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ABSTRACT

Computational procedures for predicting the post-buckling
responses of struts and plates with general initial imperfections,
when subjected to progressive end shortening, are developed.
Geometric non-linearity is introduced into the strain-displacement
relations in a manner consistent with the von Karman assumptions.
The set of non-linear equilibrium equations is solved by a Newton-
Raphson procedure.

In the post-buckling analysis of struts, the actual initial
imperfection is simulated by suitable polynomial function, while
the deformations are expressed by Fourier series. Transverse shear
effect is included in the formulation. Comparisons with classical
solutions without transverse shear and experimental results are
presented.

In the context of classical plate theory, a finite strip
approach is developed for predicting the post-buckling response of
plates under uniform end shortening. Out-of-plane initial
imperfection is represented by a set of polynomial functions in the
longitudinal direction, which are interpclated by some crosswise
functions in the transverse direction. The approach is very general
and is applicable to anisoteopic plates and plates with general
shapes of initial imperfection.

Applications on perfectly flat plates and plates with wvarious
forms of initial imperfections are considered. It is demonstrated
that both the post-buckling behavicrs and deformed shapes are
strongly influenced by the magnitudes and shapes of the initial

imperfections.
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CHAPTHER 1

INTRODUCTION

1.1 OBJECTIVES OF STUDY

The aims of this study are to develop computational procedures

for the prediction of the post-buckling response of struts and

laminated plates with general initial imperfections. The main

objectives are as follows:

a,

To develop computational procedures for the post-buckling
analysis of struts and plates with  general initial
imperfections when subjected to progressive end-shortening;

to examine the adaptability of wusing Fourier series and
polynomial functions to represent the deformations and initial
imperfections, respectively;

to include the transverse shear effect in the analysis of
struts under axial compression, and to examine the transverse
shear effect by comparing the respenses of struts of various
thickness; and

to investigate the effects of initial imperfection on the post-
buckling response of laminated plates under end-shortening

strain.

1.2 SCCPE OF STUDY

The present study includes the development of the finite strip

method for the post-buckling analysis of struts and plates with

1



general 1initial imperfections. The procedures are codified in
standard FORTRAN 90 and compiled by Lahey FORTRAN 90 v3.5 on a PBC
operated under Windows 98 environment. A number of applications
have been studied to demonstrate the response of struts and plates
under various conditions.

Background discussion and review on related literatures are
presented in Chapter 2, which comprises review on the theories and
procedures on non-linear structural analysis, means to approximate
the initial imperfection as well as numerical techniques for
solving partial differential equations and non-linear programming.

Post-buckling analysis of struts with general initial
imperfection is presented in Chapter 3. Starting from the non-
linear strain-displacement relationships, a formulation with
transverse shear effect is developed. By using the least-squares
technique, initial imperfections are simulated by polynomial
functions. Numerical examples with symmetric and non-symmetric
imperfections are presented. Struts with various thickness are also
considered to examine the effect of transverse shear.

Chapter 4 gives an account on the analysis of laminated plates
when subjected to progressive end-shortening Strain. The
formulation is based on the finite strip method and in the context
of classical plate theory. The method of simulating the initial
imperfection by polynomials described in Chapter 3 is extended to
the analysis of plates.

Brief descriptions of the computer architecture and programming
technique implementation to cddify the finite strip procedures are
presented in Chapter 5. Various applications are presented in
Chapter €. Post-buckling responses of isotopic plates and
anisotropic laminates with symmetric and non—symmetric initial
imperfection are considered.

Conclusions of the study are presented in Chapter 7. Some

2



recommendations on the computational effort and efficiency of the
finite strip method, along with recommendations on further work to
study shear deformable plates are alsoc outlined in the concluding

chapter.



CHAPTER 2

REVIEWS ON RELATED LITERATURE

Today, more and wmore structural compenents are wmade of
laminated plates. This demonstrates the potential of laminate to be
utilized as the main components in mechanical, aerospace, marine
and other brancﬁes of engineering. Laminated plate has the
advantages of lightness and good strength to thickness ratio. With
feasibility in layup arrangement, design engineers are able to
optimize a laminate for various applications. Accurate and
efficient predictions on the post-buckling response of laminated
plates are required to quantify the ultimate capacity needed for
design. For structure under in-plane compression, a significant
amount of research, Leissa (1987) and Kapania and Raciti (1989},
has been conducted on their buckling and post-buckling behavior. A

review on this aspect ig as follows.

2.1 POST-BUCKLING ANALYSIS OF STRUTS AND PLATES

When an in-plane compression is applied to a strut or plate,
lateral deformation is anticipated due to buckling. Among other,
Timoshenko and Gere (1961} and Allen and Bulson {1980} have
provided detail discussion on varieus types of buckling of strut
and plate.

Consistent with the von Karman assumptions, for instances see
Novozhilov (1953}, geometric non-linearity is introduced into the
strain-displacement relationships through the out-of-plane w terms,

whilst the second order effect with respect te the in-plane



displacements u, v are usually neglected. A number of applications
on the non-linear analysis of plates were demonstrated in the book
by Chia ({(1980). Because of the presence of anisotropic material
coupling terms iﬁ the stress-strain relationships, Whitney (1987),
out-of-plane deformations are initiated by in-plane leading.
Eigenvalue-type buckling may not necessarily occur even for a
perfectly flat laminated plate subjected to an in-plane
compression.

In the analysis of thin structures, the transverse shear effect
is negligible, Novozhilov (1953), as shown in equations (2.1.1) and

{(2.1.2).

Ow

},yz - E + Wy my 0 . {2.1.1}
ow

Yex =E+W" —- 0 (2.1.2)

where .. and )., are the transverse shear strains, w is the out-of-

plane deformation and ., ¢, denote the rotations about the y and
negative x axes, respectively.

In the context of classical plate theory, Chia and Prabhakara
(1973), (1374) & (1975) conducted post-buckling analysis on plates
using Fourier series approximations. Stein (1983} & (1985} analyzed
and indicated the differences between the post-buckling responses
of isotropic and orthotropic plates of various boundary conditions.
Shin, Griffin and Gurdal (1993} determined the changes in buckled
shapes of laminated plates subjected to progressive in-plane
compression. Graves-Smith and Sridharan (1278) & (1581), Hancock
{1981), Gierlinski and Graves-Smith (1984}, Dawe, Lam and Azizian
(1992}, Azhari and Bradford (1995) & (1997) and Dawe and Wang

(1998) alsc developed the finite strip approaches for thin plates



and thin plate structures with the transverse shear effect
neglected.

When the thickness of a plate increases, transverse shear
deformation, Whitney and Pagano (1970} and Whitney (1973), must be
included. Equations (2.1.1} and (2.1.2} are nc longer zeros.
Mawenya and Davies (1974) demonstrated the effect of transverse
shear by analyzing the bending of plates with various thickness.
Hughes, Taylor and Kanoknukulchai (1977) developed a finite element
approach for the aﬁalysis of plates with transverse sghear effect.
The formulation is also applicable to thin plates. Stein (1989)
congidered the difference between the traditional post-buckling
results for thin plates with transverse shear effect and classical
solutions. The transverse shear effects under various edge
conditions were also examined. Using shear deformation plate
theory, Lam, Dawe and Azizan (1993) studied the post-buckling
response of laminated plates. Discussion on the shear locking
effect, due to the inclusion of transverse shear deformation, can

be found in Chapter 2.3.

2.2 INITIAL IMPERFECTIONS

Responses of struts and plates under axial loads are strongly
influenced by the shapes and magnitudes of initial imperfections.
Symmetric initial imperfections in the form of Fourier series or
trigonometric functions have been considered by many researchers.
Timoshencko and Gere (1961) expressed the initial imperfections as
Fourier series in the analysis of plates subjected tg transverse
loading. Yamaki (1959) proposed analytical solution for post-
buckling behavior of isotropic plates with initial imperfection.

The shapes of the initial imperfection and out-of-plate deformation



were assumed to be the same, which were symmetric and in the form
of Fourier series. Similar representation was also applied by Shen
and Williams {1995} for the analysis of laminated plates. Numerical
examples of unsymmetric angle-ply and symmetric cross-ply laminates
were presented. Comparisons between perfect and imperfect plates
were also reported to indicate the effects of initial imperfection.
Dawe, Wang and Lam (1995} applied the finite strip method and
expressed the initial imperfection along each nodal line by Fourier
series. The nodal imperfections were then interpolated by some
crosswise polynomial functions. The representation of initial
imperfection is consistent with the finite strip model and can be
programmed easily. Formulations, based on both classical and shear
deformation plate theories, were presented.

To represent the initial imperfection in general Eform,
piecewise polynomial functions, which are readily applied to the
finite element method, have been used. Among others, this approach
was 1implemented by Saigal, Kapania and Yang (1986} to analyze
imperfect laminated shell. Kapania and Yang (1987) further extended
the work to study the buckling, post-buckling and vibrations of
imperfect plates. A number of comparisons were made with other
available solutions. By applying the least-squares technigque, Lam
{1998) simulated the initial imperfection of a strut by polynomial
function, whilst the displacements were represented by Fourier
series. The analytical results compared well with the experimental
measurements. Using similar technique to represent the out-of;plane
imperfection along each nodal line, Lui and Lam (1999%) developed a
finite strip approach for the post-buckling analysis of rectangular
plates. This approach was further applied by Lui and Lam (1999) to
investigate the responses of plates with various initial
imperfections.

In order to quantify the effect of initial imperfection, other



approaches were introduced by Fraser and Budiansky ({1969} and
Elishakoff, Cai and Starnes (1994) to examine the buckling behavior
of a column with random initial imperfection. Based on sensitivity
studies, Tkeda and Murota (1990) & (1990} determined the critical

initial imperfection for truss structures.

2.3 NUMERICAL TECHNIQUES

The finite element method, for instances see Zienkiewicz and
Taylor (1989}, is perhaps the most common numerical procedure for
general applications. It is able to model structure with any
geometry, boundary conditions and material variations. A review
article about the developments in geometrically non-linear finite
element analysis was given by Gallagher (1973). Saigal, Kapani and
Yang (1986) and Kapania and Yang {1987) presented the non-linear
analyses of imperfect shells and plates, respectively. When the
conventional finite elements including the transverse shear effect
are applied to the analysis of thin structures, shear locking
effect occurs. This léads to a reduction in accuracy, Moy and Lam
{1990) . It is due to the existence of excess constraints in the
limiting case of zero transverse shear strain when the thickness
becomes relatively small, see equations ({2.1.1) and (2.1.2).
Several numerical techniques were proposed to overcome this
problem. Zienkiewicz, Taylor and Too (1971) proposed the reduced
integration technique. Hughés, Taylor and Kancknukulchai (1977)
pregented the analysis of plate bending including the transverse
shear effect. Two-point gquadrature was employed in the bending
term, whilst both one and two-point quadratures were considered in
the shearing term. It was noted that accurate sclutions were

obtained on the applications of thin plate when one-point



quadrature was used to integrate the shearing term. Prathap and
Bhashyam (1985) discussed the error due to the shear locking effect
and compared with solutions using selective reduced integration.
The finite strip method, introduced by Cheung (1968), is well
established for the analysis of single plates and prismatic plate
structures., The two-dimensional displacement field is reduced to

one-dimension with shape functions, as shown in egquation (2.1.3}.

wix, y) = D W (x} N;(y) (2.1.3)

i=1

where W;{x) is the displacement function along each longitudinal
nodal line, N;{y} is the shape function in the transverse direction
and m is the number of nodes in a finite strip. Some latest
developments have been recorded in a recent reference by Cheung and
Tham (1997}. Comparisons in storage, accuracy and efficiency were
made with the finite element method. It is noted that smaller
number of equations and matrix with narrow bandwidth are usually
anticipated when using the finite strip method. Mawenya and Davies
{(1974) applied the finite strip method for plate bending with
transverse shear effect. Numerical examples of thin, thick and
sandwich plates were presented. In order to diminish the shear
locking effect, Hinton and Zienkiewicz (1977) and Onate and Suarez
(1983) applied the reduced and selective integration techniques,
respectively. Accuracy of linear and quadratic strips was improved
and comparisons of the analyses of plates with various thickness
were shown.

In the analysis of thin plates or thin plate structures,
Graves-Smith and Sridharan (1978) & (1981) developed the finite
strip approach in the context of classical plate theory,

Applications on box columns of various sections were presented.



Comparisons with the finite element wmethed on storage and
efficiency were shown in tabulate form. Later, @Gierlinski and
Graves-Smith (1984) studied the behavior of thin-walled structures
under various kinds of 1loading. Hancock (1981} proposed a non-
linear analysis for imperfect thin plate structures. Examples of
square plates and various types of thin-walled column were
presented. Further works on the finite strip method including
bubble function were recently developed by Azhari and Bradford
(1995) & {(1997).

