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Abstract

The Poon and Shin approach of finding an explicit formula for the effective

dielectric constant of 0-3 composites was extended to obtain two explicit

expressions for the prediction of the elastic properties (bulk modulus and shear

modulus) of isotropic 0-3 composites. Predictions using these two expressions

were compared with experimental data for elastic properties of a glass/epoxy

composite. Good agreements, even for high volume fractions of the glass fibers

were resulted. These two expressions were then combined with Poon and

Shin's explicit effective dielectric formula into the calculation scheme of Wong

et al. As a result, two explicit formulas for the prediction of d,, and d.,

values for binary 0-3 piezoelectric composites were obtained. Comparisons of

the predictions made by these explicit formulas, Wong et. al.’s scheme and the

published experimental data of d, of PZT/PVDF and d,; of

PbTiO3/P(VDF/TeFE) were presented.

Another pair of explicit formulae for the effective piezoelectric coefficients (d,,

and d,;) of 0-3 composite of ferroelectric spheres embedded in a ferroelectric

matrix taking into account the piezoelectric properties were also derived based



on Poon and Shin approach, By assuming that both phases were dielectrically
and elastically isotropic even they were polarized, we were able to express the
effective piezoelectric coefficients directly in terms of the properties of the
constituents. Predictions made were then compared with published experimental
data of the d,, of a PZT/PVDF composite (in which only the ceramic phase
was polarized), the d,, of a PZT/P(VDF-TrFE) composites (with both phases
polarized in the same direction) and d, , d,; of a PZT/P(VDF-TrFE)
composite (with the two phases polarized in opposite directions). Fairly good
agreements were demonstrated. For the first two cases, results showed that both
our model and Wong et. al.’s scheme had comparable performance. However, for

the last case, our model gave more favourable predictions.

Effective piezoelectric coefficients of 1-3 piezoelectric fibre composites were
also considered. Two explicit formulae for the effective piezoelectric stress
coefficients (e,, and e,,) were derived based on an effective medium theory
(EMT) method, under the assumptions that both phases were transversely
isotropic and the electric field strengths inside the constituents were equal to the
applied electric field. The results obtained were then combined with Chen model

to evaluate the longitudinal piezoelectric strain coefficient d.,. Apart from the



analytical EMT method, the effective piezoelectric coefficients of 1-3 composite
were also calculated by a numerical EMT scheme. Results from both schemes
were compared with the published experimental data of d,, of a 1-3 PZT/epoxy

composite and the numerical values of e, and e, estimated by a finite

element method of a 1-3 PZT/polymer composite.
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Chapter 1 Introduction

1.1 Background

Piezoelectricity was discovered by Pierre and his brother Jacques in 1880. They
found that for some material, an electric field is induced inside when a
mechanical stress is applied on it. This is called the direct piezoelectric effect.
In 1881, they discovered the converse piezoelectric effect: some materials
undergo deformation when electric field is applied. Most of these materials
have a perovskite ABO3 structure and have spontaneous polarization at room
temperature. However, before poling, these piezoelectric materials do not
exhibit any piezoelectric effect due to the random orientations of the
polarization inside the domains in the materials. When a large electric field is
applied to pole the material, the spontaneous polarization inside each domain
will be reoriented along the electric field direction. As a result, permanent

polarization exists and the material can exhibit piezoelectric effect.



The piezoelectric coefficients d of a piezoelectric material are defined by the
following equations

Sij = dkij Ek +siJEkITkI

D; =&y B +dy Ty (1.1)
where S, E, T, D, s and ¢ are strain, electric field, stress, electric
displacement, elastic compliance and permittivity respectively. The
superscripts E and T indicate that the elastic compliance and the
permittivity are measured under constant electric field and constant applied
stress respectively. The subscripts i, j, k, | can take values 1, 2 or 3,

representingthe X, Y and Z directions respectively.

To simplify the notation, the ordered pairs ij or kl can be replaced by a
singleindex p or g as follows [ANSI/IEEE Std., 176-1987]

11 =21, 222, 3323, 230r32->4, 3lorl3->5, 12o0r21->6.

Equations (1.1) can then be rewritten as

Pq " q

S, =d,E, +SET

D, = 64E, +d,T, (1.2)



Piezoelectric materials have been widely used in ultrasonic transducers,

hydrophones and sensors [D. Stansfiedld, 1990]. Piezoceramics are usually

good choices because of their high electromechanical coupling factor, which is

defined as the square root of the ratio of output electrical (mechanical) energy

to input mechanical (electrical) energy, and piezoelectric coefficients. However,

piezoceramics have the limitations of having high stiffness constants and low

hydrostatic piezoelectric coefficient d, (=d, +d,, +d,,) . Piezoelectric

polymers such as polyvinylidene fluoride (PVDF) and its copolymer vinylidene

fluoride /trifluorethylene (VDF/TrFE) are alternatives because they have high

mechanical flexibility and hydrostatic piezoelectric coefficient. However, when

compared with piezoceramics, piezoelectric polymers have much lower

piezoelectric coefficients. Piezoelectric composites overcome the limitations of

these single phase materials by taking advantages of each constituent and they

can be tailor-made for specific applications. For a binary composite, there are

ten possible connectivities of the constituent materials (0-0, 0-1, 0-2, 0-3, 1-1,

1-2, 1-3, 2-2, 2-3 and 3-3) [Newnham et al., 1978, Tressler et. al., 1999]. In this

notation, the first (second) digit denotes the dimension of the inclusion phase

(matrix phase). Among the ten connectivities, 0-3 and 1-3 are the two most

important morphologies [Dias and Das-Gupta, 1994].



