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ABSTRACT 

The highly nonlinear torque-current-position characteristics make the servo 

control of hybrid stepping motors very complicated, especially under low operating 

speed. This thesis focuses on the development of simple and efficient control algorithms 

for the high-precision tracking control of hybrid stepping motors. The principles of 

several control schemes have been exploited to minimize the motor’s torque ripple, 

which is periodic and nonlinear in the system states, with specific emphasis on low-

speed conditions. The proposed control algorithms are all based on a modular control 

strategy where the feedback control module is designed to ensure global stability and 

achieve bounded tracking accuracy, while the feedforward control module is added to 

compensate for the effect of the torque ripple for improved tracking performance. The 

interactions between the feedforward and feedback control module have been explored 

and they have been shown to be complementary to each other. The stability and 

convergence performance of the control schemes are presented. It has been revealed that 

all the error signals in the control system are bounded and the motion trajectory 

converges to the desired value asymptotically. Simulations and experimental results 

demonstrate the effectiveness and performance of the proposed algorithms. These 

impressive results pave the way for stepping motors to be used in many applications 

previously not suitable for open loop steppers such as in low-speed direct-drive systems. 



 

  II 
 
 

ACKNOWLEDGEMENTS 

 

First of all, I would like to thank The Hong Kong Polytechnic University for 

providing a superb research environment. I am greatly indebted to my academic 

supervisor Professor Kai Leung Yung for his continued support, help, advice, 

encouragement, patience, guidance and instruction throughout the years. Without him, 

this research work could never have happened. To me, Professor Yung has been more 

than an advisor but a dear friend. I am proud to be his Ph.D. student and his academic 

son. 

 

My particular thanks go to Dr Gary Feng, Dr Qing Wang, Dr Hong Yuan Lu, 

 Dr Si Zhu Wu and Mr. S.M. Ko for their inspiration, support and encouragement. 

 

 Outside the academic environment, I wish to thank my elder sisters who started 

to take care of my family after I left for PolyU. Special appreciation goes to my parents. 

Without their love and care I would never have been what I am. Finally, I wish to thank 

my wife for everything she has done for our family and me. I truly think she deserves 

the biggest share of this Ph.D. degree. 

 

 

 

 

 

 



 

  III 
 
 

TABLE OF CONTENTS 

 

ABSTRACT........................................................................................................................I 

ACKNOWLEDGEMENTS................................................................................................ II 

TABLE OF CONTENTS.................................................................................................. III 

LIST OF FIGURES..........................................................................................................VI 

 

CHAPTER 1   INTRODUCTION ....................................................................................... 1 

1.1 Background and Objective.................................................................................... 1 

1.2 Investigation Approach......................................................................................... 5 

1.3 Main Contributions ............................................................................................. 11 

1.4 Thesis Organization ............................................................................................ 13 

 

CHAPTER 2    LITERATURE SURVEY......................................................................... 14 

2.1 Introduction......................................................................................................... 14 

2.2 A Review of Lead-Angle Based Control ............................................................ 14 

2.3 A Review of Torque Ripple Minimization Scheme ........................................... 17 

2.4 A Review of Feedback Linearizing Control ....................................................... 20 

2.5 Applications of Advanced Control Approaches ................................................. 23 

2.6 Summary ............................................................................................................. 32 

 

CHAPTER 3   MODEL−BASED CONTROL SCHEMES............................................... 34 

3.1 Introduction......................................................................................................... 34 

3.2 Modeling of Hybrid Stepping Motors................................................................. 36 



 

  IV 
 
 

3.3 Feedback Linearizing Control Design ................................................................ 40 

3.3.1 Parameter Identification Method ............................................................... 40 

3.3.2 Dynamic Feedback Linearizing Controller................................................ 44 

3.4 Robust Adaptive Control Design ........................................................................ 50 

3.4.1 Control Formulation................................................................................... 50 

3.4.2 Robust Adaptive Control With μ-Modification......................................... 51 

3.5 Simulation and Experimental Results ................................................................. 56 

3.6 Summary ............................................................................................................. 69 

 

CHAPTER 4   REPETITIVE LEARNING CONTROL SCHEMES .................................. 71 

4.1 Introduction......................................................................................................... 71 

4.2 General Problem ................................................................................................. 72 

4.2.1 Control Objective....................................................................................... 73 

4.2.2 Learning-Based Estimate Formulation ...................................................... 73 

4.2.3 Stability Analysis ....................................................................................... 74 

4.3 Control Design ( I ) ............................................................................................. 76 

4.3.1 Modified Representation of Dynamic Model ............................................ 76 

4.3.2 Control Objective....................................................................................... 78 

4.3.3 Control Formulation................................................................................... 78 

4.3.4 Stability Analysis ....................................................................................... 80 

4.4 Control Design ( II )............................................................................................ 83 

4.4.1 Control Formulation................................................................................... 83 

4.4.2 Performance Analysis ................................................................................ 87 

4.5 Experiments and Discussions ............................................................................. 95 

4.6 Summary ............................................................................................................. 98 



 

  V 
 
 

CHAPTER 5   FREQUENCY−DOMAIN LEARNING CONTROL SCHEME............... 102   

5.1 Introduction....................................................................................................... 102 

5.2 Control Formulation.......................................................................................... 103 

5.3 Control Design Using Fourier Series ................................................................ 105 

5.4 Stability Analysis .............................................................................................. 110 

5.5 Experiments and Discussions ........................................................................... 115 

5.6 Summary ........................................................................................................... 121 

 

CHAPTER 6   CONCLUSIONS..................................................................................... 123 

 

APPENDIX A   PROOF OF EXISTENCE ..................................................................... 128 

 

APPENDIX B   PROOF OF INEQUALITY ................................................................... 129    

 

REFERENCES............................................................................................................... 131 

 

 

 

 

 

 

 

 

 



 

  VI 
 
 

LIST OF FIGURES 

 

Figure 3.1 Simulation results of PID control and proposed control scheme .................. 60 

Figure 3.2 Steady-state time histories of controlled position errors ............................... 61 

Figure 3.3 Simulation results of typical profile tracking performance ........................... 62 

Figure 3.4 Block diagram representation of the experimental setup .............................. 63 

Figure 3.5 Speed errors of sinusoidal current control and proposed control scheme ..... 64 

Figure 3.6 Steady-state behavior of sinusoidal profile tracking ..................................... 65 

Figure 3.7 Steady-state behavior of trapezoidal profile tracking.................................... 66 

Figure 3.8 Profile tracking performance of Adaptive robust control.............................. 67 

Figure 4.1 Block diagram representation of the experimental setup .............................. 94 

Figure 4.2 Desired position trajectory ............................................................................ 96 

Figure 4.3 Tracking performance of sinusoidal current control scheme ........................ 99 

Figure 4.4 Learning convergence of tracking errors of proposed control scheme ....... 100 

Figure 4.5 Learning convergence of feedforward input ............................................... 101 

Figure 5.1 Learning convergence of tracking error of proposed controller.................. 118 
                  with higher PI gains ( 25,5.0,15,4.0 ==== Nk p γα ) 
 
Figure 5.2 Learning convergence of tracking error of proposed controller.................. 118 
                  with smaller PI gains ( 25,5.0,15,2.0 ==== Nk p γα ) 

Figure 5.3 Learning convergence of tracking error of proposed controller.................. 119 
                  with higher PI gains ( 25,75.0,15,4.0 ==== Nk p γα ) 
 
Figure 5.4 Learning convergence of tracking error of proposed controller.................. 119 
                  with higher PI gains ( 9,5.0,15,4.0 ==== Nk p γα ) 
 
 

 

 



CHAPTER 1  INTRODUCTION 

  1 
 
 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Objective 

 

The driving force behind the flurry of research and development in precision 

motion systems during the past two decades arose from requirements for much higher 

product performance, higher reliability, longer life, lower cost, and miniaturization. A 

significant amount of these efforts have been directed towards motion control research 

which became a major sub-discipline in the field of precision engineering. The main 

objective of these efforts was to create a means for driving two or more axes to move in 

exact coordination with each other for generating a precise profile. Impelled by this, 

more extensive efforts have been dedicated to developing and exploiting various 

precision servo systems for the purposes of special motion tracking. These studies along 

with the development of advanced control strategies and hardware techniques, have 

contributed to a variety of high-performance drive applications such as industrial robots, 

ultra precision machine tools, and instrumentation systems. 

 

The motion control industry has been using DC motors widely due to the 

relative ease in achieving high-performance with linear control. However, DC motors 

are giving way to AC motors, especially for permanent magnet (PM) synchronous 

motors, because AC motors are much more reliable and have a much higher torque-to-

inertia ratio and greater electrical efficiency. On the other hand, AC motors are 

nonlinear devices and are thus more difficult to control. Furthermore, current DC or AC 

servomotors together with their corresponding power amplifiers are expensive and, due 
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to their physical construction, have inherent torque ripples which affect their motion 

accuracy. It is hence desirable to look for a low-cost alternative to DC or AC 

servomotors that can effectively tackle the torque ripple issue in order to improve 

precision motion control. 

 

The hybrid stepping motor appears to be a likely candidate capable of offering 

such performance and cost advantages because it carries all the advantages of standard 

PM synchronous motors while its cost is much lower. Its teethed structure that 

assimilates many pole-pairs (typically 50) to even out the interpole non-linearity can 

yield a higher torque ripple frequency and hence a lower ripple magnitude. This 

undoubtedly creates a unique advantage for the hybrid stepping motor over the PM 

synchronous motor in precision motion at very low speeds (below 60 rpm), and thus it 

can be employed as an effective actuator in special-purpose applications. 

 

The direct-drive system can be regarded as a typical example of such 

applications. In this system, no indirect coupling mechanisms, as in the speed-reducing 

devices, are required. This greatly reduces the effects of contact-type nonlinearities and 

disturbances such as backlash and friction. At the same time, the advantages of using 

mechanical transmission are also consequently lost, such as the inherent ability to 

reduce the effects of model uncertainties and external disturbances. One of the primary 

considerations of using a hybrid stepping motor in these applications is its considerable 

torque ripple caused by the detent torque of the permanent magnet and the nonideal 

motor and drive characteristics which acts as a disturbance torque. This problem is 

obviated in a high-speed drive system because the torque ripple is filtered out by the 

inertia of the motor and load. It, however, leads to degradation in the control 
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performance in the direct drive system because the motor is generally operated in a low-

speed region. An adequate reduction of this effect, either through a proper physical 

design or via the control system, is of paramount importance in order to achieve high-

precision motion control. 

 

Various techniques have been considered to mitigate this problem. Although the 

most effective approach to minimize the torque ripple is by optimum motor designs, 

there are many occasions where they are not sufficient or appropriate to achieve the 

required level of torque ripple reduction. Moreover, the techniques based on the design 

concept have the drawbacks of reducing the average torque and increasing the 

complexity of the motor construction. More importantly, these should be considered in 

the motor design stage as drive designers may not find them useful. Another category of 

approaches that has been proposed for neutralizing undesired torque ripple components 

is to actively control the phase excitation to generate smooth output torque. It will be 

discussed in Chapter 2 that a number of the techniques using this concept have so far 

enjoyed various degrees of success, some of which bear direct relevance to the control 

design of other servomotors. Most of these techniques, however, depend critically on 

the assumption that sufficient preknowledge is available about the motor. This limits, to 

a certain extent, the application of such schemes due to imperfect knowledge and 

variations in the motor parameters. In addition, the control method itself for this 

purpose faces a significant challenge because the corresponding ripple dynamics is 

characterized by a time-varying and nonlinear function depending on the rotor position 

and speed. It is known that the proportional-integral-derivative (PID) control scheme 

with a widespread acceptance in industrial servo control applications is also proclaimed 

to be not adequate to reject this ripple, though the simplicity in its structure is appealing. 
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More complex advanced control approaches, even though they are available for solving 

this problem, have fared less favourably under practical conditions due to the higher 

costs associated with their implementation and higher demands in tuning. 

 

Recent developments in advanced and intelligent control strategies have 

provided a good solution for handling the toque ripple problem. Consequent on the 

requirement for a low-cost and high-performance control implementation, the new 

control algorithms must be efficient enough to be executed within the given design 

domain (time-domain or frequency-domain), yet possess sufficient capacity to provide 

rapid ripple or disturbance suppression and precision motion tracking. This calls for a 

good weighted selection of control architectures to address not only the specific 

dynamics of the servo system involved, but also the control specifications arising from 

the application. One class of feasible approaches is based on the adaptive robust control 

concept that can make full use of a prior knowledge of the nonlinear uncertainties in the 

system dynamics resulting from both torque ripples and external disturbances. This 

preknowledge arises from the fact that there exists the structured uncertainty associated 

closely with the dominant ripple effect in the motor. The main benefits of this technique 

include the efficient estimation of and compensation for undesirable uncertain dynamics 

achievable with adaptation, and the guaranteed global boundedness of the system with 

respect to the desired tracking control task. Another class of promising methods is based 

on the use of the learning control (LC) scheme that can provide the “intelligence” for 

learning or identifying the torque ripple of the motor and canceling it on-line. The LC 

scheme is probably the one which is most naturally close to the applications involved 

owing to the fact that their important features follow from the periodic dynamics of 

motors. The main advantage of such a scheme is that it is much less model-dependent, 
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and yet has the potential for achieving the desired ripple-free and high-precision motion 

control by seeking a simple controller structure with high computational efficiency. 

This is very attractive for real-time applications. Furthermore, such a control algorithm 

together with the specific phase excitation patterns, allows relatively simplified and 

practical control hardware configurations of the entire drive system at a low cost. 

 

In short, the development of the aforementioned control concepts has strongly 

motivated the investigation of high-performance drive applications using hybrid 

stepping motors, especially in low-speed or direct-drive servo systems. One of the 

specific applications is to track a pre-specified trajectory, which is the subject of this 

study. We attempt to exploit the mathematical characteristics of deterministic nonlinear 

uncertainties relating to the ripple dynamics of a hybrid stepping motor, and then 

present several efficient and practical control schemes so that high-performance motion 

control tasks can be accomplished. 

 

The objective of this study is to design an intelligent tracking control system 

such that through the corresponding control algorithm the hybrid stepping motor drive 

can generate a precise profile in the sense of low-speed tracking, despite various 

undesirable uncertainties and disturbances in the motor dynamics. 

 

1.2 Investigation Approach 

 

To understand the control architecture considered in this study, we first 

scrutinize the dynamical characteristics of a two-phase hybrid stepping motor, which is 

one of the objectives of this study. The dynamics of a two-phase hybrid stepping motor 
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can be viewed as comprising the electrical dynamics of the stator coils together with the 

shaft mechanical dynamics, which is inherently nonlinear and highly coupled due to the 

torque production mechanism in the motor resulting in a number of sinusoidal functions 

(harmonics) and their multiplication with state variables. It is well known that each 

harmonic varies with the electrical frequency of the motor that, for a typical 50 pole 

stepping motor, is integer times of 50 the mechanical frequency. Such large bandwidth 

differences between the electrical and mechanical dynamics lead to different control 

configurations at different operating speeds. At low speeds, the nonlinear effects 

resulting from the nonideal magnetic structure and other physical imperfections in the 

motor must be considered in the design of the control system if high precision motion 

control is to be efficiently realized. Among them, the two most prominent nonlinear 

effects are the ripple and frictional torques. 

 

The two primary components of the torque ripple are the detent torque 

(including one caused by the flux harmonics) and the reluctance torque. The detent 

torque arises as a result of the mutual attraction between the rotor’s and the stator’s 

poles. This torque exists even in the absence of any phase current and it exhibits a 

periodic relationship depending on the rotor’s position relative to the stator. Detention 

effect manifests itself by the tendency of the rotor to align in a number of preferred 

positions regardless of excitation states. The reluctance torque is due to the variation of 

the self-inductance of the windings with respect to the relative position between the 

rotor and the stator. Thus, the reluctance torque also has a periodic relationship with the 

rotor-stator position. Collectively, the detent and reluctance torque constitute the overall 

torque ripple phenomenon. Even when the motor is not powered, torque ripples are 

clearly existent when the rotor is moved. At lower speeds, the rippling effects are more 
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fully evident due to the lower momentum available to overcome the magnetic resistance. 

The torque ripple has a significant effect on the position accuracy achievable and it may 

also cause oscillations and yield stability problems, particularly at low speeds or with a 

light load (low momentum). The ripple periodicity has a fixed relationship with respect 

to the rotor position. 

 

Friction is inevitably present in nearly all moving mechanisms, and it is one 

major obstacle to achieving precise motion control. Several characteristic properties of 

friction have been observed, which can be broken down into two categories: static and 

dynamic. Many empirical friction models have been developed which attempt to 

capture specific components of observed friction behavior, but generally, it is 

acknowledged that a precise and accurate friction model is difficult to obtain in an 

explicit form, especially for the dynamical component. For our present purposes, 

however, the simple viscous friction model has been proven to be useful and it will be 

validated adequately. 

 

The special particularities of the physical structure associated with the hybrid 

stepping motor have motivated us to study some of nonlinear and intelligent control 

approaches within an appropriate system framework. Before designing and evaluating 

the control scheme for hybrid stepping motor drives, we follow a common practice of 

applying the well-known direct-quadrature (DQ) transformation as an initial step 

towards control design. The DQ transformation can provide such a framework using a 

sinusoidal commutation pattern together with the desired control input for identifying 

the nonlinear dynamics and achieving precise tracking control, which will be shown to 

be useful in the realization of a simple and practical controller for high-performance 
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control purpose. To facilitate the inverse DQ transformation to produce practical control 

inputs (phase currents) from sinusoidal commutation, the required sinusoidal functions 

are stored and updated in a look-up table for fast control configuration. By means of this 

transformation, our study addresses the following key control issues ranging from the 

control design approach itself to experimental validation of control algorithms.  

 

A.  Theoretical aspects of the profiling performance by model-based approaches. 

 

The model-based control approaches rely on the partial knowledge about the 

motor dynamics in order to project the ripple dynamics with parameter estimation 

techniques for special control synthesis, which in this study are classified into two 

different categories: feedback linearizing control and robust adaptive control. Feedback 

linearizing control is established by using an optimum parameter estimate, traditional 

linear control, and dynamic feedback control coupled with feedforward compensation. 

A two-stage control design is suggested to realize the concept. Initially, a traditional 

control algorithm is employed to give a bounded but coarser control performance. Then, 

further refinements are introduced into the preliminary design by supplementing some 

of the compensating terms so as to attenuate ripple components and guarantee precise 

global trajectory tracking. Robust adaptive control is constructed through the adaptive 

estimation and compensation of the structured uncertainty arising from the detent ripple 

and the friction, and meanwhile, the use of the robust control concept to deal with other 

structured uncertainty caused by nonsinusoidal flux distribution. This control approach 

provides the advantage of reducing the torque ripple components over a broader ripple 

frequency band, and guarantees a straightforward tracking control specification. 

Furthermore, it is anticipated that the second approach will be better than the first one in 
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control performance because of its more reasonable estimate to ripple dynamics with 

adaptation. 

 

B.  Study of profiling performance using learning-based approaches 

 

The learning-based approaches considered here belong to a class of modular 

control strategy in which the feedback control module is first designed to ensure global 

stability and achieve uniformly bounded tracking accuracy with an appropriate 

smoothing scheme, while the learning module is added to further improve the tracking 

performance whenever the control task repeats or is periodic. It is worth mentioning that 

most existing repetitive or iterative learning control methods are of the typical 

feedforward class and thus sensitive to any nonperiodic factors. By incorporating 

learning into feedback control, the feedback control part will “protect” the learning part 

to a certain extent by virtue of its excellent robustness property. Generating the desired 

control profile is the ultimate objective of the learning-based approaches where learning 

aims at extracting useful control knowledge from past control and tracking error 

sequences, so as to approximate the desired control for perfect tracking and torque 

ripple rejection. 

 

Two categories of interest of the learning-based approaches are considered. The 

first is based on a less model-dependent repetitive learning control. It has a very simple 

structure consisting of two time-domain components in additive form: a feedback 

control mechanism using either a pure linear form or some nonlinear form, and a 

learning mechanism that simply adds up a past tracking error sequence. Under the 

boundedness and Lipschitz continuity conditions of the system dynamics, the 
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Lyapunov-based design technique is used to yield a learning-based control estimate to 

achieve asymptotic tracking in the presence of nonlinear ripple dynamics. The second is 

based on model-free learning control that is implemented in the frequency domain by 

means of a Fourier series expansion. Since both the desired trajectory and the actual 

output can be approximated by a Fourier series with constant harmonic magnitudes 

under certain conditions, the tracking control problem in the time domain is 

decentralized into a number of independent regulation problems of the Fourier 

coefficients. The learning algorithm is designed in such a way that each harmonic 

magnitude of the actual output converges to that of the desired trajectory within the 

system bandwidth. Fourier series-based learning can further enhance the robustness 

property of learning control and improve tracking performance. 

