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ABSTRACT

The study presented in this thesis concerns linear and nonlinear vibration
analyses and condition assessments of cables in cable-supported bridges.

The linear vibration of large-diameter sagged structural cables is first
investigated in this thesis. A three-node curved isoparametric finite element is
formulated for dynamic analysis of bridge stay cables by regarding the cable as a
combination of an ‘ideal cable element’ and a fictitious curved beam element in the
variational sense. The three-dimensional finite element formulation is suited for both
suspended and inclined cables and allows for the consideration of cable flexural
rigidity, sag-extensibility, spatial variability of dynamic tension, boundary
conditions, lumped masses and intermediate spring and/or intermediate dampers. A
case study is eventually provided to compare the measured and computed
frequencies of cables in a real bridge. The results show that ignoring bending
stiffness gives rise to relative errors of 30% in predicting the natural frequencies of
the 19th mode. Another case study reveals stiffness effects of attached dampers on
the cable frequencies. The proposed finite element formulation provides a good base
line model for accurate identification of cable tension force and other parameters
based on measurement of multimode frequencies. Parametric studies are conducted
to evaluate the relationship between the modal properties and cable parameters lying
in a wide range covering most of the cables in existing cable-supported bridges, and
the effect of cable bending stiffness and sag on natural frequencies.

The study is then extended to nonlinear oscillation of cables. A hybrid finite
element/incremental harmonic balance method is developed for analysis of nonlinear

periodically forced vibration of inclined cables with arbitrary sag. The proposed



method is an accurate algorithm in the sense that it accommodates multi-harmonic
components and no mode-based model reduction is made in the solution process.
Both the frequency- and amplitude-controlled algorithms are formulated and are
alternatively implemented to obtain complete frequency-response curves including
both stable and unstable solutions. The proposed method is also capable of analyzing
both super- and sub- harmonic resonances and internal resonances. Case study of
applying the proposed method to nonlinear dynamic behaviour analysis of the Tsing
Ma Bridge cables is demonstrated. The analysis results show that the side-span free
cables of the bridge display distinctly different nonlinear characteristics in the
construction and final stages. The super-harmonic and internal resonance
characteristics of a viscously damped cable with nearly commensurable natural
frequencies are investigated. A suspended cable paradigm under internal resonance
condition is studied to demonstrate the capability of the proposed method in
analyzing modal coupling and internal resonances. Nonlinear response and modal
interaction characteristics of the cable at different frequency regions are identified
from analysis of response profiles and harmonic component features. The super-
harmonic and intemal resonance responses are respectively characterized based on
the harmonic distribution. Under an in-plane harmonic excitation, the two-to-one
internal resonance between the in-plane and out-of-plane modes and the super-
harmonic resonance around the second symmetric in-plane mode are revealed.
Strong nonlinear interaction among different modes in the parameter space ranging
from primary resonance to super-harmonic resonance is observed. Spatial-temporal
response profiles and numerical harmonic components at different parameter ranges

are presented to highlight the plentiful nonlinear response behaviours of the cable.



Finally, parameter estimation of structural cables is investigated by employing
both local and global optimization tools. As an analytical method, the local
optimization tools are used to investigate the effects of selection of parameter and
weight on the estimation of parameters. Both single- and multiple-parameter
estimation procedures are studied. It is noticed in the numerical simulation that
single-parameter estimation procedures cannot eliminate the trend in errors between
the measured and analytical frequencies. Hence, no prominent procedures or
parameters are found. The best estimation is given the multiple-parameter estimation
procedures. Methods for cable tension identification are also discussed. Two global
optimization tools, i.e the exhaust search and the genetic algorithm (GA) are adopted
to discuss further problems in cable parameter estimation. Simulation studies are
conducted to show the characteristics of the cost function surfaces under different
conditions and to obtain the statistical properties of the cable parameters through the
Monte Carlo method. Field vibration data from three real bridges are used to evaluate
the condition of corresponding cables. The effects of quantity of modal frequencies
and the noise levels on the solution uniqueness and distributions of multiple solutions
are investigated. The correlation between the errors of different parameters is

obtained through calculating the correlation coefficients.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Advances in modern construction technology have resulted in the increasing
application of large-diameter and long-span structural cables in cable-supported
bridges. As a result of carrying both road and rail traffic, the Tsing Ma Bridge in Hong
Kong, a suspension bridge with a main span of 1377 m, has the most heavily loaded
cables in the world. The main cable section of the bridge is approximately 1.1 m in
diameter after compacting. The Akashi Kaikyo Bridge in Japan, which is the world ’s
longest suspension bridge with a main span of 1991 m, also has a main cable section of
approximately 1.1 m diameter. The effect of bending stiffness in these large-diameter
bridge cables is not negligible. With the Tatara Bridge being a landmark, the
construction of cable-stayed bridges is now entering a new era, with main spans
reaching 1000 m. The Stonecutters Bridge, currently under design in Hong Kong, is a
cable-stayed bridge with a main span of 1018 m. The Tatara Bridge with an 890 m
main span, is the longest existing cable-stayed bridge in the world, and its longest stay
cables are approximately 460 m in length. A recent design trend for this bridge type is
the multi-span cabie-stayed bridge with three or more towers. A critical problem of

multi-span cable-stayed bridges is the stabilization of the central tower(s), which has
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resulted in increasing application of extremely long stabilizing cables. For example,
the three-tower Ting Kau Bridge in Hong Kong utilizes eight longitudinal stabilizing
cables of 465 m for strengthening the slender central tower. These long stay cables
exhibit considerably large sags, and consequently, the effect of sag—extensibility on

the cable static and dynamic characteristics is noticeable.

During the construction and service life of a cable-supported bridge, it is
extremely important to accurately define the cable forces, whose changes from
degradation or other factors affect internal force distribution in the deck and towers
and influence bridge alignment. As a result, considerable attention is focused on
understanding the dynamic response of stay cables in cable-supported bridges to
evaluate the as-built tension or possible damage, validate the wind-tunnel models of
the stay cables developed from design drawings and update the numerical models.
Local cable vibration is usually considered separately from the motion of the whole

bridge.

The existing cable theory was developed based on the assumption that the
cable is perfectly flexible so that it is only capable of developing uniform normal stress
over the cross-sectional area. This means that there is no bending resistance. For large
diameter bridge cables, however, the bending resistance is not negligible. In order to
accurately evaluate the dynamics of this kind of cable, a new analysis methodology for

cables accounting for bending stiffhess should be developed.

Evaluation of tension forces in bridge cables by measuring modal properties is
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a fast and convenient non-destructive technique. This technique is at present
implemented by the use of free-vibration theory of straight string. Following this
theory, the natural frequencies of a cable are only dependent on the tension force, and
are independent of cable cross-sectional area and bending moment. As a result, the
tension force can be estimated from the measured fundamental natural frequency by
using an explicit expression. Nevertheless, it has been reported that cable tension
estimation using this method alone may deviate dramatically from the actual value
when the cable parameters are not accurate enough. Evidently, this theoretical
background cannot provide an accurate estimation of the tension forces for large
diameter cables, sag and complex boundary conditions. For these kinds of cables, the
tension forces can be accurately evaluated from measured modal data only when the
bending stiffness, sag-extensibility and support constraints are accounted for.
However, when there are several parameters to be determined, a nonlinear parametric

identification procedure should be used for this purpose.

The condition of cables is crucial to the serviceability of cable-supported
bridges. The tension forces in stay cables are an excellent indicator of overall
structural health for cable-stayed bridges. When the tension forces of all cables are
measured over time, a picture of how the load is redistributed in the stay cables can be
drawn. Furthermore, the internal force redistribution in the deck and towers can be
evaluated with the aid of the entire bridge finite element model. Wire corrosion and
fatigue fracture of stay cables has occurred in a number of cable-stayed bridges. Cable

deterioration has two modes: loss of metallic cross-sectional area producing external
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and internal abrasion and corrosion, and localized faults such as broken wires, kinks,
etc. Using the linear string theory, the reduction in cable cross-sectional area is
unidentifiable from the measured modal data. Following the approach proposed in this
thesis, however, it is possible to using the dynamic approach to identify the cable
damage appearing as reduction in cross-sectional area, which consequently reduces

the cable flexural rigidity.

1.2 OBJECTIVES

This thesis is devoted to studying the forward and inverse dynamics of bridge
cables with large diameter, sag and complex boundary conditions. The main

objectives of this research are:

(1) To develop a dynamic analysis methodology for stay cables accounting for
flexural rigidity, torsional stiffness, sag effect, geometric nonlinearity and different

boundary conditions.

The variational principle and finite element formulation will be established for
arbitrary cables with various geometrical, material and mechanical properties. The
nonlinear response analysis will be completed by the combined use of the finite
element (FE) procedure and the incremental harmonic balance (IHB) technique. The
corresponding finite element program will be developed and provide a tool for
accurate evaluation of natural frequencies, mode shapes and dynamic response of

structural cables.
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With the program developed, non-dimensional analysis and sensitivity
computation will be performed for the modal parameters of structural cables used in
cable-supported bridges. Owing to the flexibility of the finite element method, the
proposed method can deal with complex situations such as any discrete dampers or tie
cables connected to stay cables. The proposed method also has a potential use for
analyzing large-amplitude oscillation such as parametrically excited oscillation and

internal resonance reported to happen on stay cable in cable-supported bridges.

(2) To develop a vibration-based identification procedure to evaluate cable

tension and other geometric and material parameters.

Cables are different from other members in civil engineering structures due to
their high flexibility. In fact, cables are the most flexible members even in a flexible
structure like a cable-supported bridge and are characterized with very low
fundamental frequencies. Cables can, therefore, be excited in oscillation with
relatively higher order modes, which is of great importance for system identification,

under either ambient or artificial excitation.

Since the bending stiffness is taken into account in the FE model of the cable, it
is possible to use higher order modal information for the system identification of cable
parameters. The use of multi-mode frequencies makes it possible to establish a
multi-parameter identification approach and makes the identified results more reliable.
System parameters to be considered in this study include the material properties,

geometrical properties and boundary conditions.
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Both the gradient optimization algorithm and the genetic algorithm (GA) will
be introduced to identify cable parameters. The gradient optimization algorithm is
efficient when an initial guess on cable parameters is close to the real parameters, as in
the circumstances of newly constructed bridges. However, when considering old
bridges, an initial guess near the real cable parameters may not be available, and the
genetic algorithm is a preferable one. This method is expected to match the need for an
accurate technique in cable condition assessment for cable-supported bridges, as has
become greatly imperative when the conventional method failed to find out actual

cable tension forces through field tests.

(3) To apply the aforementioned methodology for cable parameter

identification in both numerical simulation and real application.

Numerical simulations are deployed to show the characteristics of the cost
function surfaces and to obtain the statistical properties and relationships of, and
between, cable parameters. Field tests are carried out to collect the cable vibration data.
The modal frequencies of the cable will be extracted from the collected vibration
signals and be used for identifying the cable parameters. Case studies are carried out
for cables of average size, cables with an extremely large diameter, and cables with an
extremely long length. The cables from the Dongting Lake Bridge, Changsha, China,
and both the Tsing Ma Bridge and Ting Kau Bridge in Hong Kong, China, will be

investigated.

(4) To study some advanced problems in cable vibration.
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As the geometric nonlinearity of a cable will, of course, affect the cable
vibration and consequently influence the results of identification using the above
methods, which are based on the linear dynamics, the nonlinear vibration of cables
under different configurations will be studied to understand the effects of nonlinearity
on the dynamic response. The super-harmonic, sub-harmonic and internal resonances,
which are believed to be possible candidate mechanisms for the wind-rain-induced

vibration in cable-stayed bridges, will also be investigated.

1.3 ORIGINALITIES

Original aspects of the present study include the following:

(1) A general model for the dynamic analysis of large-diameter sagged cables
is developed. This model is capable of taking into account initial cable tension,
flexural rigidity, accurate cable profile (sag effects and inclination), cable extensibility,
intermediate, accurate dynamic cable tension, dampers and supports and different
boundary conditions and is parameter-identification-oriented. To the author’s
knowledge, a model that can deal with all the above important points was not yet
available before this study. For example, Mehrabi and Tabatabai (1998) derived a
unified finite difference formulation for free vibration of cables but subject to the
following assumptions: (i) the cable dynamic tension keep constant along the cable
length, which was originally suggested by Irvine (1981); (ii) the cable has supports at

the same level; (iii) the axial, transverse in-plane and out-of-plane vibration modes are



uncoupled. The model by Henghold and Russell (1976) considered the geometric
nonlinearity but did not account for the effects of flexural rigidity. This model is a
general one in the sense that it was not restricted to an element type with specified
node number. However, as the contribution of static cable tension is not explicitly

expressed, this model could not be directly used for cable parameter identification.

(2) The present study develops a combined incremental harmonic balance
(THB) and finite element method for cable nonlinear oscillation analysis. This method
can provide accurate temporal and spatial description for the steady-state oscillation of
cables under periodic excitation whereas existing models in literature, based on the
perturbation method, have to use a model with only very limited degrees of freedom

(one to, up to date, four), which greatly restricts real application.

(3) The present study proposes a new identification method of using
multi-mode frequencies for accurate estimation of cable parameters. Existing methods
for vibration-based cable tension use only one frequency as input. The use of
multiple-frequencies can greatly improve the accuracy and reliability of identified

cable parameters.

(4) Both local and global optimization tools are used in this study to identify
cable parameters. The global optimization method may avoid being captured by a
local optimal solution. When a cable with little knowledge of its original values or

design parameters is under study, a global optimization tool is the only option for

obtaining a good solution.
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(5) The present study investigates the effects of uncertainty in measurement

on the accuracy of cable parameter estimation.

1.4 THESIS LAYOUT

The contents of this thesis are divided into eight Chapters.

Chapter One introduces the motivation for the present research and makes

clear the objectives to be pursued in this PhD project.

Chapter Two contains a literature review, which covers five relatively
independent subjects. These subjects include cable vibration in cable-supported
bridges, cable tension measurements, dynamics of sagged cables, local and global
optimization tools, and, vibration-based model updating procedures, with reasonable
overlaps amongst them. Cable dynamics of cable-stayed bridges is reviewed in order
to learn what kinds of cable vibration may exist in practical sagged structural cables. A
survey of measurement methods for cable tension estimation used in modemn
cable-stayed bridges is then carried out and the problems encountered from previous
research on this topic is discussed. Both linear and nonlinear dynamic theories of
sagged cables are then reviewed to provide a theoretical background for further study
on linear and nonlinear vibrations of cables. The finite element (FE) methods for cable
structures are then briefly reviewed for the purpose of selecting or creating an element
suitable for cable vibration analysis. Both local and global optimization methods are

surveyed in order to select the most suitable one for the problem concerned. The
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existing frequency-based model updating procedures are then investigated to make
perceptions about state-of-art technology and find out clues for the parameter

identification of stay cables.

Chapter Three introduces a combined model developed for three-dimensional
free and forced linear vibration of sagged cables with large diameter and provides
numerical examples to validate the model. With the developed finite element
formulation, parametric studies are conducted to evaluate the relationship between the
modal properties and cable parameters lying in a wide range covering most of the
cables in existing cable-supported bridges. A case study is provided to compare the

measured and calculated frequencies of the main cables of the Tsing Ma Bridge.

Chapter Four explores the nonlinear behaviour of structural cables under
different configurations, corresponding to different construction stages in the erection
of cable-supported bridges. The incremental harmonic balance (IHB) method and the
nonlinear finite element method are combined together to solve the nonlinear vibration

problem of the cables.

Chapter Five discusses an important phenomenon, the internal resonance, in
nonlinear vibration of stay cables. Both super-harmonic and internal resonances of a
suspended cable are investigated. The evolution within between the two kinds of
resonances is clearly revealed, as may be the potential mechanism of the

wind-rain-induced vibration occurring on stay cables in cable-stayed bridges.

1-10



Chapter Six describes the parameter estimation of structural cables based on
frequency measurements. After defining the cost function constructed with the errors
between the measured and calculated frequencies, the cable parameters are identified
with a gradient-based optimization method. Both single- and multiple-mode based
procedures are used to identify the cable tension. The method is also capable of
making a multiple-parameter-estimation, in which all important cable parameters are

identified simultaneously with the estimation of the cable tension.

Chapter Seven extends the investigation completed in Chapter Six. In this
Chapter, the genetic algorithm (GA), as a global optimization method, is used to make
multiple-parameter estimation. The genetic algorithm eschews the unrealistic
requirement that a ‘smart’ guess on the initial solution, based on a local optimization
algorithm, which is generally gradient-based, starts. The characteristics of the cost
function surfaces and the statistical properties of identified cable parameters are
investigated by the combined use of the Monte Carlo method and the genetic

algorithm.

Chapter Eight summarizes the main conclusions obtained in this thesis from
both the study of linear and nonlinear analysis of the cable vibration, and both the local

and global parameter identification of the cables.
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CHAPTER 2

LITERATURE REVIEW

2.1 CABLE VIBRATION IN CABLE-SUPPORTED

BRIDGES

Structural cables are one of the most important members in cable-supported
bridges. However, due to their extremely low internal damping and great flexibility,
cables are susceptible to large amplitude vibrations under various types of excitations,
such as wind-induced, wind-and-rain-induced, parametric-excited vibrations and
coupled vibration with other structural components. In fact, different types of cable
vibration have been reported to occur on cable-supported bridges worldwide. In this
section, the wind-induced, wind-and-rain-induced and parametric-excited vibrations

of cables are reviewed.
2.1.1 WIND-INDUCED VIBRATION

Cable vibrations can be excited by dynamic wind forces acting on the cable.
Such forces are caused by turbulence in the on-coming airflow (buffeting), vortex
shedding in the wake behind the cable, self-induction (galloping), fluid-elastic
interaction between neighboring cables (wake galloping) (Post-Tensioning Institute,

2000).



Forces due to buffeting or vortex shedding do not originate from the cable
motion, and therefore will not lead to aeroelastic instability but only to vibrations of
limited amplitude. These vibrations can occur at any wind speed. On the other hand,
the flow forces acting on the cable during self-excited vibrations are a function of the
motion the cable itself. The aeroelastic instability leads to large amplitude vibration.
These kinds of vibration start in a sudden fashion when the wind speed exceeds a

certain critical value (critical wind speed) (Post-Tensioning Institute, 2000).

Wake galloping usually occurs in multiple parallel stay cables used in long-
span cable-stayed bridges and induces the in-plane vibration of stay cables in the
vertical direction (Matsumoto et al. 1989; Miyata 1991; Ohashi 1991; Wardlaw
1991). During wake galloping, stay cables are excited by the windstream induced
from windward stay cables and the vibration usually occurs at the first mode. This
kind of vibration is reported to occur in numerous bridges worldwide including the
Longs Creek, the Papineau, the New Brunswick and the Fredericton Bridges in
Canada; the Hitsuishijima, the Tempozan, the Yobuko, the Yokohama Bay, the
Meiko Nishi and the Rokko Bridges in Japan; the Brotonne Bridge in France; the
Kdohlbrand Bridge in Germany; and the Sunshine Skyway Bridge in the United States
(Yu 1997).

Wake galloping is affected by wind speed, wind direction and distance
between the centers of two parallel cables and can be suppressed when the damping
capacity is great enough. Wake galloping occurs when the wind direction is between
0° to 45° from the transverse direction of the bridge axis. When the distance between
two cables is more than five times the cable diameter, wake galloping becomes very
weak. The reported vibration amplitude of cables in cable-stayed bridges due to wake

galloping varies from 0.2m to 0.5m peak to peak response. A logarithmic decrement

2-2



of 0.05 (or modal damping ratio of 0.8%) or more is believed to be large enough to
suppress wake galloping (Miyata 1991; Narita and Yokoyama 1991). The response
amplitude of cables in vortex shedding is relatively smaller than that in other types of

vibrations whereas the frequencies are relatively high.

Vortex shedding is caused by alternative vortexes behind a cable and excites
a cable when the frequencies of the cable and vortexes are equal (Woo et al. 1983;
Ohashi 1991). As far as the vortex-shedding phenomenon is concerned, it is well
known that it produces aerodynamic forces that originate in the wake behind the
structure and mainly act in the across-wind direction. The type of excitation on
circular cylinders is sensitive to the mass damping parameter, &m/oB?, where Eis
the critical damping ratio, m is mass per unit cable length, p is the air density and B
is the width of the cylinder. Beyond &m/pB? = 5 no motion will occur (Wardlaw
1991). Bridges with reported vortex shedding vibrations include the Higashi-Kobe

Bridge in Japan and the Wheeling Bridge in the United States.

2.1.2 WIND-RAIN-INDUCED VIBRATION

The so-called wind-rain-induced vibration (sometimes also referred to as
rain-induced vibration) refers to a special kind of cable vibration that occurs only on
rainy days with slight or moderate wind but ceases to occur under similar wind
excitation in dry conditions (Narita and Yokoyama 1991). Stay cables vibrate wildly
in the cable plane along the vertical direction when wind-rain-induced vibration
occurs. The maximum amplitude was reported to reach 0.6 m peak to peak response

in violent vibrations at the Aratsu Bridge (Yoshimura 1992).

Wind tunnel tests (Ohshima 1987; Hikami and Shiraishi 1986) indicate that

for different cable vibration modes this kind of vibration occurs in the same wind
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speed range. Based on the wind tunnel tests. it is believed that the water rivulets
formed on the upper or lower cable surface, which produce a periodic change of

cable cross section, may be the cause of the unstable cable oscillation.

Wind-rain-induced vibration is often observed in stay cables with a smooth
surface and a diameter between 120 mm to 200 mm when the bridge is located in flat
and open land. Increased vibration has been observed to occur when the cable

inclination coincides with wind direction and the wind direction has an angle of 30°

to 80° to the cable plane (Miyata 1991). Compared with other kinds of cable
vibration, relatively low frequency resonance is excited under the special wind-rain
condition. Wind-rain-vibration is believed to be suppressed by a logarithmic
decrement of 0.02 (or modal damping ratio of 0.32%) or above (Narita and

Yokoyama 1991).

The first observation of wind-rain-induced vibration was made at the Meiko
Nishi Bridge in Japan in 1984 (Hikami 1986). Similar observations have been
reported from the Aratsu, the Hitsuishi Jima, the Iwaguro Jima, and the Tenpozan
bridges in Japan (Narita and Yokoyama 1991; Yoshimura 1992); the Brotonne
Bridge in France; the Kohlbrand Bridge in Germany; the Sunshine Skyway Bridge in

the United States; and the Dongting Lake Bridge in China.

2.1.3 PARAMETRIC EXCITATION

In some cases, the large amplitude cable vibration observed cannot be
explained as a result of aerodynamic instability but is believed to be excited by the
motion of the bridge tower and/or the bridge deck (Yoshimura et al. 1989). When the

cable is excited harmonically by the anchorage, the cable tension, and consequently
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the cable stiffness will change periodically. There is then a possibility of

parametrically excited oscillation.

In long-span cable-stayed bridges, significant vibration of the bridge deck and
towers, on which stay cables are anchored, may occur (Persoon 1981). However,
when parametric excitation occurs, even a small amplitude of anchorage (at the
bridge tower or the bridge deck) leads to great steady-state cable response when the
frequency of the anchorage motion is close to one or two times the stay cable natural
frequencies (Takahashi 1991; Fujino et al. 1993a, 1993b; Pinto Da Costa et al. 1996).
For example, the cables at the Wandre Bridge in France have been found to vibrate
with a large amplitude of 0.3 m peak to peak response and beating phenomenon has
been observed. However, there was no rain during the vibration and the wind did not
reach critical speeds. An extreme example was given by Lilien and Pinto Da Costa
(1994), in which a 10 cm excitation induced by girders and/or the mast leads to a
large amplitude (15 m) oscillation of an inclined 440 m stay cable. Damping
increases the excitation amplitude required for the onset of parametric excitation.
However, if the instability does initiate, damping has a negligible role on the

limitation of the resulting large oscillations (Pinto et al. 1996; Lilien 1994).
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2.2 CABLE TENSION MEASUREMENTS

2.2.1 VIBRATION-BASED METHODS

2.2.1.1 Basic equation

Based on the string equation, cable tension can be expressed as a function of

the cable length, L, the cable mass per unit length, m, and the fundamental frequency,

/, as follows:
H=4Lf*m @.1)

It should be noted that when the cable is inclined, H represents the horizontal
component of the cable tension. The cable tension, T, will be a function of A and the

inclination angle, «, i.e.
T = H/cosa=4L’f* m/cosa (2.2)

The above equations can only be applied if the seven lowest frequencies,
measured with a 0.5% accuracy, lie in a straight line (Robert et al. 1991; Casas 1994)
as shown in Figure 2.1. By using these equations, the cable tension can be readily
calculated once the fundamental frequency is measured. If not the fundamental

frequency, f; but the frequency, f;, of another mode, n, is obtained, Equation (2.1) is

revised as:

= amp L

Due to their simplicity, these equations have been widely used by engineers and
researchers (Takahashi et al. 1983; Okamura 1986; Qiu et al. 1990; Shi and Zhang
1992; Kroneberger-Stanton and Hartsough 1992; Casas 1994; Chen and Yu 1995;

Brénnimaan et al. 1998; Institute of Bridge Engineering 1998; Russell and Lardner
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1998; Wang et al. 1999; Brownjohn et al. 1999; Cunha and Castano 1999; Cunha et
al. 2001).

The method for the determination of cable tension in cable-stayed bridges has
several other versions beside the basic one using Equation (2.1). The first variant is
formulated in Equation (2.3). Sometimes, it is difficult to determine the mode order
of measured frequencies on site and the cable tension can be determined by the

averaged frequency interval, Af, between a serial of equally spaced frequencies, i.e.
H =4L*(Af)*m 2.4)

When the cable is relative large in diameter, the bending stiffness of the cable
needs to be considered. When the cable ends are pinned, the cable tension is

expressed as (Shi and Zhang 1992; Lin 1997):

L3 f* n’m*El
Amlf, BT @.5)
n- r

H

To consider different boundary conditions, the cable tension is obtained as (Qiu et al.

1990):
H=p4f> (2.6)

in which Zis the calibration coefficient which should be determined on site. Taking
Pas 4L’m, Equation (2.6) is identical to Equation (2.1). However, #may change with
cable tension. When the bending stiffness is to be considered for different

construction stages of a stay cable, the tension can be determined as follows:
When the cable is tensioned to 50% of the designed value:

40E71

H=p4f? — 2.7)
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When the cable is tensioned to 100% of the designed value:

10E7

H=pf? -~ (2.8)

It should be noticed that the above equation is an approximation of Equation (2.5)

while taking Sas 4L%m.
2.2.1.2 Measurements in practice

Experiments were carried out to investigate methods for cable tension
determination under different conditions. By comparing the measured natural
frequencies with the theoretical predictions, the tension of a scale model of a guy
wire for a 411 m tall radio navigation tower was determined experimentally with an
accuracy of 3% by Russell and Lardner (1998). Their experiments found that when
the first 10 natural frequencies of the cable were measured at a number of different

tension levels they differed from the theoretical values by an average of 0.7%.

Unfortunately, field tests on cable tension determination are found to be
difficult and not accurate enough in some cases. Difficulties may arise in the
application of vibration measurements in the cables of cable-stayed bridges to obtain
actual forces, as mentioned by Casas (1994). In particular, the influence of
extensibility of very long cables in obtaining an accurate solution of frequency of
vibration was shown in one example in the tests by Casas. Other problems were
related to the difficulty of obtaining experimental vibration records in short cables
with a sufficient time length to derive the natural frequencies of vibration with

desired accuracy.

According to Casas, the vibration method itself was not accurate enough to

derive the real forces in cables when the cables were extremely short, or long, or had
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complex anchoring devices. He developed a method combining the force values
derived from vibration measurements with other experimental techniques (strain
gauges, pressure in tensioning jacks) that could define the real forces in the cables
with sufficient accuracy and reliability to determine if the cable forces are within
permissible boundaries defined during the design stage. The least-square
minimization procedure was used to minimize global measurement errors and enable
an accurate definition of forces in stay cables. The error in cable tension
measurements between the results of the combined method and the jack

measurement is 0~8%, with high reliability considering effects of various uncertain

factors.

Generally, it is difficult to determine cable tension forces with high precision
in field tests. Three techniques for cable tension measurement, by using a tensioning
Jack, strain gauges and the frequency-based method, respectively, were employed in
a project of cable replacements of a cable-supported bridge (Wang 1997). In this
project, the frequency-based technique was found to be more convenient with higher
precision, which was finally confined to be within 5% of the design values and said
to be the best one of several tests the measurement team ever carried out. Xu et al.
(1997) found out the frequency differences between the numerically simulated and
field test results were about 7% for the 5th in-plane mode of a free cable of a
suspension bridge. When this frequency is used for cable tension determination, the
relative error becomes larger than 10%. More recently, a full-scale test on a 100 m
span curved cable-stayed bridge obtained even worse results and the cable tension
forces were determined through the vibration method with an error up to 51% over

the actual tension (Brownjohn et al. 1999).
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Yen et al. (1997) compiled a comprehensive database of cable parameters
from at least 14 cable-stayed bridges. The results of the statistical analysis showed
that the sag to span length ratios were always less than 2%, and for 95% of the cables,
it was less than 1.5%. The results also indicated that 95% of sag-extensibility factors
(refer to Chapter 3 for details) were less than about 1.35, while 100% were less than
3.0. The difference between the sag-extensibility factors calculated with and without
taking into account the contribution of grout and cover pipe was noticeable in the
results. They also carried out field measurements to verify a finite differential
method for solving the cable vibration equation taking into account cable bending
stiffness. The cable-stayed Weirton-Steubenville Bridge in West Virginia, USA, was
selected to conduct the field measurements with the existing load cells installed in

the bridge to verify accuracy.

A modified approach for cable tension evaluation using the measured
frequency was used during the construction of the 2nd Wuhan Yangtse River Bridge.

The following steps were adopted (Institute of Bridge Engineering 1998):

(1) Calculate a basic value for the cable tension force, Ty, from formulation, T =
4mL’f*, based on measured fundamental natural frequency, f; the cable length, L,
and mass per unit cable length, m. It should be noticed that at this step the cable

bending stiffness is not considered.

(2) Estimate the cable tension force T from a trial-and-error method by comparing
the first several measured and calculated frequencies from a finite element model

considering the cable bending stiffness.