Dawe, Lam and Azizian {1992) developed the finite strip for
post-buckling analysis of laminated plates under end-shortening in
the context of classical plate theory, of which displacements along
each nodal line were expressed in the form of Fourier series.
Isotropic plates, unsymmetric cross-ply and angle-ply laminates
with wvarious boundary conditions were considered. Further
development on the analysis using shear deformation plate theory
was proposed by Lam, Dawe and Azizian (1993). Results from the
approaches by both theories and finite element soluticns were
compared. Summary of the work based on both theories can also be
found in a contributed chapter, Lam and Dawe (1998). Post-local-
buckling analysis of composite prismatic plate structures was then
developed based on the above approaches, Dawe, Lam and Azizian
(1993) . Other modification for the analysis of imperfect laminated
plates under end-shortening and normal pressure was presented by
Dawe, Wang and Lam (1995). Lam, Zou and Lui (1999) developed a the
load increment procedure for the post-buckling analysis of
laminated plates. PDawe and Wang (1998) studied the post-buckling
analysis of thin plate by the spline finite strip method, of which
displacements along each ncodal line were represented by cubic
spline functicns. It is beyond doubt that the finite strip method

is now well matured as an analytical tool in the analysis of

10



prismatic structures.

In solving the non-linear problem, a number of numerical
techniques have been developed. Descriptions on the solution
methods generally used in non-linear analysis, including direct
iterative method and Newton-Raphson method, were described by Cook,
Malkus and Plesha (1989). Gisvold and Moe (1970) presented several
traditional non-linear solution techniques applicable to buckling
problem. Minguet, Dugundji and Lagace (1989) described various
numerical minimiiation techniques, the steepest descent, conjugated
gradient and Newton-Raphson methods, for the post-buckling analysis
of laminated plates. Newton-Raphson method was also applied by
Shiau and Wu (1995) and Dawe, Lam and Azizian (1998) for the post-
buckling analysis of laminated plates and plate structures,
respectively. The stable and unstable equilibrium paths were traced
when a progressive compression load was applied. The changes in
buckled shapes were also indicated. The above mentioned Newton-
Raphson procedure has been proved to be highly reliable in
predicting the geometrically non-linear response and will be

adopted in this study as the core solution procedure.
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CHAPTER 3

POST-BUCKLING ANALYSIS OF STRUTS WITH GENERAL INITIAL IMPERFECTION

- TRANSVERSE SHEAR EFFECT

This chapter introduces a numerical approach for the post-
buckling analysis of a strut subjected to progressive end-
shortening straih, see Figure 3.1. The length and cross-section
area of the strut are L and A, respectively. Both ends are simply
supported and general initial imperfection w,{x) is allowed in the
analysis.

u{x) and w(x) denote the axial and lateral displacements,
respectively. Under the consideration of transverse shear effect,
rotation f,(x) is also included. Polynomial functions and Fourier
series are used to represent the initial imperfection and
displacements, respectively. In previous work, Lam ({1998) has
neglected the transverse shear effect which is now included in the
study. Some compariscons between the results by the present and
previous approaches are made to indicate the effect of transverse
shear. Finally, discussion about the efficiency of the present

appreach is also included.

i L f
x,u
S e e

—

Figure 3.1 Strut under end-shortening strain g,
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3.1 STRAIN-DISPLACEMENT RELATIONSHIPS AND ENERGY EQUATIOQONS

Consistent with the von Karman assumptions, for instances see
Novozhilov (1953), the non-linear strain-displacement relationships
of a strut can be derived by considering the deformation of a line
element parallel to the x-axis, as shown in Figure 3.2. Here, ds is
the original length of the line element, and dx, dz are the lengths
in the x, =z directions, respectively. ds,, dx, and dz, are the
lengths after deformation. Subscripts a denote the variables after
deformation. (x,2) and (u, w) are the coordinates and

displacements, in x and z directions, at a general point.

dxﬂ
z H
A (X+T , 24w 4y ) :
P i after deformation
dza = dw
ds = dx ;
>
{x, Z+w,)
z * before deformation middle surface
....................................................................................................... 4(” of strut
WO
x

Figure 3.2 Deformation of a line element parallel to x-axis

From Figure 3.2, it can be deduced that

X, = X+ U; 2, = Z2+w+ w, (3.1.1)
dx _
2 =14+ Egi, dz, aw + aw, {3.1.2)
dx dx dx dx dx
ds} = dx? + dz! (Pythagorean Theorem) (3.1.3)
ds, Y’ di  (du)  (aw)® _dw dw, (dw, Y
—l=2—+|—| +|—| +2—"7"2 4+ (3.1.4)
dx dx dx dx dx dx dx
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Let £, be the axial strain at a general point,

£, = = (3.1.5)
* ds dx
2
— 1|{ds
&, +=@E) == 2] -1 {3.1.86)
2 dx
Using equation (3.1.4) and neglecting the terms (Z,)2,

(du /dx)? and {(dw,/dx)?, we have

(dﬁ)z dw dw,
— +—
*odx 2\dx dx dx

{(3.1.7)

For the variables at the middle surface (without the overhead

bar},

o =u+zf,; W= w {3.1.8)
~dz —dw
B, = £ = (3.1.9)
ds, dx + &
dw
B = —54'}’,, {3.1.10)

where y, is the transverse shear strain which is introduced to
account for the transverse shear effect. In equations (3.1.9) and
(3.1.10), & and p, vanish if the shear effect is neglected.

Substitute equation (3.1.8) into equation (3.1.7},

(dw}z dw dw,
—_— -+ (3.1.11)
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Consistent with the relationships between the strain at a

general point and at the middle surface,

=&, + 2y, (3.1.12)

du 1 (dw]z dw, dw
£, = — + = |—| + — {3.1.13)
dx 2\dx dx dx
dg,
Xx = e (3.1.14)
dw
Ve = By + . {3.1.15}

The constitutive stress-strain relations are defined as

o,lx, 2z) = El¢, + zyp,) {3.1.16)

G
ix} = — 7, {3.1.17}
k

where o,{x,z) is the gtress in x direction, 7{x) is the shear
stress, E and G are modulus of elasticity and shear modulus
respectively. z is the through-thickness coordinate. In the above
expressions, the transverse shear strain is assumed to be uniform
through the thickness. Shear correction factor k is introduced to
allow for the fact that actual through-thickness transverse shear
strain distribution is not uniform. Appropriate values of shear
correction factor can be determined using the method proposed by
Whitney (1973} & (1987). For isotropic material, the shear
correction factor k = 1.2 is used. The procedure can also be

applied to laminates and anisotropic materials. Value of k depends
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on ply properties and stacking geometries of the laminate.
In the absence of external load, the total potential energy Il

of the strut is expressed as

- L gas 2 1 2 LrGA .
n—2IDEA£de+2LEIdex+2Lk}/xdx (3.1.18)

where I is the second moment of area. The three integrands denote
the energies dﬁe' to compression, bending and transverse shear,
respectively.

In previous study, Lam (1998} has assumed that the transverse
shear effect is negligible. Hence, the transverse shear strain Y
vanishes in equation (3.1.15). The term y, simply becomes -d?w/dx’
in equation (3.1.14). As a result, only the terms related to
compression and bending are included in the potential energy
defined in equation (3.1.18) and the energy due to transverse shear

is neglected.

3.2 DISPLACEMENT FIELDS AND INITIAL IMPERFECTIONS

In present study, Fourier series and polynomial functions are
used to represent the displacement fields and initial imperfections
respectively. The representations must satisfy the boundary
conditions at the strut ends.

3.2.1 Displacement Fields

When a strut is subjected to applied end-shortening strain &,

the displacement u at the strut ends is
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L
— at x =0, L. {3.2.1)
2

Consistent with the above condition, the displacement field for u

is defined as
L . imx
u=g|= - x|+ u; sin — {3.2.2)
2 N L

where i is an integer and u; are the unknowns to be determined.

For the out-of-plane simply supported end conditions,
w=0and 8, #0 at x =20, L. (3.2.3)

The displacement fields for w and f, are

g
il
b
n
'—l.
o]

(3.2.4)

(3.2.5)

A
>
]
]
=
0
o]
w

where w; and f; are the unknowns to be determined.

In the finite element method, equal order piecewise polynomial
functions are wused to simulate the lateral displacement w and
rotation f,. However, when thin material is used, the shear locking
effect may thus occur due to the existence of excessive constraint

in the limiting case of zero transverse shear strain. Suppose

2] . n .
w = Zw;xl 8. = Zﬂ;xl (3.2.86)
' i=0
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In the limiting case,

dw
Y« = By +‘E; — 0 (3.2.7)
n-1 R \
Y = Box™ + D LB + i+ 1) wil x'] 5 0 {3.2.8)
i=0
B, = 0 (3.2.9)

Equation (3.2.9) has demonstrated that the polynomial order of pf,
is reduced, because of the different orders in the representations
of w and df,/dx. Several numerical technigues have been proposed to
alleviate the shear 1locking effect. Reduced integration was
proposed by Zienkiewicz, Taylor and Too (1971). It is a technique
commonly used by Prathap and Bhashyam (1982). The element stiffness
matrices are no longer evaluated exactly when the order of
numerical integration is reduced. Besides, the mixed formulation
proposed by Lee and Pian (1$78), hybrid formulation developed by
Pian (1978) and the field consistency theory proposed by Prathap
and Babu (1986) can also be applied to alleviate the shear locking
effect, when shear flexible elements are used in thin walled
applications.

In the present approach, the wuse of Fourier series
representations is also able to eliminate the shear locking effect.

Here,

in 1mx
¥x = Z[(ﬂj + TW;)COST} -0 {3.2.10)

I

A simple relation is established, f; = -iz/L w;, and in general pf,
and w; are non-zero. Hence, the displacement coefficients defined
in eguations {(3.2.4) and (3.2.5) do not vanish when thin material

is used.
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3.2.2 General Initial Imperfections

In order to simulate the initial imperfection of a strut,
various types of approximate functions can be used, depending on
its actual shape. In previous study, Timoshenko and Gere (1961},
Yamaki {1959}, Shen and William (1995) and Dawe, Wang and Lam
(1995) have chosen Fourier series to represent the initial
imperfection. In the present approach, the initial imperfection is
simulated by a polynomial of degree n and with constant

coefficients a;, a;,a,,..,38,, as shown in equation (3.2.11).

¢
w,o{x} = f(x) = Z a;x’ {3.2.11)
j=0

A least-squares technique is applied to match the actual initial

imperfection.

0
|

fiwota - £60)7dx (2.2.12)

o
Il

D wolxg ) — £l ) 13.2.13)
k

The approximate functicn f(x) is obtained by minimizing the sum of
square differences D. Details for determining the coefficients
dg,d,,83,..,8, <can be found in Appendix A. The mathematical
expressions shown in equatioﬁs {3.2.12) and (3.2.13) are the sum of
square differences between the actual imperfection w,{x) and
approximate polynomial f(x). The expression in equation {3.2.12) is
applied when the initial imperfection is expressed as a well-
defined function. For the expression in equation (3.2.13), the

magnitudes of initial imperfection are given only at some discrete
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peints, x = x, for k = 1,..,n, for example, from field measurements
of the actual structure.

Other approximations can also be applied to represent the
initial imperfection when expressed as a known function. Equation
(3.1.13) has shown that the effect of w, is expressed in terms of
dw,/dx or the slope. It is reasonable to determine the approximate

function by simulating the slope along the length of strut.

df(X) i . j-1
= Jjasx (3.2.14}
= S
dw,(x)  df(x)’
Dslope = J[ c:x - d.i(X)] dx {3.2.15}

Similar least-squares technique, as shown in equation {3.2.15), is
used. Again, f{x) is obtained by minimizing Dgepe. Dsiope is the sum
of square differences between the actual and approximate slope of

the initial imperfection.

3.3 SOLUTICON PROCEDURES

With the assumption that the strut is homogenecus and
prismatic, the wvalues of EA, EI and GA/k are constants throughout

the length. Using the displacement fields in equatiomns (3.2.2},
(3.2.4) and (3.2.5), [1 can be discretized in terms of u,, w; and

Pr», as shown in equation {(3.3.1},

EA
M= ="¢?% - cvVw

I, ] oIl
1 1 1
+ EAi-ll?ujz + A?J?uiwj + —A?j’ijj + A%wjﬂm + — Aﬁ,,', ,,12 (3.3.1}
2 2

1 1 1
+ ;Bijmujijm + Ecijmwiijm + EDjijinWmWn
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Coefficients of this energy equation are defined as

EAxi pL dfix L T
vV, = 1 L ) cos - dx (3.3.2)
L dx L
EAT’i g
af = 5@“—?£T_ {3.3.3)
2
i x L dfix Imx X
AY = maif = I @ cos 2 gx (3.3.4)
! L} % ax L L
Y dfeay? imx
Ai? = EAiJ(—] J; —d—x—J s—cos-J— dx
L
(3.3.5)
.\ it [GA . EA)
oL Uk °
GAxi
4y _
A5 = 8 " (3.3.6)
2.2
Einr‘i GAL
Aﬁa) = 5:3[ ——J (3.3.7)
2L 2k
T 3 L 1 Fio.4 max
Biim = EAle[—J J cos cos 2 cos dx {3.3.8)
L L L
3 . ,
LT L dfi{x inmx Finq mmrx
Cism = EAijK — I ( )cos cos 22 cos dx {3.3.9)
7 L) % dx L L L
. 4 . .
EAijmn (« L 1rx Jrx mmx nmx
DUmn = ——————(—J L cos cos cos coSs dx (3.3.10)
4 L L L L L

where J;; is Kronecker delta.

