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Abstract

Derived from the general theory of moments, moment invariants have been
frequently used as features for shape recognition and classification. Moments can
provide characteristics of an object and uniquely represent its shape. Moment
invariants are proven to be invariant under object tré.nslation, scaling and rotation.

They are useful because they define a simple and fast set of seven elements.

In this research, an intensive study has been carried out to analyze the
physical meaning of Hu moment invariants.  From the second-order moments,
the concept of best-fit ellipse has been formulated. This formulation is confirmed
by both theoretical analysis and experimental work. The ratio of major and minor
axes from the best-fit ellipée can be applied to describe the global characteristic of
the object.

An analysis of quantization effects due to scaling and rotation of both regular
and irregular objects is presented. The scaling errors for all approaches are large
when the scaling factor is smaller than 0.5. Moreover, the rotational errors are big
for the objects rotated other thanr the multiples of 90°. Besides, this error analysis
has been applied to object searching using a threshold selection scheme.

A new shape descriptor, called Multi-Layer Shape Descriptor (MLSD),
making use of recursive sub-division technique on the basis of the best-fit ellipse
concept has also been proposed. This local descriptor is invariant to translation,
scaling and rotation. In our practical work, two-stage mechanism has been used
to design a trademark image retrieval system. The first step acquires the global
characteristic, i.¢. the ratio of major and minor axes of the best-fit ellipse; while the
second step obtains the local characteristics, i.e. MLSD. The system enhances
13.96% of th.e retrieval accuracy and improves the computational efficiency by

#
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reducing the average number of comparison to 55.55% of that required by the other

approaches.
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The following contributions reported in this thesis are claimed to be original:

1.

The interpretations of second-order moments give elucidation of the
first and second elements of Hu moment invariants. The first
invariant element measures the total spread relative to the area square.
The second invariant element measures the degree of elongation of a
best-fit ellipse on the shape. (Chapter 3, Section 3.2)

The interpretations of third-order moments give elucidation of the third

and fourth elements of Hu moment invariants. Useful properties have

also been found for objects with symmetric along Y =ix/ V3 and

y= iﬁx, when the third invariant is used. For the fourth invariant

element, when fitting a best-fit ellipse on the object, the term of ar 7+
bfz is formed to be constant. (Chapter 3, Section 3.3)

An analysis of the quantization error due to scaling and rotation is
presented. Both analytical expressions in continuous and discrete
domains and experimental results shown that the Dudani moment
invariants tend to have a larger error. (Chapter 4, Sections 4.3 and 4.4)
An error analysis is applied to object searching. It provides a way of
choosing the threshold and is useful for ensuring that the two-stage
approach is invariant to translation, scaling and rotation. (Chapter 4,

Section 4.5)

Useful features are extracted from Multi-Layer Shape Descriptor

e ————
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(MLSD), which are invariant to translation, scaling and rotation. We
have also shown that the local characteristics can improve the retrieval
accuracy of trademark image retrieval system by 13.96%. (Chapter 5,
Section 5.2)
6. The improved two-step mechanism using both global and local
characteristics gives 55.55% saving in terms of the average number of

comparison for each image, as compared with the other approaches.

(Chapter 5, Section 5.3)
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Chapter 1

Introduction

1.1. Introduction

In recent year, the amount of digital image collections has been increasing rapidly.
These image collections play an important role for describing, representing, and
storing for various applications, like military reconnaissance, weather forecasting,
criminal investigation, biomedical imaging, finger printing, art galleries, trademark

images identification, etc.

Applications that consider image retrieval as a principal activity are both
numerous and diverse. In order to access such huge amount of information, there

should be good means to browse, search, and retrieval the images. Two major

-1-
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approaches are investigated to cope with this problem. One i1s the traditional
text-based image retrieval while the other is content-based image retrieval. The
former retrieval approach is to interpret each image manually with text labels and
attributes (such as filenames, captions, and keywords). These textual descriptions
try to describe the contents of images. This approach is to extract certain

characteristics from the images directly. These are based on the characteristics of
visual image contents.
1.2. Text-based Image Retrieval

Text-based image retrieval [1-3] is originated from late 1970’s. This approach
uses the textual features to annotate and retrieve images; however it has
insuperable problems. The major problem is human intervention. Creating
annotations by hands can become hopeless and very time-consuming, because of
the huge amount of database and error-prone problem. The next problem is that it
is a highly subjective task for indexing the contents of images manually.
Different people may have different perceptibilities over the same image.
Moreover, in some cases, the keyword becomes complex and it is very difficult to
describe relevant contents of images by just simple phrases. Besides, if the
textual features of the image database are to be worldwide shared (such as images
from World Wide Web [4-6]), the linguistic barriers and the disordered source of

images cannot be practically provided by an effective declaration.
1.3. Content-based Image Retrieval

In early 90’s, the emergence of large-scale image database [7-9] has emphasized
the difficulties of manual annotation. To overcome the outstanding need for
effective and efficient indexing, content-based image retrieval (CBIR) [10-14] was

proposed and it has been under intensive research from then on. Content-based

ﬁ
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image retrieval is to investigate the techniques of image annotation and retrieval
based on the visual and semantic content instead of text labels and attributes of the
images. This kind of techniques is however more challenging to investigate and

implement, because it is not obvious how to extract such relevant content from

images, which would in addition be suitable for searching and retrieval.

Object recognition [15-17] is the process of identification of shapes, forms or
configurations by automatic means, with minimal interaction with a human. The
basic structure of a traditional object searching model is shown as Fig. 1-1. For
the image archival part, each input image is scanned and its feature vector is
extracted. These feature vectors will be stored into an image database. Once a
query image is submitted for searching those relevant images in the database, the
image searching part begins. The feature of the query image is extracted and then
used to match with all features vectors in the database. After the matching

process, the resultant relevant images are displayed to the user.

Image Archival Image Searching

Input Image Input Image

i
|
|
|
|
|
|
|
Scanning ] Scanning
|
i
v | !
t
Feature : Feature
Extraction i Extraction
|
i ]
|
e I
" ——» i
Tmage Matching
- Database

'

Resultant Images

Figure 1-1 A traditional object searching model
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1.4. Information on Trademark Images

Trademarks are specially a word, personal names, letters, numerals, figurative
elements or designed marks that identify companies, products, and services. They
also aim at distinguishing the source of goods or services of one party from those
of others. A successful trademark can build up the proprietor's business goodwill.
It not only can bring profitable interest, but also help to promote the proprietor's
business. A registered trademark gives the exclusive legal right to use, license or
sell it for the goods and services for which it is registered. The imitation of
registered trademark is illegal. However, there are so many trademarks around
the world and how to avoid designing a trademark similar to an existing one
becomes an important problem. Owing to the large intake of applications, the
registry [18-20] takes about 12 months for a trademark registration normally.
Therefore, there is a great demand for an automatic trademark retrieval system
based on shape feature.

In general, trademarks are disjoint complex pattern consisting in various
natural or geometric objects (such as sun, mountains, circle or triangle etc) and text.
Trademarks can be divided into three types: character-in-mark, device-mark, and
composite-mark. Some examples are shown in Fig.1-2. For those
character-in-mark trademarks, it contains only characters or words. The
device-mark trademarks have graphical or figurative elements only, while the
composite-mark trademarks combine the characteristics of both character-in mark
and device-mark trademarks. That is the composite-mark one contains both

characters and graphical elements.




Introduction

M DS cueil CAN Glaxo

w3 O g &

Figure 1-2 Examples of three types of trademarks: (a)

Character-in-mark, (b) Device-mark, and (c) Composite-mark

1.5. Feature Extraction on Shape

Many techniques of shape description and recognition have been proposed [21-30]
since the early 1990’s. The taxonomy [31-32] of different shape description
techniques is shown in Fig.1-3. Usually they are classified as Region- or
Boundary- based techniques. Region-based techniques take into account internal
details and boundary details. On the other hand, the boundary-based techniques

use only the contour or border of an object.

Techniques of both classes can be sub-classified into spatial and transform
domains. The spatial domains techniques measure the appearance of the objects.
They are used when the description is made from the area of the object inside its
boundary. For the transform domains techniques, they are based on mathematical
transforms such as Fourier- [33-35] and Wavelet- [36-39] transforms. In this

thesis, the main scope of discussions is on the geometric techniques.

-—'_”'——'—'——"_—_#—'———“—_'_——
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Spatial Domains

Region-based

Shape Descriptors

Boundary-based

Discrete Fourier

Hough Transform UNL Fourter
Wavelet Transform Fourier
Descriptors
Moment Invariants Primitives Histogram pf Edge Curvature
Zemike Moments Rules Directions Contour Segments
Area . 2ZD-strings Chain Code Length Irregularity
Hole Area Ratio Boundary Moments
Horizontal Gap Ratio Invariants
Ventical Gap Ratio Aspect Ratio
Rectangularity
Roundness —_—
e

Figure 1-3 Taxonomy of shape description techniques

1.5.1. Region-based Geometric Techniques

Region-based geometric techniques [40, 42-47] apply the mathematical
properties derived from the objects. They take consideration on the interior
details within a complete contour of the object. The calculations of this kind

of techniques are usually performed for binary rmages.

A. Moment Invariants
Moment Invariants is the most popular shape description technique. Hu [40]
proposed the fundamental derivations of the descriptor, which is invariant under

translation, rotation and scaling. The (p+¢)" order moments of a continuous

density distribution function f{x,y) are defined as,

Moy = jjx”y"f(x,y)dxdy (1.1)
R

where p,qg = 0,1,2,.....
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The central moments of f{x,y) are defined as,
= [[e=3)7 (v -9 S (x, y)xdy (1.2)
R

where X =m,,/my, ¥ =my, [mg, .
Eqns. 1.3 to 1.9 show a set of seven Hu moment invariants [40]. These

moment invariants are derived from the second- and the third-order moment

only.

9y =t + 102 oo (13)
¢, —(#20 #oz) +44y, )/Poo _ (1.4)
30 ‘3#12) "‘(ﬂos ‘3#21) ) #oo (1.5)

#30 +/—‘|2 #03 “'ﬂzl )/#oo (1.6)

# =
s~
{(#30 —3ﬂ12X#30 "‘#12)[(!130 ‘U‘lz) —3(#z| "“#03) ] ) l)/l—‘oow (1.7)

3#21 #oaXl—‘zl +Hp )b(#so +ﬂ|z) —(#21 + Hos

(#20 = g ) #30+#t2) (f‘2l+”03)2]+J/pm7 (1.8)

44, (l-‘ao +H X}‘u + ﬂoa)

{(3#21 ﬂoaXﬂao*‘#lz)[(ﬂso"'ﬂlz)z 3()“2|+a“03)2] J/ﬂgo (1.9)

# =
3#12 —ﬂmXﬂzl +#03 [3(}130 ‘*.1112)2 ”(#21 +ﬂ03)2

Several modifications and improvements in calculation have been
proposed. For example Wong, Siu et al. [41] expressed the sct of moment
invariants, Flusser and Suk [42-43] investigated a new set of descriptor using

the affine transform and Dudani et al. [44] applied to aircraft identification.

B. Zernike Moments

Zernike moments have been proposed by Khotanzad and Hong (45-47] for
object recognition. The Zernike moments are derived from radial polynomials
and formed a complete orthogonal set over the interior of the unit circle. The

radial polynomials vector R,.{p) is defined as,
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R"’"(p)= 2 (_l)k o+l (n_kzih'”' p"'“ (]10)
k=0 k'(T—k)'(——z—‘—k)'

wheren € NU {0}, m € Z, |m| <nandn-|m| iseven.

The Zernike moments of order » with repetition m is defined as,

A =2 ([ £33V 0. OY sty (1.11)

eytst
where {V,.(x,y)} is the set of Zernike polynomials and is defined as,
V(% 9) 2V, (0,0) = R, (P)e™™" (1.12)
C. Rectangularity
Rectangularity [48-49] measures how well an object fills in its minimum

enclosing rectangle. It is independent of the translation, rotation and scaling of

the objects. The definition of rectangularity of an object is,

A,
Rectangularity =;‘°”f—“' (1.13)

min R

where Agpjee 15 the area of the object and Az is the area of its minimum
rectangle. Hence a square or rectangle obtains value 1 and other shapes values

less than one.
D. Roundness/ Circularity

Roundness [48-49], so-called circularity, measures the ratio of the perimeter and
area of the object. It is also independent of the translation, rotation and scaling

of the objects. The definition of roundness of object is,

P 2
Roundness = —222 (1.14)
Object

where Poyeq 1s the length of the perimeter of the region and Aopject 1s the area of

the object. Han et al [28] proposed to use the inverse of the roundness and

—_— ]
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muitiply of 4x to normalize the feature. So, a circle obtains value 1 and other

shapes values less than one.

1.5.2. Boundary-based Geometric Techniques

Boundary-based geometric' techniques [50-52, 57] are derived from the

boundaries of the objects. Some of them are required the techniques of
segmentation or edge-detection.

A. Histogram of Edée Directions

The histogram of edge directions [29-30, 53] is a popular boundary-based shape
descriptor. All images are preprocessed before extracting the edges and their
directions. Canny operator [54], Sobel operator [55] or Gaussian derivatives
[56] can be applied in this edge detecting preprocessing. Then the directions
of the edges are quantized and the required histogram 1s form. Moreover, Jain
et al [29] proposed a way to make the histogram much smoother and less

sensitivity to rotation. The smoothed histogram is defined as,

SHO)
H:(’):J-;T (115)

where H, 1s the original histogram of edge directions and % is the degree of
smoothness.

B. Boundary Moment Invariants

Improved moment invariants [57] are the modified version of Hu moment
invariants [40] and they are applied to the shape boundary rather than the region.
The main difference is on the normalization factor. The seven moment

invariants for improved moment invariants, denoted as ; through 7, become,

Wi=(ﬂzo+ﬂoz)/ﬂuo3 (1.16)
W3 =((/.120 ‘"#oz)z +4F::2)/F006 (1.17)
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((#30‘3.#12 +(ﬂus 3#21 y#oo (1.17)

((/“30 + #lz +(P03 +ﬂ21 )/Foos (1.18)
((1“30 =3u; Xﬂ;o +F|2)k“ 30 + M2 )2 ‘3(F2| +ﬂ03)2]+ l]/ymla (1.19)

3#2| Pole-‘zt +Fosi3(}‘30 +!-‘|2) (ﬂzl +!—‘os)

#oz 30+ 2 )~y + g3 ] J/ (1.20)

41“1 1 (ﬂ:n + Xﬂzl + oy )

(3!121 !‘osXFso+#|z*ﬂ3o+ylz)z 3(,12[+%3)2] l]/ y o
( (3;1,2 ﬂo;Xﬂz|+‘qu)[3(ﬂm+ﬂlz)2 (ﬂzl"’ﬂoj)z Hoo (1.21)

1.6. Current Shape-based Trademark Image Retrieval System

Many famous shape-based trademark image retrieval systems [9, 31, 58-64] have
been built. The best known are Query By Image Content (QBIC), Automatic

Retrieval of Trademark Images by Shape Analysis (ARTISAN) and Matching

using negative shape feature.

1.6.1. Query By Image Content (QBIC)

The shape features of Query By Image Content were presented by Flickner et al.
[65-66]. Binary images in the database are firstly segmented so as to extract
the objects. Then the object is represented by geometric shape features, which
includes area, roundness, invariant moments, etc. The similarity distance
between two images is obtained by using a weighted Euclidean distance.
Based on these kinds of techniques, a trademark retrieval system is developed.
Each trademark image is segmented to form representative components. Then
the shape features for each component are stored in a database. In fact, the
user can submits a query by selecting one of the representative components,

The size of the database contains 1000 trademark images.