The frequency was measured with a relative error less than 1%. When the estimated

cable tension is compared with the design ones listed in Table 2.1, the maximum
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absolute error is 12.7% for cable WRY. Thirty percent of the measured cable tension

forces deviated over 5% from the design ones.
2.2.2 HYDRAULIC PRESSURE METER

Cable tension can be measured by a hydraulic pressure meter in conjunction
with a hydraulic jack, which is used in tensioning the cable (Wang 1997). Figure 2.2
shows a hydraulic jack used to apply final tension to cable stays. The multi-strand,
430t-capacity hydraulic jack was used to apply final tension to cable stays in Ogawa

Bridge (Kajima Corporation 1995).

Figure 2.3 shows a stay cable at its anchorage. The cable can be easily
installed on site by means of a hydraulic tensioning jack and nut. Figure 2.4 shows

the anchorage of a stay cable under construction.

The hydraulic pressure meter is suitable for measuring cable tension in the
construction stage but is generally not acceptable for tension measurements of in-
service cables as the movement and installation of a hydraulic jack, especially those

with high capacity, is particularly inconvenient.
2.2.3 TENSION/COMPRESSION LOAD CELL

Cable tension can also be conveniently measured by using tension/compress
load cells with a compatible strain meter connected. However, the cost for a load cell
is expensive and related to its working range. For example, load cell Type LC1011
(Omegadyne Inc. 2001) is priced at US$6,200, or HK$50,000, with a capability of
9.0 MN. Figure 2.5 and Figure 2.6 show two types of load cells. Detailed

information is shown in Table 2.2.
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Figure 2.7 shows the installation of a load cell in the laboratory for cable
tension measurement. The load cell is of type TCLM-1B (Tokyo Sokki Kenkyujo Co.

2001), with a digital strain meter of type TC-31K by TML (Zheng and Chen 2000).

The load cell can provide more accurate measurement of a single cable in the
construction stage of a bridge (Wang 1997). However, the installation and movement
of a hydraulic jack is heavy in labour and not convenient. This method is generally

not adopted for an in-service cable after the bridge has been completed.
2.2.4 ELECTROMAGNETIC METHOD

Lhermet et al. (1998) designed and constructed a prototype of
electromagnetic stress sensors for monitoring cables and prestressed concrete
structures. The sensor uses the reverse magnetostrictive effect found in high elastic
limit steels and in prestressed concrete. This effect is characterized by the variation
of the steel’s magnetic permeability as a function of its internal stress. Consequently,
the internal stresses in these high elastic limit steels can be found by measuring their
permeability. The permeability can be measured indirectly by measuring the
inductance of a coil placed around or near the cable. This sensor is believed to
operate continuously for several decades even in hostile environments. These kind of
sensors have demonstrated accuracy’s of better than 1% in measuring cable tension

(Wang et al. 2001a, 2001b).

2.2.5 COMPARISON BETWEEN DIFFERENT METHODS

When compared with the other three methods for cable tension measurements,
it is concluded that the vibration-method is more suitable for in-service cables. Table
2.3 shows that the vibration method is cheaper and requires less labor and time cost

than the other three methods.
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2.3 DYNAMICS OF SAGGED CABLE

Theories on cable dynamics have been developed and extensive efforts have
been made on analytical and experimental investigations in free and forced cable
vibration. An elastic sagged cable containing high geometric nonlinearity exhibits
different dynamic properties identified from a taut string or an inextensible chain.
The taut string is an idealized cable with the static configuration of a straight line and
a constant static tension. The inextensible chain is a simplified model of a cable with
relatively large sag, in which the longitudinal elastic stretch of the cable geometric
configuration is ignored. In order to obtain a theoretical basis for further study on the
cable condition assessment, the theoretical and experimental studies on dynamics of

a sagged cable in both linear and nonlinear fields are reviewed.

2.3.1 THEORY OF CABLE DYNAMICS

2.3.1.1 History of cable dynamics study

Development of cable theory can be roughly divided into six stages: (i) taut
string theory; (ii) theory for inextensible cable with sag-to-span ratio effect; (iii)
theory considering both cable elasticity and sag; (iv) theory accounting for cable
inclination, cable elasticity, and sag; (v) a relatively complete cable theory
accounting for cable flexural rigidity (bending stiffness), inclination, elasticity, sag;

and (vi) the nonlinear theory of cable dynamics.

The taut string/wire was the earliest cable attracting the attention of
researchers who included Brook Taylor, D’Alembert, Euler, Johann and Daniel

Bemnoulli (Starossek 1994). The partial differential equation of transverse vibration
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of a taut cable was first derived in 1750 by D’Alembert (Triantafyllou 1984a).
Several years later in 1788, Lagrange and others found its solution in consideration
of an inextensible and massless string with lumped masses (Starossek 1994).
However, apart from Lagrange’s work on the equivalent discrete system, solutions

for the sagged cable were unknown at that time.

Considerations of cable sag and elasticity are closely related, as cables with
large sag-to-span ratio can be treated as inelastic for materials with high elastic
stiffness (Irvine 1981). The solution for sagged cables first appeared in 1868 in work
undertaken by Routh following preliminary studies by Stokes and Réhrs. Nearly
eighty years later, cable elasticity was first considered in 1942 by Kléppel and Lie,
based on the results derived by Rannie and Von Karman (Irvine 1981). However, up
until the 1970s, no theoretical or experimental work had been carried out to explain
why the frequencies of the symmetric in-plane modes of an inextensible sagged cable
do not coincide to the corresponding one of a taut string by reducing the sag to zero.
This problem was solved by Irvine and Caughey in 1974 for horizontal cables with a

sag-to-span ratio within 1/8 (Irvine and Caughey 1974).

Irvine extended his theory to inclined cables (Irvine 1978). However, in
Irvine’s theory, the weight component parallel to the cable chord was neglected. A
more precise solution was given by Triantafyllou in 1984 (Triantafyllou 1984a). In
this work, spatial variability of dynamic tension and weight component parallel to

chord were taken into consideration.

Recent research efforts have been made on the flexural rigidity of cables. To
accurately identify cable tension force from measured frequencies, Zui et al. (1996)
derived practical formulation for cable vibration accounting for the flexural rigidity.

Parametric studies were carried out by Mehrabi and Tabatabai (1998) to investigate
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the interaction effects of the sag and the flexural rigidity on the modal frequencies of

cables (Mehrabi and Tabatabai 1998).

Another focus of cable dynamics in recent research is nonlinear cable
vibration. During the past quarter century, nonlinear free and periodic vibration of
cables has been studied by numerous researchers (Hagedom and Schafer 1980;
Luongo et al. 1982; Luongo et al. 1984; Al-Noury et al. 1985; Takahashi and Konishi
1987; Benedettini and Rega 1987; Tadjbakhsh and Wang 1990; Rao and Iyengar
1991; Perkins 1992; Benedettini et al. 1995; Lee and Perkins 1995a, 1995b; Xiao and
Druez 1996; Luongo and Piccardo 1998). In these studies, the phenomena of
softening and hardening, jumping, intenal resonance, sub- and super harmonic
resonances were observed. Cable nonlinear dynamics is particularly important for the
study of large amplitude vibrations, which have been reported to attack cables in a

large number of bridges worldwide.

Several researchers including Irvine (1981), Triantafyllou (1984b), Straossek
(1994) and Yu (1997), undertook earlier reviews on the history of cable dynamics

study.
2.3.1.2 Linear cable vibration

In order to evaluate cable tension by dynamic methods, the relationship
between the dynamic properties (i.e., natural frequencies) and cable tension should
be established. Theories on this subject vary from the simplest one based on the
string equation to a very complicated one recently developed by Mehrabi and

Tabatabai (1998).

Based on the string equation, the cable tension can be expressed as Equation

(2.1). Effects of cable sag and elasticity on its vibration were investigated by several
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researchers (Starossek, 1994). An approximate solution to the in-plane vibration of
an elastic cable hanging between two points at the same level was obtained by Irvine
and Caughey (1974). The effect of elasticity was also investigated systematically by

the same authors.

Irvine and his coworker’s studies can be briefly summarized as follows. The
underlying assumption is that stretching is small so that the dynamic tension is
almost unvaried throughout the cable length and varies only with time. Sag
introduces a catenary-related variation that is small for smaill sag-to-span (<1/8)
ratios. They found that the antisymmetric modes are given by the taut string solution

and that natural frequencies of the symmetric modes are the roots of the equation:

3
tan kL) kL -i, k, L =0 2.9)
2 2 A2
k,=w,/NH/m (2.10)
and,
A =(ﬁg_1_) L E4 (2.11)
H )L H
1( mgL 2
L=Lj1+—-| == 2.12
e -

in which @, is the circle natural frequency of the nth symmetric in-plane mode of the
cable and g is the acceleration due to gravity. The quantity 4 is proportional to the

elastic stiffness and is the most crucial parameter. For infinite elastic stiffness, Ais

infinite and the above equation reduces to:

tan[k"L) _kL =0 (2.13)
2 2
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for an inextensible chain. For zero elastic stiffness, the taut string result, Equation
(2.9), is obtained. For intermediate values of A%, the first symmetric natural
frequency can be anywhere between 1 zand 2.86 7 Furthermore, when A? is between
[2(n-1)2]? and (2n7)?, the natural frequencies of symmetric in-plane modes are lower
than those of corresponding anti-symmetric modes, which are independent of 42
With increment of 4 to (2n7)%, the natural frequencies of symmetric in-plane modes
tend to those of corresponding anti-symmetric modes and at 2=(2n7)° they equal
each other. When 42 is greater than (2n7)%, the natural frequencies of symmetric in-
plane modes become larger than the corresponding anti-symmetric modes. This
phenomenon is known as frequency crossover, which marks the transition of
dynamic characteristics of a cable from a taut string to an inextensible chain. Near
the transition points of .#>=(2n7)?, the nth symmetric in-plane mode shape of a cable
is significantly changed while the nth antisymmetric in-plane mode shape keeps the
same. When 42 = 47, the first symmetric natural frequency equals the first
antisymmetric one. Experimental validation of the frequency crossover phenomenon
was also given by Irvine and Caughey (1974). The results were extended to the
forced vibration of a horizontal cable (Irvine and Griffin 1976) and the free vibration

of an inclined cable (Irvine 1978). In the latter, a transformation of axes was applied

and a sag parameter 4. for inclined cable was introduced:

2 =(’”§L' cosa) ZL‘—% (2.14)
. (-od
1( mgL. :
L. =L.[1+§('”§ cosa) } (2.15)
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The inclination angle is « and L, is the inclined span. For inclined cables, Equations

(2.9) and (2.10) are revised by replacing L with L., and H with H,, i.e.

3
tan(k"[")-k—”[l— 4,(“‘) - (2.16)
2 7 Z\ 2
k =w,/JH.im 2.17)

The above approximate equations for inclined cables obtain satisfactory results when
both the cable sag and inclination are small. However, Irvine’s solution cannot
capture an important property of inclined cables known as the frequency avoidance
phenomenon, which can only be observed by recovering one item, the weight
component parallel to cable, dropped from Irvine’s equation. This work was done

later by Triantafyllou (1984a).

Triantafyllou (1984b) derived a more precise asymptotic solution for free
vibration of an inclined elastic cable with a small sag. This work allowed elastic
waves but kept the assumption of quasi-static stretching of the cable along the cable
tangential direction. It was found that a frequency avoidance might replace a
frequency crossover when the sag parameter 4 of an inclined cable is near (2n2)%
When hybrid modes composed of the corresponding nth symmetric and
antisymmetric modes of the cable are observed within a certain region around the
cable sag parameter of (2n7)%, the phenomenon is called frequency avoidance, in
which a mixture of symmetric and antisymmetric forms, and the frequencies of them
may be close but never equal to each other at the frequency avoidance point, or the
transition point of (2n7)>. When frequency avoidance occurs, there is a transition
region in which the first symmetric mode and the first antisymmetric mode become

hybrid and after this region they exchange mode properties. In the frequency
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avoidance range, both symmetric and antisymmetric mode shapes are significantly
changed and large dynamic tension may arise in both modes (Triantafyllou and

Grinforgel 1986).

The reason to induce frequency avoidance was then investigated. Burgess and
Triantafyllou (1988) believed that the reason lies on the unsymmetric static profile of
an inclined cable due to cable inclination. As a result, the larger the cable inclination
is, the more obvious the frequency avoidance phenomenon will be observed. Cheng
and Perkins (1992) even found that frequency avoidance also occurs on a horizontal
cable. They observed that the frequency avoidance in a horizontal cable when a
lumped mass attached on the cable does not locate at midspan, destroys the

symmetry of the horizontal cable profile.

In addition, to the analytical methods of Irvine and Triantafyllou for elastic
cables with small sag and small amplitude motion, many other methods, including
analytical, asymptotic and numerical ones, have been developed for various
applications. The two main analytical methods are the dynamic stiffness method and
the closed-form transfer matrix method. The dynamic stiffness method was
developed by Velestsos and Darbre (1983), Darbre (1989) and Starossek (1991, 1993)
based on the earlier work of Davenport and Steels (1965) which studied boundary
induced cable vibrations. Most recently, this method has been used to deal with the
displaceable boundaries and the effects of cable damping (Kim and Chang 2001).
The transfer matrix procedure has been used by Simpson (1966) for determining in-
plane natural frequencies of multispan transmission lines, in which the cable was
dealt as a taut string. A closed-form transfer matrix method was explored by Cheng
and Perkins (1992a, 1992b, 1994) to calculate the linear response of a suspension

cable with multi-mass arrays. This method can be used for a large cable sag-to-span
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regime. Lin and Perkins (1995) dropped the quasi-static stretching assumption and
obtained three-dimensional results for free vibration of a sagged cable. Their results
showed that three kinds of mode transitions may exist in in-plane vibration of a
horizontal cable with lumped masses: elastic mode crossovers are similar to those
occurring from a bare cable while the third crossover only exists in cable/mass
systems with significant sag. To deal with both small and large sag-to-span ratio, an
asymptotic solution was derived by Triantafyllou (1985). In addition, several finite
element methods (e.g., West et al. 1975; Carson and Emery 1976; Henghold and
Russell 1976; Gambhir and Batchelor 1978; Ahmadi-kashani 1989) were developed
to capture dynamic characteristics and dynamic behaviour of sagged cables through a

numerical procedure, especially for cables with large sag.

Though it is clear that the influence of cable extensibility is negligible for
short cables, because A tends to O, the effects of flexural rigidity and torsional
stiffness become significant in such situations. As a result, extensive efforts have
been made to consider the flexural rigidity, sag-span ratio, inclination and
extensibility by Zui et al. (1996). Mehrabi and Tabatabai (1998) also considered the
influence of intermediate springs and/or dampers and supporting conditions on cable
frequencies and obtained a unified difference equation for cable vibration. In their

work, the equation of motion of the cable in the vertical direction is taken as:

4 2 2 2
preYEt) _pOvn 0 4, 0@, 00
ox ox* ox* ot ot

0 (2.18)

where, v(x,t) is deflection in the vertical direction, T is cable tension in the chord
direction; A is the derivative cable force caused by vibration; &’ = k'(x) is spring
constant per unit length at x; ¢’ = ¢'(x) is viscous damping factor per unit length at x.

This equation is identical to that used by Zui et al. (1996) when the external spring

2-20



and damping terms are dropped. Based on this equation, the eigenvalue problem is
induced by assuming the fixed-end boundary conditions. The eigenvalue problem is

then solved numerically.
2.3.1.3 Nonlinear cable vibration

Nonlinear cable vibration is a very complex and interesting problem. Rich
phenomena have been observed in nonlinear cable vibration, which may be induced
by different kinds of excitation sources and can be analyzed by using different
mathematical tools. Interesting phenomena known as softening and hardening,
jumping, intemnal resonance, super- and sub-harmonic response and static drift have
been observed in this field. Nonlinear cable vibration is related to wind-and-rain-
induced cable vibration and aerodynamic instability (Verwiebe 1998); parametric
oscillation induced by cable support (bridge deck and tower) motion (Pinto da Costa
et al. 1996); and cable internal resonance between in-plane modes or between in-
plane and out-of-plane modes (Yamaguchi and Fujino 1998). Methods employed for
solving these problems include the perturbation method, the Ritz-Galerkin method,
the finite element method (FEM), and more recently the incremental harmonic

balance (IHB) method.

Before reviewing the developments in nonlinear cable vibration, some
characteristics of a general nonlinear dynamic system are firstly described to provide
basic knowledge for understanding the behaviour of the nonlinear cable oscillation. (i)
softening, hardening, and jumping phenomena. Softening is a nonlinear oscillation
behaviour in which the nonlinear resonance peak in the frequency-response curve
will deviate towards the left side of the linear one. Contrarily, the hardening
behaviour leads to right bending of the nonlinear response curve from the linear one.

Jumping is related to the multiple-value solutions for a nonlinear dynamic system
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with non-zero damping. (ii) super- and sub-harmonic resonances. Super-harmonic
resonance is characterized by higher order harmonics, i.e. second or third order
harmonics. Sub-harmonic resonance is characterised by sub-harmonics, i.e. one-half,
one-third, sub-harmonics in the resonance; (iii) /nternal resonances relate to the
strong interaction/coupling between two modes when they have commensurable or

near commensurable frequencies.

Several earlier works (Leonard and Recker 1972; Carson and Emery 1976;
Migliore and Webster 1979) undertaken on nonlinear cable vibrations made use of
numerical techniques in terms of finite element discretization and numerical
integration methods. However, numerical methods are inefficient in performing
parametric studies and very time consuming to obtain convergent solutions. To gain
a better understanding of cable nonlinear dynamic behaviour, several approximate

analytical-numerical methods have been developed since the 1980s.

Analytical-numerical methods are developed for simplified cable models with
one to four degrees-of-freedom in analyzing nonlinear cable vibration by using the
perturbation method and the Ritz-Galerkin method. Simplified into a single-degree-
of-freedom (SDOF) model, the cable oscillation may exhibit some phenomena like
hardening, softening, jumping, super- and sub-harmonic resonances of a vibration
mode. A multiple-degrees-of-freedom model should be employed when the modal
coupling between different modes needs to be considered. However, it is the single-
degree-of-freedom model that provides the basic ideas in solving the spatially and
temporally coupled nonlinear equations of a sagged cable. For example, the
combined spatial and temporal differential equations are firstly discretized via a Ritz-
Galerkin procedure and the resulting motion equations are solved in terms of

perturbation methods or numerical integration.
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Early researches on nonlinear cable oscillation are based on single-degree-of-
freedom models, which can be employed to analyze the cable oscillation with only
one mode, in-plane or out-of-plane, symmetric or unsymmetric, involved.
Behaviours such as hardening, softening, jumping, super- and sub-harmonic
resonances may be observed with such a model. Hagedorn and Schifer (1980)
reduced the partial differential equations of nonlinear in-plane free vibration of a flat
undamped suspension cable into one ordinary equation via a Ritz-Galerkin procedure
and obtained an approximate solution for a single-degree-of-freedom oscillation of a
single mode, the first symmetric or antisymmetric in-plane mode. Following a
similar approach, Luongo et al. (1984) investigated the nonlinear in-plane free
vibrations of a flat horizontal undamped cable and carried out substantial parametric
studies. Significant effect of the cable geometrical nonlinearity on the cable response
was found in their researches. Both the hardening and softening behaviours were
observed and found to be dependent on the relative contributions of the quadratic and
cubic nonlinearities. They concluded that the hardening behaviour is dominated by
the cubic nonlinearities and often occurs when the cable has a lower sag parameter 4
or higher amplitude of oscillation. The softening behaviour is due to quadratic
nonlinearities and only occurs for a sagged cable with lower amplitude oscillation.
These conclusions coincide with those obtained by Rega et al. (1984) by using a

numerical procedure.

By considering damping in the model, a system with hardening or softening
behaviour may exhibit a new phenomenon, jumping. Benedettin and Rega (1987)
considered nonlinear in-plane forced vibration of a horizontal cable under an external
harmonic excitation using a single-degree-of-freedom model and studied the effect of

internal cable damping on nonlinear response of the cable. The jumping phenomenon
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of the cable response was observed in their research and, subsequently, multiple-
value solutions were obtained. They found one unstable and two stable periodic
solutions near the resonance for a taut cable and five periodic solutions for a sagged
cable. Their results clearly indicated that increments of internal cable damping can
effectively reduce the vibration amplitude and restrain the nonlinearity occurring

from cable vibration.

Sub- and super-harmonic resonances are also observed in nonlinear cable
oscillation. Benedettini and Rega (1989a) investigated the nonlinear in-plane forced
vibration of a horizontal cable and discussed the secondary external resonances of
the cable resulting in second- and third-order super-harmonics and, in another paper
(Benedettini and Rega 1989b), one-half- and one-third sub-harmonics respectively.
Significant interaction between the two main super-harmonic components was found

as a result of their research.

In the above studies, the multiple scales method was accomplished in terms
of ordering internal cable damping and excitation amplitude, and provided a way to
investigate both external and internal resonances of a cable. However, nonlinear pure
planar vibration of a cable only occurs under special conditions. In most cases non-
planar coupled vibration of a cable is caused by nonlinear dynamic tension produced

during cable vibration.

The interaction between the in-plane and out-of-plane modes is related to
another important phenomenon, internal resonance. The modal interaction (coupling),
especially the internal resonance, may occur in the nonlinear oscillation of cables and
other continuous systems when the linear frequencies of systems satisfy
commensurate or nearly commensurate conditions (Nayfeh 2000). The modal

interaction and intemnal resonance may result in harmful large-amplitude responses in
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the low-frequency modes when subjected to a high-frequency excitation, and provide

energy exchange among the modes.

A multiple-degree-of-freedom model using at least two-degrees-of-freedom
should be used for analyzing the interaction between multiple vibration modes. By
using a simplified two-degrees-of-freedom model, Luonge and his coworkers (1980,
1982) studied the forced combined nonlinear in-plane and out-of-plane vibration of a
flat horizontal undamped cable. In their simplified model, the dynamic tension
arising from the cable was only related to the in-plane mode of vibration and a
second order multiple scales method was adopted. The results showed that internal
resonance between in-plane and out-of-plane modes of vibration may occur when the
ratio between the frequencies of a linear in-plane mode to the corresponding linear
out-of-plane mode is 2:1. The effect of dynamic tension in a horizontal cable
associated with both in-plane and out-of-plane displacements was investigated by Al-
noury and Ali (1985) through a more accurate two-degree-of-freedom model. They
demonstrated that the modal coupling happened between the in-plane vertical and
out-of-plane transverse modes when they had close resonant modes. Modal coupling
leads to a beating-type exchange of energy between in-plane and out-of-plane modes
(Benedettini et al. 1986). By assuming weak nonlinearity and using a multiple scales
method, Rao and Iyengar (1991), and Lee and Perkins (1992a) studied the non-planar
cable vibration by using a two-degree-of-freedom model. This model consisted of
one symmetric in-plane mode and one symmetric out-of-plane mode of a horizontal
cable with sag parameter near the frequency crossover. A 2:1 internal resonance
between the in-plane and out-of-plane frequencies of oscillations (i.e. the in-plane
natural frequency = two times the out-of-plane natural frequency) was found under

in-plane periodic excitations. The 2:1 internal resonance was also examined by
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Perkins (1992) in terms of a multiple scales method based on a two-degree-of-
freedom model and experimental investigation where a horizontal cable was excited

by tangential oscillation at a support of the cable.

The perturbation method used in previous studies is only suitable to weakly
nonlinear systems. Takahashi and Konishi (1987a) proposed a method combining the
Galerkin method in the space domain with the harmonic balance method in the time
domain for the three dimensional nonlinear forced vibration of horizontal and
inclined cables, which may contain large sag-to-span ratios and strong nonlinearity.
However, in their work only the nonlinear pure in-plane or pure out-of-plane free
vibrations were studied. In their companion paper (Takahashi and Konishi 1987b),
the out-of-plane parametric vibration caused by the in-plane vibrations of a cable
under an in-plane periodic excitation was discussed and compared with the
experimental results of Yamaguchi (1978). However, the modal interaction between
in-plane and out-of-plane modes was neglected. According to their work, the in-
plane nonlinear vibration was first approached in terms of a single-degree-of-
freedom model based on one in-plane mode. The obtained in-plane solutions were
then substituted into the linearized out-of-plane vibration equation and a multiple-
degree-of-freedom approach based on multiple out-of-plane modes was applied, by
which the Hill equations for parametric excitation system were derived. Similar
research was also carried out by Takahashi (1991). In his research, the unstable
regions for out-of-plane vibration of a cable under in-plane parametric excitation

were established.

In order to search for more internal resonances, Lee and Perkins (1992b,
1995b) established a three-degree-of-freedom model for nonlinear vibration of a

horizontal cable, in which one in-plane mode and two out-of-plane modes were
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included. Under planar excitation, three types of internal resonances were captured
through a multiple scales perturbation analysis. These included two separated 1:1 (i.e.
the in-plane natural frequency = the out-of-plane natural frequency) and 2:1 internal
resonances and one simultaneous 2:2:1 internal resonance (i.e. the in-plane natural
frequency = the second out-of-plane natural frequency = two times the first out-of-
plane natural frequency), which consist of three periodic solutions. Including the
pure in-plane response, there are four classes of periodic solutions found in cable
vibration. In their companion paper (Lee and Perkins 1995a) experimental
investigation was carried out and the observed results qualitatively agreed with their
theoretical predictions. However, the quantitative comparison between them was not

successful due to limitation of the experimental conditions.

Furthermore, Benedettini and Rega (1994) and Benedettini et al. (1995)
developed a more complex four-degree-of-freedom model counting for two in-plane
and two out-of-plane modes, one symmetric and another antisymmetric to investigate
cable nonlinear vibration subject to both non-planar harmonic distributed forces and
horizontal support motions. The method of multiple scales via a Galerkin procedure
was applied and rich internal resonances associated with eight classes of steady-state
regular motions of the cable were observed for the cable with the sag parameter near

the first frequency crossover point.

The above research indicated that the in-plane and out-of-plane vibrations of
a cable can be strongly coupled through quadratic and cubic nonlinearities in some
conditions. The interactions may contain abundant internal resonances, which need
to be investigated further. According to the linear dynamic theory of a sagged cable,
the frequency crossover or avoidance is a special feature of the cable identified from

a string or a chain. At the frequency crossover or avoidance points, the natural
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frequencies of the corresponding symmetric or antisymmetric in-plane modes have
closed value, which is almost two times the natural frequency of the same order out-
of-plane mode. In this case, under pure in-plane excitation, the out-of-plane
oscillation of a cable becomes a parametric excitation problem due to in-plane
vibration and some significant resonances (Nayfeh and Balachandran 1989; Nayfeh
and Mook 1995) between the in-plane and out-of-plane modes may occur. Rega and
his coworkers (1984) focused on the frequency crossover phenomenon in their
research and the results showed that nonlinear oscillations of the cable near the first
frequency crossover point might produce an infinite number of crossover points

related to the vibration amplitude of the cable.

All the studies discussed above have greatly helped in the understanding of
cable nonlinear behaviour. However, these studies are still insufficient as viewed
from the facts: (i) The great majority of the studies have been confined to shallow
cables suspended between two fixed supports at the same level. Only a few studies
have addressed nonlinear free and periodic oscillations of inclined cables (Takahashi
and Konishi 1987); (ii) Almost all the studies applied the Galerkin procedure by
making use of linearized modal deflection functions to yield a discretized model with
a few (two to four) degrees of freedom, and then conducted a perturbation analysis to
obtain solutions. However, the work by Pakdemirli et al. (1995) and Rega et al.
(1999) showed that treatment of the discretized system in modal coordinates might
result in inaccurate results compared to direct treatment of the governing partial

differential equations in some circumstances.

2.3.2 EXPERIMENTAL WORKS AND FIELD TESTS
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Experiments have played an important role in the development of cable
theories. Numerous experiments have been carried out to validate the cable theories
by many investigators during the last three decades. Some of the laboratory and field

tests are reviewed in this section.

To validate the linear theory on the free vibration of a suspended cable, Irvine
and Caughey (1974) measured the vibration modes of a fine copper wire
approximately 2 m long with two ends fastened at the same level. The so-called
crossover phenomenon, which had been predicted by their theory, was firstly
observed in this experiment. This phenomenon was also experimentally confirmed
by other investigators, e.g., experiments on the vibration of taut and slack marine
cables in water and in air by Ramberg and Griffin (1977). Though the crossover
phenomena was predicted theoretically to be replaced by the frequency avoidance
phenomena for inclined cables with some certain parameters (Triantafyllou 1984a),

experimental evidence is still not available to support this prediction.

To obtain experimental evidence to support their theory on cable/mass
suspensions, Cheng and Perkins (1994) made quantitative measurements of the
response of a suspension cable by using standard modal testing techniques in the
laboratory. Optical displacement probes were used to measure lower frequency/lower
amplitude motions (0~14 Hz) while higher frequency/lower amplitude motions
(14~22 Hz) were measured using two miniature accelerometers. Discrepancies in
frequencies between the testing results and the theoretical prediction were observed
in some cases and explained to attribute to the nonlinearity in cable material
behaviour and/or the inaccuracy in measuring the cable tension. However, this
explanation is NOT verified. Again, attempts by Lee and Perkins (1995a) to

quantitatively match the experimental results to the theoretical ones were
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unsuccessful. The difficulties in making such comparisons can be attributed to two
main sources: i) the inability to precisely measure the cable axial stiffness, and ii) the

constraints produced by the external exciter.

The effects of environmental factors (e.g. temperature change) and the
bending stiffness were found significant in some situations. In discussing the
mechanical characteristics of damaged cables and temporary strengthening during
the replacement of cables in two cable-stayed bridges, variations of about 1.5% in
cable forces of a bridge during a period of 20 months were explained to be attributed
to thermal changes (Prato et al. 1997). By using magnetic induction measurements,
loss of about 9% of the cross section was found for the worst case in some cables and
cable damage was not restricted to the anchor zones. The effectiveness of the force
measurements was limited due to the lack of records from the end of construction to
provide an initial reference state. It was found that it is of utmost importance to
develop and calibrate a numerical model of the bridge to enable interpretation of all
data collected during the repair process. According to this research, the numerical
model together with deflection and force measurements allows further insight into
bridge behaviour. In another case, Smith and Johnson (1999) conducted a field test to
determine the fundamental frequency of each of the 192 stay cables of the Fred
Hartman Bridge. A 45-second time record of acceleration due to ambient excitation
was analyzed. An automated analysis was desired, but variations in ambient
excitation presented in the spectra led to an interactive analysis in which frequency
peak differences were determined, sorted, and averaged to produce an experimental
fundamental frequency for each cable. Difficulties in applying this approach to the
shorter cables highlighted differences between shorter and longer cable response

behaviours. Resulting fundamental frequencies from eight nominally identical sets of
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24 cables were compared and "outliers”, which indicated possible loss of stiffness
and therefore damage, were identified. The average of the eight sets was also
compared with predictions from a finite element beam model and a vibrating string
model. The cable flexural stiffness was considered using beam elements in the finite
element model. The test results matched well with the finite element predictions for
both long and short cables and the vibrating string predictions only for longer cables.
This implies that bending stiffness indeed influences the natural frequencies of cable

vibration, especially when the cable is relatively short.

