

Contents

1 Preview 1

1.1 Generalized Newton-Type Methods . 1

1.1.1 Semismooth Newton Method 2

1.1.2 Smoothing Newton Method . 7

1.2 Semi-Infinite Programming Problems 10

1.2.1 Optimality Conditions . 12

1.2.2 Numerical Methods for SIP Problems 14

1.3 Generalized Semi-Infinite Programming Problems 19

1.4 Option Price Interpolation Problems 20

1.5 Spectral Estimation Problems . 21

1.6 Notation . 23

2 A Class of Integral Functions 24

2.1 Introduction and Motivation . 24

2.2 Differentiability of Integral Functions 25

2.3 Semismoothness of Integral Functions 31

II

2.4 Smoothing Approximation Functions 42

3 Numerical Methods for SIP Problems 49

3.1 Introduction . 49

3.2 A Smoothing SQP Algorithm . 52

3.2.1 Some Preliminaries . 53

3.2.2 Smoothing SQP Algorithm . 54

3.2.3 Convergence Analysis . 58

3.2.4 Preliminary Numerical Examples 61

3.3 A Smoothing Projected Newton-Type Algorithm 63

3.3.1 A Constrained Equation Reformulation of KKT System 63

3.3.2 Smoothing Projected Newton-Type Algorithm 65

3.3.3 Convergence Analysis . 72

3.3.4 Preliminary Numerical Examples 76

3.4 A Smoothing Newton-Type Algorithm 81

3.4.1 A Semismooth Equation Reformulation of KKT System 81

3.4.2 Smoothing Newton-Type Algorithm 83

3.4.3 Convergence Analysis . 89

3.4.4 Preliminary Numerical Examples 93

3.5 Some Comments . 98

4 A Method for Solving Large Scale SIP Problems 100

4.1 Introduction . 100

III

4.2 A Truncated Projected Newton-Type Algorithm 101

4.3 Convergence Analysis . 108

4.4 Implementation and Numerical Tests 117

4.4.1 Implementation of Algorithm 4.2.1 117

4.4.2 Numerical Results . 118

4.5 Some Comments . 121

5 A Smoothing Implicit Programming Approach for Solving a Class of

Stochastic Generalized Semi-Infinite Programming Problems 122

5.1 Introduction . 122

5.2 A New Reformulation . 124

5.3 Smoothing Approximation for P̃ . 126

5.4 Algorithm and Its Convergence Analysis 137

5.5 Some Remarks . 141

6 4
3
-Order Convergence of the Generalized Newton Method for Solving

the No-Arbitrage Option Price Interpolation Problem 144

6.1 Introduction . 144

6.2 Convergence Analysis . 147

6.3 A Damped Version of the Generalized Newton Method 151

7 A Newton Type Method for L2 Spectral Estimation 157

7.1 Introduction . 157

7.2 Dual and Its Reformulation . 161

IV

7.3 Some Properties of F . 163

7.4 Globalized Newton-Type Method and Its Convergence 172

7.5 Numerical Results . 174

8 Conclusions and Suggestions for Future Studies 183

V

Acknowledgments

First and foremost, I wish to express my deep gratitude to my supervisor Professor Li

Qun Qi for introducing me to the research topics of this thesis. During the past nearly

four years, Prof. Qi, as a brilliant mathematician, has never ceased to inspire; as a kind

teacher, has never lacked encouraging words; as a dedicated scholar, has never yielded

to challenges. He has been an exemplary role model for my work and study in future.

I would like to express my sincere appreciation to my co-supervisor Professor Xiao

Qi Yang for his friendship, constant encouragement and help. It has been a precious

experience for me to study for my PhD degree under two professors’s guidance in the

Department of Applied Mathematics at The Hong Kong Polytechnic University.

I am greatly indebted to Professor A. Shapiro (Georgia Institute of Technology,

USA), Professor M. Fukushima (Kyoto University, Japan) and Professor K. L. Teo

(Curtin University of Technology, Australia), who gave me much help. I also wish to

thank Professor Soonyi Wu (National Cheng-Kung University, Taiwan), Professor Xiao-

jun Chen (Hirosaki University, Japan) and Dr. Guanglu Zhou (University of Birming-

ham, UK) for all their help and support during my time for my PhD degree. Especially,

I had many fruitful and stimulating discussions on our papers with Prof. Wu and Dr.

Zhou. I also thank Professor Qin Ni (Nanjing University of Aeronautics and Astronau-

tics, China), Professor Xiaojiao Tong (Changsha University of Science and Technology,

China) and Professor Hongxia Yin (Chinese Academy of Sciences, China) for their help

during my PhD studies, and Mr. Kai Zhang for his help in studying computer program-

ming. In addition, I would like to thank a number of editors and anonymous referees

from several journals, who have given me valuable comments and suggestions which

have contributed to a better presentation of the thesis.

VI

I wish to thank all my friends at The Hong Kong Polytechnic University. They made

my stay at Hong Kong very enjoyable. In particular, to Dr. Donghui Li, Dr. Xinmin

Yang, Dr. Shengjie Li, Dr. Xuexing Huang, Dr. Yiju Wang, Dr. Yuying Zhou, Mr. Fei

Wang and Mrs. Vera Roshchina. I am grateful to them for their friendship. Thanks

are also due to the Research Committee of The Hong Kong Polytechnic University for

offering me financial support over the nearly four years. I sincerely thank Professor

Shuihung Hou and Mrs. Fanny(The Hong Kong Polytechnic University) for their kind-

ness and support. I shall always treasure the stimulating research environment and the

excellent research facilities of the Department of Applied Mathematics of The Hong

Kong Polytechnic University.

And finally, my deepest gratitude goes to my parents, my wife, Lingling Du, and my

daughter, Xiaotong Ling, for their sacrifices and encouragement. Without their love

and support this thesis would not be completed on time.

VII

Abstract

The main purposes of this thesis are to solve the semi-infinite programming (SIP) prob-

lems, the option price interpolation problems and the L2 spectral estimation problems

by using some generalized Newton methods.

Our proposed methods have the following three features:

(1) At each iteration, only a system of linear equations needs to be solved;

(2) These methods have Global convergence;

(3) These methods are shown to be locally superlinearly convergent.

We also present a smoothing implicit programming method to solve the generalized

semi-infinite programming (GSIP) problem with uncertainty.

The main contributions of this thesis are as follows.

We introduce a class of integral functions which arises from many applications such

as nonsmooth equation reformulations of the option price problems, the SIP problems

and the L2 spectral estimation problems. We investigate the differentiability, semi-

smoothness and smoothing approximation properties of this class of integral functions.

This content is mainly based on the papers 1, 3 and 4 in Underlying Papers.

We introduce four kinds of algorithms for solving SIP problems. First, we present

a smoothing sequential quadratic programming (SQP) algorithm. At each iteration

of this algorithm, we only need to solve a quadratic program which is always feasible

and solvable. The global convergence of the smoothing SQP algorithm is established

under some mild conditions. Further, we present a smoothing projected Newton-type

VIII

algorithm and prove its global and local superlinear convergence property. However,

the accumulation point of an iterative sequence generated by these algorithms above

may not be a stationary point of the original SIP problem. So, we propose the third

method, say, smoothing Newton-type algorithm. For this algorithm, we not only prove

its global and local superlinear convergence under some mild conditions, but also show

that any accumulation point of an iterative sequence generated by it is a stationary point

of the original SIP problem. Finally, based on the smoothing projected Newton-type

algorithm, we develop a truncated projected Newton-type algorithm which can solve

large scale SIP problems with 2000 decision variables. The feasibility for all algorithms

is ensured by an integral function. For all these algorithms, numerical experiments are

also given. These contents are mainly based on the papers 3-6 in Underlying Papers.

We discuss a generalized semi-infinite programming problem with uncertainty. We

propose a reformulation of the considered problem by using the first order optimality

conditions of the second stage optimization problem and present a smoothing implicit

programming method to solve the problem with finite discrete distribution. Global

convergence results are obtained. This content is mainly based on the paper 2 in

Underlying Papers.

For option price interpolation problem, Wang, Yin and Qi (2004) presented a gener-

alized Newton method for solving it and established its superlinear convergence rate.We

show that the proposed method has at least 4
3
-order convergence rate, and then give

conditions under which this method has 3
2
-order and quadratic convergence rate. And

finally, we give a damped version of the generalized Newton method and show that it

is globally convergent and the convergence order is at least 4
3
. This content is mainly

based on the paper 1 in Underlying Papers.

A Newton method for solving power spectrum estimation problems is proposed in

Chapter 7, and it is proved that the method is at least 1 + 1
2m

-order convergent rate.

We also produce a globalized Newton-type method for solving the problem, which has

at least 1 + 1
2m

-order convergence rate. This content is mainly based on the paper 7 in

Underlying Papers.

IX

Underlying Papers

This thesis is based on the following papers written by the author during the period of

stay in the Department Applied Mathematics, The Hong Kong Polytechnic University

as a graduate student.

1. Qi, L., Shapiro, A. and Ling, C., Differentiability and semismoothness properties

of integral functions and their applications, Mathematical Programming, Ser.A,

Vol.102, pp.223-248 (2005).

2. Ni, Q., Ling, C., Qi, L. and Teo, K.L., A truncated projected Newton-type algo-

rithm for large scale semi-infinite programming, to appear in: SIAM Journal on

Optimization.

3. Yin, H.X., Ling, C. and Qi, L., Convergence rate of Newton’s method for L2

spectral estimation, Mathematical Programming, published online: December 30,

2005.

4. Ling, C., Chen, X.J. Fukushima, M. and Qi, L., A smoothing implicit programming

approach for solving a class of stochastic generalized semi-infinite programming

problems, Pacific Journal of Optimization, Vol.1, pp.127-145 (2005).

5. Ling, C., Qi, L., Zhou, G. L. and Wu, S. Y., Global convergence of a robust

smoothing SQP method for semi-infinite programming, to appear in: Journal of

Optimization Theory and Applications, Vol.129, No.1, (2006).

6. Qi, L., Ling, C., Tong, X. J. and Zhou, G. L., A smoothing projected Newton-type

algorithm for solving semi-infinite programming, 2004, submitted.

7. Ling, C., Ni, Q., Qi,L. and Wu, S.Y., A new smoothing Newton-type algorithm

for solving semi-infinite programming, 2004, Technical report.

X

In addition, the following is a list of other papers written by the author during the

period of his Ph.D study.

1. Hu, Y.D. and Ling, C., The generalized optimality conditions of multiobjective

programming in topological vector space, Journal of Mathematical Analysis and

Applications, Vol.290, pp.363-372 (2004).

2. Ling, C., Generalized tangent epiderivative and applications to set-valued map

optimization, Journal of Nonlinear and Convex Analysis, Vol.3, No.3, pp.303-313

(2002).

3. Ling, C., Qi, L., Zhou, G. L. and Caccetta, L., Properties of expected residual

functions arising from stochastic complementarity problems, submitted.

4. Ling, C., Qi, L. and Yin, H.X., A smoothing Newton-type method for solving L2

spectral estimation problem with upper-lower bounds, Technical report.

5. Ling, C., Zhou, G. L. and Qi, L., On stochastic R0-type nonlinear complementarity

problems, Technical report.

6. Lopez, M. A., Wu, S.Y., Ling, C. and Qi, L., An infinite-dimensional mathematical

programming approach to separation in Lp(X,A, µ), in the working status.

7. Qi, L., Yin, H.X. and Ling, C., Smooth and semismooth Newton’s methods for

constrained approximation and estimation, in the working status.

XI

Chapter 1

Preview

1.1 Generalized Newton-Type Methods

The classic Newton method has the following form

xk+1 = xk − (∇T G(xk))−1G(xk)

where ∇T G(x) denotes the Jacobian of G at x, which is used to solve the smooth

nonlinear equations

G(x) = 0, (1.1.1)

where G : <n → <n is smooth (continuously differentiable) function. The Newton

method is the prototype of many local, fast algorithms for solving smooth equations.

Such algorithms have excellent convergence rates if the starting iterate point belongs

to a suitably chosen neighborhood of the desired solution. In addition, the damped

Newton and the damped Gauss-Newton methods were presented for improving the

global convergence of algorithm [30, 108]. However, if G is nonsmooth, then the above

classic Newton-type methods cannot be used. To solve nonsmooth nonlinear equations

which arises from many applications such as nonlinear complementarity and variational

inequality problems, a number of generalized Newton-type methods were proposed,

see, for example [45, 63, 106, 109–112, 122, 131, 138, 188, 189]. In this section, we mainly

review two classes of generalized Newton-type methods: semismooth Newton method

and smoothing Newton method.

1

1.1.1 Semismooth Newton Method

Suppose that G : <n → <m is locally Lipschitz but not necessarily smooth. By

Rademacher’s Theorem, G is almost everywhere differentiable. Let

DG := {x ∈ <n : G is differentiable at x} .

Then the Clarke generalized Jacobian of G at x can be defined by

∂G(x) = conv ∂BG(x),

where

∂BG(x) =

{
lim

xj→x, xj∈DG

∇T G(xj)

}
,

which is called the B−subdifferential of G at x ∈ <n. The set ∂G(x) is nonempty,

convex and compact for any fixed point x [23]. The nonemptyness of ∂G(x) clearly

implies that ∂BG(x) is nonempty too. Let G = (G1, G2) where G1 : <n → <m1 and

G2 : <n → <m2 . It is easy to see that for any x ∈ <n,

∂G(x) ⊆ ∂G1(x)× ∂G2(x). (1.1.2)

As a natural extension of the classic Newton method, Qi and Sun [131] proposed a

generalized Newton method for solving the nonsmooth equations (1.1.1), in which a

system of linear equations is solved at each step. This generalized Newton methods can

be described as follows: Given the vector xk, compute xk+1 by

xk+1 = xk − V −1
k G(xk), (1.1.3)

where Vk ∈ ∂G(xk). It is clear that the iterative method (1.1.3) reduces to the classic

Newton method for a system of equations if G is smooth. The classic Newton method

has a favorable feature that the sequence
{
xk

}
generated by (1.1.3) is locally super-

linearly (quadratically) convergent to a solution x∗ of (1.1.1) if ∇G(x∗) is nonsingular

(and ∇G(·) is Lipschitz continuous) [108]. However, the iterative method (1.1.3) is not

convergent for nonsmooth equations (1.1.1) in general.

Superlinear convergence of the algorithm (1.1.3) was analyzed by Qi and Sun [131]

based on a key concept of so-called semismoothness, and that is why this algorithm is

called semismooth Newton method.

2

Definition 1.1.1 Let G : <n → <m be directionally differentiable at x ∈ <n. The

function G is said to be semismooth at x if

Qd−G′(x; d) = o (‖d‖) , d → 0 (1.1.4)

and G is said to be p-order semismooth at x if

Qd−G′(x; d) = O
(
‖d‖1+p

)
, d → 0, (1.1.5)

where Q ∈ ∂G(x + d) and 0 < p ≤ 1. Here, o(‖d‖) stands for a vector function of d,

which satisfies

lim
d→0

o(‖d‖)
‖d‖ = 0,

while O(‖d‖1+p) stands for a vector function of d, which satisfies

‖O(‖d‖1+p)‖ ≤ M‖d‖1+p

for all d satisfying ‖d‖ ≤ δ, and some M > 0 and δ > 0. In particular, G is said to be

strongly semismooth at x if (1.1.5) holds for p = 1.

Semismoothness was originally introduced by Mifflin [105] for functionals, which

plays an important role in the global convergence theory of nonsmooth optimization,

see Polak [117]. 16 years later, Qi and Sun [131] extended the concept of semismoothness

to vector-valued functions.

The following two lemmas are direct results of [131] and [165].

Lemma 1.1.1 Let G : <n → <m be a locally Lipschitz function in a neighborhood of

x ∈ <n. Then the following statements are equivalent:

(i) G is semismooth at x;

(ii) for any Q ∈ ∂G(x + d), d → 0,

G(x + d)−G(x)−Qd = o (‖d‖) ;

(iii) for any x + d ∈ DG, d → 0,

G(x + d)−G(x)−∇T G(x + d)d = o (‖d‖) .

3

Lemma 1.1.2 Let G : <n → <m be a locally Lipschitz function in a neighborhood of

x ∈ <n. Then the following statements are equivalent:

(i) G is p−semismooth at x;

(ii) for any Q ∈ ∂G(x + d), d → 0,

G(x + d)−G(x)−Qd = O
(
‖d‖1+p

)
;

(iii) for any x + d ∈ DG, d → 0,

G(x + d)−G(x)−∇T G(x + d)d = O
(
‖d‖1+p

)
.

Let G : <n → <n be a locally Lipschitz function. The function G is said to be

CD-regular at x ∈ <n if all Q ∈ ∂G(x) are nonsingular. Using semismoothness, Qi

and Sun [131] presented the following convergence theorem for the semismooth Newton

method (1.1.3).

Theorem 1.1.1 Suppose that x∗ is a solution of G(x) = 0, G is semismooth at x∗

and G is CD-regular at x∗. Then the iteration method (1.1.3) is well-defined and the

sequence {xk} generated by algorithm converges to x∗ when x0 is chosen sufficiently close

to x∗. Moreover, the convergence rate is Q-superlinear (it is called simply superlinear),

i.e.,

lim
k→∞

∥∥∥xk+1 − x∗
∥∥∥

‖xk − x∗‖ = 0.

If, in addition, G is p-order semismooth at x∗, then the convergence of (1.1.3) is of

order 1 + p, i.e.,

lim sup
k→∞

∥∥∥xk+1 − x∗
∥∥∥

‖xk − x∗‖1+p < ∞.

Remark 1.1.1 Kummer [94] independently presented a general analysis of superlinear

convergence for this generalized Newton method for solving the nonsmooth equations

under similar conditions used in Qi and Sun [131].

Note that the nonsingularity of ∂G(x∗) in the above theorem is somewhat restrictive

in some cases. To overcome this drawback, Qi [122] presented a modified version of

4

(1.1.3) which may be stated as follows

xk+1 = xk − V −1
k G(xk), (1.1.6)

where Vk ∈ ∂BG(xk). The difference of this version from (1.1.3) is that Vk is chosen

from ∂BG(xk) rather than the convex hull of ∂BG(xk).

To study the convergence property of the iterative method (1.1.6), the concept of

so-called BD-regularity is needed. Let G : <n → <n be a locally Lipschitz function.

The function G is said to be BD-regular at x ∈ <n if all Q ∈ ∂BG(x) are nonsingular.

Qi [122] and Pang and Qi [112] proved the following results, respectively.

Proposition 1.1.1 Suppose that G : <n → <n is locally Lipschitz continuous and G

is BD-regular at x ∈ <n. Then there exist a neighborhood N(x) of x and a constant C

such that for any y ∈ N(x) and Q ∈ ∂BG(y), Q is nonsingular and ||Q−1|| ≤ C.

Proposition 1.1.2 Suppose that G : <n → <n is locally Lipschitz continuous and G

is BD-regular at a solution x∗ of G(x) = 0. If G is semismooth at x∗, then there exist

a neighborhood N(x∗) of x∗ and a constant C such that for any x ∈ N(x∗),

||G(x)|| ≥ C||x− x∗||.

Analogously to Theorem 1.1.1, Qi [122] established the following result.

Theorem 1.1.2 Suppose that x∗ is a solution of G(x) = 0, G is semismooth at x∗

and G is BD-regular at x∗. Then the iteration method (1.1.6) is well-defined and the

sequence {xk} generated by the algorithm converges superlinearly to x∗ when x0 is cho-

sen sufficiently close to x∗. If, in addition, G is p-order semismooth at x∗, then the

convergence of (1.1.6) is of order 1 + p.

There are also some inexact versions of (1.1.3) and (1.1.6) and their superlinear

convergence theorems, see [39, 104] for details.

Pang and Qi [112] also generalized the superlinear convergence results of Dennis-

Moré [29] for quasi-Newton methods for smooth equations.

5

Theorem 1.1.3 Assume that G is semismooth at x∗ and that G is BD-regular at x∗.

Let
{
xk

}
be any sequence that converges to x∗ with xk 6= x∗ for all k. Then

{
xk

}

converges superlinearly to x∗ and G(x∗) = 0 if and only if

lim
k→∞

∥∥∥G(xk) + Vkd
k
∥∥∥

‖dk‖ = 0,

where Vk ∈ ∂BG(xk) and dk = xk+1 − xk.

Theorems 1.1.1, 1.1.2 and 1.1.3 are very important on theoretical aspect, since they

generalize the convergence results of classical Newton method for smooth equations

without assuming differentiability of G. Furthermore, in the last decade, the semi-

smooth Newton method became a powerful tool for solving problems arising from some

important mathematical programming problems such as large scale nonlinear comple-

mentarity, variational inequality and nonlinear programming problems. These are due

to the nonsmooth equation reformulations of such original problems. In particular, the

so-called Fischer-Burmeister function

φFB(a, b) =
√

a2 + b2 − a− b (1.1.7)

is used to reformulate the nonlinear complementarity problem as a system of nonsmooth

equations. It is well known that φFB is not smooth, but it is strongly semismooth. It

turns out that this system is semismooth, therefore, the semismooth Newton method

and its convergence results can be applied to some important mathematical program-

ming problems such as nonlinear complementarity problems, variational inequalities

and KKT conditions of optimization. For example, see [112], [104], [47], [126], [134].

This may be seen in the book by Facchinei and Pang [40] and the abundant refer-

ences in that book. In the recent five years, while there are still further research work

on the semismooth Newton method for solving nonlinear complementarity and varia-

tional inequality problems, the semismooth Newton method has been further applied

to semidefinite problems [169], operator equations [178], shape-preserving interpolation

problems [33], [34], [35] and option price problems [179].

Note that (1.1.3) is only convergent locally under semismoothness assumption. A

natural question is that whether (1.1.3) can be globalized similar to classic Newton’s

method for solving smooth equations or not. In general, the answer is negative because

6

the function θ defined by

θ(x) =
1

2
‖G(x)‖2

is not smooth. Fortunately, in some especial but important cases, θ can be smooth

though G itself is not smooth. For example, if G(x) = max(0, x), x ∈ < or G(x) =

(G1(x), · · · , Gn(x))T with

Gi(x) = φFB(xi, Fi(x)), i = 1, · · · , n,

where F : <n → <n is continuously differentiable. Obviously, G is not differentiable at

x = 0, but θ is smooth. By assuming that θ is smooth, a damped semismooth Newton

method was presented and a global convergence result was proved by De Luca et al.,

see [101] for details. In addition, see [83] for various globalized semismooth Newton

methods.

1.1.2 Smoothing Newton Method

As mentioned in Subsection 1.1.1, in the case when θ is smooth, we can construct a

global convergence algorithm for solving the system of nonsmooth equations (1.1.1).

But, if θ is not smooth, how to solve the system of nonsmooth equations? In this

subsection, we review some existing smoothing methods for solving equations with

nonsmooth θ, these methods also overcome the difficulty of computation of ∂G(xk) in

semismooth Newton method.

The key idea of smoothing methods is to construct a smoothing approximation

function Ḡ : <++×<n → <n of G such that for any ε > 0 and x, Ḡ(ε, ·) is continuously

differentiable on <n and satisfies

∥∥∥Ḡ(ε, x)−G(x)
∥∥∥ → 0 as ε ↓ 0

and to find a solution of (1.1.1) by (inexactly) solving the following problems for a given

positive sequence
{
εk

}
, k = 0, 1, 2, · · · ,

Ḡ(εk, x) = 0.

Let us denote the Jacobian of Ḡ with respect to the second variable by ∇T
x Ḡ(ε, x).

7

Then a smoothing Newton method can be defined as follows:

xk+1 = xk − tk
(
∇T

x Ḡ(εk, xk)
)−1

G(xk), (1.1.8)

where εk > 0 and tk > 0 is the stepsize. Smoothing Newton method (1.1.8) for solving

the nonsmooth equation (1.1.1) has been studied for decades in different areas (see

[20] for references). The global and linear convergence of (1.1.8) has been discussed

in [123, 125]. In [20], the authors defined a Jacobian consistency property and showed

that the smoothing approximation functions in [18,48] have this property. Let ∂CG be

defined as

∂CG(x) = ∂G1(x)× ∂G2(x)× · · · × ∂Gn(x),

where G = (G1, G2, · · · , Gn) with Gi : <n → < for i = 1, 2, · · · , n.

Definition 1.1.2 Let G be a Lipschitz continuous function in <n. We call Ḡ a smooth-

ing approximation function of G if Ḡ is continuously differentiable with respect to the

second variable and there is a constant µ > 0 such that for any x ∈ <n and ε ∈ <++,

∥∥∥Ḡ(ε, x)−G(x)
∥∥∥ ≤ µε. (1.1.9)

Furthermore, if for any x ∈ <n,

lim
ε↓0

dist(∇T
x Ḡ(ε, x), ∂CG(x)) = 0,

then we say Ḡ satisfies the Jacobian consistency property.

Under the assumption that Ḡ satisfies the Jacobian consistency property, a smooth-

ing Newton method was introduced by Chen, Qi and Sun [20], which was called Jacobian

smoothing Newton method in [88].

For the Jacobian smoothing Newton method, under suitable conditions, Chen, Qi

and Sun [20] proved that the sequence
{
xk

}
generated by the algorithm is bounded

and each accumulation point of
{
xk

}
is a solution of (1.1.1). Furthermore, Chen, Qi

and Sun [20] proved that if G is CD-regular at an accumulation point x∗ of
{
xk

}

and G is semismooth (strongly semismooth) at x∗, then
{
xk

}
converges superlinearly

(quadratically) to x∗.

8

Note that the convergence analysis of the Jacobian smoothing Newton method

strongly depends on the Jacobian consistency property. It was verified in [20] that

many smoothing functions satisfy it. However, on the other hand, the smoothing func-

tions based on normal maps [145], which only require the mapping to be defined on the

feasible region instead of on <n, do not satisfy this property. See [130,166,191] for the

smoothing forms of normal maps. In addition, more smoothing functions which do not

satisfy the Jacobian consistency property arise. In order to circumvent one or several of

these difficulties, another class of smoothing Newton methods were introduced in [130],

i.e., squared smoothing Newton method. For convenience, we suppose that for any

ε < 0 and x ∈ <n, Ḡ(ε, x) = Ḡ(−ε, x) and Ḡ(0, x) = G(x). Let

Φ(ε, x) =


 Ḡ(ε, x)

ε


 ,

where Ḡ is continuously differentiable at any z := (ε, x) ∈ <++ × <n and satisfies

(1.1.9). It is obvious that x∗ is a solution of (1.1.1) if (ε∗, x∗) satisfies Φ(ε∗, x∗) = 0.

The important characteristic of the squared smoothing Newton method is that the

smoothing parameter ε is regarded as a variable just as the original variable x.

For the squared smoothing Newton method, under suitable assumption, Qi, Sun and

Zhou [130] proved that each accumulation point z∗ of sequence {zk} generated by algo-

rithm is a solution of Φ(z) = 0. Furthermore, if Φ is semismooth (strongly semismooth)

at z∗ and Φ is CD-regular at z∗, then {zk} converges superlinearly (quadratically) to

z∗.

There are several modifications of smoothing Newton method. The corresponding

convergence results were also proved. See [22,88] for details. We should point out that,

in the last decade, smoothing techniques were used widely on solving nonsmooth opti-

mization problems such as complementarity problems, variational inequality problems

and mathematical programs with equilibrium constraints. These contents can be found

in X. Chen, L. Qi and D. Sun [20], F. Facchinei, H. Jiang and L. Qi [38], X. Chen, Z.

Nashed and L. Qi [19], D. Sun and L. Qi [167], D. Li, L. Qi, J. Tam and S. Y. Wu [98],

Y. Yang, L. Qi [190], X. D. Chen, D. Sun and J. Sun [21], Z. H. Huang, J. Han and

Z. Chen [73], L. Qi and D. Sun [129], H. D. Qi and L. Z. Liao [121], L. Qi and G.

Zhou [137] and L. Qi, D. Sun and G. Zhou [130]. For more details, see also L. Qi and

D. Sun [128].

9

1.2 Semi-Infinite Programming Problems

Consider the optimization problem:

min
x

f(x)

s.t. x ∈ X,
(1.2.1)

where the feasible set X is given in the form

X = {x ∈ <n : g(x, v) ≤ 0, ∀ v ∈ V }.

Here V ⊂ <m is a set of parameters and, for most engineering problems, V is nonempty

compact. The functions f : <n → < and g : <n × V → < are twice continuously

differentiable functions. In the case when the set V is infinite, (1.2.1) is called a semi-

infinite programming (SIP) problem. We say that the SIP problem (1.2.1) is convex if

f(·) is convex and the function g(·, v) is convex for any v ∈ V .

One of the reasons why researchers are focusing more attention on the SIP problem

is that the SIP problem arises from various applications such as approximation theory

[50,58,92], optimal control [71,103,115,150,171], filter design in signal processing [91],

eigenvalue computation, mechanical stress of materials [70], pollution control [58, 70],

and statistical design [157].

Since that the solutions of many practical application problems can be approximated

by the optimal solutions of the related SIP problems, the theory and numerical meth-

ods for SIP problems are very important. The development of theory and numerical

methods for SIP problems can be found in [44,51,52,70,115,117,142,143,164,174,176].

On the theoretical aspect, Krabs [92] obtained KKT optimality conditions for SIP

problems under Slater’s constraint qualification. Hettich and Zencke [67] and Nuern-

berger [107] discussed first-order sufficient conditions for SIP problems under a stronger

KKT condition. Hassouni and Oettli [64] derived a sufficient and necessary condition

for convex SIP problems under a regularity condition. Second-order necessary and

sufficient optimality conditions for SIP problems were first derived via the so-called

reduction method by Wetterling [183] and Hettich and Jongen [65]. Shapiro [154, 155]

discussed the differentiability of the value function and the Lipschitzian stability of the

solution set mapping for a parametric SIP problem. Colgen [25] discussed the compact-

ness of the solution set under a kind of upper-continuity of the solution set mapping.

10

Bonnans and Shapiro [11] derived a zero duality gap of the convex SIP problem and its

Lagrangian dual problem under Slater’s constraint qualification condition.

On the numerical aspect, the existing different methods for solving the SIP problem

can be divided into the following six categories:

1. discretization methods (by grids and cutting planes);

2. local reduction based methods;

3. exchange methods;

4. simplex-like methods;

5. descent methods;

6. generalized Newton methods.

In the first category, a sequence of relaxed problems with a finite number of con-

straints are solved according to a predefined or adaptively controlled grid generation

scheme or some cutting plane scheme [60, 61, 67, 69, 140, 141, 174, 175, 185]. The local

reduction method of second category replaces an SIP problem by a locally equivalent

problem with a finite number of implicitly defined inequality constraints, or equiva-

lently a system of nonlinear equations with finitely many unknowns, which is solved

essentially by the Newton method and, hence the local reduction based methods have

good local convergence properties [26,53,66,78,118,170]. In the third category, typical

exchange methods consist of two phases: the purification phase providing an extreme

point and the pivoting phase generating a sequence of linked extreme point leading

to an optimal solution [70, 95, 146, 151, 180, 184, 186]. Some of other methods for SIP

problems can be found in [41,42,98,99,115,117,134,158,176,177].

We now briefly review the optimality conditions and numerical methods for SIP

problems.

11

1.2.1 Optimality Conditions

Define

Λ(x) := max
v∈V

g(x, v),

then the SIP problem (1.2.1) becomes

min
x

f(x)

s.t. Λ(x) ≤ 0.
(1.2.2)

The fundamental difficulty, however, with the problem (1.2.2) is that the constraint

function Λ(x) may not be differentiable. Thus a theory for nondifferentiable nonlinear

programming is needed. Such a first order theory does exist (e.g. [49]) and was used

to establish first order condition for (1.2.1), see e.g. [120]. In this subsection, we only

recall briefly the first order optimality conditions for the SIP problem (1.2.1).

Let Y = C(V) be the normed space of continuous functions y : V → <, equipped

with the sup-norm

‖y‖ = sup
v∈V

|y(v)|
and K ⊂ C(V) be the cone formed by nonpositive-valued continuous functions y(v).

Let Y ∗ be the dual space of the Banach space Y , formed by continuous linear functionals

on Y and equipped with the dual norm ‖y∗‖ := supy∈UY
〈y∗, y〉, where UY is the unit

ball in Y , i.e., UY := {y ∈ Y : ‖y‖ ≤ 1}, and 〈y∗, y〉 = y∗(y), y∗ ∈ Y ∗, y ∈ Y . And let

K− be the polar (negative dual) cone of the cone K, i.e.,

K− = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≤ 0 for all y ∈ K} .

Then Y ∗ is the space of finite signed measures on (V,B), where B is the Borel σ-algebra

of V , with the norm given by the total variation of the corresponding measure. And it

is not difficult to know that K− is formed by the set of nonnegative Borel measures on

V . See [154] for details.

Consider the mapping Ξ : <n → C(V) taking a point x into the function y = Ξ(x),

y(·) = g(x, ·). Then the feasible set X of (1.2.1) can be written in the form

X = {x ∈ Rn : Ξ(x) ∈ K} .

Since the constraint function g(x, v) is differentiable in x and ∇xg(x, v) is continuous on

<n × V , it follows that the mapping Ξ(x) is continuously differentiable and for h ∈ <n

[DΞ(x)h] (·) = hT∇xg(x, ·),

12

where DΞ(x)h := h · ∇Ξ(x). We say that a point x0 ∈ <n is a regular point of the

mapping Ξ(x), in the sense of [144], if

0 ∈ int {Ξ(x0) + DΞ(x0)<n −K} . (1.2.3)

We assume the optimal value of (1.2.1) is finite, say µ. We also assume that the set

S = {x ∈ X : f(x) = µ} ,

of optimal solutions of (1.2.1) is nonempty. Let

V (x) = {v ∈ V : g(x, v) = 0}.

A first-order necessary condition for the SIP problem (1.2.1) is well known (e.g.,

Pshenichnyi [120]), and it is called the Fritz-John necessary optimality condition.

Theorem 1.2.1 Let x0 be an optimal solution of (1.2.1). Then there exist vi ∈ V (x0),

i = 1, · · · , n and nonnegative multipliers u0, u1, · · ·un, not all of them zero, such that

u0∇f(x0) +
n∑

i=1

ui∇xg(x0, v
i) = 0. (1.2.4)

We should point out that the multiplier u0 in Theorem 1.2.1 may be zero, in this

case, (1.2.4) is not very meaningful since it does not show any information about the

objective function f . In order to obtain the Fritz-John necessary optimality condition

with u0 6= 0, we need the following constraint qualifications which are straightforward

extensions of their finite analogues for the SIP problem (1.2.1).

Definition 1.2.1 (i) We say that the extended Mangasarian-Fromovitz constraint qual-

ification (EMFCQ) holds at a point x0 ∈ S if there exists a vector d ∈ <n such that

∇T
x g(x0, v)d < 0 (1.2.5)

for all v ∈ V (x0).

(ii) It is said that the Slater condition holds if there exists a point x̄ such that

g(x̄, v) < 0 (1.2.6)

for all v ∈ V .

13

It is not difficult to show that (1.2.5) is equivalent to the condition that the point

x0 is a regular point of the mapping Ξ(x) with respect to the cone K [154]. Since the

set V is compact, condition (1.2.6) implies existence of a positive number ε such that

g(x̄, v) < −ε for all v ∈ V . That is, Ξ(x̄) is an interior point of the cone K, which

implies

0 ∈ int {Ξ(<n)−K} , (1.2.7)

where Ξ(<n) is the range of the mapping Ξ, i.e., Ξ(<n) is the set {Ξ(x) : x ∈ <n}.
Since Ξ is continuously differentiable, (1.2.7) is equivalent to (1.2.3).

Theorem 1.2.2 Let x0 be an optimal solution of (1.2.1). If EMFCQ holds at point x0,

then there exist vi ∈ V (x0), i = 1, · · · , n and nonnegative multipliers u1, · · ·un, not all

of them zero, such that

∇f(x0) +
n∑

i=1

ui∇xg(x0, v
i) = 0.

The Fritz John condition with u0 6= 0 is a semi-infinite version of the KKT condition,

e.g. [102], so we call it KKT condition for the SIP problem (1.2.1). Generally, the Fritz

John condition is necessary but not sufficient for optimality, and if the SIP problem

(1.2.1) is convex, then the KKT condition is sufficient but not necessary for optimality.

Moreover, if a constraint qualification is assumed, then the KKT condition is both

necessary and sufficient for optimality for (1.2.1). Under certain assumptions, there are

some second order optimality conditions for the SIP problem (1.2.1), see e.g. [7], [152],

[156] for details.

1.2.2 Numerical Methods for SIP Problems

It is well known that the main difficulty for solving SIP problems is that it has infinite

constraints, and the main effort of existing methods is to reduce the infinite set V to a

finite one. The survey papers by Hettich [68], Gustafson and Kortanek [62], Polak [115],

Fiacco and Ishizuka [43], and Hettich and Kortanek [70] discussed these methods in

more detail. In this subsection, we will mainly review the discretization methods and

the local reduction based methods.

14

Discretization Methods

One approach to the solution of an SIP problem is to minimize its objective function

subject to only a finite subset of the infinite set of constraints. That is, the original

SIP problem (1.2.1) is replaced by the following finite subproblem P[V̄]:

min
x

f(x)

g(x, v) ≤ 0, v ∈ V̄ ,
(1.2.8)

where V̄ ⊂ V with cardinality |V̄ | < ∞. The set V̄ is typically called a grid. Unfortu-

nately, for general problems, there does not exist a subset V̄ of V which yields identical

solutions for (1.2.1) and (1.2.8). Therefore, one may possibly repeat the procedure for

an enlarged set when higher precision is requested or when, from consideration of a se-

quence of such solutions, an estimate of their accuracy is to be obtained. But, if a finite

sequence of finer and finer grids V̄i are used, it is not necessarily true that the sequence

of solution points of (1.2.8) converge to the solution of (1.2.1). For these statements

to be true, the grids must be chosen with care [70], [117]. More precisely, one may

successively compute an “(approximate) solution” of the discretized SIP problem P [V̄i]

for i = 0, 1, · · · by an algorithm for solving finite optimization problem, where {V̄i} is a

sequence of finite subsets of V such that limi→∞ dist(V̄i, V) = 0. Here

dist(V̄i, V) := sup
v∈V

inf
v′∈V̄i

‖v − v′‖∞ ,

which is usually called a density of grid V̄i in V and ‖·‖∞ is the usual l∞-norm in <m.

The conception of density of set V̄i in V is closely related to the theory of consistent

approximations. The papers by Reemtsen [140] and Polak [117] give some conditions

under which a solution of problem (1.2.8) is equivalent to (1.2.1) as successive grids are

refined. A procedure of this type is denoted as a discretization method.

Discretization methods have the advantage to internally work with finite subsets of

V only. In particular, feasibility with respect to the finite program P [V̄i] can normally

be checked easily and accurately. Therefore, a discretization method is especially suited

for problems with a solution x∗ at which g(x∗, ·) is (almost) constant on V or on parts of

V . Almost constancy is a phenomenon which, for instance, can occur for the constraint

function at complex Chebyshev approximation problem [142].

Discretization methods, however, are very expansive in numerical computation since

the number of the constrains of the subproblem solved in such methods may increase

15

dramatically with the growing cardinality of the approximate subset at each iteration.

The numerical costs for solving discretized SIP problems normally tend to infinity when

the grid densities in V converge to zero. Therefore, in practice, only grids with a limited

number of points can be used, and the grids obtained by typical methods have at most

50,000 to 100,000 points for problems with less than 100 variables [142]. Another

characteristic of a discretization method stressed in the literature is that it normally

produces outer approximations of a solution of the SIP problem, i.e., approximate

solutions which are not feasible for (1.2.1). Observe that, for V̄i ⊆ V , a global solution

xi∗ of P [V̄i] that is feasible for P [V] solves P [V] since

f(xi∗) = inf
x∈F (V̄i)

f(x) ≤ inf
x∈F (V)

f(x) ≤ f(xi∗),

where

F (V) := {x ∈ <n : g(x, v) ≤ 0, v ∈ V }

and

F (V̄i) :=
{
x ∈ <n : g(x, v) ≤ 0, v ∈ V̄i

}
.

An approximate solution of an SIP problem which has been obtained by a discretization

method may have to be improved by a method based on local reduction when the

method becomes too inefficient. A possible difficulty connected with that is that the

obtained solution may not be close enough to a solution of the SIP problem and hence

not be in the convergence region of such method.

For the discretization methods for solving SIP problems, Polak [116] has developed

a theory of consistent approximations that provides conditions under which (local)

minimizers and certain stationary points of the discretized problems converge to (local)

minimizers and related stationary points of the SIP problem. The theory includes

conditions which imply convergence of the entire sequence of iterates generated by a

discretization algorithm, and it contains condition on the rate of discretization which

ensures that the entire sequence converges with the same rate as the algorithm used for

the solution of the finite subproblem. The discretization methods have no superlinear

convergence property.

16

Local Reduction Based Methods

One may use some different ways to form the approximate subset of V so that the

number of the constraints of the finite nonlinear optimization problem increases not

so quickly. Among these ways, one class of methods relies on the fact that the SIP

problem (1.2.1) can be reduced locally to an optimization problem with finite number

of constraints. The term local reduction comes from that

g(x, v) ≤ 0, ∀ v ∈ V

is closely related to the following parametric optimization problem:

max
v∈V

g(x, v). (1.2.9)

As mentioned in Subsection 1.2.1, for the SIP problem (1.2.1), if we let

Λ(x) := max
v∈V

g(x, v), (1.2.10)

then it becomes
min

x
f(x)

s.t. Λ(x) ≤ 0.

The review by Polak [115] treats this general case. However, more progress can be

made by treating Λ(x) locally. The goal is to represent Λ(x) locally near almost every

x∗ ∈ <n by

Λ(x) = max
{
gl(x) : l ∈ L

}

with smooth function gl(x), |L| < ∞, defined on some neighborhood of x∗ [55]. This

holds under some mild regularity assumptions.

Let x̄ ∈ <n. Denote all the local solutions of (1.2.10) by vl(x̄), l ∈ L̄. If problem

(1.2.10) is regular for x̄, then |L̄| < ∞, and there is a neighborhood U(x̄) of x̄ such that

x ∈ U(x̄) is the feasible solution of the SIP problem if and only if x ∈ U(x̄) satisfies the

finitely many inequality constraints

gl(x) := g(x, vl(x)) ≤ 0, l = 1, · · · , L̄, (1.2.11)

where vl(x) are the local solutions of (1.2.10) with parameter x. While the functions

gl themselves usually cannot be given explicitly, the function values gl(x) obviously are

computable for x ∈ U(x̄). Methods, in which the infinite constraints g(x, v) ≤ 0, v ∈ V ,

17

of the SIP problem (1.2.1) is locally replaced at x̄ by the finitely many constraints in

(1.2.11), are called local reduction based methods. These assertions may lead directly

to a conceptual reduction method [142]. The papers by Gramlich et al. [55] and Hettich

and Kortanek [70] explain each step of algorithm and give guidelines on implementation.

The most commonly used nonlinear programming algorithm at the main step in the

conceptual reduction method is successive quadratic programming (SQP) algorithm.

The advantage of such methods certainly lies in the fact that they only deal with

relatively small finite programs internally. These programs are convex for linear and

convex SIP problems, since, in these cases, the functions gl are strictly convex on

U(x) [67], and they are usually nonlinear for all other SIP problems. The drawbacks

of reduction based methods are connected with the fact that the set U(x̄) and the

functions gl are not known explicitly. In almost every iteration, a (continuous) global

maximizer and hence all (continuous) local maximizers of g(xi, ·) over V need to be

computed exactly or inexactly. Up to now, however, there does not exist the algorithm

that is able to detect a global maximizer of an arbitrary continuous function with

certainty. Furthermore, local reduction based methods needs strong conditions to ensure

its convergence.

In this thesis, we shall introduce four algorithms for solving SIP problems. To this

end, we first study the differentiability, semismoothness and smoothing approximation

properties of a class of integral functions in Chapter 2. Then, in Chapter 3 we introduce

three algorithms for solving SIP problems, say, smoothing SQP algorithm, smoothing

projected Newton-type algorithm and smoothing Newton-type algorithm. The later

two algorithms have many advantages. For example, at each iteration of the algorithm,

only a system of linear equations needs to be solved and they have global and local

superlinear convergence. Furthermore, in Chapter 4, we extend the smoothing projected

Newton-type algorithm to solving large scale SIP problems, say, truncated projected

Newton-type algorithm. This algorithm enjoys the advantages mentioned above.

18

1.3 Generalized Semi-Infinite Programming Prob-

lems

Consider a generalized semi-infinite programming (GSIP) problem given as follows:

min
x

f(x)

s. t. g(x, u) ≤ 0, ∀ u ∈ T (x),
(1.3.1)

where T (x) = {u ∈ <r | h(x, u) ≤ 0}. Here, f : <n → <, g : <n × <r → <,

h : <n ×<r → <J , T : <n → 2<
r
, and 2<

r
is the set of all subsets in <r.

Recently, it was observed that many practical problems, such as those arising in the

study of maneuverability problems in robotics, optimal control problems with terminal

constraints, reverse Chebyshev problems in approximation theory, time-minimal heating

or cooling of a ball and vector variational inequality problems, can be transformed into

the GSIP problem. Consequently, the GSIP problem has become an active research

topic in optimization. Jongen et al [86]and Stein [159] derived directly a first order

necessary condition of the Fritz John type without assuming a constraint qualification.

Rückmann and Shapiro [148] also obtained a first order necessary condition by using the

boundedness of the upper and lower directional derivatives of the corresponding value

function. Hettich and Still [72] investigated second order optimality conditions under

the assumption that the feasible set can be described by means of a finite number

of value functions. Still [162, 163] investigated how the numerical methods for SIP

problems can be extended to GSIP problems. Kaplan and Tichatschke [89] derived

numerical algorithm for a special class of GSIP problems.

On the other hand, since there are many uncertainty factors in many practical prob-

lems, stochastic programming is another important branch of mathematical program-

ming. Of course, it is very significative to study the stochastic generalized semi-infinite

programming (SGSIP) problem. The GSIP problem is a hard problem with an infinite

constraint index set that may vary since it is correlated with decision variable x. Pres-

ence of an additional random variable makes the SGSIP problem even harder to solve

than the GSIP problem.

We shall present a smoothing implicit programming method for solving a class of

SGSIP problems and prove its global convergence result in Chapter 5.

19

1.4 Option Price Interpolation Problems

In 1900, Bachelier [3] introduced a formula for the price of an option based upon a

continuous stochastic process for the underlying asset. Although this model has some

shortcomings, this work pushed option pricing into the realm of higher mathematics.

In 1973, Black and Scholes [10] formulated the first modern option pricing solution,

which overcomes some of the major shortcomings of earlier works. The explosion of

option pricing papers has been phenomenal since 1973. Especially, after the equity

market crash in 1987, some complicated models are proposed, such as local volatility

function model of Dumas, Flemming and Whaley [37], stochastic volatility model of

Hull and White [75], and jump-diffusion model of Bates [4], etc. In addition, the work

on empirical tests and methods to solve option problems grew rapidly, and continues

today at a great pace. We should point out that no matter what kind of process for

the underlying asset, the Black-Scholes formula is always a basic tool.

In the last several years, the option price model reverse engineering problem has

attracted intensive attention, since it is widely used in many important fields such as

risk management and exotic option pricing. Basically, given very few assumptions about

the underlying process, people try to back out the underlying process from the option

price observation. In the option price model reverse engineering, the Black-Scholes

formula is often used to calculate the option’s risk sensitivities. In addition, in the

option price model reverse engineering, European is often used as a standard option

model, that is, if a model cannot correctly price European options then it cannot be

used to price the exotic option. Many models have been proposed for the option price

reverse engineering problems. For example, in the equity option modeling area, we

have the continuous version local volatility function model of Andersen and Brotherton-

Ratcliffe [2], Lattic version local volatility function model of Rubinstein [147], Derman,

Kani and Chriss [31] and Markov functional interest rate term structure model of Hunt,

Kennedy and Pelsser [76], etc.

Many option price reverse engineering models require a complete set of European

option price observations. However, in a typical option market, one often observes the

prices of 10 to 30 options with the same time-to-expiration, but different strike levels.

This reality requires a good method to interpolate the option price as a continuous

20

function of strike price. Therefore, we face the problem of how to interpolate the option

price function. The market standard practice is to interpolate the implied volatilities,

then to apply the interpolated volatility into the Black-Scholes formula. Such an indirect

interpolation has some merits, such as accuracy and stability, see Andreasen [1]. Piece-

wise linear interpolation is a common method to interpolate market implied volatilities

when pricing unquoted options. Cubic spline volatilities interpolation is the method

used for almost all option price reverse engineering models.

Unfortunately, in some case, the interpolation method cannot be chosen freely.

For example, the no-arbitrage principle determines that a call option price must be

a monotonically decreasing and convex function of the strike price. Especially, this

restriction violation in the option price reverse engineering problems will make the

model break down. So, shape-preserving interpolation methods are very important in

the option price reverse engineering problems. Rubinstein [147], Jackwerth and Rubin-

stein [79] presented two methods deal with this kind of problem, but their computation

are intensive.

Wang, Yin and Qi [179] presented a generalized Newton algorithm for solving no-

arbitrage option price interpolation problem. And they proved the local superlinear

convergence of this method, however they did not establish its quadratic convergence.

In Chapter 6 of this thesis, we shall prove that this algorithm has at least 4
3
-order

convergence rate, by using the properties of integral function discussed in Chapter 2.

We also give conditions under which this method has 3
2
-order and quadratic conver-

gence rate. We will present a globalized algorithm for solving no-arbitrage option price

interpolation problem and prove that its convergence rate is at least 4
3
.

1.5 Spectral Estimation Problems

Spectral estimation problems arise naturally in time series and signal processing, and

have long received deep and fruitful attention from statisticians and engineers. Given

a compact set X with finite measure σ, a set of continuous functions {φi}n
i=1 linearly

independent on X, and a data vector ~r = (r1, r2, · · · , rn)T ∈ <n, the problem is to find

21

a function f satisfying the nonnegativity condition f ≥ 0 a.e., and the constraints

ri =
∫

X
f(x)φi(x)dσ(x), i = 1, 2, · · · , n. (1.5.1)

The nonnegativity condition arises naturally in many signal processing applications

such as estimating a power spectrum or in interference spectroscopy where the problem

is to estimate an intensity distribution of an electromagnetic source. It is assumed

that f is band limited, i.e., f has support contained in a compact set X. The band

limited constraint may be due to properties of the source, medium, sensors, or problem

geometry [24]. The investigation of such problem raises two important questions. The

first and fundamental question concerns the existence of such function f . This question

was answered by characterizing the set of extendible correlation measurements, see

[97, 100] for details. The second question raised is that if there is a unique f , and if

not, how can a specific one be chosen? In fact, a unique f does not exist except in very

special cases; the task of a spectral estimation method is the selection of one out of an

ensemble of f satisfying the constraint (1.5.1), nonnegativity, and support constraint.

One popular method for selecting f is the maximum entropy method [14, 15, 100].

