateless and Stateful, are

 33

distinguished depending on whether state information is to be kept for the requesting

coordinator processes.

One of the fundamental benefits of using the MobiGATE architecture is that it is able to

handle a heavy workload while maintaining a high level of performance. There is a

relationship between the number of streams and the number of streamlets that are

required to service them. As the stream population increases, that is, as the number of

applications increases, the number of streamlets required increases correspondingly. At

some time, the increase in the number of streamlets will have an impact on performance

and diminish the throughput. MobiGATE explicitly supports a mechanism called

streamlet pooling that makes it easier to manage large numbers of streamlets in the

Streamlet Execution Plane.

The concept of pooling resources is not new. A commonly used technique is to pool

database connections so that the business objects in the system can share access to the

database. This mechanism reduces the number of database connections that are needed,

which, in turn reduces the consumption of resources and increases throughput. The

MobiGATE Streamlet Execution Plane also applies resource pooling to

streamlets; this technique is called streamlet pooling. Streamlet pooling reduces the

number of streamlet instances, and therefore, the resources needed to service requests

from the Stream Coordination Plane. It is also less expensive to reuse pooled

streamlet instances than to frequently create and destroy instances.

Streamlet pooling is applicable to streamlets that are considered Stateless. In other words,

since Stateless streamlets are never associated with a specific stream, there is no

fundamental reason to keep a separate copy of each streamlet for each stream instance.

Thus, the system can keep a much smaller number of streamlets, reusing each streamlet

instance to service the different requests. By this means the resources actually needed to

service all the requests are greatly reduced.

 34

3.3.5 Event Manager

The Event Manager is responsible for generating system events in reaction to

different conditions. These events may be caused by client requests, changes to the

system environment, or by exceptions in streamlet executions. Coordinating the

publication of events is fundamental to the realization of adaptive processing in a mobile

middleware system, such as MobiGATE.

3.3.6 MCL Complier

The MCL Compiler controls the compilation of the MCL coordination script and

generates the necessary configuration tables to define the message flow routes in

coordination streams. It is also responsible for any compile-time validation work such as

compatibility checks. Incompatible connections in the script are returned by the compiler

with a detailed error message.

3.3.7 Streamlet Directory

The Streamlet Directory serves as the repository where streamlet providers can

advertise their services. In addition, it serves as a central storage for streamlet codes in

which the Streamlet Manager may locate the relevant streamlets and create

instances for execution. Note that it is possible for a streamlet itself to be represented as

an MCL coordination script. This defines a recursive composition of other native

streamlets.

3.4 MobiGATE Client

Figure 3-3 depicts the operational flow and architecture of the MobiGATE client. In

contrast to the server, the MobiGATE client system has no concept of channel or

coordination. All the composition information is already recorded in the incoming

message header. The system at the client side needs simply to read the message header

and distribute the message to corresponding client streamlets for reverse processing. The

resultant messages are then sent to higher layered applications. This asymmetry

mechanism has greatly liberated MobiGATE client systems from heavy coordination

 35

logic, and translates into a much lower consumption of computing resources and energy

on the client side. The details of the comprising components are given below.

Message
Distributor

streamlet 1 streamlet Nstreamlet 2 ...

Client Streamlet Pool

Application

Figure 3-3: Architecture of MobiGATE client

3.4.1 Message Distributor

The main task of the Message Distributor is to parse the incoming MIME

messages and distribute them to each corresponding client streamlet for reverse

processing. An important characteristic of the Message Distributor is that it can

support multiple threads at runtime. This is similar to the characteristics of the servlet in

the J2EE architecture. Whenever a new message arrives, the system tries to find an

available Message Distributor thread to parse the message. If this fails, the

system creates a new thread to service the incoming message.

3.4.2 Client Streamlet Pool

The function of the Client Streamlet Pool is quite similar to that of the

Streamlet Directory at the server side. The difference is that here the system

maintains peer streamlets, instead of original streamlets maintained at the server side. In

 36

addition, the Client Streamlet Pool is also responsible for creating and

destroying client streamlet instances to service the incoming messages forwarded by the

Message Distributor.

 37

4 MobiGATE Coordination Language

This chapter describes the MobiGATE Coordination Language (MCL) used to compose

applications running in the MobiGATE system. The syntax design of the language is

introduced in detail, including the type system, language elements, and the important

design characteristics that differentiate MCL from other coordination languages. A case

example using MCL to compose applications out of existing services, is also given to

demonstrate the effectiveness of this newly designed language. Based on the syntax

design, the formalization of the language with a semantic model is then introduced in

Chapter 5.

4.1 Message and Port Typing

The type system in programming languages defines the type of data and structural

representation of information to be processed. The typed information represents the

characteristics of the data intended by the developer of the program and is

correspondingly treated as such during compilation and execution. In MobiGATE, the

typed messages exchanged between streamlets and the definition of port types is viewed

as fundamental in enabling the flexible and robust composition of streamlets.

Significantly, it allows the developer to concisely capture the intended message types,

bound to the streamlet ports. Runtime checking, in the form of matching the message

types to the streamlet ports, can be exercised to ensure consistency during operations. In

this project, the adoption of the Multipurpose Internet Mail Extensions (MIME) 1.0

Internet standard is proposed as the underlying type definition, to represent messages and

declarations of port type. As such, messages, exchanged in the system, are formatted

based on MIME. This assumption is reasonable and valid considering the fact that MIME

has evolved to become the de facto formatting standard for many network services,

including email, news and the World Wide Web.

Figure 4-1 shows a graphical representation of the MCL type system. A fundamental

property is that, each given type has multiple associated direct subtypes or supertypes.

This is useful in facilitating the checking process for type compatibility of activities of

 38

which the architecture is composed. Another interesting property of the defined type

system comes from the extensible nature of the MIME type media system, meaning that

it is not difficult to introduce a new message type into the system.

discrete-
type

port

composite-
type

text video applicationaudioimage

jpeg

gif

mpegbasic

richtext

plain octet-stream

PostScript

multipart message

mixed

alternative

parallel

digest

rfc822

partial

external-body

Figure 4-1: Graphical representation of a type system

Based on the MIME type system, the Backus Normal Form (BNF) notation of a type

declaration in MCL can be defined as shown in Figure 4-2. Note that this definition is

generated from a simplification of a standard MIME Content-Type header field definition

with some modifications.

 39

type-declaration ::= type “/” subtype | intermediate

 ; Matching of media type and subtype

 ; is ALWAYS case-insensitive

intermediate ::= “port” | discrete-type | composite-type | type

type ::= discrete-type | composite-type

discrete-type ::= “text”|“image”|“audio”|“video”|“application”

composite-type ::= “multipart”|“message”

subtype ::= <A publicly-defined extension token. Tokens of this form

must be registered with IANA as specified in RFC 2048>

Figure 4-2: BNF notation of the type declaration

4.2 MCL Language Elements

MCL is an underlying declarative language for describing dynamically changing

networks of active concurrent processes. It is comprised of several important abstractions

including streamlets, channels, and streams. Collectively, the abstractions, labeled

constructs, constrained typing, and definitions form the building blocks for describing the

composition of the streamlets and their architectural description. The important elements

representing the core abstractions are described in the following sections.

4.2.1 Streamlet

Streamlets in this study represent the main functional elements of an application and

work as coordination units, as listed in Table 2-2. They own a set of ports, through which

they interconnect with the rest of the system. Interconnections among streamlets are

explicitly represented as separate language elements, called channels. Streamlets must

always connect to one another through channels. As a consequence, every streamlet port

must be connected to a compatible channel port based on the definition of MIME type.

Within the context of a streamlet, ports play the role of placeholders. This means they

will not be affected by the computation of the streamlet. Streamlets read/write messages

from/to their associated input/output ports by using read/write primitives. They do not

need to have explicit knowledge of the real source/destination of messages. The

 40

separation and externalization of the interconnections of the streamlets promote their

independence and reusability. In MCL the notation p.i is used to refer to port i of a

streamlet instance p.

streamlet-definition ::=“streamlet”streamlet_name description
streamlet_name ::= token

;is ALWAYS case-insensitive
description ::= “{” ports attributes“}”
ports ::= “port”“{”

port_declaration
 “}”

attributes ::= “attribute”“{”
streamlet type
implementation
description

 “}”
port_declaration ::= dir port_name“:”type-declaration“;”
dir ::= “in”|“out”
port_name ::= token

; is ALWAYS case-insensitive
streamlet type ::= “type”“=”“STATELESS”|“STATEFUL”“;”
implementation ::= “library”“=”value“;”
description ::= “description”“=”value“;”
value ::= quoted-string
token ::= *(<any (US-ASCII) CHAR except SPACE, CTLs, or tspecials>)
tspecials ::= “(”|“)”|“<”|“>”|“@”|“,”|“;”|

“:”|“\”|<”>“/”|“[”|“]”|“?”|“=”

Figure 4-3: BNF notation of the streamlet definition

Streamlets are defined as sets of ports and attributes, which describe streamlets’ core

functions and capabilities to interconnect with the rest of the system, as shown in Figure

4-3. The Establishment of the type of an input/output port is required as part of the port

declaration. Notice that as identification, each streamlet may have more than one

input/output port, each of which is associated with the name of a specific port. The

attribute declaration describes three important properties:

 41

• Type. Type indicates whether the streamlet needs to keep information on

corresponding application states. Based on this attribute, streamlets are distinguished

as Stateless or Stateful.

• Library. The library connects streamlets with code-level components that implement

their intended functionality. Examples of code-level components include executable

programs, and source code models.

• Description. Description provides some general descriptive information about

streamlets.

In addition, a distinction is made between the descriptions of streamlets and their

instances in MCL. In this study, a streamlet is defined as an instance and a streamlet

definition is its description. Streamlets (or streamlet instances) can be created from a

definition using the new-streamlet primitive or destroyed using the remove-streamlet

primitive.

