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 Abstract 

The aim of this research is to develop efficient algorithms for modeling face 

images, which include human face detection, human face tracking, and human face 

modeling.  Human face detection is the first step of all face processing system.  In 

order to achieve a good detection performance level, the system needs to be able to 

detect the human face accurately and efficiently in a face image.  In this thesis, an 

efficient algorithm for detecting human faces in color images is proposed.  The first 

step in our algorithm is to segment out skin-color regions by using mean-shift 

algorithm.  One of the major challenges to skin-color segmentation is that the human 

faces may be under poor lighting conditions or under varying lighting over a face 

region.  Our approach considers the distributions of the color components of skin 

pixels under different illuminations, and the face color regions are identified with the 

maximum-likelihood technique.  Then, the human eyes are detected with color 

information by using the mean-shift approach.  Two eye candidates form a possible 

face region, which is then verified as a face or not by means of a two-stage procedure 

with an eigenmask.  Finally, the face boundary region of a face candidate is further 

verified by a probabilistic approach in order to reduce false alarms.  Once a face has 

been detected, it is then tracked in the subsequent video sequence.  Facial features are 

represented using Gabor wavelets, and are then tracked with a modified greedy 

algorithm.  An adaptive template matching method is proposed to adapt the changing 

appearances during tracking in order to combat the perspective variations of the 

human face under consideration.  The construction of a 3D face model using a 

similarity measurement is also proposed.  Without requiring prior camera calibration, 

the 3D face model is constructed based on multiple images.  An iteration procedure is 
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proposed to estimate the depth of the 3D face model for a human face.  Experimental 

results show that all of these algorithms can detect, track and construct human faces 

reliably and efficiently. 
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Chapter 1 
Introduction 

 

The objectives of this chapter are to introduce the general concepts of human 

face modeling and the related processing algorithms, as well as their applications.  In 

addition, a brief introduction to the human face detection algorithm, the face tracking 

algorithm and 3D face construction techniques proposed and developed in this thesis 

will be presented. 

 

1.1 Motivation of Human Face Modeling 

One of the most challenging and difficult problems in computer graphics and 

animation is the generation of a realistic 3D human face model,  which is essential to 

computer games, film making, online chat, video conferencing, model-based video 

coding, etc.  Different commercially available laser scanners can be used to capture 

the 3D structure of an object, which can then be used for 3D object modeling.  

However, laser scanners are expensive and the data are usually noisy.  Prior to the 

animation of the human face model, hand touch-ups and manual registration are 

required.  As the cost of computers, digital cameras and video camera is relatively low, 

there is a great interest in producing 3D human face models directly from a sequence 

of 2D images.  For example, voxel-based reconstruction [61], object-based 

reconstruction [27], and image-based reconstruction [1, 70, 131] are existing methods 

to recover 3D coordinates from multiple 2D images.  However, these methods require 

accurate camera calibration for the reconstruction.  Most of the techniques available 

nowadays are manually intensive and computationally expensive.  Therefore, in order 

to perform human face modeling, efficient algorithms that can detect and track human 
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CANDIDE model [5], can be employed to model the human face.  Based on the two 

base images and detected facial features, the system computes the face mesh geometry 

and the head pose.  Corner detection, matching, motion estimation, 3D reconstruction 

and model fitting are involved in this stage. 

Since human face is a 3D non-rigid object, there is little or no prior knowledge 

about the face in the scene and its movements.  After the facial features have been 

detected, the head pose is tracked in the subsequent frames.  In this stage, facial 

features are tracked to estimate the head pose movement.  The CANDIDE model is 

then adapted to multiple 2D human faces at different perspective to estimate the 

human face depth information.  The face model will be refined with curve fitting 

when more detailed depth information about the human face is available.  The curve-

fitting process adjusts the face mesh geometry to estimate the original curve of a 

human face from a video sequence.  This curve-fitting process is a computational and 

time-consuming process, as extensive searching in the image space is required.  

Finally, a facial texture map is generated by blending all the images from the video 

sequence.  The tracked face in the previous process is registered with facial features 

and corner matching.  Therefore, a textured 3D human face model can be 

approximated. 

 

1.3 Our Methods for Human Face Modeling 

The objectives of this research are to investigate and develop effective 

techniques for efficient human face modeling.  The human face is the most important 

object for many applications, such as model-based video coding, film making and 

computer games.  Our human face modeling system focus on three major parts: 

human face detection, face tracking and 3D face construction.  In our face detection 
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algorithm, skin colors ranging from poor lighting to extremely strong lighting are 

modeled by means of a mixture-of-Gaussian model.  In the detection process, the 

mean-shift algorithm [17] is first used to segment an image into different color 

regions.  Maximum-Likelihood is then applied to determine whether the regions are of 

a skin color or not.  With the skin-color regions, possible human eyes are detected 

based on the color information and the eyes’ characteristics.  A possible face region is 

formed by pairing two possible eye candidates.  These possible face candidates are 

then verified as a face or not by means of a two-stage procedure with an eigenmask.  

Finally, the face boundary region of each face candidate is further verified using a 

probabilistic approach to reduce the false alarms.  After a face has been detected, it 

can be tracked in the subsequent video sequence.  In our face-tracking algorithm, 

facial features including the left eye, right eye and mouth are represented by Gabor 

wavelet, and are tracked in the first stage.  For efficient tracking, a triangular structure 

formed by the three facial features is considered and a greedy algorithm is employed 

in the searching process.  Then, an adaptive template matching method, which can 

adapt to the changing appearance of the tracked face, is devised for tracking a region.  

Finally, a 3D face-construction method based on multiple 2D images is proposed.  In 

our 3D face-construction algorithm, the depths of those important feature points in the 

3D face model are estimated based on a multiple of 2D human face images.  One 

advantage of our method is that prior camera calibration is not required.  The 

CANDIDE model [5] is used as our 3D mesh to adapt to a human face.  To construct 

the 3D model of a human face, an iteration procedure is proposed to minimize the 

depths so that the CANDIDE model can best represent the faces in views from 

different perspectives. 
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1.4 Organization of the Thesis 

The rest of this thesis will give an overview of existing techniques for face 

detection, face tracking and 3D reconstruction, as well as the respective techniques 

devised and developed in this thesis.  Chapter 2 will present the state-of-the-art 

technology for human face detection, face tracking and 3D reconstruction, as well as 

the problems associated with this technology.  Chapter 3 outlines our efficient 

approach for human face detection.  The techniques used include skin-color 

segmentation, possible eye candidate detection, a two-step eigenmask face 

verification, and face boundary verification.  In skin-color segmentation, a mixture-of-

Gaussian model is used to describe the skin color under different lighting conditions.  

The mixture parameters are determined by using the expectation-maximization 

algorithm.  The mean-shift algorithm [17] is used to segment an input image into a 

number of color regions.  Then, a region-based approach is proposed to segment skin 

color from a background under various illuminations.  Possible eye candidates are 

detected by means of valley detection and mean-shift algorithm in color image.  

Possible face regions are then formed by pairing two possible eye candidates.  A face 

verification method using an eigenmask is proposed to verify a face in two regions: 

the upper face region and the lower face region.  Finally, the contour of a selected 

face is further verified by a probabilistic function.  In Chapter 4, an effective face-

tracking method will be described.  An adaptive template-matching approach is 

proposed for face tracking.  Facial features are tracked based on the facial features 

represented by the Gabor wavelet in the first stage.  Finally, the adaptive template 

matching is used to verify the tracked face region.  This adaptive template, which is 

based on a key-frame representation technique for video analysis, can adapt to the 

slowly changing appearance of a tracked region.  This can make the tracking capable 



 - 21 -  

of following the recent appearance of a tracked region, as well as the previous 

appearances of the region.  In Chapter 5, a novel 3D face-construction algorithm is 

proposed.  The depth estimation of a human face from multiple images without 

requiring prior camera calibration is proposed.  The CANDIDE model [5] is used as a 

3D mesh to adapt to the human faces.  An iteration procedure is proposed to obtain an 

optimal structure which can represent the multiple training face images well.  Finally, 

a summary of the major contributions and a conclusion to this thesis are provided in 

Chapter 6. 
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Chapter 2 
Literature Review 

 

2.1 Introduction 

In this chapter, a brief survey of the current literature in face detection, face 

tracking and constructing of 3D face model is given.  The human face is the first to be 

detected in our human face modeling system.  Different human face detection 

methods are reviewed in Section 2.2.  After a human face is detected, the motion of 

the face is tracked in the subsequent frames.  The state-of-the-art tracking 

methodologies are discussed in Section 2.3.  Since human face is a non-rigid 3D 

object, the appearance of a human face changes with poses, and expressions, etc.  

Finally, a 3D human face model is constructed by using information obtained from 

tracking.  Recent methods for constructing 3D face models are presented in Section 

2.4. 

 

2.2 Detecting Faces in a Still Image 

Visual analysis and object recognition are the most challenging tasks in 

computer vision.  The computational models of automatic face recognition system 

are to develop the process of how the people recognize each other’s face.  A first 

step of any face processing system is detecting the faces location in images, if 

present.  Face detection from a single image is a challenging task because the face is 

variability in scale, location, orientation, and pose.  Facial expression, occlusion, and 

lighting conditions also change the overall appearance of faces. 
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Face Detection [125] is defined as:  Given an arbitrary image, the goal of face 

detection is to determine whether or not there are any faces in the image and, if 

present, return the image location and extent of each face.  A robust face detection 

algorithm has to combat with the following factors: 

• Pose.  The face in an image can vary due to the relative camera-face pose, 

such as frontal, 45 degree, profile upside down.  Because of the pose change, 

some facial features such as an eye or the nose may be partially or wholly 

occluded. 

• Presence or absence of structural components.  Facial features such as 

beards, mustaches, and glasses may or may not be presented.  In addition, 

these facial features have a great deal of variability such as shape, color and 

size. 

• Facial expression.  The appearances of face can be affected by with different 

facial expressions, such as smile, sad, disgusted, etc. 

• Occlusion.  Faces may be partially or wholly occluded by other objects, e.g. 

faces may be occluded by other faces in a picture with a group of people. 

• Image orientation.  Faces in an image can have different rotation about the 

camera’s optical axis. 

• Imaging conditions.  The appearances of face can be affected by different 

lighting conditions, camera characteristic and quality of lens. 

There are many related researches to face.  Face localization [48], which is a 

simplified detection problem, searches the position of a single with the assumption 

that an input image contains one face only.  Facial feature detection [19, 30] is to 

detect the presence and location of facial feature, such as eyes, nose, nostrils, 

eyebrow, mouth lips, ears, etc., with the assumption that there is a single face in an 
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image.  Face recognition [13] searches for the most similar faces by comparing the 

input image and faces in a face database.  Face authentication [108] is to verify the 

identity of an individual in the input image.  Face tracking [21, 26] is to estimate the 

next location and orientation of a face in a video sequence.  Facial expression [25] 

recognition is to identify the affective states of humans, such as happy, sad, disgusted, 

etc.  Obviously, face detection is the first step in any face processing system. 

Face detection methods based on learning algorithms have attracted much 

attention recently and have demonstrated excellent results.  These methods are data 

driven which relies heavily on the training sets.  Another issue is how to evaluate the 

performance of the proposed detection methods.  Many recent face detection papers 

compare the performance of several methods in terms of detection and false alarm 

rates.  Besides, many metrics have been adopted to evaluate algorithms, such as 

learning time, execution time, the number of training samples, as well as the ratio 

between detection rates and false alarms.  Detection rate is defined as the number of 

faces correctly detected by the proposed algorithm.  An image region is declared as a 

face by a detector if the image region covers more than a certain percentage of a face 

in the image.  In general, there are two types of errors: false negatives in which faces 

are missed resulting in low detection rates and false positives in which a wrong image 

region is declared as a face.  The detection rate can be improved or degraded by 

turning one’s method parameters, thus, a fair evaluation should be considered during 

comparison between different methods. 

There are more than 150 reported approaches for face detection.  The research in 

face detection has broaden implications in computer vision research on object 

recognition.  Most of the model-based and appearance-based approaches to 3D object 

recognition have been limited to rigid objects.  These methods attempt to robustly 
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perform identification over a broad range of camera locations and illumination 

conditions.  Face detection can be considered as a two-class, “face” or “non-face,” 

recognition problem.  Consequently, face detection is to recognize a class of object 

from images with a great deal of within-class variability.  This variability is captured 

by using large training sets of images, thus, a much broader class of recognition 

problem can be achieved. 

The existing methods for face detection from a gray scale or color image are 

classified into four categories: 

1. Knowledge-based methods.  These are rule-based methods, which encapsulate 

human knowledge about a typical face, are highly related to facial features.  

These methods are designed mainly for face localization. 

2. Feature invariant approaches.  These algorithms aim to locate faces feature 

and its structure under different pose, viewpoint, or different lighting conditions.  

These methods are designed mainly for face localization. 

3. Template matching methods.  The face is described by several standard 

patterns in this matching method.  The correlation between an input image and 

template are computed for detection.  These methods can be used for both face 

localization and detection. 

4. Appearance-based methods.  Models or templates are learned from a set of 

training images.  The model captures the representative variability of facial 

appearance and the used for detection.  These methods are designed mainly for 

face detection. 

Table 2.1 summarizes these four categories algorithms and their representative works 

for face detection in a single image.  In this chapter, we would focus on the 
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motivation and general approach of feature invariant approach and appearance-based 

approach. 

Approach Representative Works 
Knowledge-based  

Rule-based multi-resolution method face detection for face 
detection[121]. 

Feature invariant 
• Facial Features 
• Texture 

 
• Skin Color 
• Multiple Features 

 
Edges grouping for face detection  [51, 126]. 
Space Gray-Level Dependence matrix (SGLD) for face detection 
[24]. 
Mixture-of-Gaussian for skin color modeling[64, 123]. 
Skin color, size and shape integration for skin color detection [45]. 

Template matching 
• Predefined face templates 
• Deformable Templates 

 
Shape template for facial feature detection [19]. 
Active Shape Model (ASM) for face identification [50]. 

Appearance-based method 
• Eigenface 
• Neural Network 
 
• Support Vector Machine (SVM) 
• Naive Bayes Classifier 
 
• Hidden Markov Model (HMM) 

 
Eigenvector decomposition and clustering for face recognition [112]. 
Ensemble of neural networks and arbitration schemes for face 
detection [85]. 
SVM with polynomial kernel for face detection [72]. 
Joint statistics of local appearance and position for object 
recognition [91]. 
Higher order statistics HMM for face detection[82] 

Table 2.1.  Face detection methods under different approach. 

 

2.2.1 Knowledge-Based Top-Down Methods 

The development ground of face detection methods are the rules that based on 

researcher's knowledge to a human faces.  The features of a face can be described by 

simple rules.  Basically, a face is composed with two eyes, a nose, and a mouth in an 

image.  The relationships between features can be represented by their relative 

distances and positions.  Therefore, the first step is to extract facial features in an 

input image, and follow by a face candidates verification based on the coded rules. 

The difficulty of this approach is to translate human knowledge into well-

defined rules.  If the rules are too general, many false positives will be generated.  If 

the rules are too strict, face detection will fail without passing through all the rules.  

Moreover, this approach has its limitation in detection under different poses and 
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various lighting conditions.  It is difficult to include all possible cases to detect a face 

since those rules can violate each other under different conditions. 

 

2.2.2 Feature Invariant Approaches 

In contrast to the knowledge-based top-down approach, invariant features 

approach is another approach for face detection.  The underlying assumption is to 

detect face in different poses and under different lighting conditions effortlessly as 

human beings.  Thus, it requires some properties or features which are invariant over 

these variabilities.  Numerous methods have been proposed to detect facial features 

and to verify the existence of a face.  Edge detectors are commonly used to extract 

facial features such as eyebrows, eyes, nose, mouth, and hair-line.  A statistical model 

is then built to describe their relationships and to verify the existence of a face.  The 

problem of these feature-based algorithms is that the image features can be severely 

corrupted due to illumination, noise, and occlusion.  The feature boundaries can also 

be weakened by the existence of shadows. 

 

Facial Feature 

Leung et al. [51] developed a probabilistic method to locate a face in a complex 

background based on local feature detectors and random graph matching.  In their 

approach, the goal is to locate a face which is formulated by a certain arrangement of 

facial features that is more likely to be a face.  A typical face is described by five 

features, two eyes, two nostrils, and nose/lip junction.  Relative distance is computed 

between any pair of facial features of the same type, such as, left-eye, right-eye pair.  

The relative distances are then modeled by a Gaussian distribution.  A facial template 

is defined by averaging the responses to a set of multi-orientation, multi-scale 



 - 28 -  

Gaussian derivative filters over a number of faces in a data set.  Given an input image, 

possible facial features candidate in the input image are first identified by matching 

the filter response at each pixel against a template vector of responses.  The top two 

strongest responded possible features are selected to search for the other facial 

features.  The facial features cannot appear in an arbitrary arrangements, thus, a 

statistical model of mutual distances can be used to estimate the expected locations of 

the other features.  Moreover, because of the covariance of the estimated candidates, 

the expected feature locations can be estimated with high probability.  Constellations 

are then formed only from candidates that lie inside the appropriate locations.  The 

most face-like constellation is then determined.  Random graph matches the best 

constellation in which the nodes of the graph are correspondent to face features.  The 

arcs represent the distances between different features.  Furthermore, the constellation 

is ranked by a probability density function where the probability measures the 

constellation corresponds to a face versus the probability it was generated by an 

alternative mechanism, i.e., non-face.  In their experiments, 150 images were used and 

in which a face was declared to be correctly detected if three or more features were 

correctly located on the faces.  This system is able to achieve a correct localization 

rate of 86 percent. 

 
Skin Color 

Human skin color is an effective tool in many applications from face detection 

to hand tracking.  Although the human skin color has great variation between different 

races, several studies have shown that the major difference largely lies between their 

intensity rather than their chrominance [30, 31, 123].  Several color spaces have been 

utilized to label pixels as skin including RGB [38, 39, 89], normalized RGB [20, 21, 
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43, 66, 71, 80, 103, 105, 122, 123], HSV (or HSI) [45, 90, 101, 102], YCrCb [12, 

113],YIQ [23, 24], YES [86], CIE XYZ [14], and CIE LUV [124]. 

Color information is an efficient tool to identify facial areas and specific facial 

features if the skin color can be modeled properly to adapt different lighting 

conditions.  However, such skin color models are effective conditionally that the 

result can be affected significantly by the spectrum of the light source variation.  In 

other words, color appearance is often unstable due to changes in both background 

and foreground lighting.  McKenna et al. [65] proposed an adaptive color mixture 

model to track faces under varying illumination.  A stochastic model estimates an 

object's color distribution online and adapts to accommodate changes under varying 

lighting conditions.  Experimental results show that their system can track faces under 

varying illumination, however, this method cannot be applied to detect faces in a 

single image. 

Skin color cannot be used alone to detect or track faces, thus, several modular 

systems [31, 65, 102, 123, 124] have been developed to combine shape analysis, color 

segmentation, and motion information for locating or tracking heads and faces in an 

image sequence. 

 

Multiple Feature 

Recently, numerous face detection approaches that combine several features 

have been proposed.  Features like skin color, size, and shape are utilized to find 

possible face candidates in the first step.  These candidates are then further verified by 

using local, detailed features such as eye brows, nose, and hair.  Connected 

component analysis or clustering algorithms are used to group skin-like pixels 
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together.  If the shape of a connected region appears as an elliptic or oval shape, it 

becomes a possible face candidate.  Finally, local features are used for verification. 

Shape and color are used for face localization and facial feature extraction in 

[102].  Initially, skin color segmentation is performed in HSV color space.  At a 

coarse resolution, connected components are then determined by region growing.  The 

best fit ellipse is computed using geometric moments for each connected component.  

Face candidates are selected if connected components are well approximated by an 

ellipse.  Subsequently, facial features would be searched inside the connected 

components for further verification.   

A Gaussian skin color model is used to classify skin color pixels in [109, 110].  

A neural network is trained to detect face with the extracted geometric moments.  

Their experiments show a detection rate of 85 percent over 100 images test set. 

 

2.2.3 Template Matching 

In template matching, a standard face pattern, which is usually frontal face 

template, is manually predefined by a function.  Given an input image, the correlation 

between the standard face patterns is computed for the face contour, eyes, nose, and 

mouth independently.  The existence of a face is determined based on the correlation 

value.  The advantage of this approach is its simple implementation, however, the face 

detection is not completely effective with variation in scale, pose, and shape.  In order 

to achieve scale and shape invariance, multi-resolution, multi-scale, sub-templates, 

and deformable templates have been proposed. 

