Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Competitive Algorithms for On-line Problems and

Their Application to Mobile Agents

By

Ma Weimin

A Thesis Submitted to
The Hong Kong Polytechnic University
in Partial Fulfillment of the Requirements
for the Degree of

Master of Philosophy

[Temporary Binding for Examination Purposes]
Department of Computing

The Hong Kong Polytechnic University

March 2002

Pao Yue-Kong Library
& PolyU ¢ Hong Kong

Abstract of the thesis entitled “Competitive Algorithms for On-line Problems and
Their Application to Mobile Agents”.
Submitted by Ma Weimin for the degree of Master of Philosophy at the Hong Kong

Polytechnic University, March 2002.
Abstract

Most traditional optimization theories deal with finding an optimal solution to a
problem with initial conditions that are known and fixed. If the initial conditions
change, most solutions foundl using these algorithms will not remain optimal.
Researchers investigating competitive algorithms for on-line problems are exploring
strategies for producing solutions that are proportional to the optimal solution (within
a certain range), even in the worst cases. In contrast to the conventional (model-based)
on-line approaches and the existing off-line strategies for optimization, we propose
several new on-line competitive algorithms. These algorithms apply competitive
analysis to on-line performance evaluation. In these proposed algorithms, we focus on
several on-line problems, which include: (1) the on-line &-truck problem, (2) the on-
line k-sever problem with twin-request, and (3) the on-line number of snacks problem.
For each of these problems, several research steps are involved: (1) to establish and
describe a model of the problem; (2) to construct a relevant on-line algorithm to solve
the problezv'n; (3) to derive a competitive ratio, which is an important measure of an
on-line algorithm; (4) to provide a report on performance analysis and preliminary
results; (5) to describe future work on the application of the proposed algorithm to

task scheduling for systems based on mobile agents.

With rapid growth in the use of on-line systems, on-line algorithms are playing an
increasingly important role in decision-making for higher performance. A general on-
line problem requires an optimized solution to either maximize the benefit or
minimize the cost based on the existing information associated with the system. There
are three key issues to consider: (1) the identification/specification of an on-line
problem, (2) the decision strategy of an on-line algorithm, and (3) the performance
measurerﬁent used for optimization. In this thesis, three new kinds of on-line
problems are proposed, and several competitive algorithms (with good competitive
ratios) are provided to solve these problems. Application of these algorithms to

systems with mobile agents is also discussed.

Based on the existing results conceming on-line problems and competitive algorithms,
we first propose the on-line &-truck problem, which is an extension of the famous k-
server problem. With the help of the Position Maintaining Strategy (PMS), we give
different competitive algorithms according to the different cases of the k-truck
problem. Next, we extend the k-server problem. Traditionally, the k-server problem
assumes that at any given time there is only one request occurring, and no new request
can occur until the previous request has been satisfied. Based on this observation, we
propose the concept of a k-sever problefn with multi-request. Specifically, we focus
on the k-server problem with twin-request and employ the work function algorithm to
obtain some minor results. We also give a lower bound for the k-server problem with
twin-request, but it needs further improvement. Next, the on-line number of snacks
problem ié proposed, which is a realistic noshery management problem. We discuss

four versions of this problem, and also provide relevant competitive algorithms. This

1l

is followed by analysis and evaluation of the algorithms for the on-line number of
snacks problem. Next, we employ the theory of on-line problems and competitive
algorithms to handle the dynamic allocation of mobile agents in an on-line task-
scheduling problem. A new approach is presented to solve this problem for high
performance in Intemet computing. Of course, there are many unsolved problems
concerning on-line problems and competitive algorithms. How to combine the
existing theories with more realistic problems is still a challenging question. Finally,

we discuss future work and further research directions.

Keywords: on-line problem, competitive algorithm, k-server problem, k-truck
problem, on-line number of snacks problem, on-line k-server problem with twin-

request, dynamic allocation of mobile agents.

v

Acknowledgement

The completion of this thesis would not have been possible without the help of many

teachers and friends, to whom I would like to express my heartfelt appreciation.

First, I would like to express my deepest thanks to my supervisor, Dr. Jane You. I
gratefully acknowledge her help in adopting a correct attitude to my academic
research, in choosing a suitable direction for my research, and in improving my
writing of more professional academic documents. I would like to thank her for her
kind supervision and continuous support during my M. Phil study at the Hong Kong
Polytechnic Universiq'/. I believe that I leamed a lot from her, both in terms of the
technology involved and in terms of a general research methodology. I also believe

that my experience as her student for two years will be of great benefit to me

throughout my life.

Another excellent person, whom I would like to express my deep gratitude to, is Dr.
James Liu. Although he was not my supervisor or co-supervisor, we had many
discussions that were helpful to me and he gave further useful suggestions when I
* wrote papers and this thesis. On each occasion, he read my draft documents carefully
and usually found a constructive way to correct any errors using his acuminous insight.
Without his help, I believe that I would not have had the opportunity to finish two

journal papers as well as this thesis.

Next, I would like to express my heartfelt thanks to Prof. Xu Yingfeng, the supervisor
of my Master and Doctor of Management studies at Xi’an Jiaotong University. He
gave me many valuable suggestions for my academic research even though I was
studying in Hong Kong. He introduced me to the subject of on-line problems and

competitive algorithms.

I also would like to thank Dr. Raymond Lee, Mr. Xinfeng Yang, Mr. Hui Chen, and
Mr. Yanchao Xing for useful discussions and suggestions. In particular, I need thank
Mr. Xinfeng Yang and Mr. Hui Chen since some parts of this thesis have benefited

from their work.

I would like to express my thanks to Prof. Xizhao Wang, Prof. Kanliang Wang, Prof.
Dianhui Wang, and Prof. Minghu Ha, who shared with me not only their expertise in
computational linguistics and mathematics, but also their enjoyment of life. We had

many useful discussions that helped me towards finishing this thesis.

Also I would like to express my thanks to Dr. Fengwu Shen, Dr. Lihui Sun, and Dr.
Zhijun Zhu, my buddies in Xi’an Jiaotong University, who generously made available
to me useful discussions concerning the on-line problems and competitive algorithms.

~ Without their help, my research work would surely have suffered.

I would like to thank many of my friends in Hong Kong Polytechnic University: Prof.
Dapeng Zhang, Dr. Jiannong Cao, Dr. Allan Wang, Dr. Huaping Chen, Dr. Kuanquan
Wang, Mr. Renguo Xiao, and Mr. Ruifeng Xu, who continuously encouraged me

during the past two years.

vi

In addition to those involved directly with my research work, I would like to thank
many of my friends: Ms. Yan Li, Ms. Ye Yang, Ms. Sheng Liang, Mr. Guoqing Cao,

and Mr. Lei Zhang, who share the pleasure of life with me.
At last, but not the least, I wish to express my deepest appreciation to my parents, and

especially to my dearest wife and daughter, for their endless love and unwavering

support. This thesis is dedicated to them.

vii

Table of Contents

CRAPIET ...ttt et a e e s s s e e sae s s e e e s amnte s enneeaenn 1
INETOAUCTION ...ttt et s s a bt s e 1
1.1 Motivation and ODJECHIVES ..o cerccnr e e se s s e e e eennenens 1
1.2 Preliminary .. 5
1.2.1 BASIC CONCOPLSooeeereeeccreer e rer e cmeeeeeennme s senensnr e st e sae s sssba s asns e an e s bas st s ssesban 5
1.2.2 A SIMPIe EXAMPIE ...coiriciecctesecc v e e s bb e s s e e s ms e e s ame e e s e n e e s e ee 7
1.2.3 Application of the On-lin@ AIGOMTNM ...t 9

1.3 Literature Review of On-line AIgOrithmscccocverversreceniceieinissi s 10
1.4 Sructure 0f TheSIScciiiiicie s e s s s ean 14
1.5 List Of CONMMIDULIONSoveeriieciec s be s 15
1.6 List of PUBICALIONS ..ot e b 17
CRAPIET 2.ttt ettt st e n et e te e e s et e s se e e st st s e raes sraeesannseans 19
An Overview of the k-Server Problemcoovveeevinienenrnireene e S, 19
2.1 The Kk-Server Problem ...ttt ssa s sssssssesas s snne 19
2.2 Literature of the k-Server Problem ... 19
2.3 Some Important Results on the k-Server Problemcooiiriiie e 20
ChapPLer 3.ttt et e et e e et e e et bsa e st bt beaeanssa s s e anensnreas 23
The k-Truck Problemccccioivrvmrercireniesiconiesinenns s sressrr s e saes s s s s saessesona 23
3.1 Problem Statement ...t rr s as s s e s e s s s s s s sr e rae et 23
3.2 The Model of the k-Truck Problem...........ciimi e 25
3.3 Relationship Between the Server and Truck Problemscoocceiiiiicceccieneccecceeeennes 26
3.4 Several Lemmas and Position Maintaining Strategycccecevveciiirrecieecceeeceeeceeeeenne 27
34,1 TWO LBMMAS ..ottt sttt ettt et e e s aesn e e s ae e nnennnassnnenna 27
3.4.2 Position Maintaining Strategy e e s s sse s s e s as s 28

3.5 Off-line K-TruCK ProbIemc.ooie s s e e saesnesaan 29
3.5.1 Dynamic Programming (DP) SOIUtION ..o e enes 30

viii

3.5.2 Minimum Cost Maximum Fiow (MCMF) Solution...........ccov e, 32

Chapter d.... ... bttt s 35
Computational Analysis of the &-Truck Problemccccovviviinininiiicnes 35
4.1 The Results Concerning the Competitive Ratio for the k-Truck Problem A................... 35
4.2 Discussion on the Constraint Graphscccocevevmrnenicninsestcrrs e 39
4.3 Scheduling k Trucks on @ Special Graph..........veeeveeveieemromeecce ittt e 4
4.4 Comparison of the Two Algorithms for Solving Problem Pl ... 44
4.5 A Lower Bound for the k-truck Problemcccovcicmniin e 45
4.6 Concluding ROMArkS...........eeurecerererecenss e e e eee e s nen e 50
L1311 () e T OO OO 51
The k-Server Problem with TWIn-ReqUEStcooveoimrcimirrnceieierceeee e 51
5.1 INtrOAUCTION ...c.vruiiriiiiiciicic ittt e b e s e n e e 51
5.2 Preliminaries for the k-Server Problem with Twin-Requestccooviiiiiiiiiiiiinnna 55
5.2.1 An Optimal Off-line AlGOMtAM......cccvcivrrrirrrrrccr s 58
5.2.2 Work Function AlGOrithm ...t 59

5.3. The Special Case of a Metric Space with k + 2 Points teeteereot e te e anaanaa 65
5.4 ALOWEI BOUNG....... it e sre s st a e s s s s s e n e s s en s rnranaes 68
5.5, OPEN PrODIBITISeovicciineriiierree s eeeececeeeseceeeeeeeaeseeasssrssssssssaaanesssnenssasasssrsssssnssssssrrrnnans 72
CREPLET Bttt e e eaae e 74
On the On-line Number of Snacks Problemccoccomiinieincnicnc v, 74
6.7 INFOAUGTION ..ottt s b s e e r s baa e s s s sbar e s s n e ann s 74
6.2 The Number of Snacks Problem...........ccvvviiiininivn e 76
6.2.1 Problem Statement...........ciniiiiiinc 76
6.2.2 Assumptions about the Fluctuation in the Number of Customers.............c.c.....c..... 79
B.2.3. BESUIS.....coiiiiii e s 79

6.3 The Degenerate Version of P— Problem P1 ... e 81
6.3.1 Extreme Numbers Harmonic Algorthm ... e rr e 81
6.3.2 Competitive Ratio of the Extreme Numbers Harmonic Algorithm.........ccccceeevinnne.n. 81
6.3.3 A Lower Bound of the Competitive Ratiocccvrrrriiiceeireree e 83

6.3.4 The Upper Bound of the Competitive Ratioc..cccceireniieiierir e, 84

6.4 The General Version — Problem Pceiritiiiinneiscsinnnnncsnsts s ssss e 84
6.4.1 Transformative Extreme Numbers Hamonic Algorithmcoveveiiiiniinnninnes 84
6.4.2 Competitive Ratioccoovcreicrree st s 85
B.4.3 LOWET BOUNDoovonercererereeiesarsse o sessessssssssssssssassssssassssssssssssssssaneassasssssaseasenssorasanns 85

6.5 The Degenerate Special Version of P"— Problem P ..., 86

6.5.1 Local Extreme Numbers Harmonic AIGOMIthM............ev.cucuersersrassesusrensenesessessssansncecees 86
5.5.2 Competitive Ratiocociiiiiiniieccserrnrssin e mr e bbb s srs b e neanns 86
6.5.3 A Lower Bound of the Competitive Ratio.........ccmeeiicinmimicninneens 88

6.6 The Special Version — Problem P’ ... s s anae 88
6.6.1 Transformative Local Extreme Numbers Harmonic Algorithm.........ecvvveeeenneninene. 88
6.6.2 Competitive Ratio........cccccevvvriniiniiiii s s 89
6.6.3 A Lower Bound of Competitive Ratiocccccerrveririinicinnce et rcrceennemrceneecessneens 89

6.7 Evaluation of the RESUIS ...t et 89
6.7.1 Evaluation of the Competitive Ratios ..., 89
6.7.2 Comparison of Probloms P1 and Pccoocniiminescnsessssnsissii s 20

6.8 Conclusions and FUUre WOrK..........coccivmiininnnncncnsisnsssssssssse s 91

L0 1 10123 o U RO PPN 93
Dynamic Allocation of Mobile Agents by On-line Task Schedulingc...cccccoeee 93

0 10T ¥ T2 OO 93

7.2 Agent-ariented Computing Paradigm..........ccoiiiimin i e 96

7.3 Multi-agent System SHUCUIB ... s g9

7.4 ONlING TaSK-SCROAUING AIGOTAM......o oo eeeeeeeeee e eeeessensesessssssenneeees 103
7.4.1 General Harmonic Algorithm (GHA} ..ot anane 105
74,2 Competitive RAtI0coociieiecie et s 106
7.4.3 Lower Bound for the Competitive RAt0ccccvvvieermrrcrcirc e e 107

7.5 TWo MOre Corollariasociiiiiiiiinienineieer e s e s 109

7.6 CONCIUSIONS ...ttt e e m s e an e s s e bes st b eent e s s 111

CRAPLET 8.t re e st ae e st a s et be e e e nen e e ee et e nsnneeenae 112
FUTURE STUDY ..ottt et sa et e en e s e e essas s e e e sesneesannenae s 112

8.1 FOr the K-Server ConJBCIUTS..........cecvrrrrirsre ettt sbe st b sbs s s ss et 112

8.2 Othor On-lNe PTODIBIMSccoecueerierriirrereennere st cses s sss s s e e e ae st s s 112
8.3 Application to Management and Economic Problemscvcevivivccnnnicnicncinnnne 112
8.4 Continue Research into the A-Truck Problem ... 113
8.5 Application to Agent-based E-COMIMEICE...........cccommrrincnsinir e ssersrvessnnenne 113
BIBLIOGRAPHYooooiiiiiiiiiiirerreieeesresserervnes e s seessssessne e nesesnessraesssrmsssnnronne 114

Xi

List of Figures

Figure 1.1. On-line 2-server problem on a 3-node graph................ooooiii 7
Figure 6.1. The curve of competitive ratio with the fluctuation @........................ 90
Figure 6.2. The difference of the problem P1 and problem P’ ’(n days game)......... 91
Figure 7.1. Aglet major life events................ooiiiii i 98
Figure 7.2. Multi-agent system structure enhanced by online task-scheduling
BIBOTIENIM ... e 100
Figure 7.3. Relation betweend/mand p/g.............coooiiiiiiiiiiiiiiiiiiiiiiae, 109
Figure 7.4. Relation between cxand @..............ooooiiiiniiiiiii e ieeeees 111
Figure 7.5. Relation between @ and d/mi.............ccoviiiiiiiiiiiiiiiiiiiiiieeeann, 112

Xii

CHAPTER 1: Introduction

Chapter 1

Introduction

The purpose of this research is to study several on-line problems and their associated
competitive algorithms in order to enrich the relevant on-line algorithm theories and
to exploit some wider and more realistic applications. In this chapter, we éxplain the
motivation and objectives of this research, provide introductory knowledge on the

relevant topics, and present an overview of this thesis.

Section 1.1 explains the motivation for conducting this research work on on-line
problems and competitive algorithms and describes the objectives of this thesis.
Some preliminary information concerning on-line problems and competitive
algorithms is presented in section 1.2, and section 1.3 briefly reviews the existing
literature. The organization of this thesis is outlined in section 1.4.l Next, the
contributions of this research are summarized in section 1.5. Finally, the publications

arising from this research are listed in section 1.6.
1.1 Motivation and Objectives

With the discovery of more on-line problems, and deeper research into competitive
algorithms, many results concerning on-line algorithms theory have been applied in
many different fields; for example, management, military affairs, computing,

economics, and so on. Decision-making can be considered in two different contexts:

CHAPTER 1: Introduction

making decisions with complete information, and making decisions based on partial
information. A major reason for the study of different algorithms is to try to answer
the question “which is the better algorithm” for solving a particular problem. The
study of the computational complexity of algorithms is useful for distinguishing
between characteristics of algorithms, in terms of the computational resources used
and the quality of the solutions they compute. However, the computational complexity
of algorithms may be irrelevant, or a secondary issue, when dealing with algorithms
that opérate in an uncertain environment. Competitive analysis has been found useful

in the study of algorithms that operate in a state of uncertainty.

Most people have this kind of experience when dealing with some general issues: they
say to themselves after the issue has happened “if only I had known that before, then I
could have done better”. In fact, if one knows enough conditions concerning an issue
one can always find an optimal solution, at least theoretically (for many NP-hard
problems, here the word “theoretically” was used). A famous person once said, “If
one could grow from eighty to one, instead of from one to eighty, most people of this
world would be great people”. Why is that the case? This is because people could see
the whole course of their life, and this foreknowledge would allow them to make the
best decision. Like this example, most traditional optimization theories deal with
finding the optimal solution to a problem when the known conditions are fixed.
Optimality in most cases is lost when those initial conditions change. Research into
on-line problems and competitive algorithms aims at exploring strategies that can
produce solutions that are proportional to the optimal solution (within a certain range),

even in the worst cases.

CHAPTER 1: Introduction

If we were to compare two arbitrary algorithms, A and B, on an instance-by-instance
basis, we could expect that sometimes A is better than B, and sometimes B is better
than A. Thus, such a comparison would not impose a total ordering on the quality of
the two algorithms, and it would not answer the basic question, “Which is the better
algorithm?” There are many ways to choose a quality function that imposes a total
ordering on these algorithms. One obvious possibility is simply to consider the worst-
case behavior of an algorithm; another is to make some assumption on the input
distn‘bution. As discussed later, both these measures are problematic, especially in the

context of algorithms that make decisions when conditions are uncertain.

Competitive analysis is useful in the analysis of systems that have some notion of
temporal progression, that have an environment, and that also have a memory state.
That is, there is some notion of a configuration that varies over time, and dealing with
future changes in the system’s configuration depends in some w;xy on the current
configuration. There are a great many problems that can be phrased in this manner,
and it does not matter whether time is an inherent part of the problem. For example, in
stock transactions the timing of events is important: the bid/asking price of a share is
valid for a very short period of time. In Lunar exploration, using a mobile probe, the
timing of events depends on the probe’s behavior; for example, an impassable crevice
in the lunar terrain is revealed only aftef going around a boulder. If the probe does not

go around the boulder then it will not leam of the problem.

Competitive analysis is certainly useful for “on-line algorithms” that have to respond
to events over time (e.g., fluctuating stock prices), but it can be used in many other

contexts as well. Competitive analysis is used whenever the nature of a problem

CHAPTER 1: Introduction

concerns making decisions with incomplete information. Information can be
incomplete because some -evcnt has not yet occurred (e.g., stock price tomorrow at
noon is unknown now), or obtaining the missing information requires action by the
algorithm (e.g., move the probe around a boulder), or it could. be because an algorithm
1s distributed and no single node has global information. Nonetheless, the largest body
of work involving competitive analysis deals with on-line problems, to the extent that

many uses of competitive analysis are mistakenly referred to as on-line.