0-3 piezoelectric composites usually consist of piezoelectric particles
embedded in a matrix that may or may not be piezoelectric. For 1-3 composites,
piezoelectric rods or fibers are embedded instead. In this project, we will
concentrate on finding the effective piezoelectric coefficients of 0-3 and 1-3

composites.



1.2 Literature review

In this section, we shall use the subscripts i and m to denote the inclusion

phase and the matrix phase respectively. We shall use the subscripts 1, 2 and

3 to represent the X , Y and Z (the poling direction) directions

respectively.

1.2.1 Literature review on 0-3 piezoelectric composites

Earlier modelling studies on 0-3 piezoelectric composites usually considered

piezoelectric spherical or ellipsoidal inclusions in a non-piezoelectric medium.

The researchers usually did not specify which piezoelectric constant were being

considered. Furukawa et. al.’s [Furukawa et. al., 1976], Yamada et. al.’s

[Yamada et. al., 1982], Jayasundere et. al.’s [Jayasundere et. al., 1994] and

Prasad et. al.’s [Prasad et. al., 1996] models are some typical examples.

Furukawa et al. [Furukawa et. al., 1976] proposed a model of 0-3 composite

materials that consisted of an inner sphere representing the inclusion phase and

a concentric spherical shell representing the matrix phase. The combination was

taken as a representative unit and it was surrounded by a homogeneous medium



having the gross overall effective dielectric and elastic properties of the

representative unit itself. They further assumed that both phases were isotropic

and incompressible. Based on these assumptions, expressions of the effective

dielectric constants (&), elastic constants (c) and piezoelectric coefficients (d )

were derived as follows

28,48, -20(5,-5)

- m (13)
2, +& +o(e, — &)

o 3c,, +2c, —3¢4(c, —C,) ¢ (1.4)
3c,, +2¢;, +2¢4(c,, —C;)

d=dlcL.d, (1.5)

where ¢ is the volume fraction of the inclusion phase. L. and L, were

called the local field coefficients and were defined as follows

—
m
1l

(1.6)

L, = (1.7)

—|— m|m

where E and T are the average electric field and average stress over a

composite respectively.



Matrix

Homogeneous

Fig 1.1 An illustrated diagram for Furukawa’s model

In 1979, Furukawa et. al. [Furukawa et. al., 1979] considered the contribution
of the piezoelectric properties of the matrix phase. The effective piezoelectric

coefficients of the composite was derived to be

d=gLeLod +ﬁ(1—¢LE)(1—¢LT)dm (L8)

Yamada et al. [Yamada et al., 1982] studied the dielectric and the piezoelectric
properties of a composite composed of piezoelectric ellipsoidal particles
embedded in a dielectric matrix. The effective dielectric constant was found to

be



n¢(‘9i _gm)
e, +(& —&,)1-¢)

e=¢, {1+ } (1.9)
where n was called the shape parameter of the inclusion.
The effective piezoelectric coefficient of the composite was also found

d = gaGd, (1.10)
where « was called the poling ratio and G was called the local electric field

coefficient. Expressions of G and n can be found in Yamada et. al.’s paper

[Yamada et. al., 1982].

Jayasundere [Jayasundere et. al., 1993, 1994] derived analytic expressions for
the effective dielectric constant and an effective piezoelectric coefficient of 0-3
composites composed of piezoelectric spheres embedded in a dielectric matrix.
For the dielectric problem, they considered the case when the composite was
subjected to an external electric field so that each inclusion was polarized and
can be represented by a dipole moment. Taking the interaction effects into
account and using the condition &, >>¢,, they derived an expression for the
effective permittivity of the composite.

3¢, 1434 & —é&n
& +2¢ & +2¢,

I m

A-g)+ Pen [1+3¢ 8i‘gm}
& +2¢,

+2¢ & +2¢,

€ (1_¢) T &

= (1.11)




For the piezoelectric problem, they considered the situation that the composite
was subjected to an external stress, so that polarization was induced inside each
inclusion due to the inclusion stress. Similar to the dielectric problem,

assuming g, >>¢, and c, c, >>c,_, the effective piezoelectric coefficient

was derived to be

3¢,

2¢,, + & ) (1.12)

d~d S+
The effective permittivity ¢ appeared in equation (1.12) was given by

equation (1.11).