4.2.2 Channel

Channels describe relationships of interconnection and constraints among streamlets.

Traditional programming languages do not support a distinct abstraction for representing

such relationships, and implicitly encode support for component interconnections inside

their abstractions for components. In contrast, all streamlet interconnections, in MCL, are

explicitly represented, using channels. Channels, like streamlets, own ports. These ports

must be connected to compatible streamlet ports.

 42

channel-definition ::=“channel”channel_name description
channel_name ::= token

 ;is ALWAYS case-insensitive
description ::= “{” ports attributes“}”
ports ::= “port”“{”“in”“:”type-declaration“;”

 “out”“:”type-declaration“;”
“}”

attributes ::= “attribute”“{”
channel_type
category
buffer_size

“}”
channel_type ::= “type”“=”value1“;”
category ::= “category”“=”value2“;”
buffer_size ::= “buffer”“=”value3“;”
value1 ::= “SYN”|“ASYN”
value2 ::= “S”| “BB”|“BK”|“KB”|“KK”
value3 ::= *(DIGIT)“Kbytes”
token ::= *(<any (US-ASCII) CHAR except SPACE, CTLs, or tspecials>)
tspecials ::= “(”|“)”|“<”|“>”|“@”|“,”|“;”|

“:”|“\”|<”>“/”|“[”|“]”|“?”|“=”

Figure 4-4: BNF notation of the channel definition

A channel represents a reliable, directed, and optionally buffered flow of information in

time. Reliable means that all messages placed into a channel are guaranteed to flow

through without loss, error, or duplication, with their order preserved. Directed means a

channel always has two identifiable ends: an in and an out. Once a channel is established

between two streamlets, it operates autonomously and transfers the message from its

input to its output port. Figure 4-4 shows the formal definition of the channel. Like the

streamlet, it is also defined by port declarations and certain important attributes:

• Type. Two channel types are distinguished: synchronous and asynchronous.

Synchronous channels are zero-length buffers and can receive a value only if they can

be delivered immediately, while asynchronous channels are unbounded FIFO buffers.

 43

• Category. The possibility of pending units existing in a channel makes it meaningful

for a channel to remain connected at one of its ends, after it is disconnected from the

other. Based on this property, channels are distinguished as S, BB, BK, KB, and KK.

The S channel guarantees that there are never any pending units in the channel. The

BB (break-break) channel is automatically disconnected from the other of its

streamlets, as soon as it is disconnected from one. The BK (break-keep) channel does

not disconnect from its target streamlet when it is disconnected from its source

streamlet. The KB (keep-break) channel simply reverses the semantics of the BK. The

KK channel cannot be disconnected at either side of the connection.

• Buffer. The buffer size in the channel is specified in units of Kbytes. Ideally, an

asynchronous channel should have an unbounded buffer, as introduced above.

However, in reality, a large buffer size is generally chosen to simulate this property.

As with streamlets, there is a differentiation between channels and channel definitions in

MCL. Channels (or channel instances) can be created from a definition, using the new-

channel primitive or destroyed, using the remove-channel primitive.

4.2.3 Stream

A stream is purely a composition script, also known as a coordination script, running on

the coordinator side. It is within a stream that different streamlet and channel instances

are created, network topologies are constructed, and actions in response to different

events, are specified. Streams can be viewed as streamlets connected by channels with

the ability to perform adaptations. Simultaneously, a stream can also be viewed as a

“streamlet” with input/output ports, which come from the stream’s inner streamlet ports

and are unsatisfied by any inner connections. Figure 4-5 is the formal definition of a

stream object.

In addition to the primitive new-streamlet, remove-streamlet, new-channel, and remove-

channel introduced above, there also are connect, disconnect, and disconnectall

primitives to set up/break down connections in stream descriptions. For example, connect

 44

(p.o, q.i, c) is written to set up a connection between the port o of the streamlet p and the

port i of the streamlet q, using the channel c. For simplicity connect (p.o, q.i) can be used

instead, whereby the system automatically creates a channel instance of an asynchronous

BK type with 100 Kbytes of buffer to connect between the ports.

stream-definition ::=“stream”stream_name declaration
stream_name ::= token

;is ALWAYS case-insensitive
declaration ::= “{”

*(streamlet_instantiation)
*(channel_instantiation)
*(connection_setup)

 “}”
streamlet_instantiation ::= “streamlet” str_instance“=”

“new-streamlet”“(”streamlet_name“)”“;”
channel_instantiation ::= “channel” chan_instance “=”

“new-channel”“(”channel_name“)”“;”
connection_setup ::= “connnect”“(”port_ID“,”

<port_ID>“,”<chan_instance>“)”“;”
port_ID ::= str_instance“.”port_name

Figure 4-5: BNF notation of the stream definition

Dynamic reconfiguration is another important task that needs to be addressed in the

description of a stream. It’s also an important advantage of MCL over most existing

coordination languages, as shown in Table 2-2. The interaction model in MCL is event-

driven. That is, a coordinator process waits for an occurrence of a specific event to

stimulate entry to a predefined state and perform some actions. These actions typically

consist of setting up or breaking off connections of ports and channels. The coordinator

then remains in that state until it observes the occurrence of some other related events.

System events are generated by the Event Manager, an important component in the

MobiGATE environment that facilitates the adaptation of the streamlets. Several types of

events in MCL have been predefined. Such events are introduced and described in

Section 6.4. They represent external events that can be subscribed to initiate the

 45

adaptation through reconfiguration of the composition of the streamlets. The selection of

the event types include LOW_ENERGY (Client devices running out of power),

LOW_BANDWIDTH (Poor network bandwidth), LOW_GRAYS (Client devices

supporting only shallow grayscale), and END (End of application). Note that, unlike

other coordination languages featuring events, MCL events are not parameterized and

cannot be used to carry data – they are used purely for triggering the evolution of the

composition of coordinated streamlets in response to contextual events.

There is an important primitive in descriptions of a stream, when (event) {…actions…},

identifying reactions to different events. In principle, the coordinator picks up any

broadcast event; in practice, however, only a subset of the potential receivers is usually

relevant to an event as these receivers specify actions in the corresponding when sections.

4.3 Case Example of Using MCL

A pragmatic example of the composition of service entities based on MCL is presented in

this section. To illustrate and highlight the robustness of the language in regulating

complex adaptations in response to evolving wireless and mobile operating

environments, a modified datatype-specific distillation application, which was deployed

at U.C. Berkeley [Fox98a], is adopted. The service entities, in the form of streamlets,

used in this example are listed below.

• Switch: Dividing incoming messages based on the semantic type of the data;

• Image Down Sampling: Lossy compression of an image by reducing the sample rate;

• Map to 16 grays: Reducing images to 16 grays to support shallow grayscale displays;

• PostScript-to-Text: Discarding some information on format and converting documents

to rich-text supported by most devices;

• Text Compressor: A generic text compressor;

• Merge: Integrating different types of information into a whole body;

• Power Saving: A power-saving mechanism as discussed in [Anastai02].

 46

Switch Merge

Image
Down

Sampling

PostScript-
to-Text

Map to 16
grays

Text
compressor

Power
Saving

streamApp

Figure 4-6: The composition model of a datatype-specific distillation application

Figure 4-6 shows the composition model of the application. The rectangle boxes

represent the service entities modeled as streamlets associated with input ports (black

points) and output ports (white points). Lines between different ports embody

intermediate channel objects. Note that the dashed parts are optional, which means they

will be included in the architecture only when certain specific events take place. For

example, the power-saving entity is invoked when the system subscribes and

correspondingly receives the LOW_ENERGY signal from the hardware abstraction driver.

The abstraction of the stream application streamApp, which exercises recursive

composition, contains the composition of the streamlets. The composite streamApp

streamlet has its own input/output ports, derived from those internal ports, not satisfied

by any internal connections. Therefore, from the outside the streamApp can also be

regarded as a streamlet object and can be graphically represented in the form of an

encapsulated box and ports to be reused in other stream applications. The concept of

recursive composition is discussed in detail later in this thesis.

Below is a description of individual streamlets in MCL. Considering the large size of

image data, a channel with a buffer of 1024 Kbytes is created specifically to connect

image-related streamlets, while for others the default 100 Kbyte-sized channel is used.

 47

streamlet switch{
port{

in pi : multipart/mixed;
out po1: image;
out po2: application/PostScript;

}
attribute{

type = STATELESS;
library = “/general/switch.class”;
description =
“Divide incoming message based on
the semantic type of the data.”;

}
}
streamlet img_down_sample{

port{
in pi : image;
out po : image;

}
attribute{

type = STATELESS;
library = “/image/downSample.class”;
description =
“reduce sample rate of the image”;

}
}
streamlet map_to_16_grays{

port{
in pi : image;
out po : image;

}
attribute{

type = STATELESS;
library = “/image/mapGrays.class”;
description =
“To support clients with shallow

grayscale displays”;
}

}
streamlet powerSaving{

port{
in pi : multipart/mixed;
out po : multipart/mixed;

}
attribute{

type = STATEFUL;
library = “/general/powerSaving.class”;
description =
“Power saving mechanism.”;

}
}

streamlet postscript2text{
port{

in pi : application/PostScript;
out po : text/richtext;

}
attribute{

type = STATELESS;
library = “/text/p2t.class”;
description =
“Convert PostScript material to

richtext document.”;
}

}
streamlet text_compress{

port{
in pi : text;
out po : text;

}
attribute{

type = STATELESS;
library = “/text/Compressor.class”;
description =
“a generic text compressor.”;

}
}
streamlet merge{

port{
in pi1 : image;
in pi2 : text;
out po : multipart/mixed;

}
attribute{

type = STATELESS;
library = “/general/merge.class”;
description =
“Merge messages together.”;

}
}

channel largeBufferChan{
port{

in : image;
out : image;

}
attribute{

type = ASYN;
category = KB;
buffer = 1024 Kbytes;

}
}

Figure 4-7: Streamlet and channel descriptions

 48

Based on these streamlet descriptions, the final composition script for the stream

streamApp is written as follows:

stream streamApp{
streamlet s1 = new-streamlet (switch);
streamlet s2 = new-streamlet (img_down_sample);
streamlet s3 = new-streamlet (map_to_16_grays);
streamlet s4 = new-streamlet (powerSaving);
streamlet s5 = new-streamlet (postscript2text);
streamlet s6 = new-streamlet (text_compress);
streamlet s7 = new-streamlet (merge);

channel c1, c2, c3 = new channel (largeBufferChan);

connect (s1.po1, s2,pi, c1);
connect (s1.po2, s5,pi);
connect (s2,po, s7.pi1,c2);
connect (s5.po, s6.pi);
connect (s6.po, s7.pi2);

when(LOW_ENERGY){
connect (s7.po, s4.pi);

}
when(LOW_GRAY){

disconnect(s2.po, s7.pi1);
connect(s2.po, s3.pi, c2);
connect(s3.po, s7.pi1, c3);

}
}

Figure 4-8: Stream description

As shown in Figure 4-8, the occurrence of LOW_ENERGY triggers the reconfiguration of

the stream by introducing streamlet powerSaving. Similarly, the occurrence of

LOW_GRAY triggers the insertion of a new streamlet map_to_16_grays to provide

transcoding of colour images to grey scale images.