Despite the existence of many unsolved on-line problems, and unresolved issues
concerning competitive algorithms, there are many real life on-line problems yet to be
discovered. Therefore further research can follow two directions, one of which is to
solve the current open problems, and the other is to discover new on-line problems.
New problems have to be modeled, and competitive algorithms have to be constructed
to solve them. In summary, the main objectives of this research/thesis are to:
¢ Discover some new on-line problems or transform exiting on-line problems.
¢ Propose some relevant on-line algorithms to solve these problems.
¢ Prove that these proposed on-line .al_gon'thms are competitive algorithms and
obtain the relevant competitive ratio.
e Evaluate the performance of the competitive algorithms according to their
competitive ratio.
o Apply the theories of on-line problems and competitive algorithms to mobile

agents.

CHAPTER 1: introduction

1.2 Preliminary

In this section, some introductory knowledge concerning on-line problems and

competitive algorithms is introduced.

1.2.1 Basic Concepts

What is an on-line problem? What is a competitive algorithm? In this section, we
answer these questions, and we present several basic concepts that are very significant

for this field of research.

Originally, on-line problem referred to a problem where the solver had to respond to
events over time to solve that problem. The concept of an on-line problem has now
been broadenedto include problems that ﬁeed the solver to make decisions with partial
information. Thefe is a famous Chinese idiom, “Why can one not see the real face of
Lu mountain? This is because one is on the mountain”. To solve an on-line problem,
one must make decisions “within” a problem (one cannot obtain all the information
about the problem, but one can obtain partial information) instead of from “outside”
of the problem. Another Chinese idiom can express the difficulty of the solving an on-

line problem, “Blundering are those who are concerned, while the onlookers see most

clearly”.

Algorithms for solving on-line problems are called on-line algorithms. Obviously, a
competitive algorithm is a kind of on-line algorithm. What is a competitive algorithm?
A very general model for the type of algorithms and problems we consider is that an
algorithm A is always associated with a configuration, and after a new portion of the

input becomes available the algorithm moves to a new configuration. We consider

CHAPTER 1: Introduction

two basic types of problems: maximization of benefit problems, and minimization of
cost problems. For benefit problems, there is a function to represent the benefit that
may be obtained. The value of this function depends on the input and on the sequence
of configurations occupied over time by an on-line algorithm A. For cost problems,
there is a cost function that depends on the input and on the sequence of
configurations occupied over time by A. This function represents the cost associated
with the solution that A finds. This informal model is a generalization of the task
system formalization, developed by Borodin, Linial & Saks [12] to inciude benefit
problems and other partial information problems that are not necessarily on-line

problems.

To avoid the problems associated with probabilistic models, we seek a worst-case
model that will hoid for any distribution. In addition, to avoid the problem that the
standard worst-case measure might be entirely insensitive to the algorithm used, and
give us no useful information, we must refine the worst-case measure. This is the
underlying idea of a competitive algorithm: we do not consider the absolute behavior
of the algorithm; instead, we consider the ratio between the algorithm’s behavior and

the optimal behavior for a given problem instance.

Let costa(I) denote the cost of algorithm A on problem instance I. We define the

competitive ratio of an algorithm A for a cost problem P to be the value:
inf{c|cos?,(I)< c-cost,(I),VIe P,VB}

Similarly, let benefit4(I) denote the benefit of algorithm A on problem instance I, then

we define the competitive ratio of algorithm A on benefit problem P to be:

sup{c | c - benefit (1) 2 benefir, (1 L Vie P,VYB}

CHAPTER 1: Introduction

Then on-line algorithm A is called the competitive algorithm and c is the competitive

ratio.

1.2.2 A Simple Example

To better illustrate the relevant concepts, we present a simple example of an on-line
problem and a competitive algorithm. Given a line on which there are three points,
iﬁitially two servers are located on the line, one each at points B and C, as shown in
Figure 1.1. The distance from A to B is one unit and from B to C is two units. We

assume when a new request occurs the two servers are both in their ready states.

o

B C

Figure 1.1. On-line 2-server problem on a 3-node graph.

To begin with, what is an on-line problem? For the above problem, if we know the
service request sequence o in advance, then the problem is off-line and we can easily
solve it using dynamic programming. However, if the service requests arrive
sequentially, and whenever we make a decision we only know part of the sequence o
which has occurred, the problem changes to an on-line problem. The decision maker

must make a choice without any knowledge of the future.

Next, we explain competitive algorithms. First, we illustrate why greedy algorithms
do not perform well. Despite their widespread application, from the perspective of

their optimization capability, we find these algorithms perform very badly under

CHAPTER 1: introduction

certain conditions. For example, consider an input request sequence ABAB---AB,
e ————

with a greedy algorithm a server will travel between the points A and B on m
occasions, and the total cost is valued as m. However, for this input sequence, we can
obtain an optimal solution (when m is greater than 3), by moving the server on the
point B to the point A and then moving the other server from the point C to the point B.
This is done once, and the optimal solution is only 3. Obviously, the ratio of the
values of the greedy algorithm’s solution to the optimal solution is (m—l)/3. This
value tends to infinity when m tends to infinity. Therefore, this greedy algorithm is
not a competitive algorithm, because its solution may be very far from the optimal

solution for an instance of this problem.

The weakness of this greedy algorithm is that it may let one server become very busy
while another is idle. We assume that the server on point i has moved D; units, the
shortest distance from poinf i to point j 1s dy;, and the server request occurs at the point
k. We can give a new algorithm (Balance Algorithm)as follows: (1) if

D, +d,, < D; +d, then move the server on point { to the point to satisfy the new
server request, (2) if D, +d,, > D, +d,; then move the server on point j to the point k
to serve the new request, and (3) if D, +d,, =D ; +d,; then choose one of them (i or j)

at random.

Using this kind of strategy, for the sequence ABAB---AB, we can get a solution of 5
[———

units. In fact, for any request sequence for the graph shown in Figure 1.1, if we
schedule the servers according to the Balance Algorithm, the total distance that all

servers move will be less than or equal to double the value of the optimal solution.

CHAPTER 1: Introduction

1.2.3 Application of the On-line Algorithm

One class of problems that seems to be inherently suitable for competitive analysis is
the class of on-line problems where a sequence of events (c=0i,03, ...) appears over
time and has to be dealt with immediately. An on-line algorithm has to make a

decision in response to an event without knowledge of future events.

A typical example of such a problem is the paging problem. When a page fault occurs
the paging algorithm has to decide what page is to be evicted from memory without
knowledge of future page access patterns. Many different flavors of on-line problems
have been considered in last two decades; these include data structure problems,
paging problems, distributed problems, packing problems, routing problems, graph

problems, scheduling problems, load balancing problems, financial problems, and

many others.

Partial information in the input to a problem instance is not only limited to lack of
knowledge about future events. In various exploration and navigation problems, the
issue is how to obtain the goal (e.g., search for a missing child, or reaching the beach)
while traversing the terrain efficiently without a map. Depending on the sensors

allowed (e.g., vision and touch), some of the missing information may be obtained by

performing a movement.

Another class of problems, where only partial information is available, is in a
distributed setting where the global configuration may be unavailable to individual

processors that are only aware of their own local view of the world. Again, as with

CHAPTER 1: Introduction

exploration/navigation in an unknown terrain, it may be possible to improve the local
understanding of the global environment at the expense of performing appropriate

cominunications between processors.

Since decisions have to be made under uncertainty, and because we consider a worst-
case measure, good algorithms seem indecisive with‘ respect to the competitive ratio.
Certainly, such algorithms seem to procrastinate before making any decision, which is
also difficult to repair if it proves to be a wrong decision. In the famous k-server
problem, algorithms with good competitive ratios will move multiple servers to an
active area only after a great length of time, even if no further activity takes place.
However, we note that a misunderstanding of the worst-case measure can lead to

difficulties in assessing this area.

1

With the rapid development of the Intemnet, an increasing number of disciplines are
incorporating Internet technologies. For example, agent-based methods and e-
commerce are based on Internet technologies. However, they need be combined with
many other disciplines, such as financial, management, mathematics and so on, in
order to develop further. In this report, we try our best to apply some of the techniques

from on-line algorithms to agent-based e-commerce.

1.3 Literature Review of On-line Algorithms

On-line problems and competitive algorithms are new areas in the field of
optimization; they have been paid much attention in the last three decades. On-line
algorithms have been implicitly and explicitly studied for approximately 30 years in

the context of scheduling, optimization, data structures, and in other computational

10

CHAPTER 1: Introduction

topics. The roots of competitive analysis can be found in established combinatorial
optimization theory [1]. Graham introduces a simple deterministic greedy algorithm
(the so-called “List Scheduling” algorithm) for a scheduling problem on parallel
machines, and he performs a complete worst-case analysis of this on-line algorithm.

However, Graham’s paper did not use either of the terms “on-line” or “competitive”.

In Volume 2 of “The Art of Computer Programming”, (Section 4.7 in [2]) Knuth
discusses the computation of the Cauchy product of two power series. The nth
coefficient of the Cauchy product can be computed based solely on the first n
coefficients of the two multiplicands. In the first edition of [2] in 1968, Kunth defines

“off-line” to be the complement of “on-line”.

The term “on-line” in the context of approximation algorithms was first used in the
early 1970s, when it was used to describe bin-packing algorithms. The first
description of on-line approximation algorithms, that were also called on-line
approximation algorithms, can be found in a Ph.D. thesis [3] and also in the journal
article [4] of Johnson. Johnson [5] suggests that the origin of the words “on-line” and
“off-line” lies in cryptographic systems, in which decryption was either done as part
of the communications system (i.e., on the communication line) or after the fact by

using other facilities (i.e., off the communication line).

The adversary method for deriving lower bounds on the competitive ratio is used
implicitly by Woodall [6] in the analysis of the so-called Bay restaurant problem
(which is essentially a linear storage allocation problem with an objective of annoying

the owner of the restaurant as much as possible). Kierstead and Trotter [7] also use the

11

CHAPTER 1: introduction

adversary method in their investigation of on-line interval graph coloring. Yao [8]
formulates a theorem, beginning with the words “For any on-line algorithm...”, which
proves the impos;sibility of an on-line bin-packing algorithm having a competitive
ratio that is strictly better than 3/2. This seems to be the first result stated for the class
of all on-line algorithms, applied to a certain optimization problem, which exploited

the distinction between on-line and off-line algorithms.

In 1985, Sleator and Tarjian published two papers, which triggeredlthe boom in on-
line algorithms, in the journal Theoretical Computer Science. In [9], they describe
competitive algorithms for the list update problem and for the paging problem. In
(10], they introduce self-adjusting binary trees and the famous dynamic optimality

conjecture for splay trees.

The phrase “competitive analysis” was coined by Karlin, Manasse, Rudolph, and
Sleator in their paper [11] on competitive snoopy caching. The paper [12] by Borodin,
Linial and Saks on task systems gives a general formalism for a great many on-line
cost problems. In 1988, Manasse, McGeoge, and Sleator published their k-server
paper [13] that contains their famous k-server conjecture. While the terminology used
is quite different, the first competitive analysis of on-line financial problems can
- definitely be associated with Cover in [14]. The first sets of problems to be studied in
terms of competitive analysis, which are not inherently on-line problems, are the

navigation and exploration problems of Papadimitriou and Yannakakis [15].

Much of the work in the field of on-line algorithms has been motivated because of

two open problems: the dynamic optimality conjecture for splay trees of Sleator and

12

CHAPTER 1: introduction

Tarjian [10], and the k-server conjecture of Manasse, McGeoch, and Sleator [13].
Both of these problems are still open, although it seems that very considerable
progress has been made. Even if these problems are very far away from being
decided, the study of these problems has resulted in a great body of useful research.
What is so special about both these conjectures is that both can be explained in a few.
minutes, yet they are seemingly very hard to prove (or disprove). These two
conjectures, with their misleading simplicity, explains why so much work has been

done in this field over the past few years.

Although many fundamental combinatorial optimization problems (e.g., bin packing,
machine scheduling, and load balancing) do not always have to be solved on-line (i.e.,
they are traditionally considered off-line problems), for such problems on-line
algorithms constitute an interesting restricted class of algorithms that may sometimes
yield surprisingly good approximate solutions. Approximation algorithms for NP-hard
combinatorial problems are of particular importance. Here the classic and perhaps
most studied problem is (one-dimensional) bin packing, where simple on-line
algorithms such as first-fit or best-fit provide reasonable approximations. Here
reasonable approximation means within a factor of 1.7 of the optimal solution, which
is computed off-line and requires non-polynomial time to compute in the worst case
(if P=NP). Perhaps the first explicit application of competitive analysis (although not
named as such) in the computer science literature was by Yao [8], who studied how
well on-line bin packing algorithms cbuid perform. At approximately the same time
(but using the terminology of “recursive combinatorics ” rather than “online
algorithms™), Kierstead and Trotter [7] demonstrated an optimal 3-competitive

algorithm for online coloring of interval graphs. There are many more “classical”

13

CHAPTER 1: Introduction

results relating to problems in combinatorial optimization that, at least implicitly,
relate to competitive analysis. In addition, this type of analysis can also be found in

the literature of decision theory as well as in the area of finance.

1.4 Structure of Thesis

This chapter introduces the motivation and objectives of the research work and
presents a summary of the current research situation conceming on-line problems,
competitive algorithms, and their applications in many different fields. In order to

illustrate the relevant concepts, a simple example of on-line theory is shown.

In Chapter 2, an overview of the k-server problem is presented. The statement of the
k-server problem, the literature concerning the k-server problem, and some important

results on the k-server problem are introduced in this chapter. ‘

Chapter 3 focuses on the introduction of the proposed k-truck algorithm. The model of
the k-truck problem, the relationship between the k-truck and k-server problem, and

two important results that are used to solve the k-truck problem, are introduced.

In Chapter 4, we present a report on performance analysis and preliminary results
concerning k-truck problem. Some competitive algorithms, relevant competitive

ratios and their proofs are given.

Next, in Chapter 5, a new on-line problem is proposed, the on-line &-server problem
with twin-request, which is a variant of the traditional k-server problem. Some

relevant competitive analysis is given. One special case of this problem is analyzed by

14

CHAPTER 1: Introduction

employing the famous Work Function Algorithm (WFA). Furthermore, a lower bound

for the competitive ratio and some open issues concerning this problem are given.

In the Chapter 6, we discuss another new on-line problem, the on-line number of
snacks problem, which was originally proposed by us. Some competitive analysis is

given and an evaluation for the performance of some on-line algorithms is introduced.

Chapter 7 involves explaining some applications of the theories of on-line problems
and competitive algorithms to Internet technologies: dynamic allocation of mobile
agents by on-line task scheduling. In that chapter, a complete procedure is presented

on how to apply the relevant theory to specific techniques.

Finally, in Chapter 8 suggestions for future work are given.

1.5 List of Contributions

The main contributions of this thesis are as follows:

e Based on the relevant theory of the on-line k-server problem and its
competitive solutions, the on-line k-truck scheduling problem is proposed.
Furthermore, the model of the &-truck problem is established on any metric
space. Next, several solutions, -including the Position Maintaining Strategy
(PMS) and partial-greedy algorithms, for this on-line problem are presented.
We present a lower bound for the competitive ratio, the solutions for the off-

line k-truck problem, and some competitive solutions for some special cases.

15

CHAPTER 1: Introduction

The different solutions for the on-line &-truck problem are compared and some

open problems are involved.

¢ The on-line k-server problem is generalized to the on-line k-server problem
with multi-request. This generalization brings this theoretical model closer to
reality. Employing the work function algorithm, a special case of the on-line
k-server problem with twin-request is considered and a competitive ratio is
obtained.” Furthermore, a lower bound for the competitive ratio of k-server

problem with twin-request is presented.

* The on-line number of snacks problem is proposed, and four variants of it are
discussed. First of all, the model of this problem is established and the
necessary assumptions are presented. We then present for each variant: a

. competitive algorithm, the relevant competitive ratio, and the relevant lower
bound for the competitive ratio. Finally, the competitive ratios of the four
variants are comprehensively analyzed, and the comparison is made between

two of these variants.

* A new approach is presented to the dynamic allocation of mobile agents, by
on-line task scheduling, for high performance Internet computing. A guided
allocation scheme, based on a system’s competitive ratio, is developed to
optimize the allocation of mobile agents. The proposed system combines the
push-based technology with an innovative on-line task-scheduling scheme to

speed up system response and minimize system overheads. System analysis

16

CHAPTER 1: Introduction

and simulation is used to demonstrate the feasibility and effectiveness of our

approach.

1.6 List of Publications

Journal Papers:

I. W. M. Ma, YF. Xu, and K. L. Wang. On-line k-truck problem and its
competitive algorithm. Journal of Global Optimization, 21 (1): 15-25,
September 2001.

2. W. M. Ma, I. You, Y. F. Xu, J. Liv, and K. L. Wang. On the on-line
number of snacks problem. Accepted by the Journal of Global

Optimization in October 2001.

Conference Papers:

1. W. M. Ma, H. Chen, J. You, J. Liu, and Y. F. Xu. On-line k-server
problem with twin-request. ISCA 17th International Conference on
Computers and Their Applications. Pages: 277-282. San Francisco,
California USA, 2002.

2. X.F. Yang, W. M. Ma, J. You, and J. Liu. On the Dynamic Allocation of
Mobile Agents by On-line Task Scheduling. Second International
Workshop on Internet Computing and E-Commerce (ICEC'02). Pages: 217,
Fort Lauderdale, Florida, USA, 2002.

3. X.F. Yang, W. M. Ma, J. You, and J. Liu. On-line Agent Scheduling in

Internet Computing. ISCA 17th International Conference on Computers

17

CHAPTER 1: Introduction

and Their Applications Pages: 293-296. San Francisco, California USA,

2002.
4. W M. Ma, Y. F. Xu, J. You, J. Liu and K. L. Wang. New Result on the k-

Truck Scheduling Problem. Accepted By The Eighth Annual International

Computing and Combinatorics Conference (COCOON'02).

18

CHAPTER 2: An Overview of k-Server Problem

Chapter 2

An Overview of the k-Server Problem

In this chapter an overview of the k-server problem, which is the basis for the &-truck

problem and k-server problem with twin-request, is given.

2.1 The k-Server Problem

The k-server problem can be stated as follows. We are given a metric space M, and k
servers which move among the points of M, each occupying one point of M.
Repeatedly, a request appears at a point xeM. To serve x, each server moves some
non-negative distance, after which the point x must be occupied by one of the servers.
The cost incurred to serve the request is the sum of the k distances moved. We must
serve this request by considering only past requests. In other words, the choice of the
server to meet a request at each step must be made on-line, that is, without knowledge
of future requests. Therefore (except for degenerate situations) no algorithms are able
to achieve the optimal cost on each request sequence. Our goal is to design a solution

strategy with a small competitive ratio.
2.2 Literature of the k-Server Problem

Sleator and Tarjan [9] introduce a worst-case complexity analysis technique for on-

line algorithms called competitive analysis. An on-line algorithm deals with events

19

CHAPTER 2: An Overview of k-Server Problem

that require immediate responses. Future events are unknown when the current event
is dealt with. Task systems [12], the k-server problem [13], layered graph traversal
[15], and on-line/off-line games [16] are all attempts to model on-line problems and

algorithms.

For the k-server problem, Manasse et al [13] prove that for all k£ and any metric space
of at legst k+1 points, no competitive ratio less than & is possible. On-line k-server
algorithms with a competitive 1“atio of k are known for specific metric spaces [9, 13,
17, 18], and Fiat et ﬁl [19] give a competitive ratio that depends only upon % for all
metric spaces. Fiat et al [20] deal with a generalization of the k-server problem
described in [13], in which the servers are unequal. Several authors independently
proposed the Work Function Algorithm (WFA) for the k-sever problem. WFA was
investigated by Chrobak and Larmore [18], who suggest that competitive analysis of
WFA can be done by estimation of the bseudo-cost. They also prove that WFA is 2-
competitive f(.)r 2 servers. Koutsoupias and Papadimitriou [21] proved that WFA is
(2k-I)-competitive for all k. The k-taxi problem is presented in [22]. The authors
provide a good strategy called PMS (Position Maintaining Strategy) to deal with the

on-line &-taxi problem.
2.3 Some Important Results on the k-Server Problem
In this subsection, we will introduce some important results on the k-server problem.