In this method, the usual form the solution takes is f ∗(x) = 1
P (x)

, where P is a positive

trigonometric polynomial. However, in some application, see examples in [6], a strictly

positive solution 1
P (x)

fails to exist. Goodrich and Steinhardt [54] suggested an alter-

native way for selecting f(x) by considering an L2-norm optimization problem, which

is called L2 spectral estimation. In 1993, Cole and Goodrich [24] investigated the Lp-

special estimation with an L∞-upper bound, they compared the numerical performance

of some solution methods and found Newton’s method does the best job of fitting the

solution to the data. Potter [119] also obtained similar numerical results.

An important problem in spectral estimation is the estimation of a power spec-

trum, a measure µ on <n, with a known support, given a finite collection of measured

correlations. This problem has many applications in a wide range of settings such as

geophysics, radio astronomy, radar, and sonar, see [15,90,96,97] and references therein.

In many of these problems, the measure µ has a density function f(x), i.e.,

µ(Ω) =
∫

Ω
f(x)dx

for all Lebesgue measurable sets Ω and µ is band limited. Thus the estimation problem

of power spectrum becomes the form of (1.5.1), see [6, 54] for details.

22

In Chapter 7, we shall present a generalized Newton algorithm for solving the L2

spectral estimation problem and we prove the global and local 1+ 1
2m

-order convergence

of the algorithm.

1.6 Notation

The following notation will be used in this thesis. <n denotes the real Euclidean space

of column vectors of length n. <n
+ denotes the set of all vectors with nonnegative

components, i.e., <n
+ = {u ∈ <n| u ≥ 0}, and <n

++ denotes the set of all vectors with

positive components, i.e., <n
++ = {u ∈ <n| u > 0}. For u ∈ <n and v ∈ <m, (u, v)

denotes the column vector (uT , vT)T in <n+m. If vi ∈ <n and L = {1, 2, · · · , l}, (vi, i ∈
L) means the vector (vT

1 , vT
2 , · · · , vT

l)T in <nl. For any x ∈ <, [x]+ := max{0, x}. By ‖·‖,
we mean the Euclidean norm. If x1 and x2 are two vectors with the same dimension,

then xT
1 x2 denotes the inner products of these two vectors. I and O denote the identity

and zero matrix with a suitable dimension, respectively, and U denotes the closed unit

ball in an Euclidean space with a suitable dimension. For a differentiable function

f : <n → <p, ∇f(x) ∈ <n×p denotes the gradient of f at x, whereas ∇T f(x) ∈ <p×n

means the Jacobian of f at x, i.e., ∇T f(x) = (∇f(x))T . For a differentiable function

f : <n × <m → <p, ∇xf(x, y) and ∇yf(x, y) denote the gradients of f at (x, y) with

respect to x and y, the n× p and m× p matrices, respectively. Whereas ∇T
x f(x, y) and

∇T
y f(x, y) mean the Jacobians of f at (x, y) with respect to x and y, respectively, i.e.,

∇T
x f(x, y) = (∇xf(x, y))T and ∇T

y f(x, y) = (∇xf(x, y))T . For a differentiable function

f : <n ×< → <, ∇(k)
y f(x, y) means the k-th derivative of f at (x, y) with respect to y.

For a locally Lipschitz function f : <n → <p, ∂f(x) denotes the generalized Jacobian

of f at x in the sense of Clarke. For a locally Lipschitz function f : <n × <m → <p,

∂xf(x, y) and ∂yf(x, y) denote the generalized Jacobian of f at (x, y) with respect to

x and y, respectively. For a directionally differentiable function f : <n → <p, f ′(x; h)

denotes the directional derivative of f at x in a direction h. For a closed set A and a

point x ∈ <n, dist(x,A) means the distance between x and A, i.e.,

dist(x,A) = min {‖x− x′‖ : x′ ∈ A} .

If δ is a small quantity, O(δ) and o(δ) mean the same order and higher order small

quantity, respectively.

23

Chapter 2

A Class of Integral Functions

2.1 Introduction and Motivation

The integral function F : <n → <, defined by

F (x) :=
∫ b

a
[g(x, v)]+p(v)dv, (2.1.1)

where p(v) ≥ 0 for all v ∈ [a, b], arises from nonsmooth equation reformulations of the

shape-preserving interpolation problem [33], [34], the option price problem [179] and

the spectral estimation problem which will be discussed in Chapter 7. It also arises from

aggregate reformulation of SIP problems, see [173], [81], [172] and [124]. As mentioned

in Subsection 1.1.1, semismoothness, p-order semismoothness and strong semismooth-

ness are the key conditions for superlinear, (1+p)-order and quadratic convergence of

the generalized Newton method for solving a system of nonsmooth equations, respec-

tively. Therefore, convergence analyses of numerical methods designed for solving such

problems above via their reformulations are highly related to differentiability properties

of this integral function.

Differentiability properties and applications of the integral function (2.1.1) were

discussed in recent literatures by Dontchev, Qi and Qi [33], [34], Qi [124], Qi and

Tseng [132], Qi and Yin [136], and Wang, Yin and Qi [179]. In the applications of

shape-preserving interpolation problems and option price problems, the integral func-

tion F , defined by (2.1.1), plays a central role. Its semismoothness was established

24

in [33], and hence the superlinear convergence of a Newton-like method for solving the

system of nonsmooth equations arising in the shape-preserving interpolation problem

was proved, which was a conjecture for 15 years [77]. In [34], strong semismoothness of a

particular form of the integral function for that shape-preserving interpolation problem

was established. This, further, established quadratic convergence of the Newton-like

method. In [136], this result was generalized to a class of integral functions, which are

still a special case of (2.1.1).

The main aim of this chapter is to investigate the differentiability, semismoothness

and p-order semismoothness of a general class of integral functions which includes func-

tions of the form (2.1.1) as a particular case. Also, in this chapter, we study some

smoothing approximation properties of a class of integral functions.

The outline of this chapter is as follows: in Section 2.2, some differentiability proper-

ties of a general class of integral functions are discussed; in Section 2.3, the semismooth-

ness and p-order semismoothness of a general class of integral function are investigated;

and finally, in Section 2.4, some smoothing approximation properties of integral function

(2.1.1) are obtained.

2.2 Differentiability of Integral Functions

Consider an integral function F : <n → <, defined by

F (x) :=
∫

V
f(x, v)dµ(v), (2.2.1)

where f : X × V → <, X is an open subset of <n and µ is a finite measure defined on

a measurable space (V,F). The function defined by (2.2.1) includes functions of the

form (2.1.1) as a particular case.

We assume that for every x ∈ X, the function f(x, ·) is F -measurable and µ-

integrable, i.e., ∫

V
|f(x, v)|dµ(v) < +∞.

This implies that the integral function F (x) is well-defined and finite valued. Denote

fv(·) := f(·, v) and let x ∈ X be fixed. We say that a property holds for almost every

(a.e.) v ∈ V if it holds for all v ∈ V except on a set with µ-measure zero.

25

The following result is a consequence of the Lebesgue Dominated Convergence The-

orem (e.g., [11]).

Proposition 2.2.1 Suppose that: (i) there exists an integrable function κ : V → <+

such that

|f(x1, v)− f(x2, v)| ≤ κ(v)
∥∥∥x1 − x2

∥∥∥ , for all x1, x2 ∈ X; and a.e. v ∈ V, (2.2.2)

(ii) for a.e. v ∈ V , fv(·) is directionally differentiable at a point x ∈ X. Then F (·) is

Lipschitz continuous on X, directionally differentiable at x and

F ′(x; h) =
∫

V
f ′v(x; h)dµ(v). (2.2.3)

Condition (2.2.2) implies, of course, that for a.e. v ∈ V the function f(·, v) is

Lipschitz continuous on X. Note that the results of the above proposition have a

local nature and the set X can be reduced to a neighborhood of a considered point

x. Note also that for locally Lipschitz continuous functions the concepts of Fréchet

and Gâteaux directional differentiability do coincide (e.g., [153]). Hence, under the

conditions of Proposition 2.2.1, we may simply discuss directional differentiability (or

differentiability) of F (·) at x.

It immediately follows from (2.2.3) that F ′(x; h) is linear in h, i.e., F (·) is differen-

tiable at x, if fv(·) is differentiable at x for a.e. v ∈ V . Moreover, we have the following

result (e.g., [149]).

Proposition 2.2.2 Suppose that, in addition to the assumptions (i) and (ii) of Propo-

sition 2.2.1, f ′v(x; ·) is convex for a.e. v ∈ V . Then F (·) is differentiable at x if and

only if fv(·) is differentiable at x for a.e. v ∈ V . In this case, it holds that

∇F (x) =
∫

V
∇fv(x)dµ(v). (2.2.4)

Suppose now that the function f(x, v) is given as the maximum of a family of smooth

functions gj : X × V → <, j ∈ J . That is,

f(x, v) := sup
j∈J

gj(x, v). (2.2.5)

26

We make the following assumptions.

(A1) V is a compact metric space and F is its Borel sigma algebra.

(A2) For every v ∈ V and j ∈ J , the function gjv(·) := gj(·, v) is continuously

differentiable on X.

(A3) The function (x, v, j) 7→ Gjv(x) := ∇gjv(x) is continuous on X × V × J .

(A4) The set J is a compact metric space.

Of course, if the set J is finite, then the last assumption (A4) holds automatically.

By the Danskin theorem (e.g., [11]), it follows from assumptions (A2)–(A4) that

the max-function fv(·), defined in (2.2.5), is directionally differentiable at every point

x ∈ X and

f ′v(x; h) = sup
j∈J∗v (x)

hT Gjv(x). (2.2.6)

Here J∗v (x) denotes the index set of active at x ∈ X constraints,

J∗v (x) := arg max
j∈J

gj(x, v). (2.2.7)

Note that since it is assumed that the set J is compact and the function gj(x, v) is

continuous in j ∈ J , the set J∗v (x) is nonempty and compact.

Let U ⊂ X be a compact neighborhood of a point x̄ ∈ X. By the Mean Value

Theorem and assumptions (A2) and (A3), we know that for all x1, x2 ∈ U and κj(v) :=

supx∈U ‖Gjv(x)‖, the following holds

∣∣∣gj(x
1, v)− gj(x

2, v)
∣∣∣ ≤ κj(v)

∥∥∥x1 − x2
∥∥∥ .

It follows that fv(·) is Lipschitz continuous on U with the Lipschitz constant κ(v) :=

supj∈J κj(v). By the assumption (A3) and the fact that the sets V and J are compact,

the function κ(v) is bounded on V , and hence is integrable.

By formula (2.2.6), f ′v(x; ·) is given by the maximum of linear functions and hence is

convex. It also follows from (2.2.6) that fv(·) is differentiable at x iff Gjv(x) is the same

for all j ∈ J∗v (x), say Gjv(x) = Gv(x) for all j ∈ J∗v (x), in which case ∇fv(x) = Gv(x).

Consider the set

Υ(x) := {v ∈ V : there exist i, j ∈ J∗v (x) such that Giv(x) 6= Gjv(x)} . (2.2.8)

27

The set Υ(x) is the set of those v ∈ V for which fv(·) is not differentiable at x. The

above discussion together with Propositions 2.2.1 and 2.2.2 imply the following result.

Theorem 2.2.1 Consider the integral function F (·) defined in (2.2.1) with f(·, ·) de-

fined in (2.2.5). Suppose that the assumptions (A1)–(A4) are satisfied. Then F (·)
is locally Lipschitz continuous, directionally differentiable and formula (2.2.3) holds.

Moreover, F (·) is differentiable at a point x ∈ X if and only if the set Υ(x) has µ-

measure zero, and in this case (2.2.4) holds.

Clearly, for x ∈ X, the set Υ(x) is included in the set of such v ∈ V that J∗v (x) is

not a singleton. Therefore, it follows from the above theorem that if J∗v (x) is a singleton

for a.e. v ∈ V , then F (·) is differentiable at x.

Denote the set of such x ∈ X that F (·) is differentiable at x by XF . Since F (·) is

locally Lipschitz continuous, we have by Rademacher’s theorem that F (·) is differen-

tiable almost everywhere, i.e., the set X \XF has Lebesgue measure zero. We say that

F (·) is XF -continuously differentiable at a point x̄ ∈ X if x̄ ∈ XF and

lim
XF3x→x̄

∇F (x) = ∇F (x̄).

Note that it is assumed in the above that F (·) is differentiable at x̄, but not necessarily

at all x near x̄.

Proposition 2.2.3 Suppose that the set J is finite, assumptions (A1)–(A3) are sat-

isfied and, for x̄ ∈ X, the set J∗v (x̄) is a singleton for a.e. v ∈ V . Then F (·) is

XF -continuously differentiable at x̄.

Proof. By the above discussion we have that, under the assumptions (A1)–(A3) and

since J∗v (x) = {jv} is a singleton for a.e. v ∈ V , the integral function F (·) is differ-

entiable at x̄, i.e., x̄ ∈ XF . Also since Gjv(·) are continuous and J is finite, we have

that if J∗v (x̄) = {jv} is a singleton for some v ∈ V , then J∗v (x) = {jv} for all x in a

neighborhood (depending on v) of x̄. For such x and v we have that ∇fv(x) = Gjvv(x).

Since V is compact and for every j ∈ J , Gjv(x) is continuous on X × V , there exists a

constant L > 0 such that ‖Gjv(x)‖ ≤ L for all v ∈ V , x in a neighborhood of a point

28

x̄ and j ∈ J . Consequently, by the Lebesgue Dominated Convergence theorem, we can

take the following limit inside the integral

lim
XF3x→x̄

∇F (x) =
∫

V
lim

XF3x→x̄
Gjvv(x)dµ(v).

Then, XF -continuity of ∇F (x) follows from the continuity of Gjv(·).

In the remainder of this section, we discuss the following particular case of integral

functions which is important for applications considered in Chapters 3, 4, 6 and 7.

Let g : X × V → < and consider the integral function

F (x) :=
∫

V
[g(x, v)]+dµ(v). (2.2.9)

In particular, if V = [a, b] and dµ(v) = p(v)dv, then the above integral function F (·)
reduces to the function defined in (2.1.1). Clearly, the function fv(x) := [g(x, v)]+ can

be written as the maximum of the function g(x, v) and the identically zero function.

The corresponding assumptions (A2) and (A3) take here the following form:

(A5) For every v ∈ V the function gv(·) := g(·, v) is continuously differentiable.

(A6) The function (x, v) 7→ Gv(x) := ∇gv(x) is continuous on X × V .

From the definition of fv, we know that fv(·) is directionally differentiable and

f ′v(x; h) =





[hT Gv(x)]+, if v ∈ V0(x),

0, if v ∈ V−(x),

hT Gv(x), if v ∈ V+(x),

(2.2.10)

where
V0(x) := {v ∈ V : gv(x) = 0},
V−(x) := {v ∈ V : gv(x) < 0},
V+(x) := {v ∈ V : gv(x) > 0}.

By (2.2.10), we know that for given x ∈ X and any v ∈ V , the function fv(·) is

differentiable at x iff either v ∈ V−(x) ∪ V+(x) or v ∈ V0(x) and Gv(x) = 0. Therefore,

the following result is a consequence of Propositions 2.2.1 and 2.2.2 and Theorem 2.2.1.

Corollary 2.2.1 Suppose that the assumptions (A1), (A5) and (A6) are satisfied.

Then the integral function F (·) defined in (2.2.9) is locally Lipschitz continuous, di-

rectionally differentiable, and formula (2.2.3) holds. Moreover, F (·) is differentiable at

29

a point x ∈ X if and only if

µ ({v ∈ V0(x) : Gv(x) 6= 0}) = 0, (2.2.11)

in which case

∇F (x) =
∫

V+(x)
Gv(x)dµ(s). (2.2.12)

Note that because of the condition (2.2.11), the set V+(x) can be replaced by the

set V+(x)∪ V0(x) without changing the value of the integral in the right hand side of

(2.2.12). We have by Corollary 2.2.1 that, under the specified assumptions, the set XF

is formed by such x ∈ X that condition (2.2.11) holds.

Denote the set of such v ∈ V that gv(x + h) and gv(x) have the same sign by

V1(x, h) , and the set of such v ∈ V that gv(x + h) and gv(x) have different signs by

V2(x, h) = V \ V1(x, h). (By definition, we say that gv(x + h) and gv(x) have the same

sign if one of these numbers is zero.)

Proposition 2.2.4 Suppose that the assumptions (A1), (A5) and (A6) hold and condi-

tion (2.2.11) is satisfied at a point x̄ ∈ X. Suppose, further, that the following condition

holds

lim
h→0

µ (V2(x̄, h)) = 0. (2.2.13)

Then the integral function F (·) defined in (2.2.9) is XF -continuously differentiable at

x̄.

Proof. By Corollary 2.2.1, formula (2.2.12) holds for all x ∈ XF . Therefore, for all

x = x̄ + h ∈ XF in a neighborhood of x̄,

‖∇F (x̄ + h)−∇F (x̄)‖ ≤
∫

V
‖Gv(x̄ + h)−Gv(x)‖ dµ(v)

+
∫

V2(x̄,h)
(‖Gv(x̄ + h)‖+ ‖Gv(x)‖) dµ(v).

(2.2.14)

By the Lebesgue Dominated Convergence theorem, we can take the following limit

inside the integral, and hence

lim
x→x̄

∫

V
‖Gv(x)−Gv(x̄)‖ dµ(v) =

∫

V
lim
x→x̄

‖Gv(x)−Gv(x̄)‖ dµ(v) = 0. (2.2.15)

30

We also know that the second integral in (2.2.14) is bounded by 2Lµ(V2(x̄, h)), where L

is a constant bounding ‖Gv(x)‖ for all v ∈ V and x in a neighborhood of x̄. It follows

then by (2.2.13) and (2.2.15) that

lim
XF3x→x̄

‖∇F (x)−∇F (x̄)‖ = 0, (2.2.16)

which proves that F (·) is XF -continuously differentiable at x̄.

Note that condition (2.2.13) alone does not imply differentiability of F (·). Think,

for example, about g(x, v) ≡ g(x) independent of v and such that g(x̄) = 0 while

∇g(x̄) 6= 0. In that case the set V2(x̄, h) is empty and hence condition (2.2.13) holds.

On the other hand, F (·) = µ(V)([g(·)]+) is not differentiable at x̄.

2.3 Semismoothness of Integral Functions

In this section, we discuss the semismoothness and p-semismoothness properties of

a class of integral functions, these properties are very important for the convergence

analysis of the generalized Newton methods designed for solving semi-infinite program-

ming problems, option price problems and L2 spectral estimation problems, which will

be further discussed in Chapters 3, 6 and 7, respectively.

Consider the integral function F (·) defined in (2.2.1). Suppose that in addition to

the assumptions (i) and (ii) of Proposition 2.2.1, fv(·) is semismooth for a.e. v ∈ V ,

that is, fv(·) is directionally differentiable and

|f ′v(x + h; h)− f ′v(x; h)| ≤ εv(h) ‖h‖ , (2.3.1)

where εv(h) → 0 as h → 0. Then

|F ′(x + h; h)− F ′(x; h)| ≤
∫

V
|f ′v(x + h; h)− f ′v(x; h)| dµ(v)

≤ ‖h‖
∫

V
εv(h)dµ(v).

(2.3.2)

Suppose, further, that εv(h) is dominated by an integrable function γ(v) for all h in a

neighborhood U of 0 ∈ <n, i.e., suph∈U εv(h) ≤ γ(v) for a.e. v ∈ V and
∫

V
γ(v)dµ(v) <

∞. Then, by the Lebesgue Dominated Convergence theorem, we can take the limit

31

inside the integral, and hence

lim
h→0

∫

V
εv(h)dµ(v) =

∫

V
lim
h→0

εv(h)dµ(v) = 0. (2.3.3)

It follows from (2.3.2) and (2.3.3) that F (·) is semismooth.

Now, we consider the case that dµ(v) = dv. Let f(x, v) be continuous with respect

to v ∈ V for each fixed x ∈ <n, and be locally Lipschitz with respect to x uniformly in

v ∈ V , i.e., there exist a neighborhood N of 0 and a positive constant C(x) such that

‖f(x + h, v)− f(x, v)‖ ≤ C(x) ‖h‖ , ∀ h ∈ N, v ∈ V.

Proposition 2.3.1 Suppose that ∂xf(x, v), viewed as a joint mapping of x and v, is

upper semicontinuous, i.e., for every neighborhood N of ∂xf(x, v), there exists δ > 0

such that

∂xf(x′, v′) ⊂ N, for all x′ ∈ N1(x, δ), v′ ∈ N2(v, δ),

where

N1(x, δ) = {x′ : ‖x′ − x‖ ≤ δ}

and

N2(v, δ) = {v′ : ‖v′ − v‖ ≤ δ} ∩ V.

Then F is semismooth at x̄ if f(·, v) is semismooth at x̄ for every v ∈ V .

Proof. It follows from Proposition 2.2.1 that F is directionally differentiable at x̄. On

the other hand, by Theorem 2.7.2 in [23], we obtain

∂F (x) ⊂
∫

V
∂xf(x, v)dv. (2.3.4)

This means that for any Q ∈ ∂F (x), there exists a measurable mapping v → Qv from

V to <n with Qv ∈ ∂xf(x, v) a.e. such that for every h ∈ <n,

Qh =
∫

V
Qvhdv.

Take any h ∈ Rn and Q ∈ ∂F (x̄ + h). We have

F (x̄ + h)− F (x̄)−Q h =
∫

V
(f(x̄ + h, v)− f(x̄, v)−Qvh) dv,

32

where Qv ∈ ∂xf(x̄ + h, v), which implies

|F (x̄ + h)− F (x̄)−Q h| ≤
∫

V
|f(x̄ + h, v)− f(x̄, v)−Qvh| dv. (2.3.5)

To prove F is semismooth, it suffices to show that

lim
h→0

|F (x̄ + h)− F (x̄)−Q h|
‖h‖ = 0. (2.3.6)

Since f(·, v) is semismooth at x̄ for every fixed v ∈ V , we have

lim
h→0

|f(x̄ + h, v)− f(x̄, v)−Qvh|
‖h‖ = 0, for all Qv ∈ ∂xf(x̄ + h, v). (2.3.7)

If there exist a neighborhood N of 0 and C > 0 such that

|f(x̄ + h, v)− f(x̄, v)−Qvh|
‖h‖ ≤ C, (2.3.8)

for all h ∈ N , Qv ∈ ∂xf(x̄ + h, v) and v ∈ V , then by the Lebesgue Dominated

Convergence theorem, (2.3.6) follows from (2.3.7).

Now we prove (2.3.8). Since f is locally Lipschitz continuous at x̄ uniformly in

v ∈ V , there exist a neighborhood N of 0 and C(x̄) > 0 such that

|f(x̄ + h, v)− f(x̄, v)|
‖h‖ ≤ C(x̄), ∀ h ∈ N, v ∈ V. (2.3.9)

On the other hand, the upper semicontinuity of ∂xf(x, v) implies that for any v ∈ V

and neighborhood N(v) of ∂xf(x̄, v), there exists δv > 0 such that

∂xf(x̄ + h, v′) ⊂ N(v), for all h ∈ N1(0, δv), v
′ ∈ N2(v, δv).

Obviously,

V ⊂ ⋃

v∈V

N2(v, δv).

By the compactness of V , there exist a finite number of neighborhoods, say N2(vj, δvj
),

j = 1, 2, · · · ,m such that

V ⊂
m⋃

j=1

N2(vj, δvj
).

Let δ̄ = min{δv1 , · · · , δvm}. Then we have

⋃

v′∈V

∂xf(x̄ + h, v′) ⊂
m⋃

j=1

N(vj), for all h ∈ N1(0, δ̄).

33

It is well known that every ∂xf(x̄, vj) is compact, j = 1, 2, · · · ,m. Consequently,
⋃m

j=1 ∂xf(x̄, vj) is compact and
⋃m

j=1 N(vj) can be taken a bounded set. Hence,

⋃

v′∈V

∂xf(x̄ + h, v′)

is bounded, which together with (2.3.9) implies (2.3.8) holds. We obtain the desired

result and complete the proof of the proposition.

Proposition 2.3.2 Suppose that f(x, v) is the max-function, defined in (2.2.5), and

that the assumptions (A1)–(A4) hold. Then the integral function F (·) is semismooth at

every x ∈ X.

Proof. Assumptions (A2)–(A4) imply that for every v ∈ V the function fv(·) is

semismooth [105]. Consider a point x ∈ X. By the above discussion, to prove the

assertion, we only need to verify that εv(h) is dominated by an integrable function for

all h in a neighborhood U of 0 ∈ <n. We have that the constant

K := sup {‖Gjv(x + h)‖ : j ∈ J, v ∈ V, h ∈ U}
is finite, provided that the neighborhood U is compact. Also by (2.2.6) we have that

|f ′v(x + h; h)| ≤ K ‖h‖ for all v ∈ V , j ∈ J , and h ∈ U . It follows that εv(h) is

dominated by the constant function γ(v) = 2K, and hence the proof is complete.

Suppose now that for every v ∈ V , fv(·) is p-order semismooth [131], at a point x ∈
X, for 0 < p ≤ 1. (Recall that 1-order semismoothness is called strongly semismooth,

see Section 1.1.1). That is, lim suph→0 cv(h) < ∞, where

cv(h) :=
|f ′v(x + h; h)− f ′v(x; h)|

‖h‖1+p , h 6= 0.

We have that

|F ′(x + h; h)− F ′(x; h)| ≤ ‖h‖1+p
∫

V
cv(h)dµ(v). (2.3.10)

Therefore, in order to show that F (·) is p-order semismooth at x, we need to verify that

lim sup
h→0

∫

V
cv(h)dµ(v) < ∞. (2.3.11)

As an example, consider the p-order semismoothness of the integral function F (·)
defined in (2.2.9). It is easy to know that cv(h) ≤ qv(h) with

qv(h) :=




‖h‖−p ‖Gv(x + h)−Gv(x)‖ , if v ∈ V1(x, h),

‖h‖−p max {‖Gv(x + h)‖ , ‖Gv(x)‖} , if v ∈ V2(x, h).
(2.3.12)

34

Theorem 2.3.1 Suppose that the assumptions (A1), (A5) and (A6) hold. Then the

integral function F (·) defined in (2.2.9) is semismooth. Suppose, further, that the fol-

lowing two conditions hold: there exists an integrable function η : V → <+ such that

∥∥∥Gv(x
1)−Gv(x

2)
∥∥∥ ≤ η(v)

∥∥∥x1 − x2
∥∥∥

p
, for all x1, x2 ∈ X and a.e. v ∈ V, (2.3.13)

and

µ(V2(x, h)) = O (‖h‖p) . (2.3.14)

Then F (·) is p-order semismooth at x.

Proof. Semismoothness of F (·) follows by Proposition 2.3.2. In order to show p-order

semismoothness of F (·) we need to verify (2.3.11). It is obvious that

∫

V
cv(h)dµ(v) ≤

∫

V1(x,h)
qv(h)dµ(v) +

∫

V2(x,h)
qv(h)dµ(v). (2.3.15)

By (2.3.12) and (2.3.13), one has

∫

V1(x,h)
qv(h)dµ(v) ≤

∫

V
η(h)dµ(v) < +∞.

Since ‖Gv(x + h)‖ and ‖Gv(x)‖ are bounded for v ∈ V , we know by (2.3.12) and

(2.3.14) that the second integral in the right hand side of (2.3.15) is also bounded and

the assertion follows.

The condition (2.3.13) holds, in particular, if Gv(·) is differentiable and ∇Gv(x)

is continuous on X × V . Condition (2.3.14) is more delicate. It is clear that this

condition implies condition (2.2.13). Later, we will analyze cases in which condition

(2.3.14) holds. At this point, we remark that this condition for p = 1 may fail and

the integral function F may not be strongly semismooth. An example of an integral

function F (·), of the form (2.2.9), which is not strongly semismooth was given in Qi

and Yin [136]. Ralph [139] gave a simplified example as follows: F is defined by

(2.2.9), g(x, v) := v2 − x, v ∈ [0, 1], x ∈ < and dµ(v) = dv. Here, for x = 0 and

h > 0, V2(0, h) = (0,
√

h), and hence condition (2.3.14) does not hold. And, indeed, the

integral function is not strongly semismooth in this example.

In the rest of this section, we study the p-order semismoothness of the integral

function F : <n → < defined in (2.1.1). For the sake of convenience, we first recall the

concept of tensor and discuss its properties.

35

We use A(k)
n to denote a k-th order n-dimensional tensor and use A

(k)
n,i1···ik to denote

its elements. We assume il = 1, · · · , n for l = 1, · · · , k. We assume that A(k)
n is totally

symmetric, i.e.,

A
(k)
n,i1···ik = A

(k)
n,j1···jk

if {j1, · · · , jk} is any reordering of {i1, · · · , ik}. Let x ∈ <n. Denote

A(k)
n xk :=

n∑

i1,···,ik=1

A
(k)
n,i1···ikxi1 · · ·xik .

Let ‖·‖ be the F -norm of the tensor space, that is,

∥∥∥A(k)
n

∥∥∥ =

√√√√
n∑

i1,···,ik=1

(A
(k)
n,i1···ik)

2.

Note that the above concept extends the F -norm concepts of matrices and vectors.

Proposition 2.3.3 Let A(k)
n be a k-th order n-dimensional tensor and x ∈ <n. Then

∥∥∥A(k)
n xk

∥∥∥ ≤
∥∥∥A(k)

n

∥∥∥ ‖x‖k . (2.3.16)

Proof. We show inductively that (2.3.16) holds. It is obvious that (2.3.16) holds

trivially for k = 1 because A(1)
n is an n-dimensional vector. Let us assume that (2.3.16)

holds for some k = l. Now, we show that (2.3.16) holds also for k = l + 1. By the

definition of A(k)xk,

∣∣∣A(l+1)
n xl+1

∣∣∣ =

∣∣∣∣∣
n∑

i1,···,il,il+1=1
A

(l+1)
n,i1···ilil+1

xi1 · · ·xilxil+1

∣∣∣∣∣
= |x1y1 + · · ·+ xnyn|
≤ ‖x‖ ‖y‖ ,

where y = (y1, · · · , yn)T , yj =
∑n

i1,···,il=1 A
(l+1)
n,i1···iljxi1 · · ·xil = A(l)

n (j)xl, and A(l)
n (j) is the

lth order n-dimensional tensor produced by fixing the (l + 1)th order subscript j for

j = 1, · · · , n. By the assumption,

∣∣∣A(l)
n (j)xl

∣∣∣ ≤
∥∥∥A(l)

n (j)
∥∥∥ ‖x‖l .

Hence,

‖y‖ =

√√√√
n∑

j=1

y2
j ≤

√√√√
n∑

j=1

∥∥∥A(l)
n (j)

∥∥∥
2 (
‖x‖l

)2
=

∥∥∥A(l+1)
n

∥∥∥ ‖x‖l .

36

So ∣∣∣A(l+1)
n xl+1

∣∣∣ ≤
∥∥∥A(l+1)

n

∥∥∥ ‖x‖l+1 .

By induction, (2.3.16) holds for any positive integer k. The proof is completed.

Since semismoothness of F at a point x̄ is a local property which depends on only

the status of F near x̄, in order to study p-order semismoothness of F defined by (2.1.1),

we first establish the following lemma which characterizes the perturbation property of

the root v(x) of g(x, ·) = 0, where g : <n+1 → < has continuous m-order derivative. In

this lemma we assume v(x) exists (but maybe not unique) for any x ∈ X, where X is

a certain open convex set containing x̄. Note that X can be a neighborhood of x̄.

Lemma 2.3.1 Let x̄ ∈ X, where X ⊂ <n is an open convex set. Suppose that for any

x ∈ X, g(x, ·) = 0 has at least one root on [a, b], denoted as v(x). Let v̄ = v(x̄) and

assume that the following condition holds:

∇(k)
v g(x̄, v̄) = 0, k = 1, 2, · · · ,m− 1,∣∣∣∇(m)
v g(x, v)

∣∣∣ > c, ∀ x ∈ X, v ∈ [a, b],
(2.3.17)

where m is a positive integer and c is a positive number. Then v(x) → v̄ as x → x̄, and

there exists a positive constant L(x̄, v̄) such that

|v(x)− v̄|m ≤ L(x̄, v̄) ‖x− x̄‖ ,

and v̄ is the unique root of g(x̄, ·) = 0.

Proof. Let xn+1 = v, z = (x, xn+1), z̄ = (x̄, v̄) and

A
(k)
n+1,i1···ik(z) =

∂kg

∂xi1 · · · ∂xik

∣∣∣∣∣
z

, il = 1, · · · , n + 1, l = 1, · · · , k. (2.3.18)

It is clear that A
(k)
n+1(z) is a totally symmetric tensor. By using (2.3.18), the standard

Taylor theorem for multivariate functions [27] can be written as:

g(z) = g(z̄) + A
(1)
n+1(z̄)∆z +

A
(2)
n+1(z̄)∆z2

2!
+ · · ·+ A

(m−1)
n+1 (z̄)∆zm−1

(m− 1)!
+

A
(m)
n+1(z(ξ))∆zm

m!
,

(2.3.19)

37

where ∆z = z − z̄, and z(ξ) is a point in the segment connecting z and z̄. By direct

computation, one has

A
(k)
n+1(z)∆zk = ∇(k)

v g(z)∆vk + Ck−1
k

(
B

(1)
n,k(z)∆x

)
∆vk−1

+Ck−2
k

(
B

(2)
n,k(z)∆x2

)
∆vk−2 + · · ·

+C1
k

(
B

(k−1)
n,k (z)∆xk−1

)
∆v

+C0
k

(
B

(k)
n,k(z)∆xk

)
, k = 1, · · · ,m,

(2.3.20)

where

Cj
k =

k!

(k − j)!j!
, j = 0, 1, · · · , k

and B
(l)
n,k(z) is an l-th order n-dimensional tensor with components

B
(l)
n,i1···il(z) =

∂kg

∂xi1 · · · ∂xil∂vk−l

∣∣∣∣∣
z

, l = 1, · · · , k.

From (2.3.20) and the condition given, the formula (2.3.19) can be rewritten as follows:

− 1

m!
∇(m)

v g(z(ξ))∆vm =
[
B

(1)
n,1(z̄)∆x +

1

2!
C1

2

(
B

(1)
n,2(z̄)∆x

)
∆v + · · ·

+
1

(m− 1)!
Cm−2

m−1

(
B

(1)
n,m−1(z̄)∆x

)
∆vm−2

+Cm−1
m

(
B(1)

n,m(z(ξ))∆x
)

∆vm−1
]

+
[

1

2!
C0

2

(
B

(2)
n,2(z̄)∆x2

)
+

1

3!
C1

3

(
B

(2)
n,3(z̄)∆x2

)
∆v + · · ·

+
1

(m− 1)!
Cm−3

m−1

(
B

(2)
n,m−1(z̄)∆x2

)
∆vm−3

+
1

m!
Cm−2

m

(
B(2)

n,m(z(ξ))∆x2
)

∆vm−2
]

+ · · ·
+

[
1

(m− 1)!
C1

m−1

(
B

(m−1)
n,m−1(z̄)∆xm−1

)

+
1

m!
C1

m

(
B(m−1)

n,m (z(ξ))∆xm−1
)

∆v
]

+
1

m!
C0

m

(
B(m)

n,m(z(ξ))∆xm
)
.

Since
∣∣∣∇(m)

v g(x, v)
∣∣∣ > c, by Proposition 2.3.3, we have that

|∆v|m ≤ m!
∣∣∣∇(m)

v g(z(ξ))
∣∣∣
−1

{[∥∥∥B(1)
n,1(z̄)

∥∥∥ +
1

2!
C1

2

∥∥∥B(1)
n,2(z̄)

∥∥∥ |∆v|+ · · ·

+
1

(m− 1)!
Cm−2

m−1

∥∥∥B(1)
n,m−1(z̄)

∥∥∥ |∆v|m−2 + Cm−1
m

∥∥∥B(1)
n,m(z(ξ)

∥∥∥ |∆v|m−1

]

+

[
1

2!
C0

2

∥∥∥B(2)
n,2(z̄)

∥∥∥ + · · ·+ 1

(m− 1)!
Cm−3

m−1

∥∥∥B(2)
n,m−1(z̄)

∥∥∥ |∆v|m−3

38

+
1

m!
Cm−2

m

∥∥∥B(2)
n,m(z(ξ))

∥∥∥ |∆v|m−2
]
‖∆x‖

+ · · ·
+

[
1

(m− 1)!
C1

m−1

∥∥∥B(m−1)
n,m−1(z̄)

∥∥∥ +
1

m!
C1

m

∥∥∥B(m−1)
n,m (z(ξ))

∥∥∥ |∆v|
]
‖∆x‖m−2

+
1

m!
C0

m

∥∥∥B(m)
n,m(z(ξ))

∥∥∥ ‖∆x‖m−1
}
‖∆x‖

It is clear that all coefficients of ‖∆x‖k and |∆v|k, (k = 1, 2, · · · ,m − 1) are bounded.

Consequently, from the fact that
∣∣∣∇(m)

v g(z(ξ))
∣∣∣
−1

is bounded, there exists a positive

constant L̄(x̄, v̄) such that

|∆v|m ≤ L̄(x̄, v̄) ‖∆x‖ .

This shows that v(x) → v̄ as x → x̄, and v̄ is the unique root of g(x̄, ·) = 0. The proof

is completed.

Remark 2.3.1 The second item in (2.3.17), i.e.,
∣∣∣∇(m)

v g(x, v)
∣∣∣ > c, for all x ∈ X,

v ∈ [a, b] characterizes the uniform sharpness of the curve family {g(x, ·) : x ∈ X} on

interval [a, b] in a sense. For instance, in the case m = 2, since the value of ∇(2)
v g(x, v)

characterizes the “convexity degree” of curve g(x, ·), the second item in (2.3.17) shows

the curve family {g(x, ·) : x ∈ X} has at least “convexity degree” c on interval [a, b].

We now return to considering the F (·) defined by (2.1.1). We give a sufficient

condition under which F is p-order semismooth at a given point x̄.

Theorem 2.3.2 Consider the integral function F (·) defined by (2.1.1) at a point x̄ ∈
<n. Suppose that:

(i) gv(x) = g(x, v) is m-order continuously differentiable, jointly in x and v, where

m is a certain positive integer,

(ii) V0(x̄) is a singleton set, denoted as {v̄},

(iii) v̄ is an m-th order root of g(x̄, ·) = 0, that is,



∇(k)

v g(x̄, v̄) = 0, k = 1, 2, · · · ,m− 1,

∇(m)
v g(x̄, v̄) 6= 0,

(2.3.21)

(iv) there exists an integrable function η(v) such that

‖Gv(x + h)−Gv(x)‖ ≤ η(v) ‖h‖ 1
m . (2.3.22)

39

Then F (·) is 1
m

-order semismooth at x̄.

Proof. By Theorem 2.3.1, we only need to check that whether (2.3.14) holds. Since

∇(m)
v g(x, v) is continuous at (x̄, v̄) and d̄ := ∇(m)

v g(x̄, v̄) 6= 0, there exist a neighborhood

U of x̄ and a subinterval [v̄ − δ, v̄ + δ] such that

min
x∈U,v∈[v̄−δ,v̄+δ]

∣∣∣∇(m)
v g(x, v)

∣∣∣ >

∣∣∣∣∣
d̄

2

∣∣∣∣∣ .

Take any h ∈ <n with x̄ + h ∈ U . To prove the assertion, we consider the following

four cases: (i) d̄ < 0 and m is an even number; (ii) d̄ < 0 and m is an odd number; (iii)

d̄ > 0 and m is an even number; and (iv) d̄ > 0 and m is an odd number. We now only

discuss cases (i) and (ii), the proof for the other two cases is similar.

For case (i), it is not difficult to know that

g(x̄, v) ≤ g(x̄, v̄) = 0, ∀ v ∈ [a, b]. (2.3.23)

Without loss of generality, we assume that a < v̄ < b. If V0(x̄+h) = ∅, then V−(x̄+h) =

[a, b]. Hence, V2(x̄ + h) = ∅. Now, we assume that V0(x̄ + h) 6= ∅. Let

v̂(h) := sup {v : v ∈ V0(x̄ + h)} ,

ṽ(h) := inf {v : v ∈ V0(x̄ + h)} .

By the continuity of g, we know that V0(x̄ + h) is a closed set. Consequently, v̂(h),

ṽ(h) ∈ V0(x̄ + h). We assume, shrinking U if necessary, that v(x) ∈ [v̄− δ, v̄ + δ] for all

v(x) ∈ V0(x) and x ∈ U . From g(x̄, b) < 0, we know that g(x̄ + h, b) < 0 whenever ‖h‖
is small enough. We conclude that for any v ∈ (v̂(h), b] or v ∈ [a, ṽ(h)),

g(x̄ + h, v) < 0.

In fact, if there exists, without loss of generality, a v′ ∈ (v̂(h), b] such that

g(x̄ + h, v′) > 0,

then, by the Mean-Value Theorem, there exists a v′′ on the open line segment from v′

to b such that

g(x̄ + h, v′′) = 0,

40

which contradicts the definition of v̂(h). So,

V2(x̄, h) ⊆ [ṽ(h), v̂(h)].

Further, since v̂(h), ṽ(h) ∈ [v̄− δ, v̄ + δ], applying Lemma 2.3.1 to the case that X = U

and [a, b] = [v̄ − δ, v̄ + δ], we obtain

µ(V2(x̄, h)) ≤ ∆v̂(h) + ∆ṽ(h) = O(‖h‖ 1
m),

where ∆v̂(h)=|v̂(h)− v̄| and ∆ṽ(h) = |ṽ(h)− v̄|.

For case (ii), one has

g(x̄, v) > 0, ∀ v ∈ [a, v̄),

g(x̄, v) < 0, ∀ v ∈ (v̄, b].

That is, V+(x̄) = [a, v̄) and V−(x̄) = (v̄, b]. Hence, for any h ∈ Rn, V0(x̄ + h) 6= ∅
whenever ‖h‖ is small enough, and

g(x̄ + h, v) > 0, ∀ v ∈ [a, ṽ(h)),

g(x̄ + h, v) < 0, ∀ v ∈ (v̂(h), b].

So,

V2(x̄, h) ⊆ [ṽ(h), v̄] ∪ [v̄, v̂(h)].

Similarly to case (i), we obtain also

µ(V2(x̄, h)) ≤ O(‖h‖ 1
m).

The proof is completed.

Remark 2.3.2 In Theorem 2.3.2, the condition (ii) is not essential since the sum of

a finite number of p-order semismooth functions is still a p-order semismooth function.

Suppose the set V0(x̄) = {v ∈ [a, b] : gv(x̄) = 0} is finite and the highest order of roots

is m, then by separating [a, b] into a certain number of subintervals such that every

subinterval contains only a single root of gv(x̄) = 0, we know that F is the sum of the

corresponding integral functions defined on these subintervals. By Theorem 2.3.2, these

integral functions are at least 1
m

-order semismooth at x̄ and so is F . Note, condition

(2.3.21) is easier to check than (2.3.14).

With the above results and the results of [132] at hand, we may identify whether a

particular integral function F is differentiability, (p-order) semismooth, almost smooth

[132] or none of the above.

41

2.4 Smoothing Approximation Functions

From Section 2.2, we know that the integral function F defined in (2.2.9) is locally Lip-

schitz continuous and directionally differentiable, however it is nonsmooth in general

since the function fv(x) = [g(x, v)]+ is nonsmooth. Therefore, it is very difficult to com-

pute the generalized Jacobian of the integral function F . In this section, we introduce

the smoothing approximation function F̄ for F and study two classes of properties with

respect to F̄ . The main difference between the two classes of properties lies in the fact

that the smoothing parameter is ordinary one in the first class of properties, whereas

in the second class of properties the smoothing parameter is also regarded as variable

just as the original variable x.

For the function fv(x) = [g(x, v)]+, we may introduce many smoothing approxi-

mation functions to it. The three most frequently used Gabriel-Moré type smoothing

approximation functions in the literature are as follows:

ḡ1(t, x, v) = t ln(1 + eg(x,v)/t), (2.4.1)

ḡ2(t, x, v) =

√
(g(x, v))2 + 4t2 + g(x, v)

2
(2.4.2)

and

ḡ3(t, x, v) =





0, if g(x, v) < −t2;

(g(x, v) + t2)2/4t2, if − t2 ≤ g(x, v) ≤ t2;

g(x, v), if g(x, v) > t2,

(2.4.3)

where t 6= 0 is smoothing approximation parameter. In some literatures, ḡ1(t, x, v),

ḡ2(t, x, v) and ḡ3(t, x, v) are called the neural networks smoothing plus function, the

Chen-Harker-Kanzow-Smale smoothing function and the Zang smoothing plus function

of [g(x, v)]+, respectively, see [130].

Let

F̄ (t, x) =
∫

V
ḡ(t, x, v)dµ(v), (2.4.4)

where ḡ(t, x, v) may be any one of ḡ1(t, x, v), ḡ2(t, x, v) and ḡ3(t, x, v) mentioned above.

Clearly, for any t 6= 0, F̄ (t, ·) is continuously differentiable in <n and

∇xF̄ (t, x) =
∫

V
∇xḡ(t, x, v)dµ(v). (2.4.5)

42

Now we study the first class of properties of F̄ . To this end, we first give a generalized

Jacobian formula for F .

For x̄ ∈ <n, let Λ0 be the set of all mappings λ : V0(x̄) → [0, 1] such that for every

ξ ∈ <n, the function v 7→ λ(v)Gv(x̄)T ξ belongs to L1(V,<). We have the following

result.

Lemma 2.4.1 Suppose that the assumptions (A1) and (A6) hold. Then we have

∂F (x̄) =

{∫

V+(x̄)
Gv(x̄)T dµ(v) +

∫

V0(x̄)
λ(v)Gv(x̄)T dµ(v) : λ ∈ Λ0

}
.

Proof. Since <n is a separable space and fv(·) is regular at x̄, we obtain, by Theorem

2.7.2 in [23], that

∂F (x̄) =
∫

V
∂fv(x̄)dµ(v). (2.4.6)

Here, the interpretation of (2.4.6) is as follows: For every ζ in ∂F (x̄), there exists a

mapping v 7→ ζv from V to <n with

ζv ∈ ∂fv(x̄) a.e.,

and having the property that for every ξ ∈ <n, the function v 7→ ζv · ξ belongs to

L1(V,<) and

ζ · ξ =
∫

V
ζv · ξdµ(v).

It is readily shown that ∂fv(x̄) = {0} for v ∈ V−(x̄), ∂fv(x̄) = {Gv(x̄)T} for v ∈ V+(x̄)

and ∂fv(x̄) =
{
λGv(x̄)T : λ ∈ [0, 1]

}
for any v ∈ V0(x̄). Thus, we obtain the desired

result and complete the proof.

Theorem 2.4.1 Suppose that the assumptions (A1) and (A6) hold. Then

(i) F̄ is a smoothing approximation function for F , that is, F̄ is continuously differ-

entiable with respect to the second variable for any t 6= 0 and there is a constant C > 0

such that for any x ∈ <n and t ∈ <,

|F̄ (t, x)− F (x)| ≤ C|t|.

(ii) We have

lim
x→x̄, t→0

dist(∇T
x F̄ (t, x), ∂F (x̄)) = 0. (2.4.7)

43

Proof. For the sake of simplicity, we only consider the case that ḡ(t, x, v) = ḡ3(t, x, v),

where ḡ3(t, x, v) is defined by (2.4.3). The other two functions can be discussed in a

similar way. It follows from (2.2.9), (2.4.3) and (2.4.4) that (i) holds.

Now we prove (2.4.7) holds. To this end, we only need to prove that for any sequence

{(tk, xk)} with (tk, x
k) → (0, x̄) and tk 6= 0, there exists a subsequence {(tkl

, xkl)} of

{(tk, xk)} such that

lim
l→∞

∇T
x F̄ (tkl

, xkl) ∈ ∂F (x̄).

By simple computation,

∇xḡ(t, x, v) =





0, if g(x, v) < −t2;

g(x, v) + t2

2t2
Gv(x), if − t2 ≤ g(x, v) ≤ t2;

Gs(x), if g(x, v) > t2.

Then

∇xF̄ (t, x) =
∫

V0(x,t)

g(x, v) + t2

2t2
Gv(x)dµ(v) +

∫

V+(x,t)
Gv(x)dµ(v)

=
∫

V
χV0(x,t)(v)

g(x, v) + t2

2t2
Gv(x)dµ(v)

+
∫

V
χV+(x,t)(v)Gv(x)dµ(v),

where V0(x, t) = {v ∈ V : −t2 ≤ g(x, v) ≤ t2}, V+(x, t) = {v ∈ V : g(x, v) > t2}, and

for a set A, χA(·) is defined by

χA(s) =





1, s ∈ A,

0, otherwise.
(2.4.8)

Moreover, we obtain that

∇xF̄ (t, x) =
∫

V+(x̄)
χV0(x,t)(v)

g(x, v) + t2

2t2
Gv(x)dµ(v)

+
∫

V0(x̄)
χV0(x,t)(v)

g(x, v) + t2

2t2
Gv(x)dµ(v)

+
∫

V−(x̄)
χV0(x,t)(v)

g(x, v) + t2

2t2
Gv(x)dµ(v)

+
∫

V+(x̄)
χV+(x,t)(v)Gv(x)dµ(v)

+
∫

V0(x̄)
χV+(x,t)(v)Gv(x)dµ(v)

+
∫

V−(x̄)
χV+(x,t)(v)Gv(x)dµ(v).

(2.4.9)

44

For any v ∈ V−(x̄), χV+(x,t)(v) = 0 whenever (t, x) is enough close to (0, x̄), which

implies limk→∞ χV+(xk,tk)(v)Gv(x
k) = 0 for any v ∈ V−(x̄). So, by Lebesgue Dominated

Convergence Theorem, one has

lim
k→∞

∫

V−(x̄)
χV+(xk,tk)(v)Gv(x

k)dµ(v) = 0. (2.4.10)

For any v ∈ V+(x̄), χV+(x,t)(v) = 1 whenever (t, x) is enough close to (0, x̄), which implies

limk→∞ χV+(xk,tk)(v)Gv(x
k) = Gv(x̄) for any v ∈ V+(x̄). So, by Lebesgue Dominated

Convergence Theorem again, one has

lim
k→∞

∫

V+(x̄)
χV+(xk,tk)(v)Gv(x

k)dµ(v) =
∫

V+(x̄)
Gv(x̄)dµ(v).

In a similar way, one has

lim
k→∞

∫

V+(x̄)
χV0(xk,tk)(v)

g(xk, v) + t2k
2t2k

Gv(x
k)dµ(v) = 0

and

lim
k→∞

∫

V−(x̄)
χV0(xk,tk)(v)

g(xk, v) + t2k
2t2k

Gv(x
k)dµ(v) = 0.

Denote

Hv(x, t) = χV+(x,t)(v) + χV0(x,t)(v)
g(x, v) + t2

2t2
.

Obviously, 0 ≤ Hv(x, t) ≤ 1. Then there exist a subsequence {(tkl
, xkl)} of {(tk, xk)}

and a mapping λ : V0(x̄) → [0, 1] such that

lim
l→∞

∫

V0(x̄)
Hv(x

kl , tkl
)Gv(x

kl)dµ(v) =
∫

V0(x̄)
λ(v)Gv(x̄)dµ(v).