4.4 Design Issues of MCL

The MCL design is greatly influenced by a set of core design issues. These issues, in a

way, differentiate MCL from existing and general coordination languages. It has specific

 49

focus as an underlying coordination language to facilitate robust composition and support

for dynamic reconfiguration in a mobile and wireless environment.

4.4.1 Compatibility Check

In a manner analogous to the type checking in programming languages, it is desirable to

be able to perform the limited static checking of compatibility when connecting or

transforming the composition of service entities. Such controls facilitate the construction

of correct and consistent architectures while helping designers focus their attention on

more complex issues. MCL provides such a mechanism, based on the matching of

streamlet port types.

MCL imposes several semantic restrictions and constraints on the ability of streamlets to

connect to each other. The two most important restrictions are:

• Streamlet ports can only connect to channel ports (and vice versa).

• Sink ports can only connect to source ports that are equal to or are a specialization of

the sink ports.

It is desirable to encode such restrictions and constraints so that a number of

compatibility tests can be automatically performed by the language at the time of

compilation. Since all MCL connections are between ports, it is desirable to be able to

perform compatibility checks at the port level.

The first restriction is relatively easy to validate by language. Before establishing a

connection, MCL checks the source of two ports. If both are from streamlets, or channels,

the connection is considered illegal. For the second restriction, MCL bases its

compatibility check on port types. As introduced above, multiple associated direct

subtypes or supertypes can be assigned to a port type. These subtype/supertype relations

are used to specify the second restriction on compatibility. To establish a connection,

MCL performs a match of port types: if the type of source port is equal to or is a subtype

of a type of sink port, the connection is considered legal. In the application shown in

Figure 4-6, the connection between the PostScript-to-Text output port and the Text

 50

Compressor input port is valid, since the source port type text/richtext is a subtype of the

sink port type text.

4.4.2 Recursive Composition

As mentioned above, the stream and streamlet processes are indistinguishable, in terms of

their abstraction, as boxes with associated input/output ports. Thus, a stream object can

logically be regarded as a streamlet written in native MCL composition languages and

reused in another stream application. This is known as recursive composition. In addition,

the key word main is included to indicate the highest-level stream object in a

coordination script. The system can thus start to execute an MCL application by locating

a stream object that is labeled main in the coordination script.

To support this recursive composition, the composition of a separate description of

streamlets associated with each stream object is needed. Based on these descriptions, the

system instantiates instances of streamlets and sets up connections to each streamlet, just

as it does for common streamlets. For example, the example stream discussed above can

be reused as follows.

streamlet streamApp{
port{

in pi : multipart/mixed;
out po : multipart/mixed;

}
attribute{

type = STATEFUL;
library = “/general/streamApp”;
description =
“match the stream object streamApp to

a streamlet”;
}

}

main stream compositeStream{
streamlet s1 = new-streamlet (cache);
streamlet s2 = new-streamlet (streamApp);

connect (s1.po, s2.pi);
}

streamAppcache

compositeStream

Figure 4-9: Recursive composition

As shown in Figure 4-9, compositeStream is oblivious to the internal structure of the

stream streamApp. From the view point of compositeStream, this stream object is just a

 51

common streamlet implemented in MCL. In a similar manner, compositeStream can also

be reused in another higher-level stream object, as a common streamlet object.

The support of the recursive composition model corresponds to the spirit of the

coordination theory in facilitating organized composition. As MobiGATE evolves and,

coupled with the proliferation of streamlets, a need to provide a coordinated and

structured organization of streamlets is envisaged to promote ease of use and

management. This is reflected in MCL through the support of the hierarchical modeling

of streamlet composition based on recursive coordination.

4.4.3 Streamlet Sharing

Another important issue of this study is the concept of streamlet sharing. Each streamlet

is oblivious to the source or destination of the messages and is concerned only with

imposing its computation on incoming messages and producing response messages. The

complete decoupling of coordination from computation makes it possible to share

instances of streamlets between different streams.

The question is, how can messages be distributed to their corresponding streams when the

messages are generated on the output ports of the shared instances of streamlets? In other

words, how can messages belonging to different stream instances be identified?

As introduced previously, streamlets, exchange messages based on MIME. In the MIME

message format, a header exists called the MIME-extension-field for applications to

define their own application-specific headers. A new field in the message header to

identify messages from different streams is defined, using this feature.

session ::= “Content-Session” “:”session-id

Before executing a coordination stream, the system automatically generates a unique

session ID for each instance of a stream. Subsequently, all messages belonging to this

stream are labeled with the assigned session ID in their “Content-Session” field. By this

means, the system can easily differentiate messages from different streams.

 52

5 MCL Semantic Model

The definition of a formal language includes two parts: the specification of the proper

construction of sentences, the syntax; the specification of the meaning of sentences, the

semantics [Kolman96].

The primary focus in Chapter 4 is on formal definitions of the architecture descriptions in

the syntax domain. Definitions of basic elements, such as streamlets, channels, and

streams, are given. While these descriptions may provide useful documentation, the

current level of informality limits their usefulness. In particular, the syntax does not

capture the intrinsic semantic properties of the language, thus rendering analysis of the

architecture for consistency impossible.

In this chapter, MCL is formalized by means of the development of a semantic model.

The model specifies precisely all the language elements introduced previously, and is

described by using the specification language Z. The Z schemas, which can be regarded

as generalized type definitions, are used to represent the basic constructs. These schemas

provide semantics that permit the formal verification of properties of the model.

Additional details on Z can be found in [Spivey89].

5.1 Formalization of MCL Language Elements

It is assumed that sets [ENTITY, DATA, PORT] exist. The ENTITY identifiers represent

global names. Name clashes between distinct streamlets and streams are disallowed. The

set DATA includes different data types defined by MIME media type representation, as

discussed in Section 4.1. The PORT members are the streamlet interfaces and are also

introduced as a given set in the model.

5.1.1 Streamlet

In order to define the behavior of a streamlet, its input and output data ports and the data

type that may be passed along each data port must be known. This latter information is

represented by a (partial) function from data ports to their data types. In addition, a

 53

streamlet is identified with a unique id. This streamlet information is formalized in the

schema streamlet.

I

U

Some enforced constraints on streamlets are

• Input and output data ports are distinct (first predicate);

• Each port is associated with a data type (second predicate).

5.1.2 Channel

The streamlet data ports are connected by channels, modeled as typed data streams. Each

channel has a distinct source and sink for receiving and sending data. Recall that PORT

represents an input or an output of a particular streamlet. Thus a channel represents a data

transmission from one streamlet to another.

≠

5.1.3 Stream

A stream can now be modeled as a set of streamlets connected by channels. More

formally, a stream now agglomerates a set of streamlets together with a set of channels.

 54

Stream
streamlets : P Streamlet
channels : P Channel

∀ s1, s2 : streamlets | s1 ≠ s2 • s1.id ≠ s2.id
∀ c1, c2 : channels | c1 ≠ c2 • c1.id ≠ c2.id
∀ • •c : channels ∃ s1, s2 : streamlets

c.source ∈ s1.outputs
c.sink ∈ s2.inputs
s1.port-type(c.source) ⊆ c.type∧

∧

Because the ENTITY identifiers represent global names, name clashes between distinct

streamlets and channels are disallowed. It also is important to point out that the port type

of two connected streamlets must be compatible with that of the intermediate channel. In

other words, the port type must be equal to, or a subtype of, that of the intermediate

channel. This is specified by the last precondition in the above definition.

5.1.4 Composite Streamlet

As introduced previously, recursive composition allows streams to be considered as

streamlets and reused in the composition of other high level streams. The main problem

here concerns the resulting streamlet type, since the resulting streamlet should not be

independent of the associated architecture. Consequently, the input and output types

declared at the composite level are selected first. All the inner architecture types not

concerned with any inner connection, are then added. The resulting composite streamlet

is then formalized as follows.

 55

I

U

∀ ∈ •∃ ∈ • ∈
U

∧ ∀ ∈ • ≠

∀ ∈ •∃ ∈ • ∈
U

∧ ∀ ∈ • ≠

The most difficult part of the formal definition concerns the definitions of the sets InnerIn

and InnerOut. For simplicity, the process of selecting the unsatisfied input types are

formalized as being those that are not concerned with any connection involving the inner

components.

5.2 Analysis of Architectural Descriptions in MCL

Based on the semantic model defined in Section 5.1, different kinds of analysis and

checking are now considered. In this section some representative examples of analysis

supported by the formal framework displayed in this study are presented. To address the

topological requirements, a stream configuration is considered as a directed graph in

which two streamlets are connected if any of their ports are attached to a common

channel, as shown below.

