






  

Abstract  

 

The Poon and Shin approach of finding an explicit formula for the effective 

dielectric constant of 0-3 composites was extended to obtain two explicit 

expressions for the prediction of the elastic properties (bulk modulus and shear 

modulus) of isotropic 0-3 composites. Predictions using these two expressions 

were compared with experimental data for elastic properties of a glass/epoxy 

composite. Good agreements, even for high volume fractions of the glass fibers 

were resulted. These two expressions were then combined with Poon and 

Shin's explicit effective dielectric formula into the calculation scheme of Wong 

et al. As a result, two explicit formulas for the prediction of 31d  and 33d  

values for binary 0-3 piezoelectric composites were obtained. Comparisons of 

the predictions made by these explicit formulas, Wong et. al.’s scheme and the 

published experimental data of 31d  of PZT/PVDF and 33d  of 

PbTiO3/P(VDF/TeFE) were presented.  

 

Another pair of explicit formulae for the effective piezoelectric coefficients ( 31d  

and 33d ) of 0-3 composite of ferroelectric spheres embedded in a ferroelectric 

matrix taking into account the piezoelectric properties were also derived based 



  

on Poon and Shin approach, By assuming that both phases were dielectrically 

and elastically isotropic even they were polarized, we were able to express the 

effective piezoelectric coefficients directly in terms of the properties of the 

constituents. Predictions made were then compared with published experimental 

data of the 31d  of a PZT/PVDF composite (in which only the ceramic phase 

was polarized), the 33d  of a PZT/P(VDF-TrFE) composites (with both phases 

polarized in the same direction) and 31d , 33d  of a PZT/P(VDF-TrFE) 

composite (with the two phases polarized in opposite directions). Fairly good 

agreements were demonstrated. For the first two cases, results showed that both 

our model and Wong et. al.’s scheme had comparable performance. However, for 

the last case, our model gave more favourable predictions.  

  

Effective piezoelectric coefficients of 1-3 piezoelectric fibre composites were 

also considered. Two explicit formulae for the effective piezoelectric stress 

coefficients ( 31e  and 33e ) were derived based on an effective medium theory 

(EMT) method, under the assumptions that both phases were transversely 

isotropic and the electric field strengths inside the constituents were equal to the 

applied electric field. The results obtained were then combined with Chen model 

to evaluate the longitudinal piezoelectric strain coefficient 33d . Apart from the 



  

analytical EMT method, the effective piezoelectric coefficients of 1-3 composite 

were also calculated by a numerical EMT scheme. Results from both schemes 

were compared with the published experimental data of 33d  of a 1-3 PZT/epoxy 

composite and the numerical values of 31e  and 33e  estimated by a finite 

element method of a 1-3 PZT/polymer composite.   
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Chapter 1 Introduction 

 

1.1 Background 

Piezoelectricity was discovered by Pierre and his brother Jacques in 1880. They 

found that for some material, an electric field is induced inside when a 

mechanical stress is applied on it. This is called the direct piezoelectric effect. 

In 1881, they discovered the converse piezoelectric effect: some materials 

undergo deformation when electric field is applied. Most of these materials 

have a perovskite ABO3 structure and have spontaneous polarization at room 

temperature. However, before poling, these piezoelectric materials do not 

exhibit any piezoelectric effect due to the random orientations of the 

polarization inside the domains in the materials. When a large electric field is 

applied to pole the material, the spontaneous polarization inside each domain 

will be reoriented along the electric field direction. As a result, permanent 

polarization exists and the material can exhibit piezoelectric effect.       
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The piezoelectric coefficients d  of a piezoelectric material are defined by the 

following equations 

kl
E
ijklkkijij TsEdS +=  

kliklk
T
iki TdED += ε                    (1.1) 

where S , E , T , D , s  and ε  are strain, electric field, stress, electric 

displacement, elastic compliance and permittivity respectively. The 

superscripts E  and T  indicate that the elastic compliance and the 

permittivity are measured under constant electric field and constant applied 

stress respectively. The subscripts i , j , k , l  can take values 1, 2 or 3, 

representing the X , Y  and Z  directions respectively.  

 

To simplify the notation, the ordered pairs ij  or kl  can be replaced by a 

single index p  or q  as follows [ANSI/IEEE Std., 176-1987]  

11 1,  22 2,  33 3,  23 or 32 4,  31 or 13 5,  12 or 21 6. 

 

Equations (1.1) can then be rewritten as 

q
E
pqkkpp TsEdS +=  

qiqk
T
iki TdED += ε                    (1.2) 
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Piezoelectric materials have been widely used in ultrasonic transducers, 

hydrophones and sensors [D. Stansfiedld, 1990]. Piezoceramics are usually 

good choices because of their high electromechanical coupling factor, which is 

defined as the square root of the ratio of output electrical (mechanical) energy 

to input mechanical (electrical) energy, and piezoelectric coefficients. However, 

piezoceramics have the limitations of having high stiffness constants and low 

hydrostatic piezoelectric coefficient hd )( 333231 ddd ++≡ . Piezoelectric 

polymers such as polyvinylidene fluoride (PVDF) and its copolymer vinylidene 

fluoride /trifluorethylene (VDF/TrFE) are alternatives because they have high 

mechanical flexibility and hydrostatic piezoelectric coefficient. However, when 

compared with piezoceramics, piezoelectric polymers have much lower 

piezoelectric coefficients. Piezoelectric composites overcome the limitations of 

these single phase materials by taking advantages of each constituent and they 

can be tailor-made for specific applications. For a binary composite, there are 

ten possible connectivities of the constituent materials (0-0, 0-1, 0-2, 0-3, 1-1, 

1-2, 1-3, 2-2, 2-3 and 3-3) [Newnham et al., 1978, Tressler et. al., 1999]. In this 

notation, the first (second) digit denotes the dimension of the inclusion phase 

(matrix phase). Among the ten connectivities, 0-3 and 1-3 are the two most 

important morphologies [Dias and Das-Gupta, 1994].                        
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0-3 piezoelectric composites usually consist of piezoelectric particles 

embedded in a matrix that may or may not be piezoelectric. For 1-3 composites, 

piezoelectric rods or fibers are embedded instead. In this project, we will 

concentrate on finding the effective piezoelectric coefficients of 0-3 and 1-3 

composites. 
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1.2 Literature review 

In this section, we shall use the subscripts i  and m  to denote the inclusion 

phase and the matrix phase respectively. We shall use the subscripts 1, 2  and 

3  to represent the X , Y  and Z  (the poling direction) directions 

respectively.  

 

1.2.1 Literature review on 0-3 piezoelectric composites 

 

Earlier modelling studies on 0-3 piezoelectric composites usually considered 

piezoelectric spherical or ellipsoidal inclusions in a non-piezoelectric medium. 

The researchers usually did not specify which piezoelectric constant were being 

considered. Furukawa et. al.’s [Furukawa et. al., 1976], Yamada et. al.’s 

[Yamada et. al., 1982], Jayasundere et. al.’s [Jayasundere et. al., 1994] and 

Prasad et. al.’s [Prasad et. al., 1996] models are some typical examples.  

 

Furukawa et al. [Furukawa et. al., 1976] proposed a model of 0-3 composite 

materials that consisted of an inner sphere representing the inclusion phase and 

a concentric spherical shell representing the matrix phase. The combination was 

taken as a representative unit and it was surrounded by a homogeneous medium 
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having the gross overall effective dielectric and elastic properties of the 

representative unit itself. They further assumed that both phases were isotropic 

and incompressible. Based on these assumptions, expressions of the effective 

dielectric constants (ε ), elastic constants ( c ) and piezoelectric coefficients ( d ) 

were derived as follows 

m
imim

imim ε
εεφεε
εεφεε

ε
)(2
)(22

−++
−−+

=                    (1.3) 

m
imim

imim c
cccc
cccc

c
)(223
)(323

−++
−−+

=
φ
φ

                   (1.4) 

iTE dLLd φ=                                  (1.5) 

where φ  is the volume fraction of the inclusion phase. EL  and TL  were 

called the local field coefficients and were defined as follows 

E
EL i

E ≡                            (1.6) 

T
TL i

T ≡                            (1.7) 

where E  and T  are the average electric field and average stress over a 

composite respectively. 
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Fig 1.1 An illustrated diagram for Furukawa’s model 

 

In 1979, Furukawa et. al. [Furukawa et. al., 1979] considered the contribution 

of the piezoelectric properties of the matrix phase. The effective piezoelectric 

coefficients of the composite was derived to be  

mTEiTE dLLdLLd )1)(1(
1

1 φφ
φ

φ −−
−

+=                    (1.8) 

 

Yamada et al. [Yamada et al., 1982] studied the dielectric and the piezoelectric 

properties of a composite composed of piezoelectric ellipsoidal particles 

embedded in a dielectric matrix. The effective dielectric constant was found to 

be  

 

Homogeneous 

Inclusio

Matrix 



8 

}
)1)((

)(1{
φεεε

εεφεε
−−+

−
+=

mim

mi
m n

n                   (1.9) 

where n  was called the shape parameter of the inclusion. 

The effective piezoelectric coefficient of the composite was also found 

    iGdd φα=                            (1.10) 

where α  was called the poling ratio and G  was called the local electric field 

coefficient. Expressions of G  and n  can be found in Yamada et. al.’s paper 

[Yamada et. al., 1982]. 

 

Jayasundere [Jayasundere et. al., 1993, 1994] derived analytic expressions for 

the effective dielectric constant and an effective piezoelectric coefficient of 0-3 

composites composed of piezoelectric spheres embedded in a dielectric matrix. 