Although many useful results have been obtained, the famous k-server conjecture is

still open:

20

CHAPTER 2: An Overview of k-Server Problem

The k-server conjecture: Any metric space allows for a deterministic k-competitive,

k-server algorithm.

After considerable effort, researchers have nearly solved the k-server conjecture.
Koutsoupias and Papadimitriou [21] have shown that there is a generic k-server

algorithm, the work function algorithm, as follows:

Algorithm WFA: let o; be the request sequence thus far and let C be the configuration
of WFA after servicing the last request. Then, given the next request r=ri,;, WFA
serves r with a server s€ C satisfying:

s = arg min{w(C - x + r)+d(x,r)},
wC

Ties are broken with an arbitrary choice.
In fact, with algorithm WFA, the following theorem holds:

Theorem 2.1[21]: for any & and any metric space, algorithm WFA is (2k-1)-

competitive.
Also important for my research work is the Balance Algorithm (BAL) [13]:

Algorithm BAL: For each server s;, maintain its total distance traveled thus far as D;.

To serve a request r, shuttle the server s; that minimizes Di+d(s;, r).

In fact, the algorithm gives the following theorem:

21

CHAPTER 2: An Overview of k-Server Problem

Theorem 2.2{13]: BAL is k-competitive in any metric space with n=k+1 points.

Other results for the k-server problem are omitted since they are not related to the

research presented in this thesis.

22

CHAPTER 3: The k-Truck Problem

Chapter 3

The k-Truck Problem

In this chapter we introduce a new on-line problem, the k-truck problem, which is an
improved version of the k-server problem. We also present the problem statement, the
model of the problem, comparison between the &-server problem and the k-truck
problem. Several lemmas and the Position Maintaining Strategy are discussed.

Finally, we discuss the solutions of the off-line k-truck problem.

3.1 Problem Statement

The k-truck problem can be stated as follows. We are given a metric space M, and k&
trucks that move among the points of M, each occupying one point of M. Repeatedly,
a request appears at a pair of points x, ye M. To service a request, an empty truck must
first move to x and then move to y with the goods loaded at x. How to minimize the

total cost of all trucks? Let us first consider following problems:

(1) Given a service request sequence, how can we schedule trucks so as to
minimize the cost?
(2) If the service requests are received sequentially, in the process of servicing

them without any knowledge of the future requests, how do we minimize the cost?

23

CHAPTER 3: The k-Truck Problem

Problem (1) is an off-line problem, and (2) is an on-line problem. The difference
between them lies in whether the service request sequence is known in advance. The
former can be solved easily with dynamic programming, but the latter is difficult to
solve because we must serve the request based only on information concerning the

previous requests.

The k-truck problem aims at minimizing the cost of all trucks. Since the cost of
moving trucks carrying goods is different from moving empty trucks, the total
distance cannot be considered as the objective to minimize. For simplicity, we assume
that the cost of the truck carrying goods is × that of an empty truck traveling the

same distance. Then we take {1+6 } times the empty truck distance as the objective.

The k-truck problem is a generalization of the k-taxi problem [23] and well-known &-
server problem [13]. In the k-server problem, each request contains only a point x in
M. We must move a server to service a request at x. For the k-server problem, several
on-line algorithms have been proposed [13, 24, 21, 25, 26]. The k-taxi problem is
presented in [23]; it is a special case of the k-truck problem. The authors provide a
good strategy (Position Maintaining Strategy) to deal with the on-line k-taxi problem.
Some competitive algorithms for the k-taxi problem, which have good competitive

ratios, are given, The same strategy is also used in dealing with the on-line k-elevator

problem [61].

Let M be a class of metric spaces. We call an on-line strategy c-competitive for M if,
for every metric space in M and for every request sequence, the total cost incurred by

that on-line strategy is at most ¢ times the optimal off-line cost of serving the same

24

CHAPTER 3: The k-Truck Problem

request sequence. A strategy is competitive for M if it is c-competitive for M, for a
given value of c. Note that if a strategy is competitive then the respective definitions
hold for all metric space. More results, positive and negative, for on-line algorithms

can be found in [21,59].

3.2 The Model of the k-Truck Problem

Let G= (V,E) denote an edge weighted graph with n vertices, and the weights of the
edges satisfy the triangle inequality, where V is a metric space consisting of n vertices,

and E is the set of all weighted edges. We assume that the weight of edge (x, y) 18
denoted by d(x, y) and the weights are symmetric; that is, for all edges (x, y),
d(x,y)=d(y,x). We assume that k trucks occupy k vertices, whiéh are a subset of V.
A service request r =(a,b), a,b€ V implies that there are some goods at vertex a that

must be moved to vertex b (and for simplicity, we assume that the weight of goods is
the same for every request). A service request sequence R consists of service requests

in twm, R=(r....,r,) where r=(a,,b,), a,,b,€V . The on-line k-truck scheduling

problem has to decide which truck to move when a new service request occurs, on the

basis that we have no information about any future requests.
The following discussion is based on these essential assumptions:

1) Graph G is connected.

11) When a new service request occurs, all & trucks are available.

25

CHAPTER 3: The k-Truck Problem

1ii) All trucks move the same load weight for each request, and the cost of the
truck carrying goods is ftimes that of an empty truck covering the same distance,

and & >1.

For a known sequence R =7, s T), let Copr (R) be the optimal total cost after the

trucks finish serving all requests. For a new service request, if scheduling algorithm A

can schedule without information concerning the requests following r;, we call A an

on-line algorithm. For on-line algorithm A, if there are constants zand B satisfying:
Cu(R)Sa Cypr(R)+5 .

Then, for any possible R, A is called a competitive algorithm, where C, (R) is the

total cost found by algorithm A to satisfy the sequence R.

For a request r, =(a,,b,), the procedure for scheduling of a truck to move to g; is

called empty load, and to move from a;to b; is called heavy load. If there is no limit
for the R and @, the on-line truck problem is called P. In problem P, if for

anyr, =(a,,b,), d(a,,b,)>0, and 8 >1holds, the problem is called P1. Problem P1 is

also called the normal k-truck problem. In problem P, if there is no limit for any

r, =(a,,b,), but @ =1, the problem is P2. Problem P2 is also called the k-taxi problem.
In P2, if d(af,b,.)> 0, that isa, # b,, then problem P2 is called P3. Problem P3 is also
called the normal k-taxi problem. In problem P, if d(a,,b,)=0, that is a, = b, then P

is called P4. Problem P4 is also called the k-server problem.

3.3 Relationship Between the Server and Truck Problems

26

CHAPTER 3: The k-Truck Problem

Both the k-server problem and the k-truck problem are on-line problems. Obviously,
the k-truck problem is a generalization of the k-server problem and we can look at the
k-server problem as a special case of the k-truck problem. Some of the results that
were obtained in this research for the k-truck problem are based on the results of the

k-server problem. Finally, both problems can be represented by models in the metric

space.

As for their differences, the most important point concerns the way a request is
serviced. For the k-server problem, the service request is satisfied on a single point of
the graph. However, for the k-truck problem, the cost function for the service consists
of two parts, the empty load cost and heavy load cost. In other words':, for the k-server
problem, we schedule a server to the point where a service request occurs. Whereas
for the k-truck problem, we need to schedule a truck to the point where the service
request occurs and also allow the truck to carry some goods from this point to another
point to finish the service request. Moreover, the cost (per unit distance) is different
before and after the truck picks up the goods. In summary, their models are different,

their cost functions are different and their solution approach and results are different.

3.4 Several Lemmas and Position Maintaining Strategy

3.4.1 Two Lemmas

The on-line k-server problem is presented as a special case of the on-line truck
problem in [13]. There are many results on the competitive ratio for the k-server

problem. Koutsoupias & Papadimitriou show that there exists an on-line algorithm for

27

CHAPTER 3: The k-Truck Problem

the k-server problem with competitive ratio 2k-1[21]. Since the k-server problem is a
special case of the k-truck problem, our research concerning the on-line truck problem

has to discover the relationship between them. Here we first give the following lemma

[21]:

Lemma 3.1. There exists an on-line algorithm for the k-server problem with the

competitive ratio 2k —1.

For the k-server problem, we obviously have the following lemma:

Lemma 3.2, For any algorithm A for a request sequence R=(n,...,r,), we have

C.(R)> io -d(a,,b,) and Copp (R)2 Zm:e -d(a,.b,).

i=1 i=l

v

Proof. For any request sequence R, ZH -d(a,,b,.) is the necessary cost because it is

i=l

the cost of the heavy load. Namely, any algorithm that completes the sequence R must

at least take the cost » 0 -d(a;,b;). The inequalities hold.C

i=1

3.4.2 Position Maintaining Strategy

In [23], the PMS is proposed and used to obtain several useful results for the k-taxi
pfoblem. For our investigation of the k-truck problem, we outline the PMS as it

applies to the k-truck problem as follows.

28

CHAPTER 3: The k-Truck Problem

Position Maintaining Strategy is defined as follows. For the present request

r= (a,.,b,.), after a; is reached, the truck reaching a; must move from a; to b; with the

goods to complete ;. When the service for r; is finished, the PMS moves the truck at

b; back to a; (empty) before the next request arrives.

Lemma 3.3. Let OPT be an optimal algorithm for a request sequence R = (rl D)

then we have

m

COPT(R)ZCOPT(C")+Z(9 _1)'d(ai’bi)’

i=l

where o = ((al,at1 bl a,)) and . =(a,.,bt.).

Proof. For any request sequence R, the scheduling procedure for serving it must finish

the sequence o, and at same time >'8-d(a;,b,) is the necessary cost because it is the
i=1

cost of the loaded trucks. Furthermore, the overlap of the cost to finish the sequence o

and iﬁ"d(anb.-) is at most Zm: d(a,,b,).
i=1

Thus any algorithm which completes the sequence R must at least take the cost at the

sum of Cp (o) and i (6 -1)-d(a,,b,). The inequality holds.C
i=f

3.5 Off-line k-Truck Problem

29

CHAPTER 3: The k-Truck Problem

In this section, two solution approaches for the off-line k-truck problem are discussed.
One is Dynamic Programming (DP) and the other is Minimum Cost Maximum Flow
(MCMF) in an acyclic network. Fist of all, we need to define a configuration as

follows.

Definition. 3.1. (Configuration) In the metric space M, a possible position of k trucks
is called a configuration. That is, a configuration is a special k-multiset of at least one
and at most k points in the space M. Here ‘special’ means that in the multiset the

same node can be repeated from one to k times.

Obviously, the configuration is different from that of the k-server problem for which

the configuration is defined as the multiset of exactly & different points in metric

space M.
3.5.1 Dynamic Programming (DP) Solution

In [13], a DP solution is given for the k-server problem. Similarly, we can develop a
DP solution for the k-truck problem. However, because there are some differences
between the k-server problem and k-truck problem, the relevant DP solutions are also
different. First of all, we introduce a lemma with which to show the number of

possible configurations k-trucks on a given graph with n nodes.

Lemma 3.4. On a given graph G with n nodes, the number of possible configurations

C(n+k-1
ofall k trucks is | 1
n p—

J, where (k < n).

Proof. Assume that all & trucks and all n nodes line up in a line from left to right, thus
there are n+ k locations on which there is either a truck or a node. Next, we move all

of the trucks that are between two nodes, given as i and j, to the node i. We assume

30

CHAPTER 3: The k-Truck Problem

that the node i is to the right of the node j, and there are no nodes between them.
Obviously, if there are no trucks between £he two nodes, no trucks are moved to the
node i. In addition, we need to let the extreme right location (n+ k)be a node. Finally,
we choose n—1 locations, on which we arfange all the remaining n—1 nodes, from

nt+k-1

the n+k —1locations. Obviously, we have (Jchoices.l:‘l

n—1

Let function Cop (R,S) denote the cost of the minimum cost algorithm that handles

request sequence R and ends up in configuration S. Similar to [13], we can compute

this function recursively, assuming that the trucks are initially in configuration Sy, as

follows:

0, if $=3§,
undefined, otherwise

cm(e,s)={

min(Copr (R,T)+d({T —22l55)) ifbe s

Cop\Rr,S)=
OPT() {undeﬁned, otherwise

where d(Tﬂ(‘-'i'—"iL)S) is the cost of transition from configuration T to
configuration §, and the last operation of the transition is a, — b, (satisfying the
request 7, ={a,,b,)). T and S denote the configurations at time i—1 and time i,

~ respectively, and £ denotes the empty request sequence.

Theorem 3.5. The above optimal off-line algorithm for the k-truck problem can

n+k—l2
n—1

obtain the optimal solution with computation time proportional to m-(

where m is the length of the request sequence (i.e., the number of requests).

31

CHAFPTER 3: The k-Truck Problem

Proof. Let [R| =m. We can develop a table-building method according to the above

discussion. Build a table with |R|+1 rows, each of which corrcsponds' to a

nt+k-1

)) columns, each of which
n_

subsequence of the input request sequence R, and [

denotes a possible configuration of the trucks. The entry in row i and column j is

Copr (R,.,.S‘ j), where R; is the subsequence of R of length i. Each row of the table can

n+k—1

2
J . Furthermore,
n-1

be built from the previous row within computation time (

only [R[=m rows need these computations. The proof is completed.O

In addition, the above table-building procedure can produce an optimal sequence of

moves. See the relevant discussion in [13].
3.5.2 Minimum Cost Maximum Flow (MCMF) Solution

In [17], MCMF is used to resolve the off-line k-server problem. Similar to the
discussion in that paper, we can also use this method to handle the case of the off-line
k-truck problem. The main difference lies in how we construct the network for the -
truck problem on which the MCMF algorithm is used to find the optimal solution. We
study the problem of finding an optimal strategy to serve a sequence of m requests
with k trucks, and with the request sequence given in advance. We assume that the &
trucks initially occupy one point, the origin, and the i-th request is denoted by the

binary tuple (a,.,b,.). When there are m requests, the inputs to our problem are the

superdiagonal entries of an (m+1)x(m+1) matrix. In the matrix, the (0, j) entry is

the sum of the cost of moving from the origin to the location of the j-request, starting

at a; (empty) and then moving to the request destination b; (with the

32

CHAPTER 3: The k-Truck Problem

goods), j=12,....m . The (i, j) entry is the sum of the cost of moving from the

location of the i-request destination to the location of the j-request starting location

and then moving to the relevant destination with the goods, 1<i< j<m.

Theorem 3.6. There is a O(kmz)-time off-line algorithm able to find an optimal
schedule for k trucks to serve a sequence of m requests (whether or not the triangle

inequality holds).

Proof. We reduce the k-truck problem, with or without a triangle inequality, to the
problem of finding a minimum cost maximum flow in an acyclic network. If we have
k tracks t,,...,t, and m requests r,,...,r, , where r. =(a,,b,), andi =1,...,m, we build the
following (2+k+3m) -node acyclic network. The vertex set is
V ={5,8,084,8,,8,8{,.0 @, b,,8,,1} . Nodes s and ¢ are the source and sink,
respectively. Each arc has capacity one. There three sets of arcs of cost 0: (1) from s
to each vertex s;, (2) form each vertex b to ¢, and (3) from each s; to . From each
vertex s;, there is an arc to g; of cost equal to the distance from the origin to the
location of a;. From each vertex a;, there is only an arc to b; of cost equal to

8 -d(a,,b,). For i< j, there is an arc from vertex ;" to g; of cost equal to the distance

between b; and a;. Furthermore, form vertex b; to b; there is an arc of cost —K, where

K is an extremely large real number.

The value of the maximum flow in this network is k. Since all capacities are integral,

and because the network is acyclic, we can use minimum-cost augmentation [60] to
find an integral minimum-cost flow of value & in time O(kmz). An integral s —¢

flow of value k can be decomposed into k arc-disjoint s — ¢ paths, the ith one passing

through s;. Because ~K is so small, an integral minimum-cost flow of value k saturates

33

CHAPTER 3: The k-Truck Problem

all of the (b,,b])arcs, and hence this corresponds to an optimal schedule for serving

the requests, with the ith server servicing exactly those requests contained in the

s — ¢ path that passes through s;.0

34

CHAPTER 4: Computational Analysis of k-Truck Problem

Chapter 4

Computational Analysis of the k-Truck Problem

In this chapter, several competitive algorithms and their competitive ratios are
prcsenlted. The interrelationships among the k-truck, k-taxi and k-server problems are
given. Based on the Position Maintaining Strategy (PMS), an on-line scheduling
algorithm for the k-truck problem is presented, which is a generalization of the k-
server problem. This is a competitive algorithm whose competitive ratio is

2k +1/6 for any 6 2 1. Furthermore, if >{c+1)/(c —1) holds, then there must exist a
(2k —1)-competitive algorithm for the k-truck problem; and if 8 <{c +1)/(c —1) holds,

then there must exist a (4 +1)-competitive algorithm, where c is the competitive ratio
of the on-line algorithm from the relevant k-server problem. A greedy algorithm with
competitive ratio 1+A/8 is given, where A is a parameter related to the structural
property of a given graph. In addition, competitive algorithms with ratios of 1+1/8 are

given for two special families of graphs. Finally, a lower bound % for the

competitive ratio of the k-truck problem is presented.

4.1 The Results Concerning the Competitive Ratio for the k-Truck

Problem P

Using Lemma 3.2 and PMS from Chapter 3, the close relationship between the k-

server and the k-truck problem can be shown below.

35

CHAPTER 4: Computational Analysis of k-Truck Problem

Theorem 4.1. For a given graph G, if there is a c-competitive algorithm for the k-
server problem on G, then there is a (¢ +1+1/8)-competitive algorithm A for the k-

truck problem on G, where@ has the same meaning given previously and 8 >1.

Proof. For any R=(r,..., r,) , considering the k-server problem’s request
o =(a,,...,a,), let Ay be a c-competitive algorithm for the on-line k-server problem on

graph G. We design the relevant algorithm A for the on-line k-truck problcm as
follows.

For the current service request 7, =(a,,b,), we first schedule a truck to a; using
algorithm A,, then we complete the request r; using PMS. Thus algorithm A’s total

cost is:

=Z[CA(G;)+(9+1)-d(a,.,bl.)] (1),

=C,, (a)+(l+b1—-)-it9 -d(a,,b,)

i=l
where#is defined above and 6 >1. From Lemma 3.2 and algorithm A,, we have:
CA,, (")S ¢ Copy (U)"‘ﬁ

<c(Con®)-5 0 -1 dl00))+s @,

S Copr (R)+4

and
Z 8 'd(airbi)s Corr (R) 3).
i=l

Combining expressions (1), (2) and (3), we get:

c:A(R)s(c+1+¢9l)-co,,,r (R)+p,

36

CHAPTER 4: Computational Analysis of k-Truck Problem

where ¢ and B are constants.[]

As a special case of the k-truck problem, we can let 8 =1 and then get a (c+2)-

competitive algorithm, which is given in [23].
From Theorem 4.1 and Lemma 3.1, the following Corollary holds.

Corollary 4.2. For a given graph G, there exists a (2k +1/8)-competitive algorithm

Jor the k-truck problem on G, where 8 is a constant and 8 > 1.

Based on the above discussion, we have no restrictions except that @ = 1. In fact, if we

further restrict 8, according to two conditions, we can improve the result as follows.

Theorem 4.3. For the on-line k-truck problem and a given graph G, if there is a c-

competitive‘(ch) on-line algorithm for the k-server problem on G, then
(1) If8 >(c +l)/ {c —l), then PMS is a c-competitive algorithm.
(2) If 158 <(c+1)/(c-1), then PMS is a (5— +L+1)-competitive algorithm.

