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Abstract 

 

The calculation of active and reactive power flow in an electric network to 

ensure satisfactory voltage profile and loading of transmission circuits is of utmost 

importance in power system planning, operation and control. Conventional 

methods such as the Newton-Raphson and the fast decoupled load flow methods 

have been widely used by the power utilities. However, when a power system 

becomes highly stressed, it will be difficult for conventional methods to converge. 

Furthermore, as more and more non-linear devices, for instance Flexible AC 

transmission system (FACTS) devices, are used in power transmission networks, 

conventional load flow methods may have difficulties in solving the load flow 

problem and hence it is also difficult to use these methods to determine the 

maximum loading points and to assess the static voltage stability of a power 

system. 

To overcome the above mentioned problems, this thesis is devoted to the 

development of alternative approach in dealing with the load flow problem based 

on evolutionary computation. In particular, this thesis reports work on the 

formation of a hybrid algorithm comprising of the constrained genetic algorithm 

and Particle Swarm Optimisation. Based on the virtual population concept 

embedded in a constrained genetic algorithm for load flow previously developed, 

the Particle Swarm Optimisation method is utilised as an efficient means to 
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generate high quality candidate solutions in the virtual population during the 

optimisation process in seeking for the load flow solution. An experimental 

approach is reported in the thesis on finding the best parameter settings for use in 

the Particle Swarm Optimisation part of the hybrid algorithm. The performance of 

the developed algorithm is demonstrated using the IEEE 30-, 57- and 118-bus 

systems. The results in finding the maximum loading points using the new hybrid 

method are presented and discussed. The use of the hybrid algorithm in 

determining the Type-1 load flow solutions for voltage stability assessment is also 

demonstrated and described in the thesis. 

This thesis also develops a stochastic method for determining the maximum 

loading point of power system using the developed hybrid constrained genetic 

algorithm and Particle Swarm Optimisation and a strategy in starting the search for 

the maximum loading point in the infeasible operation region of the power system. 

The new approach is applied to IEEE 14-, 30- and 57-bus test systems and the 

results are presented. 

The new hybrid algorithm developed in the thesis is found to be powerful in 

solving the load flow problem for heavy-loaded systems and is efficient in locating 

the Type-I load flow solutions and determining the maximum loading point of a 

power system. 
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Chapter 1 
 

 

 

 

1. Introduction 
 

 

 

1.1 Introduction 

Network equations can be formulated systematically in a variety of forms.  

However, the node-voltage method, which is the most suitable form for many 

power system analyses, is commonly applied.  The formulation of the network 

equations in the nodal admittance form results in complex linear simultaneous 

algebraic equations in terms of node currents.  When node currents are specified, 

the set of linear equations can be solved for the node voltages.  However, in 

power system, powers are known rather than currents.  Thus, the resulting 

equations in terms of power, known as the power flow equation, become 

nonlinear and must be solved by iterative techniques.  Power flow studies, 

commonly referred to as load flow, are the backbone of power system analysis 

and design.  The load flow problem is of primary importance in determining the 

voltage levels and power flows within the power system.  It is used in daily 
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system analysis, operation and future planning for expansion.  In other words, 

load flow problem is the backbone of power system analysis and design.  They 

are necessary for planning, operation, economic scheduling and exchange of 

power between utilities.  In addition, load flow analysis is required in many 

other analyses such as transient stability and contingency studies.  Some 

important areas of stability study involving the type of load flow solutions, 

maximum loading point (MLP) are covered in this chapter.  In addition to this 

the contingency analyses involving branch and generator outages are also 

discussed.  The layout of the complete thesis is carefully arranged in section 

1.6. 

 

1.2 Conventional Solution Techniques 

A very concise discussion on conventional techniques has been given in 

[1]-[3].  Generally, the Newton Raphson (NR) method [4] and a variety of its 

modifications are most popular numeric approach for load flow problems.  This 

technique has the advantage of being very fast to converge, usually within ten 

iterations.  Other conventional methods are Decoupled methods [5]-[7] and 

Gauss-Seidel method [8].  Because of its quadratic convergence, Newton’s 

method is mathematically superior to the Gauss-Seidel method and is less prone 

to divergence with ill-conditioned problems.  For large power systems, the 

Newton Raphson method is found to be more efficient and practical. 

It is widely known that the NR method has very good quadratic 

convergence if initial estimates are close to a solution point.  However, if a 
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solution point is far or ill-conditioned one, convergence of the NR method can be 

slow or does not converge at all.  To overcome this problem, a number of 

numeric techniques are proposed [9].  The general idea behind all of them is to 

apply corrections to each step of methods in such a way that iterative processes 

do no oscillate or diverge.   

In [10], B. Borkowska developed the Probabilistic Load Flow (PLF), which 

is able to cope with uncertainty of node data.  In PLF, the net loads are given as 

a set of values together with additional information on the frequency of its 

accuracy.  These input parameters of the load flow problem are treated as 

random variables defined in terms of probability density functions (pdfs) and 

transformed into state and output random variables also defined in terms of pdfs.  

This approach has been analytically formulated in [10] and further developed and 

applied in various recent works [11, 12] . 

Thorp et al. [13] pointed out that the regions of attraction of load flow 

solutions calculated by Newton-Raphson have complicated boundaries which are 

actually fractals.  The complex nature of the load flow solution space is 

illustrated graphically by I. A. Hiskens in [15], showing a solution space of Q-P 

curve has a hole through it.  Despite many advances in order to improve both 

the efficiency and robustness of the methods have been reported, some 

difficulties can still be observed in many practical situations.   
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1.3 Type-1 Load Flow Solutions 

Due to its nonlinearity, the load flow problem can have a number of distinct 

solutions.  Studies of the multiple solution load flow problem play an important 

role in determining of stability margins and proximity to a voltage collapse [16, 

17].  Thus, it is important for an effective algorithm to locate all multiple load 

flow solutions accurately with low computational requirements [18, 19].  In 

order to obtain multiple load flow solutions, Tamura et al have used a set of 

quadratic equations and the NR optimal multiplier method [22].  Iba et al used 

the Tamura’s approach and some newly discovered convergence peculiarities of 

the NR method with optimal multipliers to find a pair of closest multiple 

solutions if there is one [25].  The pair of multiple power flow solutions is also 

calculated by H. Mori in [21] using mathematical programming.   

It is observed from experimental results in [25] that if a point comes close 

to a line connecting a couple of distinct solutions, a further NR iterative process 

in rectangular form goes along this line.  Another observation in [25] is that in 

vicinity of a bifurcation point the NR method with the optimal multiplier gives a 

trajectory which tends to the straight line connecting a pair of closely located but 

distinct solutions.  These features are effectively used in [25] to locate multiple 

load flow solutions.   

 The studies in [17] show that the voltage collapse phenomena is associated 

with the multiple load flow solutions present due to the nonlinearity of the load 
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flow equations.  The maximum number of solution exists in a system is 2n 

where n is the number of buses excluding the slack bus [22].  Thus there exists 

a demand for a methodology which has the capability of classifying the nature of 

multiple solutions as well as for finding them numerically.   

In [23], a special probability-one homotopy method is tailored to find all the 

load-flow equation of 5-bus and 7-bus systems.  However, this method 

demands the need of tracing a certain number of homotopy curves.  The 

solution is further verified in [18] with reduction in time requirement.  

However, it is still impractical for moderately sized power system due to the 

computational burden.  Although the work in [14, 23, 24] is able to locate all 

the load flow solutions, the connection of these solutions in regards to voltage 

stability remains to be indistinct.   

Type-1 solution simply means that the corresponding Jacobian matrix of the 

load flow solution set has exactly one eigenvalue with a positive real part and 

the rest of the eigenvalues have negative real parts.  In general, a solution is 

considered Type-k when there are k positive values for the real part of the 

eigenvalues whereby these eigenvalues can be either complex number or real 

number.  In other words, Type-1 solutions have only one eigenvalue with a 

positive real part while Type-2 solution has two positive real part values.  

Works presented in [26, 27] link the Type-1 solutions to the voltage stability 

assessment by stating that only Type-1 load flow solutions are closely associated 
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with voltage instability phenomenon.  Based on this fact, the computational 

cost can be further reduced by locating only the Type-1 load flow solutions 

while the other solutions are not a major concern for stability assessment.  

Recently, works in [27, 28] present different strategies in locating Type-1 load 

flow solutions.  However, the method in [27] lacks in the ability in locating all 

the possible Type-1 solutions present in a large system while the performance of 

CPFLOW-based algorithm in [28] is unknown for large system as only small 

systems are adopted for test problems.   

As an operating point moves closer to the solution boundary, so to does a 

corresponding unstable low-voltage solution.  The stability boundary is tied to 

this low-voltage solution.  Therefore, as the two solution points merge, the 

stability boundary approaches the operating point, and the stability region shrinks 

[29].  It is interesting to note that the operating point involved in this situation is 

a Type-1 solution whereas the other solution is a normal solution. 

 

1.4 Maximum Loading Point (MLP) 

Over the previous decades numerous techniques have been developed to 

determine the loadability limits of power systems.  The calculation of the 

Maximum Loading Point (MLP) is usually done when the system is operating 

normally and when contingency occurs.  The following sub-sections discuss 

both of these. 
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1.4.1 MLP Determination during Stable State 

Several classes of methods exist for determination of MLP when the 

system is operating normally.  One class of methods utilises the distance 

between the operating load-flow solution and bifurcation point of a system [17, 

22].  Yet another class of methods investigates the voltage stability limits based 

upon different types of load-flow analysis [23, 24], energy methods [30] and 

sensitivity analysis [31, 32].  Works in [33, 34] utilise the minimum singular 

value of the Jacobian matrix as a voltage stability index.  The maximum loading 

point (MLP) is estimated in [35] by using a set of stable operating point which is 

based on the analysis of Jacobian matrix behaviour.  Meanwhile, continuation 

methods are widely known as very powerful, though slow, methods to estimate 

the system maximum loading [36]. 

Apart from the above methods, load flow study still remains a very 

important approach in checking on the maximum loading point of a power 

system. Efficient and reliable load flow solutions, such as the Newton-Raphson 

(NR) [37] and the fast decoupled load flow [5], have been widely used by the 

power industry.  However, when a power system becomes highly stressed, it 

will be difficult for conventional methods to converge. Also the employment of 

Flexible AC transmission system (FACTS) devices will introduce more 

non-linear elements into the power network and weakens the performance of 

conventional load flow approaches because the load flow equations will be more 
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nonlinear.  In coping with the nonlinearity of the load models, a critical 

evaluation of step size optimisation based load flow methods is proposed in [38] 

for ill-conditioned, heavily loaded and overloaded systems.   However, this 

method is highly sensitive to the initial settings of the variables.  In [35], Zeng 

et al. proposed a very interesting method to estimate the maximum loading 

conditions by using the voltages from a set of operating points, obtained by 

conventional load flow calculations along a predefined load increase direction.  

The method is based on analysis of Jacobian matrix behaviour near the 

maximum loading point, where it becomes singular [39].  

Recently, the utilisation of interior point methods to obtain the critical point 

was proposed in [40, 41, 42] .  Also, many voltage collapse proximity indices 

were proposed, such as the one based on the Jacobian matrix minimum singular 

values [33].  Nonlinear programming technique has been proposed in [31] to 

determine the MLP efficiently.  Sensitivity techniques have shown to be very 

useful for determining the voltage stability margins, which can be given in terms 

of MW, Mar or MVA [32, 42, 43].  Other research works have focused on 

maximizing the real power transfer before voltage collapse occurs, for instance, 

after a strategic reactive load allocation [42]. The real power losses minimisation 

has been utilised to increase the loadability of power systems in [44].  

Security margins to voltage collapse in parameter space provide important 

analysis information and can be determined by simple computational procedures 
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while maintaining a good accuracy.  Several algorithms have been developed to 

detect how close a system is to voltage collapse [36, 44, 45].  All these 

algorithms assess the distance between the present loading and the maximum 

loading point in parameter space. 

 

 

1.4.2 MLP Determination during Contingency 

 Voltage security is becoming increasingly important in electric power 

systems.  A fast and accurate solution is in demand to perform the analyses 

efficiently for a numerous number of contingencies online.  Various methods 

have been proposed so far for voltage stability evaluation.  For example, a 

series of methods [46]-[49] have been proposed to predict the load power 

margins for post-contingency systems based on the sensitivity analysis of the 

pre-contingency system.  Another approach, known as look-ahead method is 

used to predict post-contingency conditions based on a quadratic curve fit [50].  

The use of the reactive power reserves has been proposed as an index to evaluate 

the voltage stability of post-contingency systems [51]. .   

Other stability indices have been proposed based on the second order 

information derived from the singular value analysis of the power flow Jacobian 

in [98].  Furthermore, the relations between voltages and local reactive supports 

have been utilised to propose a stability index in [52]..  In [98], A. J. Flueck 
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proposes a new power sensitivity method of ranking branch outage contingencies 

for voltage collapse.  The distinguishing features of the method are the ability to 

rank all branches in a large-scale power system quickly and to estimate the 

outage contingency bifurcation values accurately. These previous studies are 

mainly for branch outage contingencies.  The idea of calculating MLP during 

generator outage was recently proposed in [53] and is an important area of work.  

 
 

1.5 Proposed Approach 

In this thesis, a load flow method based on Evolutionary Algorithm (EA) 

has been proposed.  Two prominent EAs are adopted in this investigation, 

which are Genetic Algorithm and Particle Swarm Optimisation algorithms.  A 

Constrained Genetic Algorithm (CGA) load flow method was developed by 

Wong, Li and Law in [54] and its robustness and efficiency was enhanced using 

the concept of virtual population and solution acceleration techniques developed 

in [55].  The enhanced CGA is referred to as the Advanced Constrained Genetic 

Algorithm (ACGA) load flow algorithm. The solution acceleration techniques in 

ACGA consist of the nodal voltage differential technique and the gradient 

acceleration technique.  

The PSO algorithm is incorporated into the framework of ACGA to 

enhance the quality of solution in terms of speed of convergence and accuracy.  

The developed method is so called as hybrid CGA / PSO, which prove to be 
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efficient in solving benchmark power system problems.  Their solution process 

does not rely on the starting values of the variables. The proposed algorithm has 

been found to have the capability to determine both the normal and abnormal 

load flow solutions of a number of IEEE test systems. It has also been found that 

this load flow algorithm can determine the load flow solution at the maximum 

power loading point with only a few iterations.  The numerical improvements in 

terms of speed of convergence, capability of finding greater maximum loading 

point are being reported in this thesis. 

 

 

1.6 Layout of Thesis 

 

Chapter 1, which is this chapter, presents the literature review of the 

subjects concerned in this thesis.  The framework of the proposed approach is 

also described in this chapter, given the details of the background of the newly 

developed algorithm in this thesis. 

Chapter 2 gives a brief review of Evolutionary Algorithms and Particle 

Swarm Optimisation.  This includes explanation on Particle Swarm 

Optimisation and hybrid Evolutionary Algorithms.  The common architecture 

of hybrid algorithm is also discussed, including the survey of hybrid PSO / EA 

algorithms.   
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Chapter 3 elaborates the proposed algorithm, hybrid CGA/PSO in solving 

the load flow problem.  The flow of the algorithm is also available.  Problem 

formulation of the load flow problem is also given in this chapter. 