For the dielectric problem, they considered the case when the composite was 

subjected to an external electric field so that each inclusion was polarized and 

can be represented by a dipole moment. Taking the interaction effects into 

account and using the condition mi εε >> ,  they derived an expression for the 

effective permittivity of the composite. 

 

⎥
⎦

⎤
⎢
⎣

⎡
+
−

+
+

+−

⎥
⎦

⎤
⎢
⎣

⎡
+
−

+
+

+−
=

mi

mi

mi

m

mi

mi

mi

m
im

εε
εεφ

εε
φεφ

εε
εεφ

εε
φεεφε

ε

2
31

2
3)1(

2
31

2
3)1(

        (1.11) 
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For the piezoelectric problem, they considered the situation that the composite 

was subjected to an external stress, so that polarization was induced inside each 

inclusion due to the inclusion stress. Similar to the dielectric problem, 

assuming mi εε >>  and c , mi cc >> , the effective piezoelectric coefficient 

was derived to be 

)
2

31(
im

i

i
idd

εε
φε

ε
ε

+
+≈                      (1.12) 

 

The effective permittivity ε  appeared in equation (1.12) was given by 

equation (1.11). 

 

Parasad et. al. [Prasad et. al., 1996] derived theoretically an effective 

piezoelectric stress coefficient based on Jayasundere [Jayasundere et. al., 1993] 

and Furukawa [Furukawa et. al., 1976] results. They found that the effective 

piezoelectric stress coefficient of the composite was as follows 

i
im

m

im

m e
cc
cce

εε
εε

φ −
−

−
−

=
1                        (1.13) 

where the stiffness constant c  and the dielectric constant ε  were determined 

by equations (1.4) and (1.11) respectively. 

 

All the above models were developed based on the assumption that the 
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piezoelectric activity of the composite was contributed by the inclusion phase 

only. Their results usually showed large derivations for available experimental 

data, especially at high volume fractions of the inclusions.  

 

Recently, more researchers [Levin et. al., 2000, Levin and Luchaninov, 2001, 

Wong et. al., 2001, 2003] focused on the piezoelectric problem of 0-3 

composites at high volume fractions of the inclusions.  

 

For example, Levin et. al. [Levin et. al., 2000, Levin and Luchaninov, 2001] 

studied the effective constants for a pyroelectric 0-3 composite. The matrix 

phase and the inclusion phase considered were polarized in opposite directions. 

For high volume fractions of the inclusions, they used an effective field method, 

which is a kind of self-consistent schemes, to estimate the effective properties 

of the composites. The derived expressions of the piezoelectric stress 

coefficients ( 31e , 33e  and 15e ) were  

])(
2

[ 1331211
2

3113131 iiiim CCCeee αααφ
−+−

Δ
+=               (1.14) 

][ 3331323313333 iiim CCeee αααφ
−−

Δ
+=                     (1.15) 

2215

244515
1515 4

4
QqbB

QCBeee ii
m −

−
+= φ                             (1.16) 
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where the expressions for kα  ( 31−=k ), Δ , 2Q , 5B , 1b  and 2q   can be 

found in their papers [Levin et. al., 2000, Levin and Luchaninov, 2001]. 

 

Wong et. al [Wong et. al., 2001] considered firstly the piezoelectric problem at 

low volume fractions and built their theoretical models based on the solutions 

of the dielectric [Wong et. al., 2001] and the mechanical [Goodier, 1933] 

problems of a single spherical inclusion composite. The effective piezoelectric 

coefficients were found to be 

])[()1(])[( 3331
//

3331
//

31 mTmTTEiTiTTE dLdLLLdLdLLLd
⊥⊥⊥⊥ ++−+++= φφ   (1.17) 

]2[)1(]2[ 33

//

3133
//

3133 mTmTEiTiTE dLdLLdLdLLd +−++=
⊥⊥ φφ           (1.18) 

 

where EL  and TL  were called the electrical field factors and the stress field 

factors respectively and were defined as follows 

mi

m
EL

εφεφ
ε

)2()1(
3

++−
=                                                     

φ
φ
−
−

=
1

1 E
E

LL  

)31(1)31(1 J
J

I
ILT −−

−
−−

=⊥

φφ
                                               

)31(1
2

)31(1
//

J
J

I
ILT −−
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=
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φ
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T
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iimi

ii

m

mI
μνμν

μν
ν
ν

)1()21(2
)1(

1
1

++−
+

+
−

=                                     

immm

imJ
μνμν

μν
)54(2)57(

)1(5
−+−

−
=                                     

where ν  and μ  are the Poisson’s ratio and the shear modulus respectively. 

 

For the concentrated inclusion cases, they replaced EL  and TL  by new 

electrical field factors EF  and stress field factors TF . Two piezoelectric 

equations for non-dilute cases were found 

])[()1(])[( 3331
//

3331
//

31 mTmTTEiTiTTE dFdFFFdFdFFFd
⊥⊥⊥⊥ ++−+++= φφ  (1.19) 

]2[)1(]2[ 33

//

3133
//

3133 mTmTEiTiTE dFdFFdFdFFd +−++=
⊥⊥ φφ          (1.20) 

where 
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m
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εε
εε

φ −
−

=
1  

mi

i
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εε
εε
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−
=

1
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3
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μμ
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−
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In the above equations, the effective dielectric permittivity ε , the effective 

bulk modulus k  and the effective shear modulus μ  were then determined by 

Bruggeman [Bruggeman, 1935] and Hashin [Hashin, 1962].  

 

In 2003, Wong et. al. [Wong et. al., 2003] derived another two explicit 

expressions of the effective piezoelectric stress coefficients, based on an 

effective medium theory (EMT). The EMT formulae of the effective stress 

coefficients he  (under hydrostatic loading) and se  (under shear loading) 

were given by  

)()1( hihm

h
SEh eeLFe −−= φ ]

)2(
4

)2(
4

)[(1{ 22 εε
εε

εε
εε

εε
+
+

−
+
+

−++
i

ih
S

mi

mi
i L  

hi
i

i
E

mi

mmi

i

i eF
k

kk
]}

)2(
)8(

)2(
)8(

[
)(

22 εε
εεε

εε
εεε

+
+

−
+
+

×
−

+                  (1.21) 



14 

)()1( sism
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SES eeLFe −−= φ ]

)2(
4

)2(
4
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+
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 (1.22) 

where      

mi

mh
S kk

kk
L

−
−

=
φ
1  

          
mi

ms
SL

μμ
μμ

φ −
−

=
1  

          
φ
φ
−
−

=
1

1 h
Sh

S
L

L  

          
φ
φ
−
−

=
1
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S
L
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1.2.2 Literature review on 1-3 piezoelectric composites 

 

This section gives a brief summary on some previous theoretical studies of the 

effective piezoelectric properties of 1-3 composites consist of piezoelectric 

inclusions embedded in a non-piezoelectric isotropic matrix.  

 

Chan and Unsworth [Chan and Unsworth, 1989] and Smith [Smith, 1991, 1993] 

derived simple analytic expressions. They assumed that both phases were 

undergone the same strain in the Z directions, and the expressions of the 

effective piezoelectric coefficients were found to be 
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))(1()(
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12111211

121131
31 E

i
E

imm

mmi

CCCC
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+
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]
))(1()(

)(2[
12111211

121331
3333 E

i
E

imm

m
E

ii
i CCCC

CCeee
+−++

−
−=

φφ
φφ           (1.24) 

]
)1(

)()1([
3311

121333
3131 E

im

mii
i ss

ssddd
φφ

φφ
−+

−−
−=                     (1.25) 

E
im

m
i ss

sdd
3311

11
3333 )1( φφ

φ
−+

=                            (1.26) 

where αβC  and αβs  were stiffness constants and elastic compliances 

respectively. Their models did not consider the geometry of the inclusion and 

were derived under the assumption that the inclusions had small aspect ratio. 

Here, the aspect ratio χ  was defined as the ratio of the diameter (or width) to 

the length of the inclusion. It was found to be a critical parameter affecting the 

effective properties of 1-3 composites and had been studied by many authors 

[Cao et. al., 1992; Zhang et. al., 1993; Nan and Jin, 1993; Nan, 1994; Sottos 

and Li, 1994; Li and Sottos, 1995, 1995].  

 

Cao et. al. studied profile of the Z  component of the displacement of each 

constituent and the effective hydrostatic piezoelectric coefficients of the 

composite. Their model consisted of a single piezoelectric fiber embedded in a 

passive matrix. They found that when an external stress 3T  was applied, the 

two phases had different displacement profiles, as expected, due to their 

different elastic and piezoelectric properties. For the piezoelectric problem, a 
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hydrostatic stress was applied, and they found that as stress was transferred 

from the matrix phase to the inclusion phase, the induced surface charge 

density was increased. The derived expression for the effective hydrostatic 

piezoelectric coefficient was  

)2( 3133 iihh ddd += γφ                       (1.27) 

where hγ  was called the stress amplification factor, given by 

1

1
η
ηγ +=h                        (1.28) 

where 

])21(/)21)][(()()()()[()/( 3311111 iimmRmamamRmai sYKIKIIa σσρρρρρη −−−−= l

)]()()()()[()/2( 1111044331 RmamamRmaiii KIKIICs ρρρρρη −=  

)]()()()()[(/2( 01011 amRmamRmaimm IKKIIY ρρρρρμ ++  

and l , a , R , mY , mμ , is33 , iC44  are the length, radius of the inclusion, 

radius of the composite, Young’s modulus of the matrix phase, shear modulus 

of the matrix phase, elastic compliance of the inclusion and the stiffness 

constant of the inclusion, respectively. 0I , 0K , 1I  and 1K  are the zeroth- 

and first-order modified Bessel functions. Expressions of mσ , iσ  and ρ  can 

be found in their paper [Cao et. al., 1992]. 
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Zhang et. al. [Zhang et. al., 1993] further extended Cao et. al.’s model. They 

considered the influence of deformation of each PZT rod by its eight nearest 

neighbor rods. Their model was shown to be applicable up to 2.0≈φ .  