 

C.  Experimental verification of dynamic characteristics of the ripple-free drive 

 

The motivation for making an experimental verification is to demonstrate that 

the aforementioned control approaches can be utilized to compensate for the ripple 

dynamics in the hybrid stepping motors in order to generate a precise profile. In order to 

gain more understanding about the control approaches we are interested in, a detailed 

analysis of the experimental results is necessary, and the performance comparisons 

between these methods in a variety of shapes are also required. In this stage, it is 

necessary to design and construct a precision experimental rig and an intelligent 

profiling algorithm. The control algorithm is implemented on a TMS320C30 DSP chip 

that can process input signals from the encoder coupled with the motor and supply 

output control signals to the motor drive in real time. The experimental investigation 

may shed light on its potential applications in the servo systems. 
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1.3 Main Contributions 

 

The main contributions of this study are summarized as follows: 

 

(1) A feedback linearizing control approach that employs dynamic feedback control 

together with feedforward compensation is proposed in order to harness the 

torque ripple of a hybrid stepping motor at low speeds for precision profile 

tracking. A novel identification procedure based on the least-squares algorithm 

using the integral equation model and a power series expansion is first applied to 

estimate the model parameters for calculation of the ripple dynamics. This 

produces a more appropriate form of linear regression which avoids the problem 

of reconstructing important signals such as the rotor speed and the derivatives of 

driving current, and rejects additional errors created by the quantization of the 

measurements. A new integration process is then conducted to obtain precise 

trajectory tracking by combining a reference trajectory, the traditional PID 

control, and the dynamical feedback linearizing control coupled with 

feedforward compensation over a certain torque-ripple frequency band. 

 

(2) A robust adaptive control approach is developed to enhance the performance of 

the above scheme. To facilitate the corresponding control design, the system 

uncertainties are attributed to two categories of the structured uncertainties. The 

structured uncertainty arising from the detention effect can be separated and 

expressed as the product of the known harmonic functions of the rotor position 

and a set of unknown constants. This uncertainty is estimated with possible 

adaptations and compensated for. Meanwhile, the robust adaptive method is 
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applied to deal with other structured uncertainty, resulting from the 

nonsinusoidal flux distribution, by estimating its bounding constants. The 

−μ modification scheme is applied to cease parameter adaptation in accordance 

with the robust adaptive control law. This control scheme guarantees the 

uniform boundedness of the motor drive system and assures that the tracking 

error enters an arbitrarily designated zone in a finite period of time. 

 

(3) A class of time-domain learning control approach is proposed which uses a 

modified standard repetitive update rule. A Lyapunov-based design approach is 

first utilized to illustrate the generality of the learning-based update law and its 

ability to force the origin of a general error system with a nonlinear disturbance 

within a known period to achieve global asymptotic tracking. Through both the 

Lyapunov-based technique and other stability analysis techniques, the learning-

based controller is then designed to compensate for nonlinear ripple dynamics 

and assure global asymptotic motion tracking for a hybrid stepping motor. The 

proposed control scheme, as opposed to the use of a multiple step process, is 

updated continuously with time during the transient response (versus during the 

steady-state), and hence, an improved transient response is facilitated. 

 

(4) A decentralized learning control scheme is developed and implemented in the 

frequency domain by means of a Fourier series expansion for tracking control of 

a hybrid stepping motor. Based on the fact that both the desired trajectory and 

the actual output can be expressed by a Fourier series with constant harmonic 

magnitudes, the learning controller is designed to individually control each 

harmonic component of the actual output to converge to that of the desired 
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trajectory within the system bandwidth. Since this decentralized learning 

controller is designed in Fourier space instead of time domain, the system’s 

time-delay can be easily compensated for. Moreover, this learning controller is 

only based on the local input and output information so that no prior system 

modeling is required. The control scheme can significantly improve the tracking 

control performance by identifying and simultaneously compensating for 

deterministic uncertainties caused by the ripple and frictional torque. 

 

(5) The behavior of the proposed control schemes in precision profile generation are 

evaluated via the experiments conducted on a typical hybrid stepping motor to 

illustrate their effectiveness. Experimental results also give the performance 

comparison between them, and offer guidance for the selection of a practical 

control algorithm for tuning computer-controlled drives. 

 

1.4 Thesis Organization 

 

The remainder of the dissertation is organized as follows: Chapter 2 provides 

first a detailed literature review on the closed-loop control of the hybrid stepping motor. 

The anticipated control schemes are then introduced in an appropriate framework. 

Chapter 3 gives the design procedures of the model-based tracking control schemes and 

the performance analysis, simulations and experimental results. The development of 

two classes of learning control approaches for precision tracking control and related 

experimental results are presented in detail in Chapter 4 and Chapter 5 respectively. 

Finally conclusions are drawn in Chapter 6. 

 



CHAPTER 2  LITERATURE SURVEY 

  14 
 
 

CHAPTER 2 

LITERATURE SURVEY 

 

2.1 Introduction 

 

Attempts have been made in the past decade to use closed-loop control for 

enhancing open-loop performance of stepping motors by providing another degree of 

freedom in the design of the stepping motor. However, this was often complicated due 

to the nonlinear dynamical characteristics of the motor, especially at low speeds, which 

makes the control difficult to design and implement. Amongst the work reported in the 

literature are several methods for the closed-loop control of hybrid stepping motors; the 

methods range from lead angle control, feedback linearizing control to torque ripple 

minimization. In this chapter, we conduct an extensive review of these methods and 

justify our control strategies for low-speed tracking control applications.  

 

2.2 A Review of Lead-Angle Based Control 

 

The lead angle is one of the most important parameters for the closed-loop 

control of stepping motors. The lead angle reflects the relationship between the rotor's 

present position and phase(s) to be excited. Alternatively it can be defined as the 

distance between the switching point and the equilibrium position of a given phase 

(Acarnley. 1982 and Kenjo. 1984). The physical implication of lead-angle based control 

is that each change in phase excitation must occur earlier relative to the rotor position so 

that the phase current has sufficient time to be established before the rotor reaches the 

position of maximum phase torque. Hence, variation of the lead angle has an important 

effect on the torque ripple and even the power output of the stepping motor. 
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For systems in which there is little variation of both load torque and distance of 

travel, it may be appropriate to operate with a fixed lead angle, so as to minimize the 

controller costs. However more sophisticated systems require the lead angle to vary 

with speed. In a closed-loop control scheme with a continuously-variable lead angle the 

motor is able to develop its maximum (pull-out) torque at all speeds and therefore the 

system performance is maximized. To perform this function, the controller requires 

information about the instantaneous speed of the motor and must then generate the lead 

angle appropriate to that speed. 

 

The most important consideration in this scheme is that a small lead angle 

should be chosen at low speeds such that a high torque is available. This argument is 

reversed when a high operating speed is required. This constitutes the core meaning of 

“optimum switching angle” concluded by Acarnley and Gibbons (1982). They made 

first use of this concept in the position control of stepping motors, in which the position 

command to the motor was modified based on the positional response and the optimum 

lead angle. Although this technique offered some advantages over purely open-loop 

control, it can lead to unpredictable results because the dynamics of the motor were not 

included (Clarkson and Acarnley. 1988). Considerable torque ripple and thus speed 

ripple are often unavoidable especially at low speeds. 

 

Brown et al. (1989) developed a “near time optimal control” based on the 

maximum-average-torque lead angle function, which was determined instantaneously 

from the rotor speed response and the parameters of the motor, to improve the 

efficiency of the position control system and suppress to some extent the effect of 

torque ripple. Bodson et al. (1993) verified and extended this concept by taking into 
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account field-weakening for fast and precise positioning problems where it was 

essential to avoid saturation of phase voltages at high rotor speeds. 

 

The closed-loop commutation method proposed by Yung and Liu (1994) 

focused on carefully adjusting the lead angle to reduce the torque ripple. Experiments 

and simulations have been carried out to determine the relationship between speeds, 

lead angle, driving waveform and torque ripple. The results showed a good match 

between them. This provided a means of minimizing speed ripple by using the model-

based simulation scheme to improve the accuracy of motion control systems. 

Furthermore, Yung et al. (1997) took advantage of this control strategy to further 

explore the profile tracking capability. The results showed a smaller ripple at high 

speeds, but required further improvement at low speeds. 

 

Subsequently, Mak and Yung (1998) derived and implemented a dual control 

strategy. The experimental result has shown that the magnitude of the driving voltage 

waveform and the corresponding lead angle has given an additional dimension to the 

control of the closed-loop commuted stepping motor where its torque ripple and 

tracking characteristics may be further improved. It has also shown in its performance 

in position control and in its capability of positioning that it can achieve an accuracy of 

one count out of a 4,000 counts per revolution encoder, a resolution much higher than 

one step of the stepping motor.  

 

One of the appealing features of the lead-angle based scheme for the closed-loop 

control of stepping motors is that the phase excitations are in the form of a sinusoidal 

commutation. As a result, it may simplify the hardware implementation of this scheme 
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by using familiar circuit techniques such as lookup tables to store the phase excitation 

waveshape data. 

 

2.3 A Review of Torque Ripple Minimization Scheme 

 

One of the important issues associated with low-speed high-performance motion 

control applications using hybrid stepping motors is to minimize the torque ripple which 

is due mainly to inter-pole movements. The two primary components of the torque 

ripple are the detent torque and that caused by the flux harmonics. These ripple 

components, arising as a result of the mutual attraction between the rotor’s and the 

stator’s poles, all exhibit a periodic relationship with respect to the rotor position 

relative to the stator. But the detent torque exists even in the absence of any phase 

current. For example, the desirable detent torque from the permanent magnet, which 

provides passive braking when the motor is de-energized, has contributed to the non-

uniformity of the developed torque during low-speed tracking operation. The effects of 

torque ripple directly lead to speed oscillations that cause deterioration in the system 

performance. Consequently, the use of the hybrid stepping motor in servo systems, 

requiring smooth rotation at low speeds and the capability to apply torque when nearly 

static, has been limited. 

 

One of the most popular approaches for torque ripple minimization is a 

harmonic cancellation technique using the programmed or injected current. However, 

since this was only implemented in an off-line manner using fixed parameters, a desired 

performance can not be achieved under various operating conditions. Chen and Paden 

(1990) considered a high-precision low speed control of the hybrid stepping motor by 

the cancellation of torque ripple components using an adaptive current control. This was 
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the first systematic approach to torque ripple minimization through adaptive control. 

Experimental results demonstrated a dramatic reduction of torque ripple at the rotor 

pole frequency. However, the presented adaptation process was complex and converged 

slowly which resulted in an unpredictable coupling between certain ripple harmonics. 

 

Another approach of interest for this purpose is instantaneous torque control, 

which utilizes the torque-control loop instead of the current-control loop. It is natural 

that this is effective for reducing the torque ripple because instantaneous torque can be 

directly controlled. This technique, however, has the significant problem of obtaining 

the information on the instantaneous torque. Since the torque measuring mechanism is 

very expensive and bulky, it is not available for most industrial applications. Therefore, 

the estimation technique is generally used. Low et al. (1990, 1992) employed a least-

square method (LSM) to estimate the instantaneous torque. However, since this 

required the differentiation of the measured current having the switching noise, it was 

difficult to expect good estimating performance. Moreover, this was very complex and 

thus required intensive computing ability for the practical implementation. 

 

The control method for the instantaneous torque is also a significant problem 

because the instantaneous torque pulsates sinusoidally depending on the rotor position. 

It is known that the PI control is not adequate to reject this pulsation. A robust control 

such as the variable structure control (VSC) was thus used in the previous approaches 

(Low et al., 1990, 1992). Theoretically, the VSC provides an excellent control to 

suppress the torque ripple. However, this still has some practical problems such as the 

chattering and steady-state error caused by a non-ideal sliding motion (Chung et al., 

1995). 
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In order to reduce the above disadvantages, Chung et al. (1998) developed a 

new instantaneous torque control controller where the linkage flux of a motor was 

estimated by the model reference adaptive system (MRAS) technique and the torque 

was calculated by using the estimated flux and measured current. Since the proposed 

estimation method using the MRAS technique did not require the differentiation of the 

motor current, the estimating performance was less sensitive to the measurement noise 

than that of the conventional approach employing the LSM. Furthermore, the proposed 

control using the Integral VSC provided the advantages of improving the steady state 

performance and switching characteristics. 

 

Subsequently, Lam et al. (1999) took advantage of this scheme to develop a 

learning-based dynamic torque controller along with a conventional current controller 

for torque ripple minimization. This torque controller compared the desired motor 

torque with the instantaneous motor torque, and generated the reference current 

iteratively from cycle to cycle so as to reduce the torque error. 

 

It should be pointed out that the above instantaneous torque control schemes 

belong to an estimator-based approach which relies on the preknowledge of the motor 

parameters. The parameter variations such as phase resistances and inductances are the 

significant factors degrading the control performance. A good knowledge of these 

parameters is necessary for realizing high-performance control. In addition, on-line 

torque estimation works only for a specific speed range. Thus, the effectiveness of such 

control schemes is limited. 

 

Apart from the techniques described above, an alternative technique counts on a 

surrounding  closed-loop  speed regulator to attenuate torque ripple. Matsui et al. (1993) 
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considered a speed-loop compensation using the load torque observer. This is quite 

useful for rejecting slow-varying disturbance such as the load torque variation. It is, 

however, questionable that this has the capability of reducing the torque ripple caused 

by the detent torque and flux harmonics, which vary much faster than the speed-loop 

dynamics. 

 

Lam et al. (2000) proposed an outer loop speed control that was performed by a 

PI controller in conjunction with an iterative learning controller (ILC). The PI speed 

controller provided the main reference current. In the steady-state, the speed error signal 

was learnt by ILC in order to produce the reference compensation current that 

supplemented the main reference current to minimize the speed ripple. In deed, the 

added compensation acts so as to attenuate the speed ripple that is closely associated 

with the torque ripple for their coordinated reduction. Although this resulted in some 

success, this approach remains open to further improvement because of its very 

principle. In any event, the effectiveness of this approach actually increases for low-

speed applications where torque smoothness is most critical. 

 

2.4 A Review of Feedback Linearizing Control 

 

Feedback linearizing control is one of the most popular control approaches for 

stepping motor servo drives. Its point is to find a (nonlinear) state-space transformation 

such that, in the new coordinates, the nonlinearities may be canceled out by state 

feedback. With the hybrid stepping motor, the appropriate nonlinear coordinate 

transformation is known as the direct-quadrature (DQ) transformation (Liu et al. 1989). 
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Zribi and Chiasson (1991) considered the position control of hybrid stepping 

motors by exact feedback linearization and showed how it naturally reduced to the well-

known direct-quadrature (DQ) transformation of electric machine theory. This is a very 

promising global feedback linearizing approach. Subsequently, Aiello et al. (1991) 

presented some preliminary experimental results of implementing this nonlinear 

feedback controller along with a least-squares parameter identification process. 

 

Bodson et al. (1993) reported on an impressive experimental investigation 

implementing the control algorithm in an industrial test-bed. This model-based 

feedback linearizing controller was shown to be able to guarantee global trajectory 

tracking for high-speed point-to-point tracking by using field-weakening, a speed 

observer and reference trajectory. 

 

Schweid et al. (1995) investigated low speed regulation of hybrid stepping 

motors amidst torque disturbances by exploiting the nonlinear dynamics to create an 

analog positional controller in conjunction with a traditional linear control law that 

exercises current control and linearizes the controlled response. Experimental results 

showed that this controller attained high positioning accuracy at extremely low speeds. 

 

Chu et al. (1994) presented a mathematically strict feedback linearizing 

controller that consists of a current controller and a torque controller. An explicit 

characteristic of this control method is that the designed torque controller can make the 

generated torque of a hybrid stepping motor exactly linear with respect to the torque 

command. Moreover, this torque controller contains a function, which can be chosen 

arbitrarily  under  some  constraints,  and  through an optimal choice it can give minimal  
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power loss due to phase windings. Unfortunately, this approach assumes that sufficient 

information is available a priori about the motor characteristics to construct the desired 

controller. The resulting sensitivity of this approach to imperfect knowledge and 

variations in the motor parameters is one of the factors which must be considered when 

adopting this scheme. 

 

It is worth noting that most of the previous approaches rely on the use of the PID 

design philosophy with a special emphasis on integral action, regardless of the 

dependence of each compensation term on either voltage or current, to form the key 

prerequisite for effective implementation of feedback linearizing techniques in hybrid 

stepping motor control systems. 

 

It should also be pointed out that these controllers depend heavily on the 

identification of the system model, including its structure selection, parameter 

estimation and validation. In this respect, Blauch et al. (1993) applied a batch least-

squares algorithm to determine the stepping motor parameters for the implementation of 

a nonlinear control algorithm (Aiello et al., 1991 and Bodson et al., 1993). Some of the 

significant parameters that affect control performance were reliably estimated. A 

primary drawback of the identification procedure is that it is necessary to obtain the 

derivatives of those states that are not directly measurable and then to reconstruct them 

using the difference equation, which may increase high-frequency noise. Moreover, the 

selection of the order of the model is affected by different operating conditions. The 

complete fourth order model needed for high-speed operations may be unnecessary at 

low speeds because current amplifiers can effectively control the phase winding current. 

Hence, it is quite reasonable to make use of current choppers and the second order 

model for low-speed direct-drive applications. 
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2.5 Applications of Advanced Control Approaches 

 

A. Robust Adaptive Control 

In many applications, dynamics of the system are partially or incompletely 

known with estimation and robustness being the key in designing a successful control. 

Adaptive control, robust control and their combinations represent means of achieving 

online estimation and robustness. Roughly speaking, a control system is adaptive if the 

unknown parameters of either the system or its corresponding controller are estimated 

online and the estimates are used to synthesize a stabilizing control. A control system is 

considered robust if its stability and performance under a fixed controller is guaranteed 

for a specific class of uncertainties which could be unknown functions, parameter 

variations, unmodeled dynamics and disturbances. 

 

Robust control of nonlinear uncertain systems has been a focus of research in 

the recent years. Conceptually, a control system is made to be robust if a specific class 

of uncertainties has been taken into consideration in control design and stability analysis. 

Typically, robust control design requires that the uncertainties be bounded in some 

norm and have a certain structural property in terms of their functional dependence and 

locations in system dynamics. Classes of stabilizable uncertain systems have been found, 

and several robust control design procedures have been proposed (Coreless et al. 1983, 

Krstic et al. 1995, Khalil 1996, Qu 1993, 1998 and Isidori 1999). On the other hand, 

adaptive control is the technique of choice if the uncertainties can be expressed linearly 

in terms of unknown constants. Its popularity is due to the fact that standard adaptive 

control results (Krstic et al. 1995) are concerned about how to estimate the unknowns 

and to use the estimates in control design. In addition, adaptive and robust controls are 
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often combined as uncertainties are unknown by nature and, in a system, several types 

of them structured or unstructured may be presented. It is straightforward to design a 

control containing both components to handle different kinds of unknowns. For 

example, one part of the control is adaptive to estimate unknown but constant 

parameters while the rest of the control is robust to compensate for bounded 

uncertainties. 

 

One of the approaches to maintain robustness while reducing conservatism is to 

blend an adaptive control scheme into the robust control design called adaptive robust 

control. This is an adaptive version of robust control and the first of such results was 

proposed by Coreless et al. (1983), in which uncertainties of the system is bounded by a 

function linearly parameterized in terms of unknown constant parameters while robust 

control is made adaptive to estimate these parameters. 

 

So far numerous adaptive robust control algorithms for systems containing 

uncertainties have been developed (Peterson and Narendra 1982, Ioannou and 

Kokotivic 1983, Narendra and Annaswamy 1989, Sastry and Isidori 1989, Taylor et al. 

1989, Liao et al. 1990, Kokotovic 1991, Brogliato and Neto 1995, Ioannou and Sun 

1996, Xu et al. 1997, 1999). Liao et al. (1990) developed a VSC with an adaptive law 

for an uncertain input-output linearizable nonlinear system, where the linearity-in-

parameter condition for uncertainties is assumed. The unknown gain of the upper 

bounding function is estimated and updated by the adaptation law so that the sliding 

condition can be met and the error state reaches the sliding surface and stays on it. 

  

To deal with a class of nonlinear systems with partially known uncertainties, 

Brogliato and Neto (1995) proposed an adaptive law using a dead-zone and a hysteresis 
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function to guarantee both the uniform boundedness of all the closed-loop signals and 

the uniform ultimate boundedness of the system states. In both control schemes, it is 

assumed that the system uncertainties are bounded by a bounding function which is the 

product of a set of known functions and unknown positive constants. The objective of 

adaptation is to estimate these unknown constants. 

 

Cai et al. (1997) proposed a model-free adaptive robust decentralized control for 

robot manipulators by using the Taylor series to estimate the system’s uncertainties and 

phase plane to design the adaptive robust controller. Xu et al. (1997) developed an 

adaptive robust control scheme for a class of nonlinear uncertain systems with both 

parameter uncertainties and exogenous disturbances. Including the categories of system 

uncertainties used by Liao et al. (1990) and Brogliato and Neto (1995) as its subsets, it 

is assumed that the disturbances are bounded by a known upper bounding function. 

Furthermore, the input distribution matrix is assumed to be constant but unknown. Xu et 

al. (1999) extended this scheme to the more general classes of nonlinear uncertain 

dynamical systems. The unknown input distribution matrix of the system input can be 

state dependent. To reduce the robust control gain and to widen the application scope of 

adaptive techniques, the system uncertainties are supposed to be composed of two 

different categories: the first can be separated and expressed as the product of a known 

function of states and a set of unknown constants, and the other category is not 

separable but has partially known bounding functions. The first category of 

uncertainties is dealt with by means of the well-used adaptive control method. 