Proof. Similar to Theorem 4.1, we can design an algorithm A’ (PMS) so that:
C.(R)=C, (c7)+[1+91)-26 -d(a,,b,) @),
i=l

where @1is defined above and 6 = 1. From Lemma 3.2 and algorithm A, we have:

37

CHAPTER 4: Computational Analysis of k-Truck Problem

CA, (0)5 ¢ Copr (‘7)+ﬁ

<o(Con®-5 (0 -1 dlar)]s

Combining (4) and (5), we obtain:

C,(R)Sc-Cop (R)+{1+6l'— ¢ -(-"ﬂﬂlie -d(a,.,)+8 (6).

If 6 > (c +1)/(c -1) namely [”61—0.(96_1)](0’ we get

C,(R)<c-Copr (R)+8 .

If 126 <(c+1)/(c-1), and with Lemma 3.2 and 3.3, we obtain:
>0 -d(a,.b,)< Cor (R) (7).
i=]

‘We have:

where ¢ and £ are some constants.O
From Theorem 4.3 and Lemma 3.1, the following Corollary holds.

Corollary 4.4. For the on-line k-truck problem on a given graph G, if

8 >(c+1)/(c=1) holds, then there exists a (2k—1) -competitive algorithm; if

18 <(c+1)/(c—1) holds, then there exists a (2-k/6 +1)-competitive algorithm.0O

38

CHAPTER 4: Computational Analysis of k-Truck Problem

Obviously, for the k-taxi problem, which is a special case of the k-truck problem,

according to the above corollary, PMS is a (2k +1)-competitive algorithm as long as

welet 8 =1.

4.2 Discussion on the Constraint Graphs

An extreme case of the k-truck problem occurs when k =n (i.e., the number of trucks
is equal to the number of vertices of G), or when k =n—1. For the k-server problem,
when k =n any request sequence (of equal]engtﬁ) can be served at the same cost. For
the case when k =n—1, there exists an (n—1)-competitive algorithm [13]. For the k-
truck problem, we can use PMS to handle the case when k =n with competitive ratio
141/ . For the case when k =n—1, if each request r, =(a,,b,)satisfies d(a,.,b,.)>0,
then using PMS we can also obtain a (1+1/8)-competitive algorithm. We give the

following lemma that can be used to obtain the above results.

Using Lemma 3.2 and PMS, we can obtain the following theorem concemning the two

cases.

Theorem 4.5. For a given graph G with n vertices, if k =n, then there is an on-line
algorithm for the k-truck problem on G with a competitive ratio 1+1/8 , and if each

request r, =(a, b,) satisfies d(a,b,)>0, and if k=n-1, then with PMS one can

obtain a (1+1/8)-competitive algorithm.

39

CHAPTER 4: Computational Analysis of k-Truck Problem

Proof. We assume that on each vertex there is at most one truck. Otherwise, we can
establish a precondition for the truck locations so that each vertex has at most one

truck. Furthermore, the cost of this precondition is at most (n—1)-d , where
d =maxd(x,y).

X, YEV

For the case when k=n, we design the on-line k-truck problem algorithm Al as

follows. For any R=(r,,...,r,), we consider the current service request r,=(a,.b,):
(1) If a;, =b,, there is no need to schedule any trucks and the cost is 0.
(2) I a; # b,, because there is a truck at both a; and b;, we can schedule the truck at g;

to carry goods to b;, and the empty truck at b;to move to a;. Thus, the cost to finish r;

is (1+8)-d(a,,b,), and there is still only one truck at each vertex.

For the on-line algorithm A1, we have:
Ca (R)= Z Culr)+p
i=1
<@ +1)Zm: d(a,,b,)+p
i=1
= (1 + gl—Ji 6 -d(a,,b)+8

i=1

< (1 + b‘—]cm (R)+8
where £ is the cost of the precondition for starting truck locations, and 8 < (n-l)-d ,

where d =max(x, y).

Xy

40

CHAPTER 4: Computational Analysis of k-Truck Problem

For the case when k=n-~1 we design the on-line k-truck problem algorithm A2 as
follows. For any R=(r, T,), we consider the current service request 7, =(a,,b,)

that satisfies d(e,,b,)>0:

(1) If there are trucks at both &; and b;, we can schedule the truck on g; to carry goods

to b; and the empty truck at b; to move to a;. Thus, the cost to finish r; is

(1+8)-d(a,,b,). and there is still only one truck at each vertex.

(2) If there is a truck at a; but not at b;, we can schedule the truck at g; to carry goods

to b;. The cost is 0 -d(a,.,b,.). In addition, there is no vertex with more than one

truck.

(3) If there is a truck at b; but not at a;, we can schedule the truck at b; to move (empty)

to a; and then return carrying goods to b;. The cost is (1+8)-d(a,,b,). In addition,

no vertex has more than one truck.

In a similar manner to Al, we can prove that the on-line algorithm A2 is a (1+1/8)-

competitive algorithm.O

4.3 Scheduling &k Trucks on a Special Graph

In this section, we consider the problem of scheduling & trucks on a special graph. Let

dp =maxd(v,,v,), dp, =mind(y,,v,), i# j, v,,v,€V, and let

41

CHAPTER 4: Computational Analysis of k-Truck Problem

We study the k-truck problem with following constraints: (a) there is a constant C

such that 1 <C, (b) each request 7, =(a,,b,) satisfies d(a,,b,)>0, and (c) there is at

most one truck located at a vertex.

Given the above constraints, we present the following on-line algorithm B (Partial-

Greedy, PG for short) to schedule the k-truck problem. Let r, = (a,,b,} be the present

request. We give algorithm B as follows:

(1) If there is a truck at g; and there is also a truck at b;, then B moves the truck at a; to
b;, to service the request, and at the same time B moves the empty truck at b; to a..

The cost of servicing 7:is {1+6)-d(a,,b,) and no vertex has more than one truck.

(2) If there is a truck at a; and no truck at b;, then B moves the truck at a; to b;, to

service the request. The cost of servicing r;is 8 -d(a,,b,) and no vertex has more

than one truck.

(3) If there is no truck at a; and there is a truck at b;, then B moves the empty truck at
bi to a;, and moves the truck carrying goods from g; to b;, to service the request.

The cost of servicing r; is (148)-d(a,,b,)and no vertex has more than one truck.

(4) If there is no truck at a; or b;, then B moves an empty truck that is closest to
location a; to a;, let us suppose that this truck is located at ¢;, and then it carries
goods to b;, to service the request. The cost of servicing r s

d(c,,a,)+0 -d(a,,b,) and yet again no vertex has more than one truck.

42

CHAPTER 4: Computational Analysis of k-Truck Problem

Using algorithm B, we can obtain the following result.

Theorem 4.6. Under the assumption (a), (b) and (c) specified at the beginning of this

section, scheduling algorithm B (PG) for the k-truck problem achieves competitive

ratio 1+1 /8 .

Proof. We have four possible cases for dealing with a request. For cases (1), (2) and
(3), the cost of B is at most (1+6) times the optimal cost for any request. For case (4),

the extra cost is d(c;,a,). Since ¢; is the closest occupied vertex to a;, we have:

d(c;,a,)<d,, . Let C5(R) denote the cost of B for R, then we have:

I

Ca(R)< Y {max[a(5,,a,).d(c,.a,)}+0 -d(a,.b,)} +8

=l
where £ is the cost for preconditioning the starting truck positibns so that each vertex

has at most one truck and it is bounded by a constant related to G.

Since a, # b, and d(a,,b,)>0, we have:

3" max[d (b,), d(ci,)]

MCB(R) <0 +=2—— +— b :
> d{ai,bi) > d(ai,bi) D d(ai,bi)
i=l i=t i=1
Also, since d{c;,a;)<=dmax, and dmin<= d(a;,b;)<=dmax, we have:
Y d,,

mCa(R) <f + 5 ¥ — B

> d(aibi) Ddu D d(anbi)-

i=l F=1 ial

=8 +1 + — £
> diaibi)

iwl

43

CHAPTER 4: Computational Analysis of k-Truck Problem

This implies that:

)
—

b
—

A

s(1+

B

)-9 -gd(a,.,b,.)+ﬁ.

)_- Corr (R)+5

IA
P
+

4.4 Comparison of the Two Algorithms for Solving Problem P1

In sections 4.1 and 4.3, we gave two algorithms A’ and B respectively, both of which
are competitive algorithms for P1. We might be confronted with the problem of

choosing one of these algorithms for use in different contexts. In this section, we

consider how to make that choice.

The competitive ratiocan be used to judge which on-line algorithm is better. The

competitive ratios of algorithms A’ (¢,.) and B (¢,) are:

2k -1, if @>{c+1)f(c-1),

Cu = 29£+1, if 128 <(c+1)(c-1)

and

cg=1+4/0.

If we let ¢, =c¢;, we can obtain an expression for k that identifies conditions when

the performance of algorithm A’ is equivalent to that of algorithm B as follows:

44

CHAPTER 4: Computational Analysis of k-Truck Problem

, if 8 >(c+1)/(c-1),

Q>

1+
k=1,
> if 128 <(c+1)/(c-1)

Obviously, the following theorem holds:

Theorem 4.7. For the on-line k-truck problem Pl, ‘denoting the PMS and PG
algorithm by A and B, respectively. Examining the competitive ratios: if
8 >(c+1)/(c~1) holds compared with k <1+ [/(20), then algorithm A performs
better than B. However, if k>1+1 /(2{9) holds, then B performs better than A. If

18 <(c+1)/(c—1) holds compared with k <A /2, then A performs better than B.

However, if k > [2 holds, then B performs better than A.O

4.5 A Lower Bound for the k-truck Problem

In this section, we derive a lower bound for the competitive ratio for the k-truck
problem in a symmetric metric space. We propose that, any general on-line algorithm

for solving this problem, either a deterministic or a randomized algorithm, must have

a competitive ratio of at least %’,}’}}. Actually, we have proven a slightly looser lower

bound on the competitive ratio. Suppose, we wish to compare an on-line algorithm,
for solving a problem with k servers, with an off-line algorithm, for solving a problem
with h servers, where & < k. Naturally, the competitive ratio decreases when the on-
line algorithm deals with a problem containing more servers, compared with the off-
line algorithm. We obtain a lower bound equal to @ +1)-k/((0 +2)-k-2r+2). A
similar approach was taken in [13], where the lower and upper bound are given for the

k-server problem.

45

CHAPTER 4: Computational Analysis of k-Truck Problem

Theorem 4.8. Let A be an on-line algorithm for the symmetric k-truck problem on a

graph G with at least k nodes. Then, for any 1 < h <k, there exist request sequences

R\,R,,...such that.
(1) For all i, R; is an initial subsequence of Riy1, and C, (R,.)< C, (Rt. ")

(2) There exists an h-server algorithm B (which may start with its servers

_anywhere) such that for all i,

@ +1)k
© +2)k-2h+2'CB(R")

Cul(R)>

Proof. Without loss of generality, assume that A is an on-line algorithm and that the k
trucks start at different nodes. Let H be a sub-graph of G of size k + 2 created from the

- k initial truck positions from A, plus one other vertex.

‘Define R, as the nemesis sequence of A on H, such that R({) and R(i-1) are the two

unique vertices in H that are not covered by A, and a request 7, = d(R(i),R(i 1))

occurs at time £, for all i 2 1. Then we have:

()= 3 (d(R(i+1), RE)+0 -a(R() R~ 1)
=(1+6)- Zd (i +1),R())+ d(R(i + 1), R(i))+6 - d(R(1), R(0))

because at each step, R requests the node that was just vacated by A.

Let § be any h-élement subset of H that contains R(1) but not R(0). We can define an
off-line h-truck algorithm A(S) as follows. The trucks initially occupy the vertices in

the set S. To process a request 7, = d(R(i), R(i —1)), the following rule is applied.

46

CHAPTER 4: Computational Analysis of k-Truck Problem

If S contains R(i), move the truck at node R(Y) to R(i —1) and update S to reflect this
change. Otherwise, move the truck at node R(i—2) to R(i), and then to R(i—1), and

update S to reflect this change.

Clearly, for all i>1, the set S contains R(i—2)and does not contain R(i~1) when
step i begins.
The following observation is the key to the rest of the proof: if the above algorithm

starts with distinct and equal-sized sets, S and T, then S and T never become equal.

The reason for this is described in the following paragraph.

Suppose that, § and T differ before R(i) is processed. We show that the versions of §
and T also differ when they are created by processing R(i), as described above. If §
and T both contain R(7), they both move the truck at node R(i) to the empty node

R(i-1). No other nodes change, so § and T are still different, and § and T both
contain R(i~1). If either S or T contain R(i) exclusively, then after that request only
one of them contains R(;—1), so they still differ. If neither of them contains R(i), then
both of them change by dropping R(i—2)and adding R(i—1), so the symmetric

difference between S and T remains the same.

Let us consider running an ensemble of algorithms A(S) simultaneously, starting from
. k

each h-element subset S of H containing R{1) but not R(0). There are (h 1] such

sets. Since no two sets ever become equal, the number of sets remains constant. After

processing R(?), the collection of subsets consists of all the h-element subsets of H that

contain R(i—1).

47

CHAPTER 4: Computational Analysis of k-Truck Problem

By our choice of starting configuration, step 1 never costs d(R(1),R(0)). At step i (for
i >2), each of these algorithms either moves the truck at node R() to R(i—l) if §

contains R(i)), at cost r, = d(R(i), R(i ~1)}; or they move the truck at node R{i-2) to

R@ and then to R(i1), at cost d{R(~2)R{)+d(R()RE-1). OF the (h'iJ

algorithms being run, (h J of them (i.e., the ones which contain R(i—2) but not

both R(i) and R{i —1)) incur a cost of d(R(; -2),R(:))+d(R(i), R(: —1)). While the rest

k-1
[J incur a cost of d(R(i),R(i —1)). So, for step i the total cost incurred by all of

the algorithms is:

h-1

=(k]-9 -d(R(i),R(i—1))+[k:1)'d(R(i“2)aR(i))

h-1 h—1

(k _IJ (d(RG-2),R())+6 -d(R(). R(i - 1)))+(:: :;) -6 -d(R(i),R(i-1))

The total cost of running all of these algorithms, up to and including R(?), is therefore:

]

3,5 Jo-dworrte-0) 3} fatat-20m0).

=1 h-1 i=2

Thus, the expected cost of one of these algorithms chosen at random is:

[y
S’
=
—
=
S

-1 —
(6+2k 2h+2 Zd (0+1)k h+l_d(R(,

—"‘f“-d(R(r-n,R(:))

48

CHAPTER 4: Computational Analysis of k-Truck Problem

This inequality holds for the triangle inequality and expansion of the binomial

coefficients.

Recall that the cost to A for the same steps was:

C.(R1)=00 +1)-f:d(R(f+ 1),R())+d(R(t +1), R(¢))+6 -d(R(1), R(0))

Since the distances are symmetric, the two summations are identical, except that both
expressions include some extra terms, which are bounded by a constant. Therefore,
after suitable manipulation we obtain:

CiRt) . (B+1k
Cep(Ri1) (0 +2)k—2h+2

Finally, there must be some initial set that has the property that its performance is
always no worse than the average of the costs across all the algorithms. Let S be this
set, and A(S) be the algorithm operating on this set. Let R; be an initial subsequence of

R, for which A(S) does no worse than average.Cd

This theorem gives a lower bound of (§ +1)-%/((@ +2)-k —2h+2) on the competitive

ratio. Even if we require our off-line algorithm to start with the trucks in particular

starting locations, we can move the trucks wherever we choose at the cost of an

additive constant.

Corollary 4.9. For any symmetric k-truck problem, there is no c-competitive

algorithm for ¢ <(@ +1)-k/(-k +2).0

Corollary 4.10. For any symmetric k-taxi problem (where 6=1), there is no c-

competitive algorithm for ¢ < 2k/ (k + 2).D

49

CHAPTER 4: Computational Analysis of k-Truck Problem

4.6 Concluding Remarks

All the results presented are suitable for the k-taxi problem, because it is a special case
of the k-truck problem. For problems P1 and P4 in this thesis, there are many
theoretical issues that need to be studied further. An interesting problem related to the
k-truck problem considers other optimization criteria, such as minimizing the

maximum waiting time, or minimizing the sum of all empty move distances.

50

CHAPTER 5: The k-Server Problem with Twin-request

Chapter 5

The k-Server Problem with Twin-Request .

In this chapter, we propose the new concept of the k-sever problem with multi-request.
We introduce and explore a model of this problem. Our analysis focuses only on the
situation where two requests occur simultaneously (i.e., twin-request), and the on-line
algorithm must choose two servers to satisfy both requests. By employing the Work
Function Algorithm (WFA), we obtain results for a special case of this problem, in
which the metric space has k+2 points. Finally, we provide a lower bound for the k-

server problem with twin-request.

5.1 Introduction

In the k-server problem, most on-line analysis assumes that requests occur
sequentially. In other words, the on-line decision-maker only chooses one server
(according to the relevant on-line algorithm) to satisfy the request, and this request is
satisfied before another request occurs. However, in many real life situations, it is
possible for more than one request to occur at the same time. In that case, the
decision-maker must simultaneously move a number of servers to satisfy all
outstanding requests. The k-server problem with multi-request is a generalization of

the k-server problem [28, 13]. It is defined in a metric space M, which is a (possibly
infinite) set of points Q and a distance function d: OxQ — R* (non-negative real

function) that satisfies the triangle inequality:

51

CHAPTER 5: The k-Server Problem with Twin-request

d(x,y)<d(x,2)+d(z,y), forall x, y, zin Q.
If d(x,y)=d(y,x), for all x, y in Q, then the metric space is called symmetric.
Otherwise, the metric space is called asymmetric. In this thesis, the term “metric

space” is used to denote a symmetric space. Clearly, d(x,x)=0 for all xin Q.

In the metric space M, reside k servers that can move between points. A possible
position of the & servers is called a configuration; that is, a configuration is a multi-set
containing k points in M. We use similar notations from [21] to state our problem.
Thus, we use capital letters to represent configurations and D(X,Y) to denote the
minimum distance required to move the servers from configuration X to configuration
Y. We assume that the k servers are always initially in configuration Ag. For a multi-

set X and a point a, we use X +a for X U{a} and X —a for X —{a}. Finally, we use

C(X)to represent the sum of the distances between all pairs of points in X.

In the k-server problem with multi-request, a request is also a multi-set of { points of
M, and we denote it by ¥, where ¥, ={a,,a2,...,a,}, a,€ M and each a; is one of the
simultaneous requests, for i =1,2,...,/ . We can assume that I <n—k, where n is the
number of points in M (otherwise, the problem can be changed to the ! -1 situation).
A request sequence I is a sequence of requests (i.e., a sequence of multi-sets
containing [-points in M). Requests are serviced by the k servers; servicing a request
involves moving several servers to the multi-set of service request points. In particular,

if I"=y,¥,...¥,1s a request sequence, then the k servers service /~ by passing
through configurations Ag, A, A, ..., A, , With ¥, CA;. At step j, the cost of

servicing request y, is the cost of moving the k servers from A;.| to A;j; that is, the cost

52

CHAPTER 5: The k-Server Problem with Twin-request

of moving D(Aj_l.Aj). The cost for servicing I”is the sum of the costs for all these

steps. For convenience, we now drop the use of italics to denote a request meaning a

multi-request.

Since an on-line algorithm, by definition, cannot base its decisions on future requests,
our choice of A; must depend only on Ag and the subsequence of requests y,7,...7;.

Whereas, an off-line algorithm knows the whole request sequence in advance, and

consequently A; depends on Ao and ¥¥,...7,. Let C, (A,, ") denote the optimal off-

line cost for servicing a request sequence [starting at the initial configuration Ag.

Similarly, let C,, (A,,I”) denote the cost for servicing /"for an on-line algorithm. The

competitive ratio of the on-line algorithm is roughly the worst-case ratio

Cou(A9, T)/Coe (4, T) [9). In order to remove any dependency on the initial

1

configuration, a more careful definition is necessary: the competitive ratio of the on-

line algorithm is the infimum (greatest lower bound of a set) for all ¢ so that for all
initial configurations Ao and for all request sequence /.
ConlAg. T)S € Cop (A, M)+C

where C may depend on the initial configuration Ao but not on the request sequence /.

