

HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

A Graph Based Evolutionary Algorithm

Wong Shing Yue Samuel

A thesis submitted in the partial fulfillment of the

requirements for the degree of Doctor of Philosophy

October 2008

 i

Abstract

A number of different Evolutionary Algorithms (EAs) have been developed to evolve

different kinds of graph structures. The most common being those that evolve Artificial

Neural Network (ANN) architectures and those that evolve trees. In other words, these

EAs can only be used to evolve specific graph topologies and they cannot be easily

adapted to evolve graphs in general. Given that many data structures can be represented

as graphs, a general EA that can tackle graphs with no specialized topology can have

many useful real world applications. Towards this goal, this thesis proposes a general EA

for graphs called EvoGraph. EvoGraph can be used to evolve all kinds of graphs by

encoding them in adjacency matrices. Like other heuristic search algorithms,

evolutionary search in a space of graphs also faces the challenge of a tremendously

expanded search space when there is an increase in the number of nodes in a graph.

Though this can be mitigated by increasing the population size to provide a larger variety

of building blocks for the search, this increase in population size is limited, however, by

constraints in computational resources. To address this problem, it should be noted that

previous work has shown that uniform crossover in Genetic Algorithm (GA) could be

rather efficient for heuristic searches in a large search space with a relatively small

population. This operator ensures that all alleles have the same chance of being swapped

during crossover and it also ensures that a relatively high degree of disruption be

introduced to ensure the generation of novel chromosomes. Based on such a principle,

 ii

EvoGraph’s reproduction operators are also designed to resemble uniform crossover and

mutation crossover in linear-string GA. The application of a single crossover operator in

EvoGraph can achieve the same effect of more than one reproduction operation in a

Genetic Programming (GP) and Evolutionary Programming (EP). EvoGraph can be

shown to be very effective at various tasks involving the evolution of graphs in general

and trees and ANN architectures in particular. EvoGraph is applied to solve a wide range

of graph based heuristic problems considered in this thesis. They include architectural

topology design, space frame design, creative art painting, molecular design and peer-to-

peer overlay network design.

 iii

Publications Arising From This Thesis

“EvoGraph: An evolutionary algorithm for graphs” submitted to IEEE Transactions on

Evolutionary Computation for review. (Chapters 2 to 4 of this thesis refers)

“EvoArch: an evolutionary algorithm for architectural layout design” accepted for

publication by Elsevier Journal of Computer-Aided Design for review on 20thApril2009.

(Chapters 5 of this thesis refers)

“EvoMD: an algorithm for evolutionary molecular design” submitted to IEEE

Transactions on Computational Biology and Bioinformatics for review. (Chapters 8 of

this thesis refers)

“EvoNet: a graph evolutionary algorithm for balancing minimum spanning tree and

shortest path tree” submitted to IEEE-ACM Transactions on Networking for review.

(Chapter 9 of this thesis refers)

“Method for Automatic Generation of Optimal Space Frame” publication of patent

application at United States Patent and Trademark Office, Publication No. US-2009-

0073160-A1, 19thMarch2009.

 iv

Acknowledgement

The research that has one into this thesis has been thoroughly enjoyable. That

enjoyment is largely a result of the interaction that I had with my supervisor, Dr. Keith

Chan. I feel privileged to have worked with him and other staffs, Ms. Cherry Chan, and

Ms. Mui Tai in the Department of Computing in Hong Kong Polytechnic University. To

each of them I owe a great debt of gratitude for their patience, inspiration and friendship.

I would also like to thank Dr. Vincent Ng who guided me through the puzzles in

computer codes when I occasionally drop into his room in the early days of my research.

At that time I was working as a project associate in the Department. The Department has

provided an excellent environment for my research. Without this rich environment I

doubt that many of my ideas would have been able to come to fruition.

 v

List of Figures

Figure 1: Undirected graph encoding example

Figure 2: Directed graph encoding example

Figure 3: Tree encoding examples

Figure 4: General form of adjacency matrix for encoding ANN

Figure 5: ANN encoding example

Figure 6: Demonstration on Spanning Tree Generation

Figure 7: An example of a Graph Adjacency Matrix with Spanning Tree Highlight

Figure 8: Demonstration of Random Crossover of two Graphs

Figure 9: Demonstration of Random Crossover of two Trees

Figure 10: Standard GP Crossover to produce the same result as Random Crossover in

Figure 9.

Figure 11: Random Crossover of ANN

Figure 12: Steps on evolving ANN using EP

Figure 13: The Number-of-Edge Mutation operator illustrated

Figure 14: The Number-of-Node operator illustrated

Figure 15: Permutation invariant of adjacency matrix illustrated

Figure 16: Number of connected graph topologies in w.r.t. number of nodes

Figure 17: Target DS-graphs to be evolved with their corresponding spectrums

Figure 18: Number of evolution operators in each generation of evolution applied in the

experiments

Figure 19: Maximum fitness of resulting graphs generated by the experiments

Figure 20: Generation number on reaching maximum fitness of graphs evolved in the

experiments

Figure 21: Adjacency Preference Matrix

Figure 22: The functional area floor plan of a house

Figure 23: Graph representation of the floor plan

 vi

Figure 24: Dual Graph (dotted lines and triangular nodes) derived from the graph in

Figure 23

Figure 25: Functional Spaces enclosed by edges of Dual Graph (solid line and circular

nodes)

Figure 26: The Node-Label Mutation operator illustrated

Figure 27: The Swap-Node mutation operator illustrated

Figure 28: Relation between Cost and Adjacency Preference Scale (APS)

Figure 29: Relation between number of nodes and converging generation

Figure 30: Histogram of experimental results

Figure 31: Cost efficiency vs relative APS ratio of property D to F

Figure 32: Adjacency matrix with APS generated by experiment 5

Figure 33: Optimal Architectural Space Topology generated by experiment 5 and

corresponding floor plans

Figure 34: Space Frame Module repetition illustrated

Figure 35: Example of Cubical Symmetric Space Frame Module divided into subframes

which are mirror images to each other

Figure 36: Example of a Pyramidal Symmetric Space Frame Module with pentagon base

divided into subframes which are mirror images to each other

Figure 37: Examples on tetrahedron with different geometric regularities

Figure 38: Encoding three dimensional coordinates in linear chromosome

Figure 39: Hybrid algorithm process for EvoGraph and GA

Figure 40: Regular space frame modules generated by experiments

Figure 41: Module B with 13 edges

Figure 42: Violation of Mondrian subdivision rule

Figure 43: Example on tree encoding of Mondrian painting evolution

Figure 44: Comparing vertical and pinwheel subdivision of a square on the directional

bias

Figure 45: Original Mondrian Painting ‘Composition with Red, Blue, Yellow’

Figure 46(a): Tree encoding on evolution of ‘Composition with Red, Blue, Yellow’

Figure 46(b): Attributed adjacency matrix for the tree in Figure 46(a)

Figure 47: Regression curve of maximum fitness of experiment sets w.r.t. crossover mix

 vii

Figure 48: Regression curve of average maximum fitness of the 5 experiment sets w.r.t.

crossover mix

Figure 49: Regression curve of average maximum fitness of the 11 crossover mixes w.r.t.

the 5 experiment sets in the order of increasing complexity of search

Figure 50: Regression curve of the converging generation of experiment sets w.r.t.

crossover mix

Figure 51: Regression curve of average converging generation of the 5 experiment sets

w.r.t. crossover mix

Figure 52: Regression curve of average converging generation of the 11 crossover mixes

w.r.t. the 5 experiment sets in the order of increasing complexity of search

Figure 53: Basic steps of CAMD

Figure 53: Aspirin molecular graph and symmetric molecular matrix

Figure 54:. Example of molecular graph generated by initialization

Figure 55: Molecular graph and adjacency matrices of aspirin and tylenol

Figure 56: Random cut line imposed on molecular matrices of aspirin and tylenol

Figure 57: Swapping of subgraphs created by the cut and deletion of invalid edges

Figure 58: Embed spanning tree at random to each offspring graph after swapping.

Figure 59: The Number-of-Node mutation operator illustrated

Figure 60: The Number-of Edge mutation operator illustrated

Figure 61: The Swap-Node mutation operator illustrated

Figure 62: Comparison of 2 different overlay networks on the same underlay network

Figure 63: Comparison of costs of flow between of MST and SPT over the same

underlay network

Figure 64: Two AMTCTs atop the underlay network in Figure 63(a) with corresponding

costs of flow

Figure 65: Cost analysis of AMTCT1 and AMTCT2

Figure 66: Swapping of subtrees in GP producing invalid solutions for optimal routes

Figure 67: Encoding overlay tree over an underlay network in a cost matrix

Figure 68: An overlay tree generated atop an underlay network

Figure 69: Parent trees TP1and TP2

 viii

Figure 70: Swap nodes ‘4’, ‘5’ between TP1 and TP2 on the right hand side of the cut line

and delete invalid edges.

Figure 71: Generation of children spanning tree TC 1 from degenerate tree TPC21 after

exchange of subtrees in crossover.

Figure 72: Network mutation demonstrated

Figure 73: Linear relation between number of nodes and converging generations on

search of AMTCTs by EvoGraph

Figure 74: AMTCT searched by EvoGraph atop underlay network in Figure 74(a) and

cost comparison with corresponding SPT, MST.

Figure 75: Relation between degree density and number of additional AMTCTs.

 ix

List of Tables

Table 1: Properties of a tree in adjacency matrix

Table 2(a): The function space description corresponding to the labels

Table 2(b): The Relative Room Ratios

Table 3: The probabilities of each operator being selected for reproduction

Table 4: Summary of Experiment Result

Table 5: Relative APS of Experiments

Table 6: Cost efficiency in relation to relative APS ratio of property D to F

Table 7: Regularity of geometric properties in Figure 37(a),(b),(c)

Table 8: Summary of converging generations and corresponding angle entropies and

length entropies of space frame modules

Table 9: Symbols for tree encoding of Mondrian painting evolution

Table 10: Calculation of degree of bias of Figures 44(a) and (b)

Table 11: Attribute values calculation for Mondrian Painting in Figure 43

Table 12: Attribute values for ‘Composition with Red, Blue, Yellow’

Table 13: Design mix of GP and EvoGraph for Mondrian painting evolution

Table 14: Matrix identifying attributes to be captured in different experiments

Table 15: Converging fitness value

Table 16: Number of generations to reach convergence

Table 17: Summary of fitness functions and their target properties

Table 18: Illustration of fitness value calculation using f1

Table 19: First group experimental result using f1 as fitness function

Table 20: Evolving ibuprofen using f2 as fitness function

Table 21: Second group stage 1 experiments using fitness function f3

Table 22: second group stage 2 experiments using fitness function f4

Table 23: Second group stage 3 experiments using fitness function f5

Table 24: Degree of randomly generated underlay network

 x

Table 25: Converging generation for experiments on different number of nodes

Table 26: Percentage cost saving results of AMTCTs on TCSPT and TCMST on each

underlay network

Table 27: Fitness of AMTCTs generated in relation to degree density. The fitness of

AMTCTs below the maximum fitness is underlined

 1

Table of Content

 Pages

Abstract

Publications Arising From This Thesis

Acknowledgement

List of Figures

List of Tables

Table of Content

Chapter 1 Introduction

1.1 Background

1.2 Objective of the Research and Contributions

1.3 Outline of the Thesis

Chapter 2 Literature Review on Graph-Based Evolutionary Algorithms

2.1 Evolution of Artificial Neural Network

2.2 Genetic Programming

2.3 Other Application Specific Graph Evolutionary Algorithms

Chapter 3 EvoGraph Encoding Scheme for Different Graph

Topologies

3.1 Encoding of Graphs in Adjacency Matrix

3.2 Encoding of Tree

3.2 Encoding of Artificial Neural Network

Chapter 4 Reproduction Operators for EvoGraph

4.1 Generation of Spanning Tree

4.2 Crossover of Graphs

4.2.1 Random Crossover of Graphs

4.2.2 Random Crossover of Trees

i-ii

iii

iv

v-viii

ix-x

1-4

5-8

9-17

18-22

23-64

 2

4.2.3 Comparison between Standard GP and Random Crossover of

Trees in EvoGraph

4.2.4 Random Crossover of Artificial Neural Networks

4.2.5 Comparison between EP and EvoGraph on the Evolution of

ANN Topology

4.3 Mutation of Graphs

4.3.1 Number-of-Edge Mutation

4.3.2 Number-of-Node Mutation

4.4 Mathematical Foundation for EvoGraph

4.4.1 Exploration Verses Exploitation

 4.5 The EvoGraph Process

4.6 Experiments on Comparison of Performance between EvoGraph

Operators and Conventional Evolution Operators

 4.6.1 Fitness Function

4.6.2 Experiments and Findings

Chapter 5 Evolution on Architectural Space Topology

5.1 The problem of Architectural Space Topology Design

5.2 Conversion Between Floor Plan and Graph Representing

Architectural Space Topology

5.3 Fitness Function

5.4 Additional Mutation Operators

 5.4.1 Node-Label Mutation

 5.4.2 Swap-Node Mutation

5.5 Experiments

5.5.1 Initialization and EvoGraph Parameters Selection

5.5.2 Experimental Results and Findings

5.5.3 Optimal Architectural Space Topology Conversion to Floor

Plans

Pages

65-88

 3

Chapter 6 Evolution on Space Frame Topology and Geometry

6.1 Space Frame Design

6.1.1 Symmetric Space Frame Module Topology Design

6.1.2 Symmetric Geometric Properties and Dimensions Design

6.1.3 Encoding Three Dimensional Coordinates of Space Frame

Module Nodes in Linear Chromosome

 6.2 Fitness functions

6.3 The Hybrid Evolutionary Algorithm for EvoGraph and GA

6.4 Experimental Results

Chapter 7 Tree Evolution on Art Creation

7.1 Quantification of Aesthetic Attributes of Mondrian Painting

7.1.1 Directional Bias

7.1.2 Evenness of Subdivision

7.1.3 Color Distribution

7.1.4 Granularity of Subdivision

7.2 Experiments

7.2.1 Fitness function

7.2.2 Experiment Setup

7.2.3 Evolution Parameters and the Evolution Process

7.2.4 Fitness Analysis

7.2.5 Converging generation analysis

Chapter 8 Molecule Design

 8.1 Existing Approaches for Computer Aided Molecular Design

 8.2 Encoding Molecular Design

 8.3 The Fitness Function

 8.3.1 Molecular Topology Descriptors

8.3.2 Atom Adjacency Descriptors

8.3.3 Fitness Functions for Evolution of Molecules

8.3.4 An Illustrative Example in Drug Design

8.4 Experiments on Evolution of Molecules

Pages

89-106

107-128

129-158

 4

8.4.1 Initialization and Evolution Parameters

 8.4.2 Experimental Setup and Results

Chapter 9 Peer-to-Peer Overlay Network Design

9.1 Previous Studies and the Problem

9.2 Application of EvoGraph on Peer-to-Peer Overlay Network

Evolution

9.2.1 Generation of Tree on Overlay Network Atop an Underlay

Network

9.2.2 Crossover of Networks

9.2.3 Mutation of Networks

9.2.4 Fitness Function

9.3 Experiments

9.3.1 Initialization and Evolution Parameters

9.3.2 Experimental Results

Chapter 10 Research Conclusion and Future Directions

10.1 Research Conclusion and Contribution

10.2 Limitations of the Research

10.3 Future Directions of Research

Appendix 1: Fitness Graphs on Best Performed Experiments on EvoGraph

Operators and Conventional Evolution Operators

Appendix 2: Experimental Results on Architectural Space Topology

Evolution

Appendix 3: Repetitive Space Frame Modules

Appendix 4: Mondrian Paintings Evolved by Tree Evolution

Appendix 5: Target Hydrogen Depleted Molecules and Corresponding

Molecular Graphs

Appendix 6: Underlay Networks Cost Matrices with Approximate
Minimum Total Cost Tree (AMTCT) and cost savings of each
AMTCT

References

Pages

159-192

193-196

197-198

199-202

203-208

209

210-214

215-221

222-234

 5

 Chapter 1

Introduction

1.1 Background

Encoding of chromosomes is usually the first thing one need to decide when solving a

problem with Evolutionary Algorithms (EA). This topic was introduced by Holland and

his students around 1975 on genetic algorithm (GA) using binary string encoding. The

first text book [1] on this topic enforced this presentation. It was only in early 1990s other

types of EAs were proposed and studied. Many other encoding schemes, such as floating

point presentation in chromosomes, permutation, matrices presentation of graphs by

Michalewicz, and tree encoding by Koza, etc. [2][133] have been developed and used

with much success when tackling different problems in different application areas. In

addition to these popular encoding schemes, there have also been studies on cellular [12]

or edge encoding [15], developed to encode tree-like structures. Similarly, work on

genetic programming (GP) [2][3][13] and evolving Artificial Neural Networks

(ANN)[4][14][16] has also been proposed on trees and neural networks architecture

respectively. With a few exceptions in some domain-specific studies [17][18], there has

not been much work done to develop EAs that can evolve graphs with different

topologies.

1.2 Objective of the Research and Contributions

Given the diversity of real world problems that can be formulated in the form of graphs

such as [5][6][17][18][131][132]. A number of different Evolutionary Algorithms (EAs)

have been developed to evolve different kinds of graph structures. The most common

being those that evolve Artificial Neural Network (ANN) architectures and those that

evolve trees. In other words, these EAs can only be used to evolve specific graph

 6

topologies and they cannot be easily adapted to evolve graphs in general. Given that

many data structures can be represented as graphs, a general EA that can tackle graphs

with no specialized topology can have many useful real world applications. Towards this

goal, this thesis proposes a general EA called EvoGraph that can evolve connected graphs.

EvoGraph encodes a connected graph (hereafter referred to as “graph”) in an adjacency

matrix. It encodes connected graphs (hereafter referred to as “graph”) in adjacency

matrices and makes use of a set of crossover and mutation operators designed to

manipulate them. For an EA to effectively evolve graphs, it has to be able to handle a

search space that would increase in size tremendously when the number of nodes of a

graph, and hence the variety of topologies increases [69].

Though this can be mitigated by increasing the population size to provide a larger

variety of building blocks for the searches, this increase in population size is often

constrained by limited computational resources. To address this problem, previous work

with linear-string GA makes use of the uniform crossover and mutation operators to

efficiently evolve linear-string chromosomes in a large search space with modest-size

populations. Such operators ensures that all alleles have the same chance of being

swapped during crossover or changed during mutation and it also ensures that a relatively

higher degree of “disruption” be introduced to avoid local optima and to ensure

generation of novel chromosomes. Given such an advantage of the uniform crossover and

mutation operators with the linear-string GAs, EvoGraph’s crossover and mutation

operators are designed to operate like them. EvoGraph has several unique characteristics:

(i) it encodes graphs in their adjacency matrices, (ii) it uses a novel crossover operator

that can facilitate the exchange of characteristics between two graphs in a way equivalent

 7

to the uniform-crossover operator for linear-string GA; (iii) it uses a set of novel mutation

operators to facilitate the introduction of minor variations in topology in each graph to

avoid trapping in suboptimal in the evolution process.

 In addtition to the introduction of a general EA for graphs without specific topologies,

the random evolution operators of EvoGraph also introduce a new way of crossover and

mutation for ANN and trees in addition to the conventionally adopted Evolutionary

Programming (EP) and GP. We compare the advantages of EvoGraph operators over the

conventional operators through hand simultations and experiments. After that, we apply

EvoGraph to solve selected graph heuristic problems. The experimental results are

promising.

1.3 Outline of the Thesis

Different types of graph evolutionary algorithms are reviewed in Chapter 2. The most

popular of which are ANN evolution and GP. This forms a reference for the development

of a general evolutionary algorithm that is applicable to all types of graphs concerned.

Chapter 3 introduces the new encoding scheme for different graph topologies into

adjacency matrix. This is analogous to chromosome encoding in standard GA. Chapter 4

presents the different evolution operators of EvoGraph, random crossover, Number-of-

Node mutation and Number-of-Edge mutation. The mathematical foundation of

EvoGraph is also presented. Experiments on the performance of EvoGraph operators in

comparison with conventional evolution operators on evolving graph without specific

topologies, ANN and tree are illustrated. They demonstrate the advantage of EvoGraph

over the conventional EAs. The above completes the formalism of EvoGraph. Chapters 5

 8

to 9 illustrate different applications of EvoGraph. Through these applications, the

potential of solving problems inherent in the existing graph evolutionary algorithms

described in Chapter 2 is demonstrated. Chapter 10 concludes the findings and limitations

of this research and indicates directions for future research.

 9

 Chapter 2

Literature Review on Graph Based Evolutionary Algorithms

The majority of current implemetations of EAs descend from three strongly related

but independently developed appoaches: GAs, EPs and evolution strategies (ES). GA

have been originally proposed as a general model of adaptive process by using

recombination and mutation operators [135], but by far the largest application of the

techniques is in the domain of optimization [136]. EP was originally designed to evolve

finite state machines by using mutation alone [137], which transforms a sequence of input

symbols into a sequence of output symbols. The performance of the finite state machine

is measured on the basis of the machine’s prediction capability. ES [138] was initially

designed with the goal of solving evolution parameter optimization problem. It has been

widely used in adaptive parameters tuning in dynamic evolution environment. In the

1990s, other types of EAs are developed. Such as, floating point presentation of

chromosomes in addition to the original binary presentation in GA and evolution

operators for drawing graphs proposed by Michalewicz [133]. Koza [2] also proposed GP

for evolving computer programmes by encoding them in tree topologies. Recently, the

most popular forms of graph evolutionary algorithm that attracts a lot of attention are the

evolution of ANN and GP. These evolutionary algorithms are developed for the specific

graph topologies, bipartite graph for ANN and tree for GP respectively. They are

reviewed below to serve as a source of inspiration to develop a general encoding scheme

and evolutionary algorithm for all graphs.

 10

2.1 Evolution of Artificial Neural Network

A lot of work has been done to use EAs to evolve ANN architectures [4]. The goal is

to find “optimal” or “near-optimal” architectures with respect to such criteria as the time

of convergence of a learning process or the complexity of the network architecture.

 A low level representation of a neural network is direct encoding and it is the most

intuitive. Miller [26] maps the adjacency matrix of a neural network onto a binary string

chromosome by concatenating the rows of the adjacency matrix. GA is then applied to

evolve the network. Dodd [25] applies a GA to optimize a structured network for a

pattern recognition problem classifying dolphin sounds. It is reported that a standard GA

is able to find a network that is superior to any that can be created by hand. As the size of

the network increases, the encoding of all details will result in a very long chromosome.

The number of nodes of the network is fixed as the topology evolves. As the chromosome

is formed by concatenating rows of the adjacency matrix into a linear string, the length of

the chromosome has to be the square number of the dimension of the adjacency matrix.

This square number constraint has to be maintained in order to enable successful

decoding of the chromosome back into a graph. Hence, it does not favor variable length

chromosome evolution.

 A higher level representation is proposed by Harp [30] to swap layers of hidden nodes

between neural networks. The network architecture is divided into a number of

‘blueprints’. Each ‘blueprint’ is described by several parameters like the number of nodes

and its connection densities to some other ‘blueprints’. The ‘blueprints’ are mapped to a

linear chromosome for evolution using a GA. A similar representation is proposed by

 11

Mandischer [29], where for every layer receptive as well as projective connections are

specified on the chromosome.

Other studies on encoding network layers in chromosomes include [32], which is an

abstraction of the 2-dimensional grid structure of Parallel Distributed Genetic

Programming (PDGP) proposed for edge recombination between nodes in different layers

[34]. However, the abstraction of the 2-dimensional grid structure into a linear form

involves numerous encoding and decoding rules. Note that these representations allow

variable string lengths. The number of nodes is variable in the evolution process.

 Another approach to achieve a desired ANN topology is to construct or modify a

topology in incremental fashion. In view of the fact that the crossover operation in GA is

not efficient in evolving both the weight and topology of an ANN at the same time, Yao

and Liu [19] propose to use EPNet, which adopts only mutations in the process of

evolution. Nodes are appended or deleted together with the modification of weights from

one generation to another.

Another example of the use of an incremental approach is the evolution of projection

neural network (PNN) [28]. The main difference between a PNN and an ANN is that

PNN projects the original n-dimensional input vector onto the n+1 dimensional vector

that lies in the hyperplane of the original input vector and utilizes it as a new input vector.

An operator for appending or deleting a node is required to change the dimension of the

hyperplane that the node represents. In this regard, EP [24] on neural network is also

applied. In [20], optimization of PNN by encoding the hidden node parameters such as

weights and shaping factors in a link list data structure embedded in a chromosome is

proposed. Ordered crossovers and mutations are applied. Another form of incremental

 12

evolution of neural network by drawing analogy to biological growth is proposed by [33].

 To allow dynamic expansion of topology of neural network during training, Opitz and

Shavlik [31] proposed to allow exchange of hidden nodes and their attached links

between two parent neural nets. Ordered crossover is adopted to achieve the required

purpose and there is complete re-connection of links after nodes exchange to avoid the

problem of disconnection. Some special cases such as neural network with tree topology

are dynamically evolved by GP [14].

Another way to enable more dynamic change in topologies in the process of evolution

is through indirect encoding. Indirect encoding generates graphs by reading instructions

from genotypes in form of a chromosome [21] or a tree [12][15][22][130]. EA based

optimization is then carried out at the genotype level. Other forms of indirect encoding

involve evolution of graph generating rules such as that proposed by Kitano [23] or of

encoding on a grammar based construction program in the genome proposed by

Lindenmayer [27].

 In summary, the different EAs and the numerous forms of encoding schemes and

evolutionary algorithms described so far are designed to tackle the topological structure

of ANN which consists of an input nodes layer, the hidden layers and the output nodes

layer. Standard GA is typically used for directly encoded fixed node ANNs. However,

direct encoding with standard GA is not suitable for variable node evolution because the

length of chromosome is constrained by the square number of rows of the graph

adjacency matrix. For variable node ANNs, ordered crossovers and mutations have to be

used to maintain the basic structure of ANN throughout the evolution. Indirect encoding

can provide a more dynamic change of topologies in the process of evolution but the

 13

representation is less efficient because the evolution is not directly related to the network

itself.

 The above evolutionary algorithms for graphs or networks are ordered or constrained

by the purposes they are designed to achieve. A general unbiased evolutionary algorithm

for graphs free of topological constraints has not been developed. This thesis proposes a

general evolutionary algorithm for graphs that is analogous to the standard GA [1]. The

algorithm conducts crossovers and mutations on graph adjacency matrices while standard

GA works on chromosomes. Given the general form of encoding in a graph adjacency

matrix, it is simple to devise crossover and mutation operators to serve specific purposes.

2.2 Genetic Programming

Genetic Programming (GP) has been widely adopted since its invention by Koza [2][3].

The crossover operator GP involves swapping of subtrees and this is analogous to one

point crossover in standard GA except that it is carried out in a tree topology instead of a

linear-string.

 Much work has been done to develop crossover operator for GP. The most intuitive

ones are those related to the study of the preservation of useful subtrees, or building

blocks, during the evolutionary process. For example, Langdon [36] proposed

‘homologous crossover’ to improve the success of recombination by selecting subtrees

deterministically, so that only subtrees with similar functions and topologies are

exchanged. D’haeseleer [37] tried to assign indices to the nodes in preferred subtrees to

enable exchange of matching branches instead of choosing subtrees at random in the

crossover. In such circumstances, the context of the good population can be preserved.

 14

However, constraints are imposed on the selection of nodes to exchange and this affects

the efficiency of evolution. The good building blocks are also prohibited from spreading

to other parts of the population.

Korkmaz and Üçoluk [38] calculate the fitness of subtrees during evolution and use

the values to guide the recombination process so that subtrees with high performances are

not destroyed during crossover. This algorithm learns from the evolution to determine the

frequencies of good nodes in the subtrees and how they are distributed within the tree.

Guidance for recombination is generated from this learning process to steer the crossover

direction. It works well with subtrees that are not related to each other but not for trees

having performances of subtrees that are dependent on each other.

 Lones and Tyrell [39] proposed an algorithm to preserve the high performing subtrees

and enable evolution of variable length solutions. The idea is to encode the nodes of a

tree to behave like enzymes in chemical reactions. Each tree represents a program. Each

node behaves like an enzyme that has its own function and selects its own interaction

preferences. That is, each node selects which other nodes that it will react with. On the

other hand, it has a representation that is conceived by other nodes. This is thus a mutual

selection process. Unlike the crossover operation in a typical GP, in the proposed enzyme

GP, a contiguous group of nodes is copied from one solution without removing any

existing nodes. It is up to the other nodes within the tree to decide whether or not to use

these new nodes.

 There are studies on the design of appropriate crossover operators that tackles the

problem of bloat, the building up of more and more redundant codes in a tree throughout

the evolution process. Heywood [40][41][42][43] introduces ‘page base crossover’ to

 15

minimize the code length. Each page in the code represents a tree which carries the same

number of instructions. Since only subtrees having the same number of instructions are

exchanged, the code lengths of the trees are kept under control. Therefore, less

computational resource is used due to the limitation of code length of trees. ‘Depth

dependent crossover’ [44] is also proposed to limit the code length. The probability of

selection of node as a crossover point decreases from the top to the bottom of a tree. In

solving some of the problems such as the artificial ant problem, the effectiveness of

‘depth dependent crossover’ is not exactly clear. Further exploration of the method is on

going. Niimi and Tazaki [45] use reinforced learning through pruning redundant subtrees

to control the tree sizes.

 In view of the problem that there may be too much a demand on computational

resources due to the increase in tree sizes throughout the process of evolution, studies are

also conducted to reduce computational resources in crossover. In [46], Read’s linear

code is used to encode tree structure in linear form. Though the presentation of a tree is

simplified, the tree continues to increase in size as evolution proceeds. The problem of

bloat has not been solved. Yanagiya [47] use binary decision diagrams to merge

subgroups of nodes into one entity to facilitate evolution with a smaller number of nodes.

This reduces storage requirements by sharing isomorphic subtrees among individuals,

and saves computational power.

 There are studies on crossover operations that adopt a more random approach when

subtrees are exchanged. In [48][53], a ‘uniform crossover for GP’ is proposed. Based on

it, two parents are being compared to identify, starting from the root node, the common

regions where both of them have the same topologies. Then the interior nodes in the

 16

common regions are swapped with probability 0.5. If a node belongs to the boundary of

the common region, then the subtree below it is also swapped. Similar to the case of the

uniform crossover operator in linear-string GA, such form of ‘uniform crossover in GP’

is less biased as it allows nodes in the common regions in the parent trees to be passed on

to the offspring with a probability of 0.5. Unfortunately the identification of the common

regions is very demanding in computational resources and this type of crossover relies on

the existence of common regions between parent trees.

 The different EAs described above adopt crossover operators that exchange subtrees

between two parents. There have also been studies on crossover involving more than two

parents, that is, multi-parent crossover [50]. Based on it, a number of subtrees are

selected from a number of parents to exchange with each other. The process is analogous

to chemical reaction equations where different chemical molecules react and recombine

to form another set of different molecules. It is for this reason that this kind of crossover

has also been referred to as ‘immune and the chemical crossover’. In this crossover

process, the parents selected need to pass a recruitment test where they should exhibit

higher fitness and similarity amongst themselves. Good zones of recruitment in the

population are then identified. Each offspring is generated by means of multi-crossover

among multiple parents in the good recruitment zone.

 In summary, the crossover operators that many GPs have adopted typically involve the

exchange of subtrees. Regardless of how the subtrees are swapped, the change in tree

topology after the crossover is limited to the part of tree being exchanged in a single swap.

Such incremental approach to tree evolution also tends to be slow. There is a need for the

development of an unbiased and more uniform evolutionary algorithm for tree topologies

 17

so as to produce a more drastic change of tree topologies during evolution by breaking up

large tree. And this should improve the speed of convergence.

2.3 Other Application Specific Graph Evolutionary Algorithms

There are also other EAs that are developed to evolve graphs and these EAs are

tailored to suite specific problems such as arithmetic circuit design [54], design planning

[7][8][9][10], chemical molecule design [18], and computer network optimization [17]..

These algorithms are very different from each other and cannot be easily generalized.The

last three application domains are studied in this thesis for their popularity of application.

The state of the art encoding scheme for graphs and their evolution for these specific

domains are discussed in Sections 5.1, 8.1 and 9.1 respectively. They are compared with

EvoGraph encoding and evolution in the same chapter.

This thesis presents a general graph encoding scheme for graphs of different

topologies of graphs including ANNs or trees, directed or undirected etc.. Based on this

general encoding scheme, an EA, called EvoGraph, is devised to tackle various problems

for which solutions can be represented as graphs. The details of EvoGraph are given in

the next two chapters.

 18

 Chapter 3

EvoGraph Encoding Scheme for Different Graph Topologies

All graphs can be represented in their adjacency matrices. The adjacency matrix of a

graph represents the graph nodes and their connectivity at the same time. For EvoGraph,

a graph is encoded in its adjacency matrix. Though these matrices can also be encoded in

linear-string chromosomes which simple GAs can operate on by concatenating the rows

to form a linear array, it can be a rather computationally clumsy representation.

Furthermore, if linear-string chromosomes are used, the connectivity between nodes

cannot be read directly and a special decoding phase has to be added to convert linear-

sting chromosomes back into a graph.

One advantage of the EvoGraph using an adjacency matrix encoding scheme is that

an effective crossover operator that EvoGraph adopts can be more easily implemented

with it. Also, another advantage of encoding a graph in adjacency matrix is that

“repairing” a matrix after crossover to ensure connectivity can be much easier. In the

following sections, the adjacency matrix representation scheme is described in details.

3.1 Encoding of Graphs in Adjacency Matrix

Given a graph represented as G(V, E) where V is the set of vertices and E is the set of

edges in G. We can construct its adjacency matrix in such a way that if there exists a

connection from iv ∈V to vertex jv ∈V, i≠j in the graph, then the value of the cell at the

ith row and jth column, cij is set to 1. Otherwise, if there is no connection between them, it

 19

is set to 0. If the edges are labeled, cij can be assigned the edge label instead. Without

loss of generality, if the graph is directed, then cij represents a directed edge from iv ∈V

to vertex jv ∈V. Examples on the encoding of undirected and directed graph are shown

below in Figures 1 and 2.

 1 2 3 4 5 6 7 8

1 - c12 0 0 0 0 0 c18

2 - - c23 c24 0 0 0 0

3 - - - c34 0 c36 c37 0

4 - - - - c45 0 0 0

5 - - - - - c56 0 0

6 - - - - - - 0 0

7 - - - - - - - 0

8 - - - - - - - -

Figure 1: Undirected graph encoding example

 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 0 0 c23 0 c25 0 0 0

3 0 0 0 0 0 0 0 0

4 0 c42 c43 0 0 0 C47 0

5 0 0 0 0 c55 0 0 c58

6 0 0 0 0 0 0 C67 0

7 c71 0 0 c74 0 c76 0 0

8 c81 0 0 0 0 0 0 0

1

5

6

8

4

7
2

7

3

c74

c58

c47

c43

c6
7

c81

c25

c42

c23

c76

c55

c71

Figure 2: Directed graph encoding example

1

37

4

5

26

8
c18

c
23

c
45

c24

c12

c36

c37

c34

c56

 20

3.2 Encoding Trees

Given a number of nodes |V|, a tree is the minimal graph that has |E| = |V| - 1 number

of edges. The adjacency matrix of a tree with |V| nodes and |E| directed edges starting

from the root and descending downwards has the properties as shown in Table 1. Note all

trees exhibit such properties in their adjacency matrices but an adjacency matrix having

such properties may not always produce a tree topology. An example on tree adjacency

matrix encoding a tree and adjacency matrix having properties in Table 1 but not

representing a tree are shown in Figure 3(a) and Figure 3(b) respectively..

To check if an adjacency matrix represents a tree, one can follow the following

procedure.

1. If an adjacency matrix does not possess properties in Table 1, it does not represent a

tree topology.

2. Insert a cut-line between two columns at one time from the left to the right to separate

the adjacency matrix into 2 submatrices. If it represents a tree, this will result in the

loss of an edge. If not, the adjacency matrix does not represent a tree topology. For

example, a cut between columns C and D of the adjacency matrix in Figure 3(b) does

not result in the loss of an edge. Hence it does not represent a tree topology.

Properties in adjacency matrix Topological properties in tree structure
1. For each node i, there exist at least one cij = 1 or
cki = 1 where 1 ≤ j, k ≤ |V|

Each node is connected at least by one arrow

2. There exist only one cij = 1 for all the columns in
the matrix except the column of root node

There are |V| - 1 arrows in a tree and each non-root
node has one number of arrow pointed from above

3. There exist one column with all cij = 0 The root node does not have arrow pointing toward
it

4. There exist some rows with cij = 0 The terminal nodes have no arrows originating
from them

7. If cij = 1, then cji ≠ 1 and vice versa There is no reverse arrow pairs connecting two
nodes

6. The diagonal cii = 0 There is no loop for each node
Table 1: Properties of a tree in adjacency matrix

 21

 G H I h i j k

G 0 cGH cGI 0 0 0 0

H 0 0 0 cHh cHi 0 0

I 0 0 0 0 0 cIj cIk

h 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0

j 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0

G

IH

kjih

CGH C
GI

C
IkCHh C

H
i C

Ij

Figure 3(a): Tree encoding example

 A B C D E

A 0 0 cAC 0 0

B cBA 0 0 0 0

C 0 cCB 0 0 0

D 0 0 0 0 cDE

E 0 0 0 0 0

A

ED

CB

C
B

A

C
A

C

CCB

CDE

Figure 3(b): Example on adjacency matrix with properties in Table 1 but not

representing tree topology

3.3 Encoding Artificial Neural Network

EvoGraph is not designed to conduct ANN operations with the feed forward and back

propagation process. The intention is to evolve the optimal ANN topology for its

operation. The input, output, and hidden nodes of ANN are encoded in adjacency matrix

by assigning the rows and columns to present different layers. Only the above diagonal

elements in the upper left portion of the matrix are used to indicate connections. This is

because most of the ANNs are bipartite graphs and nodes in each layer of ANN will not

connect with itself. The general form of adjacency matrix for ANN and an example of

 22

encoding is shown below. cij is the weight of an edge. The direction of edges is trivial for

evolving topologies of ANN. Hence, undirected graph encoding similar to Figure 1 is

used. For recurrent ANN, which is a special type of ANN, it has tree topology and can be

encoded using the adjacency matrix in Section 3.2

 Input
nodes

Output
nodes

Hidden
nodes

Input
nodes

- - cij

Output
nodes

- - cij

Hidden
nodes

- - -

Figure 4: General form of adjacency matrix for encoding ANN

 1 2 3 4 5 6 7

1 - - - - c15 c16 c17

2 - - - - 0 c26 c27

3 - - - - c35 c36 c37

4 - - - - 0 c46 c47

5 - - - - - - -

6 - - - - - - -

7 - - - - - - -

3

1

4

75 6

2input

output

hidden

c1
6c15 c17

c26

c2
7

c3
5

c
36

c37 c4
6c47

Figure 5: ANN encoding example

 23

 Chapter 4

Reproduction Operators for EvoGraph

Given the graph encoding scheme, the reproduction operators can be easily described.