 

Predefined Templates 



 - 31 -  

Sakai et al. [87] proposed to detect frontal faces in an image in 1969.  Each 

feature, such as eyes, nose, mouth, and face contour, was modeled by a sub-template.  

Each sub-template is defined in terms of line segments.  Lines in the input image are 

extracted based on greatest gradient change and then matched against with the sub-

templates.  The correlations between sub-images and contour templates are computed 

to determine the location of possible face candidates.  Then, the matching with the 

other sub-templates can be performed at the position of possible face candidates. 

 

Deformable Templates 

Yuille et al. [127] used deformable templates to model facial features that fit a 

prior elastic model, such as eyes, mouths, etc.  In this approach, parameterized 

templates are used to describe facial features.  An energy function is defined to 

measures edges, peaks, and valleys in the input image which corresponds to the 

parameters in the template.  By minimizing the energy function parameters, the best 

fit of the elastic model is found.  Their experimental results demonstrate good 

performance in tracking non-rigid features, however, the major drawback of this 

approach is that the deformable template must be initialized near to the object of 

interest. 

 

2.2.4 Appearance-Based Methods 

This approach is similar to template matching.  The “templates” or models in 

appearance-based methods are learned from a set of training images.  In general, 

appearance-based methods rely on techniques from statistical analysis and machine 

learning to determine the relevant characteristics of face and non-face images.  The 

learned characteristics are embedded in the form of distribution models or 



 - 32 -  

discriminant functions that are used for face detection.  Due to the high-dimensional 

representation of the model, dimensionality reduction is usually carried out for 

computation efficiency and detection efficacy. 

Most of the appearance-based methods are presented in probabilistic framework.  

An image region or feature vector derived from an image is represented as a random 

variable x.  This random variable is characterized to “faces” and “non-faces” by the 

class-conditional density functions p(x|face) and p(x|non-face).  Face or non-face can 

be classified by using Bayesian classification or maximum likelihood.  Another 

approach is to determine face and non-face class with discriminant function, i.e., 

decision surface, separating hyper-plane, threshold function.  Conventionally, image 

patterns are first projected to a lower dimensional space.  Then, a discriminant 

function is formed for classification [67, 112], or a nonlinear decision surface can be 

formed using multilayer neural networks [85].  Recently, support vector machines and 

other kernel methods have been proposed.  These methods implicitly project patterns 

to a higher dimensional space and then form a decision surface between the projected 

face and non-face patterns [72]. 

 

Eigenfaces 

An early attempt of using eigenvectors in face recognition was proposed by 

Kohonen [46].  A simple neural network is demonstrated to perform face recognition 

for aligned and normalized face images.  The neural network computes a face 

description by approximating the eigenvectors of the image's autocorrelation matrix.  

These eigenvectors are later known as the Eigenfaces. 

Face recognition and detection using principal component analysis are proposed 

by Turk and Pentland [112]. Similar to [44], principal component analysis on a set of 
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training images is performed to generate the Eigenfaces which span a subspace of the 

image space.  Images of faces are projected onto the subspace and clustered.  

Similarly, non-face training images are projected onto the same subspace and 

clustered as well.  Those faces images do not change radically when they are 

projected onto the face space, however, the projection of non-face images appear 

quite differently.  For face detection over an image, the distance between an image 

region and the face space is computed for all locations in the image.  The distance 

from face space is used as a measure of “faceness.”  The result of calculating the 

distance from face space is regarded as “face map.”  The minimum value in the face 

map is considered as the detected face.  The idea of eigenvector decomposition and 

clustering is widely available in many works on face detection, recognition and 

feature extractions. 

 

Neural Networks 

Neural networks [85] have been widely adopted in many pattern recognition 

problems, such as optical character recognition, object recognition, and autonomous 

robot driving.  Various neural network architectures have been proposed for face 

detection.  It considers face detection as a two class pattern recognition problem.  The 

complex class conditional density can be train by using neural networks.  The major 

drawback of the neural network architecture is that the parameters are extensively 

tuned, such as number of layers, number of nodes, learning rates, etc., to get 

exceptional performance. 

 

Support Vector Machines 
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Support Vector Machines (SVMs) were first applied to face detection by Osuna 

et al. [72].  Polynomial function, neural networks, or radial basis function (RBF) can 

be trained by using SVMs.  Most classifiers, such as Bayesian, neural networks, and 

RBF, are trained by minimizing the training error, i.e., empirical risk.  SVMs operate 

on another induction principle, called structural risk minimization, which aims to 

minimize an upper bound on the expected generalization error.  An SVM classifier is 

a linear classifier.  A hyper-plane is chosen to minimize the expected classification 

error of the unseen test patterns.  This optimal hyper-plane is defined by a small 

subset of weighted training vectors, called support vectors.  Estimating the optimal 

hyper-plane is equivalent to solving a linearly constrained quadratic programming 

problem.  However, computation is memory intensive and time consuming.  To solve 

the problem, a more efficient method is developed by Osuna et al. [72] to train an 

SVM for large scale problems, and is applied to face detection.  Experiment carries 

out with two test sets of 10,000,000 test patterns of 19x19 pixels.  Their system has 

slightly lower error rates and runs approximately 30 times faster than the system 

developed by Sung and Poggio [106]. 

 

Naïve Bayes Classifier 

Apart from the SVM method in [72], which has modeled the global appearance 

of a face, Schneiderman and Kanade [92] described a naive Bayes classifier to 

estimate the joint probability of local appearance and location of face patterns at 

multiple resolutions [91].   Local appearance is emphasized because some local 

patterns of an object are more unique than others.  The intensity patterns around the 

eyes are much more distinctive than the pattern found around the cheeks.  There are 

two reasons for using a naive Bayes classifier.  First, a better estimation of the 
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conditional density functions of these sub-regions is provided.  Second, a naive Bayes 

classifier provides a functional form of the posterior probability to capture the joint 

statistics of local appearance and position on the object.  The face image is 

decomposed into four rectangular sub-regions at each scale.  These sub-regions are 

then projected to a lower dimensional space using PCA and quantized into a finite set 

of patterns.  The statistics of each projected sub-region are estimated from the 

projected samples to encode local appearance.  Their method decides the existence of 

a face when the likelihood ratio is larger than the ratio of prior probabilities.  With an 

error rate of 93.0 percent on data set 1, the proposed Bayesian approach shows 

comparable performance to [92].  This method is able to detect some rotated and 

profile faces.  Lately, Schneiderman and Kanade [85] further extend this method with 

wavelet representations to detect profile faces and cars. 

 

Hidden Markov Model 

In Hidden Markov Model (HMM) [82], the underlying assumption is that 

patterns are characterized as a parametric random process.  The parameters of this 

process can be estimated in a precise and well-defined manner.  In order to develop 

the HMM for a pattern recognition problem, at first, a number of hidden states need to 

be decided to form a model.  Secondly, the HMM can be trained to learn the 

transitional probability between states from the examples.  Each example is 

represented as a sequence of observations.  Finally, the HMM would maximize the 

probability of the training data by adjusting the parameters in the HMM model with 

the standard Viterbi segmentation method and Baum-Welch algorithms [81].  After 

the HMM has been trained, the output probability of an observation determines the 

class to which it belongs. 
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A face can be divided into several regions such as the forehead, eyes, nose, 

mouth, and chin.  An appropriate order, from top to bottom and from left to right, can 

be used to observe these face regions.  This approach aims to associate facial regions 

with the states of a continuous density Hidden Markov Model instead of relying on 

accurate alignment as in template matching or appearance based methods where facial 

features such as eyes and noses need to be aligned with respect to a reference point.  

HMM-based methods usually consider a face pattern to be a sequence of observation 

vectors where each vector is a strip of pixels.  During training and testing, an image is 

scanned in some order, usually from top to bottom.  The observation is taken as a 

block of pixels.  For face patterns, the boundaries between strips of pixels are 

represented by probabilistic transitions between states.  The image data within a 

region is modeled by a multivariate Gaussian distribution.  An observation sequence 

consists of all intensity values from each block.  The output states correspond to the 

classes to which the observations belong to.  After the HMM has been trained, the 

output probability of an observation determines the class to which it belongs to.  

HMMs have been applied to both face recognition and localization.  For face 

localization, the HMM is trained for a generic model of human faces from a large 

collection of face images.  The image location is declared to be a face if the 

probability obtained in each rectangular pattern in the image block is larger than a 

certain threshold. 

 

2.2.5 Face Image Database 

A training data set of face images are always required for most face detection 

methods.  Therefore, the databases originally developed for face recognition 

experiments can be used as training sets for face detection.  Since these databases 
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were constructed to empirically evaluate recognition algorithms in certain domains, 

the characteristics of these databases and their applicability to face detection are 

reviewed.  Although numerous face detection algorithms have been developed, most 

of them have not been tested on data sets with a large number of images.  Table 2.2 

summarizes the characteristics of the mentioned face image databases. 

 

FERET Database 

The FERET database was constructed to develop automatic face recognition 

capabilities that can be employed to assist security, intelligence and law enforcement 

personnel [75].  It has 14,051 eight-bit grayscale images of human faces.  It includes 

face images of various poses, including profiles of alternative expressions and of 

different illuminations.  For some people, it includes face images with eye glasses 

worn, with different hair length, and both.  Pose variations of the face images were 

captured systematically.  Because of its large amount of facial images, it is one of the 

best-known face databases. 

 

Yale Database 

The Yale face database was made by the Center for Computational Vision and 

Control, at Yale University [9].  It contains gray face images of 15 people, where 

there are images of 11 variations for each person.  Images for each person are normal 

images, images with or without glasses, images with light variations (such as center-

light, left-light and right-light), and images with expression variations (such as happy, 

sad, sleepy, surprised and winking). 

 

Purdue AR Face Database 
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The Purdue AR database contains over 3,276 color images of 126 people (70 

males and 56 females) in a frontal view [62].  This database is designed for face 

recognition experiments under several mixing factors, such as facial expressions, 

illumination conditions and occlusions.  All the faces appear with different facial 

expression (neutral, smile, anger and scream), illumination (left light source, right 

light source and sources from both sides), and occlusion (wearing sunglasses or scarf).  

The images were taken during two sessions separated by two weeks.  All the images 

were taken by the same camera setup under tightly controlled conditions of 

illumination and pose. 

 

MIT face database 

The MIT face database was made by the MIT Media Laboratory [112]. It 

contains the face images of 16 male people.  It includes images of 3 pose variations 

(upright, right, left), 3 light variations (head-on, 45 deg, 90 deg) and 3 scale (camera 

zoom) variations (full, medium, small). It includes 6 levels of Gaussian pyramidals 

(480×512, 240×256, 120×128, 60×64, 30×32, 15×16). 

 

AT&T Database 

The face database from AT&T Cambridge Laboratories (formerly known as the 

Olivetti database) consists of 10 different images for forty distinct subjects [88]. The 

images were taken at different times, varying the lighting, facial expressions, and 

facial details (glasses). 

 

HHI Database 
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The HHI Database [2] from Heinrich-Hertz-Institut is designed for face image 

databse in MPEG-7.   The database contains 12 people with different view, frontal, 

near frontal, 45-degree and profile.  Each person in database contains different 

lighting condition ranging from dark and shadowed face to strong overhead projected 

face.  There are totally 206 color images at 640×480. 

 

CMU Pose, Illumination, and Expression Database 

The CMU Pose, Illumination, Expression (PIE) Database [99] collected 41,368 

images of 68 people between October and December 2000.  Each person was captured 

under 13 different poses, 43 different illumination conditions, and with 4 different 

expressions at 640×488. 

 

Face Image Database URL Description 
FERET Database [75] http://www.nist.gov/humanid/feret Male and female faces are collected.  Each 

image contains a single face with certain 
expression. 

Yale Database [9] http://cvc.yale.edu The database contains image with different 
expressions, glasses under different 
illumination conditions. 

Purdue AR Database [62] http://rvl1.ecn.purdue.edu/~aleixaleix_face_D
B.html 

Total 3,276 face images, including male and 
female, are collected with different facial 
expressions and occlusions under different 
illuminations. 

MIT Database [112] ftp://whitechapel.media.mit.edu/pub/images/ Total 16 people participated in the database.  
Each person contains 27 images under various 
illumination conditions, scale and head 
orientation. 

AT&T Database [88] http://www.uk.research.att.com Database contains 40 subjects, 10 images per 
subject. 

HHI Database [2] http://www.darmstadt.gmd.de/mobile/hm/pro
jects/MPEG7/Documents/N2466.html 

MPEG-7 face database contains 206 images 
with different perspective and illumination 
conditions. 

CMU Pose, Illumination, 
and Expression Database 
[99] 

http://www.ri.cmu.edu/projects/project_418.h
tml 

Total 41,368 images of 68 people were 
captured under 13 poses, 43 different 
illumination conditions and 4different 
expressions. 

Table 2.2.  Face image database. 
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2.3 Face Tracking in Video Sequence 

Automatic detection and tracking of human body parts (e.g. face, arms) is a 

challenging research topic with applications in many domains such as face recognition, 

human join audio and video localization, security guard surveillance in office, 

building and communities, traffic surveillance, and detection of military targets, etc.  

These applications attempt to detect, recognize and track certain objects from image 

sequence, and more generally, to understand and describe object behaviors.  An 

intelligent face tracking algorithm can monitor the human face location and 

perspective change in video sequence in order to estimate the pose for human face 

modeling.  The prerequisites for effective automatic tracking using a single camera 

include the following stages [36]: modeling of environments, motion detection, 

classification of moving objects, and tracking. 

 

2.3.1 Motion Detection 

Motion detection is widely available in most of the visual tracking system.  The 

aim of motion detection is to segment the moving objects from the rest of an image.  

Subsequent processes, such as tracking and behavior recognition, are greatly 

dependent on it.  The process of motion detection usually involves environment 

modeling, motion segmentation and object classification, which intersect each other 

during processing. 

 

Environment Modeling 

The continuous updating and construction of environmental models are 

indispensable from visual tracking.  The models can be classified into two-

dimensional (2D) models in the image plane and three-dimensional (3D) models in 
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real world coordinates.  More applications are available in 2D models due to their 

simplicity. 

1) Fixed cameras.  The major drawback is the continuous update of the 

background images from a dynamic sequence automatically.  The 

background images updating process can be affected by unfavorable factors, 

such as illumination variance, shadows and shaking branches. 

2) Pure translation (PT) cameras.  A holistic background image [98] can be 

acquired by patching up panorama graph to form an environment model.  The 

transformation relationship between different images can be described by 

homography matrices. 

3) Mobile cameras.  Temporary background images [111] is constructed by 

using motion compensation. 

The current work of 3D environmental models [86] is still limited to indoor scenes 

because of the difficulty of 3D reconstructions of outdoor scenes.  This is because 

unexpected environment changes happen frequently at outdoors, such as lighting 

conditions at different hour, weather change, pedestrian in the background, etc. 

 

Motion Segmentation 

The aim of motion segmentation is to detect moving regions such as vehicles 

and humans, in a video sequence.  Later processes, such as tracking and behavior 

analysis, consider focus of attention of the detected moving regions for further 

processing.  At present, temporal or spatial information are used in most segmentation 

methods in the video sequence. Several conventional approaches for motion 

segmentation are listed in the following: 
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1) Background subtraction.  This method is a popular method for motion 

segmentation, especially with a relatively static background.  Moving regions 

are detected in an image by subtracting the current image and the reference 

background image in a pixel-by-pixel fashion.  It is simple, but extremely 

sensitive to changes in dynamic scenes which can be affected by lighting, 

occluded objects, etc. 

2) Temporal differencing.  This method extracts moving regions by using the 

pixel difference between two or more consecutive frames in a video sequence.  

Temporal differencing is sensitive to dynamic environments, and thus, unable 

to extract all relevant pixels, e.g., many holes would be left inside the moving 

regions.  

3) Optical flow.  In this method, the characteristics of flow vectors of moving 

objects are used to detect moving regions in a video sequence.  Independent 

moving objects can be detected with the presence of camera movement.  

However, most optical flow methods are computational and sensitive to noise, 

and thus, it is not suitable to apply to real-time video streams without 

specialized hardware. 

 

Object Classification 

In a natural scene, different moving regions may contain different moving 

targets.  For example, a road traffic video sequence captured by surveillance cameras 

can probably include humans, vehicles and other moving objects such as flying birds 

and moving clouds, etc.  The moving object has to be classified correctly for further 

tracking and behavior analyzing.  Object classification is a standard pattern 
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recognition issue.  Two main categories of object classification are presented in the 

following: 

1) Shape-based classification.  The description of different shape and its motion 

regions such as points, boxes, silhouettes and blobs are available for classifying 

moving objects.  Lipton et al. [52] use the dispersedness and area of image blobs 

as classification metrics to classify all moving-object blobs into humans, vehicles 

and clutter.  Precise classification results are made by temporal consistency 

constraints. 

2) Motion-based classification.  In general, a periodic property is always found in 

non-rigid articulated human motion.  This periodic property has been used as a 

strong cue for classification of moving objects.  Cutler et al. [22] detects and 

analyzes periodic motion by using a similarity-based technique.  The moving 

object is tracked by computing the self-similarity between current and previous 

frame as it evolves over time.  The underlying assumption is that self-similarity 

measure is also periodic for periodic motion.  Therefore, the periodic motion is 

detected and is characterized by using time-frequency analysis.  Tracking and 

classification of moving objects can be implemented using periodicity.  Based on 

this useful cue, human motion can be distinguished from other moving other 

objects, such as vehicles, fly birds, etc. 

 

2.3.2 Model-Based Tracking 

Model-based tracking algorithms track moving objects by matching projected 

object models, which were produced with prior knowledge, to image data.  The 

models are usually constructed off-line with manual measurement, CAD tools or 
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computer vision techniques.  As human face is non-rigid object, thus, model-based 

human face tracking is reviewed here. 

Analysis-by-synthesis is the general approach for model-based human face 

tracking.  This approach is also known as a predict-match-update style.  First of all, 

based on prior knowledge and tracking history, face model for the next frame is 

predicted.  Then, the synthesized predicted model is projected into the image plane to 

compare with the image data.  The similarity between the projected face model and 

the image data can be measured by a correlation function, distance measurement, or 

other specific evaluation function.  Different searching strategies can be adopted, 

either recursive searching or using sampling techniques.  Once the correct face is 

found, the tracked face is then updated to the model.  Estimation of the face in the first 

frame requires special handling, such as face detection or manual registration.  

Generally, model-based human face tracking involves three main issues: 

• construction of human face models [4]; 

• representation of prior knowledge of motion models and constraints [40]; 

• prediction and searching strategies [18]. 

There are some disadvantages of model-based tracking algorithms, such as the 

necessity of model construction, high computational cost, etc. 

 

2.3.3 Active Contour-Based Tracking 

Active contour-based tracking algorithms track objects by using the contour 

boundary.  The contours are updated dynamically in successive frames [8, 68].  

Paragios et al. [74] proposed to use geodesic active contour objective function and 

level set formulation scheme to detect and to track multiple moving objects in a video 

sequences.  Malik et al. [47, 59] applied active contour-based methods to track 
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vehicle successfully.  However, there are some problems in active contour-based 

tracking.  First, the tracking precision is limited at the contour level.  Second, the 3D 

pose of an object, which is recovered from its contour in image data, is a demanding 

problem.  Finally, tracking algorithm towards automation is a difficult task since the 

active contour-based algorithms are highly sensitive to the initialization step at early 

stage. 

 

2.3.4 Feature-Based Tracking 

Feature-based tracking algorithms extract elements from image data.  These 

elements are then clustered into higher-level features.  Features recognition and 

tracking are performed from image data.  According to the selected features, feature-

based tracking algorithms can further classify into three categories: global feature-

based algorithms, local feature-based algorithms, and dependence-graph-based 

algorithms. 

• Global feature-based algorithms.  Centroids, perimeters, areas, some orders 

of quadratures and colors, etc. are used in these algorithms.  A good example 

of global feature-based tracking is proposed by Polana et al. [78].  The 

tracking algorithm use a rectangular box to bound a person is bounded.  The 

centroid of this rectangular is selected as the feature for tracking.  By using 

velocity of the centroids, the tracking algorithm can still distinguish effectively 

even there is occlusion between two people. 

• Local feature-based algorithms.  Line segments, curve segments, corner 

vertices, etc., are used in these algorithm. 