 

Nan and Jin [Nan and Jin, 1993] developed a theoretical model for the effective 

properties of piezoelectric 1-3 composites based on a multi-scattering theory 

[Nan, 1993]. Their work was compared with the experimental data of 

piezoelectric coefficients of 1-3 PZT/Epoxy composites. The model took the 

approximation that mCC =0  and mεε =0 , where 0C  and 0ε  were the 

stiffness constant and the permittivity tensors of a homogeneous comparison 

medium. This method was called the nonself-consistency (NSC). The 

expressions for the effective piezoelectric stress coefficients were found to be 

)(
)(

3131
mi

m
i mK

mKee
+
+

=φ                              (1.29) 

)(
)(2 1313

313333
mi

i
ii mK

CCeee
+
−

−= φφ                       (1.30) 

)2]()1()1[(
)2(

5511

5515
15

imim

mmi

Cm
Cmee

+−++
+

=
εφεφ

εφ              (1.31)  

 

where  1211 CCK +≡ , 1211 CCm −≡  

and 11C , 12C , 13C  and 55C  were the stiffness constants of the composite. 
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As the concentration of the inclusion increases, the anisotropy of the composite 

become significant and the NCS scheme can no longer be applied. For the 

concentrated cases, Nan [Nan, 1994] took another approximation that CC =0  

and εε =0 , where C  and ε  were the stiffness constant and the permittivity 

tensors of the composite. This was called the self-consistent effective medium 

theory (SCEMT). SCEMT expressions of three effective piezoelectric stress 

coefficients were  

03131 =
+

−
+ mK

e
mK

e

i

i                          (1.32) 

0)(2 131331
3333 =

+
−

−−
mK

CCeee
i

ii
i                  (1.33) 

0
))(3(

4

11115555

5515

1111

15 =
++

−
+ εεεε ii

i

i CC
Cee            (1.34) 

where the bracket represented volume averages. 

 

When compared with the experimental data of the hydrostatic voltage 

coefficient hg  of PZT/Epoxy composite for two aspect ratios ( χ =0.210 and 

χ =0.1), their predicted values agreed well up to 5.0~φ . 

 

Li and Sottos [Li and Sottos, 1995, 1995, Sottos and Li, 1994] considered a 

composite system with a single piezoelectric fiber embedded in a 
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non-piezoelectric polymer matrix, and there was an interlayer between the 

inclusion phase and the matrix phase. They investigated the effects of aspect 

ratio, matrix stiffness and the Poisson ratio of the interlayer on the effective 

piezoelectric coefficients of the composite. Expressions of the displacements 

and stresses components in all three phases were derived. They assumed that 

the composite was subjected to a compressive hydrostatic pressure p . Using 

the proper boundary conditions and evaluating the average stresses and strains 

components in all three phases, the effective hydrostatic piezoelectric constant 

of the composite was found from the definition and the volumetric average of 

the electric displacement of the composite. 

 

He and Lim [He and Lim, 2003] studied the effect of interfacial sliding on the 

effective piezoelectric coefficients of 1-3 composites. They considered the case 

in which the composite was subjected to a longitudinal shear stress 0τ  and at 

the same time, an external transverse electric field 0E  was applied. Using 

proper boundary conditions, the stresses, strains, electric fields and electric 

displacements of the constituents were derived. For larger volume fractions of 

piezoelectric inclusions, the Mori-Tanaka mean field approximation [Mori and 

Tanaka, 1973] was adopted. The overall electromechanical responses of the 
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composite can be characterized by the volume-averaged stress 23σ , strain 

23γ , electric field 2E  and electric displacement 2D . They were given 

by 

023 τσ = ;   02 EE =                      (1.35) 

020123 ),(),( τφϕτφϕγ tt +=                   (1.36) 

02012 ),(),( τφψτφψ ttD +=                   (1.37) 

mi EEE 222 )1( φφ −+=                    (1.38) 

mi 232323 )1( σφσφσ −+=                  (1.39) 

where t  was time and expressions of 1ϕ , 2ϕ , 1ψ  and 2ψ  can be found in 

their paper [He and Lim, 2003]. 

 

And the required stress and electric field components were given by 

020123 ),(),( EtAtA ppp φτφσ +=               (1.40) 

02012 ),(),( EtBtBE ppp φτφ +=               (1.41) 

where p  denoted i  or m  and expressions of pA1 , pA2 , pB1  and pB2  

can be found in their paper [He and Lim, 2003]. 

 

Berger et. al. [Berger et. al., 2005] applied the finite element method (FEM) for 

calculating the effective properties of piezoelectric fiber composites. In order to 
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use FEM method, the composite material was represented by a periodical 

structure of representative volume elements (RVEs). Each RVE contained a 

piezoelectric fiber. They used this approach to find out the effective stiffness 

constants and the effective piezoelectric stress coefficients of a PZT/polymer 

composite.  

 

Ren and Fan [Ren and Fan, 2006] investigated the effects of the oblique angles, 

volume fraction and the material properties of the constituents on the 

hydrostatic response of 1-3 composites. Oblique angle was defined as the 

orientation angle with respect to the poling axis of the fibers embedded in the 

matrix. They found that the total coupling factor 'k  ( 2
15

2
33 kk +≡ ) was 

highest when the oblique angle was around 27 ˚ and when the volume fraction 

of the inclusion was around 0.87. 

 

Ray and Pradhan [Ray and Pradhan, 2006] studied the performance of lamina 

made of 1-3 piezoelectric composite material. They assumed that the composite 

was poled in the Z  direction and the composite was in a plain strain state (i.e. 

02222 == mi SS ). They assumed that both phases had the same vertical 
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strain and the same lateral stress. Under these approximations, the derived 

expressions were as follows 
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1.3 Scope of this study 

The aim of this project is to study theoretically the effective piezoelectric 

coefficients of 0-3 and 1-3 composites. As mentioned in the introduction, these 

composites are important engineering materials and their piezoelectric 

properties can be tailored to suit specific applications.  

 

The following is the structure of the thesis. Chapter 2 is divided into two parts. 

In the first part, we employ Poon and Shin approach [Poon and Shin, 2004] to 

derive two explicit formulae of the effective mechanical properties of 0-3 

composites. These two formulae, together with the explicit expression of 

dielectric property reported by Poon and Shin are incorporated into Wong et. 

al.’s model [Wong et. al., 2001] to give two explicit formulae for the effective 

piezoelectric strain coefficients. Comparisons of the prediction of our model, 

Furukawa model [Furukawa, 1976], Jayasundere et. al.’s model [Jayasundere et. 

al., 1994] and some published experimental data are presented. In the second 

part, we employ the same approach to consider the piezoelectric problem of 0-3 

composites, but from the very beginning. Expressions of the effective 

piezoelectric stress coefficients ( 31e  and 33e ) and the effective stiffness 

constants ( 11C , 12C , 13C  and 33C ) are derived. The predicted values of the 
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model are compared with experimental data of piezoelectric coefficients of 0-3 

composites having three different polarization states: only the inclusion phase 

is polarized; both phases are polarized in the same direction and both phases 

are polarized in opposite directions. In chapter 3, we employ an effective 

medium theory (EMT) to find explicit expressions of piezoelectric stress 

coefficients for 1-3 composites at high volume fraction limit. The expressions 

are compared with some experimental data and simulated data from finite 

element method reported in the literature. Chapter 4 concludes what we have 

done so far and suggested some possible future works. 

 



25 

Chapter 2  Effective piezoelectric coefficients of 0-3 composite 

 

2.1 Introduction 

Ferroelectrics composites have been studied for many years [Dias and 

Das-Gupta, 1996]. Their effective piezoelectric coefficients are important 

parameters in the design of piezoelectric devices because their values can be 

modified by varying the inclusion content in the composites. Recently, there 

have been many experimental works on the effective piezoelectric coefficients 

of 0-3 PZT/polymer composites [Chan et. al., 1994, 1995, Chan et. al., 1998, 

Chan et. al., 1999, Ng et. al., 2000]. It has also been demonstrated  [Chan et. 

al., 1999] that the effective piezoelectric properties can be modified further by 

using different poling methods due to the different signs of the piezoelectric 

coefficients of some of their constituents. 

 

The aim of this chapter is to develop theoretical models for the predictions of 

the effective piezoelectric properties of 0-3 composites based on Poon and Shin 

approach [Poon and Shin, 2004]. The main idea of this approach is to take into 

account the interaction between the particulates. A brief review on this 

approach will be given in section 2.2. 
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In section 2.3, we employ Poon and Shin approach in treating the elastic 

problem of the 0-3 composite. Two new formulae for the effective stiffness 

constants are obtained and the values predicted are compared with the 

experimental data of Smith [Smith, 1976]. For the effective piezoelectric 

coefficients comparisons, predictions made by our scheme, Wong et. al.’s 

model [Wong et. al., 2001] and Furukawa et. al.’s model [Furukawa et. al., 

1976] are compared with experimental results of 31d  of PZT/PVDF 

composites [Furukawa, 1989]. For 33d , predicted values calculated by our 

scheme, Wong et. al.’s model and Jayasundere et. al. [Jayasundere et. al., 1994] 

are compared with the experimental data of a PbTiO3/P(VDF/TeFE) system 

[Zou et. al., 1996]. 

