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Abstract 

 

As a traditional labor-intensive industry with low-level automation, the production 

control decision-making process of today’s apparel industry mainly rests on the experience 

and subjective assessment of shop floor management or simple computation. Facing the 

increasingly fierce competition and fast changing customer demand, apparel enterprises have 

stringent demands for lowering production costs and shortening the production lead time by 

using systematic and effective methods of production control and decision-making. The 

purpose of this research is to develop intelligent algorithm-based methodologies for the 

production control decision-making process of apparel manufacture.  

 

An effective framework for production control decision-making in an apparel 

manufacturing company was developed through integrating three types of apparel production 

control problems, namely order scheduling at the factory level, apparel assembly line (AAL) 

scheduling at the shop floor level, and AAL balancing at the assembly line level. On the basis 

of genetic algorithms (GA), these three types of problems were formulated mathematically 

and solved by effective methodologies.  

 

The order scheduling problem at the factory level considered multiple uncertainties in 

real apparel production, including uncertain processing time, uncertain arrival time and 

uncertain production orders. The uncertain time was described as continuous or discrete 

random variable. Based on the uncertain processing time of production processes, uncertain 

beginning time and completion time were determined by using the probability theory. A 

genetic optimization model with the variable length of sub-chromosomes was developed to 

generate the order scheduling solution. 

 

A bi-level genetic optimization model was proposed to solve the AAL scheduling 

problem with two orders. It comprised two genetic optimization processes on different levels, 

where the second-level GA (GA-2) was nested in the first-level GA (GA-1). GA-1 generated 
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the optimal operation assignment of each order while GA-2 determined the optimal beginning 

time of each order based on the operation assignment from GA-1. In GA-1, a novel 

chromosome representation was proposed to deal with the flexible operation assignment in 

PBS.  

 

For the AAL balancing problem at the assembly line level, work-sharing, workstation 

revisiting and variable operative efficiencies were considered. A GA-based optimization 

model was developed to solve this problem. In this proposed model, a bi-level multi-parent 

GA (BiMGA) was developed to generate the optimal operation assignment to sewing 

workstations and the task proportions of the shared operation being processed in different 

workstations, and a heuristic operation routing rule was presented to route the shared 

operation of each garment to an appropriate workstation based on the results of BiMGA. The 

learning curve theory was used to describe the change of operative efficiency. 

 

Based on the production data from the real-life PBS, experiments were conducted to 

evaluate the performance of the proposed methodologies. The experimental results 

demonstrate the effectiveness of the proposed methodologies for the production control 

decision-making process of apparel manufacture.  
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Chapter 1 

Introduction 

 

1.1 Background 

1.1.1 Today’s Apparel Manufacturing 

Today’s apparel manufacturing is characterized by short product life cycles, volatile 

and unpredictable customer demands, tremendous product varieties, and long supply 

processes (Sen 2007). In face of the increasingly fierce competition and fast changing 

customer demands, today’s apparel enterprises must keep on looking for ways to produce 

various types of products in shorter lead time with less production costs and higher 

production quality. 

 

To meet the fierce global market competition, various manufacturing strategies have 

been introduced and employed in apparel manufacturing (Sullivan and Kang 1999; Bruce et al. 

2004), including quick response manufacturing, lean manufacturing and agile manufacturing. 

Whichever manufacturing strategy is employed, the performance of apparel manufacturing 

relies greatly on the effectiveness of production control in the factory. 

 

Computer management systems have been adopted to monitor the production status of 

the shop floor in real-world production of some apparel enterprises, including management 

information system (MIS) and enterprise resource planning (ERP) system. These systems 

use computers to manage the resources of enterprises, but they have limited capacity in 
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making an effective production decision. The production data in these systems are obtained 

usually on a daily basis but the real-time production data and the operative efficiencies of 

sewing operators cannot be obtained. Owing to the absence of real-time production data, 

these systems cannot reflect the real-time production status on the shop floor and the 

assembly line.  

 

Despite advances in manufacturing strategies and computer management systems, 

apparel manufacturing remains labor-intensive and has few automation capabilities. An 

entire apparel production undergoes generally multiple production processes such as cutting, 

embroidering, silk-screen, fusing, sewing, finishing, and packaging. The performance of 

apparel manufacturing is determined by the performances of these production processes. In 

real-world production, sewing is the dominant process. According to different garment styles, 

the sewing process of each order can include several to even more than one hundred manual 

sewing operations. The apparel production system, which is also called the sewing system, 

actually concentrates on the production of sewing operations, which directs work flow and 

generates finished garments and is an integration of material handling, sewing operation, 

personnel and equipment. 

 

The apparel production system consists of workstations with different types of sewing 

machines and each workstation is a physical location that accommodates a sewing operator 

and a sewing machine. Each type of sewing machine can include multiple machines. 

Nowadays, the adopted apparel production system usually includes the progressive bundle 
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system (PBS), the unit production system (UPS), and the modular system (Sen 2007).  

 

PBS is a push system in which bundles of work are moved from workstations to 

workstations and is well suited to piecework compensation because operators are normally 

assigned large quantities of work to do in a given time period. Each operator can only 

operate one machine at any time. Each bundle consists of garment parts or garment 

components needed for the completion of some specific operations. For example, a bundle 

for pocket setting might include a shirt front and pockets to be attached. The bundle size 

may range from one part to tens of parts. Each operator receives a bundle of unfinished 

garments and then performs one or more operations on each garment in the bundle. The 

completed bundle is then placed in a buffer with other bundles that have been completed to 

that point where the bundles in the buffer are ready for the next operator in the sequence. 

Large quantities of work in progress are often a characteristic feature of this type of 

production system. This may lead to long throughput time, poor quality concealed by 

bundles, large inventory, and difficulties in controlling the inventory. Moreover, large 

quantities of work in progress make it difficult to track specific orders.  

 

Unlike PBS in which a batch of garment components (bundle) is transported from 

workstations to workstations, the UPS has an automated hanger to transport one garment 

component from workstations to workstations. UPS is an apparel production system which 

responds to competitive pressure from customer demands and increasing global competition. 

Though it basically adopts the characteristics of a PBS with assembly lines, individual piece 
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rate compensation and increased supervisors’ monitoring capabilities, UPS is an efficient 

technique of mass production but not a suitable system for apparel production that has many 

style variations (Bailey 1993).   

 

The modular system is a contained, manageable work unit that includes an empowered 

work team with multiple skills, equipment, and work to be executed. Each unit is called a 

module. Modular units can be used to perform all the operations for a garment or a certain 

portion of the assembly operations, depending on the organization of modules and assembly 

operations. Modules operate as mini-factories with teams, usually five to fifteen people, 

responsible for group goals and self-management. The modular system is recommended for 

any company whose strategy focus is on meeting customers’ wants and needs. The product 

would be one with frequent style changes. Bailey (1993) has suggested that being highly 

typical in apparel manufacturing also hinders the cooperative teamwork approach of the 

modular system. 

 

Though both UPS and modular system are adopted by an increasing number of apparel 

manufacturers, PBS is still the dominant apparel production system in use (Bailey 1993; Gu 

1999; Sen 2007). PBS allows flexible operation assignment. One operation can be assigned 

to multiple workstations and multiple operations can also be assigned to one 

general-purposed machine. Work-sharing and workstation revisiting are the usual assembly 

phenomena in PBS. Work-sharing means that one operation (task) is assigned to multiple 

workstations for processing. Workstation revisiting occurs when the semi-finished product 
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(uncompleted product) revisits the workstation for another operation being processed after 

the product has been processed by other workstations. In other words, the workstation 

performs two or more operations which are not proximate. Moreover, in PBS, two or more 

production orders can be produced in any intermixed sequence or separately in batches, 

which are the features of the mixed-model assembly line and the multi-model assembly line 

respectively (Guo et al. 2006). Obviously, PBS is one type of flexible assembly line having 

the characteristics of both the mixed-model assembly line and the multi-model assembly line. 

The investigation into PBS has greater academic and practical significance comparing with 

other apparel production systems. In this research, the investigated apparel assembly line 

(AAL) denotes the assembly line of PBS. 

 

Though effective production control is very important and helpful in improving 

production and management performances and lowering production costs of factories, as a 

traditional labor-intensive industry with low-level automation, production control of today’s 

apparel industry still depends mainly on the experience of supervisors and managers and 

simple computation. To tackle the ever increasing global competition, the apparel industry 

has stringent demands for lowering production costs and reducing the lead time by using 

effective and efficient methods of production control and decision-making. This research 

investigates production control in apparel manufacturing factories and it emphasizes 

production control decision-making of PBS. 

 

1.1.2 Production Control and Decision-Making 
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Production control is an important area of research for both academicians and 

industrialists. It concerns ensuring that the production department meets its objectives 

(Bolton 1994) so that competitive delivery dates can be offered for products, customers’ 

orders can be delivered on time, effective use is made of all the plants and manpower, and 

there is not too high a build-up of stock or too much work in progress. A generic architecture 

for production control decision-making is shown in Figure 1-1. In some real-world 

production environment, production data, including the information of production orders, 

quantities of various workstations and assembly lines, and the operative efficiency of 

operators, are collected from the assembly lines by various types of methods, including 

manual recording and barcode scanning. Based on the collected production data, the 

production manager makes production decisions to achieve various production objectives. In 

many factories, it is impossible to make timely and efficient production control decisions 

without real-time and accurate production data.  

 

 

Figure 1-1: A generic architecture for production control decision-making 

 

Production control decision-making involves mainly two types of problems: 

production scheduling and assembly line balancing (ALB). Production scheduling is the 

allocation of available production resources over the production time of products while 

optimizing one or more objectives without violating restrictions imposed on the production 
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system. The ALB problem is to assign a set of tasks or operations to a set of workstations so 

that the workload in each workstation is balanced and measures of performance are 

optimized. 

 

In practice, some simple methods or rules are used in production control 

decision-making. For example, the practical assembly line balancing depends mainly on the 

precedence diagram-based manual method and the trial-and-error method (Bhattacharjee and 

Sahu 1987). 

 

The literature on the area of production control is sizable (Doumeingts et al. 1978; 

Cruycke 1979; Doumeingts and Roubellat 1979; Sinha and Hollier 1984; Por et al. 1990; 

Meybodi 1995; Wang et al. 1995; Chan and Chan 2004; Becker and Scholl 2006). Based on 

different research issues, various production control problems have been investigated. 

Production scheduling involves mainly shop scheduling problems (Ramasesh 1990; Cheng 

et al. 1996; Linn and Zhang 1999) and flexible manufacturing system (FMS) scheduling 

(Gupta et al. 1991; Kim et al. 1998; Ben Abdallah et al. 2002; Chan and Chan 2004). 

Assembly line balancing involves simple ALB problems (Baybars 1986; Ghosh and Gagnon 

1989; Scholl and Becker 2006) and generalized ALB problems (Becker and Scholl 2006). 

However, production control for flexible assembly lines, the uncertainties and variable 

operative efficiency on production control have received little attention so far. The 

consideration for flexibility, uncertainty, and variability increases the complexity of the 

corresponding production control problems. In the existing literature, investigation of 
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production control is usually confined to assembly lines or shop floors. It has not been 

considered at a higher level from the viewpoint of factory managers or production planners, 

that is, to consider production control among multiple shop floors or assembly lines at the 

factory level. 

  

A wide range of techniques such as simulation-based techniques (Guley and Stinson 

1980; Ramasesh 1990; Chan et al. 2002), classical optimization techniques (Park and Kim 

2000; Tozkapan et al. 2003), and intelligent optimization algorithms (Metaxiotis and Psarras 

2003; Ying and Liao 2003; Ross and Corne 2005) have been considered as candidates for the 

construction of a production control decision-making model. However, none of the 

algorithms is universally applicable to any production control problems without adjustment 

or modification. The existing algorithms are not applicable to the production control 

problem of flexible assembly lines considering various production realities, such as 

work-sharing, workstation revisiting and production uncertainties. 

 

1.1.3 Production Control Decision-Making in Apparel Manufacturing  

To date, the research on production control decision-making in apparel manufacturing 

has received relatively little attention. Few papers have been published to investigate AAL 

balancing problems (Betts and Mahmoud 1992; Chan et al. 1998; Wong et al. 2006) and 

production scheduling problems (Chen et al. 1992; Bowers and Agarwal 1993; Tomastik et 

al. 1996; Mok et al. 2007) from different aspects.  
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These existing studies aimed at creating a simplified model of the real-life production 

control problem on different assembly lines or shop floors. For example, Vojdani (1997) and 

Mok et al (2007) considered flowshops scheduling for the cutting process; Betts and 

Mahmoud (1992), Chan et al (1998), and Wong et al. (2006) considered the ALB problem in 

different apparel production systems. Yet these studies are far different from the industrial 

practice because many significant factors in practical production situations have not been 

considered, such as flexible operation assignment, variable operative efficiency and 

uncertain processing time. Thus, the corresponding research results are limited and cannot be 

employed in practical production control.  

 

In fact, production control decision-making for today’s apparel manufacturing mainly 

relies on the experience of managers or supervisors. However, these decisions tend to be 

subjective, late, inconsistent and even inaccurate owing to the complexity of problems.  

 

1.2 Problem Statement 

Without intelligent planning, control and integration of the production system, no 

business can be competitive in today’s global marketplace (Sipper and Bulfin 1997). On the 

basis of intelligent algorithms, this research investigates production control decision-making 

methodology for real-world apparel production, which will be implemented by offering 

solutions to the following three types of production control problems, which occur at three 

different management levels, including the factory level, the shop floor level and the 

assembly line level. 
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(1) Order scheduling problem: The scheduling of production orders among different 

shop floors and assembly lines will be investigated at the factory level, while taking into 

account multiple uncertainties, including uncertain processing time, uncertain arrival time 

and uncertain production orders, aiming at determining when and where each apparel 

production process of each order would be executed. The objectives are to maximize the 

total satisfactory level of all orders and minimize their total throughput time.  

 

(2) AAL scheduling problem: The AAL scheduling problem will be investigated at the 

shop floor level considering flexible operation assignment and order preemption. The 

objectives are to minimize the total earliness/tardiness (E/T) penalty costs and maximize the 

smoothness of the sewing production flow, which can be implemented by deciding when to 

start the production of each order and how to assign sewing operations of each order to 

sewing machines. 

 

(3) AAL balancing problem: The AAL balancing problem with work-sharing and 

workstation revisiting will be investigated at the assembly line level. The two objectives are 

to meet the desired cycle time of each apparel production order and minimize the total idle 

time of the sewing assembly line. The variable operative efficiency and its effects on ALB 

balancing results are also investigated. 

 

1.3 Objectives 
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The primary objective of this research is to develop an intelligent algorithm-based 

methodology to deal with production control decision-making for apparel manufacturing 

closer to reality. Based on the three types of production control problems at different 

management levels, an effective and integrated framework for production control 

decision-making will be developed in the apparel factory with assembly lines of PBS, in 

which the following objectives will be reached. 

 

(1) To identify and formulate the production control problems in apparel 

manufacturing mathematically, including the order scheduling problem at the factory level, 

the AAL balancing problem at the shop floor level and the AAL scheduling problem at the 

assembly line level. 

 

(2) To investigate and develop an intelligent algorithm-based methodology for solving 

the order scheduling, which is effective to tackle various uncertainties in real-world 

production, such as uncertain processing time, uncertain arrival time, and uncertain orders. 

 

(3) To investigate and develop an intelligent algorithm-based methodology to deal 

with the AAL scheduling and balancing problems, in which the flexible operation 

assignment, work-sharing, workstation revisiting and variable operative efficiency in PBS 

will be considered. 

 

1.4 Methodology 
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This research implements effective production control decision-making for apparel 

manufacturing by solving three production control problems at three different management 

levels. To solve the three production control problems, different methodologies were 

developed on the basis of genetic algorithm (GA), and are described as follows:  

 

(1) The probability theory and GA were combined to solve the order scheduling 

problem at the factory level. The probability distribution functions were used to describe the 

investigated uncertainties. Uncertain beginning time and completion time of production 

processes were derived firstly by using the probability theory. A genetic optimization model 

with the variable length of sub-chromosomes was then developed to derive the order 

scheduling solution to optimize the objectives. 

 

(2) A bi-level genetic optimization model (BiGA) was developed to solve the AAL 

scheduling problem at the shop floor level. In this algorithm, the first level is to assign 

sewing operations to sewing machines while the second level is to decide on the beginning 

time of processing each apparel production order. To tackle the flexible operation assignment, 

assigning one operation to multiple machines and multiple operations to one machine, a new 

chromosome representation was presented. Corresponding to the proposed representation, a 

heuristic initialization process and modified genetic operators were also proposed.  

 

(3) A GA-based optimization model was developed to tackle the AAL balancing 

problem on the assembly line, which involved two parts. A bi-level multi-parent GA 
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(BiMGA) was developed to determine the operation assignment to sewing workstations and 

the task proportions of each shared operation being processed in different workstations. A 

heuristic operation routing rule was then presented to route the shared operation of each 

garment to an appropriate workstation when it should be processed. To consider variable 

operative efficiency, learning curves were used to describe the change of operative efficiency 

of sewing operators over the accumulated operating time. 

 

1.5 Significance of this Research 

Using intelligent algorithms to make the production control decisions for apparel 

manufacturing, this research is significant in the following aspects:  

 

(1) The first significant contribution of this research is to broaden the investigation and 

enrich our understanding on apparel production control decision-making from the 

perspectives of both academic research and industrial practice.  

 

(2) The MIS or ERP systems in apparel enterprises, which place great emphasis on 

monitoring the production flow from the viewpoint of the factory or enterprise, fail to deal 

with production control on the shop floor or the assembly line. In addition, little research on 

apparel production control has been done. The development of this research will help fill this 

gap in both academia and industry. 

 

(3) The development of this research will help enrich the methodologies of production 
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control decision-making for apparel manufacturing. The proposed methodologies can also be 

used in dealing with the production control problems of other similar manufacturing 

industries. For example, the methodologies of AAL balancing can be extended to the 

balancing problem of the mixed-model assembly line or the multi-model assembly line. 

 

(4) The development of this research is helpful in improving the capability of 

production control decision-making for apparel and other manufacturing processes with 

multi-stage manufacturing processes. The proposed methodologies can generate systematic, 

consistent and optimal (or near-optimal) solutions to the production control decision-making 

process for production management to avoid the reliance on the subjective, inconsistent and 

ad-hoc assessment.   

 

1.6 Structure of this Thesis 

The aim of this research is to develop intelligent production control decision-making 

(IPCDM) methodologies for apparel manufacturing processes. The subsequent chapters will 

detail the research work, and they are summarized as follows:  

 

Chapter 2 provides a comprehensive literature review on the existing research of 

production control decision-making in apparel and other manufacturing industries, including 

various production control problems, techniques for production control decision-making and 

variable operative efficiencies.  
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Chapter 3 identifies some major research challenges of making effective production 

control decisions for general and apparel manufacturing processes. On the basis of these 

challenges, a solution mechanism was proposed and an IPCDM model was set up to deal 

with production control decision-making for apparel manufacturing processes. The model 

involved three different production control problems in three stages of real apparel 

production. Since the intelligence of decision-making was generated by a GA in this 

research, GA is reviewed in the chapter and developed to deal with the flexible operation 

assignment in PBS. 

 

Chapters 4 to 6 investigate respectively three different production control problems in 

three stages of real-world apparel production, namely the order scheduling problem at the 

factory level, the AAL scheduling problem at the shop floor level and the AAL balancing 

problem at the assembly line level. The mathematical models and the GA-based 

methodologies for these problems are presented. By using industrial data from real-world 

apparel factories, a number of experiments were conducted to validate the effectiveness of 

the proposed methodologies.  

  

Finally, Chapter 7 summarizes the findings and limitations of this research. Further 

research directions are also suggested. 
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Chapter 2 

Literature Review 

 

As an important and necessary process in production, production control and its 

decision-making have drawn much attention in both academia and industry. This chapter is to 

review existing achievements of the general industry and the apparel industry in the field of 

production control. In section 2.1, research topics of production control are reviewed. 

Algorithms and techniques used in production control decision-making are reviewed in 

section 2.2. Previous research in apparel production control and variable operative efficiency 

are reviewed respectively in sections 2.3 and 2.4. Lastly, conclusions are drawn from the 

previous research in section 2.5. 

 

2.1 Production Control 

The production control problem has been considered under the framework of a 

production planning and control system, which is presented and employed to meet various 

manufacturing strategies. Pandey et al. (1995) presented a scheme for an integrated 

production planning and control system. Wang et al. (1996) proposed an experimental 

push/pull production planning and control system to combine the philosophy of just in time 

(JIT) with manufacturing resource planning (MRP-II) by means of the E/T production 

planning method, push/pull control strategy and the ‘suggestions for improvement of 

production line’ function module. Karacapilidis and Pappis (1996) employed an interactive 

model method to build up the production planning and control system in the textile industry. 
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Lima et al. (2006) adopted the multi-agent technique to construct a distributed production 

planning and control system, which can be dynamically adaptable to local and distributed 

utilization of production resources and materials. 

 

Some production control systems have also been introduced, such as Kanban system 

(Sugimori et al. 1977; Huang and Kusiak 1996; Song and Takahashi 1996; Takahashi 2003), 

CONWIP system (Spearman et al. 1990; Ip et al. 2002; Takahashi and Nakamura 2002; 

Framinan et al. 2003), materials requirement planning (MRP) system (Grand and Cook 1983; 

Rushinek and Rushinek 1989; Nakagiri and Kuriyama 1996; Huang et al. 1998), and MRP-II 

system (Wight 1984; Kessler 1991; Turbide 1995). 

 

However, these studies placed much emphasis on providing a framework or mechanism 

for implementing production control and could not generate effective and efficient production 

control decision-making.  

 

In the existing literature, production control decision-making is usually investigated in 

two aspects, including production scheduling and assembly line balancing.  

 

2.1.1 Production Scheduling 

Production scheduling problems arise whenever a common set of resources – labor, 

material, and equipment – must be used to make various products during the same period of 
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time. These problems focus mostly on scheduling for various production systems, such as 

shop scheduling, FMS scheduling, and assembly line scheduling. 

 

Regarding the shop scheduling problem, investigations have been done extensively in 

different shop types, including single machine shops (Chakravarthy 1986; Abdulrazaq et al. 

1990; Biskup 1999; Al-Turki et al. 2001; Yen and Wan 2003; Crauwels et al. 2005), parallel 

machine shops (Darel and Karni 1980; Cheng and Sin 1990; Chen 1996; Mokotoff 2001; 

Mosheiov 2001; Peng and Liu 2004; Tan and He 2007), flow shops (Gupta 1971; Park et al. 

1984; Liao et al. 1995; Hejazi and Saghafian 2005; Gupta and Stafford 2006; Koulamas and 

Kyparisis 2007), job shops (Holloway and Nelson 1974; Kiran and Smith 1984; Ramasesh 

1990; Kuroda and Wang 1996; Ponnambalam et al. 2000; Coello et al. 2003; Zhang and Gong 

2006) and open-shops (Gonzalez and Sahni 1976; Adiri and Aizikowitz 1989; deWerra et al. 

1996; Drobouchevitch and Strusevich 2001; Puente et al. 2003; Senthilkumar and 

Shahabudeen 2006). The details of these research can be found in some comprehensive review 

papers (Blazewicz et al. 1996; Jain and Meeran 1999; Linn and Zhang 1999; Mokotoff 2001; 

Yen and Wan 2003; Hejazi and Saghafian 2005). 

 

FMS has received increasing attention in the last 20 years and has emerged in the last 

decade as one of the important keys to organizational success (Chan and Chan 2004). This 

system is defined as a group of workstations connected together by a material handling system 

producing or assembling a number of different component types under the central control of a 

computer (Okeefe and Kasirajan 1992). It is designed to combine the efficiency of an 
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assembly line and the flexibility of a job shop to best suit the batch production of mid-volume 

and mid-variety of products (Sarin and Chen 1987). FMS scheduling has been extensively 

investigated over the last two decades and it continues to attract interest from both academia 

and industry and much literature has been published (Stecke and Solgerg 1981; Gupta et al. 

1989; Gupta, Evans et al. 1991; Rachamadugu and Stecke 1994; Priore et al. 2001). 

 

The literature involves and considers various scheduling practices in shop and FMS 

production, such as learning effects (Cheng and Wang 2000; Mosheiov 2001; Koulamas and 

Kyparisis 2007), variable processing time (Lin 2001; Cheng et al. 2004; Peng and Liu 2004; 

Zhang and Gong 2006), bottleneck machines (Drobouchevitch and Strusevich 1999; 

Drobouchevitch and Strusevich 2001), production uncertainties (Chen and Chen 2003; Sung 

and Vlach 2003; Sharafali et al. 2004; Xu and Gu 2005; Szmerekovsky 2007), preemptive 

scheduling (Baker et al. 1983; Brucker et al. 1999; Chan and Chan 2001; Azizoglu 2003; Liaw 

2005; Lushchakova 2006), and deadlock avoidance (Ben Abdallah et al. 2002; ElMekkawy 

and ElMaraghy 2003). However, because shop and FMS productions are designed for 

small-scale and medium-scale production tasks respectively, the studies on these topics 

cannot deal with the scheduling of large-scale production tasks of multiple orders with 

different due dates and production processes or operations.  

 

Assembly lines are adopted extensively for medium-scale and large-scale productions in 

numerous industries. However, scheduling of the assembly line has received little attention so 

far. Kaufman (1974) developed an almost optimal algorithm to solve the assembly line 
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scheduling problem in the area of multiprocessor scheduling. Some researchers aimed at 

scheduling mixed-model assembly lines by using different techniques (Vargas et al. 1992; 

Celano et al. 1999; Caridi and Sianesi 2000; Zhang et al. 2000; Sawik 2002; Yu et al. 2006). 

Piramuthu et al. (1994) discussed the scheduling of a flexible assembly line in a circuit board 

assembly plant which used the surface mount technology for inserting electronic components. 

Kyparisis and Koulamas (2002) addressed the assembly line scheduling problem with 

concurrent operations per station and each concurrent operation was performed by a set of 

identical parallel machines. The existing literature is very limited and many issues about 

assembly line scheduling have not been investigated so far. For example, flexible operation 

assignment in PBS has not been considered. The existing research mainly focuses on 

scheduling problems, which do not allow current orders to be preempted on the assembly line. 

However, if rush orders exist, order preemptions can play an important role in meeting 

customers’ delivery dates. Flexible operation assignment and rush orders have to be 

considered in apparel production control because they are usual practices in the make-to-order 

apparel production environment. 

 

The production scheduling problem has also been investigated from other perspectives. 

Ashby and Uzsoy (1995) presented a set of scheduling heuristics to tackle order release, group 

scheduling and order sequencing for a make-to-order manufacturing facility organized into 

group technology cells. Based on a single-machine production system, Charnsirisakskul et al. 

(2004) proposed a mechanism for coordinating order selection, lead-time and scheduling 

decisions, and discussed under what conditions lead time flexibility is most useful for 
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increasing the manufacturer’s profits. Axsater (2005) discussed the order release problem in a 

multi-stage assembly network by an approximate decomposition technique. These studies 

only focused on determining the starting time for different production processes of orders. 

Where the process should be produced has not been considered. Leung et al. (2005) 

investigated the order scheduling problem in an environment with dedicated resources in 

parallel and presented two heuristic algorithms to solve it. Chen and Pundoor (2006) 

considered the order assignment and scheduling at the supply chain level, which focused on 

assigning orders to different factories and exploring a schedule for processing the assigned 

orders in each factory. However, multiple shop floors and multiple assembly lines are set up in 

most factories. The order scheduling problem at the factory level, which schedules the 

production process of each order to the appropriate assembly line, has not been reported so far. 