By summing the above discussion, we know that

lim
l→∞

∇T
x F̄ (tkl

, xkl) =
∫

V+(x̄)
Gv(x̄)T dµ(v) +

∫

V0(x̄)
λ(v)Gv(x̄)T dµ(v) ∈ ∂F (x̄).

We obtain the desired result and complete the proof.

It immediately follows from Theorem 2.4.1 that the following corollary holds.

Corollary 2.4.1 Suppose that the assumptions (A1) and (A6) hold. Then F̄ satisfies

the Jacobian consistency property, i.e., for any x ∈ <n,

lim
t→0

dist(∇T
x F̄ (t, x), ∂F (x)) = 0.

45

In the remainder of this section, we regard the smoothing approximation parameter

t in F̄ as a variable together with the original variable x and discuss the semismoothness

of F̄ (·, ·) in the case when dµ(v) = dv.

Theorem 2.4.2 The function F̄ has the following properties:

(i) It is twice continuously differentiable for any t 6= 0.

(ii) The function F̄ (·, ·) is semismooth.

Proof. It is obvious that (i) holds. Now we prove that (ii) holds.

By (i), we only need to show that (ii) holds on z̄ = (0, x̄). Since the composition

of semismooth functions is a semismooth function [46], ḡ(t, x, v) is semismooth with

respect to (t, x) for any fixed v ∈ V . To prove the semismoothness of F̄ (t, x), by

Proposition 2.3.1, we only need to show that ∂(t,x)ḡ(t, x, v) is upper semicontinuous

with respect to (t, x, v) and ḡ(t, x, v) is locally Lipschitz with respect to (t, x) uniformly

in v ∈ V . For any (x, v) ∈ <n × V , we denote g(x, v) and ∇T
x g(x, v) by g and ∇T

x g,

respectively. By direct computation, we have the followings.

(i) If ḡ(t, x, v) = ḡ1(t, x, v), where ḡ1(t, x, v) is defined by (2.4.1), then

∂(t,x)ḡ(t, x, v) =










 ln(1 + e

g
t)− ge

g
t

t
(
1 + e

g
t

) ,
e

g
t

1 + e
g
t

∇T
x g






 , if t 6= 0

{(
0, λ∇T

x g
)

: λ ∈ [0, 1]
}

, if t = 0, g(x, v) 6= 0{(
λ, µ∇T

x g
)

: 0 ≤ λ ≤ φ(µ), µ ∈ [0, 1]
}

, if t = 0, g(x, v) = 0,

(2.4.11)

where φ(µ) = −[(1− µ) ln(1− µ) + µ ln µ].

(ii) If ḡ(t, x, v) = ḡ2(t, x, v), where ḡ2(t, x, v) is defined by (2.4.2), then

∂(t,x)ḡ(t, x, v) =





{
1
2

(
4t√

g2 + 4t2
,

(
1 +

g√
g2 + 4t2

)
∇T

x g

)}
, if t 6= 0

{
(
0,∇T

x g
)
}, if t = 0, g(x, v) > 0

{(0, 0)}, if t = 0, g(x, v) < 0{(
λ, µ∇T

x g
)

: λ2 + (2µ− 1)2 ≤ 1
}

, if t = 0, g(x, v) = 0.

(2.4.12)

46

(iii) If ḡ(t, x, v) = ḡ3(t, x, v), where ḡ3(t, x, v) is defined by (2.4.3), then

∂(t,x)ḡ(t, x, v) =





{(0, 0)}, if t 6= 0, g(x, v) < −t2{(
t4 − g2

2t3
,
t2 + g

2t2
∇T

x g

)}
, if t 6= 0, −t2 ≤ g(x, v) ≤ t2

{(
0,∇T

x g
)}

, if t 6= 0, g(x, v) > t2

{(0, 0)}, if t = 0, g(x, v) < 0{(
0, λ∇T

x g
)

: λ ∈ [0, 1]
}

, if t = 0, g(x, v) = 0{(
0,∇T

x g
)}

, if t = 0, g(x, v) > 0

(2.4.13)

From (2.4.11), (2.4.12) and (2.4.13), it is easy to verify ∂(t,x)ḡ(t, x, v) is upper semicon-

tinuous with respect to (t, x, v) on <× <n × V for ḡ defined by (2.4.1)-(2.4.3).

Now we verify that ḡ(t, x, v) is locally Lipschitz with respect to (t, x) uniformly in

v ∈ V . Let z = (t, x). We now break up the verification into two cases.

First, if t 6= 0, then by the Mean-Value theorem, there exists a point z̃ in the open

segment connecting z and z̄ such that

ḡ(z, v)− ḡ(z̄, v) = ∇zḡ(z̃, v)T (z − z̄).

By (2.4.11), (2.4.12) and (2.4.13), it is easy to know that there exists C > 0 such that

|ḡ(z, v)− ḡ(z̄, v)| ≤ C ‖z − z̄‖ , ∀ v ∈ V, (2.4.14)

since g is continuously differentiable and V is compact.

The second case is that t = 0. One has

|ḡ(z, v)− ḡ(z̄, v)| = |[g(x, v)]+ − [g(x̄, v)]+|
≤ 2 |g(x, v)− g(x̄, v)|
≤ ‖∇xḡ(x̃, v)‖ ‖x− x̄‖
= ‖∇xḡ(x̃, v)‖ ‖z − z̄‖ ,

(2.4.15)

where x̃ is in the open segment connecting x and x̄, the first inequality comes from the

fact that |[a]+ − [b]+| ≤ 2 |a− b|. By (2.4.15) and the condition that g is continuously

differentiable and V is compact, there exists C > 0 such that (2.4.14) holds. The proof

is complete.

Remark 2.4.1 It is not difficult to know that ḡ(·, ·, v) is strongly semismooth for every

v ∈ V . But, the following example shows that F̄ (·, ·) may not be strongly semismooth

in general.

47

Example 2.4.1 Let g(x, v) = v2 − x, V = [0, 1] and ḡ(t, x, v) = ḡ2(t, x, v), where

ḡ2(t, x, v) is defined by (2.4.2). We consider the strongly semismoothness of F̄ at (0, 0).

Let 4z := (4t,4x) = (4t, 0) and 4t > 0. By a direct computation, we have

F̄ (0, 0) =
∫ 1

0
v2dv,

F̄ (4t, 0) =
1

2

∫ 1

0

(√
v4 + 4(4t)2 + v2

)
dv

and

∂F̄ (4t, 0) =






1

2

∫ 1

0

44 t√
v4 + 4(4t)2

dv,
1

2

∫ 1

0

−v2

√
v4 + 4(4t)2

dv






 .

Consequently, for Q ∈ ∂F̄ (4t, 0),

∣∣∣F̄ (4t, 0)− F̄ (0, 0)−Q4 z
∣∣∣

‖4z‖2 = 2
∫ 1

0

v2

(√
v4 + 4(4t)2 + v2

) √
v4 + 4(4t)2

dv

≥
∫ 1

0

v2

v4 + 4(4t)2
dv

≥
∫ 1

0

v3

v4 + 4(4t)2
dv.

It is obvious that
∫ 1

0

v3

v4 + 4(4t)2
dv → ∞ as 4t → 0+. This shows that F̄ is not

strongly semismooth at (0, 0).

48

Chapter 3

Numerical Methods for SIP

Problems

3.1 Introduction

We consider the following SIP problem:

min
x

f(x)

s.t. g(x, v) ≤ 0, v ∈ V,
(3.1.1)

where f : <n → < and g : <n × <m → < are continuously differentiable and V ⊂ <m

is a compact set. As mentioned in Section 1.2, the SIP problem (3.1.1) has a strong

practical background, that is why this problem received much attention in recent 30

years. There are many numerical methods for solving the SIP problems, see Section

1.2 for details. The main effort of existing methods is to reduce the infinite set V

to a finite one. At the turn of last decade, Teo and his colleagues [81, 173], by using

an integral aggregate technique, converted the SIP problem (3.1.1) into a nonlinear

programming problem with one constraint, and then gave a computable algorithm by

solving an approximation problem of (3.1.1). The solution obtained by the algorithm

in [81,173] is an approximate solution of (3.1.1).

On the other hand, some generalized Newton Methods for solving the SIP problems

were presented by Li, Qi, Tam and Wu [98] and Qi, Wu and Zhou [134]. The main idea

of these methods may be described as follows.

49

Recall

V (x) = {v ∈ V : g(x, v) = 0}.

From Subsection 1.2.1, we know that if x is a local minimizer of the SIP problem

(3.1.1) and EMFCQ holds at x, then the following KKT system of (3.1.1) holds,





∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i = 1, · · · , p,

(3.1.2)

where vi ∈ V (x) for i = 1, · · · , p. In this case, x is called a stationary point of the

SIP problem, and u ≡ (u1, · · · , up) ∈ <p and vi for i = 1, · · · , p are called its Lagrange

multiplier and attainers, respectively.

Consider the case that

V = {v ∈ <m : c(v) ≤ 0},

where c : <m → <q are twice continuously differentiable functions. By the definition of

V (x) and the second constrained condition of (3.1.2), vi ∈ V (x) (i = 1, · · · , p) imply

that vi (i = 1, · · · , p) are global maximizers of the nonlinear programming problem

max
v∈V

g(x, v). (3.1.3)

It is well known that if a constraint qualification (CQ) for the problem (3.1.3) holds,

then there are p auxiliary Lagrange multipliers wi ≡ (wi
1, · · ·wi

q) ∈ <q, (i = 1, · · · , p)

such that for i = 1, · · · , p,




−∇vg(x, vi) +
q∑

j=1

wi
j∇cj(v

i) = 0,

wi
j ≥ 0, cj(v

i) ≤ 0,

wi
j cj(v

i) = 0, j = 1, · · · , q.

(3.1.4)

It is well known that the traditional CQ’s for nonlinear programming problem in-

clude the linear independence CQ (LICQ) [102], the Slater CQ (SLCQ) [102], the

Mangasarian-Fromovitz CQ (MFCQ) [102], [148], the constant rank CQ (CRCQ) [80],

[133] etc..

System (3.1.4) is the first order necessary condition for vi, i = 1, · · · , p to be local

solutions of (3.1.3). If some second order sufficiency conditions hold for (3.1.3) at vi for

50

i = 1, · · · , p, then vi, i = 1, · · · , p are local solutions of (3.1.3). Thus, the system (3.1.2)

and vi ∈ V (x) (i = 1, · · · , p) are transformed into the following system:





∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i = 1, · · · , p,
−∇vg(x, vi) +

q∑

j=1

wi
j∇cj(v

i) = 0,

wi
j ≥ 0, cj(v

i) ≤ 0,

wi
j cj(v

i) = 0, i = 1, · · · , p, j = 1, · · · , q.

(3.1.5)

It is then desirable to develop numerical methods for solving (3.1.1) on the basis of

(3.1.5). However, in order to possess the nonsingularity conditions required by the

algorithms proposed in [98] and [134], the above system should be modified accordingly.

Since ui > 0 for i = 1, 2, · · · , p, we may multiply the fourth equation in (3.1.5) by ui

and then further replace uiw
i
j by wi

j for i = 1, 2, · · · , p; j = 1, 2, · · · , q. Thus system

(3.1.5) is equivalent to the following:





∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i = 1, · · · , p,
−ui∇vg(x, vi) +

q∑

j=1

wi
j∇cj(v

i) = 0,

wi
j ≥ 0, cj(v

i) ≤ 0,

wi
j cj(v

i) = 0, i = 1, · · · , p, j = 1, · · · , q.

(3.1.6)

Based on (3.1.6) except the feasibility constraints, a semismooth Newton method

and a smoothing Newton method were presented in [134] and [98], respectively. The

advantage of these two methods proposed in [98, 134] is that, at each iteration, only a

system of linear equations needs to be solved. Moreover, these methods enjoy global

convergence and locally superlinear convergence rate. However, these two methods

cannot ensure the feasibility of (3.1.1), since the second feasibility constraint in (3.1.6)

is omitted. Quite recently, another iterative method for solving the KKT system of

(3.1.1) was proposed in [187], in which the feasibility issue was considered. However,

the method in [187] does not have locally superlinear convergence property.

51

In this chapter, we will present three kinds of algorithms for solving SIP prob-

lems, say, smoothing SQP algorithm, smoothing projected Newton-type algorithm and

smoothing Newton-type algorithm. We should point out that the smoothing projected

Newton-type algorithm and smoothing Newton-type algorithm have the following two

features:

(1) At each iteration, only a system of linear equations needs to be solved;

(2) These methods have global and local superlinear convergence property.

The following is the outline of this chapter. In Section 3.2, we first convert the

SIP problem (3.1.1) into a nonsmooth programming problem with one constraint by

using an integral function. Then, we present a smoothing SQP algorithm for solving

the resulted programming problem. The global convergence of the smoothing SQP al-

gorithm is established under some mild conditions. In Section 3.3, we first reformulate

the KKT system of the SIP problem (3.1.1) as a system of constrained nonsmooth

equations, then present a smoothing projected Newton-type algorithm for solving the

resulted system. In Section 3.4, we further reformulate the KKT system of the SIP

problem (3.1.1) as a system of unconstrained nonsmooth equations, and then present a

smoothing Newton-type algorithm for solving the resulted system. We prove that the

later two algorithms have global and local superlinear convergence under some stan-

dard conditions in Sections 3.3 and 3.4, respectively. For the three algorithms above,

numerical experiments are given in the corresponding sections and some comments are

made in the last section.

3.2 A Smoothing SQP Algorithm

Define ϕ : <n → < by

ϕ(x) :=
∫

V
[g(x, v)]+dµ(v), (3.2.1)

where µ is a finite measure defined on a measurable space (V,F). For any given x ∈ <n,

clearly, ϕ(x) ≥ 0. Then problem (3.1.1) can be converted into the following equivalent

52

nonlinear programming problem with only one inequality constraint:

min
x

f(x)

s.t. ϕ(x) ≤ 0.
(3.2.2)

Unfortunately, the function ϕ is nonsmooth. Therefore, the existing gradient-based

optimization methods cannot be used to solve (3.2.2) directly. In this section, we will

present a smoothing SQP algorithm for solving the resulted nonsmooth nonlinear pro-

gramming problem (3.2.2).

3.2.1 Some Preliminaries

In this subsection, we give some preliminaries about (3.1.1) and (3.2.2).

Definition 3.2.1 The point x ∈ <n is said to be a generalized stationary point of

(3.2.2) if there exists a constant γ such that the following generalized Karush-Kuhn-

Tucker (GKKT) condition holds:




0 ∈ ∇T f(x) + γ∂ϕ(x),

γϕ(x) = 0, ϕ(x) ≤ 0, γ ≥ 0.
(3.2.3)

Let x be a generalized stationary point of (3.2.2). Since ϕ(x) ≤ 0, V+(x) = ∅, we in

turn, by Lemma 2.4.1, have

∂ϕ(x) =

{∫

V0(x)
λ(v)Gv(x)T dµ(v) : λ ∈ Λ0

}
, (3.2.4)

where Λ0 is the set of all mappings λ : V0(x) → [0, 1]. From the first expression of

(3.2.3), there exists a mapping λ ∈ Λ0 such that

∇f(x) + γ
∫

V0(x)
λ(v)Gv(x)dµ(v) = 0.

Suppose that µ|V0(x) has a finite support (discrete measure) with p ≤ n, that is,

µ|V0(x) =
p∑

i=1

σiδ(v
i),

where δ(v) denotes a measure of mass one at the point v ∈ V0(x) and σi > 0. Then

∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

where ui = γλµ(vi)σi ≥ 0. Moreover, if ui > 0, then x is a stationary point of (3.1.1).

Conversely, we have

53

Proposition 3.2.1 Suppose that x is a stationary point of (3.1.1). Then x is a gen-

eralized stationary point of (3.2.2).

Proof. Since x is a stationary point of (3.1.1), there exist a nonnegative integer p ≤ n

and multipliers ui, i = 1, . . . , p such that (3.1.2) holds. That is,





∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i = 1, . . . , p,

(3.2.5)

where vi ∈ V (x), i = 1, · · · , p. We design the finite discrete measure µ on V as follows

µ(A) =
∑

vi∈A

ui, ∀ A ∈ F .

It is clear that ϕ(x) = 0 and

0 = ∇T f(x) +
p∑

i=1

ui∇T
x g(x, vi)

= ∇T f(x) +
∫

V (x)
Gv(x)T dµ(v)

∈ ∇T f(x) + β ∂ϕ(x),

where the last expression follows from ∂ϕ(x) =

{∫

V (x)
λ(v)Gv(x)T dµ(v) : λ ∈ Λ0

}
and

β = 1. Therefore, x is a generalized stationary point of (3.2.2).

From the discussion above, we can see that it is possible to obtain the stationary

point of the SIP problem (3.1.1) by solving the generalized stationary point of (3.2.2). In

next subsection, we will present a smoothing SQP algorithm for solving the generalized

stationary point of (3.2.2).

3.2.2 Smoothing SQP Algorithm

For given x ∈ <n, t > 0 and r > 0, define a quadratic program QP (t, x, r) as follows:

min
d∈Rn, ξ∈R

∇f(x)T d +
1

2
dT Wd + rξ

s.t. ϕ̄(t, x) +∇T
x ϕ̄(t, x)d ≤ ξ,

ξ ≥ 0,

(3.2.6)

54

where W is a symmetric positive definite matrix and

ϕ̄(t, x) =
∫

V
ḡ(t, x, v)dµ(v), (3.2.7)

where ḡ(t, x, v) may be any one of the Gabried-Moré type smoothing approximation

functions ḡi(t, x, v), i = 1, 2, 3, in (2.4.1)-(2.4.3).

Since for any t > 0, ϕ̄(t, ·) is continuously differentiable in <n and

∇xϕ̄(t, x) =
∫

V
∇xḡ(t, x, v)dµ(v), (3.2.8)

we may compute easily the gradient ∇xϕ̄(t, x) of the function ϕ̄ with respect to vari-

able x, whenever the evaluation of the integral function (3.2.8) is not very expensive.

Furthermore, since ϕ̄(t, x) ≥ 0 for all x ∈ <n and t ≥ 0, it is readily shown that (3.2.6)

is always feasible and solvable.

Let (d, ξ) be a solution of (3.2.6). Then its KKT condition can be written as follows:





∇f(x) + Wd + λϕ̄∇xϕ̄(t, x) = 0,

r = λϕ̄ + λξ,

0 ≤ ξ − ϕ̄(t, x)−∇T
x ϕ̄(t, x)d ⊥ λϕ̄ ≥ 0,

0 ≤ ξ ⊥ λξ ≥ 0,

(3.2.9)

where (λϕ̄, λξ) is the corresponding KKT multiplier.

Define a penalty merit function Θ by

Θ(rθ, t)(x) = f(x) + rθϕ̄(t, x). (3.2.10)

Now we present our smoothing SQP algorithm for (3.2.2).

Algorithm 3.2.1 (Smoothing SQP Algorithm)

Step 0. (Initialization) Let r−1 > 0, δ > 0, τ ∈ (0, 1), σ ∈ (0, 1) and β ∈ (0, 1). Choose

x0 ∈ <n, t0 > 0 and a symmetric positive definite matrix W0 ∈ <n×n. Set k := 0.

Step 1. (Search direction) Solve (3.2.6) with x = xk, t = tk, W = Wk and r = rk−1. Let

(dk, ξk) be a solution of (3.2.6) and λk = (λk
ϕ̄, λk

ξ) be its corresponding multiplier.

55

Step 2. (Termination check) If a stopping rule is satisfied, terminate. Otherwise, go

to Step 3.

Step 3. (Penalty update) Define rθ
k = rk−1 and let

rk =





rk−1, if ξk = 0,

rk−1 + δ, otherwise.
(3.2.11)

Step 4. (Line search) Let sk = τ ik , where ik is the smallest nonnegative integer i such

that

Θ(rθ
k
, tk)(x

k + τ idk)−Θ(rθ
k
, tk)(x

k) ≤ −στ idkT Wkd
k. (3.2.12)

Step 5. (Update) Let xk+1 := xk + skd
k, tk+1 := βtk if ‖dk‖ ≤ tk, otherwise tk+1 := tk.

Choose a symmetric positive definite matrix Wk+1 ∈ <n×n. Set k := k + 1 and go

to Step 1.

Remark 3.2.1 (i) The above smoothing SQP algorithm is a modified version of the

explicit smooth SQP algorithm [85], and part of our convergence analysis presented in

the next section is modelled after the paper [85].

(ii) At Step 2 of the algorithm, we do not specify a stopping rule. Usually, we can

stop the iteration when ||dk|| and tk are all very small. In practice, we may use the

following condition as a stopping rule: ||dk||+ tk ≤ τ̂ , where τ̂ is a given small positive

number which characterizes the precision.

(iii) At each iteration of the above algorithm the quadratic program (3.2.6) needs

to be solved, which is always feasible and solvable. Traditional SQP methods solve the

following quadratic program at each iteration:

min
d∈<n

∇f(x)T d +
1

2
dT Wd

s.t. ϕ̄(t, x) +∇T
x ϕ̄(t, x)d ≤ 0.

(3.2.13)

(3.2.13) may not be feasible when ϕ̄(t, x) > 0 and ∇xϕ̄(t, x) = 0.

(iv) Proposition 3.2.2 below will show that the line search in Step 4 is well defined.

Therefore, the smoothing SQP method is well defined when tk > 0 and Wk is symmetric

positive definite at each iteration.

56

Remark 3.2.2 Since the infinite inequality constraints of (3.1.1) are aggregated into an

inequality constraint, the smoothing SQP algorithm may be easy to implement, whenever

the evaluation of the integral function is not very expensive. For the iterative method

[187] for (3.1.1), at each iteration a KKT system is solved, which is more expensive

than computing a quadratic program. Also, the smoothing SQP method presented in

this subsection generates a sequence with the property that at least one limit point is a

generalized stationary point of (3.2.2) under some mild conditions (which will be proved

in Subsection 3.2.3), but semismooth and smoothing Newton methods [98, 134] do not

have this property.

Proposition 3.2.2 For any t > 0,

(i) Θ(rθ, t)(·) is continuously differentiable at x. Furthermore, if (d, ξ) is a solution

of (3.2.6), λ = (λϕ̄, λξ) is its corresponding multiplier and rθ = r, then

Θ′
(rθ, t)(x; d) ≤ −dT Wd− (r − λϕ̄)ϕ̄(t, x) (3.2.14)

and

Θ′
(rθ,t)(x; d) ≤ −dT Wd. (3.2.15)

(ii) Suppose W is a symmetric positive definite matrix. If (d, ξ) is a solution of

(3.2.6) with d 6= 0, and rθ = r, then d is a descent direction of Θ(rθ, t)(·) at x.

Proof. It is readily shown that Θ(rθ, t)(·) is continuously differentiable at x. Then we

obtain

Θ′
(rθ, t)(x; d) = ∇f(x)T d + rθ∇T

x ϕ̄(t, x)d. (3.2.16)

Since (d, ξ) is a solution of (3.2.6) and λ = (λϕ̄, λξ) is the corresponding multiplier,

(3.2.9) holds. It follows from (3.2.16) and the third inequality of (3.2.9) that

Θ′
(rθ,t)(x; d) ≤ ∇f(x)T d + rθ(ξ − ϕ̄(t, x)). (3.2.17)

On the other hand, by (3.2.9),

∇f(x)T d = −dT Wd− λϕ̄∇T
x ϕ̄(t, x)d (3.2.18)

= −dT Wd− λϕ̄(ξ − ϕ̄(t, x)). (3.2.19)

57

By (3.2.17) and (3.2.19), we obtain

Θ′
(rθ, t)(x; d) ≤ −dT Wd− λϕ̄(ξ − ϕ̄(t, x)) + rθ(ξ − ϕ̄(t, x)).

It follows from the second equality and fourth inequality of (3.2.9) that

rθξ = λϕ̄ξ.

Hence,

Θ′
(rθ, t)(x; d) ≤ −dT Wd− (rθ − λϕ̄)ϕ̄(t, x)

≤ −dT Wd.
(3.2.20)

This shows that (i) holds. It follows from (i) and that W is symmetric positive definite

that (ii) holds.

3.2.3 Convergence Analysis

In order to obtain the global convergence of the smoothing SQP algorithm presented

in Subsection 3.2.2, we make the following standard assumptions:

(B1) There exist two positive numbers m and M satisfying m < M such that each

of the symmetric matrices Wk used in smoothing SQP algorithm satisfies the following

condition that for all vectors u of appropriate dimension:

m‖u‖2 ≤ uT Wku ≤ M‖u‖2. (3.2.21)

(B2) For all large k, rk = r∗ > 0.

Theorem 3.2.1 Assume that (B1) and (B2) hold. Let {xk} and {tk} be the sequences

generated by the smoothing SQP algorithm. Let K = {k : ‖dk‖ ≤ tk}. If {xk}k∈K has

an accumulation point x∗, then x∗ is a generalized stationary point of (3.2.2).

Proof. We assume, without loss of generality, that

lim
k→∞,k∈K

xk = x∗.

It follows from the penalty update rule in Step 3 of the algorithm and the assumption

(B2) that ξk = 0 and rk = r∗ for all sufficiently large k. Moreover, the second equality

58

of (3.2.9) implies that {λk = (λk
ϕ̄, λk

ξ)} is bounded. The boundedness of {dk}k∈K is

implied by (B1) and the first equality of (3.2.9). We assume, without loss of generality,

that

lim
k→∞,k∈K

dk = d∗, lim
k→∞,k∈K

λk
ξ = λ∗ξ , lim

k→∞,k∈K
λk

ϕ̄ = λ∗ϕ̄ and lim
k→∞,k∈K

Wk = W ∗.

The existence of W ∗ follows from condition (B1). Furthermore, W ∗ is positive definite.

It follows from the monotonically decreasing property of {tk} that limk→∞ tk = t∗

exists. We may claim that t∗ = 0. Otherwise, we assume, without loss of generality,

that tk = tk0 > 0 for all k ≥ k0. This implies ‖dk‖ > tk0 for all k ≥ k0. In this case, our

smoothing method reduces to the modified SQP method presented in Appendix of [84]

for a smooth nonlinear program. By a common argumentation for SQP method for

smooth nonlinear program, it follows that some subsequence of {dk}k∈K approaches 0 as

k →∞, which implies that ‖dk‖ ≤ tk0 will eventually happen, which is a contradiction.

Therefore, t∗ = 0. Consequently, d∗ = 0.

It follows from (3.2.9) and Theorem 2.4.1 that

0 ∈ ∇T f(x∗) + λ∗ϕ̄∂ϕ(x∗), (3.2.22)

0 ≤ −ϕ(x∗) ⊥ λ∗ϕ̄ ≥ 0. (3.2.23)

We obtain the desired result and complete the proof of the theorem.

Now we give some conditions under which (B2) holds.

(B3) {xk} is bounded.

(B4) Let T be the set of all vectors V satisfying that there exists a subsequence

{kl} of {1, 2, · · ·} such that

lim
l→∞

∇xϕ̄(tkl
, xkl) = V.

We assume that 0 6∈ T .

In [85], the global convergence results of the algorithms are obtained under a gen-

eralized Mangasarian-Fromovitz constraint qualification (GMFCQ). However, for the

nonsmooth program (3.2.2), it is readily shown that GMFCQ does not hold at any

generalized stationary point x∗ , since 0 ∈ ∂ϕ(x∗) by Lemma 2.4.1.

59

If (tkl
, xkl) → (0, x∗) as l → +∞, by Theorem 2.4.1 (ii) liml→∞∇T

x ϕ̄(tkl
, xkl) ∈

∂ϕ(x∗). Thus, if tk → 0, condition (B4) is weaker than the GMFCQ condition used

in [85].

Lemma 3.2.1 Assume the assumptions (B1), (B3) and (B4) hold. If {rk} → ∞, then

(i) {(dk, ξk)} is bounded;

(ii) {λk
ϕ̄/rk−1} → 0; and

(iii) ξk = 0 for all sufficiently large k.

Proof. (i) For a contradiction, let {(xk,Wk)}k∈L be a convergent subsequence with

limit (x∗,W ∗) such that {‖(dk, ξk)‖} → ∞. Without loss of generality, we suppose that

lim
k→∞,k∈L

∇xϕ̄(tk, x
k) = V ∗.

By (B4), V ∗ 6= 0. Let d̄ be the vector such that ϕ(x∗) + V ∗T d̄ < 0. It follows that for

large enough k ∈ L, ϕ̄(tk, x
k) +∇T

x ϕ̄(tk, x
k)d̄ < 0, which implies that (d̄, 0) is a feasible

solution for the quadratic program QP (tk, x
k, rk−1). Hence, for any k ∈ L,

∇f(xk)T dk + 1
2
dkT Wkd

k ≤ ∇f(xk)T dk +
1

2
dkT Wkd

k + rk−1ξk

≤ ∇f(xk)T d̄ +
1

2
d̄ T Wkd̄.

Since {∇f(xk)T d̄ +
1

2
d̄T Wkd̄} is bounded for k ∈ L, it follows from (B1) and (B3)

that {dk}k∈L is bounded. Finally, it is obvious from optimality of (dk, ξk) that ξk =

[ϕ̄(tk, x
k)+∇T

x ϕ̄(tk, x
k)dk]+ for each k. Hence, {ξk}k∈L is also bounded. This contradicts

the unboundedness condition.

(ii) We have dk/rk−1 → 0 from (i) and rk−1 → ∞ by hypothesis. For any limit

point (x∗, d∗, ξ∗, λ̄ϕ̄, λ̄ξ) of (xk, dk, ξk, λk
ϕ̄/rk−1, λ

k
ξ/rk−1), we have, by dividing the every

expression in (3.2.9) by rk−1 and letting k →∞, that





λ̄ϕ̄V ∗ = 0,

1 = λ̄ϕ̄ + λ̄ξ,

0 ≤ ξ∗ − ϕ(x∗)− V ∗T d∗ ⊥ λ̄ϕ̄ ≥ 0,

0 ≤ ξ∗ ⊥ λ̄ξ ≥ 0.

(3.2.24)

60

By (B4), λ̄ϕ̄ = 0, which implies {rk
ϕ̄/rk−1} → 0.

(iii) Since λ̄ϕ̄ = 0, we have, from the second equality of (3.2.24), that λ̄ξ = 1, which

implies that λk
ξ is strictly positive for all large k. Hence, we know, by the last inequality

of (3.2.9), that ξk = 0 for all sufficiently large k.

Theorem 3.2.2 Assume the assumptions (B1), (B3) and (B4) hold. Then (B2) also

holds.

Proof. Suppose that (B2) does not hold, in which case we have {rk} → ∞. From

Lemma 3.2.1 (iii), rk = rk−1 for all large k. This contradiction shows the theorem

holds.

From Theorems 3.2.1 and 3.2.2, we have

Theorem 3.2.3 Assume the assumptions (B1), (B3) and (B4) hold. Let {xk} and {tk}
be the sequences generated by the smoothing SQP algorithm. Then K = {k : ‖dk‖ ≤ tk}
is an infinite set, and every accumulation point of {xk}k∈K is generalized stationary

point of (3.2.2).

3.2.4 Preliminary Numerical Examples

In this subsection, we report our preliminary numerical test results. We implemented

the smoothing SQP algorithm described in Subsection 3.2.2 in Matlab and the numer-

ical experiments were done by using a Pentium III 450MHz workstation. We compared

the performance of the smoothing SQP algorithm with fseminf that is a solver for SIP

based on an implementation of the discretization SQP method in Matlab toolbox. We

tested 5 problems which are called Problems 3.2.1-3.2.5 and can be found in [134,187].

Problem 3.2.1

min f(x) = 1.21 exp(x1) + exp(x2)

s.t. g(x, v) = v − exp(x1 + x2) ≤ 0, ∀ v ∈ [−10, 1].

x0 = (0, 0)T .

61

Problem 3.2.2

min f(x) = x2
1 + x2

2 + x2
3

s.t. g(x, v) = x1 + x2 exp(x3v) + exp(2v)− 2 sin(4v) ≤ 0, ∀ v ∈ [0, 1].

x0 = (1, 1, 1)T .

Problem 3.2.3

min f(x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2

s.t. g(x, v) = x2
1 + 2x2v

2 + exp(x1 + x2)− exp(v) ≤ 0, ∀ v ∈ [0, 50].

x0 = (1,−1)T .

Problem 3.2.4

min f(x) =
1

3
x2

1 +
1

2
x1 + x2

2

s.t. g(x, v) = (1− x2
1v

2)2 − x1v
2 − x2

2 + x2 ≤ 0, ∀ v ∈ [−1, 1].

x0 = (1, 1)T .

Problem 3.2.5

min f(x) =
n∑

i=1

exp(xi)

s.t. g(x, v) = 1/(1 + v2)−
n∑

i=1

xiv
i−1 ≤ 0, ∀ v ∈ [−1, 1],

where n = 20.

For Problem 3.2.5, we chose the vector of ones as the starting point.

Throughout the computational experiments, we use the function defined in (2.4.2)

as a smoothing approximation function of the function [g(x, v)]+. The parameters used

in the smoothing SQP algorithm are r−1 = 104, δ = 20, τ = 0.8, σ = 0.5, t0 = 10−5

and β = 0.1. For each k, we let Wk = I and we solve the quadratic program (3.2.6) by

using qp in Matlab toolbox. The values of ϕ̄(tk, x
k) and ∇xϕ̄(tk, x

k) are obtained by

using quad in Matlab toolbox. We use ‖dk‖ ≤ 10−5 as the stopping criterion for the

smoothing SQP algorithm.

The test results are summarized in Table 3.1, where k denotes the number of the

iteration, cpu the CPU time in second for solving each problem, f(xk) and ϕ̄(tk, x
k)

the values of the objective function and the function ϕ̄(t, x) at the final iteration,

respectively.

62

Table 3.1: Test Results for the smoothing SQP algorithm

Smoothing SQP Algorithm fseminf

Problem k cpu f(xk) ϕ̄(εk, x
k) k cpu f(xk)

3.2.1 2 0.06 2.20000e+00 0.00e+00 3 0.18 2.19934e+00

3.2.2 21 0.65 5.33502e+00 1.18e-10 24 0.58 5.33120e+00

3.2.3 13 0.55 9.71589e+01 1.56e-08 8 2.36 9.71589e+01

3.2.4 12 0.44 2.43054e+00 9.87e-09 6 0.13 2.43053e+00

3.2.5 23 5.52 2.12249e+01 1.92e-08 11 7.94 2.12229e+01

The results reported in Table 3.1 show that the smoothing SQP algorithm performs

well when the evaluation of the integral function is not very expensive. From the cpu

columns of the table we can see that the smoothing SQP algorithm uses less CPU time

than fseminf for Problems 3.2.1, 3.2.3 and 3.2.5. For the other two problems fseminf

uses less CPU time than the smoothing SQP algorithm.

3.3 A Smoothing Projected Newton-Type Algorithm

The smoothing SQP algorithm presented in Section 3.2 has global convergence property

and only a quadratic program needs to be solved at each iteration of the algorithm. In

this section, we propose a smoothing projected Newton-type algorithm for solving the

SIP problem (3.1.1), which has stronger convergence property than the method stated

above, i.e., the latter method has local superlinear convergence property.

3.3.1 A Constrained Equation Reformulation of KKT System

We assume, in addition, that f : <n → < and g : <n ×<m → < are twice continuously

differentiable functions and V is a nonempty compact box with

V = {v ∈ <m : a ≤ v ≤ b} ,

where a ∈ <m, b ∈ <m, and a < b. Here, the inequality a < b means that ai < bi for all

i = 1, 2, · · · ,m.

63

Consider the KKT system (3.1.2) of the SIP problem (3.1.1). We know that vi (i =

1, · · · , p) are global minimizers of the following minimization problem:

min −g(x, v)

s.t. v ∈ V.
(3.3.1)

The KKT system of (3.3.1) can be rewritten as

(v′ − v)T (−∇vg(x, v)) ≥ 0, ∀ v′ ∈ V,

and it can be reformulated as a system of nonsmooth equations (see [20,40] for details):

φ(x, v) = 0. (3.3.2)

Here, φ(x, v) is defined as

φ(x, v) := v − P (a, b, v +∇vg(x, v)), (3.3.3)

where the function P is the mid-function defined for all j = 1, · · · ,m, as

(P (c, d, w))j =





cj, if wj < cj,

wj, if cj ≤ wj ≤ dj,

dj, if dj < wj.

Then the KKT system of the SIP problem (3.1.1) can be reformulated as follows:





∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, (i = 1, · · · , p)

φ(x, vi) = 0 (i = 1, · · · , p).

(3.3.4)

Let

G(x) =
∫

V
[g(x, v)]+dv, (3.3.5)

this function G(x) was given in [173]. Then (3.3.4) is equivalent to





∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

G(x) = 0,

ui > 0, g(x, vi) = 0, (i = 1, · · · , p)

φ(x, vi) = 0 (i = 1, · · · , p).

(3.3.6)

64

It is readily shown in Section 2.3 that G(x) is nonsmooth but semismooth.

Let

v = (v1, v2, · · · , vp).

Define

F (x, u,v) = ∇f(x) +
p∑

i=1

ui∇xg(x, vi) (3.3.7)

and

g(x,v) =




g(x, v1)
...

g(x, vp)




, φ̂(x,v) =




φ(x, v1)
...

φ(x, vp)




.

By introducing an artificial variable s ∈ < and relaxing ui > 0 as ui ≥ 0, (3.3.6) can be

written as the following system of nonsmooth equations with bounded constraints:

H(z) = 0,

u ≥ 0, s ≥ 0,
(3.3.8)

where z = (x, u,v, s) ∈ <n ×<p ×<mp ×<, and

H(z) =




F (x, u,v)

g(x,v)

G(x) + s

φ̂(x,v)




.

Here, the introduction of s balance the number between equations and variables. In

addition, it also can reduce the possible degeneration generated by the function G(x).

3.3.2 Smoothing Projected Newton-Type Algorithm

From the previous subsection, we see that the KKT system of the SIP problem (3.1.1)

is equivalent to a system of nonsmooth equations with bounded constraints. This

motivates us to obtain the stationary point of (3.1.1) by solving a system of constrained

equations. But, since G(x) and φ̂(x,v) are not smooth, it is very difficult to compute

their generalized Jacobian. We first introduce some smoothing techniques which deal

with the corresponding functions.

65

Define Ḡ : <× <n → < by

Ḡ(t, x) =
∫

V
ḡ(t, x, v)dv, (3.3.9)

where ḡ : <× <n ×<m → < is defined by

ḡ(t, x, v) =

√
(g(x, v))2 + 4t2 + g(x, v)

2
. (3.3.10)

The function ḡ is the Chen-Harker-Kanzow-Smale smoothing function of [g(x, v)]+,

which was mentioned in Section 2.4. Of course, we also may choose other smoothing

functions of [g(x, v)]+ as ḡ(t, x, v). It is obvious that Ḡ(0, x) = G(x), and for any t 6= 0,

Ḡ(t, x) is smooth with respect to variable x and

∇xḠ(t, x) =
∫

V
∇xḡ(t, x, v)dv. (3.3.11)

Define ϕ : <4 → < by

ϕ(t, c, d, w) =
c +

√
(c− w)2 + 4t2

2
+

d−
√

(d− w)2 + 4t2

2
,

which is the Chen-Harker-Kanzow-Smale smoothing function for P (c, d, w). For a, b, v ∈
<m, we define φ̄ : <× <n ×<m → <m by

(φ̄(t, x, v))i = vi − ϕ(t, ai, bi, vi + (∇vg(x, v))i), (3.3.12)

where i = 1, · · · ,m. It is clear that φ̄ is smooth for t 6= 0.

From Theorem 3 in [130], Lemma 2.3 and Theorem 3.3 in [48], it is easy to prove

the following results for φ̄.

Proposition 3.3.1 The function φ̄ defined in (3.3.12) has the following properties:

(i) It is twice continuously differentiable for t 6= 0.

(ii) It is semismooth. Furthermore, if g is twice Lipschitz continuously differentiable,

it is strongly semismooth.

(iii) There exists a constant C > 0 such that for any (x, v) ∈ <n+m and t ∈ <,

∥∥∥φ̄(t, x, v)− φ(x, v)
∥∥∥ ≤ C|t|.

66

Denote w = (t, z) = (t, x, u,v, s) ∈ < × <n ×<p ×<mp ×< and

φ̃(t, x,v) =




φ̄(t, x, v1)
...

φ̄(t, x, vp)




.

We define the following system of constrained equations:

Φ(t, z) = 0

u ≥ 0, s ≥ 0,
(3.3.13)

where

Φ(t, z) =


 t

H̄(t, z)


 , H̄(t, z) =




F (x, u,v)

g(x,v)

Ḡ(t, x) + s

φ̃(t, x,v)




.

It is obvious that if (t, z) is a solution of (3.3.13) then z is a solution to (3.3.8). By

Theorems 2.4.1 and 2.4.2 and Proposition 3.3.1, we have the following result.

Theorem 3.3.1 H̄ is a smoothing approximation function of H and it is semismooth

at (0, z).

Motivated by the smoothing method in [130] for a system of unconstrained non-

smooth equations and the method in [168] for a system of constrained nonsmooth

equations, in what follows, we present a smoothing projected Newton-type method for

solving (3.3.8).

Let

W = {w = (t, x, u,v, s) : u ≥ 0, s ≥ 0},

and

Z = {(x, u,v, s) ∈ <n ×<p ×<mp ×< : u ≥ 0, s ≥ 0}.

Define a merit function of (3.3.13) by

Ψ(w) =
1

2
‖Φ(w)‖2.

67

Then solving (3.3.13) is equivalent to finding a global solution of the following mini-

mization problem:

min Ψ(w)

s.t. u ≥ 0, s ≥ 0.
(3.3.14)

And w is a stationary point of (3.3.14) if it satisfies

‖d̄G(1)‖ = 0. (3.3.15)

Here,

d̄G(1) = ΠW (w − γ∇Ψ(w))− w =


 −γ∇tΨ(w)

ΠZ(z − γ∇zΨ(w))− z


 , (3.3.16)

where γ > 0 is a constant, ΠW (·) is an orthogonal projection operator onto W .

Let α ∈ (0, 1) be a constant. For a sequence {wk}∞k=0, we define

β0 = β(w0) = α min{1, ‖d̄0
G(1)‖2},

and

βk = β(wk) :=





βk−1, if α min{1, ‖d̄k
G(1)‖2} > βk−1

α min{1, ‖d̄k
G(1)‖2}, otherwise.

(3.3.17)

Now we state our smoothing projected Newton-type algorithm for solving (3.3.14).

Algorithm 3.3.1 (Smoothing Projected Newton-Type Algorithm)

Step 0. (Initialization)

Choose constants η, ρ, σ ∈ (0, 1), p1 > 0, p2 > 2 and α > 0, t̄ > 0 with αt̄ <

1. Let w̄ = (t̄, 0, 0, 0, 0), t0 = t̄ and w0 = (t0, x
0, u0,v0, s0) with u0

i ≥ 0 (i =

1, · · · , p); s0 ≥ 0. Set k := 0.

Step 1. (Stop Test)

Let

γk = min

{
1,

tk
|tk +∇tH̄(wk) H̄(wk)| ,

η‖Φ(wk)‖
‖∇Ψ(wk)‖ ,

ηΨ(wk)

‖∇Ψ(wk)‖2

}
, (3.3.18)

where ∇tH̄(wk) is the first row of ∇H̄(wk). Compute d̄k
G(1) by (3.3.16). If

‖d̄k
G(1)‖ = 0, stop. Otherwise, compute βk by (3.3.17).

68

Step 2. (Compute Search Direction)

Compute dk
G by

dk
G = −γk∇Ψ(wk) + βkw̄. (3.3.19)

Compute dk
N by solving the following linear system:

Φ(wk) +∇T Φ(wk)dk
N = βkw̄. (3.3.20)

If (3.3.20) has no solution or

−∇Ψ(wk)T dk
N < p1

∥∥∥dk
N

∥∥∥
p2

,

then let dk
N := dk

G.

Step 3. (Line Search)

Let mk be the smallest nonnegative integer m satisfying

Ψ(wk + d̄k((ρ)m)) ≤ Ψ(wk) + σ∇Ψ(wk)T d̃k
G((ρ)m), (3.3.21)

where for any λ ∈ [0, 1],

d̄k(λ) = τ ∗(λ)d̃k
G(λ) + (1− τ ∗(λ))d̃k

N(λ). (3.3.22)

Here

d̃k
G(λ) := ΠW (wk + λdk

G)− wk, d̃k
N(λ) := ΠW (wk + λdk

N)− wk, (3.3.23)

τ ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1

2
‖Φ(wk) +∇T Φ(wk)[τ d̃k

G(λ) + (1− τ)d̃k
N(λ)]‖2.

Let λk = (ρ)mk and wk+1 = wk + d̄k(λk).

Step 4. Set k := k + 1 and go to Step 1.

Remark 3.3.1 (a) Algorithm 3.3.1 is an extension of the method for solving uncon-

strained nonsmooth equations presented in [130]. It is also a smoothing version of the

algorithm proposed in [168]. In [168], it is required that the merit function Ψ must be

smooth. In this section, we do not need this requirement.

69

(b) By using a similar way to the proof of Lemma 3.1 [168], we can obtain the

following result about τ ∗(λ).

τ ∗(λ) = max{0, min{1, τ(λ)}}, (3.3.24)

where τ(λ) is defined as

τ(λ) =





0, if ∇T Φ(wk)[d̃k
G(λ)− d̃k

N(λ)] = 0,

− [Φ(wk) +∇T Φ(wk)d̃k
N(λ)]T∇T Φ(wk)[d̃k

G(λ)− d̃k
N(λ)]

‖∇T Φ(wk)[d̃k
G(λ)− d̃k

N(λ)]‖2
, otherwise.

The following projection properties are used in our analysis (see [16]).

Lemma 3.3.1 The projection operator ΠW (·) with any convex set W ⊂ <n satisfies

(i) For any w ∈ W ,

[ΠW (w′)− w′]T [ΠW (w′)− w] ≤ 0 for all w′ ∈ <n.

(ii)

‖ΠW (w′)− ΠW (w′′)‖ ≤ ‖w′ − w′′‖ for all w′, w′′ ∈ <n.

(iii) Given w, d ∈ <n, the function ζ defined by

ζ(λ) = ‖ΠW (w + λd)− w‖/λ, λ > 0

is non-increasing.

From the definition of βk, the following proposition is obvious.

Proposition 3.3.2 {βk} defined in (3.3.17) has the following properties:

(i) {βk} is a non-increasing sequence.

(ii) For all k, βk satisfies

βk ≤ α min{1, ‖d̄k
G(1)‖2}.

Proposition 3.3.3 Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary

point of (3.3.14). Then for any λ ∈ (0, 1], it holds that

∇Ψ(wk)T d̃k
G(λ) ≤ − λ

γk

(1− αt̄)‖d̄k
G(1)‖2 < 0. (3.3.25)

70

Proof. In this proof, for simplicity, we drop the superscript k. For any w = (t, z) ∈ W

with t > 0, suppose that w is not a stationary point of (3.3.14). Then

∇Ψ(w) = ∇Φ(w)Φ(w) =


 t +∇tH̄(w)H̄(w)

∇zH̄(w)H̄(w)


 ≡


 ∇tΨ(w)

∇zΨ(w)


 ,

where ∇tH̄(w) is the first row of ∇H̄(w) and ∇zH̄(w) is the submatrix of ∇H̄(w)

obtained by just removing the first row of ∇H̄(w). Obviously, d̃G(λ) can be written as

d̃G(λ) ≡

 (d̃G(λ))t

(d̃G(λ))z


 =


 −λγ(t +∇tH̄(w)H̄(w)) + λβ(w)t̄

ΠZ(z − λγ∇zΨ(w))− z


 .

Then we have

(t +∇tH̄(w)H̄(w))T [−λγ(t +∇tH̄(w)H̄(w)) + λβ(w)t̄]

= −λγ
∥∥∥t +∇tH̄(w)H̄(w)

∥∥∥
2
+ λ(t +∇tH̄(w)H̄(w))T β(w)t̄

≤ −λ

γ
‖ − γ∇tΨ(w)‖2 +

λ

γ
‖ − γ∇tΨ(w)‖β(w)t̄

≤ −λ

γ
‖ − γ∇tΨ(w)‖2 +

λ

γ
‖ − γ∇tΨ(w)‖(αt̄)‖d̄G(1)‖

≤ −λ

γ
‖ − γ∇tΨ(w)‖2 + αt̄

λ

γ
‖d̄G(1)‖2,

(3.3.26)

where the second inequality comes from Proposition 3.3.2 (ii) and the fact that β(w) ≤
α‖d̄G(1)‖, the last inequality is due to ‖ − γ∇tΨ(w)‖ ≤ ‖d̄G(1)‖ (see (3.3.16)). Thus,

∇zΨ(w)T [ΠZ(z − λγ∇zΨ(w))− z]

= − 1

λγ
[z − λγ∇zΨ(w)− z]T [ΠZ(z − λγ∇zΨ(w))− z]

=
1

λγ
[ΠZ(z − λγ∇zΨ(w))− (z − λγ∇zΨ(w))]T [ΠZ(z − λγ∇zΨ(w))− z]

− 1

λγ
‖ΠZ(z − λγ∇zΨ(w))− z‖2

≤ − 1

λγ
‖ΠZ(z − λγ∇zΨ(w))− z‖2

≤ −λ

γ
‖ΠZ(z − γ∇zΨ(w))− z‖2,

(3.3.27)

where the first and second inequalities come from Lemma 3.3.1 (i) and (iii), respectively.

It follows from (3.3.26) and (3.3.27) that

∇Ψ(w)T d̃G(λ) = (t +∇tH̄(w)H̄(w))T [−λγ(t +∇tH̄(w)H̄(w)) + λβ(w)t̄]

+∇zΨ(w)T [ΠZ(z − λγ∇zΨ(w))− z]

≤ −λ

γ

[
‖ − γ∇tΨ(w)‖2 + ‖Πz(z − γ∇zΨ(w))− z‖2

]
+ αt̄

λ

γ
‖d̄G(1)‖2

= −λ

γ
(1− αt̄)‖d̄G(1)‖2 < 0.

71

The proof is complete.

Now we have the following conclusion which shows that Algorithm 3.3.1 is well-

defined.

Theorem 3.3.2 Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary point

of (3.3.14). Then there exists a constant λ′ ∈ (0, 1] such that for any λ ∈ (0, λ′], d̄k(λ)

is a descent direction of Ψ(wk) at wk and

Ψ(wk + d̄k(λ)) ≤ Ψ(wk) + σ∇Ψ(wk)T d̃k
G(λ). (3.3.28)

Proof. By using Proposition 3.3.3, the conclusion can be proved in a similar way to

the proof of Theorem 3.1 in [168], so we omit it.

3.3.3 Convergence Analysis

In this subsection we analyze the global and local convergence of Algorithm 3.3.1. The

following proposition is a key result which shows that Algorithm 3.3.1 can keep tk > 0

at each iteration.