Parasad et. al. [Prasad et. al., 1996] derived theoretically an effective
piezoelectric stress coefficient based on Jayasundere [Jayasundere et. al., 1993]
and Furukawa [Furukawa et. al., 1976] results. They found that the effective

piezoelectric stress coefficient of the composite was as follows

e:i C,—C¢&,—¢
¢Cm_ci Em &

| (1.13)

where the stiffness constant ¢ and the dielectric constant ¢ were determined

by equations (1.4) and (1.11) respectively.

All the above models were developed based on the assumption that the



piezoelectric activity of the composite was contributed by the inclusion phase

only. Their results usually showed large derivations for available experimental

data, especially at high volume fractions of the inclusions.

Recently, more researchers [Levin et. al., 2000, Levin and Luchaninov, 2001,

Wong et. al., 2001, 2003] focused on the piezoelectric problem of 0-3

composites at high volume fractions of the inclusions.

For example, Levin et. al. [Levin et. al., 2000, Levin and Luchaninov, 2001]

studied the effective constants for a pyroelectric 0-3 composite. The matrix

phase and the inclusion phase considered were polarized in opposite directions.

For high volume fractions of the inclusions, they used an effective field method,

which is a kind of self-consistent schemes, to estimate the effective properties

of the composites. The derived expressions of the piezoelectric stress

coefficients (e,,, e;; and e;) were

[04
€31 =€ %[alesﬁ _72(Clli +Cpy) —asCiyl (1.14)
€33 =€y T %[aleasi —a,Cpy —a3Cyy] (1.15)
€ =€, +0 €585 —4C.Q, (1.16)
BSbl - 4Q2Q2

10



where the expressions for «, (k=1-3), A, Q,, By, b, and g, can be

found in their papers [Levin et. al., 2000, Levin and Luchaninov, 2001].

Wong et. al [Wong et. al., 2001] considered firstly the piezoelectric problem at
low volume fractions and built their theoretical models based on the solutions
of the dielectric [Wong et. al., 2001] and the mechanical [Goodier, 1933]
problems of a single spherical inclusion composite. The effective piezoelectric
coefficients were found to be

Aoy = A [(L +L)d,, + Lidyy 1+ A= @)Le[(Lr + L1)d,, +Lrdy ] (1.17)

d33 = ¢|—E [ZL#dsu + I-/T/ds3i]+ (1_¢)EE[2[TLd31m +E¥d33m] (1-18)

where L. and L, were called the electrical field factors and the stress field

factors respectively and were defined as follows

L 3e,,
T -P)E + 2+ s,
L=ttt

1-¢
L | _ J
T 1-g(1-31) 1-¢(1-3J)
y | L2
T 1-g(1-31) 1-¢(1-3J)
e

1-¢
oo

1-¢

11



I :1_Vm (1+Vi)/ui
1+vy 20 -2v) )y + QA+ vi) g
_ 5(1_Vm):ui
(T=5vy ) + 2(4=5v, )i,

where v and g are the Poisson’s ratio and the shear modulus respectively.

For the concentrated inclusion cases, they replaced L. and L. by new
electrical field factors F. and stress field factors F.. Two piezoelectric

equations for non-dilute cases were found

Ay = g [(F; + F )y + Frdy ]+ (A= @)F e[(F7 + F1)dgy, + Frdyg, ] (1.19)

dyy = g [2F; Ay + gy 1+ (- A)F e[2F 7y, + Frdg, ] (1.20)
where
F :1 E—&p
¢ & — &y
[
1-¢ & —¢,

12



In the above equations, the effective dielectric permittivity &, the effective

bulk modulus k and the effective shear modulus 4« were then determined by

Bruggeman [Bruggeman, 1935] and Hashin [Hashin, 1962].

In 2003, Wong et. al. [Wong et. al., 2003] derived another two explicit
expressions of the effective piezoelectric stress coefficients, based on an
effective medium theory (EMT). The EMT formulae of the effective stress

coefficients e, (under hydrostatic loading) and e, (under shear loading)

were given by

& +de, g +de
. —
(& +2¢,)° (& +2¢)°

(ki —K) (e +8en)en = (& +8e)¢
K (6, +26,)° (s +Zg)2]}ehi (1.21)

ey = (L-P)F e Ls (e, — &) +{L+ (5, — )

13



& +ade, s g tde
. —
(& +2¢,)° (g +2¢)?

(4 — ) x (& +8zy)é Fe - (&, +88)g]}eg

& =(1-g)FeLs(e,, —e;) +{L+ (& — &)l

+ E
M (&; +25m)2 (&; +23)2
(1.22)
where
1 k-k
Ly == m
¢ ki _km
LS :i ﬂ_/’lm
¢lui —Hy
0o
1-¢
[
1-¢

1.2.2 Literature review on 1-3 piezoelectric composites

This section gives a brief summary on some previous theoretical studies of the

effective piezoelectric properties of 1-3 composites consist of piezoelectric

inclusions embedded in a non-piezoelectric isotropic matrix.