 

Various objective criteria have also been presented in the literature of scheduling. Hart et 

al. (2005) classified the most frequent objective criteria into two categories, including 

objectives based on complete time and objectives based on due-date. The former involves 

seeking the minimization of maximum complete time (Caprihan and Wadhwa 1997), mean 

flow time (Kravchenko and Werner 2001), total complete time (Leung and Pinedo 2003), and 

maximum flow time (Ambuhl and Mastrolilli 2005); whilst the latter minimizes some quality 

measures such as mean tardiness (Ho and Chang 1991), maximum tardiness (Guinet and 

Solomon 1996), maximum earliness (Mandel and Mosheiov 2001) and maximum lateness 

(Lin and Jeng 2004). With the increasing awareness of the JIT production philosophy, the 

scheduling objective considering E/T penalty cost has attracted more attention in recent years 
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(Gordon et al. 2002; Lauff and Werner 2004). However, most of these studies with the E/T 

cost objective focused on either single machine problems or parallel machine problems with a 

common due date, and few studies discussed multi-machine scheduling and order scheduling 

problems with E/T penalties or with different due dates. Moreover, the scheduling problem 

with a single objective is far away industrial practice and cannot satisfy real-life production 

demand. For example, the workload of each workstation or operator can be quite different if 

the scheduling objective is to minimize the E/T costs only, especially when due dates are not 

tight. Thus, it is necessary to investigate the scheduling problem with multi-objective 

consideration. 

 

2.1.2 Assembly Line Balancing 

The assembly line is designed to produce large volumes of one product, and it divides 

complex tasks into small, easy-to-learn segments that can be repeated over and over. The 

development of the first real example of assembly lines is credited to Henry Ford who 

developed such a line in 1913. The assembly line has since been employed extensively.  

 

The first analytical statement of the ALB problem was formulated by Salveson (1955). 

Since then, the topic of line balancing has been of great interest to academics. Some 

comprehensive review articles were published (Baybars 1986; Ghosh and Gagnon 1989; Erel 

and Sarin 1998; Amen 2000; Becker and Scholl 2006; Scholl and Becker 2006). In the 

literature, the research of the ALB problem is usually classified into four categories: single 

model deterministic (SMD), single model stochastic (SMS), multi/mixed model deterministic 
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(MMD), and multi/mixed model stochastic (MMS). The SMD version of the ALB problem 

assumes dedicated, single-model assembly lines where the task time is known 

deterministically and efficiency criterion is optimized. On the basis of SMD, the concept of 

task-time variability is introduced for the SMS problem which is more realistic for manual 

assembly lines, where the operating time of each worker is seldom constant. The MMD 

version assumes the deterministic task time, but introduces the concept of producing multiple 

products on a single assembly line. Multi-model lines involve multiple products separately in 

batches, whereas mixed-model lines assemble multiple similar products simultaneously. The 

MMS version is the most complex ALB problem, which considers multiple products and 

stochastic task-time.  

 

On a highly automated assembly line, it is usual that the efficiency of processing a certain 

task is deterministic; but on some flexible assembly lines with manual tasks, the operative 

efficiency of each task is seldom constant. The existing literature mainly focuses on the ALB 

problem with the deterministic task time (Helgeson and Birnie 1961; Anderson and Ferris 

1994; Klein and Scholl 1996; Gokcen and Agpak 2006; Kilincci and Bayhan 2006; Wong, 

Mok et al. 2006; Bautista and Pereira 2007; Guo et al. 2007), and only a relative minority 

considers the variable task time which is distributed according to a specified probability 

distribution function. Moodie and Young (1965) assumed that the task time is an independent 

normal variable. Most of the later studies with the variable task time consideration followed 

their assumption (Kottas and Lau 1973; Reeve and Thomas 1973; Kottas and Lau 1981; 

Suresh and Sahu 1994; Guerriero and Miltenburg 2003; Gamberini et al. 2006). There are also 
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some researchers assuming other distributions (Arcus 1966; Sphicus and Silverman 1976; 

Nkasu and Leung 1995). In these studies, however, the change of the task time is stochastic 

and cannot reflect the operator’s efficiency increase caused by repetitive and cumulative 

operations. In recent years, Cohen et al. (2006) have discussed the learning effects on ALB by 

allocating work to stations of an assembly line and showed that in the presence of learning, to 

achieve an optimal objective requires imbalanced allocation of work to stations. The study 

assumes that all operators have the identical learning rate despite the fact that the learning rate 

of each operator is probably different in a real-life production environment. The learning 

effects on various production environments should also be investigated further.  

 

Most of the existing ALB literature is about modeling and solving the simple ALB 

problem which has restricting assumptions with respect to the real-world assembly lines 

(Ghosh and Gagnon 1989; Becker and Scholl 2006; Scholl and Becker 2006). In recent years, 

some researchers have intensified their efforts to identify, formulate and solve more realistic 

ALB problems, the so-called generalized ALB problems, which consider practical production 

characteristics (Becker and Scholl 2006) such as parallel stations, machine breakdown, 

operator absenteeism, U-shaped line layout and mixed-model assembly. Mcclain et al. (1992) 

pointed out that work-sharing can improve the efficiency of the assembly line. Some ways of 

work-sharing on the assembly line were suggested, such as bucket brigade (Bartholdi and 

Eisenstein 1996), D-skill chaining (Hopp et al. 2004), and craft (Hopp and Van Oyen 2004). 

However, work-sharing has received little attention in the existing ALB literature. 
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Furthermore, the ALB problem with workstation revisiting consideration has not been 

reported so far.  

 

A number of technical and economic objective criteria have been introduced in the ALB 

literature. Technical objectives are the traditional dominant choices, which include 

minimizing the following: the number of workstations for a given cycle number (Johnson 

1983; Gokcen et al. 2005), the cycle time for a given number of workstations (Kao 1976; 

Klein and Scholl 1996), the total idle time along the line (Thomopoulos 1970), the balance 

delay (Macaskil 1972), the probability that one or more stations exceed the cycle time 

(Okamura and Yamashina 1979) and the maximal deviation of a station time of any model 

from the average station time per unit (Decker 1993). However, since the mid-1970s, 

economic objective criteria have drawn increasing attention, including minimizing the 

following: combined cost of labor, workstations and product incompleteness (Silverman and 

Carter 1986), the labor cost per unit (Pinto et al. 1978), the inventory, set-up and idle-time 

costs (Chakravarty and Shtub 1985), and the expected total cost which is the sum of labor cost 

and the cost arising from incomplete tasks (Shin 1990). Various ALB problems with multiple 

objectives were also investigated (Malakooti and Kumar 1996; Ponnambalam et al. 2000; 

Pastor et al. 2002; Simaria and Vilarinho 2004). 

 

Though the ALB problem with various production objectives has been studied 

extensively, the mathematical models of the ALB problems for different assembly systems 

and production tasks are different. Formulating and solving the ALB problem closer to reality 
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is the goal researchers have been pursuing. The existing ALB research focuses only on 

assigning tasks or operations to workstations, and does not consider the release time and the 

due date of each order. The consideration on the two factors is very important to meet the due 

dates when multiple orders are processed on the assembly line. 

 

2.2 Techniques for Production Control Decision-Making 

Both the balancing problem and the scheduling problem are optimization problems. A 

wide range of techniques have been investigated as candidates for the construction of these 

problems’ optimal decision-making models, including simulation-based techniques, 

priority-rule-based techniques, classical optimization techniques and intelligent optimization 

techniques.  

 

2.2.1 Simulation-Based Techniques 

Simulation is defined as “a powerful tool for the analysis of new system designs, retrofits 

to existing systems and proposed changes to operating rules” (Carson 2003). In production 

and manufacturing industries, computer simulation has been adopted and emerged as an 

advanced, sophisticated and flexible management analysis tool which is able to take into 

account the complexities and dynamic changes within the production environment. Many 

researchers used simulation-based approaches to make production control decisions (Eilon 

and Hodgson 1967; Rogers and Gordon 1993; Hollocks 1995; Chong et al. 2003; Chan and 

Chan 2004). 
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Several researchers (Harmonosky and Robohn 1991; Harmonosky 1995) reviewed the 

use of simulation in scheduling. Recently, Chong et al. (2003) introduced a simulation-based 

real-time scheduling mechanism comprising off-line simulation evaluation and on-line 

reactive scheduling for dynamic discrete manufacturing.  

 

Using the simulation-based approach to make production control decisions has two main 

advantages. First, it can model the effects of various factors as situation changes, which are 

difficult to be tackled by an analytic method (Stecke and Solgerg 1981). Second, it can 

provide the user with the opportunity of performing exploratory tests upon the schedules 

being produced (Baker and Dzielinski 1960). 

 

The accuracy of a simulation process is limited by the judgment and the skills of the 

programmers (Gershwin et al. 1986). Various simulation software systems (Alan 2007) have 

been developed, such as Extend, OpEMCSS, AnyLogic and ProModel. Of these systems, 

ProModel offers a simulation environment to model manufacturing systems ranging from 

small job shops and machining cells to large assembly lines, FMSs, and supply chain systems. 

It is a Windows-based environment with intuitive graphical interfaces and object-oriented 

modeling constructs, eliminating the need for programming. It combines the flexibility of a 

general-purpose simulation language with the convenience of data-driven simulators (Harrell 

and Price 2002) and has obtained successful applications in many industries (ProModel 

Corporation 2007).  
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In summary, the simulation-based techniques depend mainly on the trial-and-error 

method to generate an appropriate production decision under a specific experimental setting. 

It is difficult for these techniques to be generalized beyond the specific experimental setting 

employed. Therefore, the simulation-based technique has little contribution to the 

methodology of production control decision-making. 

 

2.2.2 Priority-Rule-Based Techniques 

Priority rules are also called heuristic rules, or dispatching rules in production control 

literature, which are probably the most frequently applied heuristics for solving the production 

control problems in practice (Ghosh and Gagnon 1989; Blazewicz et al. 1996). The priority 

rules can be implemented in real time because they do not require much computer (CPU) time. 

 

In production scheduling, priority rules are used for selecting the job to be processed on a 

particular machine. A number of priority rules have been introduced (Haupt 1989; Hunsucker 

and Shah 1992; Weiss 1995; Blazewicz et al. 1996; Sellers 1996; Neumann and Schneider 

1999; Weng and Ren 2006) and comprehensive reviews on these rules are also available 

(Haupt 1989; Blazewicz et al. 1996; Sellers 1996). The most popular priority rules include 

shortest processing time, shortest operation time, earliest due date, first come first served and 

critical ratio rules. 

 

In ALB, the operations are ranked firstly according to certain criteria or priority rules, 

and then assigned to appropriate workstations (Kilbridge and Wester 1961; Kottas and Lau 
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1973; Amen 2000; Scholl and Becker 2006). Amen (2000) divided the priority rules into 

methods using one problem-oriented priority rule and methods using several 

problem-oriented priority rules. The former includes the maximal task time (Tonge 1965), the 

maximal positional weight (Helgeson and Birnie 1961) and the maximal number of 

immediate followers (Tonge 1965). The latter includes the heuristic method of Steffen 

(Steffen 1977), heuristic method of Heizmann (Heizmann 1981), and heuristic method “wage 

rate” of Rosenberg/Ziegler (Rosenberg and Ziegler 1992). 

 

Though the priority-rule-based techniques are easy to understand and implement, they 

have not been proven to be within any range of optimal or even evolving towards an optimal 

solution for complex production control problems. That is, the performances of the 

priority-rule-based techniques are unpredictable for apparel production control problems in 

real-world PBS. 

 

2.2.3 Classical Optimization Techniques 

The classical optimization technique uses an appropriate mathematical description of the 

production control problem that is optimized through the application of an optimization 

algorithm. In general, there are four classical optimization approaches used in solving the 

scheduling/balancing problem. The first one is the integer programming method (Foster and 

Ryan 1976; Graves and Lamar 1983; Pan 1997; Sawik 2004). The second is the branch and 

bound method (Siegel 1974; Conterno et al. 1991; Klein and Scholl 1996; Balasubramanian 

and Grossmann 2002; Tozkapan et al. 2003; Crauwels et al. 2005) which provides limited 
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enumeration of possible schedules allowing the method to be applied to more serious 

problems than complete enumeration. The third is dynamic programming (Roman 1971; 

Ibraki and Nakamura 1994; Lorigeon et al. 2002; Choi et al. 2004), which is also an 

enumeration technique used to search for an optimal solution among the possible solutions. 

And the fourth is the relaxation method (Narahari and Srigopal 1996; Zhang et al. 2000; 

Hwang and Chang 2003; Tang and Xuan 2006) which allows a near-optimal solution to be 

reached with less computation. 

 

Many researchers have investigated the complexity of the scheduling/balancing problem 

from different aspects. It is well known that even a very simple version of the scheduling 

problem is NP-hard (NP stands for non-deterministic polynomial time) and belongs to the 

most intractable problems (Stoop and Wiers 1996; Shakhlevich et al. 2000; Lauff and Werner 

2004). For example, for job-shop scheduling, if the number of machines is two and the number 

of operations per job is also restricted to two, then the problem is computationally easy. Yet as 

long as either three operations per job or more than two machines is allowed, the problem is 

NP-hard. Similarly, whenever the number of jobs is more than two, the problem is also 

NP-hard. Undoubtedly, real-world examples of job-shop scheduling problems are more 

sizeable than these problems. Moreover, Gutjahr and Nemhauser (1964) pointed out that the 

ALB problem also falls into the NP-hard class of combinatorial optimization problems. Leung 

et al. (2005) showed that the order scheduling problem in an environment with dedicated 

resources, when more than two parallel machines and minimizing total completion times are 

considered, is strongly NP-hard. Therefore, it is very difficult for these classical techniques to 
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make an optimal decision for the production control problem because their computational 

time is usually much longer than that the practical applications can afford.  

 

2.2.4 Intelligent Optimization Techniques 

In recent years, some intelligent optimization techniques have become popular and they 

have been used extensively in production control, such as tabu search (Barnes and Chambers 

1995; Tucci and Rinaldi 1999; Al-Turki, Fedjki et al. 2001; Liaw 2003; Liu et al. 2005), 

simulated annealing methods (Vanlaarhoven et al. 1992; Ponnambalam et al. 1999), expert 

systems (Vargas et al. 1992; Oh 1997; Metaxiotis et al. 2002), artificial neural network 

(Willems and Rooda 1994; Jain and Meeran 1998; Chen and Huang 2001; Feng et al. 2003; 

Metaxiotis and Psarras 2003), ant colony optimization (T'kindt et al. 2002; Ying and Liao 

2003; Boryczka 2004; Sun and Sun 2005), genetic programming (Hart et al. 2005), artificial 

immune system (Coello et al. 2003; Hart et al. 2005), and GA (Park and Park 1995; Cheng et 

al. 1996; Cheng et al. 1999; Jain et al. 2000; Chaudhry and Luo 2005; Liu et al. 2006). 

 

Tabu search (Glover 1989; Glover 1990) is a mathematical optimization method which 

belongs to the class of local search techniques and enhances the performance of a local search 

method by using memory structures. Simulated annealing (Kirkpatrick et al. 1983) is a generic 

probabilistic meta-algorithm for the global optimization problem, which simulates the 

annealing process in metallurgy involving heating and controlled cooling of a material to 

increase the size of its crystals and reduce their defects. The expert system (Ignizio 1991), also 

known as the knowledge-based system, is a computer program that contains subject-specific 
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knowledge, and knowledge and analytical skills of one or more human experts. The artificial 

neural network (Gurney 1997) is composed of an interconnected group of artificial neurons 

and is an information processing paradigm inspired by the way biological nervous systems do. 

The ant colony optimization algorithm (Dorigo et al. 1996) is a probabilistic technique for 

solving computational problems and it can be used to find good paths through graphs. It is 

inspired by the behaviour of ants in finding paths from colony to food. The genetic 

programming (Koza 1992) is an evolutionary algorithm-based methodology inspired by 

biological evolution to find computer programs that perform a user-defined task. The artificial 

immune system (Farmer et al. 1986) is a type of optimization algorithm inspired by the 

principles and processes of the vertebrate immune system, which typically exploits the 

immune system's characteristics of learning and memory to solve a problem. GA (Holland 

1975) is a global search heuristic which is inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover (also called recombination). Among these 

algorithms, GA is the most commonly used (Cheng et al. 1999; Chaudhry and Luo 2005).  

 

GA was first introduced by Holland (1975). The theory of GA has since been enriched 

and enhanced continuously. The first step in constructing GA is to define an appropriate 

genetic representation. On the basis of different problem types investigated, different 

representation types exist, including binary representation, real-coded representation, integer 

representation, and order-based representation. Representations in production control 

generally belong to the order-based representation. Cheng et al. (1996) divided these 

representations into two categories: direct and indirect. The former includes job-based 
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representation, operation-based representation, job-pair relation based representation, and 

completion-time based representation; the latter includes preference-list based representation, 

priority-rule based representation, disjunctive-graph based representation and machine-based 

representation. However, the existing representations cannot be used to represent both the 

processing of multiple operations on one machine and the processing of one operation on 

multiple machines simultaneously. These processing forms are the usual operation assignment 

in PBS. Crossover is a genetic operator that combines (mates) two chromosomes (parents) to 

produce a new chromosome (offspring). The idea behind crossover is that a new chromosome 

may be better than both of its parents if it takes the best characteristics from them. A large 

range of crossover operators have been proposed (Poon and Carter 1995). The most common 

ones observed in GA and used in production control are uniform-order crossover (Zhang et al. 

2001) and job-based order crossover (Ono et al. 1996). The uniform-order crossover has the 

merit of preserving the position of some genes and the relative ordering of the rest. This may 

be helpful in trying to bring good building blocks together, but it depends on the nature of the 

problem being solved. The job-based order crossover preserves the order of each job on all 

machines whilst creating children, taking into account dependencies amongst machines. Some 

researchers concluded that using multi-parent crossover does increase the performance of GA 

with binary or real-coded representation (Eiben et al. 1994; Tsutsui and Ghosh 1998). 

However, GA with multi-parent crossover has not been fully developed to handle the 

production control problem. Mutation is an important part of the genetic search process, which 

helps to prevent the population from stagnating at any local optima. Mutation occurs during 

evolution according to a user-definable mutation probability. Many mutation operators have 
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been developed (Ferreira 2002), such as swap mutation, inversion mutation and displacement 

mutation. 

 

2.3 Previous Research in Apparel Production Control 

Several studies in production control for apparel manufacturing processes have been 

published on the basis of scheduling and balancing.  

 

Chen et al. (1992) solved a production scheduling problem in the make-to-order apparel 

industry based on time-phased operative efficiency and the simulated annealing technique, but 

the complexity of the algorithm was very high and the computation time was very long. 

Bowers and Agarwal (1993) proposed a 3-tiered hierarchical production planning and 

scheduling framework to formally link long-term, short-term, and daily planning tasks, in 

which the daily production scheduling problem was modeled as a traveling salesman problem, 

but they did not discuss the concrete operation assignment and order scheduling. Tomastik et 

al. (1996) developed a low-order integer programming model which integrated scheduling 

with resource allocation for an apparel FMS. The model was solved using a modified 

Lagrangian relaxation method, but the method was not appropriate for scheduling assembly 

lines. Fozzard et al. (1996) constructed a simulation framework of PBS, incorporating 

operator performance variations and learning effects, machine failure and repair, operator 

absenteeism, quality failure and knowledge-based supervisory control. Yet the paper did not 

report how to implement the simulation framework. Khan (1999) used a spreadsheet to 

construct a garment production simulation model to minimize the average daily production 
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cost through the investigation of various man-machine combinations. Using ordinal 

optimization ideas, Lee et al. (2000) discussed the production scheduling of an apparel 

manufacturing system characterized by the co-existence of the traditional assembly line and 

the flexible assembly line. Some researchers also discussed the flowshop scheduling problem 

for fabric-cutting processes (Vojdani 1997; Wong et al. 2001; Mok et al. 2007). 

 

Solinger (1988) suggested an easily applicable procedure to balance an apparel 

production system by firstly ensuring enough number of operators in each operation and then 

adding enough work-in-process inventories to each operation to smooth the production. Betts 

and Mahmoud (1992) introduced a branch and bound method to solve the AAL balancing 

problem by processing a single product and allowing varying skills of operators. Chan et al. 

(1998) used GA to solve the ALB problem in which the number of operations equaled the 

number of operators and each operator processed an operation. Yet in real-world apparel 

production, the number of operations is usually not equal to the number of operators. Wong et 

al. (2006) also developed a GA to balance an assembly line of UPS and investigated the 

impact of different levels of skill inventories on the assembly makespan. In this research, the 

number of operations is less than the number of workstations and each operation can be 

assigned to multiple operators, but this research cannot deal with a situation in which multiple 

operations are assigned to one operator.  

 

The existing studies on apparel production control are based on simplified problem 

models. Many important realistic factors have not been considered, such as uncertainty, 
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flexible operation assignment and learning effects. Research on scheduling and balancing of 

PBS closer to reality is desired. 

 

2.4 Change of Operative Efficiency 

As a labor-intensive industry, the performance of the sewing assembly line depends on 

the operator’s operative efficiency to a great extent. However, little research has discussed the 

operative efficiency of sewing operators. Racine et al. (1992) identified 16 operation-related 

and 3 operator-related factors for the formulation of 3 efficiency prediction models: (1) the 

time-phased efficiency of a new employee (the training model), (2) the time-phased efficiency 

of an operator being switched to a new operation from another operation (the switching 

model), and (3) the time-phased efficiency of an operator restarting an operation (the 

forgetting model). However, these models were based on a great amount of historical data and 

their effectiveness has not been validated. It is also very difficult to determine the influences 

and weights of the 19 factors. Therefore, this model cannot be used to describe and predict 

operative efficiency in real-world production management.  

 

In real-life production, the operative efficiency of an operator increases when he/she does 

a task repetitively owing to the learning phenomenon. The earliest attempt to scientifically 

analyze the learning phenomenon focused on human subjects’ behavior at the end of the 19th 

century (Thorndike 1898; Thurstone 1919). Since then, a great deal of literature has been 

published and the studies showed that the time required for executing a specific operation 

decreased with the cumulative experience. The learning curve theory describes the changing 
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trend of efficiency for processing a unit as the cumulative number of produced units increases. 

It can be used to predict the performance of an individual (or a group of individuals).  

 

Learning curves can also be called experience curves (Lloyd 1979), start-up curves 

(Ballof 1970), progress functions (Glover 1966), improvement curves (Steedman 1970), or 

learning by doing (Argote and Epple 1990). The literature related to this research is very 

extensive. Many leaning curve models were developed and several comprehensive surveys 

were also published (Yelle 1983; Badiru 1992). The most popular model is the power function 

learning curve introduced by Wright (1936), which is also called the 80% rule.  The major 

problem of this curve is that its asymptote is zero. In order to conquer this problem, many 

models (Glover 1966; Hitchings 1972) with positive asymptotes have been developed. 

Hackett (1983) compared some models and concluded that the time-constant model (Bevis 

1970; Hitchings 1972) was a good choice for general use because it could fill a wide range of 

observed data.  

 

2.5 Summary 

From the above literature review, the following conclusions can be drawn: 

(1) Though the production control decision-making problem has been studied 

extensively, none of the existing methodologies is applicable to the implementation of 

production control decision-making of the manufacturing factory on the whole. 
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(2) Previous studies on production control decision-making, especially for apparel 

manufacturing, are limited when considering various situations closer to realistic production, 

such as uncertain processing time, uncertain orders. Effective methodologies are desired to 

cope with the production control problems closer to reality.  

 

(3) Some particular characteristics of apparel manufacturing, such as flexible operation 

assignment, workstation revisiting, work-sharing, order preemption and variable operative 

efficiency, have not been investigated in the existing apparel production control literature. 

Corresponding methodologies are desired to generate optimal decision-making of production 

control with the consideration of the above factors. 

 

(4) Order scheduling among different assembly lines at the factory level has not been 

considered. It is an unavoidable decision-making problem in apparel manufacturing because 

the apparel factory is characterized by multiple production processes and multiple assembly 

lines.  

 

In summary, previous studies on both production control and its decision-making, 

especially for apparel manufacturing processes are very limited, and leave much room for 

further research exploration. This research will investigate the apparel production control 

problems closer to reality, in which various realistic situations are considered, such as 

uncertain processing time, uncertain arrival time, uncertain orders and flexible operation 

assignment method. Effective methodologies based on GA will also be developed to solve 
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these problems. Undoubtedly, this research will enrich greatly the study on production control 

and decision-making. 
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Chapter 3 

Research Challenges and Solution Mechanisms 

 

Chapter 2 presents a detailed review on the up-to-date achievements in the field of 

production control and decision-making. However, so far the literature on production control 

decision-making, especially for the apparel manufacturing process, has been very limited and 

it made little impact on industrial practice despite the widely accepted fact that effective 

production control decision-making is helpful in improving the performances of production 

control and management.  

 

This chapter investigates the research challenges that hinder the development of 

production control decision-making methodologies and formulates an effective and efficient 

solution mechanism. GA is introduced in this chapter, which is adopted as the basis of the 

methodologies to apparel production control decision-making. 

 

3.1 Research Challenges to Production Control Decision-Making for 

Apparel Manufacturing Process 

 

For several decades, quite a few studies have been dedicated to exploring effective 

methodologies for production control decision-making for apparel and other manufacturing 

processes. These studies available are only applicable to some simplified production 

situations and have little impact on industrial practice because of the various research 
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difficulties. These difficulties are regarded as challenges of this research, which can be 

classified into two categories: common to most manufacturing industries and special to the 

apparel industry. 

 

3.1.1 Common Phenomena to Production Control Decision-Making in 

Manufacturing Industry 

The following common phenomena are faced by most manufacturing industries and 

should be considered in the production control decision-making process. 

 

1) Complexity of Production Control Decision-Making 

Since most production control problems belong to the class of NP-hard problems, it 

implies that it is very difficult to get optimal production control decision-making within short 

computation time even for problems of reasonable size. For example, when considering an 

ALB problem with 20 operations and 20 workstations, even if we assume that each 

workstation can only process one operation and each operation can be processed at one 

workstation, there are still 181043.2!20 ⋅=  possible operation assignments. If these 

assumptions are relaxed, the solution space will be much larger. It is very difficult to obtain an 

optimal solution from such a huge solution space.  

 

2) Uncertain and Unpredictable Phenomena in Production Processes 

Uncertain and unpredictable phenomena usually occur in real production, such as 

uncertain production orders, uncertain processing time, unpredictable operator absenteeism 

and machine breakdown.  
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If uncertain factors are considered, greater complexity has to be faced. For instance, there 

are three orders and each has two possible arriving time, there exist 8 possible production 

circumstances to be considered. That is, the solution space is 8 times larger than that of a 

deterministic problem. 

 

Production resources on the shop floor are dynamic and they undergo rapid changes. 

New operators and machines can be added to the assembly line to expand production 

capabilities, while those that are no longer required can be removed. Therefore, it is possible 

that the previous production control method becomes infeasible after changes occur.  

 

How to deal with uncertain and unpredictable phenomena becomes an important 

challenge of effective production control decision-making. 

 

3) Absence of Integrated Communication Structure 

In a factory with multiple production processes and shop floors (or assembly lines), 

production control decisions in real-life production are made by different production 

managers and supervisors independently. For instance, the factory manager deals with order 

scheduling at the factory level and the line supervisor is in charge of assembly line balancing. 