V; is the load term due to the end-shortening strain &, AP
(p = 1,..,5) are the linear coefficients, B;;, represents the
coupling between the displacements u and w, arising form the non-
linear terms in the axial strain. Cijm and Di;,, are the non-linear
terms related to the lateral displacement w.

In this study, all the above integrands are evaluated

analytically. For the coefficients V;, A;%, 25", and Cijm. the

integrands comprise of polynomial function due to the initial
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imperfection, and trigonometric functions due to the displacement
fields. Exact integration is obtained by using the following

reduction formula.

e

i n -
it = J x" sinax dx = - —cosalL + — 1"V {3.3.11)
o a a
{m) L n ;. O -1
I, = L x cosax dx = —sinal - — I, (3.2.12)
a
where a = ix/L. Equations {3.3.11} and (3.3.12) can be easily

programmed, and a brief account is given in Chapter 5.
Equilibrium is obtained by applying the principle of minimum

potential energy. Three sets of non-linear equations are formed.

im™m in in
2 PP

1
Allu + [A”’ + =B, w ]Wn =0 {3.3.13)

- &V, + (A + B, w lu,

+[Aﬁ’+-§C w_ + 2D wW_W
2

(3.3.14)
14}
jap™ p Jnpg " pT g

W, + Ajs s = 0

Agw, + BJB, =0 {3.3.15)

The non-linear problem is solved by the Newton-Raphson method.
This set of equilibrium eguations is represented in the form of
indical notation. In order to express them in matrix form for
latter formulation, three column vectors {f}, {g} and {h} are
introduced to represent the left-hand side of equations (3.3.13),
(3.3.14) and (3.3.15) respectively. Here, { } denotes a column
vector.

The system of non-linear equilibrium equations (3.3.13) -

(3.3.15) is solved by the following iterative procedure.
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(&' . {Adm} — —{R(“} (3.3.16)

{d“'*”} = @) + {Ad“’} (3.3.17)
where
v, gt v, C g v, gD
T 7T (T

k") =V, - g vV, g" V,.g
v -b“’? v .l V;; ,hu)T

u W

{V;} = {Gij}' v.} = {%} and {V,} = {az } (3.3.19)

R} = [_— £ g pt (3.3.20)
a" =le-Wm,ﬁuqr {3.3.21)
Of Of; OF,
to= Aﬁ;’: — = Aﬁ; + BigyWii — =0 {(3.3.22)
ou,, awq aﬁp
ag og
i @) . i_ aa
au. Ajp + ByogWqi ap. s (3.3.23)
p a
%95 _ a2 4 g + 3¢ + 6D
ow_ da * Bijgtti jak¥k qk1W kW1 (3.3.24)
q
oh éh éh
é—’” = 0; -[-3—”’ = Am; G‘Tm = a2 (3.3.25)
u, W, .

where L J denotes a row vector and [ ] denotes a rectangular or
square matrix. u;, wy; and S are the coefficients in the
displacement fields.

After solving equation (3.3.16), the improvement vector {Ad'!'}
can be obtained. {d'"*"} denotes the improved displacement vector
after the i-th iteration, i1 = 1,2,.. {d'M} is the initial guess.
{£9}, {g'"}., (B}, (R} and (kY] are evaluated at the value
{dlil}.

The iterative procedures are repeated until the following

convergence criterion is satisfied.
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Joa®]
];Eﬁrl ST (3.3.26)
2

where 7 i1s the tolerance and IHHZ is the I,-noxm of vector {d}. In

this study, the tolerance r is set to be ¢.0005.

When {d} converges, the displacements u, w and B,at any point
along the strut can be obtained by using the displacement fields
introduced in Chapter 3.2. The deformed shape can be traced easgily.
The average strain &, and the average force F, over the length of
the strut are determined by using the equations (3.3.27) and

{3.3.28) respectively,

= - | &,dx {3.3.27}

ave

F, = EAg,,, {3.3.28)

Similarly, stress in the x direction o,{x,z) can alsoc be calculated

by substituting the appropriate equations into equation (3.1.16).
In previous study by Lam {1998) without the transverse shear

effect, equation (3.3.16) is reduced such that only u; and w; are

included. The coefficient A;;”! is redefined as

VoL dftx} ) imx j X
AE’ = EAi](ﬁ) J; [ J cos 2 cos I dx
I L L

dx
. 5 (3.3.29)
(i) T
+ 05| EI - &, EA
2L} 2L
Also, Coefficients A", 24;;® are neglected in the classical

approach.

24



3.4 APPLICATIONS

Two applications with different initial imperfections are
considered. The first one is symmetric and in form of a half sine
wave. Comparison is made of the initial imperfections expressed in
different forms. Various magnitudes of the imperfections are also
considered to indicate the effect.

The other initial imperfection is non-symmetric and in an
arbitrary form. Solutions are compared with experiment
measurements, which has been provided in previous literature by Lam
{1998) . Various thickness are considered to verify the transverse

shear effect.
3.4.1 Struts with Symmetric Initial Imperfections

The material properties of the strut are EA = 42 N, EI = 504 N
mm?, GA = 15.75 N, L = 600 mm and v = 1/3. Both ends of the strut
are simply supported and a progressive end-shortening is applied.
Initial imperfection is symmetric and in the form of a single half

sine wave, as shown below.
. o 4
= Wop Sll’l? (3.4.1})

Won 1s the magnitude of the initial imperfection. Following the
procedures described in Chapter 3.2.2, the initial imperfection is
simulated by polynomial functions. Equations (3.4.2) - (3.4.6} show
the <correspending polynomial expressions with various orders,

namely from second to sixth degree respectively.
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£(E) = w,,(3.9228 - 3.95457) (3.4.2]
£(&) = w,,(3.744f - 3.3665° - 0.4225%) {3.4.3)
F(§) = w,,(3.103¢ + 0.4828% — 7.175£% + 3.5915%) (3.4.4)
£i6) = wop(3.1206 + 0.4156° - 6.973¢° + 3.3495° + 0.10257) (3.4.5)
£lg) = wo,(3.1425 — 0.0185% - 5.024¢° - 0.5508% + 3.6756% — 1.22589)
{3.4.6)
where ¢ = x/L. With the incorporation of constraints for simply

supported ends, the constant terms are set to be zero.

Using the criterion of equation (3.2.15), equations (3.4.7) -
(3.4.11) show the approximate polynomial functions, for the slope
of initial imperfection along the length of strut, of second to
sixth order respectively. The sum of square differences between the

actual initial imperfection and each polynomial is shown in Table

3.1.
£(E) = w,,(3.8208 — 3.820&7) {3.4.7)
F(E) = w,,(3.8208 — 3.820£% - 0.000¢3) (3.4.8)
£(§) = w,,(3.213 + 0.419% - 7.0658° + 3.5328Y) (3.2.9)
£(§) = wgn(3.1135 + 0.4196% - 7.0658° + 3.5328° + 0.0008%) (3.4.10)

HE) = wop(3.1428 - 0.0148% — 5.04287 - 0.513¢° + 3.641£% — 1.214£5)

{3.4.11)
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Table 3.1 Sums of square differences between the actual initial

imperfection and approximate polynomials of various orders

Approximate by equation Approximate by egquation
Polynomial

{3.2.11}), magnitude (3.2.15}, slope
Order

D {xwen) Dsiope (XWon) D (xwgp} Dyiope (XWon)
2 5.8101E-04 7.B554E-02 8.0739E-04 7.1385E-02
3 4.5721E-04 9.9559E-02 8.073%E-04 7.1385E-02
4 2.0547E-07 1.0352E-04 3.2820E-07 7.5920E-06
5 1.8438E-07 1.2759E-04 3.2820E-07 7.5920E-06
6 2.4603E-11 2.9356E-08 4 _0275E-11L 1.776BE-08

D and Dyipe denote the differences due to the magnitudes and slopes

between the actual and approximate imperfection

It is obviocus that the difference is smaller for higher order
polynomial. Also, the odd order polynomials do not improve the
accuracy very much as the initial imperfection is symmetric. In
this example, the forth-order polynomial is used in all subsegquent
studies.

For isotropic material, it is reasonable to assume that the
deformed shape is symmetric and similar to the imperfection. The
longitudinal displacement u is largest at both ends and is equals
to zero at the mid-point. Similar condition can also be applied to
the rotation f,. For displacement w, the maximum value is at the
mid-point and is restrained at both ends of the strut. Consistent
with the above conditions and the displacement fields defined in
Chapter 3.2.1, it is reascnable to assume the following series
representations: the firs; three even sine terms for u, first three
cdd sine terms for w and fifst three odd cosine terms for £, i.e.
sin 2,4,6, sin 1,3,5 and cos 1,3,5 for u, w and f, respectively.

The magnitude of initial imperfection is first chosen to be wg,
= 1 mm. Figures 3.3 and 3.4 show the variations of average strain
Eave With the end-shortening strain g and central deflection w(A/2})

+  wo{a/2), respectively. Solutions with initial imperfection
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expressed by its exact form are also shown in the figures.

Q.0300
0.0250 |
~ 0.0200
*
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E o A4th order wo
0.0050 4th order dwo/dx
— 8ine
.0000 J. e .
0 0.01 0.02 0,03 0.04 0.05

End shortening strain (mm}

Figure 3.3 Strut with symmetric initial imperfection Wey = 1.0 mm:

variation of average strain with end-shortening strain
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0.0050 | _.—4th order dwo/dx
——8ine
¢.0000 4 o \ i !
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Figure 3.4 Strut with symmetric initial imperfection Won = 1.0 mm:

variation of average strain with central deflection

From the figures, very close comparisons are obtained for

results predicted with the initial imperfections expressed in the
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exact form or in both approximate functions. It shows the
adaptability of using the present approaches, by magnitude and by
slope, to simulate the actual initial imperfection.

In the next study, the magnitude of initial imperfection is
increased to 2.5 mm. Similar anaiysis is performed to demonstrate

the effect of the magnitude of imperfection.

0.0300°
0.0250 | IR
~ 0.0200 L o
z P
o -
© 0.0150 .
S 0. i .
a =
s -
g Pome N: o 4th order wo
2 - 4th order dwo/dx
0-0050 .“ﬂ —f—nBine
S sine (woh = 1 mm}
0.0000 . , | ]

0 0.01 0.02 0.03 0.04 ¢.05

End shortening strain {(mm)

Figure 3.5 Strut with symmetric initial imperfection wy, = 2.5 mm:

variation of average strain with end-shortening strain
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Figure 3.6 Strut with symmetric initial imperfection w, = 2.5 mm:

variation of average strain with central deflection

Results obtained by both approximate imperfections are also in
good agreements. Figure 3.5 shows that less force is required under
a progressive end-shortening strain, as compared with the previous
case having we, = 1.0 mm. Reason of this phenomenon is that the
bending effect becomes more significant when the magnitude of
imperfection increases. Variation of average strain with central

deflection is shown in Figure 2.6.
3.4.2 Struts with Non-Symmetric Initial Imperfection

In this example, the strut has a non-symmetric initial
imperfection. A forth-order polynomial, as shown in equation

(3.4.12), is used to simulate the actual shape. Table 3.2 compares

the actual and approximate values of initial imperfection.

£{§) = 8.1295¢ + 15.0753¢% - 41.8137° + 18.60885* (3.4.12)

where & = x/L.
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Table 3.2 Comparison of actual shape of the initial imperfection

with the corresponding approximate function

w, (mm)
£ Actual Approximate
0.0 0.00 0.00
0.1 0.81 0.93
0.2 1.98 1.92
0.3 2.87 2.82
0.4 .46 3.46
0.5 3.75 3.77
0.6 3.64 1.69
0.7 3.23 3.20
0.8 2.36 2,37
0.9 1.28 1.26
1.0 0.00 0.00

The strut is made from an aluminum strip with modulus of
elasticity E = 71 kN/mm®. It is 600 mm long with a uniform cross-
section of 25 mm wide and 3 mm thick. Ends of the strut are simply
supported. Experimental measurements and analysis with no
transverse shear effect of the same problem have been given by Lam
(1998} .