Obviously, in metric spaces with k or fewer points (i.c., degenerate cases), an on-}“ine
algorithm can initially cover all points with its servers; therefore, it never moves them
again and its competitive ratio is 1. In addition, for the k-server problem with l-request
and [= k , even metric spaces with at least k+1 points can have a competitive ratio of

1, because all k servers must be moved simultaneously. Thus, the problem becomes

53

CHAPTER 5: The k-Server Problem with Twin-request

interesting for metric spaces if / <k <n—2, where n is the number of points in a

metric space M.

There are many research results concerning the k-server problem with a single request,
which is proposed in [28]. In [28], it is shown that no on-line algorithm can have a
competitive ratio less that k and the k-Server Conjecture is posed. The authors in [19]
prove that there is an algorithm with a finite competitive ratio for all metric spaces,
and then answer the question regarding whether there is a finite competitive ratio for
all metric spaces, although the competitive ratio in this paper increases exponentially
with k. This result is improved somewhat in [29], and again in [30], which establishes
a deterministic competitive ratio of 0(4Jt logzk) . The authors in [31] consider
memory-less randomized algorithms, which are more space-efficient than other
algorithms for the k-sever problem, and show a competitive ratio of k for the special
class of resistive metric spaces. Especially for the 2-server problem, the authors in [30]
and [32] provide a 10-competitive and a 4-competitive efficient deterministic
algorithm, respectively. In [33], the authors show that the harmonic algorithm is 3-
competitive. More results concerning lower bound for the randomized version of the
k-server problem are shown in a series of papers [34, 35, 36]. In [21], an upper bound
of 2k —1for the k-server problem is established, which is the best competitive ratio of
a deterministic on-line algorithm for the k-server problem. Also in [21], the work
function algorithm and “potential function” proving technique are employed. More
results concerning the k-server conjecture are found in [40, 41, 42, 43]. In [43], the
authors use WFA to prove that the k-server conjecture is true for several special metric

spaces.

54

CHAPTER 5: The k-Server Problem with Twin-request

Generalizing from the k-server concepts, we propose the new concepts of the k-server
problem with multi-request. Obviously, the space and time complexity of the k-server
problem with multi-request is greater than the traditional k-server problem. We
employ the WFA to deal with a special case of the k-server problem with twin-request,
where a metric space has k+2 points. We obtain a competitive ratio of (k2 +3k)/2

for our algorithm. We use the “potential function” technique to obtain this result. We

also obtain the best known upper bound for the competitive ratio, which is
' n
independent of the server travel distances, [k)—l , where n is the number of points in

metric space M. Although this upper bound for the competitive ratio is somewhat
weak. Finally, we obtain a lower bound for the k-server problem with twin-request.
We believe that this lower bound is somewhat small. Increasing this lower bound and

decreasing the upper bound for the competitive ratio are challenging problems.

5.2 Preliminaries for the k-Server Problem with Twin-Request

We introduce some preliminaries for the &-server problem with twin-request. In the
metric space M, given a sequence of requests:

I'= (yl YT ':}’m) = ({al Wby }’{az’bz}" ”’{am s })’
where each y, = {a..b.} specifies a pair of points that forms a twin-request for service,
the k-server problem with twin-request is concerned with deciding how to move the
servers in response to a twin-request. The initial locations of the servers are specified.

For any twin-request ¥, = {a b, } there are three possible cases,

Case 1. If both nodes a; and b; are occupied, then nothing needs to happen.

55

CHAPTER 5: The k-Server Problem with Twin-request

Case 2. If both nodes g; and b; are unoccupied, then two servers must be

moved simultaneously to occupy those modes.

Case 3. If only one of the nodes a; or b; is already occupied, then we need to
schedule one server to move to the unoccupied node and at same time block

the server on the occupied node from being scheduled to move elsewhere.

The constituents of a twin-request must be satisfied in the order that the requests
occur in the sequence. The cost of handling a sequence of requests is equal to the total
distance moved by the servers. An on-line algorithm for solving the k-server problem
with twin-request operates under the additional constraint that it must decide which
two servers should be moved to satisfy a given twin-request without knowing what

the future requests will be.

To describe the k-server problem with twin-request, we use the following function:

Definition 3.1. Let i, j, h, I, be any points in metric space M, then
g(i, j. 1) = min(d(i,)+ d(j,1),d(i,1)+d(j,h)).

Obviously, this function has the following properties:

(1} If we change the order of the first two arguments and the last two arguments the

value of the function does not change, that is, g(i, j,h,l) = g(h,l o, j).

(2) Its value does not change if its first two arguments or the last two arguments are

permuted, for example, g(j,z’,h,l)= g(i,j,h,l).

56

CHAPTER 5: The k-Server Problem with Twin-request

(3) The triangle inequality ensures that: g(i, j,h,1)+ g(h,l,m,n)2 g(i, j,m,n).

(4) The triangle inequality ensures that: g(i, j,h,1)+d(i,m)2 g(m, j.hl).

For any twin-request ¥; = {a,.,b,-}, an algorithm B is called lazy if it handles the

problem using the three cases, which are described above.

Similar to the conventional k-server problem, the following lemma {13] shows that we

may restrict our attention to lazy algorithms.

Lemma 5.1. For the k-server problem with twin-request, and for any algorithm B,
there is a modified algorithm B’ that is lazy, does not cost more than B, and is also an

on-line algorithm if B is an online algorithm.

The proof of this lemma is trivial, and we omit it in this thesis.

The following algorithms are all lazy. In order to prove that an algorithm is
~competitive within a certain factor, it is sufficient to compare it to other lazy

algorithms, since they outperform all other types of algorithms.

The on-line algorithms we describe have another property: they completely ignore
requests for service at vertices where servers already cover both of them. These
requests do not affect later decisions. Therefore, it is trivial to show that we only need

to consider algorithms that have this property.

57

CHAPTER 5: The k-Server Problem with Twin-request

We describe a request sequence /" as “hard” for algorithm B, if B must move some

servers in response to every request sequence. For all hard 7 and all algorithms A, if

there exists a constant ¢ such that:
Cy(Mge-C,(MN+e
where C,(I") denotes the cost of the algorithm A to serve the request sequence /I,

then algorithm B is said to be c-competitive.

In [13], the authors proved the following lemma for all hard /"and all algorithms B:

Lemma 5.2. If B is a server algorithm that ignores all requests to covered vertices

and is c-competitive on all of its hard request sequences, then B is c-competitive.

The above lemma obviously holds for the k-server problem with twin-request

provided we ignore the requests whose twin nodes are already both covered by servers.

Lemmas 5.1 and 5.2 show that in order to prove that our algorithms are competitive, it

is sufficient to compare them to lazy algorithms dealing with hard sequences.

5.2.1 An Optimal Off-line Algorithm

Manasse et al give a dynamic programming procedure [13] to compute the cost of an

optimal algorithm handling request sequence /7 Let C,, (7°,5) be a function whose

value is the cost of a minimum-cost algorithm (making lazy moves only) that handles

request sequence / and ends up in configuration § (covering a particular set of

58

CHAPTER 5: The k-Server Problem with Twin-request

vertices). We can compute this function recursively as follows, assuming that the

servers are initially covering a set of Sp:

0, if $=5,,
Copt (' S) = :
undefined, otherwise,

min(C,,, (", T)+ D(T,S)) ify’={a’b}anda’ b€ s,

Coully".5)=
” {undeﬁned, otherwise.

where D(T,S) is the cost of a transition (by a lazy move) from configuration T to

configuration S. This is the correct method for computing the function because the

minimum-cost algorithm reaching configuration § at time i/ must have been in

configuration T at time i —1.

According to the method in [2], for IF | =m, one can get the optimal solution within a

2
. . n . .
computation time proportional to [k) . And one can also obtain an optimal sequence

of moves by tracking the steps made during the computation.

5.2.2 Work Function Algorithm

To obtain competitive ratios for some special cases, in which the metric space has
exactly k+2 points, we employ the Work Function Algorithm (WFA). This natural
idea for the on-line k-server problem was first proposed in [37]. It had already been
successfully applied to other problems [38, 39]. In particular, Koutsoupias and
Papadimitriou [21] use the work function algorithm to make significant progress
towards proving the k-server conjecture, which is posed in [13]. In [21], they give the
best result found so far, a 2k —1 competitive ratio for the general k-server problem. In

this thesis, we also use WFA to analyze the k-server problem with twin-request in a

59

CHAPTER 5: The k-Server Problem with Twin-request

metric space with k +2 points. As for the other special cases and general cases of the
k-server problem with twin-request, these problems remain unresolved. We also use
the concept of extended cost, which is proposed in [21], in our proof. It is necessary

to define the work function again because the k-server problem with twin-request is

different from the k-server problem.

Definition 5.2. (Work Function) Fix a metric space M and an initial configuration
Ag. For any configuration X, which consist of k points in M, and any reqﬁest sequence
I'= (y,,-yz,---,ym)= ({a,.b,}{a,.b,}---{a,,.b,.}), let w,(X) denote the optimal cost of
serving a subsequence of request sequence I" = (yl,yz,---,yi), where i Sm, starting
at Ap and finishing in configuration X. The non-negative real function w; defined on

the set of k-configurations is called the work function for serving T .

From the definition of the work function, one can find a very important property: all

the useful information concerning the past scheduling is encapsulated in the work

function. Therefore, an on-line algorithm needs to only remember w;, and not T,
because any other algorithm can be transformed to one with this property without any

deterioration in competitiveness.

Initially, the work function w,(X) of a configuration X is only the cost of moving the

servers from the initial configuration Ay to the configuration X: w,(X)= D(A0 X).
According to the statements of section 5.2 and the definition of the work function, we

can obtain the following corollary:

60

CHAPTER 5: The k-Server Problem with Twin-request

Corollary 5.3. The work function has the following properties:

1) For every configuration X, if v, ={a,,b,}, then

(w,.,(X) if ¥, € X namely,a,,b,€ X
mm{w (X -x+a,)+d(x,a)} if a,& X,b € X
Wf(X)=‘mm{w (X —y+b)+d(y,b,)} if a,€ X,bg X
mm{w (X -x-y+a,+b)+g(x,y,a.b)} ifa;,b, ¢ X

In fact, we can combine the above four cases to one formula, that is:

w,(X)=minfw,(X - x-y+a,+b)+ 2(x. 30,5,)}
= m)él)}{wi—l(x —X—y+ta, +bi)+3(x= Y. a;.b,)}

where (X —-x—y+a, +b,.) indicates the k-configuration resulting from X by replacing

the points x or y, by a; or b;.

2) For every configuration X,

w (X)z w,,(X)

3) For every configurations X and Y,

w,(X)<w,(¥)+D(X,Y)

4) For every configuration and any sequence of twin-request

F=(yl’y2"”"ym)’

Proof. Properties 1 and 4 follow trivially because of the definition of the work

function. For property 3, according to the definition of w(X) we know that all &

61

CHAPTER 5: The k-Server Problem with Twin-request

servers must end in configuration X. Therefore, property 3 holds. Combining

properties 3 and 1, we can easily obtain property 2.0

From the definition of the work function and the above properties of corollary 5.3,
one can understand the advantages of the WFA. Consider a request sequence / and let
A be the configuration of an on-line algorithm after servicing /7 Intuitively, a greedy
- algoﬁthm, which moves the closest servers to satisfy a twin-request ¥ (i.e., it moves
its servers to a new configuration A’, with y, C A”, that minimizes D(A, A")) appears
to be a good algorithm choice. However, it is easy to see that a greedy algorithm for
the k-server problem with twin-request, is too conservative and has an unbounded
competitive ratio; just as it is too conservative for the k-server problem. At the other
extreme there is the retrospective algorithm, which moves servers to a configuration
A’, with ¥, C A’, that minimizes w,{A’). The idea behind this algorithm is that the off-
line algorithm that has its servers at A" seems to be the best so far. It would seem that
a combination of these two algorithms might be a good idea; the work function

algorithm combines the virtues of both of them.

Definition 5.3. (Work Function Algorithm) Let I bea request sequence and let
A;; be the configuration of an on-line algorithm after servicing I The work

function algorithm services a new request ¥, ={a,.,b,.} by moving its servers to a

configuration A, with ¥, C A,, that minimizes w,(A,)+ D(A_,A/).

62

CHAPTER 5: The k-Server Problem with Twin-request

According to the above definition of WFA, because of the triangle inequality of
function g, we can assume that A =A_ -s -t +a,+b minimizes
w, (A,.)+ D(A,._I,A,.) for s,,t, € A, ;. Using this, we see that:

wilA)=min, {w (4, —x—y+a,+b)+g(xy.a.b,) =w(A)+ gls.1.a,.8,).

Obviously, the cost of the work function algorithm to service request ¥, ={a,,b,} is
simply g(s,.t,,a,,b,) Thus, the cost of C_{I") that WFA pays for serving a sequence

of requests r:(yl!yz!“"ym):({al’bl}’{GZ’bZ}’“"{am’bm }) is:

1)=30(44)= 3 s(s.1.0,8)

where A;, §;, and ¢; are computed as described in their definitions. In order to derive a
bound for the competitive ratio of the work function algorithm, the cost of an optimal
off-line algorithm must be considered. Herein, we introduce thf_: concept of an off-line
pseudo-cost [21], which is a simple and surprisingly accurate estimation of the off-
line cost. The off-line pseudo-cost of the move from configuration A;.; to A; is defined
as:
W, (A:)"’ Wi (Ax'—l) .

Obviously, the total off-line pseudo-cost is equal to the total off-line cost; the optimal

cost of the off-line algorithm for serving the same sequence [is:

Con (1) =3 (w(A)- s (A1)

i=l

Clearly, we can assume that in the worst case, the final configuration of the on-line
algorithm is the same as the final configuration of the optimal off-line algorithm.

Otherwise, by extending the request sequence made to the on-line algorithm with

63

CHAPTER 5: The k-Server Problem with Twin-request

requests to reach the final configuration of the off-line algorithm, the off-line cost

remains unaffected while the on-line cost increases.

The sum of the off-line pseudo-cost and the on-line cost at the i-th step is:
wil4)-w, (A)+ g(sit,a.5,),

which is equal to w,.(A,._,)—w,._l(A'._l). This quantity is obviously bounded by its

maximum value over ail possible configurations. Therefore, the off-line pseudo-cost

plus the on-line cost is bounded above by:

mxax{w,. (X) Wiy (X)}

Next, we introduce the concept of the extended cost.

Definition 5.4. (Extended Cost) The extended cost of serving the i-th request in the

sequence of I'is:

v, = maxf (X)-w,. (X)),

while the total extended cost of serving the entire sequence Iis:

#(r)=3v..

f=l

The extended cost occurs on a configuration A when A maximizes the quantity in the

extended cost.

Clearly, by definition of the competitive ratio, and the definition of the extended cost,

we have the following Lemma 5.4:

64

CHAPTER 5: The k-Server Problem with Twin-request

Lemma 5.4. For all request sequences I, if the total extended cost is bounded above
by c+1 times the off-line cost plus a constant then the work function algorithm is c-

competitive.

Proof. Obviously, it is enough to show that ¥(I")= C,, (I")+C,,, ().

=3 glsutanb)+ 3 (m(A) i (A)
(r)+Cp ()

m]
In fact, the extended cost is an overestimation of the actual on-ltine cost (plus the
optimal off-line cost). It was first inUoduéed in [37] in a different form (they called it
an on-line pseudo-cost). Later, in [21] the authors propose the concept of the extended
cost to replace the on-line pseudo-cost. The advantage of using the extended cost,
instead of real cost, is that we do not have to deal with all the configurations of the
servers. Instead, in order to prove that the work function algorithm is competitive, we
only have to show that a certain inequality holds for all work functions. Its

disadvantage, of course, is that it may overestimate the cost of the work function

algorithm.

5.3. The Special Case of a Metric Space with % + 2 Points

65

CHAPTER 5: The k-Server Problem with Twin-request

In the special case of a metric space with & + 2 points, we can quickly show the work

2

function algorithm is []-competitive using a potential function.

Theorem 5.5 In a metric space with k + 2 points, for the k-server problem with twin-

2

request, the work function algorithm is (J -competitive.

Proof. Considering the following potential function:

GD:;w(X).

When the request ¥, ={a,,b, } is serviced, we assume that there are two algorithms to
schedule servers to satisfy the request. One of the algorithms is an off-line algorithm
(called the off-line adversary), while the other is the work function algorithm (an on-
line algorithm). According to the analysis of section 5.2, it is easy to show that:
APz w, (A)—w,._1 (A),
where A maximizes the difference w,(X)-w,(X). Then, summing over all the
requests we can obtain:
@, -®, 2C,, (I)+C,(I),
' whcré @, and @, denote the final and initial potential functions, respectively. In

addition, we have:

66

CHAPTER 5: The k-Server Problem with Twin-request

where w, (X) denotes the work function for any final configuration, and there are
k+2) . .
exactly 5 possible configurations. Next, let the maximum of w, (x) be

achieved at A. Thus, because of Corollary 5.3 (3):
Wy (4)< Wy (Cf)+ D(A’ C,)'
where Cy denotes the final configuration in which both WFA and the relevant optimal

off-line algorithm finish serving requests. Then we have,

, s(k;ZJ-wf(cf)+(k;’2)-D(A,c,).

k+2 -
Note that the last term in this sum is bounded by (5)tirnes the distance between

any two points in the metric space, and hence it is bounded by a constant. Thus, we

have shown that:

C

opl(

N+C, (Mo, -, S(k+2]-wf(cf)+constant.

According to the definition of the work function and the optimal solution, we have:

C,.(r)=w,(c,).

Finally, we have,

k*+3k
2

. (r)s(

] Cope (r) + constant .

The proof is complete.O

67

CHAPTER 5: The k-Server Problem with Twin-request

In fact, for the k-sever problem with twin-request, in a metric space with n points (of

course, n 2k > 2, otherwise the problem is trivial), we have a similar result. That is:

Theorem 5.6 For the k-server problem with twin-request in a metric space with n

n
points, if n2k >2holds, the work function algorithm is [(}J - IJ -compeltitive.

The proof of this theorem is similar to the proof of Theorem 5.5. Therefore, we omit
the proof. Although this result is very weak, it is the best bound we know of which is

dependent on the distances between points in a metric space.

5.4 A Lower Bound

In this section, we prove that any general algorithm for the symmetric k-server
problem with twin-request must have a competitive ratio of at least /2. In fact, we
have actually proven a slightly more general lower bound. Suppose we wish to
compare an on-line algorithm solving a problem with & servers to an off-line
algorithm solving a problem with & <% servers. Naturally, the competitive ratio
decreases for the on-line algorithm because it has to handle more servers than the off-

k

— — . A similar approach was
k—h+2

line algorithm. We obtain the lower bound as

taken in [13], where the lower bound and matching upper bound are given for the

traditional k-server problem.

Theorem 5.7 Let A be an online algorithm for the symmetric k-server problem with

rwin-request on a graph G with at least k+2 nodes. Then, for any |<h<k, there exists

request sequences r s 1'2, ..., Such that:

68

CHAPTER 5: The k-Server Problem with Twin-request

1) For all i, I' is an initial subsequence of I'*', and C,\I"'")< C (I"). .
q A A

2) There exists an h-server algorithm B (which may start with its servers

k

—r5%Co (r).

anywhere), such that for aﬂ i, C A(l')>

Proof. Without loss of generality, assume A is a lazy algorithm, and that the k servers
all start out at different nodes. Let H be a sub-graph of G of size k+2, including the k
initial positions of A’s servers, plus two other vertices. For request sequence [,
7, ={a,,b,} is the twin-request, a set containing two requesting nodes at time i.

Define 7/ as algorithm A’s nemesis sequence on H, such that y;- is also the set of the
two vertices in H that are not covered by A at time i, for all 1. Of course, there is

YNy, =2 . Without = loss of generality, assume that

gla..b,,a,,.b,,)=dla,.a,)+d(b,b,,). Then, it follows that:

i+1?