Chapter 4 presents the preliminary investigation of Hybrid CGA/PSO load 

flow algorithm.  The parameter sensitivity analyses are carried out to determine 

the best setting values for optimal performance of the proposed hybrid algorithm. 

Chapter 5 investigates the performance of Hybrid CGA/PSO load flow 

algorithm in finding Maximum Loading Point (MLP) on IEEE test systems.  

Some significant results are presented in this chapter. 

Chapter 6 explores the ability of the newly developed algorithm in finding 

and locating the Type-1 load flow solutions.  As Type-1 solutions are closely 

related to the stability of a system, some related information on the 

characteristics of Type-1 solutions are concisely written. 

Chapter 7 reports the application of the hybrid CGA/PSO can be applied to 

calculate the security margins of power system during branch or generator outage.  

The value of security margin provides the exact range of a system to stability 

boundary. 

Chapter 8 provides an overall conclusion to this thesis along with 

suggestions for future work in this area.
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Chapter 2 
 

 

 

 

2. Evolutionary Algorithms and Particle 
Swarm Optimisation 

 

 

 

2.1 Introduction 

 Evolutionary Algorithms (EAs) have become an important problem 

solving methodology in many fields and they have been applied to power 

systems.  The population-based collective learning process, self-adaptation and 

robustness are some of the key features of evolutionary algorithms when 

compared to other global optimisation techniques.  Although EA has been 

widely accepted for solving several important practical applications in 

engineering, very often they deliver only marginal performance.  Inappropriate 

selection of various parameters, representation etc. are frequently the root cause.  

It is quite impossible that one could find a uniformly best algorithm to solve all 

optimisation problems.  This is in accordance with the No Free Lunch theorem, 

which explains that for any algorithm, any elevated performance over one class 

of problems is exactly paid for in performance of another class.  Recently, 

hybridisation of evolutionary algorithm is getting popular due to their 
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capabilities in handling several real world problems involving complexity, noisy 

environment, imprecision, uncertainty and vagueness.  In this chapter, the 

background information on EAs, PSO and hybrid algorithms are presented.  

Also, the survey consisting of interesting hybrid frameworks of EAs and PSO 

algorithms are discussed. 

 

 

2.2  Evolutionary Algorithms (EAs) 

Evolutionary Algorithms offer practical advantages to difficult optimisation 

problems.  These advantages are multifold; having the features of simplicity, 

robust response, adaptive and flexible.  The evolutionary algorithm can be 

applied to problems where heuristic solutions are not available or generally lead 

to unsatisfactory results.  Thus is the reason for the increased interest 

concerning EAs, particularly with regard to the manner in which they may be 

applied for practical problem.  The popular algorithms under the category of 

EAs are numerous.  Some common ones are genetic algorithms [56]-[58], 

evolutionary strategies [59] and evolutionary programming [60].  These 

algorithms share a common conceptual base on simulating the evolution of 

individual structures via selection, crossover and mutation.  The processes may 

vary for different algorithm.  For example, the EP algorithm does not have the 

process of crossover and depend mainly on mutation to create a diversified 

population.  Compared to other global optimisation techniques, EAs are easy to 
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implement and very often they provide adequate solutions.  The flow chart of 

an EA is illustrated in Figure 2.1 below. 

Start

Create population

Mutation and 
Crossover

Termination criteria met?

Stop

Selection

 
Figure 2.1: Flowchart of an Evolutionary Algorithm 

 

From Figure 2.1, a population of candidate solutions for the optimisation 

process is initialised.  From the initial population, new solutions are created 

through manipulating operators such as mutation or crossover.  The fitness of 

the resulting solution is evaluated and suitable selection strategy is then applied 

to determine the survival of the candidate solutions to the next generation.  The 
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procedure is iterated until a termination criterion is met.   

 

 

2.3 Particle Swarm Optimisation  

As Genetic Algorithm is now well-known and the details of Genetic 

Algorithm can be found in references [56]-[58], only the particle swarm 

optimisation (PSO) method [61] is described in this chapter.  The method has 

been found to be able to solve optimisation problems featuring 

non-differentiability, high dimension, multiple optima and non-linearity.  The 

PSO algorithm is a model that mimics the movement of individuals such as 

fishes, birds, or insects within a group or swarm.  Similar to GA, a PSO consists 

of a population refining its knowledge of the given search space.  PSO is 

inspired by particles moving around in the search space.  The individuals in a 

PSO thus have their own positions and velocities.  Each particle moves in the 

search space with velocity which is dynamically adjusted and balanced based on 

its own best movement (pbest) and the best movement of the group (gbest). 

Instead of using evolutionary operators such as selection, mutation and 

crossover, each particle in the population moves in the search space with 

velocity which is dynamically adjusted.  In PSO, a population consists of N 

particles. Each particle has d variables (dimensions) and each variable has its 

own range of value, velocity and position. The values, velocities and positions 
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of the variables are updated every iteration until maximum iteration is reached.  

Each particle keeps track of its coordinates in the search space, which are 

associated with the best solution it has achieved so far.  This value is known as 

pbest.  Another best value that is tracked is the overall best value or the best 

solution, gbest, in the population. 

 As stated, the PSO technique consists of, at each time step, changing the 

velocity of each particle toward its pbest and gbest solutions.  The movement is 

weighted by a random term, with separate random numbers being generated 

toward pbest and gbest values.  For example the ith particle consisting d 

dimensions is represented as Xi = (Xi,1, Xi,2, Xi,3, …, Xi,d).  The same notation 

applied to the velocity, Vi = (Vi,1, Vi,2, Vi,3, …, Vi,d).  The best previous position 

of the ith particle is recorded and represented as pbesti = (pbesti,1, pbesti,2, 

pbesti,3,… pbesti,d).  For minimisation, the value of pbesti with lowest fitness is 

taken to be gbest.  The modification of velocity and position are calculated 

using the current velocity and the distance from pbesti,j to gbestj as in: 

 

1 1 1
, 1 1 , 2 2 , ,( ) ( )t t t t

i j i j i j i j i jV wV r gbest X r pbest Xρ ρ− − −= + − + −  (2.1) 

t
ji

t
ji

t
ji VXX ,

1
,, += −   (2.2) 

 

where TtdjNi ...1,...1,...1 ∈∈∈  with N is the number of population size, d 

is the number of dimension and T is the number of maximum generation.  The 
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parameters ρ1 and ρ2 are set to constant values, which are normally given as 2.0 

whereas r1 and r2 are two random values, uniformly distributed in [0, 1].  The 

constants, ρ1 and ρ2 represent the weighting of the stochastic acceleration terms 

that pull each particle toward pbest and gbest positions. 

The position, X of each particle is updated for every dimension for all 

particles in each iteration. This is done by adding the velocity vector to the 

position vector, as described in eqn. (2.1) above.  In eqn. (2.2), w is known as 

the inertia weight [62]. Suitable selection of w provides a balance between 

global and local explorations, thus requiring less iteration on average to find 

sufficiently optimal solution.  Low values of w limits the contribution of the 

previous velocity to the new velocity, limiting step sizes and therefore, limiting 

exploration.  On the other hand, high values result in abrupt movement toward 

target regions. 

When applying PSO to the load flow problem, each particle is a candidate 

solution whereby the elements are the unknown real and imaginary parts of the 

power network nodal voltages. 

 

 

2.4 Hybrid Evolutionary Algorithms 

For several problems a simple EA might not be good enough to find the desired 

solution.  There are several types of problems where a direct evolutionary 
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algorithm fails to obtain satisfactory solution [63]-[66].  This clearly paves way 

to the need for hybridisation of evolutionary algorithms with other optimisation 

algorithms, machine learning techniques, heuristics etc.  Some of the possible 

reasons for hybridisation are as follows [67]: 

 

1. To improve the performance of the evolutionary algorithm (e.g. speed 

of converge). 

2. To improve the quality of the solutions obtained by EA (e.g. accuracy 

of result). 

3. To incorporate the EA as a part of a larger system. 

 

In 1995, Wolpert and Macready [68] illustrated that all the algorithms that 

search for an extreme of a cost function perform exactly the same, when 

averaged over all possible cost functions.  In other words, if algorithm A 

outperforms algorithm B on some cost functions, then loosely speaking there 

must exist exactly as many other functions where B outperforms A.  Hence, 

from a problem solving perspective it is difficult to formulate a universal 

optimisation algorithm that could solve all the problems.  Hybridisation may be 

the key to solve some practical problems.   
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Figure 2.2: Hybridisation possibilities in an Evolutionary Algorithm 

 

 Figure 2.2 illustrates some possibilities for hybridisation.  From 

initialisation of population to the generation of offspring, there are numerous 

ways to incorporate other algorithm to the original algorithm.  Population may 

be initialised by incorporating known solutions or by using heuristics, local 

search etc.  Local search methods may be incorporated within the initial 

population members or among the offspring.  Evolutionary algorithms may be 

hybridised by using operators from other algorithms or by incorporating 

domain-specific knowledge.  Evolutionary algorithm behaviour is determined 

by the exploitation and exploration relationship kept throughout the run.  

Adaptive evolutionary algorithms have been built for inducing 

exploitation/exploration relationships that avoid the premature convergence 
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problem and optimise the final results.  The performances of the evolutionary 

algorithm can be improved by combining problem-specific knowledge for 

particular problems. 

 

2.5 Architectures of Hybrid Evolutionary Algorithms 

The integration of different learning and adaptation techniques, to overcome 

individual limitations and achieve synergetic effects through hybridisation or 

fusion of these techniques, has in recent years contributed to a large number of 

new hybrid evolutionary systems.  Most of these approaches have unique 

designs, further justified by success in certain application domains.  Due to the 

lack of a common framework, it remains often difficult to compare the various 

hybrid systems conceptually and evaluate their performance comparatively.  

There are several ways to hybridise a conventional evolutionary algorithm for 

solving optimisation problems.  Some of them are summarised below [69]: 

 

i. The solutions of the initial population of EA may be created by 

problem-specific heuristics. 

ii. Some or all the solutions obtained by the EA may be improved by local 

search.  These algorithms are known as mimetic algorithms [70, 71]. 

iii. Solutions may be represented in an indirect way and a decoding algorithm 

maps any genotype to a corresponding phenotypic solution.  In this 
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mapping, the decoder can exploit problem-specific characteristics and 

apply heuristic etc. 

iv. Variation operators may exploit problem knowledge.  For example, in 

recombination more promising properties of one parent solution may be 

inherited with higher probabilities than the corresponding properties of the 

other parent(s).  Also mutation may be biased to include in solutions 

promising properties with higher probabilities than others. 

 

2.6 Hybrid Evolutionary Algorithms / Particle Swarm Optimisation 

PSO incorporates swarming behaviours observed in flocks of birds, schools of 

fish, or swarm of bees, and even human social behaviour, from which the idea 

originated [72]-[75].  A hybrid evolutionary algorithm / PSO is proposed by 

Shi et al. [76].  The hybrid approach executes the two systems simultaneously 

and selects P individuals from each system for exchanging after the designated 

N iterations.  The individual with larger fitness has higher probability to be 

selected. 

 Another hybrid technique combining GA and PSO known as genetic swarm 

optimisation (GSO) is proposed by Grimaldi et al. [77] for solving an 

electromagnetic optimisation problem.  The method consists of a strong 

co-operation of GA and PSO, since it maintains the integration of the two 

techniques for the entire run.  In each iteration, the population is divided into 
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two parts and they evolved with the two techniques, respectively.  They are 

then recombined in the updated population, that is again divided randomly into 

two parts in the next iteration for another run of genetic or particle swarm 

operators.  The population update concept can be easily understood whereby a 

portion of the individuals is substituted by new generated ones by means of GA, 

while the remaining are the same as the previous generation, manipulated by 

PSO. 

 Grosan et al. [78] proposed a variant of the PSO technique named 

independent neighbourhoods particle swarm optimisation (INPSO) dealing with 

subswarms for solving the well known geometrical place problems.  The 

performance of the INPSO approach is compared with Geometrical Place 

Evolutionary Algorithms (GPEA).  The main advantage of INPSO technique is 

its speed of convergence.  To enhance the performance of the INPSO approach, 

a hybrid algorithm combining INPSO and GPEA is also proposed in this paper.  

The developed hybrid combination is able to detect the geometrical position 

much faster even for difficult problems whereby the direct GPEA approach 

required more computational cost and the INPSO approach failed in finding all 

the geometrical position points. 

 Liu et al. [79] introduced turbulence in the particle swarm optimisation 

(TPSO) algorithm to overcome the problem of stagnation.  The algorithm used 

a minimum velocity threshold to control the velocity of particles.  TPSO 
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mechanism is similar to a turbulence pump, which supplies some power to the 

swarm colony to explore new neighbourhoods for better solutions.  The 

algorithm avoids clustering of particles and attempts to maintain diversity of 

population.  The maximum velocity (Vmax) of particles is tuned adaptively by 

FLCs in the TPSO algorithm, which is named as Fuzzy Adaptive TPSO 

(FATPSO).  The comparison was performed on a suite of 20 widely used 

benchmark problem. 

 

 

2.7 Conclusions 

 As evident from the scientific literature, the use of hybrid evolutionary 

algorithms are getting very popular.  In this chapter, the various possibilities for 

hybridisation of an evolutionary algorithm are illustrated.  The generic hybrid 

evolutionary architectures that have evolved during the last couple of decades 

are also presented.  The survey of some interesting works on hybrid EA and 

PSO reported in literature has been discussed.  
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3. Hybrid CGA / PSO Load Flow Algorithm 
 

 

 

3.1 Introduction 

Hybrid algorithms as been a hot topic in current research trend [65, 76, 77, 

78, 80].  Depending on the optimisation problem, each hybrid algorithm 

developed is unique, utilising different architectures as explained in Section 2.5.  

Following the same principle, a hybrid algorithm based on Genetic Algorithm 

(GA) and Particle Swarm Optimisation (PSO) algorithms is developed in this 

thesis.  The PSO is incorporated into the existing framework, which is 

Constrained Genetic Algorithm (CGA).  In addition, as the developed 

algorithm aims to solve load flow problem, therefore, this developed algorithm 

is called hybrid CGA/PSO load flow algorithm.  In this chapter, the 

formulation of the load flow problem is presented.  This is followed by the 

details on hybrid CGA/PSO load flow algorithm.  The flow of the algorithm 

developed is also described.  Then, the conclusion is derived.  
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3.2 Load Flow Problem Formulation 

In interconnected n node power system, there are NPQ load nodes, NPV 

voltage-controlled nodes and one slack bus.  In rectangular coordinates, there 

are 2(n-1) unknowns to find. These unknowns are the voltages of the load nodes, 

the voltage angles and the reactive power at the generator nodes. The load flow 

problem in this context can be formulated as nonlinear optimisation problem [54] 

that is the minimisation of the objective function results from the summation of 

squares of the power mismatches and voltage mismatches.  At any node i the 

nodal active power, Pi and reactive power, Qi are given as follows: 

1 1
( ) ( )

n n

i i ij j ij j i ij j ij j
j j

P E G E B F F G F B E
= =

= − + +∑ ∑     (3.1) 

1 1
( ) ( )

n n

i i ij j ij j i ij j ij j
j j

Q F G E B F E G F B E
= =

= − − +∑ ∑    (3.2) 

where Gij and Bij are the (i, j)th element of the admittance matrix.  Ei and Fi are 

real and imaginary part of the voltage at node i.  If node i is a PQ-node where 

the load demand is specified, then the mismatches in active and reactive powers, 

∆Pi and ∆Qi respectively, are given by: 

sp
i i iP P PΔ = −     (3.3) 

sp
i i iQ Q QΔ = −     (3.4) 

in which sp
iP and sp

iQ are the specified active and reactive powers at node i.  