Meanwhile an adaptive robust method is applied to deal with the second category of 

uncertainties, where the unknown parameters in the upper bounding function are 

estimated with adaptation. It is shown that the control scheme that has been developed 
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can guarantee the uniform boundedness of the system and assure that the tracking error 

enters the arbitrarily designated zone in a finite time. 

 

It is worth pointing out that the performance of pure adaptive control hinges on 

how efficiently accurate information of the system can be inferred from the system 

signals and also whether it can be robust enough to modeling uncertainties difficult to 

consider in control design. In response to this demand, robust adaptive control is 

required. This combined scheme is a modified adaptive control in order to gain certain 

robustness property. For example, robust adaptive controls have been proposed for 

slowly time varying systems (Zhang 1996), fast time varying systems (Marino et al. 

2000, Qu 2000), and systems with internal dynamics (Freeman et al. 1996, Isidori 1999). 

Typically, adaptive control may be augmented to nonlinear control input to achieve 

robust control with an uncertain model inheriting some inherent nonlinear uncertainties, 

possibly inseparable or coupled with system variables. It is very desirable to look for a 

robust adaptive control that not only can provide the adaptation of the model parameters 

to the actual system parameters so as to enable the suppression of a part of undesirable 

uncertainties, but also can effectively account and compensate for residual nonlinear 

uncertainties, structured or unstructured. One of the most typical configurations for such 

a controller is the use of standard adaptive control plus a robustified adaptive 

compensating component (Xu et al. 1997, Tan et al. 2001). 

 

In short, robust adaptive control has established its theoretical significance 

followed by its potential applications. As far as the motion control using hybrid 

stepping motors is concerned, robust adaptive control will be very competitive due to 

the good knowledge of the nonlinear uncertainties relative to the motors. The reason is 

that the system’s structured uncertainties can easily be extracted from the torque 
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production mechanism in the motor and incorporated into the design of the controller 

that focus on both parameter uncertainties and bounding functions. Since these 

uncertainties in the motor exactly reflect overall torque ripple contents to be cancelled, 

robust adaptive control can be used to compensate for their adverse effects and to 

achieve the control task within specified bounds. Therefore, this control approach has 

been considered for tracking control in our study. 

 

B. Learning Control Scheme 

It is known that an adaptive control scheme does not require a precise model of 

the systems, but it requires that the estimated parameters can be represented in at least 

quasi-linear form. Hence, it can only be used to handle structured uncertain systems. 

When the nonlinear effects, such as friction and disturbance, cannot be expressed in the 

quasi-linear form, the efficiency of this scheme would be reduced. In addition, adaptive 

control strategies may not guarantee that the estimated parameters converge to their true 

values, and they certainly do not ensure that the controlled system would follow the 

desired trajectory perfectly. It is worth pointing out that tracking errors may be 

considered to be repeatable when the control task is defined over a finite time interval 

and the controller repeats its operation for tracking. Learning control is another strategy 

for addressing such uncertain problems. It attempts to eliminate tracking errors in 

repeated trials of an operation by learning from previous experience in executing the 

same command. This method can guarantee the convergence of error through the entire 

period since the information of the previous trial on the system dynamics and the 

tracking error at each time step is reflected in the next trial. As the learning controller 

requires very little or no model information of the controlled system, it has been widely 

used in many industrial applications. 
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Given the myriad of industrial applications that require the systems to operate in 

a repetitive manner, researchers have been motivated to investigate control methods that 

exploit the periodic nature of the system dynamics, and hence, increase tracking control 

performance. As a result of this work, many types of learning controllers have been 

developed to compensate for periodic disturbances. Some advantages of these 

controllers over other approaches include the ability to compensate for disturbances 

without high frequency or high gain feedback terms, and the ability to compensate for 

time-varying disturbances that can include time-varying parametric effects. 

 

Some of the initial learning control research targeted the development of 

betterment learning controllers. Unfortunately, one of the drawbacks of the betterment 

learning controllers is that the system is required to return to the same initial 

configuration after each learning trial. Moreover, Heinzinger et al. (1989) provided 

several examples that illustrated the lack of robustness of the betterment learning 

controllers to variations in the initial conditions of the system. To address these 

robustness issues, Arimoto (1990) incorporated a forgetting factor in the betterment 

learning algorithms given by Arimoto et al. (1984) and (1988). Motivated by the results 

from the betterment learning research, several researchers investigated the use of 

repetitive learning controllers. One of the advantages of the repetitive learning scheme 

is that the requirement that the system returns to the exact same initial condition after 

each learning trial is replaced by the less restrictive requirement that the desired 

trajectory of the system be periodic. Some of the initial repetitive learning control 

research was performed by Hara et al. (1988), Tomizuka et al. (1989), and Tsai et al. 

(1988); however, the asymptotic convergence of these basic repetitive control schemes 

can only be guaranteed under restrictive conditions on the plant dynamics that might not 
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be satisfied. To enhance the robustness of these repetitive control schemes, these 

researchers modified the repetitive update rule to include the so-called Q-filter. 

Unfortunately, the use of the Q-filter eliminates the ability of the tracking errors to 

converge to zero. 

 

In the search for new learning control algorithms, Horowitz (1993) and Messner 

et al. (1991) proposed an entirely new scheme that exploited the use of kernal and 

influence functions in the repetitive update rule; however, this class of controllers tends 

to be fairly complicated in comparison to the control schemes that utilize a standard 

repetitive update rule. 

 

Sun and Wang (2001), and Wang (2000) developed iterative learning controllers 

(ILCs) that do not require differentiation of the update rule, so that the algorithm can be 

applied to sampled data without introducing differentiation noise. Cheah et al. (1994), 

(1996) and Wang et al. (1995) developed ILCs to address the motion and force control 

problem for constrained robot manipulators. Cheah and Wang (1997) developed a 

model-reference learning control scheme for a class of nonlinear systems in which the 

performance of the learning system is specified by a reference model. 

 

Xu and Qu (1998) utilized a Lyapunov-based approach to illustrate how an ILC 

can be combined with a variable structure controller to handle a broad class of nonlinear 

systems. Ham et al. (2000) utilized Lyapunov-based techniques to develop an ILC that 

is combined with a robust control design to achieve global uniformly ultimately 

bounded link position tracking for robot manipulators. The applicability of this design 

was extended to a broader class of nonlinear systems by Ham et al. (2001). 
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Recently, Kim et al. (1999), (2000) have utilized a class of multiple-step 

“functional” iterative learning controllers to damp out steady-state oscillations. The 

fundamental difference between the previous learning controllers and the controllers 

proposed by these authors, is that the ILC is not updated continuously with time, rather, 

it is switched at iterations triggered by steady-state oscillations. Han et al. (1998) 

utilized this iterative update procedure to damp out steady-state oscillations in the 

velocity set-point problem for servomotors. This work was extended to compensate for 

friction effects (Cho and Ha 2000) and applied to VCR servomotors (Kim and Ha 1999). 

 

Upon examination of some of the aforementioned work, it seems that many of 

the recent ILC and repetitive control results exploit a standard repetitive update rule as 

the core part of the controller; however, to ensure that the stability analysis validates the 

proposed results, the authors utilize many types of additional rules in conjunction with 

the standard repetitive update rule. Unfortunately, these additional rules and additional 

complexity injected into the stability analysis are not necessary for the development of 

learning controllers that utilize the standard repetitive update rule. It is also conjectured 

that a statement concerning the boundedness of learning controllers made by Messner et 

al. (1991) may have caused some researchers to attempt a modification of the standard 

repetitive update rule with additional rules or abandon the use of the standard repetitive 

update rule entirely; hence how to realize a simple and effective modification of this 

repetitive update rule remains a challenging problem. 

 

 To address important practical considerations, several researchers investigated 

the implementation of learning controllers in the frequency domain to achieve better 

tracking performance. Mita and Kato (1985) designed a learning controller in the 
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Laplace frequency-domain. Lee et al. (1993) employed a Fourier series to approximate 

the input/output (I/O) characteristics of a dynamic system and proposed an iterative 

learning control algorithm based on identified I/O mapping matrix. Some related papers 

(Tomizuka 1987, Chew and Tomizuka 1990, Kavli 1992, Padiew and Su 1990) 

proposed more sophisticated algorithms. Gorinevsky et al. (1997) proposed a learning 

controller for robot manipulator tracking. Their scheme uses B-spline to approximate an 

input shaping function of feedforward. They claimed that their method could cope with 

strong nonlinearities and the convergent rate of their algorithm (five to six cycles) is 

faster than those of many other algorithms.  

 

Recently, Huang (1999) designed a model-free learning controller in Fourier 

space with orthogonal bases by which the nonlinear tracking control problem in the 

time domain may be simplified to a number of independent regulation problems in the 

frequency domain. Xu (2002) implemented a learning variable structure controller 

(LVSC) by means of a Fourier series expansion to enhance the robust property of the 

proposed learning mechanism. Frequency domain learning improves tracking accuracy 

since the integration process nullifies the majority of high frequency components 

caused by quantization error due to limited sampling frequency, and obtains fast 

convergence. Moreover, the requirement that the system must return to exactly the same 

initial state after each learning trial can be relaxed. 

 

On the subject of tracking control associated with the use of hybrid stepping 

motors, it is now very natural to choose the learning-based control scheme because of 

the periodicity property concerning the motor dynamics. In this study, Lyapunov-based 

design techniques have been used to develop a learning-based control estimate to 
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achieve asymptotic tracking in the presence of nonlinear ripple dynamics. In addition, 

frequency-domain design approaches have been also considered to construct and design 

a model-free learning controller for high-performance tracking control. 

 

2.6 Summary 

 

Servo control of the hybrid stepping motor is complicated due to its highly 

nonlinear torque-current-position characteristics, especially under low operating speeds. 

The effect of torque ripple inherent in the hybrid stepping motor is a major obstacle in 

achieving high-performance tracking control at low speeds. Closed-loop control using 

the rotor position feedback for commutation is a common practice that is found to give 

an additional control dimension in the form of lead angle in addition to the voltage 

control for a low cost servo system. Although experimentations have shown that the 

torque ripple with careful adjustment of the lead angle is comparable to that of other 

servo motors, it is felt that there is room for further improvement on precision profile 

tracking where the requirement is for good control of not only the rotor position and 

speed, but higher orders of the dynamics. A number of other techniques using closed-

loop control concept have also enjoyed various degrees of success. Most of those 

techniques, however, depend critically on the assumption that sufficient preknowledge 

is available about the motor. This limits, to a certain extent, their application in the low-

speed tracking control due to imperfect knowledge and variations in the motor 

parameters. In addition, the control method itself for this purpose faces a significant 

challenge because the corresponding ripple dynamics is characterized by a time-varying 

and nonlinear function depending on the rotor position and speed. As a result, it is very 

desirable that further study should be switched to develop and exploit a set of simple 
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and efficient control algorithms to compensate for this dynamic characteristic so as to 

realize high-precision tracking control of the hybrid stepping motor. 

 

The special particularities of the physical structure associated with the hybrid 

stepping motor have motivated us to study some of nonlinear and intelligent control 

approaches within an appropriate system framework, which can be divided into two 

parts. The first deals with the use of modular control concept in which the feedback 

control module is first designed to ensure global stability and achieve bounded tracking 

accuracy, while the feedforward control module is added to further improve the tracking 

performance. By incorporating feedforward into feedback control, the feedback control 

part will “protect” the feedforward part to a certain extent by virtue of its good 

robustness property. The second rests on the utilization of the well-known direct-

quadrature (DQ) transformation as a platform for control design. This transformation 

will easily be used to form a sinusoidal commutation pattern together with the desired 

control input for fast control implementation. Based on such a system framework, the 

principles of several control schemes will be exploited and examined in the subsequent 

chapters, which range from feedback linearizing control, robust adaptive control to 

learning control. 
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CHAPTER 3 

MODEL−BASED CONTROL SCHEMES 

 

3.1 Introduction 

 

In this chapter, the model-based control approaches for both torque ripple 

reduction and improved tracking accuracy are considered for the closed-loop control of 

hybrid stepping motors. According to the mathematical nature of the motor dynamics as 

described in Section 3.2, the corresponding ripple dynamics can be converted into some 

deterministic nonlinear uncertainties, each of which is associated with either structured 

or parameter uncertainty. Two concrete control schemes are developed to handle such 

problem in order to achieve high-performance tracking control of the motor. 

 

Section 3.3 considers a feedback linearizing control approach that employs 

dynamic feedback control together with feedforward compensation. This approach uses 

a model-based control design that targets the control of the phase current based on the 

DQ transformation of second-order nonlinear dynamics. A novel identification scheme 

based on the least-squares algorithm is first applied to estimate the model parameters 

for calculation of the ripple dynamics. This produces a more appropriate form of linear 

regression which avoids the problem of reconstructing important signals such as the 

rotor speed and the derivatives of driving current, and rejects additional errors created 

by the quantisation of the measurements. This paves the way for an integrative process 

for achieving precise trajectory tracking by combining a reference trajectory, the 

traditional PID control, and the dynamical feedback linearizing control coupled with 

feedforward compensation over a certain torque-ripple frequency band. 
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In Section 3.4, a robust adaptive control approach is considered for the purpose 

of improving the performance of the above scheme. In order to construct a completely 

integrated control design philosophy to reduce torque ripple and at the same time to 

enhance tracking performance, we first uncover the properties of nonlinear uncertainties 

in the system dynamics, and then incorporate them into the design of the controller. The 

system uncertainties concerned with ripple dynamics and other external disturbances are 

considered to be composed of two categories: The first with the form of parameter 

uncertainties arising from the detention effect can be separated and expressed as the 

product of known harmonic functions of the rotor position and a set of unknown 

constants. The other coupled with the control input, resulting from the nonsinusoidal 

flux distribution, is estimated by its bounding function. The first category of 

uncertainties is dealt with by means of the well-known adaptive control method. A 

robust adaptive method is applied to deal with the second category of uncertainties so 

that the torque pulsation problem of a hybrid stepping motor in a low-speed region can 

be solved. The −μ modification scheme is applied to cease parameter adaptation in 

accordance with the robust adaptive control law, which initially ensures that the filtered 

tracking error enters a designated zone in a finite period of time, and in turn ensures that 

the trajectory (position) tracking error asymptotically converges to a pre-specified 

boundary.  

 

In Section 3.5 the behavior of the proposed control schemes and their 

performance under an ideal environment are evaluated via computer simulations and 

experiments respectively. Different experiments are conducted and the advantages of 

each are discussed. A detailed analysis and discussion of the experimental results are 

also presented. 
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3.2  Modeling of Hybrid Stepping Motors 

 

A full model of a two-phase hybrid stepping motor consists of the electrical 

dynamics of the stator coils together with the rotor mechanical dynamics. However, the 

electrical response is much faster than the mechanical response, allowing us to consider 

the mechanical dynamics only. The use of current amplifiers to effectively control the 

phase winding current at low speeds is a further justification. Additional assumptions 

used here are that of linear magnetic materials and symmetry between the two phases. 

 

With these assumptions, the dynamic equation of the rotor angle is given by 

 

l
T TiLiJ −
∂
∂

=
θ

θ
2
1&&                                              (3.2.1) 

 

where J is the equivalent inertia seen by the rotor shaft; θ is the rotor position; Tl is the 

load torque and frictional torque; 33×ℜ∈L  is the −θ dependent inductance matrix; 

31),,( ×ℜ∈= rba
T iiii  in which ai  and bi  are the currents in phase a and phase b 

respectively, and ri  is a fictitious equivalent rotor current due to the permanent magnet 

used in the field generation. 

 

Before evaluating the electric torque, we first follow a common practice of 

applying the so-called DQ transformation as an initial step towards linearization. This 

transformation transforms from the natural stator frame to a decoupled quadrature frame 

fixed to the rotor. The transformed decoupled and quadrature currents di  and qi  are 

defined by 
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where Nr is the number of pole pairs. The decoupled current di  is so named since it 

does not contribute to torque production in the ideal motor. Setting 0=di , the above 

transformation reduces to 

⎩
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θ

 

This way of determining the phase currents from the quadrature current qi  is termed 

sinusoidal commutation. This commutation, in the ideal motor, generates an electric 

torque proportional to the quadrature current as stated later. 

 

For an ideal motor, each entry of the inductance matrix is a constant offset plus a 

pure sinusoidal function of θ  whose frequency is determined by the symmetries of the 

motor. However, due to the nonsinusoidal gap saliency in real motors, these inductances 

contain phase shift and higher order harmonics. This geometric imperfection is the 

source of torque ripple. 

 

Expanding the inductance in a Fourier series and setting 0=di  together with the 

adoption of viscous friction model, (3.2.1) is equivalent to 
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where, all the K ’s are constant parameters that relate to torque production including the 

main or ideal torque term together with a number of ripple components; B is the 

coefficient of viscous friction.  

 

Here we have ignored the non-ideal terms in the self and mutual phase 

inductances aaL , bbL  and abL  for simplification. These terms contribute to the variable 

reluctance torque which is usually made small in hybrid stepping motors by winding the 

phase coils properly. This simplification eliminates terms quadratic in qi  (also periodic 

in θ ) in the above equation. 

 

Suppose we want to cancel the first n harmonics. Then (3.2.1) can be further 

simplified to the following form: 

θθθθθθ &&& blNklNklNklNkiik rdcl

n

l

n

l
rdslrclrslqqm −++++= ∑ ∑

= =

)]cos()sin([)]cos()sin([
1 1

   

                                                                                                                                (3.2.3) 

where, JKk mm =  is the nominal main torque constant, and all other k’s (K’s/J) are the 

normalized torque-ripple constants; b=B/J is the normalized coefficient of viscous 

friction. All sinusoidal terms in (3.2.3) are due to geometric or physical imperfections. 

In other words, the second and third parts of the right hand side in (3.2.3) correspond to 

the ripple components caused by the harmonics in the induced EMF due to the rotor 

magnet, and the detent effect (Kenjo. 1994 and Chen. 1990), respectively. Neglecting 

these and the friction yields the ideal motor model. It is obvious from (3.2.3) that the 

dynamic model of the motor is characterized by a nonlinear dynamics resulting from the 

ripple dynamics. At low speeds, the rippling effects, especially for the detent torque, are 

more fully evident due to the lower momentum available to overcome the magnetic 

resistance, and must be considered in the design of the control system if high precision 
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motion control is to be efficiently realized. In the light of the mathematical nature of the 

ripple dynamics, it is periodic with respect to the rotor position and a linear estimation 

model regarding all the torque-ripple constants can be easily constructed. On the other 

hand, the ripple component arising from the detent torque dominates the overall torque 

ripple spectrum which can be expressed as the product of known harmonic functions of 

the rotor position and a set of unknown ripple constants nlkk dcldsl ,,2,1],,[ L= . This 

has a typical form of the structured uncertainties with linear parameterization, and 

according to torque production mechanism, is usually bounded to about 10% of the 

rated torque. Furthermore, there also exists an important feature that nominal main 

torque constant km dominates the torque constant variation, i.e., 

m

n

l
rclrsl kNkNk <<+∑

=1
)cos()sin( θθ .                         (3.2.4) 

The left-hand summation in (3.2.4) exactly reflects the ripple component caused by the 

nonsinusoidal flux distribution, and can be estimated by its bounding function in terms 

of its coupling with the control input (current). In conclusion, the entire ripple dynamics 

is associated with deterministic structures or parametric uncertainties. 

 

In this chapter, Equation (3.2.3) will serve to establish our model-based 

controller for a hybrid stepping motor. The term n of the ripple components to be 

canceled can be determined by analyzing the torque ripple spectrum in an open-loop 

measurement, and this will determine the size of the controller structure. However, this 

problem does not need to be considered in designing the model-less-dependent or 

model-free controller because the controller has the inherent capability of nonlinear 

functional identification to compensate for ripple dynamics as explained in the 

subsequent chapters. 
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3.3  Feedback Linearizing Control Design 

 

3.3.1 Parameter Identification Method 

As a primary step towards the control design we are interested in, a parameter 

estimate for the motor dynamics is required to facilitate further parametrization of the 

feedback linearizing controller. Using the DQ model given in (3.2.3), an output 

equation can be formed which is linear with respect to parameters corresponding to all 

k’s, provided that the state variables θ&  (rotor speed) and θ  (rotor position) are 

measurable. Accordingly, the least-squares algorithm can be directly applied to achieve 

their estimations. The number of parameters that need to be identified depends on the 

expected frequency components of the torque-ripple to be canceled, and this determines 

the scale of the least-squares solution. If the rotor speed θ&  is not easily obtained, a 

modification has to be performed on the original output equation to eliminate the need 

for its reconstruction and to make the output equation rely simply on the position 

measurement, except for the normal phase excitation iq. 

 

Consider the integral equation corresponding to the model in (3.2.3):  
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By introducing the modulating functions { ( )}p tj j
M
=1 , multiplication of all terms 

of the integral equation model (3.3.1) to be identified and subsequently integrating both 

sides of the equation gives the relationship: 
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for each function )(tp j . The modulating functions can be chosen from any set of 

differentiable functions over an interval [0,T]. In this example, the trigonometric 

functions )sin()( tjtp j Ω=  are used, however other orthogonal functions are also 

suitable. 