Since the initial imperfection is non-symmetric, trigonometric
series representations with sin 1-5, sin 1-10 and cos 1-10 are used
for the displacement fields u, w and f, respectively. When the
progressive end-shortening strain is applied, the strut deforms
laterally. Deflections obtained from experimental measurements and
analysis results are recorded in Table 3.3. Figure 3.7 shows the
deformed shapes of the strut at three levels of end-shortening
strain. The total deflections w, + w at three specific points (x =
L/4, L/2 and 3L/4) are shown in Figure 3.8. The variation of

average strain &, with the end shorting strain is shown in Figure

3.9.

31



Table 3.3 Total deflections at three levels of
end-shortening strain
& =0.09% & =0.13% g =0.1617%
£ Exp’t no sh'r shear Exp’'t no sh'r shear Exp‘t no sh'r shear
0.250 8.49 8.15 B.15 10.33 g.72 9.72 11.53 10.81 10.81
0.375 11.13 10.91 10.91 13.53 12.96 12.96 15.09 14.38 14,39
0.500 12.28 12,01 12.01 14.87 14.24 14.24 16.65 15,78 15.79
0.625 11.41 11.24 131.24 13.81 13.30 13.30 15.38 14.72 14.73
0.750 B8.81 8.69° 8.69 10.65 10.27 10.27 11.84 11.36 11.36
Exp‘t: Experiment; no sh'r: analysis without transverse shear effact;
shear: analysis with transverse shear effect
4 &Xperiment A nho shear -.=~._8hear (0.0900%
m experiment o no shear shear 0.1300%
& E€xperiment ¢ no shear shear ©0.1617%
—— imperf ©¢.0000%
18
.
16 G-
14
£
& 10
-
&)
v 8
@
~
Y 8
L]
—~ 3
o]
4t
g 2
0
Figure 3.7 Strut with general initial imperfection: deformed

shapes at three levels of end-shortening strain
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Figure 3.8 Strut with general initial imperfection: variation of

total deflection {at x = L/4, L/2, 3L/4) with end-shortening strain
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Figure 3.3 Strut with general initial imperfection: variation of

average strain with end-shortening strain

Although the initial imperfection is non-symmetric, the deformed
shape of the strut as shown in Figure 3.7 tends to be in a single
half sine wave at high level of strain. From the above table and
figures, the results obtained by using the present approach (with

transverse shear effect) are in good agreement with experimental
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measurements and are almost the same as the solution obtained from
the analysis with no consideration of the transverse shear effect.

An application with a thickness h = 30 mm is then considered.
Other material properties are the same as the previous case. Both
analyses with or without the transverse shear effect are performed
using the same series representations for u, w and P

Figure 3.10 shows the relation of the average strain and the
end-shortening- strain for the strut with h = 30. It is noted that a
larger axial load F, = EAg,,. is required to achieve similar end-

shortening strain as compared with a thinner strut.

0.1400

0.1200
0.1000
0.0800
L0600

0.0400
A ho shear

Average strain (%)
(=)

0.0200 —— shear

0.0000 [ i i
0.000% 0.045% 0.090% 0.135% 0.180%

End shortening strain {mm)
Figure 3.10 Strut with general initial imperfection (h = 30):

variation of average strain with end-shortening strain

Table 3.4 Total deflections of strut with thickness h = 30 at

three levels of end-shortening strain

& =0.09% £ =0.13% & =0.1617%
£ no sh’'r shear no sh'r shear no sh’'r shear
0.250 3.90 3.92 4.85 4.97 5.93 5.95
0.375 5.32 5.34 £.70 6.73 7.98 8.01
0.500 5.94 5.86 7.44 7.47 B.83 8.86
0.625 5.62 5.64 7.01 7.04 8.30 B.33
0.750 4.38 4,39 5.45 5.47 6.43 6.46
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In Table 3.4, smaller deflections are observed when the
thickness of strut changes from 3 mm to 30 mm. The differences
between the analyses with and without transverse shear effect
become larger. According to Table 3.3 (for h = 3 mm), the
percentage differences with respect to the results with shear
effect are below 0.08% at all points along the length of strut and

at all levels of end-shortening strain below 0.1617%. However, the
differences increase to about 0.28% at & = 0.09%, 0.37% at & =

0.13% and 0.40% at & = 0.1617%, while the thickness is 30 mm.
Convergence is one of the most important considerations for an
efficient analytical approach. In solving the non-linear problem,
an iterative approach, Newton-Raphson method, is employed. Table
3.5 shows the number of iterations for each increment of end-
shortening strain in the analyses of both thickness. Excellent
rates of convergence have be recorded. Not more than seven and four
iterations are required for all twelve increments in the analyses

of h = 3 mm and h = 30 mm, respectively.
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Table 3.5 Number of iterations for each increment of end-
shortening strain in the analyses of thickness

h =3 mmand h = 30 mm

No. of iterationa

Increment & h =3 mm h = 3¢ mm
1 0.0100% 7 3
2 0.0200% 5 3
3 0.0400% & 3
4 0.0600% 5 3
5 0.0800% 5 3
6 0.0900% 4 3
7 0.1000% 4 3
8 0.1200% 4 4
9 0.1300% 4 3
10 0.1400% 4 3
11 0.1600% 4 4
12 0.1617% 2 3

To conclude, the present approach is applicable to the post-
buckling analysis of strut with general initial imperfection.
Excellent rate of convergence is observed using the Newton-Raphson
method. The included transverse shear effect shows an accurate
prediction when the thickness of strut increagse f{or L/h 1is
smaller). On the other hand, the present approach is also adaptable
when the thickness decreases. The shear locking effect is
alleviated in the limiting condition of thin strut {or large value
of L/h) because of the use of equal terms Fourier series to
represent both the lateral displacement and rotation. As a result,
the order of displacement fields is not reduced, as one might
expect in the case of polynomial functions, having shear locking

effect.
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CHAPTER 4

POST-BUCKLING ANALYSIS OF LAMINATED PLATE WITH

GENERAL INITIAL IMPERFECTION USING FINITE STRIP METHOD

In Chapter 3, an approach for the post-buckling analysis of a
strut is introdgced in a manner that the deformation and initial
imperfection are 'represented by Fourier series and polynomial
functions respectively. The work is extended and reported in this
chapter for the post-buckling analysis of laminated plates with
general initial imperfection when subjected to progressive end-
shortening. A finite strip approach developed in the context of
classical plate theory is extended with the use of appropriate

pelynomial to simulate the initial imperfection

4.1 LAMINATE EQUATIONS

Figure 4.1 shows a typical finite strip with width b, which
forms part of a rectangular laminated plate of length A, width B (B

2 b) and thickness h. While the plate is subjected to an in-plane

compressive loading, a uniform end-shortening strain & occurs
along the edges parallel te the y-axis (the ends of finite strips).
Two alternatives of lateral expansion at the loaded ends are
considered. Such an expansion can be either free or completely
prevented. The strip ends are assumed to be simply supported out-
of-plane. Boundary conditions for in-plane and out-of-plane
deformations along the unloaded edges {parallel to the x-axis) are
specified by imposing restraints on the nodal unknowns along these
edges. Details on the classification of the boundary conditions can
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be found in the reference by Chia (1980}.

Figure 4.1 A typical finite strip

Applying the classical plate theory by incorporating Kirchhoff

nermalcy condition, the three fundamental components of

displacement at a general point (T, V,w ) can be expressed as

ulx, y, 2} = ulx, y) _-ZM (4.1.1)
Ox

Vix, vy, z) = V(x,y}—zm {4.1.2)
Oy

wix, y, 2) = wix, y) (4.1.3)

where u, v and w are the displacements on the middle surface in the
x, y and z directions respectively.

Consistent with the von Karman assumptions, for instance see
Novozhilov (1953}, the in-plane strain {&} with respect to the

displacements at a general point is defined as

{5} = {‘EL} + {ENL} + {51} (4.1.4)
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2

ou 2 (&) O, 0w

gx 2 6x 2 ;& gx

v 1 W W, W

- v == e} = e {4.1.5)
I A O At

ou | ov Ow dw Owg Ow | Ow, 0w
dy  Ox; ax dy | 8x Oy Jdy ox

The in-plane strain {¢} consists of three components. {g) and { &}
are the stra%n components involving linear and non-linear
displacements reséectively, and {g&} includes the effect of initial
imperfection w,.

The bending strains {y} and end-shortening strains {e} are

defined in egquation (4.1.6).

0w
dy?
8w

Oxdy |

{} =1 -

le} = e (4.1.6)

& is the prescribed uniform end-shortening strain. a is a constant
which may or may not be equal to zero, depending on the boundary
condition at the loaded ends. A description of a is given in

Chapter 4.2.
The constitutive equations, Whitney (1987), for a plate are
obtained through the use of stress-strain relations and appropriate

integration through the uniform thickness h.

MR

where
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NX )1/2 O-X
{N} o, NY = J:w2<o‘y z (4.1.8)
Ny (Fxy
M (zo
x ) w2 x
(g} = 1 m, ' Lw2<zay z (4.1.9)
My | zZT
Ay 1
13 ~ h,{z B
Bij = J‘—q,fz Qi; z 3,7=L 26 {4.1.10)
Dy z

{N} comprises the direct and shearing stress resultants per unit
length and {M} consists of the bending and twisting stress couples

per unit length. (;; are plane-stress stiffness coefficients.

Table 4.1 Summary of coefficients A;;, B;; and Dy

in various materials

(Al [B] (D]
(2, &, o] [0 o o (un D, 0]
Isotropic A, A, 0 60 0 0 D, D, 0
[0 0 A o 0 o] |0 0 D]
(A, 4, 0] o 0 o [p,, b, o]
Symmetric
Cross-ply A, A, O 0 o o D, D, ©
L0 0 A 0o o o |0 o0 D
Non-Symmetric (A, 2, o] [8,, o o] (b, b, o]
Cross-Ply A Ay 0 0 -5, 0 D, b, 0
0°, 90°)
( n o o ag] R 0 ¢ Dy
(A, 4, o] 0 0 0 [0, D, o]
Symmetric
Angle-ply A, A, O 6o 0o o D, D,, O
0 0 A, o o o0 0 0 D,
Non-Symmetric (4, a, o] ( 0 o B, (D, D, O
Angle-Ply AIZ AZZ 0 Y o BZE 12 D22 0
[+8, -1, [0 0 A B, By O [0 o D,
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The form of constitutive equations {4.1.7) is very general,
which allows anisotropic laminate properties with regard to both
in-plane behavior (through the presence of the A, and Ay
coefficients) and ocut-of-plane behavior (through the D, and D,
coefficients}, and full coupling between in-plane and out-of-plane
behaviors (through the B;; coefficients). A summary of the
coefficients A;;, B;; and D;; for various materials are shown in
Table 4.1.

When uniform end-shortening strain is applied in the absence of
an external force, the potential energy of a strip can be expressed

in the form of

1 (e +e)"fa B [e+e
I, = —_[ dxdy (4.1.12)
2 z B D z

The effect of in-plane locad is indirectly applied through the
end-shortening effect, and hence {£ + e} is also expressed in terms

of the prescribed end-shortening strain &,.