Chan and Unsworth [Chan and Unsworth, 1989] and Smith [Smith, 1991, 1993]

derived simple analytic expressions. They assumed that both phases were

undergone the same strain in the Z directions, and the expressions of the

effective piezoelectric coefficients were found to be

14



eSl — @SH (Cllm + ClZm )E = (123)
P(Cpyp +Cppp) + (1=9)(C; +Ciz)

_ _ 2¢e31i (Clgi — C12m )
o e G+ Con) + - A)(CE 1CE) (29
(1_ ¢)d33i (Slsi — lem)
d.. =dld.. — 1.25
G R (29
d,, =d B (1.26)

B + (- @)Sgy

where C_, and s, were stiffness constants and elastic compliances

respectively. Their models did not consider the geometry of the inclusion and
were derived under the assumption that the inclusions had small aspect ratio.
Here, the aspect ratio y was defined as the ratio of the diameter (or width) to
the length of the inclusion. It was found to be a critical parameter affecting the
effective properties of 1-3 composites and had been studied by many authors
[Cao et. al., 1992; Zhang et. al., 1993; Nan and Jin, 1993; Nan, 1994; Sottos

and Li, 1994; Li and Sottos, 1995, 1995].

Cao et. al. studied profile of the Z component of the displacement of each
constituent and the effective hydrostatic piezoelectric coefficients of the
composite. Their model consisted of a single piezoelectric fiber embedded in a
passive matrix. They found that when an external stress T, was applied, the
two phases had different displacement profiles, as expected, due to their

different elastic and piezoelectric properties. For the piezoelectric problem, a

15



hydrostatic stress was applied, and they found that as stress was transferred
from the matrix phase to the inclusion phase, the induced surface charge
density was increased. The derived expression for the effective hydrostatic
piezoelectric coefficient was

d, =d(y,d. +2d,,) (1.27)
where y, was called the stress amplification factor, given by

7 :1+771 (1.28)
1

where
n=0la)l, (o)1 (Prn) K (Pam) = 11 (Pan) Ki (PR IIA = 20,,) 1Y, — (1= 207)S34]
1 = (2535 1 C i) (06 )1 (P ) Ki (L) = 11 (P ) Ky (Pri)]

+ 2/Ym/um Il(pai)[ll(pRm)Ko(pam)+ Kl(pRm)Io(pam)]

and ¢, a, R, Y,,, u,, S, C,; are the length, radius of the inclusion,

radius of the composite, Young’s modulus of the matrix phase, shear modulus
of the matrix phase, elastic compliance of the inclusion and the stiffness

constant of the inclusion, respectively. I,, K,, I, and K, are the zeroth-
and first-order modified Bessel functions. Expressions of o,,, o, and p can

be found in their paper [Cao et. al., 1992].

16



Zhang et. al. [Zhang et. al., 1993] further extended Cao et. al.’s model. They
considered the influence of deformation of each PZT rod by its eight nearest

neighbor rods. Their model was shown to be applicable upto ¢~0.2.

Nan and Jin [Nan and Jin, 1993] developed a theoretical model for the effective
properties of piezoelectric 1-3 composites based on a multi-scattering theory
[Nan, 1993]. Their work was compared with the experimental data of
piezoelectric coefficients of 1-3 PZT/Epoxy composites. The model took the
where C° and &° were the

approximation that C°=C_ and &’=¢

m m?

stiffness constant and the permittivity tensors of a homogeneous comparison
medium. This method was called the nonself-consistency (NSC). The

expressions for the effective piezoelectric stress coefficients were found to be

_ . (K+m,)
€y =@y (K +m.) (1.29)
—de oo Cui—Ci)
€y = oy — 208y (K.+m) (1.30)
Pisien (M, +2C) (1.31)

%5 = [0t e, + (L—9)erg (M, +2Coy)

where K=C,+C,, m=C,-C,

and C,, C,, C, and C,, were the stiffness constants of the composite.

17



As the concentration of the inclusion increases, the anisotropy of the composite
become significant and the NCS scheme can no longer be applied. For the
concentrated cases, Nan [Nan, 1994] took another approximation that C°=C
and &°=¢,where C and & were the stiffness constant and the permittivity
tensors of the composite. This was called the self-consistent effective medium
theory (SCEMT). SCEMT expressions of three effective piezoelectric stress

coefficients were

fu__ _Pa \_g (1.32)
K+m K,+m
2e,.(C, —-C
<933i —€3— Sll(K_li'm 13)>:O (1.33)
< e15 _ 4e15iC55 >: 0 (134)
Eni & (Cos +3Css) (61 +611)

where the bracket represented volume averages.

When compared with the experimental data of the hydrostatic voltage
coefficient g, of PZT/Epoxy composite for two aspect ratios ( y =0.210 and

x =0.1), their predicted values agreed wellupto ¢ ~0.5.