2.4 VIBRATION-BASED MODEL UPDATING

2.4.1 INTRODUCTION

Model updating concerns the correction of finite element models by
processing measurement data from the dynamic response of structures. The purpose
of model updating is to modify the mass, stiffness, damping parameters and other
mechanical and geometrical parameters of the numerical model in order to obtain

better agreement between numerical results and test data.

Discrepancies between the prediction of a model and the measurements of the
corresponding structure may come from both the model and the measurements.
There are three kinds of model errors (Mottershead and Firswell 1993): (i) model
structure errors, which are liable to occur when there is uncertainty concerning the
governing physical equations, e.g., the governing equation of strongly nonlinear
systems; (ii) model parameter errors, which would typically include the application

of inappropriate boundary conditions and inaccurate assumptions used in order to
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simplify the model; (iii) model order errors, which arise in the discretization of
complex systems and can result in a model of insufficient order. The model order
may be considered as a part of the model structure. The measurement errors may
arise due to different reasons such as aliasing and spectral leakage in FFT techniques,
errors in curve fitting, nonlinearity of transducer, additional mass and stiffness of
instruments and transducers. Model updating aims to minimize model errors by using
measurements, which may also contain errors, so that an accurate model is obtained.
As a result of model updating, an accurate model is expected to (Zhang and Wei
1999): (i) produce the same modal frequencies, mode shapes, and even frequency
response functions (FRFs) within or even beyond the testing frequency band; (ii)
accurately predict responses under different load cases; (iii) obtain the distribution of
dynamic stresses; and (iv) represent the physical and geometrical properties of the

real structures.

Historically, model updating is related to system identification and parameter
estimation originating in control engineering. Some convenient and powerful tools,
such as the filtering estimators like Wiener, Kolmogorov and Kalman filters,
Volterra and Wiener series in non-parametric identification of nonlinear systems, the
auto regressive moving average (ARMA) models and the maximum likelihood
method have been developed or implemented. In structural dynamics, experimental
modal analysis may be regarded as a special area of system identification for the
determination of modal properties from vibration tests and are called modal
identification. The identified modal properties are then used to validate or update

finite element models.

The problem of parameter identification can be reduced to a twofold

mathematical exercises: (i) development of a mathematical model of the structure
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being capable of correctly reproducing frequencies and mode shapes with proper
parameter values; and (ii) updating the model to reproduce measurement taken in
dynamic tests. The change in the natural frequency of mode i of a structure due to
any change is a function of the constitutive parameters, p = {p\, ps, ..., pn}. Hence
the natural frequencies can be used to identify these parameters. In fact, both natural
frequencies and mode shapes are sensitive to changes in system parameters such as
mass and stiffness and thus have been used in monitoring the overall condition of
structures (Ogawa and Abe 1980; Gudmundson 1982; Crohas and Lepert 1982;

Nataraja 1983).

Identification methods have been developed to adjust the stiffness and mass
parameters in a structural model so that measured data can be reproduced. One way
to correct a stiffness matrix involves the use of the sensitivity (perturbation) method
to define a relationship between the change in the parameters and in the modal data
(Collins et al. 1974; Stetson 1975; Steston and Palma 1976; Taylor 1977; Chen and
Garba 1980; Sandstrom and Anderson 1982; Hoff et al. 1984; Kim et al. 1983; Kuo
and Wada 1987). Another approach to adjust the analytical stiffness matrix of a
structure using measured modal data involves the use of constrained optimization to
get the stiffness matrix and simultaneously satisfy a set of constraints (Baruch 1978,

1982; Kabe 1985; Lapieere and Ostiguy 1990).

By employing the eigenvalue sensitivity analysis, Hassiotis and Jeong (1995)
used equations relating the change in the stiffness of each element to the changes in
the frequencies for estimating the stiffness reduction of frame and beam structures.
Morassi and Rovere (1997) discussed the effect of defining a correct reference model
and suggesting some working hypotheses on localizing damage in a steel frame.

Salawu (1997) provided an extensive review of damage detection techniques in
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structures based on changes of natural frequencies and concluded that the approach is
potentially useful for routine integrity assessment of structures. It is noticed from the
above papers that the number of frequencies used varies from two to ten and the
number of the unknowns varies from two to forty. Theoretically, when the number of
unknowns is less than the number of the frequencies measured in the problems, an
extra optimality criterion needs to be introduced. Selection of such a criterion is, to
some extent, arbitrary. Most recently, Fabrizio and Capecchi (2001) indicated that
the damage identification problems are frequently overdetermined. They addressed
the importance of determining the minimum amount of frequencies necessary to

obtain a unique solution.

There is a tremendous amount of literature on the vibration-based method. A

brief overview is given below.
2.4.2 MODE PAIRING

Both an analytical model and an experimental test can be used to produce
modal data. Due to errors in the model and the test, the modal data from the two
sources are different from each other. To calculate these differences, each measured
mode should be paired with the corresponding one from an analytical model. The
parameters and measurements should be scaled to improve the conditioning of the
matrix inversion (Ojavivo 1989) generally appearing in further processing. Several
simple criteria constructed for pairing the tested and calculated eigenpairs are

reviewed in this subsection.

As measured mode shapes generally have less degrees of freedom than the

analytical model, either eigenvector expansion should be adopted for measurements

2-34



or model reduction should be used for the analytical model. Both the eigenvector

expansion and model reduction methods are discussed in the next subsection.

2.4.2.1 Modal assurance criterion (MAC)

The modal assurance criterion (MAC) was initially proposed by Allemang
and Brown (1982). However, several other investigators have suggested use of the

MAC in modal updating (West 1986; Wolff and Richardson 1989). The MAC is

defined as:

(#:8,)

C.=—, (=12,..n; j= 12,..., 2.19
S ag) e ™ @19)

where, ¢,; and n are the ith mode shape vector and the order of the analytical model,
respectively; &, and m are the jth mode shape vector and the number of modes from
tests, respectively. Obviously, with normalized #,; and &,, each element in MAC

will be a scalar ranging from 0 to 1. Once the MAC matrix is obtained #; is readily

paired with mode r, which induces the largest value in the jth row of the MAC matrix.
However, due to errors in both modelling and tests, MAC,, the largest element of jth
row of MAC, may be much lower than 1. In this circumstance, other methods should

be used to accept or reject the result of the pairing.
2.4.2.2 Mode shape error criterion

The summation of the squared errors between two mode shapes can also be
used to pair modes (Zhang 1999). The summation of squared mode shape errors is

defined as:

1 . .
E;; =;;—"A¢;A¢,.j, i=12,.n;j=12,...m (2.20)
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A, =F,—¢; 2.21)

where, #,; and n are the ith normalized mode vector and the order of the analytical
model, respectively; @; and m are the jth normalized mode vector and the number of
modes from tests, respectively; and n, is the number of dimension of the mode vector.
Once the matrix E is obtained ¢, will be paired with mode r, which induces the

smallest value in the jth row of the matrix E. Similar to MAC, matrix £ is susceptible

to errors in both modelling and tests.
24.23 Frequency error criterion

It is well known that natural frequencies can be obtained with much higher
accuracy than mode shapes. The relative errors between the measured and calculated

frequencies can be used for pairing modes, i.e.
e=(0,;~w,;) o,; (2.22)

where, @ ; and @, are the measured natural frequency of mode i from the test and
the calculated natural frequency of mode j from the analytical model, respectively.
The smallest error indicating a pair. This criterion is straightforward and simple.
However, when the structure has closely spaced frequencies, this method should be
combined with other criterions using mode shapes, such as the MAC and the mode

shape error criterions.
2.4.3 TEST INCOMPLETENESS

In practice, only limited discrete measurements may be obtained from both
laboratory and field tests for the structure responses. The measurements are also

limited to the concerned frequency range when dynamic responses are considered. In
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fact, it is usually not feasible to measure the response of a structure at all of the
degrees of freedom nor is it usually possible to collect data from all of the vibration
modes that the model possesses. The two kinds of test incompleteness are referred to

as ‘spatial sparseness’ and ‘modal incompleteness’, respectively (Hjelmstad 1996).

Before discussing test incompleteness, the process for solving a normal
inverse problem in modal analysis is provided as follows. The basic equations in

modal analysis are:

Kb = Mo A (2.23)
" Mb=1 (2.29)
D Kb = A (2.25)

where, K is the stiffness matrix, M is the mass matrix; / is the unity matrix; @is the
eigenvector matrix and A is the modal stiffness matrix. Equation (2.23) is the control
equation of the eigenvalue problem of the structure. Equations (2.24) and (2.25) are
the orthogonality conditions for mass and stiffness matrices, respectively. It is
noticed that in Equation (2.24) the eigenvector matrix is normalized with respect to
mass. When both the measured modal eigenvector matrix, @&, and the spectral matrix,
A, are obtained as a square, non-singular matrix with the same dimension as the
analytical model, the mass matrix M and the stiffness matrix K are readily obtained

by:

M = (D" )" (2.26)
K =@  Ad)™ 2.27)

However, when test incompleteness occurs, the eigenvalue problem described

by Equations (2.23 to 2.25) becomes under-determined. Thus, there are infinite M
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and K that may contend the three equations. To obtain one unique solution for
analysis, there are two options. The first is to add additional equations and the second
is to limit the unknowns. Depending on the different ways adopted by the two
options, different methods have been developed for model updating. Some practical
methods adopted in model updating to deal with test incompleteness are reviewed in

the following.
24.3.1 Spatial sparseness

Basically two methods, known as eigendata expansion and model reduction,
may be used to overcome the problem of spatial sparseness in model updating. In
eigendata expansion the unmeasured quantities are computed based on measurements
by some interpolation techniques. These techniques include spline fitting (Chung and
Craig 1985; O’Callahan et al. 1985; Mitchell and Pardoen 1988), physical
interpolation (Berman et al. 1980; Berman and Nagy 1983; O’Callahan et al. 1985),
the addition of known mass and stiffness (Nalitolela et al. 1990; Dems and Mréz
2001) and changing boundary conditions (Lallement and Cogan 1992). The model
reduction methods include static reduction (Guyan 1965; Irons 1965; Henshell and
Ong 1975; Downs 1980; Shan and Raymund 1982; Mata 1987), physical reduction
(O’Callahan 1989; Suarez and Singh 1992; Zhang and Li 1995), modal reduction

(Kammer 1987) and mixed reduction (O’Callahan et al. 1989; Zhang and Wei 1995a).

24.3.2 Modal incompleteness

Compared with the numerous available researches dealing with spatial
sparseness, papers devoted to modal incompleteness are few and far between. Heylen

(1982) implicitly constructed the complete space by replacing one part of the inverse
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mass/stiffness matrix of the original analytical mass/stiffness matrix with the

counterpart of tests. The formulation is simple and direct:
M'=M]!-M]  +M], (2.28)

where, M is the updated mass matrix and M, is the original mass matrix (the matrix
of the analytical model before updating). As one part of M, M, corresponds to
those degrees of freedom where test data is available, and M, ,, is the mass matrix in

the subspace spanned by the measured vectors. M, ;,» and M, ,; are defined by:

M., =28 (2.29)
M ;.l:ub = ¢A.m¢.4r.:ub (2.30)

in which & is the measured eigenvector matrix and @, is the corresponding

analytical eigenvector. The updated stiffness matrix K can be obtained in a similar

way, i.e.
K'=K;'-K] ,+K, (2.31)
K ., =o4'D (2.32)
Ks =P TP (2.33)

where, A, is the measured spectral matrix and A, is the corresponding spectral
matrix of the analytical model. Assuming that the model updating only slightly
changes the original model, Chen (1985) avoided the time consuming, and
sometimes ill conditioned, matrix inversion calculation in Equations (2.28) and
(2.31). Some other implicit methods are available in the literature by Zhang and Wei

(1991, 1992). An explicit method for generating complete modal space was
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developed by Zhang and coworkers (Zhang et al. 1989; Zhang and Wei 1991; Zhang

and Li 1992; Zhang 1998; Zhang and Wei 1996).

2.4.4 MODAL SENSITIVITY

Most methods for model updating take a form as (Mottershead and Friswell

1993):

5z=8Jp (2.34)

where, 3p is the perturbation in the parameter; 5z is the perturbation in the measured
output and S is the sensitivity matrix containing the first derivative of the eigenvalue
and mode shapes with respect to the parameters. When S and 8z are obtained, op can
be solved from Equation (2.34). Two types of method, namely the direct and the
indirect/modal methods have been developed for the calculation of S. Zhang and Li

(1993) discussed the relationship between the two methods.
244.1 Direct methods

Direct methods refer to those methods which obtain the derivatives of
eigendata by directly calculating partial derivatives of the eigenvector Equation
(2.23). The original work relating to this kind of method is given by Fox and Kapoor
(1968). However, this method requires inversing a full matrix. Nelson (1976)
introduced a new method, which could retain the sparsity of the finite element
matrices, to obtain the general solution for the problem. The method was then further
developed by Dailey (1986) and Mills-Curran (1988). Mills-Curran (1990) pointed
out a deficiency of this method in the circumstances of repeated eigenvalues. The
method by Zhang and Wei (1990) based on the matrix perturbation principle is much

simpler than Nelson’s method. Another direct method by Zhang and Wei (1997) is
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the mixed method, which is much faster than other methods when the derivatives of
multiple modes are to be calculated. The method by Fox and Kapoor (1968) is

presented here to show the basic idea of direct methods.

Fox and Kapoor (1968) calculated the derivative of the ith eigenvalue, 4;

with respect to the jth parameter, p;, by taking the derivative of the corresponding

eigenvector equation in Equation (2.23), to give:

oK - oM o — O M¢,.+(K-A,.M)2&=o (2.35)
op; op; op; op;

Left multiplying by the transpose of the eigenvector, @, and using mass

orthogonality (Equation 2.24) and the original definition (Equation 2.23) of the

eigensystem produces:

(2.36)

1

oA _ .| oK i oM

ap; '\ép, op; |’
The calculation for this expression is easy and requires only the ith eigenvalue and
eigenvector. Eigenvector derivatives can be obtained by using Equation (2.35) and

the derivative of the mass orthogonality equation, i.e.

g, (0K, M)
[ SR RS asn

J J
AoiM |op; |1, oM

Left multiplying with [K-4:M, 4:Mp] on both sides, the derivatives of a single-root

eigenvector can be obtained by solving the resulting linear algebraic equations.

2.4.4.2 Indirect methods
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The basic idea of indirect methods is to assume that the derivatives of

eigenvectors are linear combinations of the eigenvectors (Fox and Kapoor 1968), i.e.

8, & :
f:ZAW, =12k (2.38)

Jj=

where, p is the concemed parameter; k& is the number of modes measured from a test
or calculated from an analytical model and A4; is the coefficient to be solved.
Substituting the above equation into Equation (2.35) and premultiplying the equation

by ¢, we get:

A = ¢[(K"AiM')¢i
ik

s k=i 2.39
o i (2.39)

A;; can be obtained using Equation (2.38) and the mass orthogonality equation, i.e.
| B
A; =E¢i Mo, (2.40)

It should be noted that & is generally smaller than the number of degrees of
freedom of the analytical model, so that the eigenvector derivatives obtained from
Equation (2.38) may have great errors due to modal incompleteness. From recent

work (Zhang 1995, 1996), these errors can be reduced.

2.4.5 FINITE ELEMENT MODEL UPDATING

24.5.1  Sensitivity based methods
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There are two kinds of sensitivity based methods in implementation, one is to

determine updating factors of substructures, and the other is to update design

parameters. To update substructure factors, the mass and stiffness matrices are

expressed as (Zhang and Lallement 1987):

The measured eigendata is also a function of parameters, @, ; and a;, i.e.

L 04 L, 64
1,=AA+Zaa"'Aam.+Za 4 Aa,

mi i ki

L9 Lo
¢{=¢A+25;£’Ldami+zafd da;
i mi i ki

(2.41)

(2.42)

(2.43)

(2.44)

in which, dam=anm-1, Aa=ai-1. Equation (2.34) can be obtained with S being the

Jacobian matrix:

(00, 04, 09, 99,
da,, Oa,, Oa,, Oa,,
gy,  oph 0p, o9,
S= da,, da,, Oay da,,
o A al A
oa,, da,, Oay day,
at ak ar
| Oa,, oa,, Oa,, oa,, | A
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—Aaml ] ¢rl - ¢:4 ]
4 k__k
dp= @, , dz= (orl (old , (2.46)
Ad“ 'lt —)‘.4
K 1k
-Aaﬂ Jam L Ay =4y denanyixt

When the number of parameters and measurements are not equal, the sensitivity
matrix S is not square. Chen and Garba (1980) considered the undetermined case.
The parameter vector nearest to the original analytical parameters was sought which
reproduced the required measurement change. When it becomes overdetermined, a
least squares or weighted least squares technique may be used. Hart and Yao (1977)
and Ojalvo et al. (1989) have given further details. The change in the parameters are

calculated as:
ap=[s"s['s" 4z (2.47a)
Ap=[s"vs['s"V 4z (2.47b)

for the least squares and weighted least squares respectively. The matrix V is a
positive definite weighting matrix that is usually related to the estimated variance of

the measured data.

Similar approaches are used to update design parameters (Collins et al. 1972;
Collins et al. 1974) and physical parameters (Dascotte and Vanhonacker 1989;
Dascotte 1990; Robinson 1992; Dascotte 1992). Piranda et al. (1991) discussed the
practical implementation of these methods, including the choice of measurement
locations, the criteria for convergence and automatic mode pairing. The use of the
second order sensitivity was discussed by some investigators (Kim et al. 1983;

Brandon 1984; Kuo and Wada 1987; Ojalvo and Pilon 1991).
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2.4.5.2  Lagrange multiplier

Berman and Baruch were among some of the earliest investigators to use the
Lagrange multiplier in order to update the finite element model (Berman 1979;
Berman and Wei 1980; Berman and Wei 1981; Baruch 1982a; Berman Nagy 1983;
Baruch 1984). In Berman-Baruch’s method, a constrained minimum problem is
constructed. The solution of the minimum problem will get a solution which
contends both mass and stiffness orthogonal equations and is the nearest one to the
original analytical model in the sense of weighted Euclidian distances. As the mass
orthogonal Equation (2.24) is only related to the eigenvectors, the mass matrix is
firstly determined and then the stiffness matrix. For the mass matrix updating, the

minimum problem is described as (Berman and Nagy 1983):
v o - M )M;'"*| = min (2.48)
OMD, =1 (2.49)

By using 4; as the Lagrange multiplier, the above problem is equivalent to

minimizing the objective function:

J =M M -M M|+ 3 S A0 Mo, ), (2.50)

il jml

The minimization procedure results in the updated mass as:

M=M,+M,Om;(I-m,)m,'®'M (2.51)
where m, is defined by:
m, =& M2, (2.52)
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Similar to the process for determining M, an updated stiffness matrix can be obtained

by minimizing the following objective function:

J=|MK - KM+ 3 S A (KDT - M@, A), +
pargn

(2.53)

+ 22 Ay (K- KT,

isl j=l

Here the Lagrange multipliers are used to enforce the eigenvector equation and

stiffness symmetry. The updated stiffness is obtained as:

K=K, +(4+4) (2.54)
where,

A=BM¢>, (4+k,)-K,, ]@’M (2.55)

k, =0 K,®, (2.56)

Berman-Baruch’s method suffers in losing the sparsity of a finite element system and
the connectivity of the matrix elements. The question of structural connectivity was
discussed in general by Berman (1989). Kabe (1985) argued that the objective
function should not be related to the absolute value of elements in the mass/stiffness
matrix. He believed that the objective function should be based on the relative
change of the matrix element, and therefore he proposed the minimization of the

objective function:
J=|[-1® (2.57)

where, the i, jth term of I is given by:

1 ifK, %0
= { A (2.58)

“lo  ifK,, =0
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The matrix / is to be determined such that:
K=K,®I (2.59)

where, ® is the element by element (scalar) matrix multiplication operator. The
minimization of J is subject to Lagrange multiplier constraints such that / is
symmetric, and the eigenvector equation is satisfied exactly. The solution of the
above problem is quite complex and the process of obtaining the solution is
computationally expensive. Further research was undertaken by Kammer (1988) to
improve the computational efficiency. Other researches concemning the connectivity

of the mass/stiffness include those by Smith and Beattie (1991) and Gordis et al.
(1986).

2.4.6 UNCERTAINTY

Uncertainty is related to the errors in both the measurements and the
analytical model. Statistical techniques should be adopted to deal with uncertainties.
Collins et al. (1972, 1974) presented a method to provide a Bayesian estimation of
structural parameters. A Baysian estimator is based on Bayes’ formula, which
calculates the probability density function (PDF) of the parameters, including the
measured information (the posterior PDF), in terms of the PDF of parameters before
updating (the prior PDF). Many papers gave examples of use of the Collins’s method
(Dascotte 1990; Dascotte and Vanhonacker 1989; Robinson 1982; Thomas et al.

1986).
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2.5 OPTIMIZATION TOOLS

‘Optimization is the process of making something better’ (Haupt and Haupt
1998). For model updating based on dynamic tests, the model parameters, or stiffness
and mass matrix are optimised in a finite element model, so that the model may
produce the same results as in tests. This target is hardly achievable due to the
uncertainty in tests and the approximation of a model to a real structure. An optimal
model is defined as one of the models, which produces the closest results to the

output of tests. Optimization tools are used to find such a model.

For all optimization algorithms, the basic function is minimum seeking, i.c.
the minimum value of the cost function is obtained by searching the cost surface (all
possible function values). There are many textbooks that describe optimization
methods (e.g., Press et al. 1992; Cuthbert 1987). Boyer and Merzbach (1991)

provided a review of this subject.

The most simple, however clumsy, way to optimization is to compare all
possible values of the function to find the global minimum. An extremely large

number of evaluations of the function are required to catch the minimum, i.e.

M

N=IIQ (2.60)

where, N is the total number of different parameter combinations; M is the number of
different parameters and Q; the number of different values that parameter i can attain.
It is obvious that this method takes an extremely long time to find the global
minimum. This method can also be used for continuous parameters with fine
sampling. Unfortunately, missing the global minimum is always at risk due to

undersampling, which tends to occur when the cost function takes a long time to
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evaluate. Hence, exhaustive searches may be practical for a small number of

parameters in a limited searching space.

A very brief review of the development of other optimization strategies is

given in this section.
2.5.1 CATEGORIES OF OPTIMIZATION

Haupt and Haupt (1998) divide the optimization algorithms into six

categories as:

1. Trial-and-error optimization refers to the process of adjusting parameters that
affect the output without knowing much about the process generating the
output. In contrast, mathematical function optimization assumes that we can
describe a process by a mathematical formula, in which various mathematical

methods are applied to the function to find the optimum solution.

2. When there is only one parameter to be optimized, the problem is one-
dimensional and can be solved easily. Many multidimensional optimization
approaches, which tend to be increasingly difficult as the number of

dimensions increases, generalize to a series of one-dimensional approaches.

3. Dynamic optimization depends on time whereas the static one is independent

of time.

4. Optimization can also be distinguished by either discrete or continuous

parameters.

5. Parameters often have limits or constraints. Constrained optimization
incorporates parameter equalities and inequalities into the cost function.

Unconstrained optimization allows the parameters to take any value. A
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constrained parameter is often converted into an unconstrained parameter
through a transformation of variables. Most numerical optimization routines

work better with unconstrained parameters.

6. Some algorithms try to minimize the cost by starting from an initial set of
parameter values. These minimum seekers easily get stuck in local minima
but tend to be fast. They are the traditional optimization algorithms and are
generally based on calculus methods. Moving from one parameter set to
another is based on a determinant sequence of steps. On the other hand,
random methods use some probabilistic calculations to find parameter sets.
They tend to be slower but have greater success at finding the global

minimum.
2.5.2 ANALYTICAL OPTIMIZATION

When a function and its parameters are continuous, the extrema of a function

are located where the gradient of the function equals zero, i.e.

V=0 (2.61)
the roots of the above equations may contain both the maxima and minima. It is
proven that when the Laplacian of the function is greater than zero:

V>0 (2.62)

the extremum corresponds to a minimum. Unfortunately, searching the list of minima
is required to obtain the global minimum, which makes the calculation of V%
redundant. Instead, f is evaluated at all the extrema, then the list of extrema is

searched for the global minimum. This approach quickly finds a single minimum, but
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a further search should be taken to find the global minimum. If there are too many

parameters, it is difficult to solve V/= 0.

When there are equality constraints for a cost function, the method known as
Lagrange multipliers is adopted, i.e.

min f(x)

2.63
st.8,(x,x,,...) (2.63)

A new function, which is equivalent to the above problem conceming the solution of

the minima, is then constructed as (Borowski and Borwein 1991):
F(xy, x2,..) = flx1, X2,...) + Xt Am gn(X1:X2,...) (2.64)

When gradients are taken in terms of the new parameters, 4, the constraints are

automatically satisfied.

Techniques were needed to find the minimum of cost functions having no
analytical gradients, such as in game theory. Kangorovich, von Neumann and
Leontief have solved linear problems in several research fields (Anderson 1992). In
1947, Dantzig introduced the simplex method, which has been the workhorse for
solving linear programming problems (Williams 1993). This method has been
widely implemented in computer codes since the mid-1960s. Integer programming is
an extension of linear programming in which some of the parameters can only take
integer values (Williams 1993). Nonlinear techniques were also developed. Karush
extended Lagrange muitipliers to describe constraints defined by equalities and
inequalities, so a much larger category of problems could be solved (Pierre 1992).
Since the 1950s, Newton’s method and the method of steepest descent have been

commonly used.
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The approach of the methods mentioned above is similar to using refined
surveying tools, which unfortunately does not guarantee a global minimum to be
found. Therefore, searching for a global minimum needs new algorithms and is

discussed below:
2.5.3 NATURAL OPTIMIZATION

The genetic algorithm and simulated annealing are relatively new among the
outstanding algorithms which have emerged over the last 30 years. The genetic
algorithm models natural selection and evolution, while simulated annealing models
the annealing process. Both methods generate new points in the search space by
applying operators to current points and statistically moving toward more optimal
places in the search space and have met with tremendous success in a number of
areas. They rely upon an intelligent search of a large but finite solution space using
statistical methods. Both algorithms do not require taking cost function derivatives
and can, therefore, deal with discrete parameters and non-continuous cost functions.
They represent processes in nature that are remarkably successful at optimizing

natural phenomena.
2.5.3.1 Simulated annealing

Based on ideas formulated in the early 1950s, simulated annealing was
introduced by Kirkpatrick and coworkers (1983). This method simulates the
annealing process in which a substance is heated to a temperature above its melting
temperature, then cooled gradually to produce a crystalline lattice. This crystalline
lattice, composed of millions of atoms perfectly aligned, is a beautiful example of
nature finding an optimal structure, in which its energy probability distribution is

minimized. However, when cooling proceeds too quickly, the substance becomes an
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amorphous mass with a higher than optimum energy state and forms no crystals. This
state implies that quencher has occurred. Careful controlling of the rate of

temperature change is the key for crystals to be formed.

The algorithmic analogue to the annealing process involves initializing a first
guess state, then ‘heating’ it by updating the parameters. The cost function represents
the energy level of the substance. The key issue for the annealing algorithm is a
control parameter, analogous to the temperature, controlling the rate of descent of the
algorithm into the optimum cost function value. This control parameter determines
the step size, so that at the beginning of the process, the algorithm is forced to make
large changes in parameter values and the changes become gradually small after a
certain number of iterations. The control parameter should not be too large so that the
algorithm has a chance to find the correct area before trying to get to the lowest point
in the area. Control parameters resulting in too small step sizes should also be
avoided; otherwise the algorithm will become extensively computational. This
algorithm has essentially ‘solved’ the traveling salesman problem (Kirkpatrick et al.

1983) and has been applied successfully to a wide variety of problems.

2.5.3.2  Genetic algorithm

The genetic algorithm is another type of natural method. It consists of a
subset of evolutionary algorithms modeling biological processes to optimize highly
complex cost functions. The method was developed by Holland (1975) over the

course of the 1960s and 1970s and finally popularized by Goldberg (1989).

In a genetic algorithm, an initial population/generation composed of many
parameter combinations is firstly generated randomly in the solution space. The

corresponding cost function values are then evaluated and weighted/ordered to
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determine the weight of each parameter combination. A new population/generation is
then created with a group of pairs from existing parameter combinations, which are
generally called genes. The advantages of a genetic algorithm are that it (Haupt and

Haupt 1998):
(1) optimizes with continuous or discrete parameters;
(2) doesn’t require derivative information;
(3) simultaneously searches from a wide sampling of the cost surface;
(4) deals with a large number of parameters;
(5) is well suited for parallel computers;

(6) optimizes parameters with extremely complex cost surfaces; they can

jump out of a local minimum;
(7) provides a list of optimum parameters, not just a single solution;

(8) may encode the parameters so that the optimization is done with the

encoded parameters; and

(9) works with numerically generated data, experimental data, or analytical

functions.

These advantages are intriguing and produce stunning results when traditional

optimization approaches fail miserably.
2.5.4 SELECTION OF METHOD

Traditional methods have been well tuned to quickly find the solution of a
well-behaved convex analytical function with only a few variables. For these

problems the optimizer should use past experience and employ the analytical
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optimization methods. In addition, for problems that are not extremely difficult, other
methods may find the solution faster than the genetic algorithm and the simulated

annealing.

However, many realistic problems require modifying a lot of parameters to
find the optimal solution, which is frequently beyond the capability of traditional
methods. Under these circumstances, referring to natural methods, such as the

annealing and the genetic algorithms, can improve the situation.

2.6 SUMMARY

This Chapter provides a literature review on five relatively independent
subjects including cable vibration in cable-supported bridges, cable tension
measurements, dynamics of sagged cables, vibration-based model updating
procedures, and local and global optimization tools, with reasonable overlaps
amongst them. Cable vibrations in cable-stayed bridges are reviewed in order to
understand what kinds of cable vibrations may exist in practical sagged structural
cables. A survey of measurement methods for cable tension testing used in modern
cable-stayed bridges is then carried out and the problems existing from previous
studies are discussed in detail. Both linear and nonlinear dynamics theories of a
sagged cable are then reviewed to provide a theoretical background for further study
on linear and nonlinear vibration of cables. The finite element (FE) methods for
cable structures are then briefly reviewed for the purpose of selecting or creating an
element suitable for cable vibration analysis. Both local and global optimization
methods are surveyed to select suitable ones for the problem concemned. The existing

frequency-based model updating procedures are then investigated to make
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perceptions about state-of-art technology and uncover the parameter identification of

stay cables.