When node i is a PV-node, the magnitude of the voltage, sp
iV and the active 
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power generation at node i are specified.  The mismatch in voltage magnitude 

at node i can be defined as:  

sp
i i iV V VΔ = −     (3.5) 

In eqn. (3.5), Vi is the calculated nodal voltage at PV-node i and is given by: 

2 2
i i iV E F= +     (3.6) 

Apart from solving the load flow problem by the conventional methods, the 

problem can be viewed as an optimisation problem, in which an objective 

function H is to be minimised: 

2 2 2

pq pv pq pv

i i i
i N N i N i N

H P Q V
∈ + ∈ ∈

= Δ + Δ + Δ∑ ∑ ∑    (3.7) 

where Npq and Npv are the total numbers of PQ-nodes and PV-nodes respectively.  

When the load flow problem is solvable, the value of H is zero or in the vicinity 

of zero at the end of the optimisation process.  If the problem is unsolvable, the 

value of H will be greater than zero.   

 In the minimisation process, the fitness or the degree of goodness of the 

particle as a candidate solution is measured by means of the following fitness 

function F [55]:  

5

1
10 2 av

F
H H−=

+ −     (3.8) 

where Hav is the average of mismatches representing the measure of the 

evenness of the spread of mismatch values throughout the nodes and is 

calculated from: 
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3.3 Hybrid CGA/PSO Load Flow Algorithm  

A Constrained Genetic Algorithm (CGA) load flow method was reported 

in [54] and its robustness and efficiency was enhanced using the concept of 

virtual population and solution acceleration techniques developed in [55] and is 

one of the earliest hybrid evolutionary algorithm developed for solving power 

engineering problems. The enhanced CGA is referred to as the Advanced 

Constrained Genetic Algorithm (ACGA) load flow algorithm. The solution 

acceleration techniques in ACGA consist of the nodal voltage differential 

technique and the gradient acceleration technique. The ACGA algorithm has 

been found to have the capability to determine both the normal and abnormal 

load flow solutions of a number of IEEE test systems. It has also been found that 

ACGA can determine the load flow solution at the maximum power loading 

point with only a few iterations. 

While the details of ACGA can be found in [55], the framework of the 

ACGA is shown here in Figure 3.1.  In this framework, a virtual population 

consists of the current population of candidate load flow solutions and two new 

populations, A and B, derived from the current population using the nodal 

voltage differential solution acceleration method.  Population A is derived by 
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accelerating candidate solutions in the current population towards the best 

candidate solution in the same population.  On the other hand, population B is 

formed by accelerating candidate solutions away from the best candidate 

solution in the population. The current population, population A and population 

B are then combined to form population C. The resultant population is formed 

from population C with twenty-five percent of its candidate solutions 

accelerated by means of the gradient technique. The resultant population is then 

used as the current population in the evolutionary cycle. 
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Figure 3.1: Formation of virtual and resultant populations of candidate solutions 

in ACGA 

 

It can be observed that the nodal voltage differential acceleration technique 

employed in ACGA is not general enough. This technique only upgrades the 

candidate solutions in two opposite directions. But there is no guarantee that 

upgrading along these directions will help the evolutionary optimisation process. 

In this thesis , it is proposed to employ the Particle Swarm Optimisation 

(PSO) technique [61] to replace the nodal voltage differential acceleration 

technique in ACGA as shown in Figure 3.2, because the PSO can upgrade the 
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candidate solutions in many different directions and hence cover a bigger search 

space than the voltage differential acceleration method. The use of PSO here can 

also be viewed as a method of mutation in the genetic algorithm process. Hence, 

to prevent any good candidate solutions from being destroyed by the PSO 

technique, the technique is only applied subject to a ‘mutation probability’ 

setting as indicated by mp% in Figure 3.2. With this arrangement, the resultant 

algorithm can be viewed as a hybrid Constrained GA/PSO algorithm for solving 

the load flow problem. Because of the more general nature of this new hybrid 

algorithm, it should be more powerful than its predecessor ACGA and should be 

capable of obtaining better load flow solution values particularly when the 

power system is very heavily loaded. It is, however, emphasised here that the 

new algorithm is a powerful alternative when conventional methods fail to find 

the load flow solution. It is also noted here that although PSO has been used in 

solving power system optimisation problems [81]-[83], it has not been employed 

in the way described in this thesis. 

The procedure of the proposed hybrid CGA/PSO load flow algorithm is 

given in the following: 

 

1. Initialise the particles, consisting of the real and 

imaginary parts of the nodal voltages of the candidate 

solutions in the population. 

2. Evaluate the fitness of all particles using eqn (3.8). 
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3. Generate new population of candidate solutions using 

roulette-wheel selection, 2-point crossover and PSO 

mutation. 

4. Perform the constraint satisfaction process on the 

candidate solutions in the new population for the 

generator nodes and load nodes as described in [54]. 

5. Accelerate 25% of the constrained candidate solutions 

using the gradient technique in[55]. 

6. Update the best solution. 

7. Go to step 2 until the termination criterion is met. 

 

In step 3 above, the PSO algorithm is applied as a mutation strategy.  The 

optimal mutation probability is found through parameter sensitivity analysis in 

chapter 3.  The algorithm will terminate when all the power mismatches of the 

PQ nodes are within the preset tolerance, otherwise it will terminate on reaching 

the maximum allowable number of evolutionary generations.  This termination 

criterion is employed in step 7 of the above procedure.   
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Figure 3.2: The proposed framework showing the formation of virtual and 
resultant populations of candidate solutions 

 

3.4 Conclusions 

In the development of hybrid CGA/PSO, the PSO algorithm has been 

incorporated as a mutation replacing the conventional mutation in the GA 

algorithm.  The framework of the proposed algorithm is graphically illustrated, 

showing the role of PSO algorithm in replacing the acceleration techniques in 

existing ACGA.  The following chapter describes the tuning of parameter 

through some sensitivity analyses to determine the optimal values for the 

relevant parameters in the hybrid algorithm. 
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4. Parameter Settings in Hybrid CGA/PSO 
Algorithm 

 

 

 

4.1 Introduction 

Like other optimisation methods, the performance of the CGA/PSO 

algorithm depends on the settings of its parameters. This chapter reports the 

parameter sensitivity analysis carried out for the hybrid CGA/PSO algorithm for 

finding load flow solutions. In the PSO methods, there are several parameters to 

be set. In order to use the PSO efficiently, the value ranges of these parameters 

should be investigated for solving the load flow problem. The experimental 

approach and parametric sensitivity analyses in finding the appropriate value 

ranges of the PSO coefficients are also reported.  The power of the new hybrid 

algorithm is demonstrated by the application of the new algorithm to determine 

the heavy loading cases of several test systems.  
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4.2 Parameter Settings of PSO 

PSO has several parameters, which are the number of particles in the 

swarm (N), inertia weight (w), maximum velocity (Vmax), the parameter for 

attraction towards pbest and gbest (ρ1 and ρ2).  In this thesis, the parameters ρ1 

and ρ2 are set to constant values, which are commonly set as 2.0.  The 

constants, ρ1 and ρ2 represent the weighting of the stochastic acceleration terms 

that pull each particle toward pbest and gbest positions, acting as the cognitive 

and social parameters respectively.  The r1 and r2 are two random values, 

uniformly distributed in [0, 1].  To prevent any undesirable exploration of a 

particle along a given dimension, the velocity may be restricted by a constriction 

coefficient [84] but this yields negative effects [85]. Instead of using a 

constriction coefficient, the velocity in a dimension is restricted by the 

maximum velocity (Vmax).  This keeps the random search of potential solutions 

within control.  The value of Vmax in this thesis is 10% of the search range, 

which is the best value from empirical study for the load flow problem.  Other 

parameters such as inertia weight (w) and population size (N) are found from the 

parameter sensitivity analysis presented in the following section.  The common 

parameter settings for both algorithms are as shown in Table 4.1.  Other 

parameters concerned are given in Table 4.2. 
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Table 4.1: Common parameter settings for ACGA and Hybrid CGA/PSO 

Parameter Settings 

Active and reactive power 
tolerance 

0.001 p.u. on 100MVA base 

Gradient acceleration, G 25% of the population 
Number of trials 50 
Maximum Generation, T 150 
Voltage initialisation range 0.9 < V < 1.2 and -30° < θ < 0° 
Population size, N 8 

 

 

Table 4.2: Other parameter settings for ACGA and Hybrid CGA/PSO 

Parameter ACGA Hybrid CGA/PSO 

Crossover rate Two-point crossover Two-point crossover  

Selection strategy Roulette Wheel Roulette Wheel 

Mutation mp Uniform mutation 
with mp = 0.01 

PSO mutation with 
mp = 0.5 

Inertia weight w - 0.1 

Maximum Velocity Vmax - 10% of search space 
 

 

4.3 Experimental Settings 

In determining the inertia weight (w), population size (N) and the mutation 

probability (mp) by sensitivity analysis for the proposed hybrid algorithm, the 

IEEE 30-, 57- and 118-bus systems are used [104] and the algorithm is run with 

different parameter settings. The settings given in Tables 4.1 and 4.2 are applied 

to all the experiments.  The algorithm is executed on a 3.0 GHz Pentium IV 

computer. The results of these experiments will be presented in tables with the 
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column containing the attributes as follows:  

Ave Time : Average time taken to complete a trial.  Only 

successful trials are considered. 

Ave Iter : The average iteration for a trial which is 

successful. 

S.R. : A trial is considered successful if all nodes 

value is within the tolerance before maximum 

generation, T is reached. 

Std Dev : This is standard deviation. A small standard 

deviation denotes that the algorithm is 

stable. 

Best : The best results obtained within all 

successful trials. 

Average : Average of all trials.  Only successful 

trials are taken into account. 

Worst : The worst result among all successful trials 

 

4.4 Effect of inertia weight (w) in PSO equations 

The value of inertia weight, w is in the range of 0 to 1.  In determining 

the best value of w for the load flow problem w is varied from 0.1 until 0.9 with 

a step increment of 0.1 as shown in Figure 4.1.  In this figure, the case of IEEE 

118-bus system is illustrated.  The numerical results are tabulated in Table 4.3 

and illustrated by the relevant curves in Figure 4.1, representing the average 

iteration, average time and success rate.  From this graph, the average time and 

average iteration increase with respect to higher value of w while at the same 
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time, the success rate decreases.  In other words, the success rate (S.R.) 

deteriorates as the value of inertia weight increases.   

It seems that smaller value of w is more efficient as this guarantees better 

reliability and cheaper computational cost.  Therefore, w=0.1 is adopted as the 

best setting for future analysis, highlighted in Table 4.3 below.  The similar 

analysis has been carried out on IEEE 30- and 57- bus systems.  The graphs 

plotted from the results of IEEE 30-bus system are given in Figures 4.2 and 4.3.  

From simulation, the same value for w is concluded in these analyses, depicted 

in Table 4.4.  From the simulation involving w<0.1, it is found that setting 

w<0.1 has slightly lower performance compared to w=0.1. 

 

Table 4.3: Parameter sensitivity analysis for inertia weight (w) with 60% load 
increment on IEEE 118-bus system 

H 
w 

Ave 

Iter

Ave 

Time[s] 

S.R. 

(%) 
Std Dev

Best Average Worst 

0.1 9 3.64 94 1.15×10-6 0 1.06×10-6 5.0×10-6 

0.2 14 5.26 88 1.10×10-6 0 1.11×10-6 4.0×10-6 

0.3 18 7.18 76 9.35×10-7 0 1.13×10-6 3.0×10-6 

0.4 21 8.35 62 1.21×10-6 0 1.26×10-6 4.0×10-6 

0.5 25 9.37 62 1.36×10-6 0 1.23×10-6 5.0×10-6 

0.6 28 10.7 78 1.36×10-6 0 1.80×10-6 6.0×10-6 

0.7 36 17.1 66 1.41×10-6 0 1.76×10-6 6.0×10-6 

0.8 47 17.2 62 1.51×10-6 0 1.68×10-6 6.0×10-6 

0.9 68 26.1 66 1.36×10-6 0 1.33×10-6 5.0×10-6 

1.0 91 35.0 42 1.80×10-6 0 2.57×10-6 6.0×10-6 
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Figure 4.1: Effects of inertia weight w (0.1 to 1.0): case of IEEE 118-bus system 

with 60% load increment. 
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Figure 4.2: Effects of inertia weight w (0.1 to 1.0): case of IEEE 30-bus system 
with normal load. 
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Figure 4.3: Effects of inertia weight w (0.1 to 1.0): case of IEEE 30-bus system 

with 52.04% load increment. 
 

 
Table 4.4: Inertia weight (w) obtained via parameter sensitivity analysis 

System IEEE 30-bus IEEE 57-bus IEEE 118-bus 

w 0.1 0.1 0.1 
 

 

4.5 Effect of Population size (N) 

The effect of the population size on hybrid CGA/PSO is investigated by 

varying the size from 4 to 40. The numerical results are recorded in Table 4.5 

with the relevant graph plotted in Figure 4.4, showing the average iteration, 

average time and the success rate obtained.  From this graph, a larger 

population size contributes to results with higher success rate.  However, the 
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drawback of higher population size is the increment of the computational cost, 

as can be observed from the graph.   

 

Table 4.5: Parameter sensitivity analysis for population size with 60% load 
increment on IEEE 118-bus system 

 

H Pop 

Size 
Ave Iter 

Ave 

Time[s]

S.R. 

(%)
Std Dev 

Best Average Worst 

4 11.0 2.34 62 1.63×10-6 0 1.39×10-6 7.0×10-6 

8 11.0 5.70 84 1.31×10-6 0 1.19×10-6 6.0×10-6 

12 9.6 7.41 88 1.28×10-6 0 1.27×10-6 5.0×10-6 

16 9.8 9.07 94 1.30×10-6 0 1.13×10-6 6.0×10-6 

20 8.5 11.0 90 1.02×10-6 0 1.33×10-6 4.0×10-6 

24 9.3 14.6 86 8.15×10-7 0 9.53×10-7 2.0×10-6 

28 8.6 19.1 94 1.20×10-6 0 9.57×10-7 5.0×10-6 

32 9.0 19.0 90 9.41×10-7 0 1.02×10-6 3.0×10-6 

36 10.0 23.6 96 1.33×10-6 0 9.38×10-7 6.0×10-6 

40 8.5 24.9 96 1.03×10-6 0 1.15×10-6 3.0×10-6 
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Figure 4.4: Effect of population size: case of IEEE 118-bus system with 60% 

load increment. 
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Figure 4.5: Effects of population size N: case of IEEE 30-bus system with 

normal load 
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Figure 4.6: Effects of population size N: case of IEEE 30-bus system with 

52.04% load increment. 
 

From Figure 4.4 the curve of success rate seems to reach a stable stage with a 

specific population size.  Hereby, we name this as “stable population size”.  

For the IEEE 118-bus system in Figure 4.4, the adopted population size is 16, 

the point given by the crossover point of the iteration and time curves in the 

figure.  The same analysis is performed for other test systems with the 

preferred population sizes summarised in Table 4.6.  The results on IEEE 

30-bus system are plotted in Figures 4.5 and 4.6.  It can be observed that for system 

with 30 buses, a small stable population size of 8 is appropriate.  This stable population 

size increases for larger system with 12 and 16 population sizes for 57-bus system and 

118-bus system respectively. 