Li and Sottos [Li and Sottos, 1995, 1995, Sottos and Li, 1994] considered a

composite system with a single piezoelectric fiber embedded in a

18



non-piezoelectric polymer matrix, and there was an interlayer between the

inclusion phase and the matrix phase. They investigated the effects of aspect

ratio, matrix stiffness and the Poisson ratio of the interlayer on the effective

piezoelectric coefficients of the composite. Expressions of the displacements

and stresses components in all three phases were derived. They assumed that

the composite was subjected to a compressive hydrostatic pressure p . Using

the proper boundary conditions and evaluating the average stresses and strains

components in all three phases, the effective hydrostatic piezoelectric constant

of the composite was found from the definition and the volumetric average of

the electric displacement of the composite.

He and Lim [He and Lim, 2003] studied the effect of interfacial sliding on the

effective piezoelectric coefficients of 1-3 composites. They considered the case

in which the composite was subjected to a longitudinal shear stress 7, and at

the same time, an external transverse electric field E, was applied. Using

proper boundary conditions, the stresses, strains, electric fields and electric

displacements of the constituents were derived. For larger volume fractions of

piezoelectric inclusions, the Mori-Tanaka mean field approximation [Mori and

Tanaka, 1973] was adopted. The overall electromechanical responses of the

19



composite can be characterized by the volume-averaged stress (o), strain

(73). electric field (E,) and electric displacement (D,). They were given

by
(on)=7;  (E2)=E
(72) = . (L. 9)70 + 0, (1. )7,
(D2) =i (L), +y, (L, B)7,
(Ez) = ¢(Es) + (L= #)(Ezn)

<‘723> = ¢<023i > +(1- ¢)<O-23m>

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

where t was time and expressions of ¢,, ¢,, v, and w, can be found in

their paper [He and Lim, 2003].

And the required stress and electric field components were given by
<023p> = Alp (t’ ¢)T0 + A2p (t, ¢) EO
(Esp) =By, (. h)7o + By, (L. 4)E,

where p denoted i or m and expressions of A , A, , B

p? 1p

can be found in their paper [He and Lim, 2003].

(1.40)

(1.41)

and B,,

Berger et. al. [Berger et. al., 2005] applied the finite element method (FEM) for

calculating the effective properties of piezoelectric fiber composites. In order to

20



use FEM method, the composite material was represented by a periodical
structure of representative volume elements (RVEs). Each RVE contained a
piezoelectric fiber. They used this approach to find out the effective stiffness
constants and the effective piezoelectric stress coefficients of a PZT/polymer

composite.

Ren and Fan [Ren and Fan, 2006] investigated the effects of the oblique angles,
volume fraction and the material properties of the constituents on the
hydrostatic response of 1-3 composites. Oblique angle was defined as the
orientation angle with respect to the poling axis of the fibers embedded in the
matrix. They found that the total coupling factor k' (zm) was
highest when the oblique angle was around 27 ° and when the volume fraction

of the inclusion was around 0.87.

Ray and Pradhan [Ray and Pradhan, 2006] studied the performance of lamina
made of 1-3 piezoelectric composite material. They assumed that the composite
was poled inthe Z direction and the composite was in a plain strain state (i.e.

S,i=S,, =0). They assumed that both phases had the same vertical

21



strain and the same lateral stress. Under these approximations, the derived

expressions were as follows

. a-gcy
o = Call e+ e (142)
633 — ¢[e33i —e (1 - ¢)(Cl3i - Cl3m )] (143)

M (1-4)Cyy +¢Cus,

22



1.3 Scope of this study

The aim of this project is to study theoretically the effective piezoelectric
coefficients of 0-3 and 1-3 composites. As mentioned in the introduction, these
composites are important engineering materials and their piezoelectric

properties can be tailored to suit specific applications.

The following is the structure of the thesis. Chapter 2 is divided into two parts.
In the first part, we employ Poon and Shin approach [Poon and Shin, 2004] to
derive two explicit formulae of the effective mechanical properties of 0-3
composites. These two formulae, together with the explicit expression of
dielectric property reported by Poon and Shin are incorporated into Wong et.
al.’s model [Wong et. al., 2001] to give two explicit formulae for the effective
piezoelectric strain coefficients. Comparisons of the prediction of our model,
Furukawa model [Furukawa, 1976], Jayasundere et. al.’s model [Jayasundere et.
al., 1994] and some published experimental data are presented. In the second
part, we employ the same approach to consider the piezoelectric problem of 0-3

composites, but from the very beginning. Expressions of the effective

piezoelectric stress coefficients (e, and e,; ) and the effective stiffness

constants (C,,, C,,, C,; and C,,) are derived. The predicted values of the
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model are compared with experimental data of piezoelectric coefficients of 0-3

composites having three different polarization states: only the inclusion phase

is polarized; both phases are polarized in the same direction and both phases

are polarized in opposite directions. In chapter 3, we employ an effective

medium theory (EMT) to find explicit expressions of piezoelectric stress

coefficients for 1-3 composites at high volume fraction limit. The expressions

are compared with some experimental data and simulated data from finite

element method reported in the literature. Chapter 4 concludes what we have

done so far and suggested some possible future works.
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Chapter 2  Effective piezoelectric coefficients of 0-3 composite

2.1 Introduction

Ferroelectrics composites have been studied for many years [Dias and
Das-Gupta, 1996]. Their effective piezoelectric coefficients are important
parameters in the design of piezoelectric devices because their values can be
modified by varying the inclusion content in the composites. Recently, there
have been many experimental works on the effective piezoelectric coefficients
of 0-3 PZT/polymer composites [Chan et. al., 1994, 1995, Chan et. al., 1998,
Chan et. al., 1999, Ng et. al., 2000]. It has also been demonstrated [Chan et.
al., 1999] that the effective piezoelectric properties can be modified further by
using different poling methods due to the different signs of the piezoelectric

coefficients of some of their constituents.