 

The problem raised in this equation is how to find the value of the left-hand 

integral in equation (3.3.2) since θ&  might be unmeasurable (unobservable). This 

problem is resolved if the { )(tp j } are selected so that their time derivatives { & ( )p tj } 

exist. Integrating the left hand equation by parts we have: 
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A similar method is applied to the right-hand integral terms in (3.3.2) and gives: 
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To facilitate the introduction of a moderate framework in the context of the 

nonlinear system identification encountered here, we need to select a finite number of 

terms in each of the above summations relating to parameters ( slk , clk , dslk , dclk ), 2,1=l  

which are used to determine the predominant ripple components. Computation of the 

integral of (3.3.2) for M different modulating functions { ( )}p tj j
M
=1  yields: 
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By rearranging equation (3.3.9) in the form of qΦγ =  the equation is reduced to a 

straightforward linear estimation problem. 

 

It is obvious from the above procedures that the updated linear regression model 

(3.3.9) is suitable for identification purposes. Based on the integral equation model and 

a power series expansion, it can successfully alleviate the problem of reconstructing the 

rotor speed which is the most significant source of quantization errors. In addition, the 

resulting integral action along with a modulating function offers the possibility of 

averaging and smoothing the observed variables (θ  and iq) for rejecting other noise. It 

is very clear that the proposed identification method overcomes the drawback of the 

algorithm Blauch et al. (1993) applied to determine the stepping motor parameters. The 

estimation method also does not require special re-configuration of the motor, and can 

be performed quickly with response data from its normal operation. An important point 

in the implementation is to check the numerical properties of the least-squares 

estimation as well as the least-squares residual sum. The computation of the q through 

QR factorization has been found preferable for solving our problem. 
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3.3.2 Dynamic Feedback Linearizing Controller 

The control for smooth tracking here makes use of the assumption that at low 

speeds a high bandwidth current control circuit is effective in forcing the desired current 

through the phase windings for accurate quadrature current iq control. A two-stage 

controller design will be performed in order to realize the concept. Initially, a traditional 

PID algorithm is employed to give a bounded but coarser control performance. Then, 

further refinements are introduced into the preliminary design by supplementing some 

of the compensating terms so as to attenuate ripple components and guarantee precise 

global trajectory tracking. 

 

The tuning is achieved by first choosing [ ,dθ ,dθ& dθ&& ]T as a desired (reference) 

trajectory. Let [ ,dθ dθ& ]T  be the corresponding state trajectory and define the error state 

variables to be de θθ && −=1  and de θθ −=2  with the addition of ∫ −= dte d )(3 θθ  to the 

error vector, i.e., e= [e1, e2, e3]T, via a PID controller  

mddipdq kbegegegi /)( 321 θθ &&& ++−−−=  

with dg , pg  and ig  being constant control gains, the tracking error system equation for 

the system in (3.2.3) may be compactly written as: 
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It is apparent from (3.3.10) that the tracking error dynamics produces a 

completely linear portion that couples with a number of state-dependent disturbances 

associated with the torque ripples. As the linear portion is controllable and those 

disturbances can reasonably be considered to be bounded, the PID feedback gain (gp, gi, 

gd) can transform the underdamped open-loop system into a highly damped system, 

making the trajectory tracking algorithm quickly enter the steady-state. On the other 

hand, adding integral feedback adds an additional degree of freedom in the controller 

design, in not only drastically reducing the position error but also prompting the PID 

dynamical feedback control and inducing global linear behavior. By focusing on the 

first four terms in the summation of dt1 and dt2 that will be validated experimentally, it is 

suggested that a reasonable indication of this property to be true in the typical case of Nr 

= 50 is the position error |e2|≤0.0025 rad. With integral action, this position error will 

be satisfied easily, and thus the modified PID controller can be designed in a form 

easier for implementation: 
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This is in the form of a typical dynamic feedback control law (together with part of the 

feedforward quantity) to linearise overall tracking dynamics as in (3.3.10) with the 

ripple spectrum from dt1 compensated for. Furthermore, the dynamic feedback gains can 

be computed easily provided that the position reference trajectory θd is given in advance. 
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At this stage, the global linearising effect of the dynamic feedback controller 

used here for low-speed operation still can not guarantee global trajectory tracking due 

to the persistent excitation stemming from the detent torque dt2. This may now be seen 

as equivalent to an uncontrollable input to the tracking error system, and generally, 

speed ripple is still dominant at this stage. Therefore, it is desirable to add another 

compensator to attenuate this ripple. Fortunately, the results obtained using the 

feedback linearising control provide the route to develop a compound controller that can 

be used to achieve the final objective. The method is to add a feedforward compensator, 

that operates on the tracking system which has been modified by the feedback 

linearising scheme, to the above feedback controller that allows it to be designed and 

implemented in a linear control framework. Accordingly, an updated version of the 

controller (3.3.11) can be expressed as follows: 
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where ∑
=

+=
4

1
)cos()sin(

l
drcldrslff lNwlNw θθτ  in which wsl and wcl are the feedforward 

compensating coefficients to be determined subsequently. 

 

The method chosen to determine these coefficients is based on a time-averaged 

gradient (TAG) descent algorithm that relies on the speed regulation to evaluate the 

torque smoothness and accomplish the ripple attenuation. In fact, the compensator acts 

so as to attenuate speed ripple that is closely associated with the torque ripple for their 

coordinated reduction. By taking the detention effect coefficients estimated in the 

previous subsection as an initial choice, A TAG algorithm can be employed to quickly 
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optimize the coefficients of the feedforward compensator for achieving the final control 

goal. A number of methods of implementing the TAG algorithm exist and may be found 

in the literature. The method selected in this study was based upon the Newton method 

(Clarkson. 1993). However, the method varied slightly where each element of the 

feedforward compensator was independently updated to compute the effect on the 

gradient. 

 

Assuming the availability of a high-quality rotor speed signal, the speed error 

output for the TAG algorithm can be modeled in the discrete form as follows:  
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(3.3.13) 

where k is the time step number, dH  is the impulse response function used to model the 

system between 2td  and 1e , H is the impulse response function used to model the 

system between the feedforward control input ffτ  and 1e , ),( cisi ww  is the ith pair of 

coefficients of the feedforward controller, wN  is the pair number of the feedforward 

compensating coefficients implemented. 

 

The cost function is chosen as the expected value of the mean square error 

defined as follows: 

                                                           ][ 2
1eEJ =                                                 (3.3.14) 

where E is the expectation operator. The tracking error system to be controlled is linear 

as explained earlier, resulting in a quadratic performance surface with a single optimal 
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solution with respect to the feedforward coefficients ),( cisi ww . The TAG algorithm 

proposed in this study employs central difference equations to estimate the first and 

second derivative of the cost function. Perturbation is introduced into each feedforward 

coefficient, which is a variable in the cost function, to find the optimal value of the cost 

function. The mean square error is computed over several cycles; For example, if 10 

samples per period are obtained, then the averaging must occur over 10 samples. 

Defining ),( cisii www ∈ , after averaging at each perturbation, the derivatives are 

expressed as follows: 
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where Δw  is the perturbation weighted vector coefficient. Implementing a coefficient 

by coefficient Newton method based on the derivative estimations in Equations (3.3.15) 

and (3.3.16), each coefficient is updated as follows: 
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Since the feedforward coefficients are continuously updated in the TAG algorithm, the 

solution never rests at the optimal value for each coefficient. The system is continuously 
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introducing an "error" in the feedforward compensator to "monitor" the performance. 

Theoretically, if a sufficiently small Δw  is chosen, the perturbation can be used to 

control the residual error introduced by the compensation algorithm, which is relatively 

straightforward to quantify. However, we must beware that upon implementing the 

algorithm on the above linearized system or real systems in the presence of noise and 

limited dynamic range, a lower bound would be placed on the perturbation quantity Δw  

to maintain the prespecified speed error tolerance, which is often a measure of the speed 

ripple. 

 

Remark 1: The main reason to use the TAG algorithm for the refined 

feedforward design is because the detent torque is a major obstacle to achieving 

excellent trajectory tracking performance at low speeds. An important consideration in 

implementing this algorithm is that by taking the estimated ripple coefficients as an 

initial choice, it can be employed to speed up optimization of the coefficients of the 

feedforward compensator. 

 

Remark 2: In terms of discrete implementation of the TAG algorithm, two key 

factors must be considered. The first deals with the proper choice of the sampling rate, 

which will be determined by the synthesis of the frequency information of ripple 

harmonics, and is now chosen at 1 kHz, fast enough for our low-speed applications. The 

second focus is on the reasonable selection of the perturbation weighted coefficients. 

On the basis of the initially estimated ripple components, it is suggested that they are up 

to 5−10 percent of the initial values, and are diversified with specific attention being 

given to the dominant ripple component. It is also necessary to observe each update 

carefully in order to validate our design criterion. 
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3.4 Robust Adaptive Control Design 

 

3.4.1  Control Formulation 

To achieve tracking control, consider the error dynamics corresponding to (3.2.3) 

by defining a sliding surface as follows: 

eez α+= &                                                    (3.4.1) 

where )()()( ttte dθθ −=  and )()()( ttte dθθ &&& −=  denotes the position and speed tracking 

error respectively, and α is a positive constant control gain which will be used soon. 

After taking the time derivative of (3.4.1), utilizing (3.2.3), and then performing simple 

algebraic manipulation, we obtain the following expression: 

[ ]{ }),()(1 θθθθα &&&&& tqkmd diEkez −++−=                            (3.4.2) 

where 

   )(cos)(sin1
1

θθ rclr

n

l
sl

m
k lNklNk

k
E += ∑

=

                            (3.4.3a) 

             )]cos()(sin[1
1

θθθ rdcl

n

l
rdsl

m
t lNklNkb

k
d ++= ∑

=

& .               (3.4.3b) 

 

The following properties hold for the function Ek and dt that will be used in the 

controller development and analysis. 

 

Property 1:  The parameter mk  is unknown but 0>mk , and for ℜ∈kE , there 

exists a constant r such that 

ℜ∈∀−>≥> θ,11 rEk .                                (3.4.4) 

Property 2:  The structured uncertainty 1ℜ∈td  is a typical nonlinear function 

which can be expressed as 
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),( θθξΘ &T
td =                                              (3.4.5) 

where ],,...,,,[ 11 mdcnmdsnmdcmdsm
T kkkkkkkkkb=Θ  is an unknown parameter 

vector and )]cos(),sin(,),cos(),sin(,[ θθθθθξ rrrr
T nNnNNN L&=  is a known function 

vector. 

 

Property 1 follows from the fact that the main torque constant dominates the 

overall torque constant variation as specified by (3.2.4). 

 

Thus, the control problem is to design a suitable control law qi  which ensures 

that the tracking error )(tz  lies in the predetermined boundary 0ε  in a finite time.  

 

3.4.2  Robust Adaptive Control With μ -Modification 

The robust adaptive control concept is used in this subsection to develop a 

controller which guarantees the global boundedness of the system. The design 

procedures are presented in detail as follows: 

 

A. The robust adaptive control law 

 Define the parameter error as 

,ˆ~ ΘΘΘ −=                                                 (3.4.6) 

φφφ −= ˆ~                                                    (3.4.7) 

where Θ̂  and φ̂  are the estimates of Θ  and φ  respectively, and 

1−= mkφ .                                                   (3.4.8) 

 The control law qi  and the corresponding adaptive law are chosen to be 

21 qqq iii +=                                                 (3.4.9) 
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where                                      )(ˆˆ
1 d

T
Pq ezki θαφξΘ &&& −−+−= , 

                                               
))(1( 1

2
1

2 ε++
−=

q

q
q izr

zi
i , 

with                                         )ˆ(ˆ
11 ΘμξΓΘ −−= z& ,                                              (3.4.10a)                   

          ]ˆ)([ˆ
22 φμθαΓφ −−= dez &&&

& ,                                     (3.4.10b) 

where ε  is a positive constant; Pk  is a positive constant control gain; iΓ , i =1, 2 are 

positive constants; iμ , i =1, 2, which constitute the μ−modification scheme, are defined 

as                                            
⎩
⎨
⎧ ∈−

=
elsewhere,,0
),( 00 Zzzgi

i
ε

μ                                      (3.4.11) 

where 1g  and 2g  are positive constants; 

{ }00 : ε<= zzZ                                               (3.4.12) 

where 0ε  is a positive constant specifying the desired tracking error bound. It is clear 

that iq in (3.4.9) is a robustified adaptive control (Qu 2003 and Xu et al. 1997) in which 

iq1 is designed to ensure global stability and achieve adaptive estimation and 

cancellation of the dominant detent torque and the friction, while iq2 is added to further 

compensate for the ripple effect arising from nonsinusoidal flux distribution. 

 

B. Convergence analysis 

 For the above robust adaptive controller, we have the following theorem. 

 Theorem 1:  By choosing the control gain Pk  such that 2
0)( εε ckP +≥  with 

0>c , the proposed adaptive robust control law (3.4.9)−(3.4.11) ensures that the filtered 

tracking error z  enters the set 0Z  in a finite period of time. Moreover the tracking 

errors as well as the parameter estimation errors are bounded by the set 
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22 ~~~:~,~,{ φΘΘφΘ ++= TzzD ]}[ 2
022

1
012

1 εφεΘΘε ++′< ggg T        (3.4.13) 

where g ′  is defined to be 

},,min{
1

1
2

1
1

1 −−−′′
=′

ΓΓmkg
g , 

                                               { }
},,max{

,,min2
1

2
1

1
1

21
−−−=′′

ΓΓ
δδ

m

P

k
ggkg , 

and δ  is a positive value to be defined later. 

 

Proof:  To prove Theorem 1, we define a Lyapunov function 1)( ℜ∈tV  as 

follows: 

21
22

11
12

121
2
1 ~~~ φΓΘΘΓ −−− ++= T

m zkV .                          (3.4.14) 

Taking the derivative of V along the trajectory of the dynamics (3.4.2) with the control 

(3.4.9) and (3.4.10), we have 

 

                       φφΓΘΘΓ &&
&& ˆ~ˆ~ 1

2
1

1
1 −−− ++= T

m zzkV  

        { } φφΓΘΘΓξΘθα &&&&& ˆ~ˆ~])1[( 1
2

1
1

1 −−− ++−++−= TT
qkmdm iEkezk  

                           { }))(1()( 21 qqkd
T iiEez +++−+−= θαφξΘ &&&  

                                  ]ˆ)([~)ˆ(~
21 φμθαφΘμξΘ −−+−−+ d

T ezz &&&  

                           12)1()([ qkqkd
T iEiEez +++−+−= θαφξΘ &&&  

                                 )(~~)](ˆˆ
d

T
d

T
P ezzezk θαφξΘθαφξΘ &&&&&& −+−−−+−  

                                 φφμΘΘμ ˆ~ˆ~
21 −− T  

                        ])1()(~~[ 12 zkiEiEez Pqkqkd
T −+++−−= θαφξΘ &&&  

                                  φφμΘΘμθαφξΘ ˆ~ˆ~)(~~
21 −−−+− T

d
T ezz &&&  
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φφμΘΘμ
ε
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))(1(

)1(
211

1

22
12 −−+
++
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−−≤ T

q
q

qk
P iz

izr
ziE

zk .                  (3.4.15) 

  