Chapter 4: Parameter Settings in Hybrid CGA/PSO Algorithm 
 

 

44

44

Table 4.6: Stable population size obtained via parameter sensitivity analysis 

System IEEE 30-bus IEEE 57-bus IEEE 118-bus 

Pop Size 8 12 16 
 

 

4.6 Mutation Probability (mp) 

This mutation rate denotes the degree of contribution from PSO algorithm 

for efficient search as this is implemented as mutation in the proposed hybrid 

CGA/PSO algorithm.  The parameter sensitivity analysis for mp is carried out 

to find the best value for the best performance of the proposed hybrid method.  

The mutation probability, mp is set from 0.1 to 1.0 with step increment size of 

0.1 in parameter sensitivity analysis.  Results are shown in Table 4.7 with the 

relevant graphs in Figure 4.9 for the case of the IEEE 118-bus test system.  

From the table, the best mp value is 1.0 when the mean iteration is 6.1 within 

3.07s.  The success rate recorded in this case is 94%, which is the highest 

among all the mp values, highlighted in Table 4.7.  The graph showing the 

relevant information versus the mutation probability mp is shown in Figure 4.7.   
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Table 4.7: Parameter sensitivity analysis for mutation probability (mp) with 

60% load increment on IEEE 118-bus system (50 Trials) 

Mutation Probability, mp
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Figure 4.7: Effect of mutation probability (mp): case of IEEE 118-bus system 

with 60% load increment. 

H 
mp Ave 

Iter 
Ave 

Time[s] S.R. (%) Std Dev
Best Average Worst 

0.1 9.7 6.19 88 1.06×10-6 0 1.00×10-5 5.0×10-6 

0.2 10 5.98 88 1.50×10-6 0 1.48×10-6 7.0×10-6 

0.3 9.6 5.46 82 1.42×10-6 0 1.32×10-6 5.0×10-6 

0.4 9.7 4.51 84 5.84×10-6 0 1.88×10-6 3.8×10-5 

0.5 7.2 4.78 84 1.45×10-6 0 1.19×10-6 5.0×10-6 

0.6 6.5 3.33 82 1.08×10-6 0 1.22×10-6 5.0×10-6 

0.7 6.4 3.56 86 7.83×10-7 0 6.51×10-7 3.0×10-6 

0.8 6.3 2.81 86 3.24×10-7 0 1.16×10-7 1.0×10-6 

0.9 6.3 3.32 86 1.52×10-7 0 2.33×10-8 1.0×10-6 

1.0 6.1 3.07 94 5.83×10-7 0 8.51×10-8 4.0×10-6 
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As different power systems may exhibit different behaviours, therefore, the 

similar parameter analysis as in Table 4.7 is carried out for other systems to 

obtain the appropriate value of mutation probability for each system in the aim 

of obtaining optimal performance.  The best values obtained for other IEEE 

test systems are summarised in Table 4.8 below.  It can be observed, a setting 

of 0.4 suffices for small systems and 1.0 for larger systems. 

 

Table 4.8: Mutation probability (mp) obtained via parameter sensitivity 
analysis 

System IEEE 30-bus IEEE 57-bus IEEE 118-bus 

mp 0.4 0.4 1.0 
 

 

4.7 Effect of r1 and r2 in PSO equation 

This analysis investigates the role of r1 and r2 in PSO algorithm in 

searching for the solution.  In the original form of PSO, these values are 

uniformly distributed between [0, 1].  However, in this analysis, a series of 

ranges for r1 and r2 are investigated as observed in Tables 4.9 and 4.10. 
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Table 4.9: Parameter sensitivity analysis for r1 and r2 on IEEE 30-bus system 
for normal load 

H 
r1, r2 

Ave 

Iter 

Ave 

Time[s]

S.R. 

(%)
Std Dev

Best Average Worst 

r[0, 1], r[0, 1] 5.40 0.058 84 9.26×10-7 0 2.38×10-7 6.0×10-6

0, r[0, 1] 6.57 0.068 89 8.0×10-7 0 2.02×10-7 4.0×10-6

r[0, 1], 0 5.39 0.058 70 7.36×10-7 0 2.57×10-7 4.0×10-6

r[0, 0.5], r[0, 0.5] 5.77 0.062 88 5.98×10-7 0 1.82×10-7 3.0×10-6

r[0.5, 1], r[0.5, 1] 6.18 0.067 77 8.77×10-7 0 3.12×10-7 4.0×10-6

 

 

Table 4.10: Parameter sensitivity analysis for r1 and r2 on IEEE 30-bus system 
for 152.04%×normal load 

H 
r1, r2 

Ave 

Iter 

Ave 

Time[s]

S.R. 

(%)
Std Dev

Best Average Worst

r[0, 1], r[0, 1] 8.81 0.090 93 1.09×10-6 0 2.13×10-6 5.0×10-6

0, r[0, 1] 8.16 0.080 76 1.17×10-6 0 2.25×10-6 5.0×10-6

r[0, 1], 0 8.12 0.083 95 1.10×10-6 0 2.27×10-6 5.0×10-6

r[0, 0.5], r[0, 0.5] 7.47 0.078 92 7.44×10-7 1.0×10-6 2.13×10-6 5.0×10-6

r[0.5, 1], r[0.5, 1] 9.73 0.099 97 1.14×10-6 0 2.04×10-6 5.0×10-6

 

 

The results shown in Table 4.9 do not show a similar pattern in comparison to 

the results in Table 4.10.  The results do not differ significantly from one and 

other.  Further analysis on r1 and r2 shows that keeping r1 and r2 to its original 

form (first row of Tables 4.9 and 4.10) is the best setting. 
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4.8 Effect of the limit of the velocity (velmax and velmin) 

Setting the appropriate values for velmax and velmin is important to enable 

PSO to explore the search range effectively.  As mentioned previously, the 

velocity, vel in eqn (2.1) is limited within maxmin velvelvel ≤≤ .  These boundaries 

determine the resolution, with which regions are searched between the present 

position and target position.  If the range of vel is too high, particles may 

search a large area, lacking the ability to converge.  As the unknown variables 

are E and F (the real and imaginary part of the voltage, jFEV += ), it is 

therefore necessary to determine the limit of the velocity in terms of the voltage, 

V and angle, θ.   

 

Table 4.11: Parameter sensitivity analysis of velocity limit for IEEE 30-bus 
system for normal load 

H (% × search 

space) 

Ave 

Iter 

Ave 

Time[s]

S.R. 

(%)
Std Dev

Best Average Worst 

10% 5.30 0.11 100 1.15×10-6 0 1.62×10-6 5.0×10-6

20% 6.70 0.13 100 1.48×10-6 0 1.16×10-6 7.0×10-6

30% 19.3 0.35 64 1.06×10-6 0 9.68×10-7 4.0×10-6

40% 15.1 0.28 48 9.67×10-7 0 7.92×10-7 5.0×10-6

50% 12.3 0.23 18 8.02×10-7 0 9.44×10-7 3.0×10-6

60% 12.3 0.23 32 2.73×10-6 0 1.44×10-6 1.5×10-5

70% 9.50 0.18 41 1.24×10-6 0 1.37×10-6 4.0×10-6

80% 10.1 0.19 41 1.16×10-6 0 9.51×10-7 4.0×10-6

90% 12.4 0.23 36 9.31×10-7 0 8.61×10-7 3.0×10-6

100% 9.10 0.18 42 9.68×10-7 0 1.12×10-6 4.0×10-6
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Table 4.12: Parameter sensitivity analysis of velocity limit for IEEE 30-bus 
system for 152.04% of normal load 

H % × search 

space 

Ave 

Iter 

Ave 

Time[s]
S.R. (%) Std Dev

Best Average Worst 

10% 8.3 0.15 100 1.05×10-6 0 1.35×10-6 5.0×10-6

20% 8.02 0.15 96 1.20×10-6 0 1.69×10-6 6.0×10-6

30% 9.3 0.17 94 1.27×10-6 0 1.78×10-6 6.0×10-6

40% 8.9 0.16 71 1.63×10-6 0 1.80×10-6 8.0×10-6

50% 10.3 0.19 69 1.67×10-6 0 2.03×10-6 9.0×10-6

60% 9.0 0.17 62 1.37×10-6 0 1.79×10-6 5.0×10-6

70% 10.1 0.19 70 1.90×10-6 0 2.04×10-6 1.3×10-5

80% 10.8 0.20 73 1.95×10-6 0 2.03×10-6 1.0×10-5

90% 10.1 0.18 61 1.10×10-6 0 1.59×10-6 5.0×10-6

100% 10.8 0.20 65 1.25×10-6 0 1.57×10-6 6.0×10-6

 

In this analysis, the velocity limit is set starting from 10% to 100% of search 

space with the step increment of 10% as shown in Table 4.11 and 4.12.  Results 

in Tables 4.11 and 4.12 show success rate of 100% when the velocity limit is 

confined within 10% of the search space.  Similarly, from the graph in Figure 

4.10, setting the velocity limit to 10% of the search space is the best setting 

found in both cases of normal and heavy load.  Hence, this setting will be 

applied to all future experiments from this point forward. 
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Figure 4.10: Success rate versus velocity limit for normal and heavy loads. 

 

4.9 Conclusions 

In this chapter, five experiments have been run to investigate the 

characteristics of the parameter settings in PSO.  Through this preliminary 

analysis, a thorough understanding concerning the settings in PSO is acquired.  

As a conclusion, we propose a set of parameter settings (Table 4.13) to be 

applied in the future works using PSO algorithm. 



Chapter 4: Parameter Settings in Hybrid CGA/PSO Algorithm 
 

 

51

51

 

Table 4.13: Proposed parameter settings for future works. 

Parameter Setting 

Inertia weight, w 0.1 for any system 

Population size, N 8 for IEEE 30-bus,  

12 for IEEE 57-bus and  

16 for IEEE 118-bus 

Mutation probability, mp 0.4 for IEEE 30-bus and 57-bus 

1.0 for IEEE 118-bus 

r1 , r2 Uniformly distributed within [0, 1] 

velmin, velmax 10% of search space  
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Chapter 5 
 

 

 

 

5. Finding Maximum Loading Point (MLP) 
using Hybrid CGA/PSO Algorithm 

 

 

 

5.1 Introduction 

In validating the hybrid CGA/PSO algorithm for finding the load flow 

solution of power systems under the heavy load condition and to compare its 

performance with ACGA, the following test systems and load variations have 

been used: 

 

1. IEEE 30-bus system with load increment from 52.86% to 

53.09% of normal loading 

2. IEEE 57-bus system with load increment from 40.78% to 

40.86% of normal loading 
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3. IEEE 118-bus system with load increment from 61.37% to 

61.40% of normal loading 

 

The data specifications of the above power systems are downloadable from 

[104].  The optimal parameter settings found from the empirical study in chapter 

3 are applied to the proposed hybrid method.  Similar number of population size 

is applied to both algorithms for fair comparisons.  In other words, the same 

parameter settings are applied.  In an instant of load increment, different 

population sizes are applied.  The common population sizes comprising of 50 

and 100 individuals are applied.  The success rate (S.R. (%)) is included for 

better clarification of reliability of the proposed method.  For better comparison 

in terms of speed, both average iterations and time recorded are included.   The 

load increment starts from the point whereby the proposed method start to obtain 

success rate less than 100%.  As of such, the proposed method is still able to 

obtain 100% of success rate on 52.86%, 40.78% and 61.37% for the respective 

test systems.  

 

5.2 Parameter Settings of PSO 

In this thesis, the parameters ρ1 and ρ2 are set to constant values, which are 

commonly set as 2.0.  The r1 and r2 are two random values, uniformly 

distributed in [0, 1].  The value of Vmax in this thesis is 10% of the search range, 
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which is the best value from empirical study for the load flow problem (see 

Section 4.8 in Chapter 4).  The common parameter settings for both algorithms 

are given in Table 5.1.  Other parameters such as inertia weight (w) and 

population size (N) are found from the parameter sensitivity analysis presented 

in the previous chapter.  These optimal settings are tabulated in Table 5.2. 

 

Table 5.1: Common parameter settings for GA and Hybrid CGA/PSO 

Parameter Settings 

Active and reactive power 

tolerance 

0.001 p.u. on 100MVA base 

Gradient acceleration, G 25% of the population 

Number of trials 50 

Maximum Generation, T 150 

Initialisation range 0.9 < V < 1.2 and -30° < θ < 0° 

Population size, N 8 for IEEE 30-bus,  

12 for IEEE 57-bus and  

16 for IEEE 118-bus 
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Table 5.2: Parameter settings for relevant algorithms 

Parameter ACGA Hybrid CGA/PSO 

Crossover rate Two-point crossover Two-point crossover  

Selection strategy Roulette Wheel Roulette Wheel 

Mutation, mp 
Uniform mutation 

with mp = 0.01 

PSO mutation with mp = 0.4 

for IEEE 30-bus and 57-bus, 

mp = 1.0 for IEEE 118-bus

Inertia weight, w - 0.1 

Maximum Velocity, Vmax - 10% of search space 

 

5.3 Results 

Results from the simulation are presented in Tables 5.3-5.5.  For the IEEE 

30-bus system, it is observed from Tables 5.3a and 5.3b that the hybrid CGA/PSO 

has a much higher success rate for finding the load flow solution when compared 

to ACGA for all the load increment points from 52.86% to 53.09%.  For instance, 

the success rate of the hybrid CGA/PSO for the 52.86%, 52.89 and 52.92% load 

increment points are very close to 100%.  The respective success rates recorded 

by the ACGA method are not satisfactory.  The higher success rate obtained by 

the hybrid CGA/PSO signifies that the new algorithm has a much better 

performance than ACGA.  Further more, the ACGA can no longer find anymore 

solutions beyond 53.04% load increment. However, the hybrid CGA/PSO can 

still find solutions with success rates within 52% to 18%, even under a small 
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population size of 8, just before the 53.09% load increment point, after which 

point there are no more feasible solutions.   From the comparison of the 

execution times listed in Table 5.3a, it can be observed that the hybrid CGA/PSO 

is much faster than ACGA. The voltage profiles of IEEE 30-bus system for 

52.86% and 53.09% load increments are shown in Table 5.6.  All the PV nodes, 

as highlighted in Table 5.6 are converted to PQ nodes when the reactive power 

limits are reached.   