The aim of this chapter is to develop theoretical models for the predictions of
the effective piezoelectric properties of 0-3 composites based on Poon and Shin
approach [Poon and Shin, 2004]. The main idea of this approach is to take into
account the interaction between the particulates. A brief review on this

approach will be given in section 2.2.
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In section 2.3, we employ Poon and Shin approach in treating the elastic

problem of the 0-3 composite. Two new formulae for the effective stiffness

constants are obtained and the values predicted are compared with the

experimental data of Smith [Smith, 1976]. For the effective piezoelectric

coefficients comparisons, predictions made by our scheme, Wong et. al.’s

model [Wong et. al., 2001] and Furukawa et. al.’s model [Furukawa et. al.,

1976] are compared with experimental results of d, of PZT/PVDF

composites [Furukawa, 1989]. For d,,, predicted values calculated by our

scheme, Wong et. al.’s model and Jayasundere et. al. [Jayasundere et. al., 1994]

are compared with the experimental data of a PbTiOs/P(VDF/TeFE) system

[Zou et. al., 1996].

In section 2.4, we used the same approach, but from the very beginning, to treat

the piezoelectric problem of 0-3 composites. Assuming that both phases remain

dielectrically and elastically isotropic even when they are polarized,

expressions of the effective piezoelectric stress coefficients and the effective

stiffness constants are derived. The results obtained are then used to find the

effective piezoelectric strain coefficients. Predictions made by our model and

Wong et. al.’s model were compared with the experimental data of
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PZT/polymer composites having three different polarization states. Namely,
only the inclusion phase is polarized; both phases are polarized in the same

direction and the two phases are polarized in opposite directions.

In the following sections of this chapter, we shall use the symbols i and m
to refer to the inclusion phase and the matrix phase respectively and use p to
represent either i or m. We use subscripts 1, 2 and 3 to denote the X,
Y and Z directions, respectively and use <x> to denote the volumetric

average of the physical quantity X over the respective material.
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2.2 A brief review of Poon and Shin approach

Poon and Shin [Poon and Shin, 2004] considered the dielectric problem of a
single dielectric sphere with dielectric constant &, embedded in an infinite
matrix with dielectric constant ¢ . When an external electric field is applied
along the Z direction and suppose <E3m> is the electric field in the matrix
region far away from the inclusion, it can be shown that the electric field <E3i>
inside the inclusion, is uniform and parallel t0<E3m> [Wong et. al., 2001]. The
relationship between the electric fields (E;) and (E,,) , and the
corresponding electric displacements (D) and (D, ) is given by [Wong et.
al., 2001]

<D3i>_<D3m>:_ng(<E3i>_<E3m>) (2.1)

Defining AD =(D;)—(D,,) and AE =(E;)—(E,,), it can be written in the
form:

AD = —2¢_AE (2.2)

Equation (2.1) (or (2.2)) is valid for dilute suspension of the inclusions only.
For finite volume fraction of the inclusions, the interaction effects between the
inclusions become significant. Suppose we have two 0-3 composites with
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>0 and ¢—0 as shown in Fig. 2.1, in which the circle denotes an
inclusion particle having dielectric constant ¢, and the shaded region denotes

the matrix phase having the dielectric constant ¢, .

Figure 2.1 Composite with the volume fraction of inclusion (a) ¢ >0 and with
(b) ¢ — 0 subjected to an external electric field E,

(a)

Let oD, be the electric displacement contributed by the inclusion phase,
D, =(D,) -, (E;) (2.3)
where <D3> is the volumetric averaged electric displacement of the

composite.

After simplifying equation (2.3), they got

D, = ¢(e _8m)<E3i> (2.4)
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Poon and Shin [Poon and Shin, 2004] proposed that the electric displacement

<D3m> for the higher volume fractions could be approximated to the sum of
two parts: one due to the pure medium and the other due to the total
polarization of other inclusions ¢D,,. Equation (2.4) was modified to the

following:

AD =-2¢ AE + ¢(¢; — &, )(Ey) (2.5)

The effective dielectric constant & of the composite is defined by

(D,) =&(E,) (2.6)

Its explicit formulas was shown to be

1
& +2¢,— (e, —¢,)

¢+ (1-9)— %

£=e,+He, - 5,) (2.7)

m
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2.3 Explicit formulae of the effective stiffness constants
2.3.1 Theory
For elastic properties, we can, by analogy, replace the electric displacement D

by the stress T and the electric field E by the strain S.