 56

↔

×
∃ ∈ •

∈ ∧

∈

5.2.1 Feedback Loops Detection

An important restriction on the definition of stream configurations is that the architecture

has no feedback loops, or the connection graph is acyclic. Informally, in terms of

streamlets, this means data processed by a streamlet will never re-enter the streamlet. The

acyclic can be defined as follows:

I

5.2.2 Open Circuit Detection

In addition, it is highly possible that some intermediate output ports might, by mistake, be

left unconnected during the composition activities, possibly resulting in the loss of

incoming messages entering the corresponding streamlet. This is called an open circuit

problem and must be detected and avoided during stream configurations. Based on the

definition of StreamGraph, a formal definition of the open circuit problem is provided as

follows:

 57

∃

∀ ∈ • ≠
∧ ∉

5.2.3 Mutual Exclusion Detection

It is worthy of note that in the MobiGATE system there are some streamlets that are

mutually exclusive. Thus in the stream compositions, the incoming messages cannot be

processed by these exclusive streamlets simultaneously. That is to say, the exclusive

streamlets cannot be deployed in the same path from the START to the END of the

stream configurations. This exclusion relationship can be represented as a partial function

from the streamlets set to its power set in its formal definition, as shown below.

→

∀ ∈ •

∉

∈

5.2.4 Dependency Verification

In contrast to mutual exclusion restrictions, in some situations when a streamlet is added

to the stream configuration, a set of closely related streamlets should also be included. In

other words, these streamlets are said to be mutually dependent. This assurance is a

desirable enforced constraint in the stream composition. The formalization of this

requirement is described as follows:

 58

→

∀ ∈ •

∈
∨ ∈

∈

5.2.5 Preorder Verification

The deployment order of the streamlets in the composition is another composition

restriction. Some streamlets are predefined to impose their services on the incoming

messages in a specific order. For example, encryption and compression are two

independent service entities, and generally the encryption must be deployed before the

compression entity. If it is not so, it is necessary for the system to be able to detect this

order error. This PreOrder restriction is defined below.

↔

I

One virtue of the semantic model defined above is that it has proven to be an excellent

way to obtain an in-depth understanding of MCL, and may even result in discovering

MCL features that were not apparent from a textual description. With these formal

definitions of system properties, many existing tools for Z notation can be utilized to

automate the analysis process, such as Z/EVES [Saaltink97]. This is analogous to the use

of type checking to guarantee that all uses of procedures are consistent with their

programming language definitions.

 59

5.3 Case Example of Analyzing MCL Descriptions

In this section, a simple example is used to demonstrate the usefulness of the MCL’s

semantic model in verifying the correctness of system compositions. Figure 5-1 shows a

composition example comprising three streamlets: s1, s2, and s3. A feedback loop is part

of this composition architecture. As discussed in Section 5.2.1, this loop must be detected

and avoided in the definition of stream configurations. How the MCL semantic model is

used to find and correct this composition mistake is shown below.

Figure 5-1: The composition example with a feedback loop

In MCL, the above composition model can be simply described as follows:

connect (s1.out, s2.in);

connect (s2.out, s3.in);

connect (s3.out, s1.in);

Based on the definitions of StreamGraph, the above description can be mapped into the

semantic domain as follows:

s1,s2,s3∈streamlets ∧ (s1,s2)∈connect ∧ (s2,s3) ∈connect ∧ (s3,s1) ∈connect

As connect + stands for the strongest or smallest transitive relation containing connect

[Spivey89], it is not difficult to deduce the following statement from the above:

(s1,s1), (s2,s2), (s3,s3)∈ connect +

 60

But : (s1,s1), (s2,s2), (s3,s3) ∈id streamlets

Thus: id streamlets I connect + ≠Ф

Obviously this conflicts with the definition of the acyclic requirement for a stream

description. The conflict is indicated in the validation process, a process, which for other

system properties, is quite similar.

The above example shows that a semantic model can be used to analyze application

architecture to ensure that it is consistent in its internal structure. This is not possible

using syntax descriptions alone. It has been found that a large amount of effort is

involved in validating a given application configuration. In contrast, the semantic model

defined in this chapter, has made the correctness verification of MCL descriptions

feasible and much easier.

The derived MobiGATE semantic model has proved to be effective in providing an in-

depth understanding of MCL and given an insight into the complexity of configuration

semantics. Of importance in this respect is that the MCL composer’s intended meaning of

streamlet and channel descriptions and composition semantics can be captured precisely.

As a result, the overall MCL description can be validated to ensure that potential conflicts,

such as open circuit and mutual exclusion introduced in the previous section, are resolved

at compilation time and also during runtime. A more ambitious aim is to develop a

complete theory of architecture description that allows reasoning about the behavior of

the system as a whole.

 61

6 Development of the MobiGATE System

This chapter describes the design and development of the MobiGATE system that

supports the necessary framework for streamlets in order that they may be easily

composed, inserted and removed. This system forms the underlying runtime execution

environment where streamlets are deployed and executed on the proxies residing between

the two ends of the wireless link. The MobiGATE runtime model is implemented on a

Java platform, in which common runtime operating system elements are abstracted as

either residing in the coordination or computing sub-layers. Significantly, the runtime

system is designed to promote maximum reusability of system services while minimizing

overheads that may be incurred due to streamlet operations. The aim is to provide a

general and flexible system that supports rapid development and deployment of streamlet

applications without dictating how the streamlet operation flows.

The low-level details of the implementation codes are not discussed here. Rather, the

chapter highlights three major abstract classes that are pervasive in the MobiGATE

model.

• Streamlet base class is the core abstraction of a streamlet that implements and

manages the lifecycle operations associated with a streamlet object, such as pause,

activate, and end.

• MessageQueue abstracts the communication among all streamlets residing in

MobiGATE. Importantly, it provides a convenient way to separate the communication

parts from the computation codes in a streamlet application.

• Stream base class is responsible for managing the insertion, removal, and replacement

of streamlets that are composed within a stream.

 62

Figure 6-1: The MobiGATE system class diagram

Figure 6-1 shows the greatly simplified but representative class diagram of the complete

implementation. The following sections briefly describe the main classes that make up

the MobiGATE infrastructure.

6.1 The Base Class: Streamlet

An excerpt of the Streamlet base class is shown in Figure 6-2. Any streamlet that is to be

deployed within the MobiGATE infrastructure needs to extend this base class. The

Streamlet class extends the Thread class and thus is inherently runnable. The author of a

specific streamlet is required to write the functional code within the processMsg()

method, which will be invoked by the run() method in the Streamlet class. The

 63

Streamlet class contains an In and an Out object, along with their corresponding standard

references to manipulate the stream connections. A group of methods (e.g. setIn,

setOut, getIn, getOut) is used to establish reference to the In and Out objects in the

Streamlet code itself. In addition, several lifecycle methods are also defined in the

Streamlet class, such as pause(), activate(), and end(), to manage streamlets

lifecycle operations during runtime.

The computing model can be used to define general types of streamlets by providing the

developer with the flexibility to include any application-specific processing by overriding

the streamlet’s processMsg() method. For example, streamlets can be rapidly

developed to provide important services such as image down sampling, color to gray

conversion, compression, and encryption. Connection between streamlets in the Streamlet

instance is achieved through the use of the In and Out object abstractions.

 64

public class Streamlet extends Thread implements Serializable, Cloneable {

//The Streamlet identifier
private String id;

//The input port
public MessageQueue In;

//The output ports
public MessageQueue Out;

//The setIn and setOut methods allow on to set up their own
// references names to the actual message queue
public void setIn(MessageQueue input){

In = input ;
input.incr_cCount();

}
public void setOut(MessageQueue output){

Out = output;
output.incr_pCount();

}

// specific processing logic goes here
// waiting to be override by developers
public void processMsg(MimeMessage msg){}

//Life cycle methods
public void pause() { ... }
public void activate() { ... }
public void end() { … }

}

Figure 6-2: Excerpt from the class Streamlet

6.2 The Base Class: MessageQueue

MessageQueue is used to manage the communications among streamlets on a given

stream. In the class, there is a message vector msgQueue, accessible to the producer and

 65

consumer streamlets and holding references to the passing MIME messages. The main

concern with the vector is how to synchronize producer and consumer activities. The

class implements methods postMessage() and fetchMessage() and obtains the

synchronization in two ways. First, the two threads must not simultaneously access the

msgQueue. A Java thread can prevent this from happening by locking an object. When an

object is locked by one thread and another thread tries to call a synchronized method on

the same object, the second thread blocks until the object is unlocked. Second, the

producer must have some way to indicate to the consumer that the message is ready and

the consumer must have some way to indicate that the value has been retrieved. The

Thread class provides a collection of methods--wait, notify, and notifyAll--to help threads

wait for a condition and notify other threads of when that condition changes.

In particular, two important integer-typed attributes have been included in the class

MessageQueue, producer count pCount and consumer count cCount, which respectively

represent the number of producers and consumers attached to a queue object. By

increasing the corresponding pCount by 1, the system assumes that a producer streamlet

has been connected to the channel. If the value of pCount is 0, the system assumes that

the channel does not at the moment have a producer attached. For the variable cCount,

the representation is similar. The code segment below is excerpted from the

MessaeQueue class.

 66

public class MessageQueue{

//The Message Vector
private Vector msgQueue;
private int max_size = MAX_SIZE;
private String type = "*/*";

//Poducer/Consumer Count
private int pCount = 0;
private int cCount = 0;

//The method to insert messages
public synchronized void postMessage(String msgID){ … }

//The method to read&remove messages
public synchronized String fetchMessage(){ … }

}

Figure 6-3: Excerpt from the class MessageQueue

6.3 The Base Class: Stream

The Stream class is the base class that serves to manage stream applications in the

MobiGATE infrastructure. Unlike the Streamlet class, Stream is responsible for

managing the stream of composed streamlets. Its concern is not the operations of the

streamlets, but how the streamlets are composed and their interactions with one another.