However, when communication between the production managers and supervisors is not 

direct, they may not know the full details of the available production tasks or resources. The 

consequent decision-making can be inaccurate and the solution is far from optimal. The 
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existing research usually focuses on one part of production control of the whole factory, such 

as shop scheduling, assembly line scheduling or balancing. It is necessary to construct an 

effective mechanism for dealing with the production control problems of a factory. How to 

implement this mechanism is a difficult problem. 

 

3.1.2 Phenomena of Production Control Decision-Making in Apparel Industry 

Apparel manufacturing, especially PBS, has some distinct characteristics, such as low 

automation level, large product and process varieties and flexible operation assignment. These 

distinct industry characteristics bring new difficulties to implement effective production 

control decision-making. 

 

1) Absence of Real-Time and Accurate Production Data 

Today’s apparel manufacturing, especially PBS, is still characterized by its low 

automation level and time-consuming manual operation. The production data in the apparel 

production system are collected manually. For instance, sewing operators write down the 

completed tasks on a data sheet during production and then these data are entered into 

spreadsheets manually by computer operators. This data collection process is tedious and 

time-consuming. The data are never real-time and their accuracy could be questionable. 

Owing to the absence of an effective data capture system, it is impossible to obtain real-time 

and accurate production data from sewing assembly lines, which are the premise of effective 

and efficient production control decision-making.  

 

2) Multiple Products and Multiple Processes 
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Due to the trend of diversity in customer demands, today’s apparel industry has a 

multi-product and small-batch production trend. PBS is an effective assembly form to 

accommodate this trend because it has the characteristics of both multi-model and 

mixed-model assembly lines. In addition, each order includes multiple production processes 

and production processes of each order can be different. For example, processes of order 1 

include cutting, sewing and finishing while processes of order 2 include cutting, embroidering, 

sewing and finishing. That is, the number of production tasks on each shop floor can be quite 

different.   

 

The existence of multiple varieties and multiple production processes brings the 

following additional difficulties to production control decision-making. 

 

(1) The large quantity of different garment products increases the difficulty of production 

control decision-making. It is extremely difficult, if not impossible, for the production 

management to manually schedule and balance production of every product.  

 

(2) One factory usually includes multiple shop floors and assembly lines, it is very 

difficult to schedule and balance production among different shop floors and assembly lines. 

 

3) Flexible Operation Assignment  

In PBS, flexible operation assignment is adopted. One sewing operation can be assigned 

to multiple workstations and one workstation can process multiple operations. This operation 
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assignment method increases greatly the complexity of production control decision-making. 

The solution space will be enlarged explosively with the increase of the flexible degree of 

operation assignment. Suppose that we assign three sewing operations to three sewing 

workstations. If each operation can only be assigned to one workstation, there will be 6 

(
3

3P =3!) different operation assignment methods. If the flexible operation assignment is 

allowed, the number of possible operation assignment methods is 186 

(
3

3

3

3

3

3

2

4

2

4

2

6 )(3 PPPCCC +−⋅+ ), which is much greater than 6. For problems with more 

operations and workstations, the enlargement of solution space will become much greater. 

 

4) Work-Sharing on Apparel Assembly Line 

When the processing of one sewing operation is shared on multiple workstations, that is, 

this operation is assigned to multiple workstations, it presents another difficulty to determine 

the task proportions of the operation being processed in different workstations. The line 

supervisors usually route the shared operation of a garment to a workstation based on their 

subjective estimations and ad-hoc assessments. Due to the absence of real-time and accurate 

production information, and the limitations of the line supervisor’s competence, these 

estimations are usually not optimal or inaccurate.  

 

5) Variable Operative Efficiencies 

Since PBS is characterized by manual sewing operations, the operative efficiency of 

sewing operators is never constant in real-life production. The variable operative efficiency 

leads to fluctuation in the actual cycle time and increases the complexity of production control. 
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Moreover, on a balanced assembly line, the change of operative efficiency can also lead to the 

change of the status of the balanced line.  

 

In real-life production, starvation and blockage are two usual phenomena in a 

workstation. Starvation arises when a workstation must wait for the product to arrive from its 

preceding station, while blockage occurs when a workstation finishes processing the product 

but cannot pass it to the next workstation. A workstation that is working slower than its 

successor causes the successor to be starved. On the other hand, an enhanced learning of that 

workstation decreases the time to produce a product when it becomes faster than its successor 

station. Obviously, the variety of operative efficiency can lead to the change of status of the 

workstation. For instance, there are two workstations 
11M   and 

12M , and 
11M  is the 

preceding station. If the processing of 
11M  is faster than 

12M , 
12M  is blocked. Yet due to 

the effects of learning, the processing of 
12M  becomes faster than 

11M , then 
12M  will be 

starved. 

 

Because the efficiency change of each operator is different, it is impossible to find an 

optimal balancing method to keep the assembly line balanced constantly. A feasible method is 

to consider the whole production process and to find a global optimal balancing solution. The 

more garment quantity to be processed, the more complex the process of seeking an optimal 

solution.  

 

3.2 Solution Mechanisms 
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Though great challenges and complexities exist in dealing with production control 

decision-making for apparel manufacturing processes, the apparel industry has insistent 

demands for overcoming them. This section presents an effective solution mechanism to deal 

with these challenges. 

 

3.2.1 System Architecture of Intelligent Production Control Decision-Making 

The accuracy and real-time capacity of production data are the premises of implementing 

effective production control decision-making. In recent years, as the application of radio 

frequency identification technology (RFID) has become economically feasible, some 

RFID-based data capture systems have been developed to obtain real-time and accurate 

production data and their effectiveness has been proved by various industrial applications and 

practices (Epicdata Inc 2007; MSC Limited 2007).  

 

Figure 3-1 shows the architecture of an IPCDM system for apparel manufacturing, which 

integrates an RFID-based data capture system with an IPCDM model. As shown in Figure 3-1, 

the RFID-based data capture system collects various real-time job processing records and 

production data from the AAL. It is composed of RFID tags, RFID terminals, switches and 

data capture servers. In each sewing workstation, an RFID terminal is installed, which can 

collect the job processing records by reading RFID tags attached to each bundle of work in 

progress. The terminal can also display the historical job records to the sewing operator. The 

terminals of each AAL are integrated into a network by the switch. The switch is a device that 

channels incoming data from any of the multiple input ports to the specified output port that 
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will take the data toward its intended destination, which is connected with a data capture 

server. The data communication uses the TCP/IP protocol. 

 

 

Figure 3-1: System architecture of intelligent production control decision-making for apparel 

manufacturing 

 

The data capture server collects production data based on two ways and saves them in a 

database. Firstly, the given data of apparel production orders, sewing workstations, and 

sewing operators are input directly by the computer operator. Secondly, during the production 

process, each sewing operator reads the RFID tag attached to each bundle of work-in-progress 

garment components using the RFID terminal after finishing a sewing operation. The job 

records from RFID terminals are transmitted by Ethernet. On the other hand, the data capture 
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server also reads production information in the database and displays them on RFID terminals. 

On the basis of the real-time production data stored in a database using MySQL, MS SQL 

Server, or Oracle according to the different requirements of data processing, the IPCDM 

model generates effective solutions for production control in apparel manufacturing. The 

recommended solutions will be implemented by the production managers or line supervisors 

through scheduling or assigning production orders and sewing operations on a real-time basis.  

 

3.2.2 Intelligent Production Control Decision-Making Model 

In the system architecture shown in Figure 3-1, the kernel is the IPCDM model, which is 

presented in this sub-section. 

 

In real-world apparel manufacturing, after an order is ready for production in the factory, 

its production control is implemented according to the following three stages. 

 

(1) The first stage happens at the factory level. If a production order waits to be produced, 

production manager should assign appropriate shop floors or assembly lines to execute this 

order according to the existing and possible production tasks, their due dates and the 

production capacity of each shop floor or assembly line. 

 

(2) The second stage happens at the shop floor level. Once a shop floor or assembly line 

is assigned to process the order, the shop manager will determine when the order will be 

started according to its due date and the production capacity of the shop floor or assembly line. 
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(3) The third stage happens at the assembly line level. After the production has begun on 

the assembly line, the line supervisor will be in charge of production control. The supervisor 

aims at balancing the workload of each workstation and improving the line efficiency so as to 

meet the desired due date and other production criteria.  

 

The production control problem described in stage 1 corresponds to order scheduling at 

the factory level. Since this research mainly focuses on the production control of PBS, the 

production control in stages 2 and 3 correspond respectively to AAL scheduling and AAL 

balancing, as described in section 1.2.  

 

On the basis of the above description, an IPCDM model for apparel manufacturing 

process is proposed and its architecture is shown in Figure 3-2. As shown in this figure, the 

production data database is the basis of the model. The production data in the database involve 

a variety of information, such as information of production managers, operators, shop floors, 

assembly lines, various sewing machines and production orders, working records of each 

sewing operator, and operating time of each operator to complete each sewing operation.  

 

In the proposed model, the production control decision-making for apparel 

manufacturing processes is done according to the following procedures. 
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Figure 3-2: Architecture of intelligent production control decision-making model for apparel 

manufacturing processes 

 

(1) After a new production order is confirmed, the order scheduling problem at the 

factory level arises. Necessary inputs from the database should be provided to solve this 

problem, including the due dates of existing and uncertain orders, processing time of 

production processes of each order, the order size, the number of shop floors, and the number 

of assembly lines on each shop floor. The investigation into order scheduling problem 

generates an optimal assignment which assigns production processes of each order to different 

assembly lines. 

 

(2) The AAL scheduling problem arises after the production order arrives at the apparel 

assembly line. The inputs from the database include the due date of each order, the number of 

various types of sewing machines on the assembly line and the operative efficiency of sewing 

operators on different machines. The investigation into this problem generates the optimized 

order release time on the assembly line. 



 

52 

 

(3) The AAL balancing problem arises after the production starts on the assembly line. 

The inputs from the database include the cycle time of each order, the number of various types 

of sewing machines on the sewing assembly line, the operative efficiency of operators on 

different machines, and so on. The investigation into the balancing problem generates 

optimized operation assignment and a routing solution.  

 

The above tasks are to be investigated in detail in chapters 4, 5 and 6. 

 

The three addressed problems belong to the type of NP-hard combinatorial optimization 

problem, due to the intractable nature and huge solution space of these problems, heuristic and 

global optimization algorithms are required to seek optimal production control solutions. The 

GA is a good choice and will be adopted in this research owing to its capacity of global 

optimization as well as widely accepted and effective applications in solving various 

combinatorial optimization problems.  

 

Moreover, in the above three problems mentioned, important realistic factors, such as 

production uncertainties, flexible operation assignment, work-sharing and variable operative 

efficiency, will be considered in the proposed model. In this research, flexible operation 

assignment, work-sharing and workstation revisiting will be implemented by the proposed 

genetic optimization processes with a novel chromosome representation. Production 

uncertainties will be tackled using the probability theory. The uncertain processing time is 
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described as a continuous random variable while uncertain production orders and their arrival 

time are described as discrete random variables. On the basis of the stochastic processing time, 

the stochastic beginning time and completion time of processes are derived using the 

probability theory. The variability of operative efficiency in PBS will be defined and 

described using the learning curve theory. While an operator processes an identical operation 

repetitively, his/her operative efficiency increases with the increase of accumulated 

operating time according to the operator’s learning curve. Moreover, this research assumes 

the production data collected by RFID-based data capture system are all real-time and 

accurate, and does not consider the data inaccuracy caused by human factors. 

 

3.3 Genetic Algorithm (GA) 

GA is adopted as the basis of proposed methodologies in this research. Several novel 

genetic representations and operators will be proposed and discussed based on various 

characteristics of addressed problems in this research. A brief introduction of GA and the 

reason for selecting it are presented in this section. 

 

3.3.1 Introduction of GA 

GA was pioneered by John Holland (1975) over the course of the 1960s and 1970s, 

which is an adaptive heuristic search algorithm premised on the ideas of natural selection and 

evolution. The basic concept of GA is to simulate processes in a natural system necessary for 

evolution, specifically those that follow the principle of “survival of the fittest” first presented 

by Charles Darwin.  
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In general, GA is implemented according to the following procedures. 

Initialization: Generate an initial population of chromosomes randomly. Each 

chromosome represents a feasible solution to the problem on the basis of a certain 

representation.  

Fitness Evaluation: Evaluate the fitness of each chromosome in the population by using 

the fitness function. 

Generation of New Population: Create a new population by repeating the following steps 

until a new population is complete. 

Elitism: Select the best chromosome or chromosomes to be carried over to the next 

generation. This procedure can be omitted.  

Selection: Select two parent chromosomes from the current population according to a 

selection rule. 

Crossover: With a certain crossover probability, the crossover operation is performed to 

generate child chromosomes (new offspring). If no crossover is performed, child 

chromosomes are the exact copies of the parents. 

Mutation: With a certain mutation probability, child chromosomes mutate according to a 

mutation rule. 

Acceptance: Place the new chromosomes in a new population. 

Replacement: Use the newly generated population to replace the parental population. 

Test: If the termination criterion is satisfied, stop this procedure and return the best 

solution; otherwise, go to step 2 to start a new iteration.  
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In the above procedure, each iteration is called a generation. The new population is 

supposed to inherit the excellent genes from previous generations so that the average quality 

of solutions is better than before. 

 

In order to solve an optimization problem, the following processes and operations need to 

be determined on the basis of the above GA procedure. 

 

Representation: It determines how to create a chromosome. A chromosome is composed 

of a list of genes. A good representation is crucial because it significantly affects all the 

subsequent steps of the GA.  

 

Fitness function: It reflects the fitness of each chromosome and is relevant to the 

objective function to be optimized. Given a particular chromosome, the value of fitness 

function represents its probability of survival. The greater the fitness of a chromosome , the 

greater the probability of survival.  

 

Selection: It determines how to select parents for the genetic operators. 

 

Genetic operations: How to perform two genetic operations (crossover and mutation) has 

to be determined. Both genetic operations are random processes with the pre-specified 
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probability. The typical probabilities of crossover and mutation operations are between 0.6 

and 1.0 and between 0.0012 and 0.03 respectively. 

 

3.3.2 Reasons for the Selection of GA  

The addressed production control decision-making problems in this research are 

extremely intractable owing to their NP-hard nature. Their solution spaces are huge and they 

increase exponentially with the increase in the size of the problem. In considering various 

factors closer to the reality of apparel production, such as uncertainty, flexible operation 

assignment and work-sharing, the solution spaces of the addressed problems enlarge further. It 

is difficult for classical optimization techniques to obtain optimal, even acceptable, 

production decisions.  

 

GA is an adaptive random search technique, which can solve problems deemed difficult 

for classical optimization techniques. The major advantage of GA is that it is independent of 

the particular problem being analyzed. The only requirement is a fitness function indicating 

system performance. This function can be nonlinear, non-differentiable, or discontinuous. GA 

only requires that system performance can be evaluated for any set of the decision variables. 

GA can also handle arbitrary kinds of constraints and objectives. All such things can be 

handled as weighted components of the fitness function, making it easy to adapt the GA 

optimizer to the particular requirements of a wide range of objectives. GA can also provide 

many other useful and efficient solutions, when (1) the search space is large, complex or 

poorly understood; (2) the domain knowledge is scarce or the expert knowledge is difficult to 
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encode and narrow the search space; (3) no mathematical analysis is available; and (4) 

traditional search methods fail. Undoubtedly, the production control decision-making 

problem matches the above conditions and GA is a feasible method for the addressed 

problems.  

 

Owing to the above characteristics and advantages, GA has been studied and used widely 

in solving various optimization problems in scientific and engineering fields, including 

numerical optimization (Cui and Zeng 2005), combinatorial optimization (Larranaga et al. 

1999; Chaudhry and Luo 2005), automatic programming (Suzuki and Saito 2006), and 

machine and robot learning (Harpham et al. 2004; Yamamoto et al. 2006). Not only does GA 

provide an alternative method to solve problems, it consistently outperforms the traditional 

methods in most of the problems.  

 

Some researchers compared the optimization performances of GA with various 

techniques on the basis of different applications. Reeves (1995) compared the performance of 

GA with the performances of the naive neighbourhood search technique and the proven 

simulated annealing algorithm. His work demonstrated that GA was better for solving the 

more serious problems in flow shop sequencing. Fleury and Gourgand (1998) compared the 

performance of GA, simulated annealing and heuristic methods against the one-machine and 

flowshop scheduling problems and concluded that GA was better than other heuristic 

methods. Li (1998) demonstrated the robustness of a search technique based on GA against a 

number of conventional techniques over a spectrum of power dispatch problems. His research 
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verified that the more complex a problem is, the more benefit one can obtain from a GA. 

Sakawa and Kubota (2000) proposed a GA to solve the multi-objective job shop scheduling 

problem with fuzzy processing time and fuzzy due dates. Their studies also showed that GA 

was superior to other techniques. Based on two lateral canal scheduling problems, Wardlaw 

and Bhaktikul (2004) compared the optimization results of GA with those of linear and integer 

programming, and concluded that GA was more robust and efficient in solving lateral canal 

scheduling problems. Freschi and Repetto (2006) compared the performances of artificial 

immune system and GA to detect the global maximum with multimodal functions and 

concluded that GA was faster to converge at the global optimum. These applications and 

analyses show the extensive applicability and effectiveness of GA.  

 

There still exists much room for further investigation although GA has been applied 

extensively. For example, the existing genetic representation cannot deal with flexible 

operation assignment in PBS; it is also worth investigating whether GA with multi-parent 

crossover is effective in solving production control decision-making problems.  

 

GA is therefore an appropriate technique to handle the addressed production control 

decision-making problems.  

 

3.4 Summary 

This chapter presents the challenges of making effective production control decisions for 

apparel manufacturing processes. To meet the identified research challenges, a solution 
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mechanism was developed to integrate the production control of the three stages of real 

production by using an IPCDM model. As one of the most important parts in this proposed 

solution mechanism, the GA is introduced briefly and the reasons for using it in this research 

are also discussed in detail in this chapter. 
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Chapter 4  

Order Scheduling at Factory Level with Multiple 

Uncertainties 

 

Following the solution mechanism presented in Chapter 3, three production control 

problems at the three levels of apparel manufacturing are to be investigated. To assign the 

production process of an apparel production order to different assembly lines is the first 

production control problem in real-world apparel production processes. This chapter 

investigates the order scheduling problem with multiple uncertainties, including uncertain 

processing time, uncertain arrival time and uncertain orders. Firstly, a detailed problem 

formulation for the order scheduling problem is presented. Uncertain beginning time and 

completion time of production processes were derived by using the probability theory. Next, a 

GA, in which the representation with variable lengths of sub-chromosomes is presented, was 

developed to seek an optimal order scheduling solution. Experiments were also conducted to 

validate the effectiveness of the proposed methodology using the real production data from 

PBS.  

 

4.1 Problem Formulation 

In apparel manufacturing, cutting, sewing and finishing are the three key value-added 

production processes to produce garments. Other production processes such as fusing, 

embroidering and silk-screening may also be involved in some apparel factories. Figure 4-1 

illustrates the flow of the production process in a typical apparel manufacturing factory. 
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Different types of production processes should be performed on different types of shop floors. 

Each type of shop floor has one or more assembly lines. According to the predetermined 

production flow, each production process involved in different orders must be completed on 

an assembly line on a corresponding shop floor. The purpose of order scheduling at the factory 

level is to schedule the processes of each apparel production order to appropriate assembly 

lines so that the due date of each production order is satisfied and the total throughput time of 

all orders is minimized. For the sake of simplicity, it is assumed that each production process 

can only be assigned to one assembly line for processing and the production of each process 

cannot be preempted in this research. 

 

Cutting PackagingFinishingSewing

 

Figure 4-1: Flow of the production process in a typical apparel manufacturing factory 

 

In this research, iP  represents the i th apparel production order, m  denotes the 

number of orders, ijR  denotes the j th production process of the order iP , kS  denotes the 

shop floors of the k th type, klL  represents the l th assembly line on shop floor kS , ijklX  

indicates whether process ijR  is assigned to assembly line klL  (If so, ijklX  is equal to 1; 

otherwise, it is equal to 0). ijBP  is the beginning ( starting ) time of process ijR , and ijCP  is 

the completion time of process ijR . 

 

The real-life apparel manufacturing environment has many peculiar characteristics. 

Apparel production processes are characterized by manual operation, and thus the processing 
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time of production process is inevitably uncertain. The arrival time of an apparel production 

order, the time that the order is ready for production, may also be uncertain because it is 

affected by the transportation and production processes of materials. In addition, a production 

order can never be executed if the customer changes the contract or even cancels the order. 

Apparel manufacturing is also subject to some other constraints. The constraints for the order 

scheduling problem at the factory level are as follows: 

 

(1) Arrival constraint: Order iP  cannot be executed before this order is ready for 

production, i.e.  

1ii BPA ≤            (4-1) 

where iA  is the arrival time of order iP , 1iBP  is the beginning (starting) time of process 

1iR . iA  is described as a discrete random variable in this research. 

 

(2) Allocation constraint: Production process ijR  can only be processed on the 

corresponding shop floor which can process it, i.e.,  

∑
∉

=
ijkl SALLkl

ijklX
,

0
           (4-2) 

where ijSAL  denotes a set of assembly lines which can perform process ijR . 

 

Each production process must be performed, i.e., 

∑ ≥
kl

ijklX 1            (4-3) 
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(3) Process precedence constraint: For one apparel production order, one process cannot 

start before its preceding processes are completed and materials for this order are transported 

to the corresponding assembly line, i.e, 

'ijijij BPTTPCP ≤+ , )( 'ijij RSPR ∈        (4-4) 

where ijTTP  is the transportation time between assembly lines processing process ijR  and 

its following process 'ijR , )( 'ijRSP  denotes a set of processes prior to process 'ijR . 

 

(4) Processing time constraint: Process ijR  must be assigned processing time, i.e.,  

ijklijij PTPBPCP +=          (4-5) 

where ijklPTP  denotes the processing time of ijR  on assembly line klL . In this research, 

ijklPTP  is a random variable whose probability density function is defined as  
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   (4-6) 

 

A graph of )( ijklPTPf  is shown in Figure 4-2, in which the values of Lt , τ , Lp  and 

Up  are predetermined constants. The four constants can decide uniquely the proposed 

probability distribution of processing time and the vector form ( Lt , τ , Lp , Up ) can thus be 

used to represent the probability density function of this type. Based on the given vector, the 

values of 1k , 1b  and 2b  in equation (4-6) can be obtained easily.  

 

Since the total probability in the sample space is 1, the following relationship exists, 
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2)( =⋅+ τUL pp          (4-7) 

 

 

Figure 4-2: Probability distribution of processing time 

 

Because the arrival time of order iP  and the processing time of its production processes 

can be uncertain, the above constraints (1)-(4) are required to be satisfied for each possible 

realization to model the uncertainties accurately.  

 

In the make-to-order apparel factory, one of the most important production objectives is 

to meet the desired due dates of production orders. Since the processing time of production 

processes is uncertain probabilistically, the completion time of each production order is also 

uncertain. It is difficult to evaluate directly if the desired due dates are met. In this research, 

the total satisfactory level )(⋅SL  is presented to evaluate the level (grade) of all orders to 

meet their due dates. It is defined as the function of 1iBP  and ijklX , and is expressed as 

follows: 

  ∑∫
=

∞

⋅=
m

i

iiiijkli CdCsCf
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),(      (4-8) 
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where )( iCf  is the probability density function of the actual completion time iC  of order 

iP . )( iCs  describes the relationship of iC  with its satisfactory level, which is defined as 

follows: 


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
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      (4-9) 

where iD  denotes the desired due date of order iP  in the factory, which is usually 

predetermined by the customer. A graph of )( iCs  is shown in Figure 4-3. The values of 3k , 

4k , 3b  and 4b  can be obtained based on the given three coordinates in this figure. These 

coordinate values are determined by the decision maker. When iC  is closer to its due date, its 

satisfactory level is higher. Moreover, the decrease of the satisfactory level is faster when 

iC > iD  than when iC < iD . This is because tardiness penalties generated by the former are 

greater than earliness penalties generated by the latter. 

 

 

Figure 4-3: Relationship between iC  and its satisfactory level 

 

The primary objective of the addressed problem is to maximize the total satisfactory level 

)(⋅SL , which is expressed as  
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   ),(max:1 1 ijkli XBPSLObj    

with   

 ∑∫
=

∞

⋅=
m

i

iiiijkli CdCsCf
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XBPSL
1

0
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1
),(       (4-10) 

 

Based on the optimized total satisfactory level, the secondary objective of the addressed 

problem is to minimize the expected value of total throughput time TT  of all orders, which is 

expressed as follows: 

  )(min:2 ,1 ijkli XBPTTObj   

with    
))(()(

1

1,1 ∑
=

−=
m

i

iiijkli BPCEXBPTT         (4-11) 

where 1ii BPC −  is the throughput time of order iP  which is a random variable. )(⋅E  

denotes the expected value of a random variable. 

 

4.2 Uncertain Completion and Beginning Time 

Since the processing time of the apparel production process is uncertain, its completion 

time and its next production process’s beginning time are also uncertain. The uncertain time 

can be formulated and computed as shown in the following sections. 

 

4.2.1 Completion Time of the Production Process 

The completion time ijCP  of process ijR  is determined by its beginning time ijBP  and 

processing time ijklPTP . Since the beginning time and the processing time are independent, 
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the probability density function )( ijCPf  of ijCP  is equal to the convolution of probability 

density functions of its beginning time and processing time according to the theory of 

probability. 

)()()()()()( ijijijijijklijij BPdBPfBPCPfPTPfBPfCPf ∫
+∞

∞−
⋅−=∗=   (4-12) 

 

4.2.2 Beginning Time of the Next Production Process 

Since both the processing time and the completion time of process ijR  are uncertain, the 

beginning time of 1, +jiR , which is the next production process of ijR , is also uncertain.  

 

Consider a production situation: production processes 12R  and 22R  are assigned 

orderly to assembly line 21L  for processing, and the probability density functions of the 

completion time of 12R  and 21R  are determined by vectors  ( 1Lt , 1τ , 1Lp , 1Up ) and 

vectors ( 2Lt , 2τ , 2Lp , 2Up ) respectively, which are shown in Figure 4-4 (Assume 

1Lt ≤ 2Lt ). 22R  is the process subsequent to 21R . Obviously, process 22R cannot begin until 

processes 12R  and 21R  are both completed.  
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Figure 4-4: Probability distributions of the processing time of processes 12R  and 21R  
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The probability density function of the beginning time 22BP  of 22R  (the next 

production process of 21R ) is computed as follows: 

 

If 211 LL tt ≤+τ , 22BP  is determined solely by the completion time 21CP  of 21R  and 

has the same probability density function as 21CP .  

 

If 1211 LLL ttt ≥>+τ , 22BP  is determined jointly by the completion time of both 12R  

and 21R , the beginning time 22BP  will be located between 2Lt  and 2Lt + 2τ , and its 

cumulative probability distribution function )( 22BPF  in several different intervals is as 

follows: 
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where 1

21P , 2

21P , 3

21P  is the cumulative probability distributions of the completion time 21CP  

of 21R  in ),( 2 XL tt , ),( 11 τ+LX tt  and ),( 2211 ττ ++ LL tt  respectively, and 3

12P  is the 

cumulative probability distribution of the completion time 12C  of 12R  in ),( 11 τ+LX tt . 

 

The probability density function )( 22BPf  of 22BP  is 
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where )(⋅g  is the probability density function of the completion time of 21R  and )(⋅h  is 

the probability density function of the completion time of 12R . 