Consider a composite with a single sphere having bulk modulus k; and shear
modulus g in an isotropic matrix having bulk modulus k, and shear
modulus g, subjecting to a uniform external stress T,. Suppose a uniform
tension T, is acting in the matrix far away from the inclusion, Goodier
[Goodier, 1933] has worked out, in spherical coordinates, the analytical
solutions for the displacements and the stresses inside the inclusion and the
matrix. By transforming Goodier’s solution to Cartesian coordinates, we find
that the stress and the strain inside the constituents are [Detailed derivation is
given in appendix A],
Ty =T, =3kiB, —41,B,, T =3k, B, +84,B,
S, =S, =B, -2B,, S, =B, +4B, (2.8)

where B, and B, are defined by

3k, +4u, T B_5 3k, +4u,
) 2 = A

Bl 0 TO
gkm (3k| +41um) 12 /um (9km +8zum)+6(km +2:um)/ui
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and we have

Tllm :T22m =0, T33m :To
Lok, 2k, + )
Sllm = SZZm = 6k U 01 S33m = 6k U To (2-9)

Using equations (2.8) and (2.9), we get
ol, = ASS, + BSS, + BSS,
oT, =Bd&S, + ASS, + BSS, (2.10)
oT, =Bd&S, + BSS, + ASS,

where  OT, =T; -Ty, . &;=5; -5, (1=123) (2.11)
2 1
and  A=0y (342 gl (3 10 (2.12)
9 K, +2u, 9 Kp +2u,

Similar to the electrical case, equation (2.10) is not a good approximation when
there are several inclusions inside the matrix. Consider two composites with
¢ >0 (shown in Fig. 2.2. (a)) and ¢ —> 0 (shown in Fig. 2.2 (b)) having

strains (Sy;), (S,) and (S;) along X, Y and Z directions.
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Figure 2.2 (a) A Composite with ¢ >0 was undergone the strains (S“),

(S22> and <S33> along X , Y and Z directions

respectively.

(S2)

DR NN it
n.,,;\\:\\:,::: e
ot o N

N R
‘b\}\”“:\\:ﬂx ol
St B R
N \:’\‘\\:" 2
e

Figure 2.2 (b) A composite with ¢ — 0 was undergone the strains (Su>,

<S22> and <S33> along X, Y and Z directions respectively.
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In Fig. 2.2 (a), the spheres represent the inclusion particles with bulk modulus
k; and shear modulus g;. The shaded region represents the matrix phase
having bulk modulus k., and shear modulus . For non-dilute suspension
of the inclusions, we need to consider the interaction effects between the
inclusions. Suppose (T,;) and (T,,,) are the stresses of the composites along

X direction with ¢ >0 and ¢ — 0 respectively. oT , is contributed by

interaction between the inclusions which is defined by

Ol = <T1 > - <T110> (2.13)

Since the 0-3 composite, as a whole, is an isotropic material, its elastic
behaviour can be described by just two coefficients, for example, the effective
bulk modulus Kk and the effective shear modulus 4, defined by the overall

stress-strain relationship,

(Ty) E F F){(Sy)
<T22> =|F E F <822> (2.14)
(Tss) F F E)\(Sgs)
where
4 2
E = k — F = k —_—
T3 3"
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Using equations (2.13) and (2.14), <T110> can be expressed in terms of the

strains. Equation (2.13) can be expressed as follows

1 4 24y, 2y
Ol = \7\_!.{1-11 —[(k, +§,um)811 +(k, _%)Szz +(Ky, — g )S3; 13V

(2.15)

where V s the volume of the composite.

After simplifying, we get

1 4 2 2
STm = j [(AK + ZA)S 5+ (AK =2 Ap)Saz + (MK =5 Ar)S3q AV
4 2 2
= J[(Ak + gAﬂXSni > +(Ak _gAﬂXSzzi > +(Ak _EAﬂ)<S33i >]

(2.16)

where Ak =k, —Kk,, Au=uy —u,

Similarly, oT,, and oT , are given by

1 2 4uy, 24,
0T, = v\_!‘{Tzz —[(k, _glum)sll +(k,, +T)Szz +(k, _T)Sss]}dv

= g[(Ak - %Aﬂxsni > +(Ak + %A/u)<822i > +(Ak - %A;u)<833i >]

(2.17)
1 2 24, Au,
OTos =, j T = [k~ gt0)Sus + (K =508 + (K +=21)S5 13V

= g[(Ak _%Aﬂxslli > +(Ak - %A;u)<822i > +(Ak + gAﬂXSsai >]

(2.18)
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By analogy, we add an additional term to equation (2.10) and rewrite it in a

matrix form
AT,) (A B BYAS, C G GY{(Suy)
AT, |=|B A B|AS, |[+4|G C G|(Sy) (2.19)
AT,) (B B AJAS, G G C)\(Ssu)