The literature review makes it clear that there are great demand in several
interconnected research subjects related to cable condition assessments. These
subjects include linear and nonlinear modeling for cable dynamics, vibration-based
cable tension testing and optimization methods for cable parameter identification.
The subsequent Chapters will consequently deal with these subjects. Chapters three,
four and five concentrate on the linear and nonlinear modeling for cable dynamics
and Chapters six and seven deal with parameter identification of cables by using both

local and global optimization methods.
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Figure 2.1 Linear relationship between mode order and natural frequency

Figure 2.2 Hydraulic jack used in tensioning cable (Ogawa Bridge, Kajima

Corporation, 1995)
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Figure 2.3 Stay cable (Yobuko Bridge, SE Corporation, Japan, 1988)

Figure 2.4 Cable anchorage in Ting Kau Bridge, Hong Kong.
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Figure 2.5 Load cell: LC1011 Figure 2.6 Load cell: TCLP-NB

Figure 2.7 Load cell TCLM-1B (TML) in use for cable tension measurement
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Table 2.1 Comparison between measured and designed cable tension (kN)

Number | Measurement | Error | Number | Measurement | Error Design
WB24 13627 53% HB24 12302 -4.9% 12942
WB23 12672 -2.3% HB23 11951 -7.9% 12970
WB22 12737 -0.3% HB22 13293 4.1% 12775
wB21 13295 3.6% HB21 12863 0.2% 12838
WB20 11240 -5.0% HB20 11988 1.3% 11837
WBI19 12161 2.0% HB19 12075 1.2% 11928
WBI18 11658 -2.2% HBI18 11795 -1.1% 11923
WB17 10555 -5.7% HB17 11137 -0.6% 11199
WB16 10218 -0.2% HB16 10133 -1.0% 10238
WBI1S 9349 -1.1% HB15 9052 10.0% 10061
WB14 8338 -7.3% HB14 8051 -10.5 8998
WBI13 7388 -11.0% HB13 7811 -5.9% 8299
WBI12 7666 -2.8% HB12 7200 -8.7% 7888
WBI1 6751 -9.0% HB11 7315 -1.4% 7418
WB10 7025 -4.0% HB10 6929 -5.3% 7318

WB9 6462 -3.4% HB9 6341 -5.2% 6691
WBS 6581 -0.9% HBS8 6604 -0.5% 6639
WB7 6637 1.7% HB7 6413 4.1% 6161
WB6 6104 0.1% HB6 6290 3.2% 6096
WBS 6135 1.9% HBS 5988 -0.5% 6019
WB4 5647 5.1% HB4 6165 3.6% 5953
WB3 5176 -3.4% HB3 5307 -0.9% 5357
WB2 5166 0.9% HB2 4990 -2.6% 5122
WBI1 6253 -3.6% HB1 6475 -0.2% 5487
wo 8590 8.6% HO 8373 5.8% 7911
WRI1 5937 3.1% HR1 5831 1.2% 5760
WR2 4817 -5.6% HR2 4574 -10.4% 5105
WR3 5451 -2.4% HR3 5509 -1.3% 5583
WR4 6240 1.3% HR4 6052 -1.7% 6158
WRS5 5862 -6.4% HRS 6435 2.8% 6261
WR6 6906 7.3% HR6 6414 -0.4% 6437
WR7 6696 1.5% HR7 6858 4.0% 6596
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WRS 6379 -3.6% HRS8 6328 -4.4% 6618
WR9 5898 -12.7% HR9 6167 -8.8% 6758
WR10 6788 -5.7% HR10 6918 -3.9% 7195
WRI11 6872 -5.3% HRI11 6544 -9.9% 7259
WRI12 7613 -1.3% HR12 7444 -9.4% 8214
WRI13 8394 -6.3% HR13 7908 -11.7% 8959
WR14 8522 -5.8% HR14 8162 -9.8% 9045
WR15 10212 0.6% HR15 10061 -0.9% 10153
WR16 10286 -0.1% HR16 9843 -4.4% 10301
WR17 11012 2.4% HR17 10279 -4.4% 10751
WR18 10286 1.8% HR18 11254 2.0% 11038
WR19 11012 -2.8% HR19 11747 2.1% 11510
WR20 11237 -5.0% HR20 11783 -0.2% 11806
WR21 11867 -0.8% HR21 11964 0.0% 11960
WR22 12182 0.8% HR22 12417 2.7% 12085
WR23 12049 -3.9% HR23 12749 1.7% 12532
WR24 12370 -3.0% HR24 12152 -4.7% 12750
Table 2.2 Parameters of load cells

Company  TML (Tokyo Sokki Kenkyujo Co.) Omegadyne Inc.

Type TCLP -NB LC1011

Range I0N-2MN ON-9MN

Accuracy 0.2%-0.5% 0.05%

Price N.A. US$6,200, or HK$50,000

Table 2.3 Comparison of different methods for in-service cable tension

measurements
Cost Labor Time Required
Hydraulic Jack Expensive Heavy Long
Load Cell Expensive Heavy Long
Electro-Magneto Sensor Expensive Heavy Long
Vibration-Based Cheap Not heavy Short
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CHAPTER 3

DYNAMIC ANALYSIS OF LARGE-DIAMETER
SAGGED CABLES TAKING INTO ACCOUNT
FLEXURAL RIGIDITY

3.1 INTRODUCTION

This chapter deals with the forward problem of cable dynamics, which is the
basis for developing a vibration-based tension force evaluation procedure for bridge
cables using measured multimode frequencies. An investigation on accurate finite
clement modeling of large-diameter sagged cables taking into account flexural
rigidity and sag-extensibility is carried out. A three-node curved isoparametric finite
element is formulated for dynamic analysis of bridge stay cables by regarding the
cable as a combination of an ‘ideal cable element’ and a fictitious curved beam
element in the variational sense. With the developed finite element formulation,
parametric studies are conducted to evaluate the relationship between the modal
properties and cable parameters lying in a wide range covering most of the cables in
existing cable-supported bridges, and the effect of cable bending stiffness and sag on
the natural frequencies. A case study is eventually provided to compare the measured
natural frequencies of main cables of the Tsing Ma Bridge and the computed
frequencies with and without considering cable bending stiffness. The results show
that ignoring bending stiffness gives rise to unacceptable errors in predicting higher-

order natural frequencies of the cables, and the proposed finite element formulation
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provides an accurate baseline model for cable tension identification from measured

multimode frequencies.

Different from existing models, the proposed model for the dynamic analysis
of large-diameter sagged cables is a general one in the sense that it is capable of
taking into account flexural rigidity, accurate cable profile (sag effects), intermediate
dampers and supports, dynamic cable tension and different boundary conditions.
Existing models for cable dynamic analysis are good at dealing with some of the

above points but not all of them.

3.2 FORMULATION

3.2.1 BASIC ASSUMPTIONS

Two sets of assumptions are used for the nonlinear pure cable model and the
linear beam model, respectively. Regarding the cable as a combination of an
idealized pure cable’ and a ‘fictitious beam’ in formulation derivation has three
features: (i) Two independent elements provides easier understanding on
formulation; (ii) Independent use of each model becomes possible, as is required in
some circumstances. The pure nonlinear cable model may be used independently for
analyzing the internal resonances occurring mainly on the lower order modes, which
is hardly influenced by the cable flexural rigidity; (iii) Evaluation on the effects of
cable parameters on responses becomes more convenient.

L. Basic assumptions on the nonlinear pure cable

(1) The cable material is linearly elastic, characterized by the elastic modulus E;

(2) The elastic cable is perfectly flexible so that it is capable of developing

stresses only in the direction normal to the cross section;
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(3) The normal stress is uniform over the cross-sectional area;

(4) Though the displacement may be arbitrarily large, the strains are assumed
small, which means that the cross-sectional area does not change during
deformation; and

(5) The radius of the cable curvature is large with regarding to its cross section
dimension.

Under these assumptions, the cable may deform from an unstreched state into its
static equilibrium configuration corresponding to the static load (including the cable
self-weight). The deformation procedure may be iteratively simulated using the
nonlinear cable model derived hereafter.

It is noticed that the derivation of the model is based on an initial equilibrium
configuration as shown in Figure 3.1. This initial configuration may be obtained by
simulating the cable deformation from an unstreched state without any load into the
new configuration with the static load applied. It is obvious that such a simulation
can be done by employing the model with a straight profile as the initial
configuration for the cable. The only problem in this case is that the unstreched cable
cannot afford any transverse load. Nevertheless, this problem can be avoided by
stretching the cable before the first iteration with a large enough tension and unload
this extra tension later in the iteration procedures.

II. Basic assumptions for linear beam model
The basic assumptions for the Timoshenko beam are adopted for the spatial curved
beam model. Because the out-of-plane deflection and the axial torsion are coupled
for a spatial curved beam, the torsional deformation is taken into consideration. Thus
the basic assumptions for the beam model are:

(1) The material is linearly elastic, characterized by the elastic modulus E;



(2) A plane section originally normal to the neutral axis remains plane, but not
necessarily remains normal to the neutral axis; and
(3) The curvature radius of the beam is large with regarding to its cross section

dimension.

3.2.2 THREE-NODE CURVED ELEMENT OF SAGGED CABLE

Without losing generality, the cable static equilibrium profile is assumed in the
x-y plane as shown in Figure 3.1. This initial (static) configuration is defined by x(s)
and y(s), here s denotes the arc length coordinate. Let L, E, A and m be the cable
length, modulus of elasticity, cross-sectional area, and mass per unit length
respectively. In static equilibrium state, the cable is subjected to dead load and the
static tension is H(s). The cable is then subjected to the action of dynamic external
forces pu(s, 1), py(s, 1), and p(s, ). The dynamic configuration of the cable is
described by the displacement responses u(s, 1), v(s, 1), and w(s, ) measured from the

position of static equilibrium in the x-, y- and z-directions respectively. Let
U= {u(s,1) v(s, 1) wis, )} G.1)

P={pgs,1) pfs, 0 p(s,0) }7 (3.2)
By using the Lagrangian strain measure, the cable extensional strain due to
dynamic loads, ignoring flexural rigidity, can be expressed as

X' U 1 U U

E=¢&,+& =
AT &2 T

(3.3)
where

X ={x(s) y(s) 0}" (3.4)
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X is the static equilibrium coordinate vector. The finite element formulation is

derived from the Hamilton’s principle

éH:é’f f(Q—V)dsdt+fféstdt=O (3.5)

in which Q is the kinetic energy density; V is the elastic strain energy density; W is
the virtual work density associated with the dead load, dynamic excitation and

damping force. They are expressed as

m oUT oU

— = 3.6
Q 2 ot ot (3.6a)
V=V,+%.52+H(s)-a (3.6b)
w =wr(q +P- c%) (3.6¢)

where ¥; is the elastic strain energy density held in the initial (static) configuration; ¢
is the dead load vector existent in the initial state; P is the external force vector, and ¢

is the viscous damping coefficient matrix, which is express as

cc 0 O
c=|0 ¢, O 3.7
0 0 c
Substituting Equations (3.6) and (3.3) into Equation (3.5) yields
T T T 2
51=5f’f ﬂ.ﬁ.ﬂ_yfi-ﬂ. X U LU ) _
: 2 a a 2 d & 2 & &
dXT U | T &
-H- . — . dsdt 3.8
[ds a2 & d'):,s+ 3.8

+ f fo‘UT‘(q-#P—C*i‘:j—)dsdt =0



Here the displacement vector U is selected to fulfill the boundary conditions and
initial conditions. By integrating Equation (3.8) by parts and accounting for the static

equilibrium configuration, we have

e

or’ os|\ds 8s 2 Js s \Nds I

7 U
H-
o”s( os

(3.9)

)-H:ZU —P}dsdt =0

An isoparametric curved element with three-nodes is introduced to describe the
cable. As shown in Figure 3.2, the shape functions in the natural coordinate system

are given by
1 1 2 2 1 1 2
N, =5(1-§)-5(1-¢' ), N,=1-&°, N, =§(l+g‘)—-2—(l—§ ) (3.10a,b,c)

and the coordinates and the displacement functions are expressed as

x=Y Nx, (3.11a)
y=Y.Ny, (3.11b)
u =ZN,.u,. (3.12a)
v=>) Ny, (3.12b)
w= Nw, (3.12c)

where x;, y; ({ = 1, 2, 3) are the nodal coordinates; and the nodal displacement vector

is defined as

Loy, Ly

r
={ulj Vij Wy Uy Vap Wyl v ij}

7
w;} G13)

By rewriting Equation (3.12) as
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U={uvw) =[NI NI N.I] {{ Uy, vy, {U};}T

3.19)
= [N ] { Uj}
and substituting Equations (3.11) to (3.14) into Equation (3.3), we get the following
expressions
& =[B{U,}=[(B,} {B..} (B,}}{U;} (3.15a)
& =[BRU,}=[8.) 8.} (8,3} } (3.15b)
{By} =%{x'N{ y'N; 0} (3.15c)
{B,} =#{u’N{ VN, wN'} (3.15d)

where the prime denotes the derivative with respect to ¢ and, J is the Jacobian
determinant, i.e
J=ds/dé (3.16)

Substituting Equations (3.13) to (3.15) into Equation (3.8), after some

manipulation, yields

d = _EZZJ{U/}T{IM/]{ﬁJ} "'[Cj}{(//}'*'

+[K, + K, + K, (W 3)+ K, (W) Wy kv, -2 3 3.17)
=0

from which the governing equation of motion of element J is obtained as

e, N0, }+le,No, ) |k, + Koy + (0, ) 0, (0, Ko, )0, )= (2, )0 08)

in which,
M, |=ms [ [NT [N]a¢ (3.19a)
e, 1=/ [INT el [v]as (3.19b)
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{p,}=s [INT (P}ac (3.19¢)

Koy ]= E4s [[8, T [B,)as (3.19d)
[,y 1= £4 [ (I8, T [B,]+ 2B, [B,])as (3.19)
k., ]=264s 1B, T [B,Jac (3.199
(K]~ [HINT [V]ag (3.19)

The global equation of the cable is then obtained through assembling the
element mass matrix, damping matrix, stiffness matrix, and nodal load vector by the
standard assembly procedure. It is noted that in Equation (3.19) the stiffness matrix
includes linear stiffness term (K), the quadratically nonlinear stiffness term (X)), the

cubically nonlinear stiffness term (K>) and the geometric stiffness term (K).

To validate the model for its capability in nonlinear analysis, the free cable
profile of the main span of the Tsing Ma Suspension Bridge, Hong Kong, is
calculated by using the present model. The main span is of 1377.0 m long, the
horizontal component of the cable tension is 122,642 kN in the blue print, the cross
sectional area is 0.759278 m? and the elastic modulus is 200 GPa in the blue print.
The calculation begins with a straight cable of about 1390 m long under an initial
tension of 122,642 kN. Then the cable is subject to its dead load (self-weight) and
deform from the original state. The calculation processes iteratively and the cable
profile finally converges to a catenary configuration, which is proven to be the
analytical solution for the problem with the parameters given above. The
displacement at the midspan is 112 m, which is more than one hundred times the

cable cross section diameter, and the angle change at the left end before and after
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deformation is 18 degree. It is evident from the example that the nonlinear pure

cable model derived here pertains to large displacement — large rotation behavior.
3.2.3 FORMULATION FOR FLEXURAL RIGIDITY

The additional stiffness contribution due to the flexural rigidity of cable is
derived by assuming a fictitious curved beam. The curved beam element is same as
shown in Figure 3.2, but a new local coordinate system in terms of tangential and
normal axes is introduced for the convenience of formulation to relate displacements
with stress resultants. As illustrated in Figure 3.3, the displacements at any node i

are expressed as

{0}, ={u, v, w, 6, 6,8, ¥ (3.20)

where u; is the in-plane displacement in tangential direction; v; is the in-plane
displacement in transverse direction; w; is the displacement in z-direction; 4; is the
total rotation in tangential direction; & is the angle of twist; and &; is the total
rotation of transverse bending. Similar to Equation (3.13), the displacement vector is

expressed with isoparametric interpolation functions as
Wi={uvwé, 6 61 =INI NI NI8Y (6] {7 | =(NHo} (3.21)
The strain vector is written as
a={e.x ar. .l (3.22)

where x: and «; are the in-plane and out-of-plane curvature changes, respectively;

is the cross-sectional torsion change; %, and Vs are the shear strains. The strain-

displacement relation can be expressed as

K.=—%4—-— (3.23a)



36, 6,

K=t b (3.23b)
a:%-% (3.23¢)
Fu =28, (3.23d)
Vs = %+9, (3.23¢)

in which R is the curvature radius of the element. It should be noted that R is not a

constant for a sagged cable. It is calculated using the formula

o e @1 ayF

3.24
d*yld*x ( )
Combining Equations (3.21) and (3.23) yields
{e} =[Bl{s} = [1B,] [B.] B, )]} (3.25)
in which B; (i = 1, 2, 3) is expressed as
N, 0 0 0 0 R-N; T
| 0 0 0 -R-N' -J-N, 0
[B,]:-R.—,- 0 0 0 -J-N, R-N] 0 (3.26)
0 R-N; 0 0 0 —-RJ-N,
| 0 0 R-N] JR-N, 0 0 |

Figure 3.4 shows the stress-resultants at node ;. The stress—strain relation is

given by

e}={M.M, TV VY
=diag[EL, EI, GJ, AGA fGAJe} (3.27)
=D&}

With Equations (3.25) and (3.27), the additional element stiffness matrix due to

cable flexural rigidity is derived in a similar way as
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[&,1=J [ [BT [D][Bla¢ (3.28)

The additional stiffness métrix given in Equation (3.28) is obtained by
referring to the local coordinate system. It should be transformed into the element
stiffness relation in the global x-y-z coordinate system before performing assembly to
obtain overall stiffness matrix. Likewise, the element stiffness matrix given in
Equation (3.19), with 9x9 dimension, only accommodates the translational degrees
of freedom. It should be expanded in the assembly process as an 18x18 matrix to

cater for the rotation degrees of freedom.

3.3 PARAMETRIC STUDIES

The proposed formulation has been encoded into a versatile finite element
program. In this section, parametric studies are conducted to evaluate the effect of
bending stiffness and sag-extensibility on natural frequencies, and the relation
between the modal properties and cable parameters for a wide parameter range. A
numerical verification is first carried out through comparing the computed results by
the proposed method with the analytical results available in literature. Mehrabi and
Tabatabai (Mehrabi and Tabatabai 1998) formulated a differential equation for
solution of free vibration of suspended cables by use of finite difference technique.
This approximate formula accounted for cable bending stiffness and sag-
extensibility, but was based on the assumption of flat sag and invariability of
dynamic tension along cable length. The following dimensionless parameters have

been adopted to characterize the bending stiffness and sag-extensibility respectively

H,

=L |28
¢ EI

(3.29a)
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2= Lﬂ( "‘gLJ (3.29b)

H,L |\ H,

where Hj, is the horizontal component of cable static tension force; I is the moment of

inertia of cable cross section; and

L= f(%) dr;L[u-;-(”'—;éJ-} (3.30)

h

Four suspended cables with the same length of 100 m but different sag-
extensibility (A2) and bending-stiffness (§) parameters are analyzed. Table 3.1 shows
the parameters of the four cables. Cable 1 (A = 0.79, € = 605.5) has a moderate sag
and a low bending stiffness; Cable 2 (A% = 50.70, € = 302.7) has a large sag and an
average bending stiffness; Cable 3 (A2 = 1.41, & = 50.5) has a moderate sag and a
high bending stiffness; Cable 4 (A*> = 50.70, & = 50.5) has a large sag and a high

bending stiffness.

Table 3.1 Material and geometric parameters of four cables

Cable No. A2 & m(kg/m) g(N/kg) L(m) H(10°N) E (Pa) A (m?) J; (m*)
1 0.79 605.5 400.0 9.8 100.0  2.90360 1.5988e+10 7.8507e-03 4.9535¢-06
2 50.70 302.7 400.0 9.8 100.0  0.72590 1.7186e+10 7.6110e-03 4.6097e-06
3 141 505 400.0 9.8 100.0 26.13254 2.0826e+13 7.8633e-03 4.9204e-06
4 50.70 50.5 400.0 9.8 100.0  0.72590 4.7834e+08 2.7345¢-01 5.9506e-03
Table 3.2 Comparison of computed frequencies of in-plane modes (Hz)
String theory Finite difference formula Present method
Cable kl g
No. Istmode 2nd mode 1st mode 2nd mode Ist mode 2nd mode
1 0.79 605.5 0.426 0.852 0.440 0.853 0.441 0.854
2 50.70  302.7 0.213 0.426 0.428 0.464 0.421 0.460
3 1.41 50.5 1.278 2.556 1.399 2.679 1.400 2.682
4 50.70 50.5 0.213 0.426 0.447 0.464 0.438 0461

3-12



Modal properties of the four cables are evaluated by the proposed finite
element formulation. The static profiles of the cables are assumed as parabolas. Sixty
equi-length cable elements are used in the computation. Table 3.2 presents a
comparison of predicted natural frequencies of the first two in-plane modes obtained
by the taut string theory, the finite difference formula and the proposed method. It is
observed that for all the four cases the results by the proposed method coincide well
with those by the finite difference formula. Both the methods take into account sag-
extensibility and bending stiffness. It is found from the table that the computed
natural frequencies from the taut string equation (ignoring sag-extensibility and
bending stiffness) are quite different from those calculated by the proposed method
and the finite difference formula, indicating a considerable influence of sag-

extensibility and bending stiffness in these cases.

Table 3.3 Parameters of two sets of cables

Cable set 1 Cable set 2

A@m)  HMN) AL fi,Hz) A@m) HEN)  dL ({E)

Minimum value 9.788x107 0.1031 1/23750 0.5810 9.575x10° 9.846x10° 1/2375 0.1817
Maximum value  0.14258 3.236x10° 1/110 8.5284 14.258 3.236x10" 1/11 2.6969

In order to relate the modal properties with cable parameters, the relation
surfaces of dimensionless frequencies versus A% and € are obtained for a wide range
of structural parameters. Two cable sets are considered. The fixed cable parameters
are L =100 m and £ = 200 GPa. The ranges of other changed parameters are given in
Table 3.3. The parameters result in 0.001 < A% < 10000 and 10 < & <260 for both
cable sets. The volume mass density of set 1 is kept as a constant value of pP=miA=
7.86x10° kg/m’, while the density of set 2 is appropriately altered to produce same

ranges of AZ and & for set 2 and set 1. The main difference between the two sets is the
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range of their sag to span ratio d/L. Both the finite difference formula and the
proposed method are used to compute the relation surfaces. The cable is divided into
50 elements in the finite element solution and 100 elements in the finite difference
formula, with totally 101 nodes used for each method. With the computed natural

frequency f, of the nth mode, the corresponding dimensionless frequency is defined

as

1

_L

o= (3.31)

where f{; is the fundamental frequency of the corresponding stretched string which is

obtained from

1 ’HA
S =Z —’;— (3.32)

Figure 3.5 shows the relation surfaces of dimens'ionless frequencies versus A’
and & for the 1st symmetric and anti-symmetric in-plane modes obtained by the finite
difference formula. Figure 3.6 gives the corresponding relation surfaces obtained by
the proposed method. By comparing the two figures, it is seen that the results for the
two fundamental modes obtained by the approximate finite difference formula and
by the proposed method coincide very well with each other throughout the concerned
ranges of A% and § for cable set 1 (with low sag to span ratio). For cable set 2 (with
high sag to span ratio), a good agreement is still achieved except for a small region
with very high A? and very low & where the relation surfaces display a slight
difference with each other. Figure 3.7 provides a comparison of the relation surfaces
of two high-order modes obtained by the two methods. It is observed that in these
cases the results deviate significantly from each other in the range of small &. The

deviation of the approximate finite difference formula from the finite element results
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increases with the mode order. Figure 3.8 illustrates the relation surfaces of
dimensionless frequency versus A? and & for high-order in-plane modes of cable set 2
obtained by the proposed method. Figure 3.9 shows the relation surfaces of out-of-
plane modes of cable set 2 using the proposed method. It is obvious in Figures 3.8
and 3.9 that the high-order frequencies of the in-plane as well as out-of-plane modes
depend on both parameters A and g, although the change rate of the frequencies
along the parametric axis of A2 is much smaller than that along the parametric axis of
&. This observation is different from that made in (Mehrabi and Tabatabai 1998).
These differences are attributed to the fact that the finite difference formula was
derived on the assumptions of parabolic static profile, flat sag and spatial
invariability of dynamic tension, while the proposed method eschews these
assumptions. The above studies conclude that when high-order modal properties are
required in an inverse problem, a precise finite element model is more acceptable in

regard to its accuracy, versatility and reliability.

3.4 CASE STUDIES

3.4.1 TSING MA BRIDGE CABLES

The Tsing Ma Bridge, as shown in Figure 3.10, is a double deck suspension
bridge with a main span of 1377 m and an overall length of 2160 m (Beard 1995).
The two main cables of the bridge are 36 m apart and have a cross section of 1.1 m in
diameter after compacting. The central span deck and the Ma Wan side span deck are
suspended at 18 m intervals by hangers to the main cables. The Tsing Yi side span

deck is instead supported from the ground by three concrete piers spaced at 72 m
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centers. As a result, the main cables on the Tsing Yi side span are free cables without
bridge deck suspended. The modal properties of the Tsing Ma Bridge in different
construction stages (including the erection completion stage) have been measured
through a series of ambient vibration survey (Ko et al. 2000). One stage under
measurement is the freely suspended cable stage. In this stage, only the tower-cable
system was erected but none of deck segments has been hoisted into position. The
main cables on all the three spans were free cables in this stage. The modal
parameters of the main cables on the main span and the Tsing Yi side span in this
stage are analyzed by the proposed method and compared with the measurement
results for verification. The cable length and sag are 1397.8 m and 112.5 m for the
suspended main span cable, and 329.1 m and 5.7 m for the inclined Tsing Yi side
cable. The horizontal component of the tension force is 122,642 kN for both the
cables. The main span cable is partitioned into 77 elements and the Tsing Yi side
span cable is partitioned into 17 elements. The computation is conducted by
assuming the cable supports as pinned ends and fixed ends respectively. Tables 3.4
and 3.5 list the natural frequencies of the first three in-plane and out-of-plane modes

of the two cables. It is seen that the computed natural frequencies agree favorably

with the measurement results.

Table 3.4 Natural frequencies of main span cable in freely suspended cable stage (Hz)

Mode Out-of-plane modes In-plane modes

No. Ist 2nd 3rd 1st 2nd 3rd

Computed: pinned 4529 0.1040 0.1557  0.1008 0.1471 0.2081

ends
C°mp:;‘:1‘i‘ fixed 0.0528 0.1052 0.578  0.1020 0.1488 0.2091
Measurement 0.0530 0.1050  0.1560  0.1020 0.1430 0.2070
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Table 3.5 Natural frequencies of Tsing Yi side span cable in freely suspended cable

stage (Hz)
Mode Out-of-plane modes In-plane modes
No. st  2nd  3d Ist 2nd  3rd

Computed: pinned

ends 0.2352 0.4696 0.7154 0.3527 0.4693 0.7216

Computed: fixed

ends 0.2450 0.4946 0.7534 0.3569 0.4943 0.7593

Measurement 0.2360 0.4770 0.7400 0.3430 0.4780 0.7310

After completion of the bridge construction, a total of about 300 sensors,
including four accelerometers on the main cables, have been permanently installed
on the Tsing Ma Bridge for structural health and condition monitoring (Lau et al.
1999). The tension forces of the Tsing Yi side span free cables can be therefore
monitored by means of vibration measurement. In order to examine the effect of
cable bending stiffness on the modal properties, the natural frequencies of the Tsing
Yi side span free cable in the erection completion stage are predicted using the
proposed method (considering cable bending stiffness) as well as the pure cable
model (ignoring cable bending stiffness), and then compared with the measurement
results in the same stage from ambient vibration survey. The cable length and sag in
this stage are 331.5 m and 1.8 m. The horizontal component of the tension force is
405,838 kN. The cable is divided into 200 elements in computation. Figure 3.11
shows a comparison of the natural frequencies of the first 19 in-plane and out-of-
plane modes obtained by the proposed method, the pure cable model and ambient
vibration measurement. Because the accelerometer for ambient vibration
measurement was located close to a modal node of the 8th and 16th modes as shown
in Figure 3.12, the natural frequencies of these two modes could not be measured

with high fidelity. It is observed from Figure 3.11 that the predicted natural
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frequencies by the proposed method agree very well with the measurement results,
whereas the natural frequencies predicted using the pure cable model gradually
deviate from the measured values with the increase of mode order. The maximum
error is as large as 30% for the first 20 modes. This example proves again the
significant influence of cable bending stiffness on higher-mode frequencies and the

necessity of using an accurate model for multimode-based cable tension and

parameter identification.

3.4.2 TING KAU BRIDGE CABLES

Due to large flexibility, relatively small mass and extremely low damping,
structural cables are susceptible to vibration in dynamic conditions. For example,
unexpectedly large oscillation occurring in bridge stay cables under specific
combinations of wind and rain has been observed in a number of cable-stayed
bridges worldwide (Poston 1998). This has resulted in increasing application of
passive and semi-active dampers in cable-stayed bridges for cable vibration
mitigation. For a bridge cable attached with dampers, the existing analytical or
approximate formulae are difficult to accurately identify the tension force due to
their inability in dealing with damper stiffness effect. The present finite element
method does not suffer from this restriction. Modal analysis of the damper-attached

Ting Kau bridge cables by the proposed method is provided here as an example.

As shown in Figure 3.13, the Ting Kau Bridge is a multi-span cable-stayed
bridge with three monoleg towers supporting two main spans of 448 m and 475 m
and two side spans of 127 m each (Bergermann and Schlaich 1996). In this bridge,
eight longitudinal stabilizing cables with a length of up to 465 m have been used to

strengthen the slender central tower. Passive dampers have been installed between
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the cables and deck near the lower ends in the cable planes. The dampers were
connected perpendicular to the cables at the location of 19.2 m cable length
measured from the lower ends. The length and sag of the longitudinal stabilizing
cable are 464.9 m and 8.3 m respectively. The horizontal component of the cable
tension force is 2391.5 kN. The cable is divided into 200 elements in computation.
Figure 3.14 illustrates the relation curves of the cable natural frequency versus
spring (damper) stiffness for the first six in-plane modes. The maximum frequency
discrepancy with and without considering damper stiffness is respectively 2.22%,
4.35%, 4.28%, 4.35%, 4.34% and 4.35% for the six modes. This means that if each
natural frequency of the six modes is used to evaluate tension force from the taut
string equation, the maximum identification error of tension force stemming from the
damper stiffness effect will be 4.44%, 8.70%, 8.56%, 8.70%, 8.68% and 8.70%
respectively. This also demonstrates the importance of a versatile finite element
model for tension force evaluation of cables connected with dampers. In addition, it
is possible and feasible to simultaneously identify the cable tension force and damper
stiffness by use of a precise finite element model and measured multimode

frequencies.

3.5 DISCUSSION

It should be noticed that the stiffness matrix of a cable depends on the cable
tension force. In the present study, a nonlinear static analysis is performed to obtain
the stiffness matrix associated with the dead-load deformed shape and then a linear
dynamic analysis is followed. In the derived stiffness matrix formula in Equation

3.19(d) for linear dynamic analysis, it is noticed that the stiffness is only related to
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the static tension H. But in the traditional cable theory (Irvine 1981; Mehrabi and
Tabatabai 1998) we could find a dynamic tension component A in the governing
equation (e.g., Equation (1) by Irvine 1981) and its contribution to stiffness. In fact,
however, this dynamic tension component A(¢) and its contribution to stiffness can be
represented by cable axial strain energy (EA£/2). Because the cable theory was
established based on the development of inextensible chain formula, it introduced the
dynamic tension concept instead of the axial strain energy concept for clarity. In fact,
when the governing equations and stiffness matrix are derived from the modem
variational principle and finite element formulation, using axial strain energy instead
of dynamic tension can get more direct and more general results. The explicit
relation between the A(f) and axial strain energy has been established for cable
nonlinear dynamic analysis (Ni et al. 2000). Retumning to the present study, the item
on the right-hand-side of Equation (3.19d) just reflects the stiffness contribution of
axial strain energy, i.e., of the dynamic tension h(t). More significantly, the
conventional cable governing equation using the concept of dynamic tension (e.g.,
see reference by Mehrabi and Tabatabai 1998) is derived based on the assumption
that the tension is spatially invariable along the cable length. However, the formula
derived in the proposed study relaxes this constraint. Therefore, the finite element
formulation given in this chapter not only accounts for the contribution of the so-
called dynamic tension term to stiffness, but also allows for more general description

of tension distribution along the cable.
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3.6 SUMMARY

In this chapter a three-dimensional finite element formulation is developed for
dynamic analysis of large-diameter structural cables. The proposed formulation is
suited for both suspended and inclined cables, and allows for the consideration of
cable flexural rigidity, sag-extensibility, spatial variability of dynamic tension,
boundary conditions, lumped masses and intermediate springs and/or dampers. This
formulation provides a good baseline model for accurate identification of cable
tension force and other structural parameters based on the measurement of

multimode frequencies.

Parametric studies are made to evaluate the effects of cable bending stiffness
and sag-extensibility on modal properties, and the relation between the natural
frequencies and cable parameters for a wide parameter range. The results show that
the cable bending stiffness contributes a considerable influence on the natural
frequencies when the tension force is relatively small, and affects the higher-mode
frequencies more significantly than the lower-mode frequencies. A comparison study
of the computed and measured natural frequencies of the Tsing Ma bridge cables
shows that taking into account bending stiffness is necessary for large-diameter
bridge cables to obtain an accurate prediction of the natural frequencies. The
predicted higher-mode frequencies for such cables without considering bending
stiffness may significantly deviate from the true values. The case study of the Ting
Kau bridge cables demonstrates the degree of influence of the stiffness of attached
dampers on the cable modal properties and on the tension identification accuracy. It
is concluded that the tension forces of long-span large-diameter bridge cables can be

accurately evaluated from vibration measurement only when a precise model
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accounting for cable bending stiffness, sag-extensibility and other constraints is

utilized in the identification procedure.
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Figure 3.2 Three-node curved cable element: (a) physical coordinate;

(b) natural coordinate
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Figure 3.3 Displacements at node i

Figure 3.4 Stress-resultants at node §
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Figure 3.5 Relation surfaces of two in-plane fundamental modes obtained
by finite difference formula: (a) 1st symmetric mode (cable set 1 and set

2); (b) 1st anti-symmetric mode (cable set 1 and set 2)
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Figure 3.6 Relation surfaces of two in-plane fundamental modes obtained
by the present method: (a) 1st symmetric mode (cable set 1); (b) 1st

symmetric mode (cable set 2)
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Figure 3.6 Relation surfaces of two in-plane fundamental modes obtained
by the present method (Cont’d): (c) 1st anti-symmetric mode (cable set 1);

(d) 1st anti-symmetric mode (cable set 2)
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Figure 3.7 Comparison of relation surfaces of higher-order in-plane modes
obtained by two methods: (a) 7th symmetric mode by finite difference formula
(cable set 1 and set 2); (b) 8th symmetric mode by finite difference formula
(cable set 1 and set 2)
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Figure 3.7 Comparison of relation surfaces of higher-order in-plane
modes obtained by two methods (Cont’d): (¢) 7th symmetric mode by the
present method (cable set 2); (d) 8th symmetric mode by the present
method (cable set 2)
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Figure 3.8 Relation surfaces of high-order in-plane modes obtained by the
present method for cable set 2: (a) 2nd symmetric mode; (b) 3rd

symmetric mode

3-30




Figure 3.8 Relation surfaces of high-order in-plane modes obtained by the
present method for cable set 2 (Cont’d):

(c) 4th symmetric mode; (d) 8th symmetric mode
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Figure 3.8 Relation surfaces of high-order in-plane modes obtained by
the present method for cable set 2 (Cont’d): (e) 2nd anti-symmetric mode;

(f) 3rd anti-symmetric mode
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(h)

Figure 3.8 Relation surfaces of high-order in-plane modes obtained by the
present method for cable set 2 (Cont’d): (g) 4th anti-symmetric mode; (h)

8th anti-symmetric mode
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Figure 3.9 Relation surfaces of out-of-plane modes obtained by the
present method for cable set 2: (a) 1st symmetric mode; (b) 1st anti-

symmetric
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Figure 3.9 Relation surfaces of out-of-plane modes obtained by the
present method for cable set 2 (Cont’d): (¢) 3rd symmetric mode; (d) 8th

symmetric mode
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Figure 3.9 Relation surfaces of out-of-plane modes obtained by the
present method for cable set 2 (Cont’d): (e) 1st anti-symmetric mode; (f)

2nd anti-symmetric mode
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Figure 3.9 Relation surfaces of out-of-plane modes obtained by the
present method for cable set 2 (Cont’d): (g) 3rd anti-symmetric mode; (h)

8th anti-symmetric mode
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Figure 3.10 Elevation of Tsing Ma Bridge
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Figure 3.11 Comparison between computed and measured natural frequencies

of Tsing Yi side span cable in erection completion stage: (a) frequencies of in-

plane modes; (b) frequencies of out-of-plane modes
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Appendix: Formulation for parabolic and catenary profiles

q:(x)

y g-dx
H L» q.dx
A) H‘ +£[_‘ .%I
dH
H, +—>dx
dx o+ g
2 < dx El dx

Figure 3.15 Internal and external force on a cable element,

Figure 3.15 shows a cable subjected to distributed force qx(x) and g.(x). The cable
profile is defined by z(x), which is to be determined according to the external load
gx(x) and g:(x). As the cable is perfectly flexible, the cable tension, H, is always in
the tangential direction of the cable profile. That is

dz

H =H == A3.l
14 h dx ( )
The equilibrium equations of the cable are:
dH,
—=dx+q dx=0 A3.2
T q. (A3.2)
dH
—dx+q.dx=0 A3.3
I q. (A3.3)

In most cases, external load on structural cables used in engineering is mainly in the

vertical direction. When the horizontal external load is ignored, the cable horizontal
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internal force is a constant. Substituting Equation (A3.1) in to Equation (A3.3) and

dividing by dx, we get
d’z
H —+¢qg =0 A34
h dxz q- ( )

Two type of vertical load are the uniformly distributed force along the cable
span, x, and along the cable arch length, s, respectively. The expressions of ¢ in

these circumstances are:

g.(x)=q  (constant ¢ along cable span, x) (A3.5)
q.(x)= q% (constant g along cable arch length, s) (A3.6)

By substituting Equations (A3.5) and (A3.6) into Equation (A3.4), the cable
profile z(x) can be obtained as the parabolic and the catenary profiles, respectively.

The parabolic profiles is:

q
2H,

z(x) = x*+Cx+C, (A3.7)

in which C) and C; are constants to be determined by the boundary conditions.

For the catenary profile, whenz =0 atx=0andz=catx = [, the curve is expressed

as
2(x) =%[cosha—cosh(2’16 ad —ar)] (A3.8)
in which
_ [ Bl
a = sinh [ sinh ] +/4 (A3.9)
_a
A= 2 (A3.10)
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CHAPTER 4

NONLINEAR DYNAMIC BEHAVIOUR OF
BRIDGE CABLES

4.1 INTRODUCTION

A new method for analyzing nonlinear steady-state oscillation of three-dimensional
sagged stay cables subject to arbitrary periodic excitation is proposed in this chapter.
A frequency-domain solution method to obtain the periodically forced response is
developed by applying the incremental harmonic balance (IHB) technique to the
finite element model constructed in the previous chapter. The proposed method is an
accurate algorithm in the sense that it accommodates multi-harmonic components
and no mode-based model reduction is made in the solution process. Both the
frequency- and amplitude-controlled algorithms are formulated and are alternatively
implemented to obtain complete frequency-response curves including unstable
solutions. In recognizing that the geometric nonlinearity of cables may be of
hardening or softening, the amplitude-controlled algorithm is formulated along with
the frequency-controlled algorithm so that the developed method can predict both
stable and unstable steady-state responses and can analyze both super- and sub-
harmonic resonances and internal resonances. Case study of applying the proposed
method to nonlinear dynamic behavior analysis of the Tsing Ma bridge cables is

demonstrated. The analysis results show that the side-span free cables of the bridge



display distinctly different nonlinear characteristics in the construction and in the
final stages. The different nonlinear behaviors of the cable in different construction
stage are interpreted as the change in the relative contributions of the quadratic and
cubic nonlinearities concerning with the static tension and the sag of the cable,

respectively.

Though the method developed in this chapter and the analyses carried out in this
and the next chapters for the nonlinear dynamics of cables do not directly contribute
to the cable condition assessments, the methods presented in these two chapters, are
important in dealing with such problems when the nonlinearities should be
considered. The nonlinear analyses play a key role for cable condition assessment
when the cable is in large amplitude vibration as a result of parametric excitation,
wind-rain-excitation, galloping and wake galloping. For modern bridge health
monitoring systems, the vibration data are collected in a 24-hour working mode and
the data are to be processed on-line. Results of data processing provide information
on the health and safety of the bridge. However, the results of cable condition
assessment rely on the model adopted for the cable parameter estimation. When large

amplitude oscillation occurs, the nonlinear model should be adopted.

The nonlinear model is also very important for investigation on the mechanism
of wind-rain-induced vibration and parametric oscillation. For analyzing real cables
in cable-stayed bridges, the interaction of girder-cables-pylons cannot be neglected in
some cases. The nonlinear model developed may serve as one method for analyzing

cable oscillation in such cases
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4.2 PRESENTATION OF METHOD

4.2.1 FINITE ELEMENT FORMULATION

The finite element model of the inclined homogeneous cable is formulated in the
previous chapter, as shown in Equations (3.1) to (3.14). Usually, to get the nonlinear
dynamic response of the cable, the formulation derived in Chapter 3 should be
applied with the direct integration in the time domain. Nevertheless, time integration
methods are quite time consuming and are not convenient in extracting qualitative
characteristics of the nonlinear cable system. The proposed method incorporates the
incremental harmonic balance (IHB) technique with the finite element method. The
combined use of the incremental harmonic balance (IHB) technique and the finite
element method can provide a semi-analytical tool to solve the nonlinear oscillation

problem of a cable system.
4.2.2 INCREMENTAL HARMONIC BALANCE TECHNIQUE

The incremental harmonic balance technique (Lau and Cheung 1981; Lau et al.
1983) is then applied to Equation (3.12). Consider a general external periodic

excitation vector P(t) with period T, and
T=2n/w @4.1)

The comresponding steady-state dynamic responses U(r) have the same

frequency. By defining dimensionless time
=t 4.2)

the functions P(z) and U\ (7) possess the period equal to 2x. By setting 1, =0 and #»

=T, Equation (3.17) becomes

4-3



[ sy (M1} + olcli}+

4.3)
+[Kx, + K, + K, (U)+ &, ([UYUY v}~ Plaz =0

where the overdot represents the differentiation with respect to the dimensionless

time 7, and the bar is omitted for the sake of simplicity.

The i-th component P(7) (i = 1, 2, -, N) of the periodic excitation vector P(7)

can be expressed as

L L
B(r):%‘"—+2p,jcosjt+2p,;sinjt 4.9
Jut =l
where,
Ji={pio Pyx Piz - Py pi'l Pi.z Pi.z.}r 4.5

is the known harmonic component vector of P(7).

The ith component U(?) (i = 1, 2, -, N) of the steady-state response vector U(7)

can be represented in the form of multi-harmonic solution as

M M
U,(r) =%+Za,j cos j£+ ) asin j£ 4.6)
J=l Jj=l

where M (2L) is the number of harmonic terms taken into account, and
a,={agy a, a, ---a,, a, a, - a,} (C))
is an unknown vector containing the first A/ harmonic components of U 7).
With Equations (4.6) and (4.7), U(?) can be written as

U(z)=[¥(2)]{4} (4.8)

in which,
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{a}={a] al - a]-- a}f 4.9)
[¥]=Diag[y" y"--- »7] (4.10)
y={% cost cos2r --- cosMr sinr sin2r --- sith} 4.11)

Similarly, P(7) can be expressed as
P(z) =[Y(2)){F} 4.12)

in which,

FYy={f f7f7 17y 4.13)

where the dimensionality of f; (i = 1, 2, -- , N) has been augmented to be same as a;

by setting
p; = p,.;. =0 forj=L+1,L+2,- M 4.14)

Substituting Equations (4.6) and (4.12) to Equation (4.3) yields

sty [ YT {o*[M][7]{a} + ofC][P]{a}+

+[K, + K, ¥ )a)+ K. ([ )}y [v])] ¥} @.15)
-[¥){F} }dr =0

Since the variation & {4} is arbitrary, from Equation (4.15) it follows

[*{r}de = [T {o[M][F)a}+ o[C][¥ ] {4}

+[K, + K ([ )a)+ K. (Y)Y [T )| ¥ ]{a} .16)
~[¥]{F} Jar =0

Consider a dynamic equilibrium state {Fo}, {40}, an, {Jo} and its neighboring

solution
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{F} = {Fo}+{4F}
{4} = {Ao}+{ad}
0= ay+ A®

Ny = {I}+{an

(4.17a)

(4.17b)

4.17¢)

(4.17d)

By using the Taylor’s expansion and neglecting the high-order terms, we have

rj=tr+ 20w S0 ary Al s

Substituting Equation (4.18) into Equation (4.16) achieves

[R{as}= {R}+ [Pliar}+{@}ao

in which,

[KE [T [3[M1[¥]+ @, [c]l¥F]+ K, )i¥] Ja= +
+ [ I¥T (e ([, D))+ €. ([4,)] Jar

— - P TP+ wulcllF]+ [, ]ir Dac) i}
(P Tlcd 4+ K({ ) a)) vk
+ [T vl )i}

[P]= {"[¥T [¥)as
8}={ [y [oulmliP] cll¥] Juc){ 4

E((4D)=22 |

Hao V0 FINT TN
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(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)



Kz({Ao}{Ao}r)-

S VTV o Vv 427
G ({Ao }) = [K | ][({Ao })] [Y ] +
325’3 TINTINIX Hao VI T INT IVl Jag (4.26)
= [Kl ({Ao })][Y]+ Z [Kl,- {AOj})][Yj]
C.({4.)= [K. {4, } {4, Flirte Zle. fadiany Jiv)
4.27)
Z 27 I (o I, IV T IV I, Bt} VT 1l Jee
{v,}=[¥){4,}=(Diaglyy"--y"]){4,} (4.28)

The incremental equation (Equation 4.19) is a system of linear algebraic equations
at each iteration step and is easy to solve. Given {Fo}, {40}, an, AF and Aw, the
values of [I? 1, {ﬁ} ) [F] and [Q] can be readily computed directly from Equations
(4.20) to (4.28) or using a FFT-based time/frequency domain altemnating technique

(Wang et al. 1994). Then the increments {44} are solved from Equation (4.19). This

iterative process is continued until the corrective term
|| -0 (4.29)

The response results of associated linear system can be taken as initial guesses for
iteration. The proposed method is formulated in terms of the increments of all F, A4,
o, and therefore is specially suited to parametric study. On the basis of Equation
(4.19), the frequency- and amplitude-controlled algorithms can be alternatively

implemented. This incremental formulation allows stepping solution along the
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frequency axis (dw), the response-components axes (44) or the excitation-
components .axes (AF). It is particularly amenable to the solution of unstable
response and bifurcation problem. For instance, when there are multiple valued
responses at a certain frequency range, the response amplitude-controlled algorithm
can be adopted to search the unstable branches of the frequency response curves.
Following this approach, the increment of a certain component of the response
harmonic vector {4} is prescribed artificially and regarded as a known, then the
frequency increment Aw and other remaining response harmonic component

increments are taken as unknowns and solved simultaneously from Equation (4.19).

Since accommodating multi-harmonic terms, the proposed method enables direct
solution of super-harmonic resonances. This method can also analyze sub-harmonic
resonances through introducing a reduced frequency. To search for the sub-harmonic

resonances of the system under a periodic excitation, e.g.

F(¢) = Focosax (4.30)

the expression of the excitation can be rewritten as

F(f) = Focosnalt 4.31)

in which the reduced frequency

@' = w/n “4.32)

and n is a positive integer representing the order of sub-harmonics required to be
considered. The periodic responses U(#) can still be expressed in a standard Fourier
expansion form as Equation (4.6), and then be solved directly by the present

algorithms, so long as &' substituting for @ is referred to as an excitation frequency.

After the nominal primary- and super-harmonic components vector {a,} is solved,
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the real multi-harmonic response including the sub-harmonics, is obtained as

M . M .
U)=22+3 a, cos(j—m)-i»Za;. sin(J—w—t-) (4.33)
n =

= n

4.3 CASE STUDY

4.3.1 PROBLEM DESCRIPTION

The proposed method is applied to analyze nonlinear dynamic characteristics of
the Tsing Ma Bridge side-span free cables at different construction stages. The Tsing
Ma Bridge (Ko et al. 2000) is a suspension bridge of 1377 m main span and 2160 m
overall length. The central span and the western Ma Wan side span are suspended
with’hangers at intervals of 18 m to the main cables. The eastern Tsing Yi side span
is contrarily supported from the ground by three concrete piers spaced at 72 m
centers. As a result, the Tsing Yi side-span cables are free cables in the completed
Tsing Ma Bridge. Studied in the following is one Tsing Yi side-span cable in two
stages: (i) tower-cable construction stage, and (ii) finally completed bridge stage. In
the first stage, only the bridge towers and main cables were erected but no deck units
had been hoisted into position. So all the main cables of three spans are free in this
construction stage. In the second stage, the bridge has been completely erected and
only the main cables in the Tsing Yi side span are free. The Tsing Yi side-span free
cable in these two stages is referred to as Cable I and Cable II, respectively. Due to
distinctly different cable tension, the configuration of Cable I and Cable II is
different as shown in Table 4.1. All the parameter values listed in Table 4.1 are
obtained from the design drawings, where L, Ly, p, E, A and H, represent horizontal

and vertical lengths of the cable, the mass density, the elasticity modulus, the cross-
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sectional area, and the horizontal component of static tension, respectively. In the
present study, the cable supports at both stages are regarded as fixed ends (both

translation and rotation in tree directions are prohibited).

Table 4.1 Configuration of Tsing Yi side-span free cable

Parameter Unit Cable in construction stage Cable in final stage

(Cable I) (Cable II)
Ly m 290.862 293.184
L m 155.552 154.738
p kg/m’ 7837.8 7837.8
E GPa 200 196
A m? 0.75928 0.80074
H, kN 122640 405838

Both Cable I and Cable II are subjected to a vertical sinusoidal excitation with

amplitude F and frequency fat mid-span point. It follows that
P(t) = Fcos2rxft (4.34)

In the response computation, each cable is divided into 10 elements with totally
21 nodes. The truncated harmonic order of the steady-state response is taken as 3,
i.e., M'= 3. Numerical test is also conducted by taking a larger order number M = 10.
It is found that the third-order harmonics only contribute less than 2% of the total
response amplitude and the harmonic components higher than the third order have a
negligible influence on the cable response even in the resonant frequency ranges. It
should be noted that the zero-order harmonic term (ao) is not negligible for the cable

problem as illustrated below.

The damping matrix in the finite element formulation is taken as the Rayleigh

damping form with the expression

[C]=c[m]+ A([K,}+[K,]) (4.35)
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4.3.2 SOFTENING

Figures 4.1 to 4.4 show the vertical dynamic responses of Cable I at mid-span
point under the damping parameters a = 0.08 and S = 0.008. Figure 4.1 shows the
frequency response curves corresponding to different excitation amplitudes. Figure
4.2 gives a comparison of linear and nonlinear response curves under the excitation
amplitude F =2.0x10°N. It is evident from Figures 4.1 and 4.2 that Cable [ exhibits
softening nonlinearity, i.e. the resonance peak of the nonlinear oscillation is at the
left side of the corresponding linear resonance peak in the frequency-response curve
so that it seems the frequency of the cable is decreased, which means that the
structure are ‘softer’ than the original one in the linear theory. The discrepancy
between the linear and nonlinear primary resonant frequencies under F = 2.0x10°N
is about ~5.27% (the negative sign represents softening). The response amplitude at
the nonlinear resonant peak value is slightly larger than the corresponding linear
value. Figure 4.3 shows the total response amplitude (4) and static drift response
(ay/2) versus exciting frequency under F = 7.0x10° N. It is seen that under simple
harmonic excitation, the cable nonlinear dynamic response is not symmetric about
the static equilibrium position. The nonzero mean value (called static drift) is
significant in the vicinity of resonant frequency. Figure 4.4 illustrates the
corresponding first- and second-order harmonic components of the response at mid-
span point. It is found that the first-order harmonic peak near the frequency 0.335 Hz
in Figure 4.6(a) corresponds to the first in-plane modal frequency f; of the cable (Ko
et al. 2000), while the second-order harmonic peak near the frequency 0.355 Hz in
Figure 4.6(b) is due to the super-harmonic resonance of the third in-plane modal

frequency f3.
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In order to get a deeper insight into the super-harmonic resonance philosophy, the
frequency response characteristics of Cable I is re-analysed under a weaker damping
condition with the coefficients @ = 0.07667 and 8 = 0. Figures 4.5 and 4.6 illustrate
the frequency response curve and harmonic component responses in this case with F
=4.0x10°N. It is observed from Figure 4.5 that the frequency response curve has an
‘inflexion point’ in the vicinity of 0.355Hz, which is identified as a super-harmonic
resonant peak from the analysis of Figure 4.6. The first in-plane mode of the cable is
symmetric (0.5-wave), the second mode is anti-symmetric (1-wave), and the third
mode is symmetric (1.5-wave) again. As a result, the second mode and other anti-
symmetric modes do not contribute super-harmonic resonance to the response at
mid-span point. The ‘inflexion point’ in Figure 4.5 and the sharp peak in Figure
4.6(b), at about the frequency f = 0.355Hz, are due to the second-order super-
harmonic resonance caused by the third modal frequency f£;, i.e., 2f = f3. Of course,
there is also a second-order super-harmonic resonance corresponding to the first
modal frequency fi at about the frequency f = £1/2 = 0.176Hz as observed in the
frequency response curves. However, for this specific case, the super-harmonic
resonant peak at the frequency /= fi/2 is much less than that at the frequency = f3/2

due to f3/2 being just close to the primary resonant frequency f].

It should be addressed that the cable may exhibit softening as well as hardening
behaviors according to relative contribution of quadratic and cubic nonlinearities.
The static cable tension and the cable sag contribute to the quadratic and cubic
nonlinearities, respectively. When the cable tension is relatively lower, the cubic
nonlinearity plays more important role and the cable exhibit softening behavior as
observed in this subsection. When the cable tension is relatively large, the quadratic

nonlinearity becomes prevalent and we will find that the cable may also exhibit
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hardening behavior as presented in the next subsection.

4.3.3 HARDENING

Then the nonlinear dynamic characteristics of the Tsing Yi side-span free cable in
the finally completed bridge stage (Cable II) are analyzed under the same excitation
as in Case I. Figures 4.7 to 4.9 show the vertical dynamic responses of Cable IT at
mid-span point under the damping parameters a = 0.08 and S = 0.008. Figure 4.7
illustrates the frequency response curves for different excitation amplitudes. Figure
4.8 provides a comparison of linear and nonlinear response curves under the
excitation amplitude F = 7.0x10° N. It is known from Figures 4.7 and 4.8 that in
contrast with Cable I, Cable II displays hardening nonlinearity, i.e. the resonance
peak of the nonlinear oscillation is at the right side of the corresponding linear
resonance peak in the frequency-response curve. The discrepancy between the linear
and nonlinear primary resonant frequencies under F = 7.0x10° N is about 5%. Figure
4.9 plots the total response amplitude and static drift response of Cable II versus
exciting frequency under F = 2.0x10° N. Under simple harmonic excitation, the
steady-state response of the cable with hardening nonlinearity is also asymmetric.

Figure 4.10 shows the corresponding first- and second-order harmonic component

responses.

4.4 SUMMARY

A hybrid finite element/incremental harmonic balance method, that eschews
commonly used modal reduction, is developed for analysis of nonlinear periodically

forced vibration of inclined cables with arbitrary sag. By taking enough finite

4-13



elements and appropriate harmonic terms, the proposed method can obtain accurate
steady-state dynamic response under single- or multi-harmonic excitation. The
conventional time integration procedure is expensive in seeking frequency response
curves as it may take a long transient process to reach steady state, whereas the
proposed method directly resolves steady-state solutions. Moreover, the proposed
method is able to completely predict unstable, multi-valued responses, as well as
sub- and super-harmonic resonances in an alternating frequency- and amplitude-
controlied manner. This method can also be explored to evaluate cable internal
resonance in any modal combination when a certain commensurable condition is met

Y

as discussed in the next chapter.

Though the method developed in this chapter and the analyses carried our in this
and the next chapters for the nonlinear dynamics of cables do not directly contribute
to the cable condition assessments, they are potential in dealing with such problems
when the nonlinearities should be considered. For instance, when the condition of a
cable in nonlinear oscillation, which may occur when the cable is under wind-rain-
induced vibration, excited by support moving, are to be assessed, the proposed
method may serve as a good candidate. The present method is readily capable of
analyzing the nonlinear cable oscillation excited by support motion. When the wind-
and wind-rain induced vibration are to be analyzed, the excitation force along the
cable should be identified first and then the present method can be used. Due to its
computational versatility, this method can be extended to analyze the interconnected
cable system and the cable-damper system, which are widely adopted in modem

cable-stayed bridges.

Numerical analysis results of the Tsing Ma Bridge attain to the following

conclusions: (i) The Tsing Yi side-span free cable of the Tsing Ma Bridge exhibits
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softening nonlinearity in the tower-cable construction stage, but diverges to display
hardening nonlinearity in the finally completed bridge stage. That is, the bridge cable
has distinctly different nonlinear characteristics in the two stages due to different
cable static tension and configuration. The softening behavior is due to the relative
large contribution of cable sag, which takes cubic nonlinearity to the oscillation, and
the hardening behavior is due to the large cable tension; (ii) The steady-state periodic
response of the cable under simple harmonic excitation is not symmetric about the
static equilibrium position. The nonzero mean value (static drift) is significant in the
resonant frequency range; (iii) In steady-state response of the cable considered, the
third-order harmonics have magnitudes less than 2% of the total response
amplitudes, and harmonic terms of mode 4 and above can be disregarded in the
solution process; (iv) The sub-harmonic resonance of the cable can be caused by not
only the primary resonant frequency but also by the higher-mode resonant

frequencies. They may result in pronounced resonant peaks in the low damping case.

4-15



------ F=70x10°N

0.0 ::’ ." ] v l"-' 1) v L v L v L} LA v LI v L v L
027 028 029 030 031 032 033 034 035 036 037 0.38
Frequency (Hz)

Figure 4.1 Frequency response curves of Cable I (a=0.08, 8=0.008)
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Figure 4.2 Linear and nonlinear response of Cable I (F=2.0x10°N, a=

0.08, 5 =0.008)
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Figure 4.3 Total amplitude and static drift of Cable I (F=7.0x10°N, =
0.08, 2 =0.008)
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Figure 4.4 Harmonic response components of Cable I (F=7.0x10°N, a=

0.08, £=0.008): (a) st order harmonic components; (b)

2nd order harmonic components
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5.1

CHAPTER 5

SUPER-HARMONIC AND INTERNAL
RESONANCES OF A SUSPENDED CABLE

INTRODUCTION

In this chapter, the super-harmonic and internal resonance characteristics of a
viscously damped cable with nearly commensurable natural frequencies are
investigated by use of the method developed in the previous chapter, in which the
method has shown its capability in analysis of the softening and hardening
phenomena in nonlinear cable vibration. The alternating frequency/amplitude-
controlled algorithm enables a complete solution for the frequency-response curves
including unstable branches, sub- and super-harmonic resonances and internal
resonances. A suspended cable paradigm under internal resonance condition is
studied to demonstrate the capability of the presented method in analyzing modal

coupling (interactions) and internal resonances.

Nonlinear response and modal interaction characteristics of the cable at different
frequency regions are identified from analysis of response profiles and harmonic
component features. The super-harmonic and internal resonance responses are
respectively characterized based on the harmonic distribution. Under an in-plane
harmonic excitation, the two-to-one internal resonance between the in-plane and out-
of-plane modes and the super-harmonic resonance around the second symmetric in-
plane mode are revealed. Strong nonlinear interaction among different modes in the

parameter space ranging from primary resonance to super-harmonic resonance is
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observed. Spatial-temporal response profiles and numerical harmonic components at
different parameter ranges are presented to highlight the plentiful nonlinear response

behaviors of the cable.

5.2 PROBLEM DESCRIPTION

5.2.1 PERTURBATION METHOD

Nonlinear periodically forced oscillation of elastic cables has been studied by
numerous researchers based on different theoretical and experimental models, as
reviewed in Chapter 2. Interesting phenomena known as internal resonance, super-

and sub-harmonic response, static drift, etc., have been observed in real cables.

The perturbation method is the most widely used method in this field, which
primarily includes two branches: the direct models and the mode-reduced models. In
the direct models, multiple scales or other perturbation techniques are directly
applied to the governing partial-differential equations and boundary conditions of
distributed-parameter cable systems through expressing the solution in an expansion
form of a small parameter. In the mode-reduced models, the original governing
equations are first dealt with as a discretized modal model with a few (one to four)
degrees of freedom by using the Gaierkjn method and linear modal functions, and
then the method of perturbation is applied to obtain the response solution. The
approach using the mode-reduced models is more universal and more efficient in
analysis treatment. However, 1t is based on the approximate assumption that the
motion of the nonlinear system has the same spatial dependence as the linearized

system. The recent investigations by Pakdemirli et al. (1995) and by Rega et al.
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(1999) showed that the results obtained by treating a cable system as a mode-reduced

discretized model might be quantitatively and/or qualitatively erroneous.

An important phenomenon in the nonlinear dynamics of cables and other
continuous systems is the modal interaction (coupling), especially the internal
resonance when the linear frequencies of systems satisfy commensurate or nearly
commensurate conditions (Nayfeh 2000). The modal interaction and internal
resonance may result in harmful large-amplitude response in the low-frequeﬁcy
modes when subjected to a high-frequency excitation, and provide energy exchange
among the modes. In this chapter, modal interaction and internal resonance
characteristics of a suspended cable paradigm (Rega et al. 1999; Nayfeh 2000) are

investigated by using the method developed in the previous chapter.
5.2.2 CABLE PARAMETERS

The cable under investigation is a suspended homogeneous elastic cable that has
been studied analytically and experimentally by Rega et al. (1997, 1999). Table 5.1
shows the cable parameters, where L and d represent the cable span and the midspan
sag respectively; £ is the Young modulus; 4 is the cross-sectional area; m is the mass
per unit length; H is the horizontal component of cable tension force. The cable has
the in-plane (vertical) and out-of-plane (lateral) damping coefficients 0.06781 kg/m-s
and 0.09689 kg/m-s respectively. Table 5.2 lists the natural frequencies of the first
four in-plane and out-of-plane modes of the cable. It is seen that the cable has very
close natural frequencies among the first symmetric in-plane mode (6.302 Hz), the
first antisymmetric in-plane mode (6.254 Hz) and the first antisymmetric out-of-
plane mode (6.320 Hz). Also, these frequencies are approximately twice the natural

frequency of the first symmetric out-of-plane mode (3.165 Hz). Because of these
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nearly commensurate linear frequencies, internal resonances may occur in this cable.
In the present paper, we focus attention on the two-to-one internal resonance between

the first symmetric in-plane mode and the first symmetric out-of-plane mode.

Table 5.1. Parameters of the cable.

L(m) d(m) E(MPa) A4 (m?) mg (N/m)  H(N)
0.6005 0.0305 1340.8  1.2570x107  0.4769  0.7048

Table 5.2. Natural frequencies of the cable (Hz).

Ist Ist 2nd 2nd
Mode Type : : : : : :
symmetric antisymmetric symmetric  antisymimetric
In-plane mode 6.302 6.254 9.731 12.603
Out-of-plane mode 3.165 6.320 9.478 12.636

The cable is excited by a distributed vertical harmonic load. The symmetric in-
plane excitation is expressed as

p,(x,1) = p,(1— cos 2mx)cos 21tft (5.1

where x denotes th¢ horizontal coordinate of the cable; f is the excitation frequency

(Hz) and py is the exciting force amplitude. The spatial distribution of this load is the

same as the first in-plane mode shape of the cable linear vibration. The exciting force

amplitude is taken as py = 0.5 N 1n the study.

5.3 MODAL INTERACTION AND INTERNAL

RESONANCE

The proposed method is applied to analyze the modal interaction and internal
resonance of nonlinear steady-state response of the cable under a periodic excitation.

The cable is divided into 8 curved elements with a total of 17 nodes in the



computation. The response component for each of the three degrees of freedom at a
node is assumed to comprise 9 harmonic terms, i.e. M = 4 in Equation (4.11). Figure
5.1 illustrates the frequency-response curves of the cable at the mid-span point,
obtained by the present method. The thin solid line shows the in-plane vertical
response branch at which the cable does not exhibit out-of-plane response under the
in-plane excitation. The thick solid line shows the in-plane vertical response branch
at which the two-to-one internal resonance happens, while the dashed line shows the

corresponding out-of-plane response exhibited due to the resonance.
5.3.1 SUPER-HARMONIC RESONANCE

In order to explore the modal interaction and internal resonance characteristics,
we start the response analysis at the frequency points far away from the primary
resonance range, i.e. points A and B in Figure 5.1, and then sweep the excitation
frequency toward the first in-plane resonant frequency. The in-plane vertical
responses of the cable mid-span at point A (f4 = 2.080 Hz) and point B (fg = 7.920

Hz) are obtained as

u® (1) =107(0.08+5.90 cos ¢ + 0.16sin ax
(5.2)
~0.13cos 2t +0.02sin 2ax) (@ = 27f,)

u,,, (£)=107(0.18-8.75cos cr + 0.13sin cort
(5.3)
~0.16cos2wt —0.03sin 20r) (@ = 27f;,)

It is observed from Equations (5.2) and (5.3) that the responses at points A and
B contain non-zero high-order harmonic terms, but the high-order harmonic
components are very small in comparison with the primary-harmonic components.
Figure 5.2 illustrates the spatial-temporal profiles of horizontal and vertical response
components of the cable at points A and B. In Figures 5.2(a) and 5.2(c), the diagram

of displacement response versus cable length at any instant is always symmetric with
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respect to the mid-span point. This means that the horizontal response components
are symmetric along the cable span. All the figures appearing hereafter for the cable
horizontal response show the same feature. Due to negligible effect of the high-order
harmonic components, the diagram of response versus time looks like a single-

harmonic response curve with its frequency same as the excitation frequency.

5.3.2 INTERNAL RESONANCE

The excitation frequency is then swept from point A to point C through points S,
and S, as shown in Figure 5.1. Since point C, the frequency-sweeping method is
tried again but no convergent solution can be obtained when only in-plane response
is taken into account. In recognizing this, the solution search is then changed in the
following ways: (1) continuing the frequency-sweeping solution from point C after
imposing an initial out-of-plane response disturbance; (ii) starting the amplitude-
sweeping solution from point C. Following the former way, we find the internal
resonance from point C to point D between the in-plane and out-of-plane modes.
Following the latter way, we find that the frequency-response curve can be stretched
from point C to a peak point P; with increasing response amplitude and decreasing

resonant frequency.

In the process of frequency sweeping from point C (fc = 5.888 Hz) to point D
(fo = 6.320 Hz), out-of-plane response of the cable occurs in accompanying with the
in-plane response under the in-plane vertical excitation. The thick solid line and the
dashed lme m Figure 5.1 respectively show the in-plane vertical response amplitude
and the out-of-plane response amplitude in this region. The simultaneously exhibited
in-plane and out-of-plane responses under a pure in-plane excitation throughout the

region reveal the occurrence of internal resonance between in-plane and out-of-plane



modes. Figure 5.3 illustrates the spatial-temporal profiles of in-plane horizontal and
vertical response components of the cable at three frequency points I; (fi; = 5.890
Hz), I, (fi, = 6.062 Hz) and I3 (fi; = 6.320 Hz) lying in this region, and Figure 5.4
shows the spatial-temporal profiles of the corresponding out-of-plane responses. The
in-plane vertical and out-of-plane horizontal responses of the cable mid-span at three

frequency points are obtained as

u, (£) =107(0.74 + 3.6 1 cos 2wt + 3.96 sin 20

(5.4a)
+0.03 cos 4ot — 0.56sindax) (@ = 27f; /2)
ul (£)=107(0.00-1.13cos wt —1.68 sin ot
(5.4b)
+0.07 cos 2ax — 0.04sin 200r) (@ = 27f, /2)
u® (£) =107(0.71-3.63 cos 2wt + 3.89 sin 2wt )
' (5.5a
+0.04 cos 4t +0.48sindar) (o =27, [2)
u' (£) =107 (0.00 + 0.22 cos @t —0.45 sin ar 5:50)
—0.02cos 201 —0.01sin2at) (o = 27, /2)
u, (£) =107(0.79 +0.39 cos 20z + 5.00 sin 2cor
(5.6a)
+0.45cos 4ot — 0.08sin4r) (0 =27, /2)
ul (£) =107°(0.00 - 0.39 cos wt — 5.07 sin wt
+0.00cos 2at +0.23sin 2ax) (@ = 2nf, [2) (5.6b)

By comparing the response configurations given in Figures 5.3 and 5.4 and
from Equations (5.4) to (5.6), it is evident that the internal resonance occurring in
this region is a two-to-one internal resonance between the first in-plane mode and the
first out-of-plane mode. Again, the high-order harmonic components in the internal
resonance are very small and have negligible effect on the spatial-temporal response
profiles shown in Figures 5.3 and 5.4. Thus in the internal resonance range, the
three-dimensional cable response configuration can be regarded as a combination of

the first symmetric in-plane mode and the first symmetric out-of-plane mode with
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different phases. It is also observed in Figure 5.5 that in the internal resonance, the
static drift of the steady-state in-plane response is of significance whereas the out-of-
plane response has no static drift. Figure 5.6 shows the trajectory of the cable mid-
span response at point Is. In the phase plane, the trajectory of the out-of-plane
response is symmetric with respect to the origin, while the trajectory of the in-plane

response is only symmetric about the axis of zero velocity.
5.3.3 PRIMARY RESONANCE

By using the amplitude-controlled algorithm, the frequency-response curve is
searched from point C to a peak response at point P; ( fp; = 5.862 Hz) through
response harmonic component stepping. The in-plane vertical response of the cable

mid-span at point P, is obtained as

ul (1)=107(0.85+3.81cos wt + 4.29 sin wt
’ (5.7)

+0.06 cos 2t — 0.71sin 20¢) (@ =27f; )

The frequency-response curve is also searched from point B to another peak
response at point P, (fp, = 6.240 Hz) through descending frequency sweeping. The

in-plane vertical response of the cable mid-span at point P, is obtained as

w2 (1) =107(0.82 —3.58 cos et + 4.28 sin wt
(5.8)

+0.11cos 20t + 0.62sin 20t) (@ = 27f, )

Figure 5.7 illustrates fhe spatial-temporal profiles of in-plane horizontal and
vertical response components of the cable at points P; and P,. It is known from
Equations (5.7) and (5.8) and Figure 5.7 that both the responses at points Py and P,
represent the primary resonance of the first symmetric in-plane mode. These two
peak responses contain large primary-harmonic components, considerable zero-order

harmonic components (static drift), and very small high-order harmonic components.
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5.3.4 MODAL INTERACTION

Although points P and P, represent same primary resonance and are closely
spaced, the frequency-response curve of pure in-plane response evolving from point
P, to point P, takes a long distance as shown in Figure 5.1. The alternating
frequency/amplitude-controlled algorithms are utilized to obtain the complete
response trace denoted by P;—S;—S4—S;—>S¢ —P,. Figure 5.8 illustrates the
evolution of phase diagrams from point P; to point P, along this trace. It is seen from
the figure that albeit the starting point P; and the ending point P, have simple and
almost identical phase diagrams, the responses within the trace exhibit very
complicated dynamic trajectories, distinct from those at points P; and P,. Strong
modal interactions occur when the response is traced from point P; to point P,.
Figure 5.9 illustrates the spatial-temporal profiles of horizontal and vertical response
components of the cable at points S3 (fs; = 5.252 Hz), Sa (fs, = 4.880 Hz), S5 (fss =
5.260 Hz) and S¢ (fs¢ = 5.860 Hz) within this response region. The in-plane vertical

responses of the cable mid-span at these points are obtained as

uly (1) =107(0.73 +3.16 cos ot + 2.15 sin ¢

(5.9
—0.50 cos 2wt —1.14sin 20t) (@ =27f )
1y, (1) =107(0.87 +0.16 cos wt +2.54 sin wr
(5.10)
+2.13cos 2c¢ - 0.08sin 2ax) (@ =27f )
ul: (1) =107(0.78 — 1.95 cos wr +1.18 sin ot
(5.11)
—0.77 cos 2ax +1.19sin 2ar) (@ = 27f )
) (1)=107(0.67 - 2.76 cos wxt +1.64 sin wr
(5.12)

—0.50cos 2ct +0.79sin 200t) (0 =27 )

It is evident from Figure 5.9 and Equations (5.9) to (5.12) that the responses

occurring in this region involve strong modal interactions. The response profiles can
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be significantly different at different points of this response region. The high-order
harmonic components participate greatly in the responses. At point S4 (fs; = 4.880
Hz), the second-order harmonic amplitude (2.132%x10° m) of the cable mid-span
response is the same order of magnitude as the primary-harmonic amplitude
(2.545%10 m). In recognizing the frequency at point Sy (4.880 Hz) is almost half of
the natural frequency of the second symmetric in-plane mode (9.731 Hz), this
response region with extremely large second-order harmonic components is
ascertained as second-order super-harmonic resonance of the second symmetric in-
plane mode. The super-harmonic resonance 1s strongest in the vicinity of S4. Along
the trace P;—S; —S4, the response transits from the primary resonance to the super-
harmonic resonance; and then along the trace S;—Ss—S¢—P», the response changes
from the super-harmonic resonance to the primary resonance again. Response
profiles of the cable at super-harmonic resonance are significantly different from

those at primary and internal resonances.

5.4 SUMMARY

Nonlinear modal interaction and internal resonance of a suspended cable
paradigm are numerically investigated by means of a hybrid 3-D finite
element/incremental harmonic balance method. This frequency-domain solution
method eschews commonly used modal reduction and can accommodate arbitrary
harmonic terms. By taking enough finite elements and appropriate harmonic terms,
the proposed method can obtain an accurate description of the cable nonlinear
steady-state dynamic response characteristics under either simple or multi-harmonic

excitation. This method is suited for both suspended and inclined cables with sag-to-
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span ratios not limited to being small, and allows for the consideration of boundary
conditions, lumped masses, supporting motion, and intermediate springs and/or
dampers. The proposed method is promising for the analysis of cable nonlinear
modal interactions (coupling) and internal resonances because it accommodates
multi-harmonics and retains mathematical tractability in the description of spatial
degrees of freedom and multi-modes. Due to its numerical accuracy, this method can
be also used in some situations to verify the solutions obtained from other

approximate analytical methods.

Based on the study of modal interaction and internal resonance characteristics of
a suspended cable paradigm, the following conclusions are drawn: (i) A two-to-one
internal resonance of the cable between the first in-plane mode and the first out-of-
plane mode is revealed; (ii) A second-order super-harmonic resonance of the second
symmetric in-plane mode is found in the cable; (iii) The static drift (zero-order
harmonic component) of the in-plane response at the primary, super-harmonic and
internal resonances is significantly large; (iv) There is no static drift in the out-of-
plane response of the cable when activated by the two-to-one internal resonance; (v)
Strong modal interactions occur in the transition between the primary and the super-
harmonic resonances; (vi) Response profiles of the cable at the super-harmonic
resonance are significantly different from those at the primary and internal

resonances.

Though the analyses carried out for the nonlinear dynamics do not directly
contribute to the cable condition assessments, they are potential in dealing with such
problems when the nonlinearities should be considered. In this chapter, it is noticed
that different kind of modal interactions of cable nonlinear oscillations are

quantitatively distinguished by the different harmonic terms (Equations 5.2 to 5.13)

5-11



and qualitatively characterized by different spatial-temporal profiles (Figures 5.2 to
5.9). When the measured nonlinear oscillation of a real cable can be accurately
simulated through the proposed method, it is evident that the nonlinear dynamic
cable tension can be obtained and the cable condition can be assessed. However, this
can only be done when both the excitation and the nonlinear oscillation of the cable

have been measured providing the cable to be assessed is in steady state oscillation.
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Figure 54

Out-of-plane response at internal resonance:
(a) at point I;;
(b) at point I,;

(c) at point I.
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CHAPTER 6

PARAMETER ESTIMATION OF STRUCTURAL
CABLES USING AMBIENT VIBRATION DATA:
LOCAL OPTIMIZATION

6.1 INTRODUCTION

This chapter describes the parameter estimation of stay cables in the cable-
stayed Dongting Lake Bridge, Hunan, P. R. China, based on ambient vibration tests,
which provide dozens of natural frequencies for each cable before and after
installation of magneto-rheological (MR) dampers. The parameters are estimated by
means of the interior-reflective Newton method which is used to for a local
optimization of the cost function value constructed with the errors between the
measured and analytical natural frequencies by the nonlinear least-squares (NLS)
method. The global optimization will be discussed in the next chapter.

The identification of cable tension is discussed in this chapter. Since cables
are the most important structural members in cable-supported bridges, researchers
and engineers have long explored the measurement and estimation of cable tension.
Cable tensions may be obtained by using a ring load-cell, measuring the force in
tension jack or the elongation of the cable during tensioning, carrying out
topographic measurements, and instaliing strain gauges in the strands (Cunha et al.
2001). However, as discussed by Casas (1994), in spite the simplicity in theory, each
of these methods is complex in its practical application and, in some cases, the level
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of accuracy is insufficient. A relatively simple and inexpensive method to estimate
cable tension is based on theory of cable dynamics, which was systematically
investigated by Irvine (1981) and recently developed by other researches, such as Zui
et al. (1996) and Mehrabi and Tabatabai (1998).

Generally, the natural frequency is used as input for cable tension evaluation.
Structural cables employed in a cable-supported bridge may be of several hundreds;
for example, more than two hundred stay cables are used in the Dongting Lake
Bridge, Hunan, P. R. China. For a large number of cables employed in a cable-stayed
bridge, it is not realistic to measure the cable modal shapes or using static tests for in-
service cables. Fortunately, a large amount of the natural frequencies of the cables
can be economically obtained with high accuracy by just monitoring one to two
points of each cable. This may give the reason why extensive efforts (Takahashi et
al. 1983; Kroneberger-Stanton and Hartsough 1992; Yen et al. 1997; Russell and
Lardner 1998; Brownjohn et al. 1999; Smith and Johnson 1999; Wang et al. 1999;
Cunha et al. 2001) have been made on measuring the cable tension of in-service
cable-supported bridges and other cable structures by using vibration-based methods.
However, most of these applications use only the vibration taut string theory which is
not suitable for very long cables used in modemn cable-supported bridges due to the
effects of sag, flexural rigidity and end support conditions. Furthermore, most
applications take the cable tension as the only unknown parameter in the estimation
approaches, considering typically one natural frequency only. As mentioned by the
author and coworkers (Zheng et al. 2001), the inaccuracy of other parameters, which
is one kind of modeling error, may affect significantly the cable tension estimation.
The accurate values of other parameters need to be known prior to the estimation

employing only one frequency and the accuracy and reliability of this frequency
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should be strictly defined. In recognizing the above facts, simultaneous estimation of
the tension force and other cable parameters by using measured frequencies should
be the direction to go.

For the parameter estimation of a structural cable, the number of unknowns is
quite small whereas the frequencies available from tests are quite rich. That means
the parameter estimation of a cable is overdetermined in some circumstances. In the
present chapter, by using dozens of frequencies, several approaches are developed to
identify the cable constitutive parameters, including the most concerned one, the
cable tension. An important issue of this study is that the effects of weight and
parameter selections in the estimation are revealed. Another issue of the present
research lies in the investigation on error distribution, which is one important aspect
in evaluating estimations besides the minimization in cost functions. The
investigation in two kinds of intermediate cable supports, namely the deck-cable
connection and the MR damper system, reveals that their effects on the cable

parameter estimation are small.

6.2 IDENTIFICATION METHOD

The purpose of this section is to construct a nonlinear least squares (NLS)
problem for the identification of cable parameters through frequency measurements.
Firstly, the relationship between the model parameters and the analytical cable
frequencies are implicitly constructed by an analytical model. Secondly, the cost
function to be minimized is defined as the weighted sum of squared frequency errors.
Before carrying out the identification, the values of parameters originally assigned to
the model are adopted as initial guesses from which the parameters are modified

iteratively to minimize the objective function.
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6.2.1 ANALYTICAL MODEL

The proposed identification strategy is to develop an accurate model in which
all important cable parameters are involved and updated simultaneously to achieve
consistency between the analytical and measured natural frequencies for many
modes. For this purpose, a precise finite element model, which account for cable
flexural rigidity, sag-extensibility, spatial variability of dynamic tension, boundary
conditions, lumped masses and intermediate springs and/or dampers, has been
formulated in Chapter 3. and is used herein as reference model for parameter
optimisation. This finite element model can be expressed as

MU +CU+KU =F (6.1)
where M, C and K, are mass, damping and stiffness matrices of able, respectively; U
and F are nodal displacement and external force vectors, respectively. The overdot
denotes the derivative with respect to the time r. The matrices M and K are obtained

from the finite element formulation and are implicit functions of cable parameters.

K=K(r,r; ... ry (6.2a)
M=M(r.,r, ...ry) (6.2b)
where r;, r;, ..., r, are the cable parameters. For the undamped free vibration,

Equation (6.1) is reduced into an eigenvalue problem

Ko, =\, Mo, 6.3)

where A, is the jth order eigenvalue and ¢; is the corresponding eigenvector. The

circular frequency w; of the cable is obtained as

@, =\, (6.4)

The natural frequency is obtained as
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f=oi2xn (6.5)
Equations (6.2) to (6.5) define an implicit relation between the natural frequencies

and the cable parameters, i.e.,

Si=f(H,EL Ly, Ly, m, EA, GA, GJ, k) (6.6)
where H, El, L., Ly, m, EA, GA, GJ and k denote the horizontal component of cable
tension, the flexural rigidity, the horizontal and vertical projections of cable length,
the mass density per unit cable length, the tension rigidity, the shear rigidity, the

torsional rigidity, and the stiffness of intermediate support/connection, respectively.
6.2.2 PARAMETER IDENTIFICATION

The parameter identification is defined as a nonlinear least-squares problem

with the following cost function

J= i Wj(fi-!;:u ‘ft{ms)z 6.7)

=l
where, f/;, and fJ;,; are the analytical and measured natural frequencies of the Jjth

mode; w; is the weight factor of the error at Jjth mode, and n is the number of
measured natural frequencies. Due to high flexibility of bridge cables, it is easy to
measure several tens of natural frequencies for one cable from ambient vibration
tests. All these measured natural frequencies are incorporated into Equation (6.7) for
cable parameter identification. The analytical frequencies, S =12, .., n), is
obtained from Equation (6.6), which has encoded into a computer program to define
the implicit relation between the frequency and the parameters. A precise analytical
model is necessary here to accurately predict high-order modal frequencies for
identification use. In this study, the NLS problem is solved by the function Isqnonlin

in the optimization toolbox of Matlab®, which is used for iterative solution of the
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nonlinear least-squares problem (6.7) by means of the interior-reflective Newton
method (MATLAB user’s manual — version 6.0, 2000). The convergence was defined

when the change in the input (parameters) is less than a tolerance of 10°S.

6.3 IMPLEMENTATION ISSUES

The implementation issues of the proposed identification strategy are
explored in detail by taking the Dongting Lake Bridge as an example. The Dongting
Lake Bridge is a three-tower cable-stayed bridge with two main spans of 310 m each.
The bridge locates at the influx of the Dongting Lake into the Yangtze River, where
the ten-minute-averaged mean wind speed of 30-year return period is 29 m/s and the
maximum mean wind speed recorded is 28 mv/s. Since its open to traffic in the end of
2000, the bridge has experienced severe wind-rain-induced vibration (strong
oscillations under low wind speed and moderate rain) several times. The frequent
occurrence of the wind-rain-induced oscillation has worried of the owner. At present,
a project on full implementation of semi-active magneto-rheological (MR) dampers
to totally about 200 stay cables in the bridge for wind-rain-induced vibration control
is in progress (Ko et al. 2002). Working towards this objective, a series of in-situ
vibration experiments have been carried out for several typical cables to understand
actual dynamic performance of the cables before and after using MR dampers. In the
following, the ambient vibration measurement results of a 115 m-long stay cable
(denoted as A11-N) with and without MR dampers and the corresponding cable
tension and parameter identification results by using the proposed method are

described.
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6.3.1 AMBIENT VIBRATION MEASUREMENT

Ambient vibration response of cable All1-N was measured by four
accelerometers, two being deployed at 3.9 m away from the cable-deck connection
point respectively for in-plane and out-of-plane response measurement; and the other
two being deployed at 5.1 m away from the cable-deck connection point respectively
for in-plane and out-of-plane response measurement. The measurement data in
January and February 2001 are reported here. A notebook-PC-based data acquisition
system was used in the field and the ambient vibration response of the cable was
recorded more than one hour for each measurement. Signals from accelerometers
were filtered through an anti-aliasing filter with a truncating frequency of 100 Hz and
recorded at a sampling frequency of 500 Hz. Oscillations monitored during these
tests were excited by ambient wind and traffic flows and thus included a wide range
of frequencies rather than just several lower frequencies.

The field test data are analyzed to investigate the cable modal properties. A
typical time history of the acceleration at the monitoring points is shown in Figure
6.1. The power spectra of the acceleration response are obtained by using FFT with a
Hanning window to mitigate the power leakage. Two typical plots of the power
spectral density functions of the acceleration response are shown in Figure 6.2. The
natural frequencies are obtained by picking up the frequencies corresponding to the
peaks in the response power spectra. It is obvious in Figure 6.2 that the power
spectra are capable of providing the cable natural frequencies except for those modes
in the vicinity of their nodes the monitoring accelerometers located; i.e. for those
frequencies near 35 Hz or 85 Hz in Figure 6.2(a) and frequencies near 25 Hz, 60 Hz,
or 100 Hz in Figure 6.2(b). Nevertheless, with the power spectra from two different

locations all the natural frequencies from DC to 100 Hz of the vibration modes can
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be obtained. Two characteristics of the cable dynamic property are observed: i) the
cable exhibits an extremely high flexibility, i.e. at least the first 60-80 order vibration
modes with a frequency range of 100 Hz are excited under ambient excitation from
low wind speed and light traffic flows; ii) the modal damping ratios are found
extremely low, as indicated by Ko et al. (2002).

Table 6.1 Design parameters of cable A11-N

H(&N) EI(N-m*) L:(m) L,(m) m(kg/m) E4 (Pa-m’) GA (Pam?) GJ(N-m)
2474 936e+5 91.691 68944 S1.8 1.54e+9  5.76e+9 7.04

The natural frequencies of the first 66 in-plane modes and the first 66 out-of-
plane modes were measured for cable A11-N from the ambient vibration
measurements in January 2001 (Subset 1) and in February 2002 (Subset 2). In order
to compare the measured and analytical natural frequencies, a precise three-
dimensional finite element model has been developed for cable A11-N with model
parameters listed in Table 6.1. The measured and analytical natural frequencies of
the cable are shown in Figure 6.3, in which the two subtests measurement results are
denoted by circle and cross, respectively, and found in good coincidence with each
other. That means the ambient vibration tests provided a consistent measurement of
the frequency considering the second subtest was carried out more than one month
later. It is noted in Figure 6.3 that the discrepancy between the analytical results
from the taut string theory and the measurements increases when the frequency order
becomes higher. This discrepancy is up to 30% for the highest several frequencies
and is unacceptable from an engineering viewpoint. Therefore, it is concluded that
the taut string theory are not suitable for dynamic analysis of cables like the one we
investigated when the higher order frequencies need to be considered. The case for

the analytical results from the FE model formulated in Chapter 3 is much better



compared to the taut string theory, as the discrepancy between the analytical results
and the measurements is almost indistinguishable.

However, errors with a clear trend are still observed through figuring the
absolute and relative errors of the measured and analytical frequencies are shown in
Figures 6.4 and 6.5, respectively. The trend in the absolute and relative errors in
these two figures reveal that there are some modeling errors, characterized by the
smooth curves in Figures 6.4 and 6.5, in the FE model of the cable. The sections
hereafter give detailed discussions on the updating of the FE model and the
effectiveness of such updating in minimizing the errors between measured and

calculated frequencies.
6.3.2 SINGLE-PARAMETER-ESTIMATION

For the purpose of comparison, the single-parameter identification is first
performed. In this case only one cable parameter is taken as the unknown to be
updated while other parameters are kept unvaried in their design values. Before
carrying out the optimization approach, the sensitive and insensitive parameters with
respect to the frequencies need to be distinguished. Figures 6.6(a) and 6.6(b) show
the sensitivity of the cost function with respect to individual parameters with the
weight taking as unit and 1/(fZ,,)?, respectively. It is observed in Figure 6.6 the
cost functions are much more sensitive with regard to four parameters, i.e., the cable
tension H, the cable flexural rigidity EZ, the cable length L, and the cable mass
density per unit length m than other cable parameters, such as tensional rigidity £A4.

Each of the four most sensitive parameters is then corrected with three single-
parameter-estimation (SPE) approaches. In the first two approaches, the parameter
value takes the one corresponding to a local minimum on the cost function values, as

shown in Figure 6.6(a) and 6.6(b). The third approach is to use one single measured
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frequency to give one estimation value of one parameter; i.e. the total 66 natural
frequencies will give 66 estimations for each parameter. The changes of the
parameters between the design and the estimated values from the first two
approaches are shown in Table 6.2 and the statistical properties of parameter changes
from the third approach are shown in Table 6.3. It is observed in Tables 6.2 and 6.3
that with different approaches the estimation results are quite different. The large
standard deviation in Table 6.3 reveals that the differences within the results of the
third approach are great. It is seen that all the errors trends shown in Figure 6.7 are
similar to those given in Figures 6.4 and 6.5. This indicates again the conventional
one-parameter strategy is unable to produce accurate identification results.

Table 6.2 Parameter change by using single parameter correction (in percentage)

parameter  AH/H  AEI/EI ALJL, Am/m
wi=1 -0.606 -3.321 0337  0.769
wi= 1/} 3.28 0207  0.659  2.003

Table 6.3 Statistical properties of parameter changes by using single frequency
estimation (in perentage)

parameter AH/H  AEI/EI ALJL, Am/m
mean 2.04 -0.487 -1.00 -2.02
standard deviation 3.73 1.336 1.24 2.79

How much does the above correction in a single parameter minimize the
errors between the ax;alytical and measured frequencies? The answer can be obtained
from Figure 6.7, in which ‘w; = 1’ and ‘w; = ¥/ correspond to the parameters
taking the values in the second and third rows, respectively, and; ‘mean’ corresponds
to the parameters taking the values in the second row of Table 6.3. The errors shown
in Figure 6.7 are the results after the cable parameters have been updated with the

above three approaches. Figures 6.7(a), 6.7(c), 6.7(e), and 6.7(g) show the errors,
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whereas Figures 6.7(b), 6.7(d), 6.7(f), and 6.7(h) show the cormresponding relative
errors between the measured and calculated frequencies.

Informative and interesting observations are made from Figure 6.7: (i)
Effects of using different approaches are similar in minimizing errors, i.e., no
approach is found prevalent than others; (ii) Effects of updating different parameters
are also similar in minimizing errors, i.e., no parameter is found dominant in model
updating; (iii) Differences exist in the trends of the relative errors by correcting
different parameters. Detailed description of the third observation is as foliows. For
Ly and m, as shown in Figures 6.7(f)) and 6.7(h), respectively, the correction in these
parameters with different approaches just results in a ‘shift’ in the relative errors.
However, for El, different approaches result in a ‘rotation’ of the relative errors, i.e.,
at some frequency order the relative errors seems ‘unchanged’ whereas the higher the
mode order the greater the errors. Both the *shift’ and the ‘rotation’ phenomenon are
observed in Figure 6.7(b) for the cable tension H. It is inferred from these
observations that the convenient one-parameter strategy is unable to produce
accurate identification results by minimizing the errors and the remedy may be a

combined correction in parameters, i.e., updating multiple parameters simultaneously,

as described below.
6.3.3 MULTIPLE-PARAMETER-ESTIMATION

In this case, the four most sensitive cable parameters are taken as unknown
and updated simultaneously by use of the proposed multiple-parameter identification
strategy. All 66 measured natural frequencies are utilized. Table 6.4 shows the
identification results. It is found that the estimation of EI and m are not so sensitive
as those of H and L to the weight factor. The differences between the results by using

the two weight factors are 2.8% for H and 1.0% for L.
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Table 6.4 Change ratio of optimized value to the design value (in percentage)

parameter AH/H  AEVEI  ALJL, Am/m
wi=1 7.4553  -10.5276 1.3859  -2.3320
wi=1f} 46195 -122435 04345 -2.3136

The results of the multiple-parameter identification strategy are compared
with those of the single-parameter identification strategy. Figure 6.8 shows the
frequency errors between the measurement and the FE calculation with cable
parameters resulting from the single-parameter and multiple-parameter identification
strategies. It is evident from Figure 6.8 that the optimized parameters provide an
excellent agreement between the measured and computed natural frequencies for all
66 modes and yield a nearly constant error trend which implies a high confidence
and reliability of identification results. The accurate and reliable values of the
parameters are important in modeling the cable in further dynamic analysis, such as

for research in cable vibration mitigation using MR dampers.
6.3.4 CABLE TENSION ESTIMATION

Based on a study (Zheng et al. 2001) of the influence of uncertainty in
structural parameters on cable tension estimation, it has been concluded that the
single-frequency approach could obtain cable tension evaluation with identical
accuracy as from the muitiple-frequency approach only when there is no error for
other structural parameters and measurement error is small. This conclusion is
experimentally verified here. Taking the previously optimized parameters except for
H as ‘real’ structural parameters, the cable tension is identified again by using each
single frequency. Figure 6.9 illustrates the identification errors in this case and their
comparison with those using design parameters. As expected, when ‘real’ structural

parameters are adopted, the single-frequency strategy can achieve accurate tension
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estimation. It is found that the result from the optimized parameters is much better
than that from the design values. The former is scattered within a range of less than
3% errors compared to the initial value whereas the latter shows a clear trend in
variation and covers a wide range of about 14% errors to the design one.

This implies that a good estimation in one of the cable parameters, such as the
tension, can be made only when other parameters are accurately defined. However,
this is not the case in practice. Therefore, the method presented in the previous
section may serve as a practical and reliable approach for simultaneously identifying

multiple cable parameters, including the cable tension.
6.3.5 EFFECTS OF INTERMEDIATE SUPPORTS

The cable under investigation has an attachment with the deck edge when it
stretches to lower anchor and was installed with two MR dampers at a same height
through a 2.5 m-high supporting pole (Ko et al. 2002). Additional stiffness stemming
from these two kinds of attachments was not considered in the previous section and

is addressed in this section.
6.3.5.1 Deck-cable connection

The deck-cable connection is idealized as an equivalent spring connecting the
cable and the deck in the FE model. The stiffness & of the equivalent spring and the
four cable parameters are then identified with the MPE approach and the results are
shown in Table 6.5. The differences between the identification results of cable
parameters using different weights are all less than 1.5%, better than those listed in
Table 6.4. The difference of the equivalent stiffness & is less than 2% between the
results from two weights. This observation further confirms the robustness of the

estimation with respect to the weight in the cost function.
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Table 6.5 Change ratio of optimized value to the design value

(in percentage, except for k)

parameter AH/H AEIEI ALJL, Am/m k(kN/m)
weight: w; =1 5.61 -7.00 1.28 -0.9 9764
weight: w; = 1/ 4.59 -8.33 1.03 -1.38 9584

A comparison between the frequency errors resulting from the estimation
approaches with and without considering the deck-cable connection stiffness is
shown in Figure 6.10. It is noticed in Figure 6.10 that accounting for the deck-cable
connection does not reduce the frequency errors much but improve the distribution of
the errors. The histogram of the frequency errors is shown in Figure 6.11, which
shows characteristics of a normal distribution with the mean and standard deviation
taking 1.5%x107, nearly nothing, and 0.054%, respectively.

The almost zero mean value, the small standard deviation and a normal
distribution of relative errors provide a great confidence of the parameter estimation
given in Table 6.5. Considering the uncertainty of cable parameters, the randomness
of ambient excitation, the noise in measurements, the nonlinearity of cable vibration
and the approximation of FE method, the normal distribution of the relative errors in
the frequencies is reasonably interpreted with the central limit theorem as a result of
all these factors, each of which slightly affect the frequencies. Thus, the parameters
in Table 6.5 can be regarded as two sets of the best estimations of the cable

parameters.
6.3.5.2 Intermediate dampers

To suppress the wind-rain-induced vibration, stay cables of many cable-
supported bridges have been equipped with dampers. The dampers will add not only
damping but stiffness also to the cable. Both the changes in damping and stiffness

will result in the change of cable natural frequencies. However, as stated in Chapter 2,
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the modal damping ratios are quite small even after damper installation on the cable.
Therefore, the effect of the damping on the natural frequencies is ignored, i.e., the
change in the frequency is assumed due to the equivalent spring stiffness of the
damper. Following this assumption, the damper system, consisting of the damper and
its support, is idealized as a spring connection between the cable and the fixed end of
the support. The equivalent spring stiffness k4 of the damper system, the equivalent
spring stiffness k of the deck-cable connection and the four cable parameters are then
estimated with the MPE approach.

The results of the estimation are shown in Table 6.6. It is observed that the
results from different weights vary less than 3%, confirming again its robustness to
the weight in the cost function. An interesting observation in Table 6.6 is that the
stiffness of the equivalent spring of the deck-cable connection is found to be zero,
indicating the installation of the MR dampers has greatly weakened the deck-cable

connection.

Table 6.6 Change ratio of optimized value to the design value

(in percentage, except for k and k)

parameter AH/H  AEI/EI  ALJL, Am/m k(kN/m) ky(kN/m)
weight: wi =1 4.35 -5.01 1.02 -0.5 0 679
weight: w; = I/f? 7.07 -7.74 1.50 -0.91 0 697

A comparison between the frequency errors resulting from the estimation
approaches with and without considering k4 is shown in Figure 6.12. The histogram
of the frequency relative errors is shown in Figure 6.13. It is observed in Figure
6.12 that the consideration of the equivalent spring stiffness of the MR damper
cannot make improvement much in minimizing the frequency relative errors. As
shown in Figure 6.13, the distribution of the errors does not show a characteristic of

normal distribution. All these imply that the simplification of the MR damper as a
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spring may be not enough in modeling real damper behaviour. However, by
comparing Tables 6.4, 6.5 and 6.6, it is found that the effects of the deck-cable
connection and the intermediate damper are not significant in the estimation of cable
parameters. Based on the histograms shown in Figures 6.11 and 6.13, it is noticed
that simplifying the deck-cable connection as a spring is quite good whereas the
same simplification is not so reasonable for the MR damper system. Detailed

considerations are in need for modeling the dampers in further researches.

6.4 SUMMARY

By using field measurement data, the parameters of a stay cable in a real bridge are
identified. The nonlinear least squares (NLS) problem is constructed by minimizing
the weighted sum square of errors between the frequencies from measurements and
finite element model. Both single- and multiple-parameter-estimation approaches are
investigated to evaluate the effects of parameter and weight sclections on the
identification results. With respect to the cost function, the sensitivity of parameters
is investigated and the insensitive ones are treated as constants in the estimation. The
accuracy of cable tension estimation by using different methods is discussed. Based
on the studies in this chapter, following conclusions are made: (i) one to two points
monitoring in cable ambient vibration testes are sufficient for frequency
measurements and dozens of frequency can be obtained from the tests; (ii) Single
parameter updating cannot eliminate systematic errors between the measured and
analytical frequencies. That means no prevalent approach or parameter is found in
the single-parameter-estimation approach; (iii) The multiple-parameter-estimation
approach significantly decreases the errors between the analytical and measured

frequencies; (iv) The estimation of the tension, H, can be made only after other
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parameters have been accurately evaluated; (v) For both the multiple parameter and
single paraxﬁeter cases, it is found that an accurate estimation is not sensitive to the
weight of the cost function; (vi) Considering the effects of intermediate supports
does not make a significant improvement in minimizing the frequency errors but

enhances the confidence of the estimation.
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CHAPTER 7

PARAMETER ESTIMATION OF STRUCTURAL
CABLES USING AMBIENT VIBRATION DATA:

GLOBAL OPTIMIZATION

7.1 GENERAL DESCRIPTION

This chapter focuses on the technical details of global identification of cable
parameters in both simulation and real circumstances. The simulation studies are
carried out for two purposes: firstly, to show the characteristics of the cost function
surfaces under different noise levels and using different number of frequencies; and
secondly, to obtain the statistical properties and relationships of cable parameters
when uncertainty should be considered. In real circumstances three actual cables, i.e.,
a moderate long, 114 m, stay cable of the Dongting Lake Bridge, Changsha, P. R.
China, an extremely long, 300 m, stay cable of the Ting Kau Bridge, Hong Kong, P.
R. China, and an extremely heavy (with a large-diameter of 1.1 m) cable of the Tsing

Ma Bridge, Hong Kong, P. R. China, are studied.

It should be noticed that the accuracy and reliability of identified cable
parameters are hardly examinable directly as actually no ‘real value’ of the

parameters are available. Nevertheless, the coincidence of the measured and



calculated frequencies using the optimal parameters may be taken as a good

reference.

7.2 TECHNICAL DESCRIPTION

By using frequency measurements as inputs, the cable parameters are
identified by using the exhaust search method and the genetic algorithm (GA) in the
simulation. The results from both methods are compared to validate the GA in
searching the global minimum for the specified problem. Then the GA is used in real
circumstances. However, as the exhaust search is too time consuming, it is not

adopted for the real cases.

The reason that we take modal frequencies rather than modal shapes or other
measurements as inputs lies in two points: firstly, the modal frequencies can be
obtained conveniently and, secondly, the measurement of frequencies is much more
accurate than other parameters. The experiences from tests on real bridges shows that

more than one hundred frequencies of a cable can be obtained in an ambient

vibration test.

The cost function is defined by the sum of squared errors between the
measured and calculated frequencies. As local minima may exist in the cost function,
the genetic algorithm is selected for its potential in searching a global minimum. In
the present study, the binary encoding with one-point crossover is used in the genetic
algorithm. The population size is 10 and the number of generation is 50. The local

minimum can be obtained by conventional methods, such as the interior-reflective

Newton method.
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A two-parameter case study reveals that multiple solutions exist when the
number of measured frequencies is not enough to define a unique solution even
without noise. The importance of uniqueness of the solution to the estimation of
structural parameters has been recognized early (Udwadia and Sharma 1978) and
was recently stressed by Hejemstad (1996). Non-uniqueness solutions may take

barrier in searching a real solution for parameter identification problems.

The parameters of the three real cables are identified with the proposed
method and the distribution of the error/noise in the frequencies is also revealed. The

proposed method may serve as a general approach for cable tension estimation based

on frequency measurements.

7.2.1 GENETIC ALGORITHM

As mentioned in Chapter 2, the genetic algorithm is one type of natural
method for global optimization. It consists a subset of evolutionary algorithms
modeling biological processes to optimize highly complex cost functions. The

genetic algorithm can be concisely described as followings.

The mechanisms that link a genetic algorithm to the problem it is solving are
encoding and function evaluation. Encoding is to encode solutions of the problem on
chromosomes. Function evaluation is to return a measurement of the worth of any

chromosome in the context of the problem.

Many techniques for encoding solutions have been invented by researches.
Among them are the bit string encoding, the real number representation and the
order-based representation. The selection of a technique depends on the problem to
be solved and the genetic algorithm to be used. A certain amount of art is involved in

such a selection and, basically, no one technique works best for all problems.
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The function evaluation takes a chromosome as input and returns a number
that is a measure of the chromosome’s performance on the problem to be solved. The
number returned from the function evaluation provides a measure of fitness that the

genetic algorithm uses when selecting parents and carrying out reproduction.
A genetic algorithm mainly contains following steps (Davis 1991):
1. Initialize a population of chromosomes;
2. Evaluate each chromosome in the population;
3. Create new chromosome in the population.

4. Delete members of the population to make room for the new

chromosomes;
5. Evaluate the new chromosomes and insert them into the population;
6. Iftime is up, stop and return the best chromosome; if not, go to 3.

Following this process of simulated evolution, an initial population of
chromosomes will improve as parents are replaced by better and better children. The
best individual in the final population produced can be a highly-evolved solution,
which will be a good approximation of the real solution, or probably be rightly the

real solution, to the problem.

7.3 NUMERICAL SIMULATION

At least two problems may arise when discussing the solution of an
identification problem. Firstly, does a unique solution exist? Secondly, if a unique
solution exists, is it the real solution of the problem? These two problems are studied

in this section under different conditions. The effect of the number of modal

7-4



frequencies and the effect of different noise levels in the frequency measurements are
investigated. In the two-parameter experiments, the global minimum is obtained on a
discretized mesh, which allows exhausting search within endurable computational

time.

7.3.1 SOLUTION UNIQUENESS

Cable All-N of the Dongting Lake Bridge is used as an example to
investigate uniqueness of the solution and distribution of multiple solutions, the
contours of the cost function are obtained under different noise levels and using
different number of frequencies, as shown in Figures 7.1 to 7.4, in which the triangle
indicates the global minimum. The cable parameters concerned are the tension A and
the flexural rigidity EI. The values of the two parameters are assumed to be within a
range around the design ones, i.e, Hy(1+16%) for H and E1¢(0.68+16%) for EI, where
Hy and EI are the design values of H and EI, respectively. Both parameters are

assumed to take only discretized values on a 32x32 mesh of the specified region.
7.3.1.1 Noise-free measurements

The results of investigation on five selections of the number of frequencies of
the in-plane modes measured are shown in Figure 7.1, in which the evolution of the
multiple solutions to a unique one is clearly revealed. When the number of the
measured frequencies varies from two to ten, the location of the minima of the cost
functions on the H-EI plane almost does not change. A further increase in the number
of the frequencies greatly changes the location of the minima. In the twenty
frequencies case, all the three local minima are located within 10% from the El, and
0.7% from the Hj. It is noticed that the case with the most frequencies (fifty

frequencies) give a unique solution, and that it is the only one does so. Generally, the
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more measurement frequencies provided the narrower the multiple solutions

emerged, so that it is always better to have more frequencies measured.

Although multiple local minima exist on the discretized mesh, the global
minimum is always the real solution, which is the only one gives a zero objective
value. These results suggest that while it is possible to identify the correct solution
using an enough number of measurement frequencies, the task may be corrupted by

those solutions with local minimums.
7.3.1.2 Slightly contaminated measurements

The case with slightly contaminated measurements is examined. Though
cases with a larger number of measurement frequencies in Figure 7.2 again obtained
the real solution, the cases with two and five frequencies failed to do so, as shown in
Figures 7.2(a) and 7.2(b). That means the resuits by using five or less frequencies
are quite sensitive to noise. In recognizing the standard deviation of the noise is only
0.05% whereas the results will have a relative error of 10% for EJ in Figure 7.2 (a)
and 3 % for EI in Figure 7.2 (b), using only two to five frequencies for parameter
identification is obviously not reliable. The errors in the identified parameters
become larger with further increase in noise for these two cases. So that the results of
these two cases are no longer presented hereafter when the noise becomes more

severe.
7.3.1.3 Moderately contaminated measurements

When the frequencies were moderately contaminated by noise, as considered
here for ¢ = 0.1% and ¢ = 0.2%, two more interesting phenomena need to be
stressed. Firstly, it is observed in Figure 7.3 (b) that the global minimum may not

necessarily locate closer to the real solution of the objective function than a local
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minimum does. That means even under exhausting search, the solution found is even
not a good approximation for the real parameters. Secondly, there is a trend that
some local solutions may disappear when the noise become large, as shown in
Figures 7.3(c) and 7.3(d). However, contours of the cost function are similar to those
shown in Figure 7.1, in which no noise is present. We can find in Figure 7.3 that the
case with ten frequencies, fails to identify the real solution. Nevertheless, the cases

with twenty and with fifty frequencies still perform well.
7.3.1.4 Severely contaminated measurements

Under high noise levels, though only one solution is there in both Figures 7.4
(b) and 7.4(d), it is obviously the solution is not the rea! one. In fact, as shown in
Figure 7.4, when the noise becomes great, all cases fail to estimate the parameters
properly. However, the case using fifty frequencies still shows a good performance
from the aspect that it provides good approximations for the two noise levels, within
one percent in A and 5 percent in £/ when o = 1%, and within one percent in A and

fifteen percent in £/ when o = 5%,
7.3.2 STATISTICAL ANALYSIS

7.3.2.1 Cable parameters

The design values of cable parameters, i.e., the horizontal component of cable
tension, A; the elastic modulus, E; the cross sectional area, 4; the mass per unit cable
length, m; the horizontal and vertical projections of cable length, L, and L, of cable
All-N of the Dongting Lake Bridge are given in Table 7.1. These parameters are

used in the numerical model as ‘real’ parameters.

7.3.2.2 Calculated frequencies



The calculated frequencies of the first fifty in-plane modes of the cable are

shown in Table 7.2.
7.3.2.3 Monte Carlo method

The Monte Carlo method is adopted to investigate the statistical properties of
the identified cable parameters, or parameter errors, and their relationship. Random
numbers are generated by using the command RANDN of the Matlab® software.
One sample of noise with standard normal distribution is shown in Table 7.3. The
mean and standard deviation of the sample are 0.0565 and 0.7559, respectively. The
random numbers with standard normal distribution are then conveniently converted
into a sample of noise with a general normal distribution characterized by standard
deviation ¢ and mean value p. The ‘measured’ frequencies are numerically generated

from

Jueai = freaci (1+8;) (1)

where frea i is the natural frequency of the ith mode computed from the finite
element model with parameter values given in Table 7.1; and €; is the noise for the
ith mode. The normally distributed relative errors are characterized by a standard

deviation o, and mean value . In the following cases, p. is assumed to be zero.

The calculated frequencies of the cable with known parameters are
contaminated by noise with presumed distribution. A high level of noise under the
same distribution enables the statistical analysis of the identified cable parameters.
Then the relationship between the noise level and the reliability of the identified
parameters is established under a statistical meaning. The correlation between the
errors of different parameters is also investigated by calculating the correlation

coefficients.
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The ‘real’ frequencies are then contaminated by noise and regarded as
‘measured’ frequencies, which are used to identify the cable parameters. As indicated
previously, when the ‘measured’ frequencies contains noise, the global minimum of
the cost function may not necessarily indicate the ‘real’ solution. In other words, the
identified parameters will possibly deviate from their ‘real’ values. Noting that such
a deviation is essential in the identification problem when uncertainty cannot be
avoided, it is reasonable to make statistical estimation other than a point-estimation

on the cable parameters. To achieve this, random simulation should be used.

Generally, the number of independent tests should be large enough for carrying
out statistical analysis by using the Monte Carlo method. In the present study, the
number of independent tests is taken as 1000, that there should be one thousand tables
similar to Table 7.3 to show the noise used in such a simulation process. With one
thousand independent identifications, the statistical properties of the cable parameters

can be conveniently obtained.
7.3.2.4 Statistical property of parameter errors

Four noise levels, i.e., 6. = 0.5% 1%, 2% and 5%, are considered in the
simulation. The cable parameters are identified one thousand times under each noise

level. Both the exhaust search and the genetic algorithm (GA) are used to identify the

cable parameters.

The histograms of the relative errors of the identified parameters by using the
exhaust search and the genetic algorithm are shown in Figures 7.5 to 7.12 and
Figures 7.9 to 7.20, respectively. Figures 7.21 and 7.22 show the relationship
between the relative errors of the cable tension and flexural rigidity with different
number of measured frequencies used. The mean values and standard deviations of
the relative errors of the identified parameters are given in Tables 7.4 to 7.7.
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Correlations between relative errors of identified parameters are listed in Table 7.8

under different noise levels.

As the noise is generated under a presumed normal distribution the identified
cable parameters are expected to be normally distributed provided that the noise is
small enough to assure a linear relationship between the parameter errors and the
errors in frequencies. This assumption is acceptable in most of the cases but should be

rejected in some special cases, as interpreted below.

In Figures 7.5 and 7.6, it is observed that the cable tension errors are obviously
normally distributed when the standard deviation of errors is not greater than 1.0%.
This means that when the noise is small enough, i.e., in the present cases with a
standard deviation not greater than one percent, the cable parameters can be identified
by using both twenty and fifty frequencies while the latter produces smaller standard
deviation, indicating superiority to the former. The mean values and standard
deviations of the relative tension errors are listed in Tables 7.4 and 7.6, respectively.
The mean values of the relative errors are found to be almost zero. The standard
deviation is found to be 0.25% when taking o, =0.5% and using fifty frequencies.
This means that there is a 97% confidence that the relative error of the identified cable

tension will be within 0.75%.

In Figures 7.7(a) and 7.8(a), the histograms no longer show a normal pattern
when taking only twenty frequencies for identification. However, as seen in Figures
7.7(b) and 7.8(b), the results from fifty frequencies still show a normal distribution
with mean values and standard deviations listed in Tables 7.4 and 7.6. The standard
deviation is found to be 0.80% when taking o, =2% and using fifty frequencies. This
means that there is a 97% confidence that the relative error of the identified cable

tension will be within 2.4%, still good enough from the viewpoint of engineering.
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Similar observations are made in Figures 7.9 to 7.12 for the flexural rigidity
relative errors. But the standard deviations of errors of the flexural rigidity are much
greater than those of the tension by comparing Table 7.6 with Table 7.7. In fact, as
revealed in Figures 7.21 and 7.22, the errors in the two parameters are dependent on
each other in a statistical way. A linear relationship is built up by fitting the points on
the error in plane of H and EI. It is noticed that the relationship between the errors of
two parameters are dependent on the number of the frequencies used. Using only
twenty frequencies the error in flexural rigidity is about twenty times the error in
tension while only five times when using fifty frequencies. The correlation
coefficients between the two errors are greater than 0.95, confirming the relationship
of the errors in H and EI It is noticed that both the number of frequencies used and

the level of the noise do not affect the correlation coefficients much.
7.3.3 CASE STUDIES ON THREE REAL CABLES

The design value of the parameters of three cables are listed in Table 7.10 for
cable A11-N of the Dongting Lake Bridge, Table 7.11 for a Tsing Yi side span cable
of the Tsing Ma Bridge, and Table 7.12 for a longitudinal stabilizing cable of the
Ting Kau Bridge. As cable A11-N of the Dongting Lake Bridge is a cable with
moderate length and cross section area, it is regarded as a ‘Typical’ stay cable used
in cable-stayed bridges and referred as Cable T (Typical); the Ting Yi side span
cable of the Tsing Ma Bridge is characterized by the largest cross section area around
the world, consequently possessing the heaviest self-weight in stay cables, and
referred as Cable H (Heaviest); the horizontal stabilizing cable of the Ting Kau
Bridge is the longest cable ever used in cable-stayed bridges and is referred Cable L

(Longest).
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The calculated and measured frequencies of the three cables are listed in
Tables 7.13 to 7.15. The tables list 66 frequencies for Cable T, 18 for Cable H and 55
for Cable L. The number of frequencies is dependant on the conditions and targets of
field measurements. The measured frequencies are obtained from the power
spectrum of acceleration response by using the FFT technique. The time histories of
the response are all obtained by ambient vibration tests with time duration of one
hour and at specified sampling frequencies, i.e., 500 Hz for Cable T, 25.6 Hz for

Cable H and Cable L, respectively.

As there are no methods for accurately measuring cable tension forces (As
reviewed in Chapter 2) in most cases, it is difficult to validate directly the proposed
method. However, it is possible to make indirect validation, e.g., the cable tension
and other cable parameters are believed to be accurately identified when the
calculated frequencies from the model based on these parameters coincide with the

measurements.
7.3.3.1 Dongting Lake Bridge: a typical stay cable

Cable T is cable A11-N of the Dongting Lake Bridge. The identified cable
parameters are listed in Table 7.10, in which the identified flexural rigidity is found
to have the largest deviation, -8.33% from the design one. The error in cable tension

is 4.59%, in cable length 1.03% and in cable mass —1 .38%.

Figure 7.23 shows the distribution of frequency relative errors with respect to
the mode order. It is noticed in this figure that the errors are all lower than 0.2%,
which demonstrate that the validity of the cable model and the accuracy of the
identified parameters. Figures 7.24 and 7.25 show the probability and the histogram
of the errors. It is observed that the normal distribution, indicated respectively by the

solid line and solid curve in Figures 7.24 and 7.25, respectively, is quite good for
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describing the errors. Considering the central limit theorem, the normal distribution
of the small errors, not greater than 0.2%, can be interpreted as a result of many

factors, which slightly affect frequency measurements and calculations,
7.3.3.2 Tsing Ma Bridge: an extremely heavy cable

Cable H is the Tsing Yi side span cable of the Tsing Ma Bridge. The
identified cable parameters are listed in Table 7.11, in which the identified cable
tension is found to have the largest deviation, -2.65% from the nominal value (the
nominal value of the flexural rigidity is obtained by regarding the cable as a solid
steel beam with a cross section area equals the sum of the cross section areas of all
wires.) The error in cable length is -1.14% and in cable mass is 1.63%. The identified

flexural rigidity is identical to the nominal value.

Figure 7.26 shows the distribution of frequency relative errors with respect to
the mode order. It is noticed in this figure that the errors are all lower than 0.3%,
which validate the cable model and indicate the accuracy of the identified
parameters. Figures 7.27 and 7.28 shows the probability and the histogram of the
errors. It is observed that the normal distribution, indicated respectively by the solid
line and solid curve in Figures 7.24 and 7.25, is fairly good for describing the errors.

In fact, the distribution is more like a uniform distribution rather than a normal one.
7.3.3.3 Ting Kau Bridge: an extremely long cable

Cable L is the longitudinal stabilizing cable of the Ting Kau Bridge. The
identified cable parameters are listed in Table 7.12. The identified flexural rigidity is
found to have the largest deviation, -99.99% from the nominal one. The error in
cable tension is 18.85%, in length —0.83% and in mass 0.095%. The large errors in

cable tension may indicate the cable is possibly overloaded from its design value.
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The great errors in the flexural rigidity may mean that the cable wires may not be

compacted.

Figure 7.29 shows the distribution of frequency relative errors with the
respect to mode order. It is noticed in this figure that the errors are all lower than
0.4%, which validate again the cable model and indicate the accuracy of the
identified parameters. Figures 7.30 and 7.31 show the probability and the histogram
of the errors. It is observed that the distribution of the errors is neither normal nor

uniform.

74 SUMMARY

The identification of cable parameters is studied by using both simulation and
real testing data. The simulation study is carried out to show the characteristics of the
cost function surfaces under different conditions and to obtain the statistical
properties of the cable parameters (or cable parameter errors). The real testing data
from three real bridges are used to evaluate the cable conditions (identify cable
parameters). In the identification process, both the exhaust search and the genetic

algorithm (GA) are used for the simulation study and the GA is used for real cables.

The effects of the number of modal frequencies and the noise level on the
solution uniqueness and distribution of multiple solutions are investigated. The
correlation between the errors of different parameters is obtained through calculating
the correlation coefficients. The distribution of frequency errors of three real cables
is discussed. Based on the extensive study on both the simulation and real cases, the
following conclusions are drawn: (i) Generally, the more measurement frequencies

are used as input, the narrower (more accurate) the solutions are distributed. It is
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always better to have more frequencies measured; (ii) Both small and large number
of input frequencies works well when there is no noise or the noise is very small.
However, a large number of frequencies should be employed to achieve reliable and
accurate identification results when the noise level is severe. (iii) The exhaust search
and the genetic algorithm (GA) provide coincident results; (iv) When the noise is
small and normally distributed, the errors in the identified cable parameters are also
normally distributed. However, when the noise is large, the errors no longer conform
to a normal distribution; (v) The correlation between the parameters errors is strong,
indicated by an absolute correlation coefficient greater than 0.95. The correlation
coefficient is hardly affected by the noise or by the number of frequencies; (vi) Case
studies on three real bridges validate the proposed parameter identification method
for different kind of cables. The method may serve as a general approach for
evaluating cable conditions, especially for cable tension calibration in real long-span

cable-supported bridges.