!

Zg a;.b;,a;,, r+l)=Z(d(ai+ai+l)+d(b1"bt'+l))‘

i=1
This is because at each step in servicing the I requests the nodes have just been
vacated by algorithm A: at step £, the server at a;, will move to a;, and the server at
b1 will move to b,.
Let S be any h-element subset of H containing y, . We can define an off-line A-server
algorithm A(S) as follows: the servers initially occupy the vertices in the set S. To

process a request ¥, = (a;,b,), the following rule is applied:

69

CHAPTER 5: The k-Server Problem with Twin-request

If a; is not in §, move the server at a;; to a;. If b; is not in S, move the server at
biy to b;. Otherwise, do nothing. Update S to reflect any change (i.e., S

continues to cover all servers).

Therefore, it is easy to see that for all i>1, the set S contains 7, , when step i begins.

The following observation is the key to the rest of the proof: if the above algorithm
starts with distinct equal-sized sets, $ and T, then § and T never become equal. The

reason is described in the following paragraph.

Suppose that, S and T differ before # is processed. We shall show that the versions of
§ and T created by processing ¥, as described above must also differ.
i. a€ S, a£ T. After it is updated, S contains a;.;, and T does not contain

a;.;. Therefore, § and T are different.

il. bie S, big T. After it is updated, S contains b;.;, and T does not contain

b;.1. Therefore, S and T are also different.

1. Both § and T contain 4; and b;, or neither contains a; and b;. They will
perform the same actions. They will remain different after they are

updated.

70

CHAPTER 5: The k-Server Problem with Twin-request

Let us consider simultaneously running an ensemble of algorithms A(S), starting from

each h-element subset § of H containing y,. There arc[k J such sets. Since no two
h—

sets ever become equal, the number of distinct sets remains constant. After processing

¥, the collection of subsets consists of all the h element subsets of H, which

containy,.

By our choice of starting configuration, step 1 never costs anything. At step i (for 1),
each of these algorithms has four choices: (1) do nothing (no cost), (2) only move a

server at a;. to a; (cost d(a,_,,a,)), (3) only move a server at b;., to b; (costd (...,)),
or (4) move two servers combining choices 2 and 3 (cost d(a,_,q,)+d(b,,.b,)). Of

the (k] algorithms begin run, (k‘z} of them (i.e., the ones which contain a;.; and b1,
)

but do not contain a; and &;) incur the cost d(a,,.q,)+d(b,,,b,). While ("‘2] of the
' h-3

algorithms (i.e., the ones which contain a;,, , b,; and b;, but do not contain a;) incur

the cost d(a,_,,a,). Finally, (k ‘2) of the algorithms (i.e., the ones which contain a;., b;.

1 and a;, but do not contain ;) incur the cost d(b,_,,b,). The total cost from running all

of these algorithms, up to and including requesty, is:

§ fl:;)-(d(al.,a,.+,)+ d (b, b,)+ [f, - iJ-d(a“aM)+ [i - ;J-d(b,.,bm)

_ H(k_l)x(d(af,ai+l)+d(b.-vb.-n))

h-2

i=1

Thus the expected cost of one of these algorithms chosen at random is:

71

CHAPTER 5: The k-Server Problem with Twin-request

)
_XZ(d(a,‘ s i)+ d(bl 'bl‘+l))
(h I: 2) :

Recall that, the cost to A for the same steps was:

]

Z (d(ai 1B) + d(bx' vbiy))

i=l
Since the distances are symmetric, the two summations are almost identical, except

the second summation includes an extra term.

By expanding the binomial coefficients we see that:

k-1
h-2) k—h+2

bt

Finally, there must be some initial set that has the property that its performance is

always no worse than the average of the costs across all the algorithms. Let § be this

set, and A(S) be the algorithm starting from this set. Let /; be all the initial

subsequences of I for which A(S) does no worse than average.O

5.5. Open Problems

In this thesis, the concepts conceming the k-server problem are extended to the k-
server problem with multi-request. This extension makes the model of the k-sever
problem mor’e realistic. In the real world service requests can occur simultaneously.
However, the time complexity and the space complexity of the problem are increased.

Although we only focus on the twin-request, this problem is obviously more

72

CHAPTER 5: The k-Server Problem with Twin-request

complicated than the k-server problem with a single request. Naturally, the most
obvious open problem is to improve the lower bound. We believe that there is a
tighter lower bound for the k-server problem with twin-request than the lower bound
presented in this thesis. Other unresolved .problems include: proving that the work
function algorithm has a better competitive ratio for the k-server problem with twin-
request, or developing another on-line algorithm to resolve the general case or special

case of the k-server problem with twin-request.

73

CHAPTER 6: On the On-line Number of Snacks Problem

Chapter 6

On the On-line Number of Snacks Problem

In the Number of Snacks Problem (NSP), an on-line player is given the task of
deciding how many snacks his noshery should prepare each day. The on-line player
must make his decision and then finish the preparation before the customers come to

his noshery for the snacks. His goal is to minimize the competitive ratio, defined as:

inf -C"—(a), where o ranges over a sequence of customers, Cppr(o) is the cost to
7 Copr (o)

satisfy o by an optimal off-line algorithm, and Ca(o) is the cost to satisfy o by the on-
line algorithm. In this thesis, we present a competitive algorithm for the on-line
number of snacks problem P1: the Extreme Numbers Harmonic Algorithm (ENHA),

M-m
+m

, where M and m represent two extremes

which has a competitive ratio 1+ p.

for the number of customers (over the total period of the game), and p is a ratio
concerning the cost of these two extreme situations. Next, we prove that this
competitive ratio is the best obtainable, if the on-line player chooses a fixed number
of snacks for any sequence of customers. Furthermore, we also discuss several
variants of the NSP and obtain some results. Finally, we propose a conjecture for the

on-line NSP.

6.1 Introduction

74

CHAPTER 6: On the On-line Number of Snacks Problem

Many decision-making activities, such as currency exchange, stock transactions or
mortgage financing, must be carried out in an- on-line fashion, with no secure
knowledge of future events. Faced with this lack of knowledge, decision makers often
have two ways to choose: (1) use models based on assumptions about the future
distribution of relevant quantities such as exchange rates or mortgage rates, and aim
for acceptable results on the average; (2) analyze the worst case and then make a

decision. Unfortunately, these two approaches may give a solution that is far from the

optimal solution.

An alternate approach in such situations, and the one we explore here, is to use
competitive analysis (first applied to on-line algorithms by Sleator and Tarjian in [9]).
In devising a competitive strategy, the on-line player is not able to escape the need to
make some assumptions, or to have some knowledge about future events, but these do
not have to be probabilistic in nature. For example, instead of knoWicdge concerning
the distribution of future numbers of customers, an on-line strategy might be based
only on knowledge of the bounds on the possible number of customers over the period

in question. This strategy should work well no matter how erratically the number of

customers varies each day.

The objective of the on-line NSP is to decide how many snacks should be prepared
without knowing the number of customers that will arrive. We use the adversary
method to solve this problem. For any on-line NSP algorithm, we imagine that there is
an off-line adversary who can design the sequence of customers in an attempt to make
the competitive ratio of the on-line algorithm as high as possible (i.e., worse

performance). We investigate different versions of this problem by varying the on-line

75

CHAPTER 6: On the On-line Number of Snacks Problem

player’s knowledge. For these different versions, we show that some surprisingly
small (good) competitive ratios can be achieved under very moderate assumptions
about the on-line player’s knowledge: only upper and lower bounds on the possible

number of customers needs to be known.

6.2 The Number of Snacks Problem

6.2.1 Problem Statement

In the number of snacks problem, an on-line player is given the task of deciding the
number of snacks to prepare (for a certain time period) without knowing how many
customers will actually arrive at his noshery. On any given day, the on-line player
must tell his staff to prepare a certain number of snacks in the moming for the
customers that arrive later (e.g., at noon). The problem is designatéd as an on-line
problem because the player must make a decision without any foreknowledge. There

are three cases as follows:

® The noshery prepares m snacks, and then m customers arrive. The on-line player
can sell all the snacks without any being wasted or losing any potential sales. In
this situation we assume that the on-line player supplies the snack at a cost of ¢

per snack, and the total costis m-c.

* The noshery prepares m snacks, but there are only m, customers, where m, < m.
The on-line player must incur a cost ¢ per snack to deal with the surplus m —m,
snacks. In this situation, the on-line player’s total cost is m, -c+(m-m,)-c, .

Considering the economic meaning, if we assume that ¢, > ¢ (i.e., it costs more to

76

CHAPTER 6: On the On-line Number of Snacks Problem

dispose of the surplus than it costs to produce) and let ¢, = pc, where p=1, the

above formula is rewritten as m, -c +(m—m,)- pc.

¢ The noshery prepares m snacks, but there are m; customers where m, >m. The
on-line player can quickly supply the shortfall in snacks at a higher production
cost, so the on-line player needs to produce the m, —m snacks at cost ¢ per snack.
In this situation, the on-line player’s cost is
m-c+(my —m)-c, =m, -c +{m, —m)-(c, —c) . Obviously c, >c , if we let
c,=qc , where g21 , the above formula can be rewrtten as

my-c+(my—m)-(g-1)-c.

Considering the following two problems:

I) If the on-line player knows the exact number of customers every time, they
can make an optimal production decision, provided the required number of
snacks can be prepared (i.e., there is no production capacity constraint). The

player always obtains the optimum cost.

2) If the number of customers arriving is unknown beforehand, then the on-line

player makes the production decision for the snacks required for the next day.
Obviously, problem (1) is an off-line problem and (2) is an on-line problem. The off-

line problem can be solved easily. The optimal solution for the off-line problem can be

obtained if the player prepares sufficient snacks to meet the demand each day.

77

CHAPTER 6: On the On-line Number of Snacks Problem

Problem (2) is very difficult for the decision maker; he/she never knows the actual
number of customers in advance. He/she, by definition, must make the decision in an
on-line manner: deciding how many snacks should be prepared without any

foreknowledge.

Considering the general model for the number snacks problem, we denote the actual

sequence of the number of customers by o =(d,,d,, --,d,), where d; means the
actual number of customers on the ith day. Similarly, we denote by

o’ =(d,d;,.d.) the sequence of the number of snacks produced prior to

n

customers arriving. Therefore, the on-line decision maker prepares d; snacks for the

ith day. Let Copr{¢) denote the off-line optimal cost to finish servicing o; let Ca(o)
denote the on-line cost for the same sequence, and let ¢, c;, and c; denote the costs
defined previously for production, disposing of surplus production, and expediting
production to meet a shortfall, respectively. Obviously, we can obtain the optimal for

the off-line problem for a certain o

Col0)=c-3d,.

For any on-line algorithm A for this problem, we denote the on-line cost by:

Calo)=c-3d, +(c, —c) Sd,-d))+¢, 3d!-d,)
i=i i=1

dl,)d“ d;>di
. . ' . . . C,(o)
For any on-line algorithm A, the competitive ratio is defined as mfa—(—)-. A
orT\O

small competitive ratio implies that A can do well in comparison with the optimal

solution. The question then is: how can we design competitive algorithms with good

78

CHAPTER 6: On the On-line Number of Snacks Problem

competitive ratios for this on-line problem? We will answer this question in the

following sections.

6.2.2 Assumptions about the Fluctuation in the Number of Customers

The on-line player’s prior information about the number of customers arriving defines
particular variants of the game. We define the following terms for the subsequent

discussion:

M = upper bound on the possible number of customers, over the whole game,

where M; = upper bound on the ith day.

m = lower bound on the possible number of customers, over the whole game,

where m; = lower bound on the ith day.

& = M/m is called the global fluctuation ratio, where @D; = M/m; is called the

local fluctuation ratio on ith day.

n = the number of days in the game.

6.2.3. Results

In this thesis, optimal on-line algorithms are produced for the four variants of the

number of snacks problem, as follows:

79

CHAPTER 6: On the On-line Number of Snacks Problem

¢ Variant 1. The general version, problem P, without any constraints for ¢, or ¢,

and with M, m and (of course) @ known to the on-line player.

* Varant 2. The degenerative version of variant 1, problem P1, with ¢, = ¢, —¢,

(1e, p=g-1, where p=1), and with M, m and @ known to the on-line

player.

* Variant 3. The special version, problem P’, with m; and @; known to the player,
where @;=®, and $; means a constant global fluctuation ratio, for i=1,2,...,n,

and without any constraints for ¢, or c;.

¢ Variant 4. The degenerative special version, problem P’’, with m; and &;
known to on-line player, where @;=®,, for i=1,2,...,n, and with c,=c,—¢c,

(ie., p=g—1,where p=1).

For variants 1 and 2, the game progresses in the following fashion: the on-line player
chooses a strategy at the beginning of the game. His/her knowledge only concerns M,
m and @ over the course of the game. For problem P1, we derive an optimal
competitive algorithm ENHA. For problem P, we also derive a similar optimal

competitive algorithm TENHA.
However, for variants 3 and 4, the on-line player only knows some local information

(for example, m; and @,), and then chooses a strategy to solve the problem. In this

paper, we only investigate the case of ®;=®y, for i=1,2,...,n. The problems for the

80

CHAPTER 6: On the On-line Number of Snacks Problem

more general cases are still open. We provide a competitive algorithm LENHA for P*'

and a competitive algorithm TLENHA for P’.

We also discuss lower bounds for the competitive ratios for all competitive algorithms

for the four variants.

6.3 The Degenerate Version of P — Problem P1

6.3.1 Extreme Numbers Harmonic Algorithm

Extreme Numbers Harmonic Algorithm: For the on-line number of snacks problem
P1, if the on-line player knows the lower (m) and upper (M) bounds of the number of

Mm snacks each day.

customers, he can always prepare d = "
m

6.3.2 Competitive Ratio of the Extreme Numbers Harmonic
Algorithm

Theorem 6.1. For the on-line number of snacks problem Pl, the Extreme Numbers

Harmonic Algorithm is a M-m) _competitive or 2P-1) _competitive
04 l+p P 1+p D
M+m P+1

algorithm.

Proof. Obviously, if M and m were known, and ¢, =¢, —c, (i.e,, p=g—1, where

p 2 1), the on-line cost of ENHA (denoted by A) satisfies the following formula:

81

CHAPTER 6: On the On-line Number of Snacks Problem

Coo)=c-3od, (e =) Dldi=dive i -d)

i;,id,’ Tnd, (1).

=c-zu:d,.+pc-zn:|d,.—d,.’

If the on-line player chooses an ENHA strategy, the off-line adversary can obviously
choose di=M or di=m, to make the competitive ratio as large (worse) as possible. Let

di=M and let oy denote the sequence of customers with all di=M. According to ENHA,

2Mm

d;=2=
M+m

<d, =M ,fori=1,2,..., n. Then, we obtain:

CA(GM)=c- :Eldi +pc- éldi —‘-{I

=c-nM +pc~n(M _ 2Mm)
)

Similarly, we can obtain the following result if we let di=m and denote the sequence

of customers under this condition by o,,. Considering d > m holds:
Calon)=c: idi tpe: i'di _‘?I
i=| i=l

=c-nm+ c-n(2Mm —m)
PEM M vm 3).

(ein)
=(l+p- -cnm
M +m

M-m
= . -C
(“‘P M+mJ orr(o'm)

The extreme situations (d=M or d=m) are the worst cases, therefore, no other ¢ can

_ lead to a worse case that increases the competitive ratio. For any o:

82

CHAPTER 6: On the On-line Number of Snacks Problem

CA(a) <1+p_ —m
Copr (o)~ M+m (4).

2t

@+1

The proof is complete.O

6.3.3 A Lower Bound of the Competitive Ratio

The ENHA gives a lower bound for the competitive ratio.

Theorem 6.2. For the on-line number of snacks problem P, if the off-line adversary

chooses a strategy with a fixed number of customers, the competitive ratio is

(l+ M ‘"’J or (1 4"1), which is given by ENHA, and this is a lower bound for

t D —
M+m P o

the competitive ratio.

Proaf. We need to prove that if the on-line player chooses another fixed number as his

decision (denoted by algorithm A"), the competitive ratio would become worse, that is

the player chooses 7 » 2Mm_ without loss of generality, we assume that J o ZMm_
M+m M+m

Then we prove that if an off-line adversary chooses oy the competitive ratio

[l+ p- M ""] cannot be achieved. According to the previous statements, we have:
M+m

83

CHAPTER 6: On the On-line Number of Snacks Problem

CA»(OM)=C‘§d£ + pc-_zﬂ'_,ljdf —071

=c-nM + pc-n(M -d")

The last inequality holds for 7'« 2M™ . This means that if an off-line adversary
M+m

chooses gy, the performance of the on-line algorithm A’ is worse than A. Similarly,

under the condition with 7~ 2Mm , the same result can be obtained.O
M+m

6.3.4 The Upper Bound of the Competitive Ratio

I

If an on-line player chooses o), but an off-line adversary chooses a,,, we can obtain
an upper bound for the competitive ratio for the on-line number of snacks problem, as

follows:
1+p-(ﬂ-1)=1+ p-(@-1).
m

2Mm
M+n

Thus if an on-line player chooses any integer number from m to , then he/she

will get a competitive ratiothat is between 1+ p - N and 1+ p- (& - 1).

6.4 The General Version — Problem P

6.4.1 Transformative Extreme Numbers Harmonic Algorithm

84

CHAPTER 6: On the On-line Number of Snacks Problem

Obviously, resuits from section 6.3 can be used to produce an on-line algorithm for P.

In fact, we propose an on-line algorithm for P as follows:

Transformative Extreme Numbers Harmonic Algorithm: For an on-line number

of snacks problem P, if the on-line player knows the lower (m) and upper (M) bounds

= Mm-(p+q—l)
of the number of customers, then he/she can choose a fixed number d = M-ptm-(g-1)

snacks.

6.4.2 Competitive Ratio

From the above on-line algorithm, we can easily obtain the following theorem:

Theorem 6.3. For the on-line number of snacks problem P, the Transformative

Extreme Numbers Harmonic Algorithm is a Ag— M-m -competitive or
8 1+p (q 1) D
M-p+m- (q -1)

a [1+ p'(q—l)dj-_:i%}—_l)) -competitive algorithm.

The proof for theorem 6.3 is similar to that of theorem 6.1. We omit the proof in this

thesis.

6.4.3 Lower Bound

For an on-line number of snacks problem P, we also have the following theorem:

85

CHAPTER 6: On the On-line Number of Snacks Problem

Theorem 6.4. For an on-line number of snacks problem P; if the off-line adversary

chooses a strategy with a fixed number of customers, the competitive ratio is

Ag-11—M=m__ Jor (a-1N—2=1 |, which is given by TENHA, and
[Hp(q l)M-p+nv(q-l)] (Hp(q 1)4’-P+(q-1)]

this is a lower bound.
We also omit this proof since it is similar to the proof of Theorem 6.2.

6.5 The Degenerate Special Version of P"— Problem P’

6.5.1 Local Extreme Numbers Harmonic Algorithm

For problem P "', we have the following algorithm:

Local Extreme Numbers Harmonic Algorithm: For problem P, if the on-line

player knows the lower bound (m;) and local fluctuation ratio (D;=Py) of the number

of customers on the ith day, for i=1,2,...n, and if ¢, =c, —c (i.e, p=g—1, where

- 2 “m.
p 2 1), he/she can prepare d; = ;50 +"11' snacks on the ith day.
0

6.5.2 Competitive Ratio

From the above algorithm, we have the following theorem:

Theorem 6.5. For problem P°', LENHA is a (1 +p- Py 1J-c«:)mpetitive algorithm.
D, +1

86

CHAPTER 6: On the On-line Number of Snacks Problem

Proof. If m; and @=@Pp, for i=1,2,...n are known by the on-line player, and

¢, =¢;—c (i.e, p=g—1, where p21), for the LENHA strategy, the off-line
adversary can obviously choose d; = @, - m; or di=m;, 1o make the competitive ratio
as large (worse) as possible. Let di=m; and let &,, denote the sequence of the number

of customers arriving. According to LENHA and formula (1) from section 6.3.2, the

on-line cost of o, satisfies:

CA(ami)=c-_)::id,. +pc-§|d,- —t?,l

Where the second and subsequent steps in this mathematical derivation hold for

dlzdl‘ =m,'.