-10-
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1.6.2. Automatic Retrieval of Trademark Images by Shape ANalysis
(ARTISAN)

The development of the Automatic Retrieval of Trademark Images by Shape
Analysis [67-68] aims at providing a prototype of shape retrieval for trademark
images. The approach is firstly to extract region boundaries of a shape and
represented them by straight-line and circular-arc approximately. Then the
shape features of aspect ratio, roundness, relative area, directedness, straightness,

etc are extracted and stored into the database. ARTISAN was experimented

with more than 10000 trademark images.

1.6.3.  Using Negative Shape Features for Logo Similarity Matching

Soffer and Samet [69-70] defined a representation of negative symbols, which is
based on their interior with the shapes considered as holes. The authors aim at
artificially adding 4-pixels width border around the logos and creating a
negative symbol. Each logo is segmented into its constituent components and
each region is given a number. The component labeled “1” in Fig. 1-4 is the
negative component resulting from adding the border. Shape features are
extracted for each component. There are four global shape descriptors (first
invariant moment, circularity, eccentricity and rectangularity) and three local
shape descriptors (horizontal gaps per total area, vertical gaps per total area and

radio of hole area to total area). This matching was experimented with 130

images.

-11-
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(@) (b) () (d)

Figure 1-4 (a) Original logo image, (b) its version with border, (c) Negative

component and (d) other components

1.7. Organization of this Thesis

Hu introduced an object recognition approach to describe the shape information
from the binary image based on the general linear transform. It is intended to
propose a set of seven moment invariants to characterize shape feature of images,
which are invariant under translation, rotation and scaling. Several
moment-based approaches have been investigated for handling different aspects of
the recognition. This study aims at providing some meaningful interpretations of
the fundamental Hu moment invariants. From the properties of lower order
moments, an improved two-stage mechanism is developed so as to improve the
efficiency of the retrieval system. Our study also evaluates the quantization/
digitization effects on rotation and scaling for these four moment-based approaches.
In order to have a better shape descriptor, a multi-layer shape descriptor is
proposed. The dissertation is organized as follows.

Chapter 2 explores the theoretical background and mathematical details of
five moment-based approaches (they are Hu moment invariants, Affine moment
invariants, Dudani moment invariants, Improved moment invariants and Sluzek’s
moment-based shape descriptor). Chapter 3 presents the interpretations of second
and third-order Hu moments. Chapter 4 shows the analysis of quantization effect

—“_—'“—'_"_—._—__—"———
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e —
due to scaling and rotation. A proposed improved scheme for object searching
using moment invariants is also described. Chapter 5 gives a detailed description
of the proposed Multi-Layer Shape Descriptor (MLSD) and the improved
mechanism with both global and local characteristics. Chapter 6 concludes this

thesis by summarizing out contributions in our study and suggesting future works.

13-



Chapter 2

Moment-based Shape Description Techniques

2.1. Introduction

The abilities of shape descriptors to provide similar shape features for objects with
different rotations, scaling and locations are essential considerations in the field of
object recognition. Two-dimensional moment invariants have been developed to
extract the features of objects and their invariance properties of general shapes
have been taken into account. The usefulness of these invariants in image
analysis and object identification has been testified in many monographs. They

are also applied in practical applications.

The fundamental derivations of moment invariants were first investigated by

-14-
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Hu [40]. A set of seven moment invariants equations, usually referred to as the
Hu moment invariants, is developed. Afterward, a large amount of publications,
which focus on a wide range of aspects (such as the enhanced approaches of the
moments [42-44, 57, 72], the application-based developments [21, 61, 73], the
error analysis [74-75], etc) are released. In this chapter, a simple mathematical
elaboration of the fundamental theory (i.e. Hu Moment Invariants) is presented.
We first show the derivations of Raw Moments, Central Moments, and Normalized
Central Moments. Then the elaborations on four moment-based approaches are
discussed. They are Affine moment invariants [42-43], Duandi moment
invariants [44], Improved moment invariants [57] and Sluzek’s moment-based

approach [72].
2.2. Hu Moment Invariants

Hu moment invariants [40] are simple among all moment functions, with the
kernel function defined as a product of pixel coordinates. The main advantage is
that image coordinate transformations can be easily expressed and analyzed in
terms of the corresponding transformations in the moment space. They are
invariant with respect to image plane transforms. The computations of these
moments for images are simple. Hu moment invariants are geometric moments,

sometimes referred to as Cartesian moments, or regular moments.

2.2.1. Definitions
An image can be considered as a two-dimensional density distribution f{x,),
where the function value denotes the intensity at the pixel location (x,y). LetR
be the image region of the x-y plane. A general definition of moment

functions &,, of order (p+g), of the function ffx,) can be defined as,

-15-
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£y = |[¥ (6 0) [ (3, y)dlxdy 2.1)

where moment kemnel %,(x,y) is a continuous function of (x,) inR, p and g are

the indices of the coordinates x, y respectively.

A. Raw Moments

Raw moments are defined with the kernel ¥(x,y) = x» (c.f. eqn. 2.1). The
two-dimensional ( p +¢)™ order moments of a continuous density distribution

function f(x,y) are defined as,

m,, = Hx”y"f (x, y)dxdy (2.2)
R

wherep,g =0,1,2,.....

Uniqueness theorem: If the intensity function fix.y) is piece-wise
continuous and bounded in the region R, the moment sequence is uniquely
determined by f{x,y) and conversely.

Existence theorem: If the intensity function f{x,y) is piece-wise continuous
and bounded in the region R, the moment sequence is uniquely determined by
f{x,y) and conversely.

In practice, moments have to be calculated on digital images and discrete
summations have to be used for approximation instead of the continuous

integral. Raw moments for a digital image are defined as,

m, =2 > x"y f(x) 2.3)

y=1 x=l

where p,g = 0.1,2,...., M and N are the horizontal and vertical dimensions,
respectively, of the intensity function f{x,y).

Considering the order up to third moments, they are shown as follows,

M l\'
Zero-order moment: mop= 2.9 [ (X, )

y=l x=1

ﬁ
-16-
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M N M N
First-order moment: n;p = Z Z xf(x,y); mor = Z Z ¥ (xy)

y=1 x=1 y=1 x=I
. . M N M N
Second-order moment: my = Z:Zx2 f(x,y); mp; = ZZ y? f(x,y);
y=1 x=1 y=l x=l
M N
my= > X (%)
y=1 x=]
M N M N
Third-order moment: mjp = Z Zx3 f(x,y); mp3= Z Z P
y=l x=1 y=1 x=l
M N , M N 5
mu= 3 2y x5y ima= 3 > (%)
y=1 x=1 y=1x=1

B. Central Moments
By definition, the moment of order zero, mygg, represents the total intensity of an
image. For a binary image, this term gives the geometrical area of the image
region.

The first-order moments, m,;, and my,, provide the intensity morment about

the y-axis and x-axis of the images respectively. The centroid, (x,y), is

defined as,

5 = Tho 2.4)
My,

y=To (2.5)
Mg

For a binary image, the centroid gives the geometrical center of the image
region. It is often convenient to evaluate the moments with the origin of the
reference system shifted to the centroid of the mmage. This transformation
makes the moment computation independent of the position of the image
reference system. The moments computed with respect to the centroid is

called central moments, and is defined as,

Hpp = [Jx=2)7(y = 5)7 £ (x, y)xdy (2.6)
R

where p.g =0.7,2......

-17-



Moment-based Shape Description Techniques

Central moments for a digital image are approximated by double

summation_s ar_ld are defined as,
M N
D= (y-)° f(x,y) 2.7)

x=1

¥

where p,g = 0,1,2,....., M and N are the horizontal and vertical dimensions,
respectively, of the intensity function f{x,y)=1.
From the déﬁnition, the central moments can be expressed in terms of raw

moments. We have,

I (2.8)
o = fo =0 2.9)
Hao =My —Xmy, (2.10)
oy = Mgy — ymy, 2.11)
My =my —ymy (2.12)
Mg = My =3Xmy, + 2% m,, (2.13)
Hoz = Mgy =39my, +25°m,, (2.14)
My = My ~23m,, — ymyy + 2% m,, (2.15)
Hiy =My —29my, ~Xmy, +2¥°my, (2.16)

Eqns. 2.17-2.23 show a set of seven moment invariants proposed by Hu
[40]. These moment invariants are invariant under both translation and

rotation and are derived from the second- and the third-order moment only.

Iy =ty + 1y, (2.17)



Moment-based Shape Description Techniques

1=y — o) + 411, (2.18)
Iy = (s =3, + (s =312 )° (2.19)
I, =ty + 11y, ) + (g + 22, (2.20)
1, = (atyy =310, Xtz + 1 Wt + 12 ) =3ty + i [+ 22

(31’-‘21 — HMos X/le + Ly )[3(4‘130 + 4, )2 _(Jun + s )2]

Iy = (on — Koz )l(/uao + #12)2 — (40 + oy )2]"' (2.22)
4#11(4“30 + 4y XJ“ZI + JuOS)

1, = (31”21 ~ Hp )(/"30 + J“lz)l(#ao + #12)2 _3(;"’21 + fos )2J+ (2.23)
(3#12 —Hp )(/”21 + He )[3(#30 + 4y, )2 - (uz| + Hoy )2]

Image features characterized by /, to I, are independent of its position
and orientation. They are, however, not scaling invariant. Let us discuss
normalized central moments which are to achieve scale invanant.

C. Normalized Central Moments

The normalized central moments replace i, with 7, to achieve scaling

invariant. The definition of 7, 1s as follow,

al.] (2.29)

npq = 212
(#00)(p+q+ !

Then, the seven Hu moment invariants, which are invanant with respect to

translation, scale and rotation of an image, denoted as ¢, through ¢,, become.

¢ = 112 (2.3
Hop

¢, = ]24 (2.3
Hoo
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m

I

¢, =— (2.32)
Hoo
I

¢, = p - (2.33)
[11]
I

b = ; = (2.34)
a0
I

@ = p > (2.35)
00
I

¢7 = # 710 (236)
o0

2.2.2. Invariant Properties of Rotation, Translation and Scaling
A. Rotation Invariant
If an image is rotated by an angle &, the transformation of its pixel coordinates
becomes,
' cosf siné || x
[;'} B [- sisn @ cosﬁ][y] 237)
where x’, y’ are the new coordinates and x, y are the original coordinates.
It is always desirable to derive a set of moment terms which are

independent of the rotation angle & Using second-order moments as an

example, their expressions for a rotated image are,

m, = (#)mm ~(sin26)m,, + (1 - ;osg]mm (2.38)
m, = (] “"2"59]"120 +(sin20)m,, +(#]m02 (2.39)
m!, = ( S'“zw)mm +(cos28)m,, —(#}nm (2.40)

From eqns. 2.38-2.39, it is easily seen that (mzp’ + mzp’) = (mag+ ma) 15
independent of &, hence is rotation invariant. Note that, by definition, the raw

moments given in eqns. 2.2-2.3 are rotation invariant.
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#

B. Translation Invariant
Consider the following linear shifting of image coordinates from (x,y) to (x’,y"),

X =x+a (2.41)

y'=y+b (2.42)
where x, y are the original coordinates and x’, y " are the new coordinates.

The raw moments of these two coordinates are defined as,

Mg = [fx v f(xy)dndy (2.43)
m, = ﬂx"’y”*'g(x',y’)dx'dy’ (2.44)

where my,, and m’,, are the raw moments in x, y and x, y’ coordinates
respectively.

For zeroth-order moment: m’gpp = Hg(x’, ydx'dy' = Hf (x, y)dxdy =
R R

mgo. It is because the intensity functions in region R of the images are the

same (i.e. g(x’,y’) = f(x,y)) and eqns. 2.41-2.42 imply that dx '=dx and dy '=dy.
For first-order moment:

mip= _[x'g(x',y')dx'dy' = ”(x + a)f(x,y)dxdy = mjg + a(mgo);
R R
m'e; = Hy’g(x',y')dx’dy' = J.J.(y +b) f(x, y)dxdy = my; + b(mgg).

Then the centroid (X', y') in x’, ¥y’ coordinates becomes,

v e 5o, (2.45)
My, My,

. om, +bm _

=0 o My, ®_54p (2.46)
Mg My

Therefore, the central moments in x ', ' coordinates becomes,
ﬂ;’q _ Ij.(xl_X—J)p(yr_J—}J)qg(xl’yl)curdyr
R

_———___.'———'“__;——_——_'—_—_—__—
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ﬂ

= H(x+a-f—a)*’(y+b—y-b)qf(x,y)d;cdy=ypq (2.47)

From eqn. 2.47, it is seen that the central moments given in eqns. 2.6-2.7
is invariant to translation.
C. Scaling Invariant
A transformﬁ of the image pixel coordinates by a uniform scaling factor £, is
given by,
x'=kx; y=ky (2.249)
The above transformation also leads to the following expression for the

scaled area:
dx'dy’ = k’dxdy (2.25)
The moments of the scaled image can now be expressed in terms of the

moments of the original image as

m._ =k""m (2.26)

Pq Pq

From the above equation, we also get,
my = kmgy, (2.27)

Eliminating the unknown scaling factor & from eqns 2.19-2.20, we have

m' m
M i (2.28)

(m(’)o )(p+q+2):'2 - (moo)(p+q+2}n'2

Thus, we may define the term 1, as,

Hog (2.29)

Moy = (prq+2)i2
(#OO) e

It is invariant under scaling variation of an image. Scale invariance can

also be alternatively achieved by other scale-normalization schemes.

ﬁ
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2.3. Affine Moment Invariants

Affine transformation [71] is a class of linear 2-D geometric transformation which
maps the pixel intensity values located at position (x, y) in an input image into new
pixel values at (x’, y’) in an output image by linear combination of transiation,

scaling and rotation.

2.3.1. Affine Transformation

The general affine transformation in homogeneous coordinates is usually

defined as,

x' x |
[ } _ R[ ]+T (2:30)
y y

where R is matrix for scaling and rotation and T is the matrix for
translation. If det(R) = 1 the transformation is orientation preserving. If

det(R) = -1 the transformation is orientation reversing.

. r, O 0
For pure scaling, R= and T=| |.
0 ry 0

) cos@ sind@ 0
For pure rotation, R = . and T = :
—sinf cosf@ 0

1 0 t
For pure translation, R ={0 1] and T=[ ':I.

1y

A particular example combining scaling, rotation and translation is shown

as follows,

x"| |n 0| cos@ sind | x—x
I 10 r,l-sin@ cos@|y-7
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| nycosB(x—X)+smb(y-y) 2.31)
| =1, sinf(x - x) +cosO(y - ) =

By separating the above equation, we have,
x'=-n,(xcos@ + ysind) +(r, cos@)x +(r,; sin)y (2.32)
¥ =1, (Xcos@ - ysinf)—(ry, sin@)x + (r,, cosd)y (2.33)
Then, they can be written as,

x'=a,+ax+a,y (2.34)
vy =b,+bx+b,y (2.35)

when ag, a;, az, bo, b; and b; are the coefficients.
The affine transformation can be decomposed into six one-parameter

transformations. They are:

) , X=x+a
Translation properties: (1): ,
y =y
@ "
Y=y+p
. X'=w-x
Scaling property: 3):
y =0y
. ) xX'=6-x
One-axis scaling property:  (4):
y =y
, X'=x+t-y
Skew properties: (5): , ,
y =Y
x'=x
©: ,_
y=r-x+y

2.3.2. Definitions
The affine moment invariants [42-43] consist of four second- and third- order
moments parameters. The approach aims at performing invariance under the

general affine transformation (egns. 2.34-2.35). Any function, which is
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ﬁ.

invariant under the above six one-parameter transformations, will be then
invariant under the general affine transformation. Three special theorems
about invariants are formed after satisfying all conditions of the transformations.
They are,

[: Apolar:

L, ufk
52(-1)(ijﬂf,k_,-#k,-,.- (2.36)

=0
after normalization 1s invariant if & is even.