4.2 STRIP DISPLACEMENT FIELDS AND BOUNDARY CONDITICONS

Using the finite strip method, the displacements u, v and w are

represented by the following displacement fields

A
u = go[; - x) + Z U; (g (v) (4.2.1)
i
Vo= ag,y + z V; (x| () (4.2.2)
i
wo= 3 W gty (4.2.3)
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g:"{y), g:"ly) and g;"(y) are crosswise polynomial interpolation
functions of wvaricus types and orders, involving undetermined

displacement coefficients, u;,, Vs Wi, and .

gity) = 3 Niyh, (424
m

gily) = X Niywv,, (4.2.5)
m

giiy). = NY(yw;, + NY vy, + NY(yw,, + B2 (yw, (4.2.6)

N{y) is the shape function. For the in-plane displacements u and v,
Lagrange interpolating polynomials are applied. Dawe, Lam and
Azizian {1992) compared the responses of perfect plates by using
various orders of polynomial. It has been shown that acceptable
accuracy could be obtained when quadratic polynomial has been
applied. Thus, the gquadratic polynomial is usged in this study. For
the out-of-plane displacements w and y (¢ = 8w/dy}, cubic Hermite
interpolating polynomial is used. Figure 4.2 shows the nodal points

on a quadratic strip end. Shape functions for the quadratic finite

strip model are given in equations (4.2.7) - (4.2.13).
>
n=-1 n=1

m = 1 3 qu 2
u u u
v v v
w w
W W tn = 2y/b)

Figure 4.2 Nodal points for u, v, w and g

on a gquadratic strip end
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Ny = N] = —(qz-—q) (4.2.7
Nu _ Nv _ l( 2

e TNz =3 n+n {4.2.8)
Ny = NY =1-p° (4.2.9)
N o=tpos 3

1 =gk n+n) {4.2.10)
N =2+ }

2 = n-n (4.2.11)
P b
NY = g(l -n-n*+n5% {4.2.12)
~ b
Ny = E—(—l -n+7 + 5 (4.2.13)

U;{x), V;{x} and W;{x) are longitudinal functions satisfying the
kinematic conditions prescribed at the strip ends. These functions
are series of sine or cosine. The expression for displacement u
further involves the prescribed uniform end-shortening strain & at
loaded ends. Each strip end is assumed to be simply supported in

the out-of-plane direction. The pre-buckling deformation is

A
u = g, — at x =104 (4.2.14)

Two types of problem are considered according to the lateral
expansions along the loaded edges. In Type A problem, the plate is
free to expand laterally aloang the loaded edges. The longitudinal
series terms for v are cosiné functions, as shown in Table 4.2. The
term a¢y represents the lateral expansion of plate, at x = 0 and A,
under uniform compression. The situation applies for isotropic

plates (where @ = v) and for orthotropic, symmetrically laminated

plates (where a = A,,/A,,}). For laminated plates involving

anisotropy and coupling in-plane and out-cf-plane properties, the
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presence of the term agy is irrational. For consistency, this term

is retained and is defined as a = A,,/4,, in the analysis of a
full range of plate properties.
In Type B problem, lateral expansions along the loaded edges

are restrained completely. Sine functions are used to represent the

longitudinal series for v and parameter a is zero.

Table 4.2 Longitudinal functions and parameter satisfying the

Type A and Type B conditions

Type A Type B
imx inx
U; (x} sin — sin —
A
imx
cos — ;
Vilx) A sin 22
including the term i = ¢ A
imx imx
W; (x) sin — gin —
A A

A
a v or 37/ 0
Az

v is Poisson’s ratio

For the in-plane and out-cf-plane conditions along the unloaded

edges, restraints are imposed directly to the displacement

coefficients, U, Vip, Wi, and ;,, on the corresponding nodal

lines.

4.3 GENERAL INITIAL IMPERFECTION

In this study, plate with small initial imperfection in =z

direction is allowed. The total deflection w, normal toc the xy

plane is
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W, = W, o+ w (4.3.1)

where w, 1s the initial imperfection and w is the additional
deformation due to the applied loading.
The displacement field for w is defined in Chapter 4.2 and the

initial imperfection w, within a finite strip is expressed as
w, = Zfi(x)g;m(y) (4.3.2)
i

where f;{x} is the shape of longitudinal initial imperfection along

the i-th nodal line in a finite strip and
grly) = D NPy won (4.3.3)
m

g:"°{y} 1is the crosswise function containing the wmagnitude of
imperfection w,;, of each nodal line. Here, N,*°ly) is the quadratic
Lagrange interpolation polynomial, which is the same as the shape
functions N,*(y) and N,"(y) defined in Chapter 4.2,

When simulating the initial imperfection along each
longitudinal nodal line, various types of approximate functions can
be wused. This depends on the actual shape of the initial
imperfection. On the assumption that the initial imperfection is in
the form of a half sine wave, Fourier series as shown in ecuation

(4.3.4) have been used by Saigal, Kapania and Yang (1986) .
L X
£ix) = sin == (4.3.4)
A
In this study, pelynomial functions are used to simulate the

longitudinal shapes of the initial imperfection. Equation (4.3.5)
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is the n-order polynomial function along the i-th nodal line in a

finite strip.
2] .
£i(x) = ) agxd {4.3.5)
i=0

Coefficients a;; are determined by applying the least-squares
technigue. Details of the pProcedure can be found in Appendix A. It
is applicable fdr initial imperfection defined either by exact
function or by discrete measurements. This approach is similar to
that being applied in simulating the imperfection of strut in
Chapter 3.2. However, in this case, the expression for initial
imperfection is repeated for each nodal line i.

This approach is suitable for approximating the initijal
imperfection in very general shape. However, there is a restriction
in that measurements of the imperfection must be along each nodal
line. As an alternative approximate functions for the whole plate,
as shown in equation (4.3.6), can be used instead of equation

(4.3.2}.
wo = > ayxty? (4.3.6)
i 3

It is able to approximate the initial imperfection no matter where
the measurements are being taken. However, accuracy of equation

{4.3.6) reduced and a more complicated formulation is required.

4.4 SOLUTION PROCEDURES

With the establishment of the finite strip displacement fields
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and 1initial imperfection described in Chapter 4.2 and 4.3, the

strain-displacement relations, defined in equations (4.1.5) and

(4.1.6}, can be expressed in matrix forms

{£L) = (B,) {dp} {e;:} = [B,) d,)

{4.4.1)
{ens} = %[BNL] {db} (4.4.2)
{e} = Eo{be} {Z} = [BI] {db} (4.4.3)

where the column vectors, {d,} and {d,}), represent the in-plane

Luim,vth and out-of-plane Lhﬁmrﬁﬁmr

unknown displacement
coefficients respectively.
- -
an u
—N 0
ax 7
ON;
(B,] = 0 v, {4.4.4)
dy
[ aN;J )\avl VJ
U; =Ny
d
L o * d
Ow, oW, [awo o, o
dx ox ox dx
] ONY ] onNY
(8,1 = e W, — o ; —= (4.4.5)
Sy oy dy dy
awo aN;’ + awo awi W awo aﬁ;’ awo aw,[ W
ox ' 8y dy ox éx 1 oy dy dx

o*w, W, . ]
- ax? N; - a2 N
azN;' 621\"];’
[BI] = _Wi Py —WJ—Z_ (4.4.6)
oy oy
Ox Oy ox dy
L J
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’—6w

Ao 0 aw_l' w aw; oW

Ix NS N
Ow o 7 ox

Byl=I[l-Bl=|0 =] . (4.4.7)

8y anNy anY

Ow Ow W, W;

— — dy Sy

dy dx |

Definition of {b.} has been shown in equation (4.1.6).

Total potential energy Il of the whole plate is simply the
summation of all the potential energies Il, of the individual finite
strips. Equilibrium of the plate can be obtained by substituting
the strain components in equations (4.4.1) to (4.4.3) into II and

applying the principle of minimum potential energy.

1= an {4.4.8)

{d} = |_dp, dol™ = {d,} is the displacement vector of all displacement
coefficients. Newton-Raphson method is applied to solve the non-
linear problem, and all the entries d, are determined by the

following iterative procedures.

(k) {8d?} = (&) @'} + £ {p} (4.4.9)
@) = {ad") + @™ (4.4.10)
where

M = {&d)7( R} {d} - £,{p}) %11 = {&d)"IK,1 {&d) (4.4.11)
K] = (K] + (K] + (K,) (4.4.12)
(K] = [R,.) + [K,,] (4.4.13)

B AB, BjAB, + B.BB,
K,] = dxdy (4.4.14}

J= ] BfaB, + BIBB,

BIAB, + B,BB,
+ B{BB, + B)DB,
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T
0 B L.A‘BNL

K] = J T 'r . dy (4.4.15)
By AB, + BIABNL + By AB,,

T
8T ap, . .
+ B,BB, + B, BB,
o o0 N N
K,] = [ :|cb<dy X,} = [S]T[ x xy}[s] (4.4.16)
q
J 0 K, N, N,
T
0 + B,AB,,
[Kyol = I . Lo - dxdy (4.4.17)
. ByAB, + + B AB, + 1B aB,
B, AB, . .
+18}BB, +B]BE, |
B Ab,

{P} = I dy (4.4.18)

T T
B;Ab, + B Bb,

+ B, Ab,

{d'"} is the displacement vector at the start of the i-th iteration
and {Ad'"} is the correction vector at the i-th iteration. [K,] is
the symmetric tangent stiffness matrix evaluated at {d‘”}. [K,] and
[Ky,] are the stiffness matrices with constant and variable
coefficients respectively. ([K,] composes of direct and shearing
stresses. The right hand side of equation (4.4.9) is the unbalanced
force.

The matrices, defined in equations (4.4.4) to (4.4.7), compose
of longitudinal trigonometric terms, polynomial functions for
initial imperfection and polynomial crosswise shape functions.
While constructing the stiffness matrices, integrations in the ¥
direction, which only include the products of polynomial shape
functions, are evaluated using Guassian quadrature. Integrations in
the x direction, compose of the products of trigonometric teyrms or
products of polynomial and trigonometric terms, are evaluated

analytically. For those with products of poelynomial and
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trigonometric terms, reduction formula are applied to generate the
exact values of the integrals. The formula are given in Chapter
3.3, equations (3.3.11) and {(3.3.12}.

The iterative process 1is repeated until the following

convergence criterion is satisfied.

"Ad“’
_— < 7 {4.4.19)

k1,

where 7 is the tolerance and |d|, represents the Il,-norm of {d}.
Once the vector {d} converges, displacements u, v and w at any
point in any finite strip can be obtained by equations (4.2.1) and
(4.2.6). Quantities of force and moment can also be determined by
applying egquations {4.1.4) - (4.1.7}, The average longitudinal
force acting on the whole plate corresponding to a prescribed end-

shortening strain is defined as

1 bf2 A
Naw = > j—b/z _[0 N, (x, y)dxdy (4.4.20)

where the summation applies to all the finite strips.

4.5 VERIFICATION

The approach, introduced in the earlier part of this chapter,
is tested by performing post-buckling analysis of an isotropic
plate with symmetric initial imperfection. The length-to-thickness
ratio A/h of the square plate is 120. The Poisson’s ratio v is 1/3.

The loaded ends are of type A boundary and the unloaded edges are
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free to wave laterally. All edges are simply supported in the out-
of-plane direction. The initial imperfection, as shown in equation
{4.5.1), is in the form of a single half sine wave in both the

longitudinal and lateral directions.

. @, ny
W, = W, 51 — S1in — (4.5.1)
A A

where wy, is the émplitude of the initial imperfection.

A fourth order polynomial, as shown in equation (4.5.2), is
used to simulate the longitudinal initial imperfection along each
nodal line, by following the procedures described in Chapter 4.3.
For the simply suppofted end condition, the c¢onstant term is

assumed to be zero.

1

sin% = F{x) = 2.59-107%x +3.27-10°%% ~4.14-10%x* +1.73 - 107%%"
(4.5.2)

Post-buckling response is cobtained by a finite strip model with
eight quadratic strips over the whole plate. It is reasonable to
assume that the deformed shape is of similar form to the initial
imperfection, which is symmetric in both directions. Therefore,
trigonometric series sin 2,4,6, cos 0,2,4,6 and sin 1,3 are
selected to represent the displacement fields u, v and w in the
longitudinal direction respectively.

Progressive end-shortening strains with 17 increments have been
applied to the analysis. The number of iterations, which are
required to satisfy the convergence criterion as specified in
equation (4.4.19) with 7 = 0.0005, in each increment is shown in
Table 4.3. Based on the Newton-Raphson procedure, not more than 13
iterations are reguired in all increments to achieve the accuracy
in convergence. Howgver, the rate of convergence is not uniform as
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in the analysis of struts. Other numerical techniques, for example,
the arc-length method, see Riks (1979) and Crisfield {1981}, should
be considered to adjust the increment automatically in order to

improve the rate of convergence.

Table 4.3 Rate of convergence in each increment

inecrement & No. of iter.
1 1.4878x1¢07* 10
2 2.2204x107" 3
3 2.9529x10°" 9
4 3.6855%x107* 10
5 4.3180x107° 4
6 5.0506x107" 5
7 5.7631x10™" 7
8 6.6157x107* 10
] $.2796x107* 9
10 1.3044x10°? 10
11 1.4508x10"° 13
12 1.6451x10"° 10
12 1.5%035x107° 5
14 2.2550x107? 12
15 2.4063x197° 8
16 2.7027x107° 10
17 2.9791x107° 4

For w, = 0.lh, Figures 4.3 and 4.4 show the variations of load
factor F with end-shortening strain & and central deflection w. (by
the assumption that the maximum deflection is at the center of
plate) respectively. The non-dimensional load factor is defined as
F = N, A/P/E/R.

Two other approaches have been reported to solve this problem.
The first one was developed by Yamaki (1959), of which the post-
buckling responses have been determined analytically. The second
one, developed by Dawe, Wang and Lam (1995), used the finite strip
method with initial imperfection represented by Fourier series. The

graphical results by both approaches are alsc included in Figures
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4.3 and 4.4. Close comparisons have been observed with the present

approach.