 

In section 2.4, we used the same approach, but from the very beginning, to treat 

the piezoelectric problem of 0-3 composites. Assuming that both phases remain 

dielectrically and elastically isotropic even when they are polarized, 

expressions of the effective piezoelectric stress coefficients and the effective 

stiffness constants are derived. The results obtained are then used to find the 

effective piezoelectric strain coefficients. Predictions made by our model and 

Wong et. al.’s model were compared with the experimental data of 
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PZT/polymer composites having three different polarization states. Namely, 

only the inclusion phase is polarized; both phases are polarized in the same 

direction and the two phases are polarized in opposite directions.  

 

In the following sections of this chapter, we shall use the symbols i  and m  

to refer to the inclusion phase and the matrix phase respectively and use p  to 

represent either i  or m . We use subscripts 1, 2  and 3  to denote the X , 

Y  and Z  directions, respectively and use x  to denote the volumetric 

average of the physical quantity x  over the respective material. 

 



28 

2.2 A brief review of Poon and Shin approach  

Poon and Shin [Poon and Shin, 2004] considered the dielectric problem of a 

single dielectric sphere with dielectric constant iε  embedded in an infinite 

matrix with dielectric constant mε . When an external electric field is applied 

along the Z  direction and suppose mE3  is the electric field in the matrix 

region far away from the inclusion, it can be shown that the electric field iE3  

inside the inclusion, is uniform and parallel to mE3  [Wong et. al., 2001]. The 

relationship between the electric fields iE3  and mE3 , and the 

corresponding electric displacements iD3  and mD3  is given by [Wong et. 

al., 2001] 

              )(2 3333 mimmi EEDD −−=− ε                 (2.1) 

 

Defining mi DDD 33 −≡Δ  and mi EEE 33 −≡Δ , it can be written in the 

form: 

 ED mΔ−=Δ ε2                          (2.2) 

 

Equation (2.1) (or (2.2)) is valid for dilute suspension of the inclusions only. 

For finite volume fraction of the inclusions, the interaction effects between the 

inclusions become significant. Suppose we have two 0-3 composites with 
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0>φ  and 0→φ  as shown in Fig. 2.1, in which the circle denotes an 

inclusion particle having dielectric constant iε  and the shaded region denotes 

the matrix phase having the dielectric constant mε . 

                 

 

 

 

 
Figure 2.1 Composite with the volume fraction of inclusion (a) 0>φ  and with 

(b) 0→φ  subjected to an external electric field 3E  

 

Let mDδ  be the electric displacement contributed by the inclusion phase,  

33 EDD mm εδ −≡                     (2.3) 

where 3D  is the volumetric averaged electric displacement of the 

composite. 

 

After simplifying equation (2.3), they got 

imim ED 3)( εεφδ −=                    (2.4) 

 

 

 

3E  

(a) 

3E

(b) 



30 

Poon and Shin [Poon and Shin, 2004] proposed that the electric displacement 

mD3  for the higher volume fractions could be approximated to the sum of 

two parts: one due to the pure medium and the other due to the total 

polarization of other inclusions mDδ . Equation (2.4) was modified to the 

following:  

imim EED 3)(2 εεφε −+Δ−=Δ               (2.5) 

 

The effective dielectric constant ε  of the composite is defined by 

33 ED ε=                         (2.6) 

 

Its explicit formulas was shown to be 

m

mimi
mim

ε
εεφεε

φφ
εεφεε

3
)(2

)1(

1)(
−−+

−+
−+=         (2.7) 
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2.3 Explicit formulae of the effective stiffness constants  

2.3.1 Theory 

For elastic properties, we can, by analogy, replace the electric displacement D  

by the stress T  and the electric field E  by the strain S .  

 

Consider a composite with a single sphere having bulk modulus ik  and shear 

modulus iμ  in an isotropic matrix having bulk modulus mk  and shear 

modulus mμ  subjecting to a uniform external stress 3T . Suppose a uniform 

tension 0T  is acting in the matrix far away from the inclusion, Goodier 

[Goodier, 1933] has worked out, in spherical coordinates, the analytical 

solutions for the displacements and the stresses inside the inclusion and the 

matrix. By transforming Goodier’s solution to Cartesian coordinates, we find 

that the stress and the strain inside the constituents are [Detailed derivation is 

given in appendix A], 

212211 43 BBkTT iiii μ−== ,      2133 83 BBkT iii μ+=  

212211 2BBSS ii −== ,         2133 4BBS i +=             (2.8) 

where 1B  and 2B  are defined by 
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and we have 
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Using equations (2.8) and (2.9), we get 
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where   jjmjjij TTT −≡δ  ,  jjmjjij SSS −≡δ  ( 3,2,1=j )            (2.11) 
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Similar to the electrical case, equation (2.10) is not a good approximation when 

there are several inclusions inside the matrix. Consider two composites with 

0>φ  (shown in Fig. 2.2. (a)) and 0→φ  (shown in Fig. 2.2 (b)) having 

strains 11S , 22S  and 33S  along X , Y  and Z  directions. 
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In Fig. 2.2 (a), the spheres represent the inclusion particles with bulk modulus 

ik  and shear modulus iμ . The shaded region represents the matrix phase 

having bulk modulus mk  and shear modulus mμ . For non-dilute suspension 

of the inclusions, we need to consider the interaction effects between the 

inclusions. Suppose 11T  and 110T  are the stresses of the composites along 

X  direction with 0>φ  and 0→φ  respectively. 1mTδ  is contributed by 

interaction between the inclusions which is defined by 

110111 TTTm −≡δ                     (2.13) 

 

Since the 0-3 composite, as a whole, is an isotropic material, its elastic 

behaviour can be described by just two coefficients, for example, the effective 

bulk modulus k  and the effective shear modulus μ , defined by the overall 

stress-strain relationship, 
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Using equations (2.13) and (2.14), 110T  can be expressed in terms of the 

strains. Equation (2.13) can be expressed as follows 
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where V  is the volume of the composite. 

After simplifying, we get 
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where  mi kkk −≡Δ ,  mi μμμ −≡Δ  

Similarly, 2mTδ  and 3mTδ  are given by   
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By analogy, we add an additional term to equation (2.10) and rewrite it in a 

matrix form 
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where jjmjjij TTT −≡Δ  ,  jjmjjij SSS −≡Δ   ( 3,2,1=j ) 

μΔ+Δ≡
3
4kC ,     μΔ−Δ≡

3
2kG                       (2.20) 

 

Using equations (2.12), (2.14) and (2.16) to (2.20), and the following 

relationships of the volumetric averages [Wong et. al., 2001], 

 jjmjjijj TTT )1( φφ −+=                  (2.21) 

jjmjjijj SSS )1( φφ −+=                 (2.22) 

                

the effective bulk modulus k  and the effective shear modulus μ  of the 

composite can be found [detailed derivation is given in Appendix B]: 
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2.3.2 Effective piezoelectric coefficients using the new stress field factors 

Wong et al. [Wong et. al., 2001] have given explicit formulas for the effective 

piezoelectric 31d  and 33d  coefficients of 0-3 composites: 
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(2.25) 

]2[)1(]2[ 33

//

3133
//

3133 mTmTEiTiTE dFdFFdFdFFd +−++=
⊥⊥ φφ          (2.26) 

where EF  and TF  are called the electric and stress field factors. Their 

definitions have been given in section 1.2.1. 

   

For the dielectric constant ε  appeared in the electric field factor, they used the 

Bruggeman formula [Bruggeman, 1935] 
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For the bulk k  and shear μ  modulus in the stress field factors, they used the 

Hashin model [Hashin, 1962].  
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Using their scheme, but employing equation (2.7) for the effective dielectric 

constant and the new formulas (equations (2.23) and (2.24)) for the effective 

elastic coefficients, we obtained two new explicit equations for the effective 

piezoelectric coefficients 31d  and 33d .  
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2.3.3 Comparisons with experimental data and discussions 

In this subsection, we compare the predictions of the effective bulk modulus 

and the effective shear modulus using the two formulas (2.23) and (2.24) with 

the experimental data given by Smith [Smith, 1976]. The composite considered 

is a matrix of epoxy embedded with glass spheres.  The Poisson’s ratios of the 

glass )( iν  and the epoxy )( mν  are 0.23 and 0.394 respectively and the 

Young’s modulus of the glass )( iY  and the epoxy )( mY  are 76.0 GPa and 

3.01 GPa respectively. For an isotropic material, the bulk modulus and the 

shear modulus can be expressed in terms of Young’s modulus and Poisson’s 

ratio [Sadda, 1993]. 

)21(3 ν−
=

Yk                         (2.30) 

)1(2 ν
μ

+
=

Y                         (2.31) 

 

Fig. 2.3 shows the comparison results for the effective bulk modulus, in which 

we have plotted predictions based on our model and Hashin model [Hashin, 

1962].  
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The bulk modulus of Hashin's model is given by  
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Fig 2.3 shows that, at low volume fractions of the glass spheres, both Hashin's 

model and our model give good agreement with the experimental data. 

However, at higher volume fractions, Hashin model underestimates the 

effective bulk modulus while our model still fits relatively well to the 

experimental data.  