 

4.3 Genetic Optimization Model for the Order Scheduling Problem 

The number of the possible solutions of the addressed order scheduling problem grows 

exponentially with the number of assembly lines, orders and processes. This section describes 

in detail how a genetic optimization model is developed to generate an optimized solution of 

the addressed problem. 

 

4.3.1 Representation 

The first step in constructing GA is to define an appropriate genetic representation 

(coding). To tackle the order scheduling problem, a process order-based representation with 

variable lengths of sub-chromosomes is developed. Each chromosome is composed of 

sub-chromosomes. Each sub-chromosome represents an assembly line and the value of each 

gene in the sub-chromosome represents a process which the corresponding assembly line 

performs. If one sub-chromosome comprises multiple genes, it indicates that the 

corresponding assembly line performs multiple processes according to the gene sequence in 

the sub-chromosome. Because the number of production processes performed on the 

assembly line could be different, the length of the sub-chromosome, i.e, the number of genes 

in the sub-chromosome, is variable. 
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Figure 4-5 shows two examples of this representation which describe the assignment of 

16 apparel production processes from 5 orders to 6 assembly lines from 4 shop floors. As 

shown in Figure 4-5, each chromosome includes 6 sub-chromosomes which are identified by 

grids. In the two examples, the lengths of the sub-chromosomes corresponding to assembly 

line 1 of shop floor 1 are different, which are 3 and 2 respectively. Based on each chromosome, 

we could obtain the process assignment for different assembly lines and the processing 

sequence of these processes. For example, according to the first sub-chromosome of 

chromosome 1, three processes, 4111, RR  and then 51R , will be performed orderly in the 

assembly line 1 of shop floor 1. 

 

 

Figure 4-5: Examples of the chromosome representation 

 

4.3.2 Initialization 

GA operates on a population of chromosomes. Anderson and Ferris (1994) have 

mentioned that the performance of the GA scheme is not so good from the pre-selected 

starting population as it is from a random start. In this research, each chromosome is randomly 

initialized by assigning the processes of all orders to the assembly lines which can handle it. 

The initialization process can be described as follows: 
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Step 1. Initialize parameters: set index i =1, population }{φ=POP , and initialize 

population size Psize . 

Step 2. Randomly generate a chromosome iCHR , 
iCHRPOPPOP ∪= . 

Step 3. Set i = i +1. Stop if i > Psize , otherwise go to step 2. 

 

The procedure for generating a chromosome randomly is as follows: 

Step 1. Initialize parameters: the number of assembly lines on shop floor kS  is kLQ , 

the number of shop floors in the factory is SQ , and shop floor index k  is equal to 1. 

Step 2. Divide the processes of all orders randomly, which need to be performed on shop 

floor kS , into kLQ  set of processes. Each set of processes forms a sub-chromosome. 

Step 3. Place the generated sub-chromosomes in the corresponding positions of the 

chromosome in turn. 

Step 4. Set k = k +1. Stop if k > SQ , otherwise go to step 2. 

 

4.3.3 Fitness and Selection 

Fitness function is defined as the fitness of each chromosome to determine which 

chromosome can reproduce and survive in the next generation. Different problems produce 

different fitness functions. In this research, objective functions (4-10) and (4-11) can be 

combined as below: 
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where γ  denotes the objective weight used to adjust the weighted relationship between the 

satisfactory level objective and the throughput time objective, and it can be determined 

according to the policy of the factory and the experience of the production decision maker. 

 

The fitness function 1ft  can thus be defined as   

   
),(

),(
1

1

1

ijkli

ijkli

XBPTT

XBPSL
ft ⋅= γ        (4-16) 

 

The tournament selection (Goldberg et al. 1989) is commonly utilized because it is 

simple to implement and can provide good solutions. In this research, this selection scheme is 

used and its procedure can be described as follows:  

Step 1. Set a tournament size k ≥2. 

Step 2. Generate a random permutation of the chromosomes in the current population. 

Step 3. Compare the fitness values of the first k  chromosomes listed in the 

permutation and copy the best ones into the next generation. Discard the strings compared. 

Step 4. If the permutation is exhausted, generate another permutation. 

Step 5. Repeat steps 3 and 4 until no more selections are required for the next 

generation. 

 

The scheme can control population diversity and selective pressure by adjusting the 

tournament size k . Larger values of k  will increase the selective pressure while decreasing 

the population diversity.  
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4.3.4 Genetic Operators 

Genetic operators are used to combine existing solutions with others and to generate the 

diversity of population. The former can be implemented by a crossover operator, and the latter 

can be implemented by a mutation operator.  

 

In addressing the order scheduling problem, each process must be performed on the 

assembly lines of the corresponding type. Thus, the genes of a chromosome with different 

types of processes should be independent and the genetic operations can only be done among 

genes with the same type of assembly line. For the sub-chromosomes of each shop floor type, 

the genetic operators are implemented respectively.  

 

1) Crossover 

The crossover operation is a random process with the probability of crossover, which 

breeds a pair of child chromosomes from a pair of parental chromosomes. Uniform-order 

crossover (Davis 1991) is commonly utilized because it has the advantage of preserving the 

position of some genes and the relative ordering of the rest. It is adopted in the genetic process 

for the addressed order scheduling problem. Its procedure is listed as follows: 

Step 1. Create a bit string of the same length as the chromosomes. 

Step 2. Copy the genes from parent 1 wherever the bit code is ‘1’ and fill them in the 

corresponding positions in child 1. (Now child 1 is filled in wherever the bit code is “1” and its 

gaps remain wherever the bit code is “0”.) 

Step 3. Select the genes from parent 1 wherever the bit code is ‘0’. 

Step 4. Permute the genes so that they appear in the same order as they appear in parent 2. 
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Step 5. Fill the permuted genes orderly in the gaps in child 1. 

Step 6. Carry out a similar procedure according to steps 2-5 to make child 2. 

 

Figure 4-6 shows an example of the uniform-order crossover operator. 

 

 

Figure 4-6: Example of a uniform-order crossover operator 

 

2) Mutation 

The mutation operation is used to transform chromosomes by means of changing some 

genes randomly. It is important to form a successful global optimization since it diversifies the 

search direction and prevents a population prematurely converging at a local minimum. In this 

chapter, the inversion mutation operator (Holland 1975) is adopted, which is implemented by 

simply inverting the genes between two randomly selected genes of a chromosome. Figure 4-7 

shows an example of this mutation operator.  

 

 

Figure 4-7: Example of an inversion mutation operator 

 

4.3.5 Termination Criterion 
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GA is controlled by a specified number of generations and by using a diversity measure 

to stop the algorithm. The diversity is defined by the standard deviation of the fitness values of 

all chromosomes of a population in a certain generation. The standard deviation should be less 

then a certain value which corresponds to the allowed lowest diversity of a population. If 

either of these two termination criteria is satisfied, the mechanism of GA will be terminated. 

For example, the specified maximal number of generations is 100 and the lowest allowed 

standard deviation value is 0.2. Once the standard deviation is less than 0.2, whichever 

generation GA is running in, it will be terminated. 

 

In this research, the termination criterion will also be used in other genetic procedures 

described in other chapters. 

 

4.4 Experimental Results and Discussion 

To evaluate the performance of the proposed algorithm for the order scheduling problem, 

a series of experiments were conducted. The experimental data were collected from a 

make-to-order apparel manufacturing factory producing outerwear and sportswear. This 

section highlights three of these experiments in detail. Each example includes several cases. In 

each case, the order scheduling result generated by the proposed method is compared with that 

of the practical method from industrial practice. In industrial practice, all random variables are 

replaced by their means and the subsequent deterministic problems are solved usually by 

using precedence diagrams and trial-and-error methods (Bhattacharjee and Sahu 1987).   
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The investigated apparel manufacturing factory comprises 7 shop floors, which are 

numbered 1 to 7 and perform cutting, embroidering, silk-screen, fusing, sewing, finishing, 

and packaging processes respectively. Each shop floor is composed of one or two assembly 

lines. Each apparel production order includes part or all of these production processes and 

each production process can only be performed on the assembly line(s) on a corresponding 

shop floor. For each production process, its process number is identical to the shop floor 

number. For instance, cutting and sewing processes are numbered 1 and 5 respectively. The 

cutting and sewing processes of order 1 are denoted as 11R , and 15R  respectively. Processes 

of each production order should be performed based on the specified processing sequence. 

The process with smaller process number should be done earlier. 

 

In these experiments, it is assumed that there is no work in progress on each assembly 

line and the uncertain processing time obeys the probability distribution presented in section 

4.1 with 2=τ , Lp  equals 0.25 and Up  equals 0.75. The transportation time between 

different assembly lines is also negligible because it is much less than the processing time on 

assembly lines. 

 

4.4.1 Experiment 1: Order Scheduling with Uncertain Processing Time 

In this experiment, 3 different cases were involved, which are described in detail as 

follows: 

Case 1: 5 production orders were scheduled, in which 5 different types of production 

processes were processed on 5 shop floors. 
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Case 2: 5 production orders were scheduled, in which 7 different types of production 

processes were processed on 7 shop floors.  

Case 3: 7 production orders were scheduled on 7 types of shop floors. 

 

In the above cases, the processing time of processes on shop floor 5 was stochastic. The 

relevant data for these cases are shown in Tables 4-1, 4-2 and 4-3 respectively. In these tables, 

the first column (Order No.) shows the order number, the column of ‘Arrival time’ shows the 

arrival time of each order, the column of ‘Due time’ shows the due time of each order, and 

other columns show the mean of the processing time of production process on the 

corresponding assembly line. For example, value 4 in the second column and the row of 

‘Order 1’ represents that the average processing time of process 11R , the first process of order 

1, is 4 units of time on assembly line 1 of shop floor 1. In this research, each time unit 

represents one working day. In the investigated factory, shop floors 1 and 5 are both 

composed of two assembly lines and each of other shop floors comprises only one assembly 

line. 

 

Table 4-1: Data for case 1 of experiment 1 
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Table 4-2: Data for case 2 of experiment 1 

 

 

Table 4-3: Data for case 3 of experiment 1 

 

 

The order scheduling solutions for the cases of this experiment are shown in Experiment 

1 of Figure 4-8. Based on the order scheduling solutions and the processing time of each 

process, the Gantt chart of processes being performed on different assembly lines was 

obtained. Figure 4-9 shows the Gantt charts for case 1 of experiment 1 based on the solutions 

generated by the proposed method and the practical method. For other cases in this chapter, 

the Gantt charts can be found in Appendix.  

 

The order scheduling results of the three cases are shown in Tables 4-4, 4-5 and 4-6. 

Consider the order scheduling results of case 1 shown in Table 4-4. According to the results of 

the proposed method, the mean of the completion time of each order was equal or very close to 

the desired due time and the total satisfactory level of all orders was 99.02% 
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( %)00.99%09.99%00.99%01.99%00.99(
5

1
++++ ). The total satisfactory level of the 

practical method was 5.1% less than that of the proposed method because the completion time 

of order 4 had about 2.5 time units of tardiness and its satisfactory level was only 75%. The 

total throughput time generated by the proposed method was 96.07 

( 215.195.2107.1816 ++++ ) and the one generated by the practical method was 96.5. 

Obviously, the performance of the proposed method is better than that of the practical method 

in this case.  

 

Table 4-4: Order scheduling results for case 1 of experiment 1 

 

 

Table 4-5: Order scheduling results for case 2 of experiment 1 
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Figure 4-8: Order scheduling solutions for all cases of 3 experiments
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Figure 4-9: Gantt charts for case 1 of experiment 1 

 

Table 4-6: Order scheduling results for case 3 of experiment 1 

 

 

As shown in Tables 4-5 and 4-6, the satisfactory levels of order 1 in cases 2 and 3 were 

both less than 79% in the practical method while the satisfactory levels of all orders in the 

proposed method were greater than 97.80%. In terms of the total throughput time, the 
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proposed method outperformed the practical method in case 2. Regarding the total throughput 

time in case 3, the result of the proposed method was slightly inferior to that of the practical 

method. This is because the proposed method generated the scheduling result from the 

viewpoint of the global optimization. 

 

The above three cases demonstrate that the proposed method can obtain better 

optimization performance than the practical method from industrial practice. 

  

4.4.2 Experiment 2: Order Scheduling with Uncertain Order 

In the two cases of this experiment, some existing orders and an uncertain production 

order were scheduled. The data for cases 1 and 2 were similar to cases 1 and 2 of experiment 1 

except that order 5 was uncertain. In cases 1 and 2 of experiment 1, order 5 arrived at time 8 

(the 8th day). In this experiment, however, order 5 might come at time 8 with the probability 

of 0.3, or it might not come at all. That is, two different production events might occur in each 

case. If order 5 arrived, 5 orders would be scheduled; otherwise, only 4 orders were scheduled.  

 

In the proposed method, two possibilities of each case were scheduled. Based on the 

proposed method, the order scheduling results of the two cases are shown in the rows of 

‘Proposed method’ in Tables 4-7 and 4-8 respectively on condition that order 5 does not come. 

In each case, the total satisfactory level was equal to the probability expectation of the 

satisfactory levels under different possibilities. Take case 1 as an example. If order 5 came, the 

total satisfactory level of 5 orders would be 99.02%. If it did not come, the total satisfactory 
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level of 4 orders would be 99.03%. Therefore, the total satisfactory level of case 1 was 

%027.997.0%03.993.0%02.99 =⋅+⋅ . Similarly, the total satisfactory level of case 2 was 

obtained and was 98.575%, and the total throughput times of cases 1 and 2 were 81.37 and 

76.34 respectively. 

 

Table 4-7: Order scheduling results for case 1 of experiment 2 

 

 

Table 4-8: Order scheduling results for case 2 of experiment 2 

 

 

In the practical method, the uncertain order, order 5, was treated as ‘never arriving’. The 

order scheduling considered only 4 orders and the scheduling results of the two cases are 

shown in the rows of ‘Practical method’ of Tables 4-7 and 4-8 respectively. The total 

satisfactory levels of cases 1 and 2 were 92.65% and 91.90% respectively. The total 
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throughput times of the two cases were 82.5 and 80.1 respectively, which were inferior to the 

results obtained from the proposed method.  

 

Following the above discussion of this experiment, it can be concluded that the order 

scheduling results generated by the proposed method are better than those generated by the 

practical method. 

 

4.4.3 Experiment 3: Order Scheduling with Uncertain Arrival Time 

In this experiment, the arrival time of some orders was uncertain. The data for cases 1 and 

2 were also similar to cases 1 and 2 of experiment 1 except that the two orders had uncertain 

arrival time. In case 1, the arrival time of order 4 was random: either time 4 with the 

probability of 0.2 or time 5 with the probability of 0.8. In case 2, the arrival time for order 3 

was random: either time 0 with the probability of 0.3 or time 3 with the probability of 0.7. 

 

In the proposed method, the uncertain arrival time was considered according to all the 

possible arrival times. The above two cases both had two possible circumstances. For each 

case, the scheduling results of one possible circumstance have been presented in experiment 1. 

The scheduling results of other possible circumstances are shown in the rows of ‘Proposed 

method’ in Tables 4-9 and 4-10. Take case 1 as an example. The total satisfactory level was 

99.02% if the arrival time of order 4 was time 4, and the total satisfactory level was 98.92% if 

its arrival time was time 5. Consequently, the total satisfactory level of case 1 was 98.94%. 

Similarly, the total satisfactory level of case 2 could be obtained, which was 98.64%. 
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In the practical method, the uncertain arrival time of the order was replaced by its mean. 

That is, the arrival time of order 4 in case 1 was considered as 4.8 and the arrival time of order 

3 in case 2 was considered as 2.1. Their scheduling results are shown in the rows of ‘Practical 

method’ in Tables 4-9 and 4-10. The total satisfactory levels of the two cases were 93.92% 

and 95% respectively. These results are also worse than those generated by the proposed 

method. 

 

Table 4-9: Order scheduling results for case 1 of experiment 3 

 

 

Table 4-10: Order scheduling results for case 2 of experiment 3 
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In the above experiments, the order scheduling performance generated by the proposed 

method outperformed that of the practical method because the former met the production 

objectives better. The optimized results in this chapter were obtained based on the following 

parameter setting: the population size and the maximum numbers of the generation of the 

proposed genetic optimization model were 100 and 50 respectively; the tournament size was 2; 

the probabilities of crossover and mutation were 0.6 and 0.01 respectively; the objective 

weight γ  was 1; and the proportional parameters 3k  and 4k  in equation (4-9) were 0.01 

and 0.1 respectively.  

 

4.5 Summary 

This chapter investigates a multi-objective order scheduling problem at the factory level, 

where uncertainties are described as continuous or discrete random variables. The objectives 

considered are to maximize the total satisfactory level of all orders and minimize the total 

throughput time, both of which are particularly helpful in meeting the due dates of orders and 

reducing the work in progress on each shop floor.  

 

Based on the uncertain processing time of a particular production process, its uncertain 

completion time and its next process’s beginning time are derived by using the probability 

theory. The genetic optimization model with a novel process order-based representation was 

developed to explore an optimal order scheduling solution. Experiments were conducted to 

validate the effectiveness of the proposed algorithm. The experimental results from the 

proposed algorithm are substantially better than the results from the industrial practice. It 
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shows that the proposed algorithm is superior to the practical method in respect of order 

scheduling at the factory level. 

 



 

88 

Chapter 5 

Apparel Assembly Line Scheduling at Shop Floor Level 

with Flexible Operation Assignment 

 

Chapter 4 discusses the order scheduling problem at the factory level. Based on the 

optimized order scheduling results, the apparel production process is assigned to the 

appropriate assembly line for processing. The production manager of the factory sets the due 

date of each production order in PBS based on its contract delivery date and the order 

scheduling results at the factory level. The sewing production is desired to be completed 

before the specified due date in PBS.  

 

To determine the beginning time of each production order on the AAL for meeting the 

due date in PBS, the AAL scheduling problem arises at the shop floor level of real-life apparel 

production in which flexible operation assignment and order preemption are investigated in 

this chapter. Firstly, the mathematical model of the problem is constructed with the objectives 

of minimizing the weighted sum of tardiness and earliness penalties, and balancing the 

production flow of the AAL. Secondly, a bi-level genetic optimization model (BiGA) is 

developed to solve the scheduling problem. Experimental results to validate the performance 

of the proposed BiGA are then presented. Lastly, the summary of this chapter is presented. 

 

5.1 Problem Formulation 
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In this research, ijO  denotes the j th sewing operation of order iP , klM  represents 

the l th machine of the k th sewing machine type, ijBO  denotes the actual beginning time 

of operation ijO , and ijklY  indicates if operation ijO  is assigned to machine klM  (if so, 

ijklY  is equal to 1, otherwise ijklY  is 0).  

 

5.1.1 Objective Function 

For the scheduling of real-life AAL of PBS, the whole scheduling process comprises one 

or multiple scheduling statuses, each of which represents an operation assignment status of the 

assembly system. For instance, the production of orders iP  and jP  is performed on a same 

AAL. A possible production sequence is shown in Figure 5-1, in which orders iP  and jP  

are processed separately and orderly. In this research, an unchanged operation assignment on 

the AAL is defined as a scheduling status. The operation assignment of orders iP  and jP  is 

assumed to be unchanged during their production. Figure 5-1 involves two scheduling 

statuses of orders iP  and jP . The aim of AAL scheduling is to decide how to generate and 

implement these scheduling statuses, that is, to determine appropriate production beginning 

time 1iBO  of the first operation of order iP  and generate optimal operation assignment ijklY  

of operation ijO  in different scheduling statuses.  

 

 

Figure 5-1: A production sequence of two orders on the AAL 
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The objective of the addressed scheduling problem in this research is twofold. The first 

one aims at minimizing the weighted sum of E/T penalties while the other is to balance the 

production flow of the sewing assembly system. The objective of minimizing the total E/T 

penalties can be described as follows: 
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where iα  is the tardiness weight (the penalty cost per time unit of delay) of order iP  and iβ  

is the earliness weight of order iP  (the storage cost per time unit if order iP  is completed 

earlier than the due date in PBS), iDL  denotes the desired due date of order iP  on AAL, 

iCL  is the actual completion time of order iP  on  AAL, and iλ  denotes that if the tardiness 

of order iP  is greater than 0, iλ  is equal to 1; otherwise, it is equal to 0.  

 

As another objective of this research is to maximize the balance performance of the AAL, 

a balance index denoted as )(⋅B  is devised so as to indicate the smoothness of the production 

flow of the assembly system, which is also the function of 1iBO  and ijklY . The second 

objective is expressed as follows: 
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where rSPT  is the processing time of the r th scheduling status, and rSB  is the balance 

index of the r th scheduling status, which is computed by the following equations: 

    nPBSB
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)max( iji

l

ij

i
PTOo

PTO

PB
⋅

=
∑

        (5-5) 

where n ( 1≥n ) is the number of orders in the r th scheduling status, iPB  is the balance 

index of order iP , io  is the number of operations of order iP , and ijPTO  is the average 

processing time of operation ijO  on AAL.  

 

5.1.2 Constraints 

The constraints for AAL investigated in this research are detailed mathematically as 

follows: 

 

(1) Allocation constraint: operation ijO  can only be operated in the workstations which 

can handle it, i.e.,  

    
0

,

=∑
∉ ijkl SMMkl

ijklY
        (5-6) 

where 
ij

SM  is the set of workstations which can handle operation ijO . 

 

Each operation must be processed, i.e., 

  1≥∑
kl

ijklY         (5-7) 
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(2) Operation precedence constraint: the operation precedence constraint states that an 

operation cannot be started before its preceding operation is completed and it is transported to 

the corresponding machine, i.e., 

 ijCO + ijTTO ≤ 'ijBO , )( 'ijij OPRO ∈      (5-8) 

where ijCO  is the completion time of operation ijO , ijTTO  is the transportation 

time between workstations processing operations ijO  and 'ijO , and )( 'ijOPR  is the set of 

the preceding operations of operation 'ijO . 

 

3) Processing time requirement: operation ijO  must be assigned processing time and 

setup time. This research assumes that an operation cannot be interrupted once it is started. It 

is reasonable because the processing time of each sewing operation is very short. Thus, the 

following relationship exists: 

    ijijijij PTOUBOCO ++=        (5-9) 

where ijPTO  denotes the processing time of operation ijO , and ijU  indicates the setup time 

of the workstation for processing operation ijO , which is the time to change the setting on the 

sewing machine. 

 

In real-world AAL scheduling, the shop floor managers cannot know the production 

details in PBS in advance and they usually estimate the production of sewing operations on 

average. In considering AAL scheduling, expressions (5-8) and (5-9) are used to describe the 

time relationship between sewing operations on the basis of these operations’ average 

processing time. ijTTO , ijU  and ijPTO  use their own averages. For the same operation of 
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different garments, these values are unchanged. The average of ijPTO , ijPTO , is equal to 

the average time of operation ijO  of one garment being processed on all assigned machines 

simultaneously. It is determined by the quantity and efficiencies of the sewing operators 

processing this operation, and the number of sewing operations the operator processed. It can 

be computed approximatively by the following expression 

    ∑
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kl
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η        (5-10) 

where ijST  represents the standard processing time (standard time, ST) of operation ijO  

which is the time to complete operation ijO  of one garment with 100% operative efficiency, 

ijklEM  is the operative efficiency to process operation ijO  on machine klM  (the efficiency 

of different machines or operators could be different). The time of processing operation ijO  

on machine klM  is equal to ijST / ijklEM , ijklη  is the weight of efficiency penalty. 

Obviously, if only operation ijO  is processed on machine klM , ijklη  is equal to 1; if 

multiple operations are processed on machine klM , ijklη  is less than 1 because only a certain 

portion of the working time of machine klM  will be put on operation ijO . If machine klM  

processes nl  operations, it is assumed that the weights of efficiency penalty ijklη  of these 

operations are equal to nl/1  in AAL scheduling. This assumption is reasonable because 

AAL scheduling mainly investigates if the due dates of orders can be met and it has relatively 

little concern about the operating task of each workstation. 

 

5.2 Bi-Level Genetic Optimization Model for AAL Scheduling 

If a sewing machine is assigned to process different sewing operations frequently on 

real-life AAL, more additional setup time will be needed and the efficiency of the sewing 
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operator will decrease and fluctuate inevitably. On the basis of switching operations as 

infrequently as possible on each machine, the AAL scheduling problem with two orders (i.e., 

2-order scheduling problem) at the shop floor level is optimized in this chapter.  

 

5.2.1 Structure of Bi-Level Genetic Optimization Model  

As two apparel production orders are scheduled, there are five possible scheduling modes 

shown in Figure 5-2 based on different production tasks and delivery dates. In modes (a), (b) 

and (d), two orders can be processed simultaneously while each order must be processed 

separately in modes (c) and (e). Actually, mode (d) can be considered as a particular instance 

of modes (a) and (b) while mode (e) can be taken as a particular instance of mode (c). In these 

modes, 3 different scheduling statuses are involved, including the status of processing order 

iP  solely, the status of processing order jP  solely, and the status of processing both orders 

iP  and jP  simultaneously. In scheduling mode (c), order preemption occur and it is 

necessary when order jP  is a rush one. 

 

To solve the addressed problem described in section 5.1, it is of utmost important to 

select appropriate scheduling modes as well as the operation assignment and the beginning 

time of each order. In this section, the BiGA is presented, which comprises two genetic 

optimization processes at different levels, where the second-level GA (GA-2) is nested in the 

first-level GA (GA-1). GA-1 generates the optimal operation assignment in 3 different 

scheduling statuses of the 2-order scheduling problem, where GA-2 determines the optimal 

beginning time of each scheduling status on the basis of the operation assignment from GA-1.  
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Figure 5-2: Scheduling modes of processing two orders on the AAL 

 

The steps involved in the algorithm are illustrated in Figure 5-3. In considering 

scheduling modes (a), (b) and (d) of the 2-order scheduling problem at the shop floor level, 

GA-2 is to determine the beginning time of the scheduling status processing two orders 

simultaneously based on the operation assignment of GA-1. However, the scheduling modes 

(c) and (e) are to determine the beginning time of the scheduling status of order iP  solely. 

Whichever mode is considered, to determine the beginning time of order iP  is a simple unary 

first-order function optimization problem, which is easy to be optimized by a real-coded GA. 

 

In GA-1 and GA-2, the selection operation and the termination criterion are also the same 

as those in the GA for the order scheduling problem described in Chapter 4. Other procedures 

are described in the following sections.  
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Figure 5-3: Bi-level genetic optimization model 

 

5.2.2 Representation 

In GA-1, to tackle flexible operation assignment in PBS, a novel chromosome 

representation is developed. Each chromosome is a sequence of genes and its length is equal 

to the number of machines to which operations can be assigned. In a chromosome, each gene 

represents a machine and the value of each gene represents the operation number(s) of one or 

more operations which the corresponding machine processes. If the number of the machine 

type is t ( 1≥t ), the genes in each chromosome will be divided into t  parts in turn. Each part 

represents one type of machine. Each operation can only be assigned to the machines which 

can handle it. Figure 5-4 shows an example of this representation which considers a problem 

with 6 operations to be assigned to 12 sewing machines. These machines are divided into two 
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types, the lockstitch type including machines 1 through 7, and the overlock type including 

machines 8 through 12. Operations 1, 2, 3 and 4 must be processed on lockstitch sewing 

machines, while operations 5 and 6 must be operated on overlock machines. A feasible 

solution, represented in an array of length 12, could be [1 2 3 (3,4) 4 2 1 5 6 (5,6) 5 6]. Based 

on this solution, machine 4 processes operations 3 and 4 while machine 10 processes 

operations 5 and 6 at the same time. Furthermore, some operations are assigned to more than 

one machine. For example, operation 1 is assigned to machines 1 and 7, and operation 3 is 

assigned to machines 3 and 4. 