 

Table 5.3a: IEEE 30-bus system (50 trials) 

Load Inc (%) 52.86 52.89 52.92 52.95 52.98 

Population size 8 50 100 8 50 100 8 50 100 8 50 100 8 50 100

S.R (%) 28 86 94 26 52 100 12 40 76 6 30 57 2 26 42

Ave Iter 48 27 32 118 48 52 141 65 46 67 52 47 78 35 45

ACGA 

Time[s] 0.41 2.4 3.7 0.8 4.0 9.2 1.0 5.2 8.9 0.6 4.0 7.9 0.7 4.9 8.4

S.R (%) 100 100100 90 92 100 96 98 100 88 98 100 86 94 100

Ave Iter 26 24 22 49 52 35 32 43 30 45 37 31 43 38 35

Hybrid 

CGA/PSO 

Time[s] 0.28 2.1 3.2 0.65 4.3 7.6 0.36 4.1 7.4 0.53 3.9 7.5 0.52 4.1 7.3
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Table 5.3b: IEEE 30-bus system (50 trials) 

Load Inc (%) 53.01 53.04 53.07 53.09 

Population size 8 50 100 8 50 100 8 50 100 8 50 100 

S.R (%) 0 16 20 0 0 4 0 0 0 0 0 0 

Ave Iter - 92 68 - - 94 - - - - - - 

ACGA 

Time[s] - 12.717.6 - - 21.1 - - - - - - 

S.R (%) 52 84 94 42 56 67 18 26 30 4 2 6 

Ave Iter 54 83 62 64 115 96 73 62 56 79 125 3 

Hybrid 

CGA/PSO 

Time[s] 0.6 9.2 15.60.710.9 17.5 0.8 7.5 13.20.9 16.7 23.4 

 
 

For the case of IEEE 57-bus system, from the results in Tables 5.4a and 5.4b, 

similar conclusions as that for the case of the 30-bus system can be derived. For 

the case of IEEE 118-bus system; from Table 5.5, it can be observed that at the 

loading point of 61.37% load increment, the proposed hybrid CGA/PSO 

algorithm obtained the solution with 100% success rate despite the small 

population size of 16. On the other hand, the ACGA algorithm found the solution 

for the same loading point with a much lower success rate of 56%. For further 

load increment up to 61.40%, ACGA failed to find the solution but the proposed 

hybrid algorithm can still find the solution although the success rate is low. This 

indicates the proposed algorithm is much more powerful than ACGA. There are 

no more solutions present beyond the loading point of 61.40% of load increment. 

The voltage profile of the 54 generator nodes of the 118-bus test system at 

61.37% load increment are tabulated in Table 5.7.  The variation of voltage with 
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active power from normal load to 61.37% load increment for node 118 is 

illustrated in Figure 5.1. 

 

Table 5.4a: IEEE 57-bus system (50 trials) 

Load Inc (%) 40.78 40.79 40.80 40.81 40.82 

Population size 12 50 100 12 50 100 12 50 100 12 50 100 12 50 100

S.R (%) 92 98 100 60 64 100 68 76 100 18 36 68 0 24 36

Ave Iter 6 5 5 36 6 5 46 6 6 79 24 19 - 24 17

ACGA 

Time[s] 0.75 2.8 5.5 1.5 4.7 8.6 2.8 3.1 5.9 4.1 7.1 18.2 - 6.8 11.3

S.R (%) 100 100100 90 88 100 76 82 100 32 72 80 24 48 50

Ave Iter 6 5 5 15 7 6 20 8 8 42 16 23 33 18 23

Hybrid 

CGA/PSO 

Time[s] 0.6 2.5 5.3 1.1 2.9 5.7 1.5 3.3 6.5 3.4 5.8 12.1 2.1 6.2 12.3

 
Table 5.4b: IEEE 57-bus system (50 trials) 

Load Inc (%) 40.83 40.84 40.85 40.86 

Population size 12 50 100 12 50 100 12 50 100 12 50 100 

S.R (%) 0 0 12 0 0 8 0 0 4 0 0 0 

Ave Iter - - 43 - - 37 - - 51 - - - 

ACGA 

Time[s] - - 22.3 - - 20.1 - - 26.3 - - - 

S.R (%) 16 32 46 6 20 34 2 12 23 0 4 8 

Ave Iter 36 23 21 36 35 29 52 40 45 - 48 39 

Hybrid 

CGA/PSO 

Time[s] 2.3 6.7 11.2 2.2 8.2 13.6 3.1 9.8 21.2 - 11.7 19.6 

 

For all the test cases from Table 5.3 to Table 5.5, the effect of increasing the 

population sizes in the proposed hybrid CGA/PSO algorithm is that the 

computing time is also increased. However, the number of iterations taken by the 
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algorithm does not necessarily increased when the population size becomes larger.  

This is due to the reason that a larger population size fastens the convergence, 

thereby resulting in less number of iteration. 

 

Table 5.5: IEEE 118-bus system (50 trials) 

Load Inc (%) 61.37 61.38 61.39 61.40 

Population size 16 50 100 16 50 100 16 50 100 16 50 100 

S.R (%) 56 72 100 48 54 76 32 26 54 0 0 0 

Ave Iter 11 7 7 12 8 7 14 9 7 - - - 

ACGA 

Time[s] 16.4 39.174.417.443.585.419.342.787.2 - - - 

S.R (%) 100 100 100 92 90 100 48 72 96 0 2 6 

Ave Iter 7.1 7.0 7.1 7.6 7.2 7.1 8.9 7.2 7.0 - 15.6 15.1 

Hybrid 

CGA/PSO

Time[s] 9.6 30.964.710.331.462.510.732.463.3 - 131.5 256.1 
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Table 5.6: Voltage profile for IEEE 30-bus system 

Load 52.86% load increment 53.09% load increment 

Node Index Magnitude Phase Angle (°) Magnitude Phase Angle (°) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

1.060000 

0.902526 

0.825449 

0.779957 

0.744227 

0.746917 

0.726796 

0.734867 

0.737971 

0.699372 

0.800427 

0.743886 

0.786679 

0.706474 

0.692698 

0.708628 

0.689950 

0.665953 

0.657619 

0.666093 

0.669230 

0.670242 

0.661392 

0.639610 

0.641373 

0.596671 

0.664258 

0.727160 

0.609867 

0.578284 

0.000000 

-9.163226 

-14.144292 

-17.714087 

-30.230791 

-21.817823 

-26.740196 

-23.712009 

-30.984142 

-36.278351 

-30.968399 

-34.378109 

-34.370037 

-37.226383 

-37.416431 

-36.032516 

-36.905891 

-39.475880 

-40.039063 

-39.276268 

-37.823486 

-37.767101 

-38.628609 

-39.044552 

-38.172943 

-39.874516 

-36.653721 

-23.398275 

-41.403164 

-45.204037 

1.060000 

0.898054 

0.818886 

0.772084 

0.735514 

0.737926 

0.717579 

0.725587 

0.726524 

0.686610 

0.789912 

0.732089 

0.775517 

0.693927 

0.679860 

0.696212 

0.677058 

0.652561 

0.644044 

0.652661 

0.655811 

0.656822 

0.647855 

0.625182 

0.626557 

0.580452 

0.650009 

0.717403 

0.593751 

0.561152 

0.000000 

-9.193436 

-14.224428 

-17.843672 

-30.673100 

-22.027609 

-27.084412 

-23.968462 

-31.451153 

-36.930237 

-31.432629 

-34.962929 

-34.952236 

-37.909386 

-38.100208 

-36.673157 

-37.581543 

-40.231888 

-40.821728 

-40.027641 

-38.533367 

-38.473484 

-39.358040 

-39.806389 

-38.930454 

-40.735943 

-37.369335 

-23.637709 

-42.335968 

-46.372238 
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Table 5.7: Voltage profile of generators’ node for IEEE 118-bus system with 

60% load increment 

Node V θ° Node V θ° Node V θ° 

1 0.9201 -90.71 42 0.9850 -67.05 80 0.9509 -9.34 

4 0.9980 -83.19 46 0.8335 -26.93 85 0.9331 -23.75

6 0.9769 -86.70 49 0.9072 -31.80 87 1.0150 -26.65

8 1.0150 -74.78 54 0.9436 -45.63 89 1.0050 -18.87

10 1.0500 -59.95 55 0.9297 -45.79 90 0.9850 -26.79

12 0.9628 -87.62 56 0.9315 -45.53 91 0.9800 -26.17

15 0.9142 -83.50 59 0.9548 -35.98 92 0.9645 -24.20

18 0.9236 -82.87 61 0.9950 -26.19 99 1.0039 -25.44

19 0.9035 -83.00 62 0.9842 -26.99 100 0.9642 -28.50

24 0.9920 -56.04 65 0.9322 -12.12 103 0.9446 -35.71

25 1.0500 -59.90 66 0.9947 -18.58 104 0.9209 -40.62

26 1.0150 -58.61 69 1.0350 30.00 105 0.9235 -42.69

27 0.9680 -77.72 70 0.7631 -9.56 107 0.9520 -47.84

31 0.9670 -81.76 72 0.9436 -39.89 110 0.9549 -47.32

32 0.9607 -77.73 73 0.8623 -17.15 111 0.9800 -45.96

34 0.8673 -72.40 74 0.7117 -8.64 112 0.9750 -51.62

36 0.8610 -73.32 76 0.7069 -13.14 113 0.9930 -80.09

40 0.9700 -74.72 77 0.8628 -7.51 116 1.0050 -1.87 
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Figure 5.1: Variation of nodal voltage magnitude with load demand increment 

at node number 118 
 
 

5.4 Results Comparison 

Taking the maximum loading points (MLP) of the test systems to be the 

highest loading points found by the ACGA and the proposed hybrid algorithm 

with 100% success rate, the MLPs of the test systems found are tabulated in 

Table 5.8. The MLPs found the hybrid CGA/PSO are higher than those by 

ACGA especially those for the 118-bus test system. The improvement is due to 

the replacement of the nodal voltage differential acceleration technique in 

ACGA by PSO in forming the hybrid CGA/PSO algorithm. 
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Table 5.8: Comparison of Maximum Loading Point (MLP) 

MLP (% of Load Increment) 
System 

ACGA Hybrid CGA/PSO 

IEEE 30-bus 52.23 52.86 

IEEE 57-bus 40.70 40.78 

IEEE 118-bus 60.70 61.37 

 
 

5.5 Conclusions 

The hybrid CGA/PSO load flow algorithm developed in Chapter 3 has been 

applied to three IEEE test systems. The hybrid algorithm has been found to be 

much more powerful and efficient than the previous ACGA algorithm 

particularly when it is applied to evaluate the load flow solution of heavy-loaded 

power systems. The large capability of the proposed algorithm allows it to 

evaluate the maximum loading points with better accuracy for larger systems 

than ACGA. 
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Chapter 6 
 

 

 

6. Locating Type-1 Load Flow Solutions via 
Hybrid CGA/PSO Load Flow Algorithm 

 

 

 

6.1 Introduction 

 With the increasing load demand and exploitation of power transmission 

system, problems related to voltage instability have been receiving continuous 

interest in research.  Since 1970s, voltage instability has been the root cause of 

several power systems collapses worldwide [87, 88].  The voltage stability 

problem has now become a source of concern in highly developed and mature 

networks as a result of heavier loadings and power transfers over long distances.  

Consequently, voltage stability is increasingly being addressed in system 

planning and operating studies.   

Although the work in [14, 23, 24] is able to locate all the load flow 

solutions, the connection of these solutions in regards to voltage stability 

remains to be indistinct.  Type-1 solution simply means that the corresponding 
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Jacobian matrix of the load flow solution set has exactly one eigenvalue with a 

positive real part and the rest of the eigenvalues have negative real parts.  In 

general, a solution is considered Type-k when there are k positive values for the 

real part of the eigenvalues whereby these eigenvalues can be either complex 

number or real number.  In other words, Type-1 solutions have only one 

eigenvalue with a positive real part while Type-2 solution has two positive real 

part values.   

Works presented in [27, 28] link the Type-1 solutions to the voltage 

stability assessment by stating that only Type-1 load flow solutions are closely 

associated with voltage instability phenomenon.  Based on this fact, the 

computational cost can be further reduced by locating only the Type-1 load flow 

solutions while the other solutions are not a major concern for stability 

assessment.  Recently, works in [27, 28] present different strategies in locating 

Type-1 load flow solutions.  However, the method in [27] lacks in the ability 

in locating all the possible Type-1 solutions present in a large system while the 

performance of CPFLOW-based algorithm in [28] is unknown for large system 

as only small systems are adopted for test problems.   

A graphical illustration showing the contribution of hybrid GA/PSO in the 

searching process is shown in the right hand side of Figure 6.1 while the left 

hand side figure illustrates the condition of search dependent solely on gradient 

information.  It can be observed that the hybrid GA/PSO plays a crucial role as 
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a local search, optimizing the solution space in each generation. 

 

 
Figure 6.1: Graphical illustration of search process 

 

In this chapter, a technique based on the Hybrid Genetic Algorithm / 

Particle Swarm Optimisation is used to find the Type-1 load flow solutions.  

The following sections in this chapter are organised as follows.  The 

experimental settings are available in Section 6.2 with results presented in 

Section 6.3.  Discussion on characteristics of Type-1 solutions is in Section 6.4 

and finally the conclusions are derived in Section 6.5. 

 

 

6.2 Experiment Settings 

Two test systems [23, 24, 14, 91] are adopted to demonstrate the 

robustness of the proposed hybrid algorithm.  The network data with specified 

generation, loads and nodal voltages for both systems are given in Figures 6.2 
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and 5.3.  Under these conditions, the 5-bus system has 10 load flow solutions 

while the 7-bus system has 5 load flow solutions.   

The parameter settings adopted in this experiment is summarised in Table 

6.1.  A population size comprises of 20 candidates is initialised within the 

specified range given in Table 6.2.  The maximum number of iterations is set to 

100 and number of trials to be carried out is 50 times.  Some parameters such 

as crossover rate, gradient acceleration, PSO mutation rate and inertia weight are 

optimal settings found from previous study in [92].  As the initialisation range 

is crucial in our study here, different sets of initialisation ranges are proposed for 

further investigation, shown in Table 6.2. 
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Figure 6.2: The 5-bus system 
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Figure 6.3: The 7-bus system 

 

Table 6.1: Common parameter setting for all experiments 

Parameter Setting 

PQ tolerance 0.001 p.u. on a 100MVA base 

Population size 20 

Maximum Generation 100 

Number of trials 50 

Initialisation range Given in Table 6.2 

Gradient acceleration  25% of the population 

Crossover 2-point crossover with probability 0.9 

Selection strategy Roulette wheel 

PSO mutation rate 0.04 

Inertia weight 0.1 is appropriate for any load 
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Table 6.2: Initialisation range 

Set Voltage (p.u.) Angle ( º )

A 0.0-0.5 -180º to -90º

B 0.0-0.5 -90º to 0º

C 0.0-0.5 -180º to 0º

D 0.5-1.0 -180º to -90º

E 0.5-1.0 -90º to 0º

F 0.5-1.0 -180º to 0º

G 0.0-1.0 -180º to 0º

 

In Table 6.2, the initialisation ranges A, B and C have low voltage profile 

whereas sets D, E and F have high voltage profile ranges.  All the angles for 

A-E have an angle range of 90° except for sets F and G which have an angle 

range of 180°.  On the other hand, the voltage range is 0.5 p.u. except for set G, 

having voltage range of 1.0 p.u. Statistical information from the experiment, with 

the success rate is given in Tables 6.3 and 6.4. 

 

6.3 Results 

Results depicted in Tables 6.3 and 6.4 show the frequency of solution of 

the specific load flow solution obtained by the algorithm.  In Table 6.3, the 

number from 1 to 10 at the first row represents the 10 load flow solutions 

present in the 5-bus system.  As 7-bus system has 4 solutions, therefore number 

from 1 to 4 is available in the first row of Table 6.4.  Using the range set as 
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specified in Table 6.2, the hybrid GA/PSO is run and frequency of each solution 

is calculated.  For example, in Table 6.3, out of 50 runs using set B, there are 

eight solutions number 6, one solution number 7, sixteen solutions number 8 and 

seventeen solutions number 9.  Thereby, the success rate calculated is 

46/50=0.92.    The solutions, showing the voltage profile for both systems are 

given in Tables 6.5 and 6.6. 