 

 
Figure 2.3  Comparison of the effective bulk modulus predicted by this work 

(Equ.(2.23)) and Hashin's model (Equ.(2.32)) with experimental 
data of Smith [Smith, 1976] 
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Fig. 2.4 shows the comparison for the effective shear modulus. In this case, 

Hashin's model can only give the lower bound lμ  and the upper bound uμ , 

as follows: 
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It can be seen that, at low volume fractions, both the bounds of Hashin's model 

and our model can give reasonable predicted values, compared with the 

experimental data. However, when the volume fraction of the inclusions 

increases, the lower bound of Hashin's model fails to give reasonable 

predictions, while its upper bound values and predicted values from our model 

still show good agreement with the experimental data. 
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Figure 2.4  Comparison of the effective shear modulus predicted by this work 

(Equ.(2.24)), lower bound of shear modulus of Hashin model, 
lμ (Equ. (2.33)) and upper bound of shear modulus of Hashin 

model, uμ  (Equ. (2.34)) with experimental data of Smith [Smith, 
1976]. 

 

For effective piezoelectric coefficients comparisons, predicted values using 

equations (2.28) and (2.29), Wong et. al.’s scheme [Wong et. al., 2001] and 

other models [Furukawa et. al., 1976, Jayasundere et. al., 1994] are compared 

with the experimental data given by Furukawa [Furukawa, 1989] and Zou et al. 

[Zou et. al., 1996], as shown in figures 2.5 and 2.6.     

 

Fig. 2.5 shows the 31d  comparison results for a PZT/PVDF system [Furukawa, 

1989]. The Poisson’s ratios of the PZT inclusion and the matrix are 0.3 and 0.4 

respectively and the Young’s modulus of the inclusion and the matrix are 58.7 
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GPa and 2.52 GPa respectively. The dielectric constants are 1900 for the 

inclusion and 14 for the matrix. The 31d  and 33d  values for the inclusion are 

-180 pC/N and 450 pC/N respectively. For this composite system, the matrix 

phase PVDF is not polarized and does not exhibit piezoelectric effect. This 

means that the effective piezoelectric activity of the composite is contributed 

by the inclusion phase only. For this comparison, Furukawa model [Furukawa 

et. al., 1976] is also included. Their expression for and d  is given by  

iTE dLLd φ=                        (2.36) 

where EL  and TL  are  

mi

m
EL

εφεφ
ε

)2()1(
3

++−
=                   (2.37) 

)(323
5

imim

i
T cccc

c
L

−−+
=

φ
                (2.38) 

and c  is the Young’s modulus (or shear modulus) since both phases are 

assumed to be incompressible.  

 

Fig. 2.5 shows that, for dilute suspension cases, our scheme and the scheme of 

Wong et al. using uμ  show similar performance, while the Furukawa model 

underestimates the piezoelectric coefficient. At higher volume fractions, the 

Furukawa model fails obviously, while our scheme and Wong et. al.’s scheme 

still show similar performance. 
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Figure 2.5  Predictions of the effective piezoelectric coefficient 31d  by this 

work (Equ.(2.28)), Wong et al.'s model [Wong et. al., 2001] using 
lower and upper bounds of shear modulus of Hashin [Hashin, 
1962] and Furukawa's model [Furukawa et. al., 1976]. 
Experimental data are taken from [Furukawa, 1989] of 
Furukawa. 

 

Fig. 2.6 shows the 33d  comparison results from various models with the 

experimental data for a PbTiO3/P(VDF/TeFE) system [Zou et. al., 1996]. They 

obtained their experimental values only at high volume fractions of the 

inclusions. The Poisson’s ratios of the inclusion and the matrix are 0.22 and 0.4 

respectively and the Young’s modulus of the inclusion and the matrix are 126.7 

GPa and 2.81 GPa respectively. The 31d  and 33d  values for the inclusion are 

-9.5 pC/N and 94 pC/N respectively. The dielectric constants are 150 for the 

inclusion and 6 for the matrix respectively. In their experiment, only the 

inclusion phase is polarized.  
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Jayasundere model [Jayasundere et. al., 1994] is also included for comparison. 

Their expression for d  is given below 
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ε
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+
+=                      (2.39) 

 

In equation (2.39), the effective permittivity ε  they used is given by 

Jayasundere [Jayasundere et. al., 1993]: 
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Fig. 2.6 shows that, for this case, almost all experimental data fall within the 

bounds of Wong et al. [Wong et. al., 2001]. Our scheme fits reasonably good to 

the data. On the other hand, the Jayasundere model obviously overestimates the 

coefficient.   
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Figure 2.6  Predictions of the effective piezoelectric coefficient 33d  by this 
work (Equ.(2.29)), Wong et al.'s model [Wong et. al., 2001] using 
lower and upper bounds of shear modulus of Hashin [Hashin, 
1962] and Jayasundere's model [Jayasundere et. al., 1994]. 
Experimental data are taken from [Zou et. al., 1996] of Zou et al.. 

 

To conclude, our scheme and Wong et al. scheme [Wong et. al., 2001] provide 

two different approaches for the predictions of the effective piezoelectric strain 

coefficients. While Wong et. al.’s scheme can only provide the lower and the 

upper bound values, our scheme can give reasonable predictions for the whole 

range of the volume fractions of the inclusions. 
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2.4 Explicit formulae of the effective piezoelectric coefficients  

2.4.1 Theory 

In the following, we shall further extend the idea used by Poon and Shin for 

treating the piezoelectric problems of a 0-3 composite.  

 

Consider a composite with volume fraction φ  of the piezoelectric inclusions 

subjected to external stresses 1T , 2T  and 3T , and an electric field 3E  

applied in the Z direction.  

 

For electrical properties, because the applied electric field can induce strain 

inside the constituents, we consider that both constituents are piezoelectrically 

transversely isotropic. In this case, the piezoelectric behaviour of the 

constituents is described by the following relation [ANSI/IEEE Std., 

176-1987], 
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Based on Poon and Shin idea and using equation (2.41), equation (2.5) can be 

modified to the following 

imiimim SeeEED 1131313 )()(2 −+−+Δ−=Δ φεεφε  

imiimi SeeSee 333333223131 )()( −+−+ φφ              (2.42) 

 

where  pe31  and pe33  are the transverse and longitudinal piezoelectric stress 

coefficients respectively.  

 

For mechanical properties, when external stresses are applied to the 

piezocomposite, electric fields are induced inside the constituents. Using the 

Poon and Shin idea and the constitute piezoelectric relation, we obtain new 

1mTδ , 2mTδ  and 3mTδ  expressions, as follows 

dVEeSCSCSCT
V

T mmmm
V

mm )]([(1
331331222121111111 −++−≡ ∫δ  

)( 331331222121111 iiii EeSCSCSC Δ−Δ+Δ+Δ≡ φ    (2.43) 

dVEeSCSCSCT
V

T mmmm
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mm )]([(1
331331222111112222 −++−≡ ∫δ  

)( 331331222111112 iiii EeSCSCSC Δ−Δ+Δ+Δ≡ φ    (2.44) 
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)( 333331122121112 iiii EeSCSCSC Δ−Δ+Δ+Δ≡φ    (2.45) 
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where 

mi eee 313131 −≡Δ , mi eee 333333 −≡Δ  

 mi CCC 111111 −≡Δ , mi CCC 121212 −≡Δ  

        ppp kC μ
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4

11 += ,  ppp kC μ
3
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Equation (2.19) is modified to the following 
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Combining equations (2.42) and (2.46), we have 
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From the definition of the volumetric averages and using equation (2.41), we 

have 
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Using equation (2.47) and the constitutive piezoelectric relations, we get  

imimmii SMSSLSCSC φ+−=− )(          (2.50) 
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After rearrangement, we obtain  

mmii SLCSMLC )()]([ −=+− φ              (2.51) 
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Multiplying )]([ MLCi φ+−  on both sides of equation (2.48), we get 

miiii SMLCSMLCSMLC )]()[1()]([)]([ φφφφφ +−−++−=+−  

(2.52) 
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Using equation (2.51), equation (2.52) becomes 

mimmi SMLCSLCSMLC )]()[1()()]([ φφφφ +−−+−=+−  

(2.53) 

After simplifying, we have  
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(2.54) 

Multiplying )( LCm −  on both sides of equation (2.48), we get 
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(2.55) 

Using equation (2.51), equation (2.55) becomes 

iiimm SMLCSLCSLC )]()[1()()( φφφ +−−+−=−    (2.56) 

 



52 

After simplifying, we have  

SLCMLCLCS mimi )()]}()[1()({ 1 −+−−+−= −φφφ  

  (2.57) 

Substituting equations (2.54) and (2.57) into equation (2.49), we get 
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After simplifying, we get, in matrix form 
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where the effective piezoelectric and mechanical coefficients are given by  

])()([ 3144124312114131 mimimmi eIBCIBCACIe +−+−+−=φ  

)()[1( 1212111141 BCCACCI iim −Δ−+−Δ−−+ φφφ  

)]()( 313144121243 eeIBCCI imim Δ−+−Δ−+ φφ                       (2.60) 
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])()(2[ 33441143124133 mimimi eIACIBCIe +−+−=φ  

)]()()(2)[1( 333344111143121241 eeIACCIBCCI imimim Δ−+−Δ−+−Δ−−+ φφφφ

(2.61) 
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The symbols klpI  in equations (2.60) to (2.65) are defined below, in which the 

subscripts 3,2,1, =lk  refer to the X , Y  and Z  directions. 
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Combing the two effective piezoelectric stress coefficients and the four 

stiffness constants, two effective piezoelectric strain coefficients ( 31d  and 33d ) 

are obtained. For a transversely isotropic material, the relation are given by  
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In the following section, our model is compared with some experimental results. 

Wong et al.’s scheme [Wong et. al., 2001] is also included in the comparisons. 