Similarly, we can obtain the following result if we let d; = @, -m, and denote the

sequence of the number of customers under this condition by Oy, - Considering

d, <&, - m; holds:

CA(O'M.-)=C'§di +PC'.:ZI|d" _(’T'I

n 20, -m;
=e-Y(Py-m)t pc-¥| Dy -m -0
_(0.).’75(0. ¢0+1)

@, -1 n
I+ | e @ -m.
PR e $nm)

[
.=(1+p-¢°_IJ‘COP’"(U”")

B, +1

87

CHAPTER 6: On the On-line Number of Snacks Problem

These extreme situations (d; = @, - m; or d;=m;) are the worst possible cases for the

competitive ratio. For any o;

CA() Sl+p'M_m
Copr (0) M+m
@, -1

=l-|- D_

P 21

The proof is complete.C

6.5.3 A Lower Bound of the Competitive Ratio

LENHA provides a lower bound for the competitive ratio.

Theorem 6.6. For problem P"', if the on-line player choose a fixed number as his

strategy on the ith day, then the competitive ratio (1 +p- Py — lJis a lower bound of the
Py +1

competitive ratio.

The proof is omitted in this thesis.

6.6 The Special Version — Problem P”

6.6.1 Transformative Local Extreme Numbers Harmonic Algorithm
For problem P’, we give the on-line algorithm as follows:

Transformative Local Extreme Numbers Harmonic Algorithm: For problem P’,

if the on-line player knows the lower bound (m;) and local fluctuation ratio (®;=y)

88

CHAPTER 6: On the On-line Number of Snacks Problem

of the number of customers on the ith day, for i=1,2,...n, and without any constraints

for c¢i or c¢; the optimal on-line algorithm is to choose a fixed number

@, -m; -(p+g-1) _
@, -p+(g-1) snacks on the ith day of the game.

7 -

6.6.2 Competitive Ratio

Theorem 6.7. For p}'ob!em P, the TLENHA is a [Hp.(q_l)L) -
@, -p+(g-1)

competitive algorithm.

The proof is omitted in this thesis.

6.6.3 A Lower Bound of Competitive Ratio

Similarly, we have the following result:

Theorem 6.8. For problem P’, if the on-line player chooses a fixed number as his

strategy on the ith day, then the competitive ratio (1 +p-(g- 1)%—"(1). is a lower
Dy-prig-1

bound for the competitive ratio.

The proof is omitted in this thesis.

6.7 Evaluation of the Results

6.7.1 Evaluation of the Competitive Ratios

Above, we give some competitive algorithms for the different versions of the NSP

problem. All the competitive ratios of these algorithms are obviously functions of the

89

CHAPTER 6: On the On-line Number of Snacks Problem

181 i

Competitive Ratio

13 .

111 1

log, @
Figure 6.1. The curve of competitive ratio with changing &.
fluctuation in the number of customers. For example, for problem P1 the competitive

ratio (denoted by) is determined by the function: 414 ,.2=L. If we fix the value
& +1

of p, for example, we let p=1, then we can obtain: 5 _,__2 . Clearly, a increases
&+1

with &, but it has an upper bound of 2. In fact, because in the limiting case:

lim (1+ p.%J = p+1, we always have an upper bound for the competitive ratio.
Pjoo +

The Figure 6.1 shows how the competitive ratio varies with @&.

6.7.2 Comparison of Problems P1 and P”

In this thesis, we investigate four variants of the NSP and develop some competitive

algorithms. Obviously, if we use the same sequence of the number of customers, a

90

CHAPTER 6: On the On-line Number of Snacks Problem

more general cases are still open. We provide a competitive algorithm LENHA for P"’

and a competitive algorithm TLENHA for P".

We also discuss lower bounds for the competitive ratios for all competitive algorithms

for the four variants.

6.3 The Degenerate Version of P — Problem P1

6.3.1 Extreme Numbers Harmonic Algorithm

Extreme Numbers Harmonic Algorithm: For the on-line number of snacks problem
Pl, if the on-line player knows the lower (m) and upper (M) bounds of the number of

Mm snacks each day.

customers, he can always prepare d =
+m

6.3.2. Competitive Ratio of the Extreme Numbers Harmonic
Algorithm

Theorem 6.1. For the on-line number of snacks problem P1, the Extreme Numbers

Harmonic Algorithm is a (1+ p,M —Mm Y} -competitive or 1+p,ﬂ -competitive
M+m P+l

algorithm.

Proof. Obviously, if M and m were known, and ¢ =c¢—c, (ie, p=g—1, where

p 2 1), the on-line cost of ENHA (denoted by A) satisfies the following formu!la:

81

CHAPTER 6: On the On-line Number of Snacks Problem

M ¢0|
Mmax
-
dﬁ_—— my ‘P&

Figure 6.2. The difference between problem P1 and Problem P”(n days game).
comparison of problems PI and-P"’ reveals some interesting results. The difference
between problems P and P"’ is that the on-line player knows the global fluctuation of
the entire game, or the fluctuation of the ith day of the game. Intuitively, because
problem P’’ provides more knowledge to the on-line player, the competitive
algorithm should be better (lower) than PI. Figure 6.2 shows the difference between

the two problems. For the same sequence, clearly we know that M =m_, D, ,
m=m; , and therefore @ =m, -Py/m;, . From Figure 6.1, if we let @ =16and
@, = 2, we obtain two competitive ratios, 1.88 and 1.33, respectively, for problems

P’ and PI.

6.8 Conclusions and Future Work

A striking feature of the number of snacks problem is the conceptual simplicity of the
optimal strategy. To attain a given competitive ratio, the on-line player simply
defends himself/herself against the threat of the adversary’s choosing the worst

sequence for his on-line strategy.

If we only know the lower (m) bound of the number of customers, then what would

happen? In this case, how should the on-line player choose a strategy? For PI, if we

91

CHAPTER 6: On the On-line Number of Snacks Problem

think that the upper bound of the number of customers is M — oo (@ — o), the

optimal on-line strategy is to always prepare 2m snacks. Actually, this strategy gives a

(p + 1) -competitive algorithm for NSP P1.

Some problems concerning-the number snacks problem are still unresolved. For
example, if we do not know both M and m but (.)nly the fluctuation @, how can we
design an on-line strategy for the number of snacks problem? In this thesis, we only
discuss the situation where the on-line player (and his off-line adversary) chooses a
fixed number of snacks to produce. We could design other competitive algorithms in
which the on-line player can choose varying production numbers that are based on
analyzing historical data (as is commonly used in the real world, such as in the
€normous b‘ody of knowledge related to time series analysis and forecasting

techniques). With these competitive algorithms, we can obtain better competitive

ratios.

We give lower bounds for the on-line snacks problems P and P! when the on-line
player chooses a fixed number as his snack production strategy. We conjecture that

these lower bounds hold for any cases of P! and P whether the on-line algorithm uses

a fixed number or not.

Conjecture 6.1. For any competitive algorithm of the on-line number of snacks -

problem: (Hp'%J and (1+ p.(q_l)q'p‘p—‘lJ are the lower bounds of the
.p+q_

competitive rattos for P1 and P, respectively.O

92

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

Chapter 7

Dynamic Allocation of Mobile Agents by On-line Task

Scheduling

This chapter presents a new approach to the dynamic allocation of mobile agents, by
on-line task scheduling, for high performance in Internet computing. In contrast to the
existing approaches, which apply pre-defined task scheduling schemes to allocate
computing resources, we introduce a new on-line competitive algorithm to achieve
flexibility. A guided allocation scheme is developed to optimize the allocation of
mobile agents, based on the system’s competitive ratio. The proposed system
éombines push-based technology with an innovative on-line task-scheduling scheme
to speed up system response and minimize system overheads. Analysis of the system

and simulation are used to demonstrate the feasibility and effectiveness of our

approach.

7.1 Introduction

With the fast development of information technology and the widespread popularity
of the Internet and World Wide Web, the mobile agent paradigm is becoming
increasingly important for network-based applications. It is viewed as a new trend in
distributed artificial intelligence research, including information gathering, data
mining, workflow and electronic commerce [54]. In general, a mobile agent is

considered to be a program that represents a user in the network, which is capable of

93

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

migrating autonomously from one host machine to another [55]. Mobile agents can
also be viewed as a mechanism for introducing parallel activities via concurrent
execution. According to [S5], the design of mobile agent systems involves several key
issues such as the provision of code mobility, object naming, portability, scalability
and security. The mobile agent paradigm offers a variety of research topics, ranging

from low-level system administration tasks to user-level applications.

Task schc&uling in the design of mobile agent systems has received much attention in
recent years. In [46], an agent-based workflow system is developed where a
workflow-instance agent is used for task scheduling. The workflow agent identifies
which task is to be executed next to achieve an optimal operation. The main
advantage of this approach is that there is no central server involved in managing the
workflow of executing tasks. However, the workflow needs to be pre-defined and the
performance of the system depends on the definition of the woxt'kﬂow. Zakaria
Maamar [54] introduces an approach to optimizing a mobile agent itinerary. A Broker
agent is created to coordinate resource allocation among agents. The set of links that
minimizes the value of network traveling, from the first task to the last task, is the
optimized itinerary. This system presents a group of intelligent agents with
cooperating and task scheduling capabilities, but such capability depends on complete
knowledge about the resource locationé and costs, which have to be specified
beforehand for every link or node value. A utility driven mobile-agent-scheduling
scheme is discussed in the paper of Jonathan Bredin [47]. In such a system, the agents
are equipped with information about resources- in the network. A demand function is

defined to guide efficient resource allocation. Unfortunately, quantitative information

about a resource and resource consumption relies heavily on traditional

94

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

microeconomic estimation, which to some extent limits the system’s flexibility in a

real electronic market.

It could be said that the major advantages of using mobile agents is because of
features such as mobility, portability and scalability. A task-scheduling scheme plays
an important role in the design of mobile agent systems for high performance. Much
of the current work has been focused on allocating resources to mobile agents
intelligently, and managing business processes automatically, while mobile agents are
generated s.tatically to fulfill a given task or an off-line request sequence. However,
there has not been much work on dynamically allocating mobile agents in an on-line
fashion for Internet-bas;ed applications. It is essential to introduce a new system
structure for dynamic allocation of mobile agents using on-line task scheduling to

address the limitations of current approaches and to achieve flexibility.

In this chapter, we propose a multi-agent system structure enhanced by push-based
technology and an on-line task-scheduling algorithm. Mobile agents are created and
cloned dynamically, initialized with service units and pushed from remote sites to
local sites that are more convenient for local clients to access, thus speeding up the
system response. Push-based technology {48] is currently being proposed in response
to communication asymmetry, which is exhibited by many applications, such as news
delivery, software distribution, and traffic information systems. In these environments,
the communication from the clients to the server is more restricted than the
communication from the server to the clients, so it may make more sense to push
services from the server without waiting for the clients to pull them. In the proposed

system structure, attention is paid to satisfying a client’s requests as soon as possible,

95

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

and minimizing system-handling time, while not knowing what the future requests

will be. All potential costs are identified, and an on-line task-scheduling algorithm is

sought.

The remainder of this chapter is organized as follow.s. Section 7.2 outlines the agent-
oriented computing paradigm and Section 7.3 highlights the proposed structure for the<
multi-agent system. An on-line task-scheduling algorithm for dynamically allocating
mobile agents is introduced in Section 7.4, and two more corollaries are reported in

Section 7.5. Finally, the conclusion is presented in Section 7.6.

7.2 Agent-oriented Computing Paradigm

Compared with the earlier paradigms such as process migration or remote evaluation
in distributed computing, the mobile agent model is becoming popular for network-
centric programming. The traditional client/server paradigm relies on a handshake
mechanism to communicate over a network. The client requests ir_lformation, while
the server responds. Each request/response has to be a complete round trip on the
network. The emerging mobile-agent paradigm has provided a dynamic and flexible
platform for software development and redefined the way Internet-based applications
work. As an autonomous software entity, with pre-defined functionality and certain
intelligence, a mobile agent is capable of migrating autonomously from one host
machine to another, making its request to the server directly and performing tasks on
behalf of its master. Some of the advantages of this model are better bandwidth usage,

more reliable network connection and reduced software application design work.

86

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

During the past few years, more than a dozen Java-based agent systems have been
developed. The Java Virtual Machine (JVM), standard security manager and two
other functional facilities, namely object serialization and remote method invocation
have made it simple to build a mobile agent workbench. Of all these available Java-
based agent systems, ObjectSpace’s Voyager [50), General Magic’s Odyssey [51] and
IBM’s Aglet [52] are the three leading commercial ones. A detailed discussion on

current commercial and research-based agent systems can be found in [49].

Voyager [50] is the first platform to smoothly integrate traditional distributed
computing with cutting edge agent technology. Virtual object is the core facility and
framework in Voyagef to support inter-agent communication and migration of agents.
It can migrate not only between agent servers, but also to Java runtime environments
of other arbitrary virtual objects, which is an innovative feature among existing agent
systems. However, the use of a virtual object brings complexity as well, since most
developers have to change their traditional approach to building distributed
applications to make use of this new feature. General Magic’s Odyssey [51] is another
pure Java-based agent development platform. It utilizes Java RMI (Remote Method
Invocation) as well as CORBA (Common Object Request Broker Architecture) and
DCOM (Distributed Component Object Model) protocols for agent transport, and it
provides a collaboration facility to allow agents to meet at a particular host on the
network. However, in such a system, an rmiregistry name server must be installed on
every machine together with an Odyssey agent server, which increases the complexity
of the system’s maintenance. The Aglet system [52,53] developed by IBM is chosen
as the implementation example in our proposed system. Although, at present, it is not

a fully-fledged platform , it has received the most press coverage and shows promise

97

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

as a functional technology that fits very well into the Java world. Features that
characterize an aglet are: lightweight object migration, built with support for

persistence, event—driven, etc.

The design of the Aglet system is very clean. The Java Aglet API (J-AAPI) contains
methods for initializing an aglet and provides all of the support services for migrating
an agent from one host machine to another and for communicating between aglets. An
aglet is a composite Java object that includes mobility and persistence, and it has its
own thread of execution. The Aglet’s mobility for roaming around the network is
implemented using Java’s object serialization mechanism. The communication
between aglets is through message passing, which can be synchronous, one-way or
future-reply. As the name of “Aglet” (a pun on agent with applet) suggests, there are
several ways in which the aglet model mirrors Java’s applet model. The aglet runs in
an execution environment called AgletContext, which is much like AppletContext for
an applet. The aglet also has a well planned life cycle [56]. Between starting and
stopping, an aglet can experience many events such as creation, cloning, dispatching,
disposal, etc. Figure 7.1 shows four fundamental operations of an Aglet.

Context A Context B

Aglet Clone] Aglets m
I‘ v

[
[Create] "" Dispose]

Figure 7.1. Four fundamental operations of an Aglet
Creation is the primary way to produce a new aglet in the current context; its state is
initialized during this event. Cloning is an important way to create a copy of an

original aglet in the same context. The cloned aglet has the same state but a different

98

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

identifier. Dispatch is an active way to ship an aglet from one host to another. Upon
amving at the new host, the aglet restarts its execution. Disposal is a useful way to
control the number of agents that reside in a context, and thereby reduce resource
consumption. These four events will be implemented in our proposed system. In
addition, retraction provides a way to return an aglet from a remote host to its home
site. Deactivated and activated are ways to push an aglet out of the current context
temporarily or to bring it back, respectively. When an aglet migrates from one host to
another across the network, it carries with it both code and state informatidn until it

returns back to its original host, which is different to the way an applet migrates.

When cooperating to acéomplish a given task, multiple aglets always follow certain
working patterns [57,58]. The “masfer/slave” and “worker” are two patterns that are
heavily employed in agent-based system design. The master/slave pattern simply
means the activity of one agent is controlled by another agent. The master usually has
control of the entire life cycle and all the activities of the slave. This is the
fundamental working pattern used in distributed computing. Unlike the master/slave
pattern, in the worker pattern a “controller” agent dispatches many worker agents to
do work on its behalf. The controller does not control the life cycle of the workers but
assists these agents to achieve certain fixed goals. Such a pattern demonstrates a real
advantage of agents in parallel computing. These flexible working patterns and

functional operations have made building multi-agent systems fairly simple.

7.3 Multi-agent System Structure

To achieve flexibility and efficiency, we propose a multi-agent system, which

includes two major modules:

99

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

* A remote system module working as a remote agent server that hosts three

kinds of agents: stationary agents, mobile agent controllers and mobile service

agents.

* A local system module working as a local agent server hosting two kinds of

agents: mobile service agents and client agents.

The following services summarize the major functionality of the proposed system:

service registration, service preparation, service consumption and service completion.

JDBC Interface

Remote Agent Host

e L
N —
Service Provider
(Siationary Agent}
TS

PN DT TN HANYTINAL AN,

Mobile [Create]
Agent
Cantroller
{MAC)

'MSA’

: LAH, LAH,
{Consume}{Consume)}Consume)[Dispose)
|
!
(Register) User interface
Client (M)
Client (.} {Group,} {Group,) {Group.}

Figure 7.2. Multi-agent system structure enhanced by on-line task-scheduling

algorithm

100

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

Figure 7.2 shows the general structure of the system. It also includes two interfaces: a
JDBC interface resides at the remote server for retrieving service units from the back-
end database, a user interface resides at the local server for accepting incoming
requests, which have been grouped together according to the number of requests each

client makes.

e Service registration

Service registration is the first step when a client wants to access a remote service.
The client is required to register at the remote service provider and indicate how many
“service units” are needed. The remote service provider always maintains a client list.
This list changes frequently, due to the increase or decrease in a client’s requests. All
of the clients are divided into several groups according to the number of requests
made by each client. Based on a diffe.rent range for the number of requests, different
| groups of clients are guided to access different local agent hosts. In our proposed
system, there are a total of n groups of clients available. For example, clients in
Groupy with request quantities in the range [m, M] are directed to local agent host 1

(LAH,) to obtain service units.

» Service preparation
Improving system response is one of our aims. In the proposed system, our strategy is

to create and clone a number of mobile agents at remote agent hosts dynamically,

initializing service units (i.e., ready-made units) and dispatching these agents to the

101

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

local agent hosts beforehand. For serving n groups of clients, n mobile agent
controllers (MAC) are needed. In our system, MAC; creates and clones a number of
worker agents. These ready-made mobile service agents (MSA), each equipped with

one service unit, are dispatched to LAH, for local access.

¢ Service consumption

Initially, clients access local agent hosts instead of remote agent hosts to obtain
quicker service. When a client (agent) with x requests consumes ready-made d service
units carried by d MSA, three scenarios are most likely to occur:
(1). x=d, and the client happens to consume all the ready-made service units.
(2). x<d, ready-made service units exceed the client’s requests, and unclaimed
units are destroyed later.
(3). x>d , ready-made service units are insufficient, and the client sends a
message to the remote MAC to ask for more servfce units. After receiving the
message, the MAC repeats.the cloning and dispatching processes to serve

unsatisfied requests.

¢ Service completion

This is the last step in the whole process, where the MAC is informed of service
completion (i.e., the client’s requests have been satisfied successfully). One major
concern at this stage: unclaimed mobile service agents (MSA) at the local host have to
be disposed off explicitly before the new service process starts. For the service

provider, a2 new process begins at the service preparation step.

102

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

The design of the proposed system is straightforward, but a problem arises when the
remote agent controller prepares for service units: it nceds-to decide how many mobile
service units (agents) to create, clone and dispatch. If insufficient service units are
prepared, the agent controller has to clone more and supply them later, which causes a
delay in system response. If a surplus of service units is prepared, unclaimed service
agents can be disposed off explicitly, but this increases system overheads. In the
proposed system, both lower overheads and faster service performance need to be
taken into account. The following section presents an on-line algorithm to address the

problems described above, which we call the on-line task-scheduling problem (OTSP).