Proposition 3.3.4 For each k, k = 0, 1, · · ·, wk = (tk, zk) satisfies

tk ≥ βk t̄. (3.3.29)

Furthermore, if wk is not a stationary point of (3.3.14), then

tk > 0. (3.3.30)

Proof. We show inductively that (3.3.29) holds. From the choices of t0 and β0 in

Algorithm 3.3.1, (3.3.29) holds trivially for k = 0. Let us assume that (3.3.29) holds

for some k = l. Now, we prove that (3.3.29) holds for k = l + 1 as well. We denote

d̄l(λl) = τ ∗(λl)d̃
l
G(λl) + (1− τ ∗(λl))d̃

l
N(λl) =


 (d̄l(λl))t

(d̄l(λl))z


 ,

72

where λl is the accepted step-length at l-th iteration. It follows from Algorithm 3.3.1

that

(d̄l(λl))t = τ ∗(λl)λl[−γl(t
l +∇tH̄(w)H̄(w)) + β(wl)t̄]

+(1− τ ∗(λl))λl[−tl + β(wl)t̄]

= −λlγlτ
∗(λl)(t

l +∇tH̄(w)H̄(w))− (1− τ ∗(λl))λlt
l + λlβ(wl)t̄

≥ −λlτ
∗(λl)t

l − (1− τ ∗(λl))λlt
l + λlβ(wl)t̄

= −λlt
l + λlβ(wl)t̄,

where the inequality comes from the definition of γl (see (3.3.18)). Then we have

tl+1 − β(wl+1)t̄ = tl + (d̄l(λl))t − β(wl+1)t̄

≥ (1− λl)t
l + λlβ(wl)t̄− β(wl+1)t̄

≥ (1− λl)t
l + λlβ(wl)t̄− β(wl)t̄

= (1− λl)t
l − (1− λl)β(wl)t̄ ≥ 0,

(3.3.31)

where the second inequality is due to the monotonicity property of β(wl) in Proposition

3.3.2, and the last inequality comes from that tl ≥ β(wl)t̄. By induction, (3.3.29)

holds for any nonnegative integer k. Furthermore, from (3.3.29) and that wk is not a

stationary point of (3.3.14), (3.3.30) holds. We complete the proof.

Theorem 3.3.3 Let {wk} ⊂ W be a sequence generated by Algorithm 3.3.1. Then any

accumulation point of {wk} is a stationary point of (3.3.14).

Proof. Proposition 3.3.4 shows that if our algorithm does not stop at a stationary

point of (3.3.14), then tk > 0 for any k. This means that Φ and Ψ are continuously

differentiable at wk. Hence, by using a similar way to the proof of Theorem 4.1 in [168],

we can prove that the theorem holds. Here, we omit the detailed proof.

In the rest of this subsection, we analyze the local convergence of Algorithm 3.3.1.

We make the following standard assumption:

(C1) Let w∗ = (t∗, z∗) = (0, z∗) be an accumulation point of the sequence {wk}
generated by Algorithm 3.3.1. Suppose limk∈K wk = w∗ for some subset K ⊂ {1, 2, · · ·},
w∗ is a solution of the system of equations (3.3.13) and Φ is BD-regular at w∗.

From the BD-regularity condition and semismoothness of function Φ, we have the

following lemma by using Propositions 1.1.1 and 1.1.2.

73

Lemma 3.3.2 There exist positive constants κ and ε such that for every wk satisfying

‖wk − w∗‖ ≤ ε,

(i) ∇Φ(wk) is nonsingular and satisfies

‖∇Φ(wk)‖ ≤ κ.

(ii)

‖Φ(wk)‖ =
√

2Ψ(wk)
1
2 = O(‖wk − w∗‖).

Lemma 3.3.3 For all k ∈ K sufficiently large,

(i)

β(wk) = O(Ψ(wk)) = O(‖wk − w∗‖2).

(ii) and for any λ ∈ (0, 1]

wk + λdk
N = (1− λ)wk + λw∗ + λo(Ψ(wk)

1
2). (3.3.32)

Proof. From the definition of β(wk), the choice of γk, the projection property and

Lemma 3.3.2, for wk sufficiently close to w∗,

β(wk) ≤ α‖d̄k
G(1)‖2 ≤ αγ2

k‖∇Ψ(wk)‖2 ≤ αηΨ(wk) =
αη

2
‖Φ(wk)‖2 = O(‖wk − w∗‖2).

This shows (i) holds. It follows from (i) and Lemma 3.3.2 that

wk + λdk
N = wk + λ

(
∇T Φ(wk)

)−1
[−Φ(wk) + β(wk)w̄]

= wk − λ
(
∇T Φ(wk)

)−1
[Φ(wk)− Φ(w∗)−∇T Φ(wk)(wk − w∗)]

−λ(wk − w∗) + λ
(
∇T Φ(wk)

)−1
β(wk)w̄

= (1− λ)wk + λw∗ + λo(‖wk − w∗‖) + λO(Ψ(wk))

= (1− λ)wk + λw∗ + λo(Ψ(wk)
1
2),

where the third equality is due to the semismoothness of Φ and (i). (ii) is proved. The

proof is complete

Lemma 3.3.4 For k ∈ K large enough,

d̃k
N(λ) = −λ(wk − w∗) + λo(Ψ(wk)

1
2) (3.3.33)

and

∇Ψ(wk)T d̃k
N(λ) ≤ −µλΨ(wk), (3.3.34)

where µ is any constant in (0, 2).

74

Proof. From Lemma 3.3.3 and the property of a projector, we obtain that

d̃k
N(λ) = ΠW (wk + λdk

N)− wk

= ΠW [(1− λ)wk + λw∗ + λo(Ψ(wk)
1
2)]− wk

= ΠW [(1− λ)wk + λw∗]− wk

+
{
ΠW [(1− λ)wk + λw∗ + λo(Ψ(wk)

1
2)]− ΠW [(1− λ)wk + λw∗]

}

= −λ(wk − w∗) + λo(Ψ(wk)
1
2),

where the last equality comes from (1− λ)wk + λw∗ ∈ W and the projection property

(see Lemma 3.3.1 (ii)). It follows from (3.3.33) that

∇Ψ(wk)T d̃k
N(λ) = −λΦ(wk)T∇T Φ(wk)(wk − w∗) + λo(Ψ(wk))

= −2λΨ(wk) + λΦ(wk)T [Φ(wk)− Φ(w∗)−∇T Φ(wk)(wk − w∗)]

+λo(Ψ(wk))

≤ −µλΨ(wk),

where the last inequality comes from the semismoothness of Φ and Lemma 3.3.2. We

complete the proof.

Lemma 3.3.5 We have that for k ∈ K large enough,

(i)

τ ∗(λ)k ≤ o(1), (3.3.35)

where τ ∗(λ)k is defined as in (3.3.24).

(ii)

d̄k(λ) = −λ(wk − w∗) + λo(Ψ(wk)
1
2). (3.3.36)

(iii)

∇Ψ(wk)T d̄k(λ) = −2λΨ(wk) + λo(Ψ(wk)). (3.3.37)

Proof. By using Lemma 3.3.4, this lemma can be proved in a similar way to the proof

of Theorem 3.2 in [168]. We omit the detailed proof.

Now we prove that the convergence rate of Algorithm 3.3.1 is locally superlinear

under the BD-regularity condition.

Theorem 3.3.4 Suppose that {wk} is a sequence generalized by Algorithm 3.3.1 and w∗

is a point satisfying (C1). Then the whole sequence {wk} converges to w∗ superlinearly.

75

Proof. From Lemma 3.3.5, we have that for sufficiently large k ∈ K,

‖wk + d̄k(1)− w∗‖ = o(Ψ(wk)
1
2) = o(‖Φ(wk)‖) = o(‖wk − w∗‖), (3.3.38)

and

Ψ(wk + d̄k(1)) =
1

2
‖Φ(wk + d̄k(1))‖2

=
1

2
‖Φ(wk + d̄k(1))− Φ(w∗)‖2

= O(‖wk + d̄k(1)− w∗‖2)

= o(Ψ(wk)),

(3.3.39)

where the last equality is due to (3.3.38). Thus,

−∇Ψ(wk)T d̃k
G(1) ≤ ‖∇Ψ(wk)‖‖d̃k

G(1)‖
= ‖∇Ψ(wk)‖‖ΠW (wk − γk∇Ψ(wk) + β(wk)w̄)− wk‖
≤ ‖∇Ψ(wk)‖[‖γk∇Ψ(wk)‖+ O(Ψ(wk))]

≤ ηΨ(wk) + o(Ψ(wk)),

(3.3.40)

where the second inequality is due to the property of β(wk) and the projection property,

and the last inequality comes from the choice of γk. It follows (3.3.39) and (3.3.40) that

Ψ(wk) + σ∇Ψ(wk)T d̃k
G(1) ≥ (1− ση)Ψ(wk) + o(Ψ(wk))

≥ o(Ψ(wk))

= Ψ(wk + d̄k(1)),

(3.3.41)

which implies

wk+1 = wk + d̄k(1)

for k sufficiently large. Moreover, from (3.3.38) we conclude that wk converges to w∗

superlinearly. We complete the proof.

3.3.4 Preliminary Numerical Examples

In this subsection, we report our preliminary numerical test results. We implemented

Algorithm 3.3.1 in Matlab and the numerical experiments were done by using a Pen-

tium III 733MHz computer with 256 MB of RAM. We tested 12 problems which are

called Problems 3.3.1-3.3.12. Problems 3.3.1-3.3.3 and 3.3.7 are from [181]. Problem

3.3.4 comes from [174] with a revised region. Problem 3.3.5 is a problem modified

76

from [187], and Problem 3.3.6 is from [26]. Problems 3.3.8-3.3.12 are some problems in

which the dimension of the parameter v is 2.

Throughout the computational experiments, we use ‖d̄k
G(1)‖ ≤ 10−6 as the stopping

criterion for Algorithm 3.3.1. The values of Ḡ(t, x) and ∇Ḡ(t, x) were computed by

using the function quad in Matlab when V is an interval in < and the function

dblquad when V is a box set in <2. The parameters used in the algorithm are specified

as follows:

η = 0.9, ρ = 0.5, σ = 0.001, α = 0.5, t̄ = 0.9, p1 = 1.0e− 10, p2 = 2.1.

The starting point u0 and y0 for all problems are set t0 = t̄, u0 = 0.05e, y0 = 0.5, where

e is the vector of ones. We compared Algorithm 3.3.1 with fseminf. For the solver

fseminf, we use all the default values.

Problem 3.3.1

f(x) = 1.21exp(x1) + exp(x2), g(x, v) = v − exp(x1 + x2),

V = [−10, 1], p = 1, (x0, v0) = (1, 1, 1).

Problem 3.3.2

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2exp(x3v) + exp(2v)− 2sin(4v),

V = [0, 1], p = 1, (x0, v0) = (1, 1, 1, 1).

Problem 3.3.3

f(x) =
1

3
x2

1 +
1

2
x1 + x2

2, g(x, v) = (1− x2
1v

2)2 − x1v
2 − x2

2 + x2,

V = [−1, 1], p = 1, (x0, v0) = (−1,−1, 1).

Problem 3.3.4

f(x) = x2
1 + (x2 − 3)2, g(x, v) = x2 − 2 + x1sin(v/x2 − 0.5),

V = [0, 10], p = 1, (x0, v0) = (1,−1, 1).

77

Problem 3.3.5

f(x) =
1

2
xT x, g(x, v) = 3 + 4.5sin(4.7π(v − 1.23)/8)−

n∑

i=1

xiv
i−1,

V = [0, 1], n = 10, p = 1, (x0, v0) = (0, 0, · · · , 0, 1).

Problem 3.3.6

f(x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2,

g(x, v) = x2
1 + 2x2v

2 + exp(x1 + x2)− exp(v), V = [0, 1], p = 1, (x0, v0) = (1,−1, 1).

Problem 3.3.7

f(x) = x2
1 + x2

2 + x3
3,

g(x, v) = x1(v1 + v2
2 + 1) + x2(v1v2 − v2

2) + x3(v1v2 + v2
2 + v2) + 1,

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (1, 1, 1, 1, 0).

Problem 3.3.8

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2exp(x3v1) + exp(2v2)− 2sin(4v1),

V = [0, 1]× [0, 1], p = 2, (x0, v0) = (−1,−1,−1, 0, 1, 1, 0).

Problem 3.3.9

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2 exp(x3v1)− exp(2x1v2) + sin(4v1),

V = [0, 1]× [0, 1], p = 2, (x0, v0) = (−0.2,−0.2,−0.2, 0, 1, 1, 0).

Problem 3.3.10

f(x) =
1

3
x2

1 +
1

2
x1 + x2

2, g(x, v) = (1− x2
1v

2
1)

2 − x1v
2
2 − x2

2 + x2.

V = [0, 2]× [0, 2], p = 2, (x0, v0) = (−0.2,−0.2, 1, 0, 0, 1).

Problem 3.3.11

f(x) =
1

2
(x2

1 + x2
2 + x2

3 + x2
4), g(x, v) = sin(v1v2)− x1 − x2v1 − x3v2 − x4v1v2,

78

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (−0.5,−0.5,−0.5,−0.5, 0, 1).

Problem 3.3.12

f(x) =
1

2
(x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6),

g(x, v) = exp(v2
1 + v2

2)− (x1 + x2v1 + x3v2 + x4v
2
1 + x5v1v2 + x6v

2
2),

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (−2,−2− 2,−2,−2,−2, 1, 1).

In all above test problems, the values of p are estimated by using the following

adaptive strategy. First, we let p = 1 and use Algorithm 3.3.1 to solve a test problem.

If this test problem can be solved within 30 iterations, then we let p = 1 be the number

of attainers at the solution. Otherwise, we let p = 2 and use Algorithm 3.3.1 to solve

this test problem again. If this test problem can be solved within 30 iterations, then we

let p = 2 be the number of attainers. If this fails again, then we let p = 3 and then do

the above procedure until we find a number p (p ≤ n) which is the estimated number

of attainers. It is interesting that we get p = 1 for 9 of 12 test problems and p = 2 for

other three test problems by the above method.

The test results are summarized in Tables 3.2 and 3.3. In Table 3.2, d̄k
G(1) is the

value of the function d̄G(1) defined in (3.3.16) at the k-th iteration. In Table 3.3, n.it

represents the number of the total iterations; cpu is the total cost time in seconds

for solving the SIP problem; Ψ(wk), f(xk) and G(xk) denote the values of the merit

function Ψ(w) of (3.3.13), the objective function in the SIP problem and the function

G(x) of (3.3.5) at the final iteration, respectively.

The results reported in Tables 3.2 and 3.3 show that Algorithm 3.3.1 performs well

for these test problems. From Table 3.2, we can see that Algorithm 3.3.1 indeed has

superlinear convergence property. From Table 3.3, we can see that Algorithm 3.3.1 uses

less CPU time than fseminf for 9 test problems and fseminf uses less CPU time than

Algorithm 3.3.1 for other 3 test problems. Moreover, it appears from Table 3.3 that

Algorithm 3.3.1 indeed can ensure the feasibility of the test problems.

In addition, we notice that for Problems 3.3.1–3.3.7, 3.3.11 and 3.3.12, when p ≥ 2,

these test problems cannot be solved by Algorithm 3.3.1 within 30 iterations. For

Problems 3.3.8–3.3.10, when p = 1, these three test problems cannot be solved by

79

Table 3.2: The last three iterates generated by Algorithm 3.3.1

Problem k d̄k
G(1) Problem k d̄k

G(1) Problem k d̄k
G(1)

3.3.1 4 0.0053 3.3.2 7 0.0141 3.3.3 5 0.0036

5 2.5166e-5 8 4.9812e-4 6 9.671e-5

6 3.6233e-10 9 4.5572e-7 7 3.8475e-9

3.3.4 7 2.0688e-6 3.3.5 2 0.0027 3.3.6 3 6.3414e-4

8 1.2389e-6 3 3.5370e-5 4 3.2046e-5

9 4.2285e-7 4 1.3002e-10 5 1.2032e-8

3.3.7 5 0.0228 3.3.8 5 3.7704e-5 3.3.9 8 0.0075

6 7.3722e-4 6 1.0023e-6 9 4.0859e-5

7 4.1271e-7 7 2.7485e-10 10 7.8563e-8

3.3.10 7 9.0029e-4 3.3.11 6 0.0086 3.3.12 3 9.5606e-4

8 2.2744e-6 7 0.0016 4 1.3685e-7

9 1.6448e-9 8 7.8146e-7 5 2.4486e-15

Table 3.3: Test results for Algorithm 3.3.1 and fseminf

Algorithm 3.3.1 fseminf

Problem n.it cpu Ψ(wk) f(xk) G(xk) n.it cpu f(xk) G(xk)

3.3.1 6 0.09 9.161e-19 2.2 0 16 0.53 2.1989 4.282e-7

3.3.2 9 0.17 7.436e-11 5.3347 0 23 0.42 5.3307 1.114e-5

3.3.3 7 0.13 2.346e-14 0.1945 0 4 0.12 0.1945 3.641e-12

3.3.4 9 0.31 7.195e-9 1 4.799e-6 10 0.66 1 9.070e-9

3.3.5 4 0.30 4.034e-19 0.0657 0 2 0.42 0.0656 1.746e-7

3.3.6 5 0.11 2.051e-11 97.1589 1.304e-9 8 0.17 97.1589 7.455e-14

3.3.7 7 4.81 1.051e-13 1 0 7 4.91 1 0

3.3.8 7 14.22 1.299e-16 27.4166 0 6 5.33 27.3065 6.192e-8

3.3.9 10 2.72 1.368e-13 0 0 3 2.98 3.152e-5 0

3.3.10 9 1.48 2.664e-13 0.382 5.839e-7 15 2.66 0.382 0

3.3.11 8 2.28 1.305e-11 0.0885 0 1 2.00 0.0885 1.808e-21

3.3.12 5 0.73 3.773e-29 4.5498 0 1 3.38 4.5498 0

Algorithm 3.3.1 within 30 iterations. This means that it is important to choose a

suitable number p when we use Algorithm 3.3.1 to solve the SIP problem. When the

size of the SIP problem and the number p are large, the above method to determine

the number p may be expensive in computation. As future work, we will work on how

80

to find a good way to determine a suitable number p in the KKT system of the SIP

problem.

3.4 A Smoothing Newton-Type Algorithm

In previous section, we presented a smoothing projected Newton-type algorithm for

solving the SIP problem (3.1.1), which has global and local superlinear convergence

property. However, from Theorem 3.3.3, we see that each accumulation point of {wk}
generated by Algorithm 3.3.1 is only a stationary point of (3.3.14) but may not be

a stationary point of the original SIP problem (3.1.1). In this section, we present a

smoothing Newton-type algorithm for solving the SIP problem (3.1.1), which overcomes

the drawback stated above.

3.4.1 A Semismooth Equation Reformulation of KKT System

We suppose that, in addition to the assumptions on functions f and g in Section 3.3,

the V in (3.1.1) has the following form

V = {v ∈ <m : c(v) ≤ 0},

where c : <m → <q are twice continuously differentiable functions. As mentioned in

the introduction of this chapter, under the assumption stated above, the KKT system

of the SIP problem (3.1.1) can be rewritten as follows




∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i = 1, · · · , p,
−ui∇vg(x, vi) +

q∑

j=1

wi
j∇cj(v

i) = 0,

wi
j ≥ 0, cj(v

i) ≤ 0,

wi
j cj(v

i) = 0, i = 1, · · · , p, j = 1, · · · , q.

(3.4.1)

In order to reformulate the system (3.4.1) as a system of semismooth equations, we

recall the definition of NCP functions.

81

A function φ : <2 → < is called an NCP function [40] if φ(a, b)=0 if and only if

a ≥ 0, b ≥ 0 and ab = 0. Two well-known NCP functions are the minimum function

φmin(a, b) = min{a, b}

and the Fischer-Burmeister function (see (1.1.7)). Both the minimum function and the

Fischer-Burmeister function are not smooth, but they are semismooth.

By the use of the Fischer-Burmeister function φFB defined by (1.1.7) and G defined

by (3.3.5), we may reformulate (3.4.1) as a system of semismooth equations:

H(s, z) = 0. (3.4.2)

Here

H(s, z) =


 G(x) + s

P (z)




and

P (z) =




∇f(x) +
p∑

i=1

ui∇xg(x, vi)

φFB(u1,−g(x, v1))
...

φFB(up,−g(x, vp))

−u1∇vg(x, v1) +
q∑

j=1

w1
j∇cj(v

1)

...

−up∇vg(x, vp) +
q∑

j=1

wp
j∇cj(v

p)

φFB(w1
1,−c1(v

1))
...

φFB(w1
q ,−cq(v

1))
...

φFB(wp
1,−c1(v

p))
...

φFB(wp
q ,−cq(v

p))




,

where (s, z) = (s, x, u,v,w) ∈ <1+n+p(m+q+1), v = (v1, · · · , vp) ∈ <pm, w = (w1, · · · , wp) ∈
<pq. Here, s ∈ < is an auxiliary variable which ensure the numbers of the variables in

the system equal to the numbers of the equations.

82

Nonlinear equation (3.4.2) transforms the system (3.4.1) into a semismooth equation

of dimension 1+n+(m+ q +1)p. If there is an 1+n+(m+ q +1)p dimensional vector

satisfying (3.4.2) and s = 0, we may then drop the part indexed by i where ui = 0. In

this case, we get a solution of (3.4.1) which obviously satisfies (3.4.2). Hence, (3.4.1)

and (3.4.2) are equivalent in this sense. The discussion above shows that we may obtain

the solution z of (3.4.1) by solving the system (3.4.2). However, the nonsmoothness of

G and φFB in (3.4.2) results in the difficulty of the implementation of the algorithm for

solving (3.4.2). To overcome this difficulty, we will develop a smoothing Newton-type

algorithm for solving (3.4.2) in next subsection.

3.4.2 Smoothing Newton-Type Algorithm

We first recall the smoothing function of φFB. For a smoothing parameter t ∈ <, it is

well known that the smoothing approximation function of φFB can be defined by

φ̄FB(t, a, b) =
√

a2 + b2 + t2 − a− b.

Let w ∈ < and h : <m → < be continuously differentiable. Denote φ̃FB : <×<×<m →
< as follows

φ̃FB(t, w, v) = φ̄FB(t, w, h(v)). (3.4.3)

From Theorem 3 in [130], Lemma 2.3 and Theorem 3.3 in [48] and Proposition 6.1

in [135], it is easy to prove the following results for φ̃FB.

Proposition 3.4.1 The function φ̃FB defined in (3.4.3) has the following properties:

(i) It is twice continuously differentiable for any t 6= 0.

(ii) There exists a constant C > 0 such that for any (w, v) ∈ < × <m

∥∥∥φ̃FB(t, w, v)− φFB(w, h(v))
∥∥∥ ≤ C|t|.

(iii) The function φ̃FB is semismooth with respect to (t, w, v).

Denote y = (t, s, z) = (t, s, x, u,v,w) ∈ <2+n+p(m+q+1). By using the smoothing ap-

proximation function φ̄FB of φFB and the smoothing approximation function Ḡ defined

83

by (3.3.9) of G, we introduce the following system of equations:

Φ(y) = 0, (3.4.4)

where

Φ(y) =




t

Ḡ(t, x) + s

P̄ (t, z)




and

P̄ (t, z) =




∇f(x) +
p∑

i=1

ui∇xg(x, vi)

φ̄FB(t, u1,−g(x, v1))
...

φ̄FB(t, up,−g(x, vp))

−u1∇vg(x, v1) +
q∑

j=1

w1
j∇cj(v

1)

...

−up∇vg(x, vp) +
q∑

j=1

wp
j∇cj(v

p)

φ̄FB(t, w1
1,−c1(v

1))
...

φ̄FB(t, w1
q ,−cq(v

1))
...

φ̄FB(t, wp
1,−c1(v

p))
...

φ̄FB(t, wp
q ,−cq(v

p))




.

It is obvious that if y = (t, s, z) with s ≥ 0 is a solution of (3.4.4) then t = 0, s = 0 and

(0, z) is a solution of (3.4.2). It follows from Proposition 3.4.1 that P̄ is semismooth,

and hence Φ is semismooth too.

Define a merit function of (3.4.4) by

θ(y) = ‖Φ(y)‖2

and define β : <2 ×<n+p(m+q+1) → <+ by

β(y) = γ min {1, θ(y)} .

84

Choose (t̄, s̄) ∈ <2
++ and γ ∈ (0, 1) such that γ(t̄2 + s̄2) < 1. Let ȳ = (t̄, s̄, 0) ∈

<2 ×<n+p(m+q+1). And let

Ω :=
{
y = (t, s, z) ∈ <2 ×<n+p(m+q+1) : (t, s) ≥ β(y)(t̄, s̄)

}
.

Then, since β(y) ≤ γ < 1 for any y ∈ <2 × <n+p(m+q+1), it follows that for any

z ∈ <n+p(m+q+1),

(t̄, s̄, z) ∈ Ω.

Proposition 3.4.2 The following relations hold:

Φ(y) = 0 ⇔ β(y) = 0 ⇔ Φ(y) = β(y)ȳ.

Proof. It follows from the definitions of Φ(·) and β(·) that

Φ(y) = 0 ⇔ β(y) = 0 and β(y) = 0 ⇒ Φ(y) = β(y)ȳ.

Then, we only need to prove

Φ(y) = β(y)ȳ ⇒ β(y) = 0.

However, this is an easy task because from Φ(y) = β(y)ȳ we have

θ(y) = ‖Φ(y)‖2 = β(y)2
(
t̄2 + s̄2

)
≤ γ2

(
t̄2 + s̄2

)
< 1.

Therefore,

β(y) = γθ(y) = γβ(y)2
(
t̄2 + s̄2

)
. (3.4.5)

If β(y) 6= 0, it follows from (3.4.5) and the fact β(y) ≤ γ that

1 = γβ(y)
(
t̄2 + s̄2

)
≤ γ2

(
t̄2 + s̄2

)
,

which contradicts the fact that γ2 (t̄2 + s̄2) < 1. This contradiction completes our proof.

Now, we develop a smoothing Newton-type algorithm for solving (3.4.4).

Algorithm 3.4.1 (Smoothing Newton-Type Algorithm)

85

Step 0. (Initialization)

Choose constants ρ ∈ (0, 1) and σ ∈ (0, 1/2). Let t0 = t̄, s0 = s̄, z0 ∈ <n+p(m+q+1)

be an arbitrary point and y0 = (t0, s0, z0). Set k := 0.

Step 1. (Stop Test)

If Φ(yk) = 0 then stop. Otherwise, let βk := β(yk).

Step 2. (Compute Search Direction)

Let

πk = −
(
∇T

z P̄ (tk, zk)
)−1 [

P̄ (tk, zk) +∇T
t P̄ (tk, zk)

(
βk t̄− tk

)]
(3.4.6)

and

δk = Ḡ(tk, xk) +∇tḠ(tk, xk)
(
βk t̄− tk

)
+∇T

x Ḡ(tk, xk)
(
πk

)
x
, (3.4.7)

where
(
πk

)
x

is the sub-vector constituted of the first n components of πk. Com-

pute 4yk := (4tk,4sk,4zk) ∈ <2 ×<n+p(m+q+1) by

Φ(yk) +∇T Φ(yk)4 yk = ȳk, (3.4.8)

where

ȳk =




βk t̄

βks̄ + δk

0




.

Step 3. (Line Search)

Let mk be the smallest nonnegative integer m satisfying

θ(yk + ρm 4 yk) ≤
[
1− 2σ

(
1− γ

(
t̄2 + s̄2

))
ρm

]
θ(yk). (3.4.9)

Let λk = ρmk and yk+1 = yk + λk 4 yk.

Step 4. Set k := k + 1 and go to Step 1.

In the rest of this subsection, we discuss some properties of Algorithm 3.4.1.

Lemma 3.4.1 For any y = (t, s, z) ∈ <2
++ × <n+p(m+q+1). Suppose that ∇Φ(y) is

nonsingular. Let 4y = (4t,4s,4z) be the unique solution of the following equation

Φ(y) +∇T Φ(y)4 y =




β(y)t̄

β(y)s̄ + δ

0




. (3.4.10)

86

Here

δ = Ḡ(t, x) +∇tḠ(t, x) (β(y)t̄− t) +∇T
x Ḡ(t, x) (π)x (3.4.11)

and

π = −
(
∇T

z P̄ (t, z)
)−1 [

P̄ (t, z) +∇T
t P̄ (t, z) (β(y)t̄− t)

]
, (3.4.12)

where (π)x is the sub-vector constituted of the first n components of π, ∇tP̄ (t, z) is the

first row of ∇(t,z)P̄ (t, z) and ∇zP̄ (t, z) is the submatrix of ∇(t,z)P̄ (t, z) obtained by just

removing the first row of ∇(t,z)P̄ (t, z). Then

t +4t = β(y)t̄ (3.4.13)

and

s +4s = β(y)s̄. (3.4.14)

Proof. It is easy to see that for any t > 0,

∇Φ(y) =




1 0 0

∇tḠ(t, x) 1 ∇T
z Ḡ(t, x)

∇T
t P̄ (t, z) 0 ∇T

z P̄ (t, z)




T

,

By the special structure of ∇Φ(y), we know from (3.4.10) that





t +4t = β(y)t̄,

Ḡ(t, x) + s +∇tḠ(t, x)4 t +4s +∇T
z Ḡ(t, x)4 z = β(y)s̄ + δ,

P̄ (t, z) +∇T
t P̄ (t, z)4 t +∇T

z P̄ (t, z)4 z = 0.

(3.4.15)

From the first equality of (3.4.15), (3.4.13) holds. Furthermore, it follows from the

first and last equality of (3.4.15) that 4z = π. Consequently, it follows from (3.4.11),

(3.4.12) and the second equality of (3.4.15) that (3.4.14) holds. The proof is complete.

Lemma 3.4.2 For any ỹ = (t̃, s̃, z̃) ∈ <2
++ × <n+p(m+q+1). Suppose that ∇Φ(ỹ) is

nonsingular, then there exist a closed neighborhood N (ỹ) of ỹ and a positive number

α̃ ∈ (0, 1] such that for any y = (t, s, z) ∈ N (ỹ) and all α ∈ (0, α̃] we have (t, s) ∈ <2
++,

∇Φ(y) is nonsingular and

θ(y + α4 y) ≤
[
1− 2σ

(
1− γ

(
t̄2 + s̄2

))
α

]
θ(y). (3.4.16)

87

Proof. Since∇Φ(ỹ) is nonsingular and (t̃, s̃) ∈ <2
++, there exists a closed neighborhood

N (ỹ) of ỹ such that for any y = (t, s, z) ∈ N (ỹ) we have (t, s) ∈ <2
++ and that ∇Φ(y)

is nonsingular. For any y ∈ N (ỹ), let 4y = (4t,4s,4z) ∈ <2 × <n+p(m+q+1) be the

unique solution of (3.4.10). By Lemma 3.4.1, for any y ∈ N (ỹ),

t +4t = β(y)t̄.

Then, for all α ∈ [0, 1] and all y ∈ N (ỹ),

t + α4 t = (1− α)t + αβ(y)t̄ > 0.

By this, we know that Ḡ(t, x) and P̄ (t, z) are continuously differentiable. By using a

similar way to the proof of Lemma 5 in [130], we can prove that the lemma holds. Here,

we omit the detailed proof.

We can get directly the following result from Lemmas 3.4.1 and 3.4.2.

Proposition 3.4.3 For any k ≥ 0, if yk ∈ <2
++×<n+p(m+q+1) and ∇Φ(yk) is nonsingu-

lar, then Algorithm 3.4.1 is well defined at k-th iteration and yk+1 ∈ <2
++×<n+p(m+q+1).

Proposition 3.4.4 For each fixed k ≥ 0, if (tk, sk) ∈ <2
++, yk ∈ Ω and ∇Φ(yk) is

nonsingular, then for any α ∈ [0, 1] such that

θ(yk + α4 yk) ≤
[
1− 2σ

(
1− γ

(
t̄2 + s̄2

))
α

]
θ(yk),

it holds that yk + α4 yk ∈ Ω.

Proof. We can prove it by using a similar way to the proof of Proposition 6 in [130].

Theorem 3.4.1 Suppose that for every k ≥ 0 with (tk, sk) ∈ <2
++ and yk ∈ Ω we

have ∇Φ(yk) is nonsingular. Then an infinite sequence {yk = (tk, sk, zk)} generated by

Algorithm 3.4.1 satisfies that (tk, sk) ∈ <2
++ and yk ∈ Ω.

Proof. First, because y0 = (t̄, s̄, z0) ∈ Ω, from Proposition 3.4.4, we have that y1 is well

defined, (t1, s1) ∈ <2
++ and y1 ∈ Ω. Then, by repeatedly resorting to Proposition 3.4.4,

we can prove that an infinite sequence {yk} is generated, (tk, sk) ∈ <2
++ and yk ∈ Ω.

The proof is complete.

88

3.4.3 Convergence Analysis

In this subsection, we prove the global and local superlinear convergence of Algorithm

3.4.1. To this end, we first discuss the CD-regularity of Φ. We make the following

assumptions.

(D1) There exists a t̃ > 0 such that matrix ∇Φ(y) is nonsingular for each y ∈ Ω

with t ∈ (0, t̃).

Assumption (D1) can be justified under further assumptions.

Theorem 3.4.2 Let t ∈ <. Then Φ is CD-regular at y = (t, s, z) if P̄ (t, ·) is CD-regular

at z.

Proof. It is easy to see that P̄ is regular. It then follows from Proposition 2.3.15 in [23]

that

∂(t,z)P̄ (t, z) ⊆ ∂tP̄ (t, z)× ∂zP̄ (t, z).

Consequently, by this and (1.1.2), we see that every element Q in ∂Φ(y) has the following

form

Q =




1 0 0

ζ1 1 ζ2

Ut 0 Uz




.

Here ζ1 is the first component of ζ and ζ2 is the sub-vector of ζ obtained by just removing

the first component of ζ, where ζ ∈ ∂(t,z)Ḡ(t, x), Ut ∈ ∂tP̄ (t, z) and Uz ∈ ∂zP̄ (t, z). It

is obvious that Q is nonsingular if Uz is nonsingular. We obtain the desired result and

complete the proof.

Recall

F (x, u,v) = ∇f(x) +
p∑

i=1

ui∇xg(x, vi).

Let

li(z) = −ui∇vg(x, vi) +
q∑

j=1

wi
j∇cj(v

i), i = 1, · · · , p

and

∇c(vi) =
(
∇c1(v

i), · · · ,∇cq(v
i)

)
, i = 1, · · · , p.

89

We make further the following assumptions.

(D2) ∇xF (x, u,v) is positive semidefinite. Moreover, it is positive definite in the

null space of Span(∇xg(x, v)). That is, dT∇xF (x, u,v)d > 0 for all d ∈ <n \ {0}
satisfying ∇xg(x, v)T d = 0.

(D3) ∇vli(z) is positive semidefinite. Moreover, it is positive definite in the null

space of Span(∇c(vi)). That is, dT∇vli(z)d > 0 for all d ∈ <n \ {0} satisfying

∇c(vi)T d = 0.

The following theorem comes from [98], which shows that Assumptions (D2) and

(D3) are sufficient for ∇zP̄ (t, z) to be nonsingular for every t > 0.

Theorem 3.4.3 Let Assumptions (D2) and (D3) hold. Then ∇zP̄ (t, z) is nonsingular

for every t > 0.

We also make the following assumptions.

(D4) ui > 0 ∀ i = 1, 2, · · · , p.

(D5) The vectors ∇xg(x, vi), i = 1, 2, · · · , p are linearly independent.

(D6) For each i = 1, 2, · · · , p, the vectors ∇cj(v
i), j ∈ I(vi) := {j : cj(v

i) = 0} are

linearly independent.

(D7) wi
j − cj(v

i) 6= 0, ∀i = 1, 2, · · · , p and j = 1, 2, · · · , q.

(D8) for all (d, ξ1, · · · , ξp) ∈ S(x, v) \ {0},

dT∇xF (x, u,v)d + 2
p∑

i=1

uid
T∇2

xvg(x, vi)ξi −
p∑

i=1

ξT
i ∇vli(x, ui, v

i, wi)ξi > 0,

where S(x, v) be the set of all (d, ξ1, · · · , ξp) ∈ <n ×<mp satisfying

dT∇xg(x, vi) + ξT
i ∇vg(x, vi) = 0 for i = 1, 2, · · · , p,

and

ξT
i ∇cj(v

i) = 0 for i = 1, 2, · · · , p, j ∈ I(vi).

The following theorem comes from [134], which shows that Assumptions (D4)-(D8) are

sufficient for P̄ (0, ·) to be CD-regular at z.

90

Theorem 3.4.4 Suppose that (0, z∗) is a solution of P̄ (t, z) = 0 and Assumptions

(D4)-(D8) hold. Then P̄ (0, ·) is CD-regular at z∗.

Remark 3.4.1 (a) By Theorems 3.4.3 and 3.4.2, we see that if Assumptions (D2) and

(D3) hold, then ∇Φ(y) is nonsingular for all t > 0.

(b) By Theorems 3.4.4 and 3.4.2, we see that if Assumptions (D4)-(D8) hold, then

Φ is CD-regular at (0, 0, z).

Theorem 3.4.5 Suppose that Assumption (D1) holds. Let {yk} be the sequences gen-

erated by Algorithm 3.4.1. Then each accumulation point ỹ of {yk} is a solution of

Φ(y) = 0.

Proof. It follows from Proposition 3.4.4 and Assumption (D1) that an infinite sequence

{yk} is generated such that yk ∈ Ω for all k ≥ 0. From the design of Algorithm 3.4.1,

θ
(
yk+1

)
< θ

(
yk

)
for all k ≥ 0. Hence, the two sequences

{
θ(yk)

}
and

{
β(yk)

}
are

monotonically decreasing. Since θ(yk), β(yk) ≥ 0 (k ≥ 0), there exist θ̃, β̃ ≥ 0 such

that θ(yk) → θ̃ and β(yk) → β̃ as k →∞. If θ̃ = 0 and
{
yk

}
has an accumulation point

ỹ, then from the continuity of θ(·) and β(·) we obtain θ(ỹ) = 0 and β(ỹ) = 0. Then, we

obtain the desired result. Suppose that θ̃ > 0 and ỹ = (t̃, s̃, z̃) ∈ <2 × <n+p(m+q+1) is

an accumulation point of {yk}. By taking a subsequence if necessary, we may assume

that {yk} converges to ỹ. It is easy to see that θ̃ = θ(ỹ), β̃ = β(ỹ) and ỹ ∈ Ω. Thus,

from β(ỹ) = γ min {1, θ(ỹ)} > 0 and ỹ ∈ Ω, we see that (t̃, s̃) ∈ <2
++. Then, from

Assumption (D1), ∇Φ(ỹ) exists and is nonsingular. Hence, from Lemma 3.4.2, there

exist a closed neighborhood N (ỹ) of ỹ and a positive number α̃ ∈ (0, 1] such that for

any y = (t, s, z) ∈ N (ỹ) and all α ∈ (0, α̃] we have (t, s) ∈ <2
++, ∇Φ(y) is nonsingular

and (3.4.16) holds. Therefore, for a nonnegative integer l such that ρl ∈ (0, α̃], we have

θ(yk + ρl 4 yk) ≤
[
1− 2σ

(
1− γ

(
t̄2 + s̄2

))
ρl

]
θ(yk)

for all sufficiently large k. Then, for every sufficiently large k, we see that mk ≤ l and

hence ρmk ≥ ρl. Then

θ(yk+1) ≤
[
1− 2σ

(
1− γ

(
t̄2 + s̄2

))
ρmk

]
θ(yk) ≤

[
1− 2σ

(
1− γ

(
t̄2 + s̄2

))
ρl

]
θ(yk)

for all sufficiently large k. This contradicts the fact that the sequence
{
θ(yk)

}
converges

to θ̃ > 0. So, we complete our proof.

91

Theorem 3.4.6 Suppose that Assumption (D1) holds and y∗ is an accumulation point

of the infinite sequence {yk} generated by Algorithm 3.4.1. Suppose that P̄ is CD-regular

at (t∗, z∗). Then the whole sequence {yk} converges to y∗, and

∥∥∥yk+1 − y∗
∥∥∥ = o(

∥∥∥yk − y∗
∥∥∥). (3.4.17)

Proof. First, it follows from Theorem 3.4.5 that y∗ = (t∗, s∗, z∗) is a solution of

Φ(y) = 0, which implies that t∗ = 0 and s∗ = 0. Let

Ψ(t, z) =


 t

P̄ (t, z)


 .

Then, from Proposition 1.1.1, for all (t, z) sufficiently close to (t∗, z∗),

∥∥∥∇Ψ(t, z)−1
∥∥∥ = O(1).

Hence, from the special structure of∇Φ(y), the definition of semismoothness and Propo-

sition 1.1.1, we have that for (tk, zk) sufficiently close to (0, z∗),
∥∥∥
(
tk, zk

)
+

(
4tk,4zk

)
− (0, z∗)

∥∥∥
=

∥∥∥
(
tk, zk

)
+∇Ψ(tk, zk)−1

[
−Ψ(tk, zk) + βk (t̄, 0)

]
− (0, z∗)

∥∥∥
= O

(∥∥∥Ψ(tk, zk)−Ψ(0, z∗)−∇Ψ(tk, zk)
((

tk, zk
)
− (0, z∗)

)∥∥∥ + βk t̄
)

= o
(∥∥∥

((
tk, zk

)
− (0, z∗)

)∥∥∥
)

+ O
(
θ(yk)

)
.

(3.4.18)

Noting that Φ is locally Lipschitz continuous at (0, 0, z∗), we know that for all yk

sufficiently close to y∗,

θ(yk) =
∥∥∥Φ(yk)

∥∥∥
2

= O
(∥∥∥yk − y∗

∥∥∥
2
)

, (3.4.19)

which implies, together with (3.4.14), that

∣∣∣sk +4sk − s∗
∣∣∣ = βks̄ = O

(∥∥∥yk − y∗
∥∥∥
2
)

. (3.4.20)

Therefore, we know, from (3.4.18), (3.4.19) and (3.4.20), that for all yk sufficiently close

to y∗, ∥∥∥yk +4yk − y∗
∥∥∥ = o

(∥∥∥yk − y∗
∥∥∥
)
. (3.4.21)

On the other hand, by Proposition 1.1.2, we know that for all yk sufficiently close to

y∗, ∥∥∥yk − y∗
∥∥∥ = O

(∥∥∥Φ(yk)− Φ (y∗)
∥∥∥
)
.

92

Consequently,

θ(yk +4yk) =
∥∥∥Φ

(
yk +4yk

)∥∥∥
2

= O
(∥∥∥yk +4yk − y∗

∥∥∥
2
)

= o
(∥∥∥yk − y∗

∥∥∥
2
)

= o
(∥∥∥Φ

(
yk

)
− Φ (y∗)

∥∥∥
2
)

= o
(
θ(yk)

)
.

Therefore, we have that for all yk sufficiently close to y∗,

yk+1 = yk +4yk,

which implies, together with (3.4.21), that (3.4.17) holds. The proof is complete.

3.4.4 Preliminary Numerical Examples

In this subsection, we report our preliminary numerical test results. We tested 14

problems which we call Problems 3.4.1-3.4.14. Problems 3.4.1-3.4.4, 3.4.6 and 3.4.9

are Problems 3.3.1-3.3.4, 3.3.6 and 3.3.7, respectively. Problems 3.4.5 is an problem in

which the dimension of the parameter v is 1, whereas Problems 3.4.7-3.4.8 and 3.4.10-

3.4.12 are some problems in which the dimension of the parameter v is 2. Problems

3.4.13-3.4.14 are two problems with higher dimension decision variable.

Problem 3.4.1

f(x) = 1.21 exp(x1) + exp(x2), g(x, v) = v − exp(x1 + x2),

V = [0, 1], p = 1, (x0, v0) = (2,−2, 1).

Problem 3.4.2

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2 exp(x3v) + exp(2v)− 2 sin(4v),

V = [0, 1], p = 1, (x0, v0) = (−2, 0, 4, 1).

Problem 3.4.3

f(x) =
1

3
x2

1 +
1

2
x1 + x2

2, g(x, v) = (1− x2
1v

2)2 − x1v
2 − x2

2 + x2,

V = [0, 1], p = 1, (x0, v0) = (−4,−1, 1).

93

Problem 3.4.4

f(x) = x2
1 + (x2 − 3)2, g(x, v) = x2 − 2 + x1 sin(v/(x2 − 0.5)),

V = [0, 3], p = 1, (x0, v0) = (1, 6, 1).

Problem 3.4.5

f(x) = 2x2
1 + 2x1x3 + 4x2

2 + x2
3,

g(x, v) = x1 + x2
1 sin(2v) + 3x1x2 + x2

2 cos(3v) + x2
3 − v,

V = [0, 3π], p = 1, (x0, v0) = (2, 3, 4, 1).

Problem 3.4.6

f(x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2,

g(x, v) = x2
1 + 2x2v + exp(x1 + x2)− exp(v),

V = [0, 1], p = 1, (x0, v0) = (1,−1, 1).

Problem 3.4.7

f(x) =
1

3
x2

1 +
1

2
x1 + x2

2, g(x, v) = (1− x2
1v

2
1)

2 − x1v
2
2 − x2

2 + x2,

V = [0, 2]× [0, 1], p = 2, (x0, v0) = (−1,−1, 0, 0, 0, 1).

Problem 3.4.8

f(x) = (x1 − 2)2 + x2
2, g(x, v) = x2

1cos(v1) + x2sin(v2)− 4,

V = [0, π]× [0, π], p = 1, (x0, v0) = (−1,−1, 1, 0).

Problem 3.4.9

f(x) = x2
1 + x2

2 + x3
3,

g(x, v) = x1(v1 + v2
2 + 1) + x2(v1v2 − v2

2) + x3(v1v2 + v2
2 + v2) + 1,

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (1, 1, 1, 1, 1).

Problem 3.4.10

f(x) = x2
1 + x2

2 + x2
3,

g(x, v) = x1 + x2exp(x3v1)− exp(2x1v2) + sin(4v1),

V = [0, 1]× [0, 1], p = 2, (x0, v0) = (1, 1, 1, 1, 1, 0, 1).

94

Problem 3.4.11

f(x) = (x1 − 3)2 + x2
2 − x2,

g(x, v) = x2
1v1cos(v1v2) + (x2 − 1)v2

1sin(v2x1 − 13

9
π)− 4v2 + x1,

V = [0, 2]× [1, 2], p = 1, (x0, v0) = (1, 1, 0, 0).

Problem 3.4.12

f(x) =
1

2
(x2

1 + x2
2 + x2

3 + x2
4),

g(x, v) = sin(v1v2)− x1 − x2v1 − x3v2 − x4v1v2,

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (2, 2, 2, 2, 1, 0).

Problem 3.4.13

f(x) =
1

2
xT x, g(x, v) = 3 + 4.5sin(4.7π(v − 1.23)/8)−

n∑

i=1

xiv
i−1,

V = [0, 1], p = 1, (x0, v0) = (2, 2, · · · , 2, 1).

Problem 3.4.14

f(x) =
∫ 1

0

(
n∑

i=1

xit
i−1 − tan t

)2

dt, g(x, v) = tan v −
n∑

i=1

xiv
i−1,

V = [0, 1], p = 1.

We first implemented Algorithm 3.4.1 for Problems 3.4.1-3.4.12 in Matlab and the

numerical experiments were done by using a Pentium III 733MHz computer with 256

MB of RAM. We use ‖Φ(yk)‖ ≤ 10−6 as the stopping criterion for Algorithm 3.4.1. The

values of Ḡ(t, x) and ∇Ḡ(t, x) were computed by using the function quad in Matlab

when V is an interval in < and the function dblquad when V is a box set in <2. The

parameters used in algorithm are specified as follows

γ = 0.5, ρ = 0.5, σ = 0.001, t̄ = s̄ = 0.5.

The starting points t0, s0 for all problems are set t0 = t̄, s0 = s̄. The starting points

u0, w0 are equal to 1.0e, 1.0e for Problems 3.4.1-3.4.12, where e is the vector of ones.

We compared Algorithm 3.4.1 with fseminf. For the solver fseminf, we use all the

default values.

95

In the test of Problems 3.4.1-3.4.12, the values of p are estimated by a similar

adaptive strategy to that used in the implement of Algorithm 3.3.1. By that adaptive

strategy, we get p = 1 for 10 of 12 test problems and p = 2 for other two test problems.

The test results for Problems 3.4.1-3.4.12 are summarized in Tables 3.4 and 3.5. In

Table 3.4, Φ(yk) is the value of the function Φ(y) in (3.4.4) at the k-th iteration. In

Table 3.5, n.it represents the number of the total iterations; cpu is the total cost time

in seconds for solving the SIP problem; f(xk) is the value of the objective function in

the SIP problem at the final iteration; and G(xk) is the value of the function G(x) of

(3.3.5) at the final iteration.

Table 3.4: The last three iterates generated by Algorithm 3.4.1

Problem k ‖Φ(yk)‖ Problem k ‖Φ(yk)‖ Problem k ‖Φ(yk)‖
3.4.1 5 1.3496e-2 3.4.2 7 2.9284e-3 3.4.3 8 8.6888e-3

6 9.0575e-5 8 5.1470e-6 9 1.2333e-4

7 4.0332e-9 9 2.4003e-11 10 2.0364e-8

3.4.4 17 3.6864e-6 3.4.5 7 1.8260e-2 3.4.6 18 9.7817e-3

18 1.3323e-6 8 2.6251e-4 19 3.3488e-5

19 4.7863e-7 9 7.7329e-8 20 5.1996e-10

3.4.7 14 2.5145e-4 3.4.8 6 3.4413e-3 3.4.9 8 2.6080e-2

15 1.1943e-6 7 1.5087e-5 9 4.7719e-4

16 1.9282e-8 8 3.7231e-9 10 1.2153e-7

3.4.10 7 4.6280e-3 3.4.11 6 4.7301e-3 3.4.12 8 8.2845e-4

8 1.1212e-5 7 2.7131e-5 9 8.6175e-5

9 1.5885e-10 8 1.0377e-7 10 8.8161e-7

The results reported in Tables 3.4 and 3.5 show that Algorithm 3.4.1 performs well

for these test problems. From Table 3.4, we can see that Algorithm 3.4.1 indeed has

superlinear convergence property. From Table 3.5, we can see that Algorithm 3.4.1 uses

less CPU time than fseminf for 7 test problems and fseminf uses less CPU time than

Algorithm 3.4.1 for other 5 test problems. Moreover, it appears from Table 3.5 that

Algorithm 3.4.1 indeed can ensure the feasibility of the test problems.