They have assumed that the whole composite is elastically isotropic. If we also 

take this assumption (i.e. 1133 CC =  and 1213 CC = ), then the two effective 

piezoelectric strain coefficients ( 31d  and 33d ) become: 
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2.4.2 Comparisons with experimental data and discussions 

In this subsection, predictions made by Wong et al. [Wong et. al., 2001] and our 

model (with and without assuming elastic isotropy) are compared with the 

experimental data of Furukawa [Furukawa, 1989], Chan et al. [Chan et. al., 

1995] and Zeng et al. [Zeng et. al., 2002] for the 31d  of PZT/PVDF 

composites (with only the ceramic phase polarized), the 33d  of 

PZT/P(VDF-TrFE) composites (with both phases polarized in the same 

direction) and 31d , 33d  of PZT/P(VDF-TrFE) composites (with the two 

phases polarized in opposite directions). The parameters of the constituents 
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adopted in the calculations are listed in tables 2.1 to 2.3. Elastic moduli pY  

and Poisson’s ratios pν  in tables 2.1 and 2.2 can be transformed to obtain the 

stiffness constants pC11  and pC12  via the relations [Saada, 1993] 
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The constituents’ parameters of shear moduli pμ  and Poisson’s ratios pν  in 

table 2.3 can be transformed to obtain the stiffness constants pC11  and pC12  

via the following relations [Saada, 1993] 
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3
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−

+
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Table 2.1. Properties of the constituents for PZT/P(VDF-TrFE) 0-3 composite 
adopted in our calculations in Fig. 2.7. Both phases are polarized in 
the same direction.[Wong et. al., 2001].  

 
 
Table 2.2. Properties of the constituents for PZT/PVDF 0-3 composite adopted 

in our calculations in Fig. 2.8. Only the inclusion phase is 
polarized.[Wong et. al., 2005] 

 
 
Table 2.3 Properties of the constituents for PZT/P(VDF-TrFE) 0-3 composite 

adopted in our calculations in Fig. 2.9. [Zeng et. al., 2002] 
 

0/εε  
Shear 

Modulus 
(GPa) 

Poisson’s 
Ratio 

 

31d−  
(pC/N) 

33d  
(pC/N) 

PZT 1700 27 0.3 175 400 

P(VDF- 
TrFE) 

9.9 0.8 0.4 -6.2 -22.1 

 

 0/εε  

Elastic 
Modulus 

(GPa) 

Poisson’s
Ratio 

 

31d−  

(pC/N) 
33d  

(pC/N) 

PZT 1159 16.8 0.35 127.9 314.4 

P(VDF- 
TrFE) 

10.7 2.32 0.39 -15.3 -38.4 

 

0/εε  

Elastic 
Modulus 

(GPa)  

Poisson’s 
Ratio 

 

31d−  
(pC/N) 

33d  

(pC/N) 

PZT 1900 36 0.3 180 450 

PVDF 14 1.3 0.4 0 0 
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Figure 2.7 shows the 33d  comparison results of the theoretical predictions and 

the experimental data of Chan et al [Chan et. al., 1995]. Note that because the 

piezoelectric coefficients of PZT and P(VDF-TrFE) have opposite signs, the 

piezoelectric activity of the composite vanishes at 45.0≈φ   when both 

phases are polarized in the same direction.  

 

Obviously, both our model and Wong et al’s scheme give similar reasonable 

performance.      

 

 

Figure 2.7 Predictions of effective piezoelectric coefficient 33d  by our model 
(equations (2.67) and (2.69)) and Wong et al.’s scheme [Wong et. 
al., 2001] with the experimental data of H.L.W Chan et al. [Chan 
et. al., 1995] of PZT/P(VDF-TrFE) composite, with inclusion and 
matrix polarized in the same direction. 



59 

Figure 2.8 shows the 31d  comparison. In this composite material, the effective 

piezoelectric activity is contributed by the inclusion phase only. It can be seen 

that, at low volume fractions, both our model and Wong et al.’s scheme give 

similar performance. However, at high volume fractions, some of the 

experimental data are not even within the bounds calculated by Wong et al’s 

scheme but our model still fits well to the experimental data. 

 

Figure 2.8 Predictions of effective piezoelectric coefficient 31d  by our model 
(equations (2.66) and (2.68)) and Wong et al.'s scheme [Wong et. 
al., 2001] with the experimental data of Furukawa [Furukawa, 
1989] of PZT/PVDF composites. Only the inclusion phase is 
polarized. 
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Zeng et al [Zeng et. al., 2002] reported experimental values of the piezoelectric 

coefficients 31d  and 33d  of a PZT/P(VDF-TrFE) composite, with the two 

phases polarized in opposite directions. The comparisons of the experimental 

data with some theoretical predictions are shown in Figure 2.9. When compared 

with Wong et al.’s scheme, our model obviously gives more reasonable 

predictions to the experimental data. As a research, the abrupt decrease of the 

piezoelectric coefficient value at 5.0≈φ , according to Zeng et. al., may be due 

to the redistribution of space charges at the interface between the inclusion and 

the matrix. These changes could lead to some degree of depolarization and 

hence decrease the piezoelectric activity.  

 

Since both our model and Wong et al’s scheme have assumed that the 

constituents are fully polarized, this may be the reason why both models show 

deviations to the experimental values, at high volume fractions of the 

inclusions.  
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Figure 2.9  Predictions of effective piezoelectric coefficients 33d  (equations 
(2.67) and (2.69)) and 31d  (equations (2.66) and (2.68)) by our 
model and Wong et al.’s scheme [Wong et. al., 2001] with the 
experimental data of Zeng et al. [Zeng et. al. 2002] of 
PZT/P(VDF-TrFE) composite with inclusion and matrix polarized 
in opposite directions. 

 

From the above comparisons, it also shows that the two different assumptions 

(isotropic or transversely isotropic) concerning the mechanical properties of the 

two phases give similar performance. This means that the effects of 

polarization on the elasticity of the materials are very small.  
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Chapter 3 Effective piezoelectric coefficients of 1-3 composites 

based on an effective medium theory  

 

3.1 Introduction 

1-3 piezoelectric composites usually consist of piezoelectric rods or fibers 

embedded in a polymer matrix. They have been widely used in ultrasonic 

transducers in underwater and other ultrasonic medical applications [Smith, 

1989]. The polymer phase can be either a passive (e.g. epoxy) or an active (e.g. 

PVDF-TrFE) matrix medium [Taunaumang et. al., 1994]. For the former, the 

polymer phase is responsible only for stress transfer to the inclusion phase. For 

the latter, the effective piezoelectric properties of the composite are contributed 

by both the inclusion phase and the polymer phase. Due to the opposite signs of 

their piezoelectric activities, it is possible to pole the two phases in opposite 

directions to increase the effective piezoelectric coefficients 31d  and 31d  of 

the composite material [Taunaumang et. al., 1994]. In this work, we consider 

the former case only, since it is the mostly used case in actual applications. 

 

In this chapter, we consider the piezoelectric problems of 1-3 piezoelectric rod 

composite having small aspect ratios. Its effective piezoelectric coefficients are 



63 

determined based on an effective medium theory (EMT). This theory considers 

the volume fraction of the inclusions )(φ  and the matrix properties as 

independent variables, and then expressions of the effective properties for the 

high volume fraction cases can be obtained from the dilute limit results. The 

EMT formulation employed in this project was first developed by Shin et. al. 

[Shin et. al., 1989] and has been used in treating the dielectric [Shin et. al., 

1989], piezoelectric [Wong et. al., 2003] and pyroelectric [Chew et. al., 2003] 

problems of binary 0-3 composites. EMT equations can be either solved 

analytically or numerically. The comparisons of the predictions made by 

analytical EMT and numerical EMT and the published data are presented in the 

results and discussions section. 
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3.2 Theory 

In the following, we use the subscripts i  and m  to represent the inclusion 

phase and matrix phase respectively and use the symbol p  to refer either i  

or m . The subscripts 1, 2 and 3 denote the X , Y  and Z  directions 

respectively. 

 

3.2.1 An effective medium theory (EMT) 

The EMT formulation used in this project was first developed by Shin et. al. 

[Shin et. al., 1989]. Suppose we have a binary composite with an effective 

physical property P . This composite property P  should be a function of the 

matrix property mP , the inclusion property iP  and the volume fraction of the 

inclusions φ . That is 

),,( φim PPfP =                         (3.1) 

 

Suppose we start with a pure matrix with the physical property mP . Now, we 

add some inclusions with the physical property iP  into it. Assuming that the 

volume fraction of the inclusions of this resulting composite at this stage is 1φ . 

The effective property 1P  should be given by 

),,( 11 φim PPfP =                         (3.2) 
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Now, we take this composite as a new matrix and we add inclusions into this 

new matrix such that the volume fraction with respect to this new matrix is 2φ . 

The effective property 2P  of the resulting composite is then 

),,( 212 φiPPfP =  

           ),),,,(( 21 φφ iim PPPff=                 (3.3) 

 

If the actual volume fraction of this composite is φ , we must have 

),),,,((),,( 21 φφφ iimim PPPffPPf =                 (3.4) 

and 

122 )1( φφφφ −+=                        (3.5) 

 

Differentiating equation (3.4) with respect to 1φ , then setting 01 =φ , we get 
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Equation (3.6) is the first order partial differential equation which involves one 

matrix variable only. In the following subsection, we use the same idea, but 

take into account more matrix variables, in order to find the effective 

piezoelectric coefficients of 1-3 composites. 
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3.2.2 Effective piezoelectric stress coefficients of a 1-3 composite based on 

analytical EMT approach 

As described in the previous section, EMT is an approach to obtain expressions 

of the effective properties at high volume fraction cases based on the dilute 

limit results. Therefore, before applying this approach, we have to consider the 

piezoelectric problem of a 1-3 composite with low volume fraction of 

inclusions. Suppose we have a composite with a single piezoelectric fiber 

embedded in a piezoelectric matrix and the fiber (and hence the composite) is 

poled along its axial direction ( Z  directions). We assume that both phases are 

transversely isotropic materials. Under proper boundary conditions, expressions 

of the effective piezoelectric stress coefficients ( 33e  and 31e ) and the stiffness 

constants ( 11C , 12C  and 13C ) can be found, as follows (see Appendix C) 
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where mmii CCCCC 12111211 −++≡  

and pCαβ , pe31  and pe33  are stiffness constants, transverse piezoelectric 

stress coefficients and longitudinal piezoelectric stress coefficients of the 

constituents respectively. 