II: Hankel determinant:

Hox Higa - Myt kg4
Hypa Hopa - Hox-q
Hykeunt Hugu o Hurg-2k-u-ge2
How gy e Hyrp—gn (2.37)
Hy g Hopy - Hawg
Juv-l.k'—vﬂ )uv,k'—v b Juv+q-2.k’—v—q+2

after normalization is invariant if k = ¢ + u -2, k=¢qg + v- 2... are

orders of moments.

I1I: Discriminant of polynomial:

i=0

k[ k _
Z(J,u,.lk_,.x*-' (2.38)

after dividing by g and normalization is invariant.

Note that the discriminant of a general polynomial, which is defined as

f(x)=a,x"+ax" +...+a,,isequal to,
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a, a, a, 0 0 0
0 a, a_, a, 0 0
0 0 a a a a
-1 n(n-1y/2 0 1 2 n 239
1 b, b b, 0 0 ( )
0 b, . b, 0 0
0 0 &, b b, b,

where by, by, ..., by are coefficients of f'(x), i.e. b; = (nj)a;.
A. The First Second-order Invariant Parameter

The first invariant parameter, which is second-order based, is derived by

theorem I and denoted as £, after normalization,

_1 10 2 . 11 2 12 2 4
4'1—5 (-1 0#02:”20"’(“) 11”1:1“11"'(") 21”201“02 Hoo

= _“'1'4_(1“021“20 _1”112) (2.40)

Hup

where the normalization factor is Hoo's

numElement

y = Z(pj+qj)f2+numElemen! where numElement is the number of
j=1

elements involved in each term. For example, we choose the term tippi0 tO
calculate y. This term has two elements (i.e. p; and pz), so numElement is 2.
Thus, y = ((0+2)+(2+0))/2+2 = (2(2+0)/2)+2 = 4. Note that if we use other
term to calculate y, the normalization factor remains the same.

B. The Second Third-order Parameter

The second third-order based invariant parameter is derived by theorem III and

denoted as &, after normalization. The polynomial for third-order moment 1S

F(x) = g%’ +3p1,x° +3p,x + py, and its discriminant is as follows,
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Moy Sty 3y By 0
0 Moy 3thy 3y Hyo
~Bfg OHy My 0 0
0 3uy Opp 34, O
0 0 3Bug Opp 3t

Then the corresponding second invariant parameter &; 1s
1
6, = P (#320/";3 = Otlyg g Hyy Moy + 4/”30!-‘132 "'41”031”;1 - 31”;?11”122) (2.41)
00

where the normalization factor is ugg; ¥ = (2(3+0)+2(0+3))/2 + 4 =10.
C. The Third Second- and Third-order Invariant Parameter

The third invariant parameter is from both second- and third order moments.

From the Hankel determinant (i.e. theorem II), we have,

Hep My Hyp
Hoy Hip Hu
Hiz Hiy  Hiy

Then the corresponding third invariant parameter C; is

1
¢y = —-,."(Juzo (2 My — :u|2z) =t (o tey — M) +

Hao

Hp (g2t — /"221 )

(2.42)

where the normalization factor is tpo’; ¥= ((2+0)+H(2+1)+(0+3))/2+3 = 7.
D. The Fourth Second- and Third-order Invariant Parameter

The fourth invariant parameter consists of three second-order and two

third-order moments. It is defined as,

1
Gy = —;,—(#30#33 - 6#220#11!”12!103 - 6#30#02#211”03 + 9/‘2204”021”122 +

Hoo

12 pty0 4ty Hy Mg + Obag by Hos B Moy = 18 oo Hy Hoz Hon iz — (2.43)

8142 fyo oy — Bty o Haoktyy + Sty M3y +
lzﬂlzlxuozlumﬂlz - 64“|1)”§2}“30)“2: + ﬂgzlu}zo)

where the normalization factor is gpo”; ¥ = (3(2+0)+2(0+3))/2+5 = 11.

ﬁ
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2.4. Dudani Moment Invariants

Dudani et al. [44] derived another set of seven second- and third-order
moment-based measures that are invariant under translation, rotation and the
distance of the object from the camera. They are proposed for use in automatic

aircraft identification.

2.4.1. Definitions

To perform the properties of translation and rotation, Dudani moment invariants
bring along the functions in eqns. 2.17-2.23, which are proposed by Hu [40].
Moreover, it is known that invariance property of the distance of object from the
camera is a kind of scaling property. Normalization by the radius of gyration of a

planar pattern is used for achieve scaling invariant.
A. Central Moments
The central moments derived by Hu [40] is used for undertaking the rotation
and translation invariance and is defined in eqn. 2.6.
B. Normalization

For the scaling invariant property, Dudani moment invariants make use of the
characteristic of distance along optical axis. When an object moves along the
optical axis of the camera, the first-order effect on the image is just a change in
its size. The second-order effect diminishes as the distance of the object from

the camera increases. The radius of gyration fof a planar pattern is then

defined as,

B =ty + He (2.44)

The radius of gyration is directly proportional to the size of the image and

inversely proportional to the distance of the object along the optical axis.
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Therefore, the radius of gyration S can be used to normalize [, through /,

to achieve scaling invariant. Thus, the following seven moments A, through

M, can be found as,

P
Pmg,  my,
A
B
i
M, = jﬁ”’;’"
I
M, = :9"’;’"
Iom.’
M5= Sﬂlgo
I
M= TB":W
I.m. >
M7= Tﬂlgo

2.5. Improved Moment Invariants

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

Improved moment invariants [57] are the modified version of Hu moment

invariants [40) and they are applied to the shape boundary rather than the region.

2.5.1. Definitions

A. Raw Moments

The modified raw moments are defined with the kernel ¥ (x,y) = x"»7 (c.f. eqn.

2.1). The two-dimensional (p+g) ™ order moments of a continuous density

distribution function f(x,y)=1 are defined as,

— PyT
m,, = \x?yids
&

(2.52)

W‘_—_ﬂ_—
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where p,g=01.2,....., I is a line integral along the curve C and

C
ds = J(dx)* +(dy)’ .

B. Central Moments

The modified central moments is defined as,

fy = =5 (y=7)"ds | (2.53)

where p,g = 0,1,2,.....

The modified raw moment of order zero, myy, represents the total intensity
of an image. For a binary image, this term gives the geometrical area of the
image region. The first-order moments, m;p and my;, provide the intensity

moment about the y-axis and x-axis of the images respectively. The centroid

(X ,¥)is defined as,
5= Mo (2.54)
Mgy
y="o (2.55)
Mo

The central moments for a digital image are approximated by double

summations as,

Hy= 2= (y=5) (2.56)
(x.p)eC
where p,gq = 0,1,2,....., M and N are the horizontal and vertical dimensions,

respectively, of the intensity function f{x,y).
C. Normalized Central Moments

In order to achieve scaling invariance, the modified normalized central moments,

Mg, 1S defined as follow,
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'uP‘i

)p+q+l

Moy = (2.57}

(£200

Then, seven Improved moment invariants, which are invanant with

respect to translation, scale and rotation of an image, denoted as i, through

¥, , become,

7

W, = '3 (2.58)
Hao
I

vy =2 (259)
Hau
I

W, = 35 (2.60)
Hoo
I

Ve=—5 (2.61)
Hoo
I

Wsz 5|5 (262)
Koo
1

W = 6“ (2.63)
Hup
I

v, =1 (2.64)
Hoo :

2.5.2. Invariant Properties of Rotation, Translation and Scaling
A. Rotation Invariant

A rotation of an image by an angle @ has an associate pixel coordinate

transformation given by,
[x'} _ [ CO.SB sin@}[x] (2.65)
y' -sin@ cos@ ||y
where x’, y" are the new coordinates and x, y are the original coordinates.
If the improved moment invariants achieve the rotation invariant, eqn.
2.66 should be satisfied.

wi=v, | (2.66)

W
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where 1<i<7.
We are going to prove | =y, and y, =y, as examples. v’ =y,
for 3<j<7 can be similarly proved by trigonometric identities. The

modified central moments of the rotated image is as follows,
thy = [0 () s’ (2.64)
&
By substituting x' = xcosd — ysin@ and y'=xsinf + ycosfd into eqn.
2.64, then we have,
Hyy = [P () ds’
&

= I[xcos& — ysin@)?[xsin& + ycosf)ds (2.67)
C

where ds'=ds
For zeroth-order central moment: 1, = y,,. It is because the length of

the boundary of the rotated curve and the original curve are the same.
Proof of | =, : From eqn. 2.58, we have,

o _ Mot H

y, = En e (2.68)
Mag

By multiplying (#60)3 = (1) into both sides,

, , s 3 Mg + Mg
(100 W) = (1ge) 22—

00

I[xcos@-—ysin 01 +[xsind + ycosf)’ ds
C

I[xz cos? @ —2xycosdsind + y’sin’ 8 +
C

x?sin? @+ 2xycos@sind + y* cos’ O]ds

H

I[xz(cosz @ +sin’ @) + y*(cos’ @ +sin’ §))ds
C
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+ '
=.[x2+y2ds=#2o+ﬂ02=(#m)3£§#=(#°@)3wi (2.69)
C

0o

Hence,
W;' =¥,

Proof of w, =, : Similarity from egn. 2.59, we have,

Pt 2 r 2
W; = (J"‘ZD ﬂﬂzr)ﬁ + 4/“00 (270)
Hop

Multiplying (ug,)® ={,)° into both sides,

) NGt T S
(#m)ﬁwl =(”00)6 ”20 02’ - Jull

00

2
[I[xcost? - ysin8)’ —[xsinf + ycos&]zds:l +
¢

2
4[ I[x cos8 — ysin@][xsinf + ycosOlds

C .

12

j(x2 0820 + y* cos26 - 2xysin26) ds | +
[

2
J-(xz sin 28 — y* sin 26 — 2xy cos 26) ds}

C

(t15 €0826 — 415, c0820 — 211, 5in 26)* +
(41, 5in 20 — g1y, 5in 260 — 21, c0526)°

(a3 cos® 20 + pl, cos? 28 + 4 sin® 26 - 241, 41, cos” 26
| = 4u, 5,80 200820 + A1y, phy, Sin 26 cOS 20) +
(il sin? 20 + uk sin® 20 + 4 cos? 260 — 2 1, pt,, Sin* 26
+ 41, 1, $IN 200820 — 441, 14y, 5in 20 c05 20)°

_ 12 (cos? 20 +sin’ 28) — 2 41,0 14, (cos’ 28 +sin’ 26) +
2, (cos’ 20 +sin” 26) + 4, (cos® 26 +sin® 20)
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- 244y’ ..
s (M0 P02)6 Hur = (1), (2.71)

= (Hy '“Juoz)2 +41u|2|=(ﬂoo)
Hop

Hence,
2 =¥,
B. Translation Invariant
Consider the following linear shifting of the image coordinates from (x,y) to

(xy’),

X=x+a (2.72)

y'=y+b (2.73)
where X, y are the original coordinates and x’, y’ are the new coordinates.

The raw moments of these two coordinates are defined as,

m,, = [x*y'ds (2.74)
C

m, = |x'?y"ds’ (2.75)
:

where m,, and m’,, are the modified raw moments in x, y and x’, y’

coordinates respectively.

For zeroth-order moment: m gy = Ids'= Ids= mgp. 1t 1s because the
¢ ¢

length of the boundary in region C of the images are the same and eqns.
2.72-2.73 imply that ds "=ds.

For first-order moment: m 'y = Jx'ds'= J.x+a ds = mg + a(mgg), m'y
C' C

= Iy'ds' = Iy +bds =my; + b(mgp).
¢ ¢

Then the centroid (X', ¥") inx’, ¥’ coordinates becomes,

+
}, - mm — mll] amGO :f+a (2.76)
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)—1' _ my, _ My, +bmoo =y+b (2.77)

r
My, my,

Therefore, the central moments int x’, y’ coordinates becomes,
ty = [ =Y -y s
&
= J(x+a—f—a)”(y+b—f—b)"ds=ypq (2.78)
C

From eqn. 2.78, it is seen that the central moments given in eqns.
2.53-2.56 are invariant to translation.
C. Scaling Invariant
A transform of the image pixel coordinates by a uniform scale factor £, is given
by,
x'=hkx; y'=ky (2.79)
It is supposed that the curve, C’, is obtained by homogeneously rescaling
the coordinates by a factor £,
C'=&C (2.80)

Then, the modified central moments becomes,

”;q = xl‘py’quf
&
= [too)? (k) dks)
C
= k7 [P () d(s) = k" p, (2.81)
c
For zeroth-order moment: tyo = Ids=[C] and p'pp = st'= C’| = k|C|.
Lo} C'
Moreover, for any & > 0, we have,
' Hon K iy P (2.82)

T?pq = (ﬂ(r)o)p+q+l = kp+q+l(|C|)p+q+l - (;uoo)pmﬂ
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It is invariant under scaling variation of an image.
2.6. Sluzek’s Moment-based Shape Descriptor

Sluzek [72] proposed a new method of shape characterization. This shape
descriptor aims at identifying and inspecting of two-dimensional objects. Instead
of using noise sensitive high order moments [40, 76], a set of second order-based
invariants can be obtained by occluding the object by varying the size of the circle.
This set of descriptors is related to the symmetry of the shape. It tries to have
more position-invariant descriptors and to improve the resolution of these
descriptors.

Fig. 2-1 and 2-2 demonstrate the idea of the occluded square and triangle
respectively. The reason for choosing circle as the occluding mask is based on
the fact that circle is the geometrical shape that is naturally and perfectly invarant
to rotation in two-dimensional space. The circle is located at the centroid of the
object and is used to mask out the central part of the shape. The area of a circle
can be between 0% to maximum percentage. The criterion of getting the

maximum percentage is that at least a part of region R of object is visible after

A

occluded a circle.

y

Figure 2-1 (a) Unoccluded square, (b-c) Occluded square by circles with 25% and

A

(a) (b) (c)

100% of unoccluded square’s area respectively and located at the centroid
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. A

(@) {b) ()

Figure 2-2 (a) Unocculeded triangle, (b-c) Occluded triangle by circles with 25% and

100% of unoccluded triangle’s area respectively and located at the centroid

2.6.1. Definition
Sluzek’s shape descriptor is an enhanced version of Hu moment invariants [1].
It employees the central moments (c.f. eqns. 2.6-2.7) of Hu moment invariants

and only the moments of order two are involved. They are,

g, =tn’le 2‘; Fo (2.83)
Qo
—_ 2 2
¢2 - (ﬂQO ﬂOZ )4 + 4)“]1 (284)
Haoo
7., T
¢8 =—[(¢l2 _¢2]:M (2.85)
4 Hoy

Let C(a) be a family of circles defined by the equation:
x-XV+(y-¥ =am,/x (2.86)

where 0<0<Gmax; Otmax 1S the maximum ratio between the area of circle
and the area of the object.

Therefore, for each o, it can obtain functions ¢;(a), $(c), dsfcr), ete.
These functions are called m-invariant function of region. They are invariant
to scaling, -translation and rotation of the object, since these functions are

————————————————————————————————— ]
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derived from Hu moment invariant and the occluded mask is a circle.