Each initialisation set results in different coverage of the multiple load 

flow solutions.  From careful analysis with respect to initialisation range, it is 

found that the solutions obtained usually located within the initialisation range 

or nearby.  For example, for set A in Table 6.3, 27 solutions are solution 

number 10.  From the details of the node voltages available in Table 6.5, it is 

examined that solution number 10 has low voltage profile and large negative 

angles for PQ and PV nodes.  Therefore, initializing the voltages and angles 

within 0.0 and 0.5 p.u. assists in a smoother convergence.  In terms of the 

success rate, the 5-bus system records an overall success rate of 0.91.  This 

success rate deteriorates when applied to 7-bus system with overall success rate 

recorded as 0.67.  This implies the degree of difficulty due to three reasons.  

Firstly, 7-bus system involves a greater number of nodes and therefore more 

variables are present which increases the complexity of the final solution.  

Secondly, by observing the normal load solution (solution number 1) as depicted 

in Table 6.6, node 3 records a voltage of 0.904 p.u. which implies that the load at 
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this node is heavier than usual.  In general, light load nodes usually operate 

with a voltage close to unity value.  Thirdly, the design of the initialisation 

range in Table 6.2 is not optimal for this system.    From the analysis of angles 

in Table 6.6, there is actually no common range for these angles. 
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Table 6.3: Frequency of multiple solutions for 5-bus system (50 runs) 

Solution Number 
Set 

1 *2 3 *4 5 *6 7 *8 9 10
Success rate 

A 0 0 3 0 15 0 0 0 1 27 46/50=0.92 

B 0 0 0 0 0 8 1 16 17 0 42/50=0.84 

C 0 0 3 0 9 4 1 7 7 7 38/50=0.76 

D 0 48 1 0 1 0 0 0 0 0 50/50=1.00 

E 32 0 2 4 4 5 0 3 0 0 48/50=0.96 

F 3 7 1 0 7 19 6 7 0 0 50/50=1.00 

G 0 1 2 0 7 14 1 13 5 2 45/50=0.90 

Total 35 56 12 4 43 48 9 46 30 36 319/350=0.91 

* Type-1 solutions 

 
Table 6.4: Frequency of multiple solutions for 7-bus system (50 runs) 

Solution Number 
Set 

1 *2 *3 4 
Success rate 

A 0 0 1 29 30/50=0.60 

B 0 0 0 36 36/50=0.72 

C 0 1 0 28 29/50=0.58 

D 0 1 1 15 17/50=0.34 

E 1 19 0 28 48/50=0.96 

F 0 5 1 29 35/50=0.70 

G 0 2 0 38 40/50=0.80 

Total 1 28 3 203 235/350=0.67 

* Type-1 solutions 
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Table 6.5: The ten solutions of the 5-bus power system (Type-1 solutions are 
identified by *) 

Solutions 
No 

V1 ∠ θ5° V2 ∠ θ1° V3 ∠ θ3° V4 ∠ θ4° V5 ∠ θ2° 

1 1.060∠ 0.000 1.000∠ -2.067 0.977∠ -4.853 0.966∠ -5.692 0.980∠ -4.535 

*2 1.060∠ 0.000 1.000∠ -138.967 0.587∠ -134.863 0.831∠ -141.660 0.501∠ -129.851

3 1.060∠ 0.000 1.000∠ -128.586 0.410∠ -124.173 0.066∠ -185.734 0.377∠ -116.836

*4 1.060∠ 0.000 1.000∠ -12.146 0.740∠ -13.879 0.057∠ -71.501 0.793∠ -12.679 

5 1.060∠ 0.000 1.000∠ -126.625 0.215∠ -144.796 0.698∠ -133.440 0.062∠ -159.529

*6 1.060∠ 0.000 1.000∠ -16.504 0.030∠ -81.865 0.628∠ -23.451 0.197∠ -26.042 

7 1.060∠ 0.000 1.000∠ -18.097 0.049∠ -80.670 0.632∠ -25.443 0.056∠ -61.126 

*8 1.060∠ 0.000 1.000∠ -16.908 0.184∠ -37.786 0.686∠ -23.872 0.034∠ -69.046 

9 1.060∠ 0.000 1.000∠ -22.520 0.036∠ -85.945 0.081∠ -79.418 0.196∠ -30.681 

10 1.060∠ 0.000 1.000∠ -119.882 0.165∠ -144.756 0.075∠ -178.499 0.088∠ -141.839

 
Table 6.6: The four solutions of the 7-bus power system (Type-1 solutions are 

identified by *) 

Solutions 
No 

V1 ∠ θ1° V2 ∠ θ2° V3 ∠ θ3° V4 ∠ θ4° V5 ∠ θ5° V6 ∠ θ6° V7 ∠ θ7° 

1 1.0 ∠ 0.0 0.964 ∠ -2.934 0.904 ∠ -8.444 0.928 ∠ -5.750 0.964 ∠ -2.446 0.968 ∠ -2.592 1.076 ∠ 5.2860

*2 1.0 ∠ 0.0 0.588 ∠ -5.221 0.175 ∠ -52.678 0.412 ∠ -14.206 0.723 ∠ -3.206 0.664 ∠ -4.303 0.731 ∠ 14.958

*3 1.0 ∠ 0.0 0.542 ∠ -6.293 0.543 ∠ -19.810 0.646 ∠ -11.246 0.775 ∠ -3.862 0.640 ∠ -5.016 0.288 ∠ 101.819

4 1.0 ∠ 0.0 0.433 ∠ -6.835 0.250 ∠ -44.280 0.436 ∠ -16.136 0.688 ∠ -3.919 0.550 ∠ -5.314 0.344 ∠ 88.336

 

For instance, the solution number  4 records an angle of 88.336° for node 7 

which is very far from the angle in node 3, recorded as -44.280°.  Hence, 

redesign of the initialisation set will ultimately produce better results for this 
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7-bus system.  Despite lacking the convergence capability, all the multiple 

solutions (including Type-1 solutions) present in both systems are found.   

Among 10 solutions in 5-bus system, there are four Type-1 solutions 

present whereas for 7-bus system, only two Type-1 solutions are present.  

These values are denoted with asterisk (*) at the left side of solution number in 

Tables 6.3 and 6.4.  Again, the voltage profile of the Type-1 solutions can be 

found in Tables 6.5 and 6.6 whereby they agree to the results presented in [28].  

The eigenvalues recorded are available in Table 6.7 which are discussed in the 

next section. 

 

6.4 Characteristics of Type-1 Solutions 

Type-1 load flow solutions have been previously known as low-voltage 

solutions [28]. Type-1 solutions consist of the following characteristics: 

 

6.4.1 One Positive Value for Real Part of Eigenvalues 

As mentioned in the previous section, there exists only one eigenvalue 

with positive real-part among total eigenvalues present in a system.  The 

eigenvalues of the Jacobian matrix for both test systems are available in Table 

6.7.  The set of eigenvalues for Type-1 can consist of purely real or complex 

numbers.  However, no purely imaginary eigenvalues are possible as Type-1 

solution is located at hyperbolic equilibrium point. 
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Table 6.7: Eigenvalues of Jacobian matrix For Type-1 solutions 

5-Bus System 7-Bus System 

*2 *4 *6 *8 *2 *3 

7.97 

-20.7-6.9i

-20.7+6.9i

-9.0-2.6i 

-9.0+2.6i

-3.1-0.6i 

-3.1+0.6i

-20.92 

3.8-0.6i 

-3.8+0.6i 

-1.4-0.2i 

-1.4+0.2i 

-0.39 

0.38 

-40.5-13.4i

-40.5+13.4i

-23.78 

-4.48-0.74i

-4.48+0.74i

-0.62 

0.57 

-21.49 

-4.7-0.9i

-4.7+0.9i

0.45 

-0.45 

-1.2-0.1i

-1.2+0.1i

-21.7-6.8i 

-21.7+6.8i 

-19.5-5.8i 

-19.5+5.8i 

-4.8-1.6i 

-4.8+1.6i 

0.71 

-2.8-0.7i 

-2.8+0.7i 

-1.84 

-0.93 

-1.16 

-23.2-6.8i 

-23.2+6.8i 

-19.3-6.0i 

-19.3+6.0i 

-8.6-2.1i 

-8.6+2.1i 

-4.3-1.4i 

-4.3+1.4i 

0.67 

-1.68 

-1.18 

-0.71 

 

6.4.2 Nodal Voltage Level of Type-1 Solutions 

Type-1 solutions often have one node with the lowest voltage for the 

relevant node among the multiple solutions.  However, this does not apply to 

all the Type-1 solutions obtained.  Table 6.8 depicts the voltages for all the 

nodes in 5-bus system from the results obtained.  The total solutions obtained 

are 10 and among these, solutions 2, 4, 6 and 8 are Type-1 solutions.  These are 

being highlighted by an asterisk in the relevant table.  From these Type-1 

solutions, only solution number 4, 6 and 8 depicts the characteristic mentioned.  

For instance, the voltage of node 3 in solution number 6 recorded a voltage of 
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0.030 p.u. which is the lowest voltage in the row.  Similarly, this characteristic 

is also shown in solutions number 4 and 8. 

 

Table 6.8: Voltages of 5-bus power system (10 solutions) 

 1 2* 3 4* 5 6* 7 8* 9 10 

V1 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060

V2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

V3 0.977 0.587 0.410 0.740 0.215 0.030 0.049 0.184 0.036 0.165

V4 0.966 0.831 0.066 0.057 0.698 0.628 0.632 0.686 0.081 0.075

V5 0.980 0.501 0.377 0.793 0.062 0.197 0.056 0.034 0.196 0.088
 

 

6.4.3 Coalesce with Normal Solution at Bifurcation 

This characteristic is illustrated in Figure. 6.4, whereby 5-bus system is 

adopted in this case.  This system has 10 solutions at normal load, 5 solutions 

at (100%× normal load) load increment, 4 solutions at (200%×normal load) load 

increment, 2 solutions at (300%×normal load) load increment.  Type-1 solution 

is guaranteed to exist in any load condition.  As the system loading is varied, 

the locations of these solutions also vary.  The number of solutions decreases 

until (385%×normal load) load increment, only normal solution and a single 

Type-1 solution remain.   
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Figure 6.4: PV curve at node 5 of 5-bus system 

 

At this point, the two solutions is said to coalesce on the maximum loadability 

boundary (denoted by ∑) in a saddle-node bifurcation.  This condition is shown 

in Figure 6.4.  On the other hand, analysis on 7-bus system found that the 

system encounters the maximum loadability boundary when the increment is 

(94%×normal load). 

 

6.5 Conclusions 

It has been shown that the hybrid GA/PSO is capable of locating all the 

load flow solutions for the two test systems. No solution curves tracing is 

required in the proposed method.  In addition, the hybrid GA/PSO is able to 
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find a pair of solutions consisting of normal and Type-1 solutions at the vicinity 

of the bifurcation point. The characteristics of the Type-1 solutions have been 

investigated and their characteristics presented. The proposed methodology is 

promising for use in finding the Type-1 solutions for voltage stability 

assessment purposes.
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Chapter 7 
 

 

 

 

7. Calculation of Power System Security 
Margins and Contingency Analyses via 
Fast Infeasible Method (FIM) 

 

 

 

7.1 Introduction 

Security Margins in the context of power system refers to availability of 

generated power to keep the system secure from voltage collapse in the case of 

contingencies due to either generator outage or branch outage, so as to maintain 

the stability of power system operation.  In power system analysis, maintaining 

load flow solvability is of great importance.  When unsolvable cases occur in 

contingency analysis, no further analysis can be done for recovery.  

Additionally, in terms of voltage stability, restoring load flow solution has a 

great importance.  After a severe power outage, the systems experience 
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reduction of load demand and the loads tend to recover to normal load level state 

as shown in Figure 7.1.  The new load level state will determine the stability of 

the system.  In steady state analysis, the system will be stable whenever the 

Maximum Loading Point (MLP) is beyond the normal load, specified as λ0=1.0 

in Figure 7.1.  On the other hand, voltage collapse occurs when the MLP for 

the relevant contingency is less than 1.0.  At this point, the system is not able to 

reach a stable equilibrium state.  Thus, the security margin as being illustrated 

in Figure 7.1 is the available power margin from normal load up to the MLP 

(λMLP ) of the system. 

Load λ

Normal Load

λMLPλ0=1.0

Voltage

Pre-cont

Cont 1

Cont 2

MLP ≥ 1.0 (Stable)MLP < 1.0 
(Unstable)  

Figure 7.1: Maximum Loading Point (MLP) change due to contingencies 
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Massive systems interconnections, increasing power demand, economical 

and environmental reasons have enforced a demand for power companies to 

operate their equipments very close to the limit of the system.  Therefore, it is 

necessary to evaluate the system’s operating conditions with respect to voltage 

stability under both normal and heavy loaded scenarios.  The evaluation done 

for short-term and long-term analyses has the outcome leading to expansion 

planning, operation planning and real time operation.  Over the previous 

decades numerous techniques have been developed to determine the voltage 

stability limits.  These methods can be categorised into different classes: 

i. Bifurcation analysis [93]-[97]  

ii. Investigating the type of load flow solution [24, 25, 28, 99, 101].  

iii. Finding Maximum Loading Point (MLP) of system [31, 32, 35, 36, 102, 

103] 

 

This chapter focuses on a new approach to find MLP when (a) the system is 

operating normally, (b) branch outage occurs and (c) generator breaks down.  

In order to verify that a power system has reached the loadability limit, different 

way of checking can be employed.  Works in [33, 34] utilise the Jacobian 

matrix minimum singular value as the indication of stability limit.  Similarly, 

the MLP is estimated in [35] by using a set of stable operating point which is 
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based on the analysis of Jacobian matrix behaviour.  Some general sensitivity 

formulas at saddle-node bifurcation (SNB) have been derived in [107], stating 

the four properties that must be satisfied at SNB.  The presence of a pair of 

multiple solutions can also be checked using techniques proposed in [25] to 

determine the maximum loading condition.  This approach is implemented in 

this thesis as the previous work in [99] has proven that the proposed hybrid 

algorithm is capable of locating the pair of solution at bifurcation point.   

Most methodologies mentioned are solely to find the MLP values when the 

system is at a stable state and does not demonstrate the capability of performing 

contingency analysis due to branch and generator outage.  There have been 

various studies concerning branch outage contingencies.  However, the voltage 

stability evaluation (finding MLP values) for generator outage is a new topic, 

which is proposed recently by N. Yorino in [53].  The analyses of MLP during 

contingency are also included in this thesis.  Methods proposed in [94, 95] 

utilise and manipulate the Jacobian matrix obtained without recalculation of the 

load flow solution to find bifurcation point of a system.  As of such, even 

when the load flow is recalculated, the solution may not converge if the solution 

lies near to the steady state limit of a system due to highly nonlinear condition 

at this stage.  This limitation does not present in the proposed method as the 

hybrid CGA/PSO [92] is adopted to solve the load flow problem in each step 

towards the MLP of a system.  In general, vigorous research has been carried 
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out in computing the MLP for different conditions and system characteristics.  

Though efficient, most of them do not provide the actual or accurate figure 

stating the limit of the system due to the highly nonlinear characteristics present 

near the MLP of a system.  Therefore, the search for refined solutions still 

deserves special attention.   