Load factor F

Figure 4.3

Yamaki {1959)

x Fourier

o Polynomial

1000 ¢

TIsotropic plate with symmetric initial imperfection:

variation of load factor with end-shortening strain

F

Load factor

Figure 4.4

- Yamaki

(1959)
w Fourier

o Polynomial

1 [ ] ] t

0 0.5 1 1.5 2

2.5 3 3.5 4

Central Deflection w_/h

Isotropic plate with gymmetric initial imperfection:

variation of load factor with central deflection
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Comparing with the analysis of struts in Chapter 3, demanding
computational effort is involved in this analysis. The computations
include integrations of the product of polynomial and trigonometric
terms. In order to accurately represent the actual initial
imperfection, high-order polynomial functions are used. However, it
leads to increasing computatiocnal effort involving the exact
integration by reduction formula, as shown in Chapter 4.4.
Therefore, the present approach is not economical in cases when the

imperfection can be simply expressed by trigonometric terms.
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CHAPTER 5

PROGRAMMING TECHNIQUE FOR POST-BUCKLING ANALYSIS OF PLATES

WITH GENERAL INITIAL IMPERFECTION

In this study, two computer cocdes written in standard FORTRAN
90 are developed and compiled by Lahey FORTRAN 390 v3.5 on a PC
under Windows 98 environment. The two computer codes represent the
development on the post-buckling analyses of struts and plates
respectively. The basic structure of the computer procedures for
the plate problem is best described by a flow chart as shown in
Figure 5.1. Two specific procedures in the chart, due to the
allowance of general initial imperfection, are discussed in this
chapter.

In the procedure [INPUT DATA), information about material
properties, coordinates, load increments, initial imperfection,
coefficient of displacement fields, etc., are read and stored in
the program. As defined in Chapter 4.2 and 4.3, displacements and
initial imperfection along each longitudinal line are represented
by Fourier series and polynomial functions, respectively. Fourier
series for displacements u, v, and w are stored in two arrays of
integers, NCOEF(50) and NFT(50). NCOEF(50} denotes the coefficients
of Fourier series, and NFT(50), which is equal to 1 or -1, defines
the cosine and sine terms. NFU, NFV and NFWB are the numbers of
terms in U;(x), V;{x) and W;(x), respectively. For example, if the
second term of the series for V,;{x) is cos(3xzx/A), integers 3 and 1
will be stored in NCOEF(NFU+2) and NFT(NFU+2), respectively. For
the prescribed general 1initial imperfection, coefficients of
polynomial along each nodal line are required. Integer NGIM and
array WGVAL(500) are used for storing the degree and coefficients
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of the polynomials, respectively. For example, the coefficient of

x" along the k-th nodal line is a, WGVAL((NGIM+1}*(k-1)+m+1l) = a.

INPUT DATA > e =1

%€

{ : — STP £ MRXASTP

(:) = STP = STP + 1

CONSTRUCT ELEMENT STORE ELEMENT MATRIX INTO
( ) > STIFFNESS MATRIX el TOTAL STIFFNESS MATRIX > @

% SOLVING LINEAR SYSTEM aM=gte ag?

INC
MAXINC
STP
MAXSTP
ITR
MAXITR
da"

Adrn

ERR

TOL

ERR £ TOL or
ITR » MAXITR

INC = INC + 1

RESULT
=  oureur [ E’@

STP = 1 & ITR = ITR + 1

locad increment;

number of lcad increment;

finite strip;

number of finite strip;

iceration;

maximum number of iteration allowed;

displacement vector at the start of the i-th iteration;

correction vector in the i-th iteration;

/=]

tolerance

”Ad“'

Figure 5.1 Program flow chart
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[CONSTRUCT ELEMENT STIFFNESS MATRIX]

is one of

the

most

important procedures in the computer program. Matrices defined in

equations (4.4.11)

- (4.4.18)

are constructed here.

Takle 5.1 shows

the names of SUBROUTINEs for evaluating each entry in the matrices.

Table 5.1 SUBROUTINEs for the stiffness matrices
SUBROUTINE Entry in stiffness matrices
LINEAR [B.)T(A1 [B,), [B,)7{D] [B,]
LINR_I (B, "[A] [B;). (B,7(B] (B, [(B;TIA] B;]
LINR B (8,)7[B] [B,)
NONLK1 iBue) T[A] (BL]. [A] {&y)
NLK1 I (Bxl T1A] [B))
NLK1 B [Bx) T (B] (B,]

NONLK2_WANDV

[By] TLA] (B

GEOMEK £, [A) {b.}

GEOMUV (a) {&.}

GEOMI (a1 (&}

GEOMB (81 {x}

VECTA (B, (A) {b.)

VECTI (8717 (4] {b,}

VECTB (B,)7(B] {b,}

where
Nx
N} = N, = g[al {b.} + [A] {&,} + [A] {&,} + (&) e} + B {x} (s.1.1)

N

For the SUBROUTINEs inveolving matrix (B;], the polynomial terms

due to the initial imperfection are included. Integrations of the

product of polynomial and trigonometric functions are required.

SUBROUTINEs, XNT1l, XNT2 and XNT3 are developed for integrating the
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products of a polynomial term with one, two and three trigonometric
terms respectively. Equations {5.1.2) - (5.1.7) show the
mathematical formula used in the SUBROUTINEs, XNT1, XNT2 and XNT3.
Figures 5.2 and 5.3 show the flow charts of SUBROUTINEs XNT2 and

XNT1. Other SUBROUTINE XNT3 can be evaluated in similar manner.

1
SpCy = E(Sm+n + Syop) (5.1.2)
CpSy = —(Snen — Sm-nt {5.1.3)
SpS, = = (Cp_y — Crunl {5.1.5)
k
L k
1Y = - —cosmL + — I, {5.1.6)
m m
k
. k
I = ZsinmL - = 1 (5.2.7)
m m
L , L . max
where I = L x* sinmx dx, 1 = L x* cosmx dx, 5, = sin—= and
L
max
c, = cos— .
L
v EVALUATE :
IC2%0.5* (XNT1(N, 1, T1+12) _>®
+TC2*XNT1(N,1,I1-12}}
N
EVALUATE :

0.5*{XNTL(N,-1,I1+I2)+ ﬁ@

IC2*XNTL{N,-1,11-12})

Figure 5.2 SUBROUTINE XNT2 (N,ICl,IC2,I1,I2)
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where N is the order of a polynomial term. In order to consider all
the terms in the polynomial, it is easy to use a DO loop to
generate them. ICl, IC2, Il and I2 describe the trigonometric terms
due to the displacements. IC1 and IC2, stored in NFT{50) and are
equal to 1 or -1, are used to define the cosine or sine term. Il
and I2 are the coefficients of trigonometric terms. By using these
representations; the mathematical formula can be programmed easily.

In the chart of XNT2, see Figure 5.2, the integration with two
trigonometric terms is separated into two integrals with single
trigonometric term. SUBROUTINE XNT1 is used to integrate the

product of one polynomial and one trigonometric term.

¥
-®
>(2)
B I1 nx
RETURN jsin dx —>®
L
N
Tl ax
RETURN Icos dx (::)
L .
y EVALUATE :

M -1*L N*CytlN/M —>®

*XNT1(N-1,-IC1,I1)

EVALUATE :
LON*Su-N/M -—-—E>(:>
*XNTL1{N-1,-IC1l,I1}

O——C=

Figure 5.3 SUBROUTINE XNT1 (N, IC1,I1)
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Figure 5.3 shows that exact integration can be generated by
recursive iteration. The program, which follows the procedures
above, can be develcoped easily.

Other numerical techniques, for example, Guassian guadrature,
see Atkinson (1989}, for the integration of polynomials in the y
direction, are implemented in the usual manner and will not be

discussed in this chapter.
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CHAPTER 6

CASE STUDIES OF PLATES WITH INITIAL IMPERFECTIONS

Using the finite strips developed in Chapter 5, several
applications are presented in this chapter. Non-symmetric
imperfections, which may mnot be easily solved by previous
approaches, are also included. In the first application, initial
imperfections of the isotropic plates are in various forms of
pelynomial functions. Using the unsymmetric cross-ply and
anisotropic laminates as examples, initial imperfections in the
form of trigonometric functions are considered. An arbitrary
initial imperfection, without exact functional form, is considered
in the third application. Different in-plane boundary conditions
along both the loaded and unloaded edges are also prescribed in

each application.

6.1 ISOTROPIC PLATES WITH POLYNOMIAL INITIAL IMPERFECTIONS

The square isotropic plate considered here is with unit
thickness and length A = 120. The Poissen’s ratio v is 1/3. The
loaded ends are of Type A boundary and the unloaded edges are free
te wave. All edges are simply supported in the out-of-plane

direction.
6.1.1 Symmetric Initial Imperfections with Constant Curvature

The initial imperfection is in the form of constant curvature

in the x direction and in the form of a half sine wave in the y
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direction. Recalling the definition of w, in Chapter 4.3, the

longitudinal expression f;(x) satisfies the condition

d*f; (x)
d}{2

= ¢onstant (6.1.1)
A quadratic polynomial is used to represent this imperfection.
Maximum initial .imperfection is assumed to be at the mid-point of

each nodal line and the magnitude is Won. Therefore,

df, A
a5t = 0; _Q(—J =1 {6.1.2)
dx [.-2 2
2

Combine with the out-of-plate conditions at the strip ends,

£} = 3.33-10%x-2.78-107'x2 (6.1.3)

The response of the plate when subjected to progressive uniform
end-shortening is obtained by using eight quadratic strips over the
whole plate. For the trigonometric series representation, it is
reasonable to use only even terms for u and v and odd terms for W,
see Dawe, Lam and Azizian (1992) and Dawe, Wang and Lam {(1995). It
is by the assumption that the deformations of isotropic plates are
symmetric, which are similar to the shape of imperfection. However,
both odd and even terms, sin 1-6, cos 0-6 and sin 1-5 for
displacements u, v and w respectively, are included in this study.
This representation enables non-symmetric deformations to be
considered in latter analyses, which are with non-symmetric initial
imperfections.

It is obvious that the deformation is in the form of a single

half sine wave and the maximum deflection is at the centre.
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Graphical results are presented in Fiqures 6.1 and 6.2 of load
factor F = N, A/#/E/h’ versus end-shortening strain &, and versus
central deflection w,, respectively. Two values of Won (wop = 0.2
and wy,, = 2.0) are considered. Note that the effect of initial

imperfection increases with the magnitude of imperfection.

Load factor F

1000 4

Figure 6.1 Isotropic plates with constant curvature: variation of

load factor with end-shortening strain
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Load factor F

0.0 " : o .
0.00 1.00 2.00 3.00 4.00

Central deflection w,

Figure 6.2 Isotropic plates with constant curvature: variation of

load factor with central deflection

6.1.2 Non-symmetric Initial Imperfections

With the same material properties and boundary conditions, two
problems with different non-symmetric initial imperfections are
considered. The initial imperfections are in the form of cubic
polynomials in the x direction and a half sine wave in the vy
direction. The maximum initial imperfections are at x = x', which

may not necessary be at the mid-point.

df; (x)

o =0; Ffi&xn=1 (6.1.4)

x=x"'

Consistent with the above conditions, f£;{x)}) can be expressed by

equations (6.1.5) and (6.1.6) for x’ = 45 and x’' = 30 respectively.

fi(x) = 4.98-107%x - 7.31-10%%% + 2.63 - 105%° (6.1.5)
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£i(x) = 7.41-107°x - 1.60-107x% +8.23 - 10°x° (6.1.6}

The post-buckling responses of plates, with w,, = 0.2 and Won =
2.0, are obtained by wusing the previous finite strip model.
Variations of load factor with end-shortening strain for both

magnitudes of imperfections are shown in Figures 6.3 and 6.4.

Load factor F

60

x
b
il

45

L

<
E
I

30

-4
»
]

0.0 !',_ X i i 1
0.00 0.25 0.50 0.75 1.00 1.25

1000,

Figure 6.3 Isotropic plates with cubic initial imperfections

(wop = 0.2): variation of load factor with end-shortening strain
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Isotropic plates with cubic initial imperfections

(won = 2.0} : variation of load factor with end-shortening strain

The total deflection, w, W o+ Wy,

along the neodal line at the

centre is used to represent the deformed shape of the whole plate,

as the initial imperfections are symmetric in the y direction.

Variations of w,

for both cases are shown in Figures 6.5 and 6.6.
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Figure 6.5 1Isotropic plates with cubic initial imperfections
(x' = 45} : variations of w, at four levels of end-shortening

strain; wy, = 0.2 and (b) w,, = 2.0
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Figure 6.6 Isotropic plates with cubic initial imperfections
(x* = 30): variations of w, at four levels of end-shortening

strain; (a) wys = 0.2 and (b) w,, = 2.0
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Firstly, maximum deflections w, do not occur at the mid-point while
the initial imperfections are non-symmetric in the x direction.
Tables 6.1 and 6.2 show the maximum w, with their locations along
the central nodal line for both magnitudes of initial imperfection.