We also implemented Algorithm 3.4.1 for Problems 3.4.13-3.4.14 in Fortran 77 by

using a Pentium III 1133 MHz computer with 256 MB memory. The dimensions (n) of

96

Table 3.5: Test results for Algorithm 3.4.1 and fseminf

Algorithm 3.4.1 fseminf

Problem n.it cpu f(xk) G(xk) n.it cpu f(xk) G(xk)

3.4.1 7 0.05 2.2 0 7 0.17 2.1989 7.804e-8

3.4.2 9 0.17 5.3347 3.456e-13 30 0.50 5.3242 7.467e-5

3.4.3 10 0.13 0.1945 0 3 0.03 0.1945 0

3.4.4 19 0.16 1 6.357e-9 10 0.14 1 2.568e-3

3.4.5 9 0.33 0 0 7 0.06 0 0

3.4.6 20 0.28 97.1589 0 8 0.19 97.1589 2.010e-24

3.4.7 16 1.92 0.3820 2.054e-12 13 2.23 0.3820 1.221e-7

3.4.8 8 0.91 0 0 1 1.67 0 0

3.4.9 10 13.75 1 0 7 4.78 1 0

3.4.10 9 3.64 0 0 6 4.75 0 0

3.4.11 8 1.23 1.0191 0 5 2.78 1.0191 0

3.4.12 10 1.58 0.0885 0 2 1.88 0.0885 1.611e-10

the two problems are both chosen by 20, 40, 60, 80, 100 and 200. All calculation within

the driving programs, test problems and optimization code are carried out in double

precision. In the test of the two problems, the termination condition is ‖Φ(yk)‖ ≤ 10−5,

the starting points u0, w0 are set 0.5e and 0.5e, respectively, and other parameters are

same to those in the test of Problems 3.4.1-3.4.12.

The test results for Problem 3.4.13 and 3.4.14 are given in Table 3.6 and 3.7, re-

spectively.

Table 3.6: Test Results of Problem 3.4.13

n ITK CPU Ḡ(tk, xk) θ(yk) f(xk)

20 50 0.61 6.36e-7 3.61e-11 0.344

40 38 0.82 8.36e-11 2.17e-13 0.742

60 92 1.12 7.91e-10 5.28e-11 1.188

80 96 1.59 8.45e-9 6.16e-13 1.461

100 117 2.56 1.41e-8 5.28e-11 1.685

200 160 3.24 7.65e-8 2.86e-11 2.720

97

Table 3.7: Test Results of Problem 3.4.14

n ITK CPU Ḡ(tk, xk) θ(yk) f(xk)

20 38 0.23 8.46e-8 7.53e-11 1.09

40 129 2.37 2.42e-9 8.71e-11 2.26

60 138 6.18 1.51e-7 6.33e-11 2.71

80 161 10.71 7.55e-9 4.65e-12 3.75

100 192 19.10 1.58e-8 4.41e-11 2.98

200 210 80.14 3.75e-9 1.80e-13 3.41

Analogous to the smoothing projected Newton-type algorithm, we will work on how

to find a good way to determine a suitable number p in the KKT system of the SIP

problem.

3.5 Some Comments

In this chapter, we have presented three kinds of algorithms for solving SIP prob-

lems, which are called smoothing SQP algorithm, smoothing projected Newton-type

algorithm and smoothing Newton-type algorithm. The feasibility is ensured via the

aggregated constraint in all three algorithms. At each iteration of the smoothing SQP

algorithm, we only need to solve a quadratic program which is always feasible and solv-

able, and for other two algorithms, we only need to solve a system of linear equations

at each iteration of algorithm. However, the smoothing SQP algorithm has only global

convergence property. Moreover, from Theorem 3.2.1, we see that the accumulation

point of sequence generated by the smoothing SQP algorithm is only a generalized

stationary point of an equivalent problem. Therefore, the discussion of the smoothing

SQP algorithm is preliminary. For smoothing projected Newton-type algorithm and

smoothing Newton-type algorithm, we have proved their global and local superlinear

convergence properties under some mild conditions. The main difference between the

smoothing projected Newton-type algorithm and the smoothing Newton-type algorithm

lies in the fact that the accumulation point of sequence generated by first algorithm may

not be the stationary point of the original SIP problem, whereas, each accumulation

point of sequence generated by second algorithm is a stationary point of the original

98

SIP problem. Preliminary numerical tests for the three kinds of algorithms show that

these algorithms perform well whenever the evaluation of the corresponding integral

function is not very expensive. It is wondered whether the methods developed in this

chapter can be applied to SIP problem such that the dimension of the decision variable

is large, which is a topic discussed in the next chapter.

99

Chapter 4

A Method for Solving Large Scale

SIP Problems

4.1 Introduction

Some large-scale SIP problems arise from the modelling of optimal control and approx-

imation (see [58,150,171]). In order to increase the control precision in optimal control

problem, one should increase the number of switching points. That is, the larger the

number of switching points is set, the higher the control precision is. If one sets a large

number of switching points, the discretization of the control space will lead to large

scale SIP problems. In approximation theory, if a function f(v) is approximated on the

interval [a, b] by a polynomial

fN(v) =
N∑

j=1

xjv
j−1

and the approximation is in the Chebyshev norm, then we get a SIP problem. It is clear

that the larger the order of polynomial is, the higher the approximation precision is.

When a very high order polynomial is used to approximate f on [a, b], a large scale SIP

problem is generated. However some efficient algorithms for small scale SIP problems

do not directly translate into algorithms for large scale SIP problems. The smoothing

projected Newton-type algorithm presented in previous chapter also cannot be used

directly to solve large scale SIP problems. The facts stated above motivate us to find

some efficient methods for solving large scale SIP problems.

100

In this chapter, we extend the smoothing projected Newton-type algorithm pre-

sented in Chapter 3 to solving large scale SIP problem. We modify this algorithm in

three aspects. First, the dimension of system of linear equations in each iteration is

decreased due to decomposition technique. Second, a truncated solution of the system

is determined by an iterative method, in which the computation of the matrix-vector

product, instead of the matrix factorization, is needed such that the implementation

at each iteration is relatively simple and time-economic. Third, in order to guarantee

the global convergence, a robust loss function [74] is chosen as a merit function and the

projected gradient method inserted is used to decrease the merit function. This loss

function uses a measure which does not weigh very large components of the variable

heavily. Numerical results show that this loss function is a good merit function. This

modified algorithm is called truncated projected Newton-type algorithm, and is suit-

able for handling large-scale SIP problems. The global convergence of this algorithm

is proved and the superlinear convergence rate is analyzed. The detailed implementa-

tion is discussed and some numerical tests for solving large scale SIP problems, with

examples up to 2000 decision variables, are reported in this chapter.

This chapter is organized as follows: we present a truncated projected Newton-type

algorithm in Section 4.2; the convergence of the algorithm is analyzed in Section 4.3

and numerical tests are given in Section 4.4; we propose some comments in Section 4.5.

4.2 A Truncated Projected Newton-Type Algorithm

We still consider the SIP problem (3.1.1) with V = {v ∈ <m : a ≤ v ≤ b} where

a ∈ <m, b ∈ <m, and a < b. From Section 3.3, we know that the KKT system of the

SIP problem (3.1.1) can be reformulated as a equivalent system of constrained equations

in the following

Φ(w) = 0

u ≥ 0, s ≥ 0,
(4.2.1)

101

where w = (t, z) = (t, x, u,v, s) ∈ < × <n ×<p ×<mp ×<, and

Φ(w) =


 t

H̄(w)


 , H̄(w) =




F (x, u,v)

g(x,v)

φ̃(t, x,v)

Ḡ(t, x) + s




. (4.2.2)

Here, the meanings of F , g, φ̃ and Ḡ are the same as those used in Section 3.3. In the

smoothing projected Newton-type algorithm presented in Section 3.3, Newton direction

is obtained by solving the following linear system

Φ(wk) +∇T Φ(wk)4 wk = βkw̄ (4.2.3)

where 4wk = (4tk,4xk,4uk,4vk,4sk) ∈ <ñ, ñ = n + 2 + (m + 1)p, w̄ = (t̄, 0), t̄ > 0

and

∇T Φ(w) =


1 01×n 01×p

0n×1 ∇T
x F (x, u,v) ∇xg(x,v)

0 ∇T
x g(x, v1) 01×p

...
...

...

0 ∇T
x g(x, vp) 01×p

∇T
t φ̄(t, x, v1) ∇T

x φ̄(t, x, v1) 0m×p

...
...

...

∇T
t φ̄(t, x, vp) ∇T

x φ̄(t, x, vp) 0m×p

∇tḠ(t, x) ∇T
x Ḡ(t, x) 01×p

01×m · · · 01×m 0

u1∇T
v1(∇xg(x, v1)) · · · up∇T

vp(∇xg(x, vp)) 0n×1

∇T
v1g(x, v1) · · · 01×m 0

...
. . .

...
...

01×m · · · ∇T
vpg(x, vp) 0

∇T
v1φ̄(t, x, v1) · · · 0m×m 0m×1

...
. . .

...
...

0m×m · · · ∇T
vpφ̄(t, x, vp) 0m×1

01×m · · · 01×m 1




.

(4.2.4)

In order to solve large-scale problem, we decompose the system (4.2.3) into

tk +4tk = βk t̄, (4.2.5)

102

∇T
x F (xk, uk,vk)4 xk +

p∑

j=1

∇xg(xk, vjk)4 uj
k +

p∑

j=1

Skj 4 vj
k = −F (xk, uk,vk), (4.2.6)





∇T
x g(xk, v1k)4 xk +∇T

v1g(xk, v1k)4 v1
k = −g(xk, v1k),

· · · · · ·
∇T

x g(xk, vpk)4 xk +∇T
vpg(xk, vpk)4 vp

k = −g(xk, vpk),

(4.2.7)





∇T
t φ̄(tk, xk, v1k)4 tk +∇T

x φ̄(tk, xk, v1k)4 xk

+∇T
v1φ̄(tk, xk, v1k)4 v1

k = −φ̄(tk, xk, v1k),

· · · · · ·
∇T

t φ̄(tk, xk, vpk)4 tk +∇T
x φ̄(tk, xk, vpk)4 xk

+∇T
vpφ̄(tk, xk, vpk)4 vp

k = −φ̄(tk, xk, vpk)

(4.2.8)

and

∇tḠ(tk, xk)4 tk +∇T
x Ḡ(tk, xk)4 xk +4sk = −Ḡ(tk, xk)− sk, (4.2.9)

where vjk (j = 1, 2, · · · , p) means the value of vector vj at k-th iteration, Skj =

uk
j∇T

vj

(
∇xg(xk, vjk)

)
∈ <n×m, j = 1, 2, · · · , p. Let

Jk =
{
j, 1 ≤ j ≤ p :

∣∣∣det
(
∇T

vj φ̄(tk, xk, vjk)
)∣∣∣ ≥ ε

}
,

where ε > 0 is given constant, Kk = {1, 2, · · · , p} \ Jk. pk is the cardinal number of the

index set Kk, i.e., pk = |Kk|.

From (4.2.5) and (4.2.8), it follows that

4tk = βk t̄− tk (4.2.10)

and

4vj
k = ṽjk + Mkj 4 xk, j ∈ Jk, (4.2.11)

where

ṽjk = −
(
∇T

vj φ̄(tk, xk, vjk)
)−1 (

φ̄(tk, xk, vjk) +∇T
t φ̄(tk, xk, vjk)

(
βk t̄− tk

))
,

Mkj = −
(
∇T

vj φ̄(tk, xk, vjk)
)−1∇T

x φ̄(tk, xk, vjk).

Substituting these equalities in (4.2.6)-(4.2.8), we obtain the following linear system




Ak Gk Bk

G̃k 0 Ẽk

Zk Z̃k







4xk

4uk

4v̄k




=




bk1

bk2

bk3




, (4.2.12)

103

where

Ak = ∇T
x F (xk, uk,vk)+

∑

j∈Jk

SkjMkj, Gk =
(
∇xg(xk, v1k), · · · ,∇xg(xk, vpk)

)
, (4.2.13)

Bk = (Skj, j ∈ Kk) ∈ <n×mpk , (4.2.14)

G̃k = GT
k + Ek, eT

j Ek =




∇T

vjg(xk, vjk)Mkj, j ∈ Jk,

0, j ∈ Kk,
(4.2.15)

Ẽk ∈ Rp×mpk , eT
j Ẽk =





0, j ∈ Jk,(
0, · · · ,∇T

vjg(xk, vjk), · · · , 0
)
, j ∈ Kk,

(4.2.16)

Zk =
(
∇xφ̄(tk, xk, vjk), j ∈ Kk

)T ∈ <mpk×n, (4.2.17)

Z̃k = diag
(
∇T

vj φ̄(tk, xk, vjk), j ∈ Kk

)
∈ <mpk×mpk , (4.2.18)

bk1 = −F (xk, uk,vk)− ∑

j∈Jk

Skj ṽ
jk, (4.2.19)

bk2 ∈ Rp, (bk2)j =




−g(xk, vjk), j ∈ Kk,

−g(xk, vjk)−∇T
vjg(xk, vjk)ṽjk, j ∈ Jk,

(4.2.20)

bk3 =
(
−φ̄(tk, xk, vjk)−∇T

t φ̄(tk, xk, vjk) (βk t̄− tk) , j ∈ Kk

)
∈ <mpk , (4.2.21)

and

4v̄k =
((
4vj

k

)
, j ∈ Kk

)
∈ <mpk .

It is remarked that the dimension of system of (4.2.12) is n + p + mpk which is smaller

than ñ.

The vector (4xk,4uk,4v̄k) is called a truncated solution of (4.2.12) if

∥∥∥∥∥∥∥∥∥∥




Ak Gk Bk

G̃k 0 Ẽk

Zk Z̃k







4xk

4uk

4v̄k



−




bk1

bk2

bk3




∥∥∥∥∥∥∥∥∥∥
≤ ηk (4.2.22)

for ηk > 0. After (4xk,4uk,4v̄k) is determinated, we calculate 4yk, 4tk and 4vj
k,

j ∈ Jk by (4.2.9)-(4.2.11), denote dk
tN = 4wk, and call dk

tN a truncated solution of

(4.2.3).

In Section 3.3, a simple merit function

Ψ(w) =
1

2

ñ∑

j=1

Φ2
j(w)

104

is chosen and its gradient is

∇Ψ(w) = ∇Φ(w)Φ(w)

In order to solve the large scale SIP problem, we consider the following function

Ψh(w) =
ñ∑

j=1

ρhj
(Φj(w)) , (4.2.23)

where

ρhj
(ξ) =





ξ2/2 if |ξ| ≤ hj,

hjξ − h2
j/2 otherwise,

hj, j = 1, 2, · · · , ñ are positive constants, and ρhj
(ξ) is linear in ξ for |ξ| > hj. This func-

tion was proposed by Huber and Dutter (see [74] and [28]) for solving the least squares

problems. The measure ρ(ξ) in this function does not weigh very large components of

ξ heavily.

We use the function (4.2.23) as the merit function. The gradient of this function

Ψh(w) is

∇Ψh(w) = ∇Φ(w)Φh(w),

where

Φh(w) =
∑

j∈Jh

Φj(w)ej +
∑

j∈Kh

sign (Φj(w)) hjej, (4.2.24)

Jh = {j : 1 ≤ j ≤ ñ, |Φj(w)| ≤ hj} , Kh = {1, 2, · · · , ñ} \ Jh.

The problem (4.2.1) is equivalent to finding a global solution of the following min-

imization problem:

min Ψh(w)

s.t. u ≥ 0, s ≥ 0.
(4.2.25)

We call w a stationary point of (4.2.25) if it satisfies

‖d̄G(1)‖ = 0, (4.2.26)

where

d̄G(1) = ΠW (w − γ∇Ψh(w))− w =


 −γ∇tΨh(w)

ΠZ(z − γ∇zΨh(w))− z


 , (4.2.27)

105

If ∣∣∣Φj(w
k)

∣∣∣ ≤ hj, j = 1, 2, · · · , ñ, (4.2.32)

then go to 2.2), otherwise set dk
tN = dk

G, go to Step 3.

2.2) Compute truncated Newton direction. Determine (4xk,4uk,4v̄k) which

satisfies
∥∥∥∥∥∥∥∥∥∥




Ak Gk Bk

G̃k 0 Ẽk

Zk Z̃k







4xk

4uk

4v̄k



−




bk1

bk2

bk3




∥∥∥∥∥∥∥∥∥∥
= o

(
Ψh(w

k)
)

(4.2.33)

where Ak, Gk, Bk, G̃k, Ẽk, Zk, Z̃k, bk1, bk2, bk3 are given in (4.2.13)-(4.2.21).

Compute 4tk, 4vj
k, j ∈ Jk and 4sk by the formulas (4.2.9)-(4.2.11). Set dk

tN =

(4tk,4xk,4uk,4vk,4sk) .

Step 3. (Line Search)

Let mk be the smallest nonnegative integer m satisfying

Ψh(w
k + d̄k((ρ)m)) ≤ Ψh(w

k) + σ∇Ψh(w
k)T d̃k

G((ρ)m), (4.2.34)

where for any λ ∈ [0, 1],

d̄k(λ) = τ ∗(λ)d̃k
G(λ) + (1− τ ∗(λ))d̃k

tN(λ). (4.2.35)

Here

d̃k
G(λ) := ΠW (wk + λdk

G)− wk, d̃k
tN(λ) := ΠW (wk + λdk

tN)− wk, (4.2.36)

τ ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1

2
‖Φ(wk) +∇T Φ(wk)[τ d̃k

G(λ) + (1− τ)d̃k
tN(λ)]‖2.

Let λk = (ρ)mk and wk+1 = wk + d̄k(λk).

Step 4. Set k := k + 1 and go to Step 1.

Remark 4.2.1 (1) Algorithm 4.2.1 is able to handle the sparse large scale SIP prob-

lems. In Step 2.2 of the algorithm, a truncated solution of the problem (4.2.12) is

determined by using conjugate gradient method. Hence, the matrix factorizations are

107

avoided, because this iterative algorithm requires computing only matrix-vector products.

Since the SIP problem possesses the sparse date structure, the computation of the ma-

trix, Ak, can take advantage of the sparsity of ∇T
x F (xk, uk,vk). Therefore Algorithm

4.2.1 is applicable to the sparse large scale SIP problem.

(2) If the condition (4.2.32) is not satisfied, then only projected negative gradient

direction is generated in the iteration, otherwise Step 2.2 is carried out and mixed

projected directions are generated. In addition, if (4.2.32) is satisfied, then Ψh(w
k) =

Ψ(wk) holds.

(3) The condition 4.2.33 guarantees the convergence of Algorithm 4.2.1 which is

discussed in next section. In the implementation of algorithm, one kind of choice of

right side in (4.2.33) is 1
k+1

min
{
1, Ψh(w

k)
}
.

(4) τ ∗(λ) is easily obtained and it is similar to that in Section 3.3.

(5) Another line search technique in Step 3 can be used if only projected negative gra-

dient is search direction. Although it does not affect the convergence and its proof, it can

decrease the number of inner iterations. In Section 4.4 we give a detailed description.

4.3 Convergence Analysis

In this section we discuss the convergence property of Algorithm 4.2.1. From the defi-

nition of βk, the following lemma is obvious.

Lemma 4.3.1 {βk} defined in (4.2.28) has the following properties:

(i) {βk} is a non-increasing sequence;

(ii) For all k, βk satisfies

βk ≤ α min{1, ‖d̄k
G(1)‖2}.

With the similar way to the proof of Proposition 3.3.3, we have the following descent

property of d̃k
G(λ) in Algorithm 4.2.1 and omit its proof.

108

Lemma 4.3.2 Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary point of

(4.2.25). Then for any λ ∈ (0, 1], it holds that

∇Ψh(w
k)T d̃k

G(λ) ≤ − λ

ξk

(1− αt̄)‖d̄k
G(1)‖2 < 0. (4.3.1)

Remark 4.3.1 If (4.2.32) is not satisfied and dk
G(1) 6= 0, then from Step 2.1 we know

that only projected negative gradient is chosen as a search direction. Hence, Lemma

4.3.2 shows that this is a descent direction which implies that after number of iterations

(4.2.32) is always satisfied.

Now we discuss the perturbed property of truncated solution generated in Step 2.2 of

Algorithm 4.2.1 in the following lemma.

Lemma 4.3.3 Let (4xk,4uk,4v̄k) be a truncated solution of (4.2.12), i.e.,




Ak Gk Bk

G̃k 0 Ẽk

Zk Z̃k







4xk

4uk

4v̄k



−




bk1

bk2

bk3



−




rk1

rk2

rk3




= 0, (4.3.2)

where rk3 =
((

r
(k3)
j

)
, j ∈ Kk

)
∈ <mpk , r

(k3)
j ∈ <m, let 4sk, 4tk and 4vj

k, j ∈ Jk be

calculated by (4.2.9)-(4.2.11). Define θk ∈ <ñ such that

Φ(wk) +∇T Φ(wk)4 wk − βkw̄ − θk = 0, (4.3.3)

where θk =
(
θ

(k)
1 , · · · , θ(k)

n+p+1, θ
(k)
p1 , · · · , θ(k)

pp , θ
(k)
ñ

)T
, θ

(k)
pj ∈ <m, j = 1, 2, · · · , p. Then θk

satisfies

θ
(k)
1 = 0, θ

(k)
1+j = r

(k1)
j , j = 1, 2, · · · , n; θ

(k)
n+1+j = r

(k2)
j , j = 1, 2, · · · , p;

θ
(k)
pj =





r
(k3)
j , j ∈ Kk,

0, j ∈ Jk,
j = 1, 2, · · · , p; θ

(k)
ñ = 0,

i.e., ‖rk‖ = ‖θk‖, where rk =
(
rT
k1, r

T
k2, r

T
k3

)T
.

Proof. Because 4tk is calculated by (4.2.10), θ
(k)
1 = 0 holds. From (4.3.2), (4.2.13)-

(4.2.14) and (4.2.19), we have

109

rk1 = Ak 4 xk + Gk 4 uk + Bk 4 v̄k − bk1

= ∇T
x F (xk, uk,vk)4 xk +

∑
j∈Jk

SkjMkj 4 xk + Gk 4 uk

+
∑

j∈Kk

Skj 4 vj
k + F (xk, uk,vk) +

∑
j∈Jk

Skj ṽ
jk

= ∇T
x F (xk, uk,vk)4 xk + Gk 4 uk +

p∑
j=1

Skj 4 vj
k + F (xk, uk,vk),

where the third equality is due to (4.2.11). Then from (4.3.3), (4.2.2) and (4.2.4) we

have that

θ
(k)
1+j = r

(k1)
j , j = 1, 2, · · · , n.

By (4.3.2),

rk2 = G̃k 4 xk + Ẽk 4 v̄k − bk2.

From (4.2.15), (4.2.16) and (4.2.20), we get that for all j ∈ Kk,

r
(k2)
j = g(xk, vjk) +∇T

x g(xk, vjk)4 xk +∇T
vjg(xk, vjk)4 vj

k

= θ
(k)
n+1+j,

(4.3.4)

and for all j ∈ Jk,

r
(k2)
j = g(xk, vjk) +∇T

x g(xk, vjk)4 xk +∇T
vjg(xk, vjk)Mkj 4 xk

+∇T
vjg(xk, vjk)ṽjk

= g(xk, vjk) +∇T
x g(xk, vjk)4 xk +∇T

vjg(xk, vjk)4 vj
k

= θ
(k)
n+1+j,

(4.3.5)

where the second equality in (4.3.4) and the third equality in (4.3.5) come from (4.3.3),

(4.2.2) and (4.2.4), the second equality in (4.3.5) is due to (4.2.11).

By (4.3.2),

rk3 = Zk 4 xk + Z̃k 4 v̄k − bk3.

From (4.2.17), (4.2.18), (4.2.21) and (4.2.11), it follows that for all j ∈ Kk,

r
(k3)
j = φ(tk, xk, vjk) +∇tφ(tk, xk, vjk)4 tk

+∇T
x φ̄(tk, xk, vjk)4 xk +∇T

vj φ̄(tk, xk, vjk)4 vj
k

= θ
(k)
pj ,

where the second equality comes from (4.3.3), (4.2.2) and (4.2.4). Because 4vj
k, j ∈ Jk

is calculated by (4.2.11), we have from (4.3.3), (4.2.2) and (4.2.4) that θ
(k)
pj = 0, for all

110

j ∈ Jk. In addition, θ
(k)
ñ = 0, for 4sk is calculated by (4.2.9). We complete the proof.

Before we give the global convergence of Algorithm 4.2.1, we need the following

lemma which shows that Algorithm 4.2.1 can keep tk > 0 at each iteration.

Lemma 4.3.4 Let {wk} be a sequence generated by Algorithm 4.2.1. Then for each k,

k = 0, 1, · · ·, wk = (tk, zk) satisfies

tk ≥ βk t̄. (4.3.6)

Furthermore, if wk is not a stationary point of (4.2.25), then

tk > 0.

Proof. We prove this lemma by induction. From the choices of t0 and β0 in Algorithm

4.2.1, it is obvious that (4.3.6) holds for k = 0. Suppose that for any integer l, wl =

(tl, zl) satisfies (4.3.6). Now we prove that wl+1 = (tl+1, zl+1) satisfies (4.3.6) as well.

If the condition (4.2.32) is not satisfied for k = l, we have

d̄l(λl) = d̃l
G(λl) = ΠW (wl + λld

l
G)− wl, dl

G = −ξl∇Ψh(w
l) + βlw̄,

where λl is the accepted step-length at l-th iteration. It follows from Algorithm 4.2.1

that
(d̄l(λl))t = λl

[
−ξl

(
t +∇tH̄(w)H̄h(w)

)
+ β(wl)t̄

]

≥ −λlt
l + λlβ(wl)t̄ (see (4.2.29)),

where (d̄l(λl))t is the first element of d̄l(λl). Then we have

tl+1 − β(wl+1)t̄ = tl + (d̄l(λl))t − β(wl+1)t̄

≥ (1− λl)t
l + λlβ(wl)t̄− β(wl+1)t̄

≥ (1− λl)t
l + λlβ(wl)t̄− β(wl)t̄

= (1− λl)t
l − (1− λl)β(wl)t̄ ≥ 0,

where the second and third inequalities are due to the monotonicity property of β(wl)

in Lemma 4.3.1 and tl ≥ β(wl)t̄.

If the condition (4.2.32) is satisfied for k = l, then we have

(d̄l(λl))t =
(
τ ∗(λl)d̄

l
G(λl) + (1− τ ∗(λl))d̃

l
tN(λl)

)
t
.

111

By the similar way, we can obtain that tl+1 − β(wl+1)t̄ ≥ 0.

Therefore, (4.3.6) holds for any nonnegative integer k. Furthermore, from (4.3.6)

and that wk is not a stationary point of (4.2.25), tk > 0 holds. We complete the proof.

Theorem 4.3.1 Let {wk} ⊂ W be a sequence generated by Algorithm 4.2.1. Then any

accumulation point of {wk} is a stationary point of (4.2.25).

Proof. Lemma 4.3.4 shows that if Algorithm 4.2.1 does not stop at a stationary

point of (4.2.25), then tk > 0 for any k. This means that Ψ and Ψh are continuously

differentiable at wk. Remark of Lemma 4.3.2 means that for k sufficiently large, the

condition (4.2.32) is always satisfied and Ψh(w) = Ψ(w) (see Remark (2) of Algorithm

4.2.1). Hence, by using a similar way to the proof of Theorem 4.1 [168], we can prove

that the theorem holds.

In the rest of this section, we analyze the local convergence of Algorithm 4.2.1. We

make the following standard assumption:

(E1) Let w∗ = (t∗, z∗) = (0, z∗) be an accumulation point of the sequence {wk}
generated by Algorithm 4.2.1. Suppose limk∈K wk = w∗ for some subset K ⊂ {1, 2, · · ·},
w∗ is a solution of the system of equations (4.2.1) and Φ is BD-regular at w∗.

BD-regularity can be satisfied without special difficulty. Before giving a sufficient

condition for BD-regularity to hold, we need the following assumptions:

(E2) The vectors ∇xg(x, vj), j = 1, · · · , p are linearly independent.

(E3) The matrix ∇T
x F (x, u,v) is positive definite, and for every j = 1, 2, . . . , p, the

matrix (∇2
vg(x, vj))M is negative definite whenever JM(x, vj) 6= ∅, where

JM(x, v) = {i | ai < vi + (∇vg(x, v))i < bi},

(∇2
vg(x, v))M is a principal square submatrix of ∇2

vg(x, v), which is determined by the

columns and rows with the index i ∈ JM(x, v).

(E4) For every j = 1, 2, . . . , p, {i | vi + (∇vg(x, v))i = ai or vi + (∇vg(x, v))i = bi}
is an empty set.

112

In addition, for any (x, v) ∈ Rn ×Rm, we denote

JL(x, v) = {i | vi + (∇vg(x, v))i < ai}, JR(x, v) = {i | bi < vi + (∇vg(x, v))i}.

We now state and prove a lemma in the following.

Lemma 4.3.5 Let

T =




A B DC

BT 0 0

DT 0 F




where A ∈ <p×p, B ∈ <p×q, C ∈ <r×r, D ∈ <p×r and F ∈ <r×r. Suppose that A and

CT F are positive definite and negative semidefinite, respectively. If the column rank of

B and F are q and r, respectively, then T is nonsingular.

Proof. Let Td = 0, where d = (d1, d2, d3) is a suitable partitioned vector. Then

Ad1 + Bd2 + DCd3 = 0 (4.3.7)

BT d1 = 0 (4.3.8)

DT d1 + Fd3 = 0 (4.3.9)

Multiplication (4.3.7) with dT
1 yields

dT
1 Ad1 + dT

1 Bd2 + dT
1 DCd3 = 0,

which, together with (4.3.8) and (4.3.9), implies

dT
1 Ad1 + dT

3 (−CT F)d3 = 0.

From the property of A and CT F , we have that d1 = 0. Then it follows from (4.3.9)

and the property of F that d3 = 0. Because of (4.3.7) and the property of B, d2 = 0

holds. The proof is complete.

Theorem 4.3.2 Suppose that w∗ = (t∗, z∗) = (t∗, x∗, u∗,v∗, y∗) is a solution of (4.2.1)

and satisfies (E2)-(E4). Then Φ is BD-regular at w∗.

Proof. Without loss of generality, by (E4), we assume

JL(x∗, vj∗) = {1, 2, · · · , kj
1},

JM(x∗, vj∗) = {kj
1 + 1, · · · , kj

2},
JR(x∗, vj∗) = {kj

2 + 1, · · · ,m},

113

where 1 ≤ kj
1 ≤ kj

2 ≤ m. Because w∗ = (t∗, z∗) is a solution of (4.2.1), t∗ = 0. Moreover,

we have, by φ(0, x∗, vj∗) = 0, that

vj∗ −mid(a, b, vj∗ +∇vg(x∗, vj∗)) = 0, j = 1, · · · , p. (4.3.10)

By (4.3.10) and the definition of the mid function, we have that for j = 1, · · · , p and

i ∈ JM(x∗, vj∗),

(∇vjg(x∗, vj∗))i = 0. (4.3.11)

By direct computation, we obtain that for any Q ∈ ∂BΦ(w∗),

Q =


1 01×n 01×p 01×m · · · 01×m 0

0n×1 ∇T
x F (x∗, u∗,v∗) ∇xg(x∗,v∗) u∗1D1 · · · u∗pDp 0n×1

0 ∇T
x g(x∗, v1∗) 01×p ∇T

v1g(x∗, v1∗) · · · 01×m 0

0 ∇T
x g(x∗, v2∗) 01×p 01×m · · · 01×m 0

...
...

...
...

. . .
...

...

0 ∇T
x g(x∗, vp∗) 01×p 01×m · · · ∇T

vpg(x∗, vp∗) 0

Q1 C1D
T
1 0m×p E1 + C1F1 · · · 0m×m 0m×1

Q2 C2D
T
2 0m×p 0m×m · · · 0m×m 0m×1

...
...

...
...

. . .
...

...

Qp CpD
T
p 0m×p 0m×m · · · Ep + CpFp 0m×1

U1 U2 01×p 01×m · · · 01×m 1




,

(4.3.12)

where U1 ∈ ∂tG(0, x∗), U2 ∈ ∂xG(0, x∗) and for j = 1, · · · , p,

Qj ∈ ∂tφ̄(0, x∗, vj∗), Dj = ∇T
vj(∇xg(x∗, vj∗)), Fj = ∇T

vj(∇vjg(x∗, vj∗)),

Cj = diag(0j1 ,−Ij2 , 0j3), Ej = diag(Ij1 , 0j2 , Ij3). (4.3.13)

where 0j1 , 0j2 , 0j3 are zero square matrices with kj
1, (kj

2− kj
1) and (m− kj

2) order respec-

tively, Ij1 , Ij2 , Ij3 are identity matrices with kj
1, (kj

2−kj
1), and (m−kj

2) order respectively.

114

By (4.3.12), it is easy to see that the matrix Q is also nonsingular as the matrix

Q̃ =




∇T
x F (x∗, u∗,v∗) ∇xg(x∗,v∗) u∗1D1 · · · u∗pDp

∇T
x g(x∗, v1∗) 01×p ∇T

v1g(x∗, v1∗) · · · 01×m

∇T
x g(x∗, v2∗) 01×p 01×m · · · 01×m

...
...

...
. . .

...

∇T
x g(x∗, vp∗) 01×p 01×m · · · ∇T

vpg(x∗, vp∗)

C1D
T
1 0m×p E1 + C1F1 · · · 0m×m

C2D
T
2 0m×p 0m×m · · · 0m×m

...
...

...
. . .

...

CpD
T
p 0m×p 0m×m · · · Ep + CpFp




.

We denote by (Dj)ML a submatrix of Dj constituted of the columns with the index

i ∈ JM(x, vj), and by (Fj)M a principal square submatrix of Fj, which is determined

by the columns and rows with the index i ∈ JM(x, vj). Then from special forms of Cj

and Ej we have

CjD
T
j =




0

−(Dj)
T
ML

0




, Ej + CjFj =




Ij1 0 0

∗ −(Fj)M ∗
0 0 Ij2




where two ∗ are some proper partitioned matrices. Hence the nonzero elements of

∇T
vjg(x∗, vj∗) and the matrix ∗ are deleted by the some proper row transformations.

Hence it is not difficult to know that the matrix Q̃ is also nonsingular as the

Q∗ =




∇T
x F (x∗, u∗,v∗) ∇xg(x∗,v∗) DU

∇T
x g(x∗,v∗) 0 0

DT 0 F




, (4.3.14)

where D = ((D1)ML, · · · , (Dp)ML), F = diag((F1)M , · · · , (Fp)M), U = diag(u∗1I1, · · · , u∗pIp)

and Ij, j = 1, · · · , p, are some proper identity matrices. It is clear that UT F is negative

definite, from (E2) and (E3) it follows that all other conditions in Lemma 4.3.5 are

satisfied. Hence from Lemma 4.3.5 we know that Q∗ is nonsingular and complete the

proof.

The following lemma is the same as Lemma 3.3.2, its proof is omitted.

115

Lemma 4.3.6 There exist positive constants κ and ε such that for every wk satisfying

‖wk − w∗‖ ≤ ε,

(i) ∇Φ(wk) is nonsingular and satisfies

‖∇Φ(wk)‖ ≤ κ.

(ii)

‖Φ(wk)‖ =
√

2Ψ(wk)
1
2 = O(‖wk − w∗‖).

Lemma 4.3.7 Let {wk} be a sequence generated by Algorithm 4.2.1. Then for all

k ∈ K sufficiently large, we have

β(wk) = O(Ψ(wk)) = O(‖wk − w∗‖2); (4.3.15)

and

wk + λdk
tN = (1− λ)wk + λw∗ + λo(Ψ(wk)

1
2). (4.3.16)

for any λ ∈ (0, 1]

Proof. From the definition of β(wk) (see (4.2.28)), the choice of γk (see (4.2.30)), the

projection property and Lemma 4.3.6, it follows that for wk sufficiently close to w∗,

Ψh(w
k) = Ψ(wk),

β(wk) ≤ α‖d̄k
G(1)‖2 ≤ αγ2

k‖∇Ψ(wk)‖2 ≤ αηΨ(wk) =
αη

2
‖Φ(wk)‖2 = O(‖wk − w∗‖2).

This shows (4.3.15) holds. From (4.2.33), (4.3.2), (4.3.3) and Lemma 4.3.3, we have

that for wk sufficiently close to w∗,

Φ(w)−βkw̄−θk+∇T Φ(wk)dk
tN = 0, ‖θk‖ = ‖rk‖ = o

(
Ψh(w

k)
)

= o
(
Ψ(wk)

)
, (4.3.17)

which imply

wk + λdk
tN = wk + λ∇T Φ(wk)−1[−Φ(wk) + β(wk)w̄ + θk]

= wk − λ∇T Φ(wk)−1[Φ(wk)− Φ(w∗)−∇T Φ(wk)(wk − w∗)]

−λ(wk − w∗) + λ∇T Φ(wk)−1
(
β(wk)w̄ + θk

)

= (1− λ)wk + λw∗ + λo(‖wk − w∗‖) + λO(Ψ(wk))

= (1− λ)wk + λw∗ + λo(Ψ(wk)
1
2),

where the third equality is due to the semismoothness of Φ, (4.3.15) and (4.3.17). The

proof is complete

By a similar way to the proof of Theorem 3.3.4, we obtain the following theorem.

116

Theorem 4.3.3 Suppose that {wk} is a sequence generalized by Algorithm 4.2.1 and

w∗ is a point satisfying (E1). Then the whole sequence {wk} superlinearly converges to

w∗.

4.4 Implementation and Numerical Tests

In this section, we discuss some detailed implementation of Algorithm 4.2.1 and give

some numerical results for medium-sized and large scale SIP problems.

4.4.1 Implementation of Algorithm 4.2.1

In order to decrease the number of inner iterations, we use another line search technique

if only projected gradient direction is search direction. In this case, the initial value of

λ is set to

min



1,

1∥∥∥dk
G

∥∥∥
,

0.2Ψh(w
k)

−∇Ψh(wk)T dk
G

,
tk∣∣∣tk +∇tH̄(wk)H̄h(wk)

∣∣∣





and λ is updated by quadratic interpolation technique.

In order to guarantee the numerical stability, we determine the truncated solution

(4xk,4uk,4v̄k) by solving the problem

(
MT

k Mk

‖Mk‖2 + ωI

)



4xk

4uk

4v̄k




=
MT

k

‖Mk‖2




bk1

bk2

bk3




(4.4.1)

instead of the problem (4.2.33), where

Mk =




Ak Gk Bk

G̃k 0 Ẽk

Zk Z̃k




,

ω is a damping factor. If Mk is nonsingular and ω = 0, then the problem (4.4.1)

is equivalent to the problem (4.2.33). At first, (4.4.1) is solved with ω = 0. If the

truncated solution does not generate a good descent direction, then (4.4.1) is solved

with ω = 1
(n+p+mpk)2

in next iteration.

117

In Algorithm 4.2.1, we choose the suitable values of parameters (see Step 0) by

η = 0.9, ρ = 0.5, σ = 0.0005, α = 0.5, t̄ = 0.9, p1 = 1.0e− 10, p2 = 2.1,

and

hj = max
{
2.5, 10−3

∣∣∣Ψ(w0)
∣∣∣ , j = 1, 2, · · · , ñ

}
.

The starting points t0, u0 and s0 for all problems are set t0 = t̄, u0 = 0.05e, s0 = 0.5,

where e is the vector of ones.

4.4.2 Numerical Results

Now we discuss the implementation of Algorithm 4.2.1, which has been implemented

in FORTRAN 77. All calculation within the driving programs, test problems and

optimization code are carried out in double precision. The problem is solved on a

personal computer (Pentium III 1133 MHz, 256 MB memory).

Although a lot of large SIP type problems arise from optimal control and approxi-

mation theory, it is difficult to find large-scale SIP problems in the literature suitable

for use as test problems. In order to evaluate for large scale SIP problems, we enlarge

3 test problems where the first problem is the same as Problem 3.3.5 and the second

problem is from [78], another is generated from optimal control problem. We list the

three SIP problem in the following.

Problem 4.4.1

f(x) = 1
2
xT x, g(x, v) = 3 + 4.5 sin(4.7π(v − 1.23)/8)−

n∑

i=1

xiv
i−1,

V = [0, b], p = 1. if n ≤ 60, b = 100; otherwise b = 1.

Problem 4.4.2

f(x) =

1∫

0

(
n∑

i=1

xit
i−1 − tan t

)2

dt, g(x, v) = tan v −
n∑

i=1

xiv
i−1, V = [0, 1], p = 1.

Problem 4.4.3
min p(g)hT h

s.t. gT A(v1, v2)h ≤ r(v1, v2),

118

where v1 ∈ [−π, π], v2 ∈ [0, 2π], p(g) = gT Bg, h ∈ <n1 , g ∈ <n2 , B ∈ <n2×n2 ,

A(v1, v2) ∈ <n2×n1 , n2 = n1 and

B =




4 −1

−1 4
. . .

.

.

. . . 4 −1

−1 4




,

A(v1, v2) =


1 sin bv2 cos cv1

sin av1 1 sin bv2 cos cv1

cos dv2 sin av1 1 sin bv2 cos cv1

.

.

.

cos dv2 sin av1 1 sin bv2 cos cv1

cos dv2 sin av1 1 sin bv2

cos dv2 sin av1 1




.

We use Algorithm 4.2.1 to solve these problems where the termination condition

is that the l2 norm of the projected gradient,
∥∥∥d̄k

G(1)
∥∥∥ is reduced below 10−5. The

dimensions (n) of these problems are chosen by 10, 20, 40, 60, 80, 100, 200, 400, 1000

and 2000. The results of the test are given in Tables 4.1, 4.2 and 4.3. The number of

iteration (ITK), the norm of projected gradient (
∥∥∥d̄k

G(1)
∥∥∥) and the merit function value

Ψ(wk) and the objective function value f(xk) are shown in these tables.

Table 4.1 shows that Algorithm 4.2.1 performs very well for solving Problem 4.4.1

with the different dimension. There is some difference among different dimensions.

When n ≥ 100, there is a slight increase in iteration number.

Problem 4.4.2 is dense, i.e., its Hessian of Lagrangian function ∇T
x F (x, u,v) is not

sparse. Although the Hessian can be not stored for its special structure, the computa-

tion in each iteration can be not decreased. Hence, Algorithm 4.2.1 is used for solving

119

Table 4.1: Test Result of Problem 4.4.1 for Algorithm 4.2.1

n ITK
∥∥∥d̄k

G(1)
∥∥∥ Ψ(wk) f(xk)

10 64 8.71e-11 1.44e-17 0.08246

20 55 6.36e-6 2.31e-7 0.04408

40 16 8.36e-11 1.17e-15 3.1826

60 20 1.41e-11 2.023e-17 5.5918

100 183 2.65e-7 2.75e-12 2.3862

400 107 8.448e-6 1.47e-9 4.605

1000 98 5.05e-6 8.52e-9 8.2726

2000 252 7.77e-6 2.51e-4 16.96

Problem 4.4.2, the dimensions of which range from 10 to 200. Table 4.2 shows that

Algorithm 4.2.1 performs well for solving some medium dense SIP problems.

Table 4.2: Test Result of Problem 4.4.2 for Algorithm 4.2.1

n ITK
∥∥∥d̄k

G(1)
∥∥∥ Ψ(wk) f(xk)

10 69 4.29e-6 1.07e-8 0.3147

20 66 4.68e-6 1.98e-9 0.6717

40 80 8.32e-6 3.573e-10 0.5803

80 84 5.68e-6 1.45e-10 1.424

100 85 7.62e-6 7.28e-11 1.069

200 75 5.35e-6 1.67e-10 1.323

Problem 4.4.3 is a somewhat complicated SIP problem which often arises from

optimal control field. In this problem, v ∈ <2, while in problems 4.4.1 and 4.4.2, v ∈ <.

Its Hessian of Lagrangian function is sparse, however the computation of elements is

not simple due to some trigonometric functions. Numerical results of this problem is

given in Table 4.3 which show that Algorithm 4.2.1 can solve some large scale sparse

SIP problems. It is interesting that the outer iteration number does not increase and

inner iteration numbers decrease as the dimensions increase.

120

Table 4.3: Test Result of Problem 4.4.3 for Algorithm 4.2.1

n ITK
∥∥∥d̄k

G(1)
∥∥∥ Ψ(wk) f(xk)

20 225 6.18e-7 5.97e-12 18.04

60 212 2.53e-7 1.54e-12 21.83

100 258 3.29e-6 3.69e-10 20.36

200 170 6.13e-6 1.26e-9 17.06

600 188 8.25e-6 2.23e-9 13.74

1000 135 5.58e-6 1.48e-6 13.85

2000 151 6.95e-6 4.72e-9 13.85

4.5 Some Comments

Although the development of the code for Algorithm 4.2.1 is still at its primary stage,

the numerical results have indicated that Algorithm 4.2.1 is capable of processing large

scale SIP problems. However, there are some issues which may be addressed in further

research.

Because “large scale” here only refers to the decision variables, it is hoped that an

improved version of Algorithm 4.2.1 may also be capable of handling high dimensional

index sets. In addition, our method works on the KKT system of SIP, i.e. it does not

minimize the original objective function f . Sometimes this may limit the applicability

of this method to a special class of SIP problems.

By Algorithm 4.2.1 we can obtain stationary points of (4.2.25), it is possible that

some of them may not be stationary points of (3.1.1). If V in (3.1.1) is a nonpolyhedral

index set, then our method cannot be used directly.

We hope that with further research more efficient methods can be obtained for

solving general SIP problem with many decision variables and high dimensional index

sets.

121

Chapter 5

A Smoothing Implicit Programming

Approach for Solving a Class of

Stochastic Generalized Semi-Infinite

Programming Problems

5.1 Introduction

A generalized semi-infinite programming (GSIP) problem is a constrained optimization

problem in which the constraints are given by a possibly infinite index set that depends

upon the decision variable x:

min
x

f(x)

s. t. g(x, u) ≤ 0, ∀ u ∈ T (x),
(5.1.1)

where T (x) = {u ∈ <r | h(x, u) ≤ 0}. Here, f : <n → <, g : <n × <r → <,

h : <n ×<r → <J , T : <n → 2<
r
, and 2<

r
is the set of all subsets in <r.

When the set-valued mapping T is constant, the GSIP problem reduces to a standard

semi-infinite programming problem and will be abbreviated by SIP. Moreover, if T is a

finite set, then SIP reduces to an ordinary nonlinear programming problem.

122

Recently, the GSIP problem becomes an active research topic in applied mathemat-

ics, as it arises in various fields of engineering such as the design problem, the problem

of maneuverability of robots, and the reverse Chebyshev approximation problem, see,

e.g., [56, 71, 93]. The first-order and second-order optimality conditions for the GSIP

problem are studied in [72, 86, 148, 160]. Some numerical aspects of the GSIP problem

are discussed in [162,163].

Stochastic programming is another important branch of mathematical programming

in which optimal decisions are sought under uncertainty. Modeling the uncertainty

by random objects may lead to diverse stochastic programming problems. Various

numerical methods for solving stochastic programming have been studied extensively,

see [8, 9, 182].

In this chapter, we consider the following stochastic version of the GSIP problem

(5.1.1):

min
x

Eω[f(x, ω)]

s. t. g(x, u, ω) ≤ 0,

u ∈ T (x, ω), ω ∈ Ω, a.s.,

(5.1.2)

where Ω is a sample space, T (x, ω) = {u ∈ <r | h(x, u, ω) ≤ 0} is a constraint index set

correlated with a decision variable x and a random variable ω ∈ Ω, the abbreviation

a.s. means that the constraints hold almost surely, i.e., for all ω ∈ Ω except for a set

with zero probability. We assume that f : <n × Ω → <, g : <n × <r × Ω → <,

h : <n×<r ×Ω → <J are continuous, T : <n×Ω → 2<
r

and Ω is a compact set in <s.

We call problem (5.1.2) a stochastic generalized semi-infinite programming (SGSIP)

problem. Obviously, if Ω is a singleton, then the problem (5.1.2) reduces to an ordinary

GSIP problem. For each fixed ω ∈ Ω, the problem (5.1.2) is a GSIP problem, which

can be reformulated as

min
x

Eω[f(x, ω)]

s. t. v(x, ω) ≤ 0, ω ∈ Ω, a.s.,
(5.1.3)

where v(x, ω) is defined as

v(x, ω) = sup
u
{g(x, u, ω) | u ∈ T (x, ω)}.

123

In this chapter, we apply the expected value approach to the constraints of (5.1.3) and

propose a deterministic version of SGSIP problem as follows:

min
x

Eω[f(x, ω)]

s. t. Eω[v(x, ω)] ≤ 0.
(5.1.4)

The expected value approach has been studied for stochastic variational inequality

problems by Gürkan, Özge and Robinson [59]. The GSIP problem is a hard problem

with an infinite constraint index set that may vary since it is correlated with decision

variable x. Presence of an additional random variable makes the SGSIP problem even

harder to solve than the GSIP problem.

Recently Stein and Still [161] studied interior point techniques for solving the GSIP

problem. Under the reduction assumption (the LICQ holds, and both the strict com-

plementary slackness (SCS) condition and the second-order sufficiency condition are

valid), Stein and Still presented a similar algorithm for the GSIP problem and proved

the convergence of the algorithm to Fritz John points and global optimal solutions. The

main difference between the present paper and [161] is that here also a deterministic

version of a stochastic GSIP model is presented and that the techniques for the proofs

are completely different. Moreover, our approach does not use the SCS condition (in

the parametric programming problem Q(x, ω) defined later on).

The rest of this chapter is organized as follows. In Section 5.2, we reformulate prob-

lem (5.1.4) as a mathematical programming problem with complementarity constraints.

In Section 5.3, we establish some properties of certain parametric smoothing approx-

imations for the reformulated problem. In Section 5.4, we present global convergence

analysis of a smoothing implicit programming algorithm for solving the problem with

finite discrete distribution. Some remarks are given in Section 5.5.

5.2 A New Reformulation

In this section, we present a new reformulation of problem (5.1.4). Our main idea is to

regard (5.1.4) as a two-stage optimization problem and use the first order optimality

condition of the second stage optimization problem to deal with the constraints of

(5.1.4).

124

Assumption F1. For any x ∈ <n and ω ∈ Ω, g(x, ·, ω) is twice continuously

differentiable and pseudo-concave, h(x, ·, ω) is twice continuously differentiable and

yT h(x, ·, ω) is quasi-convex for any y ∈ <J
+.

For any (x, ω) ∈ <n × Ω, we define a parametric programming problem

Q(x, ω) : max
u

g(x, u, ω)

s.t. u ∈ T (x, ω).

The first-order optimality conditions for problem Q(x, ω) are given by

∇ug(x, u, ω)−∇uh(x, u, ω)y = 0,

yT h(x, u, ω) = 0,

h(x, u, ω) ≤ 0,

y ≥ 0.

(5.2.5)

Definition 5.2.1 We say that the linear independence constraint qualification (LICQ)

is satisfied at ū for problem Q(x, ω), if the vectors

∇uhj(x, ū, ω), j ∈ Ih(x, ū, ω)

are linearly independent, where Ih(x, ū, ω) is the index set of active constraints

Ih(x, ū, ω) = {j | hj(x, ū, ω) = 0}.

We say that the Mangasarian-Fromovitz constraint qualification (MFCQ) [148] is sat-

isfied at ū for problem Q(x, ω), if there exists a vector γ0 ∈ <r such that

∇uhj(x, ū, ω)T γ0 < 0, j ∈ Ih(x, ū, ω).

Assumption F2. For any x ∈ <n and ω ∈ Ω, problem Q(x, ω) has a unique

solution, which we denote u(x, ω). Moreover, the MFCQ is satisfied at u(x, ω) for

problem Q(x, ω).