• Dependence-graph-based algorithms.  A variety of distances and geometric 

relationships between features are used in these algorithms. 
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2.4 3D Face Reconstruction. 

The heart of all computer vision research is to analyze and interpret visual 

information.  One of the most interesting and difficult problems is to generate a 3D 

face models with realistic looking.  Three-Dimensional (3D) reconstruction is the task 

to recover 3D geometry from two-dimensional (2D) views.  In the human visual 

system, three-Dimensional (3D) world is perceived as retinal images in our eyes 

through a projection process.  Human visual system has the ability to perceive in-

depth information by using physiological and psychological cues [58, 60], including, 

binocular parallax, monocular movement parallax, accommodation, convergence, 

linear perspective, shades and shadows, etc.  The most important depth cue in our 

visual system is binocular parallax.  The depth of an object is provided by two slightly 

different images at slightly different location perceived by the left and right eyes.  

These two images are then combined in our visual system to reconstruct a 3D model.  

Similar to binocular parallax, monocular movement parallax fuses two slightly 

different images at slightly different location in our visual system.  These two cues are 

physiologically different.  However, in computational perspective, binocular can be 

considered as a special case of monocular movement parallax.  The ability to compute 

3D properties of the world from two or more two-dimensional (2D) images is an 

important step toward emulating the human visual system. 

Comparing with human visual system, camera is an eye of computer.  For any 

3D reconstruction task, an accurate camera calibration is required.  The calibration 

algorithm can be classified into two categories, pre-calibrated and online calibrated.  

Pre-calibration algorithm assumes a prior calibration of the camera parameters; online 

calibration algorithm calibrates the camera parameters during run time.  In the case of 
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pre-calibrated reconstruction algorithm, a 3D model can be reconstructed accurately 

by using a full calibrated camera.  On the other hand, an online calibrated 

reconstruction algorithm can be used to reconstruct a scene from some previously 

recorded video sequence.  In the following section, the current projective geometry 

and the methodology in both pre-calibrated and online calibrated reconstruction 

algorithm will be reviewed. 

 

2.4.1 Projective Geometry 

To describe a 3D entity, Euclidean geometry is a common place to be used.  The 

Euclidean geometry is used to quantify the notion of parallelism, angle between lines, 

ratio of lengths, etc.  However, Euclidean geometry is inappropriate in imaging 

process.  After an object has been captured by a camera, the Euclidean geometry in 

3D world is no longer able to maintain in image world.  The entities mentioned before 

cannot be preserved.  This is because the perspective project of the camera is different 

from our 3D world.  Therefore, a more general geometry form is required to describe 

the image formation process. 

The group of transformations associated with projective geometry, including 

Euclidean geometry as a special case and perspective projection, which can be 

completely depicted with rotation and translation.  Perspective projection is particular 

important to projective geometry.  The projective framework provides a much simpler 

formulas.  It also reduces the need to handle many special cases.  Most importantly, it 

creates a natural concept of duality.  Here is an example of projective duality.  A 2D 

point with coordinate )/,/( cbba  and a line 0=++ cbyax  can be represented as a 

3D vector ),,( cba .  Therefore, for any theorems proven for points, there is a 
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corresponding dual proof for lines.  The action of perspective camera becomes a 

linear operation under projective geometry. 

 

Pinhole Camera Model 

A camera is a mapping between the 3D world and a 2D image plane.  As shown 

in Fig 2.1, let the centre of projection be the origin of Euclidean coordinate system, 

and consider the plane Z=f, where f is the focal length of the camera.  This plane is 

called image plane or focal plane.  The pinhole camera model consider the mapping 

between a point in space with coordinates X=(X, Y, Z)T and the point on the image 

plane.  The line joining of the point X to the centre of projection, C, meets the image 

plane.  By using similar triangles, the mapping between the point (X, Y, Z)T and the 

2D point TfZYfZXf ),,(  on the image plane can be computed quickly.  The line 

from the camera center perpendicular to the image plane is called the principal ray.  

The principal ray intersects the image plane at the principal point, p. 

 
Fig. 2.1.  Pinhole camera geometry with camera centre, C, and principal point, p.  The camera 
centre is placed at the coordinate origin.  The image plane is placed in front of the camera 
centre. 

 

If homogenous vectors are used to represent the world and image points, then central 

projection can be expressed in matrix form between linear mapping and their 

homogeneous coordinates as: 
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The above equation can be written in algebraic form with 3×4 camera projection 

matrix, P, as 

 Xx P=  (2.2) 

where X is the world point represented by the homogeneous 4-vector (X, Y, Z, 1)T, and 

x is the image point represented by a homogeneous 3-vector. 

 
Fig. 2.2.  Image (x, y) and camera (xcam, ycam) coordinate system. 

Generally, the principal point will be located at  ),( yx pp , as shown in Fig. 2.2.  The 

mapping between a 3D location (X, Y, Z)T and the 2D image plane is 

 T
yx

T p
Z
Yfp

Z
XfZYX ),(),,( ++=  (2.3) 

This equation can then be further expressed in homogeneous coordinates as  
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Let K be the matrix 
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The projection equation can be rewritten as  

 cam]0|[ Xx IK= . (2.6) 

The matrix K is called the camera calibration matrix.  In (2.6), (X, Y, Z, 1)T is written 

as Xcam to emphasize the camera location at the origin of a Euclidean coordinate 

system.  The principal axis of the camera points straight down the Z-axis and the point 

Xcam is expressed in the Euclidean coordinate system.  This coordinate system is 

called camera coordinate frame. 

Generally, points in space can be expressed in world coordinate system, which is 

a different form of Euclidean coordinate system.  The two coordinate systems are 

related through a rotation and a translation as shown in Fig. 2.3. 

 
Fig. 2.3.  The Euclidean transformation between the world and camera coordinate frames. 

If there is a point of inhomogeneous 3-vector X~  in the world coordinate system and 

the same point cam
~X  is in the camera coordinate system, then the mapping can be 

written as )~~(~
cam CXX −= R , where C~  is the camera center location in the world 
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coordinate system, and R is a 3×3 rotation matrix representing the orientation of the 

camera coordinate system.  The homogeneous coordinates can be written as: 
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By writing everything algebraically leads to the equation 

 XCx ]~|[ −= IKR , (2.8) 

where X is in a world coordinate system now.  The parameters in K are called the 

intrinsic camera parameters which contains the internal orientation information.  The 

parameters of R and C~  which relate the camera orientation and position to a world 

coordinate system are called the extrinsic camera parameters which contains the 

external orientation information. 

For additional generality, the general form of the camera calibration matrix can 

be written as 
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where the added parameter s is referred to as the skew parameter.  For normal camera, 

the skew parameter is normally 0.  However, it can be non-zero values under certain 

unusual circumstance.  For non-zero skew value, it implies that the x and y axes of the 

image plane are not perpendicular.  In practice, this situation is unlikely to be 

happened.  The non-zero skew might arise when taking an image, the picture is re-

photographed, or the negative is enlarged.  For CCD cameras, there is a possibility of 

having non-square pixels if image coordinates are measured in pixels.  It introduces 

an extra effect of unequal scale factors in each direction.  Therefore, xα  and yα  in the 



 - 52 -  

camera calibration matrix are xx fm=α  and yy fm=α , where mx and my are the pixel 

dimensions in the x and y directions, respectively.  In terms of pixels dimensions, the 

principle point 0x  and 0y  are xx pmx =0  and yy pmy =0 , respectively. 

 

Epipolar Geometry 

Epipolar Geometry can completely describe the projective geometry between 

two views of a scene, as shown in Fig. 2.4.  In other words, the intrinsic geometry of 

two views can be described by using epipolar geometry.  Stereo matching is an 

important application as the epipolar geometry limits the correspondence searching 

into a one-dimensional search space. 

Suppose a point X in 3D that is imaged in two views with point x in the first 

view, and point x' in the second view.  A typical stereo matching problem is to find 

the correspondence between x in one image and x' in another image.  Both camera 

centers C and C', the points x, x', and X are coplanar.  This plane is called epipolar 

plane π .  The line that connects the two camera centers is called the baseline.  The 

points e and e' where the baseline intersects the two views are called epipoles.  The 

lines connecting x, e and x', e' are the epipolar lines.  From the definition of 

perspective projection, points C, x, and X are collinear and any point on this line 

between x and X projects as x in the first image.  Therefore, the correspondence of x 

must lie on the projection of the line from x to X in the second image. 
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 The epipolar line contains the epipole e', where an epipole is the projection of the 

other camera centre onto the current image plane. 

 F satisfies the constraint det(F)=0, which means that F is not of full rank. 

 F is a projective map that takes a point to a line.  If l and l' are corresponding 

epipolar lines, then any point on l maps to the same line l'.  Thus, there is no 

inverse mapping. 

 

2.4.2 Pre-calibrated Reconstruction 

An accurate prior calibration of the cameras is required for pre-calibrated 

reconstruction algorithms.  Thus, both of the camera’s intrinsic and extrinsic 

parameters are computed in advance.  Recently, a practical method, which requires 

the camera to capture a planar pattern in a at least two different orientations, is 

proposed by Zhang [128].  Since the metric information about the scene is provided 

by the camera calibration, the reconstructed result is called a metric reconstruction.  

Because of the unknown translation, rotation and scale of the world coordinate system, 

a metric reconstruction only estimates the shape up to a similarity transform.  These 

inherent indeterminacies are called gauge freedoms.  Pre-calibration reconstruction is 

further classified into 3 sub-categories, including image-based algorithms, voxel-

based algorithms and object-based algorithms, and described in the following section. 

 

Image-Based Reconstruction 

Generally, image-based reconstruction perform 3D reconstruction task by using 

sparse image features [1, 70] and dense pixel matchings [131].  Feature-based 

algorithms make use of sparse image features to accurately reconstruct 3D task based 

on feature detection and feature correspondence.  Dense reconstruction algorithms 
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rely heavily on the accuracy of the densely matched pixels.  The pixel displacement 

between consecutive frames can be approximated by optical flow when the sampling 

along the time axis is also dense. 

Both reconstruction algorithms follow a very similar path but different in the 

amount of data processed.  Triangulation is usually used to determine 3D point from 

pairs of matched image pixels in both methods.  If noise is absence, triangulation is 

trivial.  However, with the presence of noise, the triangulation problem becomes more 

complicated.  The back projected rays from the two images are not able to meet in 3D 

space.  A suitable point of “intersection” is needed.  The reconstruction becomes 

metric as the camera calibration is already known.  Therefore, the concept of distance 

and perpendicularity is defined clearly.  The required 3D location can be estimated by 

using the midpoint of the common perpendicular between the two back projected rays.  

Furthermore, with an assumed Gaussian noise model, a provably optimal triangulation 

method is available.  From a pair of point correspondences x and x', this algorithm 

seeks an alternate pair x̂  and 'x̂ .  Therefore, the sum of squared distances of the 

original points pair is minimized subject to the epipolar constraint.  Thus, the optimal 

points, which are the closest to the original point correspondence, are then lie on a 

pair of corresponding epipolar lines.  The minimized distance can be found between 

the pair of epipolar lines, l and l', and the original point correspondence.  Furthermore, 

the pencil of epipolar lines is parameterized in the first image with a suitable 

parameter t.  Therefore, the minimization problem [33] can be reduced to find the real 

roots of a 6 degree polynomial. 

 

Voxel-Based Reconstruction 
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Volumetric representation [61] of scene structure becomes practical due to of 

the rapid growth of computational storage and power.  Various approaches have been 

proposed to recover volumetric scene structure from a sequence of images.  Visual 

hull is an early attempt to solve this approximation problem.  A visual hull is defined 

by a set of camera locations, the cameras’ intrinsic parameters, and silhouettes from 

each view.  Generally, it is the maximal volume that creates all possible silhouettes of 

an object.  The visual hull is known to include the object, and to be included in the 

convex hull of the object.  Methods which approximate the visual hull are referred to 

as volume intersection or silhouette intersection. 

Similar to the convex hull, the visual hull is an approximation method to 

estimate the object actual shape.  However, the size of the visual hull decreases 

monotonically with the number of 2D images [100].  The basic approach of visual 

hull is to segment the foreground and background object in each 2D image.  The 

segmented 2D silhouettes are then back projected and intersected to yield a volume 

segment representation for further surface description processing. 

Comparing with the image-based methods, which require solving the difficult 

correspondence problem, the voxel-based methods have the advantage allowing 

geometric reasoning to be performed in 3D.  Thus, explicit correspondence is not 

required.  In addition, the occlusion problem can be handled probably.  These are the 

advantages of the voxel-based algorithms.  Memory consumption is one of the main 

design considerations of voxel-based algorithm.  For a moderate scene having 100 

voxels in each dimension, a total of 106 voxels are required to represent the entire 

scene.  Therefore, coarse reconstruction would be applied due to limited memory.  

Moreover, the ordinal visibility constraint imposes a very tight constraint on the 

camera locations.  In particular, cameras are usually not allowed to surround the scene. 
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Object-Based Reconstruction 

Object-based reconstruction algorithms aim at recovering a surface description 

of the objects in the scene.  On the other hand, voxel-based reconstruction algorithms 

fill the scene with voxels and determine visibility of each voxel.  Faugeras et al. [27] 

proposed the level-set reconstruction method by using object centered 3D 

reconstruction technique from image sequences.  Various principles are applied to 

their previous work for dense depth recovery [83, 84], the reconstruction problem is 

reformulated to solve the surface evolution problem by using the level-set technique.  

Perfect Lambertian surfaces are assumed in their the level-set approach.  In particular, 

stereo matching problems caused by specularities present in the scene are not 

addressed.  Jin et al. [41] proposed an improved level-set approach that handles 

specular surfaces.  In [3], an improved approach is proposed to handle specular, as 

well as translucent surfaces. 

 

2.4.3 Online Calibrated Reconstruction 

Under various circumstances, calibration in advance may not be available.  It is 

a very realistic scenario for a number of applications.  For example, in a video 

indexing application, the final video data is given without even knowing the type of 

video camera, and prior calibration objection in the video sequence.  Furthermore, 

different focusing and zooming in the video sequence can cause the change of the 

camera intrinsic parameters.  Therefore, online calibrated reconstruction methods can 

be performed for 3D reconstruction under these scenarios. 

The key difference in various online calibrated reconstruction methods is the 

approach that camera intrinsic and extrinsic parameters are to be estimated.  This is an 
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on-the-fly process and is often referred to as camera self calibration or auto-

calibration.  Auto-calibration methods can be sub-divided into two classes: scene 

constraints and geometric constraints.  Because of the scene constraints, the 

calibration parameters can be determined without the use of fundamental matrices and 

initial project reconstruction. 

 

Projective Reconstruction 

Projective Reconstruction is an online calibration reconstruction technique to 

reconstruct 3D scene by using the estimated fundamental matrix.  The projective 

reconstruction problem for all feature correspondences and all views can be solved 

efficiently when the image sequence contains more than two frames.  A projective 

reconstruction consists of a set of 3D points { }iX  and a set of camera projection 

matrices { }iP .  However, projective reconstruction can only reconstruct up to 

projective transform.  Thus, for any projective transformation H , { }1−HiP  and { }iHX  

yield an equally valid reconstruction.  The disadvantage of this algorithm is quite 

sensitive to correspondence errors.  Therefore, outlier matchings should be rejected by 

using the epipolar constraint before invoking this algorithm. 

 

Calibration Using Scene Constraints 

Auto-calibration can be simplified if images are taken within constrained 

environments, such as architectural constrained environment or man-made scene.  A 

large number of parallel lines can be found within this environment.  These parallel 

lines intersect at a point on the plane at infinity.  These intersection points, called 

vanishing points, will be used for projection.  By knowing the vanishing points 

location in three dominant directions in an image, the determination of the camera 
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intrinsic parameters is greatly simplified.  In fact, closed form solutions can be 

obtained for these parameters as a function of the vanishing points [11]. 

Before obtaining camera calibration parameter, vanishing points have to be 

computed first in order to take the benefit of parallel structure. 

1. Computing the Vanishing Points.  The estimation of vanishing points from 

detected line segments can be computed in two steps, accumulation step and the 

search step.  Accumulation step detects line segments to vote for locations in the 

accumulation space.  The same vanishing point could potentially share the same 

accumulation space.  Search step searches the vanishing points by possessing a 

large number of votes in the accumulation space. 

2. Computing the Camera Calibration.  The camera intrinsic parameters can now 

be estimated after the vanishing points have been detected in an image.  When a 

point X is perspectively projected to the point x on the image plane, the usual 

projection equation PXx = , where [ ]tRK −=P  is the projection matrix, is 

obtained.  The matrix R and the vector t represent the rotation and translation of 

the camera relative to the world coordinate system respectively, while the 

calibration matrix K contains the intrinsic parameters. 

 

Calibration Using Geometric Constraints 

This is a more flexible class of algorithms to perform auto-calibration using only 

geometric constraints from a sequence of image.  Two different methods are described 

in the following: 

1. The Dual Image of the Absolute Quadric Method (DIAC).  A projective 

entity, which conveys the calibration information from frame to frame, is 

required to perform auto-calibration.  It is equivalent to apply similarity 
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transforms to the entire scene and taking snapshots of the transformed scene with 

a video camera if all objects in the scene are rigid.  This calibration approach 

estimates both calibration parameters and transformed position of the plane at 

infinity at the same time.  The advantage of this approach is that projective 

reconstruction can be directly upgraded to metric reconstruction. 

2. The Kruppa Equations.  The Kruppa equations [28, 63] use the dual image of 

the absolute conic and assume the equality of the DIACs in both views.  

Comparing with the methods that estimate the absolute dual quadric, the 

advantage of using Kruppa equations is the calibration process does not require a 

prior projective reconstruction.  In practice, when multiple views are applied, the 

performance of this approach is inferior compared to the absolute dual quadric 

formulation.  This is because the Kruppa equations do not explicitly enforce the 

degeneracy of the dual quadric.  Also, there is a common supporting plane for 

the absolute conic over multiple views.  In addition, the Kruppa equations reduce 

the complexity when the camera motion is purely translational.  The ambiguities 

of calibration by Kruppa equations are discussed in [104]. 

 

2.5 Conclusion 

In this chapter, we have reviewed four different approaches for face detection 

and seven face image databases, three different approaches for face tracking in video 

sequence, and two different three-dimensional (3D) reconstruction algorithms.  

Different face detection methods have been surveyed.  Face detection methods can be 

categorized into four categories: knowledge-based top-down method, feature invariant 

approaches, template matching, and appearance-based methods.  Although significant 

progress has been made in the last two decades, a robust detection system should be 
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effective under full variation in: lighting conditions, orientation, pose, and partial 

occlusion, facial expression, presence of glasses, facial hair, and a variety of hair 

styles. 

For face image database, the HHI database [2], the AR Face database [62], and 

the CMU Pose, Illumination, and Expression database [99] are recommended.  These 

databases contain color image with varying lighting condition.  Others are gray scale 

images only.  The rapid development of technology lower the price of color input 

device, such as digital video, digital camera, web camera, etc.  Skin color information 

should be considered during face detection. 

Face tracking in video sequence is an active and important research.  The 

existing state-of-the-art methods have been described with the focus on detection and 

tracking.  For detection of moving objects, environmental modeling, motion 

segmentation and object classification are involved.  For tracking of moving objects, 

active-contour based, feature based and model based have been studied. 

For 3D face reconstruction algorithms, two large categories, pre-calibrated 

reconstruction and online calibrated reconstruction, have been reviewed.  There are 

still a lot of open issues for 3D reconstruction to be improved.  On the pre-calibrated 

side, feature correspondence and dense stereo matching are still open research topics 

for image-based methods.  A lot of effort is put into solving the global optimization 

problems.  For voxel and level-set-based approaches, research interests are focused on 

efficient data representation and ability to handle non-Lambertian surfaces.  On the 

online calibrated side, a lot of research effort is devoted to estimate camera 

parameters. 
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Chapter 3 
An Efficient Color Face Detection 

 Algorithm Under Different Lighting 
Conditions 

 

3.1 Introduction 

Face detection is the first step in any face processing system.  Yang et al. [125] 

gave a survey of the current face detection technology and provided a definition of 

face detection as follows: Given an arbitrary image, the goal of face detection is to 

determine whether or not there are any faces in the image and, if present, to return the 

image location and extent of each face.  This is a challenging task because the human 

face is highly variable.  The detection performance may be affected by the presence of 

glasses, different races, genders, facial hair, facial expressions, lighting conditions, 

etc.  Furthermore, human face is a three-dimensional object, and has different 

perspective and uneven illumination.  As a result, a true face may not be well 

detected. 