The three primary tasks of the Stream class are initializing connection setup,

reconfiguration of the system in response to different events, and definition of

composition primitives. The initializing connection setup method provides an opportunity

for developers to allocate and initialize stream specific parameters in preparation for the

stream to be deployed. To support the reconfiguration setup, an important method

onEvent() is abstracted to allow developers to override and react to external

contextual events. The composition primitives are fundamental to the Stream class in that

 67

they provide method calls to support dynamic streamlet compositions. In particular, the

class implements methods for inserting and removing streamlets from the stream, as well

as methods for creating new streamlet instances in the stream. All these defined

primitives are used in the composition of specific stream applications. Figure 6-4 is

excerpted from the class Stream.

Figure 6-4: Excerpt from the class Stream

 68

In expressing a stream for an application, the developer is required to capture in MCL the

streamlets’ composition, which essentially captures the initial connection topology and

reconfiguration schemes. On deploying the stream application within the MobiGATE

infrastructure, the system automatically creates the corresponding stream instances from

these descriptions by extending the base class Stream and overriding the related methods

(e.g. initConfig(), onEvent(ContextEvent evt), where evt represents the

contextual event). Importantly, the composition model greatly relieves programmers of

complex and low-level streamlet programming and system activities, such as event

listening or resource recollection. In short, the clear separation of concerns in terms of the

computation and composition enhances the modularity and flexibility of the system,

while facilitating ease of service reconfiguration through dynamic stream composition.

6.4 MobiGATE Event System

The generation and propagation of system events is another important issue that needs to

be considered especially in the design of the MobiGATE system. Today’s Internet clients

vary widely with respect to both hardware and software properties: screen size, color

depth, effective bandwidth, processing power, and the ability to handle different data

formats. To build a dynamically adaptable system, the various client variations must be

captured and modeled into a standard and recognizable form, before some further actions

are taken to respond to them.

The MobiGATE event system, where each client variation is modeled as an object called

MobiGATE Event, has been designed for this purpose. In the system, all the client

variations have been classified into four different categories: System Command, Network

Variation, Hardware Variation, and Software Variation, each of which represents one

axis along which clients may vary. It is necessary to point out that each category may

have more than one event defined. For example, there are three events PAUSE,

RESUME, and END in the System Command category. The category and its

corresponding event list are shown in Table 6-1.

 69

Category EventID Description

PAUSE Pause the stream application
RESUME Resume the paused application System Command

END End the whole application
LOW_BANDWIDTH The effective bandwidth < 100Kb/s

NORMAL_BANDWIDTH The effective bandwidth ≥ 100Kb/s
HIGH_ERROR High error rate

NORMAL_ERROR Normal error rate
LONG_DEALY The transmission delay ≥ 1s

Network Variation

NORMAL_DEALY The transmission delay < 1s
LOW_GRAY The shallow grayscale display

LOW_ENERGY The client is under low energy mode Hardware Variation
NORMAL_ENERGY The client is under normal energy mode

JPEG_ONLY The client device only supports Jpeg image
GREY_ONLY The client does not support colored display Software Variation
PS_TO_TEXT The client does not support PostScript

Table 6-1: MobiGATE event definition

Note that, unlike the case with other systems featuring events, MobiGATE events are not

parameterized and cannot be used to carry data – they are used purely for triggering the

evolution of the coordinated streamlets. As shown in Figure 6-5, each MobiGATE event

object is associated with three primary attributes:

• eventID: The identity of the event object.

• categoryID: The category the event object belongs to.

• evtSource: The source of the event. In other words, which stream application

does the event object belong to?

 70

Figure 6-5: MobiGATE event object Figure 6-6: MobiGATE event system

Figure 6-6 shows the MobiGATE event system diagram. A kernel entity, called Event

Manager, was designed to control the operation of the event system including event

subscription, triggering, and monitoring. The Event Manager monitors the underlying

client variations and composes corresponding events in response to various situations.

Simultaneously, the Event Manager multicasts events among different stream

applications, whose method onEvent() will then be invoked upon the reception of these

events.

To avoid overheads incurred in processing the flood of events, individual stream

applications may subscribe to events of interest and react to these events by performing

appropriate reconfiguration, while ignoring those events that they consider superfluous.

To support this function, the Event Manager maintains an array subscriberList to

hold subscribers for different event categories. Each element of this array is vector-typed,

which holds a collection of subscribers of the corresponding event category. The

EventManager class is equipped with the method subscribeEvent() for stream

 71

applications to register events of their interests. Figure 6-7 is excerpted from the class

EventManager.

public class EventManager extends Thread{

//maintain subscribers of different categories
private Vector[] subscriberList;

void EventManager(){
categoryList = new Vector[EventUtility.CategoryCount];
for(int i=0;i<EventUtility.CategoryCount;i++){

categoryList[i] = new Vector();
}

}

public void subscribeEvt(int categoryID, Stream app){
categoryList[categoryID].add(app);

}

public void unsubscribeEvt(int categoryID, Stream app){
categoryList[categoryID].remove(app);

}

public void multicastEvent(ContextEvent evt){
try{

int id = evt.getCategoryID();
for (Enumeration e = categoryList[id].elements() ; e.hasMoreElements() ;){

((Stream)e.nextElement()).onEvent(evt);
}

} catch (Exception e){}
}

public void run(){
//Monitor the underlying resources
//Compose new event objects in response to various situations

}

}

Figure 6-7: Excerpt from the class EventManager

 72

Thus when a new event object is generated, the Event Manager is required to check

the attribute evtSource of the event and verify whether the corresponding stream

application has subscribed to the event category. If they have, the event is forwarded to

the stream for processing; otherwise it is ignored.

6.5 Sender and Receiver Streamlet Matching

Each streamlet, if necessary, has associated with it a unique peerID, which is used to

identify a peer streamlet on the other side of the communication channel. Given a

streamlet that performs some processing on an outgoing message, its peer streamlet

performs the reverse processing on incoming messages. For example, a text Compressor

streamlet on the sending end of a connection requires a DeCompressor streamlet on the

receiving end. Each streamlet on the sending side of a connection adds a header field to

the messages before writing them to its output port. The field identifies the peer streamlet

needed at the receiver. When a message arrives at the receiving side, it is first distributed

to a message distributor, where the peerID of the streamlet is checked. If the distributor

can find a streamlet whose identification matches the peerID contained in the incoming

message, then the distributor will deliver the message to the streamlet. Once a message

has been processed by all necessary peer streamlets, it is delivered to the application.

6.6 Message Loss Avoidance

In the process of stream configuration, it is not unusual for messages to be queued in a

streamlet buffer, while waiting to be processed. As a result, it is necessary that

MobiGATE exercises message loss avoidance to prevent unprocessed messages being

discarded owing to the removal and insertion of streamlets. It is important to note that

MobiGATE does not attempt to facilitate peer-to-peer streamlet synchronization during

the removal process. While it provides mechanism for peer-to-peer streamlets to pass

control messages, it is the responsibility of the peer streamlets to ensure that state

information and data are appropriately handled before MobiGATE removes the peer

streamlets from the stream.

 73

To avoid pre-mature termination of streamlets and avoidance of message loss during the

reconfiguration process, the system checks if the pre-established conditions have been

satisfied for the target streamlet. The conditions are depicted in Figure 6-8. If the

conditions are satisfied, the streamlet can be removed safely. Otherwise the system has to

wait some time or take special actions, until all conditions are satisfied.

Figure 6-8: Prerequisites to terminate a streamlet

By adopting this mechanism, incoming messages can be guaranteed to ultimately appear

at the output port in a stream under normal operations. Though it is still possible to lose

messages in some very special conditions (such as streamlets processing speed mismatch,

a problem that is discussed later), it is argued that some further actions can be taken to

minimize the occurrence, which forms part of future work in the implementation of the

MobiGATE system.

6.7 Further Improvement

As introduced in Chapter 3, MobiGATE has a number of desirable properties. First, it

maintains the intuitive flow of processing. Second, it supports reusability by promoting

strong modularity between streamlets and decoupling of coordination from computation.

New functions are easily added to the system by inserting streamlets at the appropriate

point in the processing sequence. Third, it supports ease of modification, since streamlets

are logically independent of other streamlets. In implementing the MobiGATE system,

there exist several challenges and issues that may significantly impact the system’s

performance and usability. One of the major issues pertains to the incurrence of

potentially large latency overheads caused by message copying across streamlets.

 74

Furthermore, different streamlets may run at radically different speeds: it is unacceptable

to slow one streamlet down because another streamlet is still processing data.

To handle these problems, the MobiGATE infrastructure employs a centralized message

storage management, while utilizing memory references to pass messages between

streamlets. In particular, the system maintains all incoming messages by storing them in a

message pool and passing them between different streamlets by their associated message

identifier. In other words, the system employs the passing by reference instead of value.

The benefit of significantly reducing the copying overheads is demonstrated and

discussed in the performance evaluation chapter. In addition, the system permits

messages to be ignored by slow streamlets if they are in the middle of processing other

messages. This is obtained by modifying the method postMessage() in the class

MessageQueue, as shown in Figure 6-9.

public synchronized void postMessage(String msgID){

while(msgQueue.size() >= max_size){
try{

//if the message is full / the downstream streamlet is a slow one
wait(T);
// if still full after T , drop the message
if (msgQueue.size() >= max_size){

System.out.println("Queue full, message "+msgID+" was dropped!!!");
return;

}
} catch (InterruptedException e) {
}

}

//add the message id into the queue
msgQueue.add(msgID);

}

Figure 6-9: Excerpt from the method postMessage()

 75

7 Performance Evaluation

In order to study the operation and performance of the MobiGATE system, a set of

experiments on an emulated and controlled wireless environment is conducted.