Using the fact that 

1
1

1
≥

+
+

r
Ek , 

it follows that 

                           εφφμΘΘμ +−−−≤ ˆ~ˆ~
21

2 T
P zkV&  

                               εφφφμΘΘΘμ ++−+−−≤ )~(~)~(~
21

2 T
P zk  

                               εφφμφμΘΘμΘΘμ +−−−−−≤
~~~~~

2
2

211
2 TT

P zk  

εφμΘΘμφμΘΘμ +++−−−≤ 2
22

1
12

12
22

1
12

12 ~~~ TT
P zk .           (3.4.16) 

  

By choosing Pk  such that 

2
0)( εε ckP +≥ ,                                             (3.4.17) 

where c is an arbitrary positive constant, then from (3.4.11) we have 

0
2 , ZzczkV P −ℜ∈∀−≤+−≤ ε& .                          (3.4.18) 

 

Note that, in terms of the robust adaptive control law (3.4.9)-(3.4.11), V&  is a 

continuous function. We can show that there exists a constant 000 εε <′<  such that (see 

Appendix A)  

0,0 ZzV ′−ℜ∈∀<& ,                                       (3.4.19) 

 

where { }00 : ε ′<=′ zzZ  is a subset of 0Z . Noting the relation 00 ZZ ⊂′ , (3.4.19) 

implies that the system will enter the set 0Z  in a finite time. 
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When 0Zz ′∈ , it is obvious that 

.2,1,)( 000 =≤≤′− igg iii εμεε                            (3.4.20) 

Define 000 >′−= εεδ , then from (3.4.11), (3.4.16) and (3.4.20) we obtain 

                                εφμΘΘμφμΘΘμ +++−−−≤ 2
22

1
12

12
22

1
12

12 ~~~ TT
P zkV&  

                                   εφεΘΘεφδΘΘδ +++−−−≤ 2
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012
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1
012

1 ggVg T                                     (3.4.21) 

where 

{ }
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m

P

k
ggkg . 

 

 By solving (3.4.21) we can establish that 

][1)0()( 2
022

1
012

1 εφεΘΘε ++
′′

+−≤ ′′− gg
g

VetV Ttg  

which implies that ,~,Θz  and φ~  converge exponentially to the residual set 

22 ~~~:~,~,{ φΘΘφΘ ++= TzzD ]}[ 2
022

1
012

1 εφεΘΘε ++′< ggg T       (3.4.22) 

where 

},,min{
1

1
2

1
1

1 −−−′′
=′

ΓΓmkg
g  

which completes the proof. 

 

 Remark 3: From the previous convergence analysis, it is observed that by means 

of Lyapunov-based technique the control law given by (3.4.9) with (3.4.10)−(3.4.11) 

can ensure that the parameters are uniformly bounded and that the filtered tracking error 

0)( ε<tz  in a finite time. In addition, )()()( tetetz α+= &  corresponds to a stable sliding 
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surface because α  is a positive constant, which in turn implies that 0)()( εα <+ tete&  

leads to ,0)( →te&  αε 0)( <te  as ∞→t  according to the comparison principle; Hence 

the position tracking error asymptotically converges to a designated boundary αε 0 . 

 

Remark 4: Notice that zkP  in the control law is actually standard PI control. In 

principle, any existing PI tuning method can be employed to tune and determine ,Pk  α  

subject to (3.4.17). In light of the entire control law, this initial tuning is just a rough 

one, since the system performance must be improved by the adaptive feedforward 

components included in the control law. 

 

Remark 5: The control input is greatly dependent on the choice of the design 

parameters 0ε  and ε . The greater the parameter ε , the smoother is the control input. 

Note that, if ε  is set to zero, the control scheme is discontinuous. From (3.4.17), we can 

also see that 0ε  has great influence on the control gain ,Pk  and a smaller 0ε  results in a 

larger gain. Therefore, there should be a trade-off between the desired tracking error and 

the discontinuity of the input which is tolerable. 

 

3.5 Simulation and Experimental Results 

 

In this section, the proposed control schemes were simulated and experimentally 

verified using a stepping motor servo, with a typical hybrid stepping motor for tracking 

at low speed. The feedback linearizing control approach was first examined. The model 

parameters were identified using the above mentioned least-squares technique. A 

computer simulation was used to evaluate the behavior of this control scheme, and its 
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performance under an ideal environment. The results were compared with the 

conventional control algorithm in terms of the active suppression of speed ripple in 

tracking a constant reference speed. Then, practical experiments were performed with 

the typical hybrid stepping motor to demonstrate the feasibility of the two control 

schemes. By the same token, their capabilities in profile tracking were tested and 

compared with each other. 

 

The desired reference position dθ , speed dθ& , and acceleration dθ&&  were chosen 

so as to make the motor system operate at a rotor speed of around 3.14 srad  (30 rpm). 

The steady-state behaviour of the closed-loop system was first investigated. Traditional 

PID feedback control was used at t = 0. The controlled speed and position error of the 

motor are presented in Fig. 3.1(a) and Fig. 3.2(a), respectively. It is found from these 

figures that the PID control adds significant damping to the motor system which makes 

the closed-loop system settle quickly to the steady-state condition. The integral 

feedback action has reduced the position error to within 0.0025 rad, which further 

indicates that the PID dynamic feedback control as given in (3.3.11) is effective. The 

modified feedback controller has worked well in the simulation, and has been able to 

improve the ripple structure as depicted in Fig. 3.1(b). 

 

 The point to be noted in Fig. 3.1 is that whilst the feedback controller maintains 

the high speed tracking capability and the ripple compensation to a certain extent, there 

is still dominant speed oscillation coming from the undesired continuous disturbance 

associated with the detent effect. The frequency of this speed oscillation is equal to that 

of the disturbance. When the feedforward compensation is added to the feedback 

control scheme, as evident in Fig. 3.1(c), the combined controller is capable of 



CHAPTER 3  MODEL−BASED CONTROL SCHEMES   

 58 
 
 

minimising the speed tracking error by 28 dB, with the remaining speed ripple staying 

within 1% of the reference value. Another benefit from this controller is the significant 

improvement in positioning accuracy where the position error has been decreased to 

below 0.0005 rad  as illustrated in Fig. 3.2(b). Obviously, the two control parts used in 

the feedback linearizing controller are complementary in their performances as 

predicted in the preceding analysis. With this control, the actual tracking accuracy will 

be restricted only by the resolution of the position measurement or estimation rather 

than the step resolution of the motor. 

 

With the improved performance in tracking the constant reference speed, the 

capacity of the feedback linearizing controller to generate different kinds of profiles is 

demonstrated through further simulation. Two typical profile tracking problems were 

attempted that cover the trapezoidal and sinusoidal contours. The results, as shown in 

Fig. 3.3, have a reasonably small ripple component. 

 

Next, experiments were performed with a typical two-phase bifilar-wound 

hybrid stepping motor with 50 rotor teeth (1.8° per step). The rotor position and speed 

were obtained by using the well-known MT method along with an optical encoder of 

4000 pulses per revolution. 

 

The proposed control algorithms were implemented on a TMS320C30 DSP chip. 

The corresponding trigonometric functions as in (3.3.12) along with the reference 

control input (phase currents) from sinusoidal commutation were stored and updated in 

a look-up table in the RAM for fast control configuration. The reference phase currents 

were delivered to the high bandwidth current control circuit. The block diagram for the 

experimental setup is shown in Fig. 3.4. 
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Fig. 3.1 Simulation results of PID control and proposed control scheme 
            (a) Speed error of PID control 
            (b) Speed error of modified PID control 

                          (c) Speed error of feedback linearizing control 

  
To show the effectiveness of the proposed control schemes, the experimental 

performance based on the feedback linearizing control is first compared with that of the 

conventional sinusoidal current control system, and then with the robust adaptive 

control. The experimental results of the three schemes are summarized in Fig. 3.5−3.8. 

Fig. 3.5 shows the speed tracking error, where the reference speed is given as 30 rpm 

(same as in the simulation) and the PI controller is employed as a speed regulator in the 

outer loop of these schemes.  It is observed in Fig. 3.5(a) that the torque ripple causes 

the speed fluctuation in the pure sinusoidal control. However, this can be effectively 

reduced by using the proposed feedback linearizing control as shown in Fig. 3.5(b). The 

speed  ripple  factor defined as ddpeak θθθ &&& )(SRF −≅  is adopted to evaluate the control  
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Fig. 3.2 Steady-state time histories of controlled position errors 

                                 (a) Position error of PID control 
                                 (b) Position error of feedback linearizing control 
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Fig. 3.3 Simulation results of typical profile tracking performance 

                              (a) Sinusoidal profile tracking 
                              (b) Trapezoidal profile tracking 
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Fig. 3.4  Block diagram representation of the experimental setup
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Fig. 3.5 Speed errors of sinusoidal current control and proposed control scheme 

                    (a) Sinusoidal current control 
                    (b) Feedback linearizing control 
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Fig. 3.6 Steady-state behavior of sinusoidal profile tracking 

                                    (a) Sinusoidal current control 
                                    (b) Feedback linearizing control 
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Fig. 3.7 Steady-state behavior of trapezoidal profile tracking 
                                    (a) Sinusoidal current control 
                                    (b) Feedback linearizing control 
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Fig. 3.8 Profile tracking performance of robust adaptive control 
                                 (a) Sinusoidal profile tracking 
                                 (b) Trapezoidal profile tracking  
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performance quantitatively. The SRF in the proposed scheme is greatly reduced, to 

about 30% of that in the conventional scheme. In addition, from Fig. 3.6 and Fig. 3.7, 

we can see that the good speed control performance shown previously has clearly 

indicated the ability of the feedback linearizing control to improve the profile tracking 

performance. 

 

To further illustrate the performance enhancement from the use of the proposed 

robust adaptive controller, control results, as shown in Fig. 3.8, considering similar 

profiling tracking tasks were evaluated. The effect of the adaptive feedforward 

component introduced into this control scheme is clearly manifested in the tracking 

error signals. A comparison between Fig. 3.6b and Fig. 3.8a as well as Fig 3.7b and Fig. 

3.8b shows that the use of the robust adaptive controller is not only more effective in 

reducing the tracking error, but also more useful in eliminating or reducing the inherent 

torque ripple. The quantification of the performance comparison has indicated that the 

SRF in this control scheme is reduced to about half of that in the feedback linearizing 

approach. A radical reason to induce such a performance difference lies in that the 

former directly incorporated the adaptive ripple compensation (feedforward) into 

feedback control part for both the stability analysis and the guaranteed control 

specification, while the latter separated the feedforward design from the feedback one 

with the special constraint of ripple compensating terms. As a result, the robust adaptive 

control scheme provides the advantage of suppressing the torque ripple components 

over a broader ripple frequency band. It is, however, worth noting that the tracking 

boundary parameter (such as 0ε ) included in the control design should be carefully 

determined to prevent possible control chattering. In conclusion, the experimental 
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results seem to support the theoretical results presented in Section 3.3 and Section 3.4, 

and demonstrated the practical use of the proposed control algorithms. 

 

3.6  Summary 

 

The low-speed tracking problems associated with hybrid stepping motor drives 

where the effect of torque ripple is dominant, have been addressed by the use of the 

model-based control approaches that employ dynamic or nonlinear feedback control 

together with feedforward compensation. The DQ transformation has been used to 

provide a framework for identifying the ripple dynamics and for designing the 

corresponding control strategies. This has been shown to be useful in the facilitation of 

the desired sinusoidal commutation scheme for fast control implementation. The 

interaction between the feedforward and feedback control approaches has been explored 

and they have been shown to be complementary to each other. 

 

In the feedback linearizing control scheme, the new model identification 

procedure that operates on the measurable position signal and phase current offers 

attractive features that promise to avoid any significant injection of quantization errors 

and also to reject other possible noise sources without strict limitations on the operating 

mode of the motor. The feedback controller that incorporates knowledge of both the 

ripple dynamics and the motion itself has successfully linearised the system as long as 

an appropriate choice of control gains is made with sufficient emphasis on integral 

control. The analysis, simulations and experiments have shown that the derived 

feedback control permits the motion tracking error system to respond quickly, and reject 

part of the ripple components. However, the feedback controller alone is not able to 
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create the best speed tracking performance because of the forced excitation caused by 

the detent torque. This problem has been resolved by the introduction of feedforward 

compensation. The addition of the feedforward controller significantly improves global 

tracking results with the speed ripple being suppressed to a reasonably low level. 

 

 To further improve the tracking control performance, a robust adaptive control 

scheme is presented to tackle the torque ripple problem using an integrated control 

design. The structured uncertainty arising from the dominant detention effect can be 

separated and expressed as the product of known harmonic functions of the rotor 

position and a set of unknown constants. This uncertainty is estimated with adaptation 

and compensated for. The robust adaptive concept is applied to deal with other 

structured uncertainty resulting from the nonsinusoidal flux distribution, by estimating 

its bounding constants. The −μ modification scheme is applied to cause parameter 

adaptation to cease in accordance with the robust adaptive control law. This control 

scheme can guarantee the uniform boundedness of the motor drive system and assures 

that the tracking error enters an arbitrarily designated zone in a finite time. A 

performance comparison between both model-based control schemes gives an 

impressive result. Finally, given their simple form the potential application of the 

proposed control algorithms may be easily realized. 
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CHAPTER 4 

REPETITIVE LEARNING CONTROL SCHEMES 

 

4.1 Introduction 

 

In this chapter, a class of model-less-dependent learning approaches is 

developed for the high-precision motion control of a hybrid stepping motor. The control 

will minimize torque ripple in the motor with specific emphasis on low-speed 

conditions. The torque ripple is periodic and nonlinear in the system states. The learning 

control employs a modified standard repetitive update rule and has a very simple 

structure consisting of two time-domain components in additive form: a feedback 

control mechanism using either a pure linear form or some nonlinear form, and a 

learning mechanism using a saturation function that simply adds up a past tracking error 

sequence. To ensure that the stability analysis accommodates the use of the saturation 

function in the standard repetitive update rule, a Lyapunov-based approach, as 

introduced in Section 4.2, is first utilized. This will illustrate the generality of the 

learning-based update law and its ability to force a general error system with a nonlinear 

disturbance to achieve global asymptotic tracking within a defined period. 

 

Impelled by such a design philosophy, two concrete learning control schemes 

are then considered in Section 4.3 and Section 4.4 respectively. Under the boundedness 

and Lipschitz continuity conditions of the system dynamics, both the Lyapunov-based 

technique and other performance analysis techniques are used to design the learning-

based controller. The controller will compensate for nonlinear ripple dynamics and 

assure global motion tracking. A rigorous analysis of the convergence of the proposed 
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update scheme is presented. It is revealed that all the error signals in the learning control 

system are bounded and the motion trajectory converges to the desired value 

asymptotically. The proposed control scheme, as opposed to a multiple step process, is 

updated continuously with time during the transient response (versus during the steady-

state), and hence, an improved transient response is facilitated. Experiments are 

performed with a typical hybrid stepping motor to test its profile tracking performance, 

which is evaluated in Section 4.5. Results demonstrate that low-speed high-precision 

tracking control of the hybrid stepping motor is attainable. 

 

4.2 General Problem 

 

To illustrate the generality of the proposed learning control scheme, we consider 

the following error dynamics: 

)](ˆ)()[,(),( twtwetBetfe −+=&                                    (4.2.1) 

where nte ℜ∈)(  is an error vector, mtw ℜ∈)( is an unknown nonlinear function, 

mtw ℜ∈)(ˆ  is a subsequently designed learning-based estimate of )(tw , and the 

auxiliary functions netf ℜ∈),(  and mnetB ×ℜ∈),(  are bounded provided )(te  is 

bounded. We further assume that (4.2.1) satisfies the following assumptions. 

 

Assumption 1: The origin of the error system 0)( =te  is uniformly 

asymptotically stable for 

),( etfe =& .                                                  (4.2.2) 

Furthermore, there exists a first-order differentiable, positive-definite function 

ℜ∈),(1 teV , a positive-definite, symmetric matrix nntQ ×ℜ∈)( , and a known matrix 

mntR ×ℜ∈)(  such that 
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]ˆ[1 wwReQeeV TT −+−≤& .                                      (4.2.3) 

 

Assumption 2: The unknown nonlinear function )(tw  is periodic with a known 

period T; hence, 

                    ).()( twTtw =−                                               (4.2.4) 

Furthermore, we assume that the unknown function )(tw  is bounded as follows: 

,)( ii tw β≤      for mi ....,,2,1=                               (4.2.5) 

where m
m ℜ∈= ][ 21 ββββ L  is a vector of known, positive bounding constants. 

 

4.2.1 Control Objective 

The control objective for the general problem given in (4.2.1) is to design a 

learning-based estimate )(ˆ tw  such that 

0)(lim =
∞→

te
t

                                                 (4.2.6) 

for any bounded initial condition denoted by )0(e . To quantify the mismatch between 

the learning-based estimate and )(tw , we define an estimation error term, denoted by 

mtw ℜ∈)(~ , as follows: 

).(ˆ)()(~ twtwtw −=                                             (4.2.7) 

 

4.2.2 Learning-Based Estimate Formulation 

Based on the error system given in (4.2.1) and the subsequent stability analysis, 

we design the learning-based estimate )(ˆ tw  as follows: 

eRkTtwtw T
e+−= ))(ˆ(sat)(ˆ β                                 (4.2.8) 

where ℜ∈ek  is a positive constant control gain, and m)(sat ℜ∈⋅β  is a vector function 

whose elements are defined as follows: 
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 mii
iiii

iii
ii

,,2,1,
for),sgn(
for,

)(sat K=ℜ∈∀
⎩
⎨
⎧

≥
≤

= ξ
βξξβ
βξξ

ξβ            (4.2.9) 

where iβ  represent the elements of β  defined in (4.2.5), and )sgn(⋅  denotes the 

standard signum function. From the definition of )(sat ⋅β  given in (4.2.9), we can prove 

that (see Appendix B) 

.,,2,1,,))(sat)(sat()( 21
2

21
2

21 miiiiiiii ii
K=ℜ∈≤∀−≥− ξβξξξξξ ββ  

                  (4.2.10) 

To facilitate the subsequent stability analysis, we substitute (4.2.8) into (4.2.7) for )(ˆ tw , 

to rewrite the expression for )(~ tw  as follows: 

eRkTtwTtwtw T
e−−−−= ))(ˆ(sat))((sat)(~

ββ                    (4.2.11) 

where we utilized (4.2.4), (4.2.5), and the fact that 

)).((sat))((sat)( Ttwtwtw −== ββ                             (4.2.12) 

 

4.2.3 Stability Analysis 

Theorem 1: The learning-based estimate defined in (4.2.8) ensures that 

0)(lim =
∞→

te
t

                                               (4.2.13) 

for any bounded initial condition denoted by )0(e . 

 

 Proof: To prove Theorem 1, we define a nonnegative function ℜ∈)~,,(2 wetV  

as follows: 

τττττ ββββ dwwww
k

VV
t

Tt

T

e

))](ˆ(sat))((sat[))](ˆ(sat))((sat[
2
1

12 −⋅−+= ∫ −
    (4.2.14) 

where ),(1 teV  was described in Assumption 4.1. After taking the time derivative of 

(4.2.14), we obtain the following expression: 
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))](ˆ(sat))((sat[))](ˆ(sat))((sat[
2
1)(~

2 twtwtwtw
k

twReQeeV T

e

TT
ββββ −⋅−++−≤&  

    ))](ˆ(sat))((sat[))](ˆ(sat))((sat[
2
1 TtwTtwTtwTtw
k

T

e

−−−⋅−−−− ββββ  

(4.2.15) 

where (4.2.3) was utilized. After utilizing (4.2.11), we can rewrite the above as follows: 

                    ])(~[])(~[
2
1)(~

2 eRktweRktw
k

twReQeeV T
e

TT
e

e

TT +⋅+−+−≤&  

))].(ˆ(sat))((sat[))](ˆ(sat))((sat[
2
1 twtwtwtw
k

T

e
ββββ −⋅−+        (4.2.16) 

After performing some simple algebraic operations, we can further simplify (4.2.16) as 

follows: 

                        )(~)(~[
2
1

22 twtw
k

eRRkQeV T

e

TeT −⎟
⎠
⎞

⎜
⎝
⎛ +−≤&  

))]].(ˆ(sat))((sat[))](ˆ(sat))((sat[ twtwtwtw T
ββββ −⋅−−          (4.2.17) 

Finally, we can utilize (4.2.5), (4.2.7), and (4.2.10) to simplify (4.2.17) to 

.2 QeeV T−≤&                                               (4.2.18) 

Based on (4.2.14), (4.2.18) along with the fact that Q is a positive-definite symmetric 

matrix, it is clear that ∞∈ LLte I2)( . Based on the fact that ∞∈ Lte )( , it is clear from 

(4.2.1), (4.2.8), (4.2.9), and (4.2.11) that )(ˆ tw , ),(~ tw  ),,( etf  ∞∈ LetB ),( . Given that 

)(ˆ tw , ),(~ tw  ),,( etf  ∞∈ LetB ),( , it is clear from (4.2.1) that ∞∈Lte )(& , and hence, )(te  

is uniformly continuous. Since ∞∈ LLte I2)(  and uniformly continuous, we can utilize 

Barbalat’s Lemma (Lewis et al. 1993) to prove (4.2.13). 

 

Remark 1: From the previous stability analysis, it is clear that we exploit the fact 

that the learning-based feedforward term given in (4.2.8) is composed of a saturation 



CHAPTER 4  REPETITIVE LEARNING CONTROL SCHEMES 

 76

function. That is, it is easy to see from the structure of (4.2.8), that if ∞∈ Lte )(  then 

∞∈ Ltw )(ˆ . 

 

4.3 Control Design ( I ) 

 

In the previous section, we exploited the fact that the unknown nonlinear 

dynamics, denoted by )(tw , were periodic with a known period T. Unfortunately, a 

practical tracking system using the hybrid stepping motor may not adhere to the ideal 

assumption that all of the unknown nonlinear dynamics are entirely periodic with 

respect to time for various control tasks. Since the learning-based feedforward term, 

developed in the previous section, is generated from a straightforward Lyapunov-like 

stability analysis, by defining the control task over a finite time duration, we can utilize 

other Lyapunov-based control design techniques to develop hybrid control schemes that 

utilize learning-based feedforward terms to compensate for periodic ripple dynamics 

and feedback terms to reject the effect of random and nondeterministic disturbances. To 

illustrate this point, we now develop a hybrid control scheme for a hybrid stepping 

motor, in the following subsections. 

 

4.3.1 Modified Representation of Dynamic Model 

To facilitate the analysis that follows, the dynamic model of the motor given in 

(3.2.2) can be expressed in the following form: 

qiDM =+ ),()( θθθθ &&&                                         (4.3.1) 

where 

)]cos()sin([
)(

1
θθ

θ
rqclr

l
qslm lNKlNKK

JM
++

=

∑
∞

=

                    (4.3.2) 
