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Abstract

Use of chaos as a fast and convenient mean to spread the spectrum of
a signal has received much attention in communication engineering in
the past few years. The advantages of spread-spectrum communications
include the robustness against multipath fading, resistance to jamming
and high secrecy due to low probability of detection. On the other hand,
many problems are there to overcome in chaos communication. They
include the synchronization problem for coherent demodulation and the
estimation problem due to the random-like property of chaos. Moreover,
in a spread-spectrum system, the issue of bandwidth efficiency must be
considered. For instance, multiple users should be able to use the same
frequency band without interfering with each other.

This thesis studies the modulation-demodulation methods in chaos
communications. The study is centered on the previously proposed chaos-
shift-keying (CSK) and differential chaos-shift-keying (DCSK) systems.

The thesis includes the study of detection methods of CSK and a mul-



tiple access system based on DCSK. Also, an M-ary scheme for chaos
communications is proposed.

The performances of the digital communication systems in this thesis
are measured by their bit error rates (BER). The channel is assumed to
be of additive white Gaussian noise (AWGN). Computer simulations are

carried out and analyses are given. Overall evaluations are also presented.
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Chapter 1

Introduction

1.1 About the Definition of Chaos

The definition of chaos seems to be the first simple issue for this thesis.
Modern chaos theory was rooted in the study of complex dynamical sys-
tems by Poincaré more than a century ago. With the aid of the rapid
development of computing technology, Lorenz shaped the study of chaos
in science {1] with his discovery of chaotic motions in a model of atmo-
spheric convection {2]. The term “chaos” first appear in year 1975 (3],
and si-nce then, the study of chaos p;qliferates in all aspects of science.
Unfortunately, a universally accepted definition of chaos is not yet
available [4, 5, 6]. In general, chaos is the term used to describe the
random-like behavior of deterministic physical systems. It is commonly

agreed that the sensitivity to initial condition is necessary for a system’s
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state, as a discrete or continuous function of time, to be chaotic. That
is, any two different orbits initially close together diverge over time. For

example, orbits of the map
Tey1 = 4$k(1 - IZk) (1.1)

have this property. As discussed in [4], it is not clearly defined what can
be called a chaos or not, but all ca.ndide'ttes are trajectories of determin-
istic mechanisms. This is the fundamental difference between a random
variable and a chaotic trajectory. The random-like behavior of a chaotic
signal is limited to its unpredictability, which occurs only because it is
not possible to determine the initial condition exactly. The uncertain
part of the initial condition becomes a random variable, causing eventu-
ally a deterministic system to become unpredictable. In practice chaos
is recognized to be partly random and partly deterministic. In some en-
gineering situations, chaotic signals might have advantages over random
signals, and this thesis studies the advantages of usi;g chaotic signals in
digital communication systems.

In this thesis, the mathematical definition of a chaotic map given
by [7] is sufficient for our purpose. All chaotic signals considered in this
thesis are generated by chaotic maps under this definition. Omitting the
details and explanations of terms used, it can be expressed as follows.

Let V be a set. The function f: V — V is said to be chaotic on V if
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1. f has sensitive dependence on initial conditions;
2. f is topologically transitive; and

3. periodic points are dense in V',

1.2 Spread-Spectrum Communications

Spread-spectrum modulation is a technique widely used in communica-
tion systems. It produces a signal of much higher bandwidth than the
input data signal [8, 9] and transmits it to the channel. This technique
sacrifices bandwidth efficiency in order to gain other advantages of a
spread-spectrum signal.

Channel defects such as multipath fading can be coped with by using
spread-spectrum modulation. While the unintended paths are harmful
to narrowband signals, a spread-spectrum signal remains robust in such
channels. Also, security needs often justify the use of spread-spectrum
systems. In situations where low detectability of signal by unintended
receivers and high anti-jamming robustness are needed, the energy of
the transmitted signal must be spread over a wide bandwidth, and a
spread-spectrum system becomes the basic requirement.

Currently, the direct-sequence and frequency-hopping spread spec-
trum techniques are usually used in practical communication systems [8].
Some variations are also found, but basically most techniques involve a

15



pseudorandom process [9]. This process produces a random-like but re-
producible signal. The random-like property is used to spread the spec-
trum of the data signal and enhance the security of the communication

system.

1.3 Motivations for the Study of Chaos Com-

munications

As discussed in the last section, a pseudorandom process is useful in
many areas in spread-spectrum communications. Unlike other currently
available pseudorandom signals, chaotic signals are not periodic, and are
unpredictable in the long term. Also, it can be found in continuous form
instead of only binary sequences. Moreover, the generation of chaos is
relatively easy.

But there are some questions to be answered first. Chaotic signals are
reproducible only under certain conditions. The design of a communica-
tion system based on chaos has to take the issue of chaos synchronization
into account. Also, communications based only on chaos may not be very
secure, due to the presence of nonlinear time-series recovery techniques.
Spectral properties of chaos is another concern for spread-spectrum com-
munications which involves the study of dynamical systems.

In spite of the difficulties, research in this area is getting more and
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more mature in recent years (10, 11, 12]. Chaos communication is ex-
pected to be a new choice for practical spread-spectrum communication

systems.

1.4 Methodology and Layout of Thesis

This thesis is entitled “Enhancements in Chaos-Based Digital Communi-
cation Systems.” Analog communications is also discussed briefly in the
next chapter, where recent research results of the field relevant to this
thesis are reviewed. The three chapters after that are my studies and pro-
posals of new chaotic communication systems based on existing research
results. Chapter 3 is a discussion on methods that identify a chaotic sys-
tem by extracting parameters from the signals it generates. Applications
to communication systems are illustrated. Chapter 4 discusses a mul-
tiple access communication system. As each user of a spread-spectrum
communication system occupies a much larger band@idth than the data
bandwidth, multiple access becomes a necessary feature of any such sys-
tern in practical use. Chapter 5 presents a chaos-based communication
system with M-ary enhancement to irﬁprove the system performance over
binary systems.

In all the communication schemes proposed, modulation and demod-

ulation are explained in terms of system architecture and the processing
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of signals. Rationales and analyses are given, while computer simulations
by'Matlab and Mathematica progréms are carried out to give the actual
system performdnces.

The performance of a digital corn.munication system is measured by
plotting the bit error probability or bit error rate (BER) against E/No,
the average-bit-energy to noise-power-spectral-density ratio. Average bit
energy is calculated by mﬁltiplying the average bit duration by the av-
erage signal power. For an M-ary system, the average bit duration is
obtained by dividing the symbol duration by the number of bits NV car-
ried by each symbol, which is given by N =log, M. Also, by converting

‘:'M-ary symbols to and from binary. bits at the receiver and sender, bit
error rate can be obtained for M;ar.y systéms.