Significantly, these experiments provide a unique opportunity to measure the potential

computation overheads that may be incurred by the MobiGATE system in providing

active transport services, while allowing the collection of empirical data on the

performance of the system. By analyzing and comparing the results, further insights into

the characteristics of MobiGATE are expected. It is also hoped to thoroughly exercise the

interactions between the software components with the ultimate aim of validating the

functionality of the system.

The experiments begin with testing the MobiGATE streamlet in isolation, measuring the

overhead brought by each streamlet when serving incoming messages. A set of

experiments on the reconfiguration time was then conducted. These experiments enabled

validation of the effectiveness of MobiGATE in facilitating context-aware computing

through streamlet reconfiguration, together with the collection of empirical results on

overheads incurred during reconfiguration. Finally, a case example with a particular

application reacting to a changing bandwidth was studied to demonstrate the use of

MobiGATE while verifying the insignificant overheads incurred in runtime processing. A

comparison was made with the performance gained in service deployment and

reconfiguration.

7.1 Testing Environment

As shown in Figure 7-1 the setup includes the use of three PCs: one acts as the

MobiGATE server residing on the wired departmental LAN, a second acts as the mobile

node, and the third is configured to act as a wireless router for emulating a wireless

operating environment. The MobiGATE server and the Linux router are located on the

same fixed LAN (158.132.11) within the campus network. Any requests to hosts outside

the campus have to go through the transparent campus proxy server. The mobile node is

 76

connected to the second network interface of the Linux router using different network

identification (10.0.0).

Figure 7-1: Testing environment

7.2 Streamlet Overhead Analysis

For a specific streamlet, ignoring the service processing time, the incurred overheads

primarily come from two sources:

• The added work to parse and unparse incoming messages.

• The additional overhead in transmitting messages to and from other streamlets.

 77

In this experiment, a special streamlet, named redirector, has been designed. Its primary

logic is to read and parse incoming messages from its input port, encapsulating the

necessary headers and sending the messages to its relevant output port. Significantly, the

redirector streamlet contains core service codes that can be evaluated for overheads

incurred in maintenance and execution over the MobiGATE runtime. Delay times can

easily be captured by measuring the time needed for a size-specific message to pass

through a configured number of streamlet redirectors. Considering the fact that the

primary overheads incurred by the redirector streamlet are inherent in any streamlet for

processing incoming messages, it is argued that the experiment setup is reasonable and

realistic. The experimental results are shown in Figure 7-2.

Streamlet Overhead Analysis

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Streamlet Count

T
im

e
O

ve
rh

ea
d

 (
m

s)

Figure 7-2: Streamlet overhead

The above figure shows that the delay overhead increases linearly with the increase in the

number of streamlets the messages passed through. On average, the overhead is about 12

ms per streamlet. It is believed that the overhead can be further reduced with improved

hardware configuration such as increasing the processor speed and increasing the

available memory. Furthermore, in the realistic deployment of services, it is unlikely that

more than ten streamlets will be used. That is to say, the overhead brought by these

streamlets can safely be bound to about 100 ms, which is relatively acceptable compared

with the potentially long transmission delay incurred in wireless transmissions.

 78

7.3 Passing by Reference versus Passing by Value

The MobiGATE system maintains all incoming messages by storing them in a message

pool and passing the messages between different streamlets by their associated message

identifier. In other words, the system employs passing by reference instead of value.

Figure 7-3 shows the experimental results when buffer management of MobiGATE is

implemented based on reference passing versus value passing. In this experiment, several

messages of different sizes were prepared and made to pass through a number of

streamlet redirectors (thirty in the experiment) successively.

0

10000

20000

30000

40000

50000

60000

20K 40K 80K 120K 200K 400K 600K 1M

Message Size (Byte)

T
im

e
O

ve
rh

ea
d

 (
m

s)

Message Passing by Reference

Message Passing by Value

Figure 7-3: Passing by Reference versus Passing by Value

As expected, the experiment clearly indicates an increase in processing overheads with a

progressive increase in the message size. The rate of increase is more prominent as the

message size increases beyond 200K bytes. Across different message sizes, the

processing latency is significantly lower for messages that are passed by reference

compared to messages that are passed by value. In the former case, new incoming

messages are copied into the message buffer pool once, while message headers and

identifiers are treated as meta-data and references to be passed between streamlets. While

 79

the message header size may increase as more streamlets are chained in the stream, the

size is still significantly lower than that of the actual message data. Avoiding copying of

actual message data across streamlets also significantly reduces the amount of memory

required by MobiGATE. This has the benefit of keeping messages stored and cached on

fast memory, avoiding the need to swap between resident memory and secondary storage.

7.4 Reconfiguration Time

Dynamic reconfiguration in MobiGATE aims to maximize the performance of wireless

access under a vigorously changing context environment. However, the reconfiguration

process of service composition brings a certain number of performance penalties that are

unavoidable. Reconfiguration time is the time taken for the MobiGATE system to adapt

to changes in the wireless environment. In other words, reconfiguration time is the

amount of time during which a user will find the MobiGATE system inactive due to

reconfiguration.

Before going into the details of the experiment, the addition of a new streamlet is used as

an example to illustrate a complete reconfiguration process. Figure 7-4 shows the steps of

this process in detail:

1. Three streamlets: A, B, and C. A and B are initially connected by a channel m.

Assuming the need to insert C between A and B.

2. Suspend streamlet A.

3. Detach A from the channel m.

4. Attach C to the channel m.

5. Create a new channel n between A and C.

6. Activate streamlet A and the reconfiguration is finished!

 80

Figure 7-4: The addition of a new streamlet

From the above illustration, it is not difficult to derive the reconfiguration time, which

involves the following factors:

• ∑
=

k

i
is

1

- Suspension of k streamlets

• nc - Creation (or Deletion for removal operation) of n channels

• ∑
=

k

i
ia

1

- Activation of suspended streamlets

Thus, the reconfiguration time (T) can be represented as:

T = ∑
=

k

i
is

1

+ nc + ∑
=

k

i
ia

1

. --- Equation 7-1

To evaluate the time required to reconfigure using the MobiGATE system, several

reconfiguration actions were performed. Specifically, a stream application ReconfigExp

was designed. It reacts to the LOW_BANDWIDTH event, which is defined in Table 6-1,

by inserting a number of streamlets redirectors. As shown in Figure 7-5, the time Ts is

recorded once at the beginning of the method and then, after a series of actions, the time

Te is recorded again as the ending time of the reconfiguration. By varying the number of

streamlets inserted (the variable InsertCount in Figure 7-5), different numbers of

 81

reconfigurations can be measured and Te - Ts will be the resultant time cost. Figure 7-6

shows the result of the experiment.

Reconfiguration Overhead

0
10
20
30
40
50
60
70
80
90

10 20 40 60 80 100

Reconfiguration Times

T
im

e
O

ve
rh

ea
d

 (
m

s)

Figure 7-5: Excerpt from the class ReconfigExp Figure 7-6: Reconfiguration overhead

Notice that when the number of added streamlets is less than 10, the reconfiguration time

is less than 20 ms. Even when the number of streamlet additions reaches 100, the

reconfiguration overhead is still less than 100 ms. This is a noteworthy and promising

result considering that the reconfiguration rate is likely to be comparatively low (typically

in terms of tens of seconds to minutes, depending on the contextual changes of the

wireless environment) and the reconfiguration time is insignificant. The good

reconfiguration performance is the result of an extensive use of multi-threading and

object code sharing across streamlets, and of the separation of coordination from

computation to accelerate and support ease of reconfiguration.

7.5 MobiGATE End-to-End Performance

After evaluating the overheads of key MobiGATE mechanisms, this section describes the

overall system performance of MobiGATE from an end-to-end perspective. In particular,

it is aimed to fully exercise the MobiGATE system components by setting up a realistic

 82

test bed in the form of a stream application operating over an emulated wireless network.

The purpose is to verify the benefits of the MobiGATE system by asserting that the

operations overhead is small compared with the improvement in performance that comes

from using this system in a wireless environment.

Traditionally, if the MobiGATE system is not utilized, the time cost to transmit a certain

amount of information can simply be represented like this:

T1 =
Band

Size
, where Size represents the amount of information to transmit, and Band

represents the bandwidth value.

By using the MobiGATE system, the information size for transmission can be greatly

reduced*, but this will also bring some overhead into the system, as introduced in

previous sections.

T2 =
Band

Size '

 + Toverhead =
Band

SizeSize reduced−
 + Toverhead =

Band

Size
+ Toverhead -

Band

Sizereduced

 = T1 + (Toverhead -
Band

Sizereduced) --- Equation 7-2

To justify the effectiveness of the MobiGATE system, the time costs T1 and T2 need to be

evaluated for the same amount of information to be transmitted over wireless links. That

is to say, the system throughput for these two different schemes must be compared to

draw a conclusion.

For this purpose, a case study of an application that reacts to changes in bandwidth has

been prepared. The application speeds up web surfing over slow links by including the

following streamlets:

* Note that MobiGATE is not restricted to introducing services that optimize the amount of data to be sent

across a wireless link. However, this is a direct and visible example to demonstrate the benefit of

MobiGATE in terms of reducing transmission latency and improving link performance.

 83

• Switch: Dividing incoming messages based on the semantic type of the data;

• Gif2Jpeg: Converting incoming image messages into Jpeg format;

• Image Down Sampling: Lossy compression of an image by reducing the sample rate;

• Communicator: Sending messages onto the network;

• Text Compressor: A generic text compressor. This streamlet has the potential to

reduce the data size by up to 75%. Importantly, this streamlet is activated only if the

bandwidth of the wireless link falls below 100 Kb/s. This setup provides the

opportunity both to test the responsiveness of MobiGATE to context changes and to

exercise the reconfiguration mechanisms.

In the application, an amount of real image and text messages are generated continuously.