Then the shape descriptors, so called m-invanant descriptors, can be

obtained by,
(@), d.(a) - ¢.(a,)) (2.87)

To compare two region R; and R;, the similarity measure is done by,

V(R,,$, () +V(R,,4,(x)) (2.88)
16.(R) - 6.(R,)]

Q9. (@), R,R,) =

where V(R, @) is the magnitude of deviation of a given R and the selected
invariantg,, ¢(R;)} and ¢(R;) are the theoretical values of the invariants for R,

and R;.
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Chapter 3

Interpretations on Second and Third-order

Moments

3.1. Introduction

One of the widely used shape descriptors is a set of moment invariants derived by
Hu [40]. It consists of a set of seven moment invariants to characterize image
features. The approach has been extended to a larger set by Wong and Siu [41]
and different forms of moment invariants [42-44, 57). The performance of
different shape descriptors on the objects, such as the reduced chain code, Fourier
descriptors, Moment Invariants and Zernike moments, has been addressed by a few
researchers [46-47, 53]. From their analysis, it is shown that high accuracy and

-39-



Interpretations on Second and Third-order Moments
- o]

fast retrieval rates are achievable for describing the objects by calculating the
moment invariants. In order to provide a meaningful description of shape, it is
important to understand the meaning of these elements. However, there are few
pertinent studies. Leu [74] elaborated the invariants in terms of spreadness and
elongation from the maximum and minimum moments of inertia. But their
formulations have not shown the elucidation of second-order based moment
linvariants in a simple and meaningful way. Also, no analysis on these two terms
for different kinds of shapes are given. Therefore, the objective of this paper is to
make an interpretation of the first two second order-based Hu moment invariants
so that they can be used effectively in different applications. Recently, a new
method [72] of shape characterization was proposed. Instead of using noise
sensitive high order moments [40, 75], a set of second order-based invariants can
be obtained by varying the size of the circle. The circle is used to mask out the
central part of the shape. This set of descriptors is related to the symmetry of the
shape. Following the same line of thought, an ellipse can be used to study the
meaning of the second order-based invariants. It is found that the first invariant
measures the total spread of the shape relative to its area square while the second
invariant measures the degree of elongation of a best-fit ellipse on the shape. We

can obtain the same values of third invariant for those objects with symmetric

along y= ix/ V3 and y = +3x. For the fourth invariant, when fitting a
best-fit ellipse on the object, there are constants on the term of a fz +b fz .

This chapter is organized as follows. In Section 3.2, we give the
interpretations on second-order moments. It includes the theological and

experimental analysis. 1In Section 3.3, the studies of third and fourth invariants

are shown.

M
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3.2. Interpretations on Second-order Moments

Hu moment invariants consist of a set of seven second and third-order moment
invariant elements. They are designed to be independent to translation, scaling
and rotation. In this section, we discuss the study of the elements theoretically
and experimentally. Firstly, we show the interpretation of second order moments.

They are the first and second moment invariant elements (¢; and ¢;).

3.2.1. First Moment Invariant Element: Total Spread Relative to the Area

Square

Myt Hop
2

Hpo

To understand the meaning of the first moment invariant ¢, = in eqn.

2.30, we first consider the meaning of g, t20 and ;.  We can see that,

. g measures the area of the object.

. 120 measures the spread of the object with respect to X in

x-direction.

. o, measures the spread of the object with respect to 7 in

y-direction.

Thus,

U it/ pl measures the spread of the object in x-direction
normalized by the area square.

. o,/ 1l measures the spread of the object in y-direction
normalized by the area square.

Therefore, the first moment invariant ¢ measures the total spread relative
to the area square. Note that if s/ud is equal to g, /w3, , this means that

the spread in x-direction is equivalent to the spread in y-direction.

4]-
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3.2.2. Second Moment Invariant Element: Degree of Elongation of a Best-fit

Ellipse on the Shape
2 2
- 4 . . .
To study ¢, = (Cr )4 Ay ) in eqn. 2.31, let us consider an ellipse
Hoo

rotated by @ degree anti-clockwisely. Let us denote j, and 4,

respectively as the central moments for the ellipse with respect to the original

x',y" and the rotated x,y axes. Then we have,

My, =€08% Bty +sin’ O 11y, (3.1)
M =sin® 8, gty +cos’ 8 1, (3.2)
py =sin@, cos8, (1 — Hip) (3.3)

Using eqn.3.1-3.3, the orientation can be found as shown below,

tan26, = 24, [(t30 — Ho2) 34

Let a; and by be the major and the minor axes rotated by 6 degree

respectively. We have,

to = (n-ab,)f4 (3.5)
Ho = (7-a b)) 4 (3.6)
1, =0 (3.7)

Using eqn.3.5-3.7, ¢ for an ellipse can be expressed as,
4, =m*atbi(a -5 [16uy," (3.8)
For ¢, to be zero, asneeds to be equal to bz Moreover, ¢ increases when
the difference between ay and by increases. Thus, ¢ measures the degree of
elongation of the ellipse. For shapes other than an ellipse, we could consider
fitting an ellipse onto the shape at its centroid with (from eqns.3.9-3.10)},

ﬂ
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(3.9)

(3.10)

Figure 3-1 Four rectangles with different a,and byin best-fit ellipse

If the difference between ay and by is large, the shape is elongated, i.c., ¢
is large. If they are the same, the best-fit ellipse becomes a circle, 1.e., ¢ =0,
as in Fig. 3-1(a). The idea of fitting a best-fit ellipse onto the images s

illustrated in Fig. 3-1.

The pseudo-code for the best-fit ellipsé method is as follows,

define and obtain a;, brand angled, for the object
for (1 = 0;i < width;i++){

for (j = 0;) < height;)++){

KX =10 - mX; /f mx: x-coordinate of centroid

yy =] -my; // my: y-coordinate of centroid

- [xxcos(ang) + yysin(ang)]2 N [yy cos(ang) + xxsin(ang)]2
a b

i (0.95<v<1.05)
set the pixel as the ellipse pixel
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3.2.3. Experimental Analysis
To confirm the findings from the previous section, six different shapes including
squares, rectangles, triangles, trapeziums, and two irregular (leaf- and horse-)
shapes were used for the experimental analysis. We have found that the ratio
of the major and minor axes of the best-fit ellipse gives a strong discrimination
power and is able to provide better shape resolutions and insensitive to Gaussian

noises.
Squares

Let us firstly discuss the case of a filled square with length a.  zpo, £420, tio2 and
4 in eqn. 2.7 are calculated for the filled square object. It is found that,

Hoo =a° , te=a‘fl2 , pgp=d'fiz and p,=0 . Then we have
too 11l =ty [ 1, =1/12.  Therefore, ¢; = 1/6, which is a constant. As fn9 =

oz and uy; = 0, ¢ois always zero for the square.

Rectangles

We then consider the case of a filled rectangle with length a and width b.
From eqn.2.7, it can be shown that, ugp = ab, pizg = ajb/IZ, Hoz = ab’/12 and Hi
= 0. Then we have u,/pl =afi2b and g /ud =b/12a .  Therefore,
& = (@’ +b*)12ab and ¢, =(a® -5%)? /1442’6 . Consistent with the above part
of squares, when the length, a, and the width, b, are the same (i.e. a = b), the

rectangle becomes a square, and ¢ becomes a constant while ¢; is zero.
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Table 3-1 Results for four rectangles with constant 5=93

) ¢, x107 a - by a, /b,
a=93 0.167 0.0 53.1 531 1.000
a=112 0.170 0.001 63.9 53.1 1.204
a=130 0.176 0.003 74.2 53.1 1.398
a=148 0.185 0.006 84.5 53.1 1.591

Table 3-1 shows that ¢, ¢, and the ratio a;/ by increase with respect to an
increase of a as shown in Fig. 3-1 (a) to Fig. 3-1 (d). Moreover, it is shown

that the best-fit éllipse for Fig. 3-1 (a) with a;/ by=1 is the closest to the circle.

Triangles

We further discuss the case of a filled triangle with vertex (0,0), (b,c) and (a,0).
Using eqn. 2.7, it can be proved that, py =ac/2, p,, =acla® +b* -ab)/36,
Hoy =ac’ 36,y =act(2b-a)/72.

2,42y 232, 2emp 82
(a” 45" —ab-c’) +c"(2b-a)” be zero, we have a=2b and
8la’c?

For ¢, =

c=+3b. This is indeed an equilateral triangle. If an ellipse with parameters

1 1 1 1
1 2 P INY
in eqns. 3.9-3.10 (ie. 4, =GJ4LZ_+ZT-"EJS s, :GN“ +i2 —abJs i

tan24, = c(2b—a) —) is fitted onto this equilateral triangle, it is found that

a*+b*-ab-c

ap=b, =038931a. In other words, an equilateral triangle with zero ¢ has a

best-fit ellipse with as= by, thus confirming the theoretical study.

In our experimental work, a set of four triangles was tested. Table 3-2
shows the results obtained. As a increases from 120 to 180, ¢; increases due to
an increase in the total spread of the triangles.  Also both ¢; and a;/ by increase
as the shape becomes elongated. The best-fit ellipse is the closest to a circle

when ¢; tends to 0 as shown in Fig. 3-2a.
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(2)

Figure 3-2 (a) Equilateral triangle T1, (b-f) T2-T6, and (g) Square T7 with their

best-fit ellipses

Table 3-2 Results for four triangles with 6 = a /2 and ¢=104

¢ ¢, x107 a, by as /by

a=120 0.193 0.004 47.0 46.5 1.011

a=140 0.195 0.857 546 47.0 1.164

a=160 0.199 2.748 61.5 47.0 1.309

a=180 0.206 5.548 68.6 47.0 1.459
Trapeziums

The case of a filled trapezium with vertices (0,0), (b,c), (d,c) and (a,0) was
considered. Using eqn. 2.7, it can be proved that, uy, =c(a+d-5)/2

cfd? vatyd+ay-b| ca? +d? +ad -b2)?
B 12 18(a +d - b)

Haxo

_’(3d+a-3b) c’(a+2d-2b)°

and
Hoz 12 18(a +d - b)

2

_3(d - a)* +8a(d —a)+ 6a> =367 | c(a+2d ~2b)(a’ +d* +ad —b’)
= 24 18(a+d —b) '

—_———————————————————————————————————————____————— |
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For ¢y = 0 (i.ezo = oy and gy = 0), we have a = b+d and

2 2 _ 2 . . .
2 =347Cd" ~2ad+a’) Let us consider two special cases. The first case is
2d* -a* + 2ad

when d = b, i.e., a triangle. We found that a=26 and c¢=+3b, which implies
an equilateral triangle. The best-fit ellipse is a circle for ¢» = 0. The second
case is whena =dand b = 0, i.e, a square. We found ¢ = a = d, in which the
best-fit ellipse is agélin a circle.

Table 3-3 shows the experimental results for a set of seven trapeziums.
T1 is a triangle while T7 is a square. T4 is the trapezium with the biggest
width (Fig. 3-2d). ¢, increases from T1 to T4 and then decreases from TS5 to
T7 due to a change in the total spread. ¢, and a;/ by show a close correlation.
¢; becomes 0 when as/ bytends to 1. T4 has the largest ¢, and a;/ by since the

degree of elongation is the biggest among all cases in this set.

Table 3-3 Results of seven trapeziums with a = b+d and c=100

é ¢, x107 as b, a, (b,
T1 | b=58, d=58 0.182 0.014 46.1 45.2 1.019
T2 =58, d=93 0.186 1.054 62.0 52.0 1.193
T3 | b=58, d=128 0.190 4.643 79.0 54.2 1.457
T4 | b=58, d=158 0.200 9822 95.0 55.2 1.722
T5 | b=40, d=140 0.184 4.593 823 55.9 1.472
T6 | b=30, d=130 0.177 2.543 75.5 56.3 1.341
T7 | b=0, d=100 0.167 0.0 57.1 57.1 1.0

Irregular Leaf-Shaped Objects
For experiments with objects of irregular shapes, an trregular leaf shaped object
with length a, and width & as shown in Fig. 3-3a. is used. A set of 8 objects is

generated by varying the length a, i.e. ¢ = ka, where & = elongation factor
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=1+n/2 for 0<n<7,neZ (Fig. 3-3b and 3-3c). Fig 3-4 shows the results for
¢, ¢» and ar / b As expected, ¢; increases due to an increase in the total
spread. ¢; and as/ beboth increase as the degree of elongation increases with .
However, as/ by has a much larger discrimination power since its curve in Fig.
3-4 has a gradient larger than that of ¢, and is thus able to provide better shape
resolutions.  As to the robustness of the best-fit ellipse shape descriptor a,/ by,
due to the ‘smoothing’ effect of fitting an ellipse to a general shape, ar/ bris less

sensitive to the effect of digitization and noise than ¢,.

2B 2 S
ry v

Figure 3-3 Three leaf-shaped objects with {a) k=/, (b) k=1.5, and (c) k=2 and Three

horse-shaped objects with (d) k=1, (¢) k=1.5, and (f) k=2

Irregular Horse-Shaped Objects

Another set of experiments was to make use of a horse shaped object with
length a, and width b as shown in Fig. 3-3d. They were also generated by
varying length a, i.e. a = ka, where k=1+n/2 for 0<n<7,nez (Figs. 3-3¢
and 3-3f). Fig. 3-5 shows the results for ¢, ¢, and as/ b ¢; increases due to
an increase in the total spread. ¢ and a,/ by both increase as the degree of

elongation increases with 4.

Irregular Leaf-Shaped and Horse-Shaped Objects with Gaussian Noise

To show the sensitivities of ¢, ¢, and a,/ by against the noise, we have tried to
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add the Gaussian noise with SNR = 0dB to 25dB to the same sets of objects (k =
4.5) in the previous two sections. The Gaussian noise is with zero mean.
Figs. 3-6(a) and 3-6(b) give the percentages of ¢;, ¢; and a;/ by deviated from
the actual values for leaf-shaped and horse-shaped objects respectively. They
were obtained by taking the percentage difference between the values of ¢;, ¢
and ay/ by of the original binary object (c.f. Fig. 3-3) and that of the objects with
added noises. In Fig. 3-6, it is seen that ¢ and ¢ suffer from a larger
percentage of variation than ay/ by for both leaf-shaped and horse-shaped objects,

especially for SNR = OdB.

Actual value
[o¥] L E Y wh [« s |
s &8
-
&

Figure 3-4 Three plots for leaf-shaped objects with constant width =708

—— af/bf

- &
- e

NS R T T B =}

Actual value

[—

|

Figure 3-5 Three plots for horse-shaped objects with constant width 6=7/9

e
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Figure 3-6 Three plots for (a) Leaf-shaped and (b) Horse-shaped objects with
elongation factor k = 4.5
. 3.3. Interpretations on Third-order Moments
The interpretation of third order moments is as shown below. They are the third

and fourth moment invariant elements (¢ and ¢,).

3.3.1. Third Moment Invariant Element

To understand the rmeaning of the third moment invariant

—30,) (g, —302)° . :
_ (= 344) g’u‘” Ha) in eqn. 2.32, we first consider the
Hoo

¢,

conditions under which ¢ becomes zero. It can be seen that ¢; is zero when

the following two cases happen at the same time.

ﬁ
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(#3 =34,)" =0 (3.11)

(U -3}uzl)2 =0 (3.12)

Then, we try to think about the measurement directions of g9, 72, ti3 and

;. From egn. 2.6, their expressions are shown as below,

pryo = [[(x = %) S (x, y)dndy (3.13)
t, = [[(x=%)' (=9 S (x, y)dxdy (3.14)
Hos = [[ =) £ (x, y)dxdy (3.15)
py = [[(x =) (v = ) (. y)dxay (3.16)

30 and u;; measure x-direction, while z; and up; measure y-direction.
Although it is difficult to have a measurement meaning on the parameters of
Uy =34, OF Mg —3u,,, it can be expected that the third moment invariant is
highly related to the symmetry.

Let us use a triangle as an example to illustrate the theory. We discuss

the case of a filled triangular as shown in Fig. 3-7.