Under Assumptions F1 and F2, we show that problem (5.1.4) is equivalent to the

following problem.

P̃ : min
x

Eω[f(x, ω)]

s. t. Eω[g(x, u(x, ω), ω)] ≤ 0,

125

where u(x, ω), together with a vector y(x, ω) ∈ <J , satisfies the following first-order

optimality conditions for problem Q(x, ω):

∇ug(x, u(x, ω), ω)−∇uh(x, u(x, ω), ω)y(x, ω) = 0,

min(y(x, ω),−h(x, u(x, ω), ω)) = 0.
(5.2.6)

Lemma 5.2.1 Suppose that Assumptions F1 and F2 hold. Then, x̃ is a feasible solution

of problem (5.1.4) if and only if x̃ is a feasible solution of problem P̃ .

Proof. Let x̃ be a feasible solution of problem (5.1.4), that is, Eω[g(x̃, u(x̃, ω), ω)] ≤ 0,

where u(x̃, ω) is the unique solution of Q(x̃, ω). By Assumption F2, for every ω ∈ Ω,

there exists a vector y such that (u(x̃, ω), y) satisfies the first-order optimality conditions

of Q(x̃, ω) at u(x̃, ω), which implies that x̃ is a feasible solution of problem P̃ .

Conversely, let x̃ be a feasible solution of problem P̃ , that is, there exists a pair

(u(x̃, ω), y) such that (x̃, u(x̃, ω), y) satisfies the constraints of P̃ . From Assumption

F1, the first-order optimality conditions imply

g(x̃, u(x̃, ω), ω) = v(x̃, ω).

Hence, Eω[v(x̃, ω)] ≤ 0, that is, x̃ is a feasible solution of (5.1.4). The proof is complete.

From Lemma 5.2.1, we readily obtain the following theorem. The proof is omitted.

Theorem 5.2.1 Suppose that Assumptions F1 and F2 hold. Then x̃ is a global (local)

optimal solution of problem (5.1.4) if and only if x̃ is a global (local) optimal solution

of problem P̃ .

5.3 Smoothing Approximation for P̃

In this section, we study a smoothing approach for solving problem P̃ .

Let ε ∈ <+ be a smoothing parameter. Define a function φε : <2 → < by

φε(s, t) =
1

2
(s + t−

√
(s− t)2 + 4ε2)

126

which is called the Chen-Harker-Kanzow-Smale smoothing function for the function

min(s, t).

Proposition 5.3.1 [87] For any ε ∈ <+, we have

(i) |φε(s, t)−min(s, t)| ≤ ε.

(ii) φε(s, t) = 0 ⇐⇒ s ≥ 0, t ≥ 0, st = ε2.

(iii) φε(s, t) is a C∞ function of (s, t) for a fixed ε > 0.

Let us define the function Ψ : <+ ×<n ×<r ×<J × Ω → <r+J by

Ψ(ε, x, u, y, ω) =




∇ug(x, u, ω)−∇uh(x, u, ω)y

φε(y1,−h1(x, u, ω))
...

φε(yJ ,−hJ(x, u, ω))




.

Then, a parametric smooth approximation to problem P̃ can be formulated as

P̃ (ε, δ) : min
x

Eω[f(x, ω)]

s. t. Eω[g(x, u(ε, x, ω), ω)] ≤ δ,

where ε, δ > 0 are parameters, and u(ε, x, ω), together with a vector y(ε, x, ω) ∈ <J ,

satisfies

Ψ(ε, x, u(ε, x, ω), y(ε, x, ω), ω) = 0.

We denote the feasible regions of P̃ (ε, δ) and P̃ by F(ε, δ) and F̃ , respectively. It is

clear that if (ε, δ) = 0 then P̃ (ε, δ) coincides with P̃ , and hence F(ε, δ) is identical to

F̃ . In the next section, we will present an algorithm for solving problem P̃ by solving a

sequence of problems P̃ (ε, δ). In the rest of this section, we concentrate on establishing

some properties of P̃ (ε, δ). To this end, we state two lemmas at first. Their proofs are

omitted since they can be found in some text books on matrix analysis.

Lemma 5.3.1 Let

T =


 A B

BT C


 ,

127

where A ∈ <p×p, B ∈ <p×q, C ∈ <q×q, p ≤ q. Then the following two statements are

true:

(i) If A is negative semidefinite, C is positive definite and the row rank of B is p, then

T is nonsingular.

(ii) If A is negative definite and C is positive definite, then T is nonsingular.

Lemma 5.3.2 Let

T =




A BC D

BT I − C O

DT O O




,

where A ∈ <p×p, B ∈ <p×q, C ∈ <q×q, D ∈ <p×s. If A and CT − CT C are negative

definite and positive semidefinite, respectively, and the column rank of (B, D) is q + s,

then T is nonsingular.

Using Lemmas 5.3.1 and 5.3.2, we can investigate the nonsingularity of (generalized)

Jacobian of Φ with respect to the variable (u, y), which plays an important role in the

rest of this section and the convergence analysis of the algorithm presented in Section

5.4. We have the following results.

Proposition 5.3.2 The function Ψ is locally Lipschitz and regular.

Proof. It is similar to Lemma 1 in [38].

Proposition 5.3.3 Let Ψ(ε̄, x̄, ū, ȳ, ω̄) = 0. Suppose that

Ā(ω̄) = ∇2
uug(x̄, ū, ω̄)−

J∑

j=1

ȳj∇2
uuhj(x̄, ū, ω̄)

is negative definite. In addition, suppose that the LICQ is satisfied at ū for problem

Q(x̄, ω̄) if ε̄ = 0. Then all matrices in ∂(u,y)Ψ(ε̄, x̄, ū, ȳ, ω̄) are nonsingular.

Proof. We only show the conclusion in the case where ε̄ = 0. The conclusion in the

case where ε̄ > 0 can be shown similarly by using Lemma 5.3.1. We assume without

128

loss of generality that




−hj(x̄, ū, ω̄) > ȳj, j = 1, · · · , J1,

−hj(x̄, ū, ω̄) = ȳj, j = J1 + 1, · · · , J2,

−hj(x̄, ū, ω̄) < ȳj, j = J2 + 1, · · · , J,

and write




B̄1 = [∇uh1(x̄, ū, ω̄), · · · ,∇uhJ1(x̄, ū, ω̄)],

B̄2 = [∇uhJ1+1(x̄, ū, ω̄), · · · ,∇uhJ2(x̄, ū, ω̄)],

B̄3 = [∇uhJ2+1(x̄, ū, ω̄), · · · ,∇uhJ(x̄, ū, ω̄)],

C̄2 = diag[c̄1, · · · , c̄J2−J1], 0 ≤ c̄j ≤ 1, j = 1, · · · , J2 − J1.

Then, from the definition of the generalized Jacobian, it is not difficult to obtain, by

direct calculation, that

∂(u,y)Ψ(0, x̄, ū, ȳ, ω̄) =







Ā −B̄1 −B̄2 −B̄3

O I O O

−C̄2B̄
T
2 O I − C̄2 O

−B̄T
3 O O O




∣∣∣∣∣∣
0 ≤ c̄j ≤ 1,

j = 1, · · · , J2 − J1





.

It is easy to see that the matrix



Ā −B̄1 −B̄2 −B̄3

O I O O

−C̄2B̄
T
2 O I − C̄2 O

−B̄T
3 O O O




is also nonsingular as the matrix



Ā B̄2 B̄3

C̄2B̄
T
2 I − C̄2 O

B̄T
3 O O




.

It is obvious that C̄2−C̄T
2 C̄2 is positive semidefinite, since 0 ≤ c̄j ≤ 1 for j = 1, · · · , J2−

J1. Hence, by the given conditions and Lemma 5.3.2, all matrices in ∂(u,y)Ψ(0, x̄, ū, ȳ, ω̄)

are nonsingular. The proof is complete.

Remark 5.3.1 In [161], the authors proved that Jacobian of the first two equalities in

(5.2.5) with respect to (u, y) is nonsingular under the strict complementarity slackness

129

(SCS) condition. Note that the SCS condition implies that the problem is smooth at

(u, y). Proposition 5.3.3 proves the nonsingularity of the generalized Jacobian at (u, y)

without the SCS condition.

We now focus our discussion on problem P̃ where Ω is a finite discrete set. Specifi-

cally, let Ω = {ω1, ω2, · · · , ωL}. For every ωl, l = 1, 2, · · · , L, we denote

f l(·) = f(·, ωl), gl(·, ·) = g(·, ·, ωl), hl(·, ·) = h(·, ·, ωl).

Throughout the rest of this chapter, we let ul and yl denote the variables u(x, ωl)

and y(x, ωl) in P̃ , respectively. Then, problem P̃ can be rewritten as

min
x

f(x)

s. t. G(x,u) ≤ 0,
(5.3.7)

where f(x) =
L∑

l=1

plf
l(x), G(x,u)=

L∑

l=1

plg
l(x, ul), pl ≥ 0,

L∑

l=1

pl = 1, and

u =




u1

...

uL



∈ <rL.

Here ul ∈ <r, together with a vector yl ∈ <J , satisfies



∇ul

gl(x, ul)−∇ul
hl(x, ul)yl = 0,

min(yl,−hl(x, ul)) = 0,

which constitutes the first-order optimality conditions for the problem

Ql(x) : max
x

gl(x, u)

s. t. hl(x, u) ≤ 0.

On the other hand, problem P̃ (ε, δ) can be rewritten as

min
x

f(x)

s. t. G(x,u(ε, x)) ≤ δ,
(5.3.8)

where G(x,u(ε, x)) =
L∑

l=1

plg
l(x, ul(ε, x)) and

u(ε, x) =




u1(ε, x)
...

uL(ε, x)




.

130

Here, ul(ε, x), together with yl(ε, x), satisfies the system

Φl(ε, x, ul(ε, x), yl(ε, x)) :=




∇ul
gl(x, ul(ε, x))−∇ul

hl(x, ul(ε, x))yl(ε, x)

φε((yl(ε, x))1,−hl
1(x, ul(ε, x)))

...

φε((yl(ε, x))J ,−hl
J(x, ul(ε, x)))




= 0

(5.3.9)

for l = 1, 2, · · · , L. Moreover, we set

y =




y1

...

yL



∈ <JL

and define a nonlinear operator Φ : <+ ×<n ×<(r+J)L → <(r+J)L by

Φ(ε, x,u,y) =




Φ1(ε, x, u1, y1)
...

ΦL(ε, x, uL, yL)




. (5.3.10)

Proposition 5.3.4 Let ε̄ ∈ <+ and Φ(ε̄, x̄, ū, ȳ)= 0. Suppose that

Āl = ∇2
ulul

gl(x̄, ūl)−
J∑

j=1

(ȳl)j∇2
ulul

hl
j(x̄, ūl)

is negative definite for each l = 1, 2, · · · , L, and the LICQ is satisfied at ūl for problem

Ql(x̄). Then there exist a neighborhood (ε̄− ε′, ε̄+ ε′)×N(x̄) of (ε̄, x̄) and a continuous

function (u(·, ·),y(·, ·)): {(ε̄ − ε′, ε̄ + ε′) ∩ <+} × N(x̄) → <(r+J)L such that for each

(ε, x) ∈ {(ε̄− ε′, ε̄ + ε′) ∩ <+} ×N(x̄),

Φ(ε, x,u(ε, x),y(ε, x)) = 0. (5.3.11)

Proof. According to the corollary of Theorem 7.1.1 in [23], it suffices to check that

the projection Π(u,y)∂Φ(ε̄, x̄, ū, ȳ) of ∂Φ(ε̄, x̄, ū, ȳ) on the space of the variable (u,y)

is comprised of nonsingular matrices. We only show the conclusion in the case where

ε̄ = 0. The conclusion in the case where ε̄ > 0 can be shown similarly. By Proposition

131

2.6.2 (e) in [23] and the definition of the projection operator, we have

Π(u,y)∂Φ(ε̄, x̄, ū, ȳ) ⊆ Π(u,y)




∂Φ1(ε̄, x̄, ū, ȳ)
...

∂Φs(ε̄, x̄, ū, ȳ)




⊆




Π(u,y)[∂Φ1(ε̄, x̄, ū, ȳ)]
...

Π(u,y)[∂Φs(ε̄, x̄, ū, ȳ)]




,

(5.3.12)

where s = (r + J)L. Recall that Φ is regular by Proposition 5.3.2. It then follows from

Proposition 2.3.15 in [23] that

∂Φi(ε̄, x̄, ū, ȳ) ⊆ ∂(ε,x)Φi(ε̄, x̄, ū, ȳ)× ∂(u,y)Φi(ε̄, x̄, ū, ȳ), i = 1, · · · , s,

and hence 


Π(u,y)[∂Φ1(ε̄, x̄, ū, ȳ)]
...

Π(u,y)[∂Φs(ε̄, x̄, ū, ȳ)]



⊆




∂(u,y)Φ1(ε̄, x̄, ū, ȳ)
...

∂(u,y)Φs(ε̄, x̄, ū, ȳ)




. (5.3.13)

On the other hand, from the very special structure of the function φε, we have




∂(u,y)Φ1(ε̄, x̄, ū, ȳ)
...

∂(u,y)Φs(ε̄, x̄, ū, ȳ)




= ∂(u,y)Φ(ε̄, x̄, ū, ȳ),

see [23]. The above formula, together with (5.3.12) and (5.3.13), implies

Π(u,y)∂Φ(ε̄, x̄, ū, ȳ) ⊆ ∂(u,y)Φ(ε̄, x̄, ū, ȳ).

Hence, we obtain, by Proposition 5.3.3, that Π(u,y)∂Φ(ε̄, x̄, ū, ȳ) is comprised of non-

singular matrices. The proof is complete.

Let S denote the set of all points (x,u,y) satisfying Φ(0, x,u,y) = 0 and G(x,u) ≤
0, that is,

S :=
{
(x,u,y) ∈ <n+(r+J)L | Φ(0, x,u,y) = 0, G(x,u) ≤ 0

}
. (5.3.14)

Proposition 5.3.5 Let (x̄, ū, ȳ) ∈ S. Suppose that for every l = 1, 2, · · · , L, Āl is

negative definite, and the LICQ is satisfied at ūl for problem Ql(x̄). Then, there exist

132

two positive numbers ε̄ and τ̄ , a neighborhood N(x̄, ū, ȳ) of (x̄, ū, ȳ), and a continuous

function (u(·, ·),y(·, ·)): [0, ε̄)×ΠxN(x̄, ū, ȳ)→ <(r+J)L, such that for any (ε, x,u,y) ∈
(0, ε̄)× (N(x̄, ū, ȳ) ∩ S),

Φ(ε, x,u(ε, x),y(ε, x)) = 0

and

||u(ε, x)− u|| ≤ 2
√

LJτ̄ε, ||y(ε, x)− y|| ≤ 2
√

LJτ̄ε. (5.3.15)

Proof. Firstly, by Proposition 5.3.4, there exist a positive number ε̂, a neighborhood

N(x̄) of x̄ and a continuous function (u(·, ·),y(·, ·)) : [0, ε̂)×N(x̄) → R(r+J)L, such that

for any (ε, x) ∈ (0, ε̄)×N(x̄),

Φ(ε, x,u(ε, x),y(ε, x)) = 0. (5.3.16)

Secondly, it is not difficult to see that Φ(ε, x,u,y) is smooth and ∇(u,y)Φ(ε, x,u,y)

is nonsingular for any ε > 0 and (x,u,y) close enough to (x̄, ū, ȳ). We now show that

there exist a neighborhood N(x̄, ū, ȳ) with ΠxN(x̄, ū, ȳ)⊂ N(x̄) and a positive number

ε̄ ∈ (0, ε̂) such that (5.3.15) holds for any (ε, x,u,y)∈ (0, ε̄) × (N(x̄, ū, ȳ) ∩ S). To

this end, we show that there exist a positive number ε̄, a neighborhood N(x̄, ū, ȳ) of

(x̄, ū, ȳ) and a positive constant τ̄ such that for any (ε, x,u,y)∈ (0, ε̄)×(N(x̄, ū, ȳ)∩S),

||∇(u,y)Φ(ε̃, x, ũ, ỹ)−1|| ≤ τ̄ , (5.3.17)

where 0 < ε̃ < ε, u < ũ < u(ε, x), which means that every component of ũ is in the open

segment connecting the corresponding component of u and u(ε, x), and y < ỹ < y(ε, x).

Here, in different rows of ∇(u,y)Φ(ε̃, x, ũ, ỹ), the values of ε̃, ũ and ỹ may not be the

same, but for the sake of simplicity, they are still written as ε̃, ũ and ỹ. Suppose on

the contrary that (5.3.17) does not hold, then there exist a sequence {εk} with εk ↓ 0

and {(xk,uk,yk)} with (xk,uk,yk) → (x̄, ū, ȳ), such that

||∇(u,y)Φ(ε̃k, x
k, ũk, ỹk)−1|| → ∞ (5.3.18)

for some 0 < ε̃k < εk, uk < ũk < u(εk, x
k) and yk < ỹk < y(εk, x

k). Since

(u(·, ·),y(·, ·)) is a continuous function and (xk,uk,yk) → (x̄, ū, ȳ) and εk ↓ 0, it fol-

lows that ε̃k → 0 and (ũk, ỹk) → (ū, ȳ). On the other hand, by direct computation, we

133

obtain

∇(u,y)Φ(ε̃k, x
k, ũk, ỹk)T =




Ãk
1 −B̃k

1

(C̃k
1 + I)B̃kT

1 C̃k
1 − I

. . .

Ãk
L −B̃k

L

(C̃k
L + I)B̃kT

L C̃k
L − I




,

where Ãk
l , B̃k

l , C̃k
l , l = 1, 2, · · · , L, are matrices given by





Ãk
l = ∇2

ulul
gl(x

k, ũk
l)−

∑J
j=1(ỹ

k
l)j∇2

ulul
hl

j(x
k, ũk

l),

B̃k
l = [∇ul

hl
1(x

k, ũk
l), · · · ,∇ul

hl
J(xk, ũk

l)],

C̃k
l = diag[c̃k

1(l), · · · , c̃k
J(l)], c̃k

j (l) =
(ỹk

l)j + hl
j(x

k, ũk
l)√

((ỹk
l)j + hl

j(x
k, ũk

l))
2 + 4ε̃2

k

,

l = 1, 2, · · · , L.

Since ε̃k → 0 and (xk, ũk, ỹk) → (x̄, ū, ȳ), it follows that

lim
k→∞

∇(u,y)Φ(ε̃k, x
k, ũk, ỹk)T ∈ ∂(u,y)Φ(0, x̄, ū, ȳ).

By Proposition 5.3.3, all matrices in ∂(u,y)Φ(0, x̄, ū, ȳ) are nonsingular. Hence, there

exists a positive constant τ̄ such that

||∇(u,y)Φ(ε̃k, x
k, ũk, ỹk)−1|| ≤ τ̄ ,

for k large enough, which contradicts (5.3.18). Therefore, (5.3.17) holds.

We assume, without loss of generality, that (0, ε̄) × ΠxN(x̄, ū, ȳ) ⊂ (0, ε̂) × N(x̄).

Take any (ε, x,u,y)∈ (0, ε̄) × (N(x̄, ū, ȳ) ∩ S). Since Φ(0, x,u,y)= 0, we have, by

(5.3.16) and the mean value theorem, that

0 = Φ(ε, x,u(ε, x),y(ε, x))− Φ(0, x,u,y)

= ∇(u,y)Φ(ε̃, x, ũ, ỹ)T


 u(ε, x)− u

y(ε, x)− y


 + ε




0

θ̃1

...

0

θ̃L




,
(5.3.19)

where u < ũ < u(ε, x), y < ỹ < y(ε, x), 0 < ε̃ < ε, 0 is the r-dimensional zero vector

and θ̃l = (θ̃l
1, · · · , θ̃l

J)
T, where

θ̃l
j =

4ε̃√
((ỹl)j + hl

j(x, ũl))2 + 4ε̃2
, j = 1, 2, · · · , J, l = 1, 2, · · · , L.

134

It is clear that 0 < θ̃l
j < 2. Note that (5.3.17) holds even if the values of ε̃, ũ and ỹ in

different rows of ∇(u,y)Φ(ε̃, x, ũ, ỹ) are different, we have, by (5.3.19) and (5.3.17), that

∥∥∥∥∥∥


 u(ε, x)− u

y(ε, x)− y




∥∥∥∥∥∥
≤ ε ||∇(u,y)Φ(ε̃, x, ũ, ỹ)−1||

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




0

θ̃1

...

0

θ̃L




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ 2
√

LJτ̄ ε,

where the last inequality follows from the fact that ||θ̃l|| ≤ 2
√

J for l = 1, 2, · · · , L. This

immediately yields the desired result. The proof is complete.

Proposition 5.3.6 Suppose that there exists a vector (x̄, ū, ȳ) ∈ S such that for every

l = 1, 2, · · · , L, Āl is negative definite and the LICQ is satisfied at ūl for problem Ql(x̄).

Then there exists an ε̄ > 0 such that the feasible set F(ε2, δ) of problem P̃ (ε2, δ) is

nonempty for any 0 < ε < ε̄ and δ = ε.

Proof. By Proposition 5.3.5, there exist two positive numbers ε̄ and τ̄ and a continuous

function (u(·, x̄),y(·, x̄)) : [0, ε̄) → <r ×<J such that for any 0 < ε < ε̄,

Φ(ε2, x̄,u(ε2, x̄),y(ε2, x̄)) = 0 (5.3.20)

and

||u(ε2, x̄)− ū|| ≤ 2
√

LJτ̄ε2.

Hence,

||ul(ε
2, x̄)− ūl|| ≤ 2

√
LJτ̄ε2, l = 1, 2, · · · , L. (5.3.21)

Since gl(x̄, ul) has continuous first-derivatives ∇ul
gl(x̄, ul) for every l = 1, 2, · · · , L, it is

clear that gl(x̄, ul) is locally Lipschitz with respect to the variable ul. Therefore, there

exists a positive constant M̄ such that for l = 1, 2, · · · , L,

|gl(x̄, ul(ε
2, x̄))− gl(x̄, ūl)| ≤ M̄ ||ul(ε

2, x̄)− ūl||,

which in turn implies

G(x̄,u(ε2, x̄)) ≤ G(x̄, ū) + M̄
L∑

l=1

pl ||ul(ε
2, x̄)− ūl||

≤ 2M̄
√

LJτ̄ε2,

(5.3.22)

135

where the last inequality follows from (5.3.21) and the fact that G(x̄, ū) ≤ 0. By

(5.3.22), we can take ε̄ small enough such that 2M̄
√

LJτ̄ ε̄ ≤ 1. Hence, for any 0 < ε <

ε̄, we have

G(x̄,u(ε2, x̄)) ≤ ε.

This formula, together with (5.3.20), implies x̄ ∈ F(ε2, ε) for 0 < ε < ε̄. We obtain the

desired result and complete the proof of the proposition.

Assumption F3. For every ε > 0 and l = 1, 2, · · · , L, there are vectors ul(ε
2, x)

and yl(ε
2, x) such that

Φl(ε
2, x, ul(ε

2, x), yl(ε
2, x)) = 0.

The vector ul(ε
2, x) is unique and continuous with respect to x for every l = 1, 2, · · · , L.

Theorem 5.3.1 Suppose that for any x ∈ <n and every l = 1, 2, · · · , L, the LICQ is

satisfied at every ul ∈ Pl(x) for problem Ql(x), where

Pl(x) := {u ∈ <r | ∃ j ∈ {1, 2, · · · , J} s.t. hl
j(x, u) = 0}.

Suppose further that there exists a vector (x̄, ū, ȳ) such that the conditions in Proposition

5.3.6 hold and the level set

{x ∈ <n | f(x) ≤ f(x̄)}

is bounded. Then, under Assumption F3, there exists a positive number ε̄ such that

problem P̃ (ε2, ε) is solvable for any 0 < ε < ε̄.

Proof. Firstly, by Propositions 5.3.6, there exists an ε̄ > 0 such that x̄ ∈ F(ε2, ε)

for any 0 < ε < ε̄, which implies F(ε2, ε) is nonempty. Furthermore, we may prove

that for any fixed ε ∈ (0, ε̄), F(ε2, ε) is closed from Assumption F3 and the given

condition that gl(·, ·), hl(·, ·), l = 1, 2, · · · , L, are continuous. In fact, for a sequence

of feasible points {xk} ⊂ F(ε2, ε) with a limit point x̂, there exist u(ε2, xk) and

y(ε2, xk) such that Φ(ε2, xk,u(ε2, xk),y(ε2, xk)) = 0 and G(xk,u(ε2, xk)) ≤ ε. Since

Φ(ε2, xk,u(ε2, xk),y(ε2, xk)) = 0, we have that for every l = 1, 2, · · · , L,




∇ul

gl(xk, ul(ε
2, xk))−∇ul

hl(xk, ul(ε
2, xk))yl(ε

2, xk) = 0,

φε2((yl(ε
2, xk))j,−hl

j(x
k, ul(ε

2, xk))) = 0, j = 1, 2, · · · , J.
(5.3.23)

136

We claim that {y(ε2, xk)} is bounded. Otherwise, there exists an index l0 such that

||yl0(ε
2, xk)|| → ∞. Then, by dividing every equality for index l0 in (5.3.23) by

||yl0(ε
2, xk)|| and letting k →∞, we obtain





∇ul0
hl0(x̂, ûl0)ŷl0 = 0,

(ŷl0)j ≥ 0, hl0
j (x̂, ûl0) ≤ 0,

(ŷl0)jh
l0
j (x̂, ûl0) = 0, j = 1, 2, · · · , J,

(5.3.24)

where ûl0 = ul0(ε
2, x̂) and 0 6= ŷl0 = ((ŷl0)1, (ŷl0)2, · · · , (ŷl0)J)T ∈ U . From the last

equality in (5.3.24), we have (ŷl0)j = 0 for all j such that hl0
j (x̂, ûl0) 6= 0. Hence, the

first equality in (5.3.24) can be rewritten as

∑

j∈I
hl0

(x̂,ûl0
)

(ŷl0)j∇ul0
hl0

j (x̂, ûl0) = 0. (5.3.25)

It is clear that the set {(ŷl0)j | j ∈ Ihl0 (x̂, ûl0)} contains a non-zero element and ûl0 ∈
Pl0(x̂). Hence, by the given condition that the LICQ is satisfied at ûl0 for problem

Ql0(x̂), we deduce that

∇ul0
hl0

j (x̂, ûl0), j ∈ Ihl0 (x̂, ûl0)

are linearly independent. This contradicts (5.3.25). Since {y(ε2, xk)} is bounded, with-

out loss of generality, we assume that y(ε2, xk) → ŷ. Since Φ(ε2, xk,u(ε2, xk),y(ε2, xk))

= 0 and G(xk,u(ε2, xk)) ≤ ε, letting k →∞ yields Φ(ε2, x̂,u(ε2, x̂), ŷ)= 0 and

G(x̂,u(ε2, x̂)) ≤ ε, which implies x̂ ∈ F(ε2, ε). Hence, we obtain the desired result from

the continuity of f . The proof is complete.

5.4 Algorithm and Its Convergence Analysis

In this section, we further consider problem P̃ in the case where Ω is a finite discrete set.

From the discussion in the previous sections, problem (5.1.4) is equivalent to problem

P̃ . Furthermore, if P̃ is solvable, then there exists a positive number ε̄ such that

problem P (ε2, ε) is solvable for any 0 < ε < ε̄ under suitable conditions. Since P̃ (ε2, ε)

is a smooth approximation to the nonsmooth problem P̃ , we may obtain a solution

of problem P̃ by solving a sequence of smooth problems P̃ (ε2, ε). Now we present a

smoothing implicit programming approach for solving problem P̃ :

137

Algorithm 5.4.1 Let {εk} be a sequence of positive numbers such that εk ↓ 0.

For k = 1, 2, · · ·, find a global solution xk of the problem

min
x

f(x)

s. t. G(x,u(ε2
k, x)) ≤ εk,

(5.4.26)

where u(ε2
k, x) = (u1(ε

2
k, x), · · · , uL(ε2

k, x)), together with y(ε2
k, x) = (y1(ε

2
k, x), · · · , yL(ε2

k, x)),

satisfies the system

Φl(ε
2
k, x, ul(ε

2
k, x), yl(ε

2
k, x)) = 0, l = 1, 2, · · ·L. (5.4.27)

Let uk
l = ul(ε

2
k, x

k), yk
l = yl(ε

2
k, x

k), l = 1, 2, · · ·L, and

uk =




uk
1

...

uk
L




, yk =




yk
1

...

yk
L




.

Note that problem (5.4.26) is a smooth optimization problem. Under Assumption

F3, Algorithm 5.4.1 is well-defined. Now we investigate the limiting behavior of a

sequence of optimal solutions of (5.4.26). To this end, we make the following assumption

in addition to Assumption F3, throughout the rest of this section.

Assumption F4.The sequence {(xk,uk,yk)} generated by Algorithm 5.4.1 is con-

vergent to a point (x̄, ū, ȳ).

Recall that F̃ denotes the feasible region of problem P̃ and the set S is defined by

(5.3.14). We define the set-valued mapping S : F̃ → <(r+J)L by

S(x) :=
{
(u,y) ∈ <(r+J)L | (x,u,y) ∈ S

}
.

Definition 5.4.1 Let x̄ ∈ F̃ and (ū, ȳ) ∈ S(x̄). We say that the set-valued map-

ping S is stable at (x̄, ū, ȳ) if, for any neighborhood N(ū, ȳ) of (ū, ȳ), there exists a

neighborhood N(x̄) of x̄ such that S(x) ∩N(ū, ȳ) 6= ∅ for any x ∈ N(x̄) ∩ F̃ .

Theorem 5.4.1 Let {(xk,uk,yk)} be a sequence generated by Algorithm 5.4.1. Then

the limit point x̄ of {xk} lies in F̃ . Moreover, suppose that for every l = 1, 2, · · · , L, Āl

is negative definite, and the LICQ is satisfied at ūl for problem Ql(x̄), and the set-valued

mapping S is stable at (x̄, ū, ȳ). Then x̄ is a local optimal solution of problem P̃ .

138

Proof. First note that
G(xk,uk) ≤ εk,

Φ(ε2
k, x

k,uk,yk) = 0

hold for all k. Letting k →∞, we have (x̄, ū, ȳ)∈ S, which implies that x̄ is a feasible

solution of P̃ . Moreover, by Proposition 5.3.5, there exist a positive number ε̄, a

neighborhood N(x̄, ū, ȳ) of (x̄, ū, ȳ), a continuous function (u(·, ·),y(·, ·)) : [0, ε̄) ×
ΠxN(x̄, ū, ȳ)→ <(r+J)L, and a positive constant τ̄ such that, for any (εk, x,u,y)∈
(0, ε̄)× (N(x̄, ū, ȳ)∩S),

Φ(ε2
k, x,u(ε2

k, x),y(ε2
k, x)) = 0 (5.4.28)

and

||u(ε2
k, x)− u|| ≤ 2

√
LJτ̄ε2

k, ||y(ε2
k, x)− y|| ≤ 2

√
LJτ̄ε2

k. (5.4.29)

Then, in a similar way to the proof of Proposition 5.3.6, we can show that there exists

a positive constant M̄ such that

G(x,u(ε2
k, x)) ≤ G(x,u) + M̄ ||u(ε2

k, x)− u||
≤ 2M̄

√
LJτ̄ε2

k ≤ εk,

for all k large enough. The above discussion shows that there exists a neighborhood

N(x̄) of x̄ such that for any x ∈ N(x̄)∩ F̃ , x is a feasible solution of (5.4.26) whenever

k is large enough, since the set-valued mapping S is stable at (x̄, ū, ȳ) and (5.4.28)

holds at x for k large enough. Therefore, for any x ∈ N(x̄) ∩ F̃ , the inequality

f(xk) ≤ f(x)

holds for all k large enough. Letting k →∞, we have

f(x̄) ≤ f(x),

which implies that x̄ is a local optimal solution of problem P̃ . The proof is complete.

Theorem 5.4.2 Let {(xk,uk,yk)} be a sequence generated by Algorithm 5.4.1. Suppose

that, for every (x,u,y) ∈ S and every l = 1, 2, · · · , L, Al is negative definite, and the

LICQ is satisfied at ul for problem Ql(x), and the set-valued mapping S is stable at

every (x,u,y) ∈ S. Then the limit point x̄ of {xk} is a global optimal solution of

problem P̃ .

139

Proof. Recall that x̄ is a feasible solution of P̃ . For an arbitrary positive number η,

we define the set F̃η by

F̃η =
{
x ∈ F̃ | ||x− x̄|| ≤ η

}
.

It is clear that F̃η is a nonempty compact set. For any x̂ ∈ F̃η, there exists (û, ŷ)

such that (x̂, û, ŷ) ∈ S. Since the conditions in Proposition 5.3.5 are satisfied at

(x̂, û, ŷ), in a similar way to the proof of Theorem 5.4.1, we can show that there exist

a neighborhood N(x̂, û, ŷ) of (x̂, û, ŷ), two positive numbers ε̂ = ε̂(x̂) and τ̂ = τ̂(x̂),

and a continuous function (u(·, ·),y(·, ·)) : [0, ε̂) × ΠxN(x̂, û, ŷ) → <(r+J)L such that,

for any (ε, x,u,y) ∈ (0, ε̂)× (N(x̂, û, ŷ) ∩ S),

Φ(ε2, x,u(ε2, x),y(ε2, x)) = 0 (5.4.30)

and

G(x,u(ε2, x)) ≤ 2M̂
√

LJτ̂ε2, (5.4.31)

where M̂ is given by

M̂ = max{M̂1(x̂, û1), · · · , M̂L(x̂, ûL)},

and M̂ l(x̂, ûl) is a local Lipschitz constant of the function gl(x̂, ·) at ûl for each l =

1, 2, · · · , L. Moreover, there exists a neighborhood N(x̂) of x̂ such that (5.4.30) and

(5.4.31) hold for any (ε, x) ∈ (0, ε̂)×N(x̂), since the set-valued mapping S is stable at

(x̂, û, ŷ). Since the family of neighborhoods

N = {N(x̂) | x̂ ∈ F̃η}

is an open covering of F̃η, there is a finite number of neighborhoods, say N1, N2, · · · , Ns,

in N such that {N1, N2, · · · , Ns} constitutes a covering of F̃η. Accordingly, there exist

constants ε̂1, ε̂2, · · · , ε̂s, τ̂1, τ̂2, · · · , τ̂s and M̂1, M̂2, · · · , M̂s, respectively. Thus, by setting

ε∗ = min{ε̂1, ε̂2, · · · , ε̂s},
τ ∗ = max{τ̂1, τ̂2, · · · , τ̂s},
M∗ = max{M̂1, M̂2, · · · , M̂s},

we have εk ≤ ε∗ and 2M∗√LJτ ∗εk ≤ 1 for all k large enough, and hence, for every

x ∈ F̃η,

Φ(ε2
k, x,u(ε2

k, x),y(ε2
k, x)) = 0

140

and

G(x,u(ε2
k, x)) ≤ εk.

This shows that for every x ∈ F̃η, x is a feasible solution of (5.4.26) whenever k is large

enough. Therefore, by using similar arguments to the proof of Theorem 5.4.1, we can

show that x̄ is an optimal solution of the problem

min
x

f(x)

s. t. x ∈ F̃η.

Since η is arbitrary, x̄ is actually a global optimal solution of P̃ . The proof is complete.

5.5 Some Remarks

In this chapter, we have reformulated the SGSIP problem as a nonlinear programming

problem with stochastic complementarity constraints, and established some properties

of smoothing approximations for the reformulated problem. Furthermore, we have

presented a smoothing implicit programming algorithm (Algorithm 5.4.1) for solving

the problem with finite discrete distribution. Unlike other numerical methods for semi-

infinite programming, our approach does not discretize the index set, but we take

advantage of the fact that the lower level programs can be characterized by its first

order optimality condition. Because of the special structure of Φ (see (5.3.10)), our

approach is numerical tractable under some mild assumptions.

To illustrate the assumptions and the theorems in this chapter, we consider the

following example.

Example 5.5.1 Let





gl(x, ul) =
1

2
uT

l Bl(x)ul + Cl(x)T ul + dl(x),

hl
j(x, ul) = pj,l(x)T ul + qj,l(x),

j = 1, 2, · · · , J, l = 1, 2, · · · , L,

where Bl(x) : <n → <r×r, l = 1, 2, · · · , L, are r×r continuous negative definite symmet-

ric matrix-valued functions, Cl(x), pj,l(x) : <n → <r, l = 1, 2, · · · , L, j = 1, 2, · · · , J ,

141

are continuous vector-valued functions, dl(x), qj,l(x) : <n → <, l = 1, 2, · · · , L, j =

1, 2, · · · , J , are continuous real-valued functions. Obviously, Assumption F1 holds. It

is clear that the equation Φl(ε
2, x, ul, yl) = 0 can be written as





Bl(x)ul + Cl(x)− Pl(x)yl = 0,

φε2((yl)1,−hl
1(x, ul)) = 0,

...

φε2((yl)J ,−hl
J(x, ul)) = 0,

where Pl(x) = [p1,l(x), · · · , pJ,l(x)]. Furthermore, we obtain




φε2

(
(yl)1,−p1,l(x)T Bl(x)−1(Pl(x)yl − Cl(x))− q1,l(x)

)
= 0,

...

φε2

(
(yl)J ,−pJ,l(x)T Bl(x)−1(Pl(x)yl − Cl(x))− qJ,l(x)

)
= 0.

(5.5.32)

Write

wl(x) = Ml(x)yl + zl(x),

where

Ml(x) = −Pl(x)T Bl(x)−1Pl(x), zl(x) = Pl(x)T Bl(x)−1Cl(x)− ql(x)

and

ql(x) = (q1,l(x), · · · , qJ,l(x))T .

Then (5.5.32) can be further rewritten as




Ml(x)yl + zl(x)− wl(x) = 0,

φε2((yl)1, w
l
1(x)) = 0,
...

φε2((yl)J , wl
J(x)) = 0.

We discuss Assumption F3 in the following two cases.

(1) If Pl(x) is nonsingular for any x, then Ml(x) is a positive definite matrix. Hence,

the equation Φl(ε
2, x, ul, yl) = 0 has a unique solution





yl(ε
2, x) = ((yl(ε

2, x))1, · · · , (yl(ε
2, x))J)T ,

ul(ε
2, x) = Bl(x)−1(Pl(x)yl(ε

2, x)− Cl(x)).

In particular, if

Pl(x)T Bl(x)−1Pl(x) = diag(λ1,l(x), · · · , λJ,l(x)),

142

where λj,l(x) < 0 for j = 1, 2, · · · , J , l = 1, 2, · · · , L, then, for every l = 1, 2, · · · , L, the

unique solution of equation Φl(ε
2, x, ul, yl) = 0 is given by





yl(ε
2, x) = ((yl(ε

2, x))1, · · · , (yl(ε
2, x))J)T ,

ul(ε
2, x) = Bl(x)−1(Pl(x)yl(ε

2, x)− Cl(x)),

where

(yl(ε
2, x))j =

−q̄j,l(x)−
√

(q̄j,l(x))2 − 4λj,l(x)ε4

2λj,l(x)

and

q̄j,l(x) = q1,l(x)− pj,l(x)T Bl(x)−1Cl(x), l = 1, 2, · · · , L.

(2) In addition, suppose Ml(x) is an R0-matrix if Pl(x) is singular. Since Ml(x) is a

positive semidefinite matrix, by Corollary 3.9 in [87], the equation Φl(ε
2, x, ul, yl) = 0

also has a unique solution. On the other hand, it is clear that

Al(x) = ∇2
ulul

gl(x, ul)−
J∑

j=1

(yl)j∇2
ulul

hl
j(x, ul) = Bl(x), l = 1, 2, · · · , L,

are negative definite. Consequently, by Lemma 5.3.1 (2), ∇(ul,yl)Φl(ε
2, x, ul, yl) is non-

singular for any ε > 0 and (x, ul, yl). Furthermore, since Φl(ε
2, x, ul, yl) is continuously

differentiable with respect to (ul, yl) for any ε > 0, it follows from the Implicit Function

theorem [108, Theorem 5.2.4] that yl(ε
2, x) and ul(ε

2, x) are continuously differentiable.

Therefore, Assumption F3 is satisfied. Furthermore, under certain conditions, Assump-

tion F2 can be satisfied.

143

Chapter 6

4
3-Order Convergence of the

Generalized Newton Method for

Solving the No-Arbitrage Option

Price Interpolation Problem

6.1 Introduction

Recently, Wang, Yin and Qi [179] developed a no-arbitrage interpolation method to

preserve the shape of the option price function. The interpolation is optimal in terms

of minimizing the distance between the implied risk-neutral density and a prior approx-

imation function in L2-norm, which is very important when only a few observations are

available.

Since the seminal paper of Black-Scholes [10], numerous theoretical and empirical

studies have been done on the no-arbitrage pricing theory, see Duffie [36] and the

references therein. If the uncertainty of nature can be described by a stochastic process

qt, then the absence of arbitrage opportunities implies that there exists a state-price

density (SPD) or risk-neutral density, which is denoted by p(qt2|Ft1), where t2 is any

time after time t1, Ft1 is all the information available at time t1. The price of any

financial security can be expressed as the expected net present value of future payoffs,

144

where the expectation is taken with respect to the risk-neutral density. In the call

option pricing case, the underlying asset price St can be used as the state variable, the

risk-free rate is considered as a constant. So the price at time t is

C(St, s, τ, rt,τ) = e−rt,τ τ
∫ ∞

0
(ST − s)+p(ST |St, τ, rt,τ)dST , (6.1.1)

where St is the underlying asset price at time t, s is the strike price of the option

contract, τ is the time-to-expiration, T = t + τ is the expiration time, rt,τ is the risk

free rate from time t to T = t + τ . No matter what kind of process of the underlying

asset price St is, and whether the market is complete or not, the equation above always

holds. Wang, Yin and Qi [179] proved that the option price function is convex with

respect to the strike price s. Assuming that 0 < a = s0 < s1 < · · · < sn+2 = b < ∞,

they formulated the following constrained no-arbitrage interpolation problem:

Min ‖f ′′(s)− h(s)‖2

s.t. f(si) = yi, i = 1, 2, · · · , n + 2,

f ′′(s) ≥ 0 for a.e. s ∈ [a, b], f ∈ W 2
2 [a, b]

(6.1.2)

where

h(s) = e−rt,τ τ 1

sσ
√

2πτ
exp

{
−(log s− log St − rt,ττ + σ2τ/2)

2

2σ2τ

}
. (6.1.3)

By using the duality theory and Lagrange multipliers as well as the normalized B-

splines Bi of order two associated with (si, yi), Wang, Yin and Qi [179] converted the

minimization problem (6.1.2) to a system of nonsmooth equations

F (x) = d, (6.1.4)

where d = (d1, d2, · · · , dn)T are the second divided differences, F = (F1, F2, · · · , Fn)T :

<n → <n and the i-th component of F is defined by

Fi(x) =
∫ b

a

(
n∑

l=1

xlBl(s) + h(s)

)

+

Bi(s)ds. (6.1.5)

We may see that Fi belongs to a class of integral functions defined in (2.1.1). Wang,

Yin and Qi [179] applied the following generalized Newton method to solve (6.1.4):

M(xk)(xk+1 − xk) = −F (xk) + d, k = 1, 2, · · · , (6.1.6)

145

where M(x) ∈ <n×n with components

Mij(x) =
∫ b

a
1(0,∞)

(
n∑

l=1

xlBl(s) + h(s)

)
Bi(s)Bj(s)ds,

where 1(0,∞)(·) is the characteristic function of the set (0, +∞), i.e., 1(0,∞)(x) = 1 for

x > 0 and 1(0,∞)(x) = 0 for x ≤ 0. It is not difficult to see that (6.1.6) can be written

as:

M(xk)xk+1 = d−
∫ b

a
h(s)B(s)ds, k = 1, 2, · · · , (6.1.7)

where B(s) = (B1(s), B2(s), · · · , Bn(s))T .

By applying the results of [33], Wang, Yin and Qi [179] proved semismoothness of

the integral function F defined by (6.1.5), and hence established superlinear convergence

of the generalized Newton method (6.1.7). However, Wang, Yin and Qi [179] has not

proved strong semismoothness of the integral function F defined by (6.1.5), and hence

has not established quadratic convergence of (6.1.7). Actually, they give a counter

example that the integral function defined by (2.1.1) may not be strongly semismooth,

also see [136].

This raises two questions:

1. When does the generalized Newton method (6.1.7) have quadratic convergence?

2. If in some cases the generalized Newton method (6.1.7) has no quadratic conver-

gence, what is its convergence rate?

In this chapter, we first give the answer to these two questions for the generalized

Newton method (6.1.7). And then we present a globalized algorithm for solving the

no-arbitrage option price interpolation problem (6.1.2).

This chapter is organized as follows. In Section 6.2, by using the p-order semismooth-

ness results of the integral function (2.1.1), we show that the generalized Newton method

(6.1.7) has at least 4
3
-order convergence rate and we give conditions when this method

has 3
2
-order and quadratic convergence rate. In Section 6.3, we propose a damped ver-

sion of the generalized Newton method and show that it is globally convergent and the

convergence order is at least 4
3
.

146

6.2 Convergence Analysis

In this section, we first apply Theorem 2.3.2 to the integral function F (·) defined by

(6.1.5), then we show that the generalized Newton method (6.1.7) has at least 4
3
-order

convergence. Some conditions when this method has 3
2
-order and quadratic convergence

are also given.

Recall that the B-spline Bi is given by

Bi(s) =





αi(s− si), for s ∈ [si, si+1],

ᾱi(si+2 − s), for s ∈ [si+1, si+2],

0, otherwise,

where

αi = 2/((si+2 − si)(si+1 − si)), ᾱi = 2/((si+2 − si)(si+2 − si+1)).

In the sequel, we study the following functions:

Φ1(x1) =
∫ s2

s1

(x1B1(s) + h(s))+ B1(s)ds,

Φ2(xn) =
∫ sn+2

sn+1

(xnBn(s) + h(s))+ Bn(s)ds,

Γi(xi−1, xi) =
∫ si+1

si

(xi−1Bi−1(s) + xiBi(s) + h(s))+ Bi(s)ds, i = 2, · · · , n,

Ψi(xi, xi+1) =
∫ si+2

si+1

(xiBi(s) + xi+1Bi+1(s) + h(s))+ Bi(s)ds, i = 1, · · · , n− 1.

Then
F1(x) = Φ1(x1) + Ψ1(x1, x2),

Fi(x) = Γi(xi−1, xi) + Ψi(xi, xi+1), i = 2, · · · , n− 1,

Fn(x) = Γn(xn−1, xn) + Φ2(xn).

We may use Theorem 2.3.2 to establish p-order semismoothness of Φi, Γi and Ψi.

This implies p-order semismoothness of F . Since the h(·) possesses a very special

structure, it has at most two inflection points. For any x̄ = (x̄1, x̄2, · · · , x̄n)T ∈ <n,

we assume, separating [a, b] more finely if necessary, that
∑n

l=1 x̄lBl(s) + h(s) = 0

has at most a root on [si, si+1]. So, the position relation between the line segment

y =
∑n

l=1 x̄lBl(s) on [si, si+1] and the curve y = −h(s) has four cases: (1) not intersected,

(2) intersected but not tangent, (3) tangent at a convex or concave arc point of the curve

y = −h(s), and (4) tangent at an inflection point of the curve y = −h(s). On [si, si+1],

the first two cases happen if and only if the root of
∑n

l=1 x̄lBl(s) + h(s) = 0 is simple

147

on this subinterval. The third case happens if and only if
∑n

l=1 x̄lBl(s) + h(s) = 0 has

a 2-order root on this subinterval. The fourth case happens if and only if the order of

root of
∑n

l=1 x̄lBl(s) + h(s) = 0 on this subinterval is 3. Therefore, the following result

immediately follows Theorem 2.3.2, which strengthens Theorem 4.6 in [179].

Theorem 6.2.1 Consider the integral function F (·) defined by (6.1.5). For any x̄ ∈
<n, there exist exactly the following three cases:

(1) If the roots of
∑n

l=1 x̄lBl(s)+h(s) = 0 are simple on every subinterval [si, si+1] ⊂
[a, b], i = 1, 2, · · · , n + 1, then F is 1-order (strongly) semismooth at x̄.

(2) If there exists a certain subinterval [si, si+1] ⊂ [a, b] such that the highest order

of roots of
∑n

l=1 x̄lBl(s)+h(s) = 0 on [si, si+1] is 2, then F is 1
2
-order semismooth at x̄.

(3) If there exists a certain subinterval [si, si+1] ⊂ [a, b] such that the highest order

of roots of
∑n

l=1 x̄lBl(s)+h(s) = 0 on [si, si+1] is 3, then F is 1
3
-order semismooth at x̄.

Let the matrix function M = (Mij)n×n : <n → <n×n be defined by

Mij(x) =
∫ b

a
1(0,∞)

(
n∑

l=1

xlBl(s) + h(s)

)
Bi(s)Bj(s)ds, i, j = 1, 2, · · · , n.

In order to establish the (1+p)-order convergence of the generalized Newton method

(6.1.7), we give the following lemma at first.

Lemma 6.2.1 For any x̄ ∈ <n, function M(·) is continuous at x̄.

Proof. Take any h ∈ <n. We only need to prove Mij(x̄ + h) → Mij(x̄) as h → 0 for

i, j = 1, 2, · · · , n. It is easy to know that

|Mij(x̄ + h)−Mij(x̄)| ≤
∫

Ω2(x̄,h)
Bi(s)Bj(s)ds.

By using the same proving technique in the proof of Theorem 2.3.2, we know that

µ (Ω2(x̄, h)) ≤ O
(
‖h‖ 1

3

)
since

∑n
l=1 x̄lBl(s) + h(s) = 0 has only a finite number of

roots. Hence, |Mij(x̄ + h)−Mij(x̄)| ≤ O
(
‖h‖ 1

3

)
because Bi(s)Bj(s) is bounded on

[a, b]. By this, we obtain the desired result.

148

Let x∗ be the solution of (6.1.4), then M(x∗) is positive definite, see [179]. Therefore,

we may obtain, from the above lemma and Theorem 6.2.1, the following result.

Lemma 6.2.2 (i) Suppose that x∗ is a solution of (6.1.4). Then there exist constant

c1 and δ1 > 0 such that any matrix M(x) is nonsingular and

max
{
‖M (x)‖ ,

∥∥∥M (x)−1
∥∥∥
}
≤ c1

for all x with ‖x− x∗‖ ≤ δ1.

(ii)There exist constants c2 and δ2 such that

c2 ‖x− x∗‖ ≤ ‖F (x)− F (x∗)‖ ≤ ‖x− x∗‖ /c2

for all x with ‖x− x∗‖ ≤ δ2.

Now we state and prove a convergence property of the generalized Newton method

for solving the no-arbitrage option price interpolation problem.

Theorem 6.2.2 Let x∗ be a solution of (6.1.4). Then there exist exactly the following

three cases:

(1) If the roots of
∑n

l=1 x∗l Bl(s)+h(s) = 0 are simple on every subinterval [si, si+1] ⊂
[a, b], i = 1, 2, · · · , n + 1, then any sequence {xk} generated by the generalized Newton

method (6.1.7) converges quadratically to x∗ provided that the initial point x0 is suffi-

ciently close to x∗.