Image messages are processed by the streamlets Switch, Gif2Jpeg, Image Down

Sampling, and Communicator successively from the start to the end, whereas the situation

is different for text messages. Under normal conditions (bandwidth >100 Kb/s), the text

messages only pass through the streamlets Switch and Communicator. But when the

bandwidth falls below 100 Kb/s, the third streamlet, Text Compressor, is inserted

between the above two streamlets to adapt to the poor bandwidth. After recording the

sending and receiving time of each message, the time cost to transmit each message can

be calculated and the overall system throughput is then obtained.

In the experiment, the system throughput under the bandwidth of 20Kb/s, 50Kb/s,

100Kb/s, 200Kb/s, 500Kb/s, 750Kb/s, 1Mb/s, and 2Mb/s was measured successively. For

each bandwidth setup, three different transmission delays, <1ms, 50ms, and 100ms, were

adjusted to evaluate the performance of the system. The final results are shown in Figure

7-7.

 84

0

5

10

15

20

25

30

35

40

45

2000 1000 750 500 200 100 50 20

Bandwidth (kb/s) Delay < 1ms

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(K

B
/s

) Using MobiGATE

Not Using MobiGATE

0

5

10

15

20

25

30

35

40

2000 1000 750 500 200 100 50 20

Bandw idth (kb/s) Delay = 50ms

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(K

B
/s

) Using MobiGATE

Not Using MobiGATE

0

5

10

15

20

25

30

2000 1000 750 500 200 100 50 20

Bandw idth (kb/s) Delay = 100ms

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Using MobiGATE

Not Using MobiGATE

Figure 7-7: The effectiveness of the MobiGATE system

The above results can be analyzed from the following points:

1. A noticeable improvement in system throughput has been obtained with the

MobiGATE system as compared with a setup for direct transfer of messages

across the wireless link. Back to Equation 7-2, that is: (Toverhead -
Band

Sizereduced) < 0

and T2 < T1.

2. When the bandwidth is about 2Mb/s, the system throughput difference is not very

large with/without the MobiGATE system. This can be explained from Equation

7-2. When the bandwidth is relatively large (near 2Mb/s), for the same size of

transmission, (Toverhead -
Band

Sizereduced) will approach 0, and T2 approach T1. Thus the

difference in the system throughput is minimal. But with a decreasing bandwidth,

this difference becomes larger and larger. This is expected since the effect of

applying streamlet services to reduce the amount of required bandwidth begins to

take prominence.

3. When the bandwidth approaches 200Kb/s, which is a relatively low bandwidth for

transmission, the difference in the system throughput becomes unnoticeable

again. This is because the time costs T1 and T2 at this moment are very large,

 85

causing both system throughputs to be relatively poor. Hence their differences can

not be seen clearly from the result diagram. However, it does exist.

4. In an event when the bandwidth falls below 100 Kb/s, a special reconfiguration

mechanism is invoked, in which the streamlet Text Compressor is inserted into

the stream. The result indicates that the system throughput improves greatly. By

comparison, the system throughput without the MobiGATE continuously drops

with the decrease of the bandwidth.

The experiments clearly indicate the benefit of the MobiGATE system and its ability to

offset processing overheads that may be incurred in deploying the streamlet application.

This is particular true if MobiGATE is deployed in an environment where resource

availability is dynamic and scarce.

 86

8 Conclusions and Recommendations

In this study, a middleware system MobiGATE and its supporting coordination language

MCL are proposed in order to adapt network data flows in the wireless domain. The

focus of the work is to apply the coordination theory in the adaptation service

composition and system reconfiguration at infrastructural proxies. This approach has a

number of desirable properties, including reusability, ease of modification, and

maintenance of the intuitive flow of processing.

8.1 Conclusions

A reconfigurable and adaptive system for mobile computing is expected to continue to

take a prominent role in alleviating the poor traffic conditions of wireless links and

resource limited mobile devices. The research study described in this thesis aims to

develop a highly adaptable and reconfigurable middleware to adapt data flows across a

wireless and mobile environment. To achieve this goal, an adaptive middleware,

MobiGATE, has been designed, implemented, and verified to support robust and flexible

composition of adaptable services, termed streamlets. Streamlets form the basic building

blocks of a stream that adapts the flow of data across the wireless link. To achieve utmost

flexibility and management of service adaptation, MobiGATE adopts the principle of

separation-of-concerns to facilitate clear separation of streamlets’ coordination from the

service computation codes. This has resulted in the formulation of a two-layered

MobiGATE execution platform that supports rapid deployment of service streamlets,

while facilitating adaptive composition in reaction to changing environmental contexts.

Additionally, MobiGATE is equipped with the necessary mechanisms and system

services to support peer-to-peer streamlet collaborations with its thin-client model, which

sets the MobiGATE system apart from other existing adaptive middleware. The design of

MobiGATE is validated through the complete implementation of the system on a Java

platform. Empirical experimental results conducted on the system demonstrated the

effectiveness of the middleware in adapting data flows over an emulated wireless link,

while incurring insignificant computational overheads in its execution environment.

 87

MobiGATE Coordination Language (MCL) plays an important role in providing bridging

between streamlets’ computation and their interdependencies. The language provides rich

constructs to support the definition of compositions, with constrained type validation and

checking. In the description of the coordination, each service entity is regarded as a black

box with well-defined interfaces. MCL enables the core functional pieces of an

application to be clearly separated from its application-specific patterns of

interdependencies. This is supported by two distinct language elements: streamlets, for

representing core functional service entities; and channels, for representing relationships

of interconnection among streamlets. The novel features of MCL include the modeling of

service interfaces based on an MIME media type system, support for a check on the

compatibility of the compositions, support for recursive compositions, and the concept of

streamlet sharing. Significantly, the language is reinforced with a semantic model in Z

language. Based on the derived semantic model, the applications running in the

MobiGATE system can be analyzed to ensure that they are consistent in their internal

structures.

8.2 Recommendations

As in most research work, the progress made in this study undoubtedly has not covered

all new and interesting directions, but suggestions for future work to further enhance the

performance of MobiGATE are given below. The future work can generally be organized

into two parts: the MobiGATE architecture and its supporting language MCL.

8.2.1 MobiGATE Architecture

Throughout this thesis, the important function of the MobiGATE architecture in

supporting MCL composition and providing runtime environment is especially

emphasized. The separation of concerns is the underlying theme of this system. To make

MobiGATE more complete and powerful, the following work is necessary:

 Dynamic inclusion of new event objects. In the current MobiGATE system, all the

event objects are predefined and assumed to be recognized by all of the application

developers. However, the future inclusion of the function of the dynamic addition of

 88

new event objects for the system is planned. By this means, application developers

can propose their own event objects and define the corresponding event handlers.

 The mechanism to support a wireless handoff. When a mobile client equipped with

multiple wireless interfaces switches between wireless networks, also known as a

wireless handoff, a specific mechanism is needed to enable these mobile clients to

use the MobiGATE system consistently. This mechanism may include the

notification of the characteristics of the new network, the migration of adaptation

services if necessary, and the synchronization of the application status. With the

separation-of-concerns fulfilled in the design of MobiGATE, streamlet adaptation

services can run independently of the environment and other streamlets. It is argued

that this advantage can greatly facilitate the implementation of the handoff

mechanisms in the future.

 Communications between streamlets and the coordinator. According to the current

design, streamlets communicate with the external environment only through their

data ports. In the future, it is expected to associate each streamlet with a control

interface that allows the external coordinator to set operation parameters for the

streamlets. For example, the text compression streamlet might have parameters that

determine compression rate. These inputs serve as configuration parameters for the

whole application. In this way, each streamlet will have two methods to

communicate with the external world: data ports to communicate with other

streamlets for message processing, and control interfaces to receive parameter setting

information from the coordinator.

 Security and transaction concerns. As a middleware system, MobiGATE needs to

consider many system issues, far more than separation of concerns discussed in depth

in previous chapters. System security and transaction control are such two important

topics necessitating future exploration before MobiGATE can be realistically

deployed in an open and wide area environment.

 89

 Other problems open to the future. There are still some problems left in the current

system to be solved, such as the problem of the processing speed mismatch between

streamlets, and the synchronization of peer-to-peer streamlets during the removal

process. The final resolution of these problems depends on the success of

implementation of the work discussed above.

8.2.2 MobiGATE Coordination Language

No programming language design is ever complete. As more experience is gained with a

programming language, additional features are added and existing features are modified

to enrich its expressive power. MCL is expected to be the same. Below some immediate

areas of future enhancements of MCL are identified:

 Experience with MCL. The most pressing short term need for research on MCL is to

gain usage experience. To this date, only a sample application architecture is

characterized using MCL, as introduced in Section 4.3. The applicability of MCL is

explored with this application and how MCL’s facilities can be of benefit in the

system reconfiguration is shown. However, the case study described here does not

capture the architecture properties of interest completely. A limitation is that this

work has been carried out in an academic setting. MCL remains largely untested in

actual practice in the work place.

 More automated tools. As discussed in Chapter 5, some automated tools based on Z

notation have already existed for the analysis process. However, they are still too

general to be used directly on MCL descriptions. It is planned in the near future to

develop tools that are specific to the MCL language and can provide automated

checking of the properties for at least a subset of MCL.

 More systematic expression of architectural assumptions. MCL uses attribute

definitions for expressing architectural assumptions. Although attribute definitions

seem to be powerful enough to express a number of relationships and constraints, the

current system does not provide systematic guidelines on how and when to use them.

 90

More research is needed to classify architectural assumptions, and standardize the

way these assumptions are expressed in MCL.

8.3 Publications

Yongjie Zheng and Alvin T.S. Chan, "Stream Composition for Highly Adaptive and

Reconfigurable Mobile Middleware", Proceedings of the 28th Annual International

Computer Software and Applications Conference (COMPSAC 2004), Page: 122-127,

Hong Kong, 28-30 September, 2004, IEEE.