A A
o
A 4

A 4

Figure 3-7 A filled triangular as the object
iy s Hys He and u, in eqn. 2.7 are calculated for the filled

triangular object. 1t is found that,
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Hoo = (3.17)
ac(a +b)(2a-b)(a-2b)
_ 3.18
Hio 540 ( )
ac’(2b—a)
= 3.19
Hy; 540 ( )
3
ac
=— 3.20
Hos 270 ( )
ac’ (—a® +2b° —2ab)
= 3.21
Ha 540 ( )
For (i, —34,,)° =0 inegn. 3.11, we have,
ac(a + b)(2a — b)(a - 2b) —3ac’ (2b—a)=0 (3.22)
ac(a - 2b)[(a + b)(2a — b) +3¢*]=0 (3.23)

By the definition of the triangular object as shown in Fig. 3-7, we have
a>b and c#0. Therefore, for (a+b)2a—5b)=0,ais equal to 2b.

_ac(a +b)(2a —b)(a - 2b)
- 540 B

0 and

If a=2b , Hio

3
JI =££52;)0—a—) =0 happen. It results that the object is symmetrical in the

x-direction, since p,, equals 3u,,. Otherwise, if a#2b, both 1, and

34, do not equal to zero and there is no other choice of a, b and c that could

make (i, ~3u,)" =0.
In fact, if we want (g, —34,,)° =0 for the triangular object, the object

should be symmetry along y = ix/ J3. Fig. 3-8 gives two examples.
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Figure 3-8 Examples of filled triangular objects with symmetry along y = ix/ NE]

For {4y, —34,,)° =0 ineqn. 3.12, we have,

2 3(-a’ +2b° —2ab) _3[(2b+a)(b—a) - ab]
2 2

(3.24)

We have a>b and c¢#0 by the definition of the triangular object as
shown in Fig. 3-7. Therefore, both b~a and —ab are negative. It is

impossible that ¢’ is equal to a negative number.  So, there is not any choice

of a, b and c that could make (u, —34,,)° =0.

In fact, if we want (g, —34,,)> =0 for the triangular object, the object

should be symmetry along y = +43x. Fi g. 3-9 gives two examples.

Y y

Figure 3-9 Examples of filled triangular objects with symmetry along y = +4/3x

-53.



Interpretations on Second and Third-order Moments

3.3.2. Fourth Moment Invariant Element

The expression of the fourth moment invariant

2 2
$, = (t +344,) +5(,u03 ) eqn. 2.33 is similar to that of the third

Hoo
moment invariant ¢; in eqn. 2.32. We first recall the measurement directions
of t30, 12, tlos and p;.  From eqn. 2.7, w30 and g2 give measurement in the

x-direction, while up; and x4, give measurement in the y-direction. It is
difficult to have a measurement meaning on the parameters of u,, +3y,, or

Hyy +34,,, but when fitting the best-fit ellipse onto the object, it is found that

we got the constant a fz +b fz term.

3.3.3. Experimental Analysis

Experimental analysis of the third moment invariant
Set 1: rotate 20°, 40° and 60° anti-clockwise for (u,, —34,,)* =0

A set of four triangular objects is generated as shown in Fig. 3-10. Fig. 3-10
(b), 3-10 (¢), 3-10 (d) and 3-10 (e) are the rotated version of Fig. 3-10 (a). The
rotational angles of Fig. 3-10 (b), 3-10 (c), 3-10 (d) and 3-10 (e) are 30°, 60°,
90° and 120° respectively. Table 3-4 illustrates the experimental readings of

the third moment invartant.
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(d)

(e)

Figure 3-10 Five examples of filled triangular objects with five rotations

Table 3-4 Experimental readings of the triangular objects shown in Fig. 3-10(a-¢)

Measures (in pixel) i Third moment
Figure 3-10 — ) _
Basea | b | Heightc | Rotate 3u, invariant ¢,

(a) 200 100 173 0° 0.986946 0.0046
I(b) 200 100 173 30° | -0.332531 0.0046
|(c) 200 100 173 60° | -1.085169 0.0046
ld) 200 100 173 90° -0.332531 0.0046
(e) 200 100 173 120° | 0.986946 0.0046

From Table 3-4, it is observed that the third moment invariant parameters

¢, of five triangular objects are the same, while ,,/34,, increases from Fig,

3-10 (a) to (d) and then decreases from Fig. 3-10 (d) to ().

object is symmetric along y = irx/«ﬁ, (s —31415)

2

It shows that if the

tends to zero.

Set 2: rotate 20°, 40° and 60° anti-clockwise for (u,, —34,,)’ =0

A set of four triangular objects is generated as shown in Fig. 3-11.
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(b), 3-11 (c), and 3-11 (d) are the rotated version of Fig. 3.11 (a). The
rotational angles of Fig. 3-11 (b), 3-11 {c), and 3-11 (d) are 20°, 40° and 60°
respectively. Table 3-5 illustrates the experimental readings of the third

moment invariant.

(©) (d)

Figure 3-11 Examples of filled triangular objects

Table 3-5 Experimental readings of the triangular objects shown in Fig. 3-11(a-d)

Measures (in pixel) Hos Third moment
Figure 3-11 e . _
Basca | b |Heightc| Rotate 3uy invariant ¢,
(a) 230 115 177 0° 1.010491 0.0082
(b) 230 115 177 20° -0.008209 0.0082
(c) 230 115 177 40° -0.008742 0.0082
(d) 230 115 177 60° 1.010491 0.0082

The results from Table 3-5 are similar as that from Table 3-4. It can be
seen that the third moment invariant parameters, ¢,, of four triangular objects
are the same. Moreover, u, /34, increases from Fig. 3-11 (a) to (c) and

then decreases from Fig. 3-11(c) to (d). In fact, it is consistent with the

theoretical study that if the object is symmetric along y = ++/3x, (tgy —311,,)°
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tends to zero.
Experimental analysis of the fourth moment invariant
Set 1: constant lower base a but different b and height ¢ for p,, + 3, =0

A set of six triangular objects is used to analyze the parameter of

s + 344, =0 of the fourth moment invariant as shown in Fig. 3-12.

(2) (b) {c)
(d) (e)

Figure 3-12 Examples of filled triangular objects

Table 3-6 Experimental readings of triangular objects as shown in Fig. 3-12 (a-f)

Figure Measures (in pixel) a, b, 0, 2, bfz Fourth moment

3-12 Basea | b |Heightc ‘ invariant ¢,
(;11) 180 105 | 270 [121.464| 69.912 [19641.191| 0.00068861
(b) 180 120 268 |121.752| 69.426 |19643.519| 0.00068711
(c) 180 180 255 124.470 | 64.422 |19642.975| 0.00069908
(d) 180 225 234 |127.746| 57.672 |19645.100| 0.00077350
(e) 180 270 201 131.598 | 48.168 [19638.190| 0.00086360
“(f) 180 | 315 149 [135.810( 34.614 |[19642.485| 0.00119621

As shown in Table 3-6, a fz +bf2 remains unchanged for these six

triangular objects, while the fourth moment invariant, #,, is increasing. It

shows that when fitting a best-fit ellipse onto these objects, the sum of the

W__—__—
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square of major principle axis a,’ and the square of minor principle axis b,°
q jor p p ! q p p I

1s a constant.
Set 2: constant lower base a but different b and height ¢ for g, +34, =0
A set of four triangular objects is used to analyze parameters of i, +3u,, =0

of the fourth moment invariant as shown in Fig. 3-13.

(c)

Figure 3-13 Examples of filled tnangular objects

Table 3-7 Experimental readings of triangular objects as shown in Fig. 3-13 (a-d)

Figure Measures (in pixel) , , | Fourth moment
af b)r af + bf . )
3-13 Basea | b |Heighte invariant ¢,
(a) 180 105 155 | 73.371 | 66.619 | 54.564 0.00001152
ﬂ(b) 180 120 153 76.523 | 62.974 | 54.564 0.00004550
I(c) 180 180 128 | 88.012 ] 45558 | 54.564 0.00067670
H(d) 180 | 225 78 95.726 | 25.650 | 54.564 0.00665928

Similar as Table 3-6, it shows in Table 3-7 that af2 +.b),2 remains

constant for these four triangular objects, while the fourth moment invariant ¢,

is increasing. This implies that when fitting a best-fit ellipse onto these objects,

the sum of the square of major principle axis afz and the square of minor

——————————————— ]
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principle axis b)(2 is a constant.

3.4. Chapter Conclusion

This chapter provides some interpretations of the second and third order-based
moment invariants using the best-fit ellipse formulation. The theoretical
analysis shows that the first invariant measures the total spread of the shape
relative to its area square while the second invariant measures the degree of
elongation of a best-fit ellipse on the shape. Six different shapes, including
squares, rectangles, triangles, trapeziums, and two irregular (leaf- and horse-)
shaped objects, and objects with Gaussian noise were used to confirm the
findings. Moreover, we have also used a triangle as an example to elaborate

some theories of the third and fourth invariants. It is found that the values of

the third invariant for those objects with symmetry along y=ix/ V3 and
y= ++/3x remains constant. For the fourth invariant, when fitting a best-fit

ellipse on the object, a fz +b fz becomes a constant.
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Chapter 4

Improved Scheme for Object Searching using

Moment Invariants

4.1. Introduction

Multimedia is the use of computers to process and /or transmit media information
including text, audio, image and video. One of the major areas of interest in
multimedia is multimedia information retrieval/ searching. For these kinds of
applications, shape can capture the prominent elements of an object. The shape
descriptor is not only able to do object identification but also can give a complete
and real representation of it. Using a set of moment invariants is one of the most
popular approaches employing shape descriptors that has been widely used for
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object identification [15-17], character recognition [41], etc. The problem is often
formulated using a continuous image function and the moments are defined using
continuous integrals. It has been shown that this continuous formulation can
ensure the moment invariants are independent of translation, scaling, and
orientation of objects. In practice, moments have to be calculated on digital
images and the discrete summations have to be used instead of the continuous
integral. Then, the moment invariants calculated might not be truly invariant to
scale, rotation and translation.

This chapter presents an analysis of quantization effects on several popular
moment-based approaches. They are Hu moment invariants [40], Affine moment
invariants [42-43]), Dudani moment invariants [44] and Improved moment
invariants [57]. Teh [76] and Salama [77] used only rectangular objects to
illustrate error. This chapter extends their work by considering both regular
(rectangular) and irregular objects.

We propose to apply this error analysis to object search applications. In
particular, the analysis is useful for deciding the value of the threshold so that all

- scaled and rotated objects can be retrieved successfully.

This chapter is organized as follows. In Section 4.2, we discuss the moment
invariants in the continuous and discrete domains and the quantization problem.
Section 4.3 then provides some scaling properties of moment-based approaches.
Sections 4.4 and 4.5 summarize the quantization effects of four moment-based
approaches due to scaling and rotation respectively. Section 4.6 describes the use

of error analysis in object retrieval.
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4.2. Moments And Quantization Effects

4.2.1. Definition of Moment Invariants in Continuous Domain

As shown in Chapter 2, the central moments 4, in continuous domain (eqn 2.6}

is defined as p, = H(x ~X)?(y-¥) f(x,y)dxdy wherep,g=012,....
R

4.2.2. Quantization Problem

For a digital image, the double integrals in u,, have to be replaced by the
double discrete summations for approximation. Eqn. 2.7 is shown the

definition of central moments y,, in discrete domain, which s

M N
=22 (x=%)(y—3) f(x,y) wherepg=012,...

y=l x=1
Using eqn. 2.7 to calculate i, the moment invariants defined in eqns.
2.17-2.23 might not be strictly invariant when the image is rotated or scaled.
To illustrate this point, let us consider Fig. 4-1. It is clearly seen that errors
always occur due to sampling and quantizing of the continuous image for digital

computation.

o -

Stxy) =10

gt

(a) (b)

Figure 4-1 (a) Binary image in the continuous domain and (b) Sampled version of the

binary image in the discrete domain
S —
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4.3. Quantization Due to Scaling

4.3.1. Regular (rectangular) Objects
We first consider the case of a regular (rectangular) object with length a and
width & as shown in Fig. 4-2 (a). The scaled version of Fig. 4-2 (a) with a

scaling factor of r is shown in Fig. 4-2 (b).

ra

(c) (d)

Figure 4-2 (a) Rectangular object and (b) its scaled version, (c) Horse-shaped objects

and (d) its scaled version

4.3.1.1. Hu Moment Invariants

Expressions for ¢ to ¢7 in eqns. 2.30-2.36 are now obtained for both continuous

integral (eqn. 2.6) and discrete summation (eqn. 2.7) cases. We have,
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CASE 1: CONTINUOUS INTEGRAL  CASE 2: DISCRETE SUMMATION

b =5 (@.1) g = (44)
b, = (%Tf’bi)z (4.2) b, = (%_ﬁf_)? (4.5)
# 0 ¢, =0 (4.3) ¢; 10 ¢, =0 (4.6)

The quantization effect due to scaling has a bigger effect on ¢ than &,
The difference comés from a scaling factor, 7, in the numerator. When r tends
to 0, the numerator of ¢; in eqn. 4.4 will be significantly smaller than that in eqn.
4.1. Therefore, the difference becomes significantly large. If the scaling
factor r is large enough, the value, i.e.-2/F, becomes very small and can be

ignored. Then, the difference of ¢ will be very small and tend to zero.

4.3.1.2. Affine Moment Invariants
Same as Section 4.3.1.1., the rectangular objects are used to study the scaling
effect on ¢; to & (c.f. Fig. 4-2 a-b). {; to {; in eqns. 2.40-2.43 are calculated

for both cases. It is found that,

CASE 1: CONTINUOUS INTEGRAL  CASE 2: DISCRETE SUMMATION

_ 4.7 al+b? 4.
g —Tgﬁ “.7) gl:l_!ﬁ_u(ur::’;’ (43)
+—Ll
1447  a%h
¢, to ¢, =0 (4.8) ¢, to &, =0 (4.10)

The difference of ¢; of the Affine moment invariants in these two cases is
significantly large. We can see that {; in continuous case is a constant.
Consider the discrete case, {; involves three parameters (length «, width b, and
scaling factor ). When there is a change in the scaling factor r (for fixed a
and b), &; becpmes large as the scaling factor increases. Therefore, the error in
& would be large when the scaling factor tends to 0.

————'—'_——'_'————.——-_-_—ﬂ_'_—_“_"_
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4.3.1.3. Dudani Moment Invariants

Again, expression for M; to M; in eqns. 2.45-2.51 can be found for both cases.

We have,
CASE 1: CONTINUQUS INTEGRAL  CASE 2: DISCRETE SUMMATION
YL (4.11) IR 414
M, =(ﬁ)_ M, =(a +Ibzabzfr ] ( )
e (4.12) g Y (4.15)
MZ-[HI_':Z) M2=(az+b1_b2/rzj
M, to M, =0 (4.13) M, to M, =0 4.16)

The scaling factor is present in the numerator of M, (eqn. 4.14), while it is
present in the denominator of M (eqn. 4.15) for discrete cases. The error in
M; is larger than that in M,, since the denominator in M; involves a power of 2
and the nominator in M, takes square root. Besides, as r increases, the value of

M, decreases, while M; increases.