The solution strategy proposed here starts from the infeasible region 

whereby no solution can be found.  The loading factor λ is decreased in every 

iteration.  The size of the decrement is determined by a mathematical proven 

formulation adopted from [31, 32].  Only a few iterations (less than 10) are 

required to determine the MPL of a system.  Thus, this method is named as 

Fast Infeasible Method (FIM). With respect to this approach, more accurate 

MPL values are achieved in this thesis with appropriate computational cost 

using a simple approach.  Furthermore, some contingency analyses are 

presented demonstrating the capability of the proposed method to find MLP in 

regards to branch and generator outage.  The effectiveness of the proposed 

method is demonstrated through the IEEE 14-, 30- and 57-bus systems. 

The organisation of the remaining part in this chapter is as follows.  

Section 7.2 outlines the load flow problem and explains the formulation of 

infeasible recovery equation.  The proposed methodology is described in 

Section 7.3 while the application studies with test results are presented in 

section 7.4.  Numerical results comparison with the existing method is done in 



Chapter 7: Calculation of Power System Security Margins and Contingency 
Analyses via FIM 

 

 

84

84

the same section.  Further analysis considering branch outage is carried out in 

Section 7.5 with results comparison in Section 7.6.  Finally, the conclusions 

and recommendations are derived in Section 7.7. 

 
 

 

7.2 Problem Specifications 

7.2.1 Load Flow Problem 

The load flow equations can be written in terms of the state variables x and 

parameter λ as 

( , ) 0λ =g x     (7.1) 

λ is referred to as the system-loading factor, set to a value larger than 1 (λ > 1).  

With λ set to 1, means the normal load conditions are applied.  Eqn. (7.1) above 

can also be explained by the following mathematical term  

( ) { }

( ) { }

1

1

0, ,

0,

n
sp c

i i
i
n

sp c
i i

i

P P i PQ PV buses

Q Q i PQ buses

λ

λ

=

=

− = ∈

− = ∈

∑

∑    (7.2) 

where sp
iP and sp

iQ  are the specified active and reactive powers at any node i 

whereas c
iP and c

iQ  are the calculated active and reactive powers at any bus i.  

The calculated active power ( c
iP ) and reactive power ( c

iQ ) at bus i are given by: 

1 1

1 1

( ) ( )

( ) ( )

n n
c

i i ij j ij j i ij j ij j
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Considering a power system which in unusual case has a load present in a PV 

bus, therefore sp
iP and sp

iQ can be view as the net power that can be comprehended 

as: 

sp G L
i i i

sp G L
i i i

P P P

Q Q Q

= −

= −      (7.4) 

whereby G
iP and G

iQ  are powers from generator at bus i whereas L
iP and L

iQ  are 

the load demand at bus i.  From eqns. (7.2) and (7.4), it is important to notice 

that with (λ>1), not only increases the load demand but also increases the 

generated powers.  This has been claimed in [32] to be the usual way to define 

load increase in voltage stability analyses which is also employed in this thesis.  

The same way is being carried out in [31, 32] and in real world application in 

[100].  Hence, similar methodology is adopted in this thesis.  From eqn. (7.2), 

the same loading factor λ for both active and reactive powers implies that the 

load varies with constant power factor, followed by a proportional real power 

generation variation.  Also, limits on reactive power generation capacities are 

considered.  In case a PV bus violates its reactive power generation limit, the 

relevant bus is converted to PQ bus.  The possibility of this PQ bus to return to 

its original PV bus is also taken into account in the available program. 

  

7.2.2 Infeasible Recovery Formulation 

The expression of updating the loading factor, λt+1 is adopted from [31, 32] 

whereby the superscript t+1 represents the next iteration.  The idea here is to 
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formulate a way to bounce the load flow solution back to feasible region from 

infeasible region.  The mathematical equation for this expression is given as 

( )
1/ 2

1 2 2

1

n
t t

i i
i

P Qλ λ+

=

⎛ ⎞
= − Δ + Δ⎜ ⎟

⎝ ⎠
∑   (7.5) 

which can be further simplified to 

1t t Errλ λ+ = −    (7.6) 

whereby Err is the square root of the total mismatches of active and reactive 

powers.  The expression of load update above is very simple, being computed 

basically with the power mismatches calculated and specified powers.  From 

the simulation results in the next section, the update based on eqn. (7.6) proves 

to be efficient in pulling the system onto the feasibility boundary. 

 

7.3 Proposed methodology – Fast Infeasible Method (FIM) 

7.3.1 Solving the Load Flow problem 

The load flow problem has been described in Section 3.2.  In regards to MLP, 

the Continuation Power Flow (CPF) in [36] has been the most popular method 

which is shown to be effective even for solutions close to collapse boundary.  

However, instead of adopting the CPF, the hybrid CGA/PSO developed in the 

previous work in [92] is applied as the core mechanism in this thesis.  Despite 

the non-deterministic feature of the hybrid CGA/PSO, it is able to cope better 

with the nonlinear load models.  Results presented in [92] prove the capability 

of the algorithm to find an operable solution in the vicinity of bifurcation point 
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with high reliability and appropriate computational time.  The parameter 

settings adopted in this experiment is summarised in Table 7.1.  A population 

size comprises of 20 candidates is initialised within the specified range given in 

the same table.  The maximum number of iterations is set to 50 and the number 

of trials to be performed is 20 times.  Some parameters such as crossover rate, 

gradient acceleration, PSO mutation rate and inertia weight are optimal settings 

found from parameter sensitivity analysis. 

 

Table 7.1: Parameter settings 

Parameter Setting 

PQ tolerance 0.001 p.u. on a 100MVA base 

Population size 8 

Maximum Generation 50 

Number of trials 20 

Initialisation range 0.7 < V < 0.8 and -40° < θ < -20° 

Gradient acceleration  25% of the population 

Crossover 2-point crossover with probability 0.9 

Selection strategy Roulette wheel 

PSO mutation rate 0.4 

Inertia weight 0.1  

 

 

7.3.2 Tackling MLP from infeasible region 

In this thesis, the MLP is found starting from infeasible operating region.  This 
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simply means that a value of λ which is assumed to be located at the infeasible 

region is set on the first iteration.  The initial value, λ0 is set to 2.0 and this 

value is employed to all the test systems.  This strategy of tackling the MLP 

from infeasible regions eliminates the complex formulation of calculating λn+1 

from the normal loading factor, λ=1.0 such as done in [32].  The location of λ 

in the solution space is illustrated in Figure 7.2 below whereby 4 iterations are 

required to approach MLP which is present at the nose point of the PV curve.  

From Figure 7.2, the search begins from the loading factor set to 2.0 (λ0 = 2.0).  

Through the update via eqn. (7.6), the load adjustment size ( t t 1−Δλ = λ − λ ) 

decreases and reach λMLP in four load flow iterations.   

 

 
 

Figure 7.2: Approach to MLP from infeasible region 
 

 From our preliminary simulation, it has been found that the update of 

loading factor based on eqn. (7.6) is able to locate the MLP values for IEEE 14-, 
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30- and 57-bus systems using the initial value of loading factor λ0=2.0.  The 

update based on eqn (7.6) might not be efficient if λ0 is far away from λMLP.  

This is because when λ0 is far from λMLP, the value of mismatches, Err becomes 

large.  This results in a large adjustment for λ and at times even negative values.  

To avoid this abnormal update, only the load flow solution with high fitness is 

chosen for the update in eqn. (7.6).  Figures 7.3-7.5 depict the fitness of the 

load flow solution at λ=2.0 versus Err.  Each dot in these graphs represents a 

trial.  Therefore, each graph consists of 50 dots as each test system is run for 50 

trials.  From these graphs the total violations for IEEE 14- and 30-bus is no 

more than 1.2.  This maximum violation increases up to around 22 for IEEE 

57-bus.  This indicates the importance of choosing the right load flow solution 

for the update of λ.  In this methodology the best solution out of 5 load flow 

trials is chosen for the update of λ specified in eqn. (7.6), illustrated in Figure 

7.6.  Using this strategy it can be assured that the total violations of P and Q is 

small.   
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Figure 7.3: Fitness of best solution for IEEE 14-bus system at λ=2.0 for 50 trials 
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Figure 7.4: Fitness of best solution for IEEE 30-bus system at λ=2.0 for 50 trials 
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Figure 7.5: Fitness of best solution for IEEE 57-bus system at λ=2.0 for 50 trials 
 

 The flow of FIM is illustrated by a flow chart in Figure 7.6.  This figure 

depicts a very simple flow of FIM, which is able to find the maximum loading 

point λMLP within few updates of loading factor λ.  Results shown in section 7.4 

verify this efficiency.  From Figure 7.6, an initial loading factor λ0 is set to 2.0.  

Then the hybrid CGA/PSO is applied to solve the load flow within 3 trials.  

The failure of the load flow means that the loading factor is infeasible.  

Therefore, it is necessary to decrease the loading factor using eqn. (7.6).  This 

update will continue until the load flow solution is found.  It is important to 

note that hybrid CGA/PSO is capable of finding multiple solutions.  Therefore, 

all the non-operable (Type-1, Type-2, Type-3 etc.) solutions are eliminated by 



Chapter 7: Calculation of Power System Security Margins and Contingency 
Analyses via FIM 

 

 

92

92

using the similar method as done in the previous work presented in [99].  This 

is carried out by calculating the eigenvalues of the load flow’s Jacobian matrix.  

In general, a solution is considered Type-k when there are k positive values for 

the real part of the eigenvalues whereby these eigenvalues can be either complex 

number or real number.   

The entire flow in Figure 7.6 represents one run/trial.  In the proposed 

method, 20 trials are run and the best, average and worst are recorded, presented 

in Table 7.2 in Section 7.4.  Two factors facilitate the encouraging results.  

The first factor is contributed by effective solution of load flow even in the 

vicinity of bifurcation point.  The second factor is the fast and accurate update 

of loading factor λ using eqn. (7.6).  Hence, the FIM can be applied to find the 

maximum loading point in any system automatically and accurately. 
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Figure 7.6: Flow of Fast Infeasible Method (FIM) 
 

7.4 Application Studies 

The proposed method has been tested and evaluated for commonly used power 

systems test suite.  In this section, test results for IEEE test systems are 

presented and discussed.  The proposed method is applied to three IEEE test 
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systems available from [104].  Results from simulation are divided into two 

parts.  The first part is given in Section 7.4.1 below, which presents the 

evolution of loading factor λ with respect to the load flow iterations.  This is 

followed by numerical values of λMLP obtained, discussed in Section 7.4.2.  

Further, the results comparison with some existing methods portrays the 

superiority of the proposed method in finding the MLP value of a system. 

 

7.4.1 Evolution of Loading Factor λ 

The update and evolution of the loading factor λ for all test systems are 

illustrated in Figures 7.7-7.9.  The λMLP obtained are given in each of the 

figures.  From these graphs, the proposed strategy is effective in finding λMLP 

as only 5 load flow iterations are required for convergence based on the 

evolution of λ on IEEE 14-bus system, as observed in Figure 7.7 whereby each 

dot represent one load flow iteration.  Another two systems require 6 iterations 

as depicted in Figures 7.8 and 7.9.  The average of λ update is recorded in 

Table 7.2.  With the starting point from the infeasible region, hence avoiding 

the complex mathematical formulation to start from λ0=1.0, which is not 

required in the proposed strategy.   
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Figure 7.7: Evolution of λ on IEEE 14-bus system 
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Figure 7.8: Evolution of λ on IEEE 30-bus system 
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Figure 7.9: Evolution of λ on IEEE 57-bus system 

 

7.4.2 Numerical Results and Comparisons 

Results from the simulation for IEEE test systems are given in Table 7.2.  The 

core focus in this table is the value of the maximum loading point λMLP.  

Hereby, from 20 trials, the best, average and worst results are recorded for 

further analysis.  The initial starting point, λ0 is given in Table 7.2.  As the 

proposed method is based on the stochastic method which is based upon the 

random exploration of the search space with intrinsic intelligence, therefore it is 

not possible to obtain deterministic results.  However, when the difference of 

the best and worst is carefully examined, it can be concluded that only a slight 

difference is observed, which means that FIM is stable and reliable. 
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Table 7.2: Results of FIM on common test systems (20 trials) 

λMLP 
System λ0 Std Dev

Best Ave Worst 

Ave λ 

Update 

IEEE 14-bus 2.0 6.93×10-4 1.86182 1.86089 1.85962 5 

IEEE 30-bus 2.0 1.67×10-3 1.60460 1.60189 1.59925 6 

IEEE 57-bus 2.0 1.33×10-3 1.70335 1.69654 1.64049 6 

 
 

To show the advantage of the proposed method, results from very recent 

work [31, 32] is adopted for comparison in Table 7.3.  The result of the 

well-known Continuation Power Flow (CPF) method is also included in the 

third column of the same table.  The results of CPF are generated from the 

toolbox available in  using the default settings in the toolbox except that the 

reactive power limit is included under the CPF settings.  Results comparison 

depicted in Table 7.3 shows the advantage of the proposed method despite the 

non-deterministic feature of load flow solutions.  In all the test cases, the value 

of λMLP shows greater loading factor values compared to other methods; thereby 

increasing the known security margins in voltage stability analysis.  To ensure 

the feasibility of these limits, these values are manually set into the running 

program and results conclude that all the λMLP are feasible, thereby verified the 

validity of the increased MLP values of the test systems.   
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Table 7.3: Results comparison of λMLP 

System 
Nonlinear 

Prog [31] 

LFSSO 

[32]  
CPF FIM 

IEEE 14-node 1.8550 1.8550 1.7763 1.8618 

IEEE 30-node 1.5934 1.5934 1.5290 1.6072 

IEEE 57-node 1.6943 1.6943 1.6119 1.7033 

 
 

7.5 Contingency Analyses 

The linear sensitivity method [46, 47, 49] is a fast computation method and is 

useful in providing the direction for countermeasures, although the errors are 

large for quantitative margin calculations for severe contingencies.  Work 

presented in [48] presents the calculation of load power margins for both branch 

and generator outage contingencies using linear and non-linear sensitivity 

methods.  In this section, the proposed method is tested and shown to be 

capable of estimating either the pre-contingency or post-contingency voltage 

stability margin.  Under either contingency condition, the voltage stability 

margin is related to system’s load power margin to operate in stable condition.  

The load power margin is widely accepted as a most informative index 

representing directly the degree of voltage stability.  The load power margins 

∆P in p.u. is calculated by: 

 

( ) 01MLPP PΔ = λ − ×    (7.7) 
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where P0 is the base loading at the operating point corresponding to λ0=1.0 

illustrated in Figure 7.1.  Considering the IEEE test systems, the P0 calculated 

for 14-, 30- and 57-bus are 2.59 p.u., 2.834 p.u. and 12.508 p.u. respectively.   

A one line diagram of the IEEE 14-bus test system used here is given in 

Figure 7.10.  It consists of 5 PV buses (five synchronous machines, including 3 

synchronous compensators used only for reactive power support).  There are 3 

transformers, 20 branches and 14 buses with 11 loads totalling 259 MW and 

81.4 MVar.  A capacitor acting as shunt susceptance with a value of 0.19 p.u. is 

present at bus number 9, providing reactive power support.  Besides IEEE 

14-bus test system, other systems adopted as test bed in this thesis are IEEE 30- 

and 57- bus.   
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Figure 7.10: IEEE 14-bus test system 

 

7.5.1 Branch Outage 

Under the condition of branch outage contingency, all the possible branch 

outages are tested except for the cases where islanding occurs.  To simulate 

branch outage contingency, the relevant ith admittance is set to zero Gij=Bij=0.0.  