In this thesis, one-dimgnsional discrete chaotic signals are generated
by second or third order ',Chébyshev po]ynomials{unless specified other-
wise. That is, ;vith a randomly chosen. initial cc_)nciition zo € [-1,+1],

we generate z; by
Tr = Tn(zr_) = cos(ncos™ {zx_1)) (1.2)
where n equals 2 or 3. The maps can also be conveniently expressed as

Ta(z) = 2z — 1

Ty(z) = 42° - 3z _ (1.3)

In this thesis all signals studied are discrete. The discrete system is
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used as an equivalent model of a general continuous-time bandpass sys-
tem. Following the derivations in [11], the Ey/N, ratio of the continuous-
time system equals (802)/(2¢2) in the discrete-time model. Here o2 and
o2 are the variances of the discrete-time signal and noise samples, re-
spectively, while £, also called the spreading factor, is the number of
signal chips used to represent one bit. Moreover, since the bandwidth of
the continuous-time system equals to half of the chip frequency in the
discrete-time model according to the sampling theorem, the bandwidth-
duration product W7} in the continuous-time system [8} can be shown

to be

2T,
T.

= 23 (1.4)

WT, =

where T}, and 7 are the bit duration and the sampling period, respec-

tively.
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Chapter 2
Existing Research Results

2.1 Issues of Concern

Given the possible advantages .of chaos bommun'ications, various modu-
létion and demodulation schemes were pfOposed in the past few years.
From .the information t_hedry point of view, it hés been shown that it is
possible for the noise performancé of a chaos communication system to
be as good as traditional comm.unication systems [13] Unfortunately,
the performance of a practical chaos communication scheme currently
availaé;]e is still far worse than traditional systems such as the binary
phase-shift-keying (BPSK) system.

In communication engineering; there are three levels where chaos may

be injected. They are, from bottom to top, the hardware level, the signal

level and the coding level. At each level chaos offers different possibil-
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ities [10], and they may be divided into two categories, coherent and
noncoherent detections. Coherent detections assume that the receiver
has a copy of the set of all possible signals that could be transmitted by
the other side, before the signal is received. Noncoherent detections do
not have this assumption.

In chaos communications, coherent_detection unavoidably implies a
chaos synchronization process, which is possible but difficult [14, 15).
For analog communication schemes, those based on chaos masking [16]
generally require the synchronization process, while those with direct
chaotic modulation [17] do not necessarily requil;e it. For digital modula-
tion schemes, both coherent and noncoherent ones are readily found. For
instance, in [18], the simple chaotic on-off keying (COOK) modulation
i; basically noncoherent. The chaos-shift-keying (CSK) system and the
differential chaos-shift-keying (DCSK) system can be coherent or not, de-
pending on the system design. The performance of ‘cloherent detection is
always better than noncoherent detection in an additive white Gaussian
noise (AWGN) channel when synchronization is possible [8].

Other concerned issues in chaos. communications include system se-

curity [19] and multiple access. In the following sections of this chapter,

some of these topics are discussed in more detail.

21



Chaos generator 1 ——

—/W signal
Chaos generator 2

Digital data

Figure 2.1; Block diagram of the transmitter of a general CSK system.

N

CSK signal

Chaos generator -1 [

Digital data

Figure 2.2: Block diagram of the transmitter of an antipodal CSK system.

ey

2.2 CSK System

The C_SK is, among the many schemes proposed so far, the simplest
and most direct method of chaos communication at the signal level. The
transmitter of CSK, as shown in Figure 2.1, basically consists of two chaos
generators representing two digital symbols, and a switch which is set
according to the binary data. The transmitter of one special type of CSK,
the antipodal CSK, is shown in Figure 2.2. Under certain conditions,
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Figure 2.3: Block diagram of the coherent detector of a general CSK
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Figure 2.4: Block diagram of the coherent detector of an antipodal CSK

system.

23



antipodal CSK offers the best performance over all CSK systems [20].

Architecture of the receiver is found in different versions, coherent
and noncoherent. Figure 2.3 and 2.4 show the coherent detectors for
the general CSK and the antipodal CSK systems, respectively. In the
coherent schemes, detections are basically done by a matched filter or an
equivalent correlator [8], which offers optimal detection.

In chaos communication, if the same set of signals is to be repeat-
edly used in every symbol duration, coherent detection can be achieved
easily as the sender and receiver can make an agreement about the set
of signals to be used. In that case, the system is close to some form of
a direct-sequence spread-spectrum communication system. Normally, in
CSK systems, we assume that a new signal is used for each symbol du-
r.ation, and the signals produced by the chaos generators will not repeat.
If coherent detection is to be used, synchronization of chaotic signals
between the sender and receiver must be achieved. As discussed before,
such a synchronization is possible theoretically, but practical difficulties
might make noncoherent detections more feasible.

W’hen coherent detection cannot be achieved, noncoherent methods
will be used. Figure 2.5 shows the detector when the digital symbol
received can be determined by extracting one parameter from the re-
ceived signal. Figure 2.6 shows another noncoherent detector where two

separate devices are used to detect the two possible symbols, and the
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Received Parameter extraction Decision circuit —
signal igl
Digital
symbol

received

Reference threshold

Figure 2.5: Block diagram of the noncoherent CSK detector using one

parameter for detection.
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Likelihood estimation
for the Arst symbol 1
Decision circuit /—

Digital

Likelihood estimation T symbol

for the second symbol received

Figure 2.6: Block diagram of the noncoherent CSK detector with two

separate detection blocks for the two symbols.
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likelihood functions of the symbols are estimated and compared.

In a CSK system, noncoherent demodulation is not easy. The re-
ceiver has to decide which symbol is transmitted at the sender’s side,
only by looking at a signal of finite length corrupted by noise. In the fol-
lowing, we review some of the existing methods that is used to identify
chaotic attractors and decode digital df_j,ta in CSK. Some other methods
are proposed and discussed in Chapter 3 of this thesis.

In the noncoherent CSK system proposed in [18], the signal variance
is the key parameter for demodulation. In other words, the average power
of signals produced by the two chaos generators at the modulation side
are used to distinguish the two digital symbAols. One extreme case is the
COOK system, where chaotic signal is only present when symbol “1” is
s.,ent, and transmission is turned off when symbol “0" is sent.

As discussed in {18], the main drawback of such schemes is that the
receiver’s symbol decision threshold depends on the noise level. Another
obvious problem is that the system has no security, any unintended re-
ceiver can decode the data easily.

In [21] another suggestion was made. If the probability density func-
tions of the two chaotic attractors used by the sender are known, the
receiver can estimate the likelihood that a particular symbol is being
sent by comparing the received signal with the probability density func-

tions. For instance, by [22] it is known that a random sample drawn from
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an orbit produced by the Chebyshev polynomials follows the probability
density function

1
o) =

(2.1)
with —1 <z < L

Another approach to identify a chaotic attractor is to inspect the dy-
namics of its trajectory. With a chaotic. signal contaminated by noise, we
can determine how likely that the signal is generafed by a particular sys-
tem by comparing the signal with all possible trajectories produced by the
system. For instance, denote the received signal by r» = (rq,79, -+, ")

Assuming that the signal is corrupted by AWGN with a probability den-

sity function

1 -=/20%) (2.2)

(z) = o2

where o2 denotes the noise power, then the likelihood that the original

signal transmitted by the sender is 8 = (51, $2," -+ ; 8,) can be estimated

by the probability density function

B(rls) = [T palr — 52). | (2.3)

i=1
So the overall likelihood that a particular map z;,, = f.(z:) is being used

by the sender can be represented by the probability density function

p(rie) = [ pulon) [ putri = £ (s1))ds1. (2.4

- im1
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Here p,(z) is the probability density function of a sample value taken from
the chaotic attractor represented by fa(z), and f%)(z) is the iteration of
falz) for k times.