7.4 Online Task-Scheduling Algorithm

This section presents an on-line competitive algorithm for dynamic task scheduling.
On-line problems can be found in many research areas such as data structuring, task
scheduling or resource allocation [13,44,45,59]. Several examples are given 1o
illustrate the common feature of these problems. In data structuring problems, the goal
is to access elements in a given data structure at a lower cost, without foreknowledge
on which elements will be accessed in the future. For the paging problem in a two-
level memory system, the objective is to decide which referenced pages should be
stored in fast memory. In a multi-processor network, it is a challenging job to provide
network access at lower communication cost by dynamically reallocating files. All
these problems are characterized by the need to satisfy requests or make decisions
without foreknowledge of future requests, which is different from traditional system
analysis approaches where algorithms are designed with the assumption that the
complete sequence of requests is known.

@1930 ¥ue-Reng Libragy
A EOBgUQ Fﬂng': gomj

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

In this chapter, we develop a competitive task-scheduling algorithm to allocate mobile
agents to client service requests. Our aim is to minimize the total cost of service in an
on-line environment. We measure each service in terms of its computing cost. For
example, we use cost{creation) to denote the average cost of the creation service. Five
types of costs are involved in our proposed system: cost(creation), cost(cloning),

cost(dispatching), cost(disposal) and cost(messaging).

We examine three scenarios when a client with x requests consumes ready-made d

service units, we have:

1. x=d, the client happens to consume all ready-made service units. In this
scenario, each service agent costs ¢ = Cost(creation) + Cost(cloning) +

Cost(dispatching), and the total cost is c¢d or cx.

2. x<d, ready-made service units exceed the client’s requests, so (d —x) units

are eliminated. In this scenario, we have ¢, = Cost(creation) + Cost(cloning) +

Cost(dispatching) + Cost(disposal), and the total cost is cx +c,(d - x).

3. x>d, ready-made service units are insufficient to meet the client’s requests,
0 another (x—d) units are cloned and dispatched. In this scenario, we have

¢, = Cost(messaging) + Cost(cloning) + Cost(dispatching), and the total cost is

ed +c,(x~d) or cx+(c,—c)x-d).

104

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

If the actual request sequence is denoted by o =(x,,x,......x,), Where x, means the

actual number of requests in the ith period, we can obtain the optimal off-line cost of

the problem (for a single client):

Comr@)=c-D %, (1)
i=1

For the same request sequence, if d; denotes the service units that should be prepared

by the on-line decision-maker for the ith period, we can obtain the on-line cost of

competitive algorithm A as follows:

Cu@=c Tx 4o -0 Yl ~dy+e- X -x) ()
" o e

For any on-line algorithm A, the competitive ratio is defined as:

C,.(0) (3)
Copr (0)

a =inf
A small competitive ratio implies that A can do well in comparison with the optimal
(OPT). In designing the competitive algorithm for the OTSP problem, the agent
controller (i.e., the on-line decision-maker) does not know beforehand the actual
number of requests in the ith period. Instead, the controller knows the possible range
in the number of requests denoted by [m, M]. The on-line competitive algorithm A
needs to give the best possible choice for the number of service units {d) to prepare

for the ith period, which would result in the smallest competitive ratio &.

7.4.1 General Harmonic Algorithm (GHA)

105

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

Theorem 7.1. For the on-line OTSP problem, the best choice that an on-line decision-

maker can make is;

goMm(pta-1) (4
Mp +m-(g-1)

where p = ¢ /c,q=c,/ c and [m, M] is the possible range in the number of requests

for a client from a given group.

7.4.2 Competitive Ratio

Theorem 7.2. For the competitive GHA algorithm given in Theorem 1, the

competitive ratio is:

a,:(m,(q_l)&) (5)

Mp+m-(g-1)

Proof. To prove theorem 7.2, we need to consider two possible worst-case request

sequences, which an off-line adversary may choose: o, = (M.M,...... M) and o, =

Firstly, let c,(o,,) and c,,.(s,) denote the on-line cost and optimal off-line cost under
the circumstances of o, , respectively. According to equations (3) and (5) above, we
obtain:

Culoy)=c- 3 M +(c,—c) 3 (M -d,)

=cMn+(c, ~c}-(M ~d)-n

=(l+(q—l)(l—%)]""w”
e

M-
-(Hp(q-l) Vptm l)J Corr(Oy)

106

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

Similarly, let ¢,(,) and ¢, (o,) denote the on-line cost and optimal off-line cost

under the circumstances of o_, we obtain:

Cd(a',,,)=c-‘:m+c, -i(d,. —m)
i=1

i=l

=(cm+ pc-(d—m))-n

= zl-l-p(%—l)]-cmn
(ot
)

M-m
1+ plg-1)———MM—
plg-1) Ty ——

J ! Cow(am)

\

where ¢,, and o, are the two worst possible cases for the given problem. For any o :

,,,=_C&51+,,(,,_,)[_ML]
Corr (T) Mp+m-(g-1)

The proof is complete.O

7.4.3 Lower Bound for the Competitive Ratio

Theorem 7.3. For the competitive ratio of on-line GHA algorithm

1+ plg-1) M-m is the lower bound.
Mp+m-(g-1)

Proof. We need to prove that if an on-line player chooses to prepare a number of

Mm(p+qg-1)
Mp +m(qg—1)

service units where the number is different to , the competitive ratio is

worse. We assume that ; . Mm(P+4-1 then we need to prove that if an off-line
Mp +m(g-1)

adversary chooses ¢, the competitive ratio [1 +plg-1)—M =" J cannot be achieved.
Mp+m-(g-1)

107

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

According to equation (3), we obtain:

Cloy)=c- I M+(c,~c) > (M-d)
P

in)

=(cM+{g-1)-c-(M~d))-n

foenf-L)t

M~-m
> 1+ plg—1
[@)Mp

Tgy-l)) Corr(O4)

The last inequality holds if 4y . M™P+9-D A similar proof can be given for the
Mp +m(g-1)

condition 4 , Mmlp+q-1)
Mp +m(g-1)

Corollary 7.1. If we denote the fluctuation rate by 4. M , for the competitive GHA
Yo P

m

given in Theorem 7.1, the best choice for d depends on p/q when the fluctuation rate

remains constant.

Proof. According to equation (5), we obtain:

d_¢-p+e¢-(g-1
m g prlg-1)

Which means that 4 —» mwhen p>>q, and 4 - M when g>>p.00

In the proposed system, if the cost of disposal is much higher than cloning, the
number of service units we prepare approaches the lower boundary (m). Similarly, our
choice approaches the upper boundary (M) if the cost of cloning is much higher than

disposal. This condition is illustrated in Figure 7.3.

108

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

dm 27
1.5 \
1 & $=2
0.5
0 p/g

AP AP aD AP oD oD 4P 4P AP
RIS

Figure 7.3. Relation between d/m and p/g
Corollary 7.2. For the on-line OTSP problem, if we have ¢, =¢-¢c,, thatis, p=g-1,

the best decision that an on-line player can make is:

2Mm
M +m

d=

where [m, M] is the possible range in the number of requests for a client in a given

group.

The proof is omitted in this thesis.

Corollary 7.3. For the special case of a competitive GHA that supports corollary 7.2,

the competitive ratio is:

The proof is omitted in this thesis.

7.5 Two More Corollaries

Corollary 74. For the on-line OTSP problem, where p=c¢ /c, g=c¢,/c and

¢ =M /m, the competitive ratio & depends on ¢ if p and q are constants. When ¢

increases, o approaches g.

According to equation (5), we obtain:

109

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

g-p-p
¢-pt(g-1)

a=1+(g-1)
This means that « — 1 when ¢ - 1,and g — g When ¢ — o .

The value of ¢ is the fluctuation rate of the requests within any registered group. If

we divide our clients into more groups, we obviously narrow the fluctuation rate of

each new group, and we can always obtain a better competitive ratio. This is

illustrated in Figure 7.4.

2
a 15 /"-’——
;
0.5
) — m &

Figure 7.4. Relation between & and ¢

Corollary 7.5. For the on-line OTSP problem, where p=c¢,/c, g=c,/c and
¢ =M /m , if the fluctuation rate changes due to increases or decreases in the clients’
request within a given group, the on-line solution (d) should be changed accordingly

using a dynamic allocation:

_Mp +M -(g-1
¢p+(g-1)

The proof is omitted in this thesis.

The relationship between d/m and ¢ is illustrated in Figure 7.5.

110

CHAPTER 7: Dynamic Allocation of Mobile Agents by On-line Task Scheduling

d /
; 1.5/
1 [=em]
0.5
04
RIS I ¢

Figure 7.5. Relation between d/m and ¢

7.6 Conclusions

Task scheduling schemes play an important role in mobile agent system design. The
majority of current research has been focused on applying pre-defined schemes for
allocating computing resources to fulfill a fixed off-line task. To overcome the
limitations of current approaches, which lack the flexibility to dynamically allocate
mobile agents in an on-line environment, we intreduce a new system structure. This
structure integrates push-based technology with an innovative on-line task-scheduling
algorithm to improve system response time and minimize system overheads. The
proposed competitive algorithm GHA (General Harmonic Algorithm) has the optimal
competitive ratio and it has been tested through experiments to demonstrate its
feasibility and effectiveness. The system has potential for a wide range of Internet-
based applications, and for integration with other intelligent decision-making

algorithms for high performance, flexibility and reliability.

111

CHAPTER 8: Future Study

Chapter 8

FUTURE STUDY

In this chapter, a schedule of future work is presented. In future, we will focus our
attention on the application of the proposed aigorithm to task scheduling for mobile

agent based systems.

8.1 For the k-Server Conjecture

One of the main reasons why the research concemning on-line problems and
competitive algorithms is so interesting is the existence of two famous conjectures
(see Chapter 1). In my future study, I will do further research on the relevant problems

concerning the k-server conjecture.

8.2 Other On-line Problems

In my future study, I will allocate time to research other on-line problems, such as on-
line scheduling problems, on-line network routing and on-line financial problems. I
think that I might be more interested in the on-line financial problems.

8.3 Application to Management and Economic Problems

Research concerning how to apply the theory of on-line problems and competitive

algorithms to the domains of management and economics has not received enough

112

CHAPTER 8: Future Study

attention. However, in real life, there are many management and economic problems
that must be dealt with in an on-line manner. Therefore, how to represent and design

competitive algorithms for these problems will be a major task in my future research.

8.4 Continue Research into the k-Truck Problem

The k-truck problemstill requires a great deal of work that will need some thorough
research, For example, the current results for the k-truck problem are based on the &-
server problem, and subsequent use of the Position Maintaining Strategy. We may be
able to find some better algorithms for the k-truck problem that do not depend on the
results from the k-server problem. It may be possible to obtain better results if we
model the k-truck problem as a truck weighted problem. I will continue my research

for the k-truck problem to obtain better results.

8.5 Application to Agent-based E-commerce

Agent-based techniques and e-commerce are two new and very active areas of
academic research. I will attempt to apply the theory of the on-line problems and

competitive algorithms to the field of agent-based e-commerce.

113

Bibliography

BIBLIOGRAPHY

(1]

[2]

[3]

(4]

[5]
[6]

(7]

(8]
[9]

[10]

[11]

[12)

R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System
Technical Journal, 45:1563-1581,1966.

D. E. Knuth. The Art of Computer Programming; Volume 2: Seminumerical
Algorithms. Addison-Wesley,1* edition, 1968.

D. S. Johnson. Near-optimal bin packing algorithm. Ph.D. thesis, MIT,
Cambridge, MA, 1973.

D. S. Johnson. Fast algorithms for bin-packing. J. Comput. System Sci., 8:272-
314, 1974.

D. S. Johnson. Private Communication, 1998.

D. R. Woodall. The bay restaurant- a linear storage problem. American
Mathematical Monthly, 81: 240-246, 1974.

H. A. Kierstead and W. T. Trotter. An external problem in recursive
combinatorics. Congressus Numerantium, 33:143-153,1981.

C. A. Yao. New algorithms for bin packing. Journal of ACM, 27:207-227,1980.
D. D. Sleator, R.E.Tarjan, Amortized efficiency of list update and paging rules,
Comm. ACM 28 (1985) 202-208.

D. D. Sleator and Robert Endre Tarjian. Self-adjusting binary search trees.
Journal of ACM, 32:652-686, 198_5.

A. Karlin, M. Manasse, L. Rﬁdolph, and D. Sleator. Competitive snoopy
caching. Algorithmica, 3 (1):79-119, 1988.

A. Borodin, N.Linial, M.Sake, An optimal on-line algorithm for metrical task

systems. Proc. 19" ACM STOC (1987) 373-382.

114

Bibliography

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive algorithms for
server problems, Journal of Algorithms, (11),208-230,1990.

T. M. Cover. Universal portfolios. Mathematical Finance, 1 (1).1-29, January
1991.

C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127-150, 1991.

S. Ben-david, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the
power if randomization in on-line algorithms. In Proc.of the 22" Ann. ACM
Symp.on theory of computing, pages 379-386, may, 1990.

M. Chrobak, H. Karloff, T. Payne and S. Vishwanathan, new results on server
problems, Proceedings of 17 annual ACM-SIAM Symposium on Discrete
Algorithms, San Francisco, 1990.

M. Chrobak and L.L. Larmore. The server problem and on-line games. In
DIMACS series in Discrete Mathematics and Theoretical Computer Science,
volume 7, pages 11-64, 1992.

A. Fiat, Y. Rabani, Y. Ravid, competitive k-server algorithms. 3/ * FOCS, 1990.
A. Fiat, M. Richlin, competitive algorithm for the weighted server problem.
theory and computing system 1993, Proceedings of the 2™ Israel symposium
page(s).294-303.

E. Koutsoupias and C. Papadimitriou. on the k-server conjecture. In proc.25™
symposium on thety of computing, pages 507-511,1994.

Y. F. Xu, K. L. Wang, and B. Zhu, On the k-taxi problem, Information, Vol.2,
No.4, 1999.

Y. F. Xu, K. L. Wang, On-line k-taxi problem and competitive algorithm,

Journal of Xi’an Jiaotong University, (1):56-61,1997.

115

Bibliography

[24]

[25]

[26]

(27]

[28]

[29]

(30]

[31]

[32]

[33]

S. Ben David and A. Borodin, A new measure for the study of the on-line
algonithm, Algorithmica, (11), 73-91,1994.

N. Alon, R. M. Karp, D. Peleg, et al; A graph-theoretic game and its application
to the k-server problem, SIAM J. Comput. , 24(1):78-100, 1995.

D. Z. Du, k-server problem and competitive algorithm, Practice and
Acquaintanceship of Mathematics, (4): 36-40, 1991.

W. M. Ma, Y. FXu, K. L. Wang, On-line k-truck scheduling problem ad its
corﬁpetitivc strategies, Journal of Northwest University (Natural Science, P. R.
China), Vol.29, No.4:254-258, 1999.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for
on-line problems. Proceedings 20" Annual ACM Symposium on Theory of
Computing, pages 322-33, 1988.

E. Grove. The Harmonic online k-server algorithm is competitive. Proceedings
23 Annual ACM Sympposium on Theory of Computing, Pages '260-66, 1991.

S. Irani and R. Rubinfeld. A competitive 2-server algorithm. Information
Processing Letters, 39(2):85-91, July 1991.

D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on
weighted graphs and applications to on-line algorithms. Journal of the
Association for Computing Machinery, 40(3):421-53, July 1993.

M. Chrobak and L. L. Larmore. On fast algorithms for 2 servers. Journal of
Algorithms, 12(4).607-14, December 1991.

M. Chrobak and L. L. Larmore. Harmonic is 3-competitive for two servers.

~ Theoretical Computer Science, 98(2):339-46, May 1992.

116

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[401

[41]

A. Blum, H. Karloff, Y. Rabani, and M. Saks. A decomposition theorem and
bounds for randomized server problems. Proceedings 33" Annual Symposium
on Foundations of Computer Science, pages 197-207, 1992.

A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owi.cki. Competitive
randomized algorithms for nonuniform problems. Algorithmica, 11(6):542-71,
April 1994,

H. Karloff, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-server
and motion-planning algorithms. SIAM Journal on Computing, 23(25:293-312,
April 1994,

M. Chrobak and L. L. Larmore. The server problem and on-line games. On-line
algorithms: proce.:cdings of a DIMACS workingshop. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 7:11-64, 1992,

W. R. Burley. Traversing layered Graphs using the work function algorithm.
Technical report CS593-319, Dept. of Computer Science and Engineering
University of California, San Diego, 1993.

M. Chrobak and L. L. Larmore, N. Reingold, and J. Wesbrook. Page migration
algorithms using work functions. Algorithms and Computation. 4" International
Symposium, IASSC’93 Proceedings, pages 406-15, 1993.

E. Koutsoupias. Weak adversaries for the k-server problem. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, New York
City, NY, pages 444--449, 17--19 October 1999.

E. Koutsoupias and D. S. Taylor. The CNN problem and other k-server variants.
In 17th Annual Symposium on Theoretical Aspects of Computer Science, Lille,

France, pages 581--592, 17--19 February 2000.

17

Bibliography

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52)

[53]

E. Koutsoupias and C. Papadimitriou. Beyond competitive analysis. SIAM
Journal on Computing, 30(1):300--317, 2000.

Y. Bartal and E. Koutsoupias. On the competitive ratio of the work function
algorithm for the k-server problem. In I7th Annual Symposium on Theoretical
Aspects of Computer Science, Lille, France, pages 605--613, 17--19 February
2000. |

S. Albers and S. Leonardi. Online algorithms. To appear in ACM Computing
Su-rveys , 1999,

R. El-Yaniv, A. Fiat, R. Karp,; G. Turpin, Competitive analysis of financial
games. Foundations of Computer Science, 1992. Proceedings., 33rd Annual '
Symposium on , 1992 , Page(s): 327 -333.

H. Stormer, Task Scheduling in Agent-Based Workflow. International ICSC
Congress INTELLIGENT SYSTEMS & APPLICATIONS ISA’2000.

J. Bredin, David Kotz and Daniela Rus, Utility Driven Mobile‘-Agent Scheduling.
Dartmouth Technical Report PCS-TR98-331.

G. Cybenko, The Foundations of Information Push and Full. A chapter in the
book “Mathematics of Information”, edited by D.O’Leary.

I. Kiniry, D. Zimmerman, Special feature: A Hands-on Look at Java Mobile
Agents. IEEE Internet Computing, Volume 1, No.4 July/August 1997.
http://www.objectspace.com/Voyager

http://www.genmagic.com/agents/odyssey

http://www .trl.ibm.co.jp/aglets

ObjectSpace Voyger, General Magic Odyssey, IBM Aglets: A comparison.

ObjextSpace Inc. Technical White Paper.

118

Bibliography

[54]

[55]

[56)

[57]

(58]

[59]

[60]

[61]

Z. Maamar, “An approach to Optimizing a Mobile Agent Itinerary,”
International ICSC Congress Intelligent Systems & Applications ISA'2000,
Networked Business I (MAMA’2000), 1574-350, Australia, 2000.

N. M. Karnik and A. R. Tripathi, “Design Issues in Mobile Agent Programming
Systems,” IEEE Concurrency, Vol. 6, No.3, pp. 52-61, July/September 1998.

D. B. Lange, and M. Oshima, , Programming and Deploying Java Mobile
Agents with Aglets, Addison-Wesley, 1998.

M. Straper, J. Baumann, and M. Schwehm, “An Agent-Based Framework for
the Transparent Distribution of Computations,” in Proc. of Int. Conf. on
Parallel and Distributed Processing Techniques and Applications (PDPTA’99),
Vol. I, CSREA. pp.376-382, 1999.

S. Fishchmeister and W. Lugmayr, “The Supervisor-Worker Pattern,”
Programming Language of Programs (PLoP’99} Conference, USA, 1999.

A. Fiat and G. J. Woeginger. Online algorithms—the state of the art. Lecture
Note in Computer Science. Springer, 1998.

R. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, 1983,
109-111.

Y. F. Xu, and K. L. Wang, On-line k-elevator problem and competitive

algorithm. (In preparation).

119