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)]cos()sin([

)]cos()sin([
),(

1

1

θθ

θθθ
θθ

rqclr
l

qslm

rdclr
l

dsl

lNKlNKK

BlNKlNK
D

++

++
=

∑

∑
∞

=

∞

=

&

&   .               (4.3.3) 

The function M and D are considered to be unknown due to parametric uncertainty in 

their expressions, but it is clear that they are periodic with respect to θ  in the sense of 

2π/Nr, i.e.,                             

             ℜ∈∀=+ θθπθ ,)()/2( MNM r                                   (4.3.4) 

ℜ×ℜ∈∀=+ ),(,),()/2,( θθθθπθθ &&& DND r .              (4.3.5) 

 

With regard to dynamics given by (4.3.1), it is easy to see that all of the terms are 

bounded if ,,θθ &  and θ&&  are bounded. Furthermore, the following properties hold good 

for the function M and D that will be used in the controller development and analysis. 

 

Property 1:  The function M and D satisfy the Lipschitz condition, i.e., there 

exist constants mμ , 2dμ , 02 >dμ  such that 

ℜ∈∀−≤− 212121 ,,)()( θθθθμθθ mMM                     (4.3.6a) 

.,,,,)(),( 21212122112,211 ℜ∈∀−+−≤− θθθθθθμθθμθθθθ &&&&&&
ddDD          (4.3.6b) 

 

Property 2:  The function M is continuously differentiable and there exist 

positive constants minM , and maxM  that satisfy 

.,)( maxmin ℜ∈∀≤≤ θθ MMM                             (4.3.7) 

Furthermore, the periodicity in (4.3.4) along with (4.3.7) implies that there exists a 

constant 0>mk  such that 

.,)( ℜ∈∀≤′ θθ mkM                                       (4.3.8) 
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4.3.2 Control Objective 

The control objective is to design a global position tracking controller despite 

parametric uncertainty in the dynamic model given in (4.3.1). To quantify this objective, 

we define the position tracking error )(te  as follows: 

θθ −= de                                                    (4.3.9) 

where we assume that the desired trajectory )(tdθ  and its first and second-order time 

derivatives are assumed to be bounded periodic functions of time with a known period T 

such that 

)()()()()()( TttTttTtt dddddd −=−=−= θθθθθθ &&&&&& .           (4.3.10) 

 

4.3.3 Control Formulation 

To facilitate the subsequent control development and stability analysis, we 

examine the error dynamic expression corresponding to (4.3.1) by defining a filtered 

tracking error-like variable )(tz  as follows: 

eez α+= &                                                  (4.3.11) 

where α is a positive constant control gain. After taking the time derivative of (4.3.11), 

pre-multiplying the resulting expression by )(θM , utilizing (4.3.1) and (4.3.9), and then 

performing some algebraic manipulations, we obtain the following expression: 

qd iwzM −+= χ&                                              (4.3.12) 

where the auxiliary expressions )(),( ttwd χ  are defined as follows: 

),()( ddddd DMw θθθθ &&& +=                                         (4.3.13) 

.),())(( dd wDeM −++= θθαθθχ &&&&                            (4.3.14) 

By Properties 1 and 2 given in (4.3.6) and (4.3.7), and then (4.3.9) and (4.3.11), there 

exist some constants 0, 21 >xx μμ  such that 
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eMDDMM dddd &&&&& )(),(),()]()([ θαθθθθθθθχ +−+−=  

ze xx 21 μμ +≤ .                                                                         (4.3.15) 

Note that 

).(,],[max 22
2
12222 ezezezez +≤+≤               (4.3.16) 

 

By (4.3.16) and (4.3.15), there exists some constant 0>ρ  such that 

2xρχ ≤z                                                (4.3.17) 

where the auxiliary signal 2)( ℜ∈tx  is defined as 

Tezt ],[)( =x .                                             (4.3.18) 

Furthermore, based on the expression given in (4.3.13) and the boundedness 

assumptions with regard to the motor dynamics and the desired trajectory, it is clear that 

 

+ℜ∈∀≤−= ttwTtwtw dddd β)(),()(                  (4.3.19) 

 

where dβ  is a known positive bounding constant. 

 

Given the open-loop error system in (4.3.12), we design the following control 

input: 

dmq wezkzki ˆ2
1 +++= θ&                                    (4.3.20) 

where k is a positive constant control gain, mk  was defined in (4.3.8) and )(ˆ twd  is 

generated on-line according to the following learning-based algorithm: 

zkTtwtw Ldd d
+−= ))(ˆ(sat)(ˆ β                                 (4.3.21) 

with kL being a positive constant learning gain, and )(sat ⋅
dβ

 is defined in the same 

manner as in (4.2.9). 
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To develop the closed-loop error system for z(t), we substitute (4.3.20) into 

(4.3.12) to obtain the following expression: 

zkwezkzM md θχ && 2
1~ −++−−=                             (4.3.22) 

where )(~ twd  is a learning estimation error signal defined as follows: 

ddd www ˆ~ −= .                                             (4.3.23) 

After substituting (4.3.21) into (4.3.23) for )(ˆ twd , utilizing the fact that )(twd  is 

periodic, and then utilizing (4.3.19) to construct the following equality: 

))((sat))((sat)(
d

Ttwtwtw ddd d
−== ββ ,                      (4.3.24) 

we can rewrite (4.3.23) in the following form: 

zkTtwTtww Lddd d
−−−−= ))(ˆ(sat))((sat~

dββ .                (4.3.25) 

 

4.3.4 Stability Analysis 

Theorem 2: Given the motor dynamics of (4.3.1), the proposed hybrid learning 

controller given in (4.3.20)–(4.3.21), ensures global asymptotic position tracking in the 

sense that 

0)(lim =
∞→

te
t

                                               (4.3.26) 

where the control gains ,, kα  and Lk  introduced in (4.3.11), (4.3.20), and (4.3.21) must 

be selected to satisfy the following sufficient condition: 

ρα >⎟
⎠
⎞

⎜
⎝
⎛ +

2
,min Lkk                                        (4.3.27) 

where ρ  was defined in (4.3.17). 

 

Proof: To prove Theorem 2, we define a nonnegative function ℜ∈)(3 tV  as 

follows: 
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τττ ββ dww
k

MzeV
t

Tt dd
L

dd∫ −
−++= 222

3 ))](ˆ(sat))((sat[
2
1

2
1

2
1 .        (4.3.28) 

 

After taking the time derivative of (4.3.28), we obtain the following expression: 

 

θχθα &&& MzwzzkekzzezeV dm ′+++−−−+−= 2
3 2

1)~()
2
1()(  

                              2))](ˆ(sat))((sat[
2
1 twtw
k dd

L
dd ββ −+  

2))](ˆ(sat))((sat[
2
1 TtwTtw
k dd

L
dd

−−−− ββ                             (4.3.29) 

 

where (4.3.11) and (4.3.22) were utilized. After utilizing (4.3.8), (4.3.17), (4.3.19), 

(4.3.25), and then simplifying the resulting expression, we can rewrite (4.3.29) as 

follows: 

2222
3 )~(

2
1~ zkw
k

wzzkeV Ld
L

d +−++−−≤ xρα&  

2))](ˆ(sat))((sat[
2
1 twtw
k dd

L
dd ββ −+ .                               (4.3.30) 

 

After expanding the first line of (4.3.30) and then canceling common terms, we obtain 

the following expression: 

 

                                     222
3 )

2
( xρα ++−−≤ zkkeV L&  

[ ]22 ))](ˆ(sat))((sat[~
2
1

dd
twtww

k ddd
L

ββ −−− .                   (4.3.31) 

 

By exploiting the property given in (4.2.10), and then utilizing the definition of )(tx  

given in (4.3.18), we can simplify the expression given in (4.3.31) to obtain 
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.
2

,min 2
3 x⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ +−≤ ρα Lk

kV&                                  (4.3.32) 

Based on (4.3.18), (4.3.27), (4.3.28), and (4.3.32), it is clear that ∞∈ LLtzte I2)(),( . 

Based on the fact that ∞∈ Ltz )( , it is clear from (4.3.11), (4.3.21), (4.3.25) that )(ˆ twd , 

),(~ twd  ∞∈ Lte )(& , and hence, )(te  is uniformly continuous. Since ∞∈ LLte I2)(  and 

uniformly continuous, we can utilize Barbalat’s Lemma (Lewis et al. 1993) to prove 

(4.3.26). 

 

Remark 2: From the previous stability analysis, it is again clear that we exploit 

the fact that the learning-based feedforward term given in (4.3.21) is composed of a 

saturation function. That is, it is easy to see from the structure of (4.3.21), that if 

∞∈ Ltz )(  then ∞∈Ltwd )(ˆ . 

 

Remark 3: One of the advantages of the novel saturated learning-based 

feedforward term is that it is developed through Lyapunov-based techniques. By 

utilizing Lyapunov-based design and analysis techniques, the boundedness of the 

feedforward term can be proven in a straightforward manner, and the ability to utilize 

additional Lyapunov-based techniques to augment the control design (as in the case of 

the hybrid learning controller) is facilitated. However, it is worth pointing out that the 

incorporation of additional control elements considered here depends on the use of a 

nonlinear feedback mechanism (as in (4.3.20)), which will increase the complexity in 

the practical implementation. To simplify the controller structure, we attempt, in the 

following section, to develop another learning-based control scheme coupled with a 

pure linear feedback mechanism. To gain a deeper understanding of the control scheme 

we are interested in, its profound physical implications are also emphasized. 
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4.4 Control Design ( II ) 

 

4.4.1 Control Formulation 

To facilitate the subsequent analysis, the dynamic model of the motor given in 

(3.2.2) can be represented in the typical form as follows: 

                                       qiGFJ )(),( θθθθ =+ &&&                                         (4.4.1) 

where 

∑
∞

=

++=
1

)cos()sin(),(
l

rdclrdsl lNKlNKBF θθθθθ &&               (4.4.2) 

                              ∑
∞

=

++=
1

)cos()sin()(
l

rqclrqslm lNKlNKKG θθθ .                (4.4.3) 

The function F and G are considered to be unknown due to parametric uncertainty in 

their expressions, but it is clear that they are periodic with respect to θ  in the sense of 

2π/Nr, i.e., 

                             ℜ×ℜ∈∀=+ ),(,),()/2,( θθθθπθθ &&& FNF r                  (4.4.4) 

                                  ℜ∈∀=+ θθπθ ,)()/2( GNG r .                           (4.4.5) 

With regard to dynamics given by (4.4.1), it is easy to see that all of the terms are 

bounded if ,,θθ &  and θ&&  are bounded.  

 

Furthermore, the following properties hold good for the function F and G that 

will be used in the controller development and analysis: 

 

Property 3:  The function F and G satisfy the Lipschitz condition, i.e., there 

exist constants 1fμ , 2fμ , 0>gμ  such that 

ℜ∈∀−+−≤− 21212122112,211 ,,,,)(),( θθθθθθμθθμθθθθ &&&&&&
ffFF     (4.4.6a) 

.,,)()( 212121 ℜ∈∀−≤− θθθθμθθ gGG                      (4.4.6b) 
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Property 4:  The function G is continuously differentiable and there exist 

positive constants Gm, and GM that satisfy 

.,)(0 ℜ∈∀≤≤< θθ Mm GGG .                          (4.4.7) 

Property 4 follows from the fact that the main torque constant dominates the overall 

torque constant variation as specified by (3.2.4). 

 

The control objective is to design a learning controller such that through 

repeated learning trials the motion trajectory },{ θθ&  of the motor can track a pre-

specified },{ dd θθ&  defined over [ ]T,0 , especially in the sense of asymptotic tracking, 

despite parametric uncertainty in the dynamic model given in (4.4.1). To quantify this 

objective, we also define the position tracking error )(te  as follows: 

θθ −= de                                                   (4.4.8) 

where θd  and its first and second-order time derivatives are assumed to be bounded. 

 

To facilitate the subsequent control development and stability analysis, we also 

examine the error dynamic expression corresponding to (4.4.1) by defining a filtered 

tracking error-like variable )(tz  as follows: 

eez α+= &                                                  (4.4.9) 

where α is a positive constant control gain which will be used soon. After taking the 

time derivative of (4.4.9), pre-multiplying the resulting expression by J, utilizing (4.4.1) 

and (4.4.8), and then performing some algebraic manipulations, we obtain the following 

expression: 

qdd iGwGFezJzJ )()()( θθαα −+Δ+−=&                       (4.4.10) 

where the auxiliary expressions wd, FΔ  are defined as follows: 
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)()),(( ddddd GFJw θθθθ &&& +=                               (4.4.11) 

),(),( ddFFF θθθθ && −=Δ .                                      (4.4.12) 

 

It follows from (4.4.10) and (4.4.11) that wd can be regarded as the desired input that 

achieves perfect tracking, i.e., )()( tt dθθ ≡  if ,)0()0( dθθ = )0()0( dθθ && =  and 

)()( twti dq = in (4.4.1). Furthermore, based on the boundedness and periodicity 

conditions concerning the motor dynamics and the desired trajectory, it is clear that 

+ℜ∈∀≤−= ttwTtwtw dddd β)(),()(                 (4.4.13) 

where βd is a known positive bounding constant which can be decided from the real 

excitation limitation of the driving system. Also note that the desired input dw  contains 

unknown ripple dynamics and other disturbances that need to be tackled. 

 

Given the open-loop error system in (4.4.10), we design the following control 

input: 

dPq wzki ˆ+=                                                (4.4.14) 

 

where kP is a positive constant control gain, and )(ˆ twd  is generated according to 

(4.3.21). The difference between (4.4.14) and (4.3.20) lies in the fact that the learning-

based algorithm is now incorporated with a pure linear feedback control term, which 

makes the control input easier for implementation. 

 

To develop the closed-loop error system for z(t), we substitute (4.4.14) into 

(4.4.10) to obtain the following expression 

 

.ˆ)()())(( 2
dddP wGwGFeJzGkJzJ θθαθα −+Δ+−−=&            (4.4.15) 
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By introducing the new functions gfgfgf dd ΔΔ and,,,,,  as defined by 

 

))((),(
))(,)((),,(

etGtegg
eteztFtezff

d

dd

−==
−+−==

θ
θαθ&

                              (4.4.16a) 

))((),0(
))(),((),0,0(

tGtgg
ttFtff

dd

ddd

θ
θθ

==
== &

                                                          (4.4.16b) 

dd gggfff −=Δ−=Δ , ,                                                         (4.4.16c) 

 

the entire closed-loop error system for z(t) and e(t) can be expressed in the following 

form: 

)(~),(),( twtt dss xgxfx +=&                                               (4.4.17) 

where 

 

 

and )(~ twd  is a learning estimation error signal defined as follows: 

ddd www ˆ~ −=  .                                                    (4.4.18)  

Hereafter, (4.4.17) will be frequently referred to as learning system. 

 

Finally, the tracking control problem addressed here can also be stated as 

follows: How is it possible to validate the learning controller (4.4.14) associated with 

the learning rule (4.3.21) to generate the unknown desired input wd that exponentially 

stabilizes the learning system in (4.4.17), subject to Properties 3-4 and the requirements 

on the controller gains α , Pk  and Lk ? 
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4.4.2 Performance Analysis 

To facilitate the performance analysis of the proposed scheme, here we give a 

Lemma which reveals the boundedness relationship among the quantities ,z  ,z&  ,e  e&  

and .ˆ dw  

 

Lemma: For the learning system (4.4.17) satisfying Properties 3-4, the learning 

control laws (4.4.14) and (4.3.21) ensure that .ˆ,,,, ∞∈ Lweezz d&&  

 

Proof: Define a Lyapunov function 1)( ℜ∈tV  as follows: 

)(
2

222 ezJV α+= .                                           (4.4.19) 

Differentiating V with respect to t using (4.4.17) and (4.4.18) along with (4.4.14), we 

obtain 

zTtwwggwfV ddd ))]}(ˆsat([{ −−+Δ−Δ+−= QxxT&                (4.4.20) 

where 

.
0

0)(
3⎥
⎦

⎤
⎢
⎣

⎡ −+
=

α
α

J
Jgkk LPQ                                  (4.4.21) 

Note that 

.,],[max 2
2
122222 xx ≤=+≤ ezezez               (4.4.22) 

 

By (4.4.22), (4.3.19), (4.2.9), the definitions of g , fΔ  and gΔ  in (4.4.16), and 

Properties 3-4, there exist some constants 0, 21 >μμ  such that 

.2)())]}(ˆsat([{ 2
21 xx Mdddd GzTtwwggwf βμαμ ++≤−−+Δ−Δ          (4.4.23) 

Substituting the above into (4.4.20) gives 

xPxxT
MdGV β2+−≤&  
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where 

.
0

0)(

21
3

21
⎥
⎦

⎤
⎢
⎣

⎡
−−

−−−+
=

μαμα
μαμα

J
Jgkk LPP  

Now, choose controller gains α and Pk  large enough to satisfy 

LmP kGJk −+>> )1(,1 2ααα                                   (4.4.24) 

.021
3 >−−= μαμαμ J                                                 (4.4.25) 

Then it follows from (4.4.22), (4.4.24), and (4.4.25) that 

.2222 21
21

2
2 V

J
GV

J
GV MdMd ⎟

⎠
⎞

⎜
⎝
⎛+−≤+−≤ β

α
μβμ xx&             (4.4.26) 

The last inequality of the above follows from the fact that 

.,
22

222 2xxx ℜ∈∀≤≤ αJVJ                           (4.4.27) 

By (4.4.19) and (4.4.26), we then have 

+ℜ∈∀⎟
⎠
⎞

⎜
⎝
⎛+−≤ tG

J
V

dt
dV

Md ,2 21
21

21

βγ                       (4.4.28) 

where .2αμγ J=  Using the comparison principle to the above, it can finally be 

obtained from (4.4.27) that 

.),1(2)0()(
2

+
−− ℜ∈∀−+≤ teGet tMdt γγ

μ
βαα xx         (4.4.29) 

Hence, it can be concluded that the solution of the learning system (4.4.17) stays inside 

the set },]2,)0([max)(:{ 21
+

− ℜ∈∀≤ tGMdβαμα xtxx , i.e., ∞∈ Lt)(x . 

 

Now, ∞∈ Ltz )(  and ∞∈ Lte )(  are the immediate consequences of ∞∈ Lt)(x  

and (4.4.22), and hence ∞∈ Lte )(&  according to (4.4.9). From (4.3.21), ∞∈ Ltz )(  leads to 

∞∈ Ltwd )(ˆ , and hence ∞∈ Ltz )(&  according to (4.4.15) which completes the proof. 
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After presenting the above Lemma, we are now ready to prove the following. 

 

Theorem 3: (Convergence of learning scheme) Consider the learning system 

(4.4.17) satisfying Properties 3-4 and all the previous assumptions. Under the control 

law (4.4.14) and the learning law (4.3.21), as the iteration sequence tends to infinity, the 

error pair )](),([ tetz  converges to zero, and )(ˆ twd  converges to )(twd  in the sense of 

the extended L2 norm over ],0[ Tt∈ . 

 

Proof: To evaluate the learning performance, a performance index based on the 

extended L2 norm is defined as follows: 

∫ −
≥−=−=

iT

Ti ddddi dwwwwJ
)1(

22

2
0)]()(ˆ[ˆ τττ                                (4.4.30) 

where the subscript +Ζ∈i  is used to denote the iteration number. From (4.4.13), 

(4.3.21), and (4.2.10), the difference of iJ  between two consecutive trials, 

)2( ≥Ζ∈∀ + ii I  can be found as 

1−−=Δ iii JJJ  

               ττττττ dwwdww d

Ti

Ti dd

iT

Ti d
2)1(

)2(

2

)1(
)]()(ˆ[)]()(ˆ[ −−−= ∫∫

−

−−
 

               ττττττ dwTwdww d

iT

Ti d

iT

Ti dd
2

)1()1(

2 )]()(ˆ[)]()(ˆ[ −−−−= ∫∫ −−
 

               τττττ dwTwww ddd

iT

Ti d })]())(ˆ(sat[)]()(ˆ{[ 22

)1(
−−−−≤ ∫ −

 

               ττττττ dwTwwTww dddd

iT

Ti d )](2))(ˆ(sat)(ˆ))][(ˆsat()(ˆ[
)1(

−−+−−= ∫ −
 

              τττττ dwTwzkzk ddLL

iT

Ti
})]())(ˆ(sat[)(2)({ 22

)1(
−−+= ∫ −

.                        (4.4.31) 

 

From (4.4.20), the following can be obtained 
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zTwwzgwfggVg ddd
T ))](ˆ(sat[)(111 −−+−+= −−− τΔΔQxx&         (4.4.32) 

which can be rewritten into 

.][

)(]))(ˆ[sat(
1231

211

zgwfgeJg

zJgkkVgwTwz

d

LPdd

ΔΔα

ατ

−+−

−+−−=−−
−−

−− &
            (4.4.33) 

Substituting the above into (4.4.31) gives 

 

             ∫ −

−− +−+−≤
iT

Ti LPLLi deJgkzJgkkkJ
)1(

231212 )}(2)()](2{ τταταΔ  

                        τττΔΔττ dzgwfgkdVgk
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1
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− −+− &  

                     ∫ −
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Ti PLL deJgzJgkkk
)1(

23121
2
1 )]()()[(2 ττατα  

                        τττΔΔτ dzgwfgkdVgk
iT

Ti dL

iTV

TiVL )()(2)(2
)1(

1)(

))1((

1 ⋅−+− ∫∫ −

−

−

− . 

 

Using (4.4.22), (4.4.13), and Properties 3-4, and then selecting appropriately the 

controller gains α, Pk  and Lk  that satisfy 

LmP kGJk 2
12 )1(,1 −+>> ααα ,                           (4.4.34) 

and (4.4.25), we obtain 

ττμτΔ dgkdVgkJ
iT

TiL

iTV

TiVLi ∫∫ −

−

−

− −−≤
)1(

21)(

))1((

1 )(2)(2 x  

                                  ττμτ dGkdVgk
iT

TiML

iTV

TiVL ∫∫ −

−

−

− −−≤
)1(

21)(

))1((

1 )(2)(2 x .        (4.4.35) 

Taking the summation of jJΔ  from 2=j  up to i  results in 

∑∫∫
=

−

−− −−≤−
i

j

jT

TjML

iTV

TVLi dGkdVgkJJ
2

)1(

21)(

)(

1
1 )(2)(2 ττμτ x           (4.4.36) 

)2( ≥Ζ∈∀ + ji I . Since 0≥iJ , we have from the above that 
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1
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2
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d τ
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Since ∞∈ Ltwd )(ˆ  according to Lemma and dd tw β≤)(  according to (4.4.13), iJ  is 

bounded according to (4.4.30), +Ζ∈∀i . In addition, ∞∈ Ltetz )(,)(  leads to the 

boundedness of )(tV  according to (4.4.19). From (4.4.37), the boundedness of 1J , 

)(TV  and )(iTV  as well as 1−g  using Property 4 ensures that  

∞<∑∫
=

−∞→

i

j

jT

Tji
d

2
)1(

2)(lim ττx                                  (4.4.38) 

It concludes that: ∫ −∞→
=

iT

Tii
d

)1(

2 0)(lim ττx . Now, it is easy to deduce from (4.4.22) that 

as ∞→i , 0))1((,))1(( →−+−+ TiteTitz  on the extended 2L  norm, ],0[ Tt∈∀ . 

 

Next, rearranging the first equation in (4.4.17) gives 

 

)()(ˆ 11211
dPdd gwfgzJgeJgzkJgww Δ−Δ+−−−=− −−−− &αα .            (4.4.39) 

 

According to (4.4.16), 0, →ez  leads to dd ggff →→ ,  which brings that 0→Δf  

and 0→Δg . Thus, it can be derived from (4.4.30) and (4.4.39) that 
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Since 11 −− ≤ mGg  from Property 4 and dd tw β≤)(  from (4.4.13), we obtain 
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Note that ∞∈−+ LTitz ))1((& , ],0[ Tt∈∀  according to Lemma and 22 −− ≤ mGg  

according to Property 4. Therefore, 0))1((lim)(lim =−=
∞→∞→

TiziTz
ii

 yields that 

0lim =
∞→ ii

J                                                  (4.4.41) 

and )(ˆ twd  converges to )(twd , ],0[ Tt∈∀  which ends the proof. 

 

Remark 4: From the previous performance analysis, it is observed that by 

applying Lyapunov-based techniques the learning-based feedforward input term given 

in (4.3.21) can be shown to be bounded in a straightforward manner, and then the 

convergence property of the learning system for perfect tracking follows directly via a 

simple analysis technique. 

 

Remark 5: One of the advantages of the proposed learning controller is that the 

requirement that the system must return to exactly the same initial configuration after 

each learning trial has been removed. It is updated continuously with time during the 

transient response rather than during the steady state. From the argument given in 

(4.4.29) it is evident that the proposed scheme can ensure that )(tz  enters a pre-

specified error bound during the first learning trial without incurring undesirable 

chattering. Hence an improved transient response could be anticipated. 

 

Remark 6: In the light of the controller architecture, the PI feedback term is 

updated at each sampling instant in real time so as to stabilize the system and tackle the 

non-periodic or random disturbances. The feedforward term is iteratively updated to 

produce an input that best approximates the desired input and compensates for the 

deterministic uncertainties such as the parasitic torque ripple. A clear physical 

interpretation is that the proposed learning controller estimates the total input instead of 
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the disturbance (or ripple) torque only, and the system is linearized when it is 

compensated with this estimated input. Although within the framework of linear 

learning schemes, the proposed controller can determine the optimal nonlinear 

input/output relationship, and hence it has the capability of nonlinear functional 

identification. 

 

Remark 7: It should be pointed out that (4.4.34) and (4.4.25) only provide a set 

of sufficient conditions that make the learning system exponentially stable. It is easy to 

see from (4.4.35) that for a fixed control gain α  too small a learning gain Lk  slows 

down the decrease of iJΔ  and at the same time it needs a large control gain Pk  to 

ensure the convergence, and vice versa. On the other hand, a larger Lk  could also 

require a larger Pk  due to a bigger α  being used to enhance the exponential stability 

and in turn the learning convergence evaluated by (4.4.29) and (4.4.30) respectively. 

More importantly, it is the feedforward compensation term that eventually guarantees 

the system’s excellent tracking performance. Therefore, a moderate Lk should be used 

for a faster learning convergence rate whilst there remains a large range of selecting PI 

control gains. 

 

Remark 8: The proposed learning controller does not require the nonlinear 

damping term, relative to the previous one (as in (4.3.20)), to provide good tracking 

performance. This undoubtedly decreases the complexity in the control implementation. 

In fact, the pure linear feedback control module in the control input is enough to 

stabilize the entire learning system while the addition of other feedback components 

exactly induces some conservatism. This learning control has been validated during 

experimental trials. 
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Fig. 4.1  Block diagram representation of the experimental setup