Before they are described in details, it should be noted that, in the crossover and mutation

operation as adopted by EvoGraph, the issue of graph connectivity needs to be tackled.

Imposing penalty in the fitness function on invalid solutions (disconnected graphs)

generated by evolution operators may lead to high inefficiency of the EA process because

a lot of invalid solutions may need many generations to eliminate [133]. We use an

appropriate data structure (adjacency matrix) and specialized evolution operators to take

care of the connectivity constraint.

In order to ensure that a graph remains connected after the reproduction operators are

applied to it, EvoGraph use an unbiased repair algorithm by incorporating a randomly

generated spanning tree (see the procedures in Section 4.2) to the intermediate degenerate

graphs right after the crossover or mutation. This way, a disconnected graph can be

connected. Given a number of nodes, the spanning tree is the smallest graph that can be

embedded in all graphs. Embedding of a spanning tree in a graph being generated during

the evolutionary process does not cause any bias in topology in a graph. For example, in

the initialization process, given |V| and |E|, graph generation begins with the generation of

spanning tree to connect all the |V| number of nodes with |V| - 1 edges, and then add edges

at random along the way.

 24

4.1 Generation of Spanning Tree

As the EvoGraph operates on adjacency matrices, spanning tree generation is

conducted on adjacency matrix. The generation of spanning tree from a set of

unconnected nodes in an adjacency matrix is illustrated by an example below. For the

purpose of illustration, cij = 1 or 0 where cij =1 if a directed edge connection from node vi

to node vj exists and cij = 0 indicates no connection.

Before the procedure to embed a decision tree in an adjacency matrix is given, let us

define the followings.

Definition 1: An Origin node (vo) is defined as a node in a graph adjacency matrix

with all ‘0’s in the column. This means that there is no directed edge connection

from another node to an origin node in a graph. An example of an origin node is the

root node of a tree. It will be illustrated later that, during the process of crossover of

trees, degenerate trees can be produced in the intermediate stages and there can be

more than one origin node in a degenerate tree. However, the process of spanning-

tree generation can also start off with a set of vos of a degenerate tree.

Definition 2: A Descendant node (vd) is defined as a node in a graph adjacency

matrix with a single ‘1’ in one cell and ‘0’ in all other cells in the column. This

represents a directed edge connection from another node to a descendant node.

Examples of descendant node include internal nodes and leaf nodes of a tree.

Given the above definitions and let V be a set of nodes for the spanning tree,

VVO ⊂ be the set of origin nodes in V. If V is in the starting condition, where all the

 25

nodes are unconnected, V=VO, otherwise, VVO ⊂ and VVO ≠ . Let also N(X)

represents number of elements in set X. The procedure for constructing an embedded

spanning tree can therefore be given as follows:

1. Initialize an adjacency matrix will all column and row labels the same as the nodes in

V. Set all cells of the adjacency matrix to ‘0’.

2. Select at random a node vr from VO.

3. Exclude vr from VO so that VO=VO \ vr;

4. Generate at random a natural number k where)(1 VONk ≤≤ .

5. Select k number vos in VO. Create a set U to include all the selected vos so that

};,....,....,{ 21 ki vvvvU =

6. for i = 1to k, 1=
irvvc so that directed edges are now created to connect vr to all nodes

vi in U in the adjacency matrix. All nodes in U are now vds.

7. Revise VO to exclude all the vds so that VO=VO \ U;

8. Include vr again in VO for the next round of origin node selection. rvVOVO ∪= ;

9. Empty U. U={};

10. Repeat step 2 to 9 until N(VO)=1. The ending condition where the there is only one

root node in the set of origin nodes.

An example of spanning tree generation from an adjacency matrix using the above

procedure is shown below. Given a set of unconnected nodes V ={A, B, C, D, E, F}. as

shown in Figure 6(a).

 26

 B E D A F C

B 0 0 0 0 0 0

E 0 0 0 0 0 0

D 0 0 0 0 0 0

A 0 0 0 0 0 0

F 0 0 0 0 0 0

C 0 0 0 0 0 0

A

F

D E

C

B

Figure 6(a): Initialization of spanning tree adjacency matrix. All nodes have column
cells ‘0’. Hence all nodes are vos

1. Let VO=V ={A, B, C, D, E, F}

2. Select at random an origin node vr=‘B’ from VO.

3. VO=VO\B; VO = {A, C, D, E, F}.

4. Generate at random a natural number 5)(1 =≤≤ VONk , say k=2.

5. Select at random 2 vos from VO and include them in a set U, say, U = {D, E}.

6. Create directed edges cBD = 1, cBE = 1. Now ‘D’, ‘E’ are no longer vos. Each of them

has a ‘1’ in their columns in the adjacency matrix. They are vds.

 B E D A F C

B 0 1 1 0 0 0

E 0 0 0 0 0 0

D 0 0 0 0 0 0

A 0 0 0 0 0 0

F 0 0 0 0 0 0

C 0 0 0 0 0 0

A

F

D E

C

B

Figure 6(b): Node ‘B’ is selected to originate directed edges to vos ‘D’ and ‘E’

7. Revise VO to exclude vds in U = {D, E}. VO = VO \ U = {A, C, F}.

 27

8. Include vr=‘B’ again in VO for the next round of origin node selection.

},,,{ FCBAvVOVO r =∪= ;

9. Empty U. U={};

10. 14)(≠=VON . Carry out next round of origin node selection.

11. Select at random an origin node vr= ‘A’ from VO.

12. VO=VO \ A; VO = {B, C, F}.

13. Generate at random a natural number 3)(1 =≤≤ VONk , say k=3.

14. Select at random 3 vos from VO and include them in a set U, say, U ={B, C,

F}.Create directed edges cAB = 1, cAC = 1, cAF = 1. Now ‘B’, ‘C ’, ‘F’ are no longer vos.

Each of them has a ‘1’ in their columns in the adjacency matrix. They are now vds.

 B E D A F C

B 0 1 1 0 0 0

E 0 0 0 0 0 0

D 0 0 0 0 0 0

A 1 0 0 0 1 1

F 0 0 0 0 0 0

C 0 0 0 0 0 0

A

F

D E

C

B

Figure 6(c): Node ‘A’ is selected to originate directed edges to vos ‘C’, ‘B’ and ‘F’

15. Revise VO to exclude the vds in U = {B, C, F}. VO = VO \ U = {}.

16. Include vr=‘A’ again in VO for the next round of origin node selection.

}{AvVOVO r =∪= ;

17. Empty U. U={};

18. 1)(=VON . Stop.

 28

In complexity analysis, the worst case scenario of this spanning tree generation

algorithm is to add one edge at a time until a spanning tree is formed. In this worst case

scenerio, a node is selected at random. Then a second node is selected out of |V| - 1 nodes

and a directed edge from the first node connects to it. The first node is an on. There are

|V| - 2 nodes left behind in the adjacency matrix to be scanned for ons for the next

connection and so on. The order of time required for the spanning tree generation for this

worst scenario is
2

)1|(|||1....)2|(|)1|(| −
=++−+−

VVVV . Hence, it can be deduced

that the time for execution can be completed in not more than O(|V|2). The same time

complexity applies to the repair processes in different crossovers described in Section 4.2

as they adopt the same algorithm for repair.

An example of embedded spanning tree in a graph is shown in Figure 7(a). The

embedding of a spanning tree in the graph is shown in Figure 7(b) with corresponding

edges shown as ‘1’ in the adjacency matrix. After creation of a spanning tree, more ‘1’s

are then added to the cells of the adjacency matrix as additional edges are added to form a

graph. They are presented as undirected edges in Figure 7(a) and ‘1’s in Figure 7(b). This

process is used to generate the initial population of graphs for evolution. It also re-

connects the exchanged degenerate subgraphs to generate offspring in the crossover

process demonstrated in later sections.

 29

E

H

F

C

B

A

D

G

 A B C D E F G H

A 0 1 0 0 1 0 0 0

B 0 0 1 1 0 0 0 0

C 0 0 0 1 0 0 0 1

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 1 0 0

F 0 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0

(a) Graph with spanning tree embedment
and node A as root

 (b) Adjacency Matrix for directed graph with a
‘1’s as the spanning tree and other edges added at
random as ‘1’

Figure 7: An example of a graph adjacency matrix with spanning tree highlight

4.2 Crossover of Graphs

This operator involves the crossing of two parent graphs to produce a pair of children

graphs in a random manner without imposed order and is the most general form of graph

crossover used by EvoGraph. This is called random crossover.

4.2.1 Random Crossover of Graphs

This operator allows two parent graphs with different number of nodes to be crossed.

A graph is invariant to the row and column permutation of its adjacency matrix. This

permutation-invariant property of graphs does not exist in linear chromosomes in GA. In

a linear chromosome, permutation of alleles will result in different properties and hence

different fitness but this is not the case with graphs. The fitness of a graph is the same

regardless of the permutation of its nodes even if the graph is represented as an adjacency

matrix.

 30

Given two parent graphs with different number of nodes to be crossed, they can be

represented as GP1(VP1, EP1) and GP2(VP2, EP2) with corresponding adjacency matrices

GP1 and GP2, the operation can be described as follows. For illustration purpose, the

value of elements in the adjacency matrix cij = 0 or 1.

 For each of GP1 and GP2, the order of nodes in their corresponding adjacency matrices

is randomly permuted prior to other operations. This is to ensure that there is no bias

when nodes are selected for the reproduction operators. For each of GP1 and GP2, a

crossover point between two neighboring rows and columns in an adjacency matrix is

selected randomly. One submatrix from each of the split parent matrix is then swapped to

form two new child matrices. Connections within the submatrices are retained throughout

the process while connections outside them are deleted. New edges are generated with

repairing in each of the resulting matrices to form two children, GC1 and GC2. The

random crossover can be described step-by-step as follows.

1. Given two graphs, GP1(VP1, EP1) and GP2(VP2, EP2), with vertex sets { 1
1
Pv , 1

2
Pv , …,

1P
iv , 1

1
P
iv + , …, 1P

nv } and { 2
1
Pv , 2

2
Pv , …, 2P

jv , 2
1

P
jv + , …, 2P

mv } respectively. For the two

graphs, corresponding adjacency matrices GP1 and GP2 are constructed. The order of

nodes is randomly permuted.

2. A crossover point in each of GP1 and GP2 is randomly selected.

3. Assume that the crossover point for GP1 is between 1P
iv and 1

1
P
iv + and for GP2 is between

2P
jv and 2

1
P
jv + , the lower right portions of these two adjacency matrices are then swapped

so that the rows and columns corresponding to { 1
1

P
iv + ,…, 1P

nv } are swapped with the

rows and columns corresponding to { 2
1

P
jv + ,…, 2P

mv } to form two matrices GPC12 and

 31

GPC21. The valid vertex labels for GPC12 are therefore given by { 1
1
Pv , 1

2
Pv , …,

1P
iv , 2

1
P
jv + , …, 2P

mv }and for GPC21 by { 2
1
Pv , 2

2
Pv , …, 2P

jv , 1
1

P
iv + , …, 1P

nv }.

4. All cell entries in each of GPC12 and GPC21
 are scanned to remove invalid edges in such

a way that the edges connecting to the internal nodes within GPC12 and GPC21 are kept

and those that connect an internal to an external nodes outside of GPC12 and GPC21 are

removed.

5. The number of edges to be added to each of GPC12 and G
PC21 respectively are then

decided with a random number generator so that, for GPC12,

 |VPC12| -1 ≤ |EPC12| ≤ |VPC12|C2 and for G
PC21, |VPC21| -1 ≤ |EPC21| ≤ |VPC21|C2.

6. A spanning tree is generated at random in each matrix and the remaining edges to be

added are generated randomly in such a way that they connect vertices from

{ 1
1
Pv , 1

2
Pv , …, 1P

iv } with those from { 2
1

P
jv + , …, 2P

mv } and from { 2
1
Pv , 2

2
Pv , …, 2P

jv } with

those from { 1
1

P
iv + , …, 1P

nv }.

7. Once edge-generation is complete, two children graphs, GC1 and GC1, are produced.

As an illustration of how the random crossover operates, let us consider an example in

Figure 8 below.

1. Assume that the nodes of 2 graphs with adjacency matrices GP1 and GP2 respectively

are randomly permuted prior to crossover.

2. A crossover point in each of GP1 and GP2 is then randomly selected.

3. The lower right portions of these two adjacency matrices are then swapped to form

GPC12 and GPC21.

 32

4. All cell entries in each of GPC12 and GPC21 are scanned to remove invalid edges. Both

of them are degenerate graph.

GP1 GP2

A

H G

FD

E

C

B

1

65

2

43

 GP1 GP2

 A B C D E F G H

A 0 1 0 0 1 0 0 0

B 0 0 1 1 0 0 0 0

C 0 0 0 1 0 0 0 1

D 0 0 0 0 1 0 0 0

E 0 0 0 0 0 0 0 0

F 0 0 0 0 1 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 0 0 0 0

 1 2 3 4 5 6

1 0 0 1 1 0 0

2 0 0 0 1 1 1

3 0 1 0 1 0 0

4 0 0 0 0 0 1

5 0 0 0 0 0 0

6 0 0 0 0 1 0

Figure 8(a): Nodes are randomly permuted in the adjacency matrices. A crossover point
is randomly chosen for GP1 and GP2. Invalid edges to be removed are shown in dotted
lines. Corresponding graphs are shown in the above adjacency matrices

 33

GPC12 GPC21

6

5

4A

DC

B

1

2

3

H

G

F

E

 GPC12 GPC21

 A B C D 4 5 6

A 0 1 0 0 0 0 0

B 0 0 1 1 0 0 0

C 0 0 0 1 0 0 0

D 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0

 1 2 3 E F G H

1 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 1 0 0 0

G 0 0 0 0 1 0 0

H 0 0 0 0 0 0 0

Figure 8(b): Invalid edges are removed after swapping of lower right portions of GP1 and
GP2. Degenerate graphs GPC12 and GPC21 are formed

5. The number of edges to be added to each of GPC12 and G PC21 respectively are then

decided with a random number generator so that,

for GPC12, |VPC12| -1 = 6 ≤ |EPC12| ≤ |VPC12|C2 = 21 and

for G PC21, |VPC21| -1 = 6≤ |EPC21| ≤ |VPC21|C2 =21.

In this example, say, |EPC12| = 10, |EPC21| = 6.

6. A spanning tree is generated at random for the nodes in each matrix according to the

process in Section 4.1 and superimpose on the adjacency matrix of each of the

degenerate graphs to re-connect them. A spanning tree is now embedded in each of the

graph.

 34

GPC12 GPC21

6

5

4A

DC

B

1

2

3

H

G

F

E

 GPC12 GPC21

 A B C D 4 5 6

A 0 1 0 0 0 0 0

B 0 0 1 1 0 0 0

C 0 0 0 1 1 0 0

D 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0

 1 2 3 E F G H

1 0 0 1 0 0 0 0

2 0 0 0 0 0 1 1
3 0 1 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 1 0 0 0

G 0 0 0 0 1 0 0

H 0 0 0 0 0 0 0

Figure 8(c): Re-connect degenerate graphs by superimposing a spanning tree generated
at random as in section 4.1. Spanning tree edges are shown as ‘1’s in the adjacency
matrices. New edges added to re-connect the degenerate graphs are shown as dotted line
in the graph

GPC12 has 7 edges. The requirement of |EPC12| = 10 in step 5 is not satisfied in GPC12.

New edges should be added to GPC12 to fulfill the requirement. Note that if the edges

in the resulting graphs are more than specified, edges that are not in the embedded

spanning tree in each graph can be deleted at random to achieve the target.

7. Three new edges are randomly added to GPC12, say, cD4 =1, cD5 =1, cA6 = 1 to form GC1.

GC2 is formed without addition of edges.

 35

GC1 GC2

4

6

5

DC

B

A

1

2

3

H

G

F

E

 GC1 GC2

 A B C D 4 5 6

A 0 1 0 0 0 0 1

B 0 0 1 1 0 0 0

C 0 0 0 1 1 0 0

D 0 0 0 0 1 1 0

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0

 1 2 3 E F G H

1 0 0 1 0 0 0 0

2 0 0 0 0 0 1 1

3 0 1 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 1 0 0 0

G 0 0 0 0 1 0 0

H 0 0 0 0 0 0 0

Figure 8(d): New edges cD4 =1, cD5 =1, cA6 = 1 in ‘1’ are added randomly to GPC12.
Children graphs GC1 and GC2 are formed.

4.2.2 Random Crossover of Trees

To illustrate how the random crossover works with trees, let us consider an example

below. For this example, a directed graph is used for illustration.

1. Select two parent trees GP1 and GP2 with adjacency matrices GP1 and GP2 for crossover.

Permute the order of nodes in the adjacency matrix at random.

 36

GP1 GP2

A

CB

ED

1

42

65

3

GP1 GP2

 E B C A D

E 0 0 0 0 0

B 1 0 0 0 1

C 0 0 0 0 0

A 0 1 1 0 0

D 0 0 0 0 0

4 6 5 2 1 3

4 0 1 1 0 0 0

6 0 0 0 0 0 0

5 0 0 0 0 0 0

2 0 0 0 0 0 0

1 1 0 0 1 0 1

3 0 0 0 0 0 0

Figure 9(a): Encoding trees in adjacency matrices with order of nodes permuted at
random

 37

2. Select a crossover point in the matrices at random. The nodes and terminals are divided

into two sub-groups in each parent accordingly.

GP1 GP2

A

CB

ED

1

42

65

3

 GP1 GP2

 E B C A D

E 0 0 0 0 0

B 1 0 0 0 1

C 0 0 0 0 0

A 0 1 1 0 0

D 0 0 0 0 0

4 6 5 2 1 3

4 0 1 1 0 0 0

6 0 0 0 0 0 0

5 0 0 0 0 0 0

2 0 0 0 0 0 0

1 1 0 0 1 0 1

3 0 0 0 0 0 0

Figure 9(b): Randomly choose crossover points and sub-groups in the adjacency
matrices. The edges to be removed are shown in dotted lines.

 38

3. Remove invalid edges after exchange sub-groups to form GPC12 and GPC21.

GPC12 GPC21

CB

E

1

2 3

A

D

4

65

GPC12 GPC21

 E B C 2 1 3

E 0 0 0 0 0 0

B 1 0 0 0 0 0

C 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 0 0 1 0 1

3 0 0 0 0 0 0

 4 5 6 A D

4 0 1 1 0 0

5 0 0 0 0 0

6 0 0 0 0 0

A 0 0 0 0 0

D 0 0 0 0 0

Figure 9(c): Exchange sub-groups between two adjacency matrices and remove invalid
edges. Two degenerate trees are formed.

4. Generate spanning tree to re-connect all the nodes using the steps as described in

Section 4.1 to form children trees, GC1 and GC2. In this case, the spanning tree is

generated from a degenerate tree with some origin nodes, vos, with all ‘0’ in the

column of the adjacency matrices GPC12 and GPC21 in Figure 9(c). This means that

there is no ancestor node from the tree layer above connected to this node (Nodes ‘1’,

‘B’, ‘C’ in GPC12 and nodes ‘4’, ‘A’, ‘D’ in GPC21). Spanning tree is generated at

random to re-connect each degenerated tree according to the process in Section 4.1 to

form children trees GC1 and GC2.

 39

GC1 GC2

C

B

E

1

2 3

A D

4

65

GC1 GC2

 E B C 2 1 3

E 0 0 0 0 0 0

B 1 0 1 0 0 0

C 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 1 0 1 0 1

3 0 0 0 0 0 0

4 5 6 A D

4 0 1 1 1 1

5 0 0 0 0 0

6 0 0 0 0 0

A 0 0 0 0 0

D 0 0 0 0 0

Figure 9(d): Generate spanning tree according to the process in section 4.1 to re-connect
all nodes. New edges are shown as ‘1’s in adjacency matrices and dotted directed edges
in trees GC1 and GC2

This is the result of one random crossover of trees in EvoGraph. The children trees

are substantially different from their parents. It is apparent that one GP crossover

involving subtree exchange between parents cannot achieve the result of one random

crossover of EvoGraph. As shown from an example in the next section, to obtain the

results using traditional swapping-subtree crossover in GP, more than one GP operation

plus appropriate combination of mutations are required. The random crossover has the

following properties when used with trees.

1. It is unbiased in the sense that each node and edge has equal chance of being swapped.

 40

There is more random regrouping of nodes and edges with random crossover operator.

The GP crossovers with subtree exchanges may need more steps to attain the same

result of just one crossover with this algorithm. This will be illustrated by an example

in Section 4.2.3.

2. The selection of a node as crossover point does not imply the exchange of subtree

below it. Hence, redundant codes in the subtree below the crossover point may not be

carried over to the next generation. This may help to alleviate the problem on bloat as

in the case with GP.

3. Several researchers have shown that the basic crossover operator in GP is inclined to

converge in the nodes near the tree root [51][52][53]. It is difficult for crossover in

GP with subtree exchange to change the “incorrect” node in the root structure without

also changing all the structure below that node. EvoGraph is not constrained in this

respect. The root of a parent can be easily separated from the nodes below it in a

single crossover operation.

4.2.3 Comparison between Standard GP and Random Crossover of Trees in

EvoGraph

In order to illustrate how EvoGraph can be used to solve the kind of problems

typically dealt with using GPs, let us consider the following example where GP with

subtree exchange is applied to the same parents in 4.2.2. The example describes one of

the possible paths step by step to arrive at the same result in 4.2.2. It is demonstrated that

more than one crossover and mutation are required to achieve the same result.

 41

GP1 GP2

A

CB

ED

1

42

65

3

Figure 10(a): Start condition of GP crossover. Node ‘C’ of GP1 is mutated to connect to
node ‘E’

GPC12a GPC21

A

E

B

CD

1

42

65

3

Figure 10(b): First GP crossover with swapping of subtree ‘1-2-3’and node ‘A’

GPC12b GPC21a

E

B

CD

1

2 3

4

65A

Figure 10(c): Second GP crossover with swapping of node ‘D’

 42

GC1 GC2

E

B

C

1

2 3

A D

4

65

Figure 10(d): Children trees same as Figure 9(d)

4.2.4 Random Crossover of Artificial Neural Networks

To use EvoGraph with ANN, let us consider encoding an ANN as a graph with three

sets of nodes, the input nodes, the output nodes and the hidden nodes. There is no edge

connection between nodes within each set. This principle is used to generate ANNs in the

process of crossover. During the crossover, the number of input nodes and output nodes

are fixed. The hidden nodes and their edges are swapped at random. Using the notations

in 4.2.1, the random crossover of ANN is illustrated by an example below. For

illustration purpose, the weight of all edges is assumed to be 1.

Let },.....,,{ 21 piii be the set of input layer nodes

 },.....,,{ 21 khhh be the set of hidden layer nodes

 },.....,,{ 21 qooo be the set of output layer nodes

1. Concatenate },.....,,{ 21 piii , },.....,,{ 21 khhh , },.....,,{ 21 qooo to form the rows and

column labels of the adjacency matrix },....,,,....,,,....,{ 111 qkp oohhii arranged in the

same order. Set all cells in the adjacency matrix to be ‘0’.

 43

2. for j = 1 : k,

generate natural numbers m, n at random where pm ≤≤1 , qn ≤≤1 ;

insert m numbers ‘1’s at random to cells in column hj, row i1 to ip;

insert n numbers ‘1’s at random to cells in column hj, row o1 to oq;

end

Step 1 is to initiate an adjacency matrix for ANN. Connections are not made at this step

and all entries in the adjacency are set to zeros. Step 2 connects the hidden layer nodes

with the input layer nodes and the output layer nodes. This step will also be used for re-

connection of degenerate ANN after the exchange of subgraphs in the random crossover

process of ANN illustrated below. During the crossover, the number of input nodes and

output nodes are fixed. The hidden nodes and their edges are swapped at random. The

random crossover of neural network is illustrated by an example below.

1. Select two parent ANNs GP1, GP2 with adjacency matrices GP1 and GP2 (Figure 11(a)).

2. Select crossover point at random at the hidden layer in GP1 and GP2. Split GP1 and

GP2 into submatrices at the crossover point, exchange the submatrices and delete

invalid edges to form GPC12 and GPC21.

 44

GP1 GP2

3

1

4

75 6

2input

output

hidden

3

21

a dcb

4

input

output

hidden

GP1 GP2

 1 2 3 4 5 6 7

1 - - - - 1 1 1
2 - - - - 0 1 1
3 - - - - 1 1 1
4 - - - - 0 1 1
5 - - - - - - -
6 - - - - - - -
7 - - - - - - -

 1 2 3 4 a b c d
1 - - - - 0 1 1 1
2 - - - - 1 0 1 0
3 - - - - 1 0 1 1
4 - - - - 1 1 0 0
a - - - - - - - -
b - - - - - - - -
c - - - - - - - -
d - - - - - - - -

Figure 11(a): Encoding parent ANNs in adjacency matrices

 45

GPC12 GPC21

3

1

4

c5 6

2input

output

hidden d

3

21

a 7b

4

input

output

hidden

GPC12 GPC21

 1 2 3 4 5 6 c d

1 - - - - 1 1 0 0

2 - - - - 0 1 0 0

3 - - - - 1 1 0 0

4 - - - - 0 1 0 0

5 - - - - - - - -

6 - - - - - - - -

 1 2 3 4 a b 7

1 - - - - 0 1 0

2 - - - - 1 0 0

3 - - - - 1 0 0

4 - - - - 1 1 0

a - - - - - - -

b - - - - - - -

Figure 11(b): Select crossover point at random, exchange submatrices and delete invalid
edges to form GPC12 and GPC21. The corresponding ANN topologies are GPC12 and GPC21

3. Re-connect at random the input- and output-layer nodes to the swapped hidden layer

nodes by adding ‘1’s at random to input node cells and output node cells in column

‘c’ and ‘d’ in GPC12 and column ‘7’ in GPC21 to form children ANN, GC1 and GC2.

According to the encoding rule in Section 3.3, there should be at least one ‘1’ in both

the group of input node cells and output node cells for each hidden node column in

the adjacency matrix. In this example, c2c=1 (input node connection) and c3c=1

(output node connection) for column ‘c’ (hidden node) in GC1. c1d=1 (input node

connection) and c4d=1 (output node connection) for column ‘d’ (hidden node) in GC1.

 46

c27=1 (input node connection) and c37=1 (output node connection) for column ‘7’

(hidden node) in GC2.

GC1 GC2

3

1

4

5 6

2

dc

input

output

hidden

7

3

21

a b

4

input

output

hidden

GC1 GC2

 1 2 3 4 5 6 c d
1 - - - - 1 1 0 1
2 - - - - 0 1 1 0
3 - - - - 1 1 1 0
4 - - - - 0 1 0 1
5 - - - - - - - -
6 - - - - - - - -
c - - - - - - - -
d - - - - - - - -

 1 2 3 4 a b 7

1 - - - - 0 1 0
2 - - - - 1 0 1
3 - - - - 1 0 1
4 - - - - 1 1 0
a - - - - - - -
b - - - - - - -
7 - - - - - - -

Figure 11(c): Re-generate edges to form children ANNs. The new edges are shown as
‘1’s in GC1 and GC2 and dotted lines in GC1 and GC2

4.2.5 Comparison between EP and EvoGraph on the Evolution of ANN Topology

The use of EP to evolve ANN topology from GP1 in Figure 11(a) to GC1 in Figure11(c)

is illustrated as follow. EP only adopts mutation in its evolutionary process. It requires

several mutation operations to achieve the result of one crossover operation in EvoGraph.

 47

GP1 GPC1a

3

1

4

75 6

2input

output

hidden

3

1

4

5 6

2

dc

input

output

hidden

(a) Initial ANN GP1 before EP operation (b) Addition of one hidden layer node ‘d’. Node
‘7’ in hidden layer is changed to ‘c’ to achieve
consistency with presentation in Figure 11.

GPC1b GPC1c

3

1

4

5 6

2

dc

input

output

hidden

3

1

4

5 6

2

dc

input

output

hidden

(c) Delete edge ‘4-c’ from hidden layer to output
layer

(d) Add edge ‘4-d’ from hidden layer to output
layer

GPC1d GC1

3

1

4

5 6

2

dc

input

output

hidden

3

1

4

5 6

2

dc

input

output

hidden

(e) Delete edge ‘1-c’ from input layer to hidden
layer

(f) Add edge ‘1-d’ from input layer to hidden
layer

Figure 12: Steps on evolving ANN GP1 to GC1 using EP

 48

Random crossover of ANN in EvoGraph has the following properties that are different

from the existing evolutionary algorithms on ANN.

1. It produces a more vigorous change to the parent ANN topology in a single operation

than its counterpart in EP.

2. Unlike the encoding of ANN into a linear chromosome by concatenating the rows of

the adjacency matrix for the application of GA, which requires the length of the

chromosome to be the square of the dimension of the adjacency matrix, EvoGraph

has no requirement on the dimensions of the adjacency matrix.

3. The connectivity of the ANN can be read directly from the adjacency matrix. This is

difficult to achieve with a simple linear chromosome without special encoding.

Connectivity can be maintained by direct insertion of ‘1’s in the adjacency matrix

without special repair mechanism.

4. Unlike other indirect encoding that evolves instructions or rules for the generation of

ANNs, EvoGraph adopts a direct encoding method. There is no requirement for

additional mapping of the genotype, which is the subject of evolution in indirect

encoding method, and the phenotype, the actual ANN itself.

 49

4.3 Mutation of Graphs

Two basic mutation operators of graphs that cause changes in graph topologies are

introduced. They are the Number-of-edge and Number-of-Node mutation operators.

Similar to a GA, the intention of mutation is to bring about a breakthrough when the

population converges to a suboptimal fitness. Based on this principle, other kinds of

mutation can be further developed for different applications in later chapters.

4.3.1 Number-of-Edge Mutation

The Number-of-Edge mutation operator allows us to increase or decrease the number

of edges in a graph. It works by selecting an edge at random for deletion or addition. Its

details are given below.

1. For a graph GP(VP, EP) with edge set, EP, we construct its corresponding adjacency

matrices as GP.

2. Generate at random either ‘0’ or’1’.

3. If ‘0’ is generated, an edge in the graph GP is selected and this is done by choosing a

‘non-zero’ cell in GP randomly. ‘1’ is then deducted from the value of the selected

cell to form a child graph GC and its corresponding adjacency matrix GC. Check if GC

is connected. If yes, stop. If not, the graph is broken down into two connected

subgraphs and each has its own embedded spanning tree. Superimpose a spanning

tree across the disjoint subgraphs to re-connect them.

4. If ‘1’ is generated, an edge is added to the graph by adding a ‘1’ to the value of a cell

at random in GP to form GC and GC.

An example of the Number-of-Edge mutation operator is given in Figure 13 below.

 50

GP GC

 A B C D E F G H

A 0 1 0 0 1 0 0 0
B 0 0 1 1 0 0 0 0

C 0 0 0 1 0 0 0 1

D 0 0 0 0 1 0 0 0

E 0 0 0 0 0 1 0 0

F 0 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0

 A B C D E F G H

A 0 1 0 0 1 0 0 0

B 0 0 1 0 0 0 0 0

C 0 0 0 1 0 0 0 1

D 0 0 0 0 1 0 0 0

E 0 0 0 0 0 1 0 0

F 0 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0

(a) For ‘0’ case, select at random edge to be
deleted

(b) Delete selected edge. Check if PC is
connected. If yes, stop. If no, superimpose a
spanning tree at random

GP GC

 A B C D E F G H

A 0 1 0 0 1 0 0 0

B 0 0 1 1 0 0 0 0

C 0 0 0 1 0 0 0 1

D 0 0 0 0 1 0 0 0

E 0 0 0 0 0 1 0 0

F 0 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0

 A B C D E F G H

A 0 1 0 0 1 0 0 0

B 0 0 1 1 0 0 0 0

C 0 0 0 1 0 0 1 1

D 0 0 0 0 1 0 0 0

E 0 0 0 0 0 1 0 0

F 0 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0

(c) For ‘1’ case, select at random cell to add an
edge

(d) add an edge to the selected cell

Figure 13: The Number-of-Edge Mutation operator illustrated.

 51

4.3.2 Number-of-Node Mutation

The Number-of-Node mutation operator allows us to increase or decrease the number

of nodes in a graph by one. It works by selecting a node at random for deletion or

addition. Its details are given below.

1. For a graph GP(VP, EP) with node set { Pv1 , Pv2 , …, P
iv , P

iv 1+ , …, P
nv } we construct its

corresponding adjacency matrices, GP.

2. Generate at random either ‘0’ or’1’.

3. If ‘0’ is generated, a node, P
iv , in GP is selected at random.

4. P
iv and all edges connected to P

iv are deleted from GP to form GC with corresponding

adjacent matrix GC.

5. Connect nodes previously connected to P
iv at random and the resulting node set of

GC is represented as { Pv1 , Pv2 , …, P
iv 1− , P

iv 1+ , …, P
nv }.

6. If ‘1’ is generated, add node P
nv 1+ to GP and GP to form GC and GC respectively with

new node set represented as { Pv1 , Pv2 , …, P
iv , P

iv 1+ , …, P
nv , P

nv 1+ }. Edges are generated

at random to connect P
nv 1+ to other nodes in GC.

An example to illustrate the Number-of-Node mutation operator is given in Figure 14

below.

 52

GP GC

 A B C D E F G H

A 0 1 0 0 1 0 0 0
B 0 0 1 1 0 0 0 0
C 0 0 0 1 0 0 0 1
D 0 0 0 0 1 0 0 0
E 0 0 0 0 0 1 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0

 A C D E F G H

A 0 0 1 1 0 0 0

C 0 0 1 0 0 0 1

D 0 0 0 1 0 0 0

E 0 0 0 0 1 0 0

F 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0

(a) Select the node B. (b) For ‘0’ case, delete the selected node B and
connect node A and D which are previously
connected to B

 GC

 A B C D E F G H I

A 0 1 0 0 1 0 0 0 0
B 0 0 1 1 0 0 0 0 0
C 0 0 0 1 0 0 0 1 0
D 0 0 0 0 1 0 0 0 0
E 0 0 0 0 0 1 0 0 1
F 0 0 0 0 0 0 1 0 0
G 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 0 0

(c) For ‘1’ case, add node I to GP and edges
connecting to nodes F and H

Figure 14: The Number-of-Node Operator illustrated.

4.4 Mathematical Foundation for EvoGraph

A graph is invariant to the rows and columns permutation of its adjacency matrix. A

cut on the adjacency matrix is equivalent to a cut in one of the many incidences of a

graph which nodes aligned with the same node permutation as the adjacency matrix.

Consider a simple example of a graph with 3 nodes A, B, and C. There are 3! = 6

 53

permutations on the order of nodes. According to EvoGraph crossover, there are 3-1 = 2

positions for the cut line for crossover. The adjacency matrix with potential cut line

positions and all the permutation of nodes in rows are shown in Figure15.

A

A

B

B

C

C

cut line 2cut line 1

11

000

00 0

0

A CB

A C B

A CB

ACB

AC B

AC B

cut line 1 cut line 2

(a) an adjacency matrix with an incidence of

node permutation ABC and 2 potential cut lines

 (b) all possible row permutations of nodes

with 2 potential cut lines
Figure 15: Permutation invariant of adjacency matrix illustrated

Consider a node, say node A, is at the left most position of the row permutation of

nodes. There are (3-1)! = 2! permutations for the remaining 2 nodes to take up the

positions in the right of node A. They are in the order of B, C or C, B as illustrated in the

first 2 rows in Figure 15(b). If node A is in the middle position, there are still 2!

permutations for nodes B and C in the left and right of node A. This is illustrated in the

third and fifth row in Figure 15(b). Similar logic applies when node A is in the right most

position. The overall result is that there are exactly (3-1)! = 2 nodes being node A in each

column in Figure 15(b). This applies to node B and C.

In EvoGraph, the nodes in left hand side of the cut line will be retained and those in

the right hand side will be swapped. Each cut line is selected at random with 3-1 possible

 54

cuts. Hence the probability is 5.0
13

1
=

−
. If cut line 1 is selected, there are 2)!13(=−

cases out of 6!3 = cases that node A lies in the left of cut line 1 and being retained. At the

same time, there are 2 x (3-1)! = 4 cases out of 3! = 6 cases that node A will be swapped.

That is, the probability of node A being swapped for cut line 1 is
6
45.0 × .

When cut line 2 is selected with probability 0.5, there are 4)!13(2 =−× cases out of

6!3 = cases that node A lies on the left of cut line 2 and be retained. At the same time,

there are 2)!13(=− cases out of 6!3 = cases that node A will be swapped. That is, the

probability of node A being swapped for cut line 2 is
6
25.0 × .

Therefore, the total probability of node A being swapped in EvoGraph is

5.0
6
2

6
45.0 =⎟

⎠
⎞

⎜
⎝
⎛ +×

This simple case can be generalized. Let |N| be the number of node of a graph G and node

A as any node in G. The probability of a particular cut line being selected is
1||

1
−N

.

Counting from the left at the r – 1 th cut line where ||2 Nr ≤≤ , there is a probability

|!|
)!1|(|)1|(|

N
NrN −

×+− that node A is at the right of the cutline and be swapped. The

total probability of any node A in G being swapped for all possible cut line locations is

5.0
||

1
2

)1|(|||
1||

1
|!|

)!1|(|)1|(|
1||

1 ||

2
=⎟

⎠
⎞

⎜
⎝
⎛ −

−
=

−
+−

− ∑
= N

NN
NN

NrN
N

N

r

 55

Hence, the probability of any node in G being swapped is 0.5 for all possible cut line

locations.

4.4.1 Exploration Verses Exploitation

Exploration and exploitation have always been an important consideration when

choosing operators for evolutionary algorithms. In GA, there is an implicit thinking that

high disruption caused by crossover destroys useful building blocks before the search

space is adequately exploited and it should be avoided.

However, De Jong [67] pointed out that the maintenance of exploitation is at the

expense of exploration, he demonstrated by example that exploration is more important

when the population size is too small to provide the sampling accuracy for evolution [68].

Another advantage of uniform crossover is its defining length unbiasedness. It is equally

disruptive to all defining lengths. This is supported by the mathematical proof in [63] that

uniform crossover depends only on the order of alleles to be retained, o(s), and it is

independent to the defining length,)(sδ , of a chromosome.

Furthermore, [67] demonstrated that the degree of disruption can be controlled by

choosing the probability of an allele being swapped in uniform crossover, P0. It was also

shown that the most efficient P0 was 0.5. That is, every allele has an equal chance to stay

or being swapped.

On the evolution of graphs, there has always been a problem of the need of exploring

a large search space with a small population. There is a tremendous increase in the

number of graph topologies with respect to the number of nodes. As shown in [69], the

number of connected and graph topologies with respect to number of nodes is indicated

 56

in Figure16. If the graphs are labeled, the increase in number of different graphs is more

tremendous due to node permutation. Though the search space is huge, the size of the

population in evolution cannot be large because this is detrimental to the efficiency of

evolution. Hence, uniform crossover is more suitable for evolution of graphs. From the

experience in GA, the probability of a node being swapped, P0, is designed to be 0.5.

Number of
nodes

1 2 3 4 5 6 7 8 9 10

Number of
connected
graph
topologies

1 1 2 6 21 112 853 11,117 261,080 11,716,571

Figure 16: Number of connected graph topologies in w.r.t. number of nodes

Some work has been done on uniform crossover of trees, a special subset of graphs.

Poli contributed a lot of literatures on the evolution of trees by using GP [53][49][70].

However, the schema theory for GP proposed [49] is based on the conventional

hierarchical tree layer topology. The uniform crossover of trees in the Poli’s literature

requires matching of building block subtree topologies between 2 parents before

crossover [48]. This involves heavy computation resource and hence affects the

efficiency of evolution. Furthermore, the schema theory for GP proposed follows schema

theory in GA but it is applied on the more complicated tree topology instead of a linear

chromosome. The mathematical expressions involve heavy calculations on probabilities

of all the tree topologies under a defined node selected for crossover. It is substantially

different from the simple schema theory for linear chromosome. The advantage of

unbiasedness to defining length and efficient exploration by controlling probability of a

node being swapped to 0.5 cannot be captured.

 57

EvoGraph encodes graphs in form of matrices on which evolutionary algorithms such

as crossovers and mutations are applied. The process resembles GA but in a 2-

dimensional matrix form instead of a linear chromosome. Each node in a graph has a

probability of being swapped, P0 = 0.5 as shown in mathematical proof of the in this

section. Each parent is required to divide its nodes into 2 groups. One group will be

retained and the other group swapped. The edge connections within each group of nodes

will be retained. EvoGraph is designed for evolving graphs in general.

4.5 The EvoGraph Process

 After the development of encoding schemes for different type of graphs and the

detailed mechanism of their evolution operators, graphs can be evolved like other EAs in

common. There are several scheme for the selection process: roulette wheel selection and

its extensions, scaling techniques, tournament, elitist models, and ranking methods

[133][139[. We adopt the first selection method proposed by Holland [139], the roullete

wheel selection, where individuals with higher fitness have higher probability of being

selected. The evaluation function maps the solutions to a fully ordered set of positive real

values, thus allowing minimization and negativity. The main steps for evolution of graphs

are listed as follow. Like many other EAs, EvoGraph consists of the following steps.

1. Given simple elements of a molecule, initialize a population of graphs at

random using these elements.

2. Evaluate and assign fitness to each graph.

3. Select two graphs for reproduction using the roulette wheel selection scheme.

4. Apply crossover and mutation operators on the selected graphs.

 58

5. Replace two the least-fit graphs in the existing population by the newly

generated offspring. (Steady State Reproduction).

6. Repeat Steps 2 to 5 until the termination criteria are met.

4.6 Experiments on Comparison of Performance between EvoGraph Operators

and Conventional Evolution Operators

 Experiments are set up to compare the performance of EvoGraph operator and the

conventional evolution operators. The two groups of operators are used to evolve the

same target graphs separately and their maximum fitness and converging generations are

observed. The difference between graph topologies can be measured by the edit distance

between graphs. Edit distance is defined by a sequence of operations, including edge and

vertex deletion and insertion, which transform one graph into another. [93] reveals that

given the same number of nodes, the edit distance between two graphs bear an

approximate linear relation with the Euclidean distance between their graph adjacency

matrix spectrums (spectrum) as well as their Laplacian matrix spectrums (Laplacian

spectrum). Making use of this relationship, we select a graph topology, an ANN bipartite

graph, and a tree topology as the targets for experiments. The fitness function is designed

to minimize the Euclidean distance between the spectrum or Laplacian spectrum of the

evolved graph and the target graph. In order to avoid cospectral graphs (graphs having

same spectrum but different topologies) being evolved, these selected graphs should be

uniquely determined by their spectrums, known as determined by spectrum graphs or DS-

graphs [94].

 59

Three DS-graphs are selected for experiments for comparing performance of

EvoGraph operators to the conventional evolution operators on evolution of graph, ANN

bipartite graph and tree topology as follow. Lattice graph, Lk with 4≠k , and regular

complete bipartite graph, Knn are known to be graphs uniquely determined by their

spectrum [94]. Starlike trees (trees with only one node with degree higher than 2) is

uniquely determined by its Laplacian spectrum [95]. The above target DS-graphs to be

evolved and their corresponding spectrums are illustrated in Figure17.

1

3

2

6

5

49

8

7

6

54

321

10987

1

12

11

6

5

3 8

7

910

4

2

spectrum = [-2, -2, -2, -2, 1, 1,
1, 1, 4]

Spectrum = [5, 0, 0, 0, 0, 0, 0, 0,
0, 5]

Laplacian spectrum = [0, 0.16,
0.3, 0.7, 1, 1, 1, 1.54, 2.4,
3.88, 4.30, 5.72]

(a) Lattice graph Kn n=3 and its
spectrum

(b) ANN regular complete
bipartite graph Knn n=5 and
its spectrum

(c) Starlike tree with only
degree of node ‘1’>2 and its
Laplacian spectrum

Figure 17: Target DS-graphs to be evolved with their corresponding spectrums

4.6.1 Fitness Function

Formally, the evaluation function and the fitness function are distiguished from each

other. The evaluation value of a solution in the population may be of any form, such as

negative value. It is required to map the evaluted values of the solutions in the population

to a set of positive real fitness values for maximization, ranking and selection in EA. We

create an evaluation function that satisfies the fitness function requirements so that the

 60

mapping step is not required. The evaluated values of the solutions are always positive

and less than or equal to 1. They can be maximized ranked, and selected in EvoGraph

according to their evaluation values.

There are several objectives to be achieved in the optimization process. There are

several objectives to be matched by the solution. We combined all the target objective

values to be matched under on fitness function in order to search for a solution that

matches all of them with fitness value 1 or a solution that is closest to 1 in case the

perfect solution cannot be found. The trade off between different objectives in arriving at

the solution is not of interest. Hence, we do not adopt the principle of multi-objective

optimization which creates a range of solutions at the Pareto equilibrium state leaving the

selection of solution depends on the relative trade off between different objectives

determined by the user. The distance between a graph in the process of evolution and the

target graph to be evolved is measured by the Euclidean distance between their respective

spectrum or Laplacian spectrum. The Euclidean distance is defined as follow. Let

],......,,[21 naaa=AS and],......,,[21 nbbb=BS be the spectrums or Laplacian spectrum

of graph GA and graph GB respectively. The elements in SA and SB are eigenvalues

arranged in ascending order such that a1≤ a2 ≤……≤.an and b1 ≤b2 ≤……≤.bm.

If the number of nodes of GA and GB are equal, the Euclidean distance between them

is ∑
=

−=
n

i
iiBA baGGd

1

2||),(. If the sizes of GA and GB are unequal, the size of the

shorter spectrum is increased by adding dimensions to bring it to match the other

spectrum and zero elements are assigned to the new created spaces. The distance can then

be computed with the same formula. For example, the Euclidean distance of spectrums

between the graphs in Figure16(a) and (b) is

 61

3.10)50(41111)2()2()2()52(2222222222 =−++++++−+−+−+−− . Since

closeness of the number of nodes between two graphs can facilitate the minimization of

Euclidean distance, our fitness function is also designed to minimize the difference in

number of nodes between two graphs as follow.

)|)(|)|((|1.1
1

VDfitness δδ +=

|)(| Dδ =Euclidean distance between spectrums (for lattice graph and ANN bipartite

graph) or Laplacian spectrum (for starlike tree) of a graph to be evaluated and

the target graph

|)(| Vδ =absolute value of the difference in the number of nodes between a graph to be

evaluated and the target graph

The number 1.1 is used as the base of the power in the denominator to prevent the fitness

from reaching infinity when |)(| Dδ and |)(| Vδ approach zero. The maximum fitness is

one. This happens when a graph is a perfect match of the target.

4.6.2 Experiments and Findings

 The EvoGraph operators are compared with the conventional evolution operators on

evolving the lattice graph, ANN bipartite graph and starlike tree in Figure17.

Conventionally EP uses only mutation operator on nodes and edges (adding or deleting

nodes and edges at random) for evolving ANN. Standard GP crossover is the

conventional evolution operator for trees. There is no commonly adopted evolution

operator for evolving graphs. We assume EP, with node mutation and edge mutation, as

the conventional operator. The performance of these conventional evolution operators are

 62

compared with EvoGraph evolution operators, random crossover, Number-of-Edge

mutation, and Number-of Node mutation in the experiments. To make the comparison

simple, evolution strategy (self adaptation by adjusting crossover and mutation rates

according to change in fitness), is not incorporated in the experiments.

The experiments are divided into three groups for the three types of graphs to be

evolved in Figure 17. Each group contains 20 experiments with a subgroup of 10

experiments using EvoGraph operators and the other 10 using conventional evolution

operators. Each experiment follows the process in Section 4.5. A small population of fifty

graphs is generated at random in the initialization stage for experiments on evolving the

lattice graph. Similarly, fifty ANN bipartite graphs and trees are generated at random for

their respective groups of experiments. Based on the same initial population, comparison

on performance of the EvoGraph operators and the conventional evolution operators in

their respective groups can be made. The number of evolution operators used in each

generation of evolution in each group of experiments is listed in Figure18. Each

experiment terminates when a perfect match of the target graph topology is achieved

(fitness = 1) or when the maximum number of generations, 5000, is reached.

 63

Graph type No.
of

exp.

Conventional Evolution Operators EvoGraph Operators

 Node
mutation

Edge
mutation

Standard
GP

crossover

Number-
of-Node
mutation

Number-
of-Edge
mutation

Random
crossover

Lattice graph 10 0 0 0 1 1 1
 10 1 1 0 0 0 0
ANN bipartite
graph

10 0 0 0 1 1 1

 10 1 1 0 0 0 0
Starlike tree 10 0 0 0 0 0 1
 10 0 0 1 0 0 0
Figure 18: Number of evolution operators in each generation of evolution applied in the
experiments

The maximum fitnesses of the resulting graphs of the experiments and the number of

generations for achieving them are summarized in Figure 19 and Figure 20 respectively.

The graphs plotted on fitness vs the number of generations of evolution on the best

performed experiments in respective subgroups is illustrated in Appendix 1. The ANN

bipartite graph topology is a topology with bipartite constraints. Its search space is much

smaller than that of the trees and graphs without specialized topologies. The search is

relatively easy that both conventional evolution operators and EvoGraph operators

accomplish perfect match to the target ANN bipartite graph below 400 generations. The

largest search space is encountered in the search for the lattice graph amongst the set of

all possible graphs without specific topologies. According to [69] the number of possible

graph topologies for a graph with 9 nodes, the same number of nodes as the lattice graph,

is 261,080 as indicated in Figure 16. The experiments on evolving lattice graph using

conventional operators cannot achieve perfect match within 5000 generations. The use of

EvoGraph operators introduces randomness to explore more novel topologies during the

search as illustrated in Section 4.4. EvoGraph evolved the target lattice graph at an

 64

average of 438 generations. Though the search space of tree topologies is smaller than

that of graphs without specific topologies, the standard GP crossover cannot achieve

perfect match to the starlike tree topology within 5000 generations whilst the EvoGraph

random crossover achieves perfect match at an average of 520 generations. This

demonstrates the benefit of introduction of randomness in the tree crossover process.

 Lattice graph ANN bipartite graph Starlike tree
experiments conventional

evolution
operators

EvoGraph
operators

conventional
evolution
operators

EvoGraph
operators

conventional
evolution
operators

EvoGraph
operators

1 0.9147 1 1 1 0.8529 1
2 0.9147 1 1 1 0.9537 1
3 0.9104 1 1 1 0.8351 1
4 0.9482 1 1 1 0.8193 1
5 0.9091 1 1 1 0.8529 1
6 0.9091 1 1 1 0.9374 1
7 0.9091 1 1 1 0.8539 1
8 0.9091 1 1 1 0.9602 1
9 0.9091 1 1 1 0.8529 1
10 0.9142 1 1 1 0.8334 1
average 0.9148 1 1 1 0.8752 1
Figure19: Maximum fitness of resulting graphs generated by the experiments

 Lattice graph ANN bipartite graph Starlike tree
experiments conventional

evolution
operators

EvoGraph
operators

conventional
evolution
operators

EvoGraph
operators

conventional
evolution
operators

EvoGraph
operators

1 184 202 330 136 1705 184
2 3995 657 313 212 3438 776
3 2139 430 229 177 241 119
4 851 391 221 240 984 472
5 1140 184 259 281 827 721
6 1031 439 202 189 3257 811
7 1280 825 203 115 2083 63
8 2116 191 265 205 163 818
9 434 452 423 123 984 424
10 3971 611 166 159 468 817
average 1714 438 261 184 1415 520
Figure 20: Generation number on reaching maximum fitness of graphs evolved in the
experiments

 65

 Chapter 5

Evolution on Architectural Space Topology

Among the many possible applications, EvoGraph can be used for the automation of

spatial configuration. Spatial configuration is concerned with finding feasible locations

for a set of interrelated objects that meet design requirements and maximize design

quality in design preferences. Spatial configuration is necessary for all physical design

problems such as component packing [7], route path planning [8], VLSI [9], and

architectural layout design [10]. Applications in architectural layout design are

particularly interesting because, in addition to common engineering objectives such as

cost and performance, it is concerned especially with aesthetics and usability, which are

generally more difficult to describe formally. Also, the components in a building layout

(rooms or walls, etc.) often do not have pre-defined dimensions, so that every component

of the layout is resizable.

The conventional approach to architectural design is for an architect to receive a

briefing from the client, usually a layperson, on functional requirements. Once such

requirements are obtained, it is then up to the architect’s individual skills to convert the

client’s requirements into building plans. The conversion process is idiosyncratic and

very dependent on the artistic talent of individual architects. To facilitate the architectural

layout design process so that both experienced and less experienced architects can

respond quickly to their clients’ requests, we show how EvoGraph can be used to

perform conventional architectural layout design typically carried out manually.

 66

5.1 The problem of Architectural SpaceTopology Design

Architectural space planning is the process of allocating a set of space elements

according to certain design criteria. It usually results in topological or geometrical

relationships between elements. Given a topology that describes the adjacencies between

the space elements, different geometrical shapes can be allocated to a space element to

satisfy the topology. The mapping of geometries to a space element in a topology is a

many to one mapping. Conversely, given the geometries of the space elements it may not

be feasible to retrofit them to satisfy a given topology.

There have been studies on computerized design automation of architectural space

planning. [97] attempts to map the functional activities to the floor plan by encoding the

functional activities in a chromosome and use an extension of GA, genetic engineering

[98][100], which adopts a more aggressive approach of converting low fitness genes by

high fitness genes in a chromosome in addition to the simple exchange of genes between

two linear chromosomes in the conventional GA crossover operation. In [97], the

architectural space topology is given and fixed. Functional activities are swapped

between the architectural spaces to obtain the optimal fitness of functional activities to

the spaces. This is equivalent to the situation where the architectural space topology is

given in form of a graph with the spaces presented as nodes in the graph. Functional

activities are node labels which are to be swapped by the genetic engineering process to

fit the topology. There is no automation of the design of architectural space topology

which is more fundamental.

There are studies on generating floor plans by combining some basic elements of a

plan, say, a straight line of unit length, by a set of combination rules or shape grammar

 67

[99]. The combination rules are encoded as genotype in a chromosome on which GA or

genetic engineering is applied. The floor plan is generated by decoding the chromosomes

as a phenotype after the crossover or mutation operation on the genotype. The fitness is

evaluated according to phenotype, the floor plan. For example, in [98], a square module

is used as a basic module for generation of floor plan. The modules combined to form

higher level components which constitute the functional spaces of a house. The grammar

of combination of the modules and the components are encoded in a chromosome on

which GA is applied. The floor plan is generated according to the evolved combination

rules. Like other indirect encoding method in EAs, the efficiency of evolution cannot be

very high. Furthermore, the resulting geometries of the rooms are dictated by the

geometries of the basic elements, such as an aggregation of squares, and the dimensions

of the evolved plans are multiples of the basic elements. Hence, the creative freedom is

constrained.

Some studies start off with rectangular rooms that constitute a floor plan [96][11]. [11]

uses a computer program, ARCHiPLAN, as a tool to manipulate the absolute locations,

orientations, and dimensions of the rectangular rooms under a set of physical constraints.

During the floor plan generation process, it checks the topological consistencies of the

rooms by avoiding their overlaps. [96] represents the rectangular rooms as nodes of a tree.

The topology of the tree is a presentation of the room adjacencies. The tree topology and

the absolute locations of the rooms are encoded in different chromosomes and each of

them undergoes asexual crossovers and mutations independently. The separate results

decoded from the chromosomes are put together in the floor plan. This is equivalent to

the swapping of rectangular rooms attached to a tree topology where dimensions and

 68

orientation of the rooms as well as the tree topology are changing at the same time. The

efficiency of search is hindered by the combinatorial complexity. Furthermore, tree is not

a good presentation of architectural space topology because it only presents the

adjacencies between the nodes or rooms from one layer of node in the tree to the layer

immediately above and below it. It cannot show the adjacencies between rooms in the

same layer or nodes separated by more than one layer of nodes in the tree. The result is

that the search tends to fixate at the first feasible design. Both [96] and [11] are designed

for rectangular room plan manipulation but not other geometric shapes. The creative

freedom is again constrained.

To summarize, the current studies on computerized architectural space planning

concentrate on packing rooms with fixed geometries and evolving floor plans from basic

elements with fixed dimensions. Architectural space topology is playing a secondary role

as a condition to be satisfied. The creative freedom of the architect is limited to a certain

extent by the pre-determined geometric shapes and dimensions of the basic elements

adopted in the design automation algorithms. The resulting floor plans tend to be

predictable and mundane. In order not to restrain the creativity of the architect, we

propose to start off the design process by evolving the optimal architectural space

topology while leaving the insertion of geometry of rooms to the creative hands of the

architect. The most natural form of presentation of architectural space topology is in the

form of a graph and we need an EA to apply on it.

Using the graph adjacency matrix, the crossover and mutation operators defined in

Chapter 4, EvoGraph can be used to tackle problems that can be formulated as graphs.

One such problem is that of architectural layout design. At the design inception stage in a

 69

typical architectural project, the architect has to interpret requirements from a client who

is, in most cases, a layperson. The client usually describes his or her preferred spatial

groupings verbally. Such preferences can be translated into an adjacency preference

matrix, which describes the preferred adjacency between functional areas. In Figure 21,

we give an example of an adjacency preference matrix of a house, drawn up based on the

requirements of a client. The numbers, which make up an Adjacency Preference Scale

(APS), are defined in such a way that -2 means that the adjacency arrangement is very

much not preferred, -1 means that it is not preferred, 1 means that it is preferred, 2 means

that it is very much preferred, and 3 means that it is extremely preferable.

1. SA

2. M
A

3. B
ED

4. LR

5. D
&

K

6. B

7. C
P

8. P

9. C
IR

10. EX
T

1. Study area (SA) -2 2 1 -2 -2 -2 -2 -1 3 3

2. Master ensuite (ME) 2 -2 2 -2 -2 -2 -2 3 3 3

3. Bedroom (BED) 1 2 2 -2 -2 3 -2 1 3 3

4. Living room (LR) -2 -2 -2 -2 1 2 1 3 3 3

5. Dining & kitchen (D&K) -2 -2 -2 1 -2 2 -2 1 3 2

6. Bathroom (B) -2 -2 3 2 2 3 -2 -2 3 1

7. Car park (CP) -2 -2 -2 1 -2 -2 -2 -2 3 3

8. Patio (P) -1 3 1 3 1 -2 -2 -2 -2 3

9. Hall/stair/circulation (CIR) 3 3 3 3 3 3 3 -2 3 -2

10. Exterior (EXT) 3 3 3 3 2 1 3 3 -2 3

Figure 21: Adjacency Preference Matrix

The spatial design requirements as shown in the matrix in Figure 21 can be summarized,

in a more descriptive way, as follows:

A. Bedrooms should be grouped . (APS(2,3)=2).

B. Bathroom is to be shared by the bedroom, living room, and dining room.

(APS(6,3)=3, APS(6,4)=2, APS(6,5)=2).

 70

C. Patio is to be shared by master ensuite and living room and if possible, the dining

room and bedroom. It is preferable to be exposed.

(APS(8,2)=3, APS(8,3)=1, APS(8,4)=3, APS(8,5)=1, APS(8,10)=3).

D. Circulation areas to link all rooms and carpark.

(APS(9,i)=3 where 1≤i≤10 and i≠8,10).

E. Study area to be attached to master ensuite. (APS(1,2)=2).

F. All rooms, carpark, and patio are preferred to be in contact with the exterior.

(APS(10,i)=3 where 1≤i≤10 and i≠9).

 The approach to architectural layout design is divided into two parts: topology and

geometry. Topology refers to the logical relation between layout components. Geometry

refers to the position and size of each component layout. Topological decisions define

constraints for the geometric design space. For example, a topological decision that

“room i is adjacent to room j” restricts the geometric coordinates of room i relative to

room j. Such decisions are important and have to be made before finalizing on the

geometry. What a designer needs to do is therefore to try, as much as possible, to

enumerate all topologies that can produce feasible geometries [11] and then review them

to select those to explore geometrically. This process is slow and time-consuming. As it

is very difficult for designers, especially inexperienced ones, to run through the process

of optimizing topologies manually, subsequent geometric designs produced may not best

match the client’s need.

 To overcome this problem, EvoGraph can be used to find possible optimal topologies

in the design process so that, instead of having to deal with too many feasible but

 71

suboptimal topologies, designers need only deal with the optimized ones when starting

geometry design.

5.2 Conversion Between Floor Plan and Graph Representing Architectural Space

Topology

A floor plan can be converted into a graph representing its architectural space

topology and vice versa. EvoGraph optimizes graphs representing different floor plans

but not the floor plan themselves. The optimized graph achieved by EvoGraph has to be

converted to a floor plan for use. Before we discuss the evolution process, we introduce

the conversion between floor plans and the graph representing it. We represent an

individual architectural space by a node in a graph. If two architectural spaces,

represented by two nodes, share a common boundary, say a wall, we represent this

adjacency by an edge connecting the two nodes. Figure 22–23 give an example of the

floor plan of a house with respective functional rooms and its corresponding graph

representation on its architectural space topology. The graph in Figure 23 should be a

planar graph which can be encoded in a graph adjacency matrix. EvoGraph conducts

evolution on the graph adjacency matrices to obtain the optimal graph topology. Floor

plans can then be drawn up by decoding the resultant optimal graph adjacency matrix.

 72

carpatio

patio
dining

living

study
bed

master
ensuite ba

th

hall

master ensuite bath living

hall

patio

patio

study

bed
dining

car

exterior

Figure 22: The functional area floor plan
of a house

Figure 23: Graph (dotted line and circular
node) representing architectural space topology
of the floor plan in Figure 22

For decoding, given a graph adjacency matrix, the corresponding graph is drawn. This

graph may represent a one storey or a multi-storey building. It can be decomposed into

one or more planar subgraphs. Each of the planar subgraphs represents a floor plan of a

storey. There can be more than one way of decomposition of a graph representing a

multi-storey building into planar subgraphs representing individual storey. The way of

decomposition depends is the architect’s choice. This is equivalent to the architect’s

juggling with an optimized bubble diagrams in the conceptual design stage. An example

on decomposition of a graph into several planar subgraphs is demonstrated in Section

5.5.3 by using one of the optimal architectural space topologies generated by the

experiments. In the following, we show how a planar graph is converted into a space

enclosure representing a floor plan.

 73

Given a planar subgraph that represents the architectural space topology of a floor

plan, its dual graph (which is also planar) can be drawn up in two steps illustrated by an

example in Figure 24-25 as follows.

1. Lay out the planar graph on a plane without crossing edges (shown as solid lines and

circular nodes in Figure 24).

2. Every edge in the planar graph represents the boundary separating the two spaces

corresponding to the nodes it connects. In order to construct the dual graph, a pair of

nodes is created on both sides of an edge in the planar graph (shown as triangular-

shape nodes in Figure 24). A new edge is then created to connect the newly created

nodes (shown as a dotted line in Figure 24). These new edges are the spatial

boundaries of the architectural space topology in the planar graph. The dual graph in

Figure 25 can then be derived from Figure24.

 In this example the adjacencies between functional spaces in Figure 24 are the same as

the floor plan in Figure 22. The conversion of the dual graph in Figure 25 into the floor

plan in Figure 22 is done by inserting geometries into the space enclosed by the edges in

the dual graph.

 74

master ensuite bath living

hall

patio

patio

study

bed
dining

car

exterior

exterior

master ensuite
bath

living

hall

patio

patio

study

bed
dining

car

Figure 24: Dual Graph (dotted lines and
triangular nodes) derived from the solid
line graph

Figure 25: Functional Spaces
enclosed by edges of Dual Graph
(solid line and circular nodes)

5.3 Additional Mutation Operators

Given an Architectural Space Topology represented by a graph, the mutation of room

functional spaces represented by nodes in the graph is helpful to improve the total APS.

In order to facilitate this kind of mutation, two mutation operators are developed in

addition to the two basic mutation operators introduced in Section 4. They are Node-

Label mutation and Swap-Node mutation.

5.3.1 Node-Label Mutation

The Node-Label mutation operator allows us to replace one node by another in the

same graph. It works by selecting a node to be replaced and a node to replace it at

random as follow.

1. For a graph GP(VP, EP) with node set { Pv1 , Pv2 , …, P
iv , …, P

jv , …, P
nv } we construct

 75

its corresponding adjacency matrices as GP.

2. Select a node in the graph GP and corresponding adjacency matrix GP randomly.

Assume that the node chosen in GP are P
iv .

3. Replace node label P
iv by another node label chosen at random in the same graph, say,

node label P
jv , to form children graph GC and adjacency matrix GC. The order of

node set in GC is changed to Pv1 , Pv2 , …, P
jv ,…., P

jv , …, P
nv .

We give an example of the Node-Label mutation operator in Figure 26 below.

GP GC
 A B C D E F G H

A - 1 0 0 1 0 0 0

B - 1 1 0 0 0 0

C - 1 0 0 0 1

D - 1 0 0 0

E - 1 0 0

F - 1 0

G - 0

H -

 A B F D E F G H

A - 1 0 0 1 0 0 0

B - 1 1 0 0 0 0

F - 1 0 0 0 1

D - 1 0 0 0

E - 1 0 0

F - 1 0

G - 0

H -

(a) Step 1. Select C to be replaced by F (b) Step 2. Replace C with F
Figure 26: The Node-Label Mutation operator illustrated

5.3.2 Swap-Node Mutation

The Swap-Node mutation operator allows us to swap two nodes in the same graph. It

selects a pair of nodes at random and then swaps them as follows.

1. For a graph GP(VP, EP) with node set { Pv1 , Pv2 , …, P
iv , …, P

jv , …, P
nv } we construct its

corresponding adjacency matrices as GP.

2. Two nodes in the graph GP are selected and this is done by choosing 2 nodes in GP

 76

randomly. Assume that the nodes chosen in GP are P
iv and P

jv .

3. Swap P
iv and P

jv to form children graph GC and adjacency matrix GC. The order of

node set in GC is changed to Pv1 , Pv2 , …, P
jv ,…., P

iv , …, P
nv .

We give an example of the Swap-Node mutation operator in Figure 27 below.

GP GC

 A B C D E F G H

A - 1 0 0 1 0 0 0

B - 1 1 0 0 0 0

C - 1 0 0 0 1

D - 1 0 0 0

E - 1 0 0

F - 1 0

G - 0

H -

 A B F D E C G H

A - 1 0 0 1 0 0 0

B - 1 1 0 0 0 0

F - 1 0 0 0 1

D - 1 0 0 0

E - 1 0 0

C - 1 0

G - 0

H -

 (a) Select two nodes F and C to be
swapped

 (b) Swap the nodes F and C.

Figure 27: The Swap-Node mutation operator illustrated

5.4 Fitness Function

Given that the objective is to find optimal architectural topological designs, we

propose to use a fitness function in the evolutionary process that takes into consideration:

(i) clients’ preferences as given in an Adjacency Preference Matrix and (ii) physical

constraints as given by an Adjacency Limitation defined to be the maximum number of

adjacent rooms that one room can be in contact with. This Adjacency Limitation can be

expressed as the valence of a node in a graph representation, (iii) budget constraint, (iv)

the range of relative ratios between rooms and (v) the minimum functions that are

required to constitute an acceptable design. The adjacency preference is quantified in

Figure 21. The maximum valence of a node, the cost of providing each node are given in

 77

Table 2(a), and the acceptable range of relative room ratios are given in Table 2(b). The 9

different functions in Figure 21 should be included in each design.

The lowest range of budget allowed for the experiments is 30 to 34. The second range

is 35 to 39 and so forth until the budget reaches the range from 55 to 59. EvoGraph is

applied to search for the topologies that maximize the adjacency scale within the budget

range and the valance constraints of individual nodes. The fitness function is defined as

follow.

dcba

xfitness +++=
2

 (1)

where x = sum of the Adjacency Preference Scales (APS)

 a = absolute deviation to the budget range

b = absolute value of sum of excess valence of nodes

 c = total absolute deviation to the allowed range of room ratios

 d = number of functions deficient in the graph

In other words, the APS is the value to be maximized and the deviations to the other

assigned constraints are the value to be minimized. The denominator is made an

exponential function to eliminate the mathematical indeterminate case when both factors

are equal to zero. When all the imposed constraints are satisfied, the values of a, b, c and

d will be 0. As such, the fitness value equals APS of the graph topology.

Once terminated, the optimal graph can be decoded and the floor plans can be drawn

as described in Section 5.2. Using the optimal architectural space topology given in a

form like Figure 25, an architect can insert his or her favorite architectural motifs to

complete the design.

 78

Label Functional Space Max. Valence Cost
1 Study area 4 3
2 Master ensuite 4 4
3 Bedroom 4 3
4 Living room 4 6
5 Dining and kitchen 4 5
6 Bathroom 4 2
7 Carpark No limit 1
8 Patio No limit 4
9 Hall/stair/circulation area 6 4
10 Exterior No limit 0

Table 2(a): The function space description corresponding to the labels

Function 1/Function 2 Min. Ratio Max. Ratio

Study area/Master ensuite 0 1

Study area/Bedroom 0 1

Study area/Patio 0 4

Master ensuite/Patio 1 2

Bedroom/Living room 1 3

Bedroom/Bathroom 1 2

Bedroom/Patio 1 4

Living room/Bathroom 1 2

Living room/Patio 1 2

Table 2(b): The Relative Room Ratios

 The success of achieving the design requirements A to F by the evolution process

depends on their corresponding values of APS in Figure 21 and the values of constraints

in Table 2(a) and (b). If they are in line with each other, the probability of achieving the

requirement is high. For example, the ‘hall /stair/ circulation’ in has a high valence of 6

as shown in Table 2(a). In combination with its high APS to other functional spaces,

except patio and exterior, in Figure 21, requirement D has a high probability of sucess as

 79

the constraint is in line with the design requirement. Another example is that there is no

limit to the adjacency of ‘carpark’, ‘patio’ and ‘exterior’. In combination with the zero

cost for ‘exterior’, it is expected that the resulting design will favor also design

requirement F. Requirement D is a ‘closed approach’ to design with internal circulation

area linking all the function spaces while requirement F is an ‘open approach’ to the with

functional spaces facing the exterior. These conflicting requirements may coexist in the

optimal solution in each of the experiments. We explore the relative presence of

requirements D and F in relation to the cost efficiency (defined in terms of APS

achieved/unit cost) in the evolved solution under the same set of constraints in different

experiments. The results are analysed in Section 5.5.2.

5.5 Experiments

The objective of the experiments we performed is to determine if EvoGraph can be

used to effectively find optimal architectural topological design. For this purpose, we

assume that we need to design a house with 9 functional spaces with an adjacency

preference matrix as shown in Figure 21, and each functional space has other constraints

specified in Table 2(a) and 2(b). For our experiments, the fitness function given by

Equation (1) is used.

5.5.1 Initialization and EvoGraph Parameters Selection

An initial population of 100 graph adjacency matrices is generated at random. The

nodes encoded in each of them are given the same labels as that in Figure 21.

 80

As described in Chapter 4, the approach adopted is a general evolutionary algorithm

for graphs that is not biased toward any preferred topologies. The crossover and

mutations operators selected are also unbiased, they are random crossover, Number-of-

Edge mutation, Number-of-Node mutation, Node-Label mutation and Swap-Node

mutation. To place emphasis on exploration of search space to exploitation, mutations are

having the same probability as crossover as shown in Table 3.

Operator Probabilities of being selected

Random crossover 0.2
Number-of-edge mutation 0.2
Number-of-node mutation 0.2
Node-label mutation 0.2
Swap-node mutation 0.2

Table 3: The probabilities of each operator being selected for reproduction

5.5.2 Experimental Results and Findings

Using the same parameters described above, we run experiments with a population

size of 100 graph adjacency matrices according to the process in Section 4.5. The

maximum number of generation is 5,000. Convergence is considered to be reached when

the maximum fitness has been stagnant for 2000 generations. The process is stated as

follow.

In order to compare the performances of EvoGraph on the same basis, all the

experiments start with the same initial population. Experiments on 6 budget ranges are

carried out each having a budget interval of 5 starting from the lowest range at 30 to 34

(Experiment 1) and finish at its double at 55 to 59 (Experiment 6). Each experiment is

run 10 times and the one with highest APS is adopted. All the other constraints on budget,

 81

valence of nodes, minimum functions required, and range of room ratios should be

satisfied in order to be acceptable as a valid solution. In such circumstances, the fitness

value according to (1) should be equal to the total APS of the resulting graph. The graphs

indicating maximum fitness change with respect to the number of generations are

illustrated in Appendix 2.

Optimal architectural space topologies are generated by the experiments in the form

of adjacency matrices. Experiment 5 has the highest APS relative to cost. The adjacency

matrix with APS value generated by experiment 5 is illustrated as an example in Figure

33. When there is more than one node having the same function, a small letter will be

added to the node number label to differentiate them. For example, two different

‘circulation areas’ will be represented by ‘9a’ and ‘9b’ etc.. All the adjacency matrices

with corresponding APS that represent the optimal architectural space topologies

generated by the experiments are included in Appendix 2. The fitness plots throughout

the evolutions are also included.

The summary of experimental results on the properties of the graphs generated with

respect to the number of nodes, converging generation, APS and cost are summarized in

Table 4. Note that all results satisfy the constraints on valence and room ratios in Table 2.

Table 4: Summary of Experiment Results

Experiment Budget
Range

No. of
Nodes

Converging
Generation APS Cost APS/Cost

1 30-34 10 1312 55 32 1.719
2 35-39 11 611 64 36 1.778
3 40-44 12 1536 74 40 1.85
4 45-49 13 1036 74 45 1.644
5 50-54 15 1294 108 52 2.077
6 55-59 16 2101 113 57 1.982

 82

The relation between cost and APS is indicated in Figure 28. It is close to linear

relation with least square regression value close to 1 at 0.9577. This reflects the fact that

the more the client pays, the more satisfaction he can derive from the design. The

marginal increase in APS per unit increase in cost is approximately 0.42. The number of

functional space in a house (number of nodes in the resulting graph) also increases as the

budget increase at a rate of one additional functional space per 5 units of budget increase.

y = 0.4195x + 9.8745
R2 = 0.9577

0

10

20

30

40

50

60

70

40 60 80 100 120 140

APS

C
os

t

Figure 28: Relation between Cost and Adjacency Preference Scale (APS)

The relation between the converging generation and the number of nodes is indicated

in Figure 29. It approximates a parabolic relation with square regression value 0.8049.

The converging generation is proportional to |V|2.

 83

y = 42.464x2 - 986.56x + 6785.7
R2 = 0.8049

0

500

1000

1500

2000

2500

3000

8 10 12 14 16 18 20

Number of Nodes

C
on

ve
rg

in
g

G
en

er
at

io
n

Figure 29: Relation between number of nodes and converging generation

The APS attained by each experiment with respect to the design preferences stated in

Section 5.1 are divided by the total APS of the same optimal graph to observe the

contribution of the design objective to the total APS. It is defined as relative APS and

shown in Table 5. The total contribution of the 6 experiments to each design objective is

calculated and ranked.

 Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Total
A. Bedrooms should be grouped 0 0.0313 0.027 0.027 0 0.0177 0.103
B. Bathroom is to be shared by
the bedroom, living room, and
dining room

0.0909 0.0781 0.0541 0.0676 0.0278 0.0265 0.345

C. Patio is to be shared by
master ensuite and living room
and if possible, the dining room
and bedroom. It is preferable to
be exposed

0.1818 0.1719 0.1892 0.2432 0.0556 0.0619 0.9036

D. Circulation areas to link all
rooms and carpark

0.3273 0.4688 0.4459 0.2432 0.6111 0.4513 2.5476

E. Study area to be attached to
master ensuite

0.0364 0 0.027 0.0541 0.0267 0 0.1442

F. All rooms, carpark, and patio
are preferred to be in contact
with the exterior

0.3818 0.2344 0.2838 0.3649 0.1111 0.2389 1.6149

Table 5: Relative APS of Experiments

 84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Exp1 (cost 32) Exp2 (cost 36) Exp3 (cost 40) Exp4 (cost 45) Exp5 (cost 52) Exp6 (cost 57)

Experiment

R
el

at
iv

e
A

PS

A

B

C

D

E

F

Figure 30: Histogram of experimental results

The budget increases from experiment 1 to experiment 6. Referring to Figure 30,

property A and E are relatively insignificant. Property B tends to decrease when budget

increases. There is a sudden drop in property C when cost increases from 45 to 52 with a

corresponding upward trend in property D. The general trend of design objectives

achieved by all the experiments is arranged according to the magnitude of the total

relative APS in Table 5. They are listed in descending order of relative APS as follow.

1. Circulation areas to link all rooms and carpark.

2. All rooms, carpark, and patio are preferred to be in contact with the exterior.

3. Patio is to be shared by master ensuite and living room and if possible, the dining

room and bedroom. It is preferable to be exposed.

4. Bathroom is to be shared by the bedroom, living room, and dining room.

5. Study area to be attached to master ensuite.

6. Bedrooms should be grouped.

 85

Design objectives D and F are amongst the highest in the rank. They govern if the

building design is open with the exposed patio unifying all the other functions (open

approach) or a closed one with the internal circulation space as a major source of linkage

(closed approach). The experiments reveal that both type of design are achievable.

Experiments 1 and 4 have relative APS of property F higher than D (open approach)

whilst the rest of the experiments reveal the opposite (closed approach). Experiment 5 has

the highest property D and the lowest property F and it is the most cost efficient solution

as indicated in Table 4. There is a trend of increasing cost efficiency with ratio of relative

APS of property D to property F as illustrated in Table 6 and Figure 31.

Table 6: Cost efficiency in relation to relative APS ratio of property D to F

y = 28.809x2 - 98.339x + 84.836
R2 = 0.8138

0

1

2

3

4

5

6

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

APS/cost

D
/F

 ra
tio

Figure 31: Cost efficiency vs relative APS ratio of property D to F

Experiment APS/Cost D/F ratio
1 1.719 0.8573
2 1.778 2
3 1.85 1.5712
4 1.644 0.6665
5 2.077 5.5005
6 1.982 1.8891

 86

5.5.3 Optimal Architectural Space Topology Conversion to Floor Plans

The maximum fitness value of the experiments we performed above range from 55 to

113. Using the approach given in Section 5.2, each of these optimal graphs can be

converted to topological space and then to a floor plan. Note that each architectural space

topology may have more than one geometrical floor plan corresponding to it. The most

cost efficient solution generated by experiment 5 is illustrated below as an example. The

following illustration is only one of the many geometrical plans used to interpret the

optimal architectural space topology. When there are overlapping edges in a resulting

graph, it is separated into layers without overlap to represent different floors (differentiate

by solid and broken edges and nodes in the Figure 33.

 9a 9b 6 3 9c 4 2 9d 7 9e 5 9f 8 1 10

9a - 3 3 3 3 0 0 0 3 0 0 0 0 3 0

9b - 3 3 0 3 3 0 0 0 0 3 0 0 0

6 - 3 0 0 0 3 0 0 0 0 0 0 0

3 - 0 0 0 0 0 3 0 0 0 0 0

9c - 3 0 3 3 0 3 3 0 0 0

4 - 0 0 0 3 0 0 0 0 3

2 - 3 0 3 0 0 3 0 0

9d - 3 0 3 0 0 3 0

7 - 3 0 3 0 0 3

9e - 3 3 0 0 0

5 - 3 0 0 0

9f - 0 3 0

8 - 0 3

1 - 3

10 -

Figure 32: Adjacency matrix with APS generated by experiment 5

 87

9a

8

10

5

9e

9d

9f

2

4

7

3

6

9c

9b

1

Graph generated by experiment 5

APS = 108

Cost = 52

Graph separation layers of planar subgraphs for floor plan

generation:

1. Solid line – Ground Floor (nodes 1, 2, 3, 5, 6, 7, 9a, 9b, 9d,

10)

2. Dot and solid line – Mezzanine Floor (node 9f)

3. Dotted Line – First Floor (nodes 4, 8, 9c, 9e, 10)

4. Nodes 9c, 9e are circulation area that commutes all floors

but allocated to first floor for ease of floor plan generation

5. Node 10 is the exterior that can be used by all floors

9a

10

9d

7

3

6

9b

1

5

2

Ground Floor Graph

1.study

6.bath

7.car

9b.hall2.master
ensuite 3.bed

5.dining

9d
.c

or
ri

do
r

9a
.c

or
ri

do
r

9c

9e

Ground Floor Plan (nodes 1,2,3,5,6,7,9a,9b,9d,10)

9e

9f

9c

5

7

9b

1

Mezzanine Floor Graph

9f.hall

9c

9e
9b

Mezzanine Floor plan (node 9f)

 88

9a

8
10

5

9e

2

4

7

9c

9b

First Floor Graph

8.patio

4.living

9c

9e

First Floor Plan (nodes 4,8,9c,9e,10)

Figure 33: Optimal Architectural Space Topology generated by experiment 5 and
corresponding floor plans

 This research is an attempt to explore the application of EvoGraph on architectural

space topology generation. Using 10 nodes that include 9 functional areas and one node

representing the exterior, EvoGraph generates optimal design topologies that satisfy

budget requirements and other design constraints. These alternatives compete with each

other by compromising design objectives in give-and-take situations and eventually

arrive at the one that best fits the design intent expressed in the fitness function.

 89

 Chapter 6

Evolution on Space Frame Topology and Geometry

Space frame has been widely adopted as an aesthetic design feature in architecture. A

simple structure space frame can be used as decorative features such as lanterns and

hanging features in shopping malls. Repetition of a simple modular space frame structure

can form large space frame that constitutes a major element of a building such as roof

cover, canopy, external wall and even the whole building enclosure. The process of

artistic creation of a space frame with resource constraint has always been a puzzle to

architects and designers. Although there are some standard proprietary space frame

systems with associated software to assist design, the varieties available for choosing are

limited and they are dominated by the manufacturers. The tool available for original

creation of space frame modules is lacking. A hybrid solution on EvoGraph and GA is

proposed in this Chapter to provide a tool that rapidly creates a space frame module

design within the resource constraint available to the architect.

6.1 Space Frame Module Design

Space frames are designed in many forms. For example, one of the most popular

basic modules of a space frame is a tetrahedron as shown in Figure 34(a). This basic

module can be repeated to form a larger space frame. Six repeated modules are shown in

Figure 34(b). One of the general properties of a space frame module is symmetry of

geometrical shape. It serves the purpose of ease of combining many modules to form a

large space frame. The symmetry of geometry can be achieved by designing space frame

 90

modules with symmetric topology and geometry. The purpose of this chapter is to use

EvoGraph to generate symmetrical space frame module topology and then use GA to

search for the symmetrical geometric properties of the symmetric space frame module

topology. The use of EvoGraph and GA in the evolution process forms a hybrid solution

to the problem.

(a) Space Frame Module (b) Six Repeated Modules

Figure 34: Space Frame Module repetition illustrated

6.1.1 Symmetric Space Frame Module Topology Design

Topology is the first thing to be tackled in designing a space frame module because

without which no geometrical form can be created. The target of this section is to search

for a symmetric topology for the space frame module to provide a base for the creation of

symmetric geometry. One of the properties of a symmetric space frame module is that it

can be divided along its axis of symmetry into a pair of subframes which are mirror

image to each other, known as ‘mirror subframes’. The remaining pair of subframes

connecting the ‘mirror subframes’ is also mirror image to each other. This property can

 91

be reflected in the adjacency matrix of the symmetric space frame module. This is

illustrated by an example of a cubic space frame module with even number of nodes in

Figure 35 and a pyramid with a pentagon base in Figure 36.

axis of symm
etry

1

6

7

8

5

3

2

4

 1 4 8 5 2 3 7 6

1 0 1 1 1 1 0 0 0

4 1 0 1 0 0 1 0 0

8 1 1 0 1 0 0 1 0

5 1 0 1 0 0 0 0 1

2 1 0 0 0 0 1 1 1

3 0 1 0 0 1 0 1 0

7 0 0 1 0 1 1 0 1

6 0 0 0 1 1 0 1 0

(a) Dividing a space frame module into a
pairs of mirror subframes {1,4,8,5} and
{2,3,7,6}

(b) Partition adjacency matrix into four
submatrices corresponding to the divided
subframes

Figure 35: Example of a Cubical Symmetric Space Frame Module divided into
subframes which are mirror images to each other

In Figure 35(a), the space frame with node set {1, 2, 3, 4, 5, 6, 7, 8} can be

subdivided into two mirror subframes with node sets {1, 4, 8, 5} and {2, 3, 7, 6} by

deleting edges connecting the two mirror subframes (dotted lines in the figure). The

adjacency matrix of space frame module in Figure 35(a) is illustrated in Figure 35(b). It

can be constructed in such a way that the upper left quadrant submatrix (A) that

represents subframe {1, 4, 8, 5} is identical to the lower right quadrant submatrix (C) that

represents subframe {2, 3, 7, 6}, or A=C. The pair of subframes connecting the pair of

 92

mirror subframes represented by submatrices A and C is also mirror image to each other.

Hence, the upper right quadrant submatrix (B) that represents a subframe that connects

the mirror subframes {1, 4, 8, 5} and {2, 3, 7, 6} is mirror image to the lower left

quadrant submatrix (D) which represents another subframe connecting the same, or B=D.

The degree of symmetry of a space frame can be derived by comparing the submatrices.

Define

N(X ∩ Y) = number of corresponding slots having ‘1’ in both matrices X and Y

N(X∪ Y) = number of corresponding slots having ‘1’ in either matrices X or Y

Define correlation coefficient between two adjacency matrices X and Y as

)(
)(

YXN
YXNcXY

∪
∩

= 0 ≤ c XY ≤ 1 (1)

For the example of adjacency matrix for a space frame that is divided into four equal

quadrants A, B, C, D shown in Figure 35(b), the higher the value of ACc and BDc , the

more likely the space frame module is divided into two pairs of mirror subframes and

hence the higher the degree of symmetry. Both ACc and BDc should be maximized in the

EvoGraph fitness function. In Figure 35(b) and (b), ACc = BDc = 1.

EvoGraph is designed to work on adjacency matrices on which space frame module

symmetry is encoded. The symmetry of the space frame module is encoded in the two

pairs of identical submatrices diagonally opposite to each other as shown in Figure 35(b).

This requires the number of nodes in the space frame module to be even and they can be

subdivided into two groups with equal number of nodes by deleting edges in the space

 93

frame. However, this may not always be the case as the number of nodes may be odd or

the axis of symmetry may lie on some edges instead of cutting across some edges. The

problem can be resolved by splitting of nodes as shown in another example in Figure 36.

The split node action is reversible. Hence, the symmetric space frame module can always

be formed by re-joining nodes in the resulting adjacency matrix searched by EvoGraph

that represents a symmetric space frame module.

In Figure 36(a), the space frame cannot be subdivided into two three-node mirror

subframes by deleting edges because the axis of symmetry lies on any one edge

connected to node ‘6’. However, each of the nodes in node set {1, 6} can be split into 2

nodes to give {1, 1a, 6, 6a}. The resulting space frame is shown in Figure 36(b). This

extended space frame can be divided into two mirror subframes by deleting edges

connecting them (dotted lines in the figure). Subframe {1, 2, 3, 6} is mirror image to

subframe {1a, 5, 4, 6a}. This is reflected in the two identical submatrices in the upper left

quadrant (P) and the lower right quadrant of the adjacency matrix (shaded cells) (S) in

Figure 36(b), or P=S. The remaining two subframes in the space frame module

connecting subframes {1, 2, 3, 6} and {1a, 5, 4, 6a} are mirror image to each other. This

is reflected in the two identical submatrices in the upper right quadrant (Q) and lower left

quadrant of the adjacency matrix (box cells) (R) in Figure 36(b), or Q=R. As the split

node action is reversible, Figure 36(a) can be formed by re-joining the pairs of split nodes,

‘1’ and ‘1a’, ‘6’ and ‘6a’.

 94

6

1

43

52

6

1

43

52

6a

1a

axis of sym
m

etry

 1 2 3 6 5 4

1 0 1 0 1 1 0

2 1 0 1 1 0 0

3 0 1 0 1 0 1

6 1 1 1 0 1 1

5 1 0 0 1 0 1

4 0 0 1 1 1 0

 1 2 3 6 1a 5 4 6a

1 0 1 0 1 1 1 0 1

2 1 0 1 1 1 0 0 1

3 0 1 0 1 0 0 1 1

6 1 1 1 0 1 1 1 1

1a 1 1 0 1 0 1 0 1

5 1 0 0 1 1 0 1 1

4 0 0 1 1 0 1 0 1

6a 1 1 1 1 1 1 1 0

(a) Pyramid space frame with pentagon base and
corresponding adjacency matrix

(b) Node ‘1’ is split into nodes ‘1’, ‘1a’ and node
‘6’ is split into nodes ‘6’, ‘6a’ and corresponding
adjacency matrix subdivided into four submatrices
of the subframes

Figure 36: Example of a Pyramidal Symmetric Space Frame Module with pentagon base
divided into subframes which are mirror images to each other

 After defining the criteria on determining symmetry of topology of a space frame

module, the criteria on symmetry of geometry has to be defined.

6.1.2 Symmetric Geometric Properties and Dimensions Design

The Space Frame Module is required to have regular angles between adjacent edges

and its edges should have regular lengths to facilitate economy of scale in the repetition

process. The regularity of angles amd lengths is defined as their capability on being

 95

classified into groups according to their metric values. The smaller the number of groups,

the more regular the angles and lengths are. The highest regularity is attained when all the

angles and lengths are equal. In this case there is only one group for each of them. Given

a topology of space frame module created by EvoGraph, GA should try to find the most

regular geometric properties for the final design. Entropy of the geometric properties is

introduced to ensure the regularity of geometry. Entropy calculation on angles and

lengths are used in this respect.

Let |V| = number of nodes in a space frame module

 |E| = number of edges in a space frame module

 deg(xi) = degree of node i in space frame module

 |Na | = number of angles between any two connected edges

 aj = angle j between two connected edges

 lk = length of edge k

It can be derived that ∑
=

=
||

1
||2)deg(

N

i
i Ex and

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
2

||
||

E
Na

Define

Angle Entropy = HA =

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

∑
∑
∑

=

=

=

||

1

||

||

1
||

1

log
aa

a

a N

j
j

j
N

N

j
N

j
j

j

a

a

a

a
 0 < HA ≤ 1 (2)

Length Entropy = HL =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

∑
∑
∑

=

=

=

||

1

||

||

1
||

1

log E

k
k

k
E

E

k
E

k
k

k

l

l

l

l
 0 < HL ≤ 1 (3)

 96

Due to the property of the entropy function, the value of HA and HL increase with the

increase in regularity of angles between adjacent edges, aj , and length of edges , lk ,

respectively. Hence, HA and HL are the values to be maximized in the GA fitness function.

If all angles between connected edges are equal, then
||

1
||

1

a
N

j
j

j

N
a

a
a

=

∑
=

 and HA = 1

If all edges are equal in length, then
||

1
||

1

El

l
E

k
k

k =

∑
=

 and HL = 1. This is illustrated by an

example below.

 97

(0.14, 0.27, 0.45)

(0.2, 0.02, 0.47)

(0.6, 0.75, 0.42)

(0.2, 0.2, 0.93)

(0.5, 0.87, 0.75)

(0.5, 0.87, 0)

(0, 1, 0)

(0, 0, 0)

(a) Low regularity module (b) Medium regularity module

(0.5, 0.87, 0.87)

(0.5, 0.87, 0)

(0, 1, 0)

(0, 0, 0)

(c) Regular module
Figure 37: Examples on tetrahedron with different geometric regularities

Three-dimensional coordinates are assigned to the nodes in Figure 37(a), (b) and (c).

Their edge lengths, angles between adjacent edges, length entropies and angle entropies

are summarized in Table 7.

 98

 Figure 37(a) Figure 37(b) Figure 37(c)
Length Set 0.26, 2x0.50, 0.66, 0.84,

0.85
3x1.00, 3x2.00 6x1.00

Angle Set
(radians)

0.27, 0.54, 0.60, 0.62, 0.73,
0.89, 1.2, 3x1.3, 2.1

3x0.50, 9x1.32 12x1.05

HL 0.9642 0.9684 1
HA 0.9524 0.9759 1
Table 7: Regularity of geometric properties in Figures 37(a),(b),(c)

The regularity of edge lengths and angles increases from Figure 37(a) to complete

uniformity in Figure 37(c). The trend is reflected in the increase in length entropy, HL,

and angle entropy, HA.

6.1.3 Encoding Three Dimensional Coordinates of Space Frame Module Nodes in

Linear Chromosome

After obtaining the optimal topology, random three-dimensional coordinates are then

assigned to the nodes of the optimal graph to start the GA process to evolve the optimal

geometry and dimensions. The three-dimensional coordinates of all the nodes are

encoded into a linear chromosome before the GA process. The linear chromosome is

shown below.

Let xi, yi, zi be the three-dimensional coordinates of node i. All the coordinates are

encoded into a linear chromosome in the following form. Without loss of generality, the

values of the coordinates are restricted to 0 ≤ xi, yi, zi ≤ 1.

x1 y1 z1 x2 y2 z2 x3 y3 x|N| y|N| z|N|

Figure 38: Encoding three dimensional coordinates in linear chromosome

 99

At the end of GA process, the linear chromosomes are subdivided into units with three

alleles, each corresponds to a set of three-dimensional coordinates of a node in the space

frame module.

6.2 Fitness Functions

There are two fitness functions for evaluation on a space frame module. One for the

evaluation of the symmetry of the topology and the other evaluates the regularity of

geometrical properties and dimensions.

To conduct the fitness evaluation of a space frame module topology, its adjacency

matrix should be in the form shown in the examples in Figure 35(b) if the space frame

module contains even number of nodes or converted to even number of nodes from odd

number by node splitting as shown in the example in Figure 36. Since EvoGraph can

evolve the space frame modules using adjacency matrices toward symmetric topology,

the evolution of the adjacency matrix to arrive at the four quadrant submatrix form is

automatic under proper guidance of the fitness function. Given an adjacency matrix in the

four quadrant submatrix form as the example in Figure 35(b), the correlation coefficients

between the two pairs of submatrices {A, C} and {B, D} are obtained according to (1).

Let them be ACc and BDc respectively.

Define the combined correlation coefficient, c, between the two pairs of submatrices as

c = 0.5 ACc + 0.5 BDc where 0 ≤ c, ACc , BDc ≤1

 100

Let |E| be the number of edges of the space frame module to be evaluated and |ET| be the

target number of edges of the space frame module

Define fitness function for EvoGraph as follow

Maximize f(|E|, c) =
|1||||||| 22

2
−− + cEE T

 (4)

|||||| TEE − and |c-1| are the values to be minimized. The integer, 2, is used as the

numerator to enable the maximum fitness to reach one when the number of edges of a

space frame module equals the target number of edges (|E|=|ET |) and the topology

comprises two pairs of mirror subframes (c= ACc = BDc =1), or symmetrical topology is

achieved. In this case, f(|ET|, 1) = 1
22

2
00 =

+
.

Given the symmetric topology evolved from EvoGraph, the geometrical properties

and dimensions of a space frame module are evolved by GA. The fitness function for

evaluation of degree of regularity of geometrical properties and dimensions of a space

frame module is derived as follow. The objective of GA is to maximize the regularity of

geometry and dimensions of the space frame module. But there is a case of regularity

when the space frame module collapses. In that case, all the edges are of equal length and

the angles between all adjacent edges equal to zero. Hence the angles between the angles

and the edges should be maximized to prevent the space frame module from collapsing.

To achieve regularity of geometry and dimensions, both HA and HL should be maximized.

 101

Let A be the set of angles between all adjacent edges in radians

 L be the set of lengths of all edges

 E(A) be the mean of all angles between all adjacent edges

Define fitness function for GA as follow.

Maximize f(A, L) = E(A) HA HL (5)

It can be observed that the higher the regularity of the geometrical properties and

dimensions, the higher the fitness value. If all the angles between all the adjacent edges

and all the length of edges are equal, then HA = HL = 1. The geometrical properties and

dimensions of the space frame module have the highest regularity. In this case, f(A, L) =

E(A).

 102

6.3 The Hybrid Evolutionary Algorithm for EvoGraph and GA

In the hybrid evolutionary algorithm, EvoGraph is used to evolve the optimal space

frame module topology and GA is used to evolve the optimal geometry and dimensions.

The process is summarized in the Figure 39. The parameters used in the process are

purported to conduct the experiments on evolution of space frame modules with number

of edges between 12 and 20. One hundred graph adjacency matrices are initialized at

random for the EvoGraph to evolve the optimal symmetric graph topology. The evolution

process follows that described in Section 4.5. There is no bias on the application of the

EvoGraph operators. All three basic EvoGraph operators, random crossover, Number-of-

Node mutation and Number-of-Edge mutation are applied with equal probability in order

to emphasize exploration of search space to exploitation. The termination condition is

either reaching the maximum generation of one hundred or the symmetry of topology is

reached, c=1. After the evolution of symmetric topology, the evolution of regular

geometric properties and dimensions of the space frame module is evolved by GA. Given

the symmetric space frame module topology, one hundred sets of three dimensional

coordinates of the nodes are generated at random and each of them are encoded in a

linear chromosome as the initial population of GA. Steady state GA using roulette wheel

selection is adopted. In order to explore the large search space, uniform crossover and

mutation operators are used. The conventional approach of using crossover as the major

operator and mutation as the minor operator is adopted. The probability of mutation is 0.1,

which is higher that the usually adopted for GA. This is also due to the emphasis on

exploration of search space. The termination condition is either the maximum number of

generations of 1000 is reached or HA=HL=1.

 103

Figure 39: Hybrid algorithm process for EvoGraph and GA

6.4 Experimental Results

Design parameters with the number of edges ranging from 12 to 20 are input into the

hybrid evolutionary algorithm described in Section 6.3 with Steady State Reproduction at

each generation. All the topologies are evolved by EvoGraph in not more than 61

generations. The terminal generation on the GA part is fixed at 1000. Near optimal

solutions are reached as all the fitness function flattens out near the end of the terminal

Initialize of 100
graphs adjacency
matrices with 10
nodes at random

EvoGraph

Crossover probability
Random Crossover 0.3333

Mutation
number-of-node mutation 0.3333
number-of-edge mutation 0.3333

Selection
roullete wheel

Termination
100 generations or c = 1

space frame module with
optimal topology

Initialization of 100 linear
chromosomes on three-
dimensional coordinates
of nodes

Crossover probability
uniform 0.9

Mutation
uniform 0.1

Selection
roullete wheel

Termination
1000 generations or HA=HL=1

space frame module
with optimal topology,

geometry and
dimensions

GA

 104

generation. The designs evolved give a good regularity of geometry and dimensions as

shown in Figure 40. The quantitative results are summarized in Table 8.

Module A : |E| = 12

Module B : |E| = 13

Module C : |E| = 14

Module D : |E| = 15

Module E : |E| = 16

Module F : |E| = 17

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.4

0.6

0.8

0.35
0.4

0.45
0.5

0.55

0.6
0.65

0.5

0.55

0.6

0.2

0.4

0.6

0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2
0.4

0.6

0
0.2

0.4
0.6

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

 105

Module G : |E| = 18

Module H :|E| = 19

Module I : |E| = 20

Figure 40: Regular space frame modules generated by experiments

No. of
edges

No. of
generations of
EvoGraph to
reach optimal
topology (c = 1)

Angle
Entropy
HA after 1000
generations of
GA

Length
Entropy
HL after 1000
generations of
GA

12 16 0.9918 0.9952
13 21 0.9661 0.9835
14 6 0.9818 0.9924
15 4 0.9860 0.9915
16 50 0.9600 0.9836
17 9 0.9691 0.9865
18 27 0.9385 0.9733
19 18 0.9760 0.9884
20 61 0.9831 0.9922
Table 8: Summary of converging generations and corresponding angle entropies and
length entropies of space frame modules

0.2
0.4

0.6
0.8

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.2

0.4

0.6

0.8

 106

The space frame modules generated can be combined or articulated to form different

types of interesting structures depending on their geometric properties and the functions

required by a space. Module A in Figure 40 resembles the most popular orthogonal grid

space frame structure. This is the most common form of structural framework in design.

The other space frame modules have interesting geometries. They are used as basic

building blocks of large space of many shapes. Module B to E are diamond shape

modules that can be repeated to form building elements such as roof structure. The

AutoCAD drawing on repetitive units of module B is shown in Figure 41. Other varieties

generated by grouping module C to module I in Figure 40 are illustrated by AutoCAD in

Appendix 3.

Figure 41: Module B with 13 edges

 107

 Chapter 7

Tree Evolution on Art Creation

As is pointed out in [55], at the end of the nineteenth century, a tendency within the

art movement towards aestheticism took place: the underlying structures and forms of

different art forms were seen as the essential basic, most abstract representation. These

were based on aesthetic principles that emphasized balance, minimalism and implicit

beauty that required mental participation of the viewer to become explicit. The ideas

about composition started to become common knowledge. The most basic, generic

description of a two-dimensional artwork is called a composition. A composition of a

painting can be seen as a formal framework that specifies what a ‘well-formed’ artwork

at the highest abstraction-level looks like. Neoplasticism is one of the styles of these

modern abstractions. Neoplasticists believed that art should not be the reproduction of

real objects, but the expression of the absolutes of life. To them, the only absolutes of life

were vertical and horizontal lines and the primary colors - red, yellow and blue (together

with white and black).

Piet Mondrian (1872 – 1944) was a Neoplasticist; a devout believer in the ability of

art to have a deep spiritual influence on people's lives. He strove throughout his nearly

three-decade immersion in pure painting to achieve harmony and balance through an

intuitive process of constructing square and rectangular planes of white, red, yellow and

blue, dissected by vertical and horizontal black lines. The rules of Mondrian painting are

followed and listed below.

1. Only white, red, blue color patches are used.

 108

2. The painting can only contain rectangles with sides parallel to the borders of the

canvas. Lines that are not part of the border of a rectangle are not allowed. For

example, the following figure is not a proper Mondrian painting line composition.

There is a right angle bend that does not form part of a rectangular border.

 Figure 42: Violation of Mondrian subdivision rule

3. Borders of the rectangle can only be painted in black. Rectangles can only be painted

in white, red, blue, or yellow. The borders of the canvas are considered to be black.

4. Two adjacent rectangles cannot have the same color, unless they are painted white.

The drawing process of Mondrian painting encoded in a tree with attributed nodes is

shown below. The process is basically a series of rectangular subdivision of the canvas.

The edges, terminal nodes and non-terminals have different attributes as listed in Table 9.

 109

Edge attributes Terminal node attributes Non-terminal node attributes
1. area apportionment xi,

0 < xi < 1 and

∑
=

=
k

i
ik

1

1 where

k = no. of subdivisions

1. color: w = white
r = red

 b = blue
 y = yellow

2. area of subdivided rectangle
3. height-width difference, a, of

subdivided rectangle
 wha −=
 where
 h = height of rectangle
 w = width of rectangle

1. area of subdivided rectangle

2. direction of subdivision:
 H = horizontal
 V = vertical
3. height-width difference, a, of

subdivided rectangle

Table 9: Symbols for tree encoding of Mondrian painting evolution

An example on evolution of Mondrian painting on a square canvas of unit length is

illustrated in Figure 43. The process encoding in the tree is the ‘genotype’ with the

drawing expressed as the ‘phenotype’. The subdivisions start from top to bottom and

from left to right cascading down the tree. The corresponding subdivisions in the canvas

progresses from left to right for vertical subdivision (V) and from bottom to top for

horizontal subdivision (H).

 110

Genotype Phenotype

color=y
A=0.3
a=0.7

A=1
subdivision=V(0.3, 0.7)
a=1

A=0.7
subdivision=H(0.5, 0.5)
a=0.3

A=0.7
subdivision=H(0.5, 0.5)
a=0.3

1

0.70.3

color=y
A=0.3
a=0.7

A=1
subdivision=V(0.3, 0.7)
a=1

color=y
A=0.3
a=0.7

A=0.7
subdivision=H(0.5, 0..5)
a=0.3

A=0.35
subdivision=V(0.4, 0.6)
a=-0.2

A=0.35
subdivision=V(0.8, 0.2)
a=-0.2

0.7

0.5

0.5

1

0.3

A=0.35
subdivision=V(0.8, 0.2)
a=-0.2

A=0.35
subdivision=V(0.4, 0.6)
a=-0.2

A=1
subdivision=V(0.3, 0.7)
a=1

color=y
A=0.3
a=0.7

A=0.7
subdivision=H(0.5, 0.5)
a=0.3

A=0.35
subdivision=V(0.4, 0.6)
a=-0.2

A=0.35
subdivision=V(0.8, 0.2)
a=-0.2

color=r
A=0.007
a=0.36

color=w
A=0.28
a=0.06

color=w
A=0.21
a=0.08

color=b
A=0.14
a=0.22

0.3

1

0.140.56

0.420.28

0.5

0.5
color=b
A=0.14
a=0.22

color=r
A=0.007
a=0.36

color=w
A=0.28
a=0.06

color=w
A=0.21
a=0.08

Figure 43: Example on tree encoding of Mondrian painting evolution

 111

In this process, there are possibilities where two adjacent rectangles having the same

color except white color. This contravenes the fourth rule of Mondrian painting described

above. The selection process in EvoGraph eliminates this deficiency by assigning lower

fitness value to the attributed adjacency matrix that represents the attributed tree of the

painting.

7.1 Quantification of Aesthetic Attributes of Mondrian Painting

 In order to evolve Mondrian painting, several basic aesthetic attributes should be

abstracted and quantified. These attributes will be incorporated in the fitness function as

the targets of evolution. These aesthetic attributes include the directional bias of the

painting, evenness of subdivision, color distribution and granularity of subdivisions.

7.1.1 Directional Bias

The sense of direction of the painting is the overall impression on all the directional

bias of all the rectangles within the painting. The quantification of this overall sense of

direction can be expressed by the weighted height-width difference of the rectangles as

illustrated by the example in Figure 44.

2

11

11

2

2

2

1

1

1

1

1

(a) Vertical subdivision of a square (b) Pinwheel subdivision of a square
Figure 44: Comparing vertical and pinwheel subdivision of a square on the directional
bias

 112

In general, the height-width difference of the terminal subdivided rectangles is used

to determine the overall directional bias of the painting, as they are the most conceivable.

In the above figures, there are two rectangles in Figure 44(a) and four rectangles and one

square in Figure 44(b). The overall visual impact of each subdivided rectangle is

proportional to its area. Hence their relative areas weight the overall height-width

difference of the figures.

weighted height-width difference ∑
=

=
n

i
i

i a
A
A

a
1

where ai = height-width difference of rectangle i in the painting

 A = area of canvas

 Ai = area of the ith rectangle in the painting

 n = total number of subdivided rectangles

 AA
n

i
i =∑

=1
 hence, total area considered including the canvas = 2A

if a < 0, the figure is horizontally biased

if a = 0, the figure is unbiased

if a >0, the figure is vertically biased

Figure A ai Ai /A a

44(a) 4 2 – 1 = 1
2 – 1 = 1

 2/4
 2/4

 01
4
21

4
21 >=×+×

44(b) 9 2 – 1 = 1
1 – 2 = -1
2 – 1 = 1
1 – 2 = -1
1 – 1 = 0

 2/9
 2/9
 2/9
 2/9
 1/9

0
9
10

9
21

9
21

9
21

9
21 =×+×−×+×−×

Table 10: Calculation of degree of bias of Figures 44(a) and (b)

 113

Figures 44(a) is biased vertically (a = 1 > 0) and there is no directional bias in Figure

44(b) as all the directions of the subdivision rectangles balance out each other (a = 0).

The square in the centre is unbiased. This interpretation tallies with our visual perception.

7.1.2 Evenness of Subdivision

The entropy of all rectangular areas within the painting measures the evenness of area

of subdivision in a Mondrian painting.

Let A = area of canvas

Ai = area of the ith rectangle in the painting

entropy of areas
A
A

A
AH i

n

n

i

i
a log

1
∑
=

−= where 1
1

=∑
=

n

i

i

A
A

The higher the value of Hn, the more uneven the areas are distributed. When the areas are

evenly distributed, Hn = 1.

7.1.3 Color Distribution

The color distribution within the painting is described by the tuple

(pw ,pr ,pb ,py) where

pw = proportion of area of all white color rectangles in the painting

pr = proportion of area of all red color rectangles in the painting

pb = proportion of area of all blue color rectangles in the painting

py = proportion of area of all yellow color rectangles in the painting

and pw + pr + pb + py = 1

 114

7.1.4 Granularity of Subdivision

The granularity of subdivision is proportional to the number of subdivided rectangles,

n, in the painting. The attribute values of the painting in Figure 43 are summarized as

follow.

Attributes Calculations
Directional Bias A = 1, n = 5

0266.0)14.05.0(07.0)56.05.0(28.0
)42.05.0(21.0)28.05.0(14.0)3.01(3.0

>=−×+−×+
−×+−×+−×

Evenness of Subdivision

94.007.0log07.028.0log28.0

21.0log21.014.0log14.03.0log3.0

55

555

=−−

−−−=aH

Color Distribution pw = 0.21+0.28 = 0.49 ,
pr = 0.07,
pb= 0.14,
py = 0.3

Granularity of Subdivision n = 5
Table 11: Attribute values calculation for Mondrian Painting in Figure 43

 115

7.2 Experiments

An original painting by Mondrian, ‘Composition with Red, Blue, Yellow’, is selected

for the experiment. The attributes of this painting are quantified and extracted. EvoGraph

is used to create new paintings by manipulating the values of the extracted figures. The

new paintings created are expected to preserve some but not too many of the attributes of

the original painting to avoid duplicating the original painting.

Figure 45: Original Mondrian Painting ‘Composition with Red, Blue, Yellow’

The size of the original painting is normalized to a square of unit area for the ease of

calculation. The attributes extracted are the color Area, the directional bias, evenness of

area subdivision and granularity of subdivisions. Their respective values are summarized

as follow.

 116

Color Area Directional

Bias of
Subdivided
Rectangles

Evenness of
Subdivided

Area

Granularity
of

Subdivision

White Red Blue Yellow Weighted
height-width

difference

Entropy of
Areas of

Rectangular
Subdivisions

Number of
Rectangular
Subdivisions

0.3685 0.5623 0.0623 0.0069 0.1258 0.6727 7

Table 12: Attribute values for ‘Composition with Red, Blue, Yellow’

The original painting can be expressed in form of attributed tree and attributed

adjacency matrix as follow. For simplicity of presentation, the directions of subdivisions

and the area of subdivisions are labeled in the circular non-terminal nodes. The colors of

the subdivisions are labeled on the triangular terminal nodes. Thick black lines

occasionally exist in some of the Mondrian paintings. The same exists in the left part of

the above original painting. The thick arrows in the tree indicate the thicker line partition

between the two white rectangles. This can be created by random assignment.

 Figure 46(a): Tree encoding on evolution of ‘Composition with Red, Blue, Yellow’

white blue redwhite

white

white yellow

V(0.2353, 0.7648)

H(0.0761, 0.0969, 0.0623) H(0.5623, 0.2025)

V(0.1869, 0.0156)

H(0.0087, 0.0069)

 117

 V H H w w b r V w H w y
V 0 0.2353 0.7648 0 0 0 0 0 0 0 0 0
H 0 0 0 0.0761 0.0969 0.0623 0 0 0 0 0 0
H 0 0 0 0 0 0 0.5623 0.2025 0 0 0 0
w 0 0 0 0 0 0 0 0 0 0 0 0
w 0 0 0 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0 0 0 0 0
V 0 0 0 0 0 0 0 0 0.1869 0.0156 0 0
H 0 0 0 0 0 0 0 0 0 0 0.0087 0.0069
w 0 0 0 0 0 0 0 0 0 0 0 0
y 0 0 0 0 0 0 0 0 0 0 0 0
non-terminal nodes: V = vertical subdivision H = horizontal subdivision
terminal nodes: w = white r = red b =blue y = yellow
Figure 46(b): Attributed adjacency matrix for the tree in Figure 46(a)

7.2.1 Fitness function

Given the values of attributes extracted from the original Mondrian painting, gi, where

ni ≤≤1 , the general form of fitness function to be maximized for a new painting

evolved is

fitness =
∑
=

−+

+
n

i

gcadj ii

n

1

||22

1

n = number of extracted attributes values

adj = number of pair of adjacent rectangles that are not white and have the same color

gi = value of attributes i of original painting

ci = value of attributes i of new painting

The value on violation of Mondrian painting rule and deviation from the aesthetic

attributes in the denominator are the values to be minimized. Power function is used for

the denominator to avoid its value to become zero. ‘1+n’ is used as numerator to enable

the fitness to become one at the highest fitness where adj = 0 and | ci – gi | = 0 for all i. At

the highest fitness value, all the constraints are being satisfied. Hence, 0<fitness≤ 1.

 118

7.2.2 Experiment Setup

The effect of mixing GP crossover and EvoGraph random crossever of trees is tested

in the experiments. A mix of GP crossover and EvoGraph random crossover is used in

each generation of evolution. The total number of GP crossover and EvoGraph random

crossover in each mix is 10. There are total 11 GP crossover / EvoGraph random

crossover proportional mixes in each experiment. The first mix starts off with pure

EvoGraph (10 numbers EvoGraph and no GP). One EvoGraph random crossover is

replaced by GP crossover in the second mix and so on. At the 11th mix, there is pure GP

(10 numbers GP crossover and no EvoGraph random crossover). The arrangement is

summarized as follow.

Mix No. of GP crossover No. of EvoGraph random crossover
1 0 10
2 1 9
3 2 8
4 3 7
5 4 6
6 5 5
7 6 4
8 7 3
9 8 2

10 9 1
11 10 0

Table 13: Design mix of GP and EvoGraph for Mondrian painting evolution

Five sets of experiments are set up. In each set of experiments, all the 11 mixes in

Table 13 are run. The 7 attribute values of the Mondrian painting in Figure 45 are used as

search targets of the experiments. In each experiment set, a specific number of targets are

to be satisfied by the evolutionary algorithm as indicated in Table 14. Experiment sets 1

and 2 both retain the number of subdivisions with the former capturing aspect ratios and

 119

the latter captures the area distribution of the rectangles. Experiment set 3 captures the

aspect ratios, number of subdivisions and the area distribution of the rectangles.

Experiment set 4 captures all the color proportions and the area distribution of the

rectangles. Experiment set 5 captures all the attributes from the original painting. A

resulting painting of very similar nature to the original is expected.

Attributes and Target Values

white red blue yellow
Weighed

height-width
difference

Area
Entropy

no. of
subdivisions

Sets of
Experiment

0.3685 0.5623 0.0623 0.0069 0.1258 0.6727 7
1 - - - - Y - Y
2 - - - - - Y Y
3 - - - - Y Y Y
4 Y Y Y Y - Y -
5 Y Y Y Y Y Y Y

Table 14: Matrix identifying attributes to be captured in different experiments

The problem complexity increases with the number of target attribute values to be

matched and the nature of the complexity of attribute value derivation. The easiest to

match target is the number of subdivisions which is an integer. The next more complex

targets are the color proportions which are decimals. The most difficult are the aspect

ratio and area entropy which require mathematical derivations. Experiment sets 1 and 2

will have almost the same complexity. The complexity increases from experiment set 3 to

experiment set 5 as the number of target attribute value increases.

The fitness value at convergence and the number of generations to reach convergence

with respect to different mixes of GP crossover and EvoGraph random crossover in each

experiment are studied. Furthermore, the cross sectional analysis on general convergence

pattern amongst all the experiments will also be conducted.

 120

7.2.3 Evolution Parameters and the Evolution Process

An initial population of 50 trees is generated at random. All experiments are based the

same initial population so that comparison of performance can be made. Convergence is

considered to be reached if the fitness value equals or exceed 0.99 which is close enough

to 1 or there is no further increase in fitness value for 1000 consecutive generations.

Steady state reproduction is used in the evolution process. The maximum fitness of a

generation is a monotonic increasing function of the number of generations of evolution.

The converging generation is the first generation that reaches or exceeds fitness value of

0.99 or the beginning generation of the 1000 consecutive stagnant fitness. Both standard

GP crossover and the EvoGraph random crossover operation for trees described in

sections 4.2.2 and 4.2.3 are used. The crossover operators evolve the tree topology of the

genotype. The attributes of the tree (subdivision proportion, direction of subdivision,

color) are searched by mutations of values in the attributed adjacency matrix. Each

crossover is followed by one mutation of attribute values. Steady State Reproduction is

adopted. The evolutionary process is listed as follow.

1. Generate an initial population of attributed adjacency matrices randomly.

2. Evaluate each attributed adjacency matrix according to their fitness.

3. According to respective numbers of GP crossover and EvoGraph random crossover in

Table 13, for each cross over operation select two attributed adjacency matrices with

attribute values for reproduction using the Roulette Wheel selection scheme.

4. Carry out crossover and mutation and reproduce.

5. Evaluate fitness of the resulting children adjacency matrices with attributed values.

 121

6. Delete two least-fit individuals from current population and insert new adjacency

matrices (Steady State Reproduction).

7. Repeat from 3 until termination criteria are reached.

7.2.4 Fitness Analysis

The converging fitness values of the experiments are summarized in Table 15. Least

square polynomial regression analysis is conducted for the normalized fitness gap for

each experiment. The regression error is measured by the R2 value defined below.

10 2 ≤≤ R , when R2 =1, the curve is a perfect fit to the input values and vice versa.

∑
∑

∑

=

=

=

−

−
−=

11

1

11

1

2

2

11

1

2

2

11

)(

)ˆ(
1

i

i
i

i

i
ii

Y
Y

YY
R

where iY = actual value at i iŶ = expected value on regression line at i

 The regression curve of each experiment w.r.t. the crossover mix is plotted in Figure 47.

The regression curve of the average fitness of the 5 experiments w.r.t. the crossover mix

is plotted in Figure 48. The regression curve of average maximum fitness of the 11

crossover mixes w.r.t. the 5 experiments in the order of increasing complexity of search

is plotted in Figure 49. The paintings evolved by the best fit mixes in the five

experiments are illustrated in Appendix 4.

 122

mix Exp Set 1 Exp Set 2 Exp Set 3 Exp Set 4 Exp Set 5 average
1 0.9914 0.9693 0.9551 0.9645 0.8818 0.9524
2 0.9988 0.9635 0.9817 0.9884 0.9194 0.9704
3 0.9924 0.9838 0.9922 0.9956 0.9035 0.9735
4 0.9907 0.9877 0.9960 0.9909 0.9800 0.9890
5 0.9989 0.9751 0.9940 0.9925 0.9864 0.9894
6 0.9924 0.9878 0.9932 0.9783 0.9797 0.9863
7 0.9982 0.9754 0.9802 0.9856 0.9756 0.9830
8 0.9962 0.9770 0.9973 0.9599 0.9522 0.9765
9 0.9905 0.9800 0.9930 0.9710 0.9108 0.9691

10 0.9901 0.9858 0.9933 0.9887 0.9558 0.9827
11 0.9932 0.9674 0.9571 0.8789 0.8098 0.9213

average 0.9939 0.9775 0.9848 0.9722 0.9323
Table 15: Converging fitness value

0.8000

0.8500

0.9000

0.9500

1.0000

1.0500

0 1 2 3 4 5 6 7 8 9 10 11 12

mix

m
ax

im
um

 fi
tn

es
s Exp1

Exp2

Exp3

Exp4

Exp5

Figure 47: Regression curve of maximum fitness of experiment sets w.r.t. crossover mix

 123

0.9100

0.9200

0.9300

0.9400

0.9500

0.9600

0.9700

0.9800

0.9900

1.0000

0 1 2 3 4 5 6 7 8 9 10 11 12

mix

av
er

ag
e

m
ax

im
um

 fi
tn

es
s

Figure 48: Regression curve of average maximum fitness of the 5 experiment sets w.r.t.
crossover mix

0.9200

0.9300

0.9400

0.9500

0.9600

0.9700

0.9800

0.9900

1.0000

1 2 3 4 5

Experiment Set

av
er

ag
em

ax
im

um
 fi

tn
es

s

Figure 49: Regression curve of average maximum fitness of the 11 crossover mixes w.r.t.
the 5 experiment sets in the order of increasing complexity of search

 124

The following can be observed on fitnesses of the experiments.

1. There is no significant difference in the maximum fitness evolved for low complexity

search from experiment set 1 to experiment 3 as indicated in Figure 47. As the

complexity of search increases in experiments set 4 and 5, there is significant drop in

maximum fitness at both ends of the curve. The left end of the curve (with higher

proportion of EvoGraph crossover) has maximum fitness higher than the right end

(with higher proportion of GP crossover).

2. Except the anomaly in mix 10 in Figure 48, there is a tendency of highest maximum

fitness to be evolved around mix 5 and 6 where the relative proportion of EvoGraph

random crossover and standard GP crossover are almost equal.

3. The average maximum fitness evolved by pure EvoGraph random crossover (mix 1)

is higher than that of pure standard GP crossover (mix 11) as shown in Figure 48.

4. The maximum average fitness of the experiment set of the 11 mixes decreases with

increasing complexity of search as indicated Figure 49.

 125

7.2.5 Converging Generation Analysis

The number of generations to reach convergence (converging generation) is

summarized in Table 16.

mix Exp Set 1 Exp Set 2 Exp Set 3 Exp Set 4 Exp Set 5 average
1 44 1197 1908 342 274 753
2 278 1083 542 2042 4170 1623
3 261 1061 1183 2835 1846 1437
4 69 603 4003 2982 8229 3177
5 70 1931 331 1139 7298 2154
6 87 649 297 2946 2400 1276
7 166 907 174 1686 4867 1560
8 90 81 1536 130 2487 865
9 84 212 799 1827 436 672

10 78 2432 1072 1010 337 986
11 1978 1173 372 1517 48 1018

average 291 1030 1111 1678 2945
Table 16: Number of generations to reach convergence

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 1 2 3 4 5 6 7 8 9 10 11 12

mix

co
nv

er
gi

ng
 g

en
er

at
io

n

Exp1

Exp2

Exp3

Exp4

Exp5

Figure 50: Regression curve of the converging generation of experiment sets w.r.t.
crossover mix

 126

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12

mix

av
er

ag
e

co
nv

er
gi

ng
 g

en
er

at
io

n

Figure 51: Regression curve of average converging generation of the 5 experiment sets
w.r.t. crossover mix

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

Experiment Set

av
er

ag
e

co
nv

er
gi

ng
 g

en
er

at
io

n

Figure 52: Regression curve of average converging generation of the 11 crossover mixes
w.r.t. the 5 experiment sets in the order of increasing complexity of search

 127

The following can be observed from the converging generation of the experiments.

1. According to Figure 50, the difference in converging generation number from

experiment set 1 to 4 across all the 11 crossover mixes is not significant. There is

significant increase in the converging generation on experiment set 5 which

complexity of search is the highest among all the experiments. The regression curves

change from concave in experiment 1 gradually to convex in experiment set 4 and 5.

This indicates the converging generation increase significantly especially between

mix 5 and 6 where the proportion of EvoGraph random crossover and standard GP

crossover are almost equal. This region of mix is also where the maximum fitness of

all experiments are the highest as discussed in the fitness analysis in Section 7.2.4

2. Except the anomaly of mix 4 in Figure 51, there is a trend on having the highest

average converging generation for all the experiments between mix 5 and 6. The

trend is weaker than its counterpart in fitness analysis having highest maximum

fitness in the same region as the data points are scattered further away from the

regression curve in the figure.

3. The average converging generation evolved by pure EvoGraph random crossover

(mix 1) is lower than that of pure standard GP crossover (mix 11) as shown in Figure

51 but it is close to that of mix 8 and 9 as shown in the same figure.

4. The converging generation increases with the complexity of search from experiment

set 1 to experiment set 5 as shown in Figure 52.

Referring to the fitness analysis and converging generation analysis, it can be concluded

 128

that though EvoGraph random crossover attains higher maximum fitness value and faster

convergence in comparing with standard GP crossover, it has the same tendency as the

latter on early convergence. The fitness can be improved by mixing it with standard GP

crossover at nearly the same proportion but the drawback is that it takes longer time to

converge.

 129

 Chapter 8

Molecule Design

The molecular design problem is concerned with the determination of a molecular

structure with certain desirable properties. An effective solution to this problem can have

many applications in many areas in the biochemical and pharmaceutical industry.

Traditionally, molecular design is by many trials-and-errors in laboratories and is difficult,

time consuming and expensive. To facilitate the design process, various computer-aided

molecular design (CAMD) techniques have been developed and they have been divided

into five categories [101]: random search, heuristic enumeration, mathematical

programming, knowledge-based systems and graphical reconstruction methods. The

various drawbacks, including combinatorial complexity of the search space and the non-

linear structure-property correlations, etc., that these techniques have are discussed in

[101].

 To overcome these drawbacks, there have been some attempts to use EAs to evolve

molecular designs encoded in linear strings of parameters [101], trees [102] or genetic

graphs [18]. There have also been attempts to use a hybrid of Back Propagation Neural

Networks (BPNN) and GAs to evolve molecular designs encoded as graphs [103][104].

For these EAs to work effectively, components in the target molecule and their chemical

combination rules have to be known in advance and used from the beginning to guide the

evolutionary process [101][102][18]. The chemical combination rules are needed to

restrict the variety of molecular structures that can be generated during the evolutionary

process to ensure convergence of the process in reasonable time. The chemical

 130

combination rules are implemented in the crossover operators so that when molecular

components are exchanged, the crossover operations follow certain orders defined by the

rules.

 The requirement for molecular components and chemical combination rules to be

known ahead of time restricts, to some extent, the ability of existing EA based CAMD

technique to evolve novel molecular structures. To allow for greater flexibility,

EvoGraph performs its tasks by encoding molecular structures in molecular graphs with

nodes in these graphs representing atoms and edges representing bonds. Each molecular

graph is in turn encoded into adjacency matrices that represent nodes and their

connectivity at the same time. Given such an encoding scheme, the EvoGraph is able to

evolve an “optimal” molecular design using a set of reproduction operators designed

specifically to handle molecular graphs.

8.1 Existing Approaches for Computer Aided Molecular Design

 The traditional approaches to molecular design require many laborious iterations of

design-synthesis-evaluation and they are expensive and time consuming. To speed up the

design process, various computer-aided molecular design (CAMD) techniques have been

developed. CAMD can be defined as follows: “Given a set of building blocks and a

specified set of target properties, determine the molecule or molecular structure that

matches these properties” [105]. The basic steps of CAMD, according to this definition

can be divided into three phases: a pre-design, a design and a post-design stage as shown

in Figure 53.

 131

Figure 53: Basic steps of CAMD [105]

In the pre-design phase, it should be noted that building blocks of molecular components

have to be identified first in order for the target molecules to be formed. For the rest of

the other design phases, computer aided design software are often used to order and

combine different building blocks to form new designs. Mathematical programming or a

hybrid of mathematical and qualitative approaches [106] have also been used to

simultaneously design the structure of new molecules and test its optimality using

mathematical formulae that model the properties of the target molecule. The major

drawbacks of these approaches are due to the need to deal with the combinatorial

complexity of the search space and the difficulties in tackling non-linear structure-

property correlations, etc. [101].

Recently, there have been attempts to use EAs to generate molecular structures [107].

Given selected building blocks, EAs have been used to evolve the topology of a molecule

by linking building blocks to form molecules. If the topology of a molecule is given, EAs

can also be used to evolve the relative position of elements and internal bond angles

 132

within the molecule. These EAs adopt different encoding schemes and these schemes

impose different constraints on the EA operations that have to mimic chemical reactions

when components and bonds between molecules are exchanged. In [24], for example,

molecules are encoded in linear strings which represent elemental, substructural, or

monomer units. Genetic Algorithms (GAs) are used with these linear strings to evolve

target molecules. In [103][104], a GA is also used to search for combinations of

molecular fragments encoded as linear strings. The fitness of the candidate molecules are

evaluated using back-propagation neural network (BPNN). In [18], molecular design is

encoded first as trees for a GP based algorithm. Edges are added at random whenever

needed to form rings to create genetic graphs.

In addition to the above, EA based CAMD methods have been used to tackle two

molecular design problems involving protein ligand docking and variable selection for

the development of quantitative structure-activity relations (QSAR) to generate molecular

structure with the selected variables.

Protein ligand docking [60] refers to the non-covalent binding of a molecule to a

protein. It is widely used in drug design in which the molecular structure of a drug is

designed to tackle a particular protein. DOCK [109], for example, is a computer-aided

drug molecule design software developed for this purpose. It provides a software

interface to facilitate manual manipulation of various molecular structures. With such a

feature, DOCK can help users to more easily find the molecular structure of an inhibitor

as a docking ligand on a macromolecule receptor. This resulting ligand structure is then

matched against a database of computer-derived structures of putative ligands using

isomorphic subgraph matching. Although complete matching of two molecular

 133

structures is not always possible, it does provide rapid heuristic approximations and it

allows thousands of alternative geometric matches to be examined per second. A

variation on the DOCK approach is adopted by an EP-based program called EPDOCK

[108]. EPDOCK finds optimal internal bond angles and position of the atoms in the

ligand to bind to the target sites of another protein molecule [108]. To do so, it requires

that the topology of a ligand be given.

QSAR is a mathematical description of a molecule’s physical or chemical properties.

It has been shown that EAs can be used to generate target molecules using QSAR

properties as search criteria. The evolutionary processes require that known molecular

components be provided from the beginning. The target molecule is then evolved by

combining individual components in different molecules or through attachment of new

components to existing ones to form the target molecule. With the molecular topology

given and known molecular components connected with right adjacencies, a microscopic

search can then be conducted using EA to confirm that the components within the

molecule are arranged in optimal relations with each other.

From a given base molecule, EAs can therefore be used to vary a molecule’s bond

angles, inter-atomic distances, and atomic forces to achieve minimum energy state in

which the molecule is most stable [62][110]. This is known as conformational search as

the search is constrained only to molecules conforming to specific molecular structures.

Many EA based CAMD on conformational search has been reported [61][111]-

[112],[114]-[115],[117]-[120]. They also make use of such constraints as nuclear

magnetic resonance spectrometry, as determined from experiments, as a criterion to guide

the search [18]-[19]. The use of GA, compared with other parallel direct search methods,

 134

have been studied and reported in [110]. Other than these EA based approaches, methods

such as TORK [113] can also be considered as a conformational search algorithm. TORK

was developed to adjust internal bond angles of a molecule to achieve minimum energy

state. For these conformational search algorithms to work effectively, it should be noted

the structure of the target molecules have to be known.

While most of these EA based approaches are based on conformational search, there

is one exception -- the de novo design approach [59][116]. In de nova design, a molecule

is designed without reference to any known molecule. It starts off with some potential

components of the target molecule and evolves according to principles for linking

individual components to form a target molecule. Even though this design approach does

not require as much domain knowledge as with other conformational search approaches,

potential components that are likely to produce the target and the corresponding

combining rules of these components have to be known and determined in advance.

In summary, the current EA approaches to molecular design are either conformational

search approaches requiring close-to-target molecular structures or molecular

components of the target and their corresponding chemical combination rules be made

known. The optimal target molecules that may be discovered may be constrained by the

structure of the components that are available.

To be able to design target molecule without all these prior information about

molecular structures, molecular components or the chemical combination rules,

EvoGraph algorithm is proposed. The algorithm begins with an initial population of

random combinations of atoms and simple elements, such as carbon and benzene rings

without the need for sophisticated potential building blocks such as phenol groups,

 135

methyl groups etc., to be given ahead of time. Also, the evolutionary process that

EvoGraph goes through is guided by molecule descriptors composed of topological

indices that describe the adjacency of elements within the target molecule. The advantage

of EvoGraph is that it can design molecules without the need for the knowledge of close

to tarrget molecular components and the chemical combination process required to reach

the target.

8.2 Encoding Molecular Design

Existing EA based CAMD methods encode molecular designs in different schemes.

For example, linear-strings have been used in [101] to encode polymers to represent

elemental, substructural, or monomer units. In [103][104], a linear-string GA is also used

to search for combinations of molecular fragments encoded as linear strings. In [18], an

approach is proposed to use GP with molecular design encoded first as trees. These

encoding schemes impose different constraints on the EA operations so as to ensure the

mimicking of the chemical reactions that take place when components and bonds

between molecules are exchanged during, say, the crossover process. If these EA based

techniques are used, post-processing is required to convert the linear-strings and trees to

molecular designs in the form of molecular graphs.

For EvoGraph to carry out its tasks, a molecular design is encoded directly in the

form of a molecular graph. A molecular graph is a connected, undirected graph

representation of the structural formula of a chemical compound. It can be represented as

G(V, E) where V is a set of vertex labels and E is a set of edge labels. A molecular graph

 136

can therefore be represented as a labeled graph with vertices corresponding to the atoms

of a compound and edges corresponding to the types of chemical bonds between atoms.

A hydrogen-depleted molecular graph is a molecular graph with hydrogen vertices

deleted. The target molecules that EvoGraph evolves are organic molecules that are made

up of carbon and hydrogen atoms and other components. Since carbon-hydrogen bond

can be assumed to fill up the valence when there is no other bond connected to a carbon

atom in an organic molecule, the use of hydrogen depleted graphs has been popular and

EvoGraph also makes use of it.

EvoGraph operates on the adjacency matrices of the molecular graphs. An adjacency

matrix represents graph nodes and their connectivity at the same time. Though these

matrices can also be encoded in linear-string chromosomes which simple GAs can

operate on by concatenating the rows of a graph adjacency matrix to form a linear array,

it should be noted that this can be computationally clumsy. If linear-string chromosomes

are used, the connectivity between nodes cannot be read directly. Furthermore, special

decoding is required to convert the linear-sting chromosome back into a molecular graph.

An additional advantage of the adjacency matrix encoding scheme is that an effective

crossover operator can be relatively easily implemented with it. The “repairing” of a

matrix after crossover to ensure connectivity can also be more easily implemented with

adjacency matrices as described in Section 4. Comparing with other encoding schemes,

molecular graphs encoded in adjacency matrices suit much better the special

characteristics of molecular topologies and the reproduction operators EvoGraph adopts.

Given a molecular graph represented as, G(V, E), where V is a set of vertex labels

and E is a set of edge labels, we can construct its adjacency matrix in such a way that if

 137

there exists a connection from vertex, iv ∈V to vertex jv ∈V in the graph, then the entry

of the cell at the ith row and jth column, cij is set to 1, otherwise, if there is no connection

between them, it is set to 0. For the case of a graph where each node and edge are labeled

with specific attribute values, then cij can take on such values instead of 1 or 0. For

example, for representing a double bond in a molecule, the value for cij can be set to ‘2’.

It should be noted that either an upper or lower triangular matrix or a symmetric

matrix can be used to represent such graph. An upper triangular matrix will be used to

illustrate the crossover and mutation operators. Symmetric matrices will be used for the

purpose of deriving quantitative descriptors of molecular graphs.

8.3 The Fitness Function

To determine the fitness value of a molecular graph, EvoGraph takes into

consideration the various feature descriptors of a molecule encoded in its graph. These

molecular feature descriptors include the weights of the atoms, their composition, the

topology and adjacency of different atoms and bonds within the molecule. Since no

single descriptor can completely describe all features of a molecule, EvoGraph uses

different combinations of feature descriptors in different fitness functions so that target

molecules of various complexities can be most comprehensively described. In the

following, we describe these different molecular feature descriptors that EvoGraph uses

for fitness evaluation.

 138

8.3.1 Molecular Topology Descriptors

There have been more than 400 topological indices available [64]. Though none of

the topological indices can capture all the topological characteristics of a graph, each

topological index has its own merit. The Ivanciuc-Balaban operator (IB) [65] is computed

with vertex invariants derived from symmetric molecular matrix. Because EvoGraph

encodes hydrogen depleted molecular graphs into matrices to carry out evolution, IB is

suitable for specifying characteristics of the target molecule for the evolution process.

According to [65], IB is defined as

∑ −×
+

=
)(

2/1)],,(),,([
1
||),,(

GE
ji GwMVSGwMVSEGwMIB

μ
 (1)

where G is the hydrogen depleted molecular graph, M is symmetric molecular weighted

adjacency matrix, |E| is the number of edge of G, w is the number of covalent bonds of an

atom with other atoms in G, VSi(M,w,G) and VSj(M,w,G) denote the vertex sums of the

two adjacent nodes vi and vj that are incident with an edge eij in the molecular graph G,

the summation goes over all edges from the edge set E(G), and w is the weighting scheme,

μ is the cyclomatic number 1|||| +− VE where |V| is the number of nodes in G. IB can

be computed easily from a symmetric molecular matrix.

An example of IB for aspirin molecule is illustrated below. An aspirin hydrogen

depleted molecular graph is shown in Figure 43(a). The symbol for benzene ring is ‘Bz’.

Its corresponding symmetric molecular matrix is shown in Figure 43(b). The nodes are

indexed by atomic weights of atoms. Hence, carbon is labeled with 12, oxygen with 16,

 139

and benzene ring with 72. The number of bonds between atoms is inserted as weights of

edges in the matrix.

BzC

O

O

O C

O

C

 12 12 12 16 16 16 16 72

12 0 0 0 2 1 0 0 1

12 0 0 1 0 0 1 2 0

12 0 1 0 0 0 0 0 0

16 2 0 0 0 0 0 0 0

16 1 0 0 0 0 0 0 0

16 0 1 0 0 0 0 0 1

16 0 2 0 0 0 0 0 0

72 1 0 0 0 0 1 0 0

(a) aspirin molecular graph (b) symmetric molecular matrix of aspirin molecular graph

Figure 53: Aspirin molecular graph and symmetric molecular matrix

7|| =aspirinE

9142.2)22()24()24()14()24()14()24(

)],,(),,([

2
1

2
1

2
1

2
1

2
1

2
1

2
1

)(

2/1

=×+×+×+×+×+×+×=

×

−−−−−−−

−∑
GE

ji GwMVSGwMVS

μ = 7-8+1=0

3995.209142.2
1
7),,(=×=GwMIBaspirin

IB contains topological information of a molecular graph. But it does not contain

information on the atoms. The target molecules to be evolved in this section are covalent

molecules. In order to describe a molecule more accurately, composition of atomic

weights (W), valences of atoms (V), total number of carbon atoms (NC), number of

benzene rings (NBZ) and product of atomic weights of adjacent atoms from the first to

 140

the second layer of adjacencies (AN, AN2) are used in the fitness function for the graph

evolution in addition to IB.

Also, the eigenvector or graph spectrum (S), which works on symmetric adjacency

matrix of a molecular graph (where all non-single bonds are counted as single bonds so

as to describe the adjacencies only) is used to describe topology of a molecule. It is a

graph invariant to specify the topology of a molecule [66]. To do so, let A be a symmetric

adjacency matrix with eigenvalue λ and eigenvector e. By definition of eigenvector,

Ae=λe. Let B be a permutation of A, A = PBPT, where P is a permutation matrix and

PPT = I, I is the identity matrix. Hence, λeePBPAe T == eλPePBPP TTT =⇒

e)λ(Pe)B(P TT =⇒ . Let ePS T= λe'BS =⇒ . S is the eigenvector of B and λ is also its

eigenvalue. The set of elements in e is the same as e′ because PT only affects the order of

the elements but not their values. Therefore, the eigenvalues of a symmetric adjacency

matrix is invariant to matrix permutation.

The closeness of topologies between two graphs is compared by the root mean square

distance between their corresponding graph spectrums. Let vectors T
naaa],......,,[21=AS

and T
nbbb],......,,[21=BS be the graph spectrums GA and graph GB respectively. The

elements in SA and SB are eigenvalues arranged in ascending order such that a1≤ a2

≤……≤.an and b1 ≤b2 ≤……≤.bm.

If the sizes of A and B are equal, the distance between GA and GB is defined as

∑
=

−=
n

i
iiBA baGGd

1

2||),((2)

 141

If the sizes of A and B are unequal, the size of the shorter spectrum is increased by adding

dimensions to bring it to match the other spectrum and zero elements are assigned to the

new created spaces. The distance can then be computed with the same formula.

Like other topology indices, S cannot completely describe the topology of a graph

but it is an approximation of the topology expressed in a linear vector of real numbers.

The graph topology corresponding to a graph spectrum may not be unique. Some non-

isomorphic graphs have the same spectrum and are known as cospectral graphs. S is used

together with the IB operator and other atom adjacency descriptors to specify a target

molecule for the evolutionary process.

8.3.2 Atom Adjacency Descriptors

Given a molecule’s topology, adjacencies between atoms are required to specify the

relative locations of atoms within the molecule. In order to specify the adjacency between

any two atoms, a quantity is defined below as adjacent node index (AN) as follow.

∑=
ji jinn

AN
,

1 (3)

where node i and node j are adjacent to each other, ni is the node index of node i, and nj is

the node index of node j.

Sometimes two molecules with the same topologies and AN may have different

molecular structures because the same adjacent pairs of atoms may exchange locations

within the same molecule without varying the AN. A specification of second layer of

atom adjacencies is devised as second layer adjacent node index (AN2) as follow.

∑ +=
ji

ANAN
ji

jiAPAP
AN

,
)]()([)]()([

12 (4)

 142

where node i and node j are adjacent to each other, Ai is the set of node indices of nodes

adjacent to node i, Aj is the set of node indices of nodes adjacent to node j, P(Ai) is the

product of node indices in Ai, P(Aj) is the product of node indices in Aj, N(Ai) is the

number of elements in Ai, and N(Aj) is the number of elements in Aj

In addition to using atom indices, the number of bonds attached to adjacent atoms can

be used to specify the adjacencies of bonds within a molecule. The adjacent node-bond

index (ANB) is defined as follow.

∑=
ji

ijji evv
ANB

, 3
1

)(

1 (5)

where node i and node j are adjacent to each other, vi is the number of bonds attached to

node I, vj is the number of bonds attached to node j, and eij is the number bonds between

node i and node j.

The topology and atom adjacency descriptors in this section are used in different

combinations in the fitness functions to specify the target molecules. The combinations

depend on features and complexity of the molecule to be specified.

8.3.3 Fitness Functions for Evolution of Molecules

EvoGraph makes use of different fitness functions to evolve molecules with different

complexities. These fitness functions take into consideration a set of basic features that

characterize the target molecule to be evolved. These features include the molecular

weights of the hydrogen depleted molecules (W), the number of benzene rings (NBZ),

the total weight of carbon (CW), the sum of degree of each atomic component exceeding

its valence (V), and other descriptors including IB, S, AN, AN2, and ANB.

 143

 As none of these descriptors can completely describe all the features of a molecule,

different fitness functions are used by EvoGraph with different combinations of these

descriptors depending on the complexity of the target molecule concerned. As the fitness

function is a measure of closeness to the target, it reflects how much deviation there is in

the quantities of these descriptors from the target molecule. When a particular target

descriptor is used in a fitness function fk, we place a ‘Y’ in the corresponding entry in the

table, Table 17 below.

fitness
function

W NBZ NC V IB S AN AN2 ANB

f1 Y Y Y Y Y - Y - -
f2 Y Y Y Y Y Y - Y -
f3 Y Y Y - - Y - - -
f4 - - - - - - Y Y -
f5 - - - Y - - - - Y
Table 17: Summary of fitness functions and their target properties

∑
=

i

t
k

i

f
)|(|1.1

1
δ

 (6)

where }5,4,3,2,1{∈k , t is the target value of descriptor i, and |)(tiδ | is the absolute

deviation of the value of a descriptor i to its target value. According to Table 17,

 for f1, },,,,,{ ANIBVNCNBZWi∈

 for f2, }2,,,,,,{ ANSIBVNCNBZWi∈

 for f3, },,,{ SNCNBZWi∈

 for f4, }2,{ ANANi∈

 for f5, },{ ANBVi∈

 144

In order to ensure that all |)(tiδ |’s are linear, the absolute deviation from the target

spectrum, |)(tSδ |, is the root mean square Euclidean distances),(BA GGd given in (2).

When a criteria is satisfied, it’s corresponding |)(tiδ | equals zero. When |)(tiδ | = 0 for all

i, fk =1. The target is reached and the evolution converges to unity.

The more descriptors that are used, the more computational resources are required

when computing fitness values. The most computational intensive fitness function is f2. It

should be noted therefore that computational resource may have to be compromised when

descriptors are added to evolve more complicated molecules.

Small molecular graphs with fewer nodes and less complicated molecular structures

are easier to describe and they can be evolved by using one fitness function. For larger

molecular graphs and more complicated molecular structure, more than one stage

evolution is required. Different fitness functions are used at different stages of evolution

to approach the target molecule. They are shown in Section 8.4.

 145

8.3.4 An Illustrative Example in Drug Design

To illustrate how EvoGraph works with chemical compounds, we represent molecular

structure as hydrogen depleted graphs with nodes of graph representing the atom and

edges representing the bonds. Let the symbol for carbon be ‘C’, oxygen be ‘O’, nitrogen

be ‘N’, and benzene ring be ‘Bz’. In the molecular matrix, the nodes are indexed by the

atomic weights of the atoms for the convenience of calculation of fitness values. Hence,

carbon is labeled with 12, oxygen with 16, nitrogen with 14, and benzene ring with 72.

The number of bonds between atoms is inserted as weights of edges in the matrix.

The initialization process generates a population of molecular graphs composed of

elements bonded together. To generate a molecular graph, a few elements are selected at

random. A spanning tree is then added to connect all elements together followed by

addition of other bonds at random. An example of molecular graph initialized is shown

below.

 12 12 16 14

12 - 1 0 0

12 - 1 1

16 - 1

14 -

NC C

O

(a) adjacency matrix of molecular graph with
spanning tree bonds indicated as ‘1’s and
randomly added bond as’1’

(b) molecular graph with spanning tree indicated
as bold line and randomly added bond as dotted
line

Figure 54:. Example of molecular graph generated by initialization

 146

The example on random crossover of molecular graph is indicated below. Consider

two common molecules aspirin and tylenol.

1. Construct hydrogen depleted molecular graphs and adjacency matrices.

2. Permute the order of nodes in the adjacency matrices at random. The results are shown

in Figure 55.

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 2 0

12 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

 12 12 16 16 14 72

12 - 1 0 0 0 0

12 - 0 2 1 0

16 - 0 0 1

16 - 0 0

14 - 1

72 -

BzC

O

O

O C

O

C

BzN OC C

O

(a)aspirin (b)tylenol
Figure 55: Molecular graph and adjacency matrices of aspirin and tylenol

 147

3. A cut line is inserted at random across each of the molecular matrix as shown in Figure

56. The corresponding cut lines in the molecular graphs are shown.

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 2 0

12 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

 12 12 16 16 14 72

12 - 1 0 0 0 0

12 - 0 2 1 0

16 - 0 0 1

16 - 0 0

14 - 1

72 -

BzC

O

O

O C

O

C

BzN OC C

O

(a)aspirin (b)tylenol
Figure 56: Random cut line imposed on molecular matrices of aspirin and tylenol

 148

4. Exchange cut out submatrices.

5. Scan and delete invalid edges

 12 12 12 16 16 14 72

12 - 0 0 2 1 0 0

12 - 1 0 0 0 0

12 - 0 0 0 0

16 - 0 0 0

16 - 0 0

14 - 1

72 -

 12 12 16 16 16 16 72

12 - 1 0 0 0 0 0

12 - 0 2 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

C

O

O

C

C

BzN

O

C C

O
Bz O

O

(a) (b)
Figure 57: Swapping of subgraphs created by the cut and deletion of invalid edges

 149

5. Superimpose a spanning tree at random over the existing edges on each graph after

swapping and add edges at random to create the offspring.

 12 12 12 16 16 14 72

12 - 0 0 2 1 1 0

12 - 1 0 1 0 1

12 - 0 0 0 0

16 - 0 0 0

16 - 0 0

14 - 1

72 -

 12 12 16 16 16 16 72

12 - 1 0 0 0 0 0

12 - 0 2 0 0 1

16 - 0 1 0 1

16 - 0 0 0

16 - 0 0

16 - 1

72 -

C

O

O

C

C

BzN

O

C C

O
Bz O

O

(a) (b)
Figure 58: Embed spanning tree at random to each offspring graph after swapping.
Superimposed spanning tree in ‘1’s in the adjacency matrices. The embedded spanning
trees are shown in bold lines in the graphs. The new edges connecting the swapped
subgraphs are shown in dotted line.

Mutations are shown by using the example of aspirin molecule below. Number-of-

Node mutation involves addition or deletion of one element in a molecule. Number-of-

Edge mutation involves addition or deletion of one bond in a molecule, and Swap-Vertex

mutation involves swapping of two elements in a molecule. They are shown in the

molecular matrices in Figures 59, 60 and 61 respectively. The changes are highlighted by

italics and bold letters.

 150

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 2 0

12 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

 12 12 12 16 16 16 72

12 - 0 0 2 1 0 1

12 - 1 0 0 1 0

12 - 0 0 0 0

16 - 0 0 0

16 - 0 0

16 - 1

72 -

(a) select at random an element O to be deleted
in aspirin

(b) delete O from aspirin

 12 12 12 12 16 16 16 16 72

12 - 0 0 0 2 1 0 0 1

12 - 0 0 0 0 0 0 1

12 - 1 0 0 1 2 0

12 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

(c) add at random one carbon to aspirin
Figure 59: The Number-of-Node mutation operator illustrate

 151

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 2 0

12 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 1 0

12 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

(a) select at random a bond C-O to be deleted in
aspirin

(b) delete one C-O bond from aspirin

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 2 0

12 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 2 0

12 - 0 0 0 0 1

16 - 0 0 0 0

16 - 0 0 0

16 - 0 1

16 - 0

72 -
(c) select at random one bond C-Bz to be added
to aspirin

(d) add one C-Bz bond to aspirin

Figure 60: The Number-of Edge mutation operator illustrated

 152

 12 12 12 16 16 16 16 72

12 0 0 2 1 0 0 1

12 1 0 0 1 2 0

12 0 0 0 0 0

16 0 0 0 0

16 0 0 0

16 0 1

16 0

72

 12 12 16 16 16 12 16 72

12 - 0 0 2 1 0 0 1

12 - 1 0 0 1 2 0

16 - 0 0 0 0 0

16 - 0 0 0 0

16 - 0 0 0

12 - 0 1

16 - 0

72 -

(a) select a pair of elements C and O in aspirin to
be swapped

(b) swapping C and O

Figure 61: The Swap-Node mutation operator illustrated

To illustrate how the fitness value of a molecular graph can be evaluated, the

molecular graph in Figure 58(a) is used for evaluation of fitness. The target molecule for

reference in the illustration is assumed to be aspirin in Figure 53. The fitness function

used is f1. The descriptors used by f1 are W, NBZ, CW, V, IB, AN.

 W NBZ CW V IB AN
Target value of descriptors of
aspirin (t)

172 1 108 0 20.3995 0.4355

Value of descriptors of molecular
graph in Figure 58(a) (u)

154 1 108 0 10.3408 0.4425

|)(tiδ | = |t – u| 18 0 0 0 10.0587 0.007

Table 18: Illustration of fitness value calculation using f1

From (6), the fitness is therefore 1069.0
1.1

1
)007.00587.1000018(1 <== +++++f

 153

8.4 Experiments on Evolution of Molecules

To evaluate the performance of EvoGraph, it is used to see if it can discover known

drug molecules. The hydrogen depleted molecular graphs and the symmetric adjacency

matrices of these molecules are shown in Appendix 5.

8.4.1 Initialization and Evolution Parameters

An initial population of 50 symmetric molecular matrices containing node labels of

the target molecular graph is generated at random. Steady State Reproduction and

roulette wheel selection is used as described in Section 4.5.

There has not been a clear theory to guide the parameterization and design of

evolutionary algorithms [71]. In GA, crossover and mutation rates are often chosen by

trial and error to serve their purpose. In EP, crossover is not used at all. Crossover is the

major evolution operator for EvoGraph while mutation is the minor operator to prevent

the population from converging to local optimum of fitness less than unity. But the

relative proportion of mutation to crossover is higher in comparing with conventional GA

to increase the role of random search. The numbers of crossovers and ‘node mutation’ are

fixed at 10 and 1 respectively. The numbers of ‘bond mutation’ and ‘swap node

mutation’ are adjusted between 1 and 5 to in each trial to minimize the number of

generations to convergence.

8.4.2 Experimental Setup and Results

Graph topologies can be partitioned into tree topologies and non-tree topologies. The

latter consist of rings. In comparing with tree topologies, the cyclical nature of ring

structure in a molecule causes more overlapping of first layer atom adjacencies and bond

 154

adjacencies. More descriptors are required to accurately describe the target molecules

with rings. The target molecules we intend to design with EvoGraph can be divided into 2

groups. Members of the first group have tree topologies. They include tylenol, adrenaline,

aspirin, and ibuprofen. Members of the second group have ring structures. They include

nicotine, caffeine, and dilantin. Descriptors for tree-structure molecules, and hence their

fitness functions, are relatively simple when comparing with those of graphs with ring

structures. The first group of target molecules is evolved using the same fitness function.

The attempt to include all descriptors in Table 17 in a single fitness function to

evolve the second group of complex molecules causes prolongation of convergence time

and requires heavy computational resources. The evolutionary processes could not

converge within 3000 generations in our experiments when we attempted to do so. The

strategy we adopted in our experiments was therefore to break down the search in stages

with each stage deploying different reproduction operators and feature descriptors for

fitness evaluation so that some properties of the molecule being designed can be attained

at one stage and the resulting molecule can be passed over to the next stage to evolve into

another molecular with another set of properties.

For EvoGraph, the molecule obtained in one stage does not destroy the results of the

previous stages. For more complex target molecules, they are evolved in stages with

EvoGraph using different fitness functions at different stages.

The first stage finds the right atomic components and topology of a molecule using

f3 as the fitness function and RGC as operators. This first stage targets to search for the

right atomic components and topology of the target molecule. With the right atomic

components and topology found, the second and third stages use mutation to swap the

 155

atomic components and mutate bonds within a molecule to their right places. The second

stage deploys f4 as the fitness function and the Swap-Node mutation operator. It targets at

the searching of the right adjacencies between atomic components. For the third stage,

the fitness function of, f5 and the Number-of Edge mutation operator is used. This aims at

the search of the right bond adjacencies. The topology and the atomic components

evolved in the first stage are therefore not affected by the mutations in the second and

third stage.

For the first group of drug molecules we used in our experiment, EvoGraph was

applied to search the 4 target molecules in Appendix 5 using the fitness function f1. Ten

experiments are conducted for each target molecule with the evolution parameters as

described in this section. The best results for each target molecule are selected. EvoGraph

converged in all experiments in less than 2000 generations. However, the simplest 3 of

the 4 molecules, tylenol, adrenaline, and aspirin converge and produce the exact target

molecules whilst an isomer is evolved for ibuprofen. The result of the first stage

experiments is shown in Table 19.

Molecule Number of

random
crossover
per
generation

Number of
Number-of-
Node
mutation
per
generation

Number of
Number-of
Edge
mutation
per
generation

Number of
Swap-Node
mutation
per
generation

Number of
generations of
convergence
to unity

Exact
match to
target
molecule
or isomer

tylenol 10 1 5 2 270 exact
match

adrenaline 10 1 2 2 519 exact
match

aspirin 10 1 5 2 1937 exact
match

ibuprofen 10 1 5 2 1351 isomer
Table 19: First group experimental result using f1 as fitness function

 156

The fitness function f1 controls only the most basic features of a molecule. W, NBZ,

CW, and V control the composition of atoms, atomic weights and valence of atoms

within the molecule; IB and AN, control the first layer adjacencies between bonds and

atoms in a molecule. Simple molecules are evolved based on these descriptors. For more

complex molecules, control on second layer adjacencies and more stringent control of the

topology is required.

To improve the result, a more computational intensive fitness function, f2 is used in

place of f1 to evolve ibuprofen. In f2, the more computational intensive second layer

adjacency descriptor, AN2 replaces the single layer adjacency descriptor, AN, in f1. The

topology descriptor, graph spectrum S, is also added to enhance the overall topology

description. IB is added to enhance the bond description. With the use of f2 and the same

evolution operator proportions, the exact match is achieved at the 2289th generation. The

result is summarized in Table 20.

Molecule Number of

random
crossover
per
generation

Number of
Number-of-
Node
mutation
per
generation

Number of
Number-of-
Edge
mutation
per
generation

Number of
Swap-Node
mutation
per
generation

Number of
generations of
convergence
to unity

Exact
match to
target
molecule
or isomer

ibuprofen 10 1 5 2 2289 exact
match

Table 20: Evolving ibuprofen using f2 as fitness function

Instead of satisfying all descriptors at one go, which would require rather long

convergence time, the second group of target molecules was allowed to evolve in 3 stages.

The components and topology of a molecule is first evolved in stage 1 (using f3 with

descriptors W, NBZ, CW, and S). This is then followed by adjacencies of atoms in stage

 157

2 (using f4 with descriptors AN and AN2), and finally the valence of atoms and bond

types in stage 3 (using f5 with descriptors V and ANB).

In the first stage of the second group experiments, the evolutionary operators used is

the same as first group experiments except Swap-Node mutation because atom

adjacencies are not dealt with at this stage. Ten experiments are conducted for each target

molecule with 10 crossovers and 1 node mutation in each generation. The number of

Number-of-Edge mutations in each generation is selected between 1 and 5 to minimize

the number of generations on convergence. The fitness function used is f3. The best

results for each target molecule are selected. The correct topologies are evolved when

fitness converge to unity. There is no cospectral graph being evolved. The result is

summarized in Table 21.

Molecule Number of

random
crossover
per
generation

Number of
Number-
of-Node
mutation
per
generation

Number of
Number-
of-Edge
mutation
per
generation

Number of
Swap-Node
mutation
per
generation

Number of
generations
of
convergence
to unity

Exact match
to target
topology or
cospectral
graph

nicotine 10 1 5 NA 1566 exact match
caffeine 10 1 2 NA 1203 exact match
dilantin 10 1 5 NA 1183 exact match
Table 21: Second group stage 1 experiments using fitness function f3

In stage 2, only Swap-Node mutation is performed on the molecules evolved in stage 1

to achieve the right atom adjacencies. Fitness function f4 is used with the number of

Swap-Node mutation per generation fixed at 10. The result is summarized in Table 22.

Molecule Number of Swap-Node

mutation per generation
Number of generations
of convergence to unity

nicotine 10 63
caffeine 10 118
dilantin 10 679

 158

Table 22: Second group stage 2 experiments using fitness function f4

In stage 3, the Number-of-Edge mutation operator is adjusted to mutate bond

numbers between connected atomic components in a molecule without changing its

topology. It is performed on the molecules evolved in stage 2 with the number of

Number-of-Edge mutation operator per generation fixed at 10. The fitness function, f5 that

targets on bond description is used with the number of Number-of-Edge mutation

operator per generation fixed at 10. The result is summarized in Table 23.

Molecule Number of Number-of-

Edge mutation per
generation

Number of generations
of convergence to unity

nicotine 10 58
caffeine 10 525
dilantin 10 438
Table 23: Second group stage 3 experiments using fitness function f5

In the experiments on stage 2 and 3 experiments, the number of generations to

convergence increases with the degree of symmetry of the molecules. The least

symmetrical is nicotine and the most symmetrical is dilantin. Symmetry of a molecule

renders the descriptors of atom adjacencies and bond adjacencies inefficient. Though the

problem may be overcome by incorporating symmetry descriptors in the fitness function,

it may further increase computation resource required for the fitness function.

 159

 Chapter 9

Peer-to-Peer Overlay Network Design

Overlay network is a virtual network formed by end hosts atop an underlay physical

network to implement communication services for distributed applications. The problem

of flooding of queries and responses amongst the end hosts in the overlay network is

raised in [72][73]. There is a substantial wastage of resource on flooding of overlay

network as illustrated in the example in Figure 62. Two overlay network topologies with

unit cost of links, over the same underlay network are illustrated in Figure 62. Node ‘A’

is the source node in the network. In Figure 62(a), the overlay network cost is 3 while in

Figure 62(b) the cost is 4. Link BC and BD in Figure 62(b) are being traversed two times

instead of once as in Figure 62(a). This is due to the topology mismatch between the

overlay network and the underlay network in Figure 62(b). Similarly, the same problem

occurs between the routing paths over the logical layer P2P overlay network as revealed

in [75]. Hence, the choice of routing topology determines the efficiency of distribution of

information. P2P networks that rely on broadcast and back propagation from the source

node to the neighboring nodes, such as Gnutella [74], will be hampered tremendously by

flooding caused by inappropriate overlay network topologies.

 160

C

BA

D

1

1

1

C

BA

D

1

1

1

underlay network

overlay network

C

BA

D

1

1

1

CBA D1 1 2

underlay network

overlay network

(a) topology match (b)topology mismatch
Figure 62: Comparison of 2 different overlay networks on the same underlay network.

Minimum Spanning Tree (MST) based algorithms has been used to minimize

topology mismatches [4][22]. However, a MST may not minimize the total cost of flow

from the source node to the destinations in the system. Without considering topology

mismatch, the solution to minimize the cost of flow from the source to the destinations is

to construct the Shortest Path Tree (SPT). Knowing this, some MST based algorithms

modify the MST topology to minimize partially the cost of flow at the expense of

topology match [21]. The solutions are somewhere in between the MST and SPT. There

have not been any clear criteria on the degree of compromise between MST and SPT.

Our intention is to propose the criteria and corresponding algorithm to search for

solutions to meet them. Comparison between MST and SPT is illustrated by an example

in Figure 63. Two different overlay network topologies over the same underlay network

are compared against each other. Figure 63(a) shows the underlay network with cost of

flow labeled on the edges. Figure 63(b) is the MST and Figure 63(c) is the SPT over the

 161

underlay network. We define the Total Edge Cost (TEC) as the sum of cost of all edges in

a spanning tree, the Total Path Cost (TPC) as the sum of all path costs from the source to

the destinations, and Total Cost (TC) as the sum of TEC and TPC. The cost of flow

between any two nodes, say A and B, is denoted by d(AB). The TEC of MST is denoted

by TECMST. Other denotations are derived similarly. They are TECSPT, TPCMST, TPCSPT,

TCMST, and TCSPT.

A

FD
E

B

9

50 11

353360

70

A

FD
E

B

9

50 11

33

A

FD
E

B

9

353360

 TECMST=9+33+50+11=103

d(AB)=9
d(AD)=92
dAE)=42
d(AF)=53
TPCMST=196

TCMST=TECMST+TPCMST=299

TECSPT=9+60+33+35=137

d(AB)=9
d(AD)=69
d(AE)=42
d(AF)=44
TPCSPT=164

TCSPT=TECSPT+TPCSPT=301

(a) underlay network (b)MST overlay network (c)SPT overlay network
Figure 63: Comparison of costs of flow of MST and SPT over the same underlay
network

All algorithms on constructing MST aim at minimizing TECMST. There is a

compromise on the minimization of TPC. For example, TPCMST=196 in Figure 63(b) >

TPCSPT=164 in Figure 64(c). On the other hand, construction of SPT aims at minimizing

TPCSPT and there is compromise on the minimization TEC. TECSPT=137 in Figure

63(c)>TECMST=103 in Figure 63(b). We assume the minimization of both TEC and TPC

 162

are equally important. Our intention is to find a spanning tree atop a given underlay

network with TEC+TPC=TC ≤ min(TCMST,TCSPT). We name this spanning tree

Approximate Minimum Total Cost Tree (AMTCT). In this example,

TCAMTCT≤min(299,301)=299 should be satisfied. There may be more than one AMTCT

for a given underlay network. For example, two AMTCTs atop the underlay network in

Figure 63(a) are illustrated in Figure 64. The edges in AMTCTs do not necessarily come

from the MST or TEC. For example, in Figure 64(a) edge AD comes from the underlay

network and it does not form part of the MST or TEC in Figure 64(b) and (c).

A

FD
E

B

9

11

33

70

A

FD
E

B

9

11

3560

TECAMTCT1=123

d(AB)=9
d(AD)=70
d(AE)=42
d(AF)=53
TPCAMTCT1=174

TCAMTCT1=TECAMTCT1+TPCAMTCT1=297<min(299,301)

TECAMTCT2=115

d(AB)=9
d(AD)=69
d(AE)=55
d(AF)=44
TPCAMTCT2=177

TCAMTCT2=TECAMTCT2+TPCAMTCT2=292<min(299,301)

(a) (b)
Figure 64: Two AMTCTs atop the underlay network in Figure 63(a) with corresponding
costs of flow

The cost advantages of AMTCT1 and AMTCT2 over MST and SPT are summarized in

Figure 65. In Figure 65(a), AMTCT1 is used to compare with the SPT and MST. When

comparing with SPT, the AMTCT1 has a TEC saving of 137-123=14 and compensates

 163

the loss of TPC at 164-174=-10 resulting in a net saving of 4. When comparing with

MST, there is a cost saving of 196-174=22 for TPC which compensates the loss of cost

value 103-123=-20 for TEC resulting in a net cost saving of 2. In Figure 65(b), similar

comparison is made between the AMTCT2 and the SPT and MST. There is a net cost

saving of in TC of 9 and 7 respectively. Hence, both AMTCT1 and AMTCT2 are

acceptable solutions because there is an overall cost reduction from the original

min(TCMST,TCSPT)=299 in Figure 63(b) and (c).

 TPC TEC TC TPC TEC TC
SPT 164 137 301 SPT 164 137 301
AMTCT1 174 123 297 AMTCT2 177 115 292
net -10 14 4 net -13 22 9
% saving 1.3% % saving 3%

 TPC TEC TC TPC TEC TC
MST 196 103 299 MST 196 103 299
AMTCT1 174 123 297 AMTCT2 177 115 292
net 22 -20 2 net 19 -12 7
% saving 0.7% % saving 2.3%
(a) (b)
Figure 65: Cost analysis of AMTCT1 and AMTCT2

The search for AMTCTs is a graph topology optimization problem which is NP hard.

Graph based heuristic algorithms have been derived from conventional MST and SPT

search algorithms [85] to tackle NP hard search on networks such as [81][122]. Their

approach are based on probing of connections within a few hops from the source in the

network base on the cost of flows of the paths traversed and cost of flow to the nodes

available for probing in the next iteration. There is no optimization on the costs of flow

and topology connecting the source and destinations. Some of them requires complete

cost graph for all the nodes in the system to provide cost of flow between any two nodes

in the system for probing. Some algorithms places emphasis on solving overlay network

 164

queries and response flooding by minimization of topology mismatch between the

overlay and underlay network but they face the problem of the heavy response traffic

generated from the destinations back to the source which demand a shortest path between

source and the destination. Most of these solutions [121] first find the MST that solves

the former problem and then replace some high cost paths to the source by the shortest

paths in the SPT to solve the latter. This results in a tree topology that lies somewhere

between MST and SPT. Although these algorithms demonstrate the ability to reduce

traffic congestion, the metric for optimization is not clear.

There are deterministic algorithms to search for a tree that lies between MST and SPT

such that the TEC and TPC lies between certain cost bound making reference to the

TECMST and TPCSPT[123][124]. Their objective is not minimization of cost but to contain

the cost within certain limit. Furthermore, the edges of the resulting tree should come

from either the MST or TEC. Hence they cannot explore the use of new potential edges

from the underlay network such as edge AD in Figure 64(a).

Graph based Evolutionary Algorithm (EA) is another approach to NP hard search on

networks. At present, most of graph based EAs are designed for other problem domains

such as GP for evolution of trees for computer programming [2] and EP for evolution of

neural networks [4]. Other graph based EAs are designed with their encoding schemes to

solve problems in their specific domains. They are not suitable for our search as reviewed

in the next section.

In view of the lack of clear metric for optimization, our algorithm use TC=SPT+TPC

as an objective of minimization which place equal weights on both minimization of cost

of the spanning tree and costs of flow between the source and all the destinations.

 165

EvoGraph is used to search for the AMTCTs atop an underlay network to minimize TC.

EvoGraph treats networks as graphs and encodes them in cost matrices. Special evolution

operators are designed to operate on the cost matrices to search for the optimal. It uses

the underlay network with costs of flow between connected nodes as the backdrop to

derive the initial population of graphs as well as subsequent crossover and mutation

operation. Unlike other heuristic algorithms, there is no need to construct another layer of

complete cost graph for the algorithm to operate. It can also explore the use of links in the

underlay network that do not belong to the MST and SPT. The AMTCTs generated by

EvoGraph do not need to attain the absolute cost minimum provided there is total cost

savings to the MST and SPT. This eliminates the common problem of uncertainty of

reaching the absolute minimum in heuristic search algorithms. This system can work with

different groups of nodes in parallel throughout the Internet each having some knowledge

on cost of flow with other nodes in its group via the packet exchange under Internet

protocols.

 The stability of the Internet and the efficiency of protocol transfer of routing

information are not within the scope of this study. It is assumed the underlay network of

the physical internet is relatively stable [125] for the source to generate to AMTCT and

for the protocols to transmit routing information to the destination nodes. [126] measures

the medium session duration for Gnutella and Napstar to be 60 minutes. With the

understanding of time constraint on the maintenance of connections of nodes in a system,

the average number of converging generations adopted for our evolutionary search

experiments is kept below 1000. Underlay networks are generated at random starting

from 8 nodes to 24 nodes at 2 nodes interval for EvoGraph to build the AMTCT atop.

 166

The node degrees of the underlay network are generated at random between 2 and 8. This

is adopted in the experiments to tally with the statistical samples in [127] where average

out degrees for nodes in an Internet is 3. In our experiments, we observe the order of

increase in number of generations to reach convergence as the size of network increases.

This relation indicates the efficiency of EvoGraph on the time of convergence. The cost

savings by AMTCT in comparing with the conventional MST and SPT on each of the

underlay network are also observed. There can be more that one AMTCT generated for

each underlay network. The number of AMTCTs generated in addition to the fittest

AMTCT is observed with respect to the topological properties of the underlay network.

9.1 Previous Studies and the Problem

Decentralized sharing of files at different locations in the P2P network such as

Napster, Bit Torrent, Gnutella, Chord etc. [79] has been popular in recent years. This

aroused a lot of studies on the solving the topology mismatch problem at the logical layer

overlay P2P network, which directly affects the search efficiency as well as the

scalability of the network [78]. Studies on both unstructured [75][76][77] and structured

[80] P2P networks are conducted. The construction of minimum spanning tee (MST)

from the source node to its logical neighbors is an efficient method on solving the

topology mismatch problem. This method is included in the algorithms proposed in

[73][75][81]. In addition to the aim of minimization of unnecessary traffic due to

topology mismatch, minimization of total cost of traffic from source node to the logical

neighbors is also important. By default, the Internet usually uses the shortest path

between nodes. Studies on improving quality of service of overlay network are carried

 167

out to optimize the cost of traffic from the source node to the neighboring nodes with

optimal bandwidth distribution [82]-[85]. In these studies, finding the shortest paths from

the source node to the neighboring nodes is a major component in their designs. The

construction of shortest path tree (SPT) is included in their algorithms.

In the process of construction of MST for minimization of topology mismatch, the

shortest path from source node to the destination nodes at the overlay network may be

compromised. But minimization of path costs between the source and destinations are

especially important for heavy response destinations because they generate a lot of traffic

in response to queries from the source. To address this problem [121] adds a step to its

algorithm of generating MST in 2 hops diameter from the source to replace the path from

the source to a heavy response destination in the MST with the shortest path. Similarly, in

[2],[75],[128]-[129] the algorithm first constructs MST within 2 hops from the source and

then followed by replacing connections to nodes far away from the source by connections

to nodes nearer to the source. In these cases, SPT served as a compensation of

inadequacies of the MST. There is no clear objectives on the trade-offs between the two

in the algorithms. Furthermore, these algorithms [2][75],[121],[128]-[129] involve

probing of connections from the source to neighboring nodes to construct the MSTs. A

complete graph on cost of flow between the source and all the neighboring nodes has to

be constructed to supply cost of the potential paths to be probed.

 The SPT and MST can be found by conventional deterministic greedy algorithms on

graph such as Dijkstra’s algorithm and PRIM algorithm respectively [85]. There are

graph based algorithms using deterministic approach on searching for tree in a graph with

costs of flow that lie between TECMST and TPCSPT by traversing the MST with edges

 168

addition and deletion based on some criteria on maximum cost of flow from the source to

the current node being traversed [123]-[124]. The resulting tree has the maximum cost of

flow between the source and any destination bounded by a cost which is a multiple of the

minimum path cost in the SPT and its TEC bounded by a cost which is a multiple of the

TECMST. These algorithms construct trees with certain cost bounds based on SPT and

MST. They do not search for the tree topologies that minimize TC and the trade off

between SPT and MST is not clear. Furthermore, all the edges of the resultant tree comes

form the MST or SPT. The potential edges outside the MST and SPT cannot be explored.

Similarly, in [122] greedy algorithm is applied on SPT search with relaxation on letting

the paths to pass through the destinations to find a tree somewhere between SPT and

MST with low TEC and reasonable source-destination costs. The objective of cost

minimization is not clear.

 Our proposal on the search of AMTCTs is a network optimization problem.

Evolutionary approach can be applied in this respect. There are many studies on using

evolutionary approach to optimize network topologies such as encoding the adjacency

matrices of graphs in linear chromosomes with application of genetic algorithm (GA)[91].

This approach has a high probability on producing disconnected graphs because

connectivity of the parent graphs is not encoded in the chromosome. And the retention of

useful links is not considered in the crossover process. Hence, its efficiency is hindered

by the subsequent repair process. Post processing of the linear children chromosome after

crossover and mutation is also required to convert it back into a graph.

 Graph based EAs have been developed to search for special graph topologies required

for different problems. EP[4] is designed to evolve neural network topologies and

 169

corresponding weights of the edges using mutation alone. This algorithm is designed for

incremental changes in a network by addition and deletion of an edge with subsequent

repair if disconnected graph is produced. It does not have the benefit of capturing useful

information from two parent networks in crossover process. The Number-of-Edge

mutation in EvoGraph has the same mechanism.

 GP [2] provides an evolutionary algorithm for tree topologies in form of subtree

exchange between parent trees. This subtree exchange algorithm cannot maintain

consistent nodes from the parent trees to the children tree which is the requirement for

our search. This is because crossover point and hence the nodes to be swapped between

parent trees are dictated by the tree topologies. This is illustrated by an example below.

Node ‘1’ is the source and nodes ‘2’ to ‘5’ are the destinations. The purpose is to produce

children trees spanning all the nodes in the system. Each node should not appear twice in

the children tree. The swapping of subtrees in Figure 66 will result in children trees

having repetitive nodes. They are invalid solutions for both children.

1

5

43

45

23 2

1

Figure 66: Swapping of subtrees in GP producing invalid solutions for optimal routes

Prüfer numbers encoding is also used in other studies on evolution of trees. This is an

elegant way of encoding trees in linear chromosome because its decoding is found in a

constructive proof of Cayley’s formula. Though Prüfer numbers encoding have been used

 170

to represent trees in GA [90] and many studies use it as a heuristic problem solver [86]-

[87], it has the problem of retaining locality or useful links because the crossover

operation, the mutation operation, and the decoding of the Prüfer numbers chromosome

causes big changes to the tree topology [89]. For example, in mutation, a slight change in

the Prüfer number sequence representing a tree (the phenotype) may cause a big change

in the tree topology (the genotype). Many useful links in the parents are then destroyed

[90]. Furthermore, Prüfer numbers correspond to unconstrained spanning trees in

complete graphs. When the underlying graph is not complete, the offspring produced by

evolution of Prüfer numbers encoding may be invalid or disconnected. Hence, it is not

suitable for feedback based routing [92] like the overlay network. Because it transmits

routing information between nodes through dynamic probing and feedback of messages

instead of complete knowledge of routing information of all nodes in the network. [88]

proposes a graph based EA to evolve degree constrained MST but it needs to generate

initial parent graphs that satisfy the degree constraint prior to evolution and order is

introduced in the crossover and mutation process to produce valid children. If it happens

that an edge needs to be added to repair disconnected subgraphs to form a children graph

after crossover and that edge does not exist in the underlay network, no valid overlay

network can be produced.

Node Biased encoding and Link and Node Biased encoding represent weights of edges

or weights of nodes and edges of a network in a linear chromosome on which GA is

conducted [90]. The weights in the chromosome does not necessarily equal to the weights

of the edges and nodes in the network. But MST search algorithms such as PRIM and

Kruskal algorithms are conducted in the network based on the set of biased weights in the

 171

chromosome. The efficiency of search is hampered by the redundancies in this form of

encoding because more than one chromosome may represent the same tree topology.

Similar redundancy problem applies to Network Random Key encoding [141] where an

arbitrary set of numbers are assigned to edges of a network. The set of numbers are sorted

in ascending order in a linear chromosome. Kruskal algorithm is applied to construct

MST on a network based on the order of magnitude of numbers assigned to the edges in

the linear chromosome.

 In [88][140], Edge Set encoding is used to encode edges of a network on which degree-

constrained MST is evolved. The advantage of Edge Set encoding is the ability to make

use of the unions and intersections of edges of the parent trees followed by edge repair or

tree regeneration on them to produce offspring in the crossover process so that a high

degree of heritability can be maintained in the course of evolution. But high heritability

may limit the ability of the EA to explore new search space especially when the

population is approaching optimal where the difference between individual trees is small.

 EvoGraph generates and evolve overlay networks based on the underlay network

topology with costs of flow on their links. The underlay network topology does not need

to be complete. That is, each node does not need to have complete cost information of all

the other nodes in the system. It can explore the use of links offered by the underlay

network that lies outside the MST and SPT. The connectivity and structural information

of the network can be exchanged between parents and carried to the next generation after

the crossover process. The consistency of nodes can also be maintained throughout the

evolutionary process.

 172

9.2 Application of EvoGraph on Peer-to-Peer Overlay Network Evolution

EvoGraph start off with the generation of a population of overlay trees at random

base on the underlay network for subsequent application of evolution operators. The

network topologies are encoded in form of cost matrices instead of conventional

encoding in linear chromosome and Prüfer number to avoid the need of post processing

in decoding and the inability of retaining locality and useful links described in Section

9.1. This is the most general and direct form of encoding and EvoGraph evolves networks

directly. Given an initial population of cost matrices of overlay trees, EvoGraph is able to

evolve AMTCT using a set of novel evolution operators that evolve overlay network

atops an underlay network and a fitness function designed to minimize TC.

Like many EAs, the EvoGraph algorithm consists of the following steps:

1. Given an underlay network, initialize a population of overlay trees at random

using the connections in the underlay network.

2. Evaluate the fitness of each overlay tree.

3. Select two overlay trees for reproduction using the roulette wheel selection

scheme.

4. Apply crossover and mutation operators on the selected overlay trees using

connections in the underlay network.

5. Replace the least-fit overlay trees in the existing population by the newly

generated offspring using the steady state reproduction scheme.

6. Repeat Steps 2 to 5 until the termination criteria are met.

Unlike other probing based algorithms or graph based EAs, the underlay network does

not need to be a complete graph for EvoGraph to operate. The crossover operator

 173

facilitates the exchange of information between overlay trees and produce better children

using the connections in the underlay tree. The mutation operator introduces variations to

avoid the evolution from being trapped at local optima.

 An example of encoding underlay network as an undirected graph, G, in a symmetric

cost matrix, G, is shown in Figure 67(a). A zero element cij=0 means there is no link

between node i and node j. A non-zero element in the matrix, cij, represents a link from

node i to node j and cij is the cost of flow between them. A tree is considered to be a

directed graph with |V| number of nodes and |V|-1 number of edges starting from the

origin to the leaf nodes. We encode overlay trees in cost matrices that show cost and

direction between pairs of nodes and also represent adjacency between them. A non-zero

element in the matrix, cij, represents a directed link from node i to node j and cij is the

cost of flow between them. The directed edge is a way of encoding for the application of

EvoGraph. The flow can be two way in the network. An example of overlay tree, T,

encoding in a cost matrix, T, is shown in Figure 67(b).

 174

 G T
 1 2 3 4 5

1 0 88 9 40 73

2 88 0 30 34 0

3 9 30 0 47 0

4 40 34 47 0 70

5 73 0 0 70 0

 1 2 3 4 5

1 0 88 9 0 0

2 0 0 0 34 0

3 0 0 0 0 0

4 0 0 0 0 70

5 0 0 0 0 0

G T

1

5

43

2

88

9

40

34

47

73

70

30

1

5

43

2

88

9

34

70

(a) Symmetric cost matrix with corresponding

underlay network
(b) Overlay tree atop underlay network encoded

in cost matrix as directed graph
Figure 67: Encoding overlay tree over an underlay network in a cost matrix

9.2.1 Generation of Tree on Overlay Network Atop an Underlay Network

 An overlay tree spanning the source node and all the destination nodes atop the

underlay network can be generated at random in form of cost matrix using the properties

in Table 1. This algorithm is similar to the formalism in Section 4.1 but make use of the

edges in the underlay network to generate the overlay tree. If an edge does not exist

between two nodes in the underlay network, there will not be an edge between the same

nodes in the overlay tree. This algorithm is also used in Section 9.2.2 and 9.2.3 to repair

the degenerate trees at the intermediate stage right after the crossover of two parent trees

or deletion of an edge during mutation of a tree. The idea is to identify the nodes without

incoming edges and connect them to other nodes at random by having directed edges

 175

pointed to them until one such node (without incoming edge) is left behind. The left

behind node is the root of the tree. All the connections made in the overlay tree should

use connections from the underlay network. The algorithm is illustrated as follow.

Both the underlay network and the overlay network are using the same set of nodes

},....,,...,,{ 21 ni vvvvV = .

Define origin node (on) in a tree is a node without incoming edges. It has ‘0’ in all its

column cells in the cost matrix.

Let),(EVG be the graph of the underlay network with the set of nodes

},.....,{ 21 nvvvV = and set of edges },:),({ VvvvveE jiji ∈= where e(vi,vj) is a

directed edge from vi to vj.

 G be the cost matrix of),(EVG .

jivvc be the communication cost between node vi and vj in G and),(EVG

)','(EVT be a tree in the underlay network that contains the source node vs

with VV ⊂' , EE ⊂' .

T be the cost matrix of)','(EVT .

jivvC be the communication cost between node vi and vj in T and)','(EVT .

|X| notates the number of elements in set X.

1. initialize T with 0=
jivvC for all ∈

ji vvC T;

2. W ⎯⎯← all ons in T; (* find all origin nodes in T to form a set W *)

3. V’ ⎯⎯← {vs}, E’ ⎯⎯← φ ; (* assign source node vs as the first node in the tree T*)

4. while |W|>1 (* continue the while loop until only one on is left behind *)

5. find a set of nodes 'VB ⊂ in T that have connections to nodes outside T in the

underlay network (i.e. connected to nodes in V \ V’);

6. select at random a node Bvr ∈ ;

7. select at random some nodes '\ VVvi ∈ that connect to rv in the underlay

 176

network;

8. for all iv ,
irir vvvv cC ⎯⎯← , 'Vvi ∪ , '),(Evve ir ∪ ; (*tree T(V’,E’) construction

by assigning cost
irvvc in G to

irvvC in T, include node vi in V’ and edge

),(ir vve in E’ *)

9. count |W|; (* count the number of ons in T*)

10. end

An example on generation of an overlay tree from the underlay network in Figure

67(a) is illustrated in Figure 68. Node ‘1’ is the source node vs.

 177

 T T
1. Initialize network cost matrix by

setting cij= 0 for all nodes in T;
2. W = V = {‘1’,’2’,’3’,’4’,’5’};
3. V’ = {‘1’}, φ='E
4. while |W|=5>1

 1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

1

5

43

2

Iteration 1:
5. B = {‘1’};
6. '\}'5','4','3','2{' VV∈

connected to node in B;
7. select from B vr=’1’,

'\}'5','4','3','2{' VV∈ is
connected to vr=’1’ in the
communication network;

8. select at random ‘2’,’3’ from
'\ VV

9. connect vr to nodes ‘2’,’3’
C12←(c12=88), C13←(c13=9),

})''1{''3(''2'' ∪∪=V ,

))3,1(()2,1(' φ∪∪= eeE ;
10. W={‘1’,’4’,’5’};
11. |W|=3>1;

 1 2 3 4 5

1 0 88 9 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

1

5

43

2

88

9

Iteration 2:
12. B = {‘1’,’2’,’3’};
13. '\}'5','4{' VV∈ connected to

the nodes in B;
14. select at random from B vr=’2’,

'\},'4{' VV∈ is connected to
vr=’2’ in the communication
network;

15. select ’4’ from '\ VV ;
16. connect vr to node ’4’ C24←(c24=34),

)'3','2','1(''4'' ∪=V ,

)}3,1(),2,1({)4,2(' eeeE ∪= ;
17. W={‘1’,’5’};
18. |W|=2>1;

 1 2 3 4 5

1 0 88 9 0 0
2 0 0 0 34 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

1

5

43

2

88

9

34

Iteration 3:
19. B = {‘1’,’4’};
20. '\}'5{' VV∈ connected to the

nodes in B;
21. select at random from B

vr=’4’, '\}'5{' VV∈ is
connected to vr=’4’;

22. select ’5’ from '\ VV ;
23. connect vr to node ’5’

C45←(c45=70),
)'4','3,'2','1(''5'' ∪=V ,

)}4,2(),3,1(),2,1({)5,4(' eeeeE ∪= ;
24. W={‘1’};
25. |W|=1;
26. end

 1 2 3 4 5

1 0 88 9 0 0
2 0 0 0 34 0
3 0 0 0 0 0
4 0 0 0 0 70

5 0 0 0 0 0

1

5

43

2

88

9

34

70

Figure 68: An overlay tree generated atop an underlay network

 178

9.2.2 Crossover of Networks

The random crossover is applied to crossover of two overlay trees. This is similar to

the formalism in Section 4.2.2 but it uses the edges in the underlay network for re-

connection after breaking up the trees in the crossover stage. Given two overlay trees,

TP1(VP1, EP1) and TP2(VP2, EP2) with corresponding cost matrices TP1 and TP2, the

operation can be described as follows. For each of TP1 and TP2, a crossover point between

two neighboring rows and columns in a cost matrix is selected randomly. One submatrix

from each of the split parent matrix is then swapped to form two new child matrices.

Connections within the submatrices are retained throughout the process while

connections outside them are deleted. New edges are generated with repairing in each of

the resulting matrices to form two children, TC1 and TC2. The formalism is illustrated

with an example below.

1. Given an underlay network, two overlay tree cost matrices TP1 and TP2 are

constructed with corresponds to overlay tree topologies TP1(VP1,EP1) and TP2(VP2,EP2),

with node sets { 1
1
Pv , 1

2
Pv , …, 1P

iv , 1
1

P
iv + , …, 1P

nv } and { 2
1
Pv , 2

2
Pv , …, 2P

iv , 2
1

P
iv + , …, 2P

nv }

respectively. An example using the underlay network in Figure 67(a) is shown in

Figure 69. In the example number of nodes of both trees is n=5 and node indices of

both trees are 1P
iv = 2P

iv =’i’.

2. A crossover point in each of TP1 and TP2 is randomly selected.

 179

 TP1 TP2
 1 2 3 4 5

1 0 88 9 0 0
2 0 0 0 34 0
3 0 0 0 0 0

4 0 0 0 0 70
5 0 0 0 0 0

 1 2 3 4 5

1 0 88 0 40 73
2 0 0 0 0 0
3 0 0 0 0 0

4 0 0 47 0 0
5 0 0 0 0 0

 TP1 TP2

1

5

43

2

88

9

34

70

cu
t l

in
e

1

5

43

2 40

88

47

73

cu
t l

in
e

(a) (b)
Figure 69: Parent trees TP1and TP2

3. Assume that the crossover point for TP1 is between 1P
iv and 1

1
P
iv + and for TP2 is between

2P
iv and 2

1
P
iv + , the lower right portions of these two cost matrices are then swapped so

that the rows and columns corresponding to { 1
1

P
iv + ,…, 1P

nv } are swapped with the rows

and columns corresponding to { 2
1

P
iv + ,…, 2P

nv } to form two matrices TPC12 and TPC21.

The valid node labels for TPC12 are therefore given by { 1
1
Pv , 1

2
Pv ,.., 1P

iv , 2
1

P
iv + ,.., 2P

nv }and

for TPC21 by { 2
1
Pv , 2

2
Pv ,.., 2P

iv , 1
1

P
iv + ,.., 1P

nv }. In the example, i=3.