 

Now we apply the EMT approach to find the effective piezoelectric stress 

coefficients for non-dilute cases. The expressions (3.7), (3.8) show that 33e  

and 31e  involve five and three matrix parameters respectively. By taking 

analogy to equation (3.6), the first order partial differential equations that 33e  

and 31e  should satisfy  
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The characteristic equations of (3.12) and (3.13) are (3.14) and (3.15), 

respectively. 
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The derivatives of the effective stiffness constants and the effective 

piezoelectric stress coefficients of the composite with respect to φ  at the 

dilute limit can be obtained from expressions (3.7) to (3.11), as follows 
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From equation (3.15), we can write 
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After integration, we get 
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The equalities in equation (3.15) linking 31e , 11C  and 12C  can be integrated 

to yield a first integral 
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Another first integral can be obtained by considering the equality in equation 

(3.14) that links 31e  and 13C  
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With the use of the equalities in equation (3.14) and the first integrals γ  and 

ω , we get 
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Equation (3.20) can be integrated to give  

[ ])(2)()1()(2 3131333331313333 mimiii eeeeeeee −−−−−−−= γωφγω     (3.21) 

 

Two analytical EMT expressions of 33e  and 31e  (equation (3.17) and (3.21)) 

are therefore obtained.  

 

3.2.3 Numerical calculation using EMT 

Chen [Chen, 1998] outlined the calculation steps of a numerical EMT scheme 

in solving the elastic problems of 1-3 composite, as follows. For a pure matrix, 

its volume fraction of inclusion is 00 =φ . When a small volume fraction δ  

of inclusion is added into it, the resulting composite has a volume fraction 

δφ =1 . The effective modulus of the composite is approximately equal to  

Effective modulus ≈  matrix’s modulus +  derivates of the effective modulus 

with respect to volume fraction φ  evaluated at 0=φ  

×  δ  

 

The above expression is valid only for small volume fraction δ . We take this 

composite as a new matrix and add the same volume fraction of the inclusions 

into this new matrix. At this stage, the volume fraction of the composite 
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becomes δφδφφ 112 −+= . By repeating this step, the effective modulus at the 

higher volume fractions can be estimated. 

 

Following these steps, we have estimated the effective piezoelectric properties 

of 1-3 composites at different volume fractions of the inclusions. Results from 

both the analytical and numerical EMT schemes are presented in section 3.3.1 

and 3.3.2 for the comparisons with some published data. 

 

3.2.4 Effective piezoelectric strain coefficients 33d  and 31d   

For transversely isotropic materials, the piezoelectric strain coefficients can be 

calculated by the following relations [ANSI/IEEE Std., 176-1987]. 
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In the analytical EMT calculation, we have adopted Chen model [Chen, 1998]. 

The transverse bulk modulus )(K , transverse shear modulus )( TG , axial 

Poisson's ratio )( Aν  and axial Young’s modulus )( AE , as given by Chen are 
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Using equations (3.24) – (3.27), the four effective stiffness constants can be 

determined [Christensen, 1991]  

TGKC −=11                                 (3.28) 

TGKC +=12                                 (3.29) 

AKC ν213 =                                  (3.30) 

KEC AA
2

33 4ν+=                              (3.31) 

Using equations (3.17) and (3.21) – (3.31), 31d  and 33d  can be determined.
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Results and Discussions 

3.3.1 Comparisons with experimental data  

Predictions based on our formulae are compared with the experimental data of 

Klicker [Klicker et. al., 1981] for 33d  of a PZT/Epoxy 1-3 composite. The 

properties of the constituents adopted in our calculations are listed in Table 3.1.  

 

Table 3.1 Material parameters of PZT and Epoxy [Klicker et. al., 1981] 
adopted in this calculation 

PZT  

11C  ( )GPa  118.4 12C  ( )GPa  58.5 

13C  ( )GPa  59.6 33C  ( )GPa  102.8 

33d  ( )NpC /  450 31d  ( )NpC /  -210 
Epoxy 

11C  ( )GPa  6.5 12C  ( )GPa  3.5 

 

Klicker et. al. [Klicker et. al., 1981] investigated the effects of the inclusion 

diameter on the effective piezoelectric strain coefficients 33d  of the composite. 

They reported experimental data of 33d  for inclusion diameters mμ400 , 

mμ600  and mμ840 . The thickness of these samples was mm4 . The ratio of 

the diameter of the inclusion to its thickness is called the aspect ratio. In this 

chapter, we only consider the piezoelectric problem of composite system 

having small aspect ratios. As the axial and radial displacement functions of a 

single piezoelectric fiber composite (see Appendix C) are independent of Z  
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coordinate, our EMT models can only be applied for the small aspect ratios 

composites. For comparison purposes, we choose experimental data of 33d  

corresponding to the smallest inclusion diameter. As shown in fig. 3.1, both 

analytical and numerical EMT schemes give similar predicted values and they 

have fairly good agreement with the experimental data. 

 

Figure 3.1 Comparison of theoretical predictions of EMT schemes with the 
experimental data of Klicker [Klicker et. al., 1981] for 33d  of 
PZT/Epoxy composites 
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3.3.2 Comparison with simulated data obtained from a finite element 

method (FEM) 

Our formulae are also compared with the simulated data for the effective 

piezoelectric stress coefficients ( 31e  and 33e ) of a PZT-5/polymer composite 

reported by Berger et. al. [Berger et. al., 2005], using numerical finite element 

method. Figs. 3.2(a) and (b) show the 31e  and 33e  comparisons respectively. 

The material properties of the constituents used in our calculations are shown in 

Table 3.2.  

 

Table 3.2 Material parameters of PZT-5 and polymer [Berger et. al., 2005] 
adopted in this calculation 

PZT-5  

11C  ( )GPa  121.0 12C  ( )GPa  75.4 

13C  ( )GPa  75.2 33C  ( )GPa  111.0 

33e  ( )2/ mC  
15.8 

31e  ( )2/ mC  
-5.4 

polymer 

11C  ( )GPa  3.86 12C  ( )GPa  2.57 

 

Fig. 3.2(a) shows that equation (3.17) has good performance for dilute 

suspension cases. At high volume fractions )3.0( >φ , there are tiny 

discrepancies between the theoretical values and the FEM data. This may be 

due to the fact that Berger et. al. [Berger et. al., 2005] have calculated the 

effective properties by using a 1-3 composite having periodic structure. Their 
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composite model consists of spatially periodic representative volume elements 

(RVEs). Each RVE consists of a single piezoelectric fiber embedded in a 

polymer matrix. The volume fraction of the 1-3 periodic composite is altered by 

modifying the diameter of each fiber inside a RVE. This may explain the very 

small deviations of our values at high volume fractions. However, for 33e  

comparison (shown in Fig. 3.2(b)), equation (3.21) agrees quite well with their 

simulated values.  

 

 

(a) 
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(b) 

 

Figure 3.2 Comparison of theoretical predictions of EMT schemes with the 
simulated data of Harald Berger et. al. [Berger et. al., 2005] for (a) 

31e  and (b) 33e  of PZT-5/polymer composites 
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Chapter 4 Conclusions 

 

In this project, I have succeeded in extending Poon and Shin approach [Poon 

and Shin, 2004] for treating elastic problem and piezoelectric problem of 0-3 

composites. In the first part of Chapter 2, I have derived two explicit formulae 

of the effective stiffness constants. These formulae are then compared with 

some published experimental data. It demonstrated that the model can give 

reasonable predictions. There formulae and the explicit formula of the effective 

dielectric constant reported by Poon and Shin [Poon and Shin, 2004] are then 

incorporated into Wong et. al.’s scheme [Wong et. al., 2001] for the predictions 

of 31d  and 33d . Results calculated made by the present scheme, Wong et. al.’s 

scheme and other theoretical works [Furukawa et. al., 1976, Jayasundere et. al., 

1994] are then compared with the experimental data of a PZT/polymer 

composite [Furukawa, 1989, Zou et. al., 1996]. The comparison showed that 

the scheme has comparable performance with Wong et. al.’s scheme. In the 

second part of Chapter 2, assuming that both constituents are dielectrically and 

elastically isotropic even they are polarized, expressions of two piezoelectric 

stress coefficients ( 31e  and 33e ) and four stiffness constants ( 11C , 12C , 13C  

and 33C ) are derived. Combining with the derived results, two expressions of 
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effective piezoelectric strain coefficients are obtained. Predictions made by our 

model and Wong et. al.’s model [Wong et. al., 2001] are compared with the 

experimental data of a 0-3 PZT/polymer composite system [Furukawa, 1989, 

Chan et. al., 1995, Zeng et. al., 2002] having three different polarization states: 

only the inclusion phase is polarized, both phases polarized in the same 

direction and the two phases polarized in opposite directions. For the first two 

cases, both our model and Wong et. al.’s model [Wong et. al., 2001] give 

similar performance. For the last case, when compared with Wong et. al.’s 

model [Wong et. al., 2001], our model give more favourable predictions.  