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4.5 Experiments and Discussions 

 

To illustrate the effectiveness of the proposed learning-based control approach, 

the controller presented in the above section was implemented and experimentally 

verified on a hybrid stepping motor servo for profile tracking at low speed. An 

experiment has been performed with a typical stepping motor of the brand name 

VEXTA, model PH264-01B manufactured by Oriental Motor Co. Ltd, Japan, which is a 

two-phase bifilar-wound hybrid stepping motor with 50 rotor teeth (1.8° per step). The 

rotor position and speed were obtained by using the well-known MT method along with 

an optical encoder of 4000 pulses per revolution. The proposed learning control 

algorithm was implemented on a TMS320C30 DSP chip that can process encoder 

signals from the motor and supply output control signals to the motor drive in real time. 

To facilitate the inverse DQ transformation to yield the reference control input (phase 

currents) from sinusoidal commutation, the required trigonometric functions were 

stored and updated in a look-up table in RAM for fast control configuration. The 

reference phase currents were then delivered to the high bandwidth current control 

circuit. The block diagram for the experimental setup is shown in Fig. 4.1. The desired 

position trajectory was smoothly generated taking into consideration the physical limits 

of an actual system, as shown below (see Fig. 4.2) 

)1)(cos1()(
25.2 t

d ett −−−= πθ .                                (4.5.1) 

 

In the experiment, the learning controller in (4.4.14) was implemented, which 

was ready to be compared with its frequency-domain counterpart. This will be 

presented in the next chapter. The experiment was performed  at a control frequency of 

1 kHz. After a tuning process, the following control gains were selected: 
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.5.0,15,4.0 === LP kk α                               (4.5.2) 

It is worth pointing out that the selection of the control gains should strictly comply 

with the sufficient conditions given in (4.4.34) and (4.4.25), along with the use of the 

partial preknowledge about the ripple dynamics of the motor as described by Property 

3-4 in the previous section. 

 

To show the effectiveness of the proposed control algorithm, its experimental 

performance was first compared with that of the conventional sinusoidal current control 

system. The experimental results of both schemes are summarized in Fig. 4.3-4.5. 

Initially, the behaviour of the closed-loop system given by (4.4.1) and (4.4.14) was 

investigated with the feedforward learning input 0ˆ =dw , that is, only the PI feedback 

input was used which corresponds to the conventional current control scheme. Fig. 4.3 

shows  that  the  responses of  e&  and e   converge  to a steady-state waveform within the 
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Fig. 4.2 Desired position trajectory 
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first cycle. The PI control virtually adds significant damping to the motor system that 

makes the closed-loop system settle quickly into some bound as concluded from the 

previous analysis. This implies that the controlled system is input-to-state stable if dw  is 

viewed as an input in (4.4.17). Although the tracking errors show the same periodicity 

as that of the desired trajectory, they are far from a single-frequency sine waveform and 

contain higher harmonics. In fact, the remaining tracking errors are exactly the 

immediate consequences of the ripple dynamics in the motor, which also admits the 

important fact that the PI controller fails to satisfactorily solve the tracking problem in 

this application. 

 

By adding the feedforward learning input dŵ  to the PI control, the motor drive 

is capable of achieving high tracking accuracy. The time histories of e&  and e  in Fig.4.4 

clearly exhibit the behavior of the learning control scheme used. After a sufficient 

number of learning trials (about five cycles), the learning algorithm can reduce e& , e  to 

almost zero and at the same time the magnitude of the speed ripple was reduced 

significantly. In deed, the feedforward compensator acts so as to attenuate the speed 

ripple, that is closely associated with the torque ripple, for their coordinated reduction. 

In addition, it is observed from Fig. 4.5 that the updated feedforward input dŵ  

corresponding to the estimate for the desired input dw  tends to converge to a specific 

waveform. This indicates that a good approximation of the desired input has been 

achieved.  

 

Further comparison of experimental performance between the proposed 

algorithm and its frequency-domain counterpart will be given in detail in the next 

chapter. Throughout the experiment, the proposed learning controller shows excellent 
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profile tracking performance, though it is intended here merely as an experimental 

proof-of-principle. The experimental results validate the theoretical prediction presented 

in the previous section. The performance of the proposed controller (e.g., transient 

response, steady-state error) is similar to other repetitive learning-based controllers that 

update in each period from the initial time instant. However, the proposed controller 

yields improved transient response when compared to learning-based controllers that 

are required to wait until the system is in steady-state before the learning-based estimate 

is applied, as documented in previously mentioned literatures. 

 

4.6 Summary 

 

In this chapter, we illustrate how a learning-based estimate can be used to 

achieve asymptotic tracking in the presence of undesirable nonlinear dynamics. Based 

on the fact that the learning-based controller estimate is generated from a Lyapunov-

based stability analysis, we demonstrated how the Lyapunov-based design technique 

can be utilized to construct a learning controller for rejecting components of the ripple 

dynamics in a hybrid stepping motor. These components are periodic for a class of 

tracking control tasks defined over a finite duration. By utilizing the Lyapunov-based 

design and analysis technique, the boundedness of the feedforward term can be proven 

in a straightforward manner, and the capability of utilizing additional nonlinear 

feedback components to augment the learning control design (as in the case of the 

hybrid learning controller) is naturally acquired. 

 

For ease of implementation, we specifically designed a hybrid controller by 

incorporating a pure linear feedback (PI) control into the repetitive learning mechanism, 

in which the fixed  PI  feedback controller takes part in stabilizing the transient response 
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Fig. 4.3 Tracking performance of sinusoidal current control scheme 

                              (a) Speed error 
                              (b) Position error 
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Fig. 4.4 Learning convergence of tracking errors of proposed control scheme 

(a) Speed error 
(b) Position error 
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Fig. 4.5 Learning convergence of feedforward input 

 

    

of the servomotor dynamics and tackling the non-periodic or random disturbances while 

the feedforward learning controller is responsible for generating a learning control 

signal to compensate for the effect of the torque ripple. Experimental results illustrated 

that the tracking performance of a hybrid stepping motor is improved at each period of 

the desired trajectory due to the mitigating action of the learning estimate. 
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CHAPTER 5 

FREQUENCY-DOMAIN LEARNING CONTROL SCHEME 

 

5.1 Introduction 

 

Recalling the previous time-domain learning control scheme along with 

important practical consideration, it should be first noted that the repeatability of the 

learning system implies only countable integer frequencies being involved in the 

desired input. This ensures the feasibility of constructing component-based learning in 

the frequency domain. Secondly, nowadays all advanced control approaches (including 

learning control) have to be implemented using micro-processing technology. 

According to sampling theory, the learning controller needs only to learn a finite 

number of frequencies limited to one half of the sampling frequency. Any attempt to 

learn and manipulate frequencies above that limit will be completely meaningless. 

Furthermore, most real systems can be characterized as low-pass filters because their 

bandwidth is much lower than the sampling frequency. It is sufficient for the learning 

controller to take into account only a small portion of the Fourier series in such cases. 

 

Following from this idea, this chapter presents a decentralized learning control 

scheme that is implemented in the frequency domain by means of a Fourier series 

expansion for tracking control of a hybrid stepping motor. The control scheme consists 

of a time-domain feedback control and a frequency-domain iterative learning control. 

The former reduces system variability and suppresses the effect of random disturbances 

and mismatch of initial condition. The later modifies the shape and phase of the control 

input for suppressing the tracking error caused by the ripple dynamics. Based on the 
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fact that under certain conditions both the desired trajectory and the actual output can be 

expressed by a Fourier series with constant harmonic magnitudes, a learning controller, 

as presented in Section 5.2 and Section 5.3, is designed to individually control each 

harmonic component of the actual output in such a way that each component will 

converge to that of the desired trajectory within the system bandwidth so that the time-

domain tracking error always tends to zero. The suitable conditions for the system 

stability and convergence of the tracking error are given and discussed in Section 5.4. 

 

Since this decentralized learning controller is designed in Fourier space instead 

of time domain, the system’s time-delay can be easily compensated for. Moreover, this 

learning controller is based only on local input and output information so that no a 

priori system modeling is required. Experiments are performed with a typical hybrid 

stepping motor to test its profile tracking performance, which is examined in Section 

5.5. Results demonstrate that this control scheme can significantly improve the tracking 

control performance by approximating and compensating for deterministic uncertainties 

caused by the ripple and frictional torque simultaneously. 

 

5.2 Control Formulation 

 

To facilitate the following analysis, the dynamics of the hybrid stepping motor 

system can be expressed in such a form that the control input current may be simplified 

as a function of time t, which describes the system characteristic corresponding to the 

rotor position )(tθ  as follows: 

 

))(),(),(()( tttfti
qiq θθθ &&&=                                    (5.2.1) 
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where )(⋅
qi

f  represents the relationship between the input and the state of the system. 

Without loss of generality, the following further assumptions are made for the 

controlled system. 

 

Assumption 1: The desired trajectory )(tdθ  of the system lasts for a finite time 

duration T. Also, it complies with the system’s driving capacity. In other words, the 

desired trajectory is physically reachable by the system. 

 

Assumption 2: The system has a finite bandwidth so that it can only respond to 

input with a certain frequency. Only the system performance within the bandwidth can 

be ensured, since the signal outside the bandwidth cannot be correctly detected. 

 

The objective of the controller design is to generate a suitable )(tiq  that is as 

“close” to the desired control ))(),(),(()(* tttfti dddiq q
θθθ &&&=  as possible, so that the 

tracking error of the system would tend to zero. However, since at low speeds the 

corresponding input )(tiq  is nonlinear and very complicated, it is not easy to obtain 

accurately. On the other hand, )(tiq  is the inverse of the system response function 

which has a finite bandwidth and lasts for a finite time duration so that it can be 

represented by a Fourier series with finite harmonic terms. If we could find an 

algorithm, in Fourier space, to acquire all the Fourier coefficients of )(tiq , then its 

counterpart in the time domain will also be determined. To address this problem, in the 

next section we will present an effective scheme by designing a decentralized learning 

controller to estimate these coefficients from the history information of the system so as 

to achieve the desired control for precise tracking performance. 
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θ            (5.3.5) 

where 

dttit
T

kT

Tk kcik )cos()(2
)1(

ωθΘ ∫ −
=                                       (5.3.6) 

dttit
T

kT

Tk ksik )sin()(2
)1(

ωθΘ ∫ −
=                                        (5.3.7) 

where the number N of the harmonic terms in )(tkθ  is the same as that of the desired 

trajectory )(tdθ . In the kth cycle, the position tracking error )(tek of the system is 

defined as 

.kdke θθ −=                                                     (5.3.8) 

According to (5.3.1) and (5.3.5), the Fourier format of )(tek  is given by 

],0[,)]sin()cos([
2 1

0 TttiEtiEEe
N

i
sikcik

kc
k ∈∀++= ∑

=

ωω              (5.3.9) 

where 

cikdcicikE ΘΘ −=                                               (5.3.10) 

.sikdsisikE ΘΘ −=                                              (5.3.11) 

Since the elements of the basis of the Fourier space are orthonormal along with 

the fact that the harmonic magnitudes of the desired trajectory dθ  are constants and 

have no relation to the cycle number k, the tracking control problem in the time domain 

is decentralized into )12( +N  regulation control problems in Fourier space, so that we 

can design independent controllers to control each element of (5.3.9) individually. If all 

harmonic magnitudes of ke  in (5.3.9) converge, then the tracking error in the time 

domain will tend to zero. Therefore, the learning controller in Fourier space should have 

the same harmonic terms as those of ke . Besides, in Fourier space, the parameters of the 
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controllers are updated once a cycle. The system would very easily be disturbed by 

random disturbances within the cycle duration. In order to increase the robustness of the 

system and to deal with the random disturbances, we introduce a conventional 

proportional-plus-integral (PI) feedback controller in this learning controller. The PI 

controller is updated at every time instant. Thus, the learning controller in the kth cycle 

has the following form: 

qkkPqk izki ˆ+=                                              (5.3.12) 

where )()()( tetetz kkk α+= &  as similarly defined by (4.3.11), Pk  and α  are positive 

constant feedback gains, )(tek&  is the speed error in the kth cycle, and )(ˆ tiqk  is the 

estimation of the optimal feedforward  input )(* tiq . 

  

Substituting (5.3.12) into (5.2.1) and applying the Fourier transform on both 

sides of (5.2.1), we obtain 

                       ∑
=

++
N

i
sikcik

kc tiwtiw
w

1

0 )]sin()cos([
2

ωω  

                                   ∑
=

++=
N

i
sikcik

kc tiZtiZZ
1

0 )]sin()cos([
2

ωω  

∑
=

+++
N

i
sikcik

kc tiwtiww
1

0 )]sin(ˆ)cos(ˆ[
2

ˆ
ωω                         (5.3.13) 

where the left-hand side of the above represents the dynamic system, and its right-hand 

side represents the controller output or input phase current; cikw  and sikw  are the 

projection of the system function on ith harmonic frequency, which are determined by 

the following: 

 dttif
T

w
kT

Tk icik q
)cos()(2

)1(
ω∫ −

⋅=                                 (5.3.14) 
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,)sin()(2
)1(

dttif
T

w
kT

Tk isik q
ω∫ −

⋅=                                 (5.3.15) 

cikZ  and sikZ  are calculated from PI controller output as follows: 

dttitzk
T

Z
kT

Tk kPcik )cos()(2
)1(

ω∫ −
=                              (5.3.16) 

,)sin()(2
)1(

dttitzk
T

Z
kT

Tk kPsik ω∫ −
=                              (5.3.17) 

and cikŵ  and sikŵ  will be generated by the learning controller. Hence, the closed-loop 

system dynamics in Fourier space can be obtained and expressed as 

cikcikcik wZw ˆ+=                                             (5.3.18) 

 .ˆ siksiksik wZw +=                                            (5.3.19) 

 

Since the real part and also the imaginary part of Fourier series have similar 

characteristics, we hereafter use cikw , cikŵ , and cikZ  to represent the )12( +N  Fourier 

coefficients of )(tiqk , )(ˆ tiqk , and )(tzk  so no confusion is caused. It is obvious from 

(5.3.18) and (5.3.19) that the controller design task is to develop an algorithm for cikŵ  

to force cikŵ  and cikw  to approach the same value, which is the corresponding Fourier 

coefficient of the optimal feedforward )(* tiq . Alternatively, in the time domain, )(ˆ tiqk  

and )(tiqk  will converge to the same function )(* tiq , and )(tzk  will approach zero 

simultaneously. The tracking error )(tek  will then asymptotically converge, since 

0)( =tzk  constructs a stable sliding surface. Intuitively, we simply design the recursive 

update law as 

∑
−

=

=
1

0

ˆ
k

j
cijicik Zw γ                                             (5.3.20) 
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with the gains Nii ,,2,1,0 L=>γ . Then the closed-loop system dynamic equation in 

Fourier space may be rewritten as 

cik

k

j
cijicik wZZ =+ ∑

−

=

1

0
γ                                         (5.3.21) 

To ensure that cikw  tends to the constants or cikZ  converge to zero as k increases, the 

gains iγ  should be selected according to the property of the controlled system. The 

corresponding conditions will be given and discussed in the next section. 

 

Generally repeatable tasks can be classified into two types as follows: iterative 

learning mode tasks and repetitive mode tasks. Iterative learning mode tasks start with 

the same initial conditions and usually have time breaks before the next trial. In 

repetitive mode tasks, the final conditions of a given cycle are the same as the initial 

conditions of the next cycle and in succession. Considering that the period of a given 

desired trajectory is known, we may utilize the Discrete Fourier transform (DFT) in our 

algorithm to distribute the computation work to each sampling period. Therefore, the 

proposed algorithm can complete tasks of both types. The detailed implementation steps 

are presented here. 

 

Given Conditions: The sampling period TΔ , and the desired trajectory 

],0[),( Tttd ∈∀θ , or Mjjd ,,2,1],[ L=θ  with .TTM Δ=  

Step 1: Search PI controller gains ),( αPk  to stabilize the controlled system with 

acceptable tracking performance. Set 0ˆ =cikw  and 0ˆ =sikw for all i. Set the 

learning counter 1=k . 

Step 2:   Set sampling counter 1=j , 0=cikZ , and 0=sikZ . Set the learning gain iγ . 
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Step 3:   Calculate the compensation term 

              .)])2(sin(ˆ))2(cos(ˆ[
2

ˆ
][

1

0 ∑
=

++=
N

i
sikcik

kc jMiwjMiwwjcomp ππ  

Apply PI controller to the system and obtain ,][][][ jjje kdk θθ −=  and 

][][][ jejejz kkk α+= & , and then output control signal .][][ jcompjzk kP +  

After each sampling, increase j by 1 (i.e., 1+→ jj ) and calculate 

            ))2(cos(][2 jMijzk
M

ZZ kPcikcik π+→  

            ).)2(sin(][2 jMijzk
M

ZZ kPsiksik π+→  

 

Step 4:   If  ,Mj ≠  continue step 3. 

Step 5:  If the tracking error index in the kth trial ε<kEI  (learning process ends), go to 

step 2. 

Step 6:   Calculate .ˆˆ,ˆˆ )1()1( sikisikksicikicikkci ZwwZww γγ +=+= ++  

Increase k by 1 (i.e., 1+→ kk ) and go to step 2. 

 

To ensure that the tracking error index decreases as k increases, we may repeat 

the above steps with different PI gains and learning gains. In this case, we reduce the 

learning gain first, and then modify PI gains as required. 

 

5.4 Stability Analysis 

 

Based on the fact the dynamics of the system is nonlinear, and input and state 

dependent, when the input changes, the dynamics or the operating point of the system 

also changes. Suppose that the input to the system described by (5.2.1) only contains a 
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single frequency. The output of the system contains, in general, higher harmonics in 

addition to the fundamental harmonic component. When the output is fed back to the 

system, these harmonic components will generate their harmonics. As the system has 

only a finite bandwidth, harmonics higher than the cutoff frequency are greatly 

attenuated and were neglected. Therefore, even though the input changes in only one 

harmonic frequency, it will alter all cikw  and sikw  in the nonlinear system. The proposed 

algorithm attempts to eliminate tracking errors in each harmonic individually, no matter 

by which harmonic component they are generated. Define 

cikkcicik www −= + )1(Δ                                             (5.4.1) 

which gives the system change in the ith harmonic frequency due to the input change 

from the kth cycle to the (k+1)th cycle. Further define 

cikkcicik ZZZ −= + )1(Δ                                             (5.4.2) 

which represents the change of tracking error magnitude in the ith harmonic from the 

kth cycle to the (k+1)th cycle. After giving the above definition, we are now ready to 

prove the following.  

 

Theorem 1: Given the motor dynamics of (5.2.1), the learning controller given 

in (5.3.12) and (5.3.20) ensures the convergence of the tracking error as long as the 

learning gain iγ , and the closed-loop system input/output relation in Fourier space 

satisfy the following sufficient conditions:       

10 << iγ                                                           (5.4.3a) 

+∈∀−< Ζγ
Δ
Δ

ki
Z
w

i
ik

ik ,,1                              (5.4.3b) 

where ],[ sikcikik www ΔΔΔ ∈ , and ],[ sikcikik ZZZ ΔΔΔ ∈ . 
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Proof: Applying the difference operator defined in (5.4.1) and (5.4.2) to both 

sides of (5.3.18) and (5.3.19), we obtain 

.ˆ ikikik wZw ΔΔΔ +=                                            (5.4.4) 

From the update law (5.3.20), we have 

ikiik Zw γΔ =ˆ                                                  (5.4.5) 

where ],[ sikcikik ZZZ ∈ . 

Substituting (5.4.5) into (5.4.4) gives 

ikiikik ZZw γΔΔ +=                                            (5.4.6) 

ik
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ik

ik

Z
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Δ
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+=1                                               (5.4.7) 
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If the learning gain is selected to satisfy 10 << iγ  and the closed-loop system 

complies with iikik Zw γΔΔ −<1 , then it is easy to obtain 

1)1( <<+ β
ik

ki

Z
Z

.                                           (5.4.10) 

 

Thus, a sequence of Fourier coefficients will be produced as the trial number k 

increases, which has the following property: 

 

0)2(
2

)1( i
k

kikiik ZZZZ βββ <<<< −− L .                     (5.4.11) 
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Since the initial value 0iZ  is bounded, each Fourier coefficient of the PI controller 

output )(tzk kP  will diminish asymptotically as the trial number k increases. This 

implies that in the time domain, we will finally have 

0)()()( =+= tetetz α& .                                  (5.4.12) 

As α  is a positive constant, the above equation constructs a stable sliding surface. )(te  

will tend to zero along the sliding surface as time lasts (notice that ,tkTt ′+=  

],0[ Tt ∈′ , as ,∞→k  ∞→t ), which completes the proof. 

 

Remark 1: In the first trial only the PI controller is used, 0ˆ 0 =ciw , 0ˆ 0 =siw , i.e., 

the feedforward part is zero. From (5.3.18) and (5.3.19), we have 00 cici Zw = , 00 sisi Zw = . 

So from (5.3.20), in the second trial 01ˆ ciici Zw γ= , 01ˆ siisi Zw γ= , that is, the PI controller 

output in the first trial is used as a feedforward in the second trial. The selection of 

iterative update-law (5.3.20) does make sense. 

 

Remark 2: Condition iikik Zw γΔΔ −<1  is only a sufficient condition for the 

given controller. Its geometrical meaning is that the first derivative of ikw  with respect 

to ikZ  is less than 1, while the trajectory tracking is carried out repeatedly. In linear 

systems, ikwΔ  and ikZΔ  vary independently of other harmonic components, and the 

actual bound of ikik Zw ΔΔ  is smaller. Therefore, the learning gain can be selected as a 

larger value for fast convergence. In nonlinear systems, both ikwΔ  and ikZΔ  will be 

influenced by other harmonic components, the actual bound of ikik Zw ΔΔ  will be 