Yongjie Zheng and Alvin T.S. Chan, "MobiGATE: A Mobile Gateway Proxy for the

Active Deployment of Transport Entities" Proceedings of the 2004 International

Conference on Parallel Processing (ICPP 2004), Page: 566-573, 15-18 Aug 2004,

Montreal, Quebec, Canada, IEEE.

Yongjie Zheng and Alvin T.S. Chan, "MobiGATE: A Mobile Computing Middleware for

the Active Deployment of Transport Services", revised submission to IEEE Transactions

on Software Engineering.

Yongjie Zheng and Alvin T.S. Chan, “MCL: A MobiGATE Coordination Language for

Highly Adaptive and Reconfigurable Mobile Middleware”, submitted to Special Issue of

“Software, Practice and Experience” journal on “Experiences with Auto-adaptive and

Reconfigurable Systems”.

 91

References:
[Abowd95] Gregory D. Abowd, Robert Allen, David Garlan “Formalizing Style to

Understand Descriptions of Software Architecture” ACM Transactions on

Software Engineering and Methodology, Vol 4, No 4, October 1995.

[Agha02] Gul A. Agha, “Adaptive Middleware”, Communications of the ACM. June

2002/Vol. 45, No.6.

[Allman97] M. Allman, C. Hayes, H. Kruse and S. Ostermann, “TCP performance over

satellite links”, in 5th International Conference on Telecommunications Systems

(1997).

[Anastasi02] Giuseppe Anastasi, Marco Conti, Willy Lapenna “A Power-Saving Network

Architecture for Accessing the Internet from Mobile Computers: Design,

Implementation and Measurements” The COMPUTER JOURNAL, Vol. 46, No.

1, 2003.

[Arbab96] F. Arbab, “The IWIM Model for Coordination of Concurrent Activities”, First

International Conference on Coordination Models, Languages and Applications

(Coordination ‘96), Cesena, Italy, 15-17 April, 1996, LNCS 1061, Springer

Verlag, pp. 34-56.

[Astley01] Mark Astley, Daniel C. Sturman, and Gul A. Agha, “Customizable Middleware

for Modular Distributed Software”, Communications of the ACM. May

2001/Vol. 44, No.5

[Badrinath00] B. Badrinath, A. Fox, L. Kleinrock, G. Popek, P. Reiher, and M.

Satyanarayanan, "A conceptual framework for network and client adaptation,"

ACM MONET Journal, Vol. 5, No. 4, (Dec. 2000), pp. 221-231.

[Bakre97] A. Bakre and B. Badrinath, "Implementation and performance evaluation of

Indirect TCP," IEEE Transactions on Computers, Vol. 46, No. 3, (Mar 1997),

pp. 260-278.

[Balakrishnan95] H. Balakrishnan, S. Seshan, E. Amir and R. Katz, Improving TCP/IP

performance over wireless networks, in: Mobicom ’95 (November 1995).

[Balakrishnan97] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, "A comparison of

mechanisms for improving TCP performance over wireless links," IEEE/ACM

Transactions on Networking, December 1997.

[Barbacci93] Mario R. Barbacci, Charles B. Weinstock, Dennis L. Doubleday, Michael J.

Gardner and Randall W. Lichota “Durra: a structure description language for

developing distributed applications”. Software Engineering Journal, March 1993

 92

[Barbara99] Daniel Barbara, “Mobile Computing and Databases --- A survey”. IEEE

Transactions on Knowledge and Data Engineering, Vol. 11, No. 1,

January/February 1999.

[Beringer98] Dorothea Beringer, Catherine Tornabene, Pankaj Jain, Gio Wiederhold “A

Language and System for Composing Autonomous, Heterogeneous and

Distributed Megamodules” DEXA 98: Large-Scale Software Composition,

Vienna, August 1998.

[Blair00] Gordon S. Blair, Lynne Blair, Valerie Issarny, Petr Tuma, Apostolos Zarras,

“The Role of Software Architecture in Constraining Adaptation in Component-

based Middleware Platforms”. IFIP/ACM International Conference on

Distributed systems platforms, 2000.

[Caceres95] R. Caceres and L. Iftode, "Improving the performance of reliable transport

protocols in mobile computing environments," IEEE JSAC, Vol. 13, No. 5, (Jun

1995), pp. 850-857

[Chan03] Alvin T.S. Chan and Siu Nam Chuang, "MobiPADS: A Reflective Middleware

for Context-Aware Computing", IEEE Transactions on Software Engineering,

vol. 29, no. 12, Dec 2003, pp. 1072-1085.

[Chan04] Eugene Wong, Alvin T.S. Chan, H.V. Leong. “Xstream: A Middleware for

Streaming XML Contents over Wireless Environments”; IEEE Transactions on

Software Engineering, Volume: 30, Issue: 12, Dec. 2004 Pages: 918 - 935

 [Fox96] A. Fox, S.D. Gribble, E.A. Brewer and E. Amir, “Adapting to network and

client variability via on-demand dynamic distillation”, in: Proc. 7th Internat.

Conf. on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-VII), Cambridge, MA (October 1996).

[Fox98a] A. Fox, S. Gribble, Y. Chawathe and E. Brewer, "Adapting to network and

client variation using infrastructural proxies: lessons and perspectives" IEEE

Personal Communications, Vol. 5, No. 4, (Aug. 1998), pp. 10-19.

[Fox98b] A. Fox, I. Goldberg, S.D. Gribble, D.C. Lee, A. “Polito and E.A. Brewer,

Experience with top gun wingman, a proxy-based graphical Web browser for the

USR PalmPilot”, in: Proc. of IFIP Middleware ’98, Lake District, UK

(September 1998).

[Freed96] N. Freed, “Multipurpose Internet Mail Extensions, (MIME) Part Two: Media

Types” RFC 2046, November 1996.

 [Garlan94] David Garlan and Mary Shaw “An Introduction to Software Architecture”

Carnegie Mellon University Technical Report CMU-CS-94-166, January 1994.

[Gelernter92] David Gelernter and Nicholas Carriero “Coordination Languages and their

Significance”. Communications of the ACM, 1992. 35(2): P.97-107.

 93

[Katz94] R. Katz, "Adaptation and Mobility in Wireless Information Systems," IEEE

Personal Communications, Vol. 1, No. 1, (Q1 1994), pp. 6-17.

[Kolman96] Bernard Kolman, Robert C. Busby, Sharon Ross “Discrete Mathematics

Structures” 1996 by Prentice Hall, Inc. pp 369.

[LaMaire96] R. LaMaire, A. Krishna, P. Bhagwat, J. Panian, "Wireless LANs and mobile

networking: standards and future directions," IEEE Communications Magazine,

Vol. 34, No. 8, (Aug. 1996), pp. 86 -94.

[Magee89] Jeff Magee, Jeff Kramer, and Morris Sloman “Constructing Distributed Systems

in Conic”. IEEE Transactions on Software Engineering, vol. 15, no. 6, June

1989.

[Magee93] Jeff Magee, Naranker Dulay, and Jeff Kramer “Structing parallel and distributed

programs”. Software Engineering Journal, March 1993.

[Malone94] T. W. Malone and K. Crowston, “The Interdisciplinary Study of Coordination”,

ACM Computing Surveys 26, 1994, pp. 87-119.

[Maes87] Pattie Maes, “Concepts and experiments in computational reflection”.

Proceedings of OOPSLA’87, pages 147-155. ACM, October 1987.

[McKinley03] Philip K. McKinley, Udiyan I. Padmanabhan, Nanadagopal Ancha, and Seyed

Masoud Sadjadi, “Composable Proxy Services to Support Collaboration on the

Mobile Internet”. IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.

6, JUNE 2003.

[McKinley04] Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C.

Cheng “A Taxonomy of Compositional Adaptation” Technical Report MSU-

CSE-04-17

[Noble97] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn and K. Walker,

“Agile application-aware adaptation for mobility”, in: Symposium on Operating

System Principles (November 1997).

[Papadopoulos96] George A. Papadopoulos, Farhad Arbab “Coordination Models and Languages”

Advances in Computers, Marvin V. Zelkowitz (ed.), Academic Press. Vol. 46,

August, 1998, 329-400.

[Perkins98] C. Perkins, "Mobile Networking through Mobile IP," IEEE Internet Computing,

Vol. 2, No. 1, (Jan.-Feb. 1998), pp. 58-69. (Also available as a PDF file)

[Peschanski01] Frederic Peschanski, Christian Queinnec, Jean-Pierre Briot “A typeful

Composition Model for Dynamic Software Architectures” July 2001.

[Rice94] M.D. Rice and S.B. Seidman “A formal Model for Module Interconnection

Languages” IEEE Transactions on Software Engineering, Vol. 20, NO. 1,

January 1994

 94

[Saaltink97] M. Saaltink “The Z/EVES System.” In ZUM’97 The Z Formal Specification

Notation, pages 72-85. Lecture Notes in Computer Science. 1212 Springer,

1997.

[Satyanarayanan95] M. Satyanarayanan, "Fundamental Challenges of Mobile Computing," ACM

Symposium on Principles of Distributed Computing, 1995.

[Schmidt96] Douglas C. Schmidt, “A Family of Design Patterns for Application-Level

Gateways”. Jounal Theory and Practice of Object Systems, special issues on

Patterns and Pattern Languages, Wiley & Sons, Vol. 2, No. 1, December 1996.

[Silva98] Sushil da Silva, Danilo Florissi, Yechiam Yemini, “Composing Active Services

in NetScript” Position Paper, DARPA Active Networks Workshop, Tucson AZ,

March 9-10, 1998.

[Sommerville96] Ian Sommerville and Graham Dean, “PCL: a language for modeling evolving

system architectures”. Software Engineering Journal, March 1996.

[Spivey89] J.M. Spivey, “The Z Notation, A Reference Manual.” Englewood Cliffs, NJ:

Prentice-Hall, 1989.

 [Yang03] Jian Yang, “Web Service Componentization”. Communications of the ACM,

October 2003/Vol. 46, No.10.