Then, the shunt admittances of the two ends of the outage branch are also set to 

zero 0.0s s
ij ijG B= = .  The graph showing the evolution of loading factor for 

relevant branch outage contingencies for IEEE 14-bus system is illustrated in 

Figure 7.11.  Numerical results are presented in Tables 7.4, 7.5 and 7.6.  The 

values of maximum loading point λMLP are recorded with the power margin 

calculated from eqn. (7.7).  In addition, the stability state for each branch 
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outage is also recorded.  From Figure 7.11, it is observed that the number of 

load flow iterations differs for different branch outages.  It means that each 

branch outage poses a different level of complexity to the entire system.  The 

largest number of iterations recorded is 7; during branch outage of line 7-9 

whereas the least is 2 iterations only, in the case of branch outage of line 2-3.  

In all three test systems, only the first case causes the system to be unstable with 

λMLP < 1.0.  The systems remain in stable state for other branch outage 

contingencies. 

Load flow iterations

0 2 4 6

Lo
ad

in
g 

fa
ct

or
, λ

1.0

1.2

1.4

1.6

1.8

2.0

1-2
2-3
1-5
7-9
2-4

 
Figure 7.11: Relevant branch outage contingencies for IEEE 14-bus system 
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Table 7.4: Loading factor λ for branch outage contingencies for IEEE 14-bus 
system with base loading, P0=2.59 p.u. 

No. 
Branch 

Outage
λMLP Stability ∆P [p.u.] 

1 1-2 0.990297 Unstable -0.02513 

2 2-3 1.343601 Stable 0.889927 

3 1-5 1.447587 Stable 1.159250 

4 7-9 1.491786 Stable 1.273726 

5 2-4 1.661321 Stable 1.712821 

 
Table 7.5: Loading factor λ for branch outage contingencies for IEEE 30-bus 

system with base loading, P0=2.834 p.u. 

No. 
Branch 

Outage
λMLP Stability ∆P [p.u.] 

1 1-2 0.879701 Unstable -0.340930 

2 2-5 1.155412 Stable 0.440438 

3 1-3 1.272721 Stable 0.772891 

4 3-4 1.278962 Stable 0.790578 

5 2-6 1.437953 Stable 1.241159 

 
Table 7.6: Loading factor λ for branch outage contingencies for IEEE 57-bus 

system with base loading, P0=12.508 p.u. 

No. 
Branch 

Outage
λMLP Stability ∆P [p.u.] 

1 35-36 0.73253 Unstable -3.3589 

2 25-30 1.046845 Stable 0.5554 

3 34-35 1.100339 Stable 1.2353 

4 37-38 1.210110 Stable 2.6262 

5 1-15 1.421565 Stable 5.2729 
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7.5.2 Generator outage 

In general, the generator is operated with PV- or PQ-specified terminal condition.  

For a PV generator, the terminal voltage is regulated with AVR, while for a PQ 

generator the reactive power output is controlled as a constant.  In this thesis, 

the PQ specified condition is assumed for all the generators that will be faulted.  

When a generator is faulted, the P and Q outputs become zero.  In other words, 

the terminal condition must be switched from PV to PQ to simulate the 

generator outage condition.  In this case, it is assumed that the emergency 

control is properly designed so that the loss in the active power is recovered by 

the incremental output of the other generators.  This operation usually includes 

the active power balance between the generations and loads considering the 

response of speed governors of generators.  All the possible generator outages 

are tested except the generator at the slack bus.   

Results from the simulation are recorded in Tables 7.7-7.9.  From the 

analysis of the stability of the system, there is only one generator outage that 

causes the system to collapse.  This condition happens when generator 8 of 

IEEE 57-bus system breaks down.  The power margins obtained from the 

update of loading factor λ based on eqn (7.6) are available in these tables.     
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Table 7.7: Loading factor λ for generator outage contingencies for IEEE 
14-bus system, P0=2.59 p.u. 

No. Generator λMLP Stability ∆P [p.u.] 

1 6 1.719264 Stable 1.8628 

2 8 1.764647 Stable  1.9804 

3 2 1.740815 Stable 1.9187 

4 3 1.722468 Stable 1.8712 

 
 

Table 7.8: Loading factor λ for generator outage contingencies for IEEE 
30-bus system, P0=2.834 p.u. 

No. Generator λMLP Stability ∆P [p.u.] 

1 8 1.466636 Stable 1.3224 

2 5 1.496952 Stable 1.4084 

3 2 1.511936 Stable 1.4508 

4 13 1.523441 Stable 1.4834 

5 11 1.531103 Stable 1.5051 

 
 

Table 7.9: Loading factor λ for generator outage contingencies for IEEE 
57-bus system, P0=12.508 p.u. 

No. Generator λMLP Stability ∆P [p.u.] 

1 8 0.883144 Unstable -1.4616 

2 12 1.115737 Stable 1.4476 

3 3 1.615103 Stable 7.6937 

4 6 1.672068 Stable 8.4062 

5 9 1.666738 Stable 8.3396 

6 2 1.680649 Stable 8.5136 
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7.6 Results Comparisons 

To evaluate the robustness of the proposed method, all the contingency cases are 

rerun using the Continuation Power Flow (CPF) method described in [36] with 

the toolbox available from [105].  The percentage of improvement is calculated 

from eqn. (7.8).  The comments on the results and the calculated improvements 

are discussed in the relevant sub-sections below.  The percentage of 

improvement is calculated based on the formula: 

 

Improvement (%) = 100%obtained reference

reference

P P
P
−

×    (7.8) 

 

whereby Pobtained=P0 + ∆P, which is the obtained real power at the collapse point, 

P0 is the base loading while Preference is the reference power obtained by either 

point of collapse (PC) or continuation power flow (CPF) method.   

 

7.6.1 Branch Outage 

The calculated power margins from CPF method for the branch outage cases are 

tabulated in Tables 7.10-7.12.  In a glance, FIM is able to achieve considerable 

improvements for all the branch outage cases, with the largest improvement 

calculated as 12.30% for the branch outage of line 1-15 in IEEE 57-bus system.  

Most of the results from FIM are able to achieve 2%-4% improvement over the 

CPF method.  This implies that FIM is capable of finding more accurate value 
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of power margins available during the branch outage contingency.  Moreover, 

FIM does not encounter any convergence problem as in the case of CPF, 

whereby CPF is unable to converge to a solution for branch outage of line 35-36 

for IEEE 57-bus system. 

 
 
Table 7.10: Improvement of FIM over CPF for branch outage on IEEE 14-bus 

system with base loading, P0=2.59 p.u. 

No. 
Branch 

Outage 

FIM 

∆P [p.u.] 

CPF 

∆P [p.u.] 

Improvement 

(%) 

1 1-2 -0.02513 -0.0672 1.67 

2 2-3 0.889927 0.7780 3.32 

3 1-5 1.159250 1.0277 3.64 

4 7-9 1.273726 1.1523 3.24 

5 2-4 1.712821 1.5379 4.24 

 
 
Table 7.11: Improvement of FIM over CPF for branch outage on IEEE 30-bus 

system with base loading, P0=2.834 p.u. 

No. 
Branch 

Outage 

FIM 

∆P [p.u.] 

CPF 

∆P [p.u.] 

Improvement 

(%) 

1 1-2 -0.340930 -0.3318 - 

2 2-5 0.440438 0.3667 2.30 

3 1-3 0.772891 0.6578 3.30 

4 3-4 0.790578 0.6804 3.13 

5 2-6 1.241159 1.0628 4.58 
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Table 7.12: Improvement of FIM over CPF for branch outage on IEEE 57-bus 
system with base loading, P0=12.508 p.u. 

No. 
Branch 

Outage 

FIM 

∆P [p.u.] 

CPF 

∆P [p.u.] 

Improvement 

(%) 

1 35-36 -3.3589 * - 

2 25-30 0.5554 0.2977 2.01 

3 34-35 1.2353 0.8555 2.84 

4 37-38 2.6262 2.2564 2.50 

5 1-15 5.2729 3.3283 12.30 

* Convergence problem 
 

7.6.2 Generator Outage 

Results for generator outage for all the test systems with the calculated 

improvements are presented in Tables 7.13-7.15.  Again, it can be observed 

that the results of FIM are better compared to CPF for all the generator outage 

cases, with the largest improvement recorded as 9.09% for the outage of 

generator 3 in IEEE 57-bus system.  The improvements somehow prove the 

advantage of FIM in finding the security margins of a system during 

contingency. 
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Table 7.13: Improvement of FIM over CPF for generator outage for IEEE 
14-bus system, P0=2.59 p.u. 

No. 
Generator 

Outage 

FIM 

∆P [p.u.]

CPF 

∆P [p.u.]

Improvement 

(%) 

1 6 1.8628 1.7327 3.01 

2 8 1.9804 1.7762 4.68 

3 2 1.9187 1.7410 4.10 

4 3 1.8712 1.7550 2.67 

 
Table 7.14: Improvement of FIM over CPF for generator outage on IEEE 

30-bus system, P0=2.834 p.u. 

No. 
Generator 

Outage 

FIM 

∆P [p.u.]

CPF 

∆P [p.u.] 

Improvement 

(%) 

1 8 1.3224 1.2317 2.23 

2 5 1.4084 1.2730 3.30 

3 2 1.4508 1.2810 4.13 

4 13 1.4834 1.2813 4.91 

5 11 1.5051 1.3048 4.84 

 
 

Table 7.15: Improvement of FIM over CPF for generator outage on IEEE 
57-bus system, P0=12.508 p.u. 

No. 
Generator 

Outage 

FIM 

∆P [p.u.]

CPF 

∆P [p.u.] 

Improvement 

(%) 

1 8 -1.4616 -1.4621 - 

2 12 1.4476 1.2833 1.19 

3 3 7.6937 6.0100 9.09 

4 6 8.4062 7.1796 6.23 

5 9 8.3396 7.3409 5.03 

6 2 8.5136 7.3547 5.83 
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7.7 Discussion and Recommendations for Future Works 

The hypersurface is a boundary representing a set of critical loadings.  The 

work by Jarjis and Galiana [106] implies that the interior of the hypersurface is 

convex.  The curve in Figure 7.12a gives a two dimensional graphical 

illustration of the convex hypersurface which is denoted as ∑.  A three 

dimensional view of the ∑ is available in the work of F. Alvarado [94].  Note 

that each of the x- and y-axis of the curve represents a generating unit in a power 

system.   In [107], I. Dobson agrees that the hypersurface is convex as no 

non-convex portions are detected in his computations.  Besides, he also 

discusses the possibility of the hypersurface to be “corrugated”, which is 

illustrated in Figure 7.12b.   

The proposed FIM here is an advantageous approach to the present of 

corrugated hypersurfaces, which enable a larger security margin to be obtained.  

This is illustrated in Figure 7.12b whereby A, B and C represent the load flow 

solutions in the prescribed load direction.  S1 is the starting point for 

conventional methods and S2 is initial point for proposed FIM method.  The 

power margin for conventional methods will be S1–A whereas by using FIM 

method, the obtained power margin will be S1–C.  Thereby, it can be observed 

that a larger security margin could be obtained using FIM. 
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Figure 7.12b: Corrugated hypersurfaces 

 

In future works, in order to improve the computational time of the load flow 

solution, other load flow approaches which can find solutions in the vicinity of 

critical / bifurcation point can be applied instead of using hybrid CGA/PSO as in 

the case of this paper.  The simulation results on contingency cases can be 
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further extended considering multiple branch outages, multiple generator 

outages, or a mixture of both. 

 

 

7.8 Conclusions 

A method to find the Maximum Loading Point has been proposed in this paper.  

A mathematically proven formula has been adopted from literature to find the 

maximum loading margin from feasible region in the proposed Fast Infeasible 

Method.  Determining the MLP from infeasible region is a good strategy as this 

is simpler and avoid complex mathematical formulation should FIM starts from 

feasible region.  Results from the simulation on IEEE test systems have shown 

that better MLP values than that obtained by other methods existing in the recent 

literature.  The branch and generator outage contingencies studies have also 

shown that the proposed method can find larger available security margins.  

This proposed FIM method is a promising approach for calculating the MLP 

values.  

 



Chapter 8: Conclusions 
 

 

112

112

Chapter 8 
 

 

 

 

8. Conclusions 
 

 

 

In this thesis, a powerful load flow approach which is suitable for 

heavy-loaded systems is developed. Hereby, Particle Swarm Optimisation (PSO) 

algorithm is adopted as a solution acceleration method in a previous Constrained 

Genetic Algorithm Load Flow algorithm to further enhance the capability of that 

algorithm in finding a solution for large heavy-load systems.  The developed 

algorithm in this thesis has been named as Hybrid Constrained Genetic 

Algorithm / Particle Swarm Optimisation, or in short form as Hybrid CGA/PSO.  

The experimental work in finding the optimum parameter settings for the 

proposed algorithm is reported in this thesis.  The power of the PSO enhanced 

new algorithm is demonstrated through its applications to three IEEE test 

systems.  Hybrid CGA/PSO proves to be able to find solutions on these 

systems with better reliability and faster speed.  The maximum loading point 
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recorded shows improvement compared to previously found.  

For application wise, the algorithm developed in this thesis is applied to 

locate all the Type-1 load flow solutions present in power system. In this context, 

Type-1 load flow solutions have been closely related to voltage stability of a 

system and therefore there is a demand for an efficient algorithm to locate them 

for voltage stability analysis.  Conventional methods can only locate some of 

the Type-1 load flow solutions in power systems and the located solutions are 

inadequate for voltage stability assessment. The characteristics of the Type-1 

solutions are described in the this thesis. The hybrid CGA/PSO is applied to two 

test systems. The test results obtained are satisfactory and promising for voltage 

stability monitoring applications. 

 Further, a stochastic method determining the maximum loading point (MLP) 

of electric power systems is proposed.  Instead of approaching the MLP from 

the feasible region, a new strategy in starting from infeasible region is proposed 

in this thesis, which has proven to be computationally effective.  Thus, this 

novel methodology is named as Fast Infeasible Method (FIM).  The idea is 

simple yet interesting, and is able to obtain expected results.  Underneath this 

algorithm is the Hybrid CGA/PSO; which has been the core method to solve the 

load flow problem every iteration.  From the analysis, the MLP values obtained 

for IEEE 14-, 30- and 57-bus systems show a greater margin; which are better in 

comparison with existing methods.  Further analysis on contingency shows 
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encouraging improvement in terms of available power margins when compared 

to CPF method.  This signifies the advantage of the proposed strategy despite 

the random characteristic of load flow solutions in FIM. 

 As a conclusion, a powerful and robust algorithm for load flow approach 

has been developed in this thesis.  This algorithm, Hybrid CGA/PSO has 

shown to perform effectively in locating Type-1 load flow solutions and in 

finding the maximum loading point of a system (MLP).  The developed 

algorithm provides a very useful starting point for further development of tools 

for solving the heavy-loaded power systems containing nonlinear devices such 

as FACTS.  This hybrid CGA/PSO is further incorporated into a proposed 

method (Fast Infeasible Method – FIM) in the aim of locating the MLP of a 

power system.  Encouraging MLP values are obtained by FIM for 

contingencies involving generator and branch outages.  Thus, hybrid 

CGA/PSO is a promising tool in power system and should be further developed 

for real world applications. 
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