4.3.1.4. Improved Moment Invariants
As shown from the definition in section 2.5, it is mentioned that the Improved
moment invariants are used to describe a shape boundary rather than its region.
Therefore, we have to transform the objects (Fig. 4-2 a-b) into the

boundary-based objects by detecting their edges with one-pixel width.

w1 to w7 of egns. 2.58-2.64 for both cases becomes,
CASE |: CONTINUOUS INTEGRAL CASE 2: DISCRETE SUMMATION

_ ated? 4.17) _al+pt-2/r? (4.20)
Vi =502 LTS
ai_p? 4.18 al-b 4.21
V2 =(12¢1:;2)2 ( ) ¥z =(12rzaziz)z ( )
wy; to y; =0 (4.19) wy to w, =0 (4.22)

e S e —
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It is easily seen that there are big differences for both the numerator and
denominator of ;. Both parts involve the scaling factor » Therefore, the
error in y; would be large even if the scaling factor showed a small change.
Moreover, when considering ¥; and y; from the discrete summation case, it is
seen that the error in y; is smaller than the error in ;. This is because

contains the scaling factor at the denorminator only.

4.3.1.5. Experimentd Analysis

In our experimental work, we generated a set of rectangular objects with a=120
pixels, b=60 pixels, and let scaling factor r change between (.05 and 1.75. Fig.

4-3 shows a plot of errors against the scaling factor.
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(&)

Figure 4-3 Plot of error against scaling factor for rectangular objects for (a) Hu and

Affine moment invariants and (b) Dudani and Improved moment invariants

From this figure, we can observe that all four moment-based approaches
show a similar trend. The errors tend to zero as the scaling factor r increases,
but the errors become large when » decreases. When the scaling factor reaches
0.5, the errors are essentially equal to zero. In other words, if the size of the
target object is half of the original size, the error due to scaling would not be
significant using either of these four approaches. However, when the scaling

factor is as small as 0.05, it can be seen that Dudant moment invariants are
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affected heavily by the scaling.

In summary, conceming the overall sensitivity of these four approaches, it

is shown that
. the most sensitive measufe of the digitization/quantization error
due to scaling on rectangular objects is Dudani moment invariants
(M, and M;), followed by Hu moment invariant (¢; and ¢,), and
Aﬂiﬁc ‘moment invariants (¢1), whilst the Improved moment
invariants (y; and y») give the least scaling error.
. When r is small, i.e. the size of the object is small, all four

approaches show a large digitization/ quantization error.

4.3.2. Irregular Objects
In practical applications such as object searching or classification, we cannot
expect the shape of most of the objects to be regular. In fact, in most cases,
they are irregular objects. Hence, it is essential to perform an analysis on
irregular objects. Fig. 4-4 shows the results of a set of irregular horse-shaped
objects with a=787 pixels, b=167 pixels as shown in Fig. 4-2c, and the scaling
factor r ranging between 0.05 and 1.75.
Note that we consider the first four parameters only. All other
parameters can be ignored since their values are much smaller than 107,
Comparing Fig. 4-3 and 4-4, there is no big difference in the general trend.
This indicates that the four morr_lent-based approaches are robust to quantization
and digitization error when r ranges from 0.5 to 1.75. However, the Improved

moment invariants approach suffers a higher error due to the scaling of irregular

objects as compared to regular objects.
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Figure 4-4 Plot of error against scaling factor for irregular objects for (a) Hu and

Affine moment invanants and (b) Dudani and Improved moment invariants

Moreover, it can also be seen that

. the most sensitive measure to the error due to scaling on irregular

objects is the Dudant moment invartants (M, to M) and this is
followed by the Improved moment invariant (y; to ).

. Hu (¢ to ¢,) and Affine moment invariants ({; to ¢y) have the
smallest error due to scaling.

In general, for object searching applications, there are many objects with

— ——
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different sizes. To retrieve similar objects, the descriptor should be able to
achieve scaling invariance. From the above studies, it is found that all four

moment-based approaches follow similar trends in error due to scaling. The

error decreases as r INCreases.

4.4. Quantization Due to Rotation

4.4.1. Regular (rectangular) Objects

The previous section presents the analysis of error due to scaling. In this
section, we give results of our studies on quantization effects due to rotation.

Fig. 4-5 shows the rectangular and irregular objects and their rotated version.

Let the angle of rotation be &,

{©) {d)

Figure 4-5 (a) Rectangular object and (b) its rotated version, (c) Horse-shaped objects

and (d) its rotated version
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4.4.1.1. Experimental Analysis

Fig. 4-6 shows the error curves of a set of rectangular objects, with a=/20

pixels and h=60 pixels, and &ranging from 0°to 180°.

0.012

0.01

0.008 — 4§,

0.006 —— &,

=
o
E
53]

0.004

0.002

0 20 40 60 80 100 120 140 160 180
Rotational Angle
(a)

HAANYA N
0.006 / \ / \ —— M‘
Lorrvond fomoooal

0.004

Error

(.002

0 20 40 60 80 100 120 140 160 180
Rotational Angle
(b)

Figure 4-6 Plot of error against the angle of rotation for rectangular objects for (a) Hu

and Affine moment invariants and {(b) Dudani and Improved moment invanants

It can be seen from Fig. 4-6 that they form an “M” shape. There is no
error at angles where @ = 0° 90° and 180°. Other than these three angles,

suffers the largest rotational error at angles between 40° and 50° and between

“
71-



Improved Scheme for Object Searching using Moment Invariants

W
e e e ————

13Q° and 140°. In fact, the second and the third most sensitive measures of
error due to rotation are M; and M.

In summary, we have found that,
. the most sensitive measure of error due to rotation on rectangular
objects is the Improved moment invariants (y; and y»). It is then

followed by Dudani moment invanants (M; and ).
. Hu (¢ and ¢;) and Affine moment invariants (¢; and &) achieve
the smallest error due to rotation.

4.4.2. Irregular Objects

4.4.2.1. Experimental Analysis
A set of irregular objects with a=187 pixels and »=/67 pixels for & ranges from

0°to 180° is examined.
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F igure 4-7 Plot of error against the angle of rotation for irregular objects for (a) Hu

and Affine moment invariants and (b) Dudani and Improved moment invariants

Similar to the observations in Section 4.4.1.1, all curves in Fig. 4-7 show
an ““M” shape. None of the four approaches has error at the angles where 8= (°,
90° and 180°. Apart from these three angles, the most sensitive measure of
error due to rotation is M>. The second and the third most sensitive measures
are M, and ¢,.

Note also that

. the most sensitive measure of error due to rotation on irregular
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objects is the Dudani moment invariants (M, to M,). It is then
followed by Hu moment invariants (¢ to ¢).
. Improved (i; to ) and Affine moment invanants ({; to &)

achieve the smallest error due to rotation.

In practice, we often find objects with different onentattons. For
example, we can have a triangle in an upward direction in an image, and a
triangle in an upside down position in another image. However, the descriptor
should be able to achieve rotation invariance. As found in the above study, all
four moment-based approaches show similar behavior for errors due to rotation.
The errors only take place at angles other than 0°, 90° and 180°. If the rotation

is exactly at 0°, 90°, 180° 270° or 360°, it is expected that no rotation error will

occur.

To sum up, in order to avoid errors due to a digitization/ quantization
effect on scaling, the ratio of the width/length between the examining object and
the original object should not be less than 0.5. As the ratio decreases, the
scaling error will be significantly increased. Therefore, for the same class of
objects, we need to ensure that the size of the objects is within a certain range.
On the other hand, it is usually impossible to restrict the object rotation to only

0°, 90° or 180° in order to avoid rotational errors.
4.5. Use of Error Analysis in Object Retrieval

In the previous two sections, we have proved that these four moment-based
approaches suffer from different degrees of digitization/ quantization error due to
scaling and rotation. In this section, we will take these into account in the design

of the object searching system so that the accuracy of the matching process can be

improved.
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Let us review a two-stage searching algorithm as shown in Fig. 4-8. In the
image searching part, both global and local characteristics of an input image are
used in the matching process. The first step tries to acquire the global
information, which aims to produce a fast listing from the whole database to select
those objects with similar global characteristics; while the second step obtains the
local information about the object. The purpose is to have a detailed matching
between the query object and the short-listed objects. The advantage of using a
two-stage algorithm is that there is no need to do the matching on the whole
database for every query submission. The global information about the object is
extracted first to avoid the requirement for a detailed matching. This can reduce
the computational complexity, resulting in an efficient and effective object
searching algorithm. However, to achieve a good accuracy for retrieving scaled

and rotated objects, a threshold selection is crucial.

h 4 h
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Figure 4-8 A two-stage object searching model
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Figure 4-9 Some example objects in the test database

We have tested this selection method for the approach with the biggest

quantization effect: Dudani moment invariants approach. Let F be the feature

vector of the first stage operation, 1.e.,
F,=M, M, --- M,)) (4.23)

and Ag be the error limit, i.e.,

A, =4 A, - A) (4.24)

where A; is the maximum error due to the quantization effect on
corresponding M;.

We search relevant objects within the range, Fg + Ag, so that a range of
possible objects can be retrieved. If Ag equals zero, only one object wiil be
selected at this stage, which is not desirable. If Agis set to a large value, we
cannot guarantee low computational complexity and too many irrelevant objects

may be retrieved. In order to achieve a high retrieval rate and at the same time to

have a low computational complexity, the threshold, A, can be obtained by using
the analysis in this chapter, which takes consideration of the quantization effect of

scaling and onentation.
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A set of the experimental databases was setup: 1000 images of 100 classes
containing digitally scaled and rotated objects. Each class contained 5 scaling
factors (0.05, 0.15, 0.25, 0.5, and 0.75) and 5 rotational angles (0 ° 23° 45° 68°
and 90°). Fig. 4-9 shows some examples of the test objects. Two queries were
submitted to the system. These two objects are the rectangular object in Fig. 4-2a
and the horse-shaped object in Fig. 4-2c.  For the first query with the rectangular
object, Figs. 4-3 and 4-6 show that the highest error of M, for Dudani approach is

0.012; while M; is 0.035 (defined as Set 1). Then we put _ =[0-0'2] , while M; -
0.035

M7 are zero.  For the second query with the horse-shapeﬁ object, the highest errors
of the first four elements of Dudani approach are 0.003, 0.014, 0.014 and 0.001
(defined as Set 5) respectively, which can be deduced from Fig. 4-4 and 4-7.

0.003
Then we put A= 0.014 |, while A5 - A7 are ignored as Ms — M; are smaller than

¢ 10.014
0.001

1077, Furthermore, we also tested the cases for selecting bigger Ag. Sets 2, 3
and 4 were obtained by multiplying Set 1 with 2, 5 and 10 respectively. Similarly,
. sets 6, 7 and 8 were obtained by multiplying Set 5 with 2, 5 and 10 respectively.

Table 4-1 shows the results of these eight sets of selection.

-77-



Improved Scheme for Object Searching using Moment Invariants

Table 4-1 Results of different selections

Number of object retrieved Number of object retrieved
Ao in the same class in the other classes

Rectangular objects

Set 1 10 0

Set 2 10 7

Set 3 10 94

Set 4 10 589
Horse-shaped objects

Set 5 10 0

Set 6 10 35

Set 7 10 193

Set 8 10 287

| From Table 4-1, it is seen that when we set Ag to the highest error (i.e. Set |
and 5), it can guarantee that all scaled and rotated objects in the same class are
selected and no object from other classes is included in the retrieval. However,
when Ag is set to a larger value (i.e. Set 4 and 8), it is seen that many objects from
other classes are obtained in the retrieval result. In fact, it also indicates that if the
threshold is wrongly selected, the retrieval result will include objects from other
classes and thus the computational complexity for the matching process increases
significantly. Therefore, the error analysis provides a way of choosing the
threshold and is useful for ensuring that the two-stage approach is invariant to

translation, scaling and rotation.
4.6. Chapter Conclusion

This chapter has presented an analysis of quantization error for four moment-based
approaches. They are Hu moment invariants, Affine moment invariants, Dudani
moment invariants and Improved moment invariants. Analytical expressions in

continuous and discrete domains have been derived and experimental results have

I — — — it i~

-78-




Improved Scheme for Object Searching using Moment Invariants

——

also been found for regular (rectangular) and irregular objects undergoing scaling
and rotation changes.

We have found that the error due to scaling increases as the object size
decreases. The Dudani moment invariants tend to have a larger error than that of
the other three moment-based approaches. Moreover, the error due to rotation

increases as the object is rotated with an angle other than 8= 0°, 90°and 180°.

In order to ensure the shape descriptor is invariant to translation, scaling and
rotation, we can apply the analysis of the quantization effects to scaling and
rotation for selecting the threshold for an object searching system. From our
experimental work, it is proved that all scaled and rotated objects can be retrieved

correctly by setting the threshold to the value of the error.
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Chapter 5

Multi-layer Shape Descriptor (MLSD) and
Improved Mechanism with Both Global and

Local Characteristics

5.1. Introduction

The best-fit ellipse concept of a binary object from second order Hu moments is
discussed in Chapter 3. The theoretical study shows that the first invariant
measures the total spread of the shape relative to its area square while the second
invariant measures the degree of elongation of a best-fit ellipse on the shape.

Moreover, they are confirmed by the experimental analysis using triangles,
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trapeziums and irregular leaf shapes. In this chapter, to apply these findings
practically, a Multi-Layer Shape Descriptor (MLSD) invariant to rotation, scaling
and translation and an improved two-step mechanism are proposed. For MLSD, a
given binary object is divided into four sub-regions by two principal axes of the
best-fit ellipse, which is located at the center of mass. Each sub-region can be
then subdivided into four sub-regions in the same way. The node of a quadtree
representation is c.orfesponding to each region of the object. Three kinds of
parameters invariant to rotation, scaling and translation are calculated for each
node. Then the shape descriﬁtor is represented as a vector of all parameters. In
order to achieve an effective and efficient retrieval system, we propose an
improved two-step mechanism, which considers both global and local
characteristics of the object. All objects in the database are sorted by the global
characteristics, i.¢. the ratio of major and minor principle axes of the best-fit ellipse.
Then, for those objects having similar ratio, the similarity distance is calculated by
the Euclidean distance of their feature vectors. Furthermore, the experimental
results conforming to MPEG-7 core experiments are also presented.

This chapter is organized as followed. In Section 5.2, we present a
proposed Multi-Layer Shape Descriptor (MLSD). A detailed elaboration of the
feature vector, which is invariant to rotation, scaling and translation, is given also.
In Section 5.3, the similarity matching with both global and local characteristics is
presented. The global characteristic of a shape is obtained from the best-fit
ellipse concept, whereas the local characteristic is obtained from the MLSD. In
Section 5.4, we give the experimental results to indicate that our shape descriptor
and i1mproved two-step mechanism gives superior performance over other

moment-based approaches in terms of retrieval accuracy and computational speed.

R1-



Multi-layer Shape Descriptor (MLSD) and Improved Mechanism with Both Global

and Local Characteristics
5.2. Multi-Layer Shape Descriptor (MLSD)

We have made a discussion on using the concept of best-fit ellipse from its
realization using second-order based moment invariant in the Chapter 3. Let us
have a look on the MPEG-7 eXperimentation Model (XM). In this model, the
bounding box descriptor is obtained by fitting a tightest rectangular box. The
tightest box is designed such that it fully contains the object and the sides of the
‘box are parallel to the principal axes of the object. Moreover, another shape
descriptor by Sluzek [72] tries to describe the prototype object by a family of
shapes. These shapes are created by occluding the object by circles of different
radius located in the object’s center of mass. Our proposed multi-layer shape
descriptor (MLSD) applies the best-fit ellipse concept. MLSD extends and
enhances the circle-based bounding box descriptor proposed by Sluzek. The main
enhancement is on the fitting element, which becomes ellipses rather than a

rectangular box [78-79] or circles [72].