In the case of x'= 45, the deformations tend to be in a single half

sine wave for both wagnitudes. When x’ = 30, responses for both wy,
are different. The deformed shape, for w,, = 0.2, tends to behave
in a half sine wave and is similar to those for x' = 60 and x’' = 45

at high strain level. Thig is shown in Figure 6.6{a} and Table 6.1.
However, the plate with w,; = 2.0 deforms teo two half sine waves,
as shown in Figure 6.6 (b), whilst only a single half sine wave can
be observed for the other two cases. It demonstrates that the
magnitude of initial imperfecticn not only affects the magnitude of
deformation but alsc the deformed shape for non-symmetric initial
imperfection.

Table 6.1 Comparison of maximum total deflection for different x*

with w,, = 0.2; [Values in parenthesis denote the location of the

maximum defection]

£y Flat plate x' =60 X'=45 x'=30
0.20 0.20 0.20

G.00E+00 - {x =60.00) {(x =45.00) (x =30.00)
0.75 0.98 0.96 0.58

3.40E-04 (x =60.00) (x =60.00} (x =54.40) (x =36.41)}
1.69 1.75% 1.74 1.72

6.90E-04 {x =60.00) {x =60.00) (x =57.62) {x =52.04)
2.24 2.27 2.27 2.25

1.04E-03 (x =60.00) (% =60.00) (x =58.59) (x =55.48)
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Table 6.2

with Won = 2.0;

Comparison of maximum total deflection for different x'

maximum defection)

[Values in parenthesis denote the location of the

£ Flat plate x'=60 x'=45 x'=30
2.00 2.00 2.00

0.00E+00 - (x =60.00) (x =45.00) {x =30.00)
0.75 2.41 2.40 2.17

3.40E-D4 {x =60.00) (x =60.00} (x =46.83) (x =30.42)
1.69 2.78 2.77 2.12

6.90E-04 (x =60.00) {x =60.00) (x =48.49) (x =30.66)
2.24 3.11 3.10 2.45%

6.2 UNSYMMETRIC CROSS-PLY LAMINATES WITH TRIGONOMETRIC IMNITIAL

IMPERFECTIONS

In the above examples, the coefficient matrix [B] wvanishes due

to isotropic behavior. In this application, cross-plies having

unsymmetric layup arrangement, i.e. with non-zero matrix [B], are

considered. Discussion on the coefficient matrices has been
presented in Chapter 4.1. The rectangular laminates are of length A
= 120, width B = 60 and with unit thickness. They are made up of

four layers of equal thickness lamina in a [0/90], assembly. Layer
properties are E, = 400, E; = 10, Gy = 5 and v, = 0.25. The
shown in equations

coefficient matrices [A), ([B] and [D), as

(6.2.1})-(6.2.3), are consistent with the properties in Table 4.1.

205.¢0 2.5 0.0
[A] = 2.5 205.0 0. (6.2.1)
0.0 c.0 5.0
- 24.4 0.0
(B] = 0.0 24.4 0 (6.2.2)
0.0 0.0 0.0
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17.1 0.2 C.0
(o] = 0.2 17.1 0.0 (6.2.3)
0.0 0.0 0.4

Edges of the laminated plate are out-of-plane simply supported.
The analysis is of Type a boundary along the loaded edges and the
unloaded edges are free to wave. Two initial imperfections in the
torm of trigonometric functions, with maximum magnitude w,, = 0.35

located at the centre, are considered.

6.2.1 Symmetric Initial Imperfection

The first initial imperfection, defined in equation (6.2.4), is
symmetric and in form of a half sine wave in both x and y

directions.

. X N oy
W, = W, 81n — 51n ~— [6.2.4)
120 60

In order to approximate the non-symmetric initial imperfection in
the second case accurately, sixth order polynomial functions are
used to simulate the longitudinal imperfection, whilst only a forth
crder polynomial functions have been used for symmetric

imperfection in the application of Chapter 4.5.

X - - -
Sin — = fi(x) = 2.62 - 107%x —1.24 - 10 %x% - 2.91-107%]
120 (6.2.5)

- 2.65-107"x" +1.48-107°x° —4.10- 10" x®

The whole laminate is analyzed with sin 1-6, cos 0-6 and sin 1-
5 series being the representation for u, v and w respectively.

Figure 6.7 shows the variation of load factor with end-shortening
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strain. Two equilibrium paths can be traced. The first one shows
that the laminate deforms initially to a single half sine wave and
then changes to two half sine waves. The other equilibrium path
shows a change from one to three half sine waves. Since the first
equilibrium path is at lower strain level, the change from one to
two waves occurs first. The deformed shape with three half sine
waves may be observed at a higher level of strain when the two
equilibrium paths match. Deformed shapes of the laminate, following
both equilibrium paths, are shown in Figures 6.8 and 6.9.
Discussions on the change in deformed shapes were presented in
previous studies, Onate and Suarez {1983}, Shin, Griffin and Gurdal
{1993} and shiau and Wu (1995). Dawe, Wang and Lam (1995) have also
developed an approach, of which the initial imperfection is
represented by the same Fourier series. Comparisons of results from
both approaches are also included in Figure 6.7. Very similar

results are obtained.
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Figure 6.7 Unsymmetric cross-ply laminate with symmetric initial
imperfection: variation of load factor with end-shortening strain;
[Values in parentheses, (2} etc., denotes the number of

longitudinal half waves)
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Total deflecticn
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x
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Figure 6.8 Unsymmetric cross-ply laminate with éymmetric initial
imperfection: variations of w, along the longitudinal central line
at five levels of end-shortening strain; with the equilibrium path

for two half sine waves
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Figure 6.9

W

Total deflection
o
(=]

— 5 2.50E-04
— - 1.4BE-03

— & 6.1CE-04

Unsymmetric cross-ply laminate with symmetric initial

imperfection: variations of w, along the longitudinal central line

at five levels of end-shortening strain; with the equilibrium path

for three half sine waves

6.2.2 Non-symmetric Initial Imperfection

The second initial imperfection is symmetric in the v
direction, and is non-symmetric in the x direction. The initial
imperfection is expressed as

W, = Wey ¢ Flx) - sin X {(6.2.6)
60
where
Rk X
sin — for 0 £ x < 60
120
Fi{x) = (6.2.7)
1 2r(x - 60
-1+ cos——i—————l for 60 £ x € 120
2 120
The first interval (0 < x < 60) is half of a half sine wave. The
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second interval is represented by a different trigonometric
function such that the curvature changes to negative sign between
the range 60 < x £ 120. Figure 6.10 shows the difference between

the forms of both symmetric and non-gymmetric initial

imperfections.
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X
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Figure 6.10 Symmetric, equation (6.2.4}), and non-symmetric,

equation (6.2.7}, trigonometrig¢ initial imperfections

Using the previous approach by Dawe, Wang and Lam {1995}, the
initial imperfection will have to be represented by Fourier series.
Complicated series will be needed to simulate the two intervals
separately in the x direction.

In this case, the longitudinal shape of initial imperfection is

represented by a single sixth order polynomial function.

Fii) = £,0x) = 3.26-107x — 7.66 - 107'x% + 2.64 - 107°x° © 2 8

- 4.73-1077x" +3.36-107%x% —8.03 107"

Based on the finite strip model in Chapter 6.2.1, the load
factor against end-shortening strain curve for this imperfection is
included in Figure 6.11. Figure 6.12 shows the total deflection w;

along the central ncdal line cof the laminate at five different
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levels of end-shortening strains. Due to the change in signs of the
curvature, the laminate deforms initially to two half sine waves
when the in-plane loading is applied. Compared with the case with
symmetric imperfection, out-of-plane deformation of the laminate is
firstly in the form of a single half sine wave, and then changes to

two half sine waves on increasing end-shortening strain.

=
3+
23}

[
(=
w

a0

72
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Figure 6.11 Unsymmetric cross-ply laminates with non-symmetric
initial imperfections: variation of load factor with end-shortening
strain; [Values in parentheses, {2} etc., denctes the number of

longitudinal half waves])
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Figure 6.12 Unsymmetric cross-ply laminate with non-symmetric
initial imperfection: variation of w: along longitudinal central

line at five levels of end-shortening strain

6.3 UNSYMMETRIC CROSS-PLY LAMINATES WITH ARBITRARY INITIAL

IMPERFECTIONS

The problem considered here is of Type B, which the locaded ends
are held against any lateral expansion. The lateral movement along
the unloaded edges is alsc restrained completely, i.e. all the
lateral displacement coefficients v, along those edges are set to
be zero. For out-of-plane behavior, all edges are simply supported.
The laminate is made up of four layers [0/90], and with the layer
properties: E, = 400, E; = io, Ger = 5 and v, = 0.25. The square
laminate is of length A = 100 and unit thickness. That is, material
properties are the same as those in Chapter 6.2, but the sizes are
different.

The contour plot in Figure 6.13 shows an arbitrary initial

imperfection, with exact functional form not known.
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Figure 6.13 Contour plot of the initial imperfection w,

Along each nodal 1line, ten discrete magnitudes of initial
imperfection are obtained. Applying the least-squares technique
introduced in Chapter 3.2.2, sixth order polynomial functions are
used to describe the imperfection. Coefficients of each polynomial
are shown in Table 6.3. Two other cases, either the laminate is
flat or the magnitude of its initial imperfection is enlarged by a

factor of 20/3, are also considered for comparison.
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Table 6.2

imperfection along each ncdal line;

Coefficients of polynomial function for initial

[coefficients along both

unloaded edge and all constant terms are zero]

Coefficients

"

L

i y x x x' x x* X
1 0.00 0.00E+00 0.00E+00 0.00E+00C 0.00E+00 0.00E+00 0.00E+00
2 4,17 -2.91E-03 7.64E-06 -2.08BE-086 4.90E-08 -5.19E-10 1.90E-12
3 8.313 ~-5.72E-03 1.50E-04 -4 .09E-06 S.63E-08 -1.02E-09 3.73E-12
q 12.50 -8.3BE-03 2.20E-04 -6.00E-06 1.41E-07 -1.49E-09 5.47E-12
5 16.67 -1,09E-02 2.858-04 -7.77E-06 1.83E-07 -1.94E-09 7.10E-12
6 20.8B3 -1.32E-02 3.46E-04 -3.42E-06 2.22E-07 -2.35E-09 B.60E-12
? 25.00 -1.53E-02 4.01lE-04 -1.09E-05 2.57E-07 -2.73E-0% 9.9BE-12
8 29.17 -1.72E-02 4.52E-04 -1.23E-0S 2.90E-07 -3.07E-09 1.12E-11
9 33.33 -1.89E-02 4.97E-04 -1.35E-05 3.1%9E-07 -3.38E-09 1.24E-11
10 37.50 -2.04E-02 5.37E-04 -1.46E-05 3.44E-07 -3.65E-09% 1.33E-11
11 11,67 -2_17E-02 5.71E-04 -1.55E-05 3.66E-07 -3.87E-0% 1.42E-11
12 45.83 ~-2.27E~02 5.9BE-0D4 -1.63E-05 3.83E-07 -4.06E-09 1.4%9E-11
13 50.00 -2.35E-02 6.17E-04 -1.68E-05 3.95E-07 -4.19E-09% 1.53E-11
14 54.17 -2.3BE-02 &.26E-04 -1.71E-05 4,01E-07 -4 . 25E-09 1.56E-11
15 58.33 -2.38E-02 6.26E-04 -1.70E-05 4.01E-07 -4.25E-09 1.56E-11
16 62.50 -2.33E-02 6.13E-04 -1.67E-05 3.93E-07 -4.16E-09 1.52E-11
17 66.67 -2.23E-02 5.B7E-04 -1.60E-05 3.76E-07 -3.99E-09 1.46E-11
18 70.83 -2.08E-02 S.48E-04 ~1.49E-05 3.51E-07 -3.72E-09 1,36E-11
19 15.00 ~-1.88E-02 4.94E-04 -1.34E-05 3.16E-07 ~3.35E-09 1.23E-11
20 79.17 -1.62E-02 4.26E-04 -1.16E-05 2.73E-07 -2,89E-09 1.06E-11
21 B3.33 -1.32E-02 3.47E-04 -9.45E-06 2,22E-07 -2.36E-09 8.62E-12
22 87.50 -9.B3E-03 2.58E-04 -T.04E-06 1.66E-07 -1.76E-09 6.42E-12
23 91.67 -6.32E-03 1.66E-04 -4.53E-06 1.06E-07 -1.13E-09% 4.13E-12
24 95.83 -2_81E-03 7.37E-05 -2.01E-086 4.73E-08 -5.01E-10 1.B83E-12
25 100.00 0.C0E+00 0.0CE+00 0.00E+00 0.00E+00 0.00E+00Q 0.00E+00

finite strips,
sin 1-6é and sin 1-5 for u,

factor with end-shortening strain are shown in Figure 6.14.