This method of inspecting the whole trajectory at once is found in
variations in noise reduction techniques [23] and CSK communication
systems [24]. In the noncoherent CSK system using two chaotic dy-
namical systems known by both sides, the receiver first computes the
likelihood values for the received signal to be produced by the two dy-
namical systems, and then compare the two values to decode the symbol
transmitted. Theoretically this maximum likelihood approach gives the
optimum receiver for noncoherent CSK. However, in practical systems,
numerical approximations unavoidably degrades the system performance.
'I“he return map approach provides an alternative that gives acceptable
performance with lower computational requirements.

In the return map approach of CSK using om.a-_climensional maps,
the pairwise relation of consecutive points on the réceived trajectory is
inspected in order to construct the return map. The chaotic attractor
used, z'md so the digital data transmitted, can be estimated by either
the probability approach or the simple regression approach [25]. As the
name implies, performance of the return map approach is sensitive to the
maps used [26]. The major drawback is that the results obtained from

one particular set of maps may not be applied to another set.
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Chaos generator

N
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—Delay T/2 -1

' Digital data T/2

Figure 2.7: Block diagram of the transmitter of a DCSK system.

2.3 DCSK System

The modulatér of a DCSK-systém is shown in Figure 2.7. In the first and
secorid half of each bit duration, a reference chaotic signal and a data
signal are sent répectively. If bit .;‘-{-1” is to be_ sent in'this bit duration,
the data signal is the same as the reference signal. If bit “.1” is to be sent,
the data signal is the iﬁverted ve-rsio.n of the reference signal. Basically,
demodulation is done by finding the correlation between the reference
signal and the data signal. The block diagram of a DCSK demodulator
is shewn in Figure 2.8. Note that theA correlator in Figure 2.8 operates
only in the second half of every bit durati'on. If the correlation is positive,
“41” is decoded as the symbol se_nﬁ, otherwise “~1" is decoded.

A variation of DCSK is the frequgncy modulated DCSK (FM-DCSK)

scheme, which basically inserts a frequency modulator at the output

. 29



Received Correlator [—{ Decision circuit [—
signal Digital

Delay T/2 - symbol

received

Threshold 0

Figure 2.8: Block diagram of the receiver of a DCSK system.

point of the chaos generator in the DCSK modulator. The main ad-
vantage of FM-DCSK is that the bit energy is constant for every bit,
which eliminates the estimation problem in the DCSK system. It has
been shown that the FM-DCSK has a good potential to be applied in

practical communication systems [27, 28, 29].

2.4 Chaotic-Sequence Communications

The basic motivation for chaos communications is to take advantage of
* the inherently wideband chaotic signals. The CSK".'and DCSK systems
are two such examples. Another option is to use chaos in the coding level
of corthmunications. For example, a direct application of chaos to the ex-
isting direct-sequence Spread—spectn.lm system is to replace the binary se-
quences for spreading binary symbols by aperiodic chaotic sequences [30].
The use of chaotic sequences may enhance the system security, compared

with conventional systems using periodic sequences, due to the increased

30



difficulty in detecting the chip frequency. Another example is the ap-
plication of chaotic-sequences in frequency-hopping communication sys-
tems [31]. Moreover, binary sequences for the use of spread-spectrum
systems may also be generated by chactic dynamics [32].

The first, issue of concern in communications using chaotic-sequences
is the correlation properties of the sequences [33], especially when mul-
tiple access is required. Chaotic-sequences are basically uncorrelated in
the long term, but extra processing is required if orthogonality is needed
for short sequences. Most proposed systems using chaotic-sequences do

not ensure their orthogonality, but the performances are still acceptable.

2.5 Multiple Access in Chaos-Based Com-

munications

A spread-spectrum communication system generally allows multiple ac-
cess in order to achieve reasonable bandwidth efficiency. Also, multiple
access using spread-spectrum techniques is advantageous over the tra-
ditional time-division multiple-access. (TDMA) and frequency-division
multiple-access (FDMA) in several aspects [9, 11].

In chaos communications, while code-division multiple-access (CDMA)

systems using chaotic-sequences [33, 34, 35| are being investigated by the

mainstream, a few multiple-access systems based on CSK and DCSK are
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also available [20, 36, 37]. Other chaos communication schemes proposed
so far are mostly single-user systems.

In the multiple-access CSK scheme, each user simply injects the CSK
signals into the channel independently, as in a single-user system. The
signal obtained by each receiver is the sum of the signals of all users,
with distortions caused by the channel‘. Demodulation is achieved by
correlating the received signal with the synchronized chaotic signal in
each sender-receiver pair.

For noncoherent detections, the multiple-access DCSK system pro-
posed in [36] uses a time-delay approach to reduce the interference be-
tween the users. The essential feature of this scheme is that the frame
structure of reference and data signal is different for each user. For in-
s'ta.nce, the jth transmitter sends j reference blocks in a row before the
data blocks are sent. In this way the total number of bits sent will always
be a multiple of j. . Figure 2.9 shows the frame structure for the first three
users. Demodulation is accomplished by correlating.the reference signal
with the corresponding data signal. It can be shown that, for every bit
sent b; each user, no other user uses the same two time slots to send the
reference and data signal for another bit. Thus, excessive interference is
avoided and the users can share the channel.

The multiple-access FM-DCSK scheme in [20] also uses different frame

structures for different users. Walsh functions are used to produce orthog-
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User 1 (Conventional DCSK)
(R [ D[ Ria[Dio[ Ras[Dis[Ria|Dia[Ris [ D[ Rig[Digl

User 2
| Rai1 [ Ra2| D21 [Dag|Ros[Rea | Dos[Doa| Ros [ R [D2s| Dasl

User 3
| B3| Hsa | R33[Ds1[Ds2[Dss|[Raa[Rss[Rss[Dsa|Dss|Dsgl

Figure 2.9: Frame structure of a 3-user multiple-access DCSK system for
6 bits. R, ; is the reference signal of the jth bit of the ith user, and D;;

is the corresponding data signal.

onal signals and zero inter-user interference is ensured. In Figure 2.10,
the essential frame structure of a simplified four-user system is shown.
f‘or each user, the same block of chaotic signal or its inverted version
is sent repeatedly for a number of times. For each receiver, the Walsh
function corresponding to the user is used again to remove the signals of
others. Demodulation can then be accomplished witilout difficulty. Note
that the frame structure also improves noise performances. As the same
block ;;f chaotic signal is sent a number of times, the effect of noise can
be lowered by averaging.