 

In chapter 3, I have applied an EMT method in treating the piezoelectric 

problem of a 1-3 piezoelectric fiber composite. Expressions of the effective 

piezoelectric stress coefficients ( 31e  and 33e ) are derived. This method has 

been used in treating the elastic problems of 1-3 composite and the resulting 

formulae shows fairly good agreement with experimental data, even at high 

volume fraction cases [Chen, 1998]. The formulae obtained are then combined 

with Chen’s results [Chen, 1998] to evaluate the effective piezoelectric strain 

coefficients. Predictions are compared with the experimental data of 33d  of a 

1-3 PZT/epoxy composite [Klicker et. al., 1981] and the simulated values of 
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33e  and 31e  of a 1-3 PZT/polymer composite [Berger et. al., 2005]. Numerical 

EMT calculations are also carried out for comparison purposes. The 33d  

comparisons show that our predicted values agree well with the experimental 

data. For piezoelectric stress coefficients comparisons, there are, however, 

small discrepancies between the predicted values and the numerical FEM data 

[Berger et. al., 2005] when the volume fractions are above 0.3. This may be due 

to the fact that in the FEM calculation, different volume fractions were obtained 

by merely changing the diameter of the single fiber inside each representative 

volume element. 

 

Up to now, I have used Poon and Shin’s idea to find the effective properties of 

0-3 piezoelectric composites. In the future, it is interesting to investigate 

whether this approach can be extended in treating 1-3 piezoelectric composite 

problems.  

 

For the 1-3 composite, I have applied effective medium theory (EMT) to find 

the effective piezoelectric properties of 1-3 composites with high inclusion 

concentrations. However, it is applicable only for 1-3 composites having fibers 

with small aspect ratio. As have been mentioned in section 1.2.2, there are 
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many theoretical works on the study of the effect of aspect ratio on the effective 

piezoelectric coefficients of 1-3 composites. However, those models are useful 

for low volume fraction composites. For further study, the idea of EMT can be 

extended to study the effect of aspect ratios on the effective piezoelectric 

coefficients of 1-3 composite at high volume fractions of the fibers.    
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Appendix A  

Analytical elastic solutions of a single sphere composite 

 

Goodier [Goodier, 1933] studied the elastic properties of a single inclusion 

embedded in an infinite matrix. Suppose a single inclusion composite was 

subjected to an external stress 3T  and a uniform tension 0T  is acting in the 

matrix far away from the inclusion. Expressions of the non-vanishing 

displacement (u ) and stress (T ) components of the constituents, in spherical 

coordinates ( r , θ , ϕ ) , were found to be 
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where a , mE , ν  were the radius of an inclusion, the elastic modulus of the 

matrix and the Poisson’s ratio. 1A , 2A , 3A , 1B , 2B  and 3B  were constants. 

Goodier [Goodier, 1933] had worked out 1A , 2A  and 3A . The remaining 

constants can be found in Wong et. al.’s paper [Wong et. al., 2001]. 
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By transforming the Goodier’s solution to Cartesian coordinates, we obtain the 

stress components inside the constituents and their expressions are given as 

follows 
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The general stress-strain formulae are 

( ) ⎥⎦
⎤

⎢⎣
⎡ +++
−

= 1133221111 21
2 SSSST

ν
νμ  

( ) ⎥⎦
⎤

⎢⎣
⎡ +++
−

= 2233221122 21
2 SSSST

ν
νμ  



85 

( ) ⎥⎦
⎤

⎢⎣
⎡ +++
−

= 3333221133 21
2 SSSST

ν
νμ  (A22) 

 

Using equations (A19)-(A22), expressions of strain components S  of the 

inclusion can be obtained. 
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For the matrix phase, its stress components were given by 
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Using the equation (A22), (A25) and (A26), expressions of strain components 

of the matrix can be obtained. 
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Appendix B 

Derivations of the effective bulk and shear modulus for 0-3 

composites having high volume fractions of the inclusions 

 

Equation (2.19) can be written in the following form 
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and the subscript p  denotes i  or m . 

 

Since both phases are isotropic materials, their elastic behaviours can be 

described by equation (2.14). Using equation (2.14), (B1) can be expressed as 

follows 
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Combining the equations of 1mTδ , 2mTδ  and 3mTδ , we obtain 
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From equation (B2), we get 
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Using equation (B3), we obtain 
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From the equation (2.21), we have 
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Substituting the equations (B4) and (B12) into equation (B8), we obtain 
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Substituting the equations (B5) and (B13) into equation (B9), we get 

)(
)(

)1(

1)()( ''''

mBmA

iBiA
iBiABA

RR
RR

RRRR

−
−

−+
−=−

φφ
φ       (B15) 

 

Substituting the equations (B6), (B7), (B10), (B11) and (2.12) into equations 

(B14) and (B15), two explicit formulae of the effective bulk modulus k  and 

the effective shear modulus μ  are obtained. 
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Appendix C 

Effective piezoelectric coefficients of a single piezoelectric fiber 

composite 

 

Consider a composite consisted of a single piezoelectric fiber inclusion 

embedded in a piezoelectric matrix. Both phases are transversely isotropic 

materials. An external electric field E  is applied in its axial direction ( Z  

direction). We assumed that the electric field strengths inside both phases are 

equal to the applied electric field (i.e. EEE mi == ). Suppose the composite is 

poled along Z  direction. The piezoelectric relations of the constituents, in our 

case, are given by  

EeSCSCSCT ppppprrpprrp 3133131211 −++= θθ                (C1) 

EeSCSCSCT ppppprrppp 3133131112 −++= θθθθ                (C2) 

EeSCSCSCT ppppprrppp 333333131333 −++= θθ               (C3) 

ESeSeSeD ppppprrppp 33333331313 εθθ +++=                (C4) 

where T , S , αβC , and αβε  are the stress, strain, stiffness constants and 

dielectric constants, respectively. The subscripts r  and θ  represent the radial 

and tangential directions respectively.  
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The radial displacement rpU  and the axial displacement pU3  are given by 

r
B

rAU p
prp +=                           (C5) 

ξ=pU 3  z                              (C6) 

where pA , pB  and ξ  are constants to be determined by boundary conditions, 

as follows  

(i) Along the symmetry axis of the inclusion (i.e. 0=r ), the solution must 

be bounded. Hence 0=iB . 

(ii) At the interface between the inclusion and the matrix (i.e. Rr = , where 

R  is the radius of the fiber), we have 

rmri UU =                             (C7) 

rrmrri TT =                             (C8) 

From (C7), we get 

2R
B

AA m
mi +=                         (C9) 

Before applying the boundary condition (C8), we need to determine the strain 

components of the constituents. Using equations (C5) and (C6), strain values 

can be determined.   
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prrp −=                           (C10) 

2r
B

AS p
pp +=θθ                           (C11) 

ξ=pS33                                (C12) 
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Substituting equations (C10) to (C12) into equation (C1), we have 

EeCSCACT iiiiiirri 31131211 −++= ξ                       (C13) 
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Substituting equations (C9) into (C13) and (C14) and using equation (C8), we 

get 
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where mmii CCCCC 12111211 −++≡  

 

After transforming the strain components of the constituents into Cartesian 

coordinates, we get 
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After taking the volumetric average, we obtain  

iii ASS == 2211  and mmm ASS == 2211             (C20) 

 

The volumetric average of the Cartesian stresses and electric displacements of 

both phases can then be obtained. 

EeSCSCSCT pppppppp 3133132212111111 −++=                (C21) 

EeSCSCSCT pppppppp 3133132211111222 −++=                (C22) 

EeSCSCSCT pppppppp 3333332213111333 −++=                (C23) 

ESeSeSeD pppppppp 333333223111313 ε+++=                 (C24) 

 

And the strains of the composite are obtained as follow 

mi AASS )1(2211 φφ −+==                       (C25) 

ξφφ =−+= mi SSS 333333 )1(                    (C26) 

where x  denotes the volumetric average of the physical quantity x  over 

the respective material and φ  is the volume fraction.  

 

Using equation (C15) and (C25), we can obtain the following relations. 
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From the definition of the volumetric average, we have 

mi TTT 111111 )1( φφ −+=                      (C29) 

mi TTT 333333 )1( φφ −+=                      (C30) 

 

Substituting equation (C21) into equation (C29), we get 

( )EeSCSCSCT iiiiiii 3133132212111111 −++= φ  

( )( )EeSCSCSC mmmmmmm 313313221211111 −++−+ φ             (C31) 

 

Substituting equation (C23) into equation (C30), we get 

( )EeSCSCSCT iiiiiii 3333332213111333 −++= φ  

( )( )EeSCSCSC mmmmmmm 333333221311131 −++−+ φ             (C32) 

 

Substituting equation (C20) and equation (C12) into equation (C31) and 

equation (C32), we obtain 

( )EeCACACT iiiiii 3113121111 −++= ξφ  

( )( )EeCACAC mmmmmm 311312111 −++−+ ξφ             (C33) 
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( )EeCACACT iiiiii 3333131333 −++= ξφ  

( )( )EeCACAC mmmmmm 333313131 −++−+ ξφ             (C34) 

 

Using equations (C15) and (C26) to (C28), 11T  and 33T  can be expressed 

in terms of 11S , 22S , 33S  and E ,  

EeSCSCSCT 3133132212111111 −++=              (C35) 

EeSCSCSCT 3333332213111333 −++=              (C36) 

where 11C , 12C , 13C , 33C , 31e  and 33e  are the effective coefficients. They 

are now derived to be 
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