 

 

Figure 5-4: Sample of the chromosome representation 

 

The above representation describes the operation assignment of a scheduling status. In 

GA-1, the operation assignments of 3 different scheduling statuses are optimized separately 

and independently. 

  

In GA-2, the real-coded chromosome comprises one gene. The value of the gene is the 

beginning time of order jP  (i.e., the beginning time of the second scheduling status in each 

scheduling mode). 

 

5.2.3 Initialization 
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In GA-1, each chromosome is randomly initialized by assigning all operations of a 

scheduling status to the machines which can handle it. The initialization process can thus be 

described as follows: 

Step 1. Initialize parameters: index 1=i , a population size Psize , population 

}{φ=POP  and a maximum quantity mxQ  of machines to which an operation can be 

assigned. 

Step 2. Randomly generate a string chromosome iCHR , iCHRPOPPOP ∪= . 

Step 3. Set 1+= ii . Stop if Psizei > , otherwise go to step 2. 

 

The process for randomly generating a chromosome is detailed as follows: 

Step 1. Set index j =1. For each operation, let PRO =1, where PRO  represents the 

probability that an operation is selected to be processed.  

Step 2. Generate randomly an integer k  between 1 and the number of operations which 

can be processed on machine j . 

Step 3. Randomly select k  operation(s) which can be processed on this machine. The 

operation with greater PRO  will be selected with a greater probability. If 0=PRO , the 

operation cannot be selected. 

Step 4. Assign the selected operation(s) to machine j . For each selected operation, let 

mxQ
PROPRO

1
−= .  

Step 5. Set 1+= jj . If hj > , go to step 6; otherwise go to step 2. 

Step 6. Stop if all operations are assigned, otherwise go to step 1. 
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In GA-2, the initial population is generated by initializing randomly the beginning time 

of each scheduling status within the due date in PBS.  

 

5.2.4 Fitness 

In tackling the addressed AAL scheduling problem, two objective functions should be 

optimized. For the second objective, ideally, the maximal balance index of an assembly 

system is 100%. Balance index less than 100% implies extra production cost, i.e. imbalance 

penalty. The imbalance penalty is set as κ  when the balance index decreases by 1%. 

Consequently, the two objectives can be combined as ),(2 1 ijkli YBOOBJ , which minimizes the 

summation of earliness and tardiness as well as imbalance penalties as follows, 

  )),(1(),(),(2 111 ijkliijkliijkli YBOBYBOQYBOOBJ −⋅+= κ    (5-11) 

 

The fitness function 2ft  of GA-1 and GA-2 can thus be defined as  
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5.2.5 Crossover 

In GA-1, in accord with the proposed chromosome representation, a modified crossover 

operator similar to the uniform-order crossover is developed and described as below: 

Step 1. Create a bit string randomly with the same length as the chromosomes. 

Step 2. Copy the genes from parent 1 wherever the bit code is ‘1’ and fill them in the 

corresponding positions in child 1. (Positions in child 1 are filled in wherever the bit code is 

“1” and positions are left blank wherever the bit code is “0”.) 
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Step 3. Select the genes from parent 1 wherever the bit code is ‘0’. 

Step 4. Permute these genes so that they follow the same order of genes appearing in 

parent 2. For the gene with two or more operations, its first operation is used for permuting the 

positions of genes of child 1 following the order of genes of parent 2. If the number of genes in 

the list is more than the number of corresponding genes with same operation(s) in parent 2, 

then the sequence of genes in parent 2 will be duplicated and appended to its end. 

Step 5. Fill these permuted genes orderly in the gaps in child 1. 

Step 6. Carry out a similar process to make child 2 according to steps 2-6. 

 

Each sewing operation must be processed on machines of a certain type. Thus, the genes 

of different machine types in a chromosome should be independent and the crossover and 

mutation operations could only be performed among genes with the same machine type. 

Therefore, for the genes of each machine type, the genetic operations are performed separately. 

Figure 5-5 shows an example of the modified uniform-order crossover operation considering 

the two types of machines. 

 

 

Figure 5-5: Sample of the modified uniform-order crossover operator 
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In GA-2, the BLX-α  crossover operator (Eshelman and Schaffer 1993) is used. Herrera 

et al (1996) compared some real-coded crossover operators and concluded that the BLX-α  

crossover operator was the best one. This operator uniformly picks values that lie between two 

points that contain two parents, but may extend equally on either side determined by a 

user-specified GA-parameter α  (See Figure 5-6). For instance, BLX-0.3 picks parameter 

values from points that lie on an interval that extends 0.3 I  on either side of the interval I  

between the parents. 

 

 aI  I  aI 

p1 p2  

Figure 5-6: BLX-α  crossover 

 

5.2.6 Mutation 

In GA-1, to correspond with the proposed representation, a modified mutation operation 

similar to the inversion mutation operator (Holland 1975) was developed. This operation 

inverts firstly the genes between two randomly selected genes of a chromosome with a 

predetermined probability of mutation. According to the suitable probability (between 0.6 and 

1), the gene with two or more operations is then divided and the separated operations 

recombines with its proximate gene. Figure 5-7 shows an example of a mutation operator.  
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Figure 5-7: Sample of the modified inversion mutation operator 

 

Herrera (1998) compared three commonly used mutation operators for a real-coded GA, 

including random mutation (Michalewicz 1992), real number creep (Davis 1991) and 

non-uniform mutation (Michalewicz 1992), and concluded that the non-uniform mutation 

operator outperformed the other two. In GA-2, the non-uniform mutation operator is used and 

its procedures are described as follows: 

  

If h

t

v vvvs ,,, 21 L=  is a chromosome ( t  is the generation number) and gene kv  is 
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and LB  and UB  are lower and upper domain bounds of variable kv . Function ),( yt∆  

returns a value in the range ],0[ y . The probability of ),( yt∆  being close to 0 increases as 

t  increases. This property causes this locally at later stages, thus increasing the probability of 
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generating a new number closer to its successor than a random choice. The following function 

is used: 
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where rnd  is a random number from [0,1], max_t  is the maximal generation number, 

and q  is a system parameter determining the degree of dependency on the iteration number 

(In this research q  is equal to 5). 

 

5.3 Experimental Results and Discussion 

A series of experiments were conducted to evaluate the performance of the proposed 

BiGA for the AAL scheduling problem. Two experiments are presented in this section. In 

experiment 1, the same scheduling tasks were scheduled in two different cases. Each 

workstation could process only one sewing operation in case 1 while each workstation could 

process a maximum of two sewing operations simultaneously in case 2. In experiment 2, three 

production problems with different due dates were scheduled. In real-world PBS, garment 

components are processed and transported in bundles which are composed of certain number 

of garment components being tied by strings. An operative assistant is responsible for 

transporting the garment components between workstations. Compared with the total 

operating time of one bundle of garment components, the transportation time and the setup 

time are thus negligible in the decision-making process. Moreover, the AAL used for 

modeling was empty initially in this research. In other words, there was no work in progress in 

each workstation. All production orders, materials and sewing workstations were ready for 
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processing from time zero. There was no shortage of materials, machine breakdown and 

absence of operators in the assembly environment. 

 

5.3.1 Experiment 1 

In this experiment, two apparel production orders were scheduled over a planning 

horizon of 20 units (days) of time. Each time unit (day) had 8 working hours. The data for each 

order is shown in Table 5-1. The columns describe, respectively,  the order number, order 

size (quantity of products in the order), due date, tardiness weight, earliness weight and 

operation number of each order, the required sewing machine type and standard processing 

time to perform the operation. These two orders were different in terms of order sizes, due 

dates and penalty weights. Order 1 comprised 7 sewing operations which should be processed 

from operations 1 to 7 continuously. Order 2 involved 5 sewing operations which should be 

processed continuously, namely operations 8, 9, 10, 11 and 12. The two orders were scheduled 

on an AAL with 7 lockstitch sewing machines and 7 overlock machines. Operations 2, 3, 4, 7, 

10 and 12 must be processed on lockstitch sewing machines while other operations must be 

processed on overlock machines. On the AAL, the operative efficiency of sewing operator in 

each sewing workstation depends on the type of machine, the skill level and the recent 

performances of the operator. Table 5-2 demonstrates a detailed efficiency inventory of each 

workstation for the operations of the two orders. The efficiency was set as 0 if the operator 

could not process the corresponding operation. The processing time of operation ijO  on 

machine klM  was equal to the standard processing time of this operation divided by the 

relevant operator’s efficiency on machine klM . 
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Table 5-1: Data for orders of experiment 1 

 

 

Table 5-2: Operative efficiency in workstations of experiment 1 

 

 

On the AAL, one sewing workstation can process one or more operations. If only one 

operation is processed repetitively, it is helpful to improve the efficiency of this operator 

processing the operation owing to learning effects. However, if the number of workstations is 

less than the number of operations which have not been assigned, some workstations have to 

be assigned with more than one operation. It is helpful to improve the flexibility and balance 

performance of PBS if some workstations process multiple operations with different 
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processing time. This experiment considers the scheduling problem according to whether each 

workstation can process only one or more operations in the three scheduling statuses 

explained in section 5.2 in the following sub-sections. 

 

1) Case 1. In this case, each workstation processed only one operation in each 

scheduling status. Under this condition, the optimized operation assignments and order 

scheduling generated by the proposed GA are shown respectively in case 1 of Tables 5-3 and 

5-4. In Table 5-3, the number in the second row represents the workstation number, and each 

row of the cases describes the optimized operation assignment of the corresponding order(s) 

which is (are) processed on the AAL. For example, the first row of case 1 of Table 5-3 

describes the operation assignment of order 1 being processed solely on the AAL. In Table 5-4, 

the result rows describe the beginning time to process the order(s) of each scheduling status, 

the processing time for the order(s) of each scheduling status, the completion time of each 

order, the penalty cost of each order and the balance index of the AAL of each schedule. 

 

Table 5-3: Optimized operation assignment for experiment 1 

 

 

In terms of the optimized operation assignment results, some operations were performed 

only in one workstation while some operations were performed in multiple workstations. For 
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example, for the assignment result of order 1 being processed solely, operation 3 was 

processed only in workstation 6 while operation 2 was processed in workstations 1 and 7. Case 

1 of Table 5-4 shows that the assembly system processed order 1 solely from beginning time 0 

with processing time 9.7983 units. Then orders 1 and 2 were processed simultaneously with 

4.9647 time units, and finally order 2 was processed solely until time 19.9647. The completion 

time of order 1 and order 2 were 15 and 19.9647 respectively. Based on this schedule, order 1 

could be completed on time, and the earliness penalty of order 2 was 3.53. The balance index 

of this schedule was 82.01%.  

 

Table 5-4: Results of optimized scheduling of experiment 1 

 

 

2) Case 2. In this case, each workstation could process a maximum of two operations in 

each scheduling status. Case 2 of Table 5-3 shows the optimized operation assignments of all 

workstations processing a maximum of two operations. The optimized order scheduling was 

given in case 2 of Table 5-4. According to this result, the assembly system processed order 1 

solely from time 0 with processing time 10.3381 units, then orders 1 and 2 were processed 

simultaneously with 4.6619 time units. Afterwards, order 2 was processed solely with 

processing time 4.9884 units. Since order 1 was accomplished punctually, there was no 

penalty. Order 2 was completed by 0.0116 time units in advance and its earliness penalty was 

only 1.16. The balance index of this schedule was 84.29%. This value is better than that of the 
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optimized schedule in case 1 because the imbalance grade of the assembly system is probably 

weakened when some workstations processed two operations.  

 

5.3.2 Experiment 2 

Three apparel production tasks were scheduled over a planning horizon of 32 units of 

time in this experiment. The details of each order are given in Table 5-5. The sewing 

operations of orders 1 and 2 were from operations 1 to 7, and operations 8 to 12 respectively. 

In the experiment, the assembly system comprised 8 workstations of lockstitch sewing 

machines and 2 workstations of overlock machines. Operations 5, 6, 9 and 11 must be 

processed on overlock machines while other operations must be processed on lockstitch 

sewing machines. The detailed efficiency inventory of each workstation for the two orders is 

given in Table 5-6.  

 

Table 5-5. Data for orders of experiment 2 
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Table 5-6. Operative efficiency in workstations of experiment 2 

 

 

In terms of different due dates, different scheduling solutions are required to meet the 

production objectives. In this experiment, three different production tasks were simulated by 

setting different due dates. These tasks are described as 3 cases as follows: 

Case 1: The due dates of orders 1 and 2 were 28 and 32 respectively. 

Case 2: The due dates of orders 1 and 2 were 32 and 28 respectively. 

Case 3: The due dates of orders 1 and 2 were 32 and 20 respectively. 

 

The optimized operation assignment and order scheduling of the three cases generated by 

the proposed genetic optimization model are shown in Tables 5-7 and 5-8 respectively. 

Although the production quantity and expected total production time of orders 1 and 2 in the 

three cases were the same, their scheduling solutions were different because of the differences 

of due dates. In case 1, the assembly system processed order 1 solely from time 0 with 

processing time 8.2694 units, then orders 1 and 2 were processed simultaneously with 19.7306 

time units, and finally order 2 was processed solely. However, in case 2, order 2 was not 

processed solely. In case 3, orders 1 and 2 were not processed simultaneously because of the 

limited production capacity of the assembly system. Order 2 could not be accomplished on 
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schedule when two orders were processed simultaneously and thus they had to be processed 

separately. That is, order 2 was a rush order. Order preemption occurred when the production 

of order 1 was interrupted. The optimized schedules of cases 1, 2 and 3 represent scheduling 

modes (a), (b) and (c) respectively. 

 

Table 5-7: Optimized operation assignment of experiment 2  

 

 

Table 5-8: Results of optimized scheduling of experiment 2 

 

 

In this section, the results of the first experiment show that the proposed algorithm can 

schedule not only the processing of one operation on multiple machines but also that of 

multiple operations on one machine. The second experiment demonstrates the capability of 

the proposed algorithm for scheduling real production problems with different production 

tasks on the AAL. These experiments covered all scheduling modes of two orders being 

processed on an AAL. The penalty cost of each case was very low and negligible because each 
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production task could be scheduled effectively and earliness or tardiness of each order was 

equal or very close to zero. These results show that the BiGA proposed in section 5.2 can solve 

the 2-order scheduling problem on the AAL effectively. 

 

 

Figure 5-8: Trends of chromosome fitness 

solid line: maximum fitness; dashdotted line: mean fitness. 

 

In the optimization processes of these experiments, the evolutionary trajectories of 

fitness over generations are shown in Figure 5-8 where the solid line represents the maximum 

fitness and the dashdotted line represents the mean fitness. The optimized results in this 

section were obtained based on the following settings: the population sizes of GA-1 and GA-2 

were 200 and 30 respectively; the maximum numbers of generations of GA-1 and GA-2 were 

60 and 20 respectively; the imbalance penalty κ  was 10 and the tournament size was 3. In 

order to reduce the computation time of the optimization process, probabilities of crossover 
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and mutation were adjusted according to the fitness values of the population based on the 

method developed by Syswerda (1991).  

 

5.4 Summary 

This chapter investigates the AAL scheduling problem with the objectives of minimizing 

the total E/T penalty costs and maximizing the smoothness of the sewing production flow. 

These objectives are very useful in helping shop floors of PBS to meet the due dates, decrease 

the inventories and improve the efficiency of the assembly system by optimizing the 

utilization of limited resources. 

 

Due to the intractable nature of the addressed scheduling problem, the heuristic global 

optimization process BiGA was developed to tackle it by determining when to start the 

production of each order and how to assign operations of each order to machines. Experiments 

were conducted to evaluate the performance of the BiGA. Experimental results demonstrate 

that the algorithm can solve the AAL scheduling problem with two orders effectively. In a 

real-life mid- to high-volume production environment, as there are often not more than two 

production orders processed simultaneously on an AAL, the proposed optimization algorithm 

can be widely applied. 

 

In the AAL scheduling described in this chapter, the processing time of each sewing 

operation was computed on average according to the accumulated efficiency of all assigned 

workstations processing it simultaneously. The proposed scheduling model considered the 



 

113 

average balance performance of PBS. Although the model is feasible to solve the scheduling 

problem at the shop floor level, the differences in the idle time between different operations of 

each garment and between same operations of different garments were not considered. 

 

This chapter makes an assumption: if machine klM  processes nl  operations, the 

weights of efficiency penalty ijklη  of these operations are the same and equal to nl/1 . In 

other words, this chapter assumes that each sewing workstation (operator) spends the same 

working time on the assigned production tasks. However, in real-world PBS, it is probable 

that the processing time on different tasks is quite different so as to balance the AAL. The next 

chapter will thus present the AAL balancing problem considering the difference in the 

processing time of the same sewing operation and the difference of assigned task proportions 

being processed in different workstations. 
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Chapter 6 

Apparel Assembly Line Balancing with Work-Sharing and 

Workstation Revisiting 

 

The AAL scheduling problem discussed in Chapter 5 places great emphasis on 

investigating whether the due date of each order can be met by determining the beginning time 

of each apparel production order. Once the production of an order is started in PBS, the AAL 

balancing problem arises at the assembly line level. In the production process of PBS, 

work-sharing and workstation revisiting are allowed, and the operative efficiency of a sewing 

operator is variable due to the effects of various factors, such as learning factor, psychological 

and physical factors.  

 

This chapter investigates the AAL balancing problem with work-sharing and workstation 

revisiting. Firstly, a mathematical model of the problem is presented with the objectives of 

meeting the desired cycle time of each order and minimizing the total idle time of all 

workstations in each production cycle. A GA-based optimization model, comprising a 

BiMGA (bi-level multi-parent GA) and a heuristic routing rule, is then developed to tackle the 

addressed problem. Next, experiments and discussions without the consideration of learning 

effects are presented to evaluate the effectiveness of the proposed optimization model. This 

chapter also discusses AAL balancing with learning effects and presents the experimental 

results with the consideration of learning effects.  
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6.1 Problem Formulation 

In this research, the symbol ijklρ  ( 10 ≤≤ ijklρ ) denotes the task proportion (weight) of 

sewing operation ijO  being performed on machine klM , that is, the ijklρ  time of the total 

tasks of operation ijO  is processed on machine klM . On average, for operation ijO  of each 

garment, the task of ijijkl STρ  should be processed on machine klM . If operation ijO  is only 

processed on machine klM , ijklρ =1; and if operation ijO  is not processed on machine klM , 

ijklρ =0. For each operation ijO , 1=∑
kl

ijklρ . The average assembly time klMAT  of each 

garment on machine klM  can be expressed as  

   ∑
∈

=
klij SOOij ijkl

ijijkl

kl
EM

ST
MAT

,

ρ
       (6-1) 

where klSO  denotes the set of sewing operations which can be processed on machine klM . 

 

6.1.1 Objective Function 

The aim of AAL balancing is to generate the optimal operation assignment and the 

routing ijklY  of each operation ijO . In this research, the objective of the AAL balancing 

problem is twofold. The first one is to satisfy the desired cycle time of each apparel production 

order, while the second one aims at minimizing the total idle time of all workstations in each 

production cycle. A production cycle is the process for completing a production run of a 

garment in an AAL. In the real-life apparel sewing process, the desired cycle time is the 

desired time processing the sewing process of each garment from start to finish. The objective 

of satisfying the desired cycle time can be described as  

       )(min
}{

ijkl
Y

YZ
ijkl

 

with    
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∑
=
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)([)( δω )])(1( iiii DCTACT −−+ δξ      (6-2) 

where iDCT  represents the desired cycle time of order iP , iACT  represents the actual cycle 

time of order iP , iω  denotes the penalty weight for order iP  when its actual cycle time is 

less than its desired cycle time, iξ  denotes the penalty weight for order iP  when its actual 

cycle time is greater than its desired cycle time, and iδ  indicates that if the actual cycle time 

iACT  is less than the desired cycle time iDCT , iδ  is equal to 1; otherwise, it is equal to 0. 

)( ijklYZ  is used to measure the degree of how close the actual cycle time is to the desired cycle 

time. The smaller the value of )( ijklYZ , the better the actual cycle time satisfies the desired 

cycle time. The delivery date is delayed and the tardiness penalty is generated if the actual 

cycle time is more than the desired cycle time, whereas the storage cost arises and the earliness 

penalty is generated if the actual cycle time is less than the desired one.  

 

The second objective of the AAL balancing problem is to minimize the total idle time IT  

of all workstations in each production cycle, which can be expressed as follows: 

       )(min
}{

ijkl
Y

YIT
ijkl

,  

with  

    )()(
1 ,

∑ ∑
= ∈

−⋅=
m

i AMMkl

kliiijkl
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MATNACTYIT           (6-3) 

where iAM  denotes a set of workstations processing order iP , and iN  denotes the number 

of workstations processing order iP . 

 

6.1.2 Constraints 
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A feasible solution to the AAL balancing problem must satisfy three basic types of 

constraints, including allocation constraint, operation precedence constraint and processing 

time requirement constraint. The mathematical expressions of these constraints are the same 

as the expressions of the corresponding constraints described in section 5.1.3, including 

expressions (5-6) to (5-9).  

 

An ideal AAL balancing implies that no idle time exists between the sewing operations 

of each garment and each workstation. The production of each sewing operation is considered 

on the basis of each garment in AAL balancing. Therefore, expressions (5-8) and (5-9) are 

used to describe the time relationship between the sewing operations based on each garment in 

AAL balancing. For operation ijO  of one garment, its processing time ijPTO  is determined 

by the efficiency ijklEM  of the sewing operator processing this operation and the assigned 

machine. Due to the effects of learning or other factors, the efficiency ijklEM  can be different 

for different garments. ijPTO  is computed according to the following equation: 

ijkl

ij

ij
EM

ST
PTO =         (6-4) 

 

6.2 GA-Based Optimization Model for AAL Balancing 

In order to solve the addressed AAL balancing problem, a GA-based optimization model 

is presented in this section. In this model, a BiMGA is used to deal with the flexible operation 

assignment on the AAL, which involves assigning sewing operations to different workstations 

and determining the task proportions of the shared operation to be processed in different 

workstations. Then a heuristic operation routing process (operation routing rule) is used to 
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route the shared sewing operation of each garment to an appropriate workstation. These two 

processes are described in detail in the following sections. 

 

6.2.1 Bi-Level Multi-Parent GA 

The flexible operation assignment in the AAL balancing problem can be considered as a 

two-stage optimization problem where the first stage is to assign operations to workstations 

and the second one is to determine the task proportions of each operation assigned to different 

workstations. Since the solution to the second-stage sub-problem depends on the solution to 

the first-stage sub-problem, the complexity of the process generating the optimal solution 

increases greatly. The BiMGA is thus proposed to solve the two-stage AAL optimization 

problem. 

 

The structure of BiMGA is very similar to that of BiGA described in section 5.2. Unlike 

BiGA, the multi-parent crossovers are adopted in the two genetic optimization processes of 

BiMGA. As shown in Figure 6-1, the second-level multi-parent GA (MGA-2) is nested in the 

first-level multi-parent GA (MGA-1). MGA-1 generates the optimal operation assignment to 

workstations using the representation described in section 5.2.2. Based on each chromosome 

of MGA-1, MGA-2 determines the task proportions (weights) of each sewing operation which 

is assigned to different workstations. If an operation is assigned to multiple workstations, the 

weights on these workstations will be optimized. To seek these optimal weights is a first order 

multivariate function optimization problem, which can be optimized by a real-coded genetic 

optimization process.  
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Figure 6-1: Bi-level multi-parent GA 

 

1) MGA-1 

The procedures for MGA-1 of BiMGA are the same as GA-1 of BiGA described in 

section 5.2 except the crossover operation and the fitness function. 

 

(1) Multi-Parent Crossover 

In this chapter, a multi-parent crossover developed by Eiben et al.  (1994), the fitness 

based scanning crossover, is modified to suit the proposed order-based representation, which 

is described as below. 

Step 1. Let 1sp , 2sp , …, dsp  be the selected parents with LH  genes. 
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Step 2. Initialize parameters: position markers L=1i =  di =1, i.e., the position markers 

are all initialized to the first position in each of the parents; the gene position in the child 

chromosome k =1. 

Step 3. Choose a gene from the d  genes in the marked positions of the parents, which is 

based on the rule that the probability of the parental gene being chosen is proportional to the 

fitness values of the parent. For instance, for a maximization problem where parent isp  has a 

fitness of )(ift , the probability )(iPR  of choosing the gene from parent isp  can be: 

     
∑

=
)(

)(
)(

ift

ift
iPR          (6-5) 

Step 4. Put the chosen gene in the k th position of the child chromosome.  

Step 5. Update position markers ,,1 Li di . For each parent, if the gene in the current 

position is the same as the chosen gene, increase its marker until it denotes a value which has 

not yet been added to the child chromosome or equals LH .  

Update k = k +1. 

Step 6. Repeat steps 3, 4 and 5 until the gene position k  is greater than LH . 

Step 7. Stop if each operation in the parent is assigned to machines, else go to step 2. 

 

Figure 6-2 shows an example of how the proposed crossover mechanism works, in which 

the fitness of Parents 1 to 3 are 0.90, 0.45 and 0.45 respectively. The marked positions in 

parents are indicated by shaded grids. 
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Figure 6-2: Example of a modified fitness-based scanning crossover operator 

 

(2) Fitness Function 

For the addressed AAL balancing problem, two objective functions described in section 

6.1.1 are optimized, which can be combined as the following equation,  

)()()(3 ijklITijklZijkl YITwYZwYOBJ ⋅+⋅=       (6-6) 

where Zw  and ITw  are the relative weights placed upon the objectives )( ijklYZ  and )( ijklYIT  

respectively. 

 

The less the weighted summation of the two objectives is, the greater the fitness. The 

fitness function 3ft  of MGA-1 is defined as  

 
1)(

100
3

+
=

ijklXOBJ
ft        (6-7) 

 

2) MGA-2 

In MGA-2, some procedures are the same as those in MGA-1, including selection 

operation, fitness function and termination criterion. Other procedures are described as 

follows. 
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(1) Representation: The real-coded representation is adopted. Each gene represents the 

task proportion of an operation assigned to the corresponding workstation. Consider the 

assignment of nQ  operations. ijnm  denotes the number of machines allocated to process 

operation ijO  and ijPS  denotes the summation of ijnm -1 weights of ijO . The number of 

genes in each chromosome of MGA-2 is the summation of ijnm  minus nQ  since the 

ijnm th weight is equal to ijPS−1 .  

 

(2) Initialization: The initial population is generated by initializing randomly each task 

proportion (weight) in the chromosome between 0 and 1 based on the premise of 1≤ijPS .   

 

(3) Crossover: The center of mass crossover (CMX) operator (Tsutsui and Ghosh 1998) 

was used. The procedures for this operation are detailed as follows: 

 

),,,( 21 hxxxX L=  represents an h  dimensional real number vector which 

represents a possible solution (chromosome). Let prtm _  ( prtm _ >1) and N  

( prtmN _> ) be the numbers of parents and population size respectively. In this crossover, 

prtm _  individuals ),,,( 21

pi

h

pipipi
xxxX L= , prtmi _,,1 L= , are chosen at random 

from the parental pool },,{ 1 hXX L . Then 
p

CMX , center of mass of the prtm _  parents, is 

calculated following ( λρµ ,/ )-ES (Beyer 1995) as 

∑
=

=
prtm

i

pip

CM X
prtm

X
_

1_

1
         (6-8) 
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Each 
pi

X  generates a virtual parent 
vi

X , where 
pi

X  and 
vi

X  are symmetrical with 

respect to 
p

CMX  as 

pip

CM

vi
XXX −= 2          (6-9) 

 

By crossing over the real parent 
pi

X  and its virtual parent 
vi

X , child iX τ  is then 

generated. Thus in CMX, prtm _  children are generated from prtm _  parents (see Figure 

6-3). Since 
pi

X  and 
vi

X  are symmetrical with respect to 
p

CMX , center of mass of prtm _  

parents, CMX tends to generate offspring uniformly around the prtm _  parents. Then 

another set of prtm _  parents (not chosen earlier) is chosen and it generates prtm _  more 

children. This process continues until N  new children are generated. 