CEAk-F%AIU’ G=Ak—=Au (2.20)

Using equations (2.12), (2.14) and (2.16) to (2.20), and the following
relationships of the volumetric averages [Wong et. al., 2001],
(Ti) =0T 3) + W= O)(Tim) (2.21)

<SJJ> = ¢<S,-,-i>+ (1—¢)<Sjjm> (2.22)

the effective bulk modulus k and the effective shear modulus iz of the

composite can be found [detailed derivation is given in Appendix B]:

¢(k| - km)(km + gzum)

k=k, +

m

LB+ 5 o+ (@ D )]+ 9+ )

(2.23)
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5ll'lm(gkm +4ILIIT])

i+ ¢(/ui_:um) 6(km+2ﬂm)
S Suy BKy +44) 0 ~ Su,,(3k, +4u,)
@D s e g T

(2.24)
2.3.2 Effective piezoelectric coefficients using the new stress field factors
Wong et al. [Wong et. al., 2001] have given explicit formulas for the effective
piezoelectric d,, and d,, coefficients of 0-3 composites:
dy, = g [(F + FYd, + Frdy 1+ (L— ¢)Fe[(FT + Fr)dyy, + Frdy, ]
(2.25)
Ay = e [2F dyyy + F'doy 1+ (L— §)F e[2F 1d,y, + Frdyg, ] (2.26)
where F. and F, are called the electric and stress field factors. Their

definitions have been given in section 1.2.1.

For the dielectric constant ¢ appeared in the electric field factor, they used the

Bruggeman formula [Bruggeman, 1935]

S =0-9)

1
g3 Ep3

& — &y

(2.27)

For the bulk k and shear & modulus in the stress field factors, they used the

Hashin model [Hashin, 1962].
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Using their scheme, but employing equation (2.7) for the effective dielectric
constant and the new formulas (equations (2.23) and (2.24)) for the effective
elastic coefficients, we obtained two new explicit equations for the effective

piezoelectric coefficients d,, and d.,.

Ay = P [(PF + P )dyy + Pridyg ]+ (1= ¢)Pe[(Pr + P1)dyy, + Prdyy, ]

(2.28)
dyy = BPe2P; Aoy + P dogy ]+ (L= )P e[2P 10,y + P10l ] (2.29)
where
3‘c"m D 1_¢PE
P = , Pe=
e+ (-9 +2¢, —d(e —&,)] 1-¢
L 1_ Lk L,uui 1 = - Tl
Pl == - , Pr =
3_km+¢(ki_km)|—k /um+¢(zui_:um)|-y_ 1_¢
PT// :1 L.k, " 2'—,,/4 ’ 54/ _ l—¢PT”
3_km+¢(ki_km)|—k :um+¢(/ui_:um)|-,u_ 1_¢
and
4
(km +§/um)
L= 4 4
(1_¢)[km +§/um +(1_¢)(k| _km)]+¢(km +§:um)
51um(3km+4/um)
L 6(Ky, + 21
# 5u,, (3K, +4u, Su,, (3K, +4u,
A-pHmFn ) (4 gy gy )]+ g 2 Fn t An)
6k, +2/11) 6(Ky, +2/1)
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2.3.3 Comparisons with experimental data and discussions

In this subsection, we compare the predictions of the effective bulk modulus
and the effective shear modulus using the two formulas (2.23) and (2.24) with
the experimental data given by Smith [Smith, 1976]. The composite considered
Is a matrix of epoxy embedded with glass spheres. The Poisson’s ratios of the
glass (v;) and the epoxy (v,) are 0.23 and 0.394 respectively and the
Young’s modulus of the glass (Y,) and the epoxy (Y,) are 76.0 GPa and
3.01 GPa respectively. For an isotropic material, the bulk modulus and the
shear modulus can be expressed in terms of Young’s modulus and Poisson’s

ratio [Sadda, 1993].

%

k:wfn) (2:30)
%

1) (2:31)

Fig. 2.3 shows the comparison results for the effective bulk modulus, in which
we have plotted predictions based on our model and Hashin model [Hashin,

1962].
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The bulk modulus of Hashin's model is given by

k =k, + ¢(ki_:mzk (2.32)
1+(1-¢) i4”‘
km+§ym

Fig 2.3 shows that, at low volume fractions of the glass spheres, both Hashin's

model and our model give good agreement with the experimental data.

However, at higher volume fractions, Hashin model underestimates the

effective bulk modulus while our model still fits relatively well to the

experimental data.

12 4

11 4

-y
o
1

This work
= = = Hashin
¥ Experiment

Bulk Modulus k (GPa)

Volume Fraction

Figure 2.3 Comparison of the effective bulk modulus predicted by this work
(Equ.(2.23)) and Hashin's model (Equ.(2.32)) with experimental
data of Smith [Smith, 1976]
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Fig. 2.4 shows the comparison for the effective shear modulus. In this case,

Hashin's model can only give the lower bound z, and the upper bound g, ,

as follows:
