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Abstract 
 

 

A number of different Evolutionary Algorithms (EAs) have been developed to evolve 

different kinds of graph structures. The most common being those that evolve Artificial 

Neural Network (ANN) architectures and those that evolve trees. In other words, these 

EAs can only be used to evolve specific graph topologies and they cannot be easily 

adapted to evolve graphs in general. Given that many data structures can be represented 

as graphs, a general EA that can tackle graphs with no specialized topology can have 

many useful real world applications.  Towards this goal, this thesis proposes a general EA 

for graphs called EvoGraph. EvoGraph can be used to evolve all kinds of graphs by 

encoding them in adjacency matrices. Like other heuristic search algorithms, 

evolutionary search in a space of graphs also faces the challenge of a tremendously 

expanded search space when there is an increase in the number of nodes in a graph. 

Though this can be mitigated by increasing the population size to provide a larger variety 

of building blocks for the search, this increase in population size is limited, however, by 

constraints in computational resources. To address this problem, it should be noted that 

previous work has shown that uniform crossover in Genetic Algorithm (GA) could be 

rather efficient for heuristic searches in a large search space with a relatively small 

population. This operator ensures that all alleles have the same chance of being swapped 

during crossover and it also ensures that a relatively high degree of disruption be 

introduced to ensure the generation of novel chromosomes. Based on such a principle, 
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EvoGraph’s reproduction operators are also designed to resemble uniform crossover and 

mutation crossover in linear-string GA. The application of a single crossover operator in 

EvoGraph can achieve the same effect of more than one reproduction operation in a 

Genetic Programming (GP) and Evolutionary Programming (EP).  EvoGraph can be 

shown to be very effective at various tasks involving the evolution of graphs in general 

and trees and ANN architectures in particular. EvoGraph is applied to solve a wide range 

of graph based heuristic problems considered in this thesis. They include architectural 

topology design, space frame design, creative art painting, molecular design and peer-to-

peer overlay network design. 
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                                                                                                                           Chapter 1 

 
Introduction 
 
 

1.1 Background 

Encoding of chromosomes is usually the first thing one need to decide when solving a 

problem with Evolutionary Algorithms (EA). This topic was introduced by Holland and 

his students around 1975 on genetic algorithm (GA) using binary string encoding. The 

first text book [1] on this topic enforced this presentation. It was only in early 1990s other 

types of EAs were proposed and studied. Many other encoding schemes, such as floating 

point presentation in chromosomes, permutation, matrices presentation of graphs by 

Michalewicz, and tree encoding by Koza, etc. [2][133] have been developed and used 

with much success when tackling different problems in different application areas. In 

addition to these popular encoding schemes, there have also been studies on cellular [12] 

or edge encoding [15], developed to encode tree-like structures. Similarly, work on 

genetic programming (GP) [2][3][13] and evolving Artificial Neural Networks 

(ANN)[4][14][16] has also been proposed on trees and neural networks architecture 

respectively. With a few exceptions in some domain-specific studies [17][18], there has 

not been much work done to develop EAs that can evolve graphs with different 

topologies. 

 

1.2 Objective of the Research and Contributions 

Given the diversity of real world problems that can be formulated in the form of graphs 

such as [5][6][17][18][131][132]. A number of different Evolutionary Algorithms (EAs) 

have been developed to evolve different kinds of graph structures. The most common 

being those that evolve Artificial Neural Network (ANN) architectures and those that 

evolve trees. In other words, these EAs can only be used to evolve specific graph 
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topologies and they cannot be easily adapted to evolve graphs in general. Given that 

many data structures can be represented as graphs, a general EA that can tackle graphs 

with no specialized topology can have many useful real world applications. Towards this 

goal, this thesis proposes a general EA called EvoGraph that can evolve connected graphs. 

EvoGraph encodes a connected graph (hereafter referred to as “graph”) in an adjacency 

matrix. It encodes connected graphs (hereafter referred to as “graph”) in adjacency 

matrices and makes use of a set of crossover and mutation operators designed to 

manipulate them. For an EA to effectively evolve graphs, it has to be able to handle a 

search space that would increase in size tremendously when the number of nodes of a 

graph, and hence the variety of topologies increases [69]. 

Though this can be mitigated by increasing the population size to provide a larger 

variety of building blocks for the searches, this increase in population size is often 

constrained by limited computational resources. To address this problem, previous work 

with linear-string GA makes use of the uniform crossover and mutation operators to 

efficiently evolve linear-string chromosomes in a large search space with modest-size 

populations. Such  operators ensures that all alleles have the same chance of being 

swapped during crossover or changed during mutation and it also ensures that a relatively 

higher degree of “disruption” be introduced to avoid local optima and to ensure 

generation of novel chromosomes. Given such an advantage of the uniform crossover and 

mutation operators with the linear-string GAs, EvoGraph’s crossover and mutation 

operators are designed to operate like them. EvoGraph has several unique characteristics: 

(i) it encodes graphs in their adjacency matrices, (ii) it uses a novel crossover operator 

that can facilitate the exchange of characteristics between two graphs in a way equivalent 
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to the uniform-crossover operator for linear-string GA; (iii) it uses a set of novel mutation 

operators to facilitate the introduction of minor variations in topology in each graph to 

avoid trapping in suboptimal in the evolution process. 

   In addtition to the introduction of a general EA for graphs without specific topologies, 

the random evolution operators of EvoGraph also introduce a new way of crossover and 

mutation for ANN and trees in addition to the conventionally adopted Evolutionary 

Programming (EP) and GP. We compare the advantages of EvoGraph operators over the 

conventional operators through hand simultations and experiments. After that, we apply 

EvoGraph to solve selected graph heuristic problems. The experimental results are 

promising. 

 

1.3 Outline of the Thesis 

Different types of graph evolutionary algorithms are reviewed in Chapter 2. The most 

popular of which are ANN evolution and GP. This forms a reference for the development 

of a general evolutionary algorithm that is applicable to all types of graphs concerned.  

Chapter 3 introduces the new encoding scheme for different graph topologies into 

adjacency matrix. This is analogous to chromosome encoding in standard GA. Chapter 4 

presents the different evolution operators of EvoGraph, random crossover, Number-of-

Node mutation and Number-of-Edge mutation. The mathematical foundation of 

EvoGraph is also presented. Experiments on the performance of EvoGraph operators in 

comparison with conventional evolution operators on evolving graph without specific 

topologies, ANN and tree are illustrated. They demonstrate the advantage of EvoGraph 

over the conventional EAs. The above completes the formalism of EvoGraph. Chapters 5 



 

 8

to 9 illustrate different applications of EvoGraph. Through these applications, the 

potential of solving problems inherent in the existing graph evolutionary algorithms 

described in Chapter 2 is demonstrated. Chapter 10 concludes the findings and limitations 

of this research and indicates directions for future research. 
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                                                                                                                              Chapter 2 

 
Literature Review on Graph Based Evolutionary Algorithms 
 
 

The majority of current implemetations of EAs descend from three strongly related 

but independently developed appoaches: GAs, EPs and evolution strategies (ES). GA 

have been originally proposed as a general model of adaptive process by using 

recombination and mutation operators [135], but by far the largest application of the 

techniques is in the domain of optimization [136]. EP was originally designed to evolve 

finite state machines by using mutation alone [137], which transforms a sequence of input 

symbols into a sequence of output symbols. The performance of the finite state machine 

is measured on the basis of the machine’s prediction capability. ES [138] was initially 

designed with the goal of solving evolution parameter optimization problem. It has been 

widely used in adaptive parameters tuning in dynamic evolution environment. In the 

1990s, other types of EAs are developed. Such as, floating point presentation of 

chromosomes in addition to the original binary presentation in GA and evolution 

operators for drawing graphs proposed by Michalewicz [133]. Koza [2] also proposed GP 

for evolving computer programmes by encoding them in tree topologies. Recently, the 

most popular forms of graph evolutionary algorithm that attracts a lot of attention are the 

evolution of ANN and GP. These evolutionary algorithms are developed for the specific 

graph topologies, bipartite graph for ANN and tree for GP respectively. They are 

reviewed below to serve as a source of inspiration to develop a general encoding scheme 

and evolutionary algorithm for all graphs.  
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2.1 Evolution of Artificial Neural Network 

A lot of work has been done to use EAs to evolve ANN architectures [4]. The goal is 

to find “optimal” or “near-optimal” architectures with respect to such criteria as the time 

of convergence of a learning process or the complexity of the network architecture.  

     A low level representation of a neural network is direct encoding and it is the most 

intuitive. Miller [26] maps the adjacency matrix of a neural network onto a binary string 

chromosome by concatenating the rows of the adjacency matrix. GA is then applied to 

evolve the network. Dodd [25] applies a GA to optimize a structured network for a 

pattern recognition problem classifying dolphin sounds. It is reported that a standard GA 

is able to find a network that is superior to any that can be created by hand. As the size of 

the network increases, the encoding of all details will result in a very long chromosome. 

The number of nodes of the network is fixed as the topology evolves. As the chromosome 

is formed by concatenating rows of the adjacency matrix into a linear string, the length of 

the chromosome has to be the square number of the dimension of the adjacency matrix. 

This square number constraint has to be maintained in order to enable successful 

decoding of the chromosome back into a graph. Hence, it does not favor variable length 

chromosome evolution. 

     A higher level representation is proposed by Harp [30] to swap layers of hidden nodes 

between neural networks. The network architecture is divided into a number of 

‘blueprints’. Each ‘blueprint’ is described by several parameters like the number of nodes 

and its connection densities to some other ‘blueprints’. The ‘blueprints’ are mapped to a 

linear chromosome for evolution using a GA. A similar representation is proposed by 
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Mandischer [29], where for every layer receptive as well as projective connections are 

specified on the chromosome.  

Other studies on encoding network layers in chromosomes include [32], which is an 

abstraction of the 2-dimensional grid structure of Parallel Distributed Genetic 

Programming (PDGP) proposed for edge recombination between nodes in different layers 

[34]. However, the abstraction of the 2-dimensional grid structure into a linear form 

involves numerous encoding and decoding rules. Note that these representations allow 

variable string lengths. The number of nodes is variable in the evolution process. 

     Another approach to achieve a desired ANN topology is to construct or modify a 

topology in incremental fashion. In view of the fact that the crossover operation in GA is 

not efficient in evolving both the weight and topology of an ANN at the same time, Yao 

and Liu [19] propose to use EPNet, which adopts only mutations in the process of 

evolution. Nodes are appended or deleted together with the modification of weights from 

one generation to another.  

Another example of the use of an incremental approach is the evolution of projection 

neural network (PNN) [28]. The main difference between a PNN and an ANN is that 

PNN projects the original n-dimensional input vector onto the n+1 dimensional vector 

that lies in the hyperplane of the original input vector and utilizes it as a new input vector. 

An operator for appending or deleting a node is required to change the dimension of the 

hyperplane that the node represents. In this regard, EP [24] on neural network is also 

applied. In [20], optimization of PNN by encoding the hidden node parameters such as 

weights and shaping factors in a link list data structure embedded in a chromosome is 

proposed. Ordered crossovers and mutations are applied. Another form of incremental 
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evolution of neural network by drawing analogy to biological growth is proposed by [33]. 

     To allow dynamic expansion of topology of neural network during training, Opitz and 

Shavlik [31] proposed to allow exchange of hidden nodes and their attached links 

between two parent neural nets. Ordered crossover is adopted to achieve the required 

purpose and there is complete re-connection of links after nodes exchange to avoid the 

problem of disconnection. Some special cases such as neural network with tree topology 

are dynamically evolved by GP [14].  

Another way to enable more dynamic change in topologies in the process of evolution 

is through indirect encoding. Indirect encoding generates graphs by reading instructions 

from genotypes in form of a chromosome [21] or a tree [12][15][22][130]. EA based 

optimization is then carried out at the genotype level. Other forms of indirect encoding 

involve evolution of graph generating rules such as that proposed by Kitano [23] or of 

encoding on a grammar based construction program in the genome proposed by 

Lindenmayer [27].  

     In summary, the different EAs and the numerous forms of encoding schemes and 

evolutionary algorithms described so far are designed to tackle the topological structure 

of ANN which consists of an input nodes layer, the hidden layers and the output nodes 

layer. Standard GA is typically used for directly encoded fixed node ANNs. However, 

direct encoding with standard GA is not suitable for variable node evolution because the 

length of chromosome is constrained by the square number of rows of the graph 

adjacency matrix. For variable node ANNs, ordered crossovers and mutations have to be 

used to maintain the basic structure of ANN throughout the evolution. Indirect encoding 

can provide a more dynamic change of topologies in the process of evolution but the 
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representation is less efficient because the evolution is not directly related to the network 

itself. 

     The above evolutionary algorithms for graphs or networks are ordered or constrained 

by the purposes they are designed to achieve. A general unbiased evolutionary algorithm 

for graphs free of topological constraints has not been developed. This thesis proposes a 

general evolutionary algorithm for graphs that is analogous to the standard GA [1]. The 

algorithm conducts crossovers and mutations on graph adjacency matrices while standard 

GA works on chromosomes. Given the general form of encoding in a graph adjacency 

matrix, it is simple to devise crossover and mutation operators to serve specific purposes.  

 

2.2 Genetic Programming 

Genetic Programming (GP) has been widely adopted since its invention by Koza [2][3]. 

The crossover operator GP involves swapping of subtrees and this is analogous to one 

point crossover in standard GA except that it is carried out in a tree topology instead of a 

linear-string.  

     Much work has been done to develop crossover operator for GP. The most intuitive 

ones are those related to the study of the preservation of useful subtrees, or building 

blocks, during the evolutionary process. For example, Langdon [36] proposed 

‘homologous crossover’ to improve the success of recombination by selecting subtrees 

deterministically, so that only subtrees with similar functions and topologies are 

exchanged. D’haeseleer [37] tried to assign indices to the nodes in preferred subtrees to 

enable exchange of matching branches instead of choosing subtrees at random in the 

crossover. In such circumstances, the context of the good population can be preserved. 
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However, constraints are imposed on the selection of nodes to exchange and this affects 

the efficiency of evolution. The good building blocks are also prohibited from spreading 

to other parts of the population.  

Korkmaz and Üçoluk [38] calculate the fitness of subtrees during evolution and use 

the values to guide the recombination process so that subtrees with high performances are 

not destroyed during crossover. This algorithm learns from the evolution to determine the 

frequencies of good nodes in the subtrees and how they are distributed within the tree. 

Guidance for recombination is generated from this learning process to steer the crossover 

direction. It works well with subtrees that are not related to each other but not for trees 

having performances of subtrees that are dependent on each other.  

     Lones and Tyrell [39] proposed an algorithm to preserve the high performing subtrees 

and enable evolution of variable length solutions. The idea is to encode the nodes of a 

tree to behave like enzymes in chemical reactions. Each tree represents a program. Each 

node behaves like an enzyme that has its own function and selects its own interaction 

preferences. That is, each node selects which other nodes that it will react with. On the 

other hand, it has a representation that is conceived by other nodes. This is thus a mutual 

selection process. Unlike the crossover operation in a typical GP, in the proposed enzyme 

GP, a contiguous group of nodes is copied from one solution without removing any 

existing nodes. It is up to the other nodes within the tree to decide whether or not to use 

these new nodes. 

     There are studies on the design of appropriate crossover operators that tackles the 

problem of bloat, the building up of more and more redundant codes in a tree throughout 

the evolution process. Heywood [40][41][42][43] introduces ‘page base crossover’ to 
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minimize the code length. Each page in the code represents a tree which carries the same 

number of instructions. Since only subtrees having the same number of instructions are 

exchanged, the code lengths of the trees are kept under control. Therefore, less 

computational resource is used due to the limitation of code length of trees. ‘Depth 

dependent crossover’ [44] is also proposed to limit the code length. The probability of 

selection of node as a crossover point decreases from the top to the bottom of a tree. In 

solving some of the problems such as the artificial ant problem, the effectiveness of 

‘depth dependent crossover’ is not exactly clear. Further exploration of the method is on 

going. Niimi and Tazaki [45] use reinforced learning through pruning redundant subtrees 

to control the tree sizes. 

     In view of the problem that there may be too much a demand on computational 

resources due to the increase in tree sizes throughout the process of evolution, studies are 

also conducted to reduce computational resources in crossover. In [46], Read’s linear 

code is used to encode tree structure in linear form. Though the presentation of a tree is 

simplified, the tree continues to increase in size as evolution proceeds. The problem of 

bloat has not been solved. Yanagiya [47] use binary decision diagrams to merge 

subgroups of nodes into one entity to facilitate evolution with a smaller number of nodes. 

This reduces storage requirements by sharing isomorphic subtrees among individuals, 

and saves computational power.  

     There are studies on crossover operations that adopt a more random approach when 

subtrees are exchanged. In [48][53], a ‘uniform crossover for GP’ is proposed. Based on 

it, two parents are being compared to identify, starting from the root node, the common 

regions where both of them have the same topologies. Then the interior nodes in the 
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common regions are swapped with probability 0.5. If a node belongs to the boundary of 

the common region, then the subtree below it is also swapped. Similar to the case of the 

uniform crossover operator in linear-string GA, such form of ‘uniform crossover in GP’ 

is less biased as it allows nodes in the common regions in the parent trees to be passed on 

to the offspring with a probability of 0.5. Unfortunately the identification of the common 

regions is very demanding in computational resources and this type of crossover relies on 

the existence of common regions between parent trees. 

    The different EAs described above adopt crossover operators that exchange subtrees 

between two parents. There have also been studies on crossover involving more than two 

parents, that is, multi-parent crossover [50]. Based on it, a number of subtrees are 

selected from a number of parents to exchange with each other. The process is analogous 

to chemical reaction equations where different chemical molecules react and recombine 

to form another set of different molecules. It is for this reason that this kind of crossover 

has also been referred to as ‘immune and the chemical crossover’. In this crossover 

process, the parents selected need to pass a recruitment test where they should exhibit 

higher fitness and similarity amongst themselves. Good zones of recruitment in the 

population are then identified. Each offspring is generated by means of multi-crossover 

among multiple parents in the good recruitment zone.  

    In summary, the crossover operators that many GPs have adopted typically involve the 

exchange of subtrees. Regardless of how the subtrees are swapped, the change in tree 

topology after the crossover is limited to the part of tree being exchanged in a single swap.  

Such incremental approach to tree evolution also tends to be slow. There is a need for the 

development of an unbiased and more uniform evolutionary algorithm for tree topologies 
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so as to produce a more drastic change of tree topologies during evolution by breaking up 

large tree. And this should improve the speed of convergence. 

 

2.3 Other Application Specific Graph Evolutionary Algorithms 

There are also other EAs that are developed to evolve graphs and these EAs are 

tailored to suite specific problems such as arithmetic circuit design [54], design planning 

[7][8][9][10], chemical molecule design [18], and computer network optimization [17]..  

These algorithms are very different from each other and cannot be easily generalized.The 

last three application domains are studied in this thesis for their popularity of application. 

The state of the art encoding scheme for graphs and their evolution for these specific 

domains are discussed in Sections 5.1, 8.1 and 9.1 respectively. They are compared with 

EvoGraph encoding and evolution in the same chapter. 

This thesis presents a general graph encoding scheme for graphs of different 

topologies of graphs including ANNs or trees, directed or undirected etc.. Based on this 

general encoding scheme, an EA, called EvoGraph, is devised to tackle various problems 

for which solutions can be represented as graphs. The details of EvoGraph are given in 

the next two chapters. 

 

 

 

 

 

 



 

 18

                                                                                                                              Chapter 3 

 
EvoGraph Encoding Scheme for Different Graph Topologies 
 
 

All graphs can be represented in their adjacency matrices. The adjacency matrix of a 

graph represents the graph nodes and their connectivity at the same time. For EvoGraph, 

a graph is encoded in its adjacency matrix. Though these matrices can also be encoded in 

linear-string chromosomes which simple GAs can operate on by concatenating the rows 

to form a linear array, it can be a rather computationally clumsy representation. 

Furthermore, if linear-string chromosomes are used, the connectivity between nodes 

cannot be read directly and a special decoding phase has to be added to convert linear-

sting chromosomes back into a graph. 

One advantage of the EvoGraph using an adjacency matrix encoding scheme is that 

an effective crossover operator that EvoGraph adopts can be more easily implemented 

with it. Also, another advantage of encoding a graph in adjacency matrix is that 

“repairing” a matrix after crossover to ensure connectivity can be much easier. In the 

following sections, the adjacency matrix representation scheme is described in details. 

 

3.1 Encoding of Graphs in Adjacency Matrix 

Given a graph represented as G(V, E) where V is the set of vertices and E is the set of 

edges in G.  We can construct its adjacency matrix in such a way that if there exists a 

connection from iv ∈V to vertex jv ∈V, i≠j in the graph, then the value of the cell at the 

ith row and jth column, cij is set to 1. Otherwise, if there is no connection between them, it 
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is set to 0.  If the edges are labeled, cij can be assigned the edge label instead. Without 

loss of generality, if the graph is directed, then cij represents a directed edge from iv ∈V 

to vertex jv ∈V.  Examples on the encoding of undirected and directed graph are shown 

below in Figures 1 and 2. 

 

 
 1 2 3 4 5 6 7 8

1 - c12 0 0 0 0 0 c18

2 - - c23 c24 0 0 0 0

3 - - - c34 0 c36 c37 0

4 - - - - c45 0 0 0

5 - - - - - c56 0 0

6 - - - - - - 0 0

7 - - - - - - - 0

8 - - - - - - - - 
 

 

Figure 1: Undirected graph encoding example 

 

 

 1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 0 

2 0 0 c23 0 c25 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 c42 c43 0 0 0 C47 0 

5 0 0 0 0 c55 0 0 c58

6 0 0 0 0 0 0 C67 0 

7 c71 0 0 c74 0 c76 0 0 

8 c81 0 0 0 0 0 0 0 

1

5

6

8

4

7
2

7

3

c74

c58

c47

c43

c6
7

c81

c25

c42

c23

c76

c55

c71

 
 

Figure 2: Directed graph encoding example 
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4

5

26

8
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3.2 Encoding Trees  

Given a number of nodes |V|, a tree is the minimal graph that has |E| = |V| - 1 number 

of edges. The adjacency matrix of a tree with |V| nodes and |E| directed edges starting 

from the root and descending downwards has the properties as shown in Table 1. Note all 

trees exhibit such properties in their adjacency matrices but an adjacency matrix having 

such properties may not always produce a tree topology. An example on tree adjacency 

matrix encoding a tree and adjacency matrix having properties in Table 1 but not 

representing a tree are shown in Figure 3(a) and Figure 3(b) respectively.. 

To check if an adjacency matrix represents a tree, one can follow the following 

procedure. 

1. If an adjacency matrix does not possess properties in Table 1, it does not represent a 

tree topology. 

2. Insert a cut-line between two columns at one time from the left to the right to separate 

the adjacency matrix into 2 submatrices. If it represents a tree, this will result in the 

loss of an edge. If not, the adjacency matrix does not represent a tree topology. For 

example, a cut between columns C and D of the adjacency matrix in Figure 3(b) does 

not result in the loss of an edge. Hence it does not represent a tree topology. 

Properties in adjacency matrix Topological properties in tree structure 
1. For each node i, there exist at least one cij = 1 or 
cki = 1 where 1 ≤ j, k ≤ |V| 

Each node is connected at least by one arrow 

2. There exist only one cij = 1 for all the columns in 
the matrix except the column of root node 

There are |V| - 1 arrows in a tree and each non-root 
node has one number of arrow pointed from above

3. There exist one column with all cij = 0 The root node does not have arrow pointing toward 
it 

4. There exist some rows with cij = 0 The terminal nodes have no arrows originating 
from them 

7. If cij = 1, then cji ≠ 1 and vice versa There is no reverse arrow pairs connecting two 
nodes 

6. The diagonal cii = 0 There is no loop for each node 
Table 1: Properties of a tree in adjacency matrix 
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 G H I h i j k

G 0 cGH cGI 0 0 0 0

H 0 0 0 cHh cHi 0 0

I 0 0 0 0 0 cIj cIk

h 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0

j 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0

 

G

IH

kjih

CGH C
GI

C
IkCHh C

H
i C

Ij

 
 

Figure 3(a): Tree encoding example 
 
 

 A B C D E

A 0 0 cAC 0 0 

B cBA 0 0 0 0 

C 0 cCB 0 0 0 

D 0 0 0 0 cDE

E 0 0 0 0 0 

 

A

ED

CB

C
B

A

C
A

C

CCB

CDE

 
 

Figure 3(b): Example on adjacency matrix with properties in Table 1 but not 

representing tree topology 

 

3.3 Encoding Artificial Neural Network 

EvoGraph is not designed to conduct ANN operations with the feed forward and back 

propagation process. The intention is to evolve the optimal ANN topology for its 

operation. The input, output, and hidden nodes of ANN are encoded in adjacency matrix 

by assigning the rows and columns to present different layers. Only the above diagonal 

elements in the upper left portion of the matrix are used to indicate connections. This is 

because most of the ANNs are bipartite graphs and nodes in each layer of ANN will not 

connect with itself. The general form of adjacency matrix for ANN and an example of 
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encoding is shown below. cij is the weight of an edge. The direction of edges is trivial for 

evolving topologies of  ANN. Hence, undirected graph encoding similar to Figure 1 is 

used. For recurrent ANN, which is a special type of ANN, it has tree topology and can be 

encoded using the adjacency matrix in Section 3.2 

 

 Input 
nodes 

Output 
nodes 

Hidden 
nodes 

Input 
nodes 

- - cij 

Output 
nodes 

- - cij 

Hidden 
nodes 

- - - 

Figure 4: General form of adjacency matrix for encoding ANN 
 

  

 1 2 3 4 5 6 7

1 - - - - c15 c16 c17

2 - - - - 0 c26 c27

3 - - - - c35 c36 c37

4 - - - - 0 c46 c47

5 - - - - - - - 

6 - - - - - - - 

7 - - - - - - - 

 
3

1

4

75 6

2input

output

hidden

c1
6c15 c17

c26

c2
7

c3
5

c
36

c37 c4
6c47

 

Figure 5: ANN encoding example 
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                                                                                                                              Chapter 4 

 
Reproduction Operators for EvoGraph  
 
 

Given the graph encoding scheme, the reproduction operators can be easily described. 

Before they are described in details, it should be noted that, in the crossover and mutation 

operation as adopted by EvoGraph, the issue of graph connectivity needs to be tackled. 

Imposing penalty in the fitness function on invalid solutions (disconnected graphs) 

generated by evolution operators may lead to high inefficiency of the EA process because 

a lot of invalid solutions may need many generations to eliminate [133]. We use an 

appropriate data structure (adjacency matrix) and specialized evolution operators to take 

care of the connectivity constraint.  

In order to ensure that a graph remains connected after the reproduction operators are 

applied to it, EvoGraph use an unbiased repair algorithm by incorporating a randomly 

generated spanning tree (see the procedures in Section 4.2) to the intermediate degenerate 

graphs right after the crossover or mutation. This way, a disconnected graph can be 

connected. Given a number of nodes, the spanning tree is the smallest graph that can be 

embedded in all graphs. Embedding of a spanning tree in a graph being generated during 

the evolutionary process does not cause any bias in topology in a graph. For example, in 

the initialization process, given |V| and |E|, graph generation begins with the generation of 

spanning tree to connect all the |V| number of nodes with |V| - 1 edges, and then add edges 

at random along the way. 
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4.1 Generation of Spanning Tree 

As the EvoGraph operates on adjacency matrices, spanning tree generation is 

conducted on adjacency matrix. The generation of spanning tree from a set of 

unconnected nodes in an adjacency matrix is illustrated by an example below. For the 

purpose of illustration, cij = 1 or 0 where cij =1 if a directed edge connection from node vi 

to node vj exists and cij = 0 indicates no connection. 

Before the procedure to embed a decision tree in an adjacency matrix is given, let us 

define the followings. 

Definition 1: An Origin node (vo) is defined as a node in a graph adjacency matrix 

with all ‘0’s in the column. This means that there is no directed edge connection 

from another node to an origin node in a graph. An example of an origin node is the 

root node of a tree. It will be illustrated later that, during the process of crossover of 

trees, degenerate trees can be produced in the intermediate stages and there can be 

more than one origin node in a degenerate tree. However, the process of spanning-

tree generation can also start off with a set of vos of a degenerate tree. 

 

Definition 2: A Descendant node (vd) is defined as a node in a graph adjacency 

matrix with a single ‘1’ in one cell and ‘0’ in all other cells in the column. This 

represents a directed edge connection from another node to a descendant node. 

Examples of descendant node include internal nodes and leaf nodes of a tree. 

 

Given the above definitions and let V be a set of nodes for the spanning tree, 

VVO ⊂ be the set of origin nodes in V.  If V is in the starting condition, where all the 
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nodes are unconnected, V=VO, otherwise, VVO ⊂  and VVO ≠ . Let also N(X) 

represents number of elements in set X.  The procedure for constructing an embedded 

spanning tree can therefore be given as follows: 

1. Initialize an adjacency matrix will all column and row labels the same as the nodes in 

V. Set all cells of the adjacency matrix to ‘0’. 

2. Select at random a node vr from VO. 

3. Exclude vr from VO so that  VO=VO \ vr;  

4. Generate at random a natural number k where )(1 VONk ≤≤ . 

5. Select k number vos in VO. Create a set U to include all the selected vos so that 

};,....,....,{ 21 ki vvvvU =  

6. for i = 1to k, 1=
irvvc  so that directed edges are now created to connect vr to all nodes 

vi in U in the adjacency matrix. All nodes in U are now vds. 

7. Revise VO to exclude all the vds so that VO=VO \ U; 

8. Include vr again in VO for the next round of origin node selection. rvVOVO ∪= ; 

9. Empty U. U={}; 

10. Repeat step 2 to 9 until N(VO)=1. The ending condition where the there is only one 

root node in the set of origin nodes.  

 

An example of spanning tree generation from an adjacency matrix using the above 

procedure is shown below. Given a set of unconnected nodes V ={A, B, C, D, E, F}. as 

shown in Figure 6(a).  
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 B E D A F C

B 0 0 0 0 0 0 

E 0 0 0 0 0 0 

D 0 0 0 0 0 0 

A 0 0 0 0 0 0 

F 0 0 0 0 0 0 

C 0 0 0 0 0 0 

 

A

F

D E

C

B

 
 
 
 

Figure 6(a):  Initialization of spanning tree adjacency matrix. All nodes have column 
cells ‘0’. Hence all nodes are vos 
 

1. Let VO=V ={A, B, C, D, E, F} 

2. Select at random an origin node vr=‘B’ from VO. 

3. VO=VO\B; VO = {A, C, D, E, F}. 

4. Generate at random a natural number 5)(1 =≤≤ VONk , say k=2. 

5. Select at random 2 vos from VO and include them in a set U, say, U = {D, E}. 

6. Create directed edges cBD = 1, cBE = 1. Now ‘D’, ‘E’ are no longer vos. Each of them 

has a ‘1’ in their columns in the adjacency matrix. They are vds. 

 

  
 B E D A F C

B 0 1 1 0 0 0 

E 0 0 0 0 0 0 

D 0 0 0 0 0 0 

A 0 0 0 0 0 0 

F 0 0 0 0 0 0 

C 0 0 0 0 0 0 

 

A

F

D E

C

B

 
Figure 6(b):  Node ‘B’ is selected to originate directed edges to vos ‘D’ and ‘E’ 
 

7. Revise VO to exclude vds in U = {D, E}. VO = VO \ U = {A, C, F}. 
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8. Include vr=‘B’ again in VO for the next round of origin node selection. 

},,,{ FCBAvVOVO r =∪= ; 

9. Empty U. U={}; 

10. 14)( ≠=VON . Carry out next round of origin node selection. 

11. Select at random an origin node vr= ‘A’ from VO. 

12. VO=VO \ A; VO = {B, C, F}. 

13. Generate at random a natural number 3)(1 =≤≤ VONk , say k=3. 

14. Select at random 3 vos from VO and include them in a set U, say, U ={B, C, 

F}.Create directed edges cAB = 1, cAC = 1, cAF = 1. Now ‘B’, ‘C ’, ‘F’ are no longer vos. 

Each of them has a ‘1’ in their columns in the adjacency matrix. They are now vds. 

 

  
 B E D A F C

B 0 1 1 0 0 0 

E 0 0 0 0 0 0 

D 0 0 0 0 0 0 

A 1 0 0 0 1 1 

F 0 0 0 0 0 0 

C 0 0 0 0 0 0 

 

A

F

D E

C

B

 
 

Figure 6(c): Node ‘A’ is selected to originate directed edges to vos ‘C’, ‘B’ and ‘F’ 
 

15. Revise VO to exclude the vds in U = {B, C, F}. VO = VO \ U = {}. 

16. Include vr=‘A’ again in VO for the next round of origin node selection. 

}{AvVOVO r =∪= ; 

17. Empty U. U={}; 

18. 1)( =VON . Stop. 
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In complexity analysis, the worst case scenario of this spanning tree generation 

algorithm is to add one edge at a time until a spanning tree is formed. In this worst case 

scenerio, a node is selected at random. Then a second node is selected out of |V| - 1 nodes 

and a directed edge from the first node connects to it. The first node is an on. There are 

|V| - 2 nodes left behind in the adjacency matrix to be scanned for ons for the next 

connection and so on. The order of time required for the spanning tree generation for this 

worst scenario is  
2

)1|(|||1....)2|(|)1|(| −
=++−+−

VVVV . Hence, it can be deduced 

that the time for execution can be completed in not more than O(|V|2). The same time 

complexity applies to the repair processes in different crossovers described in Section 4.2 

as they adopt the same algorithm for repair. 

An example of embedded spanning tree in a graph is shown in Figure 7(a). The 

embedding of a spanning tree in the graph is shown in Figure 7(b) with corresponding 

edges shown as ‘1’ in the adjacency matrix. After creation of a spanning tree, more ‘1’s 

are then added to the cells of the adjacency matrix as additional edges are added to form a 

graph. They are presented as undirected edges in Figure 7(a) and ‘1’s in Figure 7(b). This 

process is used to generate the initial population of graphs for evolution. It also re-

connects the exchanged degenerate subgraphs to generate offspring in the crossover 

process demonstrated in later sections. 
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E

H

F

C

B

A

D

G

 

 A B C D E F G H 

A 0 1 0 0 1 0 0 0 

B 0 0 1 1 0 0 0 0 

C 0 0 0 1 0 0 0 1 

D 0 0 0 0 0 0 0 0 

E 0 0 0 1 0 1 0 0 

F 0 0 0 0 0 0 1 0 

G 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 0  

(a) Graph with spanning tree embedment 
and node A as root 

 (b) Adjacency Matrix for directed graph with a 
‘1’s as the spanning tree and other edges added at 
random as ‘1’ 

Figure 7: An example of a graph adjacency matrix with spanning tree highlight 
 

4.2 Crossover of Graphs  

This operator involves the crossing of two parent graphs to produce a pair of children 

graphs in a random manner without imposed order and is the most general form of graph 

crossover used by EvoGraph. This is called random crossover. 

 

4.2.1 Random Crossover of Graphs 

This operator allows two parent graphs with different number of nodes to be crossed. 

A graph is invariant to the row and column permutation of its adjacency matrix. This 

permutation-invariant property of graphs does not exist in linear chromosomes in GA. In 

a linear chromosome, permutation of alleles will result in different properties and hence 

different fitness but this is not the case with graphs. The fitness of a graph is the same 

regardless of the permutation of its nodes even if the graph is represented as an adjacency 

matrix.  
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Given two parent graphs with different number of nodes to be crossed, they can be 

represented as GP1(VP1, EP1) and GP2(VP2, EP2) with corresponding adjacency matrices 

GP1 and GP2, the operation can be described as follows. For illustration purpose, the 

value of elements in the adjacency matrix cij = 0 or 1. 

     For each of GP1 and GP2, the order of nodes in their corresponding adjacency matrices 

is randomly permuted prior to other operations. This is to ensure that there is no bias 

when nodes are selected for the reproduction operators. For each of GP1 and GP2, a 

crossover point between two neighboring rows and columns in an adjacency matrix is 

selected randomly. One submatrix from each of the split parent matrix is then swapped to 

form two new child matrices. Connections within the submatrices are retained throughout 

the process while connections outside them are deleted. New edges are generated with 

repairing in each of the resulting matrices to form two children, GC1 and GC2. The 

random crossover can be described step-by-step as follows.  

1. Given two graphs, GP1(VP1, EP1) and GP2(VP2, EP2), with vertex sets { 1
1
Pv , 1

2
Pv , …, 

1P
iv , 1

1
P
iv + , …, 1P

nv } and { 2
1
Pv , 2

2
Pv , …, 2P

jv , 2
1

P
jv + , …, 2P

mv } respectively. For the two 

graphs, corresponding adjacency matrices GP1 and GP2 are constructed. The order of 

nodes is randomly permuted. 

2. A crossover point in each of GP1 and GP2 is randomly selected.   

3. Assume that the crossover point for GP1 is between 1P
iv and 1

1
P
iv + and for GP2 is between 

2P
jv and 2

1
P
jv + , the lower right portions of these two adjacency matrices are then swapped 

so that the rows and columns corresponding to { 1
1

P
iv + ,…, 1P

nv } are swapped with the 

rows and columns corresponding to { 2
1

P
jv + ,…, 2P

mv }  to form two matrices GPC12 and 
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GPC21. The valid vertex labels for GPC12 are therefore given by { 1
1
Pv , 1

2
Pv , …, 

1P
iv , 2

1
P
jv + , …, 2P

mv }and for GPC21 by { 2
1
Pv , 2

2
Pv , …, 2P

jv , 1
1

P
iv + , …, 1P

nv }.  

4. All cell entries in each of GPC12 and GPC21
 are scanned to remove invalid edges in such 

a way that the edges connecting to the internal nodes within GPC12 and GPC21 are kept 

and those that connect an internal to an external nodes outside of GPC12 and GPC21 are 

removed. 

5. The number of edges to be added to each of GPC12 and G 
PC21 respectively are then 

decided with a random number generator so that, for GPC12,  

   |VPC12| -1 ≤ |EPC12| ≤ |VPC12|C2 and for G 
PC21, |VPC21| -1 ≤ |EPC21| ≤ |VPC21|C2.  

6. A spanning tree is generated at random in each matrix and the remaining edges to be 

added are generated randomly in such a way that they connect vertices from 

{ 1
1
Pv , 1

2
Pv , …, 1P

iv } with those from { 2
1

P
jv + , …, 2P

mv } and from { 2
1
Pv , 2

2
Pv , …, 2P

jv  } with 

those from { 1
1

P
iv + , …, 1P

nv }.   

7. Once edge-generation is complete, two children graphs, GC1 and GC1, are produced.  

 

As an illustration of how the random crossover operates, let us consider an example in 

Figure 8 below.  

1. Assume that the nodes of 2 graphs with adjacency matrices GP1 and GP2 respectively 

are randomly permuted prior to crossover.  

2. A crossover point in each of GP1 and GP2 is then randomly selected.   

3. The lower right portions of these two adjacency matrices are then swapped to form 

GPC12 and GPC21. 
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4. All cell entries in each of GPC12 and GPC21 are scanned to remove invalid edges. Both 

of them are degenerate graph.  

 
 

GP1 GP2 

 

A

H G

FD

E

C

B

 

 

1

65

2

43

 
                          GP1                                                                        GP2  

 

 
 

 A B  C D  E  F  G H 

A  0 1 0 0 1 0 0 0

B  0 0 1 1 0 0 0 0

C  0 0 0 1 0 0 0 1

D  0 0 0 0 1 0 0 0

E  0 0 0 0 0 0 0 0

F  0 0 0 0 1 0 0 0

G 0 0 0 0 0 1 0 0

H  0 0 0 0 0 0 0 0

 
 
 
 

 1 2 3 4 5 6 

1 0 0 1 1 0 0 

2 0 0 0 1 1 1 

3 0 1 0 1 0 0 

4 0 0 0 0 0 1 

5 0 0 0 0 0 0 

6 0 0 0 0 1 0 

Figure 8(a): Nodes are randomly permuted in the adjacency matrices. A crossover point 
is randomly chosen for GP1 and GP2. Invalid edges to be removed are shown in dotted 
lines. Corresponding graphs are shown in the above adjacency matrices 
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GPC12 GPC21 

 

6

5

4A

DC

B

 

 

1

2

3

H

G

F

E

 

                         GPC12                                                                           GPC21  
  

 A B C D 4  5  6

A 0 1 0 0 0 0 0

B 0 0 1 1 0 0 0

C 0 0 0 1 0 0 0

D 0 0 0 0 0 0 0

4  0 0 0 0 0 0 1

5  0 0 0 0 0 0 0

6 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 1 2 3 E F G H 

1 0 0 1 0 0 0 0 

2 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 

E 0 0 0 0 0 0 0 

F 0 0 0 1 0 0 0 

G 0 0 0 0 1 0 0 

H 0 0 0 0 0 0 0 

Figure 8(b): Invalid edges are removed after swapping of lower right portions of GP1 and 
GP2. Degenerate graphs GPC12 and GPC21 are formed 
 

5. The number of edges to be added to each of GPC12 and G PC21 respectively are then 

decided with a random number generator so that,  

for GPC12, |VPC12| -1 = 6 ≤ |EPC12| ≤ |VPC12|C2  = 21 and  

for G PC21, |VPC21| -1 = 6≤ |EPC21| ≤ |VPC21|C2  =21.  

In this example, say, |EPC12| = 10, |EPC21| = 6. 

6. A spanning tree is generated at random for the nodes in each matrix according to the 

process in Section 4.1 and superimpose on the adjacency matrix of each of the 

degenerate graphs to re-connect them. A spanning tree is now embedded in each of the 

graph. 
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GPC12 GPC21 
 

6

5

4A

DC

B

 

 

1

2

3

H

G

F

E

 

                                 GPC12                                                                               GPC21  
  

 A B C D 4  5  6

A 0 1 0 0 0 0 0

B 0 0 1 1 0 0 0

C 0 0 0 1 1 0 0

D 0 0 0 0 0 0 0

4  0 0 0 0 0 0 1
5  0 0 0 0 0 0 0

6 0 0 0 0 0 1 0

  
 1 2 3 E F G H 

1 0 0 1 0 0 0 0 

2 0 0 0 0 0 1 1 
3 0 1 0 0 0 0 0 

E 0 0 0 0 0 0 0 

F 0 0 0 1 0 0 0 

G 0 0 0 0 1 0 0 

H 0 0 0 0 0 0 0 

Figure 8(c): Re-connect degenerate graphs by superimposing a spanning tree generated 
at random as in section 4.1. Spanning tree edges are shown as ‘1’s in the adjacency 
matrices. New edges added to re-connect the degenerate graphs are shown as dotted line 
in the graph 
 

GPC12 has 7 edges. The requirement of |EPC12| = 10 in step 5 is not satisfied in GPC12. 

New edges should be added to GPC12 to fulfill the requirement. Note that if the edges 

in the resulting graphs are more than specified, edges that are not in the embedded 

spanning tree in each graph can be deleted at random to achieve the target. 

7. Three new edges are randomly added to GPC12, say, cD4 =1, cD5 =1, cA6 = 1 to form GC1. 

GC2 is formed without addition of edges. 
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GC1 GC2 

4

6

5

DC

B

A

 

 

1

2

3

H

G

F

E

 

                         GC1                                                                     GC2  
 

 
 
 

 A B C D 4  5  6

A 0 1 0 0 0 0 1

B 0 0 1 1 0 0 0

C 0 0 0 1 1 0 0

D 0 0 0 0 1 1 0

4  0 0 0 0 0 0 1

5  0 0 0 0 0 0 0

6 0 0 0 0 0 1 0

 

 
 
 

 1 2 3 E F G H 

1 0 0 1 0 0 0 0 

2 0 0 0 0 0 1 1 

3 0 1 0 0 0 0 0 

E 0 0 0 0 0 0 0 

F 0 0 0 1 0 0 0 

G 0 0 0 0 1 0 0 

H 0 0 0 0 0 0 0 

 
 
 
 

Figure 8(d): New edges cD4 =1, cD5 =1, cA6 = 1 in ‘1’ are added randomly to GPC12. 
Children graphs GC1 and  GC2 are formed. 
 

4.2.2 Random Crossover of Trees 

To illustrate how the random crossover works with trees, let us consider an example 

below. For this example, a directed graph is used for illustration.  

1. Select two parent trees GP1 and GP2 with adjacency matrices GP1 and GP2 for crossover. 

Permute the order of nodes in the adjacency matrix at random. 
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GP1 GP2 

 

A

CB

ED
 

 

 

1

42
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GP1 GP2 

 

 E B C A D 

E 0 0 0 0 0 

B 1 0 0 0 1 

C 0 0 0 0 0 

A 0 1 1 0 0 

D 0 0 0 0 0 
 

 

4 6 5 2 1 3 

4 0 1 1 0 0 0 

6 0 0 0 0 0 0 

5 0 0 0 0 0 0 

2 0 0 0 0 0 0 

1 1 0 0 1 0 1 

3 0 0 0 0 0 0 
 

Figure 9(a): Encoding trees in adjacency matrices with order of nodes permuted at 
random 
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2. Select a crossover point in the matrices at random. The nodes and terminals are divided 

into two sub-groups in each parent accordingly. 

 

 

 

GP1 GP2 
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                                      GP1                                        GP2 

 

 E B C A D 

E 0 0 0 0 0 

B 1 0 0 0 1 

C 0 0 0 0 0 

A 0 1 1 0 0 

D 0 0 0 0 0 
 

 

4 6 5 2 1 3 

4 0 1 1 0 0 0 

6 0 0 0 0 0 0 

5 0 0 0 0 0 0 

2 0 0 0 0 0 0 

1 1 0 0 1 0 1 

3 0 0 0 0 0 0 
 

Figure 9(b): Randomly choose crossover points and sub-groups in the adjacency 
matrices. The edges to be removed are shown in dotted lines. 
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3. Remove invalid edges after exchange sub-groups to form GPC12 and GPC21. 

GPC12 GPC21 

 

CB

E

1

2 3
 

 

 

A

D

4

65
 

GPC12 GPC21 

 

 E B C 2 1 3

E 0 0 0 0 0 0

B 1 0 0 0 0 0

C 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 0 0 1 0 1

3 0 0 0 0 0 0
 

 

 4 5 6 A D 

4 0 1 1 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

A 0 0 0 0 0 

D 0 0 0 0 0 
 

Figure 9(c): Exchange sub-groups between two adjacency matrices and remove invalid 
edges. Two degenerate trees are formed. 

 

 

4. Generate spanning tree to re-connect all the nodes using the steps as described in 

Section 4.1 to form children trees, GC1 and GC2. In this case, the spanning tree is 

generated from a degenerate tree with some origin nodes, vos, with all ‘0’ in the 

column of the adjacency matrices GPC12 and GPC21 in Figure 9(c). This means that 

there is no ancestor node from the tree layer above connected to this node (Nodes ‘1’, 

‘B’, ‘C’ in GPC12 and nodes ‘4’, ‘A’, ‘D’ in GPC21). Spanning tree is generated at 

random to re-connect each degenerated tree according to the process in Section 4.1 to 

form children trees GC1 and GC2.  
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GC1 GC2 

 

C

B

E

1

2 3

 

 

 

 

A D

4
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GC1 GC2 

 

 E B C 2 1 3

E 0 0 0 0 0 0

B 1 0 1 0 0 0

C 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 1 0 1 0 1

3 0 0 0 0 0 0
 

 

4 5 6 A D 

4 0 1 1 1 1 

5 0 0 0 0 0 

6 0 0 0 0 0 

A 0 0 0 0 0 

D 0 0 0 0 0 
 

Figure 9(d): Generate spanning tree according to the process in section 4.1 to re-connect 
all nodes. New edges are shown as ‘1’s in adjacency matrices and dotted directed edges 
in trees GC1 and  GC2  
 

This is the result of one random crossover of trees in EvoGraph. The children trees 

are substantially different from their parents. It is apparent that one GP crossover 

involving subtree exchange between parents cannot achieve the result of one random 

crossover of EvoGraph.  As shown from an example in the next section, to obtain the 

results using traditional swapping-subtree crossover in GP, more than one GP operation 

plus appropriate combination of mutations are required. The random crossover has the 

following properties when used with trees. 

1. It is unbiased in the sense that each node and edge has equal chance of being swapped. 
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There is more random regrouping of nodes and edges with random crossover operator. 

The GP crossovers with subtree exchanges may need more steps to attain the same 

result of just one crossover with this algorithm. This will be illustrated by an example 

in Section 4.2.3.  

2. The selection of a node as crossover point does not imply the exchange of subtree 

below it. Hence, redundant codes in the subtree below the crossover point may not be 

carried over to the next generation. This may help to alleviate the problem on bloat as 

in the case with GP. 

3. Several researchers have shown that the basic crossover operator in GP is inclined to 

converge in the nodes near the tree root [51][52][53]. It is difficult for crossover in 

GP with subtree exchange to change the “incorrect” node in the root structure without 

also changing all the structure below that node. EvoGraph is not constrained in this 

respect. The root of a parent can be easily separated from the nodes below it in a 

single crossover operation. 

 

4.2.3 Comparison between Standard GP and Random Crossover of Trees in 

EvoGraph 

In order to illustrate how EvoGraph can be used to solve the kind of problems 

typically dealt with using GPs, let us consider the following example where GP with 

subtree exchange is applied to the same parents in 4.2.2. The example describes one of 

the possible paths step by step to arrive at the same result in 4.2.2. It is demonstrated that 

more than one crossover and mutation are required to achieve the same result. 
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GP1 GP2 

 

A

CB

ED

 

 

1

42

65

3

 

Figure 10(a): Start condition of GP crossover. Node ‘C’ of GP1 is mutated to connect to 
node ‘E’ 
 
 

GPC12a GPC21 

A

E

B

CD

1

42
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3

 

Figure 10(b): First GP crossover with swapping of subtree ‘1-2-3’and node ‘A’ 

 

 
GPC12b GPC21a 
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Figure 10(c): Second GP crossover with swapping of node ‘D’ 
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GC1 GC2 

 

E

B
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1

2 3

 

 

A D

4
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Figure 10(d): Children trees same as Figure 9(d) 

 

4.2.4 Random Crossover of Artificial Neural Networks 

To use EvoGraph with ANN, let us consider encoding an ANN as a graph with three 

sets of nodes, the input nodes, the output nodes and the hidden nodes.  There is no edge 

connection between nodes within each set. This principle is used to generate ANNs in the 

process of crossover.  During the crossover, the number of input nodes and output nodes 

are fixed. The hidden nodes and their edges are swapped at random. Using the notations 

in 4.2.1, the random crossover of ANN is illustrated by an example below. For 

illustration purpose, the weight of all edges is assumed to be 1. 

 

Let  },.....,,{ 21 piii be the set of input layer nodes 

 },.....,,{ 21 khhh be the set of hidden layer nodes 

 },.....,,{ 21 qooo  be the set of output layer nodes 

1. Concatenate },.....,,{ 21 piii , },.....,,{ 21 khhh , },.....,,{ 21 qooo  to form the rows and 

column labels of the adjacency matrix  },....,,,....,,,....,{ 111 qkp oohhii arranged in the 

same order. Set all cells in the adjacency matrix to be ‘0’. 
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2. for j = 1 : k,  

generate natural numbers m, n at random where pm ≤≤1 , qn ≤≤1 ;  

insert m numbers ‘1’s at random to cells in column hj, row i1 to ip; 

insert n numbers ‘1’s at random to cells in column hj, row o1 to oq; 

end 

 

 

 

Step 1 is to initiate an adjacency matrix for ANN. Connections are not made at this step 

and all entries in the adjacency are set to zeros. Step 2 connects the hidden layer nodes 

with the input layer nodes and the output layer nodes. This step will also be used for re-

connection of degenerate ANN after the exchange of subgraphs in the random crossover 

process of ANN illustrated below. During the crossover, the number of input nodes and 

output nodes are fixed. The hidden nodes and their edges are swapped at random. The 

random crossover of neural network is illustrated by an example below.  

1. Select two parent ANNs GP1, GP2 with adjacency matrices GP1 and GP2 (Figure 11(a)). 

2. Select crossover point at random at the hidden layer in GP1 and GP2. Split GP1 and 

GP2 into submatrices at the crossover point, exchange the submatrices and delete 

invalid edges to form GPC12 and GPC21. 
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GP1                              GP2 
 

3

1

4

75 6

2input

output

hidden

                      

3

21

a dcb

4

input

output

hidden

 
 
 

GP1                                       GP2 

 
 
 
 
 

 1 2 3 4 5 6 7

1 - - - - 1 1 1
2 - - - - 0 1 1
3 - - - - 1 1 1
4 - - - - 0 1 1
5 - - - - - - -
6 - - - - - - -
7 - - - - - - -

 

 
 

 1 2 3 4 a b c d 
1 - - - - 0 1 1 1 
2 - - - - 1 0 1 0 
3 - - - - 1 0 1 1 
4 - - - - 1 1 0 0 
a - - - - - - - - 
b - - - - - - - - 
c - - - - - - - - 
d - - - - - - - - 

Figure 11(a): Encoding parent ANNs in adjacency matrices 
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GPC12                     GPC21 
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GPC12                             GPC21 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

  1 2 3 4 5 6 c d

1 - - - - 1 1 0 0

2 - - - - 0 1 0 0

3 - - - - 1 1 0 0

4 - - - - 0 1 0 0

5 - - - - - - - -

6 - - - - - - - -

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 1 2 3 4 a b 7 

1 - - - - 0 1 0 

2 - - - - 1 0 0 

3 - - - - 1 0 0 

4 - - - - 1 1 0 

a - - - - - - - 

b - - - - - - - 

Figure 11(b): Select crossover point at random, exchange submatrices and delete invalid 
edges to form GPC12 and GPC21. The corresponding ANN topologies are GPC12 and GPC21 

 

3. Re-connect at random the input- and output-layer nodes to the swapped hidden layer 

nodes by adding ‘1’s at random to input node cells and output node cells in column 

‘c’ and ‘d’ in GPC12 and column ‘7’ in GPC21 to form children ANN, GC1 and GC2. 

According to the encoding rule in Section 3.3, there should be at least one ‘1’ in both 

the group of input node cells and output node cells for each hidden node column in 

the adjacency matrix. In this example, c2c=1 (input node connection) and c3c=1 

(output node connection) for column ‘c’ (hidden node) in GC1. c1d=1 (input node 

connection) and c4d=1 (output node connection) for column ‘d’ (hidden node) in GC1. 
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c27=1 (input node connection) and c37=1 (output node connection) for column ‘7’ 

(hidden node) in GC2. 

 

GC1                               GC2 
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hidden
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hidden

 
 

GC1                                        GC2 
  

 1 2 3 4 5 6 c d
1 - - - - 1 1 0 1
2 - - - - 0 1 1 0
3 - - - - 1 1 1 0
4 - - - - 0 1 0 1
5 - - - - - - - -
6 - - - - - - - -
c - - - - - - - -
d - - - - - - - -

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 1 2 3 4 a b 7 

1 - - - - 0 1 0 
2 - - - - 1 0 1 
3 - - - - 1 0 1 
4 - - - - 1 1 0 
a - - - - - - - 
b - - - - - - - 
7 - - - - - - - 

Figure 11(c): Re-generate edges to form children ANNs. The new edges are shown as 
‘1’s in GC1 and GC2 and dotted lines in GC1 and GC2 
 

4.2.5 Comparison between EP and EvoGraph on the Evolution of ANN Topology 

The use of EP to evolve ANN topology from GP1 in Figure 11(a) to GC1 in Figure11(c) 

is illustrated as follow. EP only adopts mutation in its evolutionary process. It requires 

several mutation operations to achieve the result of one crossover operation in EvoGraph. 
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GP1 GPC1a 
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75 6

2input

output

hidden

 

3

1
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5 6

2

dc

input

output

hidden

(a) Initial ANN GP1 before EP operation (b) Addition of one hidden layer node ‘d’. Node 
‘7’ in hidden layer is changed to ‘c’ to achieve 
consistency with presentation in Figure 11. 

 

 
GPC1b GPC1c 
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hidden

3

1

4

5 6

2

dc

input

output

hidden

(c) Delete edge ‘4-c’ from hidden layer to output 
layer 

(d)  Add edge ‘4-d’ from hidden layer to output 
layer 

 

 
GPC1d GC1 

3
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2

dc

input
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hidden
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4

5 6

2

dc

input

output

hidden

(e) Delete edge ‘1-c’ from input layer to hidden 
layer 

(f) Add edge ‘1-d’ from input layer to hidden 
layer 

Figure 12: Steps on evolving ANN GP1 to GC1 using EP 
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Random crossover of ANN in EvoGraph has the following properties that are different 

from the existing evolutionary algorithms on ANN. 

 

1. It produces a more vigorous change to the parent ANN topology in a single operation 

than its counterpart in EP.  

2. Unlike the encoding of ANN into a linear chromosome by concatenating the rows of 

the adjacency matrix for the application of GA, which requires the length of the 

chromosome to be the square of the dimension of the adjacency matrix, EvoGraph 

has no requirement on the dimensions of the adjacency matrix. 

3. The connectivity of the ANN can be read directly from the adjacency matrix. This is 

difficult to achieve with a simple linear chromosome without special encoding. 

Connectivity can be maintained by direct insertion of ‘1’s in the adjacency matrix 

without special repair mechanism. 

4. Unlike other indirect encoding that evolves instructions or rules for the generation of 

ANNs, EvoGraph adopts a direct encoding method. There is no requirement for 

additional mapping of the genotype, which is the subject of evolution in indirect 

encoding method, and the phenotype, the actual ANN itself.  
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4.3 Mutation of Graphs 

Two basic mutation operators of graphs that cause changes in graph topologies are 

introduced. They are the Number-of-edge and Number-of-Node mutation operators. 

Similar to a GA, the intention of mutation is to bring about a breakthrough when the 

population converges to a suboptimal fitness. Based on this principle, other kinds of 

mutation can be further developed for different applications in later chapters. 

 

4.3.1 Number-of-Edge Mutation 

The Number-of-Edge mutation operator allows us to increase or decrease the number 

of edges in a graph. It works by selecting an edge at random for deletion or addition.  Its 

details are given below.  

1. For a graph GP(VP, EP) with edge set, EP, we construct its corresponding adjacency 

matrices as GP. 

2. Generate at random either ‘0’ or’1’.  

3. If ‘0’ is generated, an edge in the graph GP is selected and this is done by choosing a 

‘non-zero’ cell in GP randomly. ‘1’ is then deducted from the value of the selected 

cell to form a child graph GC and its corresponding adjacency matrix GC. Check if GC 

is connected. If yes, stop. If not, the graph is broken down into two connected 

subgraphs and each has its own embedded spanning tree. Superimpose a spanning 

tree across the disjoint subgraphs to re-connect them. 

4. If ‘1’ is generated, an edge is added to the graph by adding a ‘1’ to the value of a cell 

at random in GP to form GC and GC. 

An example of the Number-of-Edge mutation operator is given in Figure 13 below. 
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GP                               GC 
  

 A B C D E F G H

A  0 1 0 0 1  0 0 0
B  0 0 1 1  0 0 0 0

C  0 0 0 1 0 0 0 1

D  0 0 0 0 1  0 0 0

E  0 0 0 0 0 1  0 0

F  0 0 0 0 0 0 1 0

G  0 0 0 0 0 0 0 0

H  0 0 0 0 0 0 0 0

  
 A B C D E F G H 

A 0 1 0 0 1 0 0 0 

B 0 0 1 0 0 0 0 0 

C 0 0 0 1 0 0 0 1 

D 0 0 0 0 1 0 0 0 

E 0 0 0 0 0 1  0 0 

F 0 0 0 0 0 0 1  0 

G 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 0 

(a) For ‘0’ case, select at random edge to be 
deleted 

(b) Delete selected edge. Check if PC is 
connected. If yes, stop. If no, superimpose a 
spanning tree at random 

GP                      GC 
  

 A B C D E F G H

A  0 1 0 0 1  0 0 0

B  0 0 1 1  0 0 0 0

C  0 0 0 1 0 0 0 1

D  0 0 0 0 1  0 0 0

E  0 0 0 0 0 1  0 0

F  0 0 0 0 0 0 1 0

G  0 0 0 0 0 0 0 0

H  0 0 0 0 0 0 0 0

  
 A B C D E F G H 

A 0 1 0 0 1 0 0 0 

B 0 0 1 1 0 0 0 0 

C 0 0 0 1 0 0 1 1 

D 0 0 0 0 1 0 0 0 

E 0 0 0 0 0 1  0 0 

F 0 0 0 0 0 0 1  0 

G 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 0 

(c) For ‘1’ case, select at random cell to add an 
edge  

(d) add an edge to the selected cell 

Figure 13: The Number-of-Edge Mutation operator illustrated.  
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4.3.2 Number-of-Node Mutation  

The Number-of-Node mutation operator allows us to increase or decrease the number 

of nodes in a graph by one. It works by selecting a node at random for deletion or 

addition. Its details are given below.  

1. For a graph GP(VP, EP) with node set { Pv1 , Pv2 , …, P
iv , P

iv 1+ , …, P
nv } we construct its 

corresponding adjacency matrices, GP. 

2. Generate at random either ‘0’ or’1’.  

3. If ‘0’ is generated, a node, P
iv , in GP is selected at random. 

4. P
iv and all edges connected to P

iv are deleted from GP to form GC with corresponding 

adjacent matrix GC. 

5. Connect nodes previously connected to P
iv  at random and the resulting node set of 

GC is represented as { Pv1 , Pv2 , …, P
iv 1− , P

iv 1+ , …, P
nv }.  

6. If ‘1’ is generated, add node P
nv 1+  to GP and GP to form GC and GC respectively with 

new node set represented as { Pv1 , Pv2 , …, P
iv , P

iv 1+ , …, P
nv , P

nv 1+ }. Edges are generated 

at random to connect P
nv 1+  to other nodes in GC. 

An example to illustrate the Number-of-Node mutation operator is given in Figure 14 

below. 
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GP                                        GC 

 

 A B C D E F G H

A 0 1 0 0 1 0 0 0
B 0 0 1 1 0 0 0 0
C 0 0 0 1 0 0 0 1
D 0 0 0 0 1 0 0 0
E 0 0 0 0 0 1 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0

 

 

 A C D E F G H 

A 0 0 1 1 0 0 0 

C 0 0 1 0 0 0 1 

D 0 0 0 1 0 0 0 

E 0 0 0 0 1 0 0 

F 0 0 0 0 0 1 0 

G 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 

(a) Select the node B. (b) For ‘0’ case, delete the selected node B and 
connect node A and D which are previously 
connected to B 

                      GC 
 

 A B C D E F G H I 

A  0 1 0 0 1 0 0 0 0
B  0 0 1 1  0 0 0 0 0
C  0 0 0 1 0 0 0 1 0
D  0 0 0 0 1  0  0 0 0
E  0 0 0 0 0 1  0 0 1
F  0 0 0 0 0 0 1 0 0
G  0 0 0 0 0 0 0 0 0
H  0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 0 0 

 
 
 

(c) For ‘1’ case, add node I to GP and edges 
connecting to nodes F and H 

 

Figure 14: The Number-of-Node Operator illustrated.  
  

 

4.4 Mathematical Foundation for EvoGraph 

A graph is invariant to the rows and columns permutation of its adjacency matrix. A 

cut on the adjacency matrix is equivalent to a cut in one of the many incidences of a 

graph which nodes aligned with the same node permutation as the adjacency matrix. 

Consider a simple example of a graph with 3 nodes A, B, and C. There are 3! = 6 
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permutations on the order of nodes. According to EvoGraph crossover, there are 3-1 = 2 

positions for the cut line for crossover. The adjacency matrix with potential cut line 

positions and all the permutation of nodes in rows are shown in Figure15. 
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C

cut line 2cut line 1

11

000

00 0

0

     

 

           

A CB

A C B

A CB

ACB

AC B

AC B

cut line 1 cut line 2

 
(a) an adjacency matrix with an incidence of 

node permutation ABC and 2 potential cut lines

 (b) all possible row permutations of nodes 

with 2 potential cut lines 
Figure 15:  Permutation invariant of adjacency matrix illustrated 
 

Consider a node, say node A, is at the left most position of the row permutation of 

nodes. There are (3-1)! = 2! permutations for the remaining 2 nodes to take up the 

positions in the right of node A. They are in the order of B, C or C, B as illustrated in the 

first 2 rows in Figure 15(b). If node A is in the middle position, there are still 2! 

permutations for nodes B and C in the left and right of node A. This is illustrated in the 

third and fifth row in Figure 15(b). Similar logic applies when node A is in the right most 

position. The overall result is that there are exactly (3-1)! = 2 nodes being node A in each 

column in Figure 15(b). This applies to node B and C. 

In EvoGraph, the nodes in left hand side of the cut line will be retained and those in 

the right hand side will be swapped. Each cut line is selected at random with 3-1 possible 
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cuts. Hence the probability is 5.0
13

1
=

−
. If cut line 1 is selected, there are 2)!13( =−  

cases out of 6!3 =  cases that node A lies in the left of cut line 1 and being retained. At the 

same time, there are 2 x (3-1)! = 4 cases out of 3! = 6 cases that node A will be swapped. 

That is, the probability of node A being swapped for cut line 1 is 
6
45.0 × . 

When cut line 2 is selected with probability 0.5, there are 4)!13(2 =−×  cases out of 

6!3 = cases that node A lies on the left of cut line 2 and be retained. At the same time, 

there are 2)!13( =−  cases out of 6!3 = cases that node A will be swapped. That is, the 

probability of node A being swapped for cut line 2 is
6
25.0 × . 

Therefore, the total probability of node A being swapped in EvoGraph is 

5.0
6
2

6
45.0 =⎟

⎠
⎞

⎜
⎝
⎛ +×  

This simple case can be generalized. Let |N| be the number of node of a graph G and node 

A as any node in G. The probability of a particular cut line being selected is 
1||

1
−N

. 

Counting from the left at the r – 1 th cut line where ||2 Nr ≤≤ , there is a probability 

|!|
)!1|(|)1|(|

N
NrN −

×+−  that node A is at the right of the cutline and be swapped. The 

total probability of any node A in G being swapped for all possible cut line locations is  

5.0
||

1
2

)1|(|||
1||

1
|!|

)!1|(|)1|(|
1||

1 ||

2
=⎟

⎠
⎞

⎜
⎝
⎛ −

−
=
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− ∑
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Hence, the probability of any node in G being swapped is 0.5 for all possible cut line 

locations. 

 

4.4.1 Exploration Verses Exploitation 

Exploration and exploitation have always been an important consideration when 

choosing operators for evolutionary algorithms. In GA, there is an implicit thinking that 

high disruption caused by crossover destroys useful building blocks before the search 

space is adequately exploited and it should be avoided. 

However, De Jong [67] pointed out that the maintenance of exploitation is at the 

expense of exploration, he demonstrated by example that exploration is more important 

when the population size is too small to provide the sampling accuracy for evolution [68]. 

Another advantage of uniform crossover is its defining length unbiasedness. It is equally 

disruptive to all defining lengths. This is supported by the mathematical proof in [63] that 

uniform crossover depends only on the order of alleles to be retained, o(s), and it is 

independent to the defining length, )(sδ , of a chromosome.  

Furthermore, [67] demonstrated that the degree of disruption can be controlled by 

choosing the probability of an allele being swapped in uniform crossover, P0. It was also 

shown that the most efficient P0 was 0.5. That is, every allele has an equal chance to stay 

or being swapped.  

On the evolution of graphs, there has always been a problem of the need of exploring 

a large search space with a small population. There is a tremendous increase in the 

number of graph topologies with respect to the number of nodes. As shown in [69], the 

number of connected and graph topologies with respect to number of nodes is indicated 
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in Figure16. If the graphs are labeled, the increase in number of different graphs is more 

tremendous due to node permutation. Though the search space is huge, the size of the 

population in evolution cannot be large because this is detrimental to the efficiency of 

evolution. Hence, uniform crossover is more suitable for evolution of graphs. From the 

experience in GA, the probability of a node being swapped, P0, is designed to be 0.5. 

 

Number of 
nodes 

1 2 3 4 5 6 7 8 9 10 

Number of 
connected 
graph 
topologies 

1 1 2 6 21 112 853 11,117 261,080 11,716,571

Figure 16: Number of connected graph topologies in w.r.t. number of nodes 
 

Some work has been done on uniform crossover of trees, a special subset of graphs. 

Poli contributed a lot of literatures on the evolution of trees by using GP [53][49][70]. 

However, the schema theory for GP proposed [49] is based on the conventional 

hierarchical tree layer topology. The uniform crossover of trees in the Poli’s literature 

requires matching of building block subtree topologies between 2 parents before 

crossover [48]. This involves heavy computation resource and hence affects the 

efficiency of evolution. Furthermore, the schema theory for GP proposed follows schema 

theory in GA but it is applied on the more complicated tree topology instead of a linear 

chromosome. The mathematical expressions involve heavy calculations on probabilities 

of all the tree topologies under a defined node selected for crossover. It is substantially 

different from the simple schema theory for linear chromosome. The advantage of 

unbiasedness to defining length and efficient exploration by controlling probability of a 

node being swapped to 0.5 cannot be captured.  
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EvoGraph encodes graphs in form of matrices on which evolutionary algorithms such 

as crossovers and mutations are applied. The process resembles GA but in a 2-

dimensional matrix form instead of a linear chromosome. Each node in a graph has a 

probability of being swapped, P0 = 0.5 as shown in mathematical proof of the in this 

section. Each parent is required to divide its nodes into 2 groups. One group will be 

retained and the other group swapped. The edge connections within each group of nodes 

will be retained. EvoGraph is designed for evolving graphs in general. 

 

4.5 The EvoGraph Process 

   After the development of encoding schemes for different type of graphs and the 

detailed mechanism of their evolution operators, graphs can be evolved like other EAs in 

common. There are several scheme for the selection process: roulette wheel selection and 

its extensions, scaling techniques, tournament, elitist models, and ranking methods 

[133][139[. We adopt the first selection method proposed by Holland [139], the roullete 

wheel selection, where individuals with higher fitness have higher probability of being 

selected. The evaluation function maps the solutions to a fully ordered set of positive real 

values, thus allowing minimization and negativity. The main steps for evolution of graphs 

are listed as follow. Like many other EAs, EvoGraph consists of the following steps. 

1. Given simple elements of a molecule, initialize a population of graphs at 

random using these elements. 

2. Evaluate and assign fitness to each graph. 

3. Select two graphs for reproduction using the roulette wheel selection scheme. 

4. Apply crossover and mutation operators on the selected graphs.  
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5. Replace two the least-fit graphs in the existing population by the newly 

generated offspring. (Steady State Reproduction). 

6. Repeat Steps 2 to 5 until the termination criteria are met. 

 

4.6 Experiments on Comparison of Performance between EvoGraph Operators 

and Conventional Evolution Operators 

   Experiments are set up to compare the performance of EvoGraph operator and the 

conventional evolution operators. The two groups of operators are used to evolve the 

same target graphs separately and their maximum fitness and converging generations are 

observed. The difference between graph topologies can be measured by the edit distance 

between graphs. Edit distance is defined by a sequence of operations, including edge and 

vertex deletion and insertion, which transform one graph into another. [93] reveals that 

given the same number of nodes, the edit distance between two graphs bear an 

approximate linear relation with the Euclidean distance between their graph adjacency 

matrix spectrums (spectrum) as well as their Laplacian matrix spectrums (Laplacian 

spectrum). Making use of this relationship, we select a graph topology, an ANN bipartite 

graph, and a tree topology as the targets for experiments. The fitness function is designed 

to minimize the Euclidean distance between the spectrum or Laplacian spectrum of the 

evolved graph and the target graph.  In order to avoid cospectral graphs (graphs having 

same spectrum but different topologies) being evolved, these selected graphs should be 

uniquely determined by their spectrums, known as determined by spectrum graphs or DS-

graphs [94].  
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Three DS-graphs are selected for experiments for comparing performance of 

EvoGraph operators to the conventional evolution operators on evolution of graph, ANN 

bipartite graph and tree topology as follow. Lattice graph, Lk with 4≠k , and regular 

complete bipartite graph, Knn are known to be graphs uniquely determined by their 

spectrum [94]. Starlike trees (trees with only one node with degree higher than 2) is 

uniquely determined by its Laplacian spectrum [95]. The above target DS-graphs to be 

evolved and their corresponding spectrums are illustrated in Figure17. 
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spectrum = [-2, -2, -2, -2, 1, 1, 
1, 1, 4] 
 

Spectrum = [5, 0, 0, 0, 0, 0, 0, 0, 
0, 5] 

 

Laplacian spectrum = [0, 0.16, 
0.3, 0.7, 1, 1, 1, 1.54, 2.4, 
3.88, 4.30, 5.72]  

(a) Lattice graph   Kn n=3 and its 
spectrum 

(b) ANN  regular complete 
bipartite graph   Knn   n=5 and 
its spectrum 

(c) Starlike tree with  only 
degree of node ‘1’>2 and its 
Laplacian spectrum 

Figure 17: Target DS-graphs to be evolved with their corresponding spectrums 

 

4.6.1 Fitness Function  

Formally, the evaluation function and the fitness function are distiguished from each 

other. The evaluation value of a solution in the population may be of any form, such as 

negative value. It is required to map the evaluted values of the solutions in the population 

to a set of positive real fitness values for maximization, ranking and selection in EA. We 

create an evaluation function that satisfies the fitness function requirements so that the 
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mapping step is not required. The evaluated values of the solutions are always positive 

and less than or equal to 1. They can be maximized ranked, and selected in EvoGraph 

according to their evaluation values.  

There are several objectives to be achieved in the optimization process. There are 

several objectives to be matched by the solution. We combined all the target objective 

values to be matched under on fitness function in order to search for a solution that 

matches all of them with fitness value 1 or a solution that is closest to 1 in case the 

perfect solution cannot be found. The trade off between different objectives in arriving at 

the solution is not of interest. Hence, we do not adopt the principle of multi-objective 

optimization which creates a range of solutions at the Pareto equilibrium state leaving the 

selection of solution depends on the relative trade off between different objectives 

determined by the user. The distance between a graph in the process of evolution and the 

target graph to be evolved is measured by the Euclidean distance between their respective 

spectrum or Laplacian spectrum. The Euclidean distance is defined as follow. Let  

],......,,[ 21 naaa=AS  and ],......,,[ 21 nbbb=BS  be the spectrums or Laplacian spectrum 

of graph GA and graph GB respectively. The elements in SA and SB are eigenvalues 

arranged in ascending order such that a1≤ a2 ≤……≤.an and b1 ≤b2 ≤……≤.bm. 

If the number of nodes of GA and GB are equal, the Euclidean distance between them 

is ∑
=

−=
n

i
iiBA baGGd

1

2||),( . If the sizes of GA and GB are unequal, the size of the 

shorter spectrum is increased by adding dimensions to bring it to match the other 

spectrum and zero elements are assigned to the new created spaces. The distance can then 

be computed with the same formula. For example, the Euclidean distance of spectrums 

between the graphs in Figure16(a) and (b) is 
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3.10)50(41111)2()2()2()52( 2222222222 =−++++++−+−+−+−− . Since 

closeness of the number of nodes between two graphs can facilitate the minimization of 

Euclidean distance, our fitness function is also designed to minimize the difference in 

number of nodes between two graphs as follow. 

)|)(|)|((|1.1
1

VDfitness δδ +=  

|)(| Dδ =Euclidean distance between spectrums (for lattice graph and ANN bipartite 

graph) or Laplacian spectrum (for starlike tree) of a graph to be evaluated and 

the target graph 

|)(| Vδ =absolute value of the difference in the number of nodes between a graph to be 

evaluated and the target graph 

The number 1.1 is used as the base of the power in the denominator to prevent the fitness 

from reaching infinity when |)(| Dδ  and |)(| Vδ  approach zero. The maximum fitness is 

one. This happens when a graph is a perfect match of the target.  

 

4.6.2 Experiments and Findings 

   The EvoGraph operators are compared with the conventional evolution operators on 

evolving the lattice graph, ANN bipartite graph and starlike tree in Figure17. 

Conventionally EP uses only mutation operator on nodes and edges (adding or deleting 

nodes and edges at random) for evolving ANN. Standard GP crossover is the 

conventional evolution operator for trees. There is no commonly adopted evolution 

operator for evolving graphs. We assume EP, with node mutation and edge mutation, as 

the conventional operator. The performance of these conventional evolution operators are 
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compared with EvoGraph evolution operators, random crossover, Number-of-Edge 

mutation, and Number-of Node mutation in the experiments. To make the comparison 

simple, evolution strategy (self adaptation by adjusting crossover and mutation rates 

according to change in fitness), is not incorporated in the experiments.  

The experiments are divided into three groups for the three types of graphs to be 

evolved in Figure 17. Each group contains 20 experiments with a subgroup of 10 

experiments using EvoGraph operators and the other 10 using conventional evolution 

operators. Each experiment follows the process in Section 4.5. A small population of fifty 

graphs is generated at random in the initialization stage for experiments on evolving the 

lattice graph. Similarly, fifty ANN bipartite graphs and trees are generated at random for 

their respective groups of experiments. Based on the same initial population, comparison 

on performance of the EvoGraph operators and the conventional evolution operators in 

their respective groups can be made. The number of evolution operators used in each 

generation of evolution in each group of experiments is listed in Figure18. Each 

experiment terminates when a perfect match of the target graph topology is achieved 

(fitness = 1) or when the maximum number of generations, 5000, is reached.  
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Graph  type No. 
of 

exp. 

Conventional Evolution Operators EvoGraph Operators 

  Node 
mutation 

Edge 
mutation 

Standard 
GP 

crossover

Number-
of-Node 
mutation 

Number-
of-Edge 
mutation 

Random 
crossover

Lattice graph 10 0 0 0 1 1 1 
 10 1 1 0 0 0 0 
ANN bipartite 
graph 

10 0 0 0 1 1 1 

 10 1 1 0 0 0 0 
Starlike tree 10 0 0 0 0 0 1 
 10 0 0 1 0 0 0 
Figure 18: Number of evolution operators in each generation of evolution applied in the 
experiments 
 

The maximum fitnesses of the resulting graphs of the experiments and the number of 

generations for achieving them are summarized in Figure 19 and Figure 20 respectively. 

The graphs plotted on fitness vs the number of generations of evolution on the best 

performed experiments in respective subgroups is illustrated in Appendix 1. The ANN 

bipartite graph topology is a topology with bipartite constraints. Its search space is much 

smaller than that of the trees and graphs without specialized topologies.  The search is 

relatively easy that both conventional evolution operators and EvoGraph operators 

accomplish perfect match to the target ANN bipartite graph below 400 generations. The 

largest search space is encountered in the search for the lattice graph amongst the set of 

all possible graphs without specific topologies. According to [69] the number of possible 

graph topologies for a graph with 9 nodes, the same number of nodes as the lattice graph, 

is 261,080 as indicated in Figure 16. The experiments on evolving lattice graph using 

conventional operators cannot achieve perfect match within 5000 generations. The use of 

EvoGraph operators introduces randomness to explore more novel topologies during the 

search as illustrated in Section 4.4. EvoGraph evolved the target lattice graph at an 
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average of 438 generations. Though the search space of tree topologies is smaller than 

that of graphs without specific topologies, the standard GP crossover cannot achieve 

perfect match to the starlike tree topology within 5000 generations whilst the EvoGraph 

random crossover achieves perfect match at an average of 520 generations. This 

demonstrates the benefit of introduction of randomness in the tree crossover process. 

 

 Lattice graph ANN bipartite graph Starlike tree 
experiments conventional 

evolution 
operators 

EvoGraph 
operators 

conventional 
evolution 
operators 

EvoGraph 
operators 

conventional 
evolution 
operators 

EvoGraph 
operators 

1 0.9147 1 1 1 0.8529 1 
2 0.9147 1 1 1 0.9537 1 
3 0.9104 1 1 1 0.8351 1 
4 0.9482 1 1 1 0.8193 1 
5 0.9091 1 1 1 0.8529 1 
6 0.9091 1 1 1 0.9374 1 
7 0.9091 1 1 1 0.8539 1 
8 0.9091 1 1 1 0.9602 1 
9 0.9091 1 1 1 0.8529 1 
10 0.9142 1 1 1 0.8334 1 
average 0.9148 1 1 1 0.8752 1 
Figure19: Maximum fitness of resulting graphs generated by the experiments 

 
 Lattice graph ANN bipartite graph Starlike tree 
experiments conventional 

evolution 
operators 

EvoGraph 
operators 

conventional 
evolution 
operators 

EvoGraph 
operators 

conventional 
evolution 
operators 

EvoGraph 
operators 

1 184 202 330 136 1705 184 
2 3995 657 313 212 3438 776 
3 2139 430 229 177 241 119 
4 851 391 221 240 984 472 
5 1140 184 259 281 827 721 
6 1031 439 202 189 3257 811 
7 1280 825 203 115 2083 63 
8 2116 191 265 205 163 818 
9 434 452 423 123 984 424 
10 3971 611 166 159 468 817 
average 1714 438 261 184 1415 520 
Figure 20: Generation number on reaching maximum fitness of graphs evolved in the 
experiments 
 

 



 

 65

                                                                                                                              Chapter 5 

 
Evolution on Architectural Space Topology 
 
 

Among the many possible applications, EvoGraph can be used for the automation of 

spatial configuration. Spatial configuration is concerned with finding feasible locations 

for a set of interrelated objects that meet design requirements and maximize design 

quality in design preferences. Spatial configuration is necessary for all physical design 

problems such as component packing [7], route path planning [8], VLSI [9], and 

architectural layout design [10]. Applications in architectural layout design are 

particularly interesting because, in addition to common engineering objectives such as 

cost and performance, it is concerned especially with aesthetics and usability, which are 

generally more difficult to describe formally. Also, the components in a building layout 

(rooms or walls, etc.) often do not have pre-defined dimensions, so that every component 

of the layout is resizable.  

The conventional approach to architectural design is for an architect to receive a 

briefing from the client, usually a layperson, on functional requirements. Once such 

requirements are obtained, it is then up to the architect’s individual skills to convert the 

client’s requirements into building plans. The conversion process is idiosyncratic and 

very dependent on the artistic talent of individual architects. To facilitate the architectural 

layout design process so that both experienced and less experienced architects can 

respond quickly to their clients’ requests, we show how EvoGraph can be used to 

perform conventional architectural layout design typically carried out manually.   
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5.1 The problem of Architectural SpaceTopology Design 

Architectural space planning is the process of allocating a set of space elements 

according to certain design criteria. It usually results in topological or geometrical 

relationships between elements. Given a topology that describes the adjacencies between 

the space elements, different geometrical shapes can be allocated to a space element to 

satisfy the topology. The mapping of geometries to a space element in a topology is a 

many to one mapping. Conversely, given the geometries of the space elements it may not 

be feasible to retrofit them to satisfy a given topology. 

There have been studies on computerized design automation of architectural space 

planning. [97] attempts to map the functional activities to the floor plan by encoding the 

functional activities in a chromosome and use an extension of GA, genetic engineering 

[98][100], which adopts a more aggressive approach of converting low fitness genes by 

high fitness genes in a chromosome in addition to the simple exchange of genes between 

two linear chromosomes in the conventional GA crossover operation. In [97], the 

architectural space topology is given and fixed. Functional activities are swapped 

between the architectural spaces to obtain the optimal fitness of functional activities to 

the spaces. This is equivalent to the situation where the architectural space topology is 

given in form of a graph with the spaces presented as nodes in the graph. Functional 

activities are node labels which are to be swapped by the genetic engineering process to 

fit the topology. There is no automation of the design of architectural space topology 

which is more fundamental. 

There are studies on generating floor plans by combining some basic elements of a 

plan, say, a straight line of unit length, by a set of combination rules or shape grammar 
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[99]. The combination rules are encoded as genotype in a chromosome on which GA or 

genetic engineering is applied. The floor plan is generated by decoding the chromosomes 

as a phenotype after the crossover or mutation operation on the genotype. The fitness is 

evaluated according to phenotype, the floor plan. For example, in [98], a square module 

is used as a basic module for generation of floor plan. The modules combined to form 

higher level components which constitute the functional spaces of a house. The grammar 

of combination of the modules and the components are encoded in a chromosome on 

which GA is applied. The floor plan is generated according to the evolved combination 

rules. Like other indirect encoding method in EAs, the efficiency of evolution cannot be 

very high. Furthermore, the resulting geometries of the rooms are dictated by the 

geometries of the basic elements, such as an aggregation of squares, and the dimensions 

of the evolved plans are multiples of the basic elements. Hence, the creative freedom is 

constrained.  

Some studies start off with rectangular rooms that constitute a floor plan [96][11]. [11] 

uses a computer program, ARCHiPLAN, as a tool to manipulate the absolute locations, 

orientations, and dimensions of the rectangular rooms under a set of physical constraints. 

During the floor plan generation process, it checks the topological consistencies of the 

rooms by avoiding their overlaps. [96] represents the rectangular rooms as nodes of a tree. 

The topology of the tree is a presentation of the room adjacencies. The tree topology and 

the absolute locations of the rooms are encoded in different chromosomes and each of 

them undergoes asexual crossovers and mutations independently. The separate results 

decoded from the chromosomes are put together in the floor plan. This is equivalent to 

the swapping of rectangular rooms attached to a tree topology where dimensions and 
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orientation of the rooms as well as the tree topology are changing at the same time. The 

efficiency of search is hindered by the combinatorial complexity. Furthermore, tree is not 

a good presentation of architectural space topology because it only presents the 

adjacencies between the nodes or rooms from one layer of node in the tree to the layer 

immediately above and below it. It cannot show the adjacencies between rooms in the 

same layer or nodes separated by more than one layer of nodes in the tree. The result is 

that the search tends to fixate at the first feasible design. Both [96] and [11] are designed 

for rectangular room plan manipulation but not other geometric shapes. The creative 

freedom is again constrained. 

To summarize, the current studies on computerized architectural space planning 

concentrate on packing rooms with fixed geometries and evolving floor plans from basic 

elements with fixed dimensions. Architectural space topology is playing a secondary role 

as a condition to be satisfied. The creative freedom of the architect is limited to a certain 

extent by the pre-determined geometric shapes and dimensions of the basic elements 

adopted in the design automation algorithms. The resulting floor plans tend to be 

predictable and mundane. In order not to restrain the creativity of the architect, we 

propose to start off the design process by evolving the optimal architectural space 

topology while leaving the insertion of geometry of rooms to the creative hands of the 

architect. The most natural form of presentation of architectural space topology is in the 

form of a graph and we need an EA to apply on it. 

Using the graph adjacency matrix, the crossover and mutation operators defined in 

Chapter 4, EvoGraph can be used to tackle problems that can be formulated as graphs. 

One such problem is that of architectural layout design. At the design inception stage in a 
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typical architectural project, the architect has to interpret requirements from a client who 

is, in most cases, a layperson. The client usually describes his or her preferred spatial 

groupings verbally. Such preferences can be translated into an adjacency preference 

matrix, which describes the preferred adjacency between functional areas. In Figure 21, 

we give an example of an adjacency preference matrix of a house, drawn up based on the 

requirements of a client. The numbers, which make up an Adjacency Preference Scale 

(APS), are defined in such a way that -2 means that the adjacency arrangement is very 

much not preferred, -1 means that it is not preferred, 1 means that it is preferred, 2 means 

that it is very much preferred, and 3 means that it is extremely preferable.  

  

  

1. SA
  

2. M
A

  

3. B
ED

  

4. LR
  

5. D
&

K
  

6. B
  

7. C
P  

8. P  

9. C
IR

  

10. EX
T  

1. Study area (SA)  -2   2   1  -2  -2  -2  -2  -1   3   3  

2. Master ensuite (ME)   2  -2   2  -2  -2  -2  -2   3   3   3  

3. Bedroom (BED)   1   2   2  -2  -2   3  -2   1   3   3  

4. Living room (LR)  -2  -2  -2  -2   1   2   1   3   3   3  

5. Dining & kitchen (D&K)  -2  -2  -2   1  -2   2  -2   1   3   2  

6. Bathroom (B)  -2  -2   3   2   2   3  -2  -2   3   1  

7. Car park (CP)  -2  -2  -2   1  -2  -2  -2  -2   3   3  

8. Patio (P)  -1   3   1   3   1  -2  -2  -2  -2   3  

9. Hall/stair/circulation (CIR)   3   3   3   3   3   3   3  -2   3  -2  

10. Exterior (EXT)   3   3   3   3   2   1   3   3  -2   3  

Figure 21: Adjacency Preference Matrix  
 

The spatial design requirements as shown in the matrix in Figure 21 can be summarized, 

in a more descriptive way, as follows:  

A. Bedrooms should be grouped . (APS(2,3)=2). 

B. Bathroom is to be shared by the bedroom, living room, and dining room.  

(APS(6,3)=3, APS(6,4)=2, APS(6,5)=2). 



 

 70

C. Patio is to be shared by master ensuite and living room and if possible, the dining 

room and bedroom. It is preferable to be exposed.  

(APS(8,2)=3, APS(8,3)=1, APS(8,4)=3, APS(8,5)=1, APS(8,10)=3). 

D. Circulation areas to link all rooms and carpark. 

(APS(9,i)=3 where 1≤i≤10 and i≠8,10). 

E. Study area to be attached to master ensuite. (APS(1,2)=2). 

F. All rooms, carpark, and patio are preferred to be in contact with the exterior. 

(APS(10,i)=3 where 1≤i≤10 and i≠9).  

 

     The approach to architectural layout design is divided into two parts: topology and 

geometry. Topology refers to the logical relation between layout components. Geometry 

refers to the position and size of each component layout. Topological decisions define 

constraints for the geometric design space. For example, a topological decision that 

“room i is adjacent to room j” restricts the geometric coordinates of room i relative to 

room j. Such decisions are important and have to be made before finalizing on the 

geometry. What a designer needs to do is therefore to try, as much as possible, to 

enumerate all topologies that can produce feasible geometries [11] and then review them 

to select those to explore geometrically. This process is slow and time-consuming. As it 

is very difficult for designers, especially inexperienced ones, to run through the process 

of optimizing topologies manually, subsequent geometric designs produced may not best 

match the client’s need.  

     To overcome this problem, EvoGraph can be used to find possible optimal topologies 

in the design process so that, instead of having to deal with too many feasible but 
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suboptimal topologies, designers need only deal with the optimized ones when starting 

geometry design.  

   

5.2 Conversion Between Floor Plan and Graph Representing Architectural Space 

Topology 

A floor plan can be converted into a graph representing its architectural space 

topology and vice versa. EvoGraph optimizes graphs representing different floor plans 

but not the floor plan themselves. The optimized graph achieved by EvoGraph has to be 

converted to a floor plan for use. Before we discuss the evolution process, we introduce 

the conversion between floor plans and the graph representing it.  We represent an 

individual architectural space by a node in a graph. If two architectural spaces, 

represented by two nodes, share a common boundary, say a wall, we represent this 

adjacency by an edge connecting the two nodes. Figure 22–23 give an example of the 

floor plan of a house with respective functional rooms and its corresponding graph 

representation on its architectural space topology. The graph in Figure 23 should be a 

planar graph which can be encoded in a graph adjacency matrix. EvoGraph conducts 

evolution on the graph adjacency matrices to obtain the optimal graph topology. Floor 

plans can then be drawn up by decoding the resultant optimal graph adjacency matrix. 
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Figure 22: The functional area floor plan 
of a house                                                        

Figure 23: Graph (dotted line and circular 
node) representing architectural space topology 
of the floor plan in Figure 22         

 

For decoding, given a graph adjacency matrix, the corresponding graph is drawn. This 

graph may represent a one storey or a multi-storey building. It can be decomposed into 

one or more planar subgraphs. Each of the planar subgraphs represents a floor plan of a 

storey. There can be more than one way of decomposition of a graph representing a 

multi-storey building into planar subgraphs representing individual storey.  The way of 

decomposition depends is the architect’s choice. This is equivalent to the architect’s 

juggling with an optimized bubble diagrams in the conceptual design stage. An example 

on decomposition of a graph into several planar subgraphs is demonstrated in Section 

5.5.3 by using one of the optimal architectural space topologies generated by the 

experiments. In the following, we show how a planar graph is converted into a space 

enclosure representing a floor plan. 
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Given a planar subgraph that represents the architectural space topology of a floor 

plan, its dual graph (which is also planar) can be drawn up in two steps illustrated by an 

example in Figure 24-25 as follows.  

1. Lay out the planar graph on a plane without crossing edges (shown as solid lines and 

circular nodes in Figure 24).  

2. Every edge in the planar graph represents the boundary separating the two spaces 

corresponding to the nodes it connects. In order to construct the dual graph, a pair of 

nodes is created on both sides of an edge in the planar graph (shown as triangular-

shape nodes in Figure 24). A new edge is then created to connect the newly created 

nodes (shown as a dotted line in Figure 24). These new edges are the spatial 

boundaries of the architectural space topology in the planar graph. The dual graph in 

Figure 25 can then be derived from Figure24. 

   In this example the adjacencies between functional spaces in Figure 24 are the same as 

the floor plan in Figure 22. The conversion of the dual graph in Figure 25 into the floor 

plan in Figure 22 is done by inserting geometries into the space enclosed by the edges in 

the dual graph.  
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Figure 24: Dual Graph (dotted lines and 
triangular nodes) derived from the solid 
line graph  

Figure 25: Functional Spaces 
enclosed by edges of Dual Graph 
(solid line and circular nodes)  

 

5.3 Additional Mutation Operators 

Given an Architectural Space Topology represented by a graph, the mutation of room 

functional spaces represented by nodes in the graph is helpful to improve the total APS. 

In order to facilitate this kind of mutation, two mutation operators are developed in 

addition to the two basic mutation operators introduced in Section 4.  They are Node-

Label mutation and Swap-Node mutation. 

 

5.3.1 Node-Label Mutation 

The Node-Label mutation operator allows us to replace one node by another in the 

same graph. It works by selecting a node to be replaced and a node to replace it at 

random as follow. 

1. For a graph GP(VP, EP) with node set { Pv1 , Pv2 , …, P
iv , …, P

jv , …, P
nv } we construct 
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its corresponding adjacency matrices as GP. 

2. Select a node in the graph GP and corresponding adjacency matrix GP randomly. 

Assume that the node chosen in GP are P
iv .  

3. Replace node label P
iv  by another node label chosen at random in the same graph, say, 

node label P
jv , to form children graph GC and adjacency matrix GC. The order of 

node set in GC is changed to Pv1 , Pv2 , …, P
jv ,…., P

jv , …, P
nv . 

We give an example of the Node-Label mutation operator in Figure 26 below. 

GP                                   GC  
 A B C D E F G H

A  - 1 0 0 1  0 0 0

B   - 1 1  0 0 0 0

C    - 1 0 0 0 1

D     - 1  0 0 0

E       - 1  0 0

F         - 1 0

G           - 0

H             - 

 
 A B F D E F G H 

A - 1 0 0 1  0 0 0 

B  - 1 1 0 0 0 0 

F   - 1 0 0 0 1 

D    - 1  0 0 0 

E      - 1  0 0 

F        - 1  0 

G          - 0 

H            - 

(a) Step 1. Select C to be replaced by F  (b) Step 2. Replace C with F 
Figure 26: The Node-Label Mutation operator illustrated 
 

 

5.3.2 Swap-Node Mutation 

The Swap-Node mutation operator allows us to swap two nodes in the same graph. It 

selects a pair of nodes at random and then swaps them as follows.  

1. For a graph GP(VP, EP) with node set { Pv1 , Pv2 , …, P
iv , …, P

jv , …, P
nv } we construct its 

corresponding adjacency matrices as GP. 

2. Two nodes in the graph GP are selected and this is done by choosing 2 nodes in GP 
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randomly. Assume that the nodes chosen in GP are P
iv  and P

jv .  

3. Swap P
iv  and P

jv  to form children graph GC and adjacency matrix GC. The order of 

node set in GC is changed to Pv1 , Pv2 , …, P
jv ,…., P

iv , …, P
nv . 

We give an example of the Swap-Node mutation operator in Figure 27 below. 

GP                             GC 

  

 A B C D E F G H

A  - 1 0 0 1  0 0 0

B   - 1 1  0 0 0 0

C    - 1 0 0 0 1

D     - 1  0 0 0

E       - 1  0 0

F         - 1 0

G           - 0

H        - 

 
 

 A B F D E C G H 

A - 1 0 0 1  0 0 0 

B  - 1 1 0 0 0 0 

F   - 1 0 0 0 1 

D    - 1  0 0 0 

E      - 1  0 0 

C        - 1  0 

G          - 0 

H            - 

 (a) Select two nodes F and C to be 
swapped 

 (b) Swap the nodes F and C. 

Figure 27: The Swap-Node mutation operator illustrated 
 

5.4 Fitness Function 

Given that the objective is to find optimal architectural topological designs, we 

propose to use a fitness function in the evolutionary process that takes into consideration: 

(i) clients’ preferences as given in an Adjacency Preference Matrix and (ii) physical 

constraints as given by an Adjacency Limitation defined to be the maximum number of 

adjacent rooms that one room can be in contact with. This Adjacency Limitation can be 

expressed as the valence of a node in a graph representation, (iii) budget constraint, (iv) 

the range of relative ratios between rooms and (v) the minimum functions that are 

required to constitute an acceptable design. The adjacency preference is quantified in 

Figure 21. The maximum valence of a node, the cost of providing each node are given in 



 

 77

Table 2(a), and the acceptable range of relative room ratios are given in Table 2(b). The 9 

different functions in Figure 21 should be included in each design.               

The lowest range of budget allowed for the experiments is 30 to 34. The second range 

is 35 to 39 and so forth until the budget reaches the range from 55 to 59. EvoGraph is 

applied to search for the topologies that maximize the adjacency scale within the budget 

range and the valance constraints of individual nodes. The fitness function is defined as 

follow. 

dcba

xfitness +++=
2

                      (1) 

where x = sum of the Adjacency Preference Scales (APS) 

    a = absolute deviation to the budget range 

b = absolute value of sum of excess valence of nodes 

     c = total absolute deviation to the allowed range of room ratios 

            d = number of functions deficient in the graph 

In other words, the APS is the value to be maximized and the deviations to the other 

assigned constraints are the value to be minimized. The denominator is made an 

exponential function to eliminate the mathematical indeterminate case when both factors 

are equal to zero. When all the imposed constraints are satisfied, the values of a, b, c and 

d will be 0. As such, the fitness value equals APS of the graph topology.  

Once terminated, the optimal graph can be decoded and the floor plans can be drawn 

as described in Section 5.2. Using the optimal architectural space topology given in a 

form like Figure 25, an architect can insert his or her favorite architectural motifs to 

complete the design.   
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Label  Functional Space  Max. Valence Cost  
1  Study area  4 3 
2  Master ensuite  4 4 
3  Bedroom  4 3 
4  Living room   4 6 
5  Dining and kitchen  4 5 
6  Bathroom  4 2 
7  Carpark  No limit 1 
8  Patio  No limit 4 
9  Hall/stair/circulation area  6 4 
10  Exterior  No limit 0 

Table 2(a): The function space description corresponding to the labels  
 

Function 1/Function 2 Min. Ratio Max. Ratio

Study area/Master ensuite 0 1 

Study area/Bedroom 0 1 

Study area/Patio 0 4 

Master ensuite/Patio 1 2 

Bedroom/Living room 1 3 

Bedroom/Bathroom 1 2 

Bedroom/Patio 1 4 

Living room/Bathroom 1 2 

Living room/Patio 1 2 

Table 2(b): The Relative Room Ratios 
 

   The success of achieving the design requirements A to F by the evolution process 

depends on their corresponding values of APS in Figure 21 and the values of constraints 

in Table 2(a) and (b). If they are in line with each other, the probability of achieving the 

requirement is high. For example, the ‘hall /stair/ circulation’ in has a high valence of 6 

as shown in Table 2(a). In combination with its high APS to other functional spaces, 

except patio and exterior, in Figure 21, requirement D has a high probability of sucess as 
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the constraint is in line with the design requirement. Another example is that there is no 

limit to the adjacency of ‘carpark’, ‘patio’ and ‘exterior’. In combination with the zero 

cost for ‘exterior’, it is expected that the resulting design will favor also design 

requirement F. Requirement D is a ‘closed approach’ to design with internal circulation 

area linking all the function spaces while requirement F is an ‘open approach’ to the with 

functional spaces facing the exterior. These conflicting requirements may coexist in the 

optimal solution in each of the experiments. We explore the relative presence of 

requirements D and F in relation to the cost efficiency (defined in terms of APS 

achieved/unit cost) in the evolved solution under the same set of constraints in different 

experiments. The results are analysed in Section 5.5.2. 

 

5.5 Experiments 

The objective of the experiments we performed is to determine if EvoGraph can be 

used to effectively find optimal architectural topological design. For this purpose, we 

assume that we need to design a house with 9 functional spaces with an adjacency 

preference matrix as shown in Figure 21, and each functional space has other constraints 

specified in Table 2(a) and 2(b). For our experiments, the fitness function given by 

Equation (1) is used.  

 

5.5.1 Initialization and EvoGraph Parameters Selection 

An initial population of 100 graph adjacency matrices is generated at random. The 

nodes encoded in each of them are given the same labels as that in Figure 21.  
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As described in Chapter 4, the approach adopted is a general evolutionary algorithm 

for graphs that is not biased toward any preferred topologies. The crossover and 

mutations operators selected are also unbiased, they are random crossover, Number-of-

Edge mutation, Number-of-Node mutation, Node-Label mutation and Swap-Node 

mutation. To place emphasis on exploration of search space to exploitation, mutations are 

having the same probability as crossover as shown in Table 3.  

 

Operator   Probabilities of being selected 

Random crossover  0.2  
Number-of-edge mutation  0.2 
Number-of-node mutation  0.2 
Node-label mutation  0.2 
Swap-node mutation  0.2 

Table 3: The probabilities of each operator being selected for reproduction 
  

5.5.2 Experimental Results and Findings 

Using the same parameters described above, we run experiments with a population 

size of 100 graph adjacency matrices according to the process in Section 4.5. The 

maximum number of generation is 5,000. Convergence is considered to be reached when 

the maximum fitness has been stagnant for 2000 generations. The process is stated as 

follow.  

In order to compare the performances of EvoGraph on the same basis, all the 

experiments start with the same initial population. Experiments on 6 budget ranges are 

carried out each having a budget interval of 5 starting from the lowest range at 30 to 34 

(Experiment 1) and finish at its double at 55 to 59 (Experiment 6). Each experiment is 

run 10 times and the one with highest APS is adopted. All the other constraints on budget, 
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valence of nodes, minimum functions required, and range of room ratios should be 

satisfied in order to be acceptable as a valid solution. In such circumstances, the fitness 

value according to (1) should be equal to the total APS of the resulting graph. The graphs 

indicating maximum fitness change with respect to the number of generations are 

illustrated in Appendix 2. 

Optimal architectural space topologies are generated by the experiments in the form 

of adjacency matrices. Experiment 5 has the highest APS relative to cost. The adjacency 

matrix with APS value generated by experiment 5 is illustrated as an example in Figure 

33. When there is more than one node having the same function, a small letter will be 

added to the node number label to differentiate them. For example, two different 

‘circulation areas’ will be represented by ‘9a’ and ‘9b’ etc.. All the adjacency matrices 

with corresponding APS that represent the optimal architectural space topologies 

generated by the experiments are included in Appendix 2. The fitness plots throughout 

the evolutions are also included. 

The summary of experimental results on the properties of the graphs generated with 

respect to the number of nodes, converging generation, APS and cost are summarized in 

Table 4. Note that all results satisfy the constraints on valence and room ratios in Table 2. 

 

 
 
 
 
 
 
 

Table 4: Summary of Experiment Results 
 

Experiment Budget 
Range 

No. of 
Nodes 

Converging 
Generation APS Cost APS/Cost 

1 30-34 10 1312 55 32 1.719 
2 35-39 11 611 64 36 1.778 
3 40-44 12 1536 74 40 1.85 
4 45-49 13 1036 74 45 1.644 
5 50-54 15 1294 108 52 2.077  
6 55-59 16 2101 113 57 1.982 
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The relation between cost and APS is indicated in Figure 28. It is close to linear 

relation with least square regression value close to 1 at 0.9577. This reflects the fact that 

the more the client pays, the more satisfaction he can derive from the design. The 

marginal increase in APS per unit increase in cost is approximately 0.42. The number of 

functional space in a house (number of nodes in the resulting graph) also increases as the 

budget increase at a rate of one additional functional space per 5 units of budget increase.  

 

y = 0.4195x + 9.8745
R2 = 0.9577
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Figure 28: Relation between Cost and Adjacency Preference Scale (APS) 

 
The relation between the converging generation and the number of nodes is indicated 

in Figure 29. It approximates a parabolic relation with square regression value 0.8049. 

The converging generation is proportional to |V|2. 
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y = 42.464x2 - 986.56x + 6785.7
R2 = 0.8049
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Figure 29: Relation between number of nodes and converging generation 
 

The APS attained by each experiment with respect to the design preferences stated in 

Section 5.1 are divided by the total APS of the same optimal graph to observe the 

contribution of the design objective to the total APS. It is defined as relative APS and 

shown in Table 5. The total contribution of the 6 experiments to each design objective is 

calculated and ranked. 

 Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Total 
A. Bedrooms should be grouped 0 0.0313 0.027 0.027 0 0.0177 0.103 
B. Bathroom is to be shared by 
the bedroom, living room, and 
dining room 

0.0909 0.0781 0.0541 0.0676 0.0278 0.0265 0.345 

C. Patio is to be shared by 
master ensuite and living room 
and if possible, the dining room 
and bedroom. It is preferable to 
be exposed 

0.1818 0.1719 0.1892 0.2432 0.0556 0.0619 0.9036 

D. Circulation areas to link all 
rooms and carpark 

0.3273 0.4688 0.4459 0.2432 0.6111 0.4513 2.5476 

E. Study area to be attached to 
master ensuite 

0.0364 0 0.027 0.0541 0.0267 0 0.1442 

F. All rooms, carpark, and patio 
are preferred to be in contact 
with the exterior 

0.3818 0.2344 0.2838 0.3649 0.1111 0.2389 1.6149 

Table 5:  Relative APS of Experiments 
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Figure 30: Histogram of experimental results 
 

The budget increases from experiment 1 to experiment 6. Referring to Figure 30, 

property A and E are relatively insignificant. Property B tends to decrease when budget 

increases. There is a sudden drop in property C when cost increases from 45 to 52 with a 

corresponding upward trend in property D. The general trend of design objectives 

achieved by all the experiments is arranged according to the magnitude of the total 

relative APS in Table 5. They are listed in descending order of relative APS as follow. 

1. Circulation areas to link all rooms and carpark. 

2. All rooms, carpark, and patio are preferred to be in contact with the exterior. 

3. Patio is to be shared by master ensuite and living room and if possible, the dining 

room and bedroom. It is preferable to be exposed. 

4. Bathroom is to be shared by the bedroom, living room, and dining room. 

5. Study area to be attached to master ensuite. 

6. Bedrooms should be grouped. 
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Design objectives D and F are amongst the highest in the rank. They govern if the 

building design is open with the exposed patio unifying all the other functions (open 

approach) or a closed one with the internal circulation space as a major source of linkage 

(closed approach). The experiments reveal that both type of design are achievable. 

Experiments 1 and 4 have relative APS of property F higher than D (open approach) 

whilst the rest of the experiments reveal the opposite (closed approach). Experiment 5 has 

the highest property D and the lowest property F and it is the most cost efficient solution 

as indicated in Table 4. There is a trend of increasing cost efficiency with ratio of relative 

APS of property D to property F as illustrated in Table 6 and Figure 31. 

 

 
 
 
 
 
 

Table 6:  Cost efficiency in relation to relative APS ratio of property D to F 
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Figure 31: Cost efficiency vs relative APS ratio of property D to F 

Experiment APS/Cost D/F ratio 
1 1.719 0.8573 
2 1.778 2 
3 1.85 1.5712 
4 1.644 0.6665 
5 2.077  5.5005 
6 1.982 1.8891 



 

 86

 

5.5.3 Optimal Architectural Space Topology Conversion to Floor Plans 

The maximum fitness value of the experiments we performed above range from 55 to 

113. Using the approach given in Section 5.2, each of these optimal graphs can be 

converted to topological space and then to a floor plan. Note that each architectural space 

topology may have more than one geometrical floor plan corresponding to it. The most 

cost efficient solution generated by experiment 5 is illustrated below as an example. The 

following illustration is only one of the many geometrical plans used to interpret the 

optimal architectural space topology. When there are overlapping edges in a resulting 

graph, it is separated into layers without overlap to represent different floors (differentiate 

by solid and broken edges and nodes in the Figure 33.  

 
  9a 9b 6 3 9c 4 2 9d 7 9e 5 9f 8 1 10

9a - 3 3 3 3 0 0 0 3 0 0 0 0 3 0

9b  - 3 3 0 3 3 0 0 0 0 3 0 0 0

6   - 3 0 0 0 3 0 0 0 0 0 0 0

3    - 0 0 0 0 0 3 0 0 0 0 0

9c     - 3 0 3 3 0 3 3 0 0 0

4      - 0 0 0 3 0 0 0 0 3

2       - 3 0 3 0 0 3 0 0

9d        - 3 0 3 0 0 3 0

7         - 3 0 3 0 0 3

9e          - 3 3 0 0 0

5           - 3 0 0 0

9f            - 0 3 0

8             - 0 3

1              - 3

10               -

Figure 32: Adjacency matrix with APS generated by experiment 5 
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Graph generated by experiment 5 

APS = 108 

Cost = 52 

Graph separation layers of planar subgraphs for floor plan 

generation: 

1. Solid line – Ground Floor (nodes 1, 2, 3, 5, 6, 7, 9a, 9b, 9d, 

10) 

2. Dot and solid line – Mezzanine Floor (node 9f) 

3. Dotted Line – First Floor (nodes 4, 8, 9c, 9e, 10) 

4. Nodes 9c, 9e are circulation area that commutes all floors 

but allocated to first floor for ease of floor plan generation 

5. Node 10 is the exterior that can be used by all floors 
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Ground Floor Plan (nodes 1,2,3,5,6,7,9a,9b,9d,10) 
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Mezzanine Floor plan  (node 9f) 
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First Floor Plan (nodes 4,8,9c,9e,10) 

Figure 33: Optimal Architectural Space Topology generated by experiment 5 and 
corresponding floor plans 
 
    This research is an attempt to explore the application of EvoGraph on architectural 

space topology generation. Using 10 nodes that include 9 functional areas and one node 

representing the exterior, EvoGraph generates optimal design topologies that satisfy 

budget requirements and other design constraints. These alternatives compete with each 

other by compromising design objectives in give-and-take situations and eventually 

arrive at the one that best fits the design intent expressed in the fitness function.  
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                                                                                                                              Chapter 6 

 
Evolution on Space Frame Topology and Geometry 
 
 

Space frame has been widely adopted as an aesthetic design feature in architecture. A 

simple structure space frame can be used as decorative features such as lanterns and 

hanging features in shopping malls. Repetition of a simple modular space frame structure 

can form large space frame that constitutes a major element of a building such as roof 

cover, canopy, external wall and even the whole building enclosure. The process of 

artistic creation of a space frame with resource constraint has always been a puzzle to 

architects and designers. Although there are some standard proprietary space frame 

systems with associated software to assist design, the varieties available for choosing are 

limited and they are dominated by the manufacturers. The tool available for original 

creation of space frame modules is lacking. A hybrid solution on EvoGraph and GA is 

proposed in this Chapter to provide a tool that rapidly creates a space frame module 

design within the resource constraint available to the architect. 

 

6.1 Space Frame Module Design 

Space frames are designed in many forms. For example, one of the most popular 

basic modules of a space frame is a tetrahedron as shown in Figure 34(a). This basic 

module can be repeated to form a larger space frame. Six repeated modules are shown in 

Figure 34(b). One of the general properties of a space frame module is symmetry of 

geometrical shape. It serves the purpose of ease of combining many modules to form a 

large space frame. The symmetry of geometry can be achieved by designing space frame 
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modules with symmetric topology and geometry. The purpose of this chapter is to use 

EvoGraph to generate symmetrical space frame module topology and then use GA to 

search for the symmetrical geometric properties of the symmetric space frame module 

topology. The use of EvoGraph and GA in the evolution process forms a hybrid solution 

to the problem.  

 

 

 

(a) Space Frame Module (b) Six Repeated Modules 

Figure 34: Space Frame Module repetition illustrated 

 

6.1.1 Symmetric Space Frame Module Topology Design  

Topology is the first thing to be tackled in designing a space frame module because 

without which no geometrical form can be created. The target of this section is to search 

for a symmetric topology for the space frame module to provide a base for the creation of 

symmetric geometry. One of the properties of a symmetric space frame module is that it 

can be divided along its axis of symmetry into a pair of subframes which are mirror 

image to each other, known as ‘mirror subframes’. The remaining pair of subframes 

connecting the ‘mirror subframes’ is also mirror image to each other. This property can 
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be reflected in the adjacency matrix of the symmetric space frame module. This is 

illustrated by an example of a cubic space frame module with even number of nodes in 

Figure 35 and a pyramid with a pentagon base in Figure 36.  

 

axis of symm
etry

1

6

7

8

5

3

2

4

 

 
 

 1 4 8 5 2 3 7 6 

1 0 1 1 1 1 0 0 0 

4 1 0 1 0 0 1 0 0 

8 1 1 0 1 0 0 1 0 

5 1 0 1 0 0 0 0 1 

2 1 0 0 0 0 1 1 1 

3 0 1 0 0 1 0 1 0 

7 0 0 1 0 1 1 0 1 

6 0 0 0 1 1 0 1 0 

(a) Dividing a space frame module into a 
pairs of mirror subframes {1,4,8,5} and 
{2,3,7,6}  

(b) Partition adjacency matrix into four 
submatrices corresponding to the divided 
subframes 

Figure 35: Example of a Cubical Symmetric Space Frame Module divided into 
subframes which are mirror images to each other 
 

In Figure 35(a), the space frame with node set {1, 2, 3, 4, 5, 6, 7, 8} can be 

subdivided into two mirror subframes with node sets {1, 4, 8, 5} and {2, 3, 7, 6} by 

deleting edges connecting the two mirror subframes (dotted lines in the figure). The 

adjacency matrix of space frame module in Figure 35(a) is illustrated in Figure 35(b). It 

can be constructed in such a way that the upper left quadrant submatrix (A) that 

represents subframe {1, 4, 8, 5} is identical to the lower right quadrant submatrix (C) that 

represents subframe {2, 3, 7, 6}, or A=C. The pair of subframes connecting the pair of 
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mirror subframes represented by submatrices A and C is also mirror image to each other. 

Hence, the upper right quadrant submatrix (B) that represents a subframe that connects 

the mirror subframes {1, 4, 8, 5} and {2, 3, 7, 6} is mirror image to the lower left 

quadrant submatrix (D) which represents another  subframe connecting the same, or B=D. 

The degree of symmetry of a space frame can be derived by comparing the submatrices.  

Define 

N(X ∩ Y) = number of corresponding slots having ‘1’ in both matrices X and Y 

N(X∪ Y) = number of corresponding slots having ‘1’ in either matrices X or Y 

 

Define correlation coefficient between two adjacency matrices X and Y as 

 

)(
)(

YXN
YXNcXY

∪
∩

=     0 ≤ c XY ≤ 1    (1) 

For the example of adjacency matrix for a space frame that is divided into four equal 

quadrants A, B, C, D shown in Figure 35(b), the higher the value of ACc  and BDc , the 

more likely the space frame module is divided into two pairs of mirror subframes and 

hence the higher the degree of symmetry. Both ACc  and BDc  should be maximized in the 

EvoGraph fitness function. In Figure 35(b) and (b), ACc  = BDc  = 1. 

EvoGraph is designed to work on adjacency matrices on which space frame module 

symmetry is encoded. The symmetry of the space frame module is encoded in the two 

pairs of identical submatrices diagonally opposite to each other as shown in Figure 35(b). 

This requires the number of nodes in the space frame module to be even and they can be 

subdivided into two groups with equal number of nodes by deleting edges in the space 
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frame. However, this may not always be the case as the number of nodes may be odd or 

the axis of symmetry may lie on some edges instead of cutting across some edges. The 

problem can be resolved by splitting of nodes as shown in another example in Figure 36. 

The split node action is reversible. Hence, the symmetric space frame module can always 

be formed by re-joining nodes in the resulting adjacency matrix searched by EvoGraph 

that represents a symmetric space frame module. 

In Figure 36(a), the space frame cannot be subdivided into two three-node mirror 

subframes by deleting edges because the axis of symmetry lies on any one edge 

connected to node ‘6’. However, each of the nodes in node set {1, 6} can be split into 2 

nodes to give {1, 1a, 6, 6a}. The resulting space frame is shown in Figure 36(b). This 

extended space frame can be divided into two mirror subframes by deleting edges 

connecting them (dotted lines in the figure).  Subframe {1, 2, 3, 6} is mirror image to 

subframe {1a, 5, 4, 6a}. This is reflected in the two identical submatrices in the upper left 

quadrant (P) and the lower right quadrant of the adjacency matrix (shaded cells) (S) in 

Figure 36(b), or P=S. The remaining two subframes in the space frame module 

connecting subframes {1, 2, 3, 6} and {1a, 5, 4, 6a} are mirror image to each other. This 

is reflected in the two identical submatrices in the upper right quadrant (Q) and lower left 

quadrant of the adjacency matrix (box cells) (R) in Figure 36(b), or Q=R. As the split 

node action is reversible, Figure 36(a) can be formed by re-joining the pairs of split nodes, 

‘1’ and ‘1a’, ‘6’ and ‘6a’. 
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 1 2 3 6 5 4 

1 0 1 0 1 1 0 

2 1 0 1 1 0 0 

3 0 1 0 1 0 1 

6 1 1 1 0 1 1 

5 1 0 0 1 0 1 

4 0 0 1 1 1 0 

  
 1 2 3 6 1a 5 4 6a 

1 0 1 0 1 1 1 0 1 

2 1 0 1 1 1 0 0 1 

3 0 1 0 1 0 0 1 1 

6 1 1 1 0 1 1 1 1 

1a 1 1 0 1 0 1 0 1 

5 1 0 0 1 1 0 1 1 

4 0 0 1 1 0 1 0 1 

6a 1 1 1 1 1 1 1 0 

(a) Pyramid space frame with pentagon base and 
corresponding adjacency matrix 

(b) Node ‘1’ is split into nodes ‘1’, ‘1a’ and node 
‘6’ is split into nodes ‘6’, ‘6a’ and corresponding 
adjacency matrix subdivided into four submatrices 
of the subframes 

Figure 36: Example of a Pyramidal Symmetric Space Frame Module with pentagon base 
divided into subframes which are mirror images to each other 
 

   After defining the criteria on determining symmetry of topology of a space frame 

module, the criteria on symmetry of geometry has to be defined. 

 

6.1.2 Symmetric Geometric Properties and Dimensions Design 

The Space Frame Module is required to have regular angles between adjacent edges 

and its edges should have regular lengths to facilitate economy of scale in the repetition 

process. The regularity of angles amd lengths is defined as their capability on being 
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classified into groups according to their metric values. The smaller the number of groups, 

the more regular the angles and lengths are. The highest regularity is attained when all the 

angles and lengths are equal. In this case there is only one group for each of them. Given 

a topology of space frame module created by EvoGraph, GA should try to find the most 

regular geometric properties for the final design. Entropy of the geometric properties is 

introduced to ensure the regularity of geometry. Entropy calculation on angles and 

lengths are used in this respect. 

Let  |V| = number of nodes in a space frame module 

 |E| = number of edges in a space frame module 

 deg(xi ) = degree of node i in space frame module 

 |Na | = number of angles between any two connected edges 

 aj = angle j between two connected edges 

 lk = length of edge k 

It can be derived that ∑
=

=
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⎟
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Due to the property of the entropy function, the value of HA and HL increase with the 

increase in regularity of angles between adjacent edges, aj , and length of edges , lk , 

respectively. Hence, HA and HL are the values to be maximized in the GA fitness function. 

 

If all angles between connected edges are equal, then 
||

1
||

1

a
N

j
j

j

N
a

a
a

=

∑
=

 and HA = 1 

If all edges are equal in length, then 
||

1
||

1

El

l
E

k
k

k =

∑
=

 and HL = 1. This is illustrated by an 

example below. 
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(0.14, 0.27, 0.45)

(0.2, 0.02, 0.47)

(0.6, 0.75, 0.42)

(0.2, 0.2, 0.93)

 

 
(0.5, 0.87, 0.75)

(0.5, 0.87, 0)

(0, 1, 0)

(0, 0, 0)

 
(a) Low regularity module (b) Medium regularity module 

 
(0.5, 0.87, 0.87)

(0.5, 0.87, 0)

(0, 1, 0)

(0, 0, 0)

 

 

(c) Regular module  
Figure 37: Examples on tetrahedron with different geometric regularities 
 

Three-dimensional coordinates are assigned to the nodes in Figure 37(a), (b) and (c). 

Their edge lengths, angles between adjacent edges, length entropies and angle entropies 

are summarized in Table 7. 
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 Figure 37(a) Figure 37(b) Figure 37(c) 
Length Set 0.26, 2x0.50, 0.66, 0.84, 

0.85 
3x1.00, 3x2.00 6x1.00 

Angle Set 
(radians) 

0.27, 0.54, 0.60, 0.62, 0.73, 
0.89, 1.2, 3x1.3, 2.1 

3x0.50, 9x1.32 12x1.05 

HL 0.9642 0.9684 1 
HA 0.9524 0.9759 1 
Table 7: Regularity of geometric properties in Figures 37(a),(b),(c) 
 

The regularity of edge lengths and angles increases from Figure 37(a) to complete 

uniformity in Figure 37(c). The trend is reflected in the increase in length entropy, HL, 

and angle entropy, HA. 

 

6.1.3 Encoding Three Dimensional Coordinates of Space Frame Module Nodes in 

Linear Chromosome 

After obtaining the optimal topology, random three-dimensional coordinates are then 

assigned to the nodes of the optimal graph to start the GA process to evolve the optimal 

geometry and dimensions. The three-dimensional coordinates of all the nodes are 

encoded into a linear chromosome before the GA process. The linear chromosome is 

shown below.  

Let xi, yi, zi be the three-dimensional coordinates of node i. All the coordinates are 

encoded into a linear chromosome in the following form. Without loss of generality, the 

values of the coordinates are restricted to 0 ≤ xi, yi, zi ≤ 1. 

 

x1 y1 z1 x2 y2 z2 x3 y3          x|N| y|N| z|N| 
 
Figure 38: Encoding three dimensional coordinates in linear chromosome 
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At the end of GA process, the linear chromosomes are subdivided into units with three 

alleles, each corresponds to a set of three-dimensional coordinates of a node in the space 

frame module. 

 

6.2 Fitness Functions 

There are two fitness functions for evaluation on a space frame module. One for the 

evaluation of the symmetry of the topology and the other evaluates the regularity of 

geometrical properties and dimensions.  

To conduct the fitness evaluation of a space frame module topology, its adjacency 

matrix should be in the form shown in the examples in Figure 35(b) if the space frame 

module contains even number of nodes or converted to even number of nodes from odd 

number by node splitting as shown in the example in Figure 36. Since EvoGraph can 

evolve the space frame modules using adjacency matrices toward symmetric topology, 

the evolution of the adjacency matrix to arrive at the four quadrant submatrix form is 

automatic under proper guidance of the fitness function. Given an adjacency matrix in the 

four quadrant submatrix form as the example in Figure 35(b), the correlation coefficients 

between the two pairs of submatrices {A, C} and {B, D} are obtained according to (1). 

Let them be ACc  and  BDc  respectively. 

 

Define the combined correlation coefficient, c, between the two pairs of submatrices as 

c = 0.5 ACc  + 0.5 BDc    where 0 ≤ c, ACc ,  BDc  ≤1 
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Let |E| be the number of edges of the space frame module to be evaluated and |ET| be the 

target number of edges of the space frame module 

 

Define fitness function for EvoGraph as follow 

Maximize  f(|E|, c) = 
|1||||||| 22

2
−− + cEE T

      (4) 

 

|||||| TEE −  and |c-1| are the values to be minimized. The integer, 2, is used as the 

numerator to enable the maximum fitness to reach one when the number of edges of a 

space frame module equals the target number of edges (|E|=|ET |) and the topology 

comprises two pairs of mirror subframes (c= ACc = BDc =1), or symmetrical topology is 

achieved. In this case,  f(|ET|, 1) = 1
22

2
00 =

+
. 

Given the symmetric topology evolved from EvoGraph, the geometrical properties 

and dimensions of a space frame module are evolved by GA. The fitness function for 

evaluation of degree of regularity of geometrical properties and dimensions of a space 

frame module is derived as follow. The objective of GA is to maximize the regularity of 

geometry and dimensions of the space frame module. But there is a case of regularity 

when the space frame module collapses. In that case, all the edges are of equal length and 

the angles between all adjacent edges equal to zero. Hence the angles between the angles 

and the edges should be maximized to prevent the space frame module from collapsing. 

To achieve regularity of geometry and dimensions, both HA and HL should be maximized. 
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Let  A be the set of angles between all adjacent edges in radians 

 L be the set of lengths of all edges 

 E(A) be the mean of all angles between all adjacent edges 

Define fitness function for GA as follow. 

Maximize  f(A, L) = E(A) HA HL      (5) 

 

It can be observed that the higher the regularity of the geometrical properties and 

dimensions, the higher the fitness value. If all the angles between all the adjacent edges 

and all the length of edges are equal, then HA = HL = 1. The geometrical properties and 

dimensions of the space frame module have the highest regularity. In this case,  f(A, L) = 

E(A). 
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6.3 The Hybrid Evolutionary Algorithm for EvoGraph and GA 

In the hybrid evolutionary algorithm, EvoGraph is used to evolve the optimal space 

frame module topology and GA is used to evolve the optimal geometry and dimensions. 

The process is summarized in the Figure 39. The parameters used in the process are 

purported to conduct the experiments on evolution of space frame modules with number 

of edges between 12 and 20. One hundred graph adjacency matrices are initialized at 

random for the EvoGraph to evolve the optimal symmetric graph topology. The evolution 

process follows that described in Section 4.5. There is no bias on the application of the 

EvoGraph operators. All three basic EvoGraph operators, random crossover, Number-of-

Node mutation and Number-of-Edge mutation are applied with equal probability in order 

to emphasize exploration of search space to exploitation.  The termination condition is 

either reaching the maximum generation of one hundred or the symmetry of topology is 

reached, c=1. After the evolution of symmetric topology, the evolution of regular 

geometric properties and dimensions of the space frame module is evolved by GA. Given 

the symmetric space frame module topology, one hundred sets of three dimensional 

coordinates of the nodes are generated at random and each of them are encoded in a 

linear chromosome as the initial population of GA. Steady state GA using roulette wheel 

selection is adopted. In order to explore the large search space, uniform crossover and 

mutation operators are used. The conventional approach of using crossover as the major 

operator and mutation as the minor operator is adopted. The probability of mutation is 0.1, 

which is higher that the usually adopted for GA. This is also due to the emphasis on 

exploration of search space. The termination condition is either the maximum number of 

generations of 1000 is reached or HA=HL=1. 
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Figure 39: Hybrid algorithm process for EvoGraph and GA 

 

6.4 Experimental Results 

Design parameters with the number of edges ranging from 12 to 20 are input into the 

hybrid evolutionary algorithm described in Section 6.3 with Steady State Reproduction at 

each generation. All the topologies are evolved by EvoGraph in not more than 61 

generations. The terminal generation on the GA part is fixed at 1000. Near optimal 

solutions are reached as all the fitness function flattens out near the end of the terminal 

Initialize of 100 
graphs adjacency 
matrices with 10 
nodes at random

EvoGraph

Crossover probability
Random Crossover    0.3333

Mutation
number-of-node mutation    0.3333
number-of-edge mutation    0.3333

Selection
roullete wheel

Termination
100 generations or c = 1

space frame module with 
optimal topology

Initialization of 100 linear
chromosomes on three-
dimensional coordinates
of nodes

Crossover probability
uniform      0.9

Mutation
uniform      0.1

Selection
roullete wheel

Termination
1000 generations or HA=HL=1

space frame module 
with optimal topology, 

geometry and 
dimensions

GA
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generation. The designs evolved give a good regularity of geometry and dimensions as 

shown in Figure 40. The quantitative results are summarized in Table 8. 

 
Module A : |E| = 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module B : |E| = 13 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module C : |E| = 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module D : |E| = 15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module E : |E| = 16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module F : |E| = 17 
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Module G : |E| = 18 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module H :|E| = 19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module I : |E| = 20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 40: Regular space frame modules generated by experiments 
 

No. of 
edges 

No. of 
generations of 
EvoGraph to 
reach optimal 
topology (c = 1) 

Angle 
Entropy 
HA after 1000 
generations of 
GA 

Length 
Entropy 
HL after 1000 
generations of 
GA 

12 16 0.9918 0.9952 
13 21 0.9661 0.9835 
14 6 0.9818 0.9924 
15 4 0.9860 0.9915 
16 50 0.9600 0.9836 
17 9 0.9691 0.9865 
18 27 0.9385 0.9733 
19 18 0.9760 0.9884 
20 61 0.9831 0.9922 
Table 8: Summary of converging generations and corresponding angle entropies and 
length entropies of space frame modules 
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The space frame modules generated can be combined or articulated to form different 

types of interesting structures depending on their geometric properties and the functions 

required by a space.  Module A in Figure 40 resembles the most popular orthogonal grid 

space frame structure. This is the most common form of structural framework in design. 

The other space frame modules have interesting geometries. They are used as basic 

building blocks of large space of many shapes. Module B to E are diamond shape 

modules that can be repeated to form building elements such as roof structure. The 

AutoCAD drawing on repetitive units of module B is shown in Figure 41. Other varieties 

generated by grouping module C to module I in Figure 40 are illustrated by AutoCAD in 

Appendix 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Module B with 13 edges 
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                                                                                                                              Chapter 7 

 
Tree Evolution on Art Creation 
 
 

As is pointed out in [55], at the end of the nineteenth century, a tendency within the 

art movement towards aestheticism took place: the underlying structures and forms of 

different art forms were seen as the essential basic, most abstract representation. These 

were based on aesthetic principles that emphasized balance, minimalism and implicit 

beauty that required mental participation of the viewer to become explicit. The ideas 

about composition started to become common knowledge. The most basic, generic 

description of a two-dimensional artwork is called a composition. A composition of a 

painting can be seen as a formal framework that specifies what a ‘well-formed’ artwork 

at the highest abstraction-level looks like. Neoplasticism is one of the styles of these 

modern abstractions. Neoplasticists believed that art should not be the reproduction of 

real objects, but the expression of the absolutes of life. To them, the only absolutes of life 

were vertical and horizontal lines and the primary colors - red, yellow and blue (together 

with white and black).  

Piet Mondrian (1872 – 1944) was a Neoplasticist; a devout believer in the ability of 

art to have a deep spiritual influence on people's lives. He strove throughout his nearly 

three-decade immersion in pure painting to achieve harmony and balance through an 

intuitive process of constructing square and rectangular planes of white, red, yellow and 

blue, dissected by vertical and horizontal black lines. The rules of Mondrian painting are 

followed and listed below. 

1. Only white, red, blue color patches are used. 



 

 108

2. The painting can only contain rectangles with sides parallel to the borders of the 

canvas. Lines that are not part of the border of a rectangle are not allowed. For 

example, the following figure is not a proper Mondrian painting line composition. 

There is a right angle bend that does not form part of a rectangular border. 

 

   Figure 42: Violation of Mondrian subdivision rule 
 

 

3. Borders of the rectangle can only be painted in black. Rectangles can only be painted 

in white, red, blue, or yellow. The borders of the canvas are considered to be black. 

4. Two adjacent rectangles cannot have the same color, unless they are painted white. 

 

The drawing process of Mondrian painting encoded in a tree with attributed nodes is 

shown below. The process is basically a series of rectangular subdivision of the canvas. 

The edges, terminal nodes and non-terminals have different attributes as listed in Table 9. 
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Edge attributes Terminal node attributes Non-terminal node attributes 
1. area apportionment xi,   

0 < xi < 1 and 

∑
=

=
k

i
ik

1

1  where 

k = no. of subdivisions 

1. color: w = white 
r = red 

               b = blue 
               y = yellow 
 
2. area of subdivided rectangle 
3. height-width difference, a, of 

subdivided rectangle 
    wha −=   
    where  
   h = height of rectangle   
   w = width of rectangle 
 

1. area of subdivided rectangle 
 
2. direction of subdivision: 
    H = horizontal 
    V = vertical 
3. height-width difference, a, of 

subdivided rectangle  

Table 9: Symbols for tree encoding of Mondrian painting evolution 
 

An example on evolution of Mondrian painting on a square canvas of unit length is 

illustrated in Figure 43. The process encoding in the tree is the ‘genotype’ with the 

drawing expressed as the ‘phenotype’. The subdivisions start from top to bottom and 

from left to right cascading down the tree. The corresponding subdivisions in the canvas 

progresses from left to right for vertical subdivision (V) and from bottom to top for 

horizontal subdivision (H). 
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Genotype  Phenotype 
 
 
 

color=y
A=0.3
a=0.7

A=1
subdivision=V(0.3, 0.7)
a=1

A=0.7
subdivision=H(0.5, 0.5)
a=0.3  

 

A=0.7
subdivision=H(0.5, 0.5)
a=0.3

1

0.70.3

color=y
A=0.3
a=0.7

 
 

A=1
subdivision=V(0.3, 0.7)
a=1

color=y
A=0.3
a=0.7

A=0.7
subdivision=H(0.5, 0..5)
a=0.3

A=0.35
subdivision=V(0.4, 0.6)
a=-0.2

A=0.35
subdivision=V(0.8, 0.2)
a=-0.2

 

 
0.7

0.5

0.5

1

0.3

A=0.35
subdivision=V(0.8, 0.2)
a=-0.2

A=0.35
subdivision=V(0.4, 0.6)
a=-0.2

 
 

 
A=1
subdivision=V(0.3, 0.7)
a=1

color=y
A=0.3
a=0.7

A=0.7
subdivision=H(0.5, 0.5)
a=0.3

A=0.35
subdivision=V(0.4, 0.6)
a=-0.2

A=0.35
subdivision=V(0.8, 0.2)
a=-0.2

color=r
A=0.007
a=0.36

color=w
A=0.28
a=0.06

color=w
A=0.21
a=0.08

color=b
A=0.14
a=0.22  

 
0.3

1

0.140.56

0.420.28

0.5

0.5
color=b
A=0.14
a=0.22

color=r
A=0.007
a=0.36

color=w
A=0.28
a=0.06

color=w
A=0.21
a=0.08

 

Figure 43: Example on tree encoding of Mondrian painting evolution 
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In this process, there are possibilities where two adjacent rectangles having the same 

color except white color. This contravenes the fourth rule of Mondrian painting described 

above. The selection process in EvoGraph eliminates this deficiency by assigning lower 

fitness value to the attributed adjacency matrix that represents the attributed tree of the 

painting. 

 

7.1 Quantification of Aesthetic Attributes of Mondrian Painting 

   In order to evolve Mondrian painting, several basic aesthetic attributes should be 

abstracted and quantified. These attributes will be incorporated in the fitness function as 

the targets of evolution. These aesthetic attributes include the directional bias of the 

painting, evenness of subdivision, color distribution and granularity of subdivisions. 

 

7.1.1 Directional Bias 

The sense of direction of the painting is the overall impression on all the directional 

bias of all the rectangles within the painting. The quantification of this overall sense of 

direction can be expressed by the weighted height-width difference of the rectangles as 

illustrated by the example in Figure 44. 

 

2

11

 

 

11

2

2

2

1

1

1

1

1

 
(a) Vertical subdivision of a square (b) Pinwheel subdivision of a square 
Figure 44: Comparing vertical and pinwheel subdivision of a square on the directional 
bias 
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In general, the height-width difference of the terminal subdivided rectangles is used 

to determine the overall directional bias of the painting, as they are the most conceivable. 

In the above figures, there are two rectangles in Figure 44(a) and four rectangles and one 

square in Figure 44(b). The overall visual impact of each subdivided rectangle is 

proportional to its area. Hence their relative areas weight the overall height-width 

difference of the figures. 

weighted height-width difference ∑
=

=
n

i
i

i a
A
A

a
1

 

where  ai = height-width difference of rectangle i in the painting 

    A = area of canvas   

   Ai = area of the ith rectangle in the painting 

    n = total number of subdivided rectangles  

          AA
n

i
i =∑

=1
     hence, total area considered including the canvas = 2A 

 

if a < 0, the figure is horizontally biased 

if a = 0, the figure is unbiased 

if a >0, the figure is vertically biased 

 
Figure A ai Ai /A a 

44(a) 4 2 – 1 = 1 
2 – 1 = 1 

 2/4 
 2/4 

 01
4
21

4
21 >=×+×  

44(b) 9 2 – 1 = 1 
1 – 2 = -1 
2 – 1 = 1 
1 – 2 = -1 
1 – 1 = 0 

 2/9 
 2/9 
 2/9 
 2/9 
 1/9 

0
9
10

9
21

9
21

9
21

9
21 =×+×−×+×−×           

Table 10: Calculation of degree of bias of Figures 44(a) and (b) 
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Figures 44(a) is biased vertically (a = 1 > 0) and there is no directional bias in Figure 

44(b) as all the directions of the subdivision rectangles balance out each other (a = 0). 

The square in the centre is unbiased. This interpretation tallies with our visual perception. 

 

7.1.2 Evenness of Subdivision 

The entropy of all rectangular areas within the painting measures the evenness of area 

of subdivision in a Mondrian painting. 

Let A = area of canvas   

Ai = area of the ith rectangle in the painting 

entropy of areas 
A
A

A
AH i

n

n

i

i
a log

1
∑
=

−=  where 1
1

=∑
=

n

i

i

A
A

  

The higher the value of Hn, the more uneven the areas are distributed. When the areas are 

evenly distributed, Hn = 1. 

 

7.1.3 Color Distribution  

The color distribution within the painting is described by the tuple  

(pw ,pr ,pb ,py ) where 

pw = proportion of area of all white color rectangles in the painting 

pr = proportion of area of all red color rectangles in the painting 

pb = proportion of area of all blue color rectangles in the painting 

py = proportion of area of all yellow color rectangles in the painting 

and pw + pr + pb + py = 1 
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7.1.4 Granularity of Subdivision 

The granularity of subdivision is proportional to the number of subdivided rectangles, 

n, in the painting. The attribute values of the painting in Figure 43 are summarized as 

follow. 

 

Attributes  Calculations  
Directional Bias A = 1, n = 5 

 

0266.0)14.05.0(07.0)56.05.0(28.0
)42.05.0(21.0)28.05.0(14.0)3.01(3.0

>=−×+−×+
−×+−×+−×  

 
Evenness of Subdivision 

94.007.0log07.028.0log28.0

21.0log21.014.0log14.03.0log3.0

55

555

=−−

−−−=aH  

Color Distribution pw = 0.21+0.28 = 0.49 , 
pr = 0.07, 
pb= 0.14, 
py = 0.3 

Granularity of Subdivision n = 5 
Table 11: Attribute values calculation for Mondrian Painting in Figure 43 
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7.2 Experiments 

An original painting by Mondrian, ‘Composition with Red, Blue, Yellow’, is selected 

for the experiment. The attributes of this painting are quantified and extracted. EvoGraph 

is used to create new paintings by manipulating the values of the extracted figures. The 

new paintings created are expected to preserve some but not too many of the attributes of 

the original painting to avoid duplicating the original painting. 

 

 

 

Figure 45: Original Mondrian Painting ‘Composition with Red, Blue, Yellow’ 

 

The size of the original painting is normalized to a square of unit area for the ease of 

calculation. The attributes extracted are the color Area, the directional bias, evenness of 

area subdivision and granularity of subdivisions. Their respective values are summarized 

as follow. 
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Color Area Directional 

Bias of 
Subdivided 
Rectangles

Evenness of  
Subdivided 

Area 

Granularity 
of 

Subdivision 

White  Red  Blue  Yellow  Weighted 
height-width 

difference 

Entropy of 
Areas of 

Rectangular 
Subdivisions

Number of 
Rectangular 
Subdivisions 

 
0.3685 0.5623 0.0623 0.0069 0.1258 0.6727 7 

Table 12: Attribute values for ‘Composition with Red, Blue, Yellow’ 

 

The original painting can be expressed in form of attributed tree and attributed 

adjacency matrix as follow. For simplicity of presentation, the directions of subdivisions 

and the area of subdivisions are labeled in the circular non-terminal nodes. The colors of 

the subdivisions are labeled on the triangular terminal nodes. Thick black lines 

occasionally exist in some of the Mondrian paintings. The same exists in the left part of 

the above original painting. The thick arrows in the tree indicate the thicker line partition 

between the two white rectangles. This can be created by random assignment. 

 
 Figure 46(a): Tree encoding on evolution of ‘Composition with Red, Blue, Yellow’ 
 
 
 

white blue redwhite

white

white yellow

V(0.2353, 0.7648)

H(0.0761, 0.0969, 0.0623) H(0.5623, 0.2025)

V(0.1869, 0.0156)

H(0.0087, 0.0069)
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 V H H w w b r V w H w y 
V 0 0.2353 0.7648 0 0 0 0 0 0 0 0 0 
H 0 0 0 0.0761 0.0969 0.0623 0 0 0 0 0 0 
H 0 0 0 0 0 0 0.5623 0.2025 0 0 0 0 
w 0 0 0 0 0 0 0 0 0 0 0 0 
w 0 0 0 0 0 0 0 0 0 0 0 0 
b 0 0 0 0 0 0 0 0 0 0 0 0 
r 0 0 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 0 0 0.1869 0.0156 0 0 
H 0 0 0 0 0 0 0 0 0 0 0.0087 0.0069 
w 0 0 0 0 0 0 0 0 0 0 0 0 
y 0 0 0 0 0 0 0 0 0 0 0 0 
non-terminal nodes: V = vertical subdivision   H = horizontal subdivision 
terminal nodes:    w = white   r = red   b =blue   y = yellow 
Figure 46(b): Attributed adjacency matrix for the tree in Figure 46(a) 
 

7.2.1 Fitness function 

Given the values of attributes extracted from the original Mondrian painting, gi, where 

ni ≤≤1 , the general form of fitness function to be maximized for a new painting 

evolved is  

fitness = 
∑
=

−+

+
n

i

gcadj ii

n

1

||22

1  

n = number of extracted attributes values  

adj = number of pair of adjacent rectangles that are not white and have the same color  

gi = value of attributes i of original painting 

ci = value of attributes i of new painting 

The value on violation of Mondrian painting rule and deviation from the aesthetic 

attributes in the denominator are the values to be minimized. Power function is used for 

the denominator to avoid its value to become zero. ‘1+n’ is used as numerator to enable 

the fitness to become one at the highest fitness where adj = 0 and | ci – gi | = 0 for all i. At 

the highest fitness value, all the constraints are being satisfied. Hence, 0<fitness≤ 1. 
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7.2.2 Experiment Setup 

The effect of mixing GP crossover and EvoGraph random crossever of trees is tested 

in the experiments. A mix of GP crossover and EvoGraph random crossover is used in 

each generation of evolution. The total number of GP crossover and EvoGraph random 

crossover in each mix is 10. There are total 11 GP crossover / EvoGraph random 

crossover proportional mixes in each experiment. The first mix starts off with pure 

EvoGraph (10 numbers EvoGraph and no GP). One EvoGraph random crossover is 

replaced by GP crossover in the second mix and so on. At the 11th mix, there is pure GP 

(10 numbers GP crossover and no EvoGraph random crossover). The arrangement is 

summarized as follow.  

 

Mix  No. of GP crossover No. of EvoGraph random crossover 
1 0 10 
2 1 9 
3 2 8 
4 3 7 
5 4 6 
6 5 5 
7 6 4 
8 7 3 
9 8 2 

10 9 1 
11 10 0 

Table 13: Design mix of GP and EvoGraph for Mondrian painting evolution  

 

Five sets of experiments are set up. In each set of experiments, all the 11 mixes in 

Table 13 are run. The 7 attribute values of the Mondrian painting in Figure 45 are used as 

search targets of the experiments. In each experiment set, a specific number of targets are 

to be satisfied by the evolutionary algorithm as indicated in Table 14. Experiment sets 1 

and 2 both retain the number of subdivisions with the former capturing aspect ratios and 
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the latter captures the area distribution of the rectangles. Experiment set 3 captures the 

aspect ratios, number of subdivisions and the area distribution of the rectangles. 

Experiment set 4 captures all the color proportions and the area distribution of the 

rectangles. Experiment set 5 captures all the attributes from the original painting. A 

resulting painting of very similar nature to the original is expected.  

 
Attributes and Target Values 

white red  blue yellow 
Weighed 

height-width 
difference 

Area 
Entropy 

no. of 
subdivisions 

Sets of 
Experiment 

0.3685 0.5623 0.0623 0.0069 0.1258 0.6727 7 
1 - - - - Y - Y 
2 - - - - - Y Y 
3 - - - - Y Y Y 
4 Y Y Y Y - Y - 
5 Y Y Y Y Y Y Y 

Table 14: Matrix identifying attributes to be captured in different experiments 
 

The problem complexity increases with the number of target attribute values to be 

matched and the nature of the complexity of attribute value derivation. The easiest to 

match target is the number of subdivisions which is an integer. The next more complex 

targets are the color proportions which are decimals. The most difficult are the aspect 

ratio and area entropy which require mathematical derivations. Experiment sets 1 and 2 

will have almost the same complexity. The complexity increases from experiment set 3 to 

experiment set 5 as the number of target attribute value increases.  

The fitness value at convergence and the number of generations to reach convergence 

with respect to different mixes of GP crossover and EvoGraph random crossover in each 

experiment are studied. Furthermore, the cross sectional analysis on general convergence 

pattern amongst all the experiments will also be conducted.  
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7.2.3 Evolution Parameters and the Evolution Process 

An initial population of 50 trees is generated at random. All experiments are based the 

same initial population so that comparison of performance can be made. Convergence is 

considered to be reached if the fitness value equals or exceed 0.99 which is close enough 

to 1 or there is no further increase in fitness value for 1000 consecutive generations. 

Steady state reproduction is used in the evolution process. The maximum fitness of a 

generation is a monotonic increasing function of the number of generations of evolution. 

The converging generation is the first generation that reaches or exceeds fitness value of 

0.99 or the beginning generation of the 1000 consecutive stagnant fitness. Both standard 

GP crossover and the EvoGraph random crossover operation for trees described in 

sections 4.2.2 and 4.2.3 are used. The crossover operators evolve the tree topology of the 

genotype. The attributes of the tree (subdivision proportion, direction of subdivision, 

color) are searched by mutations of values in the attributed adjacency matrix. Each 

crossover is followed by one mutation of attribute values. Steady State Reproduction is 

adopted. The evolutionary process is listed as follow. 

1. Generate an initial population of attributed adjacency matrices randomly.  

2. Evaluate each attributed adjacency matrix according to their fitness.    

3. According to respective numbers of GP crossover and EvoGraph random crossover in 

Table 13, for each cross over operation select two attributed adjacency matrices with 

attribute values for reproduction using the Roulette Wheel selection scheme. 

4. Carry out crossover and mutation and reproduce.  

5. Evaluate fitness of the resulting children adjacency matrices with attributed values. 
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6. Delete two least-fit individuals from current population and insert new adjacency 

matrices (Steady State Reproduction). 

7. Repeat from 3 until termination criteria are reached.  

 

7.2.4 Fitness Analysis 

The converging fitness values of the experiments are summarized in Table 15. Least 

square polynomial regression analysis is conducted for the normalized fitness gap for 

each experiment. The regression error is measured by the R2 value defined below. 

10 2 ≤≤ R , when R2 =1, the curve is a perfect fit to the input values and vice versa. 
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where iY  = actual value at i   iŶ  = expected value on regression line at i 

   The regression curve of each experiment w.r.t. the crossover mix is plotted in Figure 47. 

The regression curve of the average fitness of the 5 experiments w.r.t. the crossover mix 

is plotted in Figure 48. The regression curve of average maximum fitness of the 11 

crossover mixes w.r.t. the 5 experiments in the order of increasing complexity of search 

is plotted in Figure 49. The paintings evolved by the best fit mixes in the five 

experiments are illustrated in Appendix 4. 
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mix Exp Set 1 Exp Set 2 Exp Set 3 Exp Set 4 Exp Set 5 average 
1 0.9914  0.9693  0.9551  0.9645  0.8818  0.9524 
2 0.9988  0.9635  0.9817  0.9884  0.9194  0.9704 
3 0.9924  0.9838  0.9922  0.9956  0.9035  0.9735 
4 0.9907  0.9877  0.9960  0.9909  0.9800  0.9890 
5 0.9989  0.9751  0.9940  0.9925  0.9864  0.9894 
6 0.9924  0.9878  0.9932  0.9783  0.9797  0.9863 
7 0.9982  0.9754  0.9802  0.9856  0.9756  0.9830 
8 0.9962  0.9770  0.9973  0.9599  0.9522  0.9765 
9 0.9905  0.9800  0.9930  0.9710  0.9108  0.9691 

10 0.9901  0.9858  0.9933  0.9887  0.9558  0.9827 
11 0.9932  0.9674  0.9571  0.8789  0.8098  0.9213 

average 0.9939  0.9775  0.9848  0.9722  0.9323   
Table 15: Converging fitness value 
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Figure 47: Regression curve of maximum fitness of experiment sets w.r.t. crossover mix 
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Figure 48: Regression curve of average maximum fitness of the 5 experiment sets w.r.t. 
crossover mix 
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Figure 49: Regression curve of average maximum fitness of the 11 crossover mixes w.r.t. 
the 5 experiment sets in the order of increasing complexity of search 
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The following can be observed on fitnesses of the experiments.  

1. There is no significant difference in the maximum fitness evolved for low complexity 

search from experiment set 1 to experiment 3 as indicated in Figure 47. As the 

complexity of search increases in experiments set 4 and 5, there is significant drop in 

maximum fitness at both ends of the curve. The left end of the curve (with higher 

proportion of EvoGraph crossover) has maximum fitness higher than the right end 

(with higher proportion of GP crossover). 

2. Except the anomaly in mix 10 in Figure 48, there is a tendency of highest maximum 

fitness to be evolved around mix 5 and 6 where the relative proportion of EvoGraph 

random crossover and standard GP crossover are almost equal.  

3. The average maximum fitness evolved by pure EvoGraph random crossover (mix 1) 

is higher than that of pure standard GP crossover (mix 11) as shown in Figure 48.  

4. The maximum average fitness of the experiment set of the 11 mixes decreases with 

increasing complexity of search as indicated Figure 49. 
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7.2.5 Converging Generation Analysis 

The number of generations to reach convergence (converging generation) is 

summarized in Table 16.  

mix Exp Set 1 Exp Set 2 Exp Set 3 Exp Set 4 Exp Set 5 average 
1 44  1197  1908  342  274  753 
2 278  1083  542  2042  4170  1623 
3 261  1061  1183  2835  1846  1437 
4 69  603  4003  2982  8229  3177 
5 70  1931  331  1139  7298  2154 
6 87  649  297  2946  2400  1276 
7 166  907  174  1686  4867  1560 
8 90  81  1536  130  2487  865 
9 84  212  799  1827  436  672 

10 78  2432  1072  1010  337  986 
11 1978  1173  372  1517  48  1018 

average 291  1030  1111  1678  2945   
Table 16: Number of generations to reach convergence 
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Figure 50: Regression curve of the converging generation of experiment sets w.r.t. 
crossover mix 
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Figure 51: Regression curve of average converging generation of the 5 experiment sets 
w.r.t. crossover mix 
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Figure 52: Regression curve of average converging generation of the 11 crossover mixes 
w.r.t. the 5 experiment sets in the order of increasing complexity of search 
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The following can be observed from the converging generation of the experiments. 

1. According to Figure 50, the difference in converging generation number from 

experiment set 1 to 4 across all the 11 crossover mixes is not significant. There is 

significant increase in the converging generation on experiment set 5 which 

complexity of search is the highest among all the experiments. The regression curves 

change from concave in experiment 1 gradually to convex in experiment set 4 and 5. 

This indicates the converging generation increase significantly especially between 

mix 5 and 6 where the proportion of EvoGraph random crossover and standard GP 

crossover are almost equal. This region of mix is also where the maximum fitness of 

all experiments are the highest as discussed in the fitness analysis in Section 7.2.4 

2. Except the anomaly of mix 4 in Figure 51, there is a trend on having the highest 

average converging generation for all the experiments between mix 5 and 6. The 

trend is weaker than its counterpart in fitness analysis having highest maximum 

fitness in the same region as the data points are scattered further away from the 

regression curve in the figure. 

3. The average converging generation evolved by pure EvoGraph random crossover 

(mix 1) is lower than that of pure standard GP crossover (mix 11) as shown in Figure 

51 but it is close to that of mix 8 and 9 as shown in the same figure. 

4. The converging generation increases with the complexity of search from experiment 

set 1 to experiment set 5 as shown in Figure 52. 

 

Referring to the fitness analysis and converging generation analysis, it can be concluded 
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that though EvoGraph random crossover attains higher maximum fitness value and faster 

convergence in comparing with standard GP crossover, it has the same tendency as the 

latter on early convergence. The fitness can be improved by mixing it with standard GP 

crossover at nearly the same proportion but the drawback is that it takes longer time to 

converge. 
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                                                                                                                              Chapter 8 

 
Molecule Design 
 
 

The molecular design problem is concerned with the determination of a molecular 

structure with certain desirable properties. An effective solution to this problem can have 

many applications in many areas in the biochemical and pharmaceutical industry. 

Traditionally, molecular design is by many trials-and-errors in laboratories and is difficult, 

time consuming and expensive. To facilitate the design process, various computer-aided 

molecular design (CAMD) techniques have been developed and they have been divided 

into five categories [101]: random search, heuristic enumeration, mathematical 

programming, knowledge-based systems and graphical reconstruction methods. The 

various drawbacks, including combinatorial complexity of the search space and the non-

linear structure-property correlations, etc., that these techniques have are discussed in 

[101].  

 To overcome these drawbacks, there have been some attempts to use EAs to evolve 

molecular designs encoded in linear strings of parameters [101], trees [102] or genetic 

graphs [18]. There have also been attempts to use a hybrid of Back Propagation Neural 

Networks (BPNN) and GAs to evolve molecular designs encoded as graphs [103][104].  

For these EAs to work effectively, components in the target molecule and their chemical 

combination rules have to be known in advance and used from the beginning to guide the 

evolutionary process [101][102][18].  The chemical combination rules are needed to 

restrict the variety of molecular structures that can be generated during the evolutionary 

process to ensure convergence of the process in reasonable time. The chemical 
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combination rules are implemented in the crossover operators so that when molecular 

components are exchanged, the crossover operations follow certain orders defined by the 

rules.  

   The requirement for molecular components and chemical combination rules to be 

known ahead of time restricts, to some extent, the ability of existing EA based CAMD 

technique to evolve novel molecular structures. To allow for greater flexibility, 

EvoGraph performs its tasks by encoding molecular structures in molecular graphs with 

nodes in these graphs representing atoms and edges representing bonds. Each molecular 

graph is in turn encoded into adjacency matrices that represent nodes and their 

connectivity at the same time. Given such an encoding scheme, the EvoGraph is able to 

evolve an “optimal” molecular design using a set of reproduction operators designed 

specifically to handle molecular graphs.  

 

8.1 Existing Approaches for Computer Aided Molecular Design 

   The traditional approaches to molecular design require many laborious iterations of 

design-synthesis-evaluation and they are expensive and time consuming. To speed up the 

design process, various computer-aided molecular design (CAMD) techniques have been 

developed. CAMD can be defined as follows: “Given a set of building blocks and a 

specified set of target properties, determine the molecule or molecular structure that 

matches these properties” [105]. The basic steps of CAMD, according to this definition 

can be divided into three phases: a pre-design, a design and a post-design stage as shown 

in Figure 53.  
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Figure 53:  Basic steps of CAMD [105] 
 

In the pre-design phase, it should be noted that building blocks of molecular components 

have to be identified first in order for the target molecules to be formed. For the rest of 

the other design phases, computer aided design software are often used to order and 

combine different building blocks to form new designs. Mathematical programming or a 

hybrid of mathematical and qualitative approaches [106] have also been used to 

simultaneously design the structure of new molecules and test its optimality using 

mathematical formulae that model the properties of the target molecule. The major 

drawbacks of these approaches are due to the need to deal with the combinatorial 

complexity of the search space and the difficulties in tackling non-linear structure-

property correlations, etc. [101]. 

Recently, there have been attempts to use EAs to generate molecular structures [107]. 

Given selected building blocks, EAs have been used to evolve the topology of a molecule 

by linking building blocks to form molecules. If the topology of a molecule is given, EAs 

can also be used to evolve the relative position of elements and internal bond angles 
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within the molecule. These EAs adopt different encoding schemes and these schemes 

impose different constraints on the EA operations that have to mimic chemical reactions 

when components and bonds between molecules are exchanged. In [24], for example, 

molecules are encoded in linear strings which represent elemental, substructural, or 

monomer units. Genetic Algorithms (GAs) are used with these linear strings to evolve 

target molecules. In [103][104], a GA is also used to search for combinations of 

molecular fragments encoded as linear strings. The fitness of the candidate molecules are 

evaluated using back-propagation neural network (BPNN). In [18], molecular design is 

encoded first as trees for a GP based algorithm. Edges are added at random whenever 

needed to form rings to create genetic graphs.  

In addition to the above, EA based CAMD methods have been used to tackle two 

molecular design problems involving protein ligand docking and variable selection for 

the development of quantitative structure-activity relations (QSAR) to generate molecular 

structure with the selected variables. 

Protein ligand docking [60] refers to the non-covalent binding of a molecule to a 

protein. It is widely used in drug design in which the molecular structure of a drug is 

designed to tackle a particular protein. DOCK [109], for example, is a computer-aided 

drug molecule design software developed for this purpose. It provides a software 

interface to facilitate manual manipulation of various molecular structures. With such a 

feature, DOCK can help users to more easily find the molecular structure of an inhibitor 

as a docking ligand on a macromolecule receptor. This resulting ligand structure is then 

matched against a database of computer-derived structures of putative ligands using 

isomorphic subgraph matching.  Although complete matching of two molecular 
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structures is not always possible, it does provide rapid heuristic approximations and it 

allows thousands of alternative geometric matches to be examined per second. A 

variation on the DOCK approach is adopted by an EP-based program called EPDOCK 

[108]. EPDOCK finds optimal internal bond angles and position of the atoms in the 

ligand to bind to the target sites of another protein molecule [108]. To do so, it requires 

that the topology of a ligand be given. 

QSAR is a mathematical description of a molecule’s physical or chemical properties. 

It has been shown that EAs can be used to generate target molecules using QSAR 

properties as search criteria. The evolutionary processes require that known molecular 

components be provided from the beginning. The target molecule is then evolved by 

combining individual components in different molecules or through attachment of new 

components to existing ones to form the target molecule. With the molecular topology 

given and known molecular components connected with right adjacencies, a microscopic 

search can then be conducted using EA to confirm that the components within the 

molecule are arranged in optimal relations with each other.  

From a given base molecule, EAs can therefore be used to vary a molecule’s bond 

angles, inter-atomic distances, and atomic forces to achieve minimum energy state in 

which the molecule is most stable [62][110]. This is known as conformational search as 

the search is constrained only to molecules conforming to specific molecular structures. 

Many EA based CAMD on conformational search has been reported [61][111]-

[112],[114]-[115],[117]-[120]. They also make use of such constraints as nuclear 

magnetic resonance spectrometry, as determined from experiments, as a criterion to guide 

the search [18]-[19]. The use of GA, compared with other parallel direct search methods, 
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have been studied and reported in [110]. Other than these EA based approaches, methods 

such as TORK [113] can also be considered as a conformational search algorithm. TORK 

was developed to adjust internal bond angles of a molecule to achieve minimum energy 

state. For these conformational search algorithms to work effectively, it should be noted 

the structure of the target molecules have to be known. 

While most of these EA based approaches are based on conformational search, there 

is one exception -- the de novo design approach [59][116]. In de nova design, a molecule 

is designed without reference to any known molecule. It starts off with some potential 

components of the target molecule and evolves according to principles for linking 

individual components to form a target molecule. Even though this design approach does 

not require as much domain knowledge as with other conformational search approaches, 

potential components that are likely to produce the target and the corresponding 

combining rules of these components have to be known and determined in advance. 

In summary, the current EA approaches to molecular design are either conformational 

search approaches requiring close-to-target molecular structures or molecular 

components of the target and their corresponding chemical combination rules be made 

known. The optimal target molecules that may be discovered may be constrained by the 

structure of the components that are available.  

To be able to design target molecule without all these prior information about 

molecular structures, molecular components or the chemical combination rules, 

EvoGraph algorithm is proposed. The algorithm begins with an initial population of 

random combinations of atoms and simple elements, such as carbon and benzene rings 

without the need for sophisticated potential building blocks such as phenol groups, 
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methyl groups etc., to be given ahead of time. Also, the evolutionary process that 

EvoGraph goes through is guided by molecule descriptors composed of topological 

indices that describe the adjacency of elements within the target molecule. The advantage 

of EvoGraph is that it can design molecules without the need for the knowledge of close 

to tarrget molecular components and the chemical combination process required to reach 

the target. 

 

8.2 Encoding Molecular Design 

Existing EA based CAMD methods encode molecular designs in different schemes. 

For example, linear-strings have been used in [101] to encode polymers to represent 

elemental, substructural, or monomer units. In [103][104], a linear-string GA is also used 

to search for combinations of molecular fragments encoded as linear strings. In [18], an 

approach is proposed to use GP with molecular design encoded first as trees. These 

encoding schemes impose different constraints on the EA operations so as to ensure the 

mimicking of the chemical reactions that take place when components and bonds 

between molecules are exchanged during, say, the crossover process. If these EA based 

techniques are used, post-processing is required to convert the linear-strings and trees to 

molecular designs in the form of molecular graphs. 

For EvoGraph to carry out its tasks, a molecular design is encoded directly in the 

form of a molecular graph. A molecular graph is a connected, undirected graph 

representation of the structural formula of a chemical compound. It can be represented as 

G(V, E) where V is a set of vertex labels and E is a set of edge labels. A molecular graph 



 

 136

can therefore be represented as a labeled graph with vertices corresponding to the atoms 

of a compound and edges corresponding to the types of chemical bonds between atoms. 

A hydrogen-depleted molecular graph is a molecular graph with hydrogen vertices 

deleted. The target molecules that EvoGraph evolves are organic molecules that are made 

up of carbon and hydrogen atoms and other components. Since carbon-hydrogen bond 

can be assumed to fill up the valence when there is no other bond connected to a carbon 

atom in an organic molecule, the use of hydrogen depleted graphs has been popular and 

EvoGraph also makes use of it. 

EvoGraph operates on the adjacency matrices of the molecular graphs. An adjacency 

matrix represents graph nodes and their connectivity at the same time. Though these 

matrices can also be encoded in linear-string chromosomes which simple GAs can 

operate on by concatenating the rows of a graph adjacency matrix to form a linear array, 

it should be noted that this can be computationally clumsy. If linear-string chromosomes 

are used, the connectivity between nodes cannot be read directly. Furthermore, special 

decoding is required to convert the linear-sting chromosome back into a molecular graph. 

An additional advantage of the adjacency matrix encoding scheme is that an effective 

crossover operator can be relatively easily implemented with it. The “repairing” of a 

matrix after crossover to ensure connectivity can also be more easily implemented with 

adjacency matrices as described in Section 4. Comparing with other encoding schemes, 

molecular graphs encoded in adjacency matrices suit much better the special 

characteristics of molecular topologies and the reproduction operators EvoGraph adopts.  

Given a molecular graph represented as, G(V, E), where V is a set of vertex labels 

and E is a set of edge labels, we can construct its adjacency matrix in such a way that if 



 

 137

there exists a connection from vertex, iv ∈V to vertex jv ∈V in the graph, then the entry 

of the cell at the ith row and jth column, cij is set to 1, otherwise, if there is no connection 

between them, it is set to 0. For the case of a graph where each node and edge are labeled 

with specific attribute values, then cij can take on such values instead of 1 or 0. For 

example, for representing a double bond in a molecule, the value for cij can be set to ‘2’.  

It should be noted that either an upper or lower triangular matrix or a symmetric 

matrix can be used to represent such graph. An upper triangular matrix will be used to 

illustrate the crossover and mutation operators. Symmetric matrices will be used for the 

purpose of deriving quantitative descriptors of molecular graphs. 

 

8.3 The Fitness Function 

To determine the fitness value of a molecular graph, EvoGraph takes into 

consideration the various feature descriptors of a molecule encoded in its graph. These 

molecular feature descriptors include the weights of the atoms, their composition, the 

topology and adjacency of different atoms and bonds within the molecule. Since no 

single descriptor can completely describe all features of a molecule, EvoGraph uses 

different combinations of feature descriptors in different fitness functions so that target 

molecules of various complexities can be most comprehensively described. In the 

following, we describe these different molecular feature descriptors that EvoGraph uses 

for fitness evaluation. 
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8.3.1 Molecular Topology Descriptors 

There have been more than 400 topological indices available [64]. Though none of 

the topological indices can capture all the topological characteristics of a graph, each 

topological index has its own merit. The Ivanciuc-Balaban operator (IB) [65] is computed 

with vertex invariants derived from symmetric molecular matrix. Because EvoGraph 

encodes hydrogen depleted molecular graphs into matrices to carry out evolution, IB is 

suitable for specifying characteristics of the target molecule for the evolution process. 

According to [65], IB is defined as 
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where G is the hydrogen depleted molecular graph, M is symmetric molecular weighted 

adjacency matrix, |E| is the number of edge of G, w is the number of covalent bonds of an 

atom with other atoms in G, VSi(M,w,G) and VSj(M,w,G) denote the vertex sums of the 

two adjacent nodes vi and vj that are incident with an edge eij in the molecular graph G, 

the summation goes over all edges from the edge set E(G), and w is the weighting scheme, 

μ  is the cyclomatic number 1|||| +− VE  where |V| is the number of nodes in G. IB can 

be computed easily from a symmetric molecular matrix.  

An example of IB for aspirin molecule is illustrated below. An aspirin hydrogen 

depleted molecular graph is shown in Figure 43(a). The symbol for benzene ring is ‘Bz’. 

Its corresponding symmetric molecular matrix is shown in Figure 43(b). The nodes are 

indexed by atomic weights of atoms. Hence, carbon is labeled with 12, oxygen with 16, 
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and benzene ring with 72. The number of bonds between atoms is inserted as weights of 

edges in the matrix.  

 

  

BzC
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O

O C

O

C

 

  

 12 12 12 16 16 16 16 72 

12 0 0 0 2 1 0 0 1 

12 0 0 1 0 0 1 2 0 

12 0 1 0 0 0 0 0 0 

16 2 0 0 0 0 0 0 0 

16 1 0 0 0 0 0 0 0 

16 0 1 0 0 0 0 0 1 

16 0 2 0 0 0 0 0 0 

72 1 0 0 0 0 1 0 0 

(a) aspirin molecular graph (b) symmetric molecular matrix of aspirin molecular graph

Figure 53: Aspirin molecular graph and symmetric molecular matrix 
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IB contains topological information of a molecular graph. But it does not contain 

information on the atoms. The target molecules to be evolved in this section are covalent 

molecules. In order to describe a molecule more accurately, composition of atomic 

weights (W), valences of atoms (V), total number of carbon atoms (NC), number of 

benzene rings (NBZ) and product of atomic weights of adjacent atoms from the first to 
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the second layer of adjacencies (AN, AN2) are used in the fitness function for the graph 

evolution in addition to IB.  

Also, the eigenvector or graph spectrum (S), which works on symmetric adjacency 

matrix of a molecular graph (where all non-single bonds are counted as single bonds so 

as to describe the adjacencies only) is used to describe topology of a molecule. It is a 

graph invariant to specify the topology of a molecule [66]. To do so, let A be a symmetric 

adjacency matrix with eigenvalue λ and eigenvector e. By definition of eigenvector, 

Ae=λe. Let B be a permutation of A, A = PBPT, where P is a permutation matrix and 

PPT = I, I is the identity matrix. Hence, λeePBPAe T ==  eλPePBPP TTT =⇒  

e)λ(Pe)B(P TT =⇒ . Let ePS T=  λe'BS =⇒ . S is the eigenvector of B and λ is also its 

eigenvalue. The set of elements in e is the same as e′ because PT only affects the order of 

the elements but not their values. Therefore, the eigenvalues of a symmetric adjacency 

matrix is invariant to matrix permutation.  

The closeness of topologies between two graphs is compared by the root mean square 

distance between their corresponding graph spectrums. Let vectors T
naaa ],......,,[ 21=AS  

and T
nbbb ],......,,[ 21=BS  be the graph spectrums GA and graph GB respectively. The 

elements in SA and SB are eigenvalues arranged in ascending order such that a1≤ a2 

≤……≤.an and b1 ≤b2 ≤……≤.bm. 

 

If the sizes of A and B are equal, the distance between GA and GB is defined as 

∑
=

−=
n

i
iiBA baGGd

1

2||),(                    (2)                                                             
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If the sizes of A and B are unequal, the size of the shorter spectrum is increased by adding 

dimensions to bring it to match the other spectrum and zero elements are assigned to the 

new created spaces. The distance can then be computed with the same formula. 

Like other topology indices, S cannot completely describe the topology of a graph 

but it is an approximation of the topology expressed in a linear vector of real numbers. 

The graph topology corresponding to a graph spectrum may not be unique. Some non-

isomorphic graphs have the same spectrum and are known as cospectral graphs. S is used 

together with the IB operator and other atom adjacency descriptors to specify a target 

molecule for the evolutionary process. 

 

8.3.2 Atom Adjacency Descriptors 

Given a molecule’s topology, adjacencies between atoms are required to specify the 

relative locations of atoms within the molecule. In order to specify the adjacency between 

any two atoms, a quantity is defined below as adjacent node index (AN) as follow. 

∑=
ji jinn

AN
,

1         (3) 

where node i and node j are adjacent to each other, ni is the node index of node i, and nj is 

the node index of node j.  

Sometimes two molecules with the same topologies and AN may have different 

molecular structures because the same adjacent pairs of atoms may exchange locations 

within the same molecule without varying the AN. A specification of second layer of 

atom adjacencies is devised as second layer adjacent node index (AN2) as follow.  

∑ +=
ji

ANAN
ji

jiAPAP
AN

,
)]()([)]()([

12       (4) 
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where node i and node j are adjacent to each other, Ai is the set of node indices of nodes 

adjacent to node i, Aj is the set of node indices of nodes adjacent to node j, P(Ai) is the 

product of node indices in Ai, P(Aj) is the product of node indices in Aj, N(Ai) is the 

number of elements in Ai, and N(Aj) is the number of elements in Aj 

In addition to using atom indices, the number of bonds attached to adjacent atoms can 

be used to specify the adjacencies of bonds within a molecule. The adjacent node-bond 

index (ANB) is defined as follow. 

∑=
ji

ijji evv
ANB

, 3
1

)(

1          (5) 

where node i and node j are adjacent to each other, vi is the number of bonds attached to 

node I, vj is the number of bonds attached to node j, and eij is the number bonds between 

node i and node j. 

The topology and atom adjacency descriptors in this section are used in different 

combinations in the fitness functions to specify the target molecules. The combinations 

depend on features and complexity of the molecule to be specified. 

 

8.3.3 Fitness Functions for Evolution of Molecules 

EvoGraph makes use of different fitness functions to evolve molecules with different 

complexities. These fitness functions take into consideration a set of basic features that 

characterize the target molecule to be evolved. These features include the molecular 

weights of the hydrogen depleted molecules (W), the number of benzene rings (NBZ), 

the total weight of carbon (CW), the sum of degree of each atomic component exceeding 

its valence (V), and other descriptors including IB, S, AN, AN2, and ANB. 
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 As none of these descriptors can completely describe all the features of a molecule, 

different fitness functions are used by EvoGraph with different combinations of these 

descriptors depending on the complexity of the target molecule concerned. As the fitness 

function is a measure of closeness to the target, it reflects how much deviation there is in 

the quantities of these descriptors from the target molecule. When a particular target 

descriptor is used in a fitness function fk, we place a ‘Y’ in the corresponding entry in the 

table, Table 17 below. 

 

fitness 
function 

W NBZ NC V IB S AN AN2 ANB 

f1 Y Y Y Y Y - Y - - 
f2 Y Y Y Y Y Y - Y - 
f3 Y Y Y - - Y - - - 
f4 - - - - - - Y Y - 
f5 - - - Y - - - - Y 
Table 17: Summary of fitness functions and their target properties  
 

∑
=

i

t
k

i

f
)|(|1.1

1
δ

              (6) 

where }5,4,3,2,1{∈k , t is the target value of descriptor i, and | )(tiδ | is the absolute 

deviation of the value of a descriptor i to its target value.  According to Table 17, 

 for f1, },,,,,{ ANIBVNCNBZWi∈  

 for f2, }2,,,,,,{ ANSIBVNCNBZWi∈  

 for f3, },,,{ SNCNBZWi∈  

 for f4, }2,{ ANANi∈  

 for f5, },{ ANBVi∈  
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In order to ensure that all | )(tiδ |’s are linear, the absolute deviation from the target 

spectrum, | )(tSδ |, is the root mean square Euclidean distances ),( BA GGd  given in (2). 

When a criteria is satisfied, it’s corresponding | )(tiδ | equals zero. When | )(tiδ | = 0 for all 

i,  fk =1. The target is reached and the evolution converges to unity. 

The more descriptors that are used, the more computational resources are required 

when computing fitness values. The most computational intensive fitness function is f2. It 

should be noted therefore that computational resource may have to be compromised when 

descriptors are added to evolve more complicated molecules. 

Small molecular graphs with fewer nodes and less complicated molecular structures 

are easier to describe and they can be evolved by using one fitness function. For larger 

molecular graphs and more complicated molecular structure, more than one stage 

evolution is required. Different fitness functions are used at different stages of evolution 

to approach the target molecule. They are shown in Section 8.4. 
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8.3.4 An Illustrative Example in Drug Design 

To illustrate how EvoGraph works with chemical compounds, we represent molecular 

structure as hydrogen depleted graphs with nodes of graph representing the atom and 

edges representing the bonds. Let the symbol for carbon be ‘C’, oxygen be ‘O’, nitrogen 

be ‘N’, and benzene ring be ‘Bz’. In the molecular matrix, the nodes are indexed by the 

atomic weights of the atoms for the convenience of calculation of fitness values.  Hence, 

carbon is labeled with 12, oxygen with 16, nitrogen with 14, and benzene ring with 72. 

The number of bonds between atoms is inserted as weights of edges in the matrix.  

The initialization process generates a population of molecular graphs composed of 

elements bonded together. To generate a molecular graph, a few elements are selected at 

random. A spanning tree is then added to connect all elements together followed by 

addition of other bonds at random. An example of molecular graph initialized is shown 

below. 

 

 
 
 
 
 
 
 
 
 
 
 

 12 12 16 14 

12 - 1 0 0 

12  - 1 1 

16   - 1 

14    - 

NC C

O

 
 

(a) adjacency matrix of molecular graph with 
spanning tree bonds indicated as ‘1’s and 
randomly added bond as’1’ 

(b) molecular graph with spanning tree indicated 
as bold line and randomly added bond as dotted 
line 

Figure 54:. Example of molecular graph generated by initialization 
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The example on random crossover of molecular graph is indicated below. Consider 

two common molecules aspirin and tylenol.  

1. Construct hydrogen depleted molecular graphs and adjacency matrices. 

2. Permute the order of nodes in the adjacency matrices at random. The results are shown 

in Figure 55.  

 

 

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 2 0 

12   - 0 0 0 0 0 

16    - 0 0 0 0 

16     - 0 0 0 

16      - 0 1 

16       - 0 

72        - 

  

 12 12 16 16 14 72 

12 - 1 0 0 0 0 

12  - 0 2 1 0 

16   - 0 0 1 

16    - 0 0 

14     - 1 

72      - 

BzC

O

O

O C

O

C

 

 

 

BzN OC C

O

 

(a)aspirin  (b)tylenol  
Figure 55: Molecular graph and adjacency matrices of aspirin and tylenol 
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3. A cut line is inserted at random across each of the molecular matrix as shown in Figure 

56. The corresponding cut lines in the molecular graphs are shown. 

 
 
 

 

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 2 0 

12   - 0 0 0 0 0 

16    - 0 0 0 0 

16     - 0 0 0 

16      - 0 1 

16       - 0 

72        - 

  

 12 12 16 16 14 72 

12 - 1 0 0 0 0 

12  - 0 2 1 0 

16   - 0 0 1 

16    - 0 0 

14     - 1 

72      - 

BzC

O

O

O C

O

C

 

 

 

BzN OC C

O

 
(a)aspirin  (b)tylenol  
Figure 56: Random cut line imposed on molecular matrices of aspirin and tylenol 
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4. Exchange cut out submatrices. 

5. Scan and delete invalid edges 

 

 

 12 12 12 16 16 14 72

12 - 0 0 2 1 0 0 

12  - 1 0 0 0 0 

12   - 0 0 0 0 

16    - 0 0 0 

16     - 0 0 

14      - 1 

72       - 

 

 12 12 16 16 16 16 72 

12 - 1 0 0 0 0 0 

12  - 0 2 0 0 0 

16   - 0 0 0 0 

16    - 0 0 0 

16     - 0 1 

16      - 0 

72       - 

C

O

O

C

C

BzN

 

 

O

C C

O
Bz O

O

 

(a) (b) 
Figure 57: Swapping of subgraphs created by the cut and deletion of invalid edges 
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5. Superimpose a spanning tree at random over the existing edges on each graph after 

swapping and add edges at random to create the offspring.  

 

 

 12 12 12 16 16 14 72

12 - 0 0 2 1 1 0 

12  - 1 0 1 0 1 

12   - 0 0 0 0 

16    - 0 0 0 

16     - 0 0 

14      - 1 

72       - 

 

 12 12 16 16 16 16 72 

12 - 1 0 0 0 0 0 

12  - 0 2 0 0 1 

16   - 0 1 0 1 

16    - 0 0 0 

16     - 0 0 

16      - 1 

72       - 

C

O

O

C

C

BzN

 

 

O

C C

O
Bz O

O

 

(a) (b) 
Figure 58: Embed spanning tree at random to each offspring graph after swapping. 
Superimposed spanning tree in ‘1’s in the adjacency matrices. The embedded spanning 
trees are shown in bold lines in the graphs. The new edges connecting the swapped 
subgraphs are shown in dotted line. 
 

Mutations are shown by using the example of aspirin molecule below. Number-of-

Node mutation involves addition or deletion of one element in a molecule. Number-of-

Edge mutation involves addition or deletion of one bond in a molecule, and Swap-Vertex 

mutation involves swapping of two elements in a molecule. They are shown in the 

molecular matrices in Figures 59, 60 and 61 respectively. The changes are highlighted by 

italics and bold letters.  
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 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 2 0 

12   - 0 0 0 0 0 

16    - 0 0 0 0 

16     - 0 0 0 

16      - 0 1 

16       - 0 

72        -   

 12 12 12 16 16 16 72 

12 - 0 0 2 1 0 1 

12  - 1 0 0 1 0 

12   - 0 0 0 0 

16    - 0 0 0 

16     - 0 0 

16      - 1 

72       - 

(a) select at random an element O to be deleted 
in aspirin  

(b) delete O from aspirin 

 

 

 12 12 12 12 16 16 16 16 72

12 - 0 0 0 2 1 0 0 1 

12  - 0 0 0 0 0 0 1 

12   - 1 0 0 1 2 0 

12    - 0 0 0 0 0 

16     - 0 0 0 0 

16      - 0 0 0 

16       - 0 1 

16        - 0 

72         - 

 

 

(c) add at random one carbon to aspirin   
Figure 59: The Number-of-Node mutation operator illustrate 
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 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 2 0 

12   - 0 0 0 0 0 

16    - 0 0 0 0 

16     - 0 0 0 

16      - 0 1 

16       - 0 

72        - 

 

 12 12 12 16 16 16 16 72 

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 1 0 

12   - 0 0 0 0 0 

16    - 0 0 0 0 

16     - 0 0 0 

16      - 0 1 

16       - 0 

72        - 

(a) select at random a bond C-O to be deleted in 
aspirin 

(b) delete one C-O bond from aspirin 

  

 12 12 12 16 16 16 16 72

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 2 0 

12   - 0 0 0 0 0 

16    - 0 0 0 0 

16     - 0 0 0 

16      - 0 1 

16       - 0 

72        - 

 

 12 12 12 16 16 16 16 72 

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 2 0 

12   - 0 0 0 0 1 

16    - 0 0 0 0 

16     - 0 0 0 

16      - 0 1 

16       - 0 

72        - 
(c) select at random one bond C-Bz to be added 
to aspirin 

(d) add one C-Bz bond to aspirin 

Figure 60: The Number-of Edge mutation operator illustrated 
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 12 12 12 16 16 16 16 72

12  0 0 2 1 0 0 1 

12   1 0 0 1 2 0 

12    0 0 0 0 0 

16     0 0 0 0 

16      0 0 0 

16       0 1 

16        0 

72         
 

 

 12 12 16 16 16 12 16 72 

12 - 0 0 2 1 0 0 1 

12  - 1 0 0 1 2 0 

16   - 0 0 0 0 0 

16    - 0 0 0 0 

16     - 0 0 0 

12      - 0 1 

16       - 0 

72        - 

(a) select a pair of elements C and O in aspirin to 
be swapped 

(b) swapping C and O 

Figure 61: The Swap-Node mutation operator illustrated 
 

To illustrate how the fitness value of a molecular graph can be evaluated, the 

molecular graph in Figure 58(a) is used for evaluation of fitness. The target molecule for 

reference in the illustration is assumed to be aspirin in Figure 53. The fitness function 

used is f1. The descriptors used by f1 are W, NBZ, CW, V, IB, AN. 

 

 W NBZ CW V IB AN 
Target value of descriptors of 
aspirin (t) 

172 1 108 0 20.3995 0.4355 

Value of descriptors of molecular 
graph in Figure 58(a) (u) 

154 1 108 0 10.3408 0.4425 

| )(tiδ | = |t – u| 18 0 0 0 10.0587 0.007 

Table 18:  Illustration of fitness value calculation using f1 
 

From (6), the fitness is therefore 1069.0
1.1

1
)007.00587.1000018(1 <== +++++f  
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8.4 Experiments on Evolution of Molecules 

To evaluate the performance of EvoGraph, it is used to see if it can discover known 

drug molecules. The hydrogen depleted molecular graphs and the symmetric adjacency 

matrices of these molecules are shown in Appendix 5. 

 

8.4.1 Initialization and Evolution Parameters 

An initial population of 50 symmetric molecular matrices containing node labels of 

the target molecular graph is generated at random. Steady State Reproduction and 

roulette wheel selection is used as described in Section 4.5. 

There has not been a clear theory to guide the parameterization and design of 

evolutionary algorithms [71]. In GA, crossover and mutation rates are often chosen by 

trial and error to serve their purpose. In EP, crossover is not used at all. Crossover is the 

major evolution operator for EvoGraph while mutation is the minor operator to prevent 

the population from converging to local optimum of fitness less than unity. But the 

relative proportion of mutation to crossover is higher in comparing with conventional GA 

to increase the role of random search. The numbers of crossovers and ‘node mutation’ are 

fixed at 10 and 1 respectively. The numbers of ‘bond mutation’ and ‘swap node 

mutation’ are adjusted between 1 and 5 to in each trial to minimize the number of 

generations to convergence. 

 

8.4.2 Experimental Setup and Results 

Graph topologies can be partitioned into tree topologies and non-tree topologies. The 

latter consist of rings. In comparing with tree topologies, the cyclical nature of ring 

structure in a molecule causes more overlapping of first layer atom adjacencies and bond 
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adjacencies. More descriptors are required to accurately describe the target molecules 

with rings. The target molecules we intend to design with EvoGraph can be divided into 2 

groups. Members of the first group have tree topologies. They include tylenol, adrenaline, 

aspirin, and ibuprofen. Members of the second group have ring structures. They include 

nicotine, caffeine, and dilantin. Descriptors for tree-structure molecules, and hence their 

fitness functions, are relatively simple when comparing with those of graphs with ring 

structures. The first group of target molecules is evolved using the same fitness function.  

The attempt to include all descriptors in Table 17 in a single fitness function to 

evolve the second group of complex molecules causes prolongation of convergence time 

and requires heavy computational resources. The evolutionary processes could not 

converge within 3000 generations in our experiments when we attempted to do so. The 

strategy we adopted in our experiments was therefore to break down the search in stages 

with each stage deploying different reproduction operators and feature descriptors for 

fitness evaluation so that some properties of the molecule being designed can be attained 

at one stage and the resulting molecule can be passed over to the next stage to evolve into 

another molecular with another set of properties. 

For EvoGraph, the molecule obtained in one stage does not destroy the results of the 

previous stages. For more complex target molecules, they are evolved in stages with 

EvoGraph using different fitness functions at different stages. 

The first stage finds the right atomic components and topology of a molecule using 

f3 as the fitness function and RGC as operators. This first stage targets to search for the 

right atomic components and topology of the target molecule. With the right atomic 

components and topology found, the second and third stages use mutation to swap the 
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atomic components and mutate bonds within a molecule to their right places. The second 

stage deploys f4 as the fitness function and the Swap-Node mutation operator. It targets at 

the searching of the right adjacencies between atomic components. For the third stage, 

the fitness function of, f5 and the Number-of Edge mutation operator is used. This aims at 

the search of the right bond adjacencies.  The topology and the atomic components 

evolved in the first stage are therefore not affected by the mutations in the second and 

third stage.  

For the first group of drug molecules we used in our experiment, EvoGraph was 

applied to search the 4 target molecules in Appendix 5 using the fitness function f1. Ten 

experiments are conducted for each target molecule with the evolution parameters as 

described in this section. The best results for each target molecule are selected. EvoGraph 

converged in all experiments in less than 2000 generations. However, the simplest 3 of 

the 4 molecules, tylenol, adrenaline, and aspirin converge and produce the exact target 

molecules whilst an isomer is evolved for ibuprofen. The result of the first stage 

experiments is shown in Table 19. 

 
Molecule Number of 

random 
crossover 
per 
generation 

Number of 
Number-of-
Node 
mutation 
per 
generation 

Number of 
Number-of 
Edge 
mutation 
per 
generation 

Number of 
Swap-Node 
mutation 
per 
generation 

Number of 
generations of 
convergence 
to unity 

Exact 
match to 
target 
molecule 
or isomer

tylenol 10 1 5 2 270 exact 
match 

adrenaline 10 1 2 2 519 exact 
match 

aspirin 10 1 5 2 1937 exact 
match 

ibuprofen 10 1 5 2 1351 isomer 
Table 19: First group experimental result using f1 as fitness function  
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The fitness function f1 controls only the most basic features of a molecule. W, NBZ, 

CW, and V control the composition of atoms, atomic weights and valence of atoms 

within the molecule; IB and AN, control the first layer adjacencies between bonds and 

atoms in a molecule. Simple molecules are evolved based on these descriptors. For more 

complex molecules, control on second layer adjacencies and more stringent control of the 

topology is required.  

To improve the result, a more computational intensive fitness function, f2 is used in 

place of f1 to evolve ibuprofen. In f2, the more computational intensive second layer 

adjacency descriptor, AN2 replaces the single layer adjacency descriptor, AN, in f1. The 

topology descriptor, graph spectrum S, is also added to enhance the overall topology 

description. IB is added to enhance the bond description. With the use of f2 and the same 

evolution operator proportions, the exact match is achieved at the 2289th generation. The 

result is summarized in Table 20. 

 
Molecule Number of 

random 
crossover 
per 
generation 

Number of 
Number-of-
Node 
mutation 
per 
generation 

Number of 
Number-of-
Edge 
mutation 
per 
generation 

Number of 
Swap-Node 
mutation 
per 
generation 

Number of 
generations of 
convergence 
to unity 

Exact 
match to 
target 
molecule 
or isomer

ibuprofen 10 1 5 2 2289 exact 
match 

Table 20: Evolving ibuprofen using f2 as fitness function 

 

Instead of satisfying all descriptors at one go, which would require rather long 

convergence time, the second group of target molecules was allowed to evolve in 3 stages. 

The components and topology of a molecule is first evolved in stage 1 (using f3 with 

descriptors W, NBZ, CW, and S). This is then followed by adjacencies of atoms in stage 



 

 157

2 (using f4 with descriptors AN and AN2), and finally the valence of atoms and bond 

types in stage 3 (using f5 with descriptors V and ANB).  

In the first stage of the second group experiments, the evolutionary operators used is 

the same as first group experiments except Swap-Node mutation because atom 

adjacencies are not dealt with at this stage. Ten experiments are conducted for each target 

molecule with 10 crossovers and 1 node mutation in each generation. The number of 

Number-of-Edge mutations in each generation is selected between 1 and 5 to minimize 

the number of generations on convergence. The fitness function used is f3. The best 

results for each target molecule are selected. The correct topologies are evolved when 

fitness converge to unity. There is no cospectral graph being evolved. The result is 

summarized in Table 21. 

 
Molecule Number of 

random 
crossover 
per 
generation 

Number of 
Number-
of-Node 
mutation 
per 
generation

Number of 
Number-
of-Edge 
mutation 
per 
generation

Number of 
Swap-Node 
mutation 
per 
generation

Number of 
generations 
of 
convergence 
to unity 

Exact match 
to target 
topology  or 
cospectral 
graph 

nicotine 10 1 5 NA 1566 exact match 
caffeine 10 1 2 NA 1203 exact match 
dilantin 10 1 5 NA 1183 exact match 
Table 21: Second group stage 1 experiments using fitness function f3 

 

In stage 2, only Swap-Node mutation is performed on the molecules evolved in stage 1 

to achieve the right atom adjacencies. Fitness function f4 is used with the number of 

Swap-Node mutation per generation fixed at 10. The result is summarized in Table 22. 

 
Molecule Number of Swap-Node 

mutation per generation
Number of generations 
of convergence to unity 

nicotine 10 63 
caffeine 10 118 
dilantin 10 679 
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Table 22: Second group stage 2 experiments using fitness function f4 

 

In stage 3, the Number-of-Edge mutation operator is adjusted to mutate bond 

numbers between connected atomic components in a molecule without changing its 

topology. It is performed on the molecules evolved in stage 2 with the number of 

Number-of-Edge mutation operator per generation fixed at 10. The fitness function, f5 that 

targets on bond description is used with the number of Number-of-Edge mutation 

operator per generation fixed at 10. The result is summarized in Table 23. 

 
Molecule Number of Number-of-

Edge mutation per 
generation 

Number of generations 
of convergence to unity 

nicotine 10 58 
caffeine 10 525 
dilantin 10 438 
Table 23: Second group stage 3 experiments using fitness function f5 

 

In the experiments on stage 2 and 3 experiments, the number of generations to 

convergence increases with the degree of symmetry of the molecules. The least 

symmetrical is nicotine and the most symmetrical is dilantin. Symmetry of a molecule 

renders the descriptors of atom adjacencies and bond adjacencies inefficient. Though the 

problem may be overcome by incorporating symmetry descriptors in the fitness function, 

it may further increase computation resource required for the fitness function. 
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                                                                                                                              Chapter 9 

 
Peer-to-Peer Overlay Network Design 
 
 

Overlay network is a virtual network formed by end hosts atop an underlay physical 

network to implement communication services for distributed applications. The problem 

of flooding of queries and responses amongst the end hosts in the overlay network is 

raised in [72][73]. There is a substantial wastage of resource on flooding of overlay 

network as illustrated in the example in Figure 62. Two overlay network topologies with 

unit cost of links, over the same underlay network are illustrated in Figure 62. Node ‘A’ 

is the source node in the network. In Figure 62(a), the overlay network cost is 3 while in 

Figure 62(b) the cost is 4. Link BC and BD in Figure 62(b) are being traversed two times 

instead of once as in Figure 62(a). This is due to the topology mismatch between the 

overlay network and the underlay network in Figure 62(b). Similarly, the same problem 

occurs between the routing paths over the logical layer P2P overlay network as revealed 

in [75]. Hence, the choice of routing topology determines the efficiency of distribution of 

information. P2P networks that rely on broadcast and back propagation from the source 

node to the neighboring nodes, such as Gnutella [74], will be hampered tremendously by 

flooding caused by inappropriate overlay network topologies.  
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(a) topology match (b)topology mismatch 
Figure 62: Comparison of 2 different overlay networks on the same underlay network. 
 

Minimum Spanning Tree (MST) based algorithms has been used to minimize 

topology mismatches [4][22]. However, a MST may not minimize the total cost of flow 

from the source node to the destinations in the system. Without considering topology 

mismatch, the solution to minimize the cost of flow from the source to the destinations is 

to construct the Shortest Path Tree (SPT). Knowing this, some MST based algorithms 

modify the MST topology to minimize partially the cost of flow at the expense of 

topology match [21]. The solutions are somewhere in between the MST and SPT. There 

have not been any clear criteria on the degree of compromise between MST and SPT. 

Our intention is to propose the criteria and corresponding algorithm to search for 

solutions to meet them. Comparison between MST and SPT is illustrated by an example 

in Figure 63. Two different overlay network topologies over the same underlay network 

are compared against each other. Figure 63(a) shows the underlay network with cost of 

flow labeled on the edges. Figure 63(b) is the MST and Figure 63(c) is the SPT over the 
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underlay network. We define the Total Edge Cost (TEC) as the sum of cost of all edges in 

a spanning tree, the Total Path Cost (TPC) as the sum of all path costs from the source to 

the destinations, and Total Cost (TC) as the sum of TEC and TPC. The cost of flow 

between any two nodes, say A and B, is denoted by d(AB). The TEC of MST is denoted 

by TECMST.  Other denotations are derived similarly. They are TECSPT, TPCMST, TPCSPT, 

TCMST, and TCSPT. 
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 TECMST=9+33+50+11=103  

 
d(AB)=9 
d(AD)=92 
dAE)=42 
d(AF)=53 
TPCMST=196  
 
TCMST=TECMST+TPCMST=299 
 

TECSPT=9+60+33+35=137 
 
d(AB)=9 
d(AD)=69 
d(AE)=42 
d(AF)=44 
TPCSPT=164  
 
TCSPT=TECSPT+TPCSPT=301 
 

(a) underlay network (b)MST overlay network (c)SPT overlay network 
Figure 63: Comparison of costs of flow of MST and SPT over the same underlay 
network 
 

All algorithms on constructing MST aim at minimizing TECMST. There is a 

compromise on the minimization of TPC. For example, TPCMST=196 in Figure 63(b) > 

TPCSPT=164 in Figure 64(c). On the other hand, construction of SPT aims at minimizing 

TPCSPT and there is compromise on the minimization TEC. TECSPT=137 in Figure 

63(c)>TECMST=103 in Figure 63(b). We assume the minimization of both TEC and TPC 
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are equally important. Our intention is to find a spanning tree atop a given underlay 

network with TEC+TPC=TC ≤ min(TCMST,TCSPT). We name this spanning tree 

Approximate Minimum Total Cost Tree (AMTCT). In this example, 

TCAMTCT≤min(299,301)=299 should be satisfied. There may be more than one AMTCT 

for a given underlay network. For example, two AMTCTs atop the underlay network in 

Figure 63(a) are illustrated in Figure 64. The edges in AMTCTs do not necessarily come 

from the MST or TEC. For example, in Figure 64(a) edge AD comes from the underlay 

network and it does not form part of the MST or TEC in Figure 64(b) and (c). 
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TECAMTCT1=123 
 
d(AB)=9 
d(AD)=70 
d(AE)=42 
d(AF)=53 
TPCAMTCT1=174  
 
TCAMTCT1=TECAMTCT1+TPCAMTCT1=297<min(299,301)
 

TECAMTCT2=115  
 
d(AB)=9 
d(AD)=69 
d(AE)=55 
d(AF)=44 
TPCAMTCT2=177  
 
TCAMTCT2=TECAMTCT2+TPCAMTCT2=292<min(299,301)
 

(a) (b) 
Figure 64: Two AMTCTs atop the underlay network in Figure 63(a) with corresponding 
costs of flow 
 

The cost advantages of AMTCT1 and AMTCT2 over MST and SPT are summarized in 

Figure 65. In Figure 65(a), AMTCT1 is used to compare with the SPT and MST. When 

comparing with SPT, the AMTCT1 has a TEC saving of 137-123=14 and compensates 
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the loss of TPC at 164-174=-10 resulting in a net saving of 4. When comparing with 

MST, there is a cost saving of 196-174=22 for TPC which compensates the loss of cost 

value 103-123=-20 for TEC resulting in a net cost saving of 2. In Figure 65(b), similar 

comparison is made between the AMTCT2 and the SPT and MST. There is a net cost 

saving of in TC of 9 and 7 respectively. Hence, both AMTCT1 and AMTCT2 are 

acceptable solutions because there is an overall cost reduction from the original 

min(TCMST,TCSPT)=299 in Figure 63(b) and (c).  

 

 TPC TEC TC   TPC TEC TC 
SPT 164 137 301  SPT 164 137 301 
AMTCT1 174 123 297  AMTCT2 177 115 292 
net -10  14 4  net -13 22 9 
% saving   1.3%   % saving   3%  
         
 TPC TEC TC   TPC TEC TC 
MST 196 103 299  MST 196 103 299 
AMTCT1 174 123 297  AMTCT2 177 115 292 
net 22 -20 2  net  19 -12 7 
% saving   0.7%   % saving   2.3%  
(a)     (b)    
Figure 65: Cost analysis of AMTCT1 and AMTCT2 
 

The search for AMTCTs is a graph topology optimization problem which is NP hard. 

Graph based heuristic algorithms have been derived from conventional MST and SPT 

search algorithms [85] to tackle NP hard search on networks such as [81][122]. Their 

approach are based on probing of connections within a few hops from the source in the 

network base on the cost of flows of the paths traversed and cost of flow to the nodes 

available for probing in the next iteration. There is no optimization on the costs of flow 

and topology connecting the source and destinations. Some of them requires complete 

cost graph for all the nodes in the system to provide cost of flow between any two nodes 

in the system for probing. Some algorithms places emphasis on solving overlay network 
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queries and response flooding by minimization of topology mismatch between the 

overlay and underlay network but they face the problem of the heavy response traffic 

generated from the destinations back to the source which demand a shortest path between 

source and the destination. Most of these solutions [121] first find the MST that solves 

the former problem and then replace some high cost paths to the source by the shortest 

paths in the SPT to solve the latter. This results in a tree topology that lies somewhere 

between MST and SPT. Although these algorithms demonstrate the ability to reduce 

traffic congestion, the metric for optimization is not clear.  

There are deterministic algorithms to search for a tree that lies between MST and SPT 

such that the TEC and TPC lies between certain cost bound making reference to the 

TECMST and TPCSPT[123][124]. Their objective is not minimization of cost but to contain 

the cost within certain limit. Furthermore, the edges of the resulting tree should come 

from either the MST or TEC. Hence they cannot explore the use of new potential edges 

from the underlay network such as edge AD in Figure 64(a).  

Graph based Evolutionary Algorithm (EA) is another approach to NP hard search on 

networks. At present, most of graph based EAs are designed for other problem domains 

such as GP for evolution of trees for computer programming [2] and EP for evolution of 

neural networks [4]. Other graph based EAs are designed with their encoding schemes to 

solve problems in their specific domains. They are not suitable for our search as reviewed 

in the next section.  

In view of the lack of clear metric for optimization, our algorithm use TC=SPT+TPC 

as an objective of minimization which place equal weights on both minimization of cost 

of the spanning tree and costs of flow between the source and all the destinations. 
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EvoGraph is used to search for the AMTCTs atop an underlay network to minimize TC. 

EvoGraph treats networks as graphs and encodes them in cost matrices. Special evolution 

operators are designed to operate on the cost matrices to search for the optimal. It uses 

the underlay network with costs of flow between connected nodes as the backdrop to 

derive the initial population of graphs as well as subsequent crossover and mutation 

operation. Unlike other heuristic algorithms, there is no need to construct another layer of 

complete cost graph for the algorithm to operate. It can also explore the use of links in the 

underlay network that do not belong to the MST and SPT. The AMTCTs generated by 

EvoGraph do not need to attain the absolute cost minimum provided there is total cost 

savings to the MST and SPT. This eliminates the common problem of uncertainty of 

reaching the absolute minimum in heuristic search algorithms. This system can work with 

different groups of nodes in parallel throughout the Internet each having some knowledge 

on cost of flow with other nodes in its group via the packet exchange under Internet 

protocols.  

   The stability of the Internet and the efficiency of protocol transfer of routing 

information are not within the scope of this study. It is assumed the underlay network of 

the physical internet is relatively stable [125] for the source to generate to AMTCT and 

for the protocols to transmit routing information to the destination nodes. [126] measures 

the medium session duration for Gnutella and Napstar to be 60 minutes. With the 

understanding of time constraint on the maintenance of connections of nodes in a system, 

the average number of converging generations adopted for our evolutionary search 

experiments is kept below 1000. Underlay networks are generated at random starting 

from 8 nodes to 24 nodes at 2 nodes interval for EvoGraph to build the AMTCT atop. 
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The node degrees of the underlay network are generated at random between 2 and 8. This 

is adopted in the experiments to tally with the statistical samples in [127] where average 

out degrees for nodes in an Internet is 3. In our experiments, we observe the order of 

increase in number of generations to reach convergence as the size of network increases. 

This relation indicates the efficiency of EvoGraph on the time of convergence. The cost 

savings by AMTCT in comparing with the conventional MST and SPT on each of the 

underlay network are also observed. There can be more that one AMTCT generated for 

each underlay network. The number of AMTCTs generated in addition to the fittest 

AMTCT is observed with respect to the topological properties of the underlay network. 

 

9.1 Previous Studies and the Problem 

Decentralized sharing of files at different locations in the P2P network such as 

Napster, Bit Torrent, Gnutella, Chord etc. [79] has been popular in recent years. This 

aroused a lot of studies on the solving the topology mismatch problem at the logical layer 

overlay P2P network, which directly affects the search efficiency as well as the 

scalability of the network [78]. Studies on both unstructured [75][76][77] and structured 

[80] P2P networks are conducted. The construction of minimum spanning tee (MST) 

from the source node to its logical neighbors is an efficient method on solving the 

topology mismatch problem. This method is included in the algorithms proposed in 

[73][75][81]. In addition to the aim of minimization of unnecessary traffic due to 

topology mismatch, minimization of total cost of traffic from source node to the logical 

neighbors is also important. By default, the Internet usually uses the shortest path 

between nodes. Studies on improving quality of service of overlay network are carried 
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out to optimize the cost of traffic from the source node to the neighboring nodes with 

optimal bandwidth distribution [82]-[85]. In these studies, finding the shortest paths from 

the source node to the neighboring nodes is a major component in their designs. The 

construction of shortest path tree (SPT) is included in their algorithms.  

In the process of construction of MST for minimization of topology mismatch, the 

shortest path from source node to the destination nodes at the overlay network may be 

compromised. But minimization of path costs between the source and destinations are 

especially important for heavy response destinations because they generate a lot of traffic 

in response to queries from the source. To address this problem [121] adds a step to its 

algorithm of generating MST in 2 hops diameter from the source to replace the path from 

the source to a heavy response destination in the MST with the shortest path. Similarly, in 

[2],[75],[128]-[129] the algorithm first constructs MST within 2 hops from the source and 

then followed by replacing connections to nodes far away from the source by connections 

to nodes nearer to the source. In these cases, SPT served as a compensation of 

inadequacies of the MST. There is no clear objectives on the trade-offs between the two 

in the algorithms. Furthermore, these algorithms [2][75],[121],[128]-[129] involve  

probing of connections from the source to neighboring nodes to construct the MSTs. A 

complete graph on cost of flow between the source and all the neighboring nodes has to 

be constructed to supply cost of the potential paths to be probed.  

   The SPT and MST can be found by conventional deterministic greedy algorithms on 

graph such as Dijkstra’s algorithm and PRIM algorithm respectively [85]. There are 

graph based algorithms using deterministic approach on searching for tree in a graph with 

costs of flow that lie between TECMST and TPCSPT by traversing the MST with edges 
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addition and deletion based on some criteria on maximum cost of flow from the source to 

the current node being traversed [123]-[124].  The resulting tree has the maximum cost of 

flow between the source and any destination bounded by a cost which is a multiple of the 

minimum path cost in the SPT and its TEC bounded by a cost which is a multiple of the 

TECMST. These algorithms construct trees with certain cost bounds based on SPT and 

MST. They do not search for the tree topologies that minimize TC and the trade off 

between SPT and MST is not clear. Furthermore, all the edges of the resultant tree comes 

form the MST or SPT. The potential edges outside the MST and SPT cannot be explored. 

Similarly, in [122] greedy algorithm is applied on SPT search with relaxation on letting 

the paths to pass through the destinations to find a tree somewhere between SPT and 

MST with low TEC and reasonable source-destination costs. The objective of cost 

minimization is not clear.  

   Our proposal on the search of AMTCTs is a network optimization problem. 

Evolutionary approach can be applied in this respect. There are many studies on using 

evolutionary approach to optimize network topologies such as encoding the adjacency 

matrices of graphs in linear chromosomes with application of genetic algorithm (GA)[91]. 

This approach has a high probability on producing disconnected graphs because 

connectivity of the parent graphs is not encoded in the chromosome. And the retention of 

useful links is not considered in the crossover process. Hence, its efficiency is hindered 

by the subsequent repair process. Post processing of the linear children chromosome after 

crossover and mutation is also required to convert it back into a graph.  

   Graph based EAs have been developed to search for special graph topologies required 

for different problems. EP[4] is designed to evolve neural network topologies and 
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corresponding weights of the edges using mutation alone. This algorithm is designed for 

incremental changes in a network by addition and deletion of an edge with subsequent 

repair if disconnected graph is produced. It does not have the benefit of capturing useful 

information from two parent networks in crossover process. The Number-of-Edge 

mutation in EvoGraph has the same mechanism. 

   GP [2] provides an evolutionary algorithm for tree topologies in form of subtree 

exchange between parent trees. This subtree exchange algorithm cannot maintain 

consistent nodes from the parent trees to the children tree which is the requirement for 

our search. This is because crossover point and hence the nodes to be swapped between 

parent trees are dictated by the tree topologies. This is illustrated by an example below. 

Node ‘1’ is the source and nodes ‘2’ to ‘5’ are the destinations. The purpose is to produce 

children trees spanning all the nodes in the system. Each node should not appear twice in 

the children tree. The swapping of subtrees in Figure 66 will result in children trees 

having repetitive nodes. They are invalid solutions for both children. 
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Figure 66: Swapping of subtrees in GP producing invalid solutions for optimal routes 

 

Prüfer numbers encoding is also used in other studies on evolution of trees. This is an 

elegant way of encoding trees in linear chromosome because its decoding is found in a 

constructive proof of Cayley’s formula. Though Prüfer numbers encoding have been used 
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to represent trees in GA [90] and many studies use it as a heuristic problem solver [86]-

[87], it has the problem of retaining locality or useful links because the crossover 

operation, the mutation operation, and the decoding of the Prüfer numbers chromosome 

causes big changes to the tree topology [89]. For example, in mutation, a slight change in 

the Prüfer number sequence representing a tree (the phenotype) may cause a big change 

in the tree topology (the genotype). Many useful links in the parents are then destroyed 

[90]. Furthermore, Prüfer numbers correspond to unconstrained spanning trees in 

complete graphs. When the underlying graph is not complete, the offspring produced by 

evolution of Prüfer numbers encoding may be invalid or disconnected. Hence, it is not 

suitable for feedback based routing [92] like the overlay network. Because it transmits 

routing information between nodes through dynamic probing and feedback of messages 

instead of complete knowledge of routing information of all nodes in the network. [88] 

proposes a graph based EA to evolve degree constrained MST but it needs to generate 

initial parent graphs that satisfy the degree constraint prior to evolution and order is 

introduced in the crossover and mutation process to produce valid children. If it happens 

that an edge needs to be added to repair disconnected subgraphs to form a children graph 

after crossover and that edge does not exist in the underlay network, no valid overlay 

network can be produced. 

Node Biased encoding and Link and Node Biased encoding represent weights of edges 

or weights of nodes and edges of a network in a linear chromosome on which GA is 

conducted [90]. The weights in the chromosome does not necessarily equal to the weights 

of the edges and nodes in the network. But MST search algorithms such as PRIM and 

Kruskal algorithms are conducted in the network based on the set of biased weights in the 
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chromosome. The efficiency of search is hampered by the redundancies in this form of 

encoding because more than one chromosome may represent the same tree topology. 

Similar redundancy problem applies to Network Random Key encoding [141] where an 

arbitrary set of numbers are assigned to edges of a network. The set of numbers are sorted 

in ascending order in a linear chromosome. Kruskal algorithm is applied to construct 

MST on a network based on the order of magnitude of numbers assigned to the edges in 

the linear chromosome.  

   In [88][140], Edge Set encoding is used to encode edges of a network on which degree-

constrained MST is evolved. The advantage of Edge Set encoding is the ability to make 

use of the unions and intersections of edges of the parent trees followed by edge repair or 

tree regeneration on them to produce offspring in the crossover process so that a high 

degree of heritability can be maintained in the course of evolution. But high heritability 

may limit the ability of the EA to explore new search space especially when the 

population is approaching optimal where the difference between individual trees is small. 

   EvoGraph generates and evolve overlay networks based on the underlay network 

topology with costs of flow on their links. The underlay network topology does not need 

to be complete. That is, each node does not need to have complete cost information of all 

the other nodes in the system. It can explore the use of links offered by the underlay 

network that lies outside the MST and SPT. The connectivity and structural information 

of the network can be exchanged between parents and carried to the next generation after 

the crossover process. The consistency of nodes can also be maintained throughout the 

evolutionary process.  
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9.2 Application of EvoGraph on Peer-to-Peer Overlay Network Evolution 

EvoGraph start off with the generation of a population of overlay trees at random 

base on the underlay network for subsequent application of evolution operators. The 

network topologies are encoded in form of cost matrices instead of conventional 

encoding in linear chromosome and Prüfer number to avoid the need of post processing 

in decoding and the inability of retaining locality and useful links described in Section 

9.1. This is the most general and direct form of encoding and EvoGraph evolves networks 

directly. Given an initial population of cost matrices of overlay trees, EvoGraph is able to 

evolve AMTCT using a set of novel evolution operators that evolve overlay network 

atops an underlay network and a fitness function designed to minimize TC.  

Like many EAs, the EvoGraph algorithm consists of the following steps: 

1. Given an underlay network, initialize a population of overlay trees at random 

using the connections in the underlay network. 

2. Evaluate the fitness of each overlay tree. 

3. Select two overlay trees for reproduction using the roulette wheel selection 

scheme. 

4. Apply crossover and mutation operators on the selected overlay trees using 

connections in the underlay network. 

5. Replace the least-fit overlay trees in the existing population by the newly 

generated offspring using the steady state reproduction scheme. 

6. Repeat Steps 2 to 5 until the termination criteria are met. 

Unlike other probing based algorithms or graph based EAs, the underlay network does 

not need to be a complete graph for EvoGraph to operate. The crossover operator 
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facilitates the exchange of information between overlay trees and produce better children 

using the connections in the underlay tree. The mutation operator introduces variations to 

avoid the evolution from being trapped at local optima. 

   An example of encoding underlay network as an undirected graph, G, in a symmetric 

cost matrix, G, is shown in Figure 67(a). A zero element cij=0 means there is no link 

between node i and node j. A non-zero element in the matrix, cij, represents a link from 

node i to node j and cij is the cost of flow between them. A tree is considered to be a 

directed graph with |V| number of nodes and |V|-1 number of edges starting from the 

origin to the leaf nodes. We encode overlay trees in cost matrices that show cost and 

direction between pairs of nodes and also represent adjacency between them. A non-zero 

element in the matrix, cij, represents a directed link from node i to node j and cij is the 

cost of flow between them. The directed edge is a way of encoding for the application of 

EvoGraph. The flow can be two way in the network. An example of overlay tree, T, 

encoding in a cost matrix, T, is shown in Figure 67(b).  
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                                     G                                     T 
 1 2 3 4 5 

1 0 88 9 40 73

2 88 0 30 34 0 

3 9 30 0 47 0 

4 40 34 47 0 70

5 73 0 0 70 0 
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(a) Symmetric cost matrix with corresponding 

underlay network 
(b) Overlay tree atop underlay network encoded 

in cost matrix as directed graph 
Figure 67:  Encoding overlay tree over an underlay network in a cost matrix 
 

9.2.1 Generation of Tree on Overlay Network Atop an Underlay Network 

   An overlay tree spanning the source node and all the destination nodes atop the 

underlay network can be generated at random in form of cost matrix using the properties 

in Table 1. This algorithm is similar to the formalism in Section 4.1 but make use of the 

edges in the underlay network to generate the overlay tree. If an edge does not exist 

between two nodes in the underlay network, there will not be an edge between the same 

nodes in the overlay tree. This algorithm is also used in Section 9.2.2 and 9.2.3 to repair 

the degenerate trees at the intermediate stage right after the crossover of two parent trees 

or deletion of an edge during mutation of a tree. The idea is to identify the nodes without 

incoming edges and connect them to other nodes at random by having directed edges 
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pointed to them until one such node (without incoming edge) is left behind. The left 

behind node is the root of the tree. All the connections made in the overlay tree should 

use connections from the underlay network. The algorithm is illustrated as follow. 

Both the underlay network and the overlay network are using the same set of nodes 

},....,,...,,{ 21 ni vvvvV = . 

Define origin node (on) in a tree is a node without incoming edges. It has ‘0’ in all its 

column cells in the cost matrix. 

  

Let  ),( EVG be the graph of the underlay network with the set of nodes 

},.....,{ 21 nvvvV =  and set of edges },:),({ VvvvveE jiji ∈=  where e(vi,vj) is a 

directed edge from vi to vj. 

 G be the cost matrix of ),( EVG . 

  
jivvc  be the communication cost between node vi and vj in G and ),( EVG  

)','( EVT  be a tree in the underlay network that contains the source node vs  

with VV ⊂' , EE ⊂' . 

T be the cost matrix of )','( EVT . 

jivvC  be the communication cost between node vi and vj in T and )','( EVT . 

|X| notates the number of elements in set X. 

 

1. initialize T with 0=
jivvC  for all ∈

ji vvC  T; 

2. W ⎯⎯←  all ons in T; (* find all origin nodes in T to form a set W *) 

3. V’  ⎯⎯← {vs}, E’ ⎯⎯← φ ; (* assign source node vs as the first node in the tree T*) 

4. while |W|>1 (* continue the while loop until only one on is left behind *) 

5. find a set of nodes 'VB ⊂  in T that have connections to nodes outside T in the 

underlay network (i.e. connected to nodes in V \ V’);  

6.   select at random a node Bvr ∈ ; 

7. select at random some nodes '\ VVvi ∈  that connect to rv  in the underlay 
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network; 

8.  for all iv , 
irir vvvv cC ⎯⎯← , 'Vvi ∪ , '),( Evve ir ∪ ; (*tree T(V’,E’) construction 

by assigning cost 
irvvc  in G to 

irvvC  in T, include node vi in V’ and edge 

),( ir vve in E’ *) 

9.   count |W|; (* count the number of ons in T*) 

10. end 

 

An example on generation of an overlay tree from the underlay network in Figure 

67(a) is illustrated in Figure 68. Node ‘1’ is the source node vs. 
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 T T 
1. Initialize network cost matrix by 

setting cij= 0 for all nodes in T;  
2. W = V = {‘1’,’2’,’3’,’4’,’5’}; 
3. V’ = {‘1’}, φ='E  
4. while |W|=5>1 
 
 

 1 2 3 4 5 

1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 

 

1

5

43

2

Iteration 1: 
5. B = {‘1’}; 
6. '\}'5','4','3','2{' VV∈  

connected to node in B; 
7. select from B  vr=’1’, 

'\}'5','4','3','2{' VV∈  is 
connected to vr=’1’ in the 
communication network; 

8. select at random ‘2’,’3’ from 
'\ VV  

9. connect vr to nodes ‘2’,’3’ 
C12←(c12=88), C13←(c13=9),  

})''1{''3(''2'' ∪∪=V , 

))3,1(()2,1(' φ∪∪= eeE ; 
10. W={‘1’,’4’,’5’}; 
11. |W|=3>1; 

 1 2 3 4 5 

1 0 88 9 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 
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Iteration 2: 
12. B = {‘1’,’2’,’3’}; 
13. '\}'5','4{' VV∈  connected to 

the nodes in B; 
14. select at random from B  vr=’2’, 

'\},'4{' VV∈  is connected to 
vr=’2’ in the communication 
network; 

15. select ’4’ from '\ VV ; 
16. connect vr to node ’4’ C24←(c24=34),   

)'3','2','1(''4'' ∪=V  ,  

)}3,1(),2,1({)4,2(' eeeE ∪= ; 
17. W={‘1’,’5’}; 
18. |W|=2>1; 

 1 2 3 4 5 

1 0 88 9 0 0 
2 0 0 0 34 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 
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Iteration 3: 
19. B = {‘1’,’4’}; 
20. '\}'5{' VV∈  connected to the 

nodes in B; 
21. select at random from B  

vr=’4’, '\}'5{' VV∈  is 
connected to vr=’4’; 

22. select ’5’  from '\ VV ; 
23. connect vr to node ’5’  

C45←(c45=70),   
)'4','3,'2','1(''5'' ∪=V ,

)}4,2(),3,1(),2,1({)5,4(' eeeeE ∪= ; 
24. W={‘1’}; 
25. |W|=1; 
26. end 

 1 2 3 4 5 

1 0 88 9 0 0 
2 0 0 0 34 0 
3 0 0 0 0 0 
4 0 0 0 0 70

5 0 0 0 0 0 
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88

9

34

70

 

Figure 68: An overlay tree generated atop an underlay network 
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9.2.2 Crossover of Networks 

The random crossover is applied to crossover of two overlay trees. This is similar to 

the formalism in Section 4.2.2 but it uses the edges in the underlay network for re-

connection after breaking up the trees in the crossover stage. Given two overlay trees, 

TP1(VP1, EP1) and TP2(VP2, EP2) with corresponding cost matrices TP1 and TP2, the 

operation can be described as follows. For each of TP1 and TP2, a crossover point between 

two neighboring rows and columns in a cost matrix is selected randomly. One submatrix 

from each of the split parent matrix is then swapped to form two new child matrices. 

Connections within the submatrices are retained throughout the process while 

connections outside them are deleted. New edges are generated with repairing in each of 

the resulting matrices to form two children, TC1 and TC2. The formalism is illustrated 

with an example below. 

 

1. Given an underlay network, two overlay tree cost matrices TP1 and TP2 are 

constructed with corresponds to overlay tree topologies TP1(VP1,EP1) and TP2(VP2,EP2), 

with node sets { 1
1
Pv , 1

2
Pv , …, 1P

iv , 1
1

P
iv + , …, 1P

nv } and { 2
1
Pv , 2

2
Pv , …, 2P

iv , 2
1

P
iv + , …, 2P

nv } 

respectively. An example using the underlay network in Figure 67(a) is shown in 

Figure 69. In the example number of nodes of both trees is n=5 and node indices of 

both trees are 1P
iv = 2P

iv =’i’. 

2. A crossover point in each of TP1 and TP2 is randomly selected. 
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    TP1         TP2 
 1 2 3 4 5 

1 0 88 9 0 0 
2 0 0 0 34 0 
3 0 0 0 0 0 

4 0 0 0 0 70 
5 0 0 0 0 0 

 
 

 1 2 3 4 5 

1 0 88 0 40 73 
2 0 0 0 0 0 
3 0 0 0 0 0 

4 0 0 47 0 0 
5 0 0 0 0 0 

 
 

    TP1         TP2 

1

5

43

2

88

9

34

70

cu
t l

in
e

 

1

5

43

2 40

88

47

73

cu
t l
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e

 
(a)  (b)  
Figure 69: Parent trees TP1and TP2 
 

 

3. Assume that the crossover point for TP1 is between 1P
iv and 1

1
P
iv + and for TP2 is between 

2P
iv and 2

1
P
iv + , the lower right portions of these two cost matrices are then swapped so 

that the rows and columns corresponding to { 1
1

P
iv + ,…, 1P

nv } are swapped with the rows 

and columns corresponding to { 2
1

P
iv + ,…, 2P

nv }  to form two matrices TPC12 and TPC21. 

The valid node labels for TPC12 are therefore given by { 1
1
Pv , 1

2
Pv ,.., 1P

iv , 2
1

P
iv + ,.., 2P

nv }and 

for TPC21 by { 2
1
Pv , 2

2
Pv ,.., 2P

iv , 1
1

P
iv + ,.., 1P

nv }. In the example, i=3. 

4. All cell entries in each of TPC12 and TPC21 are scanned to remove invalid edges. 

Degenerate trees TPC12 and TPC21 are formed. 
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    TPC12         TPC21 
 1 2 3 4 5 

1 0 88 9 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 

4 0 0 0 0 0 
5 0 0 0 0 0 

 
 

 1 2 3 4 5 

1 0 88 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 

4 0 0 0 0 70 
5 0 0 0 0 0 

 
 

    TPC12         TPC21 

1
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2
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9
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t l
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e
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(a) (b) 
Figure 70: Swap nodes ‘4’, ‘5’ between TP1 and TP2 on the right hand side of the cut line 
and delete invalid edges. 
 

5. Regenerate a spanning tree from each of the degenerate trees using similar algorithm 

on spanning tree generation at random as follow. 

1. find T (the tree containing the source node vs) in the degenerate tree. 

2. repeat the ‘while loop’ from step 4 to step 10 in the algorithm on generating 

spanning tree at random in Section 9.2.1 with the following modifications (i) step 

7 modified to select at random ‘one’ node '\ VVvi ∈  instead of ‘some’ nodes to 

connect to vr and (ii) step 8 modified to also include into T the subtree from the 

other parent induced by the new connection e(vr ,vi), if any, then followed by re-

alignment of edge directions in T. Note that the induced subtree from the other 

parent should not contain the source node according to our way of selection nodes 

to be swapped in the crossover process. 
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An example using the degenerate tree TPC21 in Figure 70(b) to generate children TC2 

is illustrated in Figure 71. Similarly, the other children TC1 is generated from TPC12 

by the same algorithm. The crossover process is then completed. It can be observed in 

the example that e(2,3) is not included in the parents TP1 and TP2 but in the underlay 

network G. Hence the crossover may use edges outside the parents. In other words, 

the crossover of MST and SPT of an underlay network may produce children 

containing edges outside them. 
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 TPC21 TPC21 
1. find T(V’,E’) in TPC21. 

V’={‘1’,’2’}, E’={e(1,2)}; 
2. W={‘1’,’3’,’4’}; 
3. while |W|=3>1 
 
 

 1 2 3 4 5 

1 0 88 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 70

5 0 0 0 0 0 
 

1

5

43

2

88

70

iteration 1 
4. B = {’1’,’2’}; 
5. '\}'5','4','3{' VV∈  

connected to the nodes in B, ; 
6. select at random from B  

vr=’1’, '\}'5','4','3{' VV∈  
is connected to vr=’1’ in the 
underlay  network; 

7. select at random ’5’ from 
'\ VV ; 

8. connect vr to node ’5’ 
C15←(c15=73), 

})'2','1{''5(''4'' ∪∪=V ,  

))2,1()5,1(()5,4(' eeeE ∪∪= ; 
it can be detected that column ‘5’ in 
TPC12 has more than one non-zero cell. 
This violates the tree property in Table 
1.  
 

 1 2 3 4 5 

1 0 88 0 0 73

2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 70

5 0 0 0 0 0 
 

1

5

43

2

88

70

73

 

9. re-align direction of edges in T 
from the source node toward the 
leave nodes by reversing direction 
of e(4,5) to e(5,4). 
V’={‘1’,’2’,’4’,’5’}),  
E’={e(1,5),e(1,2),e(5,4)}; 

10. W={‘1’,’3’}; 
11. |W|=2>1 
 

 1 2 3 4 5 

1 0 88 0 0 73

2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 70 0 

 

1

5

43

2

88

70

73

 
Iteration 2: 
12.     B = {‘1’,’2’,’4’}; 
13. '\}'3{' VV∈  connected to 

nodes in B;; 
14. select at random vr=’2’, 

'\}'3{' VV∈  is connected to 
vr=’2’ in the underlay  network; 

15.    select ’3’  from '\ VV ; 
16. connect vr to node ’3’  

C23←(c23=30),    
}'5','4','2','1{''3'' ∪=V ,  

)}4,5(),5,1(),2,1({)3,2(' eeeeE ∪= ; 
17.   W={‘1’}; 
18.  |W|=1; 
19.   end 

 1 2 3 4 5 

1 0 88 0 0 73

2 0 0 30 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 70 0 

TC2 
 

1

5

43

2

88

70

73

30

 
TC2 

 

Figure 71: Generation of children spanning tree TC 1 from degenerate tree TPC21 after 
exchange of subtrees in crossover 
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9.2.3 Mutation of Networks 

Mutation can be very useful when a population is to avoid being trapped in a 

suboptimal state. Because of the large search space in network evolution, mutation plays 

an especially important role in network evolution. To mutate networks to avoid getting 

trapped at local minima. The Number-of-Edge mutation operator allows us to increase or 

decrease the number of edges in a network by one. The formalism is similar to Section 

4.3.1 but it uses the edges in the underlay network to for addition or deletion of an edge at 

random. The details are given below.  

 

1. For an overlay tree TP(VP, EP) with edge set, EP, we construct its corresponding cost 

matrix as TP.  

2. Select a ‘non-zero＇cell in TP. Convert the selected cell to ‘0’ to form an intermediate 

network TPC and its corresponding cost matrix TPC. Use the overlay tree construction 

algorithm step 2 to 15 in Section 9.2.1 to form a new connection to generate a child 

overlay tree cost matrix TC.  
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An example of the Number-of Edge mutation is given in Figure 72 below. 

TP          TPC 
 1 2 3 4 5 

1 0 88 9 40 73 
2 0 0 0 0 0 
3 0 0 0 0 0 

4 0 0 0 0 0 
5 0 0 0 0 0 

 
 

 1 2 3 4 5 

1 0 88 9 0 73 
2 0 0 0 0 0 
3 0 0 0 0 0 

4 0 0 0 0 0 
5 0 0 0 0 0 

 
 

TP          TPC 

1

5

43

2

88

9 40

73

 

1

5

43

2

88

9

73

 
(a) (b) Delete at random c13 in TP 

TC            TC 
 1 2 3 4 5 

1 0 88 9 0 73 
2 0 0 0 0 0 
3 0 0 0 47 0 

4 0 0 0 0 0 
5 0 0 0 0 0 

 
 

1

5

43

2

88

9

73

47

 
 

(c) Add c78 according to overlay tree generation algorithm in Section 9.2.1.  
Figure 72: Network mutation demonstrated 
 

9.2.4 Fitness Function 

The purpose of the fitness function is to minimize TC, which equals TPC+TEC. TC is 

proportional to the number of nodes in the overlay tree, |V|, and the costs of links between 

the nodes, cij, which is generated at random not large than 100 in the underlay network 
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prior to the experiments. The fitness function to be maximized in the evolutionary 

process is devised as follow.  

STCTPC
V

TC
Vfitness

+
×

=
×

=
||100||100   

The numerator is a constant with respect to the number of nodes in the underlay network. 

The number 100 is a constant to adjust the value of the numerator in the order of the 

denominator. The denominator TC = TPC + TEC is the value to be minimized.  

 

9.3 Experiments 

The experiments starts at an 8 nodes underlay network generated at random. The 

following underlay networks have 2 nodes added at each interval. The step up continues 

to 24 nodes. The graphs of these underlay networks and their cost matrices are shown in 

Appendix 6. The source node is the upper left most node ‘1’ in the cost matrix.  The SPT 

and MST are constructed by Dijkstra’s algorithm and PRIM algorithm respectively for 

each of the underlay network. Their TCSPT and TCMST are calculated for the termination 

criteria of evolution. The degree of nodes in the random underlay network has an average 

between 3.4 and 6.6667 shown in Table 24. The degree density is obtained by dividing 

the total degree of all nodes in a network by the number of nodes. For each of the 

underlay network generated, the cost of flow cij between a pair of nodes indiced ‘i’, ‘j’ is 

an integer generated randomly at a limit of 100.  
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|V| Min degree Max degree Degree density 
8 4 6 5.25 

10 4 6 5.6 
12 4 6 5.6667 
14 4 6 5.4286 
16 5 6 5.75 
18 4 6 5.6667 
20 2 8 5.5 
22 2 8 4.4545 
24 2 8 6 

Average 3.4 6.6667 5.48 
Table 24: Degree of randomly generated underlay network 

 

9.3.1 Initialization and Evolution Parameters 

Fifty overlay tree cost matrices are generated at random for each underlay network as 

the initial population. For EvoGraph, the relative proportion of mutation to crossover is 

higher in comparing with conventional GA to increase the role of random search. Two 

overlay trees are then selected for crossover. As there is a background underlay network 

which is not a complete graph, the search space is smaller and less number of mutations 

is used to explore the search space. The numbers of random crossover applied and 

Number-of-Edge mutation applied are fixed at 10 and 1 respectively. Steady State 

Reproduction and roulette wheel selection is adopted as stated in Section 9.2. There can 

be more than one AMTCT satisfying the TC<min(TCSPT,TCMST) condition. Though we 

do not need to obtain the absolute minimum TC, the search is extended for another 100 

generations to seek further improvement after the first AMTCT is found. The termination 

criteria are 

1. AMTCT is found. That is, TC<min(TCSPT,TCMST), and  

2. there is no improvement in fitness for 100 generations after the first AMTCT is found. 
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9.3.2 Experimental Results 

Ten experiments are carried out for each of the underlay network. The average 

number of generations of convergence is obtained for each underlay network to find out 

the trend of convergence in relation to the number of nodes. The results with mean, 

spread, standard deviation, and the spread-standard deviation ratio on number of 

generations to reach convergence are summarized in Table 25. It can be observed that the 

spread-standard deviation ratio on the converging generation is in the 0.3 to 0.4 range. 

The relation between the number of nodes and the converging generation is linear with 

least square regression at 0.9769 in as shown in Figure 73.  

 

Exp |V|=8 |V|=10 |V|=12 |V|=14 |V|=16 |V|=18 |V|=20 |V|=22 |V|=24

1 2 297 322 615 393 569 838 424 882 

2 64 174 335 458 393 683 575 1163 1212 

3 67 227 338 611 512 270 766 1184 577 

4 47 270 279 408 658 532 393 673 985 

5 43 143 345 282 613 703 735 1097 1163 

6 192 221 262 288 363 515 725 495 644 

7 8 287 424 403 521 835 858 986 1058 

8 65 150 307 610 359 585 505 835 617 

9 10 307 342 552 422 933 727 458 334 

10 167 177 116 349 671 422 804 933 587 

mean 66.5 225.3 307 457.6 490.5 604.7 692.6 821.2 805.9 

s.d. 64.61 62.41 80.01 132.19 122.15 193.51 152.43 297.09 294.16

spread 190 164 308 333 312 663 465 760 878 

s.d./spread 0.34 0.38 0.26 0.40 0.39 0.29 0.33 0.39 0.34 

Table 25: Converging generation for experiments on different number of nodes 
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Figure 73: Linear relation between number of nodes and converging generations on 
search of AMTCTs by EvoGraph 
 

The AMTCT with the lowest TC for the 10 experiments for each of the underlay 

network with |V| number of nodes are shown in Appendix 6. The edges of the AMTCTs 

with the lowest TCs are highlighted by bold numbers and underlined in respective cost 

matrices. We use the 5th experiment on underlay network with |V|=8 as an example. The 

underlay network is shown in Figure 74(a), the SPT of the underlay network is shown in 

Figure 744(b) with the tree edges highlighted in bold numbers and underline in the cost 

matrix, its MST is shown in Figure 74(c), and its AMTCT searched by EvoGraph is 

shown in Figure 74(d). The graph of fitness vs the number of generations of evolution is 

shown in Figure 74(e). EvoGraph converges at the 43rd generation. The corresponding 

cost savings on TC comparing with MST and SPT is illustrated on Figure 74(f). 
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 1 2 3 4 5 6 7 8 

1 0 88 9 40 73 0 65 81

2 88 0 0 34 0 0 99 84

3 9 0 0 47 81 33 34 60

4 40 34 47 0 70 31 0 0 

5 73 0 81 70 0 56 94 50

6 0 0 33 31 56 0 11 0 

7 65 99 34 0 94 11 0 91

8 81 84 60 0 50 0 91 0 
 

1

5

8

7

6

4

3

2
88

9

40
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65

81

34

99

8447

81
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11
91

 
(a) Cost matrix and underlay network of |V|=8.  

 1 2 3 4 5 6 7 8 

1 0 88 9 40 73 0 65 81

2 88 0 0 34 0 0 99 84

3 9 0 0 47 81 33 34 60

4 40 34 47 0 70 31 0 0 

5 73 0 81 70 0 56 94 50

6 0 0 33 31 56 0 11 0 

7 65 99 34 0 94 11 ∞ 91

8 81 84 60 0 50 0 91 0 
 

1

5

8

7

6

4
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2

9

40

73

33

34

60

34

 
TPCSPT=9+40+73+42+43+69+74=350 
TECSPT=9+40+73+33+34+60+34=283 

(b) Cost matrix and corresponding SPT over the underlay network in Figure 74(a). 
 1 2 3 4 5 6 7 8 

1 0 88 9 40 73 0 65 81
2 88 0 0 34 0 0 99 84
3 9 0 0 47 81 33 34 60
4 40 34 47 0 70 31 0 0 
5 73 0 81 70 0 56 94 50
6 0 0 33 31 56 0 11 0 
7 65 99 34 0 94 11 0 91
8 81 84 60 0 50 0 91 0  

1

5

8

7

6

4

3

2

9

31

56

50

11

34

33

 
TPCMST=9+107+73+98+42+53+148=530 
TECMST=9+33+31+56+34+50+11=224 

(b) Cost matrix and corresponding MST over the underlay network in Figure 74(a). 
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 1 2 3 4 5 6 7 8 

1 0 88 9 40 73 0 65 81

2 88 0 0 34 0 0 99 84

3 9 0 0 47 81 33 34 60

4 40 34 47 0 70 31 0 0 

5 73 0 81 70 0 56 94 50

6 0 0 33 31 56 0 11 0 

7 65 99 34 0 94 11 0 91

8 81 84 60 0 50 0 91 0 
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60

11

9

 
TPCAMTCT=74+9+40+73+42+53+69=360 
TECAMTCT=9+33+34+73+40+60+11=260 

(d) Cost matrix and corresponding AMTCT of underlay network in Figure 74(a). AMTCT highlighted in 
bold and underlined numbers in cost matrix. 

0 20 40 60 80 100 120 140 160 180 200

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

Generation

M
ax

im
um

 F
itn

es
s

 TPC TEC TC 
SPT 350 283 633 
AMTCT 360 260 620 
net -10 23 13 
% saving   2% 
    
 TPC TEC TC 
MST 530 224 754 
AMTCT 360 260 620 
net 170 -36 134 
% saving   18%  

(e) Fitness vs number of generations (f) TC saving comparison 
Figure 74: AMTCT searched by EvoGraph atop underlay network in Figure 74(a) and 
cost comparison with corresponding SPT, MST. 
 

The net TC savings of the fittest AMTCTs for the nine underlay networks (|V|=8 to 

|V|=24 at 2 nodes interval) are listed in Appendix 6. The percentage of TC savings for 

each underlay network with respect to TCSPT and TCMST are summarized in Table 26. The 

amount of cost saving depend on the underlay network topology and the cost of flows in 

the network. This varies from case to case. Generally total cost savings on MST is higher 

than SPT. 
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|V| % TC saving on TCSPT % TC saving on TCMST 

8 2 18 
10 3 13 

12 5 3 
14 3 8 
16 2 6 

18 4 8 
20 10 21 
22 1 3 

24 1 17 
average 4 11 

Table 26: Percentage cost saving results of AMTCTs on TCSPT and TCMST on each 
underlay network 
 

The fitnesses of all experiments are shown in Table 27. There is at least one AMTCT 

discovered for each underlay network. It can be observed that as the number of nodes in 

the system increases, the number of AMTCTs discovered increases. The fitnesses of the 

additional AMTCTs are highlighted in italics in Table 27. Their fitnesses are below the 

fittest AMTCT but they are acceptable because they satisfy the condition 

TC<min(TCSPT,TCMST). There is a weak positive correlation (correlation coefficient 

=0.51) between the degree density of the underlay network and the number of additional 

AMTCTs. The trend is shown in Figure 75. This may due to the fact that more choices 

are offered by the high degree density underlay networks for path selection. 
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Exp |V|=8 |V|=10 |V|=12 |V|=14 |V|=16 |V|=18 |V|=20 |V|=22 |V|=24
1 1.2903 1.3333 1.4742 1.7677 1.4222 1.7408 1.0582 1.2702 1.4371
2 1.2903 1.3333 1.4742 1.7677 1.4222 1.7408 1.0582 1.2702 1.4371
3 1.2903 1.3333 1.4724 1.7677 1.3998 1.7630 1.0417 1.2702 1.4286
4 1.2903 1.3333 1.4742 1.7677 1.4222 1.7341 1.0582 1.2702 1.4286
5 1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0582 1.2702 1.4371
6 1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0444 1.2702 1.4286
7 1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0582 1.2702 1.4286
8 1.2903 1.3333 1.4742 1.7588 1.4222 1.7176 1.0582 1.2702 1.4371
9 1.2903 1.3333 1.4724 1.7677 1.4222 1.7391 1.0582 1.2702 1.4286
10 1.2903 1.3333 1.4724 1.7677 1.4222 1.7630 1.0493 1.2702 1.4371
Highest 
AMTCT 
fitness 

1.2903 1.3333 1.4742 1.7677 1.4222 1.7630 1.0582 1.2702 1.4371

No. of 
AMTCTs 
with 
fitness 
below the 
fittest 
AMTCT 

0 0 0 1 1 5 3 0 5 

Degree 
density 5.25 5.6 5.6667 5.4286 5.75 5.6667 5.5 4.4545 6 

Table 27: Fitness of AMTCTs generated in relation to degree density. The fitness of 
AMTCTs below the maximum fitness is underlined 
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Correlation coefficient = 0.51. 
Figure 75: Relation between degree density and number of additional AMTCTs.  
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                                                                                                                            Chapter 10 

 
Research Conclusion and Future Directions  
 
 

10.1 Research Conclusion and Contribution 

The objective of this thesis is to create a general evolutionary algorithm for graphs 

stated in Section 1.2. As discussed in Chapter 2, the current researches on graph 

evolution mainly focus on ANN evolution, tree evolution, and a few application specific 

networks. These evolutionary algorithms are designed to evolve specific graph topologies 

and they cannot be easily adapted to evolve graphs without specific topologies. In this 

thesis, EvoGraph is developed to evolve graphs without specific topologies by encoding 

them in adjacency matrices. Evolution operators on crossovers and mutations are 

designed to work on these encoded adjacency matrices. EvoGraph contributes to both the 

theory and application of graph evolution.  

On the theoretical aspect, it overcomes the limitation on encoding graphs in 

conventional linear chromosomes which requires the length of chromosomes to be in 

square numbers or some other form of indirect encoding in order to present the 

connection status between all nodes. This length limitation imposes unnecessary 

constraints on crossovers and mutations. EvoGraph is applied to encode the most 

common types of graph topologies including tree and ANN. New crossover operators 

comparable to existing GP and ANN evolution are developed. The step by step 

comparison between EvoGraph operation and standard GP as well as conventional ANN 

evolution operation in Chapter 4 is to demonstrate that one operation of EvoGraph 

random crossover may produce the same effect as several conventional evolution 
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operations in standard GP and ANN. This random breakdown and recombination of 

topologies in random crossover may also be a potential cure to the problem of bloat in 

standard GP. Experiments in Chapter 4 provide some initial evidence on EvoGraph as a 

more efficient evolutionary algorithm when compared with standard evolution operators 

in EP and GP on evolution of graphs without specific topologies and tree.  

On the application aspect, EvoGraph successfully implement designs that are 

conventionally considered as esoteric processes monopolized by artist or architects. This 

thesis applies evolutionary algorithms to art creation through the experiments designed 

for EvoGraph. In Chapter 5, it is demonstrated that EvoGraph could be an invaluable tool 

in that it can help architects convert the descriptive requirements of the client to several 

possible architectural space topologies that satisfy the client’s needs. This saves the 

architect from doing spatial configuration manually by the conventional approach 

through trial-and-error.  In Chapter 6, the hybrid evolutionary algorithm with EvoGraph 

and GA solves the puzzle that has been bordering architects and graphics designers for 

ages. That is, how to create a regular geometry with given number of nodes and edges of 

a base frame module? We can now evolve regular space frame modules or regular three-

dimensional geometric figures with small number of generations for convergence. The 

same algorithm can be adopted for two-dimensional graphics design. Experiments in 

Chapter 7 use EvoGraph for visual art creation and successfully create Mondrian 

paintings according to the artist’s original aesthetic intention. In Chapter 8, hydrogen 

depleted graphs of molecules are encoded in EvoGraph to evolve drugs by using the basic 

chemical properties such as atomic weight and valance of an atom in a molecule. In 

Chapter 9, EvoGraph is adapted to evolve peer-to-peer overlay network atop an underlay 
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network. It solves the problem in the existing graph algorithms on not having a clear 

criterion of trade off between MST and SPT on network optimization. EvoGraph does not 

need to work on a complete cost graph of the underlay network and it also create an 

opportunity of using appropriate links in the underlay network outside the MST and SPT. 

 

10.2 Limitations of the Research 

This thesis has developed the fundamental principles of graph evolution. Like most of 

other evolutionary algorithms [1][3], it starts off on a limited scale for the clarity of 

illustration of concepts. EvoGraph faces the same problems encountered by other 

heuristic search methods such as there is no guarantee of convergence at the universal 

optimum, difficulty in selecting value of parameters for operators and consistencies of 

results. However, there are other limitations due to the properties of graphs.  

Whilst graph has been notorious on the number of topological combinations it can 

generate with relatively small number of nodes. For example, given 10 nodes, there are 

more than ten million graph topologies. The number of graph topologies increase 

exponentially with the number of nodes. This figure is yet to include the different 

combinations bring about by permutation of nodes. Fortunately, with the other constraints 

imposed in the search experiments, EvoGraph is able to approach convergence at 

manageable number of generations. To further improve the efficiency, experiments on 

different combinations on evolution paramenters can be conducted. 

 

10.3 Future Directions of Research 

This thesis has developed the general algorithm for graph evolution as an entry portal 

that leads to a vast landscape of researches ahead. According to the limitations outlined in 
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Section 10.2, the problem of scalability of EvoGraph is required to be explored to solve 

problems involving graphs with large number of nodes such as the Internet. Recent 

development in data compression of Internet graphs is heading toward this direction. For 

example, there is proposal on the formation of graph supernode by merging a number of 

nodes in the Internet graph [57] in order to reduce storage space and computational 

resource.  

The elimination of isomorphic graph redundancy is another field to be explored to 

improve the efficiency of EvoGraph. This problem may cause unnecessary increase in 

size of search space such as node permutation redundancy in ANN [35]. The success on 

identifying isomorphic graphs depends on researches on isomorphic graph matching 

[56][58], which has been a challenging subject of research in the last three decades.. A 

simple algorithm on matching isomorphic graphs is yet to be devised. Recent researches 

reveal more and more determined by spectrum graphs, or DS-graphs [94]. This is 

encouraging because graph evolution can be greatly improved if redundant isomorphic 

graphs can be eliminated in the process of evolution by making use of the knowledge of 

DS-graphs. 

On the application side, EvoGraph is designed to solve problems involving graph 

topologies. EvoGraph is applied to architectural design, art creation, molecular design 

and communication network in this thesis. In a wider perspective, EvoGraph can be 

applied to problems that can be presented in graph such as critical paths, logistic 

networks, etc..  
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Appendix 1 

 
Fitness Graphs on Best Performed Experiments on EvoGraph 
Operators and Conventional Evolution Operators 
 
 
BEST PERFORMED EXPERIMENTS USING 
CONVENTIONAL EVOLUTION OPERATORS 

BEST PERFORMED EXPERIMENTS USING  EVOGRAPH 
OPERATORS 
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Target lattice graph evolution using conventional 
edge/node mutations 
(Max. fitness, generation) = ( 0.9482, 851) 

Target lattice graph using EvoGraph random 
crossover, number-of node,  number-of-edge 
mutations 
(Max. fitness, generation) =  (1, 184) 
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Target ANN bipartite graph using conventional 
edge/node mutations 
(Max. fitness, generation) = (1, 166) 

Target ANN bipartite graph using EvoGraph 
random crossover, number-of node,  number-of-
edge mutations 
(Max. fitness, generation) = (1, 115) 
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Target starlike tree evolution using standard GP 
crossover 
(Max. fitness, generation) = (0.9602, 163) 

Target starlike tree using EvoGraph  random 
crossover 
(Max. fitness, generation) = (1, 63) 
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Appendix 2 

 
Experimental Results on Architectural Space Topology 
Evolution 
 
 

 

ADJACENCY MATRICES REPRESENTING OPTIMAL ARCHITECTURAL SPACE TOPOLOGIES 
GENERATED BY EXPERIMENTS 
 

  10 1 3 5 4 6 7 2 9 8

10 - 3 3 2 3 1 3 3 0 3

1  - 1 0 0 0 0 2 3 0

3   - 0 0 3 0 0 3 0

5    - 1 0 0 0 3 1

4     - 2 0 0 0 3

6      - 0 0 3 0

7       - 0 3 0

2        - 3 3

9         - 0

8          - 
Experiment 1 (Budget 30 to 34) 

 
 

  9a 2 1 6 10 5 3 7 8 9b 4

9a - 3 3 3 0 0 3 3 0 3 0

2  - 0 0 0 0 2 0 3 3 0

1   - 0 3 0 0 0 0 3 0

6    - 1 2 3 0 0 0 0

10     - 2 0 3 3 0 3

5      - 0 0 1 3 0

3       - 0 1 0 0

7        - 0 3 1

8         - 0 3

9b          - 3

4           -
Experiment 2 (Budget 35 to 39) 
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  8 2a 2b 7 5 4 6 3 1 9a 10 9b

8 - 3 3 0 1 3 0 1 0 0 3 0

2a  - 0 0 0 0 0 0 2 0 3 3

2b   - 0 0 0 0 2 0 0 3 3

7    - 0 1 0 0 0 3 3 3

5     - 0 2 0 0 0 2 3

4      - 2 0 0 3 0 0

6       - 0 0 3 1 0

3        - 0 3 3 0

1         - 3 3 3

9a          - 0 3

10           - 0

9b            -
Experiment 3 (Budget 40 to 44) 

 
 
 
 

  9 3a 4a 7 2a 3b 2b 5 6 4b 8 1 10

9 - 3 3 0 3 3 0 3 3 0 0 0 0

3a  - 0 0 0 0 0 0 0 0 1 1 3

4a   - 1 0 0 0 0 0 0 3 0 3

7    - 0 0 0 0 0 0 0 0 3

2a     - 0 0 0 0 0 3 2 3

3b      - 2 0 3 0 1 0 0

2b       - 0 0 0 3 2 3

5        - 0 1 1 0 2

6         - 2 0 0 1

4b          - 3 0 3

8           - 0 3

1            - 3

10             -
Experiment 4 (Budget 45 to 49) 
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  9a 9b 6 3 9c 4 2 9d 7 9e 5 9f 8 1 10

9a - 3 3 3 3 0 0 0 3 0 0 0 0 3 0

9b  - 3 3 0 3 3 0 0 0 0 3 0 0 0

6   - 3 0 0 0 3 0 0 0 0 0 0 0

3    - 0 0 0 0 0 3 0 0 0 0 0

9c     - 3 0 3 3 0 3 3 0 0 0

4      - 0 0 0 3 0 0 0 0 3

2       - 3 0 3 0 0 3 0 0

9d        - 3 0 3 0 0 3 0

7         - 3 0 3 0 0 3

9e          - 3 3 0 0 0

5           - 3 0 0 0

9f            - 0 3 0

8             - 0 3

1              - 3

10               -
Experiment 5 (Budget 50 to 54) 

 
 
 

 10 2 9a 3a 3b 6 4a 9b 1 9c 9d 8 4b 5 9e 7

10 - 3 0 3 3 1 3 0 3 0 0 3 3 2 0 3

2  - 0 0 2 0 0 0 0 0 3 0 0 0 3 0

9a   - 0 0 3 0 0 3 3 0 0 0 3 3 3

3a    - 0 3 0 0 0 0 3 1 0 0 0 0

3b     - 0 0 0 0 3 0 0 0 0 3 0

6      - 0 0 0 0 3 0 0 0 0 0

4a       - 0 0 0 3 3 0 0 0 1

9b        - 3 3 3 0 3 3 0 3

1         - 0 0 0 0 0 3 0

9c          - 0 0 0 3 0 3

9d           - 0 0 0 0 3

8            - 0 0 0 0

4b             - 0 3 1

5              - 0 0

9e               - 3

7                -
Experiment 6 (Budget 55 to 59) 
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FITNESS GRAPHS ON ARCHITECTURAL TOPOLOGY EVOLUTION 
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Appendix 3 

 
Repetitive Space Frame Modules  

 
 

 

 

 

Module C with 14 edges 
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Module D with 15 edges 
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Module F with 17 edges 
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Module G with 18 edges 
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Module H with 19 edges 
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Module I with 20 edges 
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Appendix 4 

 
Mondrian Paintings Evolved by Tree Evolution 

 
 

 
Experiment 1 with Mix 5 

 
Experiment 2 with Mix 6 

 
Experiment 3 with Mix 8  

Experiment 4 with Mix 5 

 
Experiment 5 with Mix 5 
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Appendix 5 

Target Hydrogen Depleted Molecules and Corresponding 

Molecular Graphs 
 

BzN OC C

O

 
 

 

 

1. tylenol 

 
 12 12 16 16 14 72 

12 0 1 0 0 0 0 

12 1 0 0 2 1 0 

16 0 0 0 0 0 0 

16 0 2 0 0 0 1 

14 0 1 0 0 0 1 

72 0 0 0 1 1 0 

 

 

 

 

 

 

Bz NO CC

O

O

C

 
 

 

2. adrenaline  

 12 12 12 16 16 16 14 72

12 0 1 0 0 0 1 0 1 

12 1 0 0 0 0 0 1 0 

12 0 0 0 0 0 0 1 0 

16 0 0 0 0 0 0 0 1 

16 0 0 0 0 0 0 0 1 

16 1 0 0 0 0 0 0 0 

14 0 1 1 0 0 0 0 0 

72 1 0 0 1 1 0 0 0 
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BzC

O

O

O C

O

C

 
 

 

3. aspirin 

  
  12 12 12 16 16 16 16 72 

12 0 0 0 2 1 0 0 1 

12 0 0 1 0 0 1 2 0 

12 0 1 0 0 0 0 0 0 

16 2 0 0 0 0 0 0 0 

16 1 0 0 0 0 0 0 0 

16 0 1 0 0 0 0 0 1 

16 0 2 0 0 0 0 0 0 

72 1 0 0 0 0 1 0 0 

 

 

 

 

BzC C

C

C

C
O

C O

C

 
 

 

 

4. ibuprofen  

 12 12 12 12 12 12 12 16 16 72

12 0 1 0 0 0 0 0 0 0 0 

12 1 0 1 1 0 0 0 0 0 0 

12 0 1 0 0 0 0 0 0 0 0 

12 0 1 0 0 0 0 0 0 0 1 

12 0 0 0 0 0 1 1 0 0 1 

12 0 0 0 0 1 0 0 0 0 0 

12 0 0 0 0 1 0 0 2 1 0 

16 0 0 0 0 0 0 2 0 0 0 

16 0 0 0 0 0 0 1 0 0 0 

72 0 0 0 1 1 0 0 0 0 0 
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N
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5. nicotine 

 

 

 

 

 12 12 12 12 12 12 12 12 12 12 14 14

12 0 0 0 0 0 0 0 0 0 0 1 0 

12 0 0 1 0 0 0 0 0 0 0 1 0 

12 0 1 0 1 0 0 0 0 0 0 0 0 

12 0 0 1 0 1 0 0 0 0 0 1 0 

12 0 0 0 1 0 1 0 0 0 0 0 0 

12 0 0 0 0 1 0 1 0 0 2 0 0 

12 0 0 0 0 0 1 0 2 0 0 0 0 

12 0 0 0 0 0 0 2 0 1 0 0 0 

12 0 0 0 0 0 0 0 1 0 0 0 2 

12 0 0 0 0 0 2 0 0 0 0 0 1 

14 1 1 0 1 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 2 1 0 0 
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N

C C

CN

C

O

C O

C

N

N

C

C

 
 

 
 12 12 12 12 12 12 12 12 16 16 14 14 14 14

12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

12 0 0 0 0 0 0 0 0 2 0 1 1 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

12 0 0 0 0 1 0 0 0 0 2 0 1 0 0 

12 0 0 0 1 0 2 0 0 0 0 0 0 1 0 

12 0 0 0 0 2 0 0 0 0 0 1 0 0 1 

12 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

16 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

14 1 1 0 0 0 1 0 0 0 0 0 0 0 0 

14 0 1 1 1 0 0 0 1 0 0 0 0 0 0 

14 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

14 0 0 0 0 0 1 2 0 0 0 0 0 0 0 

 

6. caffeine 
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BzBz

 
 

 

 

7. dilantin 

 

 12 12 12 16 16 14 14 72 72

12 0 0 0 2 0 1 1 0 0 

12 0 0 1 0 0 1 0 1 1 

12 0 1 0 0 2 0 1 0 0 

16 2 0 0 0 0 0 0 0 0 

16 0 0 2 0 0 0 0 0 0 

14 1 1 0 0 0 0 0 0 0 

14 1 0 1 0 0 0 0 0 0 

72 0 1 0 0 0 0 0 0 0 

72 0 1 0 0 0 0 0 0 0 
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Appendix 6 

Underlay Networks Cost Matrices with Approximate 

Minimum Total Cost Tree (AMTCT) and Cost Savings of each 

AMTCT 
 

Note: the cost links of the AMTCT cost matrices found by EvoGraph are underlined and 

bold  

 
|N|=8  |N|=10 

0     1     2      3     4      5      6      7      8 

1     0    88     9    40    73     0     65    81 

2    88     0     0    34     0      0     99    84 

3     9     0      0    47    81    33    34    60 

4    40    34    47     0    70    31     0     0 

5    73     0     81    70     0    56    94    50 

6     0      0    33    31    56     0     11     0 

7    65    99    34     0    94    11     0    91 

8    81    84    60     0    50      0    91     0 

 0     1     2      3      4      5     6     7      8      9    10 

1     0    91    86    50     0     0    48    10     97     0 

2    91     0     0     17    92    79    35    47     0     0 

3    86     0     0     92    10    57    39     0    31     0 

4    50    17    92     0     0      0      0    60    79    33 

5     0     92    10     0     0    37    68     0     70     0 

6     0     79    57     0    37     0     0      0      0     71 

7    48    35    39     0    68     0      0    34     0    45 

8    10    47     0    60     0      0    34     0    22    40 

9    97     0    31    79    70     0      0    22     0    84 

10    0     0      0     33     0    71    45    40    84     0 

 

 
|N|=12 
0     1     2      3     4      5      6      7      8       9    10    11   12 

1     0     0      7      0    18     24    47    83     0      0      0    77 

2     0     0    45      0      8      0    32     91    33     0     0   100 

3     7    45     0      0      0    75    80     14     0      0      0    79 

4     0     0      0      0    84    56    42     69    41    98     0      0 

5    18     8     0     84     0    33      0      0      0      0    77    76 

6    24     0    75    56    33     0    32      0      0      0    75      0 

7    47    32    80    42     0    32     0      0    71      0      0      0 

8    83    91    14    69     0     0      0      0      0     12     0    96 

9     0    33      0     41     0     0    71      0      0     62    61     0 

10    0     0      0     98     0     0      0    12     62     0    65    45 

11    0     0      0      0    77    75     0      0     61    65     0      0 

12   77   100   79    0    76     0      0    96      0     45     0      0 
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|N|=14 
0     1     2     3      4      5     6      7     8     9    10    11    12    13    14 

1     0     0     3    69    41    38     0     0    67     0      3      0      0      0 

2     0     0     8    94      0    90     0     0     0    79      0      0    72    33 

3     3     8     0    64      0     0    53     0    88     0      0      0    78      0 

4    69    94   64     0    80    0      0     0      0     0      0    93      0    94 

5    41      0     0    80     0    63    2     0     0    51      0     0     19      0 

6    38    90     0     0    63     0     0     0     0    25    95     0     79      0 

7     0      0    53     0      2     0     0     0    32     0    31     0       0      0 

8     0      0      0     0      0     0     0     0    49     0    44    84      7     11 

9    67     0    88     0      0     0    32    49    0    57     0    85      0       0 

10    0    79     0     0    51    25    0     0     57     0     0      0      0       0 

11    3     0      0     0      0    95    31    44     0    0     0    48     32      0 

12    0     0     0    93      0      0     0    84    85    0    48     0       0    16 

13    0    72    78    0    19    79     0     7      0     0    32     0       0      0 

14    0    33     0    94     0     0      0    11     0     0      0    16      0      0 

 

 

 
|N|=16 
0     1     2      3     4     5      6      7     8     9    10    11    12    13    14    15    16 

1     0     0    96     7    91     0    71     0     0      0      0    15      0      0      0    72 

2     0     0      0    79    34    25    0     0    39     0    55      0      0    18      0      0 

3    96     0     0     0    94     0      0    59     0     0      0      0    16      0    50    44 

4     7    79     0     0     0      0      0     0    49     0    92      0    14      0      0    72 

5    91    34    94   0     0      0      0     0     0      0    56    30    18      0      0      0 

6     0    25     0     0     0      0    55    89    46    83    0      0      0      0      0      0 

7    71     0     0     0     0    55      0     0    50     0      0    13      0     49    31     0 

8     0     0    59     0     0    89      0     0     0    55      0     0       0     53    81    86 

9     0    39     0    49    0    46    50     0     0    34      0     0     63      0      0      0 

10    0     0     0     0     0    83      0    55    34    0      0     0     83      0     59     0 

11    0    55    0    92    56    0      0      0     0     0      0    28      0     84      0    87 

12   15     0    0     0     30    0    13      0     0      0    28     0     83     22     0     0 

13    0      0    16   14   18    0      0     0    63    83     0    83       0      0      0     0 

14    0    18     0     0     0     0    49    53     0     0    84    22       0      0      0     0 

15    0     0    50     0     0     0    31    81     0    59     0     0        0      0      0    93 

16   72    0    44   72     0     0     0     86     0     0    87     0        0      0     93     0 
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|N|=18 
0     1     2     3     4     5     6     7      8     9    10    11    12    13    14    15    16    17    8 

1     0     0     3     0     0     0    90     0     0     0      0      0     97    77    84     0     11    0 

2     0     0     0     1     0    78     0   59   34     0      0     86     0      0      0      0      0    80 

3     3     0     0     0    62    0    77     0     0    10     0     94     0     74     0      0      0     0 

4     0     1     0     0    49    0     0     2      0     0      0      0     11     0      0      0      0     0 

5     0     0    62    49    0    0    54    0      0    19     0      0       0     0     38     0     22    0 

6     0    78    0     0      0    0     0     0    87     0     34     0     19     0      0      0     19   52 

7    90     0    77   0    54    0     0     0      0      0      0    34    98     0    64      0      0     0 

8     0    59     0     2     0    0     0     0      0      0      0     0     52     6      0      0    90    13 

9     0    34     0     0     0    87    0     0     0    10    85    74      0     0      0      0     0      0 

10    0     0    10    0    19    0     0     0    10     0      5     0       0     0    90      0    92     0 

11    0     0     0     0     0    34    0     0    85     5      0     0       0     0     0     15     0      0 

12    0    86    94   0     0     0    34    0    74     0      0     0       0    82    0     57     0      0 

13   97     0    0    11    0    19   98   52     0     0      0     0       0     0     0     97     0      0 

14   77     0    74   0     0     0     0     6      0     0      0    82      0     0     0     75     0    96 

15   84     0    0     0    38    0    64    0      0    90     0     0       0     0     0       0    45    80 

16    0      0    0     0     0     0     0     0      0     0    15    57    97    75    0       0     0    10 

17   11     0    0     0    22    19   0    90     0    92     0     0       0     0    45      0     0      0 

18    0    80    0     0     0     52   0    13     0     0      0     0       0    96    80    10    0      0 

 
|N|=20 
0     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20 

1     0     0     0    75    0     0     0     0     0    88    48      0      0      0      0     40     0     96     0     0 

2     0     0     0     0     0    14    0    19    0     0     57    71      0    93      0     86     0     34     0     0 

3     0     0     0     0    28    0     0     5     0    56    80      0    14    63      0      0      0     56     0    88 

4    75    0     0     0     0     0     0    64    7     0      0     27      9      0    57      0      0     41    44     0 

5     0     0    28    0     0     0   39   100   0    44     0     45      0      0    36      0    30       0     0    39 

6     0    14    0     0     0     0     0     0     0     0      0       0      0      0      0     75      0      0     0      0 

7     0     0     0     0    39    0     0     0     0    37    31      0      0      0      0     88      0      0     0      0 

8     0    19    5    64  100   0     0     0     0     0      0       0      0      0      0       0      0      0     0      0 

9     0     0     0     7     0     0     0     0     0     0      0     28      0     88     0       0      0    66     0      0 

10   88   0    56     0   44    0    37    0     0     0    11     15      0      0      0       0    61    65     0      0 

11   48  57   80     0     0    0    31    0     0    11     0       0    23      0      0     73      0      0     6      0 

12    0   71     0   27   45    0     0     0    28   15     0       0      0      0      0     12      0      0     0      0 

13    0     0   14     9     0    0     0     0     0     0     23      0      0      0      0       0      0      0     0      0 

14    0   93    63     0    0    0     0     0    88    0      0       0      0      0      0       0     43     0     0      0 

15    0     0     0    57   36   0     0     0     0     0      0       0      0      0      0      90     0      0     0      0 

16   40  86     0     0     0  75    88    0     0     0     73     12     0      0     90      0     85     0     0      0 

17    0     0     0     0    30   0     0     0     0    61     0       0      0    43      0      85     0     42    2      2 

18   96  34    56    41   0    0     0     0    66   65     0       0      0      0      0       0     42      0     0     0 

19    0     0     0     44   0    0     0     0     0     0      6       0      0      0      0       0      2       0     0     0 

20    0     0    88     0   39   0     0     0     0     0      0       0      0      0      0       0      2       0     0     0 
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|N|=22 
0     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    21    22 

1     0     0   86    50    0     0    98   34    0    16     0      0      0       0      0    52      0      0      0      0    19    76 

2     0     0   29    76    0     0     0     0     0     0      0      0      0       0      0      0      0      0      0      0      0      0 

3    86   29    0     0    13    0     0    48    0     0     31     0      0       0      0      0      0      0     37     8      0    93 

4    50   76    0     0     0    35    0     0   14    17     0      0     10      0      0      0     94     0     49     0      0      0 

5     0     0   13     0     0     0     6     0     0     0      0      0      0       0      0      0      0      0      0      0      0      0 

6     0     0     0    35    0     0     0     0     0    85    27     0      0       0      0      6      0      0      0      0      0      0 

7    98    0     0     0     6     0     0     0     0     0      0      0      0       0     32     1     68     0      0     42    41    92 

8    34    0    48    0     0     0     0     0     0     0      0      0      0       0      0      0      0      0      0      0      0      0 

9     0     0     0    14    0     0     0     0     0     0      0      0     66      0      0     58     0      0      0      0      0      0 

10   16   0     0    17    0    85    0     0     0     0      0     53     0       0      0     22     0     68    61    73     0      0 

11    0    0    31    0     0    27    0     0     0     0      0      0      0      35     0      0     78     0      0      0      0      0 

12    0    0     0     0     0     0     0     0     0    53     0      0      6       0      0     59     0      0      0      0      0      0 

13    0     0    0    10    0     0     0     0    66     0     0      6      0      85    56     0      0     58    38    66     0      0 

14    0     0    0     0     0     0     0     0     0      0    35     0     85      0      0     38     0      0      0      0      0      0 

15    0     0    0     0     0     0    32    0     0      0     0      0     56      0      0      0      0      0      0      0      0      0 

16   52    0    0     0     0     6     1     0    58    22    0    59      0      38     0      0      0      0      0      0      0      0 

17    0     0    0    94    0     0    68    0     0      0    78     0      0       0      0      0      0      0      0      0      0      0 

18    0     0    0     0     0     0     0     0     0     68    0      0     58      0      0      0      0      0      0      0      0      0 

19    0     0   37   49    0     0     0     0     0     61    0      0     38      0      0      0      0      0      0      0      0      0 

20    0     0    8     0     0     0    42    0     0    73     0      0     66      0      0      0      0      0      0      0      0      0 

21   19    0    0     0     0     0    41    0     0      0     0      0      0       0      0      0      0      0      0      0      0      0 

22   76    0   93    0     0     0    92    0     0      0     0      0      0       0      0      0      0      0      0      0      0      0 
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|N|=24 
0     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24 

1     0     0     0     0    38    0     0    95    0     0     40     0      0      2     14     0      0      0     49    15     0     90     0      0 

2     0     0     0     0     0    98    0    96    0     0      0      0      0      0     35    39     0      0      0      0      0      0      0      0 

3     0     0     0    92    0     0     0     0     0     0      0      0      0     41    70     0      0     20     0      0     22    64    28    24 

4     0     0    92    0    18    0     0    36    0     0     77    59     0      0     75     0      0      0      0      0      0      0     38     0 

5    38    0     0    18    0     0     0     0    54   41     0      0      0     33      0     0      0     65     0      0      0     42     0     88 

6     0    98    0     0     0     0     0     0    30    91    0      0      0      0       0     0      0      0     14    58    26     3      0     65 

7     0     0     0     0     0     0     0    93    0     0      0      0      0      0       0     0      0      0      0     27     0      0      0      0 

8    95   96    0    36    0     0    93    0     0    36     0     99    60     0       0     0     59     0      0      0      0      0      0      0 

9     0     0     0     0    54   30    0     0     0     0     26     0      0      0       0     0      0      0      0      0      0      0     25     0 

10   0     0     0     0    41   91    0    36    0     0     74     0      0      0       0    48     0      0      0      0      0      0      0      0 

11   40   0     0    77    0     0     0     0    26   74     0     67    46     0       0     0      0      0      0      0     10    31     0      0 

12   0     0     0    59    0     0     0    99    0     0     67     0      0     68      0     0     81     0     99     0     50    66     0      0 

13   0     0     0     0     0     0     0    60    0     0     46     0      0      0     15     0      0      0      0      0      0      0     21     0 

14   2     0    41    0    33    0     0     0     0     0      0     68     0      0       0     0      0      0      0      0      0      0      0      0 

15  14   35   70   75    0     0     0     0     0     0      0      0     15     0       0     0      0      0     15     0      0     56    15     0 

16    0    39   0     0     0     0     0     0     0    48     0      0      0      0       0     0     42    39     0     39     0      0      0      0 

17    0     0    0     0     0     0     0    59    0     0      0     81     0     0        0    42     0      0      0      0      0      0     88     0 

18    0     0   20    0    65    0     0     0     0     0      0      0      0     0        0    39     0      0      0      0      0      0      0      0 

19   49    0    0     0     0    14    0     0     0     0      0    99      0     0     15     0       0      0      0     56     0      0    13      0 

20   15    0    0     0     0    58   27    0     0     0      0     0       0     0       0    39      0      0    56      0    41     20   78      0 

21    0     0   22    0     0    26    0     0     0     0    10    50      0     0       0     0       0      0     0      41     0      0      0      0 

22   90    0   64    0    42    3     0     0     0     0    31    66      0     0     56     0       0      0     0      20     0      0      0      0 

23    0     0   28   38     0    0     0     0    25    0     0      0     21     0     15     0      88     0    13     78     0      0      0      0 

24    0     0   24    0    88   65    0     0     0     0     0      0       0     0       0     0       0      0     0        0     0      0      0      0 
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COST SAVING RESULTS OF AMTCTS ON EACH UNDERLAY NETWORK 
 
|V|=8     |V|=10    

 TPC TEC TC   TPC TEC TC

SPT 350 283 633  SPT 489 281 770
AMTCT 360 260 620  AMTCT 499 251 750

net -10 23 13  net -10 30 20
% saving   2%  % saving   3%
         

 TPC TEC TC   TPC TEC TC

MST 530 224 754  MST 636 229 865
AMTCT 360 260 620  AMTCT 499 251 750

net 170 -36 134  net 137 -22 115
% saving   18%  % saving   13%
         
         
|V|=12     |V|=14    

 TPC TEC TC   TPC TEC TC

SPT 487 373 860  SPT 493 326 819
AMTCT 500 314 814  AMTCT 520 272 792

net -13 59 46  net -27 54 27
% saving   5%  % saving   3%
         
 TPC TEC TC   TPC TEC TC

MST 544 295 839  MST 600 259 859
AMTCT 500 314 814  AMTCT 520 272 792

net 44 -19 25  net 80 -13 67
% saving   3%  % saving   8%
         
         
|V|=16     |V|=18    
 TPC TEC TC   TPC TEC TC
SPT 729 415 1144  SPT 714 355 1069
AMTCT 738 387 1125  AMTCT 722 299 1021

net -9 28 19  net -8 56 48
% saving   2%  % saving   4%
         

 TPC TEC TC   TPC TEC TC

MST 814 377 1191  MST 844 261 1105
AMTCT 738 387 1125  AMTCT 722 299 1021

net 76 -10 66  net 122 -38 84
% saving   6%  % saving   8%
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|V|=20     |V|=22    
 TPC TEC TC   TPC TEC TC
SPT 1470 634 2104  SPT 1180 571 1751
AMTCT 1496 394 1890  AMTCT 1184 548 1732

net -26 240 214  net -4 23 19
% saving   10%  % saving   1%
         
         
 TPC TEC TC   TPC TEC TC
MST 2083 351 2434  MST 1245 534 1779
AMTCT 1496 432 1928  AMTCT 1184 548 1732

net 587 -81 506  net 61 -14 47
% saving   21%  % saving   3%
         
         
|V|=24         
 TPC TEC TC      
SPT 1072 622 1694      
AMTCT 1072 598 1670      

net 0 24 24      
% saving   1%      
         
 TPC TEC TC      
MST 1482 534 2016      
AMTCT 1072 598 1670      

net 410 -64 346      
% saving   17%      
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