 

X
V3

X
p1

a parent Xpi

XCM
p

X
V1

Xp2

X
p3

XV2

a virtual parent Xvi

 

Figure 6-3. Center of mass crossover 

 

(4) Mutation: The non-uniform mutation operator (Michalewicz 1992) is adopted, which 

has been described in section 5.2.6. 
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In MGA-2, after the genetic operations are performed, its ijnm  weights should be 

changed to the corresponding values between 0 and 1 if ijPS  of operation ijO  is greater than 

1. A real number between 0 and 1 is generated randomly as the ijnm th
 weight. Then the ijnm  

weights are normalized and the normalized weights are the final weights.  

 

6.2.2 Operation Routing  

The proposed BiMGA can only obtain the optimized sewing operation assignment and 

task proportions of the shared operation in different workstations. After the previous 

operations of the shared sewing operation of each garment are completed, the shared operation 

should then be routed to an appropriate workstation so as to satisfy the optimized task 

proportion in each assigned workstation during production.  

 

Assume that sewing operation ijO  is assigned to n  machines ( 1kM , 2kM , … knM ) 

according to the optimized operation assignment, ijklρ ′  denotes the optimized task proportion 

that operation ijO  should be processed on machine klM  ( ijklρ ′ >0), ijklρ ′′  denotes the task 

proportion that operation ijO  has been processed on machine klM , and ijklQ  denotes the 

number of operation ijO  which has been assigned to machine klM . 

 

To route the shared operation ijO   of a garment to an appropriate sewing workstation, a 

heuristic operation routing rule was adopted. Its procedure is described as follows: 

Step 1. Calculate ijklρ ′′ )/(
1

∑
=

=
n

l

ijklijkl QQ  for each sewing machine klM  (for the first 

product, set ijklρ ′′ =0). 
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Step 2. Calculate ijklρ ′′ / ijklρ ′  for each machine klM . 

Step 3. Assign operation ijO  of the current garment to the machine klM  with the 

minimum ijklρ ′′ / ijklρ ′ . If multiple machines have the same minimum value, one of these 

machines is selected randomly. 

 

Table 6-1 shows an example of operation routing to process operation 11O  of 10 

garments. Operation 11O  is assigned to machines 11M , 12M  and 13M . The task proportions of 

operation 11O  to be processed on these three machines are 0.3, 0.3 and 0.4 respectively 

generated by the proposed BiMGA. In Table 6-1, the rows of ijklρ ′′ / ijklρ ′  describe the current 

ijklρ ′′ / ijklρ ′  value of operation 11O  of each garment on the relevant machine, and the shaded 

grid represents that the corresponding machine is selected to process the operation of the 

corresponding garment. According to the results of operation routing shown in Table 6-1, 

operation 11O  of the first garment is assigned to 11M , that of the second garment is assigned to 

13M . After the 10 garments are completed, the actual task proportion processed on each 

machine is equal to the optimized task proportion.  

 

Table 6-1: Example of operation routing to process operation 11O  of 10 garments 

 

 

6.3 Experimental Results without Learning Effects 
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This section presents the validation of the effectiveness of the proposed optimization 

model, performance comparison between the proposed model and the industrial practice, and 

the analysis of the effects of different task proportion and operation routing on the AAL 

balancing performance. The learning factor was not considered and each operator’s efficiency 

for different sewing operations kept unchanged during production.  

 

6.3.1 Validation of the GA-Based Optimization Model 

In order to evaluate the performance of the GA-based optimization model, a series of 

experiments were conducted. This section highlights four of these experiments in detail. The 

AAL consisted of eleven workstations with two types of machines, lockstitch sewing machine 

and overlock machine. The workstations of lockstitch sewing machines included eight 

workstations numbered as 1 to 8 and those of overlock machines included three workstations 

numbered 9 to 11.  

 

In each experiment, two different apparel production orders were scheduled. Some basic 

data of these experiments are shown as follows. 

 

Experiment 1: The desired cycle times of orders 1 and 2 were both 400 seconds. Each 

garment’s assembly operations of order 1 included operations 1 to 7, and order 2 included 

operations 8 to 12. 
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Experiment 2: The desired cycle time of orders 1 and 2 were 55 and 130 seconds 

respectively. The garment’s assembly operations of order 1 included operations 1 to 6, and 

order 2 included operations 7 to 11. 

 

Experiment 3: The desired cycle time of two orders were both 50 seconds. The assembly 

operations of two orders were the same as those in experiment 2.  

 

Experiment 4: The desired cycle times of orders 1 and 2 were 70 and 225 seconds 

respectively. The assembly operations of order 1 included operations 1 to 5, and order 2 

included operations 6 to 10. 

 

The operative efficiency of each workstation and the standard processing time of each 

operation in these experiments are shown in Table 6-2 to Table 6-5.  

 

Table 6-2: Operative efficiency in workstations of experiment 1 
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Table 6-3: Operative efficiency in workstations of experiment 2 

 

 

Table 6-4: Operative efficiency in workstations of experiment 3 

 

 

Table 6-5: Operative efficiency in workstations of experiment 4 
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In experiments 2-4, the number of sewing workstations was equal to or greater than the 

number of sewing operations. In order to evaluate the effect of work-sharing and workstation 

revisiting on the AAL balancing performance, different assignment strategies were 

implemented in different cases. In case 1, both work-sharing and workstation revisiting were 

allowed whereas neither was allowed in case 2 of experiments 2-3. In case 2 of experiment 4, 

only work-sharing was allowed.  

 

The optimized operation assignments and line-balancing results of the four experiments 

generated by the proposed BiMGA are shown in Tables 6-6 and 6-7. In Table 6-6, the first 

column (Machine type) represents the sewing machine type; the second (Workstation No.) 

shows the workstation number, and other columns show the optimized operation assignment 

of different experiments to the workstation, in which the first value of each cell represents the 

operation number and the value in the bracket represents the task proportion ijklρ  of the 

operation being processed in the corresponding workstation. For instance, the value 12(1) in 

the column of ‘Experiment 1’ describes that workstation 1 processes all tasks of operation 12 

(100%), and the value (7(0.67), 9(0.15)) in the column of ‘Experiment 2’ shows that 

workstation 2 processes 67% of the tasks of operation 2 and 15% of operation 9. In Table 6-7, 

the rows of ‘Actual cycle time’ show the optimized actual cycle time (seconds) of orders 1 and 

2 in four experiments whereas the rows of ‘Idle time’ and ‘Line efficiency’ show the 

optimized average idle time (seconds) in each cycle and the optimized line efficiency of orders 

1 and 2 in four experiments respectively. The line efficiency of order iP  was defined as the 
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average processing time of workstations processing this order in each cycle divided by the 

actual cycle time of this order. 

 

Table 6-6: Optimized operation assignment and task proportions of four experiments (without 

learning effect) 

 

 

Table 6-7: Optimized AAL balancing results of four experiments (without learning effect) 

 

 

As shown in Table 6-6, the proposed genetic optimization algorithm could implement 

flexible operation assignment when considering both work-sharing and workstation revisiting. 

For instance, in case 1 of experiment 2, the processing of operation 9 was shared by 

workstations 2, 3 and 4 wheareas workstation revisiting occurred in workstation 2. In the 

optimized operation assignment of case 1 of experiment 4, parallel workstations existed, 
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which processed the same operation set, such as workstations 1 and 3, workstations 2 and 6, 

and workstations 4 and 8. It indicates that the proposed algorithm can also handle the ALB 

problem with parallel workstations. 

 

As shown in Table 6-7, the desired cycle time of orders 1 and 2 were achieved in case 1 

of experiments 1 and 3, and the actual cycle time of two orders were very close to the desired 

cycle time in case 1 of experiments 2 and 4. These results show that the proposed BiMGA can 

solve the AAL balancing problem effectively.  

 

In case 2 of experiments 2, 3 and 4, the actual cycle time went beyond the desired cycle 

time; the other two performances were inferior to the corresponding performances in case 1. 

Obviously, the work-sharing can improve the performance of the assembly line.  

 

In the optimization processes of these experiments, the evolutionary trajectories of the 

maximum value of fitness over generations are shown in Figure 6-4. The optimized results in 

this chapter were obtained based on the settings: the population sizes of MGA-1 and MGA-2 

were 200 and 100 respectively, the maximum numbers of generations of MGA-1 and MGA-2 

were 100 and 50 respectively, the penalty weights iω  and iξ  of each order were 10 and 100, 

and the relative weights Zw  and ITw  were both set as 1. The probabilities of crossover and 

mutation were also adjusted according to the fitness values of the population based on the 

method developed by Syswerda (1991).  

 



 

132 

 

(a) Experiment 1 and case 1 of experiments 2-4 

 
(b) Case 2 of experiments 2-4 

Figure 6-4: Trends of chromosome fitness 

 

6.3.2 Comparison Between the GA-Based Optimization Model and Industrial 

Practice  

In industrial practice, the shop floor manager usually balances the assembly line using 

precedence diagrams and trial-and-error methods (Bhattacharjee and Sahu 1987). 

Considering case 1 of 4 experiments in section 6.3.1, their line balancing results in terms of 

the practical method are shown in the rows of ‘Industrial results’ of Table 6-8. The due dates 
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of most orders could not be satisfied and a large number of earliness and tardiness penalties 

occurred. The results were inferior to the optimized results shown in section 6.3.1.  

 

Table 6-8: Results of line balancing in sections 6.3.2 to 6.3.4 

 

 

6.3.3 Effect of Task Proportion on AAL Balancing Performance 

It is assumed in the existing literature that the task proportions of the shared operation are 

the same in the workstations processing the operation. For instance, if one operation is 

assigned to 4 workstations, the task proportion in each workstation should be 0.25. The 

optimized balancing results of case 1 of the above 4 experiments are shown in the rows of 

‘Same task proportion’ of Table 6-8. These results were inferior to those of section 6.3.1. That 

is because this assumption restricts the flexibility of operation assignment and shrinks the 

search space of the possible ALB solutions.  

 

6.3.4 Effect of Operation Routing on AAL Balancing Performance 

The previous studies on ALB only focused on operation assignment and did not pay 

attention to operation routing based on the optimized operation assignment. However, 
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different operation routing rules can generate different balancing performances. The 

operation routing in case 1 of the above 4 experiments was done based on the same operation 

assignment described in section 6.3.1 and the following routing rule (ORR2). 

 

ORR2: iOS  denotes the order size of order iP  in this research. Operation ijO  of 

iijkl OS⋅′ρ  products should be processed on machine 1kM . Assign the first iijk OS⋅′
1ρ  ones to 

machine 1kM , then iijk OS⋅′
2ρ ones to machine 2kM ,…, and the last iijkn OS⋅′ρ  ones  to 

machine knM . 

 

Assuming that iOS  is equal to 3000, the final balancing results are shown in the rows of 

‘ORR2’ of Table 6-8. The actual cycle time was much greater than the desired cycle time and 

the line efficiencies were comparatively low. These results indicate that the effectiveness and 

efficiency of an operation routing rule have great impact on the performance of AAL 

balancing. 

 

6.4 AAL Balancing with Learning Effects 

6.4.1 Learning Curve-Based Operative Efficiency 

When learning phenomenon is considered, the operative efficiency of an operator to 

perform an identical operation of different garments can be different. In this research, the 

operative efficiency is described by the time-constant learning curve model (Bevis 1970; 

Hitchings 1972), which is defined by the following equation: 

     )1()( / LLt

bLL eEEtE
τ−

∆ −+=       (6-10) 
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where )( LL tE  is the predicted operative efficiency at time Lt  of the learning period, bE  is 

the initial efficiency of the operator, ∆E  is the improvement in performance due to learning, 

and Lτ  is the model time constant of the learning period, which is a measure of how quickly 

the performance improvement is achieved.  

 

This research assumes that the ultimate efficiency of each operator is 100%. That is, 

)( LL tE =1 at ∞→Lt . ∆E =1- bE . Figure 6-5 shows the changing trends of two learning 

curves with different bE  and Lτ . 
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Figure 6-5: Learning curves with different bE  and Lτ  

‘-’, bE =31%, Lτ =33 days; ‘-.‘, bE =22%, Lτ =58 days 

 

6.4.2 Computation of Fitness Function Under Learning Effects 

Without the learning effect, the operative efficiency of each sewing operator kept 

unchanged in production. For one production order, the process to produce the same 

operation of different garments was the same. Therefore, the fitness of MGA-1 and MGA-2 

could be calculated by considering the production process of one garment. However, if the 
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learning effect is considered, the production process of each garment of one order is different. 

To calculate the fitness of MGA-1 and MGA-2, the production of all garments of each order 

must be simulated completely.  

Suppose that the number of assembly operations is iV  and the chromosomes in MGA-1 

and MGA-2 are given. On the basis of chromosomes of MGA-1 and MGA-2, when the 

learning effect is considered, the procedure to calculate fitness is described in detail as 

follows. 

Step 1. Parameter initialization: order index i  equals 1, operator’s accumulated 

operating time 2AccT  on the current day equals 0. 

Step 2. Parameter initialization: For order iP , initialize garment/product index u =1, 

operation index v =1, production days iDays =0. 

Step 3. Select an operator (operator w ) to process operation v  of the u th garment 

according to the operator’s task proportion assigned and the corresponding assignment rule. 

Step 4. Calculate operating time of operator w  for processing operation v  of the 

current garment; calculate the operator’s accumulated operating time 1AccT  for processing 

operation v ; calculate the operator’s accumulated operating time 2AccT  on the current day. 

Step 5. If 360082 ×>AccT  (working time in second unit per day), let 

iDays = iDays +1, 2AccT =0. 

Step 6. v = v +1. If v > iV , go to step 7; otherwise, go to step 3. 

Step 7. u = u +1. If u > iOS , go to step 8; otherwise v =1, and go to step 2. 

Step 8. Calculate the actual cycle time and the idle time of workstations processing order 

iP  on the basis of the accumulated operating time 1AccT  of each operation. 
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Step 9. i = i +1. If i  is greater than the number of orders, i.e., mi > , go to step 10; 

otherwise, go to step 1. 

Step 10. Calculate the fitness on the basis of the actual cycle time of all orders and the 

total idle time of all workstations. 

 

6.4.3 Experimental Results with Learning Effects 

This section presents the experimental results with the learning phenomenon being 

considered. The basic data of experiments were the same as those of the experiments 

described in section 6.3.1, which are shown in Table 6-2 to Table 6-5. Yet the operative 

efficiency of each operator was variable because of the learning effect described in section 

6.4.1. To investigate the influence of efficiency increase on production decision, the 

production of different quantities of products based on two different cases will be conducted 

respectively in each experiment. In case 1, 1000 garments are produced while 5000 garments 

are produced in case 2.  

 

Assume that each operator has a same learning curve for different operations. That is, 

whichever operation is processed, the learning curve of the operator is identical. The 

parameters of the learning curve of each operator are shown in Table 6-9.  

 

Table 6-9: Parameters of learning curve of each operator 
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The optimized production control results of the four experiments generated by the 

proposed methodology are shown in Tables 6-10 and 6-11. The structures of the two tables are, 

respectively, the same as those of Tables 6-6 and 6-7. 

 

Table 6-10: Optimized operation assignment and task proportions of four experiments (with 

learning effects) 

  

 

Table 6-11: Optimized AAL balancing results of four experiments (with learning effects) 

 

 

As shown in Table 6-10, the operation assignments were quite different in different cases 

of each experiment because different product quantities were processed. Moreover, as shown 

in Table 6-11, the actual cycle time of two orders was very close to the desired cycle time in 

the cases of each experiment and the line efficiency was also very good, which was between 
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87.48 % and 98.12%. For instance, for case 1 of experiment 4, the actual cycle times of orders 

1 and 2 were 69.99 and 224.98 respectively, that is, their percentage errors were 0.014% and 

0.009% respectively. For order 1, the total idle time of all workstations in each cycle was 6.58, 

which was 9.4% less than its cycle time. It means that the production flow of this order was 

very smooth. This shows that the proposed methodology can solve the AAL balancing 

problem with learning effects effectively. 

 

Table 6-11 also shows that the actual cycle time of each order in case 2 is less than that in 

case 1. The operative efficiency of operators increased with the increase of their accumulated 

operating time. Therefore, more operating time was accumulated in case 2 and this led to 

higher operative efficiency and lower cycle time. 

 

6.4.4 Influence of Different Initial Operative Efficiencies 

To consider the influences of different initial operative efficiencies, cases 3 to 5 were 

processed. The data of the three cases were the same as those of case 2 of experiment 1 except 

operative efficiencies of each operator. In cases 3-5, the initial operative efficiencies of each 

operator were 90%, 80%, and 70% of the efficiencies shown in Table 6-2. Tables 6-12 and 

6-13 show the optimized operation assignment and balancing results of the three cases. 

Although the initial operative efficiencies were quite different, the optimized AAL balancing 

results in cases 3 and 4 were still very good, in which the desired cycle time were met well and 

the line efficiencies were all greater than 94%. As to case 5, the actual production cycle of 

order 1 lagged behind the desired cycle because the initial efficiencies were too low to reach 
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the desired production performance. Yet the generated idle time and line efficiencies were still 

quite good. These results also show the effectiveness of the proposed methodology. 

 

Table 6-12: Optimized operation assignment and task proportions (Additional cases of experiment 

1) 

 

 

Table 6-13: Optimized AAL balancing results (Additional cases of experiment 1) 

 

 

6.5 Summary 

In this chapter, the AAL balancing problem is investigated at the assembly line level. The 

mathematical model for the problem with work-sharing and workstation revisiting was 

proposed. The proposed model not only meets the desired cycle time of each order, but also 

minimizes the total idle time of all workstations on the AAL. These objectives are particularly 

useful to help sewing assembly lines to meet the due dates, and improve the efficiency of the 

assembly lines by optimizing the use of the limited resources. 

 

A GA-based optimization model was developed to deal with the proposed AAL 

balancing problem, in which a BiMGA and a heuristic operation routing rule were presented. 
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The BiMGA generates the optimal operation assignment to workstations and the task 

proportions of each shared operation being processed in different workstations. In the BiMGA, 

the fitness-based scanning crossover and the inversion mutation were modified to suit the 

representation of the flexible operation assignment. The shared operation of each product was 

routed to an appropriate workstation by the proposed operation routing rule when it needed to 

be processed. Variable operative efficiency of sewing operators was also considered in AAL 

balancing. The learning curve theory was used to describe the change of operative efficiency. 

A heuristic procedure was also presented to calculate the fitness function of the BiMGA. 

 

Experiments were conducted to validate the proposed optimization model based on 

production data from the real-life PBS. On the basis of different production tasks and 

production situations, different operation assignments and task proportions were generated. 

Whichever production tasks and production situations are considered, the optimized AAL 

balancing solution can meet the production objectives well. That shows the effectiveness of 

the proposed methodology. On the basis of the same production task, the generated production 

decisions with learning effects are different from those without learning effects owing to the 

increase of operative efficiency. Since the production decision without considering learning 

effects cannot be carried out in production practice, learning effects must be considered in 

both theory and practice. 

 

This chapter also shows that a GA with multi-parent crossover can be used in tackling the 

operation assignment of the ALB problem. Since the AAL investigated not only processes two 
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or more types of production orders simultaneously, but also two or more orders separately in 

batches, that is, the AAL has the feature of multi-model and the mixed-model assembly lines, 

the proposed optimization model can be extended easily to solve the balancing problem of the 

multi-model assembly line or the mixed-model assembly line.



 

143 

Chapter 7 

Conclusion and Future Work 

 

This chapter starts with the conclusion of this research and presents contributions and 

limitations of this research as well as suggestions for future work. 

 

7.1 Conclusion 

The purpose of this research is to investigate and develop effective intelligent 

methodologies for production control decision-making in apparel manufacturing. 

 

An RFID-based IPCDM framework for apparel manufacturing was proposed. Under this 

framework, an RFID-based data capture system was adopted to collect real-time operation 

processing records and production data from the AAL, and an IPCDM model was developed 

to generate effective solutions for production control in apparel manufacturing based on 

various collected real-time production data. Three different decision-making processes were 

integrated into the IPCDM model to investigate respectively order scheduling at the factory 

level, AAL scheduling at the shop floor level and AAL balancing at the assembly line level. 

The three decision-making problems at different management levels were investigated deeply 

in this research. 

 

The order scheduling problem at the factory level was first investigated and the processes 

of each apparel production order were assigned to appropriate assembly lines. Various 
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uncertainties, including uncertain processing time, uncertain orders and uncertain arrival time, 

were considered and described as random variables. The mathematical model for this problem 

was presented with the objectives of meeting the due date of each order and minimizing the 

expected value of the total throughput time of all orders. Since the time of production process 

is uncertain probabilistically, the completion time of each production order is also uncertain. It 

is difficult to evaluate directly if the due dates are met. In this research, the total satisfactory 

level was presented to evaluate the level (grade) of all orders to meet their due dates. To solve 

the order scheduling problem, uncertain completion time of one production process and 

beginning time of its next process were derived firstly by using the probability theory. A 

genetic optimization model, in which the representation with variable lengths of 

sub-chromosomes was presented, was developed to seek the optimal order scheduling 

solution. Experiments were conducted to validate the proposed algorithm by using industrial 

data from PBS.  

 

The AAL scheduling problem at the shop floor level was investigated. The mathematical 

model for this problem was presented with the objectives of minimizing the E/T penalties and 

maximizing the smoothness of the production flow of the AAL. A bi-level genetic 

optimization model (BiGA) was developed to solve the AAL scheduling problem with two 

orders by determining the beginning time of each order and the assignment of sewing 

operations of each order to workstations. The BiGA comprises two genetic optimization 

processes on different levels, where the second-level GA (GA-2) was nested in the first-level 

GA (GA-1). GA-1 generated the optimal operation assignment of each order while GA-2 
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determined the optimal beginning time of each order on the basis of the operation assignment 

from GA-1. In GA-1, a novel chromosome representation was proposed to deal with flexible 

operation assignment in PBS including not only assigning one operation to multiple machines 

but also assigning multiple operations to one machine. On the basis of this representation, a 

heuristic initialization process and modified genetic operators were also developed. The 

proposed BiGA was evaluated by some numerical experiments. 

 

Lastly, the AAL balancing problem at the assembly line level was investigated, which 

aimed at meeting the desired cycle time of each order and minimizing the total idle time of all 

sewing workstations by assigning and routing the operation of each garment to the appropriate 

sewing workstation. In terms of the addressed AAL balancing problem, the operation 

assignment was characterized by work-sharing and workstation revisiting; the deterministic 

operative efficiency and the variable operative efficiency were considered respectively. The 

change of operative efficiency was described by the time-constant learning curve. To solve 

this problem, a GA-based optimization model was developed, in which a BiMGA and a 

heuristic operation routing rule were presented. Two multi-parent crossover operators were 

used in the BiMGA, which had a very similar structure to that of a BiGA. In the MBiGA, 

MGA-1 generated the optimal operation assignment to workstations, in which the 

representation was the same to that of GA-1 of the BiGA. Based on each chromosome of 

MGA-1, the real-coded MGA-2 determined the task proportions (weights) of the shared 

operation being processed in different workstations. In terms of the generated operation 

assignment and task proportions, the shared operation of each garment was routed to an 
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appropriate workstation by the proposed operation routing rule. Production data from the 

real-life AAL were collected to validate the proposed optimization model.  

 

7.2 Contributions of this Research 

7.2.1 Contributions to Production Control Decision-Making Architecture 

In the proposed IPCDM architecture, the RFID-based data capture system and the 

IPCDM model were integrated to implement real-time and intelligent production control 

decision-making. This architecture was the first intelligent and real-time production control 

decision-making architecture for apparel manufacturing. It can overcome the drawbacks of 

the current production control decision-making processes in apparel manufacturing because 

the current process is based mainly on inconsistent, subjective, ad hoc and unorganized 

assessment. On the basis of the proposed architecture, the production control decision-making 

processes at different management levels can be integrated in a systematic and effective 

manner. 

 

7.2.2 Contributions to Production Control Issues 

Due to the features of multiple production processes and multiple assembly lines in 

apparel manufacturing, efficient order scheduling at the factory level is imperative to 

successful production control. The investigation into this problem is the first attempt in the 

field of production control and decision-making research. The three investigated production 

control problems are very close to reality. Some real-world production characteristics are 

considered in this research, such as multiple uncertainties in order scheduling, flexible 
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operation assignment and order preemption in AAL scheduling, work-sharing, workstation 

revisiting, and variable operative efficiencies in AAL balancing. These considerations are 

necessary and have significant impact on the solutions to apparel production control problems. 

These objectives discussed in this research are particularly useful to help apparel factories to 

meet the due date and improve the efficiency of the assembly system. Obviously, these 

objectives are also probably pursued and these characteristics also occur in the production 

environments of other industries. The investigated problems in this research can be extended 

to the production control problems of other industries. For example, since the AAL 

investigated contains the feature of multi-model or mixed-model assembly lines, the 

optimization model proposed in Chapter 6 can be extended to solve the balancing problem of 

the multi-model assembly line or the mixed-model assembly line. 

 

7.2.3 Contributions to Production Control Decision-Making Methodology 

In this research, several IPCDM methodologies were developed to deal with the 

production control decision-making problems considering real-world features closer to reality. 

Experimental results showed the effectiveness of the proposed methodologies. Owing to the 

capacity of global optimization of GA, the proposed methodologies are able to obtain 

acceptable ‘near optimal’ solutions even though they cannot always guarantee optimal 

solutions. 

 

Of the proposed methodologies, GAs are the most important parts determining the 

optimization performances of these methodologies. In this research, some effective 
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modifications on GA were made on the basis of different production control decision-making 

problems. A novel representation was presented to deal with flexible operation assignment in 

PBS and a process order-based representation with variable lengths of sub-chromosomes was 

presented to assign effectively apparel production processes of each order to different 

assembly lines. The multi-parent crossover was used successfully in solving the AAL 

balancing problem and it shows that the GA with multi-parent crossover can be used to tackle 

assignment and sequence problems in industrial engineering. 

 

7.3 Limitations of this Research and Suggestions for Future Work 

While this research facilitates the development of IPCDM for apparel manufacturing, 

limitations of this research exist and there is a great deal of work left to be done.  

 

In solving the order scheduling problem at the factory level, it was assumed that each 

production process could only be assigned to one assembly line for processing and the 

production of each process could not be preempted. However, in real-world apparel 

production, the production processes of an apparel order are probably done on multiple 

assembly lines if the size of the order is large. In addition, the production of a rush order can 

interrupt the current production process. How should these problems be tackled? This 

research defined equation (4-6) as the probability density function of the processing time of 

the production process, but the probability density function of the uncertain processing time 

can be other mathematical expressions. Which probability density function can describe the 

uncertain processing time better? Answers to these questions are left to future research. 
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It has been shown that the BiGA can solve the AAL scheduling problem with two orders 

effectively. It is possible that there are more than two orders processed simultaneously on an 

AAL in real-world apparel production. With the increase in the number of orders processed 

simultaneously, the number of scheduling modes and scheduling statuses on the AAL will 

increase greatly. The length of the chromosome in GA-1 will thus increase greatly and 

therefore it is too difficult and time-consuming to generate optimal or near-optimal scheduling 

decision-making. Exploring effective methodology for addressing AAL scheduling with more 

production orders is necessary. 

 

In AAL balancing, the variety of operative efficiency was considered on the basis of the 

learning curve theory. However, the change of operative efficiency can also be influenced by 

some other factors, such as forgetting, re-learning, and status of the sewing machine and the 

operator. Though it was shown that the multi-parent GA can be used for solving the AAL 

balancing problem, the performance of the multi-parent GA have not been compared with that 

of the 2-parent GA. These problems will be taken into consideration in future research. 

 

The uncertainties of AAL scheduling and balancing, such as uncertain production orders, 

operative efficiencies of operators, machine breakdown, operator absenteeism and shortage of 

materials, were not considered in this research. These uncertain factors often occur in 

real-world production and can have great influence on the performance of the production 
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system. Future research should investigate the effects of these factors on production control 

decision-making on the AAL. 

 

In this research, several GA-based methodologies were proposed to solve the order 

scheduling problems at the factory level, AAL scheduling problems at the shop floor level 

and AAL balancing problems at the assembly line level. Although these GA-based 

methodologies were proved to be effective, the optimization performances of these 

methodologies have various limitations due to some inherent characters of GA. For example, 

the genes from the few comparatively highly fit (but not optimal) individuals might rapidly 

come to dominate the population, causing it to converge at a local maximum. Once the 

population converged, the ability of the GA to continue to search for better solutions was 

almost eliminated. Crossover of almost identical chromosomes produces almost nothing new. 

Only mutation remains an entirely new ground for exploration. Some heuristic search 

techniques such as simulated annealing, particle swarm optimization and ant colony 

optimization can be used to improve the convergence speed and global optimization ability of 

GA. Future research should focus on the combination of GA and other heuristic research 

techniques and compare the performances of combined algorithms and the proposed 

methodologies in this research. 

 

Lastly, in this research, it was assumed that the production data collected by the 

RFID-based data capture system were accurate. The proposed methodology provided 

effective production control decision-making on the basis of these accurate and real-time 
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production data. However, in real-life production environment, incomplete or wrong data 

occur inevitably due to various factors. For example, if the sewing operator forgets to sweep 

(read) the RFID tag corresponding to his/her working records during production, it will lead to 

missing and absence of working records. If the sewing operator does not sweep the RFID tag 

at right time, for example, before and after processing an operation, the collected data will not 

be captured on real-time basis. Moreover, some given data can also be inaccurate due to input 

error by manual effort. It is undoubtedly that the inaccurate data will cause negative effects on 

the precision and accuracy of production control decision-making. However, this research has 

not considered these effects. What effects will be caused if incomplete or wrong data occur? 

Are the solutions generated by the proposed algorithms still effective for the real-life apparel 

production control? These problems need to be investigated further. Further research should 

focus on seeking effective data filtering mechanism to filter the incomplete and wrong data, 

analyzing the fault tolerance of the proposed methodology and exploring intelligent 

methodologies with high fault tolerance. 

 

7.4 Related Publications 

The author demonstrated the originality of this research through the following 

publications. 

 

Refereed Journal Paper 

 

 Guo, Z.X., W.K. Wong, S.Y.S. Leung, J.T. Fan, and S.F. Chan (2006). "Mathematical 

model and genetic optimization for the job shop scheduling problem in a mixed- and 
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multi-product assembly environment: A case study based on the apparel industry". Computers 

& Industrial Engineering 50(3), 202-219. 

 

Guo, Z.X., W.K. Wong, S.Y.S. Leung, J.T. Fan, and S.F. Chan (2008). "A 

genetic-algorithm-based optimization model for scheduling flexible assembly lines." 

International Journal of Advanced Manufacturing Technology 36(1-2):156-168.  

 

Guo, Z.X., W.K. Wong, S.Y.S. Leung, J.T. Fan, and S.F. Chan (2008). "A genetic 

algorithm based optimization model for solving the flexible assembly line balancing problem 

with work-sharing and workstation revisiting." IEEE Transactions on Systems Man and 

Cybernetics Part C - Applications and Reviews 38(2):218-228. 

 

Guo, Z.X., W.K. Wong, S.Y.S. Leung, J.T. Fan, and S.F. Chan (2007). "Genetic 

optimization of order scheduling with multiple uncertainties.” Expert Systems with 

Applications (Accepted and publication is pending). 
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genetic algorithm for multi-objective scheduling of multi- and mixed-model apparel assembly 

lines.” In Sattar, A. and Kang, B.H. (eds), Proceedings of 19th Australian Joint Conference on 

Artificial Intelligence, Lectures Notes in Artificial Intelligence 4304: 934-941.   

 



 

154 

Appendix 

 



 

155 

 



 

156 

 



 

157 

 



 

158 



 

159 

 



 

160 

References 

 

Abdulrazaq, T., C. Potts and L. Vanwassenhove (1990). "A survey of algorithms for the 

single-machine total weighted tardiness scheduling problem." Discrete Applied Mathematics 

26(2-3): 235-253. 

Adiri, I. and N. Aizikowitz (1989). "Open-shop scheduling problems with dominated machines." 

Naval Research Logistics 36(3): 273-281. 

Al-Turki, U., C. Fedjki and A. Andijani (2001). "Tabu search for a class of single-machine 

scheduling problems." Computers & Operations Research 28(12): 1223-1230. 

Alan, K. (2007). "Simulation software development frameworks". Available at: 

http://www.topology.org/soft/sim.html (Accessed 30/07/2007).  

Ambuhl, C. and M. Mastrolilli (2005). "On-line scheduling to minimize max flow time: An 

optimal preemptive algorithm." Operations Research Letters 33(6): 597-602. 

Amen, M. (2000). "Heuristic methods for cost-oriented assembly line balancing: A survey." 

International Journal of Production Economics 68(1): 1-14. 

Anderson, E. J. and M. C. Ferris (1994). "Genetic algorithms for combinatorial optimization: 

The assembly line balancing problem." ORSA Journal on Computing 6(2): 161-173. 

Arcus, A. L. (1966). "COMSOAL: A computer method of sequencing operations for assembly 

lines." International Journal of Production Research 4(4): 259-277. 

Argote, L. and D. Epple (1990). "Learning-curves in manufacturing." Science 247(4945): 

920-924. 

Ashby, J. and R. Uzsoy (1995). "Scheduling and order release in a single-stage production 

system." Journal of Manufacturing Systems 14(4): 290-306. 



 

161 

Axsater, S. (2005). "Planning order releases for an assembly system with random operation 

times." OR Spectrum 27(1-2): 459-470. 

Azizoglu, M. (2003). "Preemptive scheduling on identical parallel machines subject to 

deadlines." European Journal of Operational Research 148(1): 205-210. 

Badiru, A. (1992). "Computational survey of univariate and multivariate learning-curve models." 

IEEE Transactions on Engineering Management 39(2): 176-188. 

Bailey, T. (1993). "Organizational innovation in the apparel industry." Industrial Relations 32(1): 

30-48. 

Baker, C. T. and B. P. Dzielinski (1960). "Simulation of a simplified job shop." Management 

Science 6(3): 311-323. 

Baker, K., E. Lawler, J. Lenstra and A. Kan (1983). "Preemptive scheduling of a single-machine 

to minimize maximum cost subject to release dates and precedence constraints." Operations 

Research 31(2): 381-386. 

Balasubramanian, J. and I. Grossmann (2002). "A novel branch and bound algorithm for 

scheduling flowshop plants with uncertain processing times." Computers & Chemical 

Engineering 26(1): 41-57. 

Ballof, N. (1970). "Start-up management." IEEE Transactions on Engineering Management 17: 

132-141. 

Barnes, J. W. and J. B. Chambers (1995). "Solving the job-shop scheduling problem with tabu 

search." IIE Transactions 27(2): 257-263. 

Bartholdi, J. and D. Eisenstein (1996). "A production line that balances itself." Operations 

Research 44(1): 21-34. 

Bautista, J. and J. Pereira (2007). "Ant algorithms for a time and space constrained assembly line 



 

162 

balancing problem." European Journal of Operational Research 177(3): 2016–2032. 

Baybars, I. (1986). "A Survey of exact algorithms for the simple assembly line balancing 

problem." Management Science 32(8): 909-932. 

Becker, C. and A. Scholl (2006). "A survey on problems and methods in generalized assembly 

line balancing." European Journal of Operational Research 168(3): 694-715. 

Ben Abdallah, I., H. Elmaraghy and T. Elmekkawy (2002). "Deadlock-free scheduling in flexible 

manufacturing systems using Petri nets." International Journal of Production Research 40(12): 

2733-2756. 

Betts, J. and K. I. Mahmoud (1992). "Assembly line balancing in the clothing industry allowing 

for varying skills of operatives." International Journal of Clothing Science of Technology 4(4): 

28-33. 

Bevis, F. W. (1970). "An exploratory study of industrial learning with special reference to work 

study standards". M.SC. Thesis, University of Wales. 

Beyer, H. G. (1995). "Toward a Theory of Evolution Strategies: On the Benefits of Sex-the 

(µ/µ,lambda) Theory." Evolutionary Computation 3(1): 81-111. 

Bhattacharjee, T. K. and S. Sahu (1987). "A critique of some current assembly line balancing 

techniques." International Journal of Operations & Production Management 7(6): 32-43. 

Biskup, D. (1999). "Single-machine scheduling with learning considerations." European Journal 

of Operational Research 115(1): 173-178. 

Blazewicz, J., W. Domschke and E. Pesch (1996). "The job shop scheduling problem: 

Conventional and new solution techniques." European Journal of Operational Research 93(1): 

1-33. 

Bolton, W. (1994). Production Planning & Control. Essex, England, Longman Scientific & 



 

163 

Technical. 

Boryczka, U. (2004). "Ant colony system for JSP." Lecture Notes in Computer Science 3305: 

296-305. 

Bowers, M. R. and A. Agarwal (1993). "Hierarchical production planning: Scheduling in the 

apparel industry." International Journal of Clothing Science and Technology 5(3/4): 36-43. 

Bruce, M., L. Daly and N. Towers (2004). "Lean or agile - A solution for supply chain 

management in the textiles and clothing industry?" International Journal of Operations & 

Production Management 24(1-2): 151-170. 

Brucker, P., S. Kravchenko and Y. Sotskov (1999). "Preemptive job-shop scheduling problems 

with a fixed number of jobs." Mathematical Methods of Operations Research 49(1): 41-76. 

Caprihan, R. and S. Wadhwa (1997). "Impact of routing flexibility on the performance of an 

FMS - A simulation study." International Journal of Flexible Manufacturing Systems 9(3): 

273-298. 

Caridi, M. and A. Sianesi (2000). "Multi-agent systems in production planning and control: An 

application to the scheduling of mixed-model assembly lines." International Journal of 

Production Economics 68(1): 29-42. 

Carson, J. S. I. (2003). Introduction to simulation: Introduction to modeling and simulation. 

Proceedings of the 2003 Winter Simulation Conference, New Orleans, Louisiana, USA. 

Celano, G., S. Fichera, V. Grasso, U. La Commare and G. Perrone (1999). "An evolutionary 

approach to multi-objective scheduling of mixed model assembly lines." Computers & Industrial 

Engineering 37(1-2): 69-73. 

Chakravarthy, S. (1986). "A single-machine scheduling problem with random processing times." 

Naval Research Logistics 33(3): 391-397. 



 

164 

Chakravarty, A. and A. Shtub (1985). "Balancing mixed model lines with in-process inventories." 

Management Science 31(9): 1161-1174. 

Chan, C. C., C. L. Hui, K. W. Yeung and S. F. Ng (1998). "Handling the assembly line balancing 

problem in the clothing industry using a genetic algorithm." International Journal of Clothing 

Science and Technology 10(1): 21-37. 

Chan, F. and H. Chan (2001). "Dynamic scheduling for a flexible manufacturing system - The 

pre-emptive approach." International Journal of Advanced Manufacturing Technology 17(10): 

760-768. 

Chan, F. and H. Chan (2004). "A comprehensive survey and future trend of simulation study on 

FMS scheduling." Journal of Intelligent Manufacturing 15(1): 87-102. 

Chan, F., H. Chan and H. Lau (2002). "The state of the art in simulation study on FMS 

scheduling: A comprehensive survey." International Journal of Advanced Manufacturing 

Technology 19(11): 830-849. 

Charnsirisakskul, K., P. Griffin and P. Keskinocak (2004). "Order selection and scheduling with 

leadtime flexibility." IIE Transactions 36(7): 697-707. 

Chaudhry, S. and W. Luo (2005). "Application of genetic algorithms in production and 

operations management: A review." International Journal of Production Research 43(19): 

4083-4101. 

Chen, C., F. Swift and R. Racine (1992). "A computer application in apparel manufacturing 

management." Computers & Industrial Engineering 23(1-4): 439-442. 

Chen, J. and F. Chen (2003). "Adaptive scheduling in random flexible manufacturing systems 

subject to machine breakdowns." International Journal of Production Research 41(9): 1927-1951. 

Chen, R. and Y. Huang (2001). "Competitive neural network to solve scheduling problems." 



 

165 

Neurocomputing 37: 177-196. 

Chen, Z. (1996). "Parallel machine scheduling with time dependent processing times." Discrete 

Applied Mathematics 70(1): 81-93. 

Chen, Z. and G. Pundoor (2006). "Order assignment and scheduling in a supply chain." 

Operations Research 54(3): 555-572. 

Cheng, R., M. Gen and Y. Tsujimura (1996). "A tutorial survey of job-shop scheduling problems 

using genetic algorithms.1. Representation." Computers & Industrial Engineering 30(4): 

983-997. 

Cheng, R., M. Gen and Y. Tsujimura (1999). "A tutorial survey of job-shop scheduling problems 

using genetic algorithms: Part II. Hybrid genetic search strategies." Computers & Industrial 

Engineering 37(1-2): 51-55. 

Cheng, T., Q. Ding and B. Lin (2004). "A concise survey of scheduling with time-dependent 

processing times." European Journal of Operational Research 152(1): 1-13. 

Cheng, T. and G. Wang (2000). "Single machine scheduling with learning effect considerations." 

Annals of Operations Research 98: 273-290. 

Cheng, T. C. E. and C. C. S. Sin (1990). "A State-of-art review of parallel-machine scheduling 

research." European Journal of Operational Research 47(3): 271-292. 

Choi, J., M. Realff and J. Lee (2004). "Dynamic programming in a heuristically confined state 

space: a stochastic resource-constrained project scheduling application." Computers & Chemical 

Engineering 28(6-7): 1039-1058. 

Chong, S. C., A. I. Sivakumar and R. K. L. Gay (2003). Simulation-based scheduling for 

dynamic discrete manufacturing. Proceedings of the 2003 Winter Simulation Conference, New 

Orleans, Louisiana, USA. 



 

166 

Coello, C., D. Rivera and N. Cortes (2003). "Use of an artificial immune system for job shop 

scheduling." Artificial Immune Systems, Proceedings 2787: 1-10. 

Cohen, Y., G. Vitner and S. Sarin (2006). "Optimal allocation of work in assembly lines for lots 

with homogenous learning." European Journal of Operational Research 168(3): 922-931. 

Conterno, R., A. Allasia and A. Proverbio (1991). "A queuing network branch-and-bound 

approach to lot scheduling in flexible manufacturing systems." Information and Decision 

Technologies 17(1): 1-21. 

Crauwels, H., C. Potts, D. Van Oudheusden and L. Van Wassenhove (2005). "Branch and bound 

algorithms for single machine scheduling with batching to minimize the number of late jobs." 

Journal of Scheduling 8(2): 161-177. 

Cruycke, B. (1979). "Production control with the computer - Investment decision." Melliand 

Textilberichte International Textile Reports 60(2): 189-192. 

Cui, Z. and J. Zeng (2005). "A new organizational nonlinear genetic algorithm for numerical 

optimization." Advances in Natural Computation, PT 3, Proceedings 3612: 255-258. 

Darel, E. and R. Karni (1980). "A Hybrid algorithm for independent task parallel machine 

scheduling." OMEGA-International Journal of Management Science 8(2): 239-242. 

Davis, L. (1991). Handbook of genetic algorithms. New York, Van Nostrand Reinhold. 

Decker, M. (1993). "Capacity smoothing and sequencing for mixed-model lines." International 

Journal of Production Economics 30-1: 31-42. 

deWerra, D., A. Hoffman, N. Mahadev and U. Peled (1996). "Restrictions and preassignments in 

preemptive open shop scheduling." Discrete Applied Mathematics 68(1-2): 169-188. 

Dorigo, M., V. Maniezzo and A. Colorni (1996). "Ant System: Optimization by a Colony of 

Cooperating Agents." IEEE Transactions on Systems, Man, and Cybernetics - Part B 26(1): 



 

167 

29-41. 

Doumeingts, G., L. Pun, M. Mondain and D. Breuil (1978). "Decision-making systems for 

production control planning and scheduling." International Journal of Production Research 16(2): 

137-152. 

Doumeingts, G. and F. Roubellat (1979). "Production control and decision-making systems." 

Rairo-Automatique-Systems Analysis and Control 13(1): 77-92. 

Drobouchevitch, I. and V. Strusevich (1999). "A polynomial algorithm for the three-machine 

open shop with a bottleneck machine." Annals of Operations Research 92: 185-210. 

Drobouchevitch, I. and V. Strusevich (2001). "Two-stage open shop scheduling with a bottleneck 

machine." European Journal of Operational Research 128(1): 159-174. 

Eiben, A. E., P.-E. Raue and Z. Ruttkay (1994). Genetic algorithms with multiparent 

recombination. Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, 

New York, Springer-Verlag, New York. 

Eilon, S. and R. M. Hodgson (1967). "Job shop  scheduling with due-dates." International 

Journal of Production Research 6: 1-13. 

ElMekkawy, T. and H. ElMaraghy (2003). "Real-time scheduling with deadlock avoidance in 

flexible manufacturing systems." International Journal of Advanced Manufacturing Technology 

22(3-4): 259-270. 

Epicdata Inc (2007). "RFID Systems". Available at: http://www.epicdata.com/data/rfid- 

systems.php (Accessed 30/07/2007). 

Erel, E. and S. Sarin (1998). "A survey of the assembly line balancing procedures." Production 

Planning & Control 9(5): 414-434. 

Eshelman, L. J. and J. D. Schaffer (1993). Real-coded genetic algorithms and interval schemata. 



 

168 

Foundations of Genetic Algorithms. L. D. Whitley. San Mateo,CA, Morgan Kaufmann. 2: 

187-202. 

Farmer, J. D., N. Packard and A. Perelson (1986). "The immune system, adaptation and machine 

learning." Physica D 2: 187-204. 

Feng, S., L. Li, L. Cen and J. Huang (2003). "Using MLP networks to design a production 

scheduling system." Computers & Operations Research 30(6): 821-832. 

Ferreira, C. (2002). Combinatorial optimization by gene expression programming: Inversion 

revisited. The Argentine Symposium on Artificial Intelligence, Santa Fe, Argentina. 

Fleury, G. and M. Gourgand (1998). "Genetic algorithms applied to workshop problems." 

International Journal of Computer Integrated Manufacturing 11(2): 183-192. 

Foster, B. and D. Ryan (1976). "Integer programming approach to vehicle scheduling problem." 

Operational Research Quarterly 27(2): 367-384. 

Fozzard, G., J. Spragg and D. Tyler (1996). "Simulation of flow lines in clothing manufacture, 

Part 1. model construction." International of Clothing Science and Technology 8(4): 17-27. 

Framinan, J., P. Gonzalez and R. Ruiz-Usano (2003). "The CONWIP production control system: 

review and research issues." Production Planning & Control 14(3): 255-265. 

Freschi, F. and M. Repetto (2006). "Comparison of artificial immune systems and genetic 

algorithms in electrical engineering optimization." COMPEL: The International Journal for 

Computation and Mathematics in Electrical and Electronic Engineering 25(4): 792-811. 

Gamberini, R., A. Grassi and B. Rimini (2006). "A new multi-objective heuristic algorithm for 

solving the stochastic assembly line re-balancing problem." International Journal of Production 

Economics 102(2): 226-243. 

Gershwin, S. B., R. R. Hildebrant, R. Suri and S. K. Mitter (1986). "A control perspective on 



 

169 

recent trends in manufacturing systems." IEEE Control Systems Magazine 6(2): 3-15. 

Ghosh, S. and R. J. Gagnon (1989). "A comprehensive literature-review and analysis of the 

design, balancing and scheduling of assembly systems." International Journal of Production 

Research 27(4): 637-670. 

Glover, F. (1989). "Tabu Search - Part I." ORSA Journal on Computing 1(3): 190-206. 

Glover, F. (1990). "Tabu Search - Part II." ORSA Journal on Computing 2(1): 4-32. 

Glover, J. H. (1966). "Manufacturing progress functions: An alternative model and its 

comparison with existing functions." The International Journal of Production Research 4: 

279-300. 

Gokcen, H. and K. Agpak (2006). "A goal programming approach to simple U-line balancing 

problem." European Journal of Operational Research 171(2): 577-585. 

Gokcen, H., K. Agpak, C. Gencer and E. Kizilkaya (2005). "A shortest route formulation of 

simple U-type assembly line balancing problem." Applied Mathematical Modelling 29(4): 

373-380. 

Goldberg, D., B. Korb and K. Deb (1989). "Messy genetic algorithms: Motivation, analysis, and 

first results." Complex Systems 3(5): 493-530. 

Gonzalez, T. and S. Sahni (1976). "Open shop scheduling to minimize finish time." Journal of 

the ACM 23(4): 665-679. 

Gordon, V., J. Proth and C. Chu (2002). "A survey of the state-of-the-art of common due date 

assignment and scheduling research." European Journal of Operational Research 139(1): 1-25. 

Grand, H. and M. Cook (1983). "Chossing an MRP system." Datamation 29(1): 84-&. 

Graves, S. C. and B. W. Lamar (1983). "An integer programming procedure for assembly system 



 

170 

design problems." Operations Research 31(3): 522-545. 

Gu, Q. L. (1999). "The development of the China apparel industry". China Textile University and 

Harvard Center of Textile and Apparel Research. Available at: 

http://www.hctar.org/pdfs/gs01.pdf (Accessed 30/07/2007). 

Guerriero, F. and J. Miltenburg (2003). "The stochastic U-Line balancing problem." Naval 

Research Logistics 50(1): 31-57. 

Guinet, A. and M. Solomon (1996). "Scheduling hybrid flowshops to minimize maximum 

tardiness or maximum completion time." International Journal of Production Research 34(6): 

1643-1654. 

Guley, H. and J. Stinson (1980). "Computer-simulation for production scheduling in a ready 

foods system." Journal of the American Dietetic Association 76(5): 482-487. 

Guo, Z. X., W. K. Wong, S. Y. S. Leung, J. T. Fan and S. F. Chan (2006). "Mathematical model 

and genetic optimization for the job shop scheduling problem in a mixed- and multi-product 

assembly environment: A case study based on the apparel industry." Computers & Industrial 

Engineering 50(3): 202-219. 

Guo, Z. X., W. K. Wong, S. Y. S. Leung, J. T. Fan and S. F. Chan (2008). "A genetic algorithm 

based optimization model for solving the flexible assembly line balancing problem with 

work-sharing and workstation revisiting." IEEE Transactions on Systems Man and Cybernetics 

Part C - Applications and Reviews 38(2): 218-228.  

Gupta, J. (1971). "An improved combinatorial algorithm for flowshop - Scheduling problem." 

Operations Research 19(7): 1753-1758. 

Gupta, J. and E. Stafford (2006). "Flowshop scheduling research after five decades." European 

Journal of Operational Research 169(3): 699-711. 



 

171 

Gupta, Y., G. Evans and M. Gupta (1991). "A review of multi-criterion approaches to FMS 

scheduling problems." International Journal of Production Economics 22(1): 13-31. 

Gupta, Y., M. Gupta and C. Bector (1989). "A review of scheduling rules in flexible 

manufacturing systems." International Journal of Computer Integrated Manufacturing 2(6): 

356-377. 

Gurney, K. R. (1997). An introduction to neural networks. London, UCL Press. 

Gutjahr, A. L. and G. L. Nemhauser (1964). "An algorithm for the line balancing problem." 

Management Science 11(2). 

Hackett, E. (1983). "Application of a set of learning-curve models to repetitive tasks." Radio and 

Electronic Engineer 53(1): 25-32. 

Harmonosky, C. (1995). Simulation-based real-time scheduling: Review of recent developments. 

The 1995 Winter Simulation Conference, Arlington, VA, USA. 

Harmonosky, C. and S. Robohn (1991). "Real-time scheduling in computer integrated 

manufacturing - A review of recent research." International Journal of Computer Integrated 

Manufacturing 4(6): 331-340. 

Harpham, C., C. Dawson and M. Brown (2004). "A review of genetic algorithms applied to 

training radial basis function networks." Neural Computing & Applications 13(3): 193-201. 

Harrell, C. R. and R. N. Price (2002). Simulation modeling using ProModel technology. The 

2002 Winter Simulation Conference, Orlando, FL, USA. 

Hart, E., P. Ross and D. Corne (2005). "Evolutionary scheduling: A review." Genetic 

Programming and Evolvable Machines 6: 191-220. 

Haupt, R. (1989). "A survey of priority rule-based scheduling." OR Specktrum 11(1): 3-16. 



 

172 

Heizmann, J. (1981). SoziotechnologischeAblaufplanung verketteter Fertigungsnester zur 

Erhohung der Flexibilitat von Montage-FlieBlinien. Karlsruhe, Jochem Heizmann Verlag. 

Hejazi, S. and S. Saghafian (2005). "Flowshop-scheduling problems with makespan criterion: a 

review." International Journal of Production Research 43(14): 2895-2929. 

Helgeson, W. B. and D. P. Birnie (1961). "Assembly line balancing using the ranked positional 

weight technique." Journal of Industrial Engineering 12(6): 394-398. 

Herrera, F. (1998). "Trackling real-coded genetic algorithms: Operators and tools for behavioral 

analysis." Artificial Intelligence Review 12(4): 265-319. 

Herrera, L., M. Lozano and J. L. Verdegay (1996). "Tackling real-coded genetic algorithms: 

Operators and tools for  behavioural analysis." Artificial Intelligence Review 12(4): 265-319. 

Hitchings, B. (1972). Dynamic learning curve models describing the performance of human 

operators on repetitive industrial tasks. M.Sc. Thesis, University of Wales. 

Ho, J. and Y. Chang (1991). "Heuristics for minimizing mean tardiness for m-parallel machines." 

Naval Research Logistics 38(3): 367-381. 

Holland, J. H. (1975). Adaptation in natural and artificial systems. Michigan, University of 

Michigan Press. 

Hollocks, B. (1995). "The impact of simulation in manufacturing decision-making." Control 

Engineering Practice 3(1): 105-112. 

Holloway, C. and R. Nelson (1974). "Job shop scheduling with due dates and overtime 

capability." Management Science Series A - Theory 21(1): 68-78. 

Hopp, W., E. Tekin and M. Van Oyen (2004). "Benefits of skill chaining in serial production 

lines with cross-trained workers." Management Science 50(1): 83-98. 



 

173 

Hopp, W. and M. Van Oyen (2004). "Agile workforce evaluation: A framework for cross-training 

and coordination." IIE Transactions 36(10): 919-940. 

Huang, C. and A. Kusiak (1996). "Overview of Kanban systems." International Journal of 

Computer Integrated Manufacturing 9(3): 169-189. 