Numerous approaches have been proposed for the detection of human faces in 

gray-level images.  These include the probabilistic approach [53, 67, 73], component-

based approach [120], neural networks [85], example-based approach [68], and more 

often, a combination of all of these. 

These approaches usually search over a range of scales and locations for 

possible human faces and verify the patterns with a pattern classifier.  Moghaddam 

and Pentland [67] applied the eigenface decomposition technique to reduce face 

image from a high-dimensional image space to a lower dimensional; the images are 

then trained with the expectation-maximization algorithm to optimize the mixture 
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parameters.  Multiscale saliency maps based on maximum likelihood are then 

computed for single face detection.  Liu [53] purposed using Bayesian Discriminating 

Features to detect multiple faces in an image.  Face and non-face classes are trained to 

discriminate input images during detection.  4,500 non-face class patterns, which lie 

close to the face class, are generated from nine natural images that do not contain any 

human faces.  Xie et al. [120] presented a statistical fusion framework for component-

based face detection.  The training of the component detectors, including the left eye, 

right eye and lower face, employs AdaBoosting.  Papageorgiou and Poggio  proposed 

an example-based learning approach by using a large set of positive and negative 

examples to implicitly derive an object model class to be classified with the support 

vector machine.  Mohan et al. [68] presented an example-based framework for 

detecting objects in static images by components in two steps.  The example-based 

component detectors are first trained to find components separately, including the 

human body, head, legs, left arm and right arm.  Then, a second example-based 

classifier combines the results of the component detectors to classify a pattern as 

either a “person” or a “non-person”.  Rowley et al. [85] developed a neural network-

based face detection system, which examines an image via small windows and 

decides whether the windows contain a face or not. 

Recently, face segmentation based on the color-based approach [12, 32, 35, 36, 

114] has received mass attention since color provides more information than gray-

scale intensity, especially when the skin is under different illumination conditions.  

The basic idea of these approaches is that skin colors for people of different races and 

illumination are distributed more or less in the same region in a color space.  

Consequently, the search for faces in an image can be restricted within the skin-color 

regions.  For example, Chai and Ngai [12] proposed a skin-color segmentation 
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method under a range of luminance and chrominance.  Hsu et al. [36] proposed a face 

detection algorithm for color images under varying lighting conditions based on a 

lighting compensation technique and a nonlinear color transformation to detect skin 

regions and to generate face candidates based on a spatial arrangement of the skin 

patches.  Eyes, mouth, and boundary maps based on luminance and chrominance are 

constructed to verify a face candidate.  Wong et al. [119] proposed to perform skin-

color segmentation according to different illumination conditions, using the genetic 

algorithm [117] to search for possible face candidates.  Greenspan et al. [32] 

presented a mixture-of-Gaussians distribution to model the color distribution of 

shadowed face images. 

In this chapter, we found that the red component of skin color becomes saturated 

under strong illumination.  Therefore, to further improve the performance of skin-

color detection, a color compensation scheme [118] is proposed to extend the range of 

red component to its saturated level.  Then, the skin color is modeled with the 

mixture-of-Gaussians model to segment skin-color regions according to different 

illumination conditions.  The performance of our algorithm is tested with the HHI 

MPEG-7 face database [2], the AR face database [62] and the CMU Pose, 

Illumination and Expression (PIE) database [99], which contain face images under a 

wide range of lighting conditions, including poor conditions, under shadow, different 

scales and with glasses.  Experimental results show that our proposed algorithm is 

very fast and can achieve a high detection rate.  The details of our approach for face 

detection will be described in the following sections. 
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3.2 Human Face Detection 

Our approach to detecting face regions in a color image consists of three steps.  

The first step is to segment the face color by using the mean-shift algorithm [17].  The 

segmented regions are then processed by a color compensation scheme, and the skin-

color distributions under different illuminations are modeled by means of the 

maximum-likelihood method.  In the second step, our algorithm focuses on searching 

possible eye candidates within the segmented skin-color regions.  Possible face 

candidates are formed by grouping pairs of eye candidates.  Finally, a two-step 

procedure based on an eigenmask for face verification is performed.  Once the face 

has been verified and short listed, the face contour is further verified with a Gaussian 

function in order to further improve the reliability and accuracy of our face detection 

algorithm. 

 

3.3 Face-color Segmentation 

Color information has been a commonly used technique for segmenting human 

face regions from a complex background. In [114], skin-like regions are extracted by 

using both the normalized RGB color model and the HSV color model.  In [12], the 

chrominance information in the YCbCr color space is used for the segmentation of 

skin-like regions.  However, these methods can achieve good results if the face 

images are captured under good lighting conditions, but some skin pixels will not be 

located under poor lighting.  In order to overcome these problems, we therefore 

propose a robust color compensation method with the use of the mixture-of-Gaussian 

model [32] to represent skin color under various illuminations. 
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3.3.1 Skin Color Compensation 

Characteristics of Skin Color under Different Lighting Conditions 

  
 (a) (b) 

Fig. 3.1.  Skin-color distribution: (a) green color component against Y, and (b) blue color component 
against Y. 

 
We investigate the distributions of skin color based on 220,000 face skin pixels. 

It is found that the skin-color distributions of the green and blue color components are 

linear to the luminance intensity Y, as shown in Fig. 3.1.  However, the intensity of 

the red color component is saturated when the luminance component Y is greater than 

a value of about 175.  Fig. 3.2 shows the distribution of the red color component 

under different luminance intensities.  Since the skin tones reflect more red light than 

green or blue, so the intensity level of red color detected by the capturing device will 

be saturated.  The skin-color distributions in the CbCr plane under normal lighting 

conditions (i.e. 60<Y≤175) and strong lighting conditions (i.e. Y>175) are shown in 

Fig. 3.3.  It is obvious that the two color spaces are different.  Therefore, the 

performance of skin-color segmentation will be degraded if the effect on the red color 

component under strong lighting conditions is not taken into account in the detection 

process. 
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Fig. 3.2.  The distribution of the red color component of skin pixels under different luminance 
intensities. 

 

  
(a) (b) 

Fig. 3.3.  Skin-color distribution under (a) normal lighting conditions (60<Y≤175), and (b) strong 
lighting conditions (Y>175). 

 
Color Compensation for Skin-Color Segmentation 

The difference in the color spaces for skin color in the CbCr plane under normal 

and strong lighting conditions is due to the saturation of the red component as 

detected by the capturing device.  In order to compensate for this effect on skin-color 

segmentation, “Region A” in Fig. 3.2 is mapped into the region covering both 

“Region A” and “Region B.”  The equation of this mapping process is defined as 

follows: 
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where )255( Y
b
ah −= , R is the intensity level of the red component, a is the height of 

“Region B”, b is the distance between the saturated point (Y=175) and the maximum 

intensity of the Y component, and h is the estimated height of “Region A” at a 

particular value of Y.  Based on the red color distribution as obtained in our 

experiment, the value of a and b are 75 and 80, respectively.  The mapped results in 

the R-Y plane and the CbCr plane are illustrated in Fig. 3.4(a) and 3.4(b), respectively.  

Fig. 3.4(a) shows that the distribution of the red component under strong lighting 

conditions is similar to that found under normal lighting conditions after applying the 

compensation process.  This means that the skin color can be segmented by using the 

same thresholds or the same skin color map under different lighting conditions. 

 
(a) (b) 

Fig. 3.4.  Results after the compensation process:  (a) compensated results in the red color component, 
and (b) the compensated results in the CbCr plane under strong lighting conditions. 

 
The performance of our method of skin-color segmentation is compared with the 

methods proposed in [114] and [12].  The black color in Fig. 3.5 represents the non-

skin regions, while other colors are the segmented possible face regions.  The process 

of skin-like region detection using the HSV color space works well over the strong 

light regions but fails to detect those skin regions under shadow.  Furthermore, the use 

of YCbCr color space does not work properly for those face regions under strong 
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lighting conditions.  In contrast, our approach can detect most of the face regions by 

using a simple thresholding technique irrespective of the lighting conditions. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.5.  Skin-color segmentation results: (a) original image, (b) result based on normalized RGB and 
HSV color spaces [114], (c) result based on YCbCr color space [12], and (d) result based on our 
proposed method. 

 
3.3.2 Color Image Segmentation with Mean-Shift Algorithm 

Mean-shift algorithm [17] is a kernel-based density estimation technique which 

has been used in many applications including data clustering, image segmentation 

[16], object tracking [18], etc.  In particular, it is a nonparametric and robust 

technique to analyze feature spaces. 

In color image segmentation, the feature space, which is the spatial domain of 

color images, can be considered as an empirical probability density function (p.d.f.).  

Dense regions in the feature space are considered as local maxima of the p.d.f., that is, 

the modes of the unknown density.  Once the location of a mode is determined, the 

cluster associated with the mode is delineated based on the local structure of the 

feature space. 

Given n training color vectors xi, i=1, …, n, in the d-dimensional space ℜd.  The 

feature space can then be modeled by an unknown kernel density function K 
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where xs is the spatial part, xr is the color part of a feature vector, k(x) is the common 

profile in both domains, hs and hr are the corresponding kernel bandwidths, and C is a 

constant for normalization. 

The sample mean at x is defined as: 
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The vector, x, is updated in the form of iteration such that )(m xx ←  with 

{ }dxxx ℜ∈= );(m)(m .  The difference xx −)(m  is called the mean shift, and the 

repeated movement of data points to the sample mean is called the mean-shift 

algorithm.  The mean-shift algorithm iterates until converged with zero gradient, i.e. 

0)(m =− xx .  The convergence is guaranteed at a nearby point.  Once the mean-shift 

algorithm is converged, the local mean is shifted toward the region where the majority 

of the points reside, that is, the local maxima or the mode of the region. 

Many segmentation algorithms treat the mean as an optimized measure for 

partitioning the feature space.  For example, the K-Means clustering algorithm [93] is 

aimed at minimizing the within-group sum of squared errors.  The initial cluster 

centers are randomly or strategically chosen, and there is no guarantee that any 

execution of the algorithm will reach the global minimum.  With the algorithm, we 

can only say that a local minimum has been reached, and the optimization goal 

becomes elusive.  With the mean-shift algorithm, the clustering process can be viewed 

as the result of some natural process since the convergence to the local maxima is 

guaranteed. 
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The kernel used in the experiment is the Epanechnikov kernel [15].  This kernel 

provides a similar performance to the Gaussian kernel but with a much simpler 

structure.  The Epanechikov kernel profile is defined as follows: 
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Our color image segmentation algorithm consists of two steps.  

1. Mean-shift filtering which smoothes the input image by running the mean-

shift algorithm. 

2. Mean-shift segmentation which delineates the smoothed image and purges the 

small regions. 

 

3.3.3 Skin-color Modeling 

A skin-color model can be trained by learning from a large set of sample skin-

color pixels.  The training set is generated in a pre-processing stage.  Since we 

consider face color under varying illumination, the skin-color distribution is no longer 

unimodal.  In fact, the face color is distributed from shadowed faces to strong 

overhead light-projected faces, as well as faces under normal lighting condition.  One 

way to tackle this varying distribution is to use a Gaussian mixture model. 

In our approach, the training skin-color samples are obtained from face regions 

after segmentation.  Each segmented face region is represented by a skin color, which 

is then used for training.  This can ensure that there is no outlier skin color in the 

training set.  The training face images are extracted from the HHI MPEG-7 face 

database, and each face image is segmented with the mean-shift algorithm, as 

described in the previous section.  After segmenting a face image into a number of 

regions, the modes of the skin-color pixels are left in the respective facial regions.  In 

other words, the mode is used to represent the facial skin-color pixels in a segmented 
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face region.  Fig. 3.6 shows some face images and their corresponding segmented 

results under various lighting conditions using the mean-shift algorithm [17].  

  

      

      
(a) (b) (c) (d) (e) (f) 

Fig. 3.6.  Face images under various lighting conditions:  (a) normal lighting, (b) segmented faces 
in (a), (c) dark and side light, (d) segmented faces in (c), (e) strong overhead light, and (f) 
segmented faces in (e). 

 
A total of 366,431 skin-color pixels were extracted from 206 faces in the HHI MPEG-

7 face database. After color image segmentation with the mean-shift algorithm, only 

2,425 skin-color pixels were left. The average number of regions in each segmented 

face is 11.7, i.e. 11.7 pixels per segmented face on average. Figures 3.7(a) and 3.7(b) 

show the color distributions of the original faces and segmented faces. In Fig. 3.7(a), 

there are pixels other than the skin-color distribution. Obviously, this is due to the 

colors other than the skin color, such as eyeball, eyebrow, mustache, lip, etc. In Fig. 

3.7(b), there are only a few pixels apart from the skin-color distribution. After 

segmentation, the color differences among facial regions are largely removed, and the 

colors of the skin pixels are fused into the skin-color domain. This is obvious in the 

segmentation results shown in Fig. 3.6; the eyes, mouth and eyebrows are removed 

and segmented to become skin-like colors. By observing the change of skin-color 

distribution in Fig. 3.7(a), the mean-shift process sharpens the skin-color pixel 

distribution in Fig. 3.7(b) to converge towards the mean of skin colors. This leads the 

skin colors in uneven lighting to converge to an optimal pixel value, thus less variance 

will appear under extreme illumination conditions. 
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(a) (b) 
Fig. 3.7.  RGB distributions of the face color: (a) RGB distribution of original faces, and (b) RGB 
distribution of segmented faces. 

 
K-Means Face-color Clustering 

Before applying the Gaussian mixture model to describe the distributions of the 

segmented skin colors in Fig. 3.7(b), we have to cluster the skin colors to obtain the 

initial parameters and the number of clusters for the Gaussian mixture model.  Each of 

the clusters should clearly represent the face color under different lighting conditions.  

The K-Means algorithm is applied to cluster the skin-color pixels for 1k ≥ .  As the 

RGB color space does not contain any information about lighting, the face color is 

first translated to the compensated YCbCr color space as described in Section 3.3.1.  

The face color is then divided into 1k +  decision regions; k face-color regions and the 

complementary non-face region.  In our approach, we set 5k = , which can 

empirically segment the skin and non-skin color well throughout our experiments.  

Fig. 3.8 shows the result after the K-Means algorithm. 
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Fig. 3.8.  Skin-color clustering with the K-Means algorithm, where each cluster is displayed with 
its mean color. 

 
Face-color Modeling via Gaussian Mixture Model 

With the results from the K-Means algorithm, the skin-color distribution can be 

modeled using the Gaussian mixture model, which is a semi-parametric model.  In 

order to optimize the mixture parameters, maximum-likelihood can be used to seek 

the best parameters based upon the results from the K-Means algorithm.  Then, the 

Expectation-Maximization (EM) algorithm [32, 69] is used to estimate the many-to-

one mapping from the Gaussian mixture model. 

The modeling starts with the general estimation model.  The distribution of an 

input color vector x∈ℜd is a mixture of k Gaussian probability density functions: 
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where the parameter set { }k
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∑= μαθ  consists of the probability 

1,0
1
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k

j jj αα , the mean d
jμ ∈ℜ , and the covariance matrix j∑  which is a d×d 

a positive definite matrix.  Given a set of color vectors x1,…, xn, the mixture 

parameters can be estimated using the ML principle 
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The estimation problem is best solved using the Expectation-Maximization (EM) 

algorithm [69], which consists of the following two-step iterative procedure: 

• Expectation step: 
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• Maximization step: 
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The expectation step computes the a posteriori probabilities i
tjτ  of the point xt 

belonging to the jth cluster with i=1, 2, … until converged.  The maximization step 

uses the data from the expectation step as if they were the actual measured data to 

determine an ML estimate of the parameters.  The updating process performs the 

expectation step and the maximization step iteratively until converged.  The 

convergence can be determined by examining the change of the parameter set θ in two 

successive iterations less than a predefined threshold, i.e. εθθ <−+ ii 1 , for some ε 

and some appropriate distance measure ⋅ .  In our approach, the iteration process will 

be stopped when the change of the probabilities is less than a threshold of 1%. 
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From modeling the face color, a new parameter set { }k
jjjj 1

,,
=

Σ= μαθ  is 

estimated.  Based on the skin-color model, a pixel in a color image is determined to be 

of skin color or not by the following steps: 

• Each pixel in the RGB color format is first translated to the compensated YCbCr 

color space. 

• With the input color vector x=(y, cb, cr), the Gaussian p.d.f., fj, j=1,…,k, are 

computed to find the one with the highest probability, i.e. 

),,|(maxarg jjjj
xf ∑μα . 

• Suppose that ),,|( jjjxf ∑μα  results in the highest probability.  The following 

discriminant function is computed to obtain the face mask, Pface(x),  
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 where 1 represents face color and 0 is non-face color. 

For a probability that is less than a pre-defined threshold, the color vector x will be 

declared a non-skin color; otherwise, the color vector x is skin color.  The threshold is 

determined empirically, and is set at the standard deviation of the Gaussian 

distribution concerned, σ , throughout our experiment.  With this threshold, the skin-

color region and background can be segmented reliably. 

 
Region-based Skin-color Segmentation 

Traditional skin-color segmentation is performed based on a pixel-by-pixel 

approach.  Each pixel in an image is checked to determine whether it is of skin color 

or not.  After this skin-color segmentation process, some small holes will be 

introduced at the eye, nose and mouth regions.  These holes can be removed by using 

the morphological open and close operations.  Although the morphological operations 
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have been used to fill and to remove small holes, some big holes in the background 

cannot be filled, as shown in Fig. 3.9(b).  The result will become worse when the 

image concerned has uneven lighting condition, or is under a strong illumination 

effect. 

Because of the drawback in the pixel-by-pixel approach, we propose performing 

skin-color segmentation by using a region approach.  In our algorithm, an image is 

scaled to 80×60 to reduce the computational complexity.  The color image is then 

segmented by the mean-shift algorithm, and the results are shown in Fig. 3.9(c).  As a 

result, the image is segmented into many regions.  The details of the eyes, nose and 

mouth are merged with the skin color.  In each region, this is represented by the mode 

of the color pixels.  Maximum likelihood by means of mixture-of-Gaussians with the 

optimized mixture parameters obtained by the EM algorithm is then applied.  If the 

probability of a mode is larger than a certain threshold, the corresponding color will 

be classified to be a skin color, and thus, the whole region will be declared a skin-

color region.  The average number of regions in an image is 25 after segmentation 

based on the HHI MPEG-7 face database.  Comparing to the pixel-by-pixel method, 

the region-based approach can achieve a better performance level under uneven 

lighting conditions, as shown in Fig. 3.9(d). 
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(a) (b) (c) (d) 

Fig. 3.9.  Skin-color segmentation under uneven light conditions: (a) original image, (b) skin-color 
segmentation with pixel-by-pixel approach, (c) color image segmentation with mean-shift 
algorithm, and (d) skin-color segmentation with region-based approach. 

 
3.4 Possible Eye Candidate Detection 

An efficient way to detect an eye region is by means of valley detection [49], as 

the gray-level intensities in an eye region are relatively lower than in its 

neighborhood.  However, under poor lighting conditions, the eye regions are usually 

shadowed; this causes the valley detection to fail.  In this section, we will present an 

improved method which can detect eye regions more reliably under various lighting 

conditions. 

Since the eyes are surrounded by skin, there is a significant color difference 

between the eye region and the skin color.  Under the YCbCr color space, we can 

observe that the iris has a lower gray-level intensity, a higher Cb value, and a lower 

Cr value than the surrounding skin color.  These kinds of properties will be used to 

determine whether a pixel in a segmented skin-color region is a possible eye candidate 

or not. 

In our approach, an image is first segmented with the mean-shift algorithm at 

resolution 80×60, denoted as IMS(c), where c=(y, cb, cr).  Fig. 3.10(b) shows the 

mean-shift segmented image with the eyes under overhead lighting.  In the segmented 
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image, the details of the eye are removed and replaced by skin-like color.  The skin 

color is still preserved.  Throughout our experiment, the original image, I(c), and the 

segmented image, IMS(c), are scaled to 200×150.  At this resolution, the computational 

complexity is reduced and the details of the eye regions are retained. 