(2) If there exists a certain subinterval [si, si+1] ⊂ [a, b] such that the highest order

of roots of
∑n

l=1 x∗l Bl(s) + h(s) = 0 on [si, si+1] is 2, then the convergence of (6.1.7) is

of order 3
2

provided that the initial point x0 is sufficiently close to x∗.

(3) If there exists a certain subinterval [si, si+1] ⊂ [a, b] such that the highest order

of roots of
∑n

l=1 x∗l Bl(s) + h(s) = 0 on [si, si+1] is 3, then the convergence of (6.1.7) is

of order 4
3

provide that the initial point x0 is sufficiently close to x∗.

Proof. According to Theorem 1.1.1, we need to verify the following three conditions:

149

(1) M(x) ∈ ∂F (x);

(2) There exists δ1 > 0 such that matrix M(x) is nonsingular for all x with

‖x− x∗‖ ≤ δ1;

(3) F is strongly semismooth, 1
2
, 1

3
-order semismooth at x∗, respectively, in corre-

sponding three cases.

The first property is proved in [179]. The second property is proved in Lemma 6.2.2

(i). The property (3) is established in Theorem 6.2.1. Hence, we obtain the desired

results.

In the rest of this section, we prove a local (1 + p)-order decrease in the residual

function ‖F (·)− d‖. For the sake of conciseness, We only discuss the worst case that

F is 1
3
-order semismooth at x∗. In fact, we have also corresponding results in other two

cases.

Theorem 6.2.3 Let x∗ be a solution of (6.1.4). If there exists a certain subinterval

[si, si+1] ⊂ [a, b] such that the highest order of roots of
∑n

l=1 x∗l Bl(s) + h(s) = 0 on

[si, si+1] is 3. Then there exists constants c such that for the sequence {xk} obtained

from (6.1.7) ∥∥∥F (xk+1)− d
∥∥∥ ≤ c

∥∥∥F (xk)− d
∥∥∥

4
3 ,

provided that the initial point x0 is sufficiently close to x∗.

Proof. Without loss of generality, let {xk} be generated by (6.1.7) with an initial point

x0 sufficiently close to x∗ so that Theorem 6.2.2 and Lemma 6.2.2 hold. By Theorem

6.2.2 (3), there exists a constant c3 > 0 such that

∥∥∥xk+1 − x∗
∥∥∥ ≤ c3

∥∥∥xk − x∗
∥∥∥

4
3 (6.2.1)

for all k. Then we have, by Lemma 6.2.2, for all xk,
∥∥∥F (xk+1)− d

∥∥∥ =
∥∥∥F (xk+1)− F (x∗)

∥∥∥
≤

∥∥∥xk+1 − x∗
∥∥∥ /c2

≤ (c3/c2)
∥∥∥xk − x∗

∥∥∥
4
3

≤ (c3/ (c2
2) c)

∥∥∥F (xk)− F (x∗)
∥∥∥

4
3

= (c3/ (c2
2) c)

∥∥∥F (xk)− d
∥∥∥

4
3 .

150

We obtain the desired result.

6.3 A Damped Version of the Generalized Newton

Method

Wang, Yin and Qi [179] also proved, by a series of theoretical analysis, that the dual

problem of (6.1.2) is

max
x∈Rn

−1

2

∫ b

a

(
n∑

l=1

xlBl(s) + h(s)

)2

+

ds +
1

2

∫ b

a
(h(s))2ds +

n∑

l=1

xldl. (6.3.1)

By deleting the constant item 1
2

∫ b
a (h(s))2ds which does not change the problem, (6.3.1)

can be written as follows

max
x∈Rn

−1

2

∫ b

a

(
n∑

l=1

xlBl(s) + h(s)

)2

+

ds +
n∑

l=1

xldl (6.3.2)

In the remaining part of this section, we study a globalized version of the Newton

method applied to the negative counterpart of the dual function (6.3.2)

L(x) =
1

2

∫ b

a

(
n∑

l=1

xlBl(s) + h(s)

)2

+

ds−
n∑

l=1

xldl. (6.3.3)

Note that ∇L(x) = F (x)− d. We first have the following result which shows that L is

coercive, i.e., L(x) → +∞ as ‖x‖ → ∞. This result extends Lemma 2.1 in [32] to the

case h(x) 6= 0. Thus, any method that produces a minimizing sequence for (6.3.3) is

convergent since that L(x) is (strictly) convex too.

Lemma 6.3.1 The level set Lev(c) = {x ∈ <n : L(x) ≤ c } is compact for any c ∈ <.

Proof. Assume on the contrary that Lev(c0) is unbounded for some c0 and let, without

loss of generality, that c0 > 1
2

∫ b
a (h(s))2ds. We show first that there is a vector x̄ ∈

<n \ {0} such that tx̄ ∈ Lev(c0) for every t ≥ 0. Suppose that for every x ∈ <n \ {0}
there exists t(x) ≥ 0 such that t(x)x /∈ Lev(c0) Since L(x) is a convex function, Lev(c)

is convex for any c ∈ R. From the convexity of Lev(c0) and 0 ∈ Lev(c0), it follows that

tx /∈ Lev(c0) whenever t ≥ t(x). Let

T (x) = sup {t : t ≥ 0, tx ∈ Lev(c0)} .

151

Then T (x) < +∞. Since Lev(c0) is closed and convex, it is easy to prove that T (·) is

upper semicontinuous function over <n \ {0}. Then,

T ∗ = sup {T (x) : ‖x‖ = 1} < +∞.

Hence, Lev(c0) is contained in a ball centered at the origin with radius T ∗, a contra-

diction.

Define

w(t) =
1

2

∫ b

a

(
t

n∑

l=1

x̄lBl(s) + h(s)

)2

+

ds− t
n∑

l=1

x̄ldl.

We obtain that w(t) ≤ c0 whenever t ≥ 0. If x̄l ≤ 0 for all l = 1, 2, · · · , n, then

w(t) ≥ −t
n∑

l=1

x̄ldl > c0

for t large enough. Hence there exists an index l̄ such that x̄l̄ > 0. Then

R :=
1

2

∫ b

a

(
t

n∑

l=1

x̄lBl(s) + h(s)

)2

+

ds

≥ 1

2

∫ b

a

(
n∑

l=1

x̄lBl(s) + h(s)

)2

+

ds > 0

and w(t) = t2R−t
∑n

l=1 x̄ldl → +∞ as t → +∞, a contradiction. The proof is complete.

The following algorithm is a “damped” globalization of Newton’s method based on

regularization controlled by the residual.

Algorithm 6.3.1 (Damped Newton method)

Step 0. (Initialization) Choose x0 ∈ <n, ρ ∈ (0, 1), σ ∈ (0, 1
2
), and tolerance tol> 0.

Set k := 0.

Step 1. (Termination criterion) If εk =
∥∥∥F (xk)− d

∥∥∥ ≤tol then stop. Otherwise, go to

Step 2.

Step 2. (Direction generation) Let sk be a solution of the following linear system

(M(xk) + εkI)s = −∇L(xk). (6.3.4)

152

Step 3. (Line search) choose mk as the smallest nonnegative integer m satisfying

L(xk + ρmsk)− L(xk) ≤ σρm∇L(xk)T sk. (6.3.5)

Step 4. (Update) Set xk+1 = xk + ρmksk, k := k + 1, return to Step 1.

If tol= 0, then Algorithm 6.3.1 will produces a infinite sequence of iterates {xk}
in general, otherwise, some iterate xk is the solution of (6.1.4). In what follows, we

assume that for any k, xk is not the solution of (6.1.4). Since M(xk) is always positive

semidefinite, see [179], M(xk)+εkI is always positive definite for any εk > 0. Therefore,

the linear system (6.3.4) is uniquely solvable and sk 6= 0. If there are no nonnegative

integers satisfying (6.3.5), then we have

lim
m→∞

L(xk + ρmsk)− L(xk)

ρm
≥ σ

(
∇L(xk)

)T
sk,

i.e.,

0 ≤ (1− σ)(∇L(xk))T sk ≤ −(1− σ)εk

∥∥∥sk
∥∥∥
2

< 0.

The contradiction means that there is always an mk satisfying (6.3.5), i.e., xk+1 can be

calculated from xk. We formally state this result as follows.

Proposition 6.3.1 Let tol= 0. For every starting point x0, Algorithm 6.3.1 generates

an infinite sequence xk.

In the proof of convergence of Algorithm 6.3.1, we use the following technical lemma

which shows that the unit stepsize is attained eventually.

Lemma 6.3.2 Let x∗ be a solution of (6.1.4). For every δ ∈ (0, 1), there exists a

neighborhood U of x∗ and a scalar ε̄ > 0 such that, for any x ∈ U and ε ∈ [0, ε̄], the

unique solution sx of the linear system

(M(x) + εI)s = −∇L(x) (6.3.6)

satisfies x + sx ∈ U and

L(x + sx)− L(x)− 1

2
∇L(x)T sx ≤ δ ‖sx‖2 .

153

Proof. By Lemma 6.2.2, there exists a neighborhood U of x∗ such that M(x) is

nonsingular for any x ∈ U . Hence the linear equation (6.3.6) has a unique solution for

all ε ≥ 0. Since L has a semismooth gradient, the desired result follows from Lemmas

3.1 and 3.3 in [113].

We now state and prove a convergence property of Algorithm 6.3.1, which shows

that it is globally convergent and the convergence order is at least 4
3
.

Theorem 6.3.1 Let x0 ∈ <n and {xk} be generated by Algorithm 6.3.1. Then the

whole sequence {xk} converges to the solution x∗ of (6.1.4), and the convergence is at

least of order 4
3
.

Proof. Since the sequence L(xk) is decreasing and the function L is coercive, see Lemma

6.3.1, the sequence of iterates {xk} is bounded. Let x∗∗ be a limit of a subsequence

{xk}k, k ∈ K. We will prove that x∗∗ = x∗ and hence xk is convergent to x∗. Assume

on the contrary that x∗∗ 6= x∗. Then ε∗ := ‖F (x∗∗)− d‖ > 0, since we know that, from

the (strictly) convex of L(x), the solution x∗ of (6.1.4) is unique. By Lemma 6.2.1,

M(xk) → M(x∗∗) ∈ <n×n. It is clear that M(x∗∗) is positive semidefinite.

Let s∗ ∈ <n be the solution of the linear system:

(M(x∗∗) + ε∗I)s = −F (x∗∗) + d.

Under the above assumptions, we have that s∗ 6= 0 and sk → s∗ as k ∈ K, k → ∞.

Then for k ∈ K sufficiently large, we have

L(xk + tsk)− L(xk)− σt(∇L(xk))T sk = (1− σ)t(∇L(xk))T sk + o(t)

= (1− σ)t(∇L(x∗∗))T s∗ + o(t) + (1− σ)tαk,

where αk = (∇L(xk))T sk − (∇L(x∗∗))T s∗. It is obvious that αk → 0 as k ∈ K, k →∞.

Note that (∇L(x∗∗))T s∗ = −(s∗)T (M(x∗∗)+ε∗I)s∗ < 0; then there exists a nonnegative

integer m∗ such that for all k ∈ K sufficiently large and all m ≥ m∗,

L(xk + ρmsk)− L(xk)− σρm(∇L(xk))T sk ≤ 0.

For all k ∈ K sufficiently large this inequality implies that mk ≤ m∗ and

L(xk+1)− L(xk) ≤ σρmk(∇L(xk))T sk ≤ 1

2
σρm∗(∇L(x∗∗))T s∗.

154

Hence, L(xk) → −∞, contradicting the boundedness of
{
L(xk)

}
. Therefore, x∗∗ = x∗.

Thus, we have xk → x∗ and εk → 0. Since M(x∗) is positive definite, from the continuity

of M(·) it follows that every M(xk) is also positive definite for all xk sufficiently close

to x∗. Then there exists a constant δ̄ > 0 such that

(sk)T (M(xk) + εkI)sk ≥ δ̄
∥∥∥sk

∥∥∥
2

(6.3.7)

for all xk sufficiently close to x∗. Choose δ in Lemma 6.3.2 such that δ < (1
2
− σ)δ̄.

Noticing that δ < 1
2
, for all k sufficiently large, Lemma 6.3.2 and (6.3.7) yield

L(xk + sk) − L(xk)− σ(∇L(xk))T sk

= L(xk + sk)− L(xk)− 1

2
(∇L(xk))T sk + (

1

2
− σ)(∇L(xk))T sk

≤ δ
∥∥∥sk

∥∥∥
2 − (

1

2
− σ)(sk)T (M(xk) + εkI)sk

≤ −((
1

2
− σ)δ̄ − δ)

∥∥∥sk
∥∥∥
2
.

That is, eventually mk = 0. Hence xk+1 = xk + sk for all k sufficiently large. We note

that εk → 0 and (M(xk))−1 is uniformly bounded in a small neighborhood of x∗, see

Lemma 6.2.2 (i). Hence, for all k sufficiently large

(I + εk(M(xk))−1)−1 = I − εk(M(xk))−1 + o(εk).

If ∆xk is Newton’s direction generated by (6.1.6) at xk, then we have

sk = (M(xk) + εkI)−1(−F (xk) + d)

= (I + εk(M(xk))−1)−1(M(xk))−1(−F (xk) + d)

= ∆xk − εk(M(xk))−1∆xk + o(εk)∆xk

(6.3.8)

By Theorem 6.2.2, we obtain

∥∥∥xk + ∆xk − x∗
∥∥∥ = O

(∥∥∥xk − x∗
∥∥∥

4
3

)
. (6.3.9)

Noticing that F (x∗) = d, Lemma 6.2.2 implies that εk = O(
∥∥∥xk − x∗

∥∥∥). From (6.3.9)

we obtain
∥∥∥∆xk

∥∥∥ = O(
∥∥∥xk − x∗

∥∥∥). Then it follows from (6.3.8) that

sk = ∆xk + O
(∥∥∥xk − x∗

∥∥∥
2
)

.

Thus we have
∥∥∥xk+1 − x∗

∥∥∥ =
∥∥∥xk + sk − x∗

∥∥∥
≤

∥∥∥xk + ∆xk − x∗
∥∥∥ + O

(∥∥∥xk − x∗
∥∥∥
2
)

= O
(∥∥∥xk − x∗

∥∥∥
4
3

)

155

In the last equality we employ (6.3.9). Hence, the rate of sequence {xk} converging to

the solution x∗ of (6.1.4) is at least of order 4
3
.

156

Chapter 7

A Newton Type Method for L2

Spectral Estimation

7.1 Introduction

A basic problem in spectral estimation is the estimation of a power spectrum, a measure

µ on <n, with a known support, given a finite collection of measured correlations. This

problem has many applications in a wide range of settings such as geophysics, radio

astronomy, radar, sonar, and interference spectroscopy, see [5, 6, 15, 17, 90, 96, 97] and

references therein. In many of these problems, the power spectrum µ is represented by

a density. Let K ⊆ <n be a measure space with σ−finite positive measure dx, and let

µ be absolutely continuous with respect to dx with density

s(x) =
dµ

dx
.

Then the problem becomes to find a nonnegative integrable function s(x) on K which

vanishes on the complement of K, and exactly matches the observed correlations

rk =
∫

K
s(x)ejkxdx, k ∈ ∆, j :=

√−1,

where ∆ is a finite subset of <n with 0 ∈ ∆, ∆ = −∆ and r−k = r̄k, the complex

conjugate of rk, for k ∈ ∆. Even if the problem described above is feasible, it may

not have a unique solution. The task of spectral estimation method is to select one

s(x) out of the ensemble of spectra satisfying the correlation matching, positivity, and

157

spectral support constraints. This selection is usually done by optimizing some convex

functionals, see Lang and McClellan [97]. One popular method used in spectral esti-

mation is the maximum entropy method, for example see [14] and [15]. In the method

one attempts to find a solution s(x) satisfying

max
∫

K
ln s(x)dx

s.t. rk =
∫

K
s(x)ejkxdx, k ∈ ∆,

s(x) ≥ 0.

(7.1.1)

The usual form the solution takes is s∗(x) = 1
P (x)

, where P is a positive trigonometric

polynomial. However, in some applications, see examples in [6], a strictly positive

solution of the form 1
P (x)

fails to exist. Goodrich and Steinhardt [54] suggested an

alternative way for selecting s(x) by formulating the following optimization problem in

L2 norm, which is called L2 spectral estimation,

min
∫

K
(s(x))2 dx

s.t. rk =
∫

K
s(x)ejkxdx, k ∈ ∆,

s(x) ≥ 0.

(7.1.2)

Under appropriate conditions, it is shown that the optimal solution of (7.1.2) has the

form: s∗(x) = max (0, P (x)), where P (x) is a trigonometric polynomial. Ben-Tal, Bor-

wain and Teboulle [6] developed a duality theory for multi-dimensional Lp (1 < p < ∞)

problem under the so-called Borwein-Wolkowicz constraint qualification (BWCQ), see

also Borwein and Lewis [12] and [13]. The dual problem obtained is a finite dimensional

concave program and the optimal dual variables are exactly the parameters of the op-

timal spectral density s∗(x). The authors of [6] indicated “the simple unconstrained

nature of the dual problem seems appropriate for computational purposes and may

lead to the construction of reliable algorithms for computing the Lp optimal spectral

estimate”. In that paper, they discretized the support K by a finite number of points

and approximated the dual problem by a nonsmooth optimization problem which can

be solved by existing nonsmooth optimization algorithms.

In this chapter, we study the L2 spectral estimation problem by Newton-type

method. For simplicity, we focus our attention on the time series case, an impor-

tant subclass of the spectral estimation problem. The results of the chapter can be

extended to the multidimensional case, but would be more complicated.

158

Suppose that K = [−π, π] and ∆ = {−m, · · · ,−1, 0, 1, · · · ,m}, where m is an inte-

ger. Given a finite sequence {rk} with k ∈ ∆, the problem is now to find a nonnegative

finite integrable function s ≥ 0 which satisfies

1

2π

∫ π

−π
s(x)ejkxdx = rk, k ∈ ∆. (7.1.3)

This is the so-called trigonometric moment problem, see [6, 54, 57, 97]. We can rewrite

problem (7.1.2) in the time series case (7.1.3) in the form of real constraints, that is

min
1

2

∫ π

−π
(s(x))2 dx

s.t.
1

2π

∫ π

−π
s(x) cos kxdx = Re(rk), k = 0, 1, · · · ,m,

1

2π

∫ π

−π
s(x) sin kxdx = Im(rk), k = 1, · · · ,m,

s(x) ≥ 0, s(x) ∈ L2[−π, π].

(7.1.4)

Here, for convenience, we multiply the objective function of (7.1.2) by 1/2 without

changing the problem. In 1993, Cole and Goodrich [24] investigated the Lp-spectral

estimation with an L∞-upper bound, they compare the numerical performance of Least

Squares methods for (7.1.4) (they take K = [0, 1] in the paper), Newton’s method for

solving the dual problem in the form of (7.2.3) and Newton’s method for the system

of nonlinear equations generated from the dual problem. They find the last method

does the best job of fitting the solution to the data. Potter [119] also obtained similar

numerical results. However, there is no convergence results of the algorithm for the

spectral estimation problem in the paper.

It is obvious that problem (7.1.4) is a convex optimization problem. The problem

has a unique solution provided that the feasible set is nonempty. In order to derive the

optimality conditions, we need certain constraint qualification. Since the nonnegative

cone of L2[−π, π] has empty interior, the commonly used Slater constraint qualification

does not hold. However, by [6], the BWCQ (Borwein-Wolkowicz Constraint Qualifica-

tion) holds if and only if the Toeplitz matrix M , defined by

M = [rl−k]
m
l,k=0 (7.1.5)

is positive definite, see page 993 in [6]. We take it as a blank assumption in the sequel

of this chapter.

159

For convenience of expression, we take

Bi(x) =





1, for i = 1

2 cos kx for k = 1, 2, · · · ,m, and i = 2k,

2 sin kx for k = 1, 2, · · · ,m, and i = 2k + 1

(7.1.6)

and

di =





2πr0, for i = 1

4πRe(rk) for k = 1, 2, · · · ,m, and i = 2k,

4πIm(rk) for k = 1, 2, · · · ,m, and i = 2k + 1.

(7.1.7)

Then (7.1.4) can be written as

min
∫ π

−π
(s(x))2 dx

s.t.
∫ π

−π
s(x)Bi(x)dx = di, i = 1, 2, · · · , 2m + 1,

s(x) ≥ 0, s(x) ∈ L2[−π, π].

(7.1.8)

The functions {Bi(x) : i = 1, 2, · · · , 2m + 1} defined by (7.1.6) are called the trigono-

metric basis functions on [−π, π], m is called the order of the trigonometric basis

{Bi(x)}2m+1
i=1 .

By using the Lagrange dual technique, we transform the problem (7.1.8) into a

finite dimension maximization problem. Further, the problem is reformulated as a

system of nonsmooth equations F (x) = d (see (7.2.7) in Section 7.2). We establish

the differentiability properties of the generated nonlinear equations and introduce the

Newton-type method for solving the problem. We prove that the order of convergence

of the method is at least 1 + 1
2m

. This result provides a theoretical justification for the

numerical observations in [24] and [119]. Moreover, based on an observation that the

dual problem of (7.1.4) is SC1, i.e., the objective function is smooth with its gradient

function semismooth, we produce a globally convergent damped generalized Newton

method for solving the problem. Some preliminary numerical tests are implemented for

illustrating the efficiency and robustness of the method.

The outline of this chapter is as follows. Section 7.2 contains the dual problem

of (7.1.8) and its reformulation. In Section 7.3, we investigate the differentiability of

function F generated from the reformulation (see (7.2.8) in Section 7.2) and introduce

the Newton-type method for solving the problem. Then we prove the convergence of the

160

method and study the rate of convergence. In Section 7.4, we give a damped Newton-

type algorithm for solving the problem, which is globally convergent. Preliminary

numerical test results are listed in Section 7.5.

7.2 Dual and Its Reformulation

In this section we establish the dual of problem (7.1.8), then the solving of the spectral

estimation problem (7.1.2), which is an infinite dimensional moment problem, is trans-

formed into solving a finite dimensional unconstrained maximization problem with a

concave objective function. Furthermore, the unique solution of the dual problem is

the solution of a system of nonlinear equations.

First, according to the Lagrange multiplier rule, s∗ is the unique solution of (7.1.8)

if and only if there exist numbers λ∗i , i = 1, 2, · · · , 2m + 1 such that s∗ is the solution

of the problem

min L(s, λ∗) =
1

2

∫ π

−π
(s(x))2 dx−

2m+1∑

i=1

λ∗i

(∫ π

−π
s(x)Bi(x)dx− di

)

s.t. s ≥ 0, s ∈ L2[−π, π].

(7.2.1)

Hence the solution of (7.1.8) has the form

s∗(x) =

(
2m+1∑

i=1

λ∗i Bi(x)

)

+

, (7.2.2)

where a+ := max{a, 0}, λ∗i , i = 1, 2, · · · , 2m + 1, are Lagrange multipliers. By dual

theorem, substituting (7.2.2) into (7.2.1), we obtain that the value of the Lagrange

multiplier vector λ∗ = (λ∗1, λ
∗
2, · · · , λ∗2m+1)

T ∈ <2m+1 is a solution of the following dual

problem

max
λ∈<2m+1

− 1

2

∫ π

−π

(
2m+1∑

i=1

λiBi(x)

)2

+

dx +
2m+1∑

i=1

λidi. (7.2.3)

Let Λ0 = λ1, Λk = λ2k + jλ2k+1 for k = 1, 2, · · · ,m. Analogous to the discussion

above, we have, in the complex form, the dual problem of (7.1.8) is

max
Λ





2π
m∑

k=−m

r̄kΛk − 1

2

∫ π

−π




m∑

k=−m

Λke
−jkx




2

+

dx





, (7.2.4)

161

where Λ = (Λ−m, · · · , Λ−1, Λ0, Λ1, · · · , Λm)T is a complex vector and Λ−k = Λ̄k(k =

1, 2, , · · · ,m). Moreover, we have

2π
m∑

k=−m

r̄kΛk = 2π

[
λ1r0 + 2

m∑

k=1

(λ2k Re(rk) + λ2k+1 Im(rk))

]
= λT d (7.2.5)

and
m∑

k=−m

Λke
−jkx = λ1 + 2

m∑

k=1

(λ2k cos kx + λ2k+1 sin kx) = λT B(x), (7.2.6)

where d = (d1, d2, · · · , d2m+1)
T and B(x) = (B1(x), B2(x), · · · , B2m+1(x))T . Therefore,

problem (7.2.3) and (7.2.4) are equivalent.

From the analysis above we have the following result, which is a direct deduction of

Theorem 5.1 in [6].

Theorem 7.2.1 For given K, ∆, and rk, if the Toeplitz matrix M , defined by (7.1.5) is

positive definite, then problem (7.1.8) has a unique solution s∗, its dual problem (7.2.3)

has a unique solution λ∗, and the optimal values of (7.1.8) and (7.2.3) are equal.

Notice that (7.2.3) is a finite dimensional problem, then by dual technique, the

infinite dimensional optimization problem (7.1.8) can be solved via solving an uncon-

strained finite dimensional concave optimization problem (7.2.3). Further, by the first

order optimality condition and concavity of (7.2.3), the dual problem can be reformu-

lated as the following equation system:

F (λ) = d, (7.2.7)

where

F =
∫ π

−π

(
2m+1∑

i=1

λiBi(x)

)

+

B(x)dx (7.2.8)

with

Fi(λ) =
∫ π

−π

(
2m+1∑

l=1

λlBl(x)

)

+

Bi(x)dx, i = 1, 2, · · · , 2m + 1. (7.2.9)

More precisely,

F0(λ) =
∫ π

−π

(
2m+1∑

i=1

λiBi(x)

)

+

dx,

F2k(λ) = 2
∫ π

−π

(
2m+1∑

i=1

λiBi(x)

)

+

cos kxdx, k = 1, 2, · · · ,m,

F2k+1(λ) = 2
∫ π

−π

(
2m+1∑

i=1

λiBi(x)

)

+

sin kxdx, k = 1, 2, · · · ,m.

(7.2.10)

162

We can see that function F in (7.2.7) may be not smooth. In the next section we study

the differentiability of F and introduce a Newton algorithm for solving (7.2.7).

7.3 Some Properties of F

In this section we study the differentiability properties of F (λ) given by (7.2.8) with

its components given by (7.2.9) for λ ∈ <2m+1, which are crucial for the establishment

and convergence analysis of the algorithm for solving (7.1.8). We denote

K0(λ) =
{
x ∈ [−π, π] : B(x)T λ = 0

}
,

K+(λ) =
{
x ∈ [−π, π] : B(x)T λ > 0

}
,

K−(λ) =
{
x ∈ [−π, π] : B(x)T λ < 0

}
.

Then we have the following properties of function F in (7.2.7).

Proposition 7.3.1 (i) For any λ ∈ <2m+1, the function F is locally Lipschitz contin-

uous;

(ii) F is semismooth at λ̂ = 0;

(iii) F is continuously differentiable at any λ̂ ∈ <2m+1 \ {0}, and

∇F (λ̂) =
∫

K+(λ̂)
A(x)dx, (7.3.1)

where

A(x) = B(x)B(x)T

=




1 2 cos x · · · 2 cos mx 2 sin mx

2 cos x 4 cos2 x · · · 4 cos x cos mx 4 cos x sin mx
...

...
. . .

...
...

2 cos mx 4 cos x cos mx · · · 4 cos2 mx 4 cos mx sin mx

2 sin mx 4 cos x sin mx · · · 4 cos mx sin mx 4 sin 2mx




.

(7.3.2)

163

Proof. For convenience of expression, we denote

g(λ, x) = λT B(x)

and

f(λ, x) = (g(λ, x))+.

Then for every x ∈ [−π, π], g(λ, x) is continuously differentiable with respect to λ ∈
<2m+1. Gx(λ) := ∇λg(λ, x) = B(x) is continuous on [−π, π] × <2m+1. Then by Theo-

rem 2.2.1 for any i = 1, 2, · · · , 2m + 1, Fi is locally Lipschitz continuous, directionally

differentiable and

F ′
i (λ; h) =

∫ π

−π
(g(λ, x))0

+g(h, x)Bi(x)dx, for i = 1, 2, · · · , 2m + 1,

where

(a)0
+ =





1 if a > 0,

0 otherwies.

From Proposition 2.3.2, we have that the integral functions Fi(λ), i = 1, 2, · · · , 2m + 1,

are semismooth at λ̂ = 0. It is known from [126] that if each component of F is

semismooth, then F itself is semismooth.

Since the basis functions {1, 2 cos x, 2 sin x, · · · , 2 cos mx, 2 sin mx} are linearly in-

dependent on [−π, π], B(x) = (1, 2 cos x, 2 sin x, · · · , 2 cos mx, 2 sin mx)T 6= 0 for any

integer m and any x ∈ [−π, π], there exists a neighborhood U(λ̂) of λ̂ such that

σ (K0(λ)) = 0 for λ ∈ U(λ̂), where σ (W) is the measure of set W . This implies

that σ ({x ∈ K0(λ) : Gx(λ) 6= 0 }) = 0. By Corollary 2.2.1, differentiable at λ ∈ U(λ̂)

and

∇Fi(λ) =
∫ π

−π
(g(λ, x))0

+ B(x)Bi(x)dx

=
∫

K+(λ)
B(x)Bi(x)dx.

(7.3.3)

Precisely,

∇F1(λ) =
∫

K+(λ)
B(x)dx, (7.3.4)

∇F2k(λ) = 2
∫

K+(λ)
B(x) cos kxdx, (7.3.5)

∇F2k+1(λ) = 2
∫

K+(λ)
B(x) sin kxdx, (7.3.6)

164

for k = 1, 2, · · · ,m. By direct computation, and noticing that A(x) = B(x)B(x)T , we

have (7.3.1). Moreover, it is readily to prove that χK+(λ)(x) → χK+(λ̂)(x) as λ → λ̂ for

a.e x and |χK+(λ)(x)B(x)Bi(x)| ≤ |B(x)Bi(x)|. By Lebesgue Dominated Convergence

theorem, we obtain the continuous differentiability of F .

It is not difficult to have the following result.

Proposition 7.3.2 For any λ ∈ <2m+1, any V ∈ ∂F (λ) is positive semidefinite.

Proof. Define θ : <2m+1 → < as

θ(λ) =
1

2

∫ π

−π
(λT B(x))2

+dx. (7.3.7)

θ(λ) is a continuously defferentiable convex function. Its gradient is F (λ). From Propo-

sition 2.3 (a) in [82], any matrix in the generalized Jacobian of the gradient of a convex

function must be positive semidefinite.

Now we prove the positive definiteness of ∇F (·) at the solution point λ∗.

Theorem 7.3.1 Suppose that λ∗ ∈ <2m+1 is a solution of (6.1.4). Then λ∗ 6= 0, and

∇F (·) is positive definite at λ∗.

Proof. Suppose that λ∗ =
(
λ∗1, λ

∗
2, λ

∗
3, · · · , λ∗2m, λ∗2m+1

)T
is a solution of (6.1.4). Then

∫ π

−π

(
B(x)T λ∗

)
+

dx = d1,

2
∫ π

−π

(
B(x)T λ∗

)
+

cos kxdx = d2k,

2
∫ π

−π

(
B(x)T λ∗

)
+

sin kxdx = d2k+1

for k = 1, 2, · · · ,m. Consequently,

1

2π

∫ π

−π

(
B(x)T λ∗

)
+

dx = r0,

1

2π

∫ π

−π

(
B(x)T λ∗

)
+

ejkxdx = rk,

1

2π

∫ π

−π

(
B(x)T λ∗

)
+

e−jkxdx = r−k

(7.3.8)

165

for k = 1, 2, · · · ,m. We prove that λ∗ 6= 0 by contradiction. Assume that λ∗ = 0.

Then from (7.3.8) we have ri = 0 for all i = −m, · · · ,−1, 0, 1, · · · ,m. Therefore,

M = [rl−h]
m
l,h=0 = 0, which contradicts the blank assumption that M is positive definite.

Therefore, we obtain that λ∗ ∈ <2m+1 \ {0}.

Now we prove the last part of the theorem. Since {1, 2 cos x, 2 sin x, · · · , 2 cos mx, 2 sin mx}
are linearly independent on [−π, π], A(x) = B(x)B(x)T is positive semidefinite for any

x ∈ [−π, π]. Therefore, for any λ ∈ <2m+1 \ {0}, λT A(x)λ ≥ 0 and it does not vanish

on any interval of [−π, π]. Consequently,
∫

W
λT A(x)λdx > 0

for any set W ⊆ [−π, π] with σ(W) > 0 and any λ ∈ <2m+1 \ {0}. Therefore, from

λT∇F (λ∗)λ =
∫

K+(λ∗)
λT A(x)λdx,

we know that ∇F (λ∗) is positive definite if and only if σ (K+(λ∗)) > 0.

For convenience of expression, let Λ∗0 = λ∗1, Λ∗k = λ∗2k + jλ∗2k+1, k = 1, 2, · · · ,m
and Λ∗ = (Λ∗0, Λ

∗
1, · · · , Λ∗m)T . Then Λ∗ 6= 0 and Λ̄∗T MΛ∗ > 0, where Λ̄∗ is the complex

conjugate of Λ∗. From (7.3.8) we have

Λ̄∗T MΛ∗ =
m∑

l,h=0

Λ̄∗l Λ
∗
hrl−h

=
1

2π

∫ π

−π

(
B(x)T λ∗

)
+

(
Λ̄∗0 +

m∑

k=1

Λ̄∗ke
−jkx

) (
Λ∗0 +

m∑

k=1

Λ∗ke
jkx

)
dx.

Let z(x) = Λ∗0 +
m∑

k=1

Λ̄∗ke
−jkx, and z(x) be its conjugate. Then

Λ̄∗T MΛ∗ =
1

2π

∫ π

−π

(
B(x)T λ∗

)
+

z(x)z(x)dx

=
1

2π

∫

K+(λ∗)

(
B(x)T λ∗

)
+

z(x)z(x)dx.
(7.3.9)

Because z(x)z(x) ≥ 0 for any x ∈ <, the above integrand is nonnegative. Since

Λ̄∗T MΛ∗ > 0, (7.3.9) implies that the measure of set K+(λ∗) is nonzero, i.e., σ (K+(λ∗)) >

0. By this, we have that ∇F (λ∗) is positive definite.

Remark 7.3.1 From Theorem 7.3.1 and Proposition 3.1 in [131], we know that there

is a neighborhood N (λ∗) of λ∗ such that for any λ ∈ N (λ∗), ∇F (λ) is a nonsingular

matrix.

166

Now we study the Hölder continuous property of function ∇F (λ) in (7.3.1) for

λ ∈ <2m+1 \ {0}. It is crucial for the convergence analysis of the Newton method for

solving (7.1.8).

Proposition 7.3.3 Suppose λ̂ 6= 0. Then ∇F (·) defined by (7.3.1) is at least 1
2m

-order

Hölder continuous at λ̂.

Proof. Since {1, 2 cos x, 2 sin x, · · · , 2 cos mx, 2 sin mx} are linearly independent and

λ̂ 6= 0, the set K0(λ̂) consists of a finite number of points, say {x̂1, · · · , x̂s}.

For k = 1, 2, · · · ,m, denote βk(x)T = 2(cos kx, sin kx) and

Ak(x) = 2


 −k sin kx k cos kx

−k2 cos kx − k2 sin kx


 .

Then

GB(x) := (B(x), B(1)(x), · · · , B(2m)(x))T

=




1 β1(x)T β2(x)T · · · βm(x)T

0 A1(x) A2(x) · · · Am(x)

0 −A1(x) −22A2(x) · · · −m2Am(x)
...

...
...

. . .
...

0 (−1)m−1A1(x) (−22)m−1A2(x) · · · (−m2)m−1Am(x)




.

(7.3.10)

Let

Q(x) =




A1(x) A2(x) · · · Am(x)

−A1(x) −22A2(x) · · · −m2Am(x)
...

...
. . .

...

(−1)m−1A1(x) (−22)m−1A2(x) · · · (−m2)m−1Am(x)




.

It is not difficult to decompose Q(x) as follows

Q(x) =




1 1 · · · 1

−1 −22 · · · −m2

...
...

. . .
...

(−1)m−1 (−22)m−1 · · · (−m2)m−1



·




A1(x) 0 · · · 0

0 A2(x) · · · 0
...

...
. . .

...

0 0 · · · Am(x)




.

167

Hence,

det(Q(x)) =
m∏

l,h=1,l<h
(l2 − h2) · m∏

k=1
det(Ak(x)).

Since det(Ak(x)) = 4k3 6= 0 for any positive integer k and x ∈ [−π, π], we have that

det(Q(x)) 6= 0, which implies that det(GB(x)) 6= 0. Therefore, for any x̂l, l = 1, 2, · · · , s,
there exists kl ≤ 2m such that





2m+1∑

i=1

λ̂iBi(x̂l) = 0,

2m+1∑

i=1

λ̂iB
(j)
i (x̂l) = 0 for j = 1, 2, · · · , kl − 1,

...
2m+1∑

i=1

λ̂iB
(kl)
i (x̂l) 6= 0.

(7.3.11)

That is, 



∇(i)
x g(λ̂, x̂l) = 0, i = 0, 1, · · · , kl − 1,

∇(kl)
x g(λ̂, x̂l) 6= 0.

Let K̂(λ̂, h) be the set of such x ∈ K that g(λ̂, x) and g(λ̂ + h, x) have different signs.

From the proof of Theorem 2.3.2, we have that σ(K̂(λ̂, h)) = O(‖h‖ 1
2m), where σ(Ω) is

the measure of set Ω. Noticing that K−(λ̂)∩K+(λ̂+h) ⊆ K̂(λ̂, h) and K+(λ̂)∩K−(λ̂+

h) ⊆ K̂(λ̂, h), we obtain that, for all h ∈ <2m+1 small enough,

∥∥∥∇F (λ̂ + h)−∇F (λ̂)
∥∥∥ =

∥∥∥∥∥
∫

K+(λ̂+h)
A(x)dx−

∫

K+(λ̂)
A(x)dx

∥∥∥∥∥

=

∥∥∥∥∥
∫

K+(λ̂+h)∩K−(λ̂)
A(x)dx−

∫

K−(λ̂+h)∩K+(λ̂)
A(x)dx

∥∥∥∥∥
≤ maxx∈K ‖A(x)‖ · σ(K̂(λ̂, h)).

(7.3.12)

Therefore, there exists a constant L > 0 such that

∥∥∥∇F (λ̂ + h)−∇F (λ̂)
∥∥∥ ≤ L

(
‖h‖ 1

2m

)
,

which means that ∇F (·) in (7.3.1) is Hölder continuous at λ̂. The proof is complete.

The following example shows that function F (·) defined by (7.2.8) may not be

strongly semismooth.

Example 7.3.1 Take λ̂ = (1,−1
2
, 0, · · · , 0)T , h = (0,− δ

2
, 0, · · · , 0)T with δ > 0. Then

F1(λ̂) =
∫ π

−π
(1− cos x)+dx =

∫ π

−π
(1− cos x)dx = 2π

168

and

F1(λ̂ + h) =
∫ π

−π
(1− (1 + δ) cos x)+dx

= 2
∫ π

xδ

(1− (1 + δ) cos x)dx

= 2(π − xδ + (1 + δ) sin xδ),

where xδ is the point satisfying 1− (1 + δ) cos xδ = 0 in [0, π]. Furthermore, we have

∇T F1(λ̂ + h) =
∫ π

−π
(1− (1 + δ) cos x)0

+B(x)T dx

=
(∫ −xδ

−π
B(x)T dx +

∫ π

xδ

B(x)T dx
)

.

Therefore,

F1(λ̂ + h)− F1(λ̂)−∇T F1(λ̂ + h)h

= 2(π − xδ + (1 + δ) sin xδ)− 2π + 2δ
∫ π

xδ

cos xdx

= 2(sin xδ − xδ) = O
(
x3

δ

)
.

On the other hand, from 1− cos xδ = δ
1+δ

and 1− cos xδ ∼ 1
2
x2

δ , we have

xδ = O
(
δ

1
2

)
.

Consequently,

F1(λ̂ + h)− F1(λ̂)−∇T F1(λ̂ + h)h = O
(
δ

3
2

)
= O

(
‖h‖ 3

2

)
,

which implies that F1(·) is not strongly semismooth and hence F (·) is not strongly

semismooth.

Now we investigate the strongly semismooth property of F at the origin λ̂ = 0.

Proposition 7.3.4 F is not differentiable and not piecewise smooth at the origin λ̂ =

0, but it is strongly semismooth at λ̂ = 0. Moreover, for any λ ∈ <2m+1 \ {0}, if

σ(K+(λ)) > 0, then

V =
∫

K+(λ)
A(x)dx ∈ ∂BF (0).

In special, 0, 2πD ∈ ∂BF (0), where D =


 1 0

0 2I


 and I is the identity matrix in

<2m×2m.

169

Proof. Suppose that λ ∈ <2m+1 \ {0} and σ(K+(λ)) > 0. Then λ̃ = 1
n
λ 6= 0 and

λ̃ → 0 as n →∞. Since λT B(x) > 0 if and only if (λ
n
)T B(x) > 0, we have σ(K+(λ

n
)) =

σ(K+(λ)). By Proposition 7.3.1, F is differentiable at λ̃ and

∇T F (
λ

n
) =

∫

K+(λ)
A(x)dx.

Therefore, from the definition of Clarke generalized Jacobian, we obtain that

V = lim
n→∞∇

T F (
λ

n
) =

∫

K+(λ)
A(x)dx ∈ ∂BF (0).

From the arbitrariness of λ, ∂BF (0) contains infinite many elements. In Pang and

Ralph [114] Lemma 2, it is said that if a function F is piecewise smooth then ∂BF (λ)

contains finitely many elements. Therefore, F is not differentiable and not piecewise

smooth at the origin λ̂ = 0.

Especially, by taking λ̃ = (1
n
, 0, 0, · · · , 0)T , we have λ̃ 6= 0, λ̃ → 0. Moreover,

B(x)T λ̃ > 0 for any x ∈ [−π, π], which implies K+(λ̃) = [−π, π]. Therefore, by

Proposition 7.3.1 (iii),

∇T F (λ̃) =
∫ π

−π

(
B(x)T λn

)0

+
A(x)dx

=
∫ π

−π
A(x)dx

= 2πD.

From the definition of ∂F (·), we know that 2πD ∈ ∂BF (0). Similarly, by taking

λ̃ = (− 1
n
, 0, 0, · · · , 0)T , we have 0 ∈ ∂BF (0).

Finally, we prove the strongly semismoothness of F at the origin λ̂ = 0. For any i =

1, 2, · · · , 2m + 1, and any h ∈ <2m+1, h 6= 0, by Proposition 7.3.1, Fi(·) is differentiable

at λ = 0 + h and

∇T Fi(0 + h) =
∫ π

−π

(
hT B(x)

)0

+
B(x)T Bi(x)dx.

170

Therefore,

Fi(0 + h)− Fi(0)−∇T Fi(0 + h)h

=
∫ π

−π

(
hT B(x)

)
+

Bi(x)dx− hT
∫ π

−π

(
hT B(x)

)0

+
B(x)Bi(x)dx

=
∫ π

−π

(
hT B(x)

)
+

Bi(x)dx−
∫ π

−π

(
hT B(x)

)0

+

(
hT B(x)

)
Bi(x)dx

= 0

= O(‖h‖2).

By Lemma 1.1.2, Fi(·) is strongly semismooth at λ̂ = 0 for any i = 1, 2, · · · , 2m + 1,

which means that function F is strongly semismooth at λ̂ = 0.

The standard Newton iteration for solving (7.2.7) is

λl+1 = λl − (∇T F (λl))−1(F (λl)− d), l = 0, 1, 2, · · · . (7.3.13)

From the homogeneity of function F defined by (7.2.8), we have ∇T F (λl)λl = F (λl).

Then the Newton iteration (7.3.13) reduces to the following simple form

∇T F (λl)λl+1 = d, l = 0, 1, 2, · · · . (7.3.14)

Hence, Newton’s method is easy to implement for L2 spectral estimation problem.

Further, we have the convergence rate of Newton’s method for the problem.

Theorem 7.3.2 Suppose that λ∗ is a solution of (7.2.7). Then the iterative sequence

generated by Newton’s iteration (7.3.14) converges to λ∗ if the initial point λ0 is close

to λ∗. The rate of the convergence is at least of order 1 + 1
2m

.

Proof. From Propositions 7.3.1 and 7.3.3, for any λ ∈ <2m+1\{0}, function F in

(7.2.7) is smooth, and its Jacobian ∇F is at least 1
2m

-order Hölder continuous. By

Theorem 7.3.1, 0 is not the solution of equations (7.2.7), and ∇F is nonsingular at the

solution of (7.2.7). Therefore, from the result on page 312 of [108], we have what we

expected.

At the end of this section, we should mention that after we obtained the optimal

dual solution λ∗, by (7.2.2) we can have the solution to the primal problem (7.1.8).

171

7.4 Globalized Newton-Type Method and Its Con-

vergence

In this section, we introduce a damped version of the Newton method for solving the

dual problem (7.2.3). To this end, we let

L(λ) =
1

2

∫ π

−π

(
2m+1∑

i=1

λiBi(x)

)2

+

dx−
2m+1∑

i=1

λidi. (7.4.1)

Then the maximization problem (7.2.3) is equivalent to the following minimization

problem

min
λ∈<2m+1

L(λ) =
1

2

∫ π

−π

(
2m+1∑

i=1

λiBi(x)

)2

+

dx−
2m+1∑

i=1

λidi. (7.4.2)

This is a finite dimension convex problem. Note that L(λ) is smooth, ∂L(λ) = F (λ)−d

and F is semismooth for any λ ∈ <2m+1. Hence problem (7.4.2) is an SC1 convex

programming problem.

Dontchev and Kalchev proved that L(λ) is coercive when B(x) is the basis of cubic

B-spline (see [32] Lemma 2.1), i.e., L(λ) → +∞ as ‖λ‖ → ∞. It can be seen from the

proof of Lemma 2.1 in [32] that the result can be extended to the case that B(x) is the

trigonometric basis in this chapter. Thus we have

Lemma 7.4.1 Function L(λ) defined by (7.4.1) is coercive. The problem (7.4.2) is

well-posed in the sense of Tykhonov.

Lemma 7.4.1 implies that any algorithm that produces a minimizing sequence of

(7.4.2) converges to its unique solution. The following damped Newton algorithm is a

globalized Newton-type methods, which is globally convergent and also keep the fast

local convergence of Newton’s method.

Algorithm 7.4.1 (Damped Newton-Type Method)

Step 0 (Initialization) Choose λ0 ∈ <2m+1, λ0 6= 0, ρ ∈ (0, 1), θ ∈ (0, 1/2), and

tolerance ε > 0. Set k := 0.

Step 1 (Termination criterion) If εk = ‖F (λk)− d‖ ≤ ε, then stop.

172

Step 2 (Direction generation) Take

V (λk) ∈ ∂F (λk). (7.4.3)

Let tk be a solution of the following linear system

(V (λk) + εkI)t = d− F (λk). (7.4.4)

Step 3 (Line search) Choose mk as the smallest nonnegative integer m satisfying

L(λk + ρmtk)− L(λk) ≤ θρm∇L(λk)T tk. (7.4.5)

Step 4 (Update) Set λk+1 = λk + ρmktk, k := k + 1, return to Step 1.

Remark 7.4.1 The matrix V (λk) in (7.4.3) is always positive semidefinite for any

λk ∈ <2m+1. If λk 6= 0, we may take the elements of V (λk) as

Vij(λ
k) =

∫ π

−π

(
B(x)T λk

)0

+
Bi(x)Bj(x)dx; i, j = 1, 2, · · · , 2m + 1.

Hence, the matrix V (λk) + εkI is always positive definite for εk > 0 and therefore, the

linear system (7.4.4) is uniquely solvable and tk 6= 0 if F (λk)− d 6= 0.

Remark 7.4.2 The line search (7.4.5) in Step 3 is well-defined in the sense that there

always exists a nonnegative integer mk satisfying (7.4.5). Suppose by contradictory that

L(λk + ρmtk)− L(λk) > θρm∇L(λk)T tk

holds for any nonnegative integer m, then we have

∇L(λk)T tk = lim
m→∞

L(λk + ρmtk)− L(λk)

ρm
≥ θ∇L(λk)T tk.

Hence, by ∇L(λk) = F (λk)− d, tk is the solution of (7.4.4) and the positive semidefi-

niteness of V (λk), we have

0 ≤ (1− θ)∇L(λk)T tk = −(1− θ)tk(V (λk) + εkI)tk ≤ −(1− θ)εk‖tk‖2 < 0.

This is a contradiction. Therefore, if ε = 0, then for any initial point λ0 ∈ <2m+1,

Algorithm 7.4.1 generates an infinite sequence {λk}.

173

Remark 7.4.3 Let λ∗ be the solution of dual problem (7.4.2). Then for any δ ∈ (0, 1)

there exists a neighborhood U(λ∗) of λ∗ and a scalar ε̄ > 0 such that for any λ ∈ U(λ∗)

and ε̂ ∈ (0, ε̄),V (λ) = ∇F (λ) is nonsingular. Therefore, the linear system

(V (λ) + ε̂I)tλ = d− F (λ)

has unique solution tλ. Moreover, since ∇F (λ) is at least 1
2m

-order Hölder continuous,

so is ∇2L(λ) = ∇F (λ). Hence, we have

L(λ + tλ)− L(λ)− 1

2
∇L(λ)T tλ ≤ δ‖tλ‖1+ 1

2m

and

λ + tλ ∈ U(λ∗).

From the analysis above, and by using a common argumentation technique, we can

establish the convergence result of Algorithm 7.4.1 as follows, we omit the proof here.

Theorem 7.4.1 Let ε = 0, λ0 ∈ <2m+1 be any initial point, {λk} be generated by

Algorithm 7.4.1. Then the whole sequence {λk} converges to the solution of (7.4.2),

and the order of the convergence is at least 1 + 1
2m

.

7.5 Numerical Results

In this section, we report our numerical test results on applying Algorithm 7.4.1 to

compute the spectral estimation on a variety of functions. For all testing problems in

this section, we take K = [−π, π] and generate data rk by taking a function s(x) and

computing

rk =
1

2π

∫ π

−π
s(x)ejkxdx for k = 0, 1, · · · ,m.

Problem 7.5.1-7.5.3 are generated from the examples in [24] but with the difference

that the functions in [24] are defined on [0, 1] whereas the functions in this chapter are

defined on [−π, π]. Problem 7.5.4-7.5.5 are first presented in this chapter.

We implemented Algorithm 7.4.1 in Matlab 6.5 on a personal computer Pentium III

601 MHz with 256 MB of memory. In the tables below, Time is the processing time of

174

the algorithm in second, the computing error is defined as Error = ‖F (λ) − d‖, Nit is

the number of the iterations.