larger. We must trade the convergent rate for stability. Whether the above condition can 

be achieved or not also depends on the system itself. For a given system, if the above 
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condition cannot be satisfied, the controller that we are interested in cannot guarantee 

the stability. 

 

Remark 3: The main advantage of the Fourier series based learning is the 

enhancement of learning robustness and the improvement of tracking performance. 

Note that there is always some system noise or other small non-repeatable factors even 

in a repeatability dominant control environment. Accumulation of these tiny 

components contained in the control sequence and the tracking error sequence may 

degrade the approximation precision of the learning control sequence. The Fourier 

series based learning mechanism, on the other hand, updates coefficients of the learned 

frequency components and those coefficients are calculated according to (5.3.16), 

(5.3.17) and (5.3.20) which take the integration of the tracking error sequence over the 

entire control interval [0, T]. In the sequel, the integration processes play the role of an 

averaging operation on the two noisy sequences ikŵ  and ikZ  and are able to remove the 

majority of those high frequency components. 

 

Remark 4: The controller consists of two parts: PI controller and iterative 

learning controller. The former is a real time feedback controller that is updated at each 

sample instant, so that it can stabilize the system, and reduce the effects of random 

disturbances and the mismatch of initial condition. The latter is a feedforward 

compensator which is iteratively updated to obtain the optimal feedforward for 

compensating the deterministic uncertainties resulting from the ripple dynamics. Since 

it is designed in Fourier space, the parameters cikŵ  and sikŵ  in (5.3.12) should be 

updated once in every trial. Although the proposed scheme is a linear learning method 

in Fourier space when constant learning gains are selected, it can represent the optimal 
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nonlinear input function and the nonlinear input/output relation in the time domain. 

Hence, it can be applied to nonlinear systems. The system performance mainly depends 

on the compensation portion and has little to do with PI gains provided that the random 

disturbances are not serious. So there is a large range for selecting PI gains. 

 

Remark 5: In linear systems, the harmonic components are independent of each 

other. The compensated harmonic components will not influence the uncompensated 

parts, so that no spillover-like problems are caused. In nonlinear systems, the harmonic 

components are cross-related, and spillover-like problems may be caused in 

uncompensated high-frequency component parts. However, this will not reduce the 

performance much, since a physical system only has a finite bandwidth and the lower 

frequency components generally dominate the tracking errors. In addition, the control 

performance relies on the number N of harmonic terms. The selection of a larger N can 

ensure more harmonic components of the output error are canceled so that better control 

performance can be achieved. 

 

Remark 6: Since the controller only contains measurable and local information, 

there is no requirement for the system modeling. This approach is particularly 

appropriate to the situation where not all the state variables are measurable. 

 

5.5 Experiments and Discussions 

 

 To illustrate the effectiveness of the control scheme presented here, experiments 

have been conducted on a typical two-phase hybrid stepping motor. A complete control 

implementation scheme is similar to that adopted in Chapter 4, and is not described here 
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in detail. During the experiments, the motor system was required to track an identical 

sinusoidal trajectory ]2,0[,cos1)( ∈−= tttd πθ  in the sense of position tracking. The 

desired trajectory lasts for only two seconds. Therefore, tracking the desired trajectory 

for two seconds is considered as a trial. 

 

The learning and decentralized controller we used in the experiment is of the 

same form as that of (5.3.12). cikŵ  and sikŵ  are updated once a cycle according to the 

recursive algorithms (5.3.20), where k denotes the cycle number, and the same learning 

control gain is utilized for each harmonic component in Fourier space, i.e.,  

γγγγγ ===== N2210 L . It is easy to see that this controller is exactly a frequency-

domain format of (4.4.14). 

 

The experimental results of the position tracking error with certain control 

parameters are shown in Fig. 5.1, from which we can clearly see the entire convergent 

procedure. Since the learning gain is less than 1 )5.0( =γ , the convergence of the 

tracking error was achieved after about five cycles. The tracking error was forced inside 

about 0.0004 rad. Although the tracking error shows a periodicity of 0.5 Hz, which is 

consistent with that of the desired trajectory, it is far from a single-frequency sine wave. 

It contains higher harmonics and has a small spike at the moment when the motor 

changes its rotary direction due to the static frictional force and dead-zone. The number 

of harmonic terms of the Fourier series in the learning controller is chosen to be 25=N , 

so that the maximum frequency of harmonic components covered in the learning 

controller is only up to 12 Hz. However, the spikes contain very rich harmonic 

components and some of their frequencies are higher than 12 Hz. Therefore, the spikes 

have not been eliminated. Intuitively, if we increase N, more harmonic components 
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would be included to achieve better control performance. However, a larger N would 

require an intensive computing ability for practical implementation. Moreover, there is 

a limit to the increase of N because the resonant frequency of the controlled system 

could not be included. 

 

In order to gain more understanding about the proposed controller, a detailed 

analysis of the experimental results is presented next. 

 

A. Effectiveness of PI Gains 

 

To illustrate the relationship of the PI gains and the performance of the 

controller, on the basis of Fig. 5.1, we decreased PI gains by half and kept all other 

parameters unchanged. The experimental results are shown in Fig. 5.2. Comparing Figs. 

5.1 and Fig. 5.2, we can see that PI gains did not influence the convergence rate, but 

they did have a minor influence on the performance. The performance with smaller PI 

gains is a little worse than that with larger PI gains. This is because random noise and 

disturbances existed in this system. This means PI control is useful for rejecting random 

and nondeterministic signals. 

 

B. Effectiveness of Learning Gain 

 

Fig. 5.3 is the experimental result with a larger learning gain 75.0=γ , while 

other parameters were the same as those in Fig. 5.1 ( 5.0=γ ). Comparing Fig. 5.3 with 

Fig. 5.1, we can see that only the convergence rate is influenced by the learning gain. In 

Fig. 5.3, the convergence time is within three cycles. Hence, the larger the value of γ  

(less than one), the faster will be the convergence rate, as indicated in Remark 2. 
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Fig. 5.1 Learning convergence of tracking error of proposed controller 
            with higher PI gains ( 25,5.0,15,4.0 ==== Nk p γα ) 
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Fig. 5.2 Learning convergence of tracking error of proposed controller 
             with smaller PI gains ( 25,5.0,15,2.0 ==== Nk p γα ) 
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Fig. 5.3 Learning convergence of tracking error of proposed controller 
              with higher PI gains ( 25,75.0,15,4.0 ==== Nk p γα ) 
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Fig. 5.4 Learning convergence of tracking error of proposed controller 

          with higher PI gains ( 9,5.0,15,4.0 ==== Nk p γα ) 
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C. Effectiveness of Different Harmonic Terms 

 

In order to show how the harmonic terms N in the Fourier series of the learning 

controller influence the system’s performance, we used a smaller N for the controller 

design. In this experiment, we kept all the control parameters unchanged as above, 

except for 9=N . The position tracking error is shown in Fig. 5.4. From this figure, we 

can see that the convergence rate is almost the same as that in Fig. 5.1. But the 

performance is much worse. The reason is very explicit. In Fig. 5.4, those components 

with the harmonic frequencies between 4–12 Hz were not included in the learning 

controller compared with Fig. 5.1. Therefore, they were not compensated for and still 

remained in the tracking error. 

 

D. Enhanced Performance of Controller over the Time-Domain Counterpart 

 

By comparing Fig. 5.3 with Fig. 4.4(b), it is clear that frequency-domain 

learning further improves tracking control performance relative to its time-domain 

counterpart. This is because the integration processes provided by (5.3.16) and (5.3.17) 

play the role of an averaging operation on the two noisy sequences (both control 

sequence and tracking error sequence), which are able to nullify the majority of high 

frequency components caused by quantization error and other non-ideal factors due to 

limited sampling frequency. Learning in the frequency-domain with (5.3.20) obtains the 

fastest convergence. Moreover, it is shown in both Fig. 5.3 and Fig. 4.4(b) that the 

frequency-domain learning experienced a fairly smooth tracking history except that its 

tracking accuracy is subject to limitation of the encoder’s resolution. 
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5.6 Summary 

 

In this chapter, a new learning and decentralized controller based on a Fourier 

series is presented for tracking control of the hybrid stepping motor. The stability and 

convergence conditions of the learning controller were presented. Both the theoretical 

analysis and the experimental results have shown that the proposed learning controller 

has some special features relative to others. 

 

(1) The proposed controller has a general and decentralized format. It consists of two 

parts. One is a PI feedback controller which should be updated at each sample 

instant. It is used to deal with the random disturbances and the nondeterministic 

portion of the system. The other is a compensation portion designed in Fourier space 

which had to be updated once a cycle and is used to cope with the deterministic 

portion of the system such as the ripple dynamics. Since this controller only 

includes measurable and local information, there is no requirement for the system 

modeling. Therefore, it is a decentralized and model-free controller. 

(2) The fundamental point of this learning controller is that it is designed in Fourier 

space with orthonormal bases. The signals, such as desired trajectory and actual 

output, can be represented by a number of independent harmonic components. As a 

result, the nonlinear tracking control problem in the time domain is decentralized 

into a number of independent regulation problems. Thus, in Fourier space, it is very 

simple to design the regulation controllers. 

(3) Since the controller is designed in Fourier space, it can automatically tune the 

controller not only toward a suitable magnitude but toward a suitable phase. The 

controller is therefore very effective in coping with the system’s time-delay. 
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(4) The implementation of this controller is very easy. Only a few control parameters 

such as Pk , α , γ , and harmonic term N  have to be tuned. Since PI gains have 

little influence on the closed-loop performance after the system converges, they can 

be selected from a large range. γ  could be estimated according to the system 

nonlinearity or adjusted by “trial and error”, and can be selected according to the 

computation ability, sample interval, and the performance required. 

 

(5) The convergence rate of the frequency-domain learning could be very fast. In our 

experiment, convergence was achieved in two to three cycles (Fig. 5.3). It is much 

faster than the corresponding time-domain counterpart. The reason for fast 

convergence lies in the fact that the proposed controller is designed in Fourier space, 

and the high frequency noise and resonance frequency of the controlled system 

could be easily removed by selecting a suitable number of harmonic terms, so that a 

higher learning gain could be used. 
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CHAPTER 6 

CONCLUSIONS 

 

The development of simple and efficient control algorithms to solve the highly 

nonlinear torque-current-position characteristics at low speed of closed-loop commuted 

stepping motors for high-precision tracking has been investigated. The principles of 

several control schemes have been exploited to minimize the motor’s torque ripple that 

is periodic and nonlinear in the system states with specific emphasis on low-speed 

conditions. The proposed control algorithms are based on a modular control strategy 

where the feedback control module is first designed to ensure global stability and 

achieve bounded tracking accuracy while the feedforward control module is added to 

further improve the tracking performance. The interactions between the feedforward 

control module and the feedback control module have been explored and were shown to 

be complementary to each other. The DQ transformation has been utilized as a platform 

for control design. This has been shown to be useful in the facilitation of the desired 

sinusoidal commutation scheme for fast control implementation. The proposed control 

algorithms are diversified from the model-based design to the model-free design in 

either the time-domain or the frequency-domain. 

 

In the model-based control schemes, a feedback linearizing control approach has 

been used to test the profile tracking performance. A novel model identification 

procedure that operates on the measurable position signal and phase current offers 

attractive features that promise to avoid any significant injection of quantization errors 

and also promise to reject other possible noise sources without strict limitations on the 

operating mode of the motor. The feedback controller that incorporates knowledge of 
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both the ripple dynamics and the motion itself has successfully linearised the system as 

long as an appropriate choice of control gains is made with sufficient emphasis on 

integral control. The analysis, simulations and experiments have shown that the derived 

feedback control permits the motion tracking error system to respond quickly, and reject 

part of the ripple components. However, due to the forced excitation caused by the 

detent torque, the feedback controller alone is not sufficient to create the best speed 

tracking performance. This problem has been resolved by the introduction of 

feedforward compensation. The addition of the feedforward controller significantly 

improves global tracking results with the speed ripple being suppressed to a reasonably 

low level. 

 

A robust adaptive control approach has been considered for the purpose of 

improving the performance of the above scheme using an integrated control concept. By 

uncovering the properties of nonlinear uncertainties in the system dynamics and 

incorporating them into the control design, we have constructed a completely integrated 

controller to reduce torque ripple and at the same time to enhance tracking performance. 

The system uncertainties are classified into two categories of structured uncertainties. 

The structured uncertainty arising from the dominant detention effect can be separated 

and expressed as the product of known harmonic functions of the rotor position and a 

set of unknown constants. This uncertainty is estimated with adaptation and 

compensated for. The robust adaptive method is applied to deal with other structured 

uncertainty resulting from the nonsinusoidal flux distribution by estimating its bounding 

constants. The −μ modification scheme is applied in order to stop parameter adaptation 

in accordance with the robust adaptive control law. This control scheme can guarantee 

the uniform boundedness of the motor drive system and assures that the filtered tracking 
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error enters an arbitrarily pre-specified zone in a finite time, and in turn the trajectory 

tracking error asymptotically converges to a pre-specified boundary. 

 

Performance comparison between both model-based control schemes has shown 

that the robust adaptive control is clearly superior to the feedback linearizing control in 

generating a precise profile. A radical reason to induce such a performance difference 

lies in that the former directly incorporates the adaptive ripple compensation 

(feedforward) into the linear feedback control part together with a robust adaptive 

component for both the guaranteed global stability and the control specification, while 

the latter separates the feedforward design from the feedback with the special constraint 

of the ripple compensating terms and subjects to the requirement on the accurate 

estimation of torque ripple constants. As a result, the robust adaptive control scheme 

provides the advantage of suppressing the torque ripple components over a broader 

ripple frequency band. 

 

 In the model-free control schemes, two categories of the learning-based 

approaches have been considered for our purpose. The first is based on a modified 

standard repetitive learning control. This has a very simple structure which consists of 

two time-domain components in additive form: a feedback control mechanism using 

either a pure linear form or some nonlinear form, and a learning mechanism that simply 

adds up a past tracking error sequence. We have illustrated how a learning-based 

estimate can be used to achieve asymptotic tracking in the presence of undesirable 

nonlinear dynamics. Basing on the fact that the estimate of the learning-based controller 

is generated from a Lyapunov-based stability analysis, we have demonstrated how the 

Lyapunov-based design technique could be utilized to construct a learning control for 
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rejecting components of the ripple dynamics in a hybrid stepping motor. For easier 

implementation, we have specifically designed a hybrid controller by incorporating a 

pure linear feedback control into the repetitive learning mechanism. The proposed 

control scheme, as opposed to the use of a multiple step process, is updated 

continuously with time during the transient response (versus during the steady-state) 

and hence an improved transient response is facilitated. 

 

The second learning based approach is based on a decentralized learning control 

that is implemented in the frequency domain by means of a Fourier series expansion for 

tracking control of a hybrid stepping motor. Basing on the fact that for a class of 

tracking control tasks defined over a finite duration both the desired trajectory and the 

actual output can be expressed by a Fourier series with constant harmonic magnitudes, 

the learning controller has been designed to individually control each harmonic 

component of the actual output so that it converges to that of the desired trajectory 

within the system bandwidth. Since this decentralized learning controller is designed in 

Fourier space instead of in time domain, the system’s time-delay can be easily 

compensated for. Moreover, this learning controller is only based on local input and 

output information so that no a priori system modeling is required. The control scheme 

can significantly improve the tracking control performance due to its control design 

philosophy in Fourier space and the peculiar capability of independent harmonic control.  

 

In comparison to the corresponding time-domain counterpart, frequency-domain 

learning control can obtain better tracking accuracy and faster convergence. This is 

because the integration processes inherent in the frequency-domain algorithm have 

played the role of an averaging operation on the two noisy sequences (both control 
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sequence and tracking error sequence) nullifying majority of the high frequency 

components caused by quantization errors and other non-ideal factors due to limited 

sampling frequency. Learning in the frequency-domain experiences a fairly smooth 

tracking history except that its tracking accuracy is subject to the limitation of the 

encoder’s resolution. 

 

The experiments were conducted on a typical hybrid stepping motor to illustrate 

the effectiveness of the different control systems in precision profile generation. The 

experimental results have validated the theoretical predictions presented. Although the 

performance comparisons between the model-based control schemes as well as the 

model-free control schemes are given respectively, the model-free schemes exhibit 

better application potential because they have the inherent capability of nonlinear 

functional identification to compensate for the ripple dynamics. This offers guidance for 

the selection of a practical control algorithm in tuning computer-controlled drives. The 

impressive results obtained in this study pave the way for the stepping motors to be 

used in many applications previously not suitable for open loop steppers such as in low-

speed direct-drive systems. 
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APPENDIX A 

PROOF OF EXISTENCE 

 

From (3.4.16), it can be seen that 0<V&  if 

εφμΘΘμ ++> 2
22

1
12

12 T
P zk ;                                   (A1) 

then 0ε ′  can be easily determined by solving the following equation: 
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Substituting 1μ  and 2μ  in terms of (3.4.11) and letting 0ε ′=z  yields 
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then (A3) can be transformed to the following: 
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The solutions of the above equation are 
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It is obvious that the solutions ℜ∈′0ε . Note that 0ε ′  is positive; hence the desired 

solution is 
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APPENDIX B 

PROOF OF INEQUALITY 

 

To prove the inequality given in (4.2.10), we divide the proof into three possible 

cases as follows. 

 

Case 1: iiii βξβξ ≤≤ 21 ,  

From the definition of )(sat ⋅β  given in (4.2.9), we can see that for this case 

.)(sat,)(sat 2211 iiii ii
ξξξξ ββ ==                                 (B1) 

After substituting (B1) into (4.2.10), we obtain the following expression: 

2
21

2
21 ))(sat)(sat()( iiii ii

ξξξξ ββ −=−                                (B2) 

for iiii βξβξ ≤≤ 21 , , hence, the inequality given in (4.2.10) is true for Case 1. 

 

Case 2: iiii βξβξ >≤ 21 ,  

From the definition of )(sat ⋅β  given in (4.2.9), it is clear for this case that 

,2)( 12 iii ξβξ ≥+  for iiii βξβξ >≤ 21 , .                           (B3) 

After multiplying both sides of (B3) by ii βξ −2  and then simplifying the left-hand side 

of the inequality, we can rewrite (B3) as follows: 

iiiii 12
22

2 )(2)( ξβξβξ −≥−                                         (B4) 

where we have utilized the fact that 02 >− ii βξ  for this case. After adding the term 2
1iξ  

to both sides of (B4) and then rearranging the resulting expression, we obtain the 

following expression: 

2
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Based on the expression given in (B5), we can utilize the facts that 

iiii ii
βξξξ ββ == )(sat,)(sat 211                                   (B6) 

to prove that 

2
21

2
21 ))(sat)(sat()( iiii ii

ξξξξ ββ −≥−                                 (B7) 

for iiii βξβξ >≤ 21 , . 

 

Case 3: iiii βξβξ −<≤ 21 ,  

From the definition of )(sat ⋅β  given in (4.2.9), it is clear for this case that 

,2)( 12 iii ξβξ ≤−  for iiii βξβξ −<≤ 21 , .                          (B8) 

After multiplying both sides of (B8) by )( 2 ii βξ +  and then simplifying the left-hand 

side of the inequality, we can rewrite (B8) as follows: 

iiiii 12
22

2 )(2)( ξβξβξ +≥−                                         (B9) 

where we have utilized the fact that 02 <+ ii βξ  for this case. After adding the term 2
1iξ  

to both sides of (B9) and then rearranging the resulting expression, we obtain the 

following expression: 

2
1

2
1

2
221

2
1 22 iiiiiiii βξβξξξξξ ++≥+− .                              (B10) 

Based on the expression given in (B10), we can utilize the facts that 

iiii ii
βξξξ ββ −== )(sat,)(sat 211                                (B11) 

to prove that 

2
21

2
21 ))(sat)(sat()( iiii ii

ξξξξ ββ −≥−                              (B12) 

for iiii βξβξ −<≤ 21 , ; hence, we have proven that (4.2.10) is true for all possible 

cases. 
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