4. All cell entries in each of TPC12 and TPC21 are scanned to remove invalid edges.

Degenerate trees TPC12 and TPC21 are formed.

 180

 TPC12 TPC21
 1 2 3 4 5

1 0 88 9 0 0
2 0 0 0 0 0
3 0 0 0 0 0

4 0 0 0 0 0
5 0 0 0 0 0

 1 2 3 4 5

1 0 88 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0

4 0 0 0 0 70
5 0 0 0 0 0

 TPC12 TPC21

1

5

43

2

88

9

cu
t l

in
e

1

5

43

2

88

70cu
t l

in
e

(a) (b)
Figure 70: Swap nodes ‘4’, ‘5’ between TP1 and TP2 on the right hand side of the cut line
and delete invalid edges.

5. Regenerate a spanning tree from each of the degenerate trees using similar algorithm

on spanning tree generation at random as follow.

1. find T (the tree containing the source node vs) in the degenerate tree.

2. repeat the ‘while loop’ from step 4 to step 10 in the algorithm on generating

spanning tree at random in Section 9.2.1 with the following modifications (i) step

7 modified to select at random ‘one’ node '\ VVvi ∈ instead of ‘some’ nodes to

connect to vr and (ii) step 8 modified to also include into T the subtree from the

other parent induced by the new connection e(vr ,vi), if any, then followed by re-

alignment of edge directions in T. Note that the induced subtree from the other

parent should not contain the source node according to our way of selection nodes

to be swapped in the crossover process.

 181

An example using the degenerate tree TPC21 in Figure 70(b) to generate children TC2

is illustrated in Figure 71. Similarly, the other children TC1 is generated from TPC12

by the same algorithm. The crossover process is then completed. It can be observed in

the example that e(2,3) is not included in the parents TP1 and TP2 but in the underlay

network G. Hence the crossover may use edges outside the parents. In other words,

the crossover of MST and SPT of an underlay network may produce children

containing edges outside them.

 182

 TPC21 TPC21
1. find T(V’,E’) in TPC21.

V’={‘1’,’2’}, E’={e(1,2)};
2. W={‘1’,’3’,’4’};
3. while |W|=3>1

 1 2 3 4 5

1 0 88 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 70

5 0 0 0 0 0

1

5

43

2

88

70

iteration 1
4. B = {’1’,’2’};
5. '\}'5','4','3{' VV∈

connected to the nodes in B, ;
6. select at random from B

vr=’1’, '\}'5','4','3{' VV∈
is connected to vr=’1’ in the
underlay network;

7. select at random ’5’ from
'\ VV ;

8. connect vr to node ’5’
C15←(c15=73),

})'2','1{''5(''4'' ∪∪=V ,

))2,1()5,1(()5,4(' eeeE ∪∪= ;
it can be detected that column ‘5’ in
TPC12 has more than one non-zero cell.
This violates the tree property in Table
1.

 1 2 3 4 5

1 0 88 0 0 73

2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 70

5 0 0 0 0 0

1

5

43

2

88

70

73

9. re-align direction of edges in T
from the source node toward the
leave nodes by reversing direction
of e(4,5) to e(5,4).
V’={‘1’,’2’,’4’,’5’}),
E’={e(1,5),e(1,2),e(5,4)};

10. W={‘1’,’3’};
11. |W|=2>1

 1 2 3 4 5

1 0 88 0 0 73

2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 70 0

1

5

43

2

88

70

73

Iteration 2:
12. B = {‘1’,’2’,’4’};
13. '\}'3{' VV∈ connected to

nodes in B;;
14. select at random vr=’2’,

'\}'3{' VV∈ is connected to
vr=’2’ in the underlay network;

15. select ’3’ from '\ VV ;
16. connect vr to node ’3’

C23←(c23=30),
}'5','4','2','1{''3'' ∪=V ,

)}4,5(),5,1(),2,1({)3,2(' eeeeE ∪= ;
17. W={‘1’};
18. |W|=1;
19. end

 1 2 3 4 5

1 0 88 0 0 73

2 0 0 30 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 70 0

TC2

1

5

43

2

88

70

73

30

TC2

Figure 71: Generation of children spanning tree TC 1 from degenerate tree TPC21 after
exchange of subtrees in crossover

 183

9.2.3 Mutation of Networks

Mutation can be very useful when a population is to avoid being trapped in a

suboptimal state. Because of the large search space in network evolution, mutation plays

an especially important role in network evolution. To mutate networks to avoid getting

trapped at local minima. The Number-of-Edge mutation operator allows us to increase or

decrease the number of edges in a network by one. The formalism is similar to Section

4.3.1 but it uses the edges in the underlay network to for addition or deletion of an edge at

random. The details are given below.

1. For an overlay tree TP(VP, EP) with edge set, EP, we construct its corresponding cost

matrix as TP.

2. Select a ‘non-zero＇cell in TP. Convert the selected cell to ‘0’ to form an intermediate

network TPC and its corresponding cost matrix TPC. Use the overlay tree construction

algorithm step 2 to 15 in Section 9.2.1 to form a new connection to generate a child

overlay tree cost matrix TC.

 184

An example of the Number-of Edge mutation is given in Figure 72 below.

TP TPC
 1 2 3 4 5

1 0 88 9 40 73
2 0 0 0 0 0
3 0 0 0 0 0

4 0 0 0 0 0
5 0 0 0 0 0

 1 2 3 4 5

1 0 88 9 0 73
2 0 0 0 0 0
3 0 0 0 0 0

4 0 0 0 0 0
5 0 0 0 0 0

TP TPC

1

5

43

2

88

9 40

73

1

5

43

2

88

9

73

(a) (b) Delete at random c13 in TP

TC TC
 1 2 3 4 5

1 0 88 9 0 73
2 0 0 0 0 0
3 0 0 0 47 0

4 0 0 0 0 0
5 0 0 0 0 0

1

5

43

2

88

9

73

47

(c) Add c78 according to overlay tree generation algorithm in Section 9.2.1.
Figure 72: Network mutation demonstrated

9.2.4 Fitness Function

The purpose of the fitness function is to minimize TC, which equals TPC+TEC. TC is

proportional to the number of nodes in the overlay tree, |V|, and the costs of links between

the nodes, cij, which is generated at random not large than 100 in the underlay network

 185

prior to the experiments. The fitness function to be maximized in the evolutionary

process is devised as follow.

STCTPC
V

TC
Vfitness

+
×

=
×

=
||100||100

The numerator is a constant with respect to the number of nodes in the underlay network.

The number 100 is a constant to adjust the value of the numerator in the order of the

denominator. The denominator TC = TPC + TEC is the value to be minimized.

9.3 Experiments

The experiments starts at an 8 nodes underlay network generated at random. The

following underlay networks have 2 nodes added at each interval. The step up continues

to 24 nodes. The graphs of these underlay networks and their cost matrices are shown in

Appendix 6. The source node is the upper left most node ‘1’ in the cost matrix. The SPT

and MST are constructed by Dijkstra’s algorithm and PRIM algorithm respectively for

each of the underlay network. Their TCSPT and TCMST are calculated for the termination

criteria of evolution. The degree of nodes in the random underlay network has an average

between 3.4 and 6.6667 shown in Table 24. The degree density is obtained by dividing

the total degree of all nodes in a network by the number of nodes. For each of the

underlay network generated, the cost of flow cij between a pair of nodes indiced ‘i’, ‘j’ is

an integer generated randomly at a limit of 100.

 186

|V| Min degree Max degree Degree density
8 4 6 5.25

10 4 6 5.6
12 4 6 5.6667
14 4 6 5.4286
16 5 6 5.75
18 4 6 5.6667
20 2 8 5.5
22 2 8 4.4545
24 2 8 6

Average 3.4 6.6667 5.48
Table 24: Degree of randomly generated underlay network

9.3.1 Initialization and Evolution Parameters

Fifty overlay tree cost matrices are generated at random for each underlay network as

the initial population. For EvoGraph, the relative proportion of mutation to crossover is

higher in comparing with conventional GA to increase the role of random search. Two

overlay trees are then selected for crossover. As there is a background underlay network

which is not a complete graph, the search space is smaller and less number of mutations

is used to explore the search space. The numbers of random crossover applied and

Number-of-Edge mutation applied are fixed at 10 and 1 respectively. Steady State

Reproduction and roulette wheel selection is adopted as stated in Section 9.2. There can

be more than one AMTCT satisfying the TC<min(TCSPT,TCMST) condition. Though we

do not need to obtain the absolute minimum TC, the search is extended for another 100

generations to seek further improvement after the first AMTCT is found. The termination

criteria are

1. AMTCT is found. That is, TC<min(TCSPT,TCMST), and

2. there is no improvement in fitness for 100 generations after the first AMTCT is found.

 187

9.3.2 Experimental Results

Ten experiments are carried out for each of the underlay network. The average

number of generations of convergence is obtained for each underlay network to find out

the trend of convergence in relation to the number of nodes. The results with mean,

spread, standard deviation, and the spread-standard deviation ratio on number of

generations to reach convergence are summarized in Table 25. It can be observed that the

spread-standard deviation ratio on the converging generation is in the 0.3 to 0.4 range.

The relation between the number of nodes and the converging generation is linear with

least square regression at 0.9769 in as shown in Figure 73.

Exp |V|=8 |V|=10 |V|=12 |V|=14 |V|=16 |V|=18 |V|=20 |V|=22 |V|=24

1 2 297 322 615 393 569 838 424 882

2 64 174 335 458 393 683 575 1163 1212

3 67 227 338 611 512 270 766 1184 577

4 47 270 279 408 658 532 393 673 985

5 43 143 345 282 613 703 735 1097 1163

6 192 221 262 288 363 515 725 495 644

7 8 287 424 403 521 835 858 986 1058

8 65 150 307 610 359 585 505 835 617

9 10 307 342 552 422 933 727 458 334

10 167 177 116 349 671 422 804 933 587

mean 66.5 225.3 307 457.6 490.5 604.7 692.6 821.2 805.9

s.d. 64.61 62.41 80.01 132.19 122.15 193.51 152.43 297.09 294.16

spread 190 164 308 333 312 663 465 760 878

s.d./spread 0.34 0.38 0.26 0.40 0.39 0.29 0.33 0.39 0.34

Table 25: Converging generation for experiments on different number of nodes

 188

y = 47.197x - 258.34

R
2
 = 0.9769

0

200

400

600

800

1000

5 7 9 11 13 15 17 19 21 23 25

no. of nodes

co
nv

er
gi

ng
 g

en
er

at
io

n

Figure 73: Linear relation between number of nodes and converging generations on
search of AMTCTs by EvoGraph

The AMTCT with the lowest TC for the 10 experiments for each of the underlay

network with |V| number of nodes are shown in Appendix 6. The edges of the AMTCTs

with the lowest TCs are highlighted by bold numbers and underlined in respective cost

matrices. We use the 5th experiment on underlay network with |V|=8 as an example. The

underlay network is shown in Figure 74(a), the SPT of the underlay network is shown in

Figure 744(b) with the tree edges highlighted in bold numbers and underline in the cost

matrix, its MST is shown in Figure 74(c), and its AMTCT searched by EvoGraph is

shown in Figure 74(d). The graph of fitness vs the number of generations of evolution is

shown in Figure 74(e). EvoGraph converges at the 43rd generation. The corresponding

cost savings on TC comparing with MST and SPT is illustrated on Figure 74(f).

 189

 1 2 3 4 5 6 7 8

1 0 88 9 40 73 0 65 81

2 88 0 0 34 0 0 99 84

3 9 0 0 47 81 33 34 60

4 40 34 47 0 70 31 0 0

5 73 0 81 70 0 56 94 50

6 0 0 33 31 56 0 11 0

7 65 99 34 0 94 11 0 91

8 81 84 60 0 50 0 91 0

1

5

8

7

6

4

3

2
88

9

40

73

65

81

34

99

8447

81

33

34

60

70

31

56
94

50

11
91

(a) Cost matrix and underlay network of |V|=8.

 1 2 3 4 5 6 7 8

1 0 88 9 40 73 0 65 81

2 88 0 0 34 0 0 99 84

3 9 0 0 47 81 33 34 60

4 40 34 47 0 70 31 0 0

5 73 0 81 70 0 56 94 50

6 0 0 33 31 56 0 11 0

7 65 99 34 0 94 11 ∞ 91

8 81 84 60 0 50 0 91 0

1

5

8

7

6

4

3

2

9

40

73

33

34

60

34

TPCSPT=9+40+73+42+43+69+74=350
TECSPT=9+40+73+33+34+60+34=283

(b) Cost matrix and corresponding SPT over the underlay network in Figure 74(a).
 1 2 3 4 5 6 7 8

1 0 88 9 40 73 0 65 81
2 88 0 0 34 0 0 99 84
3 9 0 0 47 81 33 34 60
4 40 34 47 0 70 31 0 0
5 73 0 81 70 0 56 94 50
6 0 0 33 31 56 0 11 0
7 65 99 34 0 94 11 0 91
8 81 84 60 0 50 0 91 0

1

5

8

7

6

4

3

2

9

31

56

50

11

34

33

TPCMST=9+107+73+98+42+53+148=530
TECMST=9+33+31+56+34+50+11=224

(b) Cost matrix and corresponding MST over the underlay network in Figure 74(a).

 190

 1 2 3 4 5 6 7 8

1 0 88 9 40 73 0 65 81

2 88 0 0 34 0 0 99 84

3 9 0 0 47 81 33 34 60

4 40 34 47 0 70 31 0 0

5 73 0 81 70 0 56 94 50

6 0 0 33 31 56 0 11 0

7 65 99 34 0 94 11 0 91

8 81 84 60 0 50 0 91 0

1

5

8

7

6

4

3

2

40

73

34

33

60

11

9

TPCAMTCT=74+9+40+73+42+53+69=360
TECAMTCT=9+33+34+73+40+60+11=260

(d) Cost matrix and corresponding AMTCT of underlay network in Figure 74(a). AMTCT highlighted in
bold and underlined numbers in cost matrix.

0 20 40 60 80 100 120 140 160 180 200

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

Generation

M
ax

im
um

 F
itn

es
s

 TPC TEC TC
SPT 350 283 633
AMTCT 360 260 620
net -10 23 13
% saving 2%

 TPC TEC TC
MST 530 224 754
AMTCT 360 260 620
net 170 -36 134
% saving 18%

(e) Fitness vs number of generations (f) TC saving comparison
Figure 74: AMTCT searched by EvoGraph atop underlay network in Figure 74(a) and
cost comparison with corresponding SPT, MST.

The net TC savings of the fittest AMTCTs for the nine underlay networks (|V|=8 to

|V|=24 at 2 nodes interval) are listed in Appendix 6. The percentage of TC savings for

each underlay network with respect to TCSPT and TCMST are summarized in Table 26. The

amount of cost saving depend on the underlay network topology and the cost of flows in

the network. This varies from case to case. Generally total cost savings on MST is higher

than SPT.

 191

|V| % TC saving on TCSPT % TC saving on TCMST

8 2 18
10 3 13

12 5 3
14 3 8
16 2 6

18 4 8
20 10 21
22 1 3

24 1 17
average 4 11

Table 26: Percentage cost saving results of AMTCTs on TCSPT and TCMST on each
underlay network

The fitnesses of all experiments are shown in Table 27. There is at least one AMTCT

discovered for each underlay network. It can be observed that as the number of nodes in

the system increases, the number of AMTCTs discovered increases. The fitnesses of the

additional AMTCTs are highlighted in italics in Table 27. Their fitnesses are below the

fittest AMTCT but they are acceptable because they satisfy the condition

TC<min(TCSPT,TCMST). There is a weak positive correlation (correlation coefficient

=0.51) between the degree density of the underlay network and the number of additional

AMTCTs. The trend is shown in Figure 75. This may due to the fact that more choices

are offered by the high degree density underlay networks for path selection.

 192

Exp |V|=8 |V|=10 |V|=12 |V|=14 |V|=16 |V|=18 |V|=20 |V|=22 |V|=24
1 1.2903 1.3333 1.4742 1.7677 1.4222 1.7408 1.0582 1.2702 1.4371
2 1.2903 1.3333 1.4742 1.7677 1.4222 1.7408 1.0582 1.2702 1.4371
3 1.2903 1.3333 1.4724 1.7677 1.3998 1.7630 1.0417 1.2702 1.4286
4 1.2903 1.3333 1.4742 1.7677 1.4222 1.7341 1.0582 1.2702 1.4286
5 1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0582 1.2702 1.4371
6 1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0444 1.2702 1.4286
7 1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0582 1.2702 1.4286
8 1.2903 1.3333 1.4742 1.7588 1.4222 1.7176 1.0582 1.2702 1.4371
9 1.2903 1.3333 1.4724 1.7677 1.4222 1.7391 1.0582 1.2702 1.4286
10 1.2903 1.3333 1.4724 1.7677 1.4222 1.7630 1.0493 1.2702 1.4371
Highest
AMTCT
fitness

1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0582 1.2702 1.4371

No. of
AMTCTs
with
fitness
below the
fittest
AMTCT

0 0 0 1 1 5 3 0 5

Degree
density 5.25 5.6 5.6667 5.4286 5.75 5.6667 5.5 4.4545 6

Table 27: Fitness of AMTCTs generated in relation to degree density. The fitness of
AMTCTs below the maximum fitness is underlined

0

1

2

3

4

5

6

4 4.5 5 5.5 6 6.5

degree density

no
. o

f a
dd

iti
on

al
 A

M
TC

Ts

Correlation coefficient = 0.51.
Figure 75: Relation between degree density and number of additional AMTCTs.

 193

 Chapter 10

Research Conclusion and Future Directions

10.1 Research Conclusion and Contribution

The objective of this thesis is to create a general evolutionary algorithm for graphs

stated in Section 1.2. As discussed in Chapter 2, the current researches on graph

evolution mainly focus on ANN evolution, tree evolution, and a few application specific

networks. These evolutionary algorithms are designed to evolve specific graph topologies

and they cannot be easily adapted to evolve graphs without specific topologies. In this

thesis, EvoGraph is developed to evolve graphs without specific topologies by encoding

them in adjacency matrices. Evolution operators on crossovers and mutations are

designed to work on these encoded adjacency matrices. EvoGraph contributes to both the

theory and application of graph evolution.

On the theoretical aspect, it overcomes the limitation on encoding graphs in

conventional linear chromosomes which requires the length of chromosomes to be in

square numbers or some other form of indirect encoding in order to present the

connection status between all nodes. This length limitation imposes unnecessary

constraints on crossovers and mutations. EvoGraph is applied to encode the most

common types of graph topologies including tree and ANN. New crossover operators

comparable to existing GP and ANN evolution are developed. The step by step

comparison between EvoGraph operation and standard GP as well as conventional ANN

evolution operation in Chapter 4 is to demonstrate that one operation of EvoGraph

random crossover may produce the same effect as several conventional evolution

 194

operations in standard GP and ANN. This random breakdown and recombination of

topologies in random crossover may also be a potential cure to the problem of bloat in

standard GP. Experiments in Chapter 4 provide some initial evidence on EvoGraph as a

more efficient evolutionary algorithm when compared with standard evolution operators

in EP and GP on evolution of graphs without specific topologies and tree.

On the application aspect, EvoGraph successfully implement designs that are

conventionally considered as esoteric processes monopolized by artist or architects. This

thesis applies evolutionary algorithms to art creation through the experiments designed

for EvoGraph. In Chapter 5, it is demonstrated that EvoGraph could be an invaluable tool

in that it can help architects convert the descriptive requirements of the client to several

possible architectural space topologies that satisfy the client’s needs. This saves the

architect from doing spatial configuration manually by the conventional approach

through trial-and-error. In Chapter 6, the hybrid evolutionary algorithm with EvoGraph

and GA solves the puzzle that has been bordering architects and graphics designers for

ages. That is, how to create a regular geometry with given number of nodes and edges of

a base frame module? We can now evolve regular space frame modules or regular three-

dimensional geometric figures with small number of generations for convergence. The

same algorithm can be adopted for two-dimensional graphics design. Experiments in

Chapter 7 use EvoGraph for visual art creation and successfully create Mondrian

paintings according to the artist’s original aesthetic intention. In Chapter 8, hydrogen

depleted graphs of molecules are encoded in EvoGraph to evolve drugs by using the basic

chemical properties such as atomic weight and valance of an atom in a molecule. In

Chapter 9, EvoGraph is adapted to evolve peer-to-peer overlay network atop an underlay

 195

network. It solves the problem in the existing graph algorithms on not having a clear

criterion of trade off between MST and SPT on network optimization. EvoGraph does not

need to work on a complete cost graph of the underlay network and it also create an

opportunity of using appropriate links in the underlay network outside the MST and SPT.

10.2 Limitations of the Research

This thesis has developed the fundamental principles of graph evolution. Like most of

other evolutionary algorithms [1][3], it starts off on a limited scale for the clarity of

illustration of concepts. EvoGraph faces the same problems encountered by other

heuristic search methods such as there is no guarantee of convergence at the universal

optimum, difficulty in selecting value of parameters for operators and consistencies of

results. However, there are other limitations due to the properties of graphs.

Whilst graph has been notorious on the number of topological combinations it can

generate with relatively small number of nodes. For example, given 10 nodes, there are

more than ten million graph topologies. The number of graph topologies increase

exponentially with the number of nodes. This figure is yet to include the different

combinations bring about by permutation of nodes. Fortunately, with the other constraints

imposed in the search experiments, EvoGraph is able to approach convergence at

manageable number of generations. To further improve the efficiency, experiments on

different combinations on evolution paramenters can be conducted.

10.3 Future Directions of Research

This thesis has developed the general algorithm for graph evolution as an entry portal

that leads to a vast landscape of researches ahead. According to the limitations outlined in

 196

Section 10.2, the problem of scalability of EvoGraph is required to be explored to solve

problems involving graphs with large number of nodes such as the Internet. Recent

development in data compression of Internet graphs is heading toward this direction. For

example, there is proposal on the formation of graph supernode by merging a number of

nodes in the Internet graph [57] in order to reduce storage space and computational

resource.

The elimination of isomorphic graph redundancy is another field to be explored to

improve the efficiency of EvoGraph. This problem may cause unnecessary increase in

size of search space such as node permutation redundancy in ANN [35]. The success on

identifying isomorphic graphs depends on researches on isomorphic graph matching

[56][58], which has been a challenging subject of research in the last three decades.. A

simple algorithm on matching isomorphic graphs is yet to be devised. Recent researches

reveal more and more determined by spectrum graphs, or DS-graphs [94]. This is

encouraging because graph evolution can be greatly improved if redundant isomorphic

graphs can be eliminated in the process of evolution by making use of the knowledge of

DS-graphs.

On the application side, EvoGraph is designed to solve problems involving graph

topologies. EvoGraph is applied to architectural design, art creation, molecular design

and communication network in this thesis. In a wider perspective, EvoGraph can be

applied to problems that can be presented in graph such as critical paths, logistic

networks, etc..

 197

Appendix 1

Fitness Graphs on Best Performed Experiments on EvoGraph
Operators and Conventional Evolution Operators

BEST PERFORMED EXPERIMENTS USING
CONVENTIONAL EVOLUTION OPERATORS

BEST PERFORMED EXPERIMENTS USING EVOGRAPH
OPERATORS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

M
ax

im
um

 F
itn

es
s

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

M
ax

im
um

 F
itn

es
s

Target lattice graph evolution using conventional
edge/node mutations
(Max. fitness, generation) = (0.9482, 851)

Target lattice graph using EvoGraph random
crossover, number-of node, number-of-edge
mutations
(Max. fitness, generation) = (1, 184)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

M
ax

im
um

 F
itn

es
s

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

M
ax

im
um

 F
itn

es
s

Target ANN bipartite graph using conventional
edge/node mutations
(Max. fitness, generation) = (1, 166)

Target ANN bipartite graph using EvoGraph
random crossover, number-of node, number-of-
edge mutations
(Max. fitness, generation) = (1, 115)

 198

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation

M
ax

im
um

 F
itn

es
s

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation

M
ax

im
um

 F
itn

es
s

Target starlike tree evolution using standard GP
crossover
(Max. fitness, generation) = (0.9602, 163)

Target starlike tree using EvoGraph random
crossover
(Max. fitness, generation) = (1, 63)

 199

Appendix 2

Experimental Results on Architectural Space Topology
Evolution

ADJACENCY MATRICES REPRESENTING OPTIMAL ARCHITECTURAL SPACE TOPOLOGIES
GENERATED BY EXPERIMENTS

 10 1 3 5 4 6 7 2 9 8

10 - 3 3 2 3 1 3 3 0 3

1 - 1 0 0 0 0 2 3 0

3 - 0 0 3 0 0 3 0

5 - 1 0 0 0 3 1

4 - 2 0 0 0 3

6 - 0 0 3 0

7 - 0 3 0

2 - 3 3

9 - 0

8 -
Experiment 1 (Budget 30 to 34)

 9a 2 1 6 10 5 3 7 8 9b 4

9a - 3 3 3 0 0 3 3 0 3 0

2 - 0 0 0 0 2 0 3 3 0

1 - 0 3 0 0 0 0 3 0

6 - 1 2 3 0 0 0 0

10 - 2 0 3 3 0 3

5 - 0 0 1 3 0

3 - 0 1 0 0

7 - 0 3 1

8 - 0 3

9b - 3

4 -
Experiment 2 (Budget 35 to 39)

 200

 8 2a 2b 7 5 4 6 3 1 9a 10 9b

8 - 3 3 0 1 3 0 1 0 0 3 0

2a - 0 0 0 0 0 0 2 0 3 3

2b - 0 0 0 0 2 0 0 3 3

7 - 0 1 0 0 0 3 3 3

5 - 0 2 0 0 0 2 3

4 - 2 0 0 3 0 0

6 - 0 0 3 1 0

3 - 0 3 3 0

1 - 3 3 3

9a - 0 3

10 - 0

9b -
Experiment 3 (Budget 40 to 44)

 9 3a 4a 7 2a 3b 2b 5 6 4b 8 1 10

9 - 3 3 0 3 3 0 3 3 0 0 0 0

3a - 0 0 0 0 0 0 0 0 1 1 3

4a - 1 0 0 0 0 0 0 3 0 3

7 - 0 0 0 0 0 0 0 0 3

2a - 0 0 0 0 0 3 2 3

3b - 2 0 3 0 1 0 0

2b - 0 0 0 3 2 3

5 - 0 1 1 0 2

6 - 2 0 0 1

4b - 3 0 3

8 - 0 3

1 - 3

10 -
Experiment 4 (Budget 45 to 49)

 201

 9a 9b 6 3 9c 4 2 9d 7 9e 5 9f 8 1 10

9a - 3 3 3 3 0 0 0 3 0 0 0 0 3 0

9b - 3 3 0 3 3 0 0 0 0 3 0 0 0

6 - 3 0 0 0 3 0 0 0 0 0 0 0

3 - 0 0 0 0 0 3 0 0 0 0 0

9c - 3 0 3 3 0 3 3 0 0 0

4 - 0 0 0 3 0 0 0 0 3

2 - 3 0 3 0 0 3 0 0

9d - 3 0 3 0 0 3 0

7 - 3 0 3 0 0 3

9e - 3 3 0 0 0

5 - 3 0 0 0

9f - 0 3 0

8 - 0 3

1 - 3

10 -
Experiment 5 (Budget 50 to 54)

 10 2 9a 3a 3b 6 4a 9b 1 9c 9d 8 4b 5 9e 7

10 - 3 0 3 3 1 3 0 3 0 0 3 3 2 0 3

2 - 0 0 2 0 0 0 0 0 3 0 0 0 3 0

9a - 0 0 3 0 0 3 3 0 0 0 3 3 3

3a - 0 3 0 0 0 0 3 1 0 0 0 0

3b - 0 0 0 0 3 0 0 0 0 3 0

6 - 0 0 0 0 3 0 0 0 0 0

4a - 0 0 0 3 3 0 0 0 1

9b - 3 3 3 0 3 3 0 3

1 - 0 0 0 0 0 3 0

9c - 0 0 0 3 0 3

9d - 0 0 0 0 3

8 - 0 0 0 0

4b - 0 3 1

5 - 0 0

9e - 3

7 -
Experiment 6 (Budget 55 to 59)

 202

FITNESS GRAPHS ON ARCHITECTURAL TOPOLOGY EVOLUTION

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

Generation

M
ax

im
um

 F
itn

es
s

Experiment 1 (Budget 30 to 34)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

Generation

M
ax

im
um

 F
itn

es
s

Experiment 2 (Budget 35 to 39)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

Generation

M
ax

im
um

 F
itn

es
s

Experiment 3 (Budget 40 to 44)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

Generation

M
ax

im
um

 F
itn

es
s

Experiment 4 (Budget 45 to 49)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

Generation

M
ax

im
um

 F
itn

es
s

Experiment 5 (Budget 50 to 54)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

Generation

M
ax

im
um

 F
itn

es
s

Experiment 6 (Budget 55 to 59)

 203

Appendix 3

Repetitive Space Frame Modules

Module C with 14 edges

 204

Module D with 15 edges

 205

Module F with 17 edges

 206

Module G with 18 edges

 207

Module H with 19 edges

 208

Module I with 20 edges

 209

Appendix 4

Mondrian Paintings Evolved by Tree Evolution

Experiment 1 with Mix 5

Experiment 2 with Mix 6

Experiment 3 with Mix 8

Experiment 4 with Mix 5

Experiment 5 with Mix 5

 210

Appendix 5

Target Hydrogen Depleted Molecules and Corresponding

Molecular Graphs

BzN OC C

O

1. tylenol

 12 12 16 16 14 72

12 0 1 0 0 0 0

12 1 0 0 2 1 0

16 0 0 0 0 0 0

16 0 2 0 0 0 1

14 0 1 0 0 0 1

72 0 0 0 1 1 0

Bz NO CC

O

O

C

2. adrenaline

 12 12 12 16 16 16 14 72

12 0 1 0 0 0 1 0 1

12 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

16 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 1

16 1 0 0 0 0 0 0 0

14 0 1 1 0 0 0 0 0

72 1 0 0 1 1 0 0 0

 211

BzC

O

O

O C

O

C

3. aspirin

 12 12 12 16 16 16 16 72

12 0 0 0 2 1 0 0 1

12 0 0 1 0 0 1 2 0

12 0 1 0 0 0 0 0 0

16 2 0 0 0 0 0 0 0

16 1 0 0 0 0 0 0 0

16 0 1 0 0 0 0 0 1

16 0 2 0 0 0 0 0 0

72 1 0 0 0 0 1 0 0

BzC C

C

C

C
O

C O

C

4. ibuprofen

 12 12 12 12 12 12 12 16 16 72

12 0 1 0 0 0 0 0 0 0 0

12 1 0 1 1 0 0 0 0 0 0

12 0 1 0 0 0 0 0 0 0 0

12 0 1 0 0 0 0 0 0 0 1

12 0 0 0 0 0 1 1 0 0 1

12 0 0 0 0 1 0 0 0 0 0

12 0 0 0 0 1 0 0 2 1 0

16 0 0 0 0 0 0 2 0 0 0

16 0 0 0 0 0 0 1 0 0 0

72 0 0 0 1 1 0 0 0 0 0

 212

N

C C

CC

C

C

C C

CC

N

5. nicotine

 12 12 12 12 12 12 12 12 12 12 14 14

12 0 0 0 0 0 0 0 0 0 0 1 0

12 0 0 1 0 0 0 0 0 0 0 1 0

12 0 1 0 1 0 0 0 0 0 0 0 0

12 0 0 1 0 1 0 0 0 0 0 1 0

12 0 0 0 1 0 1 0 0 0 0 0 0

12 0 0 0 0 1 0 1 0 0 2 0 0

12 0 0 0 0 0 1 0 2 0 0 0 0

12 0 0 0 0 0 0 2 0 1 0 0 0

12 0 0 0 0 0 0 0 1 0 0 0 2

12 0 0 0 0 0 2 0 0 0 0 0 1

14 1 1 0 1 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 2 1 0 0

 213

N

C C

CN

C

O

C O

C

N

N

C

C

 12 12 12 12 12 12 12 12 16 16 14 14 14 14

12 0 0 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 2 0 1 1 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0

12 0 0 0 0 1 0 0 0 0 2 0 1 0 0

12 0 0 0 1 0 2 0 0 0 0 0 0 1 0

12 0 0 0 0 2 0 0 0 0 0 1 0 0 1

12 0 0 0 0 0 0 0 0 0 0 0 0 1 2

12 0 0 0 0 0 0 0 0 0 0 0 0 1 0

16 0 2 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 2 0 0 0 0 0 0 0 0 0 0

14 1 1 0 0 0 1 0 0 0 0 0 0 0 0

14 0 1 1 1 0 0 0 1 0 0 0 0 0 0

14 0 0 0 0 1 0 1 1 0 0 0 0 0 0

14 0 0 0 0 0 1 2 0 0 0 0 0 0 0

6. caffeine

 214

C

C N

N C

O

O

BzBz

7. dilantin

 12 12 12 16 16 14 14 72 72

12 0 0 0 2 0 1 1 0 0

12 0 0 1 0 0 1 0 1 1

12 0 1 0 0 2 0 1 0 0

16 2 0 0 0 0 0 0 0 0

16 0 0 2 0 0 0 0 0 0

14 1 1 0 0 0 0 0 0 0

14 1 0 1 0 0 0 0 0 0

72 0 1 0 0 0 0 0 0 0

72 0 1 0 0 0 0 0 0 0

 215

Appendix 6

Underlay Networks Cost Matrices with Approximate

Minimum Total Cost Tree (AMTCT) and Cost Savings of each

AMTCT

Note: the cost links of the AMTCT cost matrices found by EvoGraph are underlined and

bold

|N|=8 |N|=10

0 1 2 3 4 5 6 7 8

1 0 88 9 40 73 0 65 81

2 88 0 0 34 0 0 99 84

3 9 0 0 47 81 33 34 60

4 40 34 47 0 70 31 0 0

5 73 0 81 70 0 56 94 50

6 0 0 33 31 56 0 11 0

7 65 99 34 0 94 11 0 91

8 81 84 60 0 50 0 91 0

 0 1 2 3 4 5 6 7 8 9 10

1 0 91 86 50 0 0 48 10 97 0

2 91 0 0 17 92 79 35 47 0 0

3 86 0 0 92 10 57 39 0 31 0

4 50 17 92 0 0 0 0 60 79 33

5 0 92 10 0 0 37 68 0 70 0

6 0 79 57 0 37 0 0 0 0 71

7 48 35 39 0 68 0 0 34 0 45

8 10 47 0 60 0 0 34 0 22 40

9 97 0 31 79 70 0 0 22 0 84

10 0 0 0 33 0 71 45 40 84 0

|N|=12
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 7 0 18 24 47 83 0 0 0 77

2 0 0 45 0 8 0 32 91 33 0 0 100

3 7 45 0 0 0 75 80 14 0 0 0 79

4 0 0 0 0 84 56 42 69 41 98 0 0

5 18 8 0 84 0 33 0 0 0 0 77 76

6 24 0 75 56 33 0 32 0 0 0 75 0

7 47 32 80 42 0 32 0 0 71 0 0 0

8 83 91 14 69 0 0 0 0 0 12 0 96

9 0 33 0 41 0 0 71 0 0 62 61 0

10 0 0 0 98 0 0 0 12 62 0 65 45

11 0 0 0 0 77 75 0 0 61 65 0 0

12 77 100 79 0 76 0 0 96 0 45 0 0

 216

|N|=14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 3 69 41 38 0 0 67 0 3 0 0 0

2 0 0 8 94 0 90 0 0 0 79 0 0 72 33

3 3 8 0 64 0 0 53 0 88 0 0 0 78 0

4 69 94 64 0 80 0 0 0 0 0 0 93 0 94

5 41 0 0 80 0 63 2 0 0 51 0 0 19 0

6 38 90 0 0 63 0 0 0 0 25 95 0 79 0

7 0 0 53 0 2 0 0 0 32 0 31 0 0 0

8 0 0 0 0 0 0 0 0 49 0 44 84 7 11

9 67 0 88 0 0 0 32 49 0 57 0 85 0 0

10 0 79 0 0 51 25 0 0 57 0 0 0 0 0

11 3 0 0 0 0 95 31 44 0 0 0 48 32 0

12 0 0 0 93 0 0 0 84 85 0 48 0 0 16

13 0 72 78 0 19 79 0 7 0 0 32 0 0 0

14 0 33 0 94 0 0 0 11 0 0 0 16 0 0

|N|=16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 96 7 91 0 71 0 0 0 0 15 0 0 0 72

2 0 0 0 79 34 25 0 0 39 0 55 0 0 18 0 0

3 96 0 0 0 94 0 0 59 0 0 0 0 16 0 50 44

4 7 79 0 0 0 0 0 0 49 0 92 0 14 0 0 72

5 91 34 94 0 0 0 0 0 0 0 56 30 18 0 0 0

6 0 25 0 0 0 0 55 89 46 83 0 0 0 0 0 0

7 71 0 0 0 0 55 0 0 50 0 0 13 0 49 31 0

8 0 0 59 0 0 89 0 0 0 55 0 0 0 53 81 86

9 0 39 0 49 0 46 50 0 0 34 0 0 63 0 0 0

10 0 0 0 0 0 83 0 55 34 0 0 0 83 0 59 0

11 0 55 0 92 56 0 0 0 0 0 0 28 0 84 0 87

12 15 0 0 0 30 0 13 0 0 0 28 0 83 22 0 0

13 0 0 16 14 18 0 0 0 63 83 0 83 0 0 0 0

14 0 18 0 0 0 0 49 53 0 0 84 22 0 0 0 0

15 0 0 50 0 0 0 31 81 0 59 0 0 0 0 0 93

16 72 0 44 72 0 0 0 86 0 0 87 0 0 0 93 0

 217

|N|=18
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8

1 0 0 3 0 0 0 90 0 0 0 0 0 97 77 84 0 11 0

2 0 0 0 1 0 78 0 59 34 0 0 86 0 0 0 0 0 80

3 3 0 0 0 62 0 77 0 0 10 0 94 0 74 0 0 0 0

4 0 1 0 0 49 0 0 2 0 0 0 0 11 0 0 0 0 0

5 0 0 62 49 0 0 54 0 0 19 0 0 0 0 38 0 22 0

6 0 78 0 0 0 0 0 0 87 0 34 0 19 0 0 0 19 52

7 90 0 77 0 54 0 0 0 0 0 0 34 98 0 64 0 0 0

8 0 59 0 2 0 0 0 0 0 0 0 0 52 6 0 0 90 13

9 0 34 0 0 0 87 0 0 0 10 85 74 0 0 0 0 0 0

10 0 0 10 0 19 0 0 0 10 0 5 0 0 0 90 0 92 0

11 0 0 0 0 0 34 0 0 85 5 0 0 0 0 0 15 0 0

12 0 86 94 0 0 0 34 0 74 0 0 0 0 82 0 57 0 0

13 97 0 0 11 0 19 98 52 0 0 0 0 0 0 0 97 0 0

14 77 0 74 0 0 0 0 6 0 0 0 82 0 0 0 75 0 96

15 84 0 0 0 38 0 64 0 0 90 0 0 0 0 0 0 45 80

16 0 0 0 0 0 0 0 0 0 0 15 57 97 75 0 0 0 10

17 11 0 0 0 22 19 0 90 0 92 0 0 0 0 45 0 0 0

18 0 80 0 0 0 52 0 13 0 0 0 0 0 96 80 10 0 0

|N|=20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 75 0 0 0 0 0 88 48 0 0 0 0 40 0 96 0 0

2 0 0 0 0 0 14 0 19 0 0 57 71 0 93 0 86 0 34 0 0

3 0 0 0 0 28 0 0 5 0 56 80 0 14 63 0 0 0 56 0 88

4 75 0 0 0 0 0 0 64 7 0 0 27 9 0 57 0 0 41 44 0

5 0 0 28 0 0 0 39 100 0 44 0 45 0 0 36 0 30 0 0 39

6 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0

7 0 0 0 0 39 0 0 0 0 37 31 0 0 0 0 88 0 0 0 0

8 0 19 5 64 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 7 0 0 0 0 0 0 0 28 0 88 0 0 0 66 0 0

10 88 0 56 0 44 0 37 0 0 0 11 15 0 0 0 0 61 65 0 0

11 48 57 80 0 0 0 31 0 0 11 0 0 23 0 0 73 0 0 6 0

12 0 71 0 27 45 0 0 0 28 15 0 0 0 0 0 12 0 0 0 0

13 0 0 14 9 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0

14 0 93 63 0 0 0 0 0 88 0 0 0 0 0 0 0 43 0 0 0

15 0 0 0 57 36 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0

16 40 86 0 0 0 75 88 0 0 0 73 12 0 0 90 0 85 0 0 0

17 0 0 0 0 30 0 0 0 0 61 0 0 0 43 0 85 0 42 2 2

18 96 34 56 41 0 0 0 0 66 65 0 0 0 0 0 0 42 0 0 0

19 0 0 0 44 0 0 0 0 0 0 6 0 0 0 0 0 2 0 0 0

20 0 0 88 0 39 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

 218

|N|=22
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 0 86 50 0 0 98 34 0 16 0 0 0 0 0 52 0 0 0 0 19 76

2 0 0 29 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 86 29 0 0 13 0 0 48 0 0 31 0 0 0 0 0 0 0 37 8 0 93

4 50 76 0 0 0 35 0 0 14 17 0 0 10 0 0 0 94 0 49 0 0 0

5 0 0 13 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 35 0 0 0 0 0 85 27 0 0 0 0 6 0 0 0 0 0 0

7 98 0 0 0 6 0 0 0 0 0 0 0 0 0 32 1 68 0 0 42 41 92

8 34 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 14 0 0 0 0 0 0 0 0 66 0 0 58 0 0 0 0 0 0

10 16 0 0 17 0 85 0 0 0 0 0 53 0 0 0 22 0 68 61 73 0 0

11 0 0 31 0 0 27 0 0 0 0 0 0 0 35 0 0 78 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 53 0 0 6 0 0 59 0 0 0 0 0 0

13 0 0 0 10 0 0 0 0 66 0 0 6 0 85 56 0 0 58 38 66 0 0

14 0 0 0 0 0 0 0 0 0 0 35 0 85 0 0 38 0 0 0 0 0 0

15 0 0 0 0 0 0 32 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0

16 52 0 0 0 0 6 1 0 58 22 0 59 0 38 0 0 0 0 0 0 0 0

17 0 0 0 94 0 0 68 0 0 0 78 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 68 0 0 58 0 0 0 0 0 0 0 0 0

19 0 0 37 49 0 0 0 0 0 61 0 0 38 0 0 0 0 0 0 0 0 0

20 0 0 8 0 0 0 42 0 0 73 0 0 66 0 0 0 0 0 0 0 0 0

21 19 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 76 0 93 0 0 0 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 219

|N|=24
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 0 0 0 38 0 0 95 0 0 40 0 0 2 14 0 0 0 49 15 0 90 0 0

2 0 0 0 0 0 98 0 96 0 0 0 0 0 0 35 39 0 0 0 0 0 0 0 0

3 0 0 0 92 0 0 0 0 0 0 0 0 0 41 70 0 0 20 0 0 22 64 28 24

4 0 0 92 0 18 0 0 36 0 0 77 59 0 0 75 0 0 0 0 0 0 0 38 0

5 38 0 0 18 0 0 0 0 54 41 0 0 0 33 0 0 0 65 0 0 0 42 0 88

6 0 98 0 0 0 0 0 0 30 91 0 0 0 0 0 0 0 0 14 58 26 3 0 65

7 0 0 0 0 0 0 0 93 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0

8 95 96 0 36 0 0 93 0 0 36 0 99 60 0 0 0 59 0 0 0 0 0 0 0

9 0 0 0 0 54 30 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 25 0

10 0 0 0 0 41 91 0 36 0 0 74 0 0 0 0 48 0 0 0 0 0 0 0 0

11 40 0 0 77 0 0 0 0 26 74 0 67 46 0 0 0 0 0 0 0 10 31 0 0

12 0 0 0 59 0 0 0 99 0 0 67 0 0 68 0 0 81 0 99 0 50 66 0 0

13 0 0 0 0 0 0 0 60 0 0 46 0 0 0 15 0 0 0 0 0 0 0 21 0

14 2 0 41 0 33 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 0 0 0

15 14 35 70 75 0 0 0 0 0 0 0 0 15 0 0 0 0 0 15 0 0 56 15 0

16 0 39 0 0 0 0 0 0 0 48 0 0 0 0 0 0 42 39 0 39 0 0 0 0

17 0 0 0 0 0 0 0 59 0 0 0 81 0 0 0 42 0 0 0 0 0 0 88 0

18 0 0 20 0 65 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0

19 49 0 0 0 0 14 0 0 0 0 0 99 0 0 15 0 0 0 0 56 0 0 13 0

20 15 0 0 0 0 58 27 0 0 0 0 0 0 0 0 39 0 0 56 0 41 20 78 0

21 0 0 22 0 0 26 0 0 0 0 10 50 0 0 0 0 0 0 0 41 0 0 0 0

22 90 0 64 0 42 3 0 0 0 0 31 66 0 0 56 0 0 0 0 20 0 0 0 0

23 0 0 28 38 0 0 0 0 25 0 0 0 21 0 15 0 88 0 13 78 0 0 0 0

24 0 0 24 0 88 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 220

COST SAVING RESULTS OF AMTCTS ON EACH UNDERLAY NETWORK

|V|=8 |V|=10

 TPC TEC TC TPC TEC TC

SPT 350 283 633 SPT 489 281 770
AMTCT 360 260 620 AMTCT 499 251 750

net -10 23 13 net -10 30 20
% saving 2% % saving 3%

 TPC TEC TC TPC TEC TC

MST 530 224 754 MST 636 229 865
AMTCT 360 260 620 AMTCT 499 251 750

net 170 -36 134 net 137 -22 115
% saving 18% % saving 13%

|V|=12 |V|=14

 TPC TEC TC TPC TEC TC

SPT 487 373 860 SPT 493 326 819
AMTCT 500 314 814 AMTCT 520 272 792

net -13 59 46 net -27 54 27
% saving 5% % saving 3%

 TPC TEC TC TPC TEC TC

MST 544 295 839 MST 600 259 859
AMTCT 500 314 814 AMTCT 520 272 792

net 44 -19 25 net 80 -13 67
% saving 3% % saving 8%

|V|=16 |V|=18
 TPC TEC TC TPC TEC TC
SPT 729 415 1144 SPT 714 355 1069
AMTCT 738 387 1125 AMTCT 722 299 1021

net -9 28 19 net -8 56 48
% saving 2% % saving 4%

 TPC TEC TC TPC TEC TC

MST 814 377 1191 MST 844 261 1105
AMTCT 738 387 1125 AMTCT 722 299 1021

net 76 -10 66 net 122 -38 84
% saving 6% % saving 8%

 221

|V|=20 |V|=22
 TPC TEC TC TPC TEC TC
SPT 1470 634 2104 SPT 1180 571 1751
AMTCT 1496 394 1890 AMTCT 1184 548 1732

net -26 240 214 net -4 23 19
% saving 10% % saving 1%

 TPC TEC TC TPC TEC TC
MST 2083 351 2434 MST 1245 534 1779
AMTCT 1496 432 1928 AMTCT 1184 548 1732

net 587 -81 506 net 61 -14 47
% saving 21% % saving 3%

|V|=24
 TPC TEC TC
SPT 1072 622 1694
AMTCT 1072 598 1670

net 0 24 24
% saving 1%

 TPC TEC TC
MST 1482 534 2016
AMTCT 1072 598 1670

net 410 -64 346
% saving 17%

 222

References

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Boston, MA: Addison-Wesley, 1989.

[2] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: The MIT Press, 1994.

[3] J. R. Koza, “Genetic Programming: A Paradigm for Genetically Breeding Populations
of Computer Programs to Solve Problems,” Stanford University Computer Science
Department technical report STAN-CS-90-1314, June 1990.

[4] X. Yao, ``Evolving artificial neural networks,'' in Proceedings of the IEEE, vol. 87,
no.9, pp.1423-1447, September 1999.

[5] J. L. Gross, Graph Theory And Its Applications. Boca-Raton:FL, CRC Press, 1999.
[6] L.R. Foulds, Graph Theory Applications, New York: NY, Springer-Verlag, 1992.
[7] S. Yin and J. Cagan, “An extended pattern search algorithm for three-dimensional

component layout,” Transactions of the ASME, vol.122, pp. 102–108, 2000.
[8] T. Ito, “A genetic algorithm approach to piping route path planning,” Journal of

Intelligent Manufacturing, vol. 10, pp. 103-104, 1999.
[9] T. Koide and S. Wakabayashi, “A timing-driven floor planning algorithm with the

Elmore delay model for building block layout,” Integration: the VLSI Journal,
vol.27, pp. 57–76, 1999.

[10] P. H. Levin, “Use of graphs to decide the optimum layout of buildings,” Architect,
vol. 14, pp. 809–815, Oct. 1964.

[11] B. Medjdoub and B. Yannou, “Separating topology and geometry in space
planning,” Computer-Aided Design, vol. 32, pp. 39–61, 2000.

[12] F. Gruau, “Cellular encoding as a graph grammar,” IEE Colloquium on
Grammatical Inference: Theory, Applications and Alternatives, pp. 17/1 – 1710, 22-
23 Apr 1993

[13] S. Luke, “Two fast tree-creation algorithms for genetic programming,” IEEE
Transactions on Evolutionary Computation, vol. 4 , Issue: 3, pp. 274 – 283, Sept.
2000

[14] J.R. Koza and J.P. Rice, “Genetic generation of both the weights and architecture for
a neural network,” IJCNN-91-Seattle International Joint Conference on Neural

 223

Networks, vol. 2, pp397 – 404 , 8-14 July 1991
[15] S. Luke and L. Spector, “Evolving Graphs and Networks with Edge Encoding:

Preliminary Report,” in Late-breaking Papers of the Genetic Programming (GP96)
Conference, Stanford, 1996.

[16] N.Y. Nikolaev and H. Iba, “Learning polynomial feedforward neural networks by
genetic programming and backpropagation,” IEEE Transactions on Neural Networks,
vol. 14 , Issue: 2, pp. 337 – 350, March 2003.

[17] B. Ombuki, M. Nakamura, Z. Nakao, and K. Onaga, "Evolutionary Computation for
Topological Optimization of 3-Connected Computer Networks," in Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics, 1999, pp.
659-664, Oct 12-15, 1999.

[18] A.Globus, J. Lawton, and T. Wipke, ”Automatic molecular design using

evolutionary techniques”, Nanotechnology, vol.10,pp.290-299, 1999.

[19] X. Yao and Y. Liu, ``A new evolutionary system for evolving artificial neural

networks,'' IEEE Transactions on Neural Networks, 8(3):694-713, May 1997

[20] M. W. Hwang, J. Y. Choi, and J. Park, “Evolutionary projection neural networks,” in

Proceedings of IEEE International Conference in Evolutionary Computation 1997

ICEC’97, pp. 667–671.

[21] S. Nolfi, D. Parisi, “Genotypes for neural networks” in M. A. Arbib, The Handbook
of Brain Thoery and Neural Networks. Cambridge, MA: MIT Press/Bradford Books,
1995.

[22] F. Gruau, “Genetic synthesis of boolean neural networks with a cell rewriting

developmental process,” in Proceedings of. International. Workshop Combinations

of Genetic Algorithms and Neural Networks (COGANN-92), D. Whitley and J. D.

Schaffer, Eds. Los Alamitos, CA: IEEE Computer Soc., 1992, pp. 55–74.

[23] H. Kitano, “Designing neural network using genetic algorithm with graph generation

system”, Complex Systems 1990, vol 4, pp.461-476.

[24] Y. Liu and X. Yao “Evolutionary design of artificial neural networks.with different

nodes,” in Proceedings of IEEE International Conference on Evolutionary

Computation (ICEC'96), Nagoya, Japan, 1996, pp. 670–675.

[25] N. Dodd “Optimization of neural network structures using genetic techniques”

Internal Report RIPREP/1000/63/89, Royal Signals and Radar Establishment,

Malvern, UK, 1989

 224

[26] G. Miller, P. Todd, and S. Hegde “Designing neural networks using genetic

algorithms” in Proceedings of the Third Conference on Genetic Algorithms and their

Applications, San Mateo, CA. Morgan Kaufmann, 1989

[27] A. Lindenmayer “Mathematical models for cellular interaction in development I, II”
Journal of theoretical biology 1968, vol 18, pp280-315

[28] G. D. Wilensky, and N. Manukian “The projection neural network” in Proceedings
of the International Joint Conference on Neural Networks 1992, vol. 2, pp. 358-367.

[29] M. Mandischer, “Representation and evolution of neural networks” R. F. Albrecht, C.
R. Reeves, and U. C. Steele, editors, Artificial Neural Nets and Genetic Algorithms,
Springer Verlag, pp. 643-649, 1993.

[30] S. A. Harp, T. Samad, and A. Guha, “Designing application-specific neural networks
using the genetic algorithm”, in Proceedings of IEEE Conference on Neural
Information Processing Systems, San Matco, 1990, vol.2, pp. 477-454.

[31] D. W. Opitz and J. W. Shavlik, “Connectionist Theory Refinement: Genetically
Searching the Space of Network Topologies”, Journal of Artificial Intelligence
Research 1997, vol. 6, pp.177-209.

[32] J. C. F. Pujol and R. Poli, “Dual Network Representation applied to the Evolution of
Neural Controllers”, Seventh Annual Conference on Evolutionary Programming,
LNCS, vol. 1447, pp. 637-646, San Diego, March 25-27, 1998. Springer-Verlag.

[33] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augumenting
topologies”, Evolutionary Computation 10(2):99-127, 2002.

[34] R. Poli, “Evolution of Graph-like Programs with Parallel Distributed Genetic
Programming”, in Proceedings of the Seventh International Conference on Genetic
Algorithms,, East Lansing, July, 1997

[35] N.J. Radcliffe, “Genetic set recombination and its application to neural network

topology optimization”, Neural Computing and Applications, 1(1), pp.67-90.

[36] W. B. Langdon, “Size fair and homologous tree genetic programming crossovers,”

Genetic Programming and Evolvable Machines, vol.1, no.1/2, pp.95-119, Apr 2000.

[37] P. D'haeseleer, “Context preserving crossover in genetic programming,” in

Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE

World Congress on Computational Intelligence, pp. 256 – 261, 27-29 June 1994

 225

[38] E. E. Korkmaz, G. Ucoluk, “A Controlled Genetic Programming Approach for the

Deceptive Domain,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:

Cybernetics, vol.34 , no.4, pp. 1730 – 1742, 2004

[39] M. A. Lones, A. M. Tyrrell, “Crossover and bloat in the functionality model of

enzyme genetic programming,” in Proceedings of the 2002 Congress on Evolutionary

Computation, vol.1 , pp. 986 – 991, 12-17 May 2002

[40] M. I. Heywood, A.N. Zincir-Heywood, , “Dynamic page based crossover in linear

genetic programming,” IEEE Transactions on Systems, Man and Cybernetics, Part B,

32(3) , pp. 380 – 388, June 2002

[41] M. J. Heywood, A. N. Zincir-Heywood,” Page-based linear genetic programming,”

IEEE International Conference on Systems, Man, and Cybernetics, vol.5, pp.3823 –

3828, 8-11 Oct. 2000

[42] G. C. Wilson, M. I. Heywood, “Crossover context in page-based linear genetic

programming,” IEEE Canadian Conference on Electrical and Computer Engineering,

vol. 2 , pp. 809 – 814, 12-15 May 2002

[43] M. D. Terrio, M. I. Heywood, “Directing crossover for reduction of bloat in GP,”

IEEE Canadian Conference on Electrical and Computer Engineering, vol 2 ,

pp.1111 – 1115, 12-15 May 2002

[44] T.Ito, H. Iba, S. Sato, “Depth-dependent crossover for genetic programming,” in

Proceedings of IEEE World Congress on Computational Intelligence., The 1998

IEEE International Conference on Evolutionary Computation,, pp. 775 – 780, 4-9

May 1998

[45] A. Niimi, E. Tazaki, “Extended genetic programming using reinforcement learning

operation” in Proceedings of IEEE International Conference on Systems, Man, and

Cybernetics, vol.5, pp. 596 - 600, 12-15 Oct. 1999

[46] D.A. Augusto, H. J. C. Barbosa, “Symbolic regression via genetic programming,” in

Proceeding in Sixth Brazilian Symposium on Neural Networks, pp. 173 – 178, 22-25

Nov. 2000

[47] M. Yanagiya, “Efficient genetic programming based on binary decision diagrams,”

IEEE International Conference on Evolutionary Computation, vol.1, pp. 234, 29

Nov.-1 Dec. 1995

 226

[48] J. Page, R. Poli, W. B. Langdon, “Smooth uniform crossover with smooth point

mutation in genetic programming: A preliminary study,” in R. Poli, P. Nordin, W. B.

Langdon, and T. C. Fogarty, editors, in Proceedings of Genetic Programming,

EuroGP’ 99, LNCS, Goteborg, Sweeden, 26-27 May 1999. Springer-Verlag.

[49] R. Poli, N.F. McPhee, “Exact schema theory for GP and variable-length GAs with

homologous crossover”, in Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 104-111, San Francisco, California, USA, 2001.

[50] H. Bersini, “The immune and the chemical crossover,” IEEE Transactions on

Evolutionary Computation, 6(3), pp. 306 – 313, June 2002

[51] C. Gathercole, P. Ross, “An adverse interaction between crossover and restricted

tree depth in genetic programming,” in Proceedings of the First Annual Conference in

Genetic Programming. MIT Press. Stanford University, CA, USA, pp.291 – 296,

1996.

[52] R. Poli, W. B. Langdon, “An analysis of the MAX problem in genetic

programming,” in Proceedings of the Second Annual Conference in Genetic

Programming. Morgan Kaufmann. University of Wisconsin, Madison, Wisconsin,

USA. pp. 222 – 230.

[53] R. Poli, W. B. Langdon, “On the search properties of different crossover operators in

genetic programming,” in Proceedings of the Third Annual Conference in Genetic

Programming. Morgan Kaufmann. University of Wisconsin, Madison, Wisconsin,

USA. pp.293 – 301, 1998.

[54] D. Chen, T. Aoki, N. Homma, T. Terasaki, T. Higuchi, “Graph-Based Evolutionary

Design of Arithmetic Circuit,” IEEE Transactions on Evolutionary Computation, vol.

6, no. 1, pp86-100, Feb 2000.

[55] R.R. Behrens, “Art, Design and Gestalt Theory”, Leonardo: Journal of the

International Society of Arts, Sciences, and Technology, vol. 31, Number 4, pp299-

304, August/September 1998.

[56] S. Umeyama, “An eigendecompostion approach to weighted graph matching

problems,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

10(5):695–703, 1988.

 227

[57] S. Raghavan, H. Garcia-Molina, “Representing Web Graphs,” in Proceedings of

19th International Conference on Data Engineering, 2003. pp.405 – 416, 5-8 March

2003.

[58] J.R. Ullmann, “An Algorithm for Subgraph Isomorphism,” Journal of the

Association for Computing Machinery, vol. 23, pp. 31-42, 1976.

[59] G. Schneider, O. Clement-Chomienne, L. Hilfiger, P. Schneider, S. Kirsch, H-J.

Boehm, and W. Neidhart, “Virtual screening for bioactive molecules by evolutionary

De Novo design”, Angewandte Chemie, vol.39, pp.4130-4133, 2000.

[60] D. Levine, M. Facello, P. Hallstrom, G. Reeder, B. Walenz, F. Stevens, “STALK: an

evolutionary system for virtual molecular docking,” IEEE Computer Science

Engineering, vol.4, pp.55-65, 1997.

[61] J. Wang, T. Hou, L. Chen, X. Xu,”Conformational analysis of peptides using Monte

Carlo simulations combined with the genetic algorithm”, Chemometrics and

Intelligent Laboratory Systems, vol.45, no.1, pp.347-351, 1999.

[62] J.C. Meza, M.L. Martinez, “On the use of direct search methods for the molecular

conformation problem”, Journal of Computational Chemistry, vol.15, no.6, pp.627-

632, 1994.

[63] H.Z. Xu, X.Y. Wei, M.S. Xu, “Schema analysis of multi-point crossover in genetic

algorithm”, in Proceedings of the 3rd World Congress on Intelligent Control and

Automation, Hefei, P.R.China, June-July 2000.

[64] Q.N. Hu, Y.Z. Liang, K.T. Fang, “The matrix expression, topological index and

atomic attribute of molecular topological structure”, Journal of Data Science, vol.1,

pp.361-389, 2003.

[65] O. Ivanciuc, M.V. Diudea, “Building-block computation of Ivanciuc-Balaban

indices for the virtual screening of combinatorial libraries”, Internet Electronic

Journal of Molecular Design, vol.1, no. 1, pp.1-9, Jan2002.

[66] I. Gutman, O.E. Polansky, “Mathematical concepts in organic chemistry”, Springer-

Verlag, Berlin, Heidelberg, New York, 1986.

[67] K.A. De Jong, W. Spears, “On the virtues of parameterized uniform crossover”, in

Proceedings of the 4th International Conference on Genetic Algorithms, San Mateo:

Morgan Kaufmann Publishers, pp 230-236, 1991.

 228

[68] K.A. De Jong, W. Spears, “An analysis of the interacting roles of population size

and crossover in genetic algorithms”, in Proceedings of the First Int’l Conf. on

Parallel Problem Solving from Nature, Dortmund, Germany, October 1990.

[69] C. Rücker, G. Rücker, M. Meringer, “Exploring the limits of graph invariant- and

spectrum-based discrimination (sub)structures”, Journal of Chemical Information and

Computer Sciences, vol. 42, pp. 640-650 , 2002.

[70] R. Poli and W. B. Langdon, “Schema Theory for Genetic Programming with One-

point Crossover and Point Mutation”, Evolutionary Computation Journal, 6(3): 231-

252, 1998.

[71] T. Baeck, D.B. Fogel, Z. Michalewicz, “Handbook of Evolutionary Computation”,

IOP Publishing, Bristol, 1997.

[72] D. Doval and D. O’Mahony, “Overlay networks – a scalable alternative for P2P”,

IEEE Computer Society, Jul-Aug 2003.

[73] Y.H. Chu, S.G. Rao, S. Seshan, and H. Zhang, “A case for end system multicast”,

IEEE Journal on Selected Areas in Communications, vol.20, no.8, Oct 2002.

[74] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella network: properties

of large-scale peer-to-peer systems and implications for system design”, IEEE

Internet Computing, 2002.

[75] L. Xiao, Y. Liu, and L.M. Ni, “Improving unstructured peer-to-peer systems by

adaptive connection establishment”, IEEE Transactions on Computers, vol.54, no.9,

Sept2005.

[76] Y. Liu, L. Xiao, and A.H. Esfahanian, L. M. Ni, “Approaching optimal peer-to-peer

overlays”, in Proceedings of the 13th IEEE International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems, 2005.

[77] L.M. Ni and Y. Liu, “Efficient peer-to-peer overlay construction”, in Proceedings of

the IEEE International Conference on E-Commerce Technology for Dynamic E-

Business, 2004.

[78] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Making

Gnutella-like P2P systems scalable”, in Proceedings of the Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications, 2003.

 229

[79] C. Wang, and B. Li, “Peer-to-Peer overlay networks: a survey”, Department of

Computer Science, The Hong Kong University of Science and Technology, 2002.

[80] S. Ren, L. Guo, S. Jiang, and X. Zhang, “SAT-Match: a self adaptive topology

matching method to achieve low lookup latency in structured P2P overlay networks”,

in Proceedings of the 18th International Parallel and Distributed Processing

Symposium, 2004.

[81] Y. Liu, Z. Zhuang, L. Xiao, and L. Ni, “AOTO: adaptive overlay topology

optimization in unstructures P2P systems”, in Proceedings of IEEE GLOBECOM

2003, San Francisco, USA, December 1-5, 2003.

[82] Z. Li and P. Mohapatra, ”QRON: QoS-aware routing in overlay networks”, IEEE

Journal on Selected Areas in Communications, vol.22, no.1, Jan2004.

[83] Z. Duan, Z.L. Zhang, and Y.T. Hou, “Service overlay networks: SLAs, QoS and

bandwidth provisioning”, in Proceedings of the 10th IEEE International Conference

on Network Protocols, 2002.

[84] S. L. Vieira and J¨org Liebeherr, “Topology design for service overlay networks

with bandwidth guarantees.,” in IWQoS, 2004, pp. 211–220.

[85] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Introduction to

Algorithms”, Second Edition, MIT Press 2001.

[86] J.R. Kim and M. Gen, “Genetic algorithm for solving bicriteria network topology

design problem,” in Proceedings of the 1999 Congress on Evolutionary Computing,

vol.33, 6-9 July 1999.

[87] J. Gottlieb and L. Paulmann, “Genetic algorithms for fixed charge Transportation

problem,” in Proceedings of the 1998 IEEE International Conference on

Evolutionary Computation, pp.330-335, IEEE Press, 1998.

[88] G. R. Raidl, “An efficient evolutionary algorithm for the degree-constrained

minimum spanning tree problem,” in Proceedings of the 2000 IEEE Congress on

Evolutionary Computation, pp.104-111, IEEE Press, 2000.

[89] J. Gottlieb, B.A. Julstrom, G.R. Raidl G.R., F. Rothlauf , “Prüfer numbers: a poor

representation of spanning trees for evolutionary search,” in Proceedings of Genetic

and Evolutionary Computation Conference, San Francisco, CA, pp. 343–350, July

2001.

 230

[90] C. C. Palmer and A. Kershenbaum, “Representing trees in genetic algorithms,” in

Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 379–

384. IEEE Press, 1994.

[91] Dengiz, B., F. Altiparmak, and A. E. Smith, “Efficient optimization of all-terminal

reliable networks using evolutionary approach”, IEEE Transaction on Reliability,

Vo1.46, No.1, pp.18-26, 1997.

[92] D. Zhu, M. Gritter, D.R. Cheriton, “Feedback based routing,” in Proceedings of

Workshop on Hot Topics in Networks (Princeton, New Jersey, Oct. 2002), pp.71-76,

2002.

[93] P. Zhu, R.C. Wilson, “A study of graph spectra for comparing graphs”, Pattern

Recognition, vol.41(9), pp.2833-2841, Sept.2008.

[94] E. R. van Dam, W. Haemers, “Which graphs are determined by their spectrum?”,

Linear Algebra and its Applications, vol.373, pp. 241–272, 2003

[95] M. Lepovi´, I. Gutman, “No starlike trees are cospectral”, Discrete Mathematics,

vol.242, pp. 291-295, 2002.

[96] J.J. Michalek, R. Choudhary and P.Y. Papalambros, “Architectural layout design

optimization”, Engineering Optimization, vol.34(5), pp. 461–484, 2002.

[97] J.S. Gero, and V.A. Kazakov, “Evolving design genes in space layout planning

problems”, Artificial Intelligence in Engineering , vol. 12(3), pp. 163-176, 1998.

[98] M. Rosenman, “The generation of form using an evolutionary approach”, in

Evolutionary Algorithms in Engineering Applications, D. Dasgupta and Michalewicz,

Eds, Springer-Verlag, pp. 69-86, 1997.

[99] T. Schnier, and J.S. Gero, “Learning genetic representations as alternative to hand-

coded shape grammars”, in J. S. Gero and F. Sudweeks (Eds), Artificial Intelligence

in Design, Kluwer, Dordrecht, pp.39-57, 1996.

[100] J.S. Gero, V. Kazakov and T. Schnier, “Genetic engineering and design problems”,

in D. Dasgupta and Z. Michalewicz (Eds), Evolutionary Algorithms in Engineering

Applications, Springer Verlag, Berlin, pp.47-68, 1997.

[101] V. Venkatasubramanian, K. Chan, and J.M. Caruthers, “Evolutionary design of

molecules with desired properties using the genetic algorithm”, Journal of

Chemical Information and Computer Sciences, vol.35, pp.188-195, 1995.

 231

[102] R. Nachbar, “Molecular evolution: a hierarchical representation for chemical

topology and its automated manipulation”, in Proceedings of the Third Annual

Genetic Programming Conference, University of Wisconsin, Madison, Wisconsin,

pp. 246-253, July1998.

[103] J. Devillers, “Designing Molecules with Specific Properties from

Intercommunicating Hybrid Systems”, Journal of Chemical Information and

Computer Sciences, vol.36, pp.1061-1066, 1996.

[104] J. Devillers, C. Putavy, ”Designing biodegradable molecules from the combined

use of back propagation neural network and a genetic algorithm”, Genetic

Algorithms in Molecular Modelling, Academic Press Limited, N.Y., pp.303-314,

1996.

[105] R. Gani, “CAMD: Computer aided molecular design – examples of applications”,

CAPEC, Department of Chemical Engineering, Technical University of Denmark,

DK-2800, Denmark, Nov 2002.

[106] L.E.K. Achenie, R. Gani, V. Venkatasubramanian, “Computer Aided Molecular

Design: Theory and Practice”, Elsevier Press, 2003.

[107] D.E. Clark, “Evolutionary algorithms in computer-aided design: a review of current

applications and a look to the future”, Rational Design: Novel Methodology and

Practical Applications, ACS Symposium Series, vol.719, pp.255-270, American

Chemical Society, 1999

[108] D.K. Gehlhaar, G.M. Verkhivker, P.A. Rejto, C.J. Sherman, D.B. Fogel, L.J. Fogel,

S.T. Freer, “Molecular recognition of the inhibitor AG-1343 by HIV-1 protease:

conformationally flexible docking by evolutionary programming. Chemistry and

Biology, vol.2, pp.317-324, 1995.

[109] I.D. Kuntz, “Structure-based strategies for drug design and discovery”, Science,

vol.257, pp.1078-1082, 1992.

[110] J.C. Meza, T.D. Plantenga, R.S. Judson, “Novel Applications of optimization to

molecule design”, Institute for Mathematics and Its Applications, vol. 94, pp.73,

1997.

 232

[111] R.S Judson, M.E. Colvin, J.C. Meza, A. Huffer, D. Gutierrez, “Do intelligent

configuration search techniques outperform random search for large molecules ?”,

International Journal of Quantum Chemistry, vol.44, pp.277-290, 1992.

[112] S.R. Wilson, W. Cui, “Applications of simulated annealing to peptides,”

Biopolymers, vol.29, pp.225-235, 1990.

[113] C.E. Chang, M.K. Gilson, “Tork: conformational analysis method for molecules

and complexes,” Journal of Computational Chemistry, vol.24, pp.1987-1998,

2003.

[114] J. Devillers, “Genetic algorithms in molecular modeling”, Academic Press, New

York, 1996

[115] T. Hurst, “Flexible 3D searching: directed tweak technique”, Journal of Chemistry

Information and Computer Science, vol.34, pp.190-196, 1999.

[116] G. Schneider, M.L. Lee, M. Stahl, P. Schneider, “De novo design of molecular

architectures by evolutionary assembly of drug-derived building blocks”, Journal

of Computer-Aided Design, vol.14, no.5, pp.487-494, July, 2004.

[117] P. Tuffery, C. Etchebest, S. Hazout, R. and Lavery, “A New Approach to the Rapid

Determination of Protein Side Chain Conformations”, Journal of Biomolecular

Structure and Dynamics, vol.8, pp.1267-1289, 1991

[118] M.J.J. Blommers, C.B. Lucasius, G. Kateman, and R. Kaptein, “Conformational

analysis of a dinucleotide photodimer with the aid of the genetic algorithm”,

Biopolymers 1992, vol.32, pp.45-52, 1992.

[119] A.H.C. van Kampen, and L.M.C. Buydens, “The ineffectiveness of recombination

in a genetic algorithm for the structure elucidation of a heptapeptide in torsion

angle space. A Comparison to Simulated Annealing”, Chemometrics and

Intelligent Laboratory Systems, vol.36, pp.141-152, 1997.

[120] R.C. Glen, and A.W.R.Payne, “A genetic algorithm for the automated generation of

molecules within constraints”, Journal of Computer-Aided Molecular Design,

vol.9, pp.181-202, 1995.

[121] Y. Liu, L. Xiao, L. M. Ni, "Building a scalable bipartite P2P overlay network,"

IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 18, no. 9,

pp.1296-1306, 2007.

 233

[122] A. Shaikh, Kang Shin, “Destination-driven routing for low cost multicast”, IEEE

Journal on Selected Areas in Communications, vol.15, no.3, pp.373-381, April

2007.

[123] S. Khuller, B. Raghavachari, N. Young, “Balancing minimum spanning trees and

shortest path trees”, Algorithmica, Springer N.Y., vol.14, no.4, pp.305-321,

Oct.2008.

[124] C.M. Lin, Y.T. Tsai, C.Y. Tang, “Balancing minimum spanning trees and multi-

source minimum routing cost spanning trees on metric graphs”, Information

Processing Letters, vol.99, no.2, pp.64-67, July2006

[125] Y. Zhang, N. Duffield, V. Paxson, S. Shenker, "On the Constancy of Internet Path

Properties," in Proceedings of ACM SIGCOMM Internet Measurement Workshop,

2001.

[126] S. Saroiu, P.K. Gummadi, S.D.Gribble, ”A Measurement Study of Peer-to-Peer File

Sharing Systems”, in Proceedings of Multimedia Computing and Networking

(MMCN’02), San Jose, CA, Jan. 2002.

[127] M. Faloutsos, P. Faloutsos, C. Faloutsos, “On power-law relationships of the

Internet topology”, in Proceedings of ACM SIGCOMM’1999, pp. 251–262,

Aug./Sept. 1999.

[128] Y. Liu, X. Liu, L. Xiao, L. M. Ni, X. Zhang, "Location-aware topology matching in

P2P systems," in Proceedings of IEEE INFOCOM, 2004.

[129] Y. Liu, “A two-hop solution to solving topology mismatch”, IEEE Transactions on

Parallel and Distributed Systems, vol.19, no.11 pp.1591-1600, Nov 2008.

[130] K.S. Seo, Z. Fan, J.J. Hu, E.D. Goodman, R.C. Rosenberg, “Toward a unified and

automated design methodology for multi-domain dynamic systems using bond

graphs and genetic programming : Computational intelligence in mechatronic

systems”, Mechatronics, vol.13, np.8-9, pp.851-885, 2001.

[131] M. Fischer, H. Gall, “EvoGraph: A Lightweight Approach to Evolutionary and

Structural Analysis of Large Software Systems”, Working Conference on Reverse

Engineering, 2006. vol.13, pp.179 – 188, Oct. 2006.

[132] M. McGlohon, C. Faloutsos, “ADAGE: a software package for analyzing graph

evolution”, Carnegie Mellon University, May 2007.

 234

[133] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary Programs,

Springer, Berlin, 1996.

[134] L. J. Fogel, A. T. Owens, M. J. Walsh, Artificial Intelligence through Simulated

Evolution, John Wiley, New York, 1966.

[135] J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of the

Assoociation for Computing Machinary, vol. 3, pp. 297–314, 1962.

[136] K. A. De Jong, “Are genetic algorithms function optimizers?” in Parallel Problem

Solving from Nature 2. pp. 3–13, Amsterdam, The Netherlands: Elsevier,1992,.

[137] L. J. Fogel, “On the organization of intellect,” Ph.D. dissertation, University of

California, Los Angeles, 1964.

[138] H. P. Schwefel, Evolution and Optimum Seeking. New York: Wiley, 1995 (Sixth-

Generation Computer Technology Series).

[139] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, 1992.

[140] R. Raidl, “An efficient evolutionary algorithm for the degree-constrained minimum

spanning tree problem,” in Proceedings of the 2000 IEEE Congress on Evolutionary

Computation, pp.104-111, IEEE Press, 2000.

[141] F. Routhlauf, D. Goldberg, and A. Heinzl, “Network random key -A tree network

representation scheme for genetic and evolutionary algorithms,” Evolutionary

Computation, vol. 10, pp. 75–97, 2002.

	theses_copyright_undertaking
	b23067147