Huang, M., D. Wang and W. Ip (1998). "A simulation and comparative study of the CONWIP, 

Kanban and MRP production control systems in a cold rolling plant." Production Planning & 

Control 9(8): 803-812. 

Hunsucker, J. and J. Shah (1992). "Performance of priority rules in a due date flow-shop." 

OMEGA-International Journal of Management Science 20(1): 73-89. 

Hwang, T. and S. Chang (2003). "Design of a Lagrangian relaxation-based hierarchical 

production scheduling environment for semiconductor wafer fabrication." IEEE Transactions on 

Robotics and Automation 19(4): 566-578. 

Ibraki, T. and Y. Nakamura (1994). "A dynamic-programming method for single-machine 

scheduling." European Journal of Operational Research 76(1): 72-82. 

Ignizio, J. P. (1991). An introduction to expert systems, Mcgraw-Hill College. 

Ip, W., K. Yung, M. Huang and D. Wang (2002). "A CONWIP model for FMS control." Journal 

of Intelligent Manufacturing 13(2): 109-117. 

Jain, A. and S. Meeran (1998). "Job-shop scheduling using neural networks." International 

Journal of Production Research 36(5): 1249-1272. 

Jain, A. and S. Meeran (1999). "Deterministic job-shop scheduling: Past, present and future." 

European Journal of Operational Research 113(2): 390-434. 

Jain, N., T. Bagchi and E. Wagneur (2000). "Flowshop scheduling by hybridized GA: Some new 

results." International Journal of Industrial Engineering-Theory Applications and Practice 7(3): 



 

174 

213-223. 

Johnson, R. (1983). "A branch and bound algorithm for assembly line balancing problems with 

formulation irregularities." Management Science 29(11): 1309-1324. 

Kao, E. (1976). "Preference order dynamic program for stochastic assembly line balancing." 

Management Science 22(10): 1097-1104. 

Karacapilidis, N. and C. Pappis (1996). "Production planning and control in textile industry: A 

case study." Computers In Industry 30(2): 127-144. 

Kaufman, M. (1974). "Almost optimal algorithm for assembly line scheduling problem." IEEE 

Transactions on Computers C 23(11): 1169-1174. 

Kessler, J. (1991). "MRP-II - In the midst of a continuing evolution." Industrial Engineering 

23(3): 38-40. 

Khan, M. R. R. (1999). "Simulation modeling of a garment production system using a 

spreadsheet to minimize production cost." International Journal of Clothing Science and 

Technology 11(5): 287-299. 

Kilbridge, M. D. and L. Wester (1961). "A heuristic method of assembly line balancing." Journal 

of Industrial Engineering 12(4): 292-298. 

Kilincci, O. and G. M. Bayhan (2006). "A Petri net approach for simple assembly line balancing 

problems." The International Journal of Advanced Manufacturing Technology 30(11-12): 

1165-1173. 

Kim, C., H. Min and Y. Yih (1998). "Integration of inductive learning and neural networks for 

multi-objective FMS scheduling." International Journal of Production Research 36(9): 

2497-2509. 

Kiran, A. and M. Smith (1984). "Simulation studies in job shop scheduling. 1. A survey." 



 

175 

Computers & Industrial Engineering 8(2): 87-93. 

Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi (1983). "Optimization by Simulated Annealing." 

Science 220(4598): 671-680. 

Klein, R. and A. Scholl (1996). "Maximizing the production rate in simple assembly line 

balancing - A branch and bound procedure." European Journal of Operational Research 91(2): 

367-385. 

Kottas, J. and H. Lau (1981). "A Stochastic Line Balancing Procedure." International Journal of 

Production Research 19(2): 177-193. 

Kottas, J. F. and H. S. Lau (1973). "A cost-oriented approach to stochastic line balancing." AIIE 

Transactions 5(2): 164-171. 

Koulamas, C. and G. Kyparisis (2007). "Single-machine and two-machine flowshop scheduling 

with general learning functions." European Journal of Operational Research 178(2): 402-407. 

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of 

Natural Selection, MIT Press. 

Kravchenko, S. and F. Werner (2001). "A heuristic algorithm for minimizing mean flow time 

with unit setups." Information Processing Letters 79(6): 291-296. 

Kuroda, M. and Z. Wang (1996). "Fuzzy job shop scheduling." International Journal of 

Production Economics 44(1-2): 45-51. 

Kyparisis, G. and C. Koulamas (2002). "Assembly-line scheduling with concurrent operations 

and parallel machines." Informs Journal on Computing 14(1): 68-80. 

Larranaga, P., C. Kuijpers, R. Murga, I. Inza and S. Dizdarevic (1999). "Genetic algorithms for 

the travelling salesman problem: A review of representations and operators." Artificial 

Intelligence Review 13(2): 129-170. 



 

176 

Lauff, V. and F. Werner (2004). "On the complexity and some properties of multi-stage 

scheduling problems with earliness and tardiness penalties." Computers & Operations Research 

31(3): 317-345. 

Lee, L., F. Abernathy and Y. Ho (2000). "Production scheduling for apparel manufacturing 

systems." Production Planning & Control 11(3): 281-290. 

Leung, J., H. Li and M. Pinedo (2005). "Order scheduling in an environment with dedicated 

resources in parallel." Journal of Scheduling 8(5): 355-386. 

Leung, J. and M. Pinedo (2003). "Minimizing total completion time on parallel machines with 

deadline constraints." SIAM Journal on Computing 32(5): 1370-1388. 

Li, F. (1998). "A comparison of genetic algorithms with conventional techniques on a spectrum 

of power economic dispatch problems." Expert Systems with Applications 15(2): 133-142. 

Liao, C., C. Sun and W. You (1995). "Flowshop scheduling with flexible processors." Computers 

& Operations Research 22(3): 297-306. 

Liaw, C. (2003). "An efficient tabu search approach for the two-machine preemptive open shop 

scheduling problem." Computers & Operations Research 30(14): 2081-2095. 

Liaw, C. (2005). "Scheduling preemptive open shops to minimize total tardiness." European 

Journal of Operational Research 162(1): 173-183. 

Lima, R., R. Sousa and P. Martins (2006). "Distributed production planning and control 

agent-based system." International Journal of Production Research 44(18-19): 3693-3709. 

Lin, B. and A. Jeng (2004). "Parallel-machine batch scheduling to minimize the maximum 

lateness and the number of tardy jobs." International Journal of Production Economics 91(2): 

121-134. 

Lin, F. (2001). "A job-shop scheduling problem with fuzzy processing times". Computational 



 

177 

Science – ICCS 2001, Lecture Notes in Computer Science 2074: 409-418. 

Linn, R. and W. Zhang (1999). "Hybrid flow shop scheduling: A survey." Computers & Industrial 

Engineering 37(1-2): 57-61. 

Liu, M., J. Hao and C. Wu (2006). "A new genetic algorithm for parallel machine scheduling 

problems with procedure constraints and its applications." Chinese Journal of Electronics 15(3): 

463-466. 

Liu, S., H. Ong and K. Ng (2005). "A fast tabu search algorithm for the group shop scheduling 

problem." Advances in Engineering Software 36(8): 533-539. 

Lloyd, R. (1979). "Experience Curve Analysis." Applied Economics 11(2): 221-234. 

Lorigeon, T., J. Billaut and J. Bouquard (2002). "A dynamic programming algorithm for 

scheduling jobs in a two-machine open shop with an availability constraint." Journal of the 

Operational Research Society 53(11): 1239-1246. 

Lushchakova, I. (2006). "Two machine preemptive scheduling problem with release dates, equal 

processing times and precedence constraints." European Journal of Operational Research 171(1): 

107-122. 

Macaskil, J. (1972). "Production-line balances for mixed-model lines." Management Science 

Series B-Application 19(4): 423-434. 

Malakooti, B. and A. Kumar (1996). "A knowledge-based system for solving multi-objective 

assembly line balancing problems." International Journal of Production Research 34(9): 

2533-2552. 

Mandel, M. and G. Mosheiov (2001). "Minimizing maximum earliness on parallel identical 

machines." Computers & Operations Research 28(4): 317-327. 

Mcclain, J., L. Thomas and C. Sox (1992). "On-the-fly line balancing with very little WIP." 



 

178 

International Journal of Production Economics 27(3): 283-289. 

Metaxiotis, K., D. Askounis and J. Psarras (2002). "Expert systems in production planning and 

scheduling: A state-of-the-art survey." Journal of Intelligent Manufacturing 13(4): 253-260. 

Metaxiotis, K. and J. Psarras (2003). "Neural networks in production scheduling: Intelligent 

solutions and future promises." Applied Artificial Intelligence 17(4): 361-373. 

Meybodi, M. (1995). "Integrating production activity control into a hierarchical 

production-planning model." International Journal of Operations & Production Management 

15(5): 4-&. 

Michalewicz, Z. (1992). Genetic algorithm + Data structures = evolution programs. New York, 

USA, Springer-Verlag. 

Mok, P., C. Kwong and W. Wong (2007). "Optimisation of fault-tolerant fabric-cutting schedules 

using genetic algorithms and fuzzy set theory." European Journal of Operational Research 177(3): 

1876-1893. 

Mokotoff, E. (2001). "Parallel machine scheduling problems: A survey." Asia-Pacific Journal of 

Operational Research 18(2): 193-242. 

Moodie, C. L. and H. H. Young (1965). "A heuristic method of assembly line balancing for 

assumptions of constant or variable work element times." Journal of Industrial Engineering 16(1): 

23-29. 

Mosheiov, G. (2001). "Parallel machine scheduling with a learning effect." Journal of the 

Operational Research Society 52(10): 1165-1169. 

MSC Limited (2007). "Solution of Manufacturing Information and Management in Multi Variety 

and Small Batch Age." Textile & Clothing 19(1): 58-60. 

Nakagiri, D. and S. Kuriyama (1996). "A study of production management system with MRP." 



 

179 

International Journal of Production Economics 44(1-2): 27-33. 

Narahari, Y. and R. Srigopal (1996). "Real-world extensions to scheduling algorithms based on 

Lagrangian relaxation." Sadhana-Academy Proceedings in Engineering Sciences 21: 415-433. 

Neumann, K. and W. Schneider (1999). "Heuristic algorithms for job-shop scheduling problems 

with stochastic precedence constraints." Annals of Operations Research 92(0): 45-63. 

Nkasu, M. and K. Leung (1995). "A Stochastic Approach to Assmelby-line Balancing." 

International Journal of Production Research 33(4): 975-991. 

Oh, K. H. (1997). "Expert line balancing system (ELBS)." Computers & Industrial Engineering 

33(1-2): 303-306. 

Okamura, K. and H. Yamashina (1979). "Heuristic algorithm for the assembly line model - Mix 

sequencing problem to minimize the risk of stopping the conveyor." International Journal of 

Production Research 17(3): 233-247. 

Okeefe, R. and T. Kasirajan (1992). "Interaction between dispatching and next station 

selection-rules in a dedicated flexible manufacturing system." International Journal of Production 

Research 30(8): 1753-1772. 

Ono, I., M. Yamamura and S. Kobayashi (1996). A genetic algorithm for job-shop scheduling 

problems using job-based order crossover. 1996 IEEE International Conference on Evolutionary, 

Nagoya, Japan. 

Pan, C. (1997). "A study of integer programming formulations for scheduling problems." 

International Journal of Systems Science 28(1): 33-41. 

Pandey, P., M. Ahsan and A. Hasin (1995). "A scheme for an integrated production planning and 

control system." International Journal of Computer Applications in Technology 8(5-6): 301-306. 

Park, L. and C. Park (1995). "Genetic algorithm for job-shop scheduling problems based on 2 



 

180 

representational schemes." Electronics Letters 31(23): 2051-2053. 

Park, M. and Y. Kim (2000). "A branch and bound algorithm for a production scheduling 

problem in an assembly system under due date constraints." European Journal of Operational 

Research 123(3): 504-518. 

Park, Y., C. Pegden and E. Enscore (1984). "A survey and evaluation of static flowshop 

scheduling heuristics." International Journal of Production Research 22(1): 127-141. 

Pastor, R., C. Andres, A. Duran and M. Perez (2002). "Tabu search algorithms for an industrial 

multi-product and multi-objective assembly line balancing problem, with reduction of the task 

dispersion." Journal of the Operational Research Society 53(12): 1317-1323. 

Peng, J. and B. Liu (2004). "Parallel machine scheduling models with fuzzy processing times." 

Information Sciences 166(1-4): 49-66. 

Pinto, P., D. Dannenbring and B. Khumawala (1978). "Heuristic network procedure for assembly 

line balancing problem." Naval Research Logistics 25(2): 299-307. 

Piramuthu, S., N. Raman and M. Shaw (1994). "Learning-based scheduling in a flexible 

manufacturing flow line." IEEE Transactions on Engineering Management 41(2): 172-182. 

Ponnambalam, S., P. Aravindan and S. Rajesh (2000). "A tabu search algorithm for job shop 

scheduling." International Journal of Advanced Manufacturing Technology 16(10): 765-771. 

Ponnambalam, S., N. Jawahar and P. Aravindan (1999). "A simulated annealing algorithm for job 

shop scheduling." Production Planning & Control 10(8): 767-777. 

Poon, P. and J. Carter (1995). "Genetic algorithm crossover operators for ordering applications." 

Computers & Operations Research 22(1): 135-147. 

Por, A., J. Stahl and J. Temesi (1990). "Decision support system for production control - Multiple 

criteria decision-making in practice." Engineering Costs and Production Economics 20(2): 



 

181 

213-218. 

Priore, P., D. De La Fuente, A. Gomez and J. Puente (2001). "A review of machine learning in 

dynamic scheduling of flexible manufacturing systems." AI EDAM-Artificial Intelligence for 

Engineering Design Analysis and Manufacturing 15(3): 251-263. 

ProModel Corporation (2007). "Applications of ProModel in Industries". Available at: 

http://www.promodel.com/solutions/manufacturing/ (Accessed 30/07/2007). 

Puente, J., H. Diez, R. Varela, C. Vela and L. Hidalgo (2003). "Heuristic rules and genetic 

algorithms for open shop scheduling problem." Current Topics in Artificial Intelligence 3040: 

394-403. 

Rachamadugu, R. and K. Stecke (1994). "Classification and review of FMS scheduling 

procedures." Production Planning & Control 5(1): 2-20. 

Racine, R., C. Chen and F. Swift (1992). The impact of operator efficiency on apparel production 

planning. The Thrid Academic Apparel Research Conference, Atlanta, GA. 

Ramasesh, R. (1990). "Dynamic job shop scheduling - A survey of simulation research." 

OMEGA-International Journal of Management Science 18(1): 43-57. 

Reeve, N. and W. Thomas (1973). "Balancing stochastic assembly lines." AIIE Transactions 5(3): 

223-229. 

Reeves, C. R. (1995). "A genetic algorithm for flowshop sequencing." Computers and Operations 

Research 22(1): 5-13. 

Rogers, P. and R. J. Gordon (1993). Simulation for real-time decision making in manufacturing 

systems. The 1993 Winter Simulation Conference, Los Angeles, USA. 

Roman, R. (1971). "Mine-mill production scheduling by dynamic programming." Operational 

Research Quarterly 22(4): 319-328. 



 

182 

Rosenberg, O. and H. Ziegler (1992). "A comparison of heuristic algorithms for cost-oriented 

assembly line balancing." Zeit-schrift fur Operations Research 36: 477-495. 

Ross, P. and D. Corne (2005). "Evolutionary scheduling: A review." Genetic Programming and 

Evolvable Machines 6(2): 191-220. 

Rushinek, A. and S. Rushinek (1989). "Manufacturing resource planning systems (MRP) 

case-study - Feature-selection system (FSS) for microcomputer users and manufacturers." 

Computers & Industrial Engineering 16(2): 321-328. 

Sakawa, M. and R. Kubota (2000). "Fuzzy programming for multiobjective job shop scheduling 

with fuzzy processing time and fuzzy duedate through genetic algorithms." European Journal of 

Operational Research 120(2): 393-407. 

Salveson, M. E. (1955). "The assembly line balancing problem." Journal of Industrial 

Engineering 6(3): 18-25. 

Sarin, S. and C. Chen (1987). "The machine loading and tool allocation problem in a flexible 

manufacturing system." International Journal of Production Research 25(7): 1081-1094. 

Sawik, T. (2002). "Monolithic vs. hierarchical balancing and scheduling of a flexible assembly 

line." European Journal of Operational Research 143(1): 115-124. 

Sawik, T. (2004). "Loading and scheduling of a flexible assembly system by mixed integer 

programming." European Journal of Operational Research 154(1): 1-19. 

Scholl, A. and C. Becker (2006). "State-of-the-art exact and heuristic solution procedures for 

simple assembly line balancing." European Journal of Operational Research 168(3): 666-693. 

Sellers, D. W. (1996). A survey of approaches to the job shop scheduling problem. The 28th 

Southeastern Symposium on System Theory, Baton Rouge, LA. 

Sen, A. (2007). "The U.S. fashion industry: A supply chain review." International Journal of 



 

183 

Production Economics, Accepted. 

Senthilkumar, P. and P. Shahabudeen (2006). "GA based heuristic for the open job shop 

scheduling problem." International Journal of Advanced Manufacturing Technology 30(3-4): 

297-301. 

Shakhlevich, N., Y. Sotskov and F. Werner (2000). "Complexity of mixed shop scheduling 

problems: A survey." European Journal of Operational Research 120(2): 343-351. 

Sharafali, M., H. Co and M. Goh (2004). "Production scheduling in a Flexible Manufacturing 

System under random demand." European Journal of Operational Research 158(1): 89-102. 

Shin, D. (1990). "An efficient heuristic for solving stochastic assembly line balancing problems." 

Computers & Industrial Engineering 18(3): 285-295. 

Siegel, T. (1974). "Graphical branch-and-bound algorithm for job-shop scheduling problem with 

sequence-dependent set-up times." Journal of the Operations Research Society of Japan 17(1): 

29-38. 

Silverman, F. and J. Carter (1986). "A cost-based methodology for stochastic line balancing with 

intermittent line stoppages." Management Science 32(4): 455-463. 

Simaria, A. and P. Vilarinho (2004). "A genetic algorithm based approach to the mixed-model 

assembly line balancing problem of type II." Computers & Industrial Engineering 47(4): 

391-407. 

Sinha, R. and R. Hollier (1984). "A review of production control-problems in cellular 

manufacture." International Journal of Production Research 22(5): 773-789. 

Sipper, D. and R. L. Bulfin (1997). Production: Planning, control and integration, McGraw-Hill 

Companies. 

Solinger, J. (1988). Apparel manufacturing handbook. Columbia, SC, Bobbin Media Corp. 



 

184 

Song, Y. and Y. Takahashi (1996). "Approximation for Kanban production systems." 

International Journal of Systems Science 27(12): 1443-1451. 

Spearman, M., D. Woodruff and W. Hopp (1990). "CONWIP - A pull alternative to kanban." 

International Journal of Production Research 28(5): 879-894. 

Sphicus, G. P. and F. N. Silverman (1976). "Deterministic Equivalents for Stochastic Assembly 

Line Balancing." AIIE Transactions 8: 280-282. 

Stecke, K. and J. Solgerg (1981). "Loading and control policies for a flexible manufacturing 

system." International Journal of Production Research 19(5): 481-490. 

Steedman, I. (1970). "Some improvement curve theory." International Journal of Production 

Research 8: 189-205. 

Steffen, R. (1977). Produktionsplanung bei FlieBbandfertigung. Wiesbaden, Gabler. 

Stoop, P. and V. Wiers (1996). "The complexity of scheduling in practice." International Journal 

of Operations & Production Management 16(10): 37-53. 

Sugimori, Y., K. Kusunoki, F. Cho and S. Uchikawa (1977). "Toyota production system and 

kanban system materialization of just-in-time and respect-for-human system." International 

Journal of Production Research 15(6): 553-564. 

Sullivan, P. and J. Kang (1999). "Quick response adoption in the apparel manufacturing industry: 

Competitive advantage of innovation." Journal of Small Business Management 37(1): 1-13. 

Sun, X. and L. Sun (2005). "Ant Colony Optimization algorithms for scheduling the mixed 

model assembly lines." Advances in Natural Computation, PT 3, Proceedings 3612: 911-914. 

Sung, S. and M. Vlach (2003). "Single machine scheduling to minimize the number of late jobs 

under uncertainty." Fuzzy Sets and Systems 139(2): 421-430. 



 

185 

Suresh, G. and S. Sahu (1994). "Stochastic assembly-line balancing using simulated annealing." 

International Journal of Production Research 32(8): 1801-1810. 

Suzuki, S. and T. Saito (2006). "Synthesis of desired binary cellular automata through the genetic 

algorithm." Neural Information Processing, PT 3, Proceedings 4234: 738-745. 

Syswerda, G. (1991). Schedule optimization using genetic algorithms. Handbook of genetic 

algorithms. L. Davis. New York, Van Nostrand Reinhold: 332-349. 

Szmerekovsky, J. (2007). "Single machine scheduling under market uncertainty." European 

Journal of Operational Research 177(1): 163-175. 

T'kindt, V., N. Monmarche, F. Tercinet and D. Laugt (2002). "An Ant Colony Optimization 

algorithm to solve a 2-machine bicriteria flowshop scheduling problem." European Journal of 

Operational Research 142(2): 250-257. 

Takahashi, K. (2003). "Comparing reactive Kanban systems." International Journal of Production 

Research 41(18): 4317-4337. 

Takahashi, K. and N. Nakamura (2002). "Comparing reactive Kanban and reactive CONWIP." 

Production Planning & Control 13(8): 702-714. 

Tan, Z. and Y. He (2007). "Linear time algorithms for parallel machine scheduling." ACTA 

Mathematica Sinica-English Series 23(1): 137-146. 

Tang, L. and H. Xuan (2006). "Lagrangian relaxation algorithms for real-time hybrid flowshop 

scheduling with finite intermediate buffers." Journal of the Operational Research Society 57(3): 

316-324. 

Thomopoulos, N. (1970). "Mixed model line balancing with smoothed station assignments." 

Management Science Series A - Theory 16(9): 593-603. 

Thorndike, E. L. (1898). "Animal intelligence: an experimental study of the associative 



 

186 

processes in animals." The Psychological Review: Ser. Monograph Supplements 2: 1-109. 

Thurstone, L. L. (1919). "The learning curve equation." Psychological Monographs 26: 114. 

Tomastik, R. N., P. B. Luh and G. D. Liu (1996). "Scheduling flexible manufacturing systems for 

apparel production." IEEE Transactions on Robotics and Automation 12(5): 789-799. 

Tonge, F. M. (1965). "Assembly line balancing using probabilistic combinations of heuristics." 

Management Science 11(7): 727-735. 

Tozkapan, A., O. Kirca and C. S. Chung (2003). "A branch and bound algorithm to minimize the 

total weighted flowtime for the two-stage assembly scheduling problem." Computers & 

Operations Research 30(2): 309-320. 

Tsutsui, S. and A. Ghosh (1998). A study on the effect of multi-parent recombination in real 

coded genetic algorithms. The 1998 IEEE Conference on Evolutionary Computation, Anchorage, 

Alaska,USA, IEEE Press. 

Tucci, M. and R. Rinaldi (1999). "From theory to application: Tabu search in textile production 

scheduling." Production Planning & Control 10(4): 365-374. 

Turbide, D. (1995). "MRP-II - Still number one." IIE Solutions 27(7): 28-31. 

Vanlaarhoven, P., E. Aarts and J. Lenstra (1992). "Job shop scheduling by simulated annealing." 

Operations Research 40(1): 113-125. 

Vargas, J., R. Pishori, R. Natu and C. Kee (1992). "Expert system mixed-model assembly line 

scheduling." Expert Systems with Applications 5(1-2): 79-85. 

Vojdani, N. (1997). Intelligent manufacturing control in clothing industry. The 2nd International 

ICSC Symposium on Fuzzy Logic and Applications, Bangor, Wales, UK. 

Wang, D., X. Chen and Y. Li (1996). "Experimental push/pull production planning and control 



 

187 

system." Production Planning & Control 7(3): 236-241. 

Wang, K., H. Hsia and Z. Zhuang (1995). "Decision learning about production control as 

machines breakdown in a flexible manufacturing system." International Journal of Flexible 

Manufacturing Systems 7(1): 73-92. 

Wardlaw, R. and K. Bhaktikul (2004). "Comparison of genetic algorithm and linear 

programming approaches for lateral canal scheduling." Journal of Irrigation and Drainage 

Engineering-Asce 130(4): 311-317. 

Weiss, G. (1995). "On almost optimal priority rules for preemptive scheduling of stochastic jobs 

on parallel machines." Advances in Applied Probability 27(3): 821-839. 

Weng, M. and H. Ren (2006). "An efficient priority rule for scheduling job shops to minimize 

mean tardiness." IIE Transactions 38(9): 789-795. 

Wight, O. (1984). Manufacturing Resource Planning - MRPII. Vt. USA, Oliver Wight 

Publications, Essex Junction. 

Willems, T. and J. Rooda (1994). "Neural networks for job-shop scheduling." Control 

Engineering Practice 2(1): 31-39. 

Wong, W. K., C. K. Chan and W. Ip (2001). "A hybrid flowshop scheduling model for apparel 

manufacture." International Journal of Clothing Science and Technology 13(2): 115-131. 

Wong, W. K., P. Y. Mok and S. Y. S. Leung (2006). "Developing a genetic optimisation approach 

to balance an apparel assembly line." International Journal of Advanced Manufacturing 

Technology 28(3,4): 387-394. 

Wright, T. (1936). "Factors affecting the cost of airplanes." Journal Aeronautical Science 3: 

122-128. 

Xu, Z. and X. Gu (2005). "Flow shop scheduling problems under uncertainty based on fuzzy 



 

188 

cut-set." Advances in Natural Computation, PT 2, Proceedings 3611: 880-889. 

Yamamoto, S., K. Nakadai, M. Nakano, H. Tsujino, J. Valin, R. Takeda, K. Komatani, T. Ogata 

and H. Okuno (2006). "Genetic algorithm-based improvement of robot hearing capabilities in 

separating and recognizing simultaneous speech signals." Advances in Applied Artificial 

Intelligence, Proceedings 4031: 207-217. 

Yelle, L. (1983). "Adding life-cycles to learning-curves." Long Range Planning 16(6): 82-87. 

Yen, B. and G. Wan (2003). "Single machine bicriteria scheduling: A survey." International 

Journal of Industrial Engineering-Theory Applications and Practice 10(3): 222-231. 

Ying, K. and C. Liao (2003). "An ant colony system approach for scheduling problems." 

Production Planning & Control 14(1): 68-75. 

Yu, J., Y. Yin and Z. Chen (2006). "Scheduling of an assembly line with a multi-objective genetic 

algorithm." International Journal of Advanced Manufacturing Technology 28(5-6): 551-555. 

Zhang, B. and S. Gong (2006). "Stochastic process time based job shop dynamic scheduling." 

Dynamics of Continuous Discrete and Impulsive Systems-Series A-Mathematical Analysis 13: 

67-76. 

Zhang, J., L. Zhao and W. Kwon (2001). Scheduling and optimization for a class of single-stage 

hybrid manufacturing systems. The IEEE International Conference on Robotics and Automation, 

Seoul, Korea, IEEE Press. 

Zhang, Y., P. Luh, K. Yoneda, T. Kano and Y. Kyoya (2000). "Mixed-model assembly line 

scheduling using the Lagrangian relaxation technique." IIE Transactions 32(2): 125-134. 

 


	theses_copyright_undertaking
	b2239610x