Suppose that the Y, Cb, and Cr components of a pixel in an image are denoted 

as I(y), I(cb), and I(cr), respectively, while as IMS(y), IMS(cb), and IMS(cr) for the 

corresponding mean-shifted or segmented image.  Based on the observed difference in 

color between the iris and the skin, I(y) should be less than a certain threshold; the 

ratio between I(cb) and IMS(cb) should be greater than 1; and the ratio between I(cr) 

and IMS(cr) should be less than 1 for an eye candidate.  For the skin color, the above 

two ratios should all be very close to 1.  The eye candidates in an image can therefore 

be determined as follows: 
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where Py(y), Pcb(cb) and Pcr(cr) represent a possible eye candidate when the Y, Cb 

and Cr components are used, respectively, and the thresholds ty, tcb and tcr are the 

corresponding thresholds for the Y, Cb and Cr components.  Therefore, possible eye 

candidates, Eye(x), can be determined as follows: 

 { }( ) )()()()(,, xPcrPcbPyPcrcbyxEye facecrcby ∩∩∩== . (3.11) 
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In the above equation, we confine the detection within the segmented skin-color 

regions, Pface(x), from (3.9).  The possible eye candidates, Eye(x), are illustrated in 

Fig. 10(c). 

 
(a) (b) 

 
(c) 

Fig. 3.10.  Possible eye candidate detection: (a) original image, (b) color image segmentation with 
mean-shift algorithm, and (c) possible eye candidate. 

 
From Figure 3.10(c), it can be observed that the possible eye candidates are 

located around the face contour and hair, and some in the face region.  Some of these 

eye candidates should be removed to reduce the number of possible face candidates, 

so that the computational complexity of searching the possible face candidates can be 

reduced.  We observe that the eye has a strong horizontal edge, while the face contour 

has a strong vertical edge when the face orientation is between –45˚ and +45˚.  In 

addition, the skin color is yellowish, and the eye is white and dark.  Therefore, the 

difference in red component should be large.  These properties are used to reduce the 

number of possible eye candidates. 

The edge map of a face image is generated using the Sobel edge detector, but 

only with its luminance component.  The horizontal edge is denoted as SH(y) and the 

vertical edge as SV(y), where y is the luminance component.  The set of selected 

possible eye candidates, Eye'(x), is formed as follows: 

 )())(())(()(' xEyeTySTySxEye SVVSHH ∩<∩<= , (3.12) 

where TSH and TSV are the thresholds for the horizontal and vertical edge intensities.  

In (3.12), whenever a possible eye candidate has a strong horizontal edge intensity 

and a weak vertical edge intensity, it will not be removed.  As some possible eye 
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candidates may fall into the hair and skin regions, these candidates can be removed by 

measuring the difference in the red component in their neighborhood.  A 3×3 window 

is located at the possible eye candidates, as shown in Fig. 3.11. 

R1 R2 R3 
R4  R5 
R6 R7 R8 

Fig. 3.11.  A 3×3 window for red component. 

 
A possible eye candidate will be removed if  

 redTRR <− )min()max( , (3.13) 

where R=R1,…, R8 and Tred is the threshold for the difference between the maximum 

and minimum red components within the window.  The possible eye candidates are 

removed using (3.12) and (3.13), and the results are shown in Fig. 3.12(b).  Although 

the number of possible eye candidates has been greatly reduced, some of the 

remaining possible eye candidates are connected to each other.  Further elimination 

can be done without removing the local information.  A 3×3 searching window is 

located at each possible eye candidate to group the surrounding candidates into one.  

The results are shown in Fig. 3.12(c). 

(a) (b) (c) 

Fig. 3.12.  Possible eye candidate reduction: (a) possible eye candidates, (b) reduction of possible eye 
candidates by Sobel and red color distance, and (c) possible eye candidates in (b) grouped by 3×3 
window. 

 
Since the size of a human face is proportional to the distance between its two 

eyes, a possible face region containing the eyebrows, eyes, nose and mouth can be 

formed based on this relationship.  In our approach, a square block is used to represent 
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possible face candidates.  The size of the square block is determined by means of the 

head model in [117].  Based on the head model and the locations of the possible eye 

pairs, a population of possible face regions with different locations, sizes, and 

orientations are generated by pairing the possible eye candidates.  A possible face is 

formed if the following criteria are satisfied: 

 21 θθ θ TT << , 21 sizesizesize TFT << , 

 eyeeyerighteyeleft TFF <− __ ,and segseg TTotal > , (3.14) 

where θ represents the orientation of the face, as shown in Fig. 3.13, Fsize is the face 

length, Fleft_eye and Fright_eye are the average gray-level intensities at the left and right 

eye regions, and Totalseg is the area of segmented skin-color in the skin-color 

segmentation with mixture-of-Gaussian model. 

 
Fig. 3.13.  The orientation of the face. 

 
The range of the orientation angle of a human head is assumed to be between Tθ1 and 

Tθ2, while the face size is assumed to vary from Tsize1 to Tsize2.  The similarity between 

the left eye and right eye is measured by calculating the absolute difference in their 

gray-level intensities, and is assumed to be less than a threshold Teye.  The threshold 

Tseg is to ensure that most of the face area is covered by skin-colored pixels.  Fig. 3.14 

shows those possible face regions satisfying (3.14). 



 - 83 -  

 
Fig. 3.14.  Selection of possible face regions. 

Once a face candidate is selected, its orientation and size are normalized.  Then, 

histogram normalization [76] is applied to the Y component of the selected face 

candidate to compensate for non-uniform lighting; this can help improve detection 

reliability and accuracy.  In this normalization process, the histogram of a possible 

face region is transformed into the histogram of a reference face image, as shown in 

Fig. 3.15. The method is effective since all faces have the same structure, similar 

shape and illumination properties.  Thus, the transformed face can have approximately 

the same illumination as the reference face.  Finally, the image will be passed to the 

final stage for further verification. 

 
(a) (b) (c) (d) 

Fig. 3.15.  (a) Reference face.  (b) Possible face candidate.  (c) Gray-scale image of the face candidate 
in (b).  (d) Histogram normalization of the face candidate in (b). 
 

3.5 A Two-step Face Verification using Eigenmask 

In order to determine whether the normalized face candidate is a face or not, the 

similarity between the face candidate and a face template is measured.  In our 

approach, a two-step face verification procedure is performed.  Instead of using a 
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single face template, a face region is separated into two parts: the upper part contains 

the eyes, while the lower part contains the nose and mouth.  This can make the 

similarity measure more localized.  A true face will be declared only if a face region 

has both its upper and lower parts similar to the corresponding two face templates.  In 

our algorithm, the nose and mouth form the lower part of our face template, while the 

eyes form the upper part.  All the training images used to construct the face templates 

are normalized to a specific size. 

Both the upper and lower templates are gray-scale images, and are obtained by 

calculating the average of a set of pre-processed training face images. Let Ftemplate be 

the face template, which is divided into the upper and lower parts of our face 

template.  Suppose a face region is normalized to a size of M×N.  Ftemplate is calculated 

as follows: 

 ∑
=

=
n

i
itemplate yP

n
yF

0
)(1)( , (3.15) 

where n and Pi(y) are the number of training face images and the ith training face 

image, respectively.  The training set contains face images of different races, ages, 

with and without glasses and a moustache.  The training images and the 

corresponding face template are shown in Figures 16 and 18(a) for the upper faces, 

and Figures 3.17 and 3.18(b) for the lower faces. 

   

   
Fig. 3.16.  The training set for upper face. 
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Fig. 3.17.  The training set for lower face. 

 

 
(a) 

 
(b) 

Fig. 3.18.  Face templates: (a) upper face template, (b) lower face template. 

 
The distance between a possible face region and the corresponding face template 

can be measured by means of the Euclidean distance with a certain weighting function 

based on the importance of the human facial features.  The weighting function can be 

obtained from the eigenmask in [112], denoted as Emask.  The eigenmask is generated 

from the first eigenface of the training face images.  Each of the training face images 

is considered as a vector, Γ, of dimension 1×MN, and Ftemplate in (3.15) is represented 

as a vector, Ψ, of dimension 1×MN.  Then, the covariance matrix A of dimension 

MN×MN is computed based on the training face images as follows: 

 TΦ⋅Φ=A , (3.16) 

for ),...,,( 10 naaa=Φ  and Ψ−Γ= iia , and Ψ is the average of Γi, where n is the 

number of training face images.  The eigenvectors of the matrix A represent the 

principal components of the training face images, which have larger magnitudes at 

important locations such as the eyes, nose, and mouth.  The eigenmask used in the 

distance measure is generated based on the absolute value of the first eigenvector.  

Figures 3.19 shows the eigenmasks generated whose values are normalized between 

0~255 and are used as a weighting function in the distance measurement.  As shown 

in Figures 19, the eye, nose and mouth regions have higher magnitudes than other 

facial regions and with glasses. 

 
(a) 

 
(b) 
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Fig. 3.19.  The eigenmasks: (a) eigenmask for upper face, (b) eigenmask for lower face. 

 
The use of the eigenmasks can reduce false alarms and increase the distance 

when comparing a non-face region to the upper and lower face templates.  The 

distance measure between an input candidate and the template is given as follows: 

 ∑∑
= =

−⋅=
M

y

N

x
templatemask yxFyxIyxE

MN 0 0

2)],(),([),(1ε , (12) 

where I is the luminance component of the possible face candidate.  The face 

candidate will be declared a true face if the values, εupper and εlower, for the upper and 

lower face parts are both smaller than the thresholds Tupper and Tlower, respectively.  In 

our algorithm, as the upper region is more important, we compute the upper part first.  

The calculation of the lower face will be performed if the upper face has been 

verified.  Therefore, the computation required can be reduced.  For overlapping 

regions, the one with the lowest value of  

 
2

lowerupper
total

εε
ε

+
= , (3.17) 

will be chosen as the true face region. 

 

3.6 Face Boundary Verification 

Once the face has been verified and selected in the two-step eigenmask 

verification process, the selected faces are further verified based on the appearance of 

their face boundaries in order to reduce the false alarm.  Some face boundary regions, 

as shown in Fig. 20, are first extracted, and feature vectors, x, are formed.  The black 

rectangles in Fig. 3.20(b) represent face regions, which have been verified by the two 

eigenmasks.  The feature vector of a face boundary does not include the face region. 
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   (a) 

   (b) 

Fig. 3.20.  Examples of face boundary regions: (a) original face, (b) face boundary regions 
extracted from the original faces. 

  
Since the number of training face boundaries is much smaller than the dimensionality 

of the corresponding feature vectors, the covariance matrix is singular in practice.  

Thus, the face boundary vector, x, is first projected onto a lower-dimensional 

subspace by means of principal component analysis [67].  The low-dimensional 

feature vector xy T
M

~Ε= , where xxx −=~  and EM is a matrix containing M column 

vectors, which are the eigenvectors of the corresponding covariance matrix with the 

largest eigenvalues.  The face boundary region can be modeled by a Gaussian density 

function: 
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where P(y) is an M-dimensional Gaussian density function with mean vector μ  and 

covariance Σ  of the low-dimensional training samples.  In our algorithm, the width of 

the face boundary is 5 pixels at each of the four borders.  As the boundary regions 

mainly contain the face contours only, so a Gaussian density function is sufficient to 

represent the appearance of the face boundary, rather than using a mixture-of-

Gaussians model. With a face candidate verified by the two eigenmasks, its boundary 

region is projected onto the eigenspace to form a low-dimensional vector.  Then the 

likelihood, P(y), of the region being a face boundary is measured by using (3.18).  If 

P(y) is larger than a certain threshold, the face candidate will be considered a true face. 
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3.7 Experimental Results 

Experiments were carried out to evaluate the detection performance of our 

algorithm based on using the HHI MPEG-7 face database, the AR face database and 

the CMU PIE face database.  The aim of our proposed method is to detect the frontal 

or near-frontal view of faces under varying lighting conditions and facial expressions.  

In our experiments, a face is considered to be correctly detected if the detected 

position of the two eyes is exactly matched.  A face is said to be missed if the face 

region can be located but the two eye positions are mismatched.  A detection is said to 

be a false alarm if the selected face candidate does not cover the true face region. 

The HHI MPEG-7 face database [2] contains 206 images, each of 640×480 pixels 

in size.  The database contains people of different races, and under varying lighting 

conditions ranging from dark and shadow to strong overhead-projected, and from 

frontal view to profile file.  Thus, 151 images with varying lighting conditions were 

selected from the HHI face database, and those with profile views were ignored in the 

experiment.  The detection performance is tabulated in Table 3.1 and results are 

shown in Fig. 3.21. Using the traditional pixel-by-pixel skin-color segmentation, the 

detection rate is 85.4% without face boundary verification. By using our proposed 

region-based skin-color segmentation, the overall detection rates are 92.7% and 

91.3% with and without the use of face contour verification, respectively. To 

investigate the performance of our algorithm under different lighting conditions, we 

have classified the face images according to the lighting conditions; these include 

overhead lights, dark or side lights, strong overhead lights, and strong side lights. The 

corresponding detection rates are 100%, 93.5%, 86.4%, and 80.8%, respectively. 
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The AR face database [62] contains 126 faces, with 70 men and 56 women each 

of 768×576 pixels in size.  The face images in this database are of frontal view, but 

have different facial expressions, illumination conditions, and occlusions.  We 

selected 920 images with varying illumination and facial expressions from this 

database.  The images with occlusion are ignored.  The detection performance is 

tabulated in Table 3.2 and results are shown in Fig. 3.22. Since the images in the AR 

face database do not have background, only the region-based skin-color segmentation 

is employed. The overall detection rates are 97.6% and 96.0% with and without using 

face contour verification, respectively. We have classified face images according to 

gender and lighting conditions (overhead lights and strong side lights). The 

corresponding detection rates for male face images are 99.7% and 94.6%, and 100% 

and 94.6% for females, respectively. 

The CMU Pose, Illumination, and Expression (PIE) database [99] contains 

41,368 images of 68 people, and each image is 640×486 pixels in size.  There are 13 

different poses, 43 different illumination conditions, and 4 different expressions for 

each person.  We selected 3,264 images that contain frontal and near frontal faces 

with different genders, different races, and under varying lighting conditions ranging 

from dark lights, side lights and strong lights.  With the traditional pixel-by-pixel 

skin-color segmentation, the detection rate is 76.0% without using face boundary 

verification. Using our proposed region-based skin-color segmentation, the overall 

detection rates are 87.6% and 84.2% with and without the use of face boundary 

verification, respectively. The detection performance is tabulated in Table 3.3 and 

results are shown in Fig. 3.23. We have classified the face images according to 

different lighting conditions, including dark lights, strong side lights, and strong 
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overhead lights. The corresponding detection rates are 90.9%, 86.0% and 88.1%, 

respectively. 

Lighting condition Overhead lights Dark or side lights Strong overhead lights Strong side lights Total 
No. of images 54 49 22 26 151 
Detection method Pixel-by-pixel skin-color segmentation and no face boundary verification 
No. of correctly 
detected faces 

53 43 16 17 129 

No. of missed face 1 5 3 7 16 
No. of false alarms 0 1 3 2 6 
Detection Rate (%) 98.1% 87.7% 72.7% 65.4% 84.8% 
Detection method Region-based skin-color segmentation and no face boundary verification 
No. of correctly 
detected faces 

53 46 18 21 138 

No. of missed face 1 2 2 3 8 
No. of false alarms 0 1 2 2 5 
Detection Rate (%) 98.1% 93.5% 81.8% 80.8% 91.3% 
Detection method Region-based skin-color segmentation and with face boundary verification 
No. of correctly 
detected faces 

54 46 19 21 140 

No. of missed face 0 2 2 3 7 
No. of false alarms 0 1 1 2 4 
Detection Rate (%) 100% 93.5% 86.4% 80.8% 92.7% 

Table 3.1.  Detection performance based on the HHI MPEG-7 face database. 

Lighting condition Overhead lights Strong side lights Overhead lights Strong side lights  
Gender Male Male Female Female Total 
No. of images 298 223 231 168 920 
Detection method Region-based skin-color segmentation and no face boundary verification 
No. of correctly 
detected faces 

297 205 231 150 883 

No. of missed face 1 18 0 18 37 
No. of false alarms 0 0 0 0 0 
Detection Rate (%) 99.7% 91.9% 100% 89.0% 96.0% 
Detection method Region-based skin-color segmentation and with face boundary verification 
No. of correctly 
detected faces 

297 211 231 159 898 

No. of missed face 1 12 0 9 22 
No. of false alarms 0 0 0 0 0 
Detection Rate (%) 99.7% 94.6% 100% 94.6% 97.6% 

Table 3.2.  Detection performance based on the AR face database. 
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Lighting conditions Dark Strong side lights Strong overhead lights Total 
No. of images 408 1360 1496 3264 
Detection method Pixel-by-pixel skin-color segmentation and no face boundary verification 
No. of correctly detected faces 353 965 1163 2481 
No. of missed face 41 385 316 742 
No. of false alarms 14 10 17 41 
Detection Rate (%) 86.5% 70.9% 77.7% 76.0% 
Detection method Region-based skin-color segmentation and no face boundary verification 
No. of correctly detected faces 362 1099 1287 2748 
No. of missed face 35 255 196 486 
No. of false alarms 11 6 13 30 
Detection Rate (%) 88.7% 80.8% 86.0% 84.2% 
Detection method Region-based skin-color segmentation and with face boundary verification 
No. of correctly detected faces 371 1169 1318 2858 
No. of missed face 30 187 167 384 
No. of false alarms 7 4 11 22 
Detection Rate (%) 90.9% 86.0% 88.1% 87.6% 

Table 3.3.  Detection performance based on the CMU PIE database. 

The experiments were conducted on a Pentium IV 1.7GHz computer.  As the 

resolution of the images is high, each image is scaled to a size of 80×60 when we 

perform the mean-shift algorithm and skin-color segmentation, and then the images 

are scaled to 200×150 for possible eye candidate detection and face verification.  The 

resolutions used can reduce the computational complexity of our algorithm, and so 

speed up the detection process without losing the details of faces and eyes.  The 

average processing time for locating faces in a picture based on the HHI face 

database, the AR face database and the CMU PIE database ranges from 0.3s to 1.5s.  

The experiments show that our method can achieve a high detection rate irrespective 

of lighting conditions and facial expressions.  When the face boundary is also 

considered, the detection rate is improved and false alarms are reduced.  For the HHI 

database, our algorithm can achieve a detection rate of 92.1% as compared to 88.89% 

in [119] and 90.07% for frontal and near-frontal faces in [36].  In the case of missed 

faces, we have found that the failure of our algorithm is mainly due to severely poor 

lighting conditions at the eye regions, or strong yellow lighting projected on the 
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clothes and hair.  The yellow light makes the clothes and hair assume a skin-like 

color.  Some false alarms and cases of missing faces occur when the HHI face 

database, the AR face database and the CMU PIE database are used, as shown in 

Figures 3.24 and 3.25, respectively.  As our algorithm can also detect multiple faces 

in an image, some examples of the detection are shown in Fig. 3.26. In conclusion, 

our method can achieve a fast and high face detection rate under varying lighting 

conditions and facial expressions. 
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(b) 

  
(c) 

  
(d) 

  
(e) 

Fig. 3.21.  Face detection results with the HHI MPEG-7 face database: (a) frontal view faces under 
overhead lights, (b) near frontal view faces under overhead lights, (c) faces under dark or side lights, (d) 
faces under strong overhead lights, and (e) faces under strong overhead side lights. 
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(c) 

  
(d) 

Fig. 3.22.  Face detection results with the AR face database: (a) frontal view male faces with different 
facial expressions under overhead lights, (b) frontal view male faces under side lights, (c) frontal view 
female faces with different expressions under overhead lights, and (d) frontal view female faces under 
side lights. 
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(a) 

  
(b) 

  
(c) 

Fig. 3.23.  Face detection results for frontal and near frontal view with the CMU PIE database: (a) dark 
lights, (b) side lights, and (c) strong overhead lights. 

 

Fig. 3.24.  Examples of false alarms. 
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Fig. 3.25.  Examples of missed faces. 

    
Fig. 3.26.  Examples of multiple-face detection. 

 

3.8 Conclusion 

In this chapter, we have proposed a more reliable face detection approach under 

varying lighting conditions.  In our algorithm, a color compensation scheme is 

adopted to alleviate the effect of strong lighting conditions on the skin colors.  Then, 

we consider the distributions of the skin color of segmented regions under different 

lighting.  Based on the color information, possible eye candidates are detected within 

the face-like regions, and possible face candidates are then formed by pairing two 

possible eye candidates in a face-like region.  A two-step eigenmask verification 

process is proposed, with a weighting function used to measure the distance between a 

face candidate and the face template.  Finally, boundary regions of the face candidates 

are verified with a Gaussian density function to reduce false alarms.  Experimental 

results show that our algorithm can achieve a higher detection rate and reduce the 
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number of false alarms as compared to [36, 119].  Furthermore, our method can detect 

faces of different sizes and orientations under varying lighting conditions and 

different facial expressions. 