Problem 7.5.1 Ideal Low-Pass Filter [24].

s(x) =





1, −π ≤ x ≤ 0,

0, 0 < x ≤ π.
(7.5.1)

For this problem, we compare our results to that of Cole and Goodrich in [24]. Cole

and Goodrich considered the Ideal Low-Pass Filter problem on K = [0, 1]. Correspond-

ingly, the basis functions in [24] are defined as

φi(x) =





√
2cos(i− 1)πx, if i is odd,√
2sin(iπx), if i is even.

And the data is generated by

ri =
∫

K
s(x)φi(x)dx, i = 1, 2, · · · , n.

The error defined in [24] is also slightly different with ours, it is

ErrorCG =

(
1

n

n∑

i=1

(
ri −

∫

K
f(x)φi(x)dx

)2
)1/2

,

where f(x) is the estimate of s(x). Comparing the basis {φi(x)} in [24] and the basis

{Bi(x)} (see (7.1.6) in Section 7.1) in our thesis, it is easy to see that n = 2m+1, and

ErrorCG ≤ c Error, where 0 < c < 1 is a constant.

In [24], Cole and Goodrich used three algorithms for solving the spectral estimation

problems. These three algorithms are the nonlinear least-squares algorithm for the

primal problem, Newton’s method for the dual problem (denoted as (DA)), and the

hybrid Powell method (which is a Newton-type method) for the nonlinear system of

equations generated from the dual problem (denoted as (NLSA)). They implemented

their algorithms in Fortran and run on VAX 8530. They claimed that the nonlinear

least-squares algorithm is both the slowest and least proficient at matching the data

vector r, and (NLSA) does the best job of fitting the solution to the data.

In Table 7.1, we list the numerical results generated by the Damped Generalized

Newton method (DGNM), i.e., Algorithm 7.4.1 in our paper, and the results of Cole

175

and Goodrich, generated by (DA) and (NLSA) [24]. We implemented (DGNM) for

m = 1, 2, · · · , 12. Cole and Goodrich implemented their algorithms for m = 1, 2, · · · , 5.

We can see from Table 7.1 that (DGNM) and (NLSA) have much better performance

than (DA). For m = 1, 2, · · · , 5, (DGNM) and (NLSA) have similar computing precision

except (NLSA) is not convergent for m = 4 (see [24] for the details).

For the sake of simplicity, in Fig. 7.1 we only illustrate the estimates to s(x) with

m = 5 and m = 11. The solid line is the original function s(x) in (7.5.1), the dotted

curve is the estimate to s(x) with m = 11, and the dashed curve is the estimate to s(x)

with m = 5.

Table 7.1: Iteration results for Problem 7.5.1

DGNM DA NLSA

m Time Error Nit Time ErrorCG Nit Time ErrorCG

1 0.772 1.1876× 10−13 9 17 1.63× 10−8 3 20 1.09× 10−13

2 1.322 5.7812× 10−13 14 86 1.74× 10−8 6 128 5.24× 10−15

3 1.531 7.4541× 10−15 25 221 2.26× 10−7 7 430 2.45× 10−12

4 6.319 4.2373× 10−15 59 652 7.97× 10−8 11 271 9.91× 10−3

5 9.219 6.2362× 10−14 185 19557 1.50× 10−7 200 4072 4.95× 10−15

6 6.760 9.9672× 10−5 42

7 5.468 9.8243× 10−5 73

8 9.704 9.4071× 10−5 39

9 14.931 8.8296× 10−5 65

10 3.266 6.7856× 10−4 25

11 19.458 9.0704× 10−5 64

12 3.406 7.0174× 10−4 21

We can also see from Table 7.1 that, when m is small, the compute precision can

be very high, but when m gets large, the compute precision is decreased. For example,

when we take m = 5, the computing precision is Error = 6.2362 × 10−15, which is

much higher than Error = 9.0704 × 10−5 in the case of m = 11. However, from Fig.

7.1 we can see that, comparing to the estimation curve of s(x) with m = 5 (the dashed

curve in Fig. 7.1), the estimation curve of s(x) with m = 11 (the dotted curve in

Fig. 7.1) is much closer to that of the original filter s(x) (the solid line in Fig. 7.1).

176

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

s(
x)

Ideal Low−Pass Filter

m=11
m=5

Figure 7.1: The estimations with m = 5 and m = 11.

Therefore, we may say that, the bigger value is taken for the order of trigonometric

bases m, the better estimation may be obtained to the original function s(x), although

the computing precision Error = ‖F (x)− d‖ does not increase, or even decrease. The

estimation results for other functions in this section also support this observation.

Problem 7.5.2 Nonideal Low-Pass Filter.

s(x) =





0.75, −π ≤ x ≤ −π/6,

0.75 exp(− tan2(1.5x + π/4)), −π/6 < x ≤ π/6,

0, π/6 < x ≤ π.

(7.5.2)

This problem is similar to Example 7.2. in [24]. Cole and Goodrich implemented their

algorithms on Example 7.2. [24] for m = 1, · · · , 5, and illustrated their estimation results

graphically for m = 3, (i.e., n = 7) in their paper, see page 350 in [24].

We applied Algorithm 7.4.1 to Problem 7.5.2 for m = 4, 5, · · · , 12 respectively. The

estimation results are listed in Table 6.2. In Fig. 7.2 we illustrate the estimation results

for s(x) in (7.5.2) with m = 5 and m = 12. The solid line in Fig. 7.2 is the original

filter s(x) (so are the solid lines in the figures for other problems in this section).

177

Table 7.2: Iteration results for Problem 7.5.2

m Time Error Nit

4 1.598 5.0859× 10−15 41

5 4.406 2.4268× 10−14 85

6 9.844 9.3241× 10−6 161

7 14.906 9.9700× 10−6 204

8 4.859 9.5933× 10−5 55

9 8.000 9.0282× 10−5 79

10 5.828 9.7060× 10−5 50

11 8.609 9.8194× 10−5 64

12 9.532 8.0141× 10−5 62

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

s(
x)

Nonideal Low−Pass Filter

 m=12
m=5

Figure 7.2: The estimations with m = 5 and m = 12.

From Fig. 7.1 and Fig. 7.2 we can see that the estimation to Problem 7.5.2 is better

than that to Problem 7.5.1. The reason is that s(x) in Problem 7.5.2 is continuous

in (−π, π), but the function s(x) in Problem 7.5.1 has a jump at x = 0. It is always

difficult to estimate a jump function by a continuous function, especially at the jump

point.

Problem 7.5.3 Two Steps with Disjoint Support Filter.

s(x) =





0.5, −π ≤ x ≤ −π/2,

0, −π/2 < x ≤ π/2,

1, π/2 < x ≤ π.

(7.5.3)

178

A similar example was also done by Cole and Goodrich [24] for m = 2, · · · , 5, and

the estimation result for m = 3 was illustrated graphically, see Example 7.4 in [24].

The iteration results of Algorithm 7.4.1 for Problem 7.5.3 are listed in Table 7.3 and

the estimation results are illustrated in Fig. 7.3 for m = 5 and m = 12.

Table 7.3: Iteration results for Problem 7.5.3

m Time Error Nit

3 2.924 2.9472× 10−14 31

4 6.489 5.1456× 10−15 61

5 2.693 9.6428× 10−5 17

6 10.144 9.8538× 10−5 71

7 10.125 9.8939× 10−5 59

8 8.031 9.8696× 10−5 31

9 9.624 9.0769× 10−5 43

10 17.094 8.7689× 10−5 58

11 12.638 9.6168× 10−5 38

12 16.694 9.0477× 10−5 54

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

s(
x)

Two Step with Disjoint Support Filter

m=12
m=5

Figure 7.3: The estimations with m = 5 and m = 12.

We also applied our algorithm to estimate the following two functions. We take

m = 4, 5, · · · , 12 in the tests. The iteration results are listed in Table 7.4 and Table 7.5,

and the estimation results for the filters with m = 6 and m = 12 are illustrated in Fig.

179

7.4 and Fig. 7.5, respectively. For other values of m, the resulting estimates also match

the corresponding original filter quite well.

Problem 7.5.4 Three Steps with Disjoint Support Filter.

s(x) =





2/3, −π ≤ x ≤ −π/2,

0, −π/2 < x ≤ 0,

1/3, 0 < x ≤ π/2,

1, π/2 < x ≤ π.

(7.5.4)

Problem 7.5.4 is more complicated than Problem 7.5.3.

Table 7.4: Iteration results for Problem 7.5.4

m Time Error Nit

4 2.464 5.3682× 10−15 21

5 2.063 5.0245× 10−15 13

6 4.306 4.7050× 10−15 26

7 5.468 5.9164× 10−15 29

8 3.475 6.8438× 10−15 15

9 4.276 2.6534× 10−15 15

10 6.019 9.9292× 10−15 19

11 4.767 5.0729× 10−15 16

12 15.022 2.9448× 10−15 27

From Table 7.4 we can see that the computing precision of Algorithm 7.4.1 for

Problem 7.5.4 is very high. But from Fig. 7.4 we find that the estimation for the

function s(x) in Problem 7.5.4 is not as good as the estimation for the functions in the

previous problems. That is because the function (7.5.4) has too many jumps on [−π, π],

which lead to big difficulty for the continuous estimation for the function. Moreover,

we can also see from Fig. 7.4 that, with the increase of the order of the trigonometric

bases, say, from m = 6 to m = 12, the estimation curve is getting closer to that of the

original function s(x) (comparing the dotted curve with m = 12 to the dashed curve

with m = 6). Therefore, in order to get a good estimation for a jump function, we

usually need to choose a big m, which means the dimension of the problem will be

high.

180

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

s(
x)

Three Step with Disjoint Support Filter

m=12
m=6

Figure 7.4: The estimations with m = 6 and m = 12.

Problem 7.5.5 Parallel Filter.

s(x) =





x/π + 1, −π ≤ x ≤ 0,

x/π, 0 < x ≤ π.

(7.5.5)

Table 7.5: Iteration results for Problem 7.5.5

m Time Error Nit

4 1.222 2.8165× 10−13 9

5 1.392 1.7227× 10−11 9

6 1.763 8.6088× 10−15 10

7 1.952 7.1300× 10−14 10

8 2.443 6.3625× 10−15 11

9 2.824 7.1319× 10−15 11

10 3.024 2.4748× 10−11 11

11 3.175 2.5827× 10−11 12

12 4.787 4.6952× 10−15 14

For Problem 7.5.5, we can see from Fig. 7.5 that, the estimation for s(x) on (−π, 0)

and (0, π) is very precise. With the increase of value m, the estimation for s(x) on the

whole [−π, π] is getting better. Moreover, from Table 7.4 and Table 7.5 we can also

181

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

s(
x)

Parallel Filter

m=12
m=6

Figure 7.5: The estimations with m = 6 and m = 12.

see that the iteration number and processing time of the algorithm do not change a lot

with the increase of the order of the trigonometric bases m.

From the preliminary numerical test results in this section and the numerical obser-

vation by Cole and Goodrich [24] and Potter [119] , we can say that applying Newton-

type methods to the nonlinear equations generated from the dual of the spectral esti-

mation problem is an efficient way to solve the problem. Moreover, from the implemen-

tation process of Algorithm 7.4.1 we also noticed that Algorithm 7.4.1 is not sensitive

with the choice of the starting point λ0 ∈ <2m+1. Hence, Algorithm 7.4.1 is efficient

and stable.

182

Chapter 8

Conclusions and Suggestions for

Future Studies

In this thesis, we developed some generalized Newton methods for solving a class of

SIP problems, a class of option price interpolation problems and a class of L2 spectral

estimation problems. We also developed a method for solving a class of stochastic

generalized SIP problems.

In Chapter 2, we introduced a general class of integral functions which includes

the particular integral functions arising from many application problem. We inves-

tigated the differentiability, semismoothness and smoothing approximation properties

of this class of integral functions. These properties play a very important role in the

convergence analysis of the algorithms mentioned above.

Based on the investigation of the integral function, in Chapters 3 and 4, we pre-

sented four generalized Newton methods for solving SIP problems. In Section 3.2, we

first presented a smoothing SQP algorithm. At each iteration of the algorithm, we

only need to solve a quadratic program which is always feasible and solvable. The

global convergence of the smoothing SQP algorithm was established under some mild

conditions. However, this algorithm has two drawbacks: (1) it has no local superlinear

convergence; (2) the accumulation point of a sequence generated by it may not be a

stationary point of the original SIP problem and is only a generalized stationary point

of an equivalent programming problem. To overcome the first drawback, we presented

183

a smoothing projected Newton-type algorithm in Section 3.3. We proved that this

algorithm has global and local superlinear convergence under some mild conditions.

Furthermore, based on the smoothing projected Newton-type algorithm, we also con-

structed a truncated projected Newton-type algorithm in Chapter 4, which not only

has global and local superlinear convergence property but also can solve the large scale

SIP problems with 2000 decision variables. This algorithm is significant since many

large-scale SIP problems arise in various real fields. Considering the second drawback

mentioned in the smoothing SQP algorithm still exists, in Section 3.4, we presented a

new method for solving SIP problems, say, smoothing Newton-type algorithm, which

overcome the two drawbacks stated above. In addition, for the four algorithms above,

the feasibility of the accumulation point of a sequence generated by it was ensured by

an integral function. Numerical test examples show that each algorithm performs well.

In Chapter 5, we discussed a generalized semi-infinite programming problem with

uncertainty. The expected value approach was applied to define a deterministic version

of the problem. We proposed a new reformulation by using the first order optimality

conditions of the second stage optimization problem. Then, we presented a smoothing

implicit programming method to solve the problem with finite discrete distribution.

Global convergence results was obtained under some mild conditions.

In Chapter 6, we showed that the generalized Newton method presented by Wang,

Yin and Qi has at least 4
3
-order convergence rate. We gave conditions under which this

method has 3
2
-order and quadratic convergence rate. We also gave a damped version

of the generalized Newton method and showed that it is globally convergent and the

convergence order is at least 4
3
.

In Chapter 7, a Newton method for solving power spectrum estimation problems

was proposed, and it was proved that the method is at least 1+ 1
2m

-order convergent. We

also developed a globalized Newton-type method for solving the problem, this method

has at least 1 + 1
2m

-order convergence.

The following is a list of some interesting and challenging problems for future re-

search.

1. The smoothing SQP algorithm proposed in Section 3.2 has global convergence and

184

performs well in numerical test. However, It has no very good local convergence

property such as superlinear or quadratic convergence. In addition, some assump-

tions (for instance, (B4)) needed in the convergence analysis of the algorithm are

somewhat restrictive in theoretical aspect. Thus, it is of great significance to

develop a smoothing SQP algorithm for solving SIP problems such that this al-

gorithm has good local convergence property under some mild conditions.

2. The smoothing projected Newton-type algorithm, the smoothing Newton-type al-

gorithm and the truncated projected Newton-type algorithm proposed in Chap-

ters 3 and 4, are computationally efficient. However, the same problem appeared

in the three algorithms is that the parameter p, the numbers of the local maxi-

mizers of the nonlinear programming problem

max
v∈V

g(x, v)

need to be guessed previously. Thus, it is very interesting to develop an efficient

algorithm for solving SIP problems, such that the parameter p can be obtained

in the implementation process of the algorithm, but is not guessed previously.

In addition, further experience with testing and with actual applications will be

necessary.

3. In Chapter 5, we proposed a method for solving the stochastic generalized SIP

problems with finite discrete distribution. Of course, it is interesting to construct

an algorithm for solving the stochastic generalized SIP problems with continuous

distribution.

4. Two research topics related to Chapter 7 are: (1) How to construct an efficient

algorithm for solving the high dimension L2 spectral estimation problems? (2)

How to construct an efficient algorithm for solving the L2 spectral estimation

problems with L∞ upper bound? These works are very interesting, since the

problems mentioned arise from many applications.

We will continue work on these topics.

185

Bibliography

[1] Andreasen, L., Implied modeling: stable implementation, hedging, and duality.

Research report, University of Aarhus.

[2] Andreasen, L. and Brotherton-Ratcliffe, R., The equity option volatility smile:

An implicit finite difference approach. Journal of Computational Finance, Vol.1,

pp.5-38 (1998).

[3] Bachelier, L., Théorie de la spéculation. Annales de l’Ecole Superieure, Vol.17,

pp.21-86 (1900).

[4] Bates, D., The crash of 87, was it expected? The evidence from options markets.

Journal of Finance, Vol.46, pp.1009-1044 (1996).

[5] Bell, R.J., Introductory Fourier Thansform Spectroscopy, Academic Press, New

York, 383 pp.(1972).

[6] Ben-Tal, A., Borwein, J.M. and Teboulle, M., A dual approach to multidimen-

sion Lp spectral estimation problems. SIAM Journal on Control and Optimization,

Vol.26, pp.985-996 (1988).

[7] Ben-Tal, A., Teboulle, M. and Zowe, J., Second order necessary optimality

conditions for semi-infinite programming problems. In: Hettich, R. eds. Semi-

Infinite Programming, Lecture Notes in Control and Information Sciences, Vol.15,

Springer-Verlag, New York, pp.17-30 (1978).

[8] Birge, J.R. and Louveaux, F., Introduction to Stochastic Programming, Springer,

New York, 421 pp.(1997).

[9] Birge, J.R. and Qi, L., Continuous approximation schemes for solving stochastic

programs. Annals of Operations Research, Vol.56, pp.15-38 (1995).

186

[10] Black, F. and Scholes, M., The pricing of options and corporate liabilities. Journal

of Political Economy, Vol.81, pp.637-659 (1973).

[11] Bonnans, J.F. and Shapiro, A., Perturbation Analysis of Optimization Problems,

Springer, New York, 601 pp.(2000).

[12] Borwein, J.M. and Lewis, A.S., Dual relationships for entropy-like minimization

problems. SIAM Journal Control Optimization, Vol.29, pp.325-333 (1991).

[13] Borwein, J.M. and Lewis, A.S., Partially finite convex programming I: Quasi rel-

ative interiors and duality theory; II: Explicit lattice models. Mathematical Pro-

gramming, Vol.57, pp.15-83 (1992).

[14] Burg, J.P., Maxmum entropy spectral analysis. Proceedings, The 37-th internat-

ional meeting of the society of exploratory geophysics, Oklahoma City, OK (1968).

[15] Burg, J.P., Maxmum Entropy Spectral Analysis, Ph.D. dissertation, Stanford Univ.,

CA, (1975).

[16] Calamai, P.H. and Moré, J.J., Projected gradient methods for linear constrained

problems. Mathematical Programming, Vol.39, pp.93-116 (1987).

[17] Chamberlain, J.E., The Principles of Interferometric Spectroscopy, Wiley, New

York, 347 pp.(1979).

[18] Chen, C. and Mangasarian, O.L., A class of smoothing functions for nonlinear and

mixed complementarity problems. Computational Optimization and Applications,

Vol.5, pp.97-138 (1996).

[19] Chen, X., Nashed, Z. and Qi, L., Smoothing methods and semismooth methods

for nondifferentiable operator equations. SIAM Journal on Numerical Analysis,

Vol.38, pp.1200-1216 (2000).

[20] Chen, X., Qi, L. and Sun, D., Global and superlinear convergence of the smoothing

Newton method and its application to general box constrained variational inequal-

ities. Mathematics of Computation, Vol.67, pp.519-540 (1998).

[21] Chen, X. D., Sun, D. and Sun, J., Complementarity functions and numerical ex-

periments on some smoothing Newton methods for second-order-cone complemen-

187

tarity problems. Computational Optimization and Applications, Vol.25, pp.39-56

(2003).

[22] Chen, X. and Ye, Y., On homotopy-smoothing methods for box-constrained varia-

tional inequalities. SIAM Journal Control Optimization, Vol.37, pp.589-616 (1999).

[23] Clarke, F.H., Optimization and Nonsmooth Analysis, John Wiley and Sons, New

York, 308 pp.(1983).

[24] Cole, R.E. and Goodrich, R.K., Lp-spectral estimation with an L∞-upper bound.

Journal of Optimization Theory and Applications, Vol.76, pp.321-355 (1993)

[25] Colgen, R., Necessary conditions for upper semicontinuity in parametric semi-

infinite programming. Journal of Optimization Theory and Applications, Vol.48,

pp.65-79 (1986).

[26] Coope, I.D. and Watson, G.A., A projected Lagrangian algorithm for semi-infinite

programming. Mathematical Programming, Vol.32, pp.337-356 (1985).

[27] Corwin, L.J. and Szczarba,R.H., Multivariable Calculus, Mar Dekker, Inc. New

York, 524 pp.(1982).

[28] Dennis, J.E., Nonlinear least squares and equations. In: Jacobs, D.A.H. eds. The

State of the Art in Numerical Analysis, pp.269-312, Academic Press, New York

(1975).

[29] Dennis, J.E. and Mor, J.J., Quasi-Newton methods: Motivation and theory, SIAM

Review, Vol.19, pp.46-89 (1977).

[30] Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimiza-

tion and Nonlinear Equation, Prentice Hall, Englewood Cliffs, New Jersey, 378

pp.(1983).

[31] Derman, E., Kani, I. and Chriss, N., Implied trinomial tree of the volatility smile.

Journal of Derivatives, Vol.3, pp.7-22 (1996).

[32] Dontchev, A.L. and Kalchev, B.D., Duality and well-posedness in convex interpola-

tion. Numerical Functional Analysis and Optimization, Vol.10, pp.673-689 (1989).

188

[33] Dontchev, A. L., Qi, H.D. and Qi, L., Convergence of Newton’s method for convex

best interpolation. Numerische Mathematik, Vol.87, pp.435-456 (2001).

[34] Dontchev, A. L., Qi, H.D. and Qi, L., Quadratic convergence of Newton’s method

for convex interpolation and smoothing. Constructive Approximation, Vol.19,

pp.123-143 (2003).

[35] Dontchev, A. L., Qi, H.D., Qi, L. and Yin, H., A Newton method for shape-

preserving spline interpolation. SIAM Journal on Optimization, Vol.13, pp.588-602

(2003).

[36] Duffie, D., Dynamic Asset Pricing Theory, Princeton University Press, Princeton,

299 pp.(1996).

[37] Dumas, B., Flemming, J. and Whaley, R.E., Implied volatility functions: Empirical

tests. Journal of Finance, Vol.52, pp.2056-2106 (1997).

[38] Facchinei, F., Jiang, H. and Qi, L., A smoothing method for mathematical pro-

grams with equilibrium constraints. Mathematical Programming, Vol.85, pp.107-

134 (1999).

[39] Facchinei, F. and Kanzow, C., A nonsmooth inexact Newton method for the so-

lution of large-scale nonlinear complementarity problems. Mathematical Program-

ming, Vol.76, pp.493-512 (1997).

[40] Facchinei, F. and Pang, J.S., Finite-Dimensional Variational Inequalities and

Complementarity Problems, I-II, Springer-verlag, New York, 1234 pp.(2003).

[41] Fang, S.C. and Wu, S.Y., An entropic path-following approach for linear semi-

infinite programming problems. In: Mathematics Today, XII-A, pp.1-16 (1994).

[42] Fang, S.C. and Wu, S.Y., An inexact approach to solving linear semi-infinite pro-

gramming problems. Optimization, Vol.28, pp.291-299 (1994).

[43] Fiacco, A.V. and Ishizuka, Y., Suggested research topics in sensitivity and stabil-

ity analysis for semi-infinite programming. Annals of Operation Research. Vol.27,

pp.65-76 (1990).

189

[44] Fiacco, A.V. and Kortanek, K. O. eds., Semi-Infinite Programming and Applica-

tions, Lecture Notes in Economics and Mathematical Systems, Vol.215, Springer-

Verlag, Berlin (1983).

[45] Fischer, A., A special Newton-type optimization method. Optimization, Vol.24,

pp.269-284 (1992).

[46] Fischer, A., Solution of monotone complementarity problems with locally Lip-

schitzian functions. Mathematical Programming, Vol.76, pp.513-532 (1997).

[47] Fukushima, M. and Qi, L., A globally and superlinearly convergent algorithm for

nonsmooth convex minimization. SIAM Journal on Optimization, Vol.6, pp.1106-

1120 (1996).

[48] Gabriel, S.A. and Moré, J.J., Smoothing of mixed complementarity problems. In:

Ferris, M.C. and Pang, J.S. eds. Complementarity and Variational Problems: State

of the Art, SIAM, Philadelphia, pp.105-116 (1997).

[49] Girsanov, I., Lectures on the mathematical theory of extremum problems. Lecture

Notes in Economics and Mathematical Systems, Vol.67, Springer, New York (1972).

[50] Glashoff, K. and Roleff, K., A new method for Chebyshev approximation of

complex-valued functions. Mathematics of Computation, Vol.36, pp.233-239 (1981)

[51] Goberna, M.Á. and López, M.A., Linear Semi-Infinite Optimization, John Wiley

& Sons, New York, 343 pp.(1998).

[52] Goberna, M.Á. and López, M.A., Semi-Infinite Programming: Recent Advances,

Kluwer Academic Publishers, 386 pp.(2001).

[53] Goh, C.J. and Teo, K.L., Alternative algorithms for solving nonlinear function and

functional inequalities. Applied Mathematics and Computation, Vol.41, pp.159-177

(1991).

[54] Goodrich, R. K. and Steinhardt, A., L2 spectral estimation. SIAM Journal on

Applied Mathematics, Vol.46, pp.417-426 (1986).

[55] Gramlich, G., Hettich, R. and Sachs, E.W., Local convergence of SQP methods

in semi-infinite programming. SIAM Journal on Optimization, Vol.5, pp.641-658

(1995).

190

[56] Graettinger, T.J. and Krogh, B.H., The acceleration radius: A global performance

measure for robotic manipulators, IEE Journal Robotics Automation, Vol.4 pp.60-

69 (1988).

[57] Grenander, U. and Szero, G., Toeplitz Form and Their Applications, University of

California Press, Berkeley, 245 pp.(1958).

[58] Gribik, P.R., Selected applications of semi-infinite programming. In: Construc-

tive Approaches to Mathematical Models, Academic Press, New York, pp.171-187

(1979).

[59] Gürkan, G., özge, A.Y. and Robinson, S.M., Sample-path solution of stochastic

variational inequalities, Mathematical Programming, Vol.84, pp.313-333 (1999).

[60] Gustafson, S.A., On numerical analysis in semi-infinite programming. In: Hettich,

R. eds. Semi-Infinite Programming, Necture Notes in Control and Information

Sciences, Vol.15, Springer, New York, pp.51-65 (1979).

[61] Gustafson, S.A., A three-phase algorithm for semi-infinite programming. In: Fi-

acco, A.V. and Kortanek, K.O. eds. Semi-Infinite Programming and Applications,

Springer-Verlag, Berlin, pp.138-157 (1983).

[62] Gustafson, S.A. and Kortanek, K.O., Mathematical programming: The state of

the art. In: Fiacco, A.V. and Kortanek, K.O. eds. Semi-Infinite Programming and

Applications, Springer-Verlag, Berlin, pp.132-137 (1983).

[63] Harker, P.T. and Xiao, B., Newton method for the nonlinear complementar-

ity problem: A B-differentiable equation approach. Mathematical Programming,

Vol.48, pp.339-357 (1990).

[64] Hassouni, A. and Oettli, W., On regularity and optimality in nonlinear semi-infinite

programming. In: Goberna, M.Á. and López, M.A. eds. Semi-Infinite Program-

ming: Recent Advances, Kluwer Academic Publishers, pp.59-74 (2001).

[65] Hettich, R. and Jongen, H.TH., Semi-infinite programming: Conditions of opti-

mality and applications. In: Optimization Techniques, Part 2, Lecture Notes in

Control and Information Science, Vol.7, Springer, Berlin, pp.1-11 (1978).

191

[66] Hettich, R. and Honstede, W.V., On quadratically convergent methods for semi-

infinite programming. In: Hettich, R. eds. Semi-Infinite Programming, Necture

Notes in Control and Information Sciences, Vol.15, Springer, New York, pp.97-111

(1979).

[67] Hettich, R. and Zencke, P., Numerische Methoden der Approximation und Semi-

Infinite Optimierung, B.G. Teubner, Stuttgart, 232 pp.(1982).

[68] Hettich, R., A review of numerical methods for semi-infinite optimization. In: Fi-

acco, A.V. and Kortanek, K.O. eds. Semi-Infinite Programming and Applications,

Springer-Verlag, Berlin, pp.158-178 (1983).

[69] Hettich, R., An implementation of a discretization method for semi-infinite pro-

gramming. Mathematical Programming, Vol.34, pp.354-361 (1986).

[70] Hettich, R. and Kortanek, K.O., Semi-infinite programming: Theory, methods,

and applications. SIAM Review, Vol.35, pp.380-429 (1993).

[71] Hettich, R. and Still, G., Semi-infinite programming models in robotics. In: Gud-

dat, J., Jongen, H.T., Kummer, B. and Nozicka, F. eds. Parametric Optimization

and Related Topics II, Akademie Verjag, Berlin, pp.112-118 (1991).

[72] Hettich, R. and Still, G., Second-order optimality conditions for generalized semi-

infinite programming problems. Optimization, Vol.34, pp.195-211 (1995).

[73] Huang, Z.H., Han, J. and Chen, Z., Predictor-corrector smoothing Newton method,

based on a new smoothing function, for solving the nonlinear complementar-

ity problem with P0 function. Journal of Optimization Theory and Applications,

Vol.117, pp.39-68 (2003).

[74] Huber, P. J., Robust regression: Asympotics, conjectures, and Monte Carlo, An-

nals of Statistics, Vol.1, pp.799-821 (1973).

[75] Hull, J. and White, A., The pricing of options with stochastic volatility. Journal

of Finance, Vol.42, pp.281-300 (1987).

[76] Hunt, P., Kennedy, J. and Pelasser, A., Markov-functional interest rate models.

Finance and Stochastics, Vol.4, pp.391-408 (2000).

192

[77] Irvine, L.D., Marin, S.P. and Smith, P.W., Constrained interpolation and smooth-

ing. Constructive Approximation, Vol.2, pp.129-151 (1986).

[78] Ito, S., Liu, Y. and Teo, K.L., A dual parameterization method for convex semi-

infinite programming. Annals of Operations Research, Vol.98, pp.189-213 (2000).

[79] Jackwerth, J.C. and Rubinstein, M., Recovering probability distributions from

contemporary security prices. Journal of Finance, Vol.51, pp.1611-1631 (1996).

[80] Janin, R., Direction derivative of the marginal function in nonlinear programming.

Mathematical Programming Study, Vol.21, pp.127-138 (1984).

[81] Jennings, L.S. and Teo, K.L., A computational algorithm for functional inequality

constrained optimization problems. Automatica, Vol.26, pp.371-375 (1990).

[82] Jiang, H. and Qi, L., Local uniqueness and Newton-type methods for non-

smooth variational inequalities. Journal of Mathematical Analysis and Applica

tions, Vol.196, pp.314-333 (1995).

[83] Jiang, H. and Ralph, D., Global and local superlinear convergence analysis of

Newton-type methods for semismooth equations with smooth least squares. In:

Fukushima, M. and Qi, L. eds. Reformulation: Nonsmooth, Piecewise Smooth,

Semismooth and Smoothing Methods, Kluwer Academic Publishers, Dordrecht,

pp.181-209 (1998).

[84] Jiang, H. and Ralph, D., Smooth SQP methods for mathematical programs with

equilibrium constraints. http://www.ms.unimelb.edu.au/˜danny/smooth-mpec.ps.

[85] Jiang, H. and Ralph, D., Smooth SQP methods for mathematical programs with

nonlinear complementarity constraints, SIAM Journal on Optimization, Vol.10,

pp.779-808 (2000).

[86] Jongen, H.TH. Rückmann, J.J. and Stein, O., Generalized semi-infinite optimiza-

tion: A first order optimality condition and examples. Mathematical Programming,

Vol.83, pp.145-158 (1998).

[87] Kanzow, C., Some noninterior continuation methods for linear complementarity

problems. SIAM Journal on Matrix Analysis and Applications, Vol.17, pp.851-868

(1996).

193

[88] Kanzow, C. and Pieper, H., Jacobian smoothing methods for nonlinear comple-

mentarity problems, SIAM Journal on Optimization, Vol.9, pp.342-373 (1999).

[89] Kaplan, A. and Tichatschke, R., Proximal interior point methods for convex

semi-infinite programming. Optimization Methods and Software, Vol.15, pp.87-119

(2001).

[90] Kay, S.M. and Marple, S. L., Spectrum analysis-a modern perspective, Proc. IEEE,

Vol.69, pp.1380-1419 (1981).

[91] Kortanek, K.O. and Moulin, P., Semi-infinite programming in orthogonal wavelet

filter design. In: Reemtsen, R. and Rückmann, J. eds. Semi-Infinite Programming,

Kluwer academic Publishers, Boston, pp.323-360 (1998).

[92] Krabs, W., Optimization and Approximation, John Wiley and Sons, Chichester,

England, 220 pp.(1979).

[93] Krabs, W., On Time-minimal heating or cooling of a ball. In: Internet. Ser. Numer.

Math. 81, Birkhäuser, Basel, pp.121-131 (1987).

[94] Kummer, B., Newton’s method based on generalized derivatives for nonsmooth

functions: convergence analysis. In: Oettli, W. and Pallaschke, D. eds. Advances

in Optimization, Springer-Verlag, Berlin, pp.171-194 (1992).

[95] Lai, H.C. and Wu, S.Y., On linear semi-infinite programming problems: An algo-

rithm. Numerical Functional Analysis and Optimization, Vol.13, pp.287-304 (1992).

[96] Landau, H. J., Maximum entropy and maximum lilelihood in spectral estimation.

IEEE Transactions on Information Theory, Vol.44, pp. 1332-1336 (1998).

[97] Lang, S.W. and McClellan, J.H., Spectral estimation for sensor arrays, IEEE

Transactions on Acoustics Speech and Singnal Processing, Vol.31, pp.349-358

(1983).

[98] Li, D., Qi, L., Tam, J. and Wu, S.Y., Smoothing Newton methods for semi-infinite

programming, Journal of Global Optimization, Vol.30, pp.169-194 (2004).

[99] Lin, C.J., Fang, S.C. and Wu, S.Y., A dual affine scaling based algorithm for solving

linear semi-infinite programming problems. In: Du, D.Z. and Sun, J. eds. Advances

in Optimization and Approximation, Kluwer, London, pp.217-233 (1994).

194

[100] Lin, D.M. and Wong, E.K., A survey on the maximum entropy method and pa-

rameter spectral estimation. Physics Reports (Review Section of Physics Letters),

Vol.193, pp.41-135 (1990).

[101] De Luca, T., Facchinei, F. and Kanzow, C., A semismooth equation approach to

the solution of nonlinnear complementarity problems. Mathematical Programming,

Vol.75, pp.407-439 (1996).

[102] Mangasarian, O., Nonlinear Programming, McGraw Hill, New York, 220

pp.(1969).

[103] Marin, S.P., Optimal parameterization of curves for robot trajectory design. IEEE

Transactions on Automatic Control, Vol. AC-33, pp.209-214 (1988).

[104] Martinez, J.M. and Qi, L., Inexact Newton methods for solving nonsmooth equa-

tions. Journal of Computational and Applied Mathematics, Vol.60, pp.127-145

(1996).

[105] Mifflin, R., Semismooth and semiconvex functions in constrained optimization.

SIAM Journal on Control and Optimization, Vol.15, pp.957-972 (1977).

[106] Moré, J.J., Global methods for nonlinear complementarity problems. Mathematics

of Operations Research, Vol.21, pp.589-614 (1996).

[107] Nuernberger, G., Global unicity in semi-infinite programming. Numerical Func-

tional Analysis and Optimization, Vol.8, pp.173-191 (1985).

[108] Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press, New York, 572 pp.(1970).

[109] Outrata, J.V. and Zowe, J., A Newton method for a class of quasi-variational

inequalities. Computational Optimization and Applications, Vol.4, pp.5-21 (1995).

[110] Pang, J.S., Newton’s method for B-differentiable equations, Mathematics of Op-

erations Research, Vol.15, pp.311-341 (1990).

[111] Pang, J.S. A B-differentiable equation based, globally, and locally quadratically

convergent algorithm for nonlinear programs, complementarity and variational in-

equality problems. Mathematical Programming, Vol.51, pp.101-131 (1991).

195

[112] Pang, J.S. and Qi, L., Nonsmooth equations: Motivation and algorithms, SIAM

Journal on Optimization, Vol.3, pp.443-465 (1993).

[113] Pang, J.S. and Qi, L., A globally convergent Newton method for convex SC1

minimization problems. Journal of Optimization Theory and Applications, Vol.85,

pp.633-648 (1995).

[114] Pang, J.S. and Ralph, D., Piecewise smoothness, local invertiability, and paramet-

ric analysis of normal maps, Mathematics of Operations Research, Vol.21, pp.401-

426 (1996).

[115] Polak, E., On the mathematical foundations of nondifferentiable optimization in

engineering design. SIAM Review, Vol.29, pp.21-89 (1987).

[116] Polak, E., On the use of consistent approximations in the solution of semi-infinite

optimization and optimal control problems, Mathematical Programming, Vol.62,

pp.385-414 (1993).

[117] Polak, E., Optimization: Algorithms and Consistent Approximation, Springer-

Verlag, New York, 779 pp.(1997).

[118] Palak, E. and Tits, A.L., A recursive quadratic programming algorithm for semi-

infinite programming problems. Applied Mathematics and Optimization, Vol.8,

pp.325-349 (1982).

[119] Potter, L.C., Constrained Signal Reconstruction, PhD. Thesis, University of Illi-

nois at Urbana-Champaign (1990).

[120] Pshenichnyi, B.N., Necessary Conditions for an Extremum, Marcel Dekker, NY,

230 pp.(1971).

[121] Qi, H. D. and Liao, L.Z., A smoothing Newton method for general nonlinear

complementarity problems. Computational Optimization and Applications, Vol.17,

pp.231-253 (2000).

[122] Qi, L., Convergence analysis of some algorithms for solving nonsmooth equations.

Mathematics of Operations and Research, Vol.18, pp.227-244 (1993).

[123] Qi, L., Trust region algorithms for solving nonsmooth equations. SIAM Journal

on Optimization, Vol.5, pp.219-230 (1995).

196

[124] Qi, L., Semismoothness properties and applications of an integral function. In:

Tamura, A. and Ito, H. eds. Proceedings of The Fourteenth RAMP Symposium,

RAMP, Kyoto, pp.103-114 (2002).

[125] Qi, L. and Chen, X., A globally convergent successive approximation method

for severely nonsmooth equations. SIAM Journal on Control and Optimization,

Vol.33, pp.402-418 (1995).

[126] Qi, L. and Jiang, H., Semismooth Karush-Kuhn-Tucker equations and conver-

gence analysis of Newton and quasi-Newton methods for solving these equations.

Mathematics of Operations Research, Vol.22, pp.301-325 (1997).

[127] Qi, L., Shapiro, A. and Ling, C., Differentiability and semismoothness properties

of integral functions and their applications. Mathematical Programming, Ser.A,

Vol. 102, pp. 223-248 (2005).

[128] Qi, L. and Sun, D., A survey oof some nonsmooth equations and smoothing New-

ton methods. In: Eberhard, A., Hill, R., Ralph, D. and Glover, B.M. eds. Progress

in Optimization, Kluwer Academic Publishers, Dordrecht, pp.121-146 (1999).

[129] Qi, L. and Sun, D., Smoothing functions and smoothing Newton method for com-

plementarity and variational inequality problems. Journal of Optimization Theory

and Applications, Vol.113, pp.121-147 (2002).

[130] Qi, L., Sun, D. and Zhou, G., A new look at smoothing Newton methods for

nonlinear complementarity problems and box constrained variational inequalities.

Mathematical Programming, Vol.87, pp.1-35 (2000).

[131] Qi, L. and Sun, J., A nonsmooth version of Newton’s method. Mathematical

Programming, Vol.58, pp.353-367 (1993).

[132] Qi, L. and Tseng, P., Almost smooth functions. In: Takahashi, W. and Tanaka, T.

eds. Nonlinear Analysis and Convex Analysis, Yokohama Publishing Co., Tokyo,

pp. 405-413 (2003).

[133] Qi, L., and Wei, Z., On the constant positive linear dependence condition and its

applications to SQP methods. SIAM Journal on Optimization, Vol.10, pp.963-981

(2000).

197

[134] Qi, L., Wu, S.Y. and Zhou, G., Semismooth Newton methods for solving semi-

infinite programming problems. Journal of Global Optimization, Vol.47, pp.215-232

(2003).

[135] Qi, L. and Yang, Y.F., NCP functions applied to Lagrangian globalization for

the nonlinear complementarity problem. Journal of Global Optimization, Vol.24,

pp.261-283 (2002).

[136] Qi, L., and Yin, H., A strongly semismooth integral function and its application.

Computational Optimization and Applications, Vol.25, pp.223-246 (2003).

[137] Qi, L. and Zhou, G., A smoothing Newton method for minimizing a sum of

Euclidean norms. SIAM Journal on Optimization, Vol.11, pp.389-410 (2000).

[138] Ralph, D., Global convergence of damped Newton’s method for nonsmooth equa-

tions, via the path search. Mathematics of Operations Research, Vol.19, pp.352-389

(1994).

[139] Ralph, D., Private Communication, (2002).

[140] Reemtsen, R., Discretization methods for the solutions of semi-infinite program-

ming problems. Journal of Optimization Theory and Applications, Vol.71, pp. 85-

104 (1991).

[141] Reemtsen, R., Some outer approximation methods for semi-infinite optimization

problems. Journal of Computational and Applied Mathematics, Vol.53, pp.87-108

(1994).

[142] Reemtsen, R. and Göner, S., Numerical methods for semi-infinite programming:

A survey. In: Reemtsen, R. and Rükmann, J. eds. Semi-Infinite Programming,

Kluwer Academic Publishers, Boston, pp.195-275 (1998).

[143] Reemtsen, R. and Rückmann, J., Semi-Infinite Programming, Kluwer Academic

Publishers, Boston, 411 pp.(1998).

[144] Robinson, S.M., Stability theorems for systems of inequalities, Part II: Differen-

tiable nonlinear systems. SIAM Journal on Numerical Analysis, Vol.13, pp.497-513

(1976).

198

[145] Robinson, S.M., Normal maps induced by linear transformation. Mathematics of

Operations Research, Vol.17, pp.691-714 (1992).

[146] Roleff, K., A stable multiple exchange algorithm for linear SIP. In: Hettich, R. eds.

Semi-Infinite Programming, Necture Notes in Control and Information Sciences,

Vol.15, Springer, New York, pp.83-96 (1979).

[147] Rubinstein, M., Implied binomial tree. Journal of Finance, Vol.49, pp.771-818

(1994).

[148] Rückmann, J.J. and Shapiro, A., First-order condition in generalized semi-infinite

programming. Journal of Optimization Theory and Applications, Vol.10, pp.677-

691 (1999).

[149] Ruszczyński, A. and Shapiro, A. eds. Stochastic Programming. In: Handbooks in

Operations Research and Management Science, Vol. 10, North-Holland Publishing

Company, Amsterdam (2003).

[150] Sachs, E.W., Semi-infinite programming in control. In: Reemtsen, R. and

Rückmann, J. eds. Semi-Infinite Programming, Kluwer Academic Publishers,

Boston, pp.389-411 (1998).

[151] Schäfer, E., Ein konstruktionsverfahren bei allgemeiner linearer approximation.

Numerische Mathematik, Vol.18, pp.113-126 (1971).

[152] Shapiro, A., Second-orderderivatives of extremal-value functions and optimality

conditions for semi-infinite programs, Mathematics of Operations Research, Vol.10,

pp.207-219 (1985).

[153] Shapiro, A., On concepts of directional differentiability. Journal of Optimization

Theory and Applications, Vol.66, pp.477-487 (1990).

[154] Shapiro, A., On Lipschitzian stability of optimal solutions of parametrized semi-

infinite programs. Mathematics of Operations Research, Vol.19, pp.743-752 (1994).

[155] Shapiro, A., Directional differentiability of the optimal value function in convex

semi-infinite programming, Mathematical Programming, Vol.70, pp.149-157 (1995).

199

[156] Shapiro, A., First and second order optimality conditions and perturbation analy-

sis of semi-infinite programming problems. In: Reemtsen, R. and Rückmann, J.

eds. Semi-Infinite Programming, Kluwer Academic Publishers, Boston, pp.103-133

(1998).

[157] Shaw, F.H. and Geyer, C.J., Estimation and testing in constrained covariance

component models. Biometrika, Vol.84, pp.95-102 (1997).

[158] Sheu, R.L., Wu, S.Y. and Fang, S.C., A primal-dual infeasible-interior-point al-

gorithm for linear semi-infinite programming. Computers and Mathematics with

Applications, Vol.29, pp.7-18 (1995).

[159] Stein, O., First-order optimality conditions for degenerate index sets in gener-

alized semi-infinite programming problems. Mathematics of Operations and Re-

search, Vol.26, pp.565-582 (2001).

[160] Stein, O. and Still, G., On optimality conditions for generalized semi-infinite

programming problems. Journal of Optimization Theory and Applications, Vol.104,

pp.443-458 (2000).

[161] Stein, O. and Still, G., Solving semi-infinite optimization problems with interior

point techniques. SIAM Journal on Control and Optimization, Vol.42, pp.769-788

(2003).

[162] Still, G., Generalized semi-infinite programming: Theory and methods. European

Journal of Operational Research, Vol.119, pp.301-313 (1999).

[163] Still, G., Generalized Semi-Infinite Programming: Numerical Aspects. Optimiza-

tion, Vol.49, pp.223-242 (2001).

[164] Still, G., Discretization in semi-infinite programming: The rate of convergence.

Mathematical Programming, Vol.91, pp.53-69 (2001).

[165] Sun, D. A further result on an implicit function theorem for locally Lipschitz

functions. Operation Research Letter, Vol.28, pp.193-198 (2001).

[166] Sun, D. and Qi, L., On NCP-functions. Computational Optimization and Appli-

cations, Vol.13, pp.201-220 (1999).

200

[167] Sun, D. and Qi, L., Solving variational inequality problems via smoothing-

nonsmooth reformulations. Journal of Computational and Applied Mathematics,

Vol.129, pp.37-62 (2001).

[168] Sun, D., Womersley, R.S. and Qi, H.D., A feasible semismooth asymptotically

Newton method for mixed complementarity problems. Mathematical Programming,

Vol.94, pp.167-187 (2002).

[169] Sun, J., Sun, D. and Qi, L., A squared smoothing Newton method for nonsmooth

matrix equations and its applications in semidefinite optimization problems. SIAM

Journal on Optimization, Vol.14, pp.783-806 (2004).

[170] Tanaka, Y., Fukushima, M. and Ibaraki, T., A globally convergent SQP method

for semi-infinite nonlinear optimization. Journal of Computational and Applied

Mathematics, Vol.23, pp.141-153 (1988).

[171] Teo, K.L., Goh, C.J. and Wong, K.H., A unified computational approach to

optimal control problems. Pitman Monographs and Surveys in Pure and Applied

Mathematics, Vol. 55, Longman Scientific & Technical, New York (1991).

[172] Teo, K. L. and Jennings, L.S., Nonlinear optimal control problems with continu-

ous state inequality constraints. Journal of Optimization Theory and Applications,

Vol.63, pp.1-22 (1989).

[173] Teo, K. L., Rehbock, V. and Jennings, L.S., A new computational algorithm

for functional inequality constrained optimization problems. Automatica, Vol.29,

pp.789-792 (1993).

[174] Teo, K.L., Yang, X.Q. and Jennings, L.S., Computational discretization algo-

rithms for functional inequality constrained optimization. Annals of Operation Re-

search, Vol.98, pp.215-234 (2000).

[175] Tichatschke, R., Stetigkeitseigenschaften und konvergenz von folgen diskretisier-

ter semi-infiniter konvexer optimierungsaufgaben. Wiss. Z. TH Karl-Marx-Stadt,

Vol.21, pp.577-586 (1979).

[176] Todd, M.J., Interior-point algorithms for semi-infinite programming. Mathemati-

cal Programming, Vol.65, pp.217-245 (1994).

201

[177] Tuncel, L. and Todd, J.M., Asymptotic behavior of interior point methods: A

view from semi-infinite programming. Mathematics of Operations Research, Vol.21,

pp.354-381 (1996).

[178] Ulbrich, M., Semismooth Newton methods for operator equations in function

spaces. SIAM Journal on Optimization, Vol.13, pp. 805-842 (2003).

[179] Wang, Y., Yin, H. and Qi, L., No-arbitrage interpolation of the option price

function and its reformulation. Journal of Optimization Theory and Applications,

Vol.120, pp.629-649 (2004).

[180] Watson, G.A., A multiple exchange algorithm for multivariate Chebyshev approx-

imation. SIAM Journal on Numerical Analysis, Vol.12, pp.46-52 (1975).

[181] Watson, G.A., Numerical experiments with globally convergent methods for semi-

infinite programming problems. In: Fiacco, A.V. and Kortanek, K.O. eds. Semi-

Infinite Programming and Applications, Springer-Verlag, Berlin, pp.193-205 (1983).

[182] Wets, R.J-B., Stochastic programming: Solution techniques and approximation

schemes. In: Bachem, A., Grötschel, M. and Korte, B. eds. Mathematical Program-

ming: State-of-the-Art 1982, Springer-Verlag, Berlin, pp.560-603 (1983).

[183] Wetterling, W., Definitheitsbedingungen fur relative extrema bei optimierungs

und approximationsaufgaben. Numerische Mathematik, Vol.15, pp.122-136 (1970).

[184] Wu, S.Y., Fang, S.C. and Lin, C.J., Relaxed cutting plane method for solving

linear semi-infinite programming problems. Journal of Optimization Theory and

Applications, Vol.99, pp.759–779 (1998).

[185] Wu, S.Y., Fang, S.C. and Lin, C.J., Analytic center based cutting plane

method for linear semi-infinite programming. In: Goberna, M.Á. and López, M.A.

eds. Semi-Infinite Programming: Recent Advances, Kluwer Academic Publishers,

pp.221-233 (2001).

[186] Wu, S.Y., Fang, S.C., and Lin, C.J., Solving quadratic semi-infinite program-

ming problems by using relaxed cutting plane scheme. Journal Computational and

Applied Mathematics, Vol.129, pp.89-104 (2001).

202

[187] Wu, S.Y., Li, D.H., Qi, L. and Zhou, G., An iterative method for solving KKT

system of the semi-infinite programming. To appear in: Optimization Methods and

Software.

[188] Xiao, B. and Harker, P.T., A nonsmooth Newton method for variational inequal-

ities, I: Theory. Mathematical Programming, Vol.65, pp.151-194 (1994).

[189] Xiao, B. and Harker, P.T., A nonsmooth Newton method for variational inequal-

ities, II: Numerical results. Mathematical Programming, Vol.65, pp.195-216 (1994).

[190] Yang, Y. and Qi, L., Smoothing trust region methods for nonlinear complementar-

ity problems with P0 functions, Annals of Operations Research, Vol.133, pp.99-117

(2005).

[191] Zhou, G., Sun, D. and Qi, L., Numerical experiments for a class of squared

smoothing Newton methods for box constrained variational inequality problems.

In: Fukushima, M. and Qi, L. eds. Reformulation: Nonsmooth, Piecewise Smooth,

Semismooth and Smoothing Methods. Kluwer Academic Publishers, Dordrecht,

pp.421-441 (1999).

203