52.1. Recursive Sub-division of an Object on the Basis of the Best-fit Ellipse
Concept

For a given object O, we first define a, and b, as the major and minor axes of

the best-fit ellipsc respectively. These two unique axes can represent the

object. The shape of an object is classified using the following procedures:

Stepl. The major and minor axes of the best-fit ellipse of the object, a,

and b,, are obtained as,
LIV LIRS
. :(i]‘(&g]“ and 5, =[i)d[i‘.‘2_]s
T} \Ha T} \Hyp
and then, the orientation is defined as,

ﬁ
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Step2. -

Step3.

Step 4.

2u,,

tan 28, =
Hxn —Ha

The shape is divided into four sub-regions by two principal axes
corresponding to the two axes of best-fit ellipse, a, and b,, at the
centre of mass of the shape. Fig. 5-1 demonstrates the case of
an original object after the first division. The original object is
divided into four regions: A, B, C and D.

For each sub-region, the major and minor axes of the best-fit
ellipse calculation and the sub-division processes of stepsl and 2
are performed. Fig. 5-2 shows the case of the original object
after the second division. Each region of A, B, C and D 1s
divided into four sub-regions of AA-AD, BA-BD, CA-CD and
DA-DD respectively.

From this division concept, each region can be represented using
the quadtree structure as in Fig. 5-3. Each node represents a
region. The parameters which are invariant to rotation, scaling
and translation of each node are extracted. A shape descriptor is

represented as a vector of all parameters obtained.

Figure 5-1 The object after first sub-division
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Figure 5-2 The object after second sub-division

Gy root
A B C D level !
[aa]aB | ac|ap]|[Ba]BB ] BCc|BD|[CA|CB|cc|cD]ipaDB|DC|DD|  level 2

Figure 5-3 A quadtree representation of object with n-level decompositions

5.2.2. Parameters Invariant to Rotation, Scaling and Translation

Three  parameters, namely axes ratio, pixel insideBFE_ratio  and
pixel_outsideBFE ratio which are invariant to rotation, scaling and translation
are obtained for each node. For 2 node i, let N,, be the total number of pixels
belonging to the whole object.

. axes_ratio: the ratio of major axis value to the minor axis value of

node i. The term axes_ratio of node i is expressed as,

axes _ratio(i) = % (5.1)

i
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° pixel_insideBFE_ratio: the ratio of pixel inside the ellipse to total

pixels in a region r. The term pixel_insideBFE_ratio for region r is

expressed as,

P,
pixel _insideBFE _ratio(r} = —% (5.2)
J pixel_outsideBFE_ratio: the ratio of pixel outside the ellipse to

total pixels of a region r. The term pixel_insideBFE_ratio for region
r is expressed as,

JDour.ﬂ'de_r (5 3)
N

r

pixel _outsideBFE _ratio(r) =
For each node of the quadtree, it consists seven parameters. Let us
consider the root node as an example. Their parameters are as follows.

(1). Principal axes ratio of the object: %o - Orientation: Greos

roc!

(2). x-coordinate of center of mass: x =m,,/m,, ; y-coordinate of center

of mass: y=m, /my,

(3). pixel_insideBFE_ratiofroot) = _P"'"“’#,
N

w

, . . P
pixel_outsideBFE_ratio(root) = 2<%
: N

w

(4). pixel _insideBFE ratio(4) = '";;fe_f';

A

pixel_outsideBFE._ratio(A) = Fowte4

A

(5). pixel insideBFE ratio(B) = %;
8
£,

urside _ B

pixel_outsideBFE ratio(B) =

4

(6). pixel_insideBFE_ratio(C) = f%,
[

pixel outsideBFE _ratio(C) = .P*""J"ffv ¢
N

(8

ﬁ
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Pfufd! Do
b

(7). pixel_insideBFE ratio(D) = v
D

pixel” outsideBFE_ratio(D) = Tt o
N

D

5.3. Similarity Matching with both Global and Local
Characteristics

In the previous section, we have described the shape descriptor (MLSD) of an
object, which makes use of second-order moments. In this section, we will draw

the attention to a practical application, i.e. trademark image retrieval system.

5.3.1. The Framework of the Trademark Image Retrieval System

Let us firstly review the searching model of a traditional retrieval method. Fig.
1-1 shows a block diagram of a generic image archival and searching model.
For the image archival part, each input image is scanned and its feature vector is
extracted. These feature vectors will be stored into an image database. Once
a query image is submitted for searching those relevant images in the database,
the image searching part begins. The feature of the query image is extracted
and then used to match all feature vectors in the database. After the matching
process, the resultant relevant images are displayed to the user.

In fact, when considering this image searching part, it is easily seen that
the process is the same for all query image submission and the computational
complexity is high, especially in the matching process. All images in the
image database are needed to be accessed for every inputted image. Therefore,
when the size of the database is large, accessing all images for searching causeé
heavy computational load and is time consuming.

In order to achieve an effective and efficient retrieval system, the

matching process should be modified so as not to load all feature vectors from

ﬂ
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the whole database for every query image submission. In other words all
database images should be accessed only once, i.e., at the time when the user
submits the first query. To do this, we can consider extracting the global
characteristic of each object. The seléction of such global information should
be done in a simple and fast way. Therefore, the idea of the best-fit ellipse, 1.e.
the ratio of major and minor principle axes of best-fit ellipse in the object, is a
sensible choice. It is because the ratio can describe the object globally with
simple and fast calculations. Fig. 4-8 demonstrates the framework of the two
steps searching model for image retnieval application. Moreover, Fig. 5-4
presents several example images with its best-fit ellipses. From the major and
the minor axes, the shapes can be categorized into different groups according to
their aspect ratio. Thus, it is clear that the global characteristic of each image

can be described by using the concept of the best-fit ellipse.

Figure 5-4 Example image with global characteristic

5.3.2. Detailed Descriptions of the Trademark Image Retrieval System

The trademark tmage retrieval system aims to retrieve a group of relevant

images 1n a trademark image database. The retrieval approach consists of two
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stages. The first stage tries to acquire the global characteristic; while the

second stage obtains the local characteristic. The global information employs

the property of second order moments. That is the ratio of principle axes of

best-fit ellipse in the objects. For the local information, it measures the

axes_ratio, pixel_insideBFE_ratio and pixel_outsideBFE _ratio between the

query image and the selected images.

The flow diagram of the trademark image retrieval system is shown in Fig.

5-5. The detailed description of the retrieval system is as follows:

Stepl.

Step2.

Step3.

The user inputs a query image.

After the scanning, its feature vector is extracted. It is assumed
that the major and minor principal axes of the best-fit ellipse on
the query object are ar and by respectively and their calculations
are defined in eqns.3.9-3.10.

Every time when the user submits a query, we check whether it is
the first submission. If it is so, a list is generated to index all
database images in ascending order of their global characteristics.
This characteristic is done by calculating the ratio of major and
minor principle axes of the best-fit ellipse on the object. The
advantages of using such a ratio are not only simplicity and rapid
calculation but also its ability in defining the global property of a

shape, i.e., the elongation.

Stepd. If the system finds that the first query has been already submitted,

Steps.

then it will bypass Step 3 and go to Step 5.

Only a sub-set of images is selected for the matching process.

Of course, we look for images that match the global properties of

ﬁ
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Step6.

Step7.

the query image. This image set is chosen by pre-defining a

threshold A,,. If the ratio of the principal axes of the object in

a database image is within a /b, +Ag,, the database image is

inserted into the selected sub-set for measuring the local
characteristic.

The MLSD feature vectors between the query image and each
image in this set are calculated.

At last, the similarity score is measured by the Euclidean distance
between the query feature vector and the image feature vectors in
the set. For n level of decomposition, the total number of node
1s

TotalNode = ) 4’ (5.4)
i=0
The similarity score is defined as,

TowaiNode 6

Similarity Score = Z Z(qg -5;) (5.5)

=0 Jj=2

The resultant images are obtained according to this similarity

score and displayed to the user.
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Figure 5-5 A flow diagram of the trademark image retrieval system

In summary, the proposed framework is designed using the best-fit ellipse
concept and an improved mechanism for image matching.  Global information
about the shape is extracted from the parameters of the best-fit ellipse while
unnecessary image matching is avoided. These can reduce the computational
complexity, resulting in an efficient and effective image searching algorithm.
Moreover, local information is extracted from the sub-division of the shape.

These can further improve the retrieval accuracy of the algorithm.
5.4. Experimental Results

We have tested the proposed shape descriptor (MLSD) after the first sub-division
and four moment-based approaches (they are Hu moment invariants, Affine
moment invariants, Dudani moment invariants and Improved moment invariants)

with the core experiment for shape descriptions in MPEG-7. In this core

W_'——_—_——
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experiment, it contains 2810 trademark images (Set 2), which are disjoint binary
regions and categorized into 10 groups. In order to evaluate the rotation and
scaling properties, another set (Set 1), which contains 2000 trademark images, was
set up. They were generated by selecting 20 images from each group. Then,
each selected image was scaled with 5 scaling factors on both width and length.
The scaling factors were 0.25, 0.50, 0.75, 1.25 and 1.50. Moreover, each selected
image was also rotated with 5 rotational angles. They were 0°, 23 °,45° 68° and

90°. Fig. 5-6 shows some samples of those trademark images.

5 P B3~ M A

(a) two example sets in Set !

OOVL@OSNED

(b) group 1 in Se1 2

ONOEFwe @ =

{c) group 2 in Set 2

D S WWHAG T
ISoBHpeHERNSLC

(d) other groups in Set 2

Figure 5-6 Example images in Set 1 and Set 2

In our experiments, the retrieval accuracy is defined as the ratio of the
number of relevant images in the N-top scores of the retrieved image set divided by
N, the number of relevant images in the database. Tables 5-1 and 5-2 show the
comparison of the retrieval accuracy between four moment-based approaches and

our proposed shape descriptor (MLSD) with improved two-step mechanism for Set

W_—.——
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1 and Set 2 images respectively.

Table 5-1 Retrieval accuracy of Set 1

) Average number of comparison
Shape descriptor A, Retrieval accuracy
for each image (percentage saved)

Hu - 79.57 2000 (0%)
Affine - 56.39 2000 (0%)
Dudani - 80.99 2000 (0%)
Improved - 3zn 2000 (0%)
MLSD - 81.95 2000 (0%)

0.01 84.38 201 (89.95%)

0.02 85.59 309 (84.55%)

0.04 85.45 460 (80.75%)
MLSD+

0.06 85.44 550 (77.00%)
Improved

. 0.08 8542 603 (69.85%)

mechanism

0.1 85.23 654 (67.30%)

0.5 83.64 1348 (32.60%)

1 82.86 1735 (13.25%)

From Table 5-1, it is seen that the proposed MLSD can achieve the
highest retrieval accuracy compared with other four moment-based approaches.
The retrieval system is not only able to improve the accuracy, but also speeds up
the searching and saves as far as 84.55% of the computation.  Thus, it
indicates that the global characteristic, i.e. the ratio of major and minor principle
axes of best-fit ellipse in the object, can successfully describe the shape at an
early stage so as to give quantity matching in the database and thercfore to

speed up the retrieval system.
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Table 5-2 Retrieval accuracy of Set 2

eval Average
Retrieval accuracy number of
Shape comparison
descript for each
ESCIplOT | Group | Group | Group | Group | Group | Group | Group | Group | Group | Group image
1 2 3 4 ] 6 7 8 9 10
{percentage
saved)
Hu 3507 | 3154 | 4470 | 1922 | 1838 | 3880 | 1542 | 1261 | 1452 | 37.75 | 2810(0%)
Affine 2646 | 2278 | 1897 | 1273 | 1487 | 3023 | 1386 | 1087 | 1474 | 31.82 | 2810(0%)
Dudani 1222 | 18.91 | 4676 | 1662 | 1786 | 3498 | 1554 | 1261 | 15109 | 3878 | 2810(0%)
Improved | 2064 | 1861 | 2552 | 1247 | 1222 | 2932 | 13.74 | 1000 | 1407 | 3265 | 2810 (0%)
MLSD 1367 | 3045 | 2059 | 2065 | 1650 | 3922 | 1687 | 1217 | 2030 | 3511 | 2810 (0%)
MLSD+
Improved | 305 | 3038 | 4579 | 2406 | 2128 | 45.42 | 18.43 | 1349 | 2037 | 38.02 1250
mechanism (55.55%)
(A;=0.2)

Table 5-2 shows a possible saving of 55.55% after using the improved

mechanism. Qur proposed MLSD with improved two-step mechanism can
significantly reduce the computational complexity, while the retrieval accuracies

are much better in almost all of the groups.

To evaluate a shape descriptor for MPEG-7, the descriptor is required to be
invariant to rotation, scaling and translation and to be able to measure perceptual
similarity of shapes. Other than the invariant properties, the proposed MLSD
achieves the advantages of small memory for storing the descriptor, small
computation for descriptor extraction and hierarchical represented with quadtree
structure. Moreover, we applied the MLSD into a general application, 1.e.
trademark image retrieval. From the experimental results, it is shown that the
retrieval system with considering both global and local characteristics can perform
good retriecval accuracy and fast- searching. Besides, no drastic performance

degradation will happen with increasing size of the database.
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5.5. Chapter Conclusion

We have presented a retrieval system with a new multi-layer shape descriptor
(MLSD) invariant to rotation, scaling and translation and an improve two-step
mechanism. From the elaboration of the best-fit ellipse concept, it is found that
the first invariant measures the total spread of the shape relative to its area square
while the second invariant measures the degree of elongation of a best-fit ellipse on
the shape. On the other hand, MLSD describes the object by dividing 1t into four
sub-regions by using two principal axes of the best-fit ellipse, which is located at
the center of mass. Each sub-region is then sub-divided into four sub-regions in
the same way. Then the node of a quadtree representation 1s used to represent the
corresponding region of the object. Three kinds of parameters invanant to
rotation, scaling and translation are calculated for each node. Besides, an
improved two-step mechanism with considering both global and local
characteristics of the object is proposed to speed up the matching process. From
the experimental results, it 1s shown that MLSD can achieve better retrieval rate
than other four moment-based approaches and the improved two-step mechanism
not only further improves the retrieval accuracy but also avoids unnecessary image
matching. It reduces computational complexity, resulting in an effective and

efficient image retrieval algorithm.
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Chapter 6

Conclusions

6.1. Conclusions of the Present Work

In this thesis, a practical important tool, the Moment Invanants, for pattemn
recognition has been studied. The moment invariants are the popular and useful
image features for shape recognition. It gains the advantages of simple and fast
calculations as well as the shape features extracted are invariant to rotation, scaling
and translation of the objects. Moreover, several moment-based approaches (Hu
moment invariants, Affine moment invariants, Dudani moment Invariants,
Improved moment invariants and Sluzek’s moment-based approach), which are

developed to extend the recognition ability for different kinds of objects, are
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introduced.

In the initial part of this work, the basic theories and derivations of these five
moment-based approaches are presented. We have investigated how the features
extracted from these moments can perform the rotation, scaling and translation

invariance.

In Chapter 3, we have discussed the interpretations of second and third-order
based Hu moment invariants. From both theoretically and experimentally
analysis, it is found that the first invariant measures the total spread of the shape
relative to its area square while the second invariant measures the degree of

elongation of a best-fit ellipse on the shape. Useful properties have also been

found for objects with symmetric along ¥ =+x/v3 and » =i\/§x, when the

third invariant is used. For the fourth invariant element, when fitting a best-fit

ellipse on the object, the term of af2 + by’ is formed to be constant..

In Chapter 4, we have given an analysis of quantization error due to scaling
and rotation for four moment-based approaches. They are Hu moment invariants,
Affine moment invariants, Dudani moment invariants and Improved moment
invariants. We have found that the error due to scaling increases as the object size
decreases. The Dudani moment invariants tend to have a larger error than that of
the other three moment-based approaches. Moreover, the error due to rotation

increases as the object is rotated with an angle other than &= 0°, 9(0°and 180°.