Once the face has been detected in the first frame of a video sequence, the 

information about the face region will be used in the next stage for serching facial 

feature locations.  After the required facial features have been located, the face in the 

subsequent video frames will be tracked.  The face tracking algorithm will be 

described in the next chapter. 
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Chapter 4 
Adaptive Template Matching for 

Face Tracking in Video Sequence 
 

4.1 Introduction 

For many vision-driven interactive user applications, face tracking is an 

essential processing step.  Pose determination and gestures recognition can be 

obtained from face position and orientation.  A limitation of most face-tracking 

algorithms is the lack of an effective appearance models.  This is especially the case 

for template-matching methods, wherein the template is usually unable to adapt to an 

appearance changed over a long duration.  When a face moves fast in a video 

sequence, the tracking will drift away from the target. 

Visual tracking has been extensively studied in recent years.  Most of the works 

has embodied some representation of image appearances.  Jepson et al. [40] proposed 

to model the appearance of a face using the phase information based on the Gabor 

wavelet.  The tracking algorithm is formulated by three components, namely, a stable 

component, a two-frame transient component, and an outlier process.  The stable 

component adapts to the slowly varying properties of image appearance throughout 

the tracking process.  The two-frame transient component provides additional 

information when the appearance model is being initialized or when the appearance is 

changing quickly.  The outlier process accounts for outliers, which are expected to 

arise due to failures in tracking, occlusion, or noise.  These components are updated 

and optimized with an online expectation-minimization algorithm.  Approximately 

half of the time was spent computing the wavelet transform, which degrades the 

tracking efficiency.  Loutas et al. [57] proposed a probabilistic model based on feature 
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point sets generated automatically and entropy measurement of motion parameters as 

the product of a prior probability and a likelihood function for face tracking and head 

orientation estimation.  Comaniciu et al. [18] proposed a histogram-based target 

representation regularized by spatial masking with an isotropic kernel.  The similarity 

between the target in a current frame and that in the previous frame is measured by 

means of the Bhattacharyya coefficient.  The basin of attraction of the local maxima is 

optimized by the mean shift procedure. 

This chapter proposes a robust, adaptive template matching method for face 

tracking.  Facial features, including left eye, right eye and mouth, are being tracked 

based on the Gabor wavelet representations in the first stage.  The greedy algorithm is 

used for tracking a face region efficiently.  In the searching process, a triangular 

structure formed by the three important facial features is employed.  In addition, an 

adaptive template matching algorithm can adapt to the slowly changing appearance of 

a face region, which is based on a key frame representation method for video analysis, 

namely Temporally Maximum Occurrence Frame [107]. 

 

4.2 The Gabor Feature 

The Gabor wavelet [54, 79] has been used widely in texture analysis to provide 

features for texture classification and segmentation.  It has been shown that Gabor 

wavelet representation optimally minimizes the uncertainty in the space and the 

frequency domain. The underlying texture information can be characterized by the 

orientation and the scale factor of the Gabor wavelets. 

A Gabor wavelet is a complex exponential modulated by a Gaussian function in 

the spatial domain, as shown below, 
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where the pixel position is defined by the x, y coordinates in the spatial domain, w0 is 

the radial center frequency, θ  is the orientation of the Gabor wavelet, and σ  is the 

standard deviation of the Gaussian function along the x and y axes.  The second term 

of the Gabor wavelet compensates for the DC value, because the DC response of the 

cosine component is a non-zero mean, while the sine component is zero mean.  The 

Gabor representation can then be computed from the convolution of the image, I(x,y), 

and the Gabor wavelets, h(x,y), i.e. 

 ),(),(),,,( 0 yxIyxhwyxC ∗=θ . (4.2) 

where * denotes the convolution operator. The convolution result, ),,,( 0 θwyxC , 

corresponds to the Gabor wavelet at the radial center frequency w0 and orientation θ .  

A multi-hierarchical Gabor representation of the facial image, I(x,y), can be computed 

with a set of w0 and θ .  To reduce the computation complexity, the convolution is 

computed using the fast Fourier transform (FFT), point-by-point multiplications, and 

then the inverse fast Fourier transform (IFFT) on both the facial image and the Gabor 

wavelet.  The magnitudes of the responses can be used as a measure of the local 

properties of an image because magnitude is slow varying to position, while the 

phases are very sensitive to location.  The similarity between two Gabor wavelets, C 

and C' can be measured by the following similarity function [116], 
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where a and a' represent the magnitudes of the respective Gabor wavelets 

representations, and N is the total number of Gabor representations.  The number of 

Gabor representations is equal to the number of scales multiplied by the number of 

orientations.  ),( CCS ′  is a correlation function with local optima forming large 

attractor basins.  This leads to rapid and reliable convergence with simple search 

methods such as gradient descent or diffusion. 

 

4.3 Temporally Maximum Occurrence Frame 

Temporally Maximum Occurrence Frame (TMOF) [107] is a key frame 

representation scheme for video analysis and retrieval.  This representation is 

constructed based on the most significant visual content in a video shot, and the idea 

is illustrated with six frames in a video sequence, as shown in Fig. 4.1.  In the first 

three frames, a bus stops at the bottom left corner and a helicopter is landing on a 

house.   In the last three frames, the bus drives away and the helicopter remains on the 

roof.  Therefore, the key frame of this video sequence should contain the house, the 

bus, and the helicopter, as shown in Fig. in Fig. 4.1(g). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 

Fig. 4.1.  An ideal representation frame for a sequence with six frames.  (a) Frame 1.  (b) Frame 2.  
(c) Frame 3.  (d) Frame 4.  (e) Frame 5.  (f) Frame 6.  (g) The Ideal Representation Frame. 
(Original image courtesy of K. W. Sze, K. M. Lam and G. Qiu) 

 

The construction of a TMOF representation is based on the probabilities of occurrence 

of the pixel values at each pixel location for all the frames in the video sequence.  The 

idea of constructing a key representation for a tracked region using the TMOF scheme 

is illustrated in Fig. 4.2. 

 



 - 103 -  

 
Fig. 4.2.  The construction of the TMOF for a video sequence. (Original image courtesy of K. W. 
Sze, K. M. Lam and G. Qiu) 

 

At each pixel location, a histogram is formed based on the respective pixel values.  

The number of histograms is equal to the image size.  Each histogram accumulates the 

pixel values of the corresponding location in a video sequence.  The histogram is then 

smoothed using a Gaussian function.  At each pixel location of TMOF, the values to 

be selected are those with the highest probability of occurrence in the smoothed 

histogram.  Therefore, the TMOF is computed as follows: 

 optbjiTMOF =),( , for 0 ≤ i ≤ W'-1 and 0 ≤ j ≤ H'-1 (4.4) 

where W'×H' is the TMOF size, and bopt is chosen as 

 { })(maxarg , bHb jibopt ′= , for 0 ≤ b ≤ B. (4.5) 

jiH ,′  is the smoothed histogram, which can be computed by convolving the histogram, 

jiH ,  with a Gaussian filter as follows: 

 ),()()( ,, bGbHbH jiji σ∗=′ , (4.6) 

where ),( bG σ  and σ are a Gaussian function and its variance, respectively.  

Histogram, )(, bH ji , is computed as follows: 
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corresponding pixels at each pixel location (i,j), fn(i,j) is the pixel value at location 

(i,j) in frame n, N is the number of frames in the video sequence, and B is the number 

of bins in the histogram.  The number of bins in a histogram is the same as the number 

of intensity levels for a pixel.  At the beginning of the tracking, the histogram cannot 

be distributed evenly; thus, the TMOF may bias towards a certain pixel value and may 

not be representative.  In this case, the number of bins in a histogram needs to be 

reduced in order to obtain a better-estimated TMOF representation, and the tracking 

should rely less on the TMOF. 

 

4.4 Face Tracking 

For each image in a video sequence, the important facial features, i.e. the left 

eye Ileft_eye, right eye Iright_eye and mouth Imouth, are extracted.  These facial features are 

tracked based on two schemes.  The first scheme is to search for the possible position 

of these facial features based on feature windows of size 16×16, as shown in Fig. 4.3.  

The other scheme is based on the Gabor wavelet representations of the facial features. 

Ileft_eye Iright_eye

Imouth

 
Fig. 4.3.  Facial features extraction. 
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position of the ith facial feature (i = 1, 2, and 3) and k is the current frame 

number.  With the three feature points, a triangular structure is formed. 

 
Fig. 4.4.  The fast greedy algorithm searches the position of the three important facial features. 

ii. For each possible location of the feature points, the similarity function (4.3) 

based on the Gabor representation is computed.  The size of the search window 

is 3×3. 

The triangular structure formed by the three feature points, as shown in Fig. 4.5, is 

used for tracking in the subsequent frames.  The triangular structure should have 

limited changes between the successive frames.  In our algorithm, the following three 

changes are limited between the triangular structures in two successive frames:  

• percentage change of area, 

• percentage change of angle change, and  

• percentage change of the length of each side of the triangles. 
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Fig. 4.5.  A triangular structure. 

The position of the feature points that results in the largest similarity based on the 

Gabor representation will be selected as the best location and used as the initial 

position for the next iteration.  The iteration process continues until either the position 

of the facial feature points does not change in an iteration or the maximum number of 

iteration is reached. 

During the search for the best facial feature points, the area formed by the facial 

feature points is extracted and normalized.  This area forms a possible face, and is 

denoted as pf(x,y).  The template similarity distance used for tracking based on the 

first face template F1(x,y) and the TMOF template TMOF(x,y) is given as follows: 

 ( ) ),(1),( 1 yxTMOFFyxpfTd ⋅−−⋅−= λλ , (4.8) 

where |⋅| represents the sum of squares in a template, and λ  is a weighting factor used 

to control the relative importance of the first face template and the TMOF.  For the 

first several frames, there is an insufficient number of frames to construct the TMOF 

template.  Thus, only the first face template is considered, i.e. α = 1 and Td=|pf(x,y)-

F1(x,y)|.  Finally, a tracked region is measured using an energy function, which 

combines the correlation based on the Gabor representations of feature points and the 

template distance measure as follows: 

 

maxmax,
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where α, β and γ are  weighting factors, where 1=++ γβα , Td,max is the maximum 

similarity distance in (4.8) used to normalize the second term in the range of 0~1, d is 

the distance of the estimated mouth point that drift away from the point perpendicular 

to the mid-point of both estimated eye locations, and dmax is the maximum value of d 

for normalization in the range of 0~1.  The last term is used to force the position of 

the mouth’s center to be close to the line that is perpendicular to and passes through 

the middle of the line formed by joining the two eye locations.  The back-tracked 

region is the one that has the lowest energy value in the iterations.  Once a face is 

tracked successfully, the tracked face region is also extracted and normalized so as to 

update the TMOF template. 

 

4.5 Experimental Result 

Our experiments were conducted based on the Carphone, Foreman and 

Salesman video sequence of the MPEG-1 content set.  The number of frames in the 

three videos is 96, 300 and 200, respectively.  For facial feature tracking, Gabor 

wavelet representation or intensity representation of each facial feature is used.  

Different combinations of the weighting factor in (4.9) are used to test the 

effectiveness of each component.  For face template matching, two different methods 

either TMOF plus first frame template or first frame only are used.  Five tests were 

performed for each video sequence.  Both the Carphone and Foreman videos are very 

challenging, as the head moves much more vigorously than in the Salesman video.  

The speed of our tracking algorithm is approximately 4 frames per second on a 

Pentium 4 1.7GHz computer.  Most of the time was spent on computing the Gabor 

representations for the possible face regions. 
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Experiment Representation in 

facial feature α β γ Face template 
matching method 

1 Gabor wavelet 0.0 1.0 0.0 TMOF + First Frame 
2 Gabor wavelet 0.0 1.0 0.0 First Frame only 
3 Gabor wavelet 0.2 0.6 0.2 TMOF + First Frame 
4 Gabor wavelet 0.2 0.6 0.2 First Frame only 
5 Intensity 0.2 0.6 0.2 TMOF + First Frame 

Table 4.1.  List of parameters in each face tracking experiment. 

 

In the Carphone video sequence, a moving head with blinking eyes and a talking 

mouth causes sudden changes in orientation for the frames 23-28, as illustrated in Figs. 

4.6(c)-(d), and for frames 28-38, as illustrated in Figs. 4.6(d)-(e).  The head moves 

back and forth from frames 53 to 62, as shown in Fig 4.6(e)-(i).  The lighting 

conditions on the face change between frames 53 and 70, as shown in Figs. 4.6(g)-(h).  

In addition, the size of the eyes and mouth changes frequently in the video sequence, 

as shown in Figs. 4.6(d)-(i). 

In Fig. 4.6, each of the figures also contains one or two faces at the upper left 

corner.  The upper one is the normalized face being tracked.  The lower one is the face 

template generated using TMOF.  As discussed before, the TMOF template (the lower 

one) used in the next frame is updated by using the tracked face (the upper one) in the 

previous frame.  In experiment 1, 3 and 5, the TMOF was created after face had been 

tracked successfully in frame 3.  Thus, at frame 4, a face is tracked using a 

combination of the first face template and the TMOF template.  All the templates and 

the tracked faces are normalized to a size of 16×16 pixels.  It can be observed that the 

TMOF template in Fig. 4.6(b) has different face appearance as compared to Fig. 

4.6(i).  This is because the TMOF representation is based on the peak pixel values 

over the recent 30 frames, which reflects the recent appearance change.  This is 

especially obvious in Foreman sequence as the perspective change is reflected in the 

TMOF template in Fig 4.16.   
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In experiment 1, both TMOF and the first frame are considered for face template 

matching with an average error of 3.38 pixels, and in experiment 2, only the first 

frame is considered with average an error of 3.67 pixels.  By using different face 

template matching methods, both experiments 1 and 2 show that the mouth point 

drifts away from the mouth center frequently, as shown in Fig. 4.7 and Fig. 4.9, and 

the average errors of the mouth point are 4.66 pixels and 3.56 pixels, respectively. 

In experiment 3, the performance is improved the average error is reduced to 

2.35 pixels compared to both experiments 1 and 2.  In particular, the average error of 

the mouth is reduced by half to 1.78 pixels.  The errors of these three facial features, 

as shown in Fig. 4.11, are varied less when compared to those in experiments 1 and 2.  

Compared to experiment 4, the average error is 3.00 pixels.  In this experiment, the 

same set of weighting factor is used but the first frame is used in the face template 

matching.  We can observe that experiment 3 shows a better performance level. 

Experiment 5 results in the highest average error, which is 4.36 pixels.  In this 

testing case, only intensity is considered in the measurement of the facial feature 

similarity distance between the previous and current frames.  The left eye is seriously 

drifted away from the actual location, as shown in Fig. 4.15, and the average error is 

7.28 pixels. 

In each of the experiments, a table is also given to show the error distance 

between the estimated and actual facial feature location.  Table 4.2 tabulates the 

average error and standard deviation of the experiments. 
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 Experiment Left Eye Right Eye Mouth Average Error 
Average Error 3.11 2.38 4.66 
Standard Deviation 1 2.02 1.69 3.22 3.38 

Average Error 2.26 2.19 3.56 
Standard Deviation 2 1.37 1.32 2.47 2.67 

Average Error 2.46 2.83 1.78 
Standard Deviation 3 1.65 1.50 1.19 2.35 

Average Error 3.27 3.68 2.04 
Standard Deviation 4 2.08 2.26 1.66 3.00 

Average Error 7.28 2.49 3.31 
Standard Deviation 5 4.13 1.41 2.46 4.36 

Table 4.2.  Experiment results of Carphone video. 
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(h) 

 
(i) 

Fig. 4.6.  Tracking results using the Carphone video in experiment 1. (a) Frame 0.  (b) Frame 12.  
(c) Frame 23.  (d) Frame 28.  (e) Frame 38.  (f) Frame 40.  (g) Frame 45.  (h) Frame 62.  (i) Frame 
70. 
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Fig. 4.7.  Error distance between estimated and actual position of the facial features in Carphone 
video in experiment 1. 
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Fig. 4.8.  Tracking results using the Carphone video in experiment 2. (a) Frame 0.  (b) Frame 12.  
(c) Frame 23.  (d) Frame 28.  (e) Frame 38.  (f) Frame 40.  (g) Frame 45.  (h) Frame 62.  (i) Frame 
70. 
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Fig. 4.9.  Error distance between estimated and actual position of the facial features in Carphone 
video in experiment 2. 
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Fig. 4.10.  Tracking results using the Carphone video in experiment 3. (a) Frame 0.  (b) Frame 12.  
(c) Frame 23.  (d) Frame 28.  (e) Frame 38.  (f) Frame 40.  (g) Frame 45.  (h) Frame 62.  (i) Frame 
70. 
 

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Frame

Pi
xe

ls Left Eye
Right Eye
Mouth

 
Fig. 4.11.  Error distance between estimated and actual position of the facial features in Carphone 
video in experiment 3. 
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Fig. 4.12.  Tracking results using the Carphone video in experiment 4. (a) Frame 0.  (b) Frame 12.  
(c) Frame 23.  (d) Frame 28.  (e) Frame 38.  (f) Frame 40.  (g) Frame 45.  (h) Frame 62.  (i) Frame 
70. 
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Fig. 4.13.  Error distance between estimated and actual position of the facial features in Carphone 
video in experiment 4. 
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Fig. 4.14.  Tracking results using the Carphone video in experiment 5. (a) Frame 0.  (b) Frame 12.  
(c) Frame 23.  (d) Frame 28.  (e) Frame 38.  (f) Frame 40.  (g) Frame 45.  (h) Frame 62.  (i) Frame 
70. 
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Fig. 4.15.  Error distance between estimated and actual position of the facial features in Carphone 
video in experiment 5. 
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In Foreman video sequence, there are 185 out of 300 frames contain human face. 

The moving head in this video sequence contains changes in orientation, as shown in 

Fig. 4.16(g)-(h), loss of right eye for the frames 156-169, as shown in Figs 4.16 (i), 

and changes in perspective view in the whole sequence, as shown in Figs. 4.16 (a)-(i).  

The rapid change in perspective view from Figs. 4.16(d)-(e) causes the facial 

features to drift away from the facial features.  However the position of the facial 

feature can be relocated to the feature center, as illustrated in Fig. 4.16(f), with the 

help of the face templates.  Because of fast head motion in frames 130-155, the 

tracking of mouth was failed.  For the frames 156-169, because of a loss of 

information at the right eye, as shown in Fig. 4.16(i), the tracking cue failed to 

follow the right-eye position in the subsequent frames.  Starting from frame 170, the 

camera pans to right and head quickly moves out from the scene.  This action 

introduces a large error between estimated and actual facial features position as 

shown in Fig. 4.17.   

Table 4.3 tabulates the average error and standard deviation of the experiments.  

Starting from frame 156, the information about the right eye is lost due to fast camera 

motion.  Thus, this video is divided into two result sets; one is for frames 0-184 and 

the other one is for frames 0-155.  The performance of our algorithm is greatly 

improved without taking into account of the information lost and camera effect. 

In experiment 1 with an average error of 4.14 pixels, both TMOF and the first 

frame are considered for face template matching, and in experiment 2, with average 

error of 4.97 pixels, only the first frame is considered.  By using different face 

template matching methods, both experiments 1 and 2 show that the mouth point 

drifts away from the mouth center seriously when fast motion occurred, as shown in 
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Fig. 4.16(h) and Fig. 4.18(h).  The corresponding average errors of the mouth point 

are 5.05 and 5.91, respectively. 

In experiment 4, the experimental result is improved with an average error of 

4.14 pixels.  Compared to both experiments 1 and 2, the average error of the mouth 

point is reduced to 3.85 pixels.  The errors in all the three facial features, as shown in 

Fig 4.23, vary less when compared to experiment 1.  Compared to experiment 3, the 

average error is 4.15 pixels, which uses the same set of weighting factor but both 

TMOF and the first frame are employed in the face template matching.  The results 

are very close to each other.  The result of experiment 4 is slightly outperform those in 

experiment 3. 

Experiment 5 has the highest average error of 7.01 pixels, in all the experiments.  

In this testing case, only intensity is considered in the measurement of the facial 

feature similarity distance between the previous and current frames.  The right eye 

and mouth point are seriously drifted away from the actual locations, as shown in Fig. 

4.25, and the average errors are 8.11 pixels and 9.58 pixels, respectively. 

 Experiment Left Eye Right Eye Mouth Average Error 
Average Error 8.05 6.37 8.27 
Standard Deviation 13.66 8.28 9.16 7.56 

Average Error (frame 0-155) 3.41 3.95 5.05 
Standard Deviation (frame 0-155) 

1 

3.48 2.59 3.72 4.14 

Average Error 9.65 6.27 8.54 
Standard Deviation 14.78 7.08 8.09 8.15 

Average Error (frame 0-155) 4.79 4.22 5.91 
Standard Deviation (frame 0-155) 

2 

5.42 2.47 4.02 4.97 

Average Error 5.86 6.66 5.03 
Standard Deviation 8.30 6.59 3.90 5.85 

Average Error (frame 0-155) 3.59 4.96 3.90 
Standard Deviation (frame 0-155) 

3 

2.32 2.77 2.72 4.15 

Average Error 5.78 6.54 5.07 
Standard Deviation 8.40 6.83 4.39 5.79 

Average Error (frame 0-155) 3.70 4.88 3.85 
Standard Deviation (frame 0-155) 

4 

3.05 3.39 2.92 4.14 

Average Error 4.97 8.87 10.43 
Standard Deviation 5.18 6.50 7.59 8.09 

Average Error (frame 0-155) 3.33 8.11 9.58 
Standard Deviation (frame 0-155) 

5 

2.70 5.93 7.86 7.01 

Table 4.3.  Experiment results of Foreman video. 
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Fig. 4.16.  Tracking results using the Foreman video in experiment 1. (a) Frame 0.  (b) Frame 8.  
(c) Frame 20.  (d) Frame 60.  (e) Frame 90.  (f) Frame 120.  (g) Frame 131.  (h) Frame 151.  (i) 
Frame 158. 
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Fig. 4.17.  Error distance between estimated and actual position of the facial features in Foreman 
video sequence in experiment 1. 
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Fig. 4.18.  Tracking results using the Foreman video in experiment 2. (a) Frame 0.  (b) Frame 8.  
(c) Frame 20.  (d) Frame 60.  (e) Frame 90.  (f) Frame 120.  (g) Frame 131.  (h) Frame 151.  (i) 
Frame 158. 
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Fig. 4.19.  Error distance between estimated and actual position of the facial features in Foreman 
video sequence in experiment 2. 
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Fig. 4.20.  Tracking results using the Foreman video in experiment 3. (a) Frame 0.  (b) Frame 8.  
(c) Frame 20.  (d) Frame 60.  (e) Frame 90.  (f) Frame 120.  (g) Frame 131.  (h) Frame 151.  (i) 
Frame 158. 
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Fig. 4.21.  Error distance between estimated and actual position of the facial features in Foreman 
video sequence in experiment 3. 
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Fig. 4.22.  Tracking results using the Foreman video in experiment 4. (a) Frame 0.  (b) Frame 8.  
(c) Frame 20.  (d) Frame 60.  (e) Frame 90.  (f) Frame 120.  (g) Frame 131.  (h) Frame 151.  (i) 
Frame 158. 
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Fig. 4.23.  Error distance between estimated and actual position of the facial features in Foreman 
video sequence in experiment 4. 
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Fig. 4.24.  Tracking results using the Foreman video in experiment 5. (a) Frame 0.  (b) Frame 8.  
(c) Frame 20.  (d) Frame 60.  (e) Frame 90.  (f) Frame 120.  (g) Frame 131.  (h) Frame 151.  (i) 
Frame 158. 
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Fig. 4.25.  Error distance between estimated and actual position of the facial features in Foreman 
video sequence in experiment 5. 
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When compared to the Carphone and Foreman video sequences, head movement 

in Salesman video sequence is less dynamic and more stable.  The tracking cues track 

the facial features successfully in all test cases.   

Experiment 2, which uses the first face as a face template for matching during 

tracking, has the lowest average error of 1.03 pixels, and the averages for left eye, 

right eye and mouth are 0.83 pixels, 1.28 pixels and 1.06 pixels, respectively.  

Experiment 1, which uses TMOF and the first face in face template matching during 

tracking, achieve a satisfactory performance with an average error of 1.04 pixels when 

compared to experiment 2. 

As this video sequence is more static compared to the “Carphone” and 

“Foreman” video sequences, experiments 3 and 4 have a satisfactory performance 

level with average errors of 1.11 pixels and 1.17 pixels, respectively, but with 

relatively higher average errors when compared to experiments 1 and 2. 

Experiment 5 has the highest average error in all the experiments.  Since the 

video sequence is more static than the previous two sequences, the average error does 

not have a large variation when compared to experiments 1, 2, 3 and 4.  It has a 

satisfactory result with an average error of 1.33 pixels. 

Experimental results are tabulated in Table 4.4 and charts are shown in Fig. 

4.26-35. 

 Experiment Left Eye Right Eye Mouth Average Error 
Average Error 0.88 1.39 0.84 
Standard Deviation 1 0.67 0.69 0.66 1.04 

Average Error 0.83 1.28 1.06 
Standard Deviation 2 0.66 0.67 0.85 1.03 

Average Error 0.65 1.61 1.07 
Standard Deviation 3 0.54 0.83 0.79 1.11 

Average Error 0.77 1.56 1.20 
Standard Deviation 4 0.65 0.76 0.87 1.17 

Average Error 1.08 1.27 1.64 
Standard Deviation 5 0.76 0.74 0.87 1.33 

Table 4.4.  Experiment results of Salesman video. 
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Fig. 4.26.  Tracking results using the Salesman video in experiment 1. (a) Frame 0.  (b) Frame 50.  
(c) Frame 75.  (d) Frame 120.  (e) Frame 140.  (f) Frame 199. 
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Fig. 4.27.  Error distance between estimated and actual position of the facial features in Salesman 
video in experiment 1. 
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Fig. 4.28.  Tracking results using the Salesman video in experiment 2. (a) Frame 0.  (b) Frame 50.  
(c) Frame 75.  (d) Frame 120.  (e) Frame 140.  (f) Frame 199. 
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Fig. 4.29.  Error distance between estimated and actual position of the facial features in Salesman 
video in experiment 2. 
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Fig. 4.30.  Tracking results using the Salesman video in experiment 3. (a) Frame 0.  (b) Frame 50.  
(c) Frame 75.  (d) Frame 120.  (e) Frame 140.  (f) Frame 199. 
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Fig. 4.31.  Error distance between estimated and actual position of the facial features in Salesman 
video in experiment 3. 
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Fig. 4.32.  Tracking results using the Salesman video in experiment 4. (a) Frame 0.  (b) Frame 50.  
(c) Frame 75.  (d) Frame 120.  (e) Frame 140.  (f) Frame 199. 
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Fig. 4.33.  Error distance between estimated and actual position of the facial features in Salesman 
video in experiment 4. 
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Fig. 4.34.  Tracking results using the Salesman video in experiment 5. (a) Frame 0.  (b) Frame 50.  
(c) Frame 75.  (d) Frame 120.  (e) Frame 140.  (f) Frame 199. 
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Fig. 4.35.  Error distance between estimated and actual position of the facial features in Salesman 
video in experiment 5. 
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4.5 Conclusion 

In this chapter, we have purposed a face tracking method based on a 

combination of the Gabor wavelet representations of the important facial features and 

the TMOF face template.  The TMOF face template adapts to changes in face 

appearance in a video sequence.  A modified greedy algorithm is proposed to search 

for the facial feature locations that are first verified based on the properties of the 

triangular structure and the Gabor representation similarity.  Finally, the possible face 

regions are further verified using the TMOF face template and first face template.  

Using the parameter sets 3 and 4 listed in Table 4.1, experimental results show that 

our algorithm is robust to the rapid head movement, orientation change and 

illumination change.  However, in the video sequence “Salesman”, the parameter sets 

1 and 2 can achieve better performance level in less dynamic video sequences.  An 

adaptive method should be used to measure the activity in a video sequence. 

During face tracking, the pose estimation of human face with ASM [50] should 

be performed concurrently.  The CANDIDE model [5] can also adapt to the human 

face structure for 3D reconstruction which described in next chapter. 
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Chapter 5 
Construction of 3D Face Structure 

 

5.1 Introduction 

The generation of a realistic-looking and animated human face model is a 

challenging and difficult problem, and has been a computer vision research topic for 

over 25 years.  The construction of face model is necessary for computer games, 

virtual presence, video conferencing, online chat, model-based video coding etc.  

Nowadays, laser scanners are the most popular tools to acquire 3D structures.  

However, these scanners are very expensive.  In addition, the data are usually noisy 

and require post-processing, such as hand-touch-up and manual registration before 

animating the 3D model.  Computers and digital cameras are relative powerful and 

inexpensive now; thus, the construction of a 3D face model from multiple 2D images 

attracts a lot of interest.  The techniques available nowadays are still manually 

intensive and computationally expensive. 

Lots of work is required to construct a 3D model from multiple images.  

Sengupta et al. [94, 95] proposed a method to derive the 3D face model from a few 

monocular images by using affine epipolar geometry, described in [97], and spline-

fitting techniques to estimate actual shape of a human face.  Shan and Liu [55, 96] 

proposed a new model-based bundle adjustment algorithm to recover the 3D model of 

an object from a sequence of images with unknown motions.  The model-based 

bundle adjustment method can optimally reconstruct the shape of the human face.  

Ikeda [37] combines segmentation with photometric stereo to reconstruct shapes for 

multi-colored objects by using three images.  Pighin et al. [77] developed a system to 

reconstruct 3D model by fitting a 3D mesh model across multiple images.  The 
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correspondences among the images are specified manually by user.  Kang et al. [42] 

used the linear spaces of geometrical models to construct 3D face models from 

multiple images.  This approach required manually alignment of a generic mesh to 

one of the images, which is a tedious task for general user. 

In this chapter, we propose an efficient algorithm to estimate the depth of a 3D 

face model for a human face from multiple images without prior camera calibration.  

In this method, we use the CANDIDE model [5] as our 3D mesh to adapt to human 

faces.  To estimate the depth of a human face, an iteration procedure is proposed to 

minimize the similarity distance between the CANDIDE model and faces viewed at 

different perspective. 

 

5.2 Similarity Measure by Matching 2D Point Sets 

A set of 17 feature points, ( ){ }17

0
,

=iii
yx PP , as shown in Fig. 5.1 (a), is located in an 

image that may be at different perspective angles.  Similarly, a set of 17 feature 

points, denoted as ( ){ }17

0
,

=iii
yx QQ , were also identified in the CANDIDE model, as 

shown in Fig.5.1(b). 
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each point set is translated to its centroid, so that its first moment is zero.  Before 

computing the norm between the two point sets, there are two operations, namely 

normalization and point alignment, to remove differences between the two point sets 

due to irrelevant effects.  Normalization is to normalize the size of the two point sets.  

Point alignment, which includes rotation, translation and scale, is applied to the image 

to obtain optimal alignment between the two point sets.  In our approach, scale 

normalization is first applied to the point sets as follows: 

 
P
PP =′ ,          

Q
QQ =′ . (5.2) 

The point set P' and Q' are aligned with a scaled rotation as follows: 

 PP ′⋅=′′ sR  (5.3) 

where s is a scalar and R is a 2×2 rotation matrix, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
μμ
μμ

cossin
sincos

R  (5.4) 

where μ is the angle of rotation for alignment.  The respective values of μ and s can be 

obtained by minimizing the following expression: 

 2

,
min QPQP ′−′⋅′′=′−′⋅

′′
RssR

Rs
. (5.5) 

The optimal alignment can be obtained by differentiating the distance expression, 

( ) ( )[ ]TsRsRtr QPQP ′−′⋅⋅′−′⋅ , with respect to μ and s, and equating the partial 

derivatives to 0.  The equations are solved as below: 

 ])([])([ 22 TT trrts QPQP ′′+′′= , and 

 
])([
])([tan T

T

tr
rt

QP
QP
′′
′′

=μ . (5.6) 
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where tr[] of matrix is the sum of its diagonal elements and rt[] is the difference 

between its off-diagonal elements.  The 2D alignment transformation can therefore be 

given as follows: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′′′−

′′′′
=

])([])([
])([])([

TT

TT

trrt
rttr

sR
QPQP
QPQP

. (5.7) 

Based on the above procedures, the point set of an input face is normalized, aligned 

and compared with the normalized point sets of the CANDIDE model. 

 

5.3 Depth Estimation 

In our approach, the CANDIDE model is first adapt to faces at 0° by local 

adaptation, as shown in Fig. 5.2(b).  The feature points of faces at different views 

have been manually selected.  The estimation of the depths at the different feature 

points is performed as follows: 

1. Adjust the z-coordinates of one of the feature points in the 0° CANDIDE model. 

2. Rotate the 0° CANDIDE model to the corresponding perspective view angle of 

face image. 

3. Project the rotated 0° CANDIDE model to the 2D plane. 

4. Calculate the similarity distance using (5.1) between the point sets of the 

projected model and of the 2D image. 

5. Go back to step 1 to adjust the z-coordinates until minimum similarity distance is 

found. 

Each feature point iterates through the above procedure until the overall similarity 

distance between the different perspective view and the 0° CANDIDE model is 

minimized or until a maximum number of iterations has been reached.  Figures 5.2(a)-

(c) shows the adaptation between the feature points and the CANDIDE model.  After 
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adaptation, the depth of the feature points of the CANDIDE model should be a good 

estimation of the corresponding depth of the human face in the 2D face images used 

in the iteration process.  The trained CANDIDE is then used to adapt to a testing 

image of the same person at a different perspective, as shown in Fig. 5.2(d); the 

similarity distance is also computed, as shown in Table 5.1(b).  This similarity 

distance can be used as a measure of the accuracy of the 3D CANDIDE model used to 

represent the 3D structure of the human face concerned. 

 

5.4 Experimental Result 

Our experiments were conducted based on the FERET database [75].  This 

database includes face images of various poses, including profiles of different 

expressions and different illuminations.  Pose variations of the face images were 

captured systematically.  Since the database contains many face images of many 

different people, we selected 10 people with 3 different poses for training in order to 

estimate the depth of the feature points, while another face in a different pose was 

used for testing.  The training images and their adaptation are shown in Fig. 5.2-

5.11(a)-(c).  The adaptation to testing images is shown in Fig. 5.2-5.11(d).  Table 5.1-

5.10(a) show the changes of the z-coordinate of each facial feature, and the distance 

between the CANDIDE model and the facial feature points before and after the depth 

estimation at different perspectives and in different testing images.  Table 5.1-5.10(b) 

show the similarity distance between the CANDIDE model and the facial feature 

points before and after the depth estimation. 
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(a) 

 
(b) 

 
© 

 
(d) 

Fig. 5.2.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at 25°perspective.  (c) Training face at -25° perspective.  (d) Testing face at 15° perspective. 

 
The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at 25° 

after 
at 25° 

before 
at -25° 

after 
at -25° 

before 
at 15° 

after 
at 15° 

1 8.48 0.005251 0.013118 0.026768 0.007399 0.002956 0.008355 
2 -3.59 0.008993 0.005035 0.010700 0.002236 0.008482 0.004843 
3 -1.78 0.005173 0.008116 0.007321 0.002021 0.003896 0.001256 
4 6.34 0.036902 0.024232 0.007702 0.019615 0.024838 0.017708 
5 -2.47 0.010330 0.005608 0.003840 0.004110 0.006202 0.002497 
6 2.33 0.011828 0.015734 0.015781 0.010935 0.011355 0.013582 
7 2.14 0.006247 0.003934 0.013116 0.012491 0.003885 0.002868 
8 -1.77 0.010279 0.009403 0.017043 0.016344 0.008914 0.010244 
9 -2.43 0.010532 0.009187 0.012435 0.010073 0.013104 0.013663 

10 -2.80 0.015386 0.014567 0.016530 0.015137 0.018333 0.018811 
11 -0.90 0.015007 0.016048 0.010501 0.007518 0.003070 0.004366 
12 2.24 0.004680 0.008945 0.016948 0.014376 0.007744 0.010102 
13 1.10 0.017409 0.016027 0.012376 0.013716 0.031348 0.030462 
14 2.97 0.020833 0.026689 0.027335 0.021070 0.024632 0.027709 
15 -5.86 0.021218 0.008096 0.005528 0.008720 0.011830 0.004496 
16 -8.30 0.021298 0.015513 0.026861 0.025090 0.020382 0.014143 
17 9.99 0.038444 0.020324 0.014449 0.006691 0.014987 0.003785 

Table 5.1(a).  Face adaptation for Fig. 5.2. 

Angle Training image 
25° 

Training image 
-25° 

Testing image  
15° 

2D similarity distance 
before depth estimation 0.008875 0.005626 0.005119 

2D similarity distance 
after depth estimation 0.004643 0.002704 0.003794 

Table 5.1(b).  The similarity distance before and after iteration for Fig. 5.2. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.3.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at 10° perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 -0.12 0.012453 0.015838 0.013178 0.011643 0.018180 0.017242 
2 -6.96 0.034672 0.022485 0.011415 0.021169 0.011171 0.015866 
3 -3.22 0.007343 0.010532 0.016178 0.013311 0.009562 0.006995 
4 -2.14 0.013938 0.014665 0.009353 0.013160 0.018882 0.020184 
5 9.99 0.050655 0.027949 0.012625 0.014951 0.006861 0.006192 
6 -5.92 0.020595 0.010427 0.013878 0.004438 0.016592 0.012490 
7 -3.90 0.003544 0.004199 0.014171 0.006271 0.014644 0.010990 
8 -3.50 0.016674 0.012513 0.006845 0.006382 0.002086 0.004308 
9 -1.95 0.001920 0.001983 0.008087 0.008073 0.008427 0.009082 

10 -2.22 0.001920 0.002048 0.008087 0.007700 0.008427 0.009008 
11 -8.57 0.018335 0.010336 0.020672 0.006163 0.020629 0.016062 
12 4.16 0.018970 0.007477 0.005956 0.007235 0.015360 0.015164 
13 9.99 0.028627 0.003031 0.024164 0.000611 0.002726 0.011578 
14 -7.00 0.040742 0.035495 0.008846 0.013707 0.017439 0.021199 
15 -5.65 0.005225 0.012164 0.020764 0.017811 0.011244 0.009329 
16 7.21 0.023787 0.005101 0.020140 0.007472 0.006715 0.005380 
17 -0.58 0.001452 0.003090 0.023127 0.020677 0.006376 0.005933 

Table 5.2(a).  Face adaptation for Fig. 5.3. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image 
 10° 

2D similarity distance 
before depth estimation 0.012509 0.003892 0.001927 

2D similarity distance 
after depth estimation 0.003207 0.001495 0.001935 

Table 5.2(b).  The similarity distance before and after iteration for Fig. 5.3. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.4.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at -10° perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 -1.45 0.003689 0.005724 0.008518 0.011476 0.003490 0.004622 
2 -8.54 0.036409 0.025573 0.005666 0.013072 0.007836 0.002942 
3 -3.60 0.006409 0.006684 0.014946 0.012162 0.007108 0.006006 
4 2.53 0.002291 0.006868 0.017611 0.015108 0.014478 0.018376 
5 9.99 0.060163 0.037567 0.038263 0.017184 0.024133 0.013499 
6 -9.57 0.032645 0.019384 0.012077 0.023309 0.021198 0.015561 
7 -8.83 0.014954 0.004972 0.005464 0.010016 0.009469 0.005592 
8 -1.72 0.006554 0.005494 0.004507 0.004563 0.007996 0.007344 
9 0.09 0.013300 0.010825 0.008065 0.005251 0.009565 0.007625 

10 0.12 0.013300 0.010811 0.008065 0.005221 0.009565 0.007605 
11 -4.18 0.002578 0.005264 0.011026 0.010785 0.004272 0.005075 
12 -3.96 0.003256 0.003834 0.010579 0.009597 0.004332 0.005525 
13 4.89 0.009732 0.009709 0.022401 0.011610 0.001483 0.007144 
14 -0.87 0.008631 0.011079 0.016669 0.019067 0.021733 0.022671 
15 -5.60 0.011828 0.008799 0.018868 0.015597 0.016255 0.018940 
16 -7.70 0.002920 0.009421 0.027724 0.017410 0.009737 0.009410 
17 -2.13 0.030435 0.030043 0.027088 0.025808 0.014893 0.014643 

Table 5.3(a).  Face adaptation for Fig. 5.4. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image  
-10° 

2D similarity distance 
before depth estimation 0.012832 0.006001 0.003998 

2D similarity distance 
after depth estimation 0.005515 0.002716 0.003039 

Table 5.3(b).  The similarity distance before and after iteration for Fig. 5.4. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.5.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at 15°perspective.  (c) Training face at -15° perspective.  (d) Testing face at 25° perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at 15° 

after 
at 15° 

before 
at -15° 

after 
at -15° 

before 
at 25° 

after 
at 25° 

1 5.96 0.007063 0.001973 0.011531 0.004938 0.014645 0.007976 
2 -1.71 0.005273 0.007743 0.011665 0.010184 0.006596 0.003492 
3 2.63 0.012209 0.009372 0.006006 0.007268 0.006298 0.003642 
4 9.99 0.026424 0.013555 0.011632 0.006818 0.038729 0.017864 
5 0.86 0.006272 0.005920 0.008900 0.009298 0.004323 0.003558 
6 0.45 0.016289 0.016198 0.012568 0.012907 0.022001 0.021883 
7 1.07 0.014175 0.014666 0.009688 0.009684 0.020691 0.021209 
8 -4.60 0.016503 0.009646 0.002888 0.004213 0.020428 0.009039 
9 -2.78 0.013363 0.008810 0.005293 0.006454 0.015483 0.007812 

10 -3.11 0.013357 0.008344 0.005283 0.006755 0.015482 0.007037 
11 -6.69 0.013093 0.005439 0.014405 0.011568 0.028409 0.018453 
12 1.63 0.003003 0.004219 0.007404 0.006188 0.000961 0.002106 
13 2.76 0.012098 0.009232 0.012474 0.013986 0.027295 0.022174 
14 0.37 0.012946 0.012908 0.019608 0.018869 0.023634 0.023472 
15 5.46 0.032731 0.026391 0.015837 0.023014 0.021529 0.015926 
16 -6.27 0.009406 0.002468 0.006366 0.003554 0.006835 0.011620 
17 2.77 0.010064 0.008838 0.011714 0.011978 0.031565 0.026666 

Table 5.4(a).  Face adaptation for Fig. 5.5. 

 

Angle Training image 
15° 

Training image 
-15° 

Testing image  
25° 

2D similarity distance 
before depth estimation 0.004715 0.002228 0.009430 

2D similarity distance 
after depth estimation 0.002519 0.001910 0.004895 

Table 5.4(b).  The similarity distance before and after iteration for Fig. 5.5. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.6.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at 10° perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 -6.99 0.022382 0.021495 0.020119 0.009960 0.018564 0.013475 
2 -7.54 0.012103 0.012504 0.020239 0.006980 0.014596 0.009461 
3 -8.91 0.018855 0.005404 0.011931 0.005284 0.006581 0.004158 
4 2.31 0.011953 0.010755 0.010576 0.007133 0.003910 0.003638 
5 9.99 0.041384 0.021194 0.032785 0.023837 0.019258 0.014730 
6 -1.06 0.007439 0.006114 0.005129 0.006419 0.002688 0.002627 
7 1.21 0.009062 0.011892 0.016421 0.013504 0.015153 0.013907 
8 -2.93 0.006539 0.006282 0.004197 0.001474 0.000774 0.001629 
9 -1.07 0.005293 0.004308 0.006629 0.008413 0.001119 0.001770 

10 -1.24 0.005293 0.003973 0.006629 0.008690 0.001119 0.001912 
11 -6.74 0.016960 0.006862 0.001851 0.012192 0.001591 0.004086 
12 3.64 0.019166 0.011738 0.003810 0.006288 0.007312 0.006247 
13 7.77 0.012447 0.004625 0.028221 0.018844 0.021769 0.014684 
14 6.30 0.018238 0.009530 0.003940 0.011398 0.010887 0.008581 
15 -3.85 0.019134 0.016657 0.007895 0.005941 0.012407 0.014996 
16 -10.00 0.035532 0.020547 0.038872 0.020755 0.023388 0.015039 
17 9.99 0.034691 0.017305 0.012598 0.019516 0.015512 0.023412 

Table 5.5(a).  Face adaptation for Fig. 5.6. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image 
10° 

2D similarity distance 
before depth estimation 0.010930 0.006106 0.004098 

2D similarity distance 
after depth estimation 0.002313 0.001412 0.002630 

Table 5.5(b).  The similarity distance before and after iteration for Fig. 5.6. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.7.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at 10° perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 9.99 0.046167 0.033913 0.010427 0.005146 0.017962 0.024412 
2 -2.66 0.012910 0.018074 0.011303 0.005590 0.009358 0.013048 
3 -2.95 0.006919 0.014787 0.017281 0.015803 0.008933 0.012330 
4 8.89 0.036154 0.025128 0.013708 0.012586 0.003342 0.010709 
5 7.13 0.004660 0.012408 0.021810 0.009968 0.016445 0.011540 
6 2.64 0.011470 0.012956 0.006856 0.008989 0.003060 0.002031 
7 5.10 0.005735 0.012242 0.006533 0.011489 0.021847 0.025688 
8 -1.87 0.020574 0.014837 0.014525 0.012978 0.009479 0.009471 
9 -1.07 0.021716 0.017181 0.006397 0.002650 0.002094 0.001257 

10 -1.20 0.021716 0.016963 0.006397 0.002608 0.002094 0.001327 
11 -2.15 0.029326 0.023005 0.006014 0.004038 0.009264 0.009147 
12 -0.40 0.018252 0.017291 0.002655 0.001619 0.011984 0.012659 
13 1.84 0.018173 0.019597 0.014460 0.012684 0.014758 0.013965 
14 8.17 0.026594 0.017794 0.019697 0.014442 0.004372 0.001464 
15 -1.27 0.020623 0.025777 0.020872 0.015214 0.014598 0.012054 
16 -7.84 0.013637 0.014070 0.008446 0.009682 0.009954 0.016238 
17 -0.60 0.001105 0.003333 0.013072 0.015728 0.004111 0.004259 

Table 5.6(a).  Face adaptation for Fig. 5.7. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image 
10° 

2D similarity distance 
before depth estimation 0.006062 0.004011 0.003219 

2D similarity distance 
after depth estimation 0.002143 0.001935 0.004492 

Table 5.6(b).  The similarity distance before and after iteration for Fig. 5.7. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.8.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at 10° perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 9.99 0.011007 0.007511 0.015212 0.007971 0.013102 0.012511 
2 0.66 0.012738 0.011598 0.007865 0.008515 0.003244 0.003902 
3 1.55 0.001707 0.003004 0.010025 0.010629 0.008980 0.009918 
4 2.99 0.014433 0.017801 0.009191 0.006037 0.012484 0.014459 
5 -2.03 0.023625 0.023820 0.011927 0.010279 0.023570 0.025380 
6 3.67 0.007745 0.005963 0.022772 0.018556 0.013566 0.011700 
7 -1.49 0.011955 0.015372 0.011862 0.014019 0.028175 0.026644 
8 -1.29 0.010909 0.010652 0.006997 0.010305 0.002773 0.004477 
9 0.01 0.009932 0.010674 0.006900 0.008886 0.005302 0.005286 

10 0.02 0.009932 0.010658 0.006900 0.008871 0.005302 0.005279 
11 -3.16 0.005599 0.011671 0.009034 0.013120 0.003195 0.001347 
12 9.41 0.023355 0.009391 0.010749 0.003364 0.009441 0.004723 
13 -3.86 0.015617 0.008312 0.005116 0.012443 0.005480 0.007102 
14 7.39 0.008444 0.007316 0.022763 0.029662 0.014646 0.013673 
15 -8.15 0.019077 0.007006 0.035500 0.020381 0.012727 0.006239 
16 -7.85 0.027959 0.013895 0.017945 0.003558 0.003156 0.009594 
17 6.57 0.001872 0.009811 0.013467 0.013945 0.010589 0.014979 

Table 5.7(a).  Face adaptation for Fig. 5.8. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image 
10° 

2D similarity distance 
before depth estimation 0.003684 0.003430 0.003297 

2D similarity distance 
after depth estimation 0.001020 0.001237 0.003459 

Table 5.7(b).  The similarity distance before and after iteration for Fig. 5.8. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.9.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) Training 
face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at 10° perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 2.54 0.015358 0.016012 0.017009 0.015954 0.010837 0.011707 
2 -7.31 0.024986 0.011828 0.012523 0.014158 0.010257 0.014010 
3 0.38 0.009710 0.007435 0.010444 0.012521 0.006531 0.007387 
4 0.46 0.020843 0.019214 0.015240 0.017330 0.016916 0.016936 
5 9.99 0.007246 0.013594 0.058285 0.038159 0.036651 0.029586 
6 0.67 0.017132 0.015119 0.012381 0.014383 0.032064 0.032986 
7 -2.29 0.020422 0.023278 0.024878 0.021952 0.009012 0.007649 
8 -3.19 0.010204 0.012860 0.013687 0.008541 0.018022 0.015682 
9 -1.46 0.012880 0.013415 0.009867 0.007931 0.021664 0.021008 

10 -1.69 0.012880 0.013781 0.009867 0.007492 0.021664 0.020813 
11 -5.93 0.011249 0.018921 0.015536 0.006620 0.026064 0.021457 
12 6.14 0.027052 0.016968 0.004743 0.011884 0.025009 0.022062 
13 2.00 0.015453 0.019167 0.017531 0.012214 0.008865 0.006408 
14 4.28 0.030457 0.034569 0.022185 0.017253 0.015936 0.012886 
15 -4.02 0.043025 0.035588 0.022369 0.027943 0.027074 0.029057 
16 -2.86 0.013494 0.010528 0.008021 0.005804 0.007795 0.009132 
17 -6.14 0.022288 0.019444 0.041118 0.040530 0.044101 0.046376 

Table 5.8(a).  Face adaptation for Fig. 5.9. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image 
10° 

2D similarity distance 
before depth estimation 0.005163 0.010375 0.004708 

2D similarity distance 
after depth estimation 0.003248 0.005966 0.003486 

Table 5.8(b).  The similarity distance before and after iteration for Fig. 5.9. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.10.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) 
Training face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at 10° 
perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 0.58 0.023896 0.022780 0.012934 0.011834 0.018663 0.018295 
2 -1.47 0.025989 0.021611 0.011616 0.009611 0.004302 0.003944 
3 -4.12 0.012092 0.008239 0.038543 0.029835 0.040730 0.036896 
4 -6.95 0.034687 0.023484 0.020188 0.006400 0.018980 0.012491 
5 9.99 0.048251 0.025439 0.043671 0.017328 0.047388 0.035895 
6 6.36 0.024231 0.011404 0.040899 0.024898 0.026931 0.027569 
7 -1.77 0.024813 0.025597 0.007602 0.009418 0.009433 0.009369 
8 0.14 0.017448 0.017450 0.014848 0.014436 0.013548 0.012973 
9 1.01 0.021194 0.017891 0.015838 0.012122 0.016616 0.014866 

10 1.14 0.021194 0.017569 0.015838 0.011807 0.016616 0.014729 
11 -2.34 0.015219 0.021094 0.014771 0.017512 0.023356 0.024015 
12 6.83 0.010140 0.017820 0.037490 0.020565 0.034392 0.026677 
13 9.36 0.030847 0.005673 0.024446 0.015519 0.025524 0.024356 
14 -10.00 0.043436 0.021193 0.045383 0.020699 0.039136 0.028502 
15 -0.56 0.031019 0.028505 0.015320 0.013941 0.004999 0.004811 
16 -4.65 0.017501 0.008422 0.040071 0.030513 0.022060 0.021981 
17 -10.00 0.027050 0.012083 0.050128 0.027844 0.030747 0.020899 

Table 5.9(a).  Face adaptation for Fig. 5.10. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image 
10° 

2D similarity distance 
before depth estimation 0.010082 0.017239 0.014247 

2D similarity distance 
after depth estimation 0.004298 0.005636 0.009347 

Table 5.9(b).  The similarity distance before and after iteration for Fig. 5.10. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.11.  Face adaptation with CANDIDE model.  (a) Training face at 0° perspective. (b) 
Training face at -22°perspective.  (c) Training face at 22° perspective.  (d) Testing face at 10° 
perspective. 

 

The distance between feature points and CANDIDE model before/after 
depth estimation. Facial 

Features 
z-

coordinate before  
at -22° 

after 
at -22° 

before 
at 22° 

after 
at 22° 

before 
at 10° 

after 
at 10° 

1 7.52 0.010645 0.009718 0.010615 0.012063 0.002994 0.003932 
2 -8.41 0.004777 0.010852 0.034551 0.019273 0.014182 0.007455 
3 -3.05 0.006951 0.003017 0.012346 0.007621 0.008244 0.007168 
4 7.15 0.007565 0.010440 0.011014 0.005478 0.072851 0.078613 
5 9.99 0.021970 0.013166 0.030173 0.016879 0.040903 0.033613 
6 0.00 0.008386 0.008993 0.010576 0.010440 0.011888 0.011673 
7 -3.30 0.013688 0.008240 0.015921 0.021734 0.026913 0.029566 
8 -2.26 0.005826 0.007509 0.009524 0.011567 0.017846 0.019568 
9 -2.16 0.001479 0.004439 0.007741 0.011421 0.017899 0.019602 

10 -2.58 0.001542 0.005175 0.007737 0.012100 0.016928 0.019097 
11 -7.82 0.005909 0.008771 0.004448 0.015446 0.018339 0.023765 
12 9.28 0.020221 0.005678 0.019103 0.003046 0.006411 0.008174 
13 7.81 0.010140 0.012985 0.029192 0.016860 0.025752 0.019511 
14 0.13 0.004662 0.004283 0.028746 0.028602 0.030136 0.029942 
15 -0.92 0.014181 0.013845 0.025319 0.023447 0.005781 0.004857 
16 -8.23 0.025481 0.011193 0.022677 0.011304 0.010287 0.003792 
17 -0.74 0.009105 0.008030 0.009919 0.008729 0.021898 0.021369 

Table 5.10(a).  Face adaptation for Fig. 5.11. 

 

Angle Training image 
-22° 

Training image 
22° 

Testing image 
10° 

2D similarity distance 
before depth estimation 0.003579 0.006646 0.013569 

2D similarity distance 
after depth estimation 0.001384 0.001520 0.014202 

Table 5.10(b).  The similarity distance before and after iteration for Fig. 5.11. 
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According to our experiment results, the distance between the feature points of 

the CANDIDE model and the human faces, and the similarity distance are minimized 

after depth estimation.  The adaptation to the testing image is also minimized once the 

CANDIDE model is trained.  For a better adaptation result, more images can be used 

as training image in depth estimation.  The results show that the depth is successfully 

estimated, and the information can be used for 3D modeling and texture mapping. 

 

5.5 Conclusion 

In this chapter, a novel and efficient method is proposed to estimate the depth of 

the 3D face model of a human face from multiple images without requiring camera 

calibration.  In this method, CANDIDE model is first adapted to the face image at 

frontal-view.  In order to estimate the depth in each perspective, an iteration procedure 

is performed to minimize the similarity distance between the frontal-view CANDIDE 

model and the faces at different perspective view by adjusting the depth of the feature 

points in the CANDIDE model. 

After the depth of a human face is determined, its texture information can be 

combined with the CANDIDE model to generate a realistic human face model.  

Texture mapping and curve-fitting techniques will be involved. 
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Chapter 6 
Conclusion and Future Work 

 

6.1 Conclusion 

In this thesis, we have studied various technologies within the scope of human 

face modeling, including human face detection, face tracking and 3D face 

reconstruction.  For human face detection, the knowledge-based method, the feature 

invariant approach, the template matching method and the appearance-based method 

have all been reviewed.  The appearance-based method has been widely adopted; but 

a better performance in face detection can be achieved by using statistical analysis and 

the machine-learning method to discriminate between face and non-face images.  

Meanwhile, dimensionality reduction is usually carried out for the sake of 

computation efficiency and detection efficacy.  Although significant progress has 

been made in the last two decades, existing techniques for face detection are still not 

robust enough, i.e. they should be effective under a full variation in lighting 

conditions, orientation, pose, partial occlusion, facial expression, presence of glasses, 

facial hair, and a variety of hair styles.  For face tracking, the motion-detection, the 

model-based tracking, the active contour-based tracking and the feature-based 

tracking have all been reviewed.  In human face tracking, the model-based approach 

has been widely adopted.  However, the disadvantage with model-based tracking is its 

need for model construction, and its high computational cost for real time application.  

For 3D face reconstruction, basic projective geometry, the pre-calibrated 

reconstruction algorithm and the online calibrated reconstruction algorithm have all 

been reviewed.  There are still many unresolved issues with performing 3D face 

reconstruction, such as the estimation of camera parameters in the online calibrated 
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reconstruction algorithm, the global optimization problem in the pre-calibrated 

reconstruction algorithm, etc. 

In our research, we have proposed efficient methods for human face detection, 

face tracking and human face 3D reconstruction.  Our approach to detecting face 

regions in a color image consists of three steps.  The first step is to segment the face 

color by using the mean-shift algorithm.  In this step, a color compensation scheme is 

proposed to extend the range of red component to its saturated level, as the red 

component of skin color saturates under strong illumination.  According to different 

illumination conditions, the compensated skin color distribution is modeled using the 

mixture-of-Gaussians model to segment skin-color regions from the cluttered 

background.  In the second step, possible eye candidates are searched within the 

segmented skin-color regions.  By grouping pairs of eye candidates, possible face 

candidates are formed.  Finally, a two-step procedure based on an eigenmask for face 

verification is performed.  In order to further improve the reliability and accuracy, the 

face contour is further verified with a probability function after the face has been 

verified and short-listed.  The performance of our human face detection algorithm is 

evaluated with the HHI MPEG-7 face database, the AR face database and the CMU 

Pose, Illumination and Expression (PIE) database, which contain face images under a 

wide range of lighting conditions, including poor conditions, under shadow, different 

scales and with glasses.  Experimental results show that our human face detection 

algorithm is very fast and can achieve a high detection rate. 

In face tracking, we have purposed a face tracking method that uses a 

combination of Gabor wavelet facial feature tracking and Temporally Maximum 

Occurrence Frame (TMOF) face template.  A modified greedy algorithm is also 

purposed to search for facial feature locations by means of Gabor wavelet.  The 
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TMOF face template can adapt to a changing face appearance in a video sequence.  In 

our face-tracking algorithm, the location of facial features, including left eye, right 

eye and mouth, are first verified by the properties of triangular structure in the first 

stage.  If the change of triangular structure within two frames is less than a certain 

threshold, Gabor representation is computed for similarity measurement.  Finally, the 

possible faces are then verified by means of TMOF generated face template.  The 

tracked face is then used to update the TMOF face template in order to adapt to the 

changing appearance in the video sequence.  Experiment results show that our 

algorithm is robust to fast head movement and perspective change. 

In human face 3D reconstruction, we have proposed to estimate depth of a 

human face from multiple images without prior camera calibration.  A set 17 feature 

points was located in the input images at different perspective angles.  The CANDIDE 

model is used as our 3D mesh to adapt to a human face.  The rotation and translation 

between the model and the face are measured by a similarity transform.  In order to 

estimate the depth of a human face, an iteration procedure is proposed to minimize the 

similarity distance between the CANDIDE model and faces at different perspective 

view. 

 

6.2 Future Work 

The human face-modeling system has made a lot of progress toward full 

automation.  In our research, the system is divided into different parts and different 

steps.  The integration of each step is required.  However, the performance of each 

step is a concern.  Face detection is the first step in the human face-modeling system.  

The detection performance can be affected by the presence of glasses, different skin 

color, gender, facial hair, facial expressions, etc.  Once the face has been detected, 
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face tracking is performed to track the detected face in a video sequence.  The face 

tracking can be affected by perspective variation, occlusion, fast motion, etc.  Real-

time performance is required for face tracking.  Finally, construction of 3D face 

model is performed.  Pose estimation is required for accurate depth estimation. 

There are several possible directions for the future development of this project.  

Face detection under different lighting conditions can be improved.  Also, the face-

detection algorithm should be able to work for different perspective.  The use of a 

multi-appearance model with a probabilistic approach should be able to improve the 

detection rate and to detect face at different poses.  The performance of face tracking 

can be improved with an online appearance model-update algorithm, such as online 

PCA.  A 3D face model can be used to adapt perspective change during tracking.  

Pose estimation can be applied to construct 3D face model during tracking.  The pose 

can be estimated by using multi-model probability approach.  A more accurate depth 

estimation of the 3D face model for a human face can then be performed using the 

similarity transform.  The integration of these approaches can help to build a complete 

human face-modeling system.  Finally, all of this work can be applied to face 

recognition and model-based video coding. 
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