Responses of the laminates are predicted by twelve guadratic

with the longitudinal series representation sin 1-6,
v and w respectively. Variations of load

Similar

responses between the flat laminate and the laminate with small

arbitrary imperfection can be observed. Less force is required in

the analysis with the enlarged imperfection,

other two cases.

as compared with the
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Figure 6.14 Unsymmetric cross-ply laminates with arbitrary initial

imperfections: variations of load factor with end-sheortening strain

Figure 6.15 shows the total deformation w, of a flat laminate
along the nodal line y = 25, 50 and 75, which is in the form of a
half sine wave. Because of the presence of non-zero matrix (B},
out-of-plane deformations are initiated when the in-plane
compression is applied, see equation (6.3.1). This is also the

reason that no clear buckling strain is observed in Figure 6.14.

(¥} = B) {e} + - {6.3.1)

For the laminate with arbitrary initial imperfection, it starts
deforming to a single half sine wave, and then the deformed shape
changes to two half sine waves at progressive increase in end-
shortening strain. The deformed shapes at four levels of applied
end-shortening strain are shown in Figure 6.16. When the magnitude
of imperfection increases, the laminate deforms to two half sine
waves initially. Figure 6.17 shows the total deflection of the

laminate at y = 25, 50 and 75.
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To conclude, analysis of laminates with general initial
imperfections has been evaluated. The post-buckling responses,
influenced by the initial imperfection, may be different from those

of flat laminate.
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Figure 6.15 Flat unsymmetric cross-ply laminate: variations of Wy
along the nodal lines, (a) y = 25 or 75 and (b) y = 50, at four

levels of end-shortening strain
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6.4 RECTANGULAR 15-LAYER ANISOTROPIC LAMINATES

The laminate under consideration has a length of 400 mm, a
width of 150 mm and a thickness of 2.25 mm. It is made of 15 layers
of equal thickness and common material. The laminate layup is
[+60/-60/+30]¢ and the material properties are E, = 104 kN/mm?, E, =
8.9 kN/mm®, G,r = 5.5 kN/mm® and v, = 0.32. It follows that all the
Ajj» Di;; and the B,;, By, B;; and B,, stiffness coefficients are non-
zero, i.e. material anisotropy and coupling are present. The
problem is of Type B condition with the loaded ends (of width 150
m) held against in-plane lateral expansion, whilst the
longitudinal edges are free to expand. The laminate is simply
supported for out-of-plane behavior arcund its boundary.

Analysis of a flat laminate with the above material properties
has been presented by Dawe, Lam and Azizian (1992) . Post-buckling
response with three half sine waves was obtained at high level of
strain. Dawe, Wang and Lam (1995) proposed an analysis of
anisotropic laminate with the initial imperfection, egquation

{(6.4.1), similar to the deformed shape of a flat laminate.

. 3ax
= Wy, 51n—s:l.n——-”}; {6.4.1)
400 150

In this application, the initial imperfection is in the form of
a single half sine wave, as shown in equation (6.4.2), which is

different from the deformed shape of flat laminate.

Wl

R ax i
W, = W, S1n —— sin — (6.4.2)
400 150

B3



Both the present, with imperfection represented by polynomials, and
previcus, with exact imperfection, approaches can be applied for
this application and very close results are expected. In this
study, a fourth order polynomial function is used to simulate the

longitudinal initial imperfection, as shown in equation {6.4.3).

. ax - _ _ -
Sin— = 7.76 - 107'x + 3.01-10°x% —1.12-107"%% + 1.40 . 10710
400

(6.4.3)

In analyzing the behavior of thisg anisotropic laminate under
end-shortening, a finite strip model with six quadratic finite
strips over the whole plate is applied. The longitudinal series
representation for u, v and w are sin 1-7, sin 1-7 and sin 1-5,
respectively.

Values of w,, being considered include +2 and +8. Comparisons
are made with the results obtained for the analysis of a flat
laminate. Figures 6.18 and 6.19 show the variations of average
longitudinal loads and end-shortening strains for w,, = +2 and Wop =

t8, respectively.

84



20 e e me e e i

N

Average Force

B T L S S R

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1000

Figure 6.18 Rectangular 15-layer anisotropic laminates: variations
of average force with end-shortening strain (w.,, = +2); [In

parentheses, (a) etc., denotes that the change to three half sine

waves occurs)

20

18 %

16 d
14 |
L] :

= :

12

Qv

o

5

g 10

G

o 8

i

g

P ]

fay Flat

4 {b) woh = +8
20 LAY e (c) woh = -8
0

Figure 6.19% Rectangular 15-layer anisotropic laminates: variations
of average force with end-shortening strain (w,, = +8); [In
parentheses, (a) etc., denotes that the change to three half sine
waves occurs)

BS



For w,, = 2, the deformed shapes become three half sine waves
at high level of end-shortening strain. Along the equilibrium paths
in Figure 6.18, the changes in deformed shape of each imperfection
are shown, of which coefficients of the sin 3 terms for out-of-
plane displacement become dominant. For w,, = 1B, the change in
deformed shape does not occur within the range of progressive end-

shortening strain up to & = 0.315%, whilst the change can be

observed around & = 0.15% for flat laminate. The deformed shapes
of laminates with w,, = 0, +2 and w.,, = 0, +8 are shown in Figures

€.20 and 6.21, respectively.
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Figure 6.20 Rectangular 15-layer anisotropic laminates (Wony = 0,

12) : variations of w, at {a} & = 0.180% and (b) £ = 0.315%
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Figures 6.20 and 6.21 show that the deformed shapes are
affected by the shapes and magnitudes of initial imperfections. The
laminate deforms to three half sine waves with initial imperfection
in form of three half sine waves, as demonstrated in previous study
by Dawe, Wang and Lam (1995} . waever, it deforms to only a single
half sine wave while the initial imperfection is in a single half

sine wave with large magnitude.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

Computational procedures for the post-buckling analysis of
struts and plates with general initial imperfection when subjected
to pregressive end-shortening have been introduced. Suitable
polynomial functions generated by the least-squares technique are
used to simulate the inifial imperfection, whilst the displacements
are represented by Fourier series. Adaptability of such
representations and efficiency of the approach have been verified
through various applications. The results are compared with other
available solutions. The technique is then applied to the analysis
of isotropic and laminated plates with various forms of initial

imperfections to assess the effects of imperfection.

7.1.1 Imperfect Struts

With the consideration of the transverse shear effect,
formulation fer the post-buckling analysis of struts has been
developed. Both longitudinal and 1lateral displacements are
represented by appropriate Fourier series. Shear locking effecting

is alleviated due to the use of consistent order of representation

for the variables w and f,.

Initial imperfectiorn in very general form is allowed.
Approximations of the imperfection by suitable polynomial functions
are obtained by using the least-sguares technigque. For symmetric

imperfection expressed by trigonometric terms, the imperfection has
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been approximated with respect to its magnitude or slope. When the
form of imperfection is very general or is defined by discrete
field measurements, the technique can also be applied to simulate
the magnitude of imperfection. Applications on both cases have been
performed. Close comparisons with other available solutions, of
which the initial imperfection 1is expressed by trigonometric
series, and from experimental results, by Lam (1998), are obtained.

In this study, both relatively thick and thin struts have been
considered. The effect of transverse shear is observed to increase
with the thickness of the strut. To conclude, the present approach
is applicable for the analysis of struts with various forms of

imperfection and thickness.

7.1.2 Imperfect Laminated Plates

In the context of classical plate theory, a finite strip
approach has been developed for the post-buckling analysis of
laminated plates. Consistent with both the in-plane and out-of-
plane boundary conditions at the loaded ends, appropriate Fourier
series and polynomial function are wused to represent the
displacements and initial imperfection along each longitudinal
nodal line, respectively. The longitudinal functions are then
interpolated by the crosswise polynomial functions within a finite
strip.

Geometric non-linearity has been introduced in the strain-
displacement eguations in the manner of wvon Karman assumptions.
Formulation involves general stress-strain relationships for
laminates in the presence of coupling term for anisotropic
material. For isotropic plate with symmetric initial imperfection,
analytical solution by Yamaki (1959} and other finite strip

solutions by Dawe, Wang and Lam (1995), of which the imperfection
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is expressed 1in its exact form, are compared with the present
solutions for wverifying the present approach. Close comparisons
have been recorded.

Other applications including isotropic plates, c¢ross-ply
laminates and laminates with general layup arrangement have been
considered. In each application, different post-buckling responses
are obtained while the initial imperfections are in different forms
or magnitudes. The deformed shapes can be traced by the dominating
terms in the displacement fields.

In conclusion, the present approach has provided a semi-
analytical procedure to analyze the laminated plates with general
initial imperfection when subjected to progressive end-shortening.
The forms or magnitudes of imperfection influence the post-buckling
response of laminated plates. In previocus study, only trigonometric
series was used to approximate the initial imperfection in the

traditional finite strip method.

7.2 RECOMMENDATIONS

In this study, initial imperfections in very general form are
simulated by appropriate polynomial functions. To fit the actual
imperfection accurately, higher order polynomial functions may also
be used. This leads to increasing computational effort, and longer
computational time is required. The balance of accuracy and economy
must be considered. In simple cases, solution based on imperfection
represented by Fourier series would be acceptable. For other cases,
the present approach provides accurate prediction when the initial
imperfection is in very general form.

Further developments on the apprcach can also be considered.

The first one is the analysis of laminated plates with general
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initial imperfection, wusing shear deformation plate theory. To
include the transverse shear strains (¥. and p,), two fundamental
components of displacement are introduced, which are the rotations
{¢x and ) of the plate normals along the x and y directions. The
second development is to extend the present approach to predict the
buckling strength of plate structures, for example, cold-formed

steel members.
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APPENDIX A

LEAST-SQUARES APPROXIMATION FOR INITIAL IMPERFECTION

The least-squares technique is wused for approximating the

initial imperfection w, frequently in this study. The polynomial

functieon,
el :
= 7
flx) = Z a;x (a.0.1}
j=1
has been chosen to represent the exact w, = F(x). Because of the

out-of-plane simply support boundary conditions, the coefficient =N

usually vanishes.

A.1 INITIAL IMPERFECTION DEFINED BY A EXACT FUNCTION
The sum of square differences D between F{x) and f(x) is

D= j[F(x) - Fi0) P ax (A.1.1)

A necessary condition for minimizing D is that

{A.1.2)

Since

D = I(F(x) Pdx - 2Zni ajjij(x)dx + I[i aj) dx (A.1.3)
o

J=1

Al



2
o —zjij(x)dx +2), aij“kdx (A.1.4)
da; k=1
e} . :
aij”kdx = IxJF(x)dx {A.1.5)
k=1

Therefore, the coefficients a; can be obtained by solving the

linear system in equation (A.1.6}.

Lc)la) = (£} (A.1.6)
where [Lcl= [Lj;] is a nxn square matrix, {a} = {a;} and {f;} = (£}
are nx1 column vectors, for i,j7 = 1, .., n-1, n.

Liz = jxi+jdx (A.1.7)

£; = Iij(de‘x (A.1.8)

A.2 INITIAL IMPERFECTION DEFINED BY DISCRETE MEASUREMENTS

In this case, w,(x) 1is not defined as a known function. Only
discrete values w,{xc} are measured. The sum of square differences

D between F{x) and f{(x) becomes

D = 3 lwole, )£l )]? (A.2.1)
"k

Alsco with the condition in equation (A.1.2) and following the

similar procedures, a linear system can be formed.

h

D = Y (Flx;))? - 2i aj{z F(xk)xﬂ} + ) ajam[z xﬂ“"J (A.2.2)
k i=1 k n=1 k

izt

A2



oD ; S -
— = —ZZ Fix, )xi + 22 ajz xI™" =0 {R.2.3)
da; k j=1 Kk

2]

a;y xi*™" = Y Flx, ] (A.2.4)
j=1 k k

Coefficients a; can be obtained by solving (A.2.5).
Lyl {a) = {£,} (A.2.5)
This linear system is similar as the one in Chapter A.1.

However, the entries in the square matrix [Lj] = [L;;] and the right

hand side vector {f,} = {f;} are different.

Ly =) x7 (A.2.6)
k

£, = ZF(xk)x,{ (Ah.2.7)
k

A.3 APPROXIMATION OF THE SLOPE OF INITIAL IMPERFECTION

In order to simulate the slope of w, in Chapter 2.2, it is easy

to replace the equation (A.0.1) by

n .
fix) = Z ja;x! (A.3.1)
=1
dw
and F{x) = e (h.3.2)
dx

and then follows the procedures in the Chapters A.1 or A.2. The
coefficients a; (j = 1, .., n) can be solved and a, is zero for the

simply support condition:

A3