In order to ensure that the shape descriptor is invariant to translation, scaling
and rotation, we can apply the analysis of the quantization effects to scaling and
rotation for selecting the threshold for an object searching system. From our
experimental work, it is proved that all scaled and rotated objects can be retrieved
correctly by setting the threshold to the value of the error.

——'——‘—'——ﬂ_'———_——#—_——__'_—_
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In Chapter 5, we have presented a retrieval system with a new multi-layer
shape descriptor (MLSD) invariant to rotation, scaling and translation and an
improve two-step mechanism. The MLSD has been used to describe the object
by dividing it into four sub-regions by two principal axes of the best-fit ellipse,
which is located at the center of mass. Each sub-region is then sub-divided into
four sub-regions in the same way. Then the node of a quadtree representation is
used to represent the corresponding region of the object. Three kinds of
parameters invariant to rotation, scaling and translation are calculated for each
node. Besides, an improved two-step mechanism considering both global and
local characteristics of the object is proposed to speed up the matching process.

From the experimental results, it is shown that the MLSD can achieve better

- retrieval rate than other four moment-based approaches and the improved two-step
mechanism not only further improves the retrieval accuracy but also avoids the
unnecessary image matching. This can reduce the computational complexity,

resulting in an effective and efficient image retrieval algorithm.
6.2. Future Work

Based on the current work reported in the thesis, further work can be carried out in

several directions. Let us elaborate some of these directions.

6.2.1. Emptiness Problem
Moment invariants are a kind of region-based shape descriptors. They cover
both contour and internal details of an object. Let us consider two types of
objects (filled objects and trade;'nark objects) and investigate the classification

ability of the moment invariants within these two types.
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6.2.1.1. Filled objects

The characteristic of filled objects is that it is no need to consider the internal
details of an object. We can evaluate the filled objects as a whole shape.
Three irregular filled objects are used for this experiment (Fig. 6-1). For each
type of objects, a set of four objects is generated by varying length a and width
b, i.e. a=ka, and b=kb, where k=0.5, 1, 2 and 3. Moreover, another five
objects, which wer;a generated by varying the rotational angle, 6, at 0°, 45°, 90°,
135° and 180° are used. Table 6-1 and Table 6-2 show the exact results of Hu
moment invariants with these two sets of objects. Table 6-1 tries to show the
property of scaling invariance, while Table 6-2 tries to show the property of
rotational invariance. Moreover, it is easily seen that these three objects can be
distinguished themselves even only using second order based moment invariants,
i.e. ¢; and ¢. Therefore, it indicates that calculating the objects by the second
order based Hu moment invariants can achieve certain invarniance properties,

when the filled objects are being examined.

~t

(2) (b) (©)

Figure 6-1 Three irregular filled objects
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Table 6-1 Actual values of Hu moment invariants with different scaling factors

T | e | | d | 80100 410 gm0y
(a) 0.5 0.276996(0.01022610.002186|0.000567| -5.6 33 -2.8
1 0.275193|0.009710(0.002214/0.000545| -5.2 3.6 -3.0
2 0.27522110.009710{0.002214|0.000545| -5.2 -3.6 -3.0
3 0.275226(0.009710|0.002214(0.000545| -5.2 3.6 -3.0
(b) 0.5 0.551339|0.227978{0.033342(0.003605| -392.0 | -171.2 53.6
1 0.551518|0.228330(0.033608(0.003621| -399.0 | -172.8 26.8
2 0.551556(0.228330)0.033608(0.003621| -399.0 | -172.8 | 26.86
3 0.551563)0.228330/0.033608{0.003621| -399.0 | -172.8 26.8
(c) 0.5 0.347064(0.036229(0.017482(0.002149{ 110.0 40.9 -712.6
1 0.345212(0.035022]0.016652(0.001911| 85.0 35.6 -66.4
2 0.345238|0.035022|0.016652|0.001911| 85.0 35.6 -66.4
3 0.345243(0.035022(0.01665210.001911| 85.0 356 -66.4

Table 6-2 Actual values of Hu moment invariants with different rotational angles

T a | a | e | | pea0) | a0t | g0y
{a) 0° 0.27522110.009710|0.002214/0.000545| -5.2 -3.6 -3.0
45° 0.273921|0.009524(0.002183|0.000530] -4.9 3.5 -3.0
90° 0.275032[0.009670(0.00222610.000545| -5.2 -3.5 -3.0
135°  10.274136]0.009612(0.002180(0.000521| 4.7 -3.5 29
180° |0.275032(0.009670(0.002226{0.000545| -5.2 -3.5 -3.0
(b) 0° 0.551556(0.228330(0.033608(0.003621( -3990 | -172.8 26.8
45° 0.548230(0.225702|0.032723|0.003530| -3774 | -167.2 38.4
90° 0.550786(0.227550]0.033533,0.003615| -397.0 | -172.2 29.1
135°  |0.548428(0.225778(0.032798]0.003536| -378.8 | -167.5 389
180° [0.551272|0.228066|0.033586(0.003619| -398.2 | -172.7 243
{c) 0° 0.345238]0.035022|0.016652[0.001911] 85.0 35.6 -66.4
45° 0.342763|0.03409410.016271|0.001840( 79.1 33.9 -62.3
90° 0.344805(0.03481910.016658(0.001939| 86.3 36.0 -68.5
135° 0.342482(0.033740|0.016167[0.001817| 75.9 332 -62.6
180° 10.344805]0.034819(0.016658(0.001939| 86.3 36.0 -68.5
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6.2.1.2. Trademark objects

There is a big difference between filled objects and trademark objects
themselves. Trademark objects contain both the contour and the internal

details. Let us consider four trademark objects (Fig. 6-2). They are similar in
shape, but their values obtained from Hu moment invanants (Table 6-3) are very
different. As shown in Table 6-3, we cannot categorize these objects into the
same group especially Figs. 6-2a and 6- 2b. In view of the object itself,
generally these two objects are the same, but the difference is on the width of
edges. The width of edge of Fig. 6-2a is “thicker” than that of Fig. 6-2b.

Therefore, it indicates that there is a limitation on moment invariants in

A A
) @)

Figure 6-2 Four trademark objects

trademark object identification.

Q) (&

(@ b)

Table 6-3 Actual values of Hu moment invariants for Fig. 6-2(a-d)

Feue | g 1aa09| g | Ax107) |4sx10™0)| de(x107) | g(x107)
(a) 0.336555 105.9 0.001073 1.6 0 -13.0 0
(b) 1.039531 379.6 (0.034821 | 58974 | -26564.0 | 113778.0 | 2927.0
(© | 0400986 | 26 | 0.004155| 65.1 100 1.0 2.0
{d) 0.612406 1.7 0.010449 101.4 -8.0 -81.0 -32.0

In order to elaborate the problem clearly, a simple rectangular object (Fig.

6-3) with the width of edges w; and w; is used as an example to show the results

of some preliminary theoretical and experimental studtes.

e ——
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Figure 6-3 A rectangular object with width of edge w, and w;

The second ‘order based Hu moment invariants (¢; and ¢) are calculated

for both continuous integral and discrete summation cases. The required

equations are shown as below.

Case 1. Continuous integral

por _@brab ~@=m) b= w) =@ m)b-w) ©.1)
12(aw, + bw, —w,w,)
s _abmab @y Gow)r@w)b-w)E

144(aw, + bw, — w,w,)’

Case 2: Discrete summation

8% = [?‘;—b[(za —~1)(4a 1)+ (2b-1)(4b-1)]-
2(aw, +bw, - w,w,)[2a(a—1)+2b(b—-1) +1] +
¢ '3“" [2(6b —1)(b — w,) + 4w} (w, —3b)+8b* (3w, —2b))]+ (6.3)

b-w,

[2(6a—D(a-w,)+ 4w’ (w, ~3a)+ 8a* (3w, — 2a))]j|

16(aw, + bw, —w,w, )’

¢, = [%f[m ~1)(4a -1) - (2b - 1)(4b - 1)] -

4(aw, + bw, — ww,)[a(l-a)~b(1-b)]-

a-w,

[2(66 = 1)(b'— w, ) + 4w (w, —3b) + 8b° (3w, —2b))]+ (6.4)

b-w,

[2(6a —1)(a~w,)+dw] (w, =3a)+ 8a’ (3w, - 2a))]]

[4(aw, + bw,—w,w,)]"
As shown in eqns. 6.1 to 6.4, the expressions in discrete summation case

——————__——_"_——"#——-—_—_—"—__-—
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requires a larger computation complexity as compared with that in continuous
integral case. It also indicates that the influence of the widths w; and w; in the
discrete summation is higher. Therefore, the second order based moment
invariants cannot perform well when the objects contain emptiness part, like
hole, and their widths of edge are difference.

In order to have a deeper analysis on the aspects that the object contains
emptiness part, we further simplified the rectangular example by equalizing the
w; and w; (i.e. w = w; = w;) and did some re-calculation. The following two

equations have been formulated.

Case 1: Continuous integral

e —1 (a_b)z
= 6.5
# 6 +12w(a+b—w) (6)
2
¢ZCR= a—b_ a-b N ab(a—b) : (6.6)
2w 12(a+b-w) 6w(a+b-w)
Case 2: Discrete summation
_ _ 2
¢‘DR =_I+ {a-b) _ a+b 6.7
6 12w(a+b-w) 24w(a+b-w)’
2
¢2m= a=b (a-b)a+b) N ab(a - b) (6.8)
6w 12wla+b—w) 6wa+b-w)

In discrete summation case, it is seen that w presents in the denominators
of ¢°% and #"* only. It indicates that if parameter w is large enough, the
effect on different widths of edges in the object can be ignored. It is consistent
with the findings from the examples of filled objects in the previous section.
Therefore, the second order based moment invariants perform better in
identifying the filled objects. On the other hands, if the parameter w is

decreasing and lastly reaches 1, the problem of emptiness becomes significant.
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It is because both ¢;”% and #,°® contain the parameter, w, in the denominators.

So, the difference of the second order based moment invariants between objects
with 15 pixels width of edge and 1 pixel width of edge is big. This idea is
confirmed by the experimental results as shown in Table 6-3. Hence, we refer
this as emptiness problem. This problem occurs when the objects contain

holes and their widths of edges are different.

2 —— ¢,
DR
2 W\ —— ¢,
3 \ —— MIDR
315 o
-
E \ —— M,
g2 DR
2\ o
5 DR
—— i,
DR
0 —— Cl

1 2 5 10 15 20 25 Filled
Width of edge

Figure 6-4 Actual values of four approaches while varying width of edge of

rectangular objects

Moreover, this problem occurs not only in Hu moment invariants but also
the other moment-based approaches, which have been discussed in the pervious
section. Fig. 6-4 shows the actual values of four moment-based approaches in
second order while varying width of edge of rectangular objects. Besides,
since improved moment invariants aims to handle the contour objects, the edge
detection is applied to two sets of elliptical and rectangular (same as in Fig. 6-4)
objects with varying width of edée. It is also found that this approach fails to
distinguish these two different groups of objects. From Fig. 6-5, it is shown
that the actual values are overlapped. For the first element of improved

moment invariants, the values for elliptical objects range 0.004859 10 0.019511

-103-
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Actual value

as the width of edge increases from 1 to filled, while the values for rectangular

objects range 0.005223 to 0.020834. The second element gives similar result.

That is the values for rectangular objects range 0.0842x10™ to 1.3006 x10,

while the values for rectangular objects range 0.0894 x10%t0 1.3758 x10™.  As

a result, the emptiness problem happens on all four moment-based approaches

and it cannot be resolved by simply using edge detection only.

Therefore, we are interested in applying the normalization technique on

MLSD to solve this emptiness problem.

0025

0.02

0.015

=
=1

§

L=

-~ -®--- forelliptical objects

——— for rectangular objects !

] 2 5 10 15 20 25 Filled
Width of edge

(a)

Actual value

| - - -®--- for elliptical objects
. ——— for rectangular objects

i 2 5 10 15 20 25 Fifled
Width of edge

(b)

Figure 6-5 Actual values of the (a) First element and (b) Second element of Improved

6.2.2.

moment invariants on the elliptical and rectangular objects

Analysis on Moment-based Approaches with Different Deformations

In Chapter 4, we have presented the error analysis of four moment-based

approaches under the scaling and rotational changing of the objects. The

studies show how well four approaches can perform under the quantization error

due to scaling and rotation. In fact, there are a number of deformations, such

as

cylinder-horizontal, cylinder-vertical, perspective-horizontal,

perspective-vertical, pinch, punch and skew. Fig. 6-6 shows some sample

objects after deformations.

—_— e —
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We can carry out the experimental work to evaluate and realize the

discriminative power of these approaches for the deformed objects.

(k)

Figure 6-6 (a) Original object, objects after (b) Cylindar-horizontal 45%,
(c) Cylinder-vertical 45%, (d) Perspective-horizontal 45%, () Perspective-vertical
45%, (f) Pinch 45, (g) Punch 45, (h) Skew-horizontal 45, (i) Skew-horizontal -45,
() Skew-vertical 45, and (k) Skew-vertical -45

e e R e ——
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6.2.3. Feature Extraction on Color
Color is another key feature of images. It is a visual feature, which is
immediately perceived when looking at an image.

Qien et al. [80] proposed a new method, called color blob histogram, for
image indexing and retrieval that is based on pixel statistics from varying spatial
scales. The blob histogram employs a structuring element to determine the
frequency distribution of pixels locally in the image and to detect local groups
of pixels with uniform color attributes. The frequency distribution and relative
sizes of such groups are summarized into a table termed blob histograms. By
embedding spatial information, color blob histograms are able to distinguish
images that have the same color pixel distribution but contain objects with

- different sizes or shapes, without the need for segmentation. Using isotropic
structuring elements, blob histograms are invariant to rotations and translations
of the objects in an image. The conventional color histogram encodes the
frequency distribution of single pixels with uniform color, while color blob
histogram encodes relative size and frequency distribution of groups of pixels
with uniform color.

The colors in the image are quantized into M different colors
€e.C1,€2,...Cx.1.  The procedure of calculating blob histogram includes: (1) to
find the histogram at scale s which consists of multiple bins for each color ¢,
and (ii) to store each bin As(m,{} the number of locations at which the structuring
element contains a certain percentage of pixels that are color c,.. The
percentage axis of the blob histogram is quantized into L different values
ro.r1.ra...ri-;- The blob histogram has MxL bins. The histogram is computed

by visiting each location in the image, retrieving the colors of all pixels

e —
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contained in the structuring element Es overlaid on that location, computing the
percentage of pixels of each color, and incrementing the histogram-bins As(m,!)

corresponding to the percentage of pixels with a certain color.

For example as shown in Fig.6-7: Eight different colors and three different
fraction ranges (M=8 and L=3). The structuring element is square and has a
size of 9 by 9 pixels. At this location, the structuring element contains 14
pixels with color.Cl (about 17% of the pixels), 24 pixels with color C3 (about
30%) and 43 pixels with color C7 (about 53%). In this case, the structuring
element is counted three times. It represents a group of pixels of a different
size in each time. The blob histogram As(m,!) can be normahzed by the

number of structuring elements.

COLOR [0-20%  |20-50% |50-100%

co
LA IS0 Cl +1
IGO0 =
R
TR
BIEE
2=
- +1

Figure 6-7 Extraction of color blob histogram

Note that the shape of a structuring element is not restricted.  If we use
isotropic structure elements, the computed blob histograms are invariant to
rotations and translations of the objects in an image. Moreover, when L equals
1, the blob histogram become; a conventional color histogram. Hence, our
next suggestion of further work is to modify the structuring element by using
different shaped or sized elements or to re-develop the blob histogram by using

an even-distributed fraction ranges, L.
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