In Chapter 4 of this thesis, another multiple-access DCSK system

based on permutation techniques is proposed.
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( B | R | R | R | D. | D, | D, | D, |

User 2
| R | R | Ry |-Bp | Dy | Dy | -D, | —D» |

User 3
| R [ -Rs | -Rs | Ry | D3 [ -Ds | -D3 | Ry |

- User 4
| R |~Ry | Ry | -Ri | Dy [ -Dsy| D4 | -Ry |

Figure 2.10: Frame structure of a 4-user multiple-access FM-DCSK sys-

tem for one bit duration. R; is the reference signal of the ith user and

D; = a;R; where o; € {—1,+1} is the digital data of the ith user.
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2.6 M-ary Transmissions in Chaos-Based

Communications

In chaos-based digital communication systems, digital symbols to be
transmitted are mapped to chaotic signals. Depending on the demod-
ulation techniques, the signals used must be long enocugh to carry certain
characteristics for the receiver to detect. To eliminate the effect of the
random-like behavior of chaotic signals, the symbol duration of a chaos-
based digital communication system is usually much longer than that
of conventional communication systems. Also, chaotic signals occupy a
much larger bandwidth. To reasonably utilize the channel and increase
the data rate, multiple access should be ailowed, or an M-ary transmis-
sion scheme should be used.

For each symbol duration in an M-ary system, a symbol out of M > 2
possible symbols is transmitted. The advantage of having M symbols
instead of just two is that each symbol now carries rn(:re information and
the data rate is increased using the same channel.

Sev_eral M-ary schemes based on DCSK can be found in [38]. One
approach is to scale the signal magnitude to several levels according to the
symbols transmitted. Correlation between the reference and data part
can also be scaled by introducing some extra delay in the modulator.

Sometimes, techniques for multiple-access can be applied to M-ary
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systems. For instance, in the demonstration shown in Figure 2.10, a user
can simultaneously use several modulators and transmit more than one
bit within one symbol duration. As long as the signals produced by the
modulators are orthogonal, they will not interfere with each other in both
the multiple-access system and the M-ary system.

In this thesis, another M-ary chaog communication scheme is pro-
posed. In the proposed system, the number of symbols M is much larger

than that of the existing schemes. It will be introduced in Chapter 5.
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Chapter 3

Identification of Chaotic

Attractors

3.1 Fractal Dimension

Fractals are self-similar complex objects found in nature [39]. Some frac-
tals such as the Koch curve have simple ma.thematic_al definitions, while
others may be produced by some chaotic processes [;0] The concept of
dimension in geometry can be extended to fractal objects, of which the
dimension is not an integer. For instance, given a fractal object in the

Cartesian space, we can find its box-counting dimension {40] by covering

the space with a grid of edge length ¢ and calculate

_ i J0g(N(€))
Db = El_r% W (31)
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where N(e) is the box-count of the object occupying the space in the
grid. |

While D, gives a geometrical approach to calculate fractal dimension,
a similar quantity named correlation dimension [41] is more convenient
and practical to use when the object is represented by a set of data points
in the space. With the set of data poipts {zl,z_g, ---zg } in Cartesian
space, the correlation integral is defined as

1 &
Cle) = Jim_ 7 Y Ule—llzi — z) (3.2)
i3

where U(z} is the unit step function, giving 1 or 0 as a counter upon
whether its argument z is positive or not. The correlation dimension D,

is then

. log Cle)
D, =lim ogle) (3.3)

While Dy and D, are just two approaches to calculate dimension,
in practice the two quantities calculated for a general finite set of data
points can differ slightly.

The following experiment illustrates the possibility to use the concept
of dimension in a communication system. Suppose we are to build a CSK
system with two chaos generators. The sender uses two chaotic signals
known to have different fractal dimensions, and the receiver decodes by
using an algorithm which calculates correlation dimensions according to
(3.2) and (3.3}). The algorithm first collects the X data points from the
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received signal and uses a few chosen values of ¢ to plot log C(e) against
log{e). A value of D, is then obtained from the slope of the line plotted.

In the simulation the first map chosen by the sender is the Chebyshev
map of the second order, as shown in (1.3), which is sometimes called
the logistic map. The other map is the two-dimensional Hénon map [40],

which is stimplified here as
T = 14—z, + 0375 (3.4)

for our purpose. It can be shown that no information is lost when the
two-dimensional orbit of the Hénon map is changed to this one-dimension
form for the purpose of signal transmission.

The signal that the receiver receives are corrupted by noise, so we

have
T =8k + &k (3.5)

where s, represents the Hénon map or logistic map sample sent by
the sender, & is the noise sample and r, denotes the received sam-
ple. The receiver constructs a three-dimensional signal by assigning
zy = (e Te—1 Tk—2), for the use of computations based on (3.2). When
the noise level is low and the number of data points is high, the data
points z; collectively reveal the true correlation dimension of the chaotic
attractor behind. The three-dimensional signal construction can be re-
placed by other such constructions of higher dimension. It is chosen only
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because we already know that the correlation dimensions of our attrac-
tors are lower than three.

Finally, the receiver performs the numerical computations to extract
the correlation dimension of signal. Figure 3.1 and Figure 3.2 shows two
independent trials-of the extraction of correlation dimensions from the
chaotic signals. In both trials, the number of chaotic samples sent to
represent a symbol is set to 1000, which is necessary for computing the
dimension. For both the logistic map and Hénon map signals, we plot
the correlation dimensions extracted against the Ey/Ng ratio, where Ey
denoto;es the total energy of the signal representing one symbol, and Ng
the noise power spectral density.

It can be observed that the algorithm become unreliable when E, /Ny
is' lower than 60 dB. When E,/N, decreases, i.e., noise level increases,
the correlation dimension first rises and then drops. But for both cases
we can no longer distinguish the logistic or Hénon attractors from each
other. The rise can be explained by the fact that noise samples are
uncorrelated, and they just randomly fill up the space concerned. Thus,
they tend to increase the calculated correlation dimension of the received
samples. The cause of the drop when the noise power is even higher is
that the algorithm recognizes the samples as zero-dimensional separate
points as they are écattered in a large space. In other words, since the

number of samples K in (3.2} is finite in a practical experiment, it may

40



3
! Logis:ic'map orbit'—+— :
Henon map orbit ---x---
25 |
2 F AN
k] / \‘:\"“
[ %]
S v A
E i;_v ‘\\ "
e 15 f %
Q 1. Y.
= i A
T ’a " -
g 'l' Pt o — (IR | Jept P
=1 e
U 1 - ["‘ \\
1 B
.......... 7
H
F
']
{1
4
Fy
0.5 F R
&7
: PRty
o EIO—— L
— i
Q 10 20 ao 40 50 60 70 B8O 30 100
Eb/No

-

Figure 3.1: First trial of correlation dimension extraction from orbits of

different chaotic attractors in a noncoherent CSK system.
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not be large enough for the samples to fill up the space as they should,
and it is more obvious when noise level is higher because the space to fill
is larger in that case.

As we can see, fractal dimension can be readily obtained from a
chaotic orbit when the noise level is low. Unfortunately, due to the
use of €, which is a very small quantity., the algorithm implemented is
sensitive to the noise level. Also, the computational requirement of the
algorithm is high, due to the large number of data points needed. As a
conclusion, chaos communications based on the extraction of correlation

dimension may not be very feasible.

3.2 Lyapunov Exponent

The main feature of chaos is the sensitivity to initial conditions. The
Lyapunov exponent is a parameter which accounts for this sensitivity [40].
It gives the average exponential rate of divergence of "ﬁearby orbits.
Mathematically, given an orbit {z,, s, --}, which is generated by a
map Tiyy = f(z;), the Lyapunov exponent L(z;) for the one-dimensional

map is defined as

L{zy) = lim = L Zln|f (z;)] (3.6)

=00 n
The extraction of Lyapunov exponent can be very accurate when
there is no noise and the given orbital data set is long enough. When the
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map f(z) is not available, we can extract the Lyapunov exponent of an
orbit by finding pairs of segments in it which are close to each other at
the beginning and diverge later on. In other words, in (3.6), we attempt
to estimate f'(z) by (f(z) — f(y))/{z — y) where y, found by searching
the orbit, is a value close to z. This method is applicable to CSK systems
in which the map being used is exactly \\lrhat the receiver needs to guess.

The following simulation experiment is conducted to obtain the ac-
tual performance of this method. In this experiment, a noncoherent CSK
system using two chaotic maps is simulated. The first map is the Cheby-
shev map of the second order. The second map is the Chebyshev map of

the fourth order. That is, we use the two maps

To(z) = cos(2cos ' 1) (3.7

1.’17)

Ty(z) = cos(dcos™
= cos(2cos™! cos(2cos™! z))

= T(Ti(z) - (38)

in the hope that the rate of divergence of the second map is exactly
double of the first one. As the map T5(z) is topologically conjugate to
the tent map, their orbits have the same Lyapunov exponents [22]. The
magnitude of slope is 2 for every point on the tent map, so the theoret-
ical Lyapunov exponent of a tent map orbit is In2. The corresponding

Lyapunov exponents are thus In 2 and In 4 for the maps T5{z) and Ty(x).
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In the simulated CSK system, signal corrupted by noise is received

by the receiver, that is
Te = Sk + &k (3.9)

where s, represents the sample sent by the sender, &, is the noise sample
and r; denotes the received sample. The receiver then compute the
Lyapunov exponent from the received siénal. Figures 3.3 and 3.4 show
two independent simulations. The approach is similar to the experiments
in the prev.ious section. The number_ of chaotic samples sent to represent
a symbol is set to 1000. From the figures, we see that when E}/Np is over
60 dB the correct Lyapunov exponents can be found and thus the two
digital symbols of the CSK system can be readily distinguished. When
the noise level is higher, the two digital symbols can still be distinguished,
but the threshold for decision has to be changed. When the noise level
is even higher, this method fails completely as it is impossible to identify
points that are close together in the original orbit. In it;hat case the f'(x;)
evaluated for (3.6) is a essentially the difference of two Guassian random
numbers. Therefore, the calculated Lyapunov exponent increases linearly
with the noise power (in dB) in this range.

As we can see, the noise performance of this method is not good.
Moreover, it requires a long sigha! length. Although it seems to be better

than the fractal dimension approach, we conclude that the direct extrac-
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different chaotic attractors in a noncoherent CSK system.
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tion of Lyapunov exponent from a signal, as a demodulation method in
noncoherent CSK systemns, is not practical.

While both the fractal dimension and the Lyapunov exponent meth-
ods do not perform well, the concept of extracting certain parameters
from chaotic signals remains a possibility when we consider the detec-
tion methods of noncoherent CSK systems. In the rest of this thesis, we
shift our focus to the possible improvements of some other existing chaos

communication systems.
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Chapter 4

A Multiple Access System

Based on DCSK

4.1 DCSK System Model

In this chapter a multiple-access DCSK system using permutation tech-
niques is presented [42]. The proposed permutation-based DCSK (P-
DCSK) system is basically a DCSK system with anmadditional layer of
signal transformation. The resulting DCSK system has enhanced secu-
rity and provides multiple access capability.

Before going into the details of the P-DCSK system, the conventional
DCSK model is introduced here, in terms of its discrete signals. In the

DCSK system, each bit duration is divided into two equal time slots in

which two sets of chaotic signal samples are sent respectively. The first
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sample set is called the reference sample set while the second one, which
carries the data, is called the data sample set. If a “+1” is transmitted,
the data sample set is identical to the reference sample set, and if a “-1”
is transmitted, an inverted version of the reference sample set is used as
the data sample set.

Let 203 be the spreading factor, the .number of chaotic samples sent
for each binary symbol, ‘;vvhere [ is an integer. Denote the transmitted
symbol by « € {—1,+1}. Within one bit duration, we denote the time
by k, ranging from 1 to 28. Then the output s, of the DCSK transmitter
is

T for k=1,2,...,8

S = (4-1)

azi_g for k=ﬁ+1—,,5+2,...,2,8'
where {z;} are the chaotic samples. - The transmitted signal passes
through an additive white Gaussian noise channel and reaches the re-

ceiver. At time X, the received signal ry is

e = S, + & (42)
where & denotes additive white Gaussian noise with zero mean and vari-
ance Ny/2. At the receiving end, the reference sample set and the corre-
sponding data sample set are correlated. The output of the correlator is

given by

g
Y= ThTrip (4.3)
k=1
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Digital symbol « Decoded symbol &

Transmitter . Receiver
noise and

DCSK modulator |{interference| | DCSK demodulator
I A f
Transformation F' {(+) Transformation F—!

Figure 4.1: Block diagram of the P-DCSK system.

Depending on whether the output y is larger or smaller than zero, a “+1”

or “—1” is decoded.

4.2 P-DCSK System Architecture

The structure of the P-DCSK communication system is shown in Figure
4:1. A layer of transformation F' and its inverse are added to the trans-
mitter and receiver, respectively. In the proposed system, the transfor-
mation is a simple permutation. For a multiple access system, each user
uses a different permutation, which will be discussedAI;ater in this section.

Suppose there are N users using the same channel. Each user operates
a P-DCSK system with an independent chaos generator and all users
use the same spreading factor. Consider the signals within one symbol
duration. For simpler notations w;s denote, for the ith user, the output

signal of the DCSK modulator by
s = (s 5§ - s (4.4)
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where s{’ equals z{ or a(")m,(:lﬁ according to (4.1). Here a{ denotes the
symbol transmitted by the ith user. The transformation F}, a permuta-
tion, is then applied to the signal s®. The signal sent to the channel
is

u® = F(s®)

= s9py) : (4.5)

where P:(;g is a 20 x 23 permutation matrix [43] used by the ith user.
The overall signal block sent to the channel in this bit duration, denoted

by u, is the sum of the signals of all users, that is,
N N ,
u=Y ul =¥ sOpf (4.6)
i=1 =1
All receivers in the system receive the same signal block, which is
v=u+ (¥ ¥) (4.7)

where ¥y and ¥, are the noise vectors, defined as

Wy = (& & - &)

Uy = (€41 &pez - Eap)- (4.8)

At the jth receiver, the incoming block first undergoes an inverse trans-

formation F; ' to retrieve an output block %) where

) B F}“l('v)

= (u+ (T 0,))(PY)!
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= L sOPy(PE) T+ (W0 T)(Py)”

- <s>+zs(1 PS4+ (e ) (PE) (4.9)
1#9
where
P(*-J) (‘)(P(J))_l, (4.10)

The matrix Pg},’j), being the product of two permutation matrices, is
also a permutation matrix. The output block ) is then passed to a
conventional DCSK demodulator for decoding. In the last line of (4.9),
the first term s} is the desired DCSK signal for User 7, while all the other
terms are either noise or interference generated by other users. While the
expected effect of white noise is independent of any permutation applied
on the noise samples, the co-channel interference can be minimized by
the choice of permutations.

To ensure that the co-channel interference is kept to a low level, the
(A+ B)th (A =1,2,...,0) element in s(i)Péj;j) (i % §) should not be
equal to the Ath element or its negation. To achieve this, we first define

R as a random permutation matrix of size 3x 3 and Ag as the “shifting”
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matrix of size 8 x 3 where

0 1 0 0
0 0 1
Ag=1: . . 0| (4.11)
0 . e e
\1 o --- 0 0}
Note that the consequence of multiplying Ag to an array (z, zo ... zp)

1s equivalent to shifting the elements in the array to the right by one
place with the overflown element being re-inserted from the left. In other

words,

(z1 zo ... zp)Ap=(zg 71 2:2 co. Zp) (4.12)
Next we define

Qg) — Ry A}, (4.13)

and the permutation matrix for User ¢ can be chosen“as

. {Iﬁ 03
PS) =

\ Os QY

/Iﬁ 0g

- (4.14)
0s RpAj

where Iz and 0g are the identity matrix and zero matrix, respectively, of

size § x 3. The permutation matrix Pgéj) in (4.10) can now be re-written
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Py = . (4.15)
05 RpA5 Ry

It can be readily shown that the diagonal elements of RﬂA;;j REI are all
zeros when ¢ # j. Thus, the non-zero elements in the Ath (A = 1,2,..., )
“and (A 4 S)th rows in Pg‘gj ) will not differ by 8 columns, and a low co-

channel interference is achieved.

4.3 Security in Frequency Spectrum

In this section, we try to analyse the frequency spectra of a 10-bit signal
sample for both the DCSK and the P-DCSK systems. Figure 4.2 plots
the magnitude of the spectrum of DCSK signal. It can be seen that no
useful information can be retrieved. Next, we square the DCSK signal
sample and plot the magnitude spectrum again. From Figure 4.3, it
can be observed that the spectral value goes to zei-t) at odd multiple
frequencies of the bit rate. When the DCSK signal sample is squared,
the resultant signals in the information-bearing slots become identical to
their corresponding reference slots. Thus, no frequency component at
odd multiples of the bit rate exists. This phenomenon is not desirable
because any unintended receiver can retrieve the bit rate of the system.

The frequency spectra of the P-DCSK signal sample and the square
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Figure 4.2: Magnitude of frequency components versus normalized bit

frequency for a conventional DCSK signal sample.
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Figure 4.4: Magnitude of frequency components versus normalized bit

frequency for a permutation-based DCSK signal sample.

of the sample are plotted in Figure 4.4 and Figure 4.5, respectively. It
can be seen that in both cases no bit rate informaticgl can be retrieved
from the spectrum.

For the intended receiver, with complete knowledge of the permu-
tation matrix, demodulation can be accomplished easily as in DCSK
systems. Hence we conclude that, when the DCSK system is replaced by
the P-DCSK system, data security is enhanced, while the system perfor-

mance is not affected.
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4.4 System Performance

In this section, the performance of the proposed permutation-based multiple-
access DCSK digital communication system is studied by computer sim-
ulations. We assume that the map T3(z) in (1.3), also called the cubic
map, is used by all users to generate the chaotic sequences, each with

a different initial condition. The system performance of the P-DCSK

systemn is illustrated in Figure 4.6 and Figure 4.7.
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4.5 Derivation of Bit Error Rate with Gaus-

sian Approximation

In this section, we derive the analytical bit error rate of the proposed
permutation-based multiple-access DCSK system. First of all, it can be
shown that the inverse of a permutation matrix is equal to its transpose.
Let us consider, for one bit duration, the received signal block of the jth
user. When this block undergoes the inverse transformation, the output

block is obtained by expanding (4.9), i.e.,
P = (@) D))

N N
+ Z @ Z o) Ry A} RE;
i=1

it :;;
+ (¥ A7 RY). , (4.16)

When r¢) is sent to the conventional DCSK demodulator of the jth user,
the output of the correlator at the end of the bit duration, denoted by
y¥), can be computed by éorrelating the first half, the i*;éference part, and
.the second half, the data part, of the incoming signal. So y¥), the input

to the threshold detector at the end of this symbol duration, is given by

N
y9 = oD@ + 3 oz R, ASRT (2T

i=]

7]
N N N L )
+ i) Z O (zT 4 Z Z a(iJm(")RﬂAJﬁ_‘Rg(a:(‘))T
i=1 n=11i=1
] n#EJ iFj

b S ORAT + 3 W R AT REO)

i=1 i=]
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+ WoR AT

= (J)(m(.?) + Za(t) (J)( (11))

i=]
i#j
N N N
+ oY 2@ £ T3 oWzt (26T
i= n=] i=1
i#j n#j ifj
+ zm q,(:) + Za(‘)‘l’o (J))
i= i=1
+ @o(é(ﬂ) (4.17)
where
260 = () ) My — g R, ALY RE (4.18)
oV = (47 ¢ - #))=wAR]. (4.19)

Note that the elements in 27 and U are permutations of the elements
in £ and ¥, respectively.

Without loss of generality, from here we suppose “+1" is transmitted
for User j, i.e., &) = +1. Then, (4.17) becomes

y{j) = i)

requlred signal

+ ZamVU”) + ZU(IJ) + z Za(t)v(ﬂt;r)

n=1i=1
j#J 1#1 n#j i#j )
c&channelTnterference
1\{
+ 3 WD 4 X0 4 3 o) X 6D 4y ) (4.20)
i=1 =1
i )
where
U = g = Z w2 (4.21)
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8 g
Vi) = g (T o 3 gl 009) (4.22)

k=1
B
W) = 8@ = 3 7 (4.23)
k=1
N B
X("J) _ tJ) Z€ z(l"’) (4.24)
=]
' ﬁ
YO = (@97 Zg o, (4.25)

=1

Notice that the input to the detector consists of three components, namely
required signal, co-channel interference and noise. The mean value of 3%

is given by

N N
Ely"] = E[UU)] + Za(")E[VU'*h"’] + Y E[6a)]

i=1 =1
i§ i#]
N N I3 o N o .o
+ Z Za(‘)E[V(""*’)] + ZE[W(M)] + E[X(:,;)]
n=1i=| i=l1
n#j izkj
N . . . s
+ Za("E[X“J)] + E[Y9)
=1
iE
. . N B PR
= E[UY)] 4+ Za(‘)E[V(J:‘,J)]
i=1
i#j
+ ZE[U(‘J)] + Z Za(‘)E[V(“ ) (4.26)
n=1i=1
1#3 n#j i#Ey

where E[] denotes the mean value of 9. The last equality holds because

E[¢,] and E[${'] are both zero. The variance of ¥ is found from [44]

var[y¥)] = Zvar[U{”)] + ZZvar[V mid] 4 va[W(“)]

n=11i=I

i#j
var[X(9] + var[y¥)]

Mz

+
1

,.
il

+

™

> cov[C, D] (4.27)
D

C#D

hiNs!
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where C,D € {UG) (3 = 1,...,N); VW) (n = 1,... ,N;i =
L., i—Lj4+1,...,N);, W&) (i = 1,...,N); XU, o X0 (§ =
L...,j = 1,5 +1,...,N); YO} var[iy] denotes the variance of ¢, and

cov[C, D] represents the covariance of C and D defined as
cov|C, D] = E[CD] - E[C]E[D]. (4.28)
As discussed before, we assume that .a,ll users use the cubic map
Trr1 = g(xy) = 433 — 3zx (4.29)

to generate the chaotic sequences, each with a different initial condition.

With this map, we obtain

E[zs] = 0 (4.30)
E[zi] = 05 (4.31)
var[ri] = 0.125 (4.32)

according to the probability density function of cubic map orbits, as

stated earlier in (2.1). Also, it can be readily shown that

| {6Ehﬂ ifi=j
EU&)]) = (4.33)

0 otherwise
E[Vmad] = 0. (4.34)

Furthermore, the variances of the terms in (4.21) to (4.25) are given by
Bvar[z}] ifi=j

var[U9)] = { (4.35)

BE%zi] otherwise
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BE?[z}] fori#jis#n
var[V™9)] = . (4.36)
Jﬁﬁ_—lE?[srﬁ] ~ fE*[z}] fori#j,i=n
var[W®)] = BN,E[z}]/2 (4.37)
var[X("'”] = BN.E[z}]/2 (4.38)
var[YY)] = ANZ/4 (4.39)

and the covariance terms in (4.27) can be shown to be zero. Thus, (4.26)

and (4.27) can be simplified to

Ely")] = PE[}] (4.40)
varly)] = Bvarfel] + (N - )BE*(af] + (V? — N)BE?[z]
+ NBNoE[xi)/2 + NBNoE[z2] /2 + BN /4
= Pvar[zi] + (N? — 1)BE*[z}]

+ NBN,E[zi] + BNE/4. (4.41)

Since %' is the sum of a large number of random variables, we may
assume that it is approximately normal !. This assumption holds better
for larger spreading factors. In the detection of the symbol, an error

occurs if y¥) < 0 when oV} = +1 or y? > 0 when o) = —1. As it can

be shown that

Prob(y!? < 0|(a" = +1)) = Prob(y!? > 0|(a) = —1}),  (4.42)

IThe actual prohability distributions of these random variables are discussed

in [45].
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the bit error rate (BER) for User j can be computed from

BERY = Prob(y") < 0](cl? = +1))

_ 1 (B9 = +1)
) Qefc(J?var[y(f>r(aw=+1)l) -

where the complementary error function (8], erfc(v)), is defined as

erfe(v)) = -% f:’ e dA. (4.44)

Next we expand C

E[y(j)|(a(-'f‘) = +1)]
J2varly®] (o) = +1)

BE(z]
V2(Bvarlz}] + (N? — 1)BE?[af] + NBNoE[a}] + ANG/4)

- [ (B) e (BY]

where F, represents the average bit energy and 2 is a constant for the

given chaotic sequence. They are given by

E, = 2BE[z}] (4.46)
var[zZ] B
0 S (4.47)

Note that Q2 is constant for a given chaotic sequence, regardless of the
presence of any scaling factor of the sequence. This can be illustrated as
follows. Suppose the chaotic sequence {:nk} is multiplied by the factor v
before transmission and the average.power of the signal is changed by v?
times, the value of £2 remains ﬁnchanged, Le.,

0= var{(vey)’]  varlv®zf]  vivar[z}]  var[z]

T B(van)?) | ERxE] | LAEYz?] | ERjal (4.48)
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Figure 4.8: Simulated and analytical BERs of multiple access DCSK

sfstems. Spreading factor 20 = 200 and N = 3.

Finally, by putting (4.45) into (4.43), we obtain the analytical BER
for the P-DCSK system. This analytical BER is an fzpproxima,tion ob-
tained by modeling the random variables as Gaussian, and the results
is acceptable only when the spreading factor of system is large encugh.
Figure 4.8 shows that, when the spreading factor is 200, the analytical
BER agrees well with the simulation results. Also, in the simulations it
is observed that the P-DCSK system achieves similar performance to the ‘

MA-DCSK system of [37].
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Chapter 5

An M-ary Chaos-Based

Communication System

5.1 Introduction

In this chapter an M-ary chaos-based communication system is proposed.
To better utilize the large bandwidth occupied by the wideband chaotic
signals, we transmit M-ary symbols instead of binary ;nes. The ordinary
approach is to install M chaos generators at the transmitter to gener-
ate signals representing the M symbols. According to whether these
chaotic signals can be reproduced at the receiver, coherent and nonco-
herent detections can be employed to decode the received signal. The

main drawback of such an M-ary system is that the number of chaos

generators increases with the symbol number M, which in turn increases
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" Generator F; Circuit

Mth detector

Digital information 1 Digital symbol received

Figure 5.1: Block diagram of the coherent M-ary chaos-based communi-

cation system.

the complexity of the modulator and demodulator.

In this chapter, an M-ary transmission scheme which employs only
one chaos genérator is presented. In the scheme ‘each block of chaotic
samples undergoes a transformation process before it is transmitted. The
transformation uséd for each symbo.l is different, thus allowing the sym-
bol to be distinguished in the receiver which uses the appropriate inverse
transformations.for decoding the symbols. In our study, the set of trans-
formations used are based on simple permutations stmilar to the ones

described in the previous chapter. In the next two sections, a coherent

scheme and a noncoherent scheme will be discussed respectively.

5.2 Description of the Coherent System

Figure 5.1 shows the block diagram of the coherent M-ary chaos commu-

nication system. On the transmitting side, each signal block produced by
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the chaos generator undergoes a certain reversible transformation. Each
symbol corresponds to a different transformation. Based on the incoming
block, the receiver attempts to determine .the most probable transforma-
tion that has been used in the transmitter and then decodes the symbol.
A synchronization signal, shown as the dashed line in the diagram, is
normally required fc;r coherent detection.

Assume that the chaotic signal generated at the transmitter can be
reproduced exactly at the receiver. Let the integer B be the spreading
factor, defined as the number of chaotic samples sent for each M-ary
symbol. Now let the chaos generator output be denoted by z; at time
k. During the first symbol duration, ie., for time & = 1,2,...,8, the

output block from the generator, denoted by x, is given by
= (x T3 - zp). (5.1)

This block will undergo a transformation before it is transmitted. The
transformation is a permutation similar to those described in the previous
chapter. For instance, to send the digital symbol 7 € {1,2,---, M}, the
block of chaotic samples first undergoes a transformation F;, which gives

a transformed block u, t.e.,

u = Ffzx)
= :I:Qg) (5.2)

where Qg) Is a permutation matrix as defined earlier in (4.13). The
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Figure 5.2: Block diagram of the jth detector in the coherent M-ary

chaos-based communication system.

permutation performed ensures that the signa.ls' produced for different
symbols have low correlations. Assuming an AWGN channel, the signal

block collected by the receiver is
v=u+ ¥ (5-3)

where ¥, is a sample noise vector as defined in (4.8). The job of the
receiver now is to determine the received symbol frorri;the received block
v. As shown in Figure 5.1, the received block v is sent to M detectors
in parallel. Based on the detectors’ outputs, the decision circuit deter-
mines the received symbol. Figure 5.2 shows the block diagram of the
jth detector, which consists of an inverse transformation process and a

correlator. The output of the inverse transformation is

L} R Fj‘l(v)
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v(@g)
= 2QP(QF) ™" + To(QF) . (5.4)

The second part of the detector then calculates the correlation between
U} and z. Denoting the transpose of by =7, the output of the jth

detector, 4\, is given by

y 9 = g

= 2QP(QF) 12" + (@)=

zxT + ‘I’o(Qg))_I:BT when j =i

= (5.5)

:BQ("’) T+o (Qm) 127 when j #1
where Qg’j) = Qg)(Qg))‘l. As discussed in the last chapter, the con-
struction of Qg‘j) ensures low correlation between ang’j } and T, given
that the elements of = can be assumed uncorrelated. Thus the correla-

tor output y¥) in (5.5) for the case j = i should be the largest and the

symbol received can be decoded accordingly by the decision circuit.

5.3 Description of the Noncoherent Sys-

tem

Chaos synchronization is difficult to achieve when the channel has poor
propagation condition. In such a case, a noncoherent scheme is pre-

ferred. The working principle of the noncoherent version of the M-ary
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Figure 5.3: Block diagram of the noncoherent M-ary chaos-based com-

munication system.

chaos communication system is similar to that used in the noncoherent
DCSK system, in which the reference signal and the information-bearing
signal are sent consecutively during a symbol duration. In our M-ary
system, the reference signal block is a set of chaotic samples, while the
information-bearing block is a permutation of the chaotic samples in the
referenée signal. Permutations are performed in exactly the same way
as that of the coherent system described in the previpus section. The
decoding process is also the same, except that the reference block is used
instead of the synchronized chaotic signal in the correlators.

For convenience, we denote the spreading factor by 20 in the nonco-
herent system. The block diagram of the noncoherent system is depicted
in Figure 5.3. Using the same notations as in the previous section, the

chaos generator generates a block of chaotic samples x, which is used
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Figure 5.4: Block diagram of the jth detector in the noncoherent M-ary

chaos-based communication system.

as the reference here. The sender then generates an information-bearing
block by applying a transformation to the reference block according to
the symbol being transmitted. Both the reference and the information-
bearing blocks are sent to the channel, each occupying half of the symbol
du;"ation. Now suppose we are transmitting symbol . The whole signal
block sent to the channel during one symbol duration, denoted by s, is

given by

8 = (z Ffz))

= (z zQY). (5.6)
This time the received block v is

v = 3+(‘I’D ‘I’l)

= (z+ % QY + @) (5.7)

In the receiver, as shown in Figure 5.4, the jth detector performs an
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inverse transformation on the information-bearing part of the received

signal. The output block of the inverse transformation, denoted by rU)

is given by

) = FY2QY + @)
- Q@)+ w@Y)
= 2Qp? + Wi(QF) (5.8)
where Qg’j) = QS)(Qg))"l. Finally, the detector output %) is the
correlation between ) and the reference part of the received block,

that is,
YO = p0(a+ )T
— ng.J’)mT+ngJ)‘I,g"+‘I,1(Qg))—1mT
+,(QY) 1] (5.9)

From (5.9) it can be seen that the value of y¥) is small when j # ¢, and

is large when § = i. The decision circuit can then identify the symbol

according to this.

5.4 System Performance

In this section we study the performance of the proposed M-ary system
by computer simulations. The map T5(z) in (1.3) is used to generate the

chaotic samples. Denoting the number of chaotic samples transmitted for
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one bit and the variance of the chaotic samples by v and o2, respectively,
the average bit energy (E,) can be shown equal to yo?2. Also, the spread-
ing factor of one symbol equals ylog, M. In our case, the spreading
factor is 8 and 28 in the coherent and noncoherent system, respectively.
Thus Ey can be adjusted in terms of g,, 8 and M. System performance is
shown by plotting the bit error rate (BER} against the average-bit-energy
to noise-power-spectral-density ratio (E,/Ny). For M-ary systems, the
symbols are converted back to binary bits when measuring the BER.
We compare the performances of our M-ary systems for different
values of M. For a fair comparison, we keep the number of chaotic
samples used per bit to be identical in all cases, and we set v = 40.
Figures 5.5 and 5.6 show the simulation results for the coherent and
noncoherent M-ary systems, respectively. As would be expected, the
performance of the coherent system is superior to that of the noncoherent
system. From the figures it can be observed that the pgrformance of the
M-ary system improves as M increases from 2 to 128. This shows that
the use of an M-ary communication scheme can enhance the utilization
of the channel. In Figure 5.7, the coherent system with M = 128 is
compared with the conventional coherent M-ary FSK system [8] with
the same M. We find that their performances are quite similar, with
the M-ary FSK system slightly better. This is because in FSK systems

orthogonal carriers are used to represent the digital symbols, while the
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based communication systems.

chaotic signal blocks used in the M-ary chaos communication system are

only nearly orthogonal when the spreading factor is large enough.
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Chapter 6

Conclusions

In this thesis, we have discussed a fe;av methods for detecting a chaotic
attractor by observing its orbit as a signal. Among the orbit characteris-
tics that could be used for identifying the chaotic dynamics behind, the
return map seems to be mére robust than the others in the presence of
noise. It provides reasonable performance as a demodulation method for
noncoherent CSK. In fact, the return map method is expected to be bet-
ter because it makes use of the complete information about the dynamical
systems that generate the signals. If the initial conditions of the dynami-
cal systems are also known, coherent detection can be achieved. Without
the initial conditions, the complete knowledge of the dynamics offers the
second best solution, in the sqenario of noncoherent CSK. Optimal de-

tection can he achieved by the maximum likelihood approach expressed

in (2.4). Unfortunately, practical implementations of this method are
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still to be improved. Due to the sensitivity of the chaotic dynamics to
the initial condition, the required step size in the numerical integration
in (2.4) is unreasonably small. Therefore, the quest for better and more
practical algorithms is still under way.

One major achievement of this thesis is the improvement of DCSK
system security with the use of permutations. In this aspect, it is clear
that the probability of detection by unintended listeners is lowered, but
we have not inspected the system security against attackers with certain
knowledge about the system. Analysis of such attacks is required before
we can claim that the system is secure.- Also, this improvement of se-
curity increases the difficulty for the intended demodulator to maintain
signal block synchronization with the modulator. Further research may
be. conducted in this direction.

With the use of permutations, two approaches for immproving the uti-
lization of channel in chaos communication are preserited in this thesis.
In both the multiple access P-DCSK system and the AM-ary communica-
tion system, strict orthogonality is not achieved for the concerned signals.
System performances are thus affected, especially in the multiple access
P-DCSK system, in which the BER. increases rapidly with the number of
users. The generation of orthogonal chaotic signals may be an important
task in future research.

In this thesis, a channel of AWGN is always assumed in the systemn
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models. Other types of channel defects such as multipath fading can be

investigated in the future.
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