7-15



-30% -20% ~1o% o 0% 20% %
(1}

(a) Frist two frequencies used (b) First five frequencies used

0% 0% o ’ 0% ~20% -10% [ 3 0% 0% 0%

(c) First ten frequencies used (d) First twenty frequencies used

é

»

%

(e) First fifty frequencies used
Figure 7.1 Cost function contours with difference number of frequency

measurements under noise level 6 =0

7-16



(e) First fifty frequencies used

Figure 7.2 Cost function contours with difference number of frequency

measurements under noise level o = 0.05%

7-17



(e) First fifty frequencies and 6 =0.1%: (f) First fifty frequencies and o =0.2%

Figure 7.3 Cost function contours with difference number of frequency

measurements under moderate noise
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Table 7.1 Design parameters of cable A11-N

H EI L. L, M EA GA GJ
kN) Nm’) (@ (m) (kgm) (@Pam®) (Pam}) (N-m)

2474 9.36e+S 91.691 68.944  51.8 1.54e+9  5.76e+9 7.04

Table 7.2 Calculated frequencies of cable A11-N of the Dongting Lake Bridge

Mode Order 1 11 21 31 41
+0 1.0815 11.9541 23.3745 35.7941 49.6130
+1 2.1539 13.0638 24.5644 37.1069 51.0855
+2 3.2323 14.1794 25.7648 38.4341 52.5757
+3 43118 15.3015 26.9761 39.7762 54.0841
+4 5.3936 16.4304 28.1986 41.1333 55.6108
+5 6.4778 17.5667 29.4329 42.5059 57.1562
+6 7.5651 18.7108 30.6793 43.8944 58.7206
+7 8.6558 19.8632 31.9383 45.2990 60.3043
+8 9.7506 21.0243 33.2101 46.7200 61.9076
+9 10.8498 22.1946 34.4953 48.1579 63.5308
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Table 7.3 One sample of noises with standard normal distribution

Mode Order 1 11 21 31 41
+0 -1.0106 0.0000 0.5689 0.6232 0.3899
+1 0.6145 -0.3179 -0.2556 0.7990 0.0880
+2 0.5077 1.0950 -0.3775 0.9409 -0.6355
+3 1.6924 -1.8740 -0.2959 -0.9921 -0.5596
+4 0.5913 0.4282 -1.4751 0.2120 0.4437
+5 -0.6436 0.8956 -0.2340 0.2379 -0.9499
+6 0.3803 0.7310 0.1184 -1.0078 0.7812
+7 -1.0091 0.5779 0.3148 -0.7420 0.5690
+8 -0.0195 0.0403 1.4435 1.0823 -0.8217
+9 -0.0482 0.6771  -0.3510 -0.1315 -0.2656

Table 7.4 Mean relative error of identified cable tension

Twenty frequencies Fifty frequencies
G Exhaust GA Exhaust GA
0.005 -5.00e-6 -2.60e-4 -9.50e-5 -1.35e-4
0.01 -4.95¢-4 -8.75e-4 -5.80e-4 -6.95e-4
0.02 -5.80e-4 -0.0011 -0.0017 -0.0017
0.05 -0.0089 -0.0087 -0.0104 -0.0107
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Table 7.5 Mean relative error of identified cable flexural rigidity

Twenty frequencies Fifty frequencies
Ge Exhaust GA Exhaust GA
0.005 -0.0114 -0.0066 -0.0097 -0.0094
0.01 -0.0051 0.0016 -0.0092 -0.0086
0.02 -0.0203 -0.0105 -0.0099 -0.0105
0.05 -0.0248 -0.0291 -0.0125 -0.0108

Table 7.6 Standard deviation of relative errors of identified cable tension

Twenty frequencies Fifty frequencies
Cc Exhaust GA Exhaust GA
0.005 0.0039 0.0043 0.0025 0.0026
0.01 0.0072 0.0075 0.0040 0.0041
0.02 0.0108 0.0110 0.0080 0.0080
0.05 0.0131 0.0131 0.0194 0.0196
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Table 7.7 Standard deviation of relative errors of identified cable flexural

rigidity
Twenty frequencies Fifty frequencies
G Exhaust GA Exhaust GA
0.005 0.0850 0.0914 0.0103 0.0112
0.01 0.1584 0.1626 0.0201 0.0208
0.02 0.2323 0.2372 0.0409 0.0406
0.05 0.2759 0.2746 0.1003 0.1014

Table 7.8 Correlation between relative errors of tension and flexural rigidity

Twenty frequencies Fifty frequencies
G Exhaust GA Exhaust GA
0.005 -0.994 -0.991 -0.988 -0.973
0.01 -0.998 -0.997 -0.978 -0.976
0.02 -0.996 -0.996 -0.994 -0.991
0.05 -0.965 -0.962 -0.992 -0.992
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Table 7.9 Parameter setting of the genetic algorithm

Number of Population Size Maximum Number of Function
Parameters Generation Evaluation
4-5 20 100 1802

Table 7.10 Parameters of cable A11-N of the Dongting Lake Bridge:

Cable T
Parameters Unit  Design value Identified value Error Relative error (%)
L, m 91.691 92.635 0.944 1.03
L, m 68.944 69.654 0.710 1.03
H kN 2474.000 2587.557 113.557 4.59
M kg/m 51.800 51.080 -0.720 -1.38
EI Nm® 9.36x10° 8.58x10° -0.78x10° -8.33
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Table 7.11 Parameters of Tsing Yi side span cable:

Cable H
Parameters Unit  Design value Identified value Error Relative error (%)
L m 293.184 289.842 -3.342 -1.14
L m 154.738 152.974 -1.764 -1.14
kN 405,838 395,083 -10,755 -2.65
EI Nm?  1.0x10" 1.0x10' 0 0
M kg/m  6.276x10° 6.378x10° 0.102x10° 1.63

Table 7.12 Parameters of the longitudinal stabilizing cable of Ting Kau Bridge:

Cable L
Parameters Unit Designvalue Identified value Error Relative error (%)
L, M 444.396 440.693 -3.703 -0.833
L, m 129.563 128.483 -1.080 -0.833
H kN 1903.546 2262.308 358.762 18.847
EI Nm? 1.0832x10° 149.949 -1.08305x10° 99.986
M kg/m 64.763 64.825 0.062 0.095
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Table 7.13 Frequencies of cable A11-N of the Dongting Lake Bridge

Frequency Error Relative error
Unit Hz Hz Hz Hz Hz % %
Order Mcasured Design Optimized Design Optimized Design Optimized
parameicr parametcr paramcter parameticr parameter parametcer

1 1.111 1.081 1.110 -0.030 -0.001 -2.74 -0.09

2 2.213 2.152 2.212 -0.061 -0.001 -2.74 -0.03

3 3.319 3.231 3.320 -0.088 0.001 -2.66 0.04

4 4,429 4.311 4.430 -0.118 0.001 -2.67 0.02

5 5.543 5.394 5.542 -0.149 -0.001 -2.69 -0.01

6 6.661 6.481 6.658 -0.180 -0.003 -2.71 -0.04

7 7.778 7.572 7.778 -0.206 0.000 -2.65 -0.01

8 8.896 8.668 8.902 -0.228 0.006 -2.56 0.06

9 10.040 9.770 10.031 -0.270 -0.009 -2.69 -0.09
10 11.169 10.879 11.166 -0.290 -0.003 -2.60 -0.03
11 12.299 11.995 12.308 -0.304 0.008 -2.48 0.07
12 13.458 13.118 13.456 -0.340 -0.002 -2.52 -0.01
13 14618 14.250 14.612 -0.368 -0.006 -2.51 -0.04
14 15.778 15.392 15.777 -0.386 -0.002 -2.45 -0.01
15 16.937 16.543 16.950 -0.394 0.013 -2.32 0.07
16 18.127 17.705 18.132 -0.422 0.005 -2.33 0.03
17 19.318 18.878 19.325 -0.440 0.007 -2.28 0.04
18 20.538 20.063 20.528 -0.475 -0.010 =231 -0.05
19 21.759 21.261 21.742 -0.498 -0.017 -2.29 -0.08
20 22.980 22471 22.968 -0.509 -0.012 -2.21 -0.05
21 24.200 23.695 24.207 -0.505 0.006 -2.09 0.03
22 25452 24934 25.457 -0.518 0.005 -2.04 0.02
23 26.733 26.187 26.721 -0.546 -0.012 -2.04 -0.04
24 28.015 27.455 27.999 -0.560 -0.016 -2.00 -0.06
25 29.297 28.740 29.291 -0.557 -0.006 -1.90 -0.02
26 30.609 30.041 30.597 -0.568 -0.012 -1.86 -0.04
27 31.921 31.358 31919 -0.563 -0.002 -1.76 -0.01
28 33.264 32.694 33.256 -0.570 -0.008 -1.71 -0.02
29 34.607 34.047 34.609 -0.560 0.002 -1.62 0.01
30 35.980 35419 35.979 -0.561 -0.001 -1.56 0.00
31 37.354 36.810 37.365 -0.544 0.011 -1.46 0.03
32 38.757 38.220 38.769 -0.537 0.012 -1.39 0.03
33 40.192 39.650 40.190 -0.542 -0.002 -1.35 0.00
34 41.657 41.100 41.629 -0.557 -0.028 -1.34 -0.07
35 43.060 42.571 43.086 -0.489 0.026 -1.14 0.06
36 44.556 44.063 44.562 -0.493 0.006 -1.11 0.01
37 46.051 45.577 46.057 -0.474 0.006 -1.03 0.01
38 47.577 47.113 47.571 -0.464 -0.006 -0.98 -0.01
39 49.103 48.671 49.104 -0.432 0.000 -0.88 0.00
40 50.659 50.252 50.656 -0.407 -0.003 -0.80 -0.01
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Table 7.13 Frequencies of cable Al1-N of the Dongting Lake Bridge (Cont’d)

Frequency Error Relative error
Unit Hz Hz Hz Hz Hz % %
Order Mcasurcd Design Optimized Design Optimized Design Optimized
parameter parameter paramcter paramcter parameter parametcr
41 52.246 51.856 52.229 -0.390 -0.017 -0.75 -0.03
42 53.833 53.483 53.822 -0.350 -0.011 -0.65 -0.02
43 55.420 55.135 55.434 -0.285 0.014 -0.51 0.03
44 57.129 56.810 57.068 -0.319 -0.061 -0.56 -0.11
45 58.716 58.510 58.722 -0.206 0.005 -0.35 0.01
46 60.425 60.235 60.396 -0.190 -0.029 -0.31 -0.05
47 62.012 61.986 62.091 -0.026 0.079 -0.04 0.13
48 63.843 63.761 63.807 -0.082 -0.036 -0.13 -0.06
49 65.552 65.563 65.545 0.011 -0.007 0.02 -0.01
50 67.261 67.391 67.303 0.130 0.042 0.19 0.06
51 69.092 69.245 69.084 0.153 -0.008 0.22 -0.01
52 70.923 71.126 70.885 0.203 -0.038 0.29 -0.05
53 72.754 73.034 72.710 0.280 -0.044 0.38 -0.06
54 74.585 74.970 74.557 0.385 -0.028 0.52 -0.04
55 76.416 76.933 76.428 0.517 0.011 0.68 0.02
56 78.369 78.924 78.322 0.555 -0.047 0.71 -0.06
57 80.322 80.944 80.242 0.622 -0.081 0.77 -0.10
58 82.275 82.992 82.187 0.717 -0.089 0.87 -0.11
59 84.229 85.069 84.158 0.840 -0.071 1.00 -0.08
60 86.304 87.175 86.157 0.871 -0.147 1.01 -0.17
61 88.135 89.311 88.184 1.176 0.049 1.33 0.06
62 90.210 91.476 90.239 1.266 0.029 1.40 0.03
63 92.285 93.671 92.324 1.386 0.039 1.50 0.04
64 94.360 95.897 94.439 1.537 0.079 1.63 0.08
65 96.558 98.154 96.584 1.596 0.026 1.65 0.03
66 98.633 100.441 98.759 1.808 0.126 1.83 0.13
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Table 7.14 Frequencies of Tsing Yi side span cable

Frequency Error Relative error
Unit Hz Hz Hz Hz Hz % %
Order Mecasured Design Optimized Design Optimized Design Optimized
paramectcr parameter parameter parametcr parametcr parametcr

1 0419 0.428 0.425 0.009 0.000 2.15 0.07
2 0.833 0.842 0.835 0.009 0.002 1.08 0.21
3 1.259 1.270 1.259 0.011 0.000 0.87 0.02
4 1.690 1.705 1.690 0.015 0.000 0.89 -0.01
5 2.133 2.149 2.131 0.016 -0.002 0.75 -0.10
6 2.586 2.605 2.585 0.019 -0.002 0.73 -0.06
7 3.058 3.075 3.053 0.017 -0.005 0.56 -0.17
8 3.530 3.561 3.538 0.031 0.008 0.88 0.22
9 4.038 4.065 4.041 0.027 0.003 0.67 0.08
10 4.624 4,588 4.564 -0.036 -0.006 -0.78 -0.13
11 5.120 5.132 5.109 0.012 -0.011 0.23 -0.21
12 5.684 5.699 5.677 0.015 -0.006 0.26 -0.11
13 6.317 6.289 6.270 -0.028 0.000 -0.44 0.00
14 6.906 6.904 6.888 -0.002 -0.018 -0.03 -0.26
15 7.547 7.545 7.533 -0.002 -0.014 -0.03 -0.18
16 8.200 8.213 8.206 0.013 0.006 0.16 0.07
17 8.861 8.908 8.907 0.047 0.017 0.53 0.19
18 9.626 9.632 9.637 0.006 0.011 0.06 0.11
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Table 7.15 Frequencies of the Longitudinal Stabilizing Cable of Ting Kau Bridge

Frequency Error Relative error
Unit Hz Hz Hz Hz Hz % %
Order Mcasured Design Optimized Decsign Optimized Design Optimized
Parameter Parameter Paramcter Paramcter Parameter Parameter

1 0.300 0.290 0.278 -0.011 -0.022 -3.50 -7.200
2 0.408 0.379 0414 -0.030 0.006 <727 1.445
3 0.625 0.574 0.625 -0.051 0.000 -8.14 0.016
4 0.828 0.758 0.829 -0.070 0.00] -8.43 0.145
5 1.039 0.949 1.037 -0.090 -0.002 -8.66 -0.164
6 1.245 1.138 1.244 -0.107 0.000 -8.59 -0.040
7 1.442 1.328 1.452 -0.114 0.010 -7.91 0.687
8 1.656 1.518 1.659 -0.138 0.003 -8.36 0.199
9 1.867 1.708 1.867 -0.159 0.000 -8.53 -0.005
10 2.073 1.898 2,075 -0.175 0.002 -8.44 0.087
11 2.284 2.088 2.282 -0.196 -0.001 -8.56 -0.066
12 2.489 2.279 2.490 -0.211 0.001 -8.47 0.024
13 2.701 2.469 2.698 -0.231 -0.003 -8.56 -0.100
14 2.880 2.660 2.906 -0.220 0.026 -7.64 0.892
15 3.079 2.851 3.114 -0.228 0.035 -7.40 1.120
16 3.323 3.043 3.321 -0.280 -0.002 -8.44 -0.045
17 3.534 3.234 3.529 -0.300 -0.005 -8.49 -0.139
18 3.740 3.426 3.737 -0.314 -0.003 -8.40 -0.072
19 3.945 3.618 3.945 -0.328 0.000 -8.30 -0.010
20 4.145 3.810 4.153 -0.33§ 0.007 -8.09 0.179
21 4.369 4.003 4.361 -0.366 -0.008 -8.38 -0.185
22 4.607 4.195 4.568 0412 -0.039 -8.93 -0.844
23 4.769 4.389 4.776 -0.380 0.007 -1.97 0.151
24 4.980 4.582 4.984 -0.398 0.004 -1.99 0.072
25 5.180 4.776 5.191 -0.404 0.011 -1.80 0.216
26 5.436 4.970 5.399 -0.466 -0.037 -8.57 -0.683
27 5.614 5.165 5.606 -0.449 -0.007 -8.00 -0.126
28 5.825 5.359 5814 -0.466 -0.011 -7.99 -0.184
29 6.040 5.555 6.022 -0.485 -0.018 -8.03 -0.305
30 6.236 5.751 6.229 -0.485 <0.007 -7.78 -0.109
3 6.425 5.947 6.437 -0.478 0.012 -1.44 0.184
32 6.647 6.144 6.644 -0.504 -0.003 -7.58 -0.044
i3 6.859 6.341 6.852 -0.518 -0.006 -1.55 -0.095
34 7.059 6.538 7.060 -0.520 0.001 -7.37 0.014
s 7.270 6.736 7.267 -0.533 -0.003 -1.34 -0.034
36 7.453 6.935 7475 -0.518 0.022 -6.95 0.292
37 7.637 7.134 7.683 -0.503 0.046 -6.58 0.604
38 7.870 7.334 7.890 -0.537 0.020 -6.82 0.258
39 8.092 7.534 8.098 -0.559 0.006 -6.90 0.070
40 8.315 1.735 8.306 -0.580 -0.009 -6.98 -0.106
41 8.504 7.936 8.514 -0.568 0.010 -6.68 0.116
42 8.748 8.138 8.721 -0.611 -0.027 -6.98 -0.306
43 8.937 8.340 8.929 -0.597 -0.008 -6.68 -0.090
44 9.171 8.543 9.137 -0.627 -0.034 -6.84 -0.367
45 9.326 8.747 9.345 -0.579 0.018 -6.21 0.197
46 9.549 8.951 9.553 -0.597 0.004 -6.25 0.041
47 9.749 9.157 9.760 -0.592 0.011 -6.07 0.118
48 9.982 9.362 9.968 -0.620 -0.014 -6.21 -0.140
49 10171 9.569 10.176 -0.602 0.005 -5.92 0.045
50 10.349 9.776 10.384 -0.573 0.034 -5.54 0.333
51 10.555 9.984 10.591 -0.571 0.036 -541 0.345
52 10.783 10.192 10.799 -0.590 0.016 -547 0.152
53 11.005 10.402 11.007 -0.603 0.002 -5.48 0.021
54 11.194 10.612 11.214 -0.582 0.021 -5.20 0.185
55 11.427 10.823 11.422 -0.605 -0.005 ;5397 -0.044
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CHAPTER 8

CONCLUSIONS AND DISCUSSIONS

8.1 CONCLUSIONS

The experiments, analyses, results and conclusions presented in the previous

chapters can be summarized as follows.

Linear dynamic analysis of structural cables

1 A three-dimensional finite element formulation is developed for dynamic analysis of
large-diameter structural cables. The proposed formulation is suited for both
suspended and inclined cables, and allows for the consideration of cable flexural
rigidity, sag-extensibility, spatial variability of dynamic tension, boundary
conditions, lumped masses and intermediate springs and/or dampers. This
formulation provides a good baseline model for accurate identification of cable
tension force and other structural parameters based on the measurement of

multimode frequencies.

2 Parametric studies have been undertaken to evaluate the effects of cable bending

stiffness and sag-extensibility on modal properties, and the relation between the
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natural frequencies and cable parameters for a wide parameter range. The results
show that the cable bending stiffness contributes a considerable influence on the
natural frequencies when the tension force is relatively small, and affects the higher-
mode frequencies more significantly than the lower-mode frequencies. A
comparison study of the computed and measured natural frequencies of the Tsing
Ma Bridge cables shows that it is necessary to take bending stiffness into account
for large-diameter bridge cables in order to obtain an accurate prediction of the
natural frequencies. The predicted higher-mode frequencies for such cables without
considering bending stiffness may deviate 30% from the true value for high-order
modes. The case study of the Ting Kau Bridge cables demonstrates the effect of the
degree of stiffness of attached dampers on the cable modal properties and on the
tension identification accuracy. It is concluded that the tension forces of long-span
large-diameter bridge cables can be accurately evaluated from vibration
measurement only when a precise model accounting for cable bending stiffness,

sag-extensibility and other constraints is utilized in the identification procedure.

Nonlinear dynamic analysis of structural cables

3

A hybrid finite element/incremental harmonic balance method, that eschews
commonly used modal reduction, is developed for anaiysis of nonlinear periodically
forced vibration of inclined cables with arbitrary sag. By taking enough finite
elements and appropriate harmonic terms, the proposed method can obtain accurate
steady-state dynamic response under simple- or multi-harmonic excitation. The

conventional time integration procedure is expensive in seeking frequency response
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curves as it may take a long transient process to reach steady state, whereas the
proposed method directly resolves steady-state solutions. Moreover, the proposed
method is able to completely predict unstable, multi-valued responses, as well as
sub- and super-harmonic resonances in an alternating frequency- and amplitude-
controlled manner. This method can also be explored to evaluate cable internal
resonance in any modal combination when a certain commensurable condition is
met. Due to its computational versatility, this method should be extended to analyze
the interconnected cable system and the cable-damper system, which are widely

adopted in modern cable-stayed bridges.

Numerical analysis results of the Tsing Ma Bridge imply the following conclusions:
(i) The Tsing Yi side-span free cable of the Tsing Ma Bridge exhibits softening
nonlinearity in the tower-cable construction stage, but diverges to display hardening
nonlinearity in the finally completed bridge stage. That is, the bridge cable has
distinctly different nonlinear characteristics in the two stages due to different cable
static tension and configuration; (ii) The steady-state periodic response of the cable
under simple harmonic excitation is not symmetric about the static equilibrium
position. The nonzero mean value (static drift) is significant in the resonant
frequency range; (iii) If the steady-state response of the cable is considered, the
third-order harmonics have magnitudes less than 2% of the total response
amplitudes, and harmonic terms of the 4th and above modes can be disregarded in
the solution process; (iv) The sub-harmonic resonance of the cable can be caused
not only by the primary resonant frequency but also by the higher-mode resonant

frequencies. This may result in pronounced resonant peaks in the low damping case.
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Nonlinear modal interaction and internal resonance of a suspended cable paradigm
are numerically investigated by means of a hybrid 3-D finite element/incremental
harmonic balance method. This frequency-domain solution method eschews
commonly used modal reduction and can accommodate arbitrary harmonic terms.
By taking enough finite elements and appropriate harmonic terms, the proposed
method can obtain an accurate description of the cable nonlinear steady-state
dynamic response characteristics under either simple or multi-harmonic excitation.
This method is suited for both suspended and inclined cables with sag-to-span ratios
not limited to being small, and allows for the consideration of boundary conditions,
lumped masses, supporting motion, and intermediate springs and/or dampers. The
proposed method is promising for the analysis of cable nonlinear modal interactions
(coupling) and internal resonances because it accommodates multi-harmonics and
retains mathematical tractability in the description of spatial degrees of freedom and
multi-modes. Due to its numerical accuracy, this method can also be used in some
situations to verify the solutions obtained from other approximate analytical

methods.

Based on the study of modal interaction and internal resonance characteristics of a
suspended cable paradigm, the following conclusions are drawn: (i) A two-to-one
internal resonance of the cable between the first in-plane mode and the first out-of-
plane mode is revealed; (ii) A second-order super-harmonic resonance of the second
symraetric in-plane mode is found in the cable; (iii) The static drift (zero-order
harmonic component) of the in-plane response at the primary, super-harmonic and

internal resonances is significantly large; (iv) There is no static drift in the out-of-
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plane response of the cable when activated by the two-to-one internal resonance; (v)
Strong modal interactions occur in the transition between the primary and the super-
harmonic resonances; (vi) Response profiles of the cable at the super-harmonic
resonance are significantly different from those at the primary and internal

resonances.

Cable condition assessment

=

Cable parameters are identified by using the nonlinear least squares (NLS) method
with the objective function taking the sum of squared errors between measured and
calculated frequencies. By updating the constitutive parameters other than elements
of stiffness matrix, the physical meaning of the finite element (FE) model is
preserved. Both single- and multiple-parameter estimation procedures are used to
evaluate the effects of parameters and weight selection on the estimation of
parameters. Based on a case study of a real cable from the Dongting Lake Bridge,
the following conclusions are made: (i) one to two point monitoring in cable
ambient tests provide consistent results in the frequency measurements and dozens
of frequencies can be obtained from the tests; (ii) Single parameter updating,
whether employing different procedures or choosing different parameters, cannot
help systematic errors between the measured and analytical frequencies. That means
no prominent procedure or parameter is found in the single-parameter-estimation
procedures; (iii) Multiple-parameter estimation (MPE) procedures significantly
reduce the errors between the analytical and measured frequencies, which is reduced

to only one tenth of the errors before identification; (iv) For both the multiple
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parameter and single parameter cases, it is found that a correct estimation is not
sensitive to the weight of the cost function, and; (v) Considering the effects of
intermediate supports does not make significant improvements in minimizing the

frequency errors but improves the confidence in the estimation.

Exploration of methods for cable tension identification. When employing the single-
parameter estimation procedure, the cable tension cannot be accurately identified
unless other parameters are accurately known prior to the identification. However,
multiple-parameter estimation procedures provide a practical way to accurately
estimate the cable tension as well as other cable parameters. Cable tension identified
using the multiple-parameter estimation procedure is more accurate than that

identified from single-parameter estimation procedures.

As the nonlinear least squares (NLS) method can only deal with local optimization
problems, two global optimization methods, i.e. the exhaust search and the genetic
algorithm (GA) are also employed for cable parameter estimation. The identification
of cable parameters is studied by using both simulation and real testing data. The
simulation studies are carried out to show the characteristics of the cost function
surfaces under different conditions and to obtain the statistical properties of the
cable parameters (or cable parameter errors) through the Monte Carlo method. The
real testing data from three real bridges are used to evaluate the cable conditions
(identify cable parameters). In the identification process, both the exhaust search
and the genetic algorithm (GA) are used for the simulation study and the GA is used

for real cables.



10 The effects of the number of modal frequencies used and the noise levels on the
solution uniqueness and distribution of multiple solutions are investigated. The
correlation between the errors of different parameters is obtained through
calculating the correlation coefficients. The distribution of frequency errors of three
real cables is obtained. Based on extensive studies of both the simulation and real
cases, the following conclusions are made: (i) Generally, the more measurement
frequencies used as input, the narrower (more accurate) the solutions distributed, so
that it is always better to have more frequencies measured. For example, for the
cables in the Dongting Lake Bridge, the Tsing Ma Bridge and The Ting Kau bridge,
thirty to more than one hundred modes are used; (ii) Both small and large quantities
of input frequencies works well when there is no noise or the noise is very small.
However, a large quantity of frequencies should be employed to achieve reliable
and accurate identification results when the noise is great; (ili) The exhaust search
and the genetic algorithm (GA) provide close results; (iv) When the noise is small
and normally distributed, the errors in the identified cable parameters are also
normally distributed. However, when the noise is great, the errors no longer follow a
normal distribution; (v) correlation between the parameter errors is strong, indicated
by an absolute value correlation coefficient greater than 0.95. The correlation
coefficient is not affected significantly by the noise or by the number of frequencies
used; (vi) Case studies on three real bridges validate the proposed parameter
identification method for different kinds of cables. The method may serve as a
general approach for evaluating cable conditions, especially for cable tension

calibration in real long-span cable-supported bridges.



8.2 DISCUSSIONS AND RECOMMENDATIONS

Possible applications based on the present study are to identify the cable tension, to
detect reduction in effective cable cross sectional area, to determine effective cable
length based on ambient vibration tests and to analyze cable nonlinear oscillations, e.g.
parametric oscillation, wind-rain-induced vibration, galloping and wake galloping.

Both local and global optimization tools are used for cable parameter estimation.
Though the interior-reflective Newton’s method works well for the problem considered
in Chapter 6, it is obvious that a local optimization tool, such as the interior-reflective
Newton’s method, will fail to find the global solution of the problems in Chapter 7. For
the two global optimization tools used in the study, the exhaust search is generally too
time consuming to be accepted when the quantity of parameters to be identified is large,
whereas the genetic algorithm is practical for cable parameter estimation.

Practical steps to assess cable conditions developed in the study are: 1) a proper
model, like the one developed in Chapter 3, should be established. The model should be
capable of producing accurate natural frequencies for a real cable providing the cable
parameters are precisely known; 2) obtain the design values of the cable parameters. If
the design values are not available, make an initial guess from experience and assume it
as the design values; 3) obtain the cable natural frequencies from ambient vibration tests.
Suggestions for carrying out a good ambient vibration tests for this purpose are given in
next paragraph. Better results will be obtained if more frequencies are obtained, and; 4)
identify cable parameters by minimizing the errors between the measurements and the

calculation through the genetic algorithm.
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Some experiences from the ambient vibration tests carried out on the Dongting Lake
Bridge may be helpful for new comers. Firstly, the author suggests to measure responses
of more than two points. If response is measured at only one point, those modes, which
have nodes at or near the measurement point, will be missed. When two points are used,
it is suggested to separate them at a distance of about 1/60x(length of cable) with the
lower point located at 1/30x(length of cable) away from the lower cable end to get the
first fifty frequencies. Secondly, the author recommends measuring the response of the
girder and pylon near the cable ends as far as possible. This is because there may be
some coupled vibration modes of the girder-cable-pylon system. Thirdly, the author
suggests to make a rough calculation on the cable natural frequencies through Equation
(2.5) before the test. Based on the calculated frequencies, the anti-aliasing may be
determined by taking a value of about 1.2 to 2 times the frequency of the highest order
mode. Then a sampling frequency of about 2.5 to 5 times the anti-aliasing frequency can
be taken. Finally, it is very important to have a data record with its length long enough.
The record is expected to have a length that can provide about 100 averages at an
overlap of 75% with a high enough frequency resolution in the power spectral density of
the vibration responses.

There are several limitations for the method developed: (i) The multiple-parameter-
identification method is developed for real cables in cable-supported bridges, so that the
method is not readily applicable for those cables used in other situation, such as mining
and forest harvesting; (ii) The multiple-parameter-identification method needs high
order frequencies for multiple parameter estimation. However, in some situations this

requirement is not practical. For example, high order modes of some short stay cables,



which may be 2 or 3 meters long, may not be excited under ambient vibration conditions.
(iii) The proposed method can only deal with constitutive cable parameters. It means the
cable can be defined by several global (constitutive) parameters (EI, H, L,, L,, m and
EA). For physical parameter changes at localized region of the cable, the proposed
method can only provide estimation in an average sense.

In the present study, based on ambient vibration tests the cable condition is assessed
by identifying the cable parameters. Further research in this field should include the
following aspects: (i) To obtain the variation of parameters of structural cables and other
components of a bridge. Information regarding the variation of parameters with time is
helpful for engineers to study why, to what extent and how fast does the cable state
change. Nevertheless, the condition assessment carried out in this study is a static
description on the state of the cable condition at the time the ambient tests were made.
An on-line 24-hour vibration monitoring system for all or typical cables should be built
up to get the variation of cable parameters; (ii) To estimate the service life left for the
cables. To achieve this target, it is necessary to make fatigue analysis of cable wires. (iii)
To incorporate other cable parameter measuring methods with the vibration-based
methods. For example, the cable length may be measured by using a GIS, which would
improve the accuracy of other cable parameters identified through the vibration-based
method developed in this study; (iv) To investigate the effects of environment on cable
conditions. For example, variation in the temperature may change length and tension of
cables; (iv) To assess the condition of cable anchorage. As carried out for this study, the
cable anchorage state should be estimated through in situ tests and the fatigue life of

cable anchorages should also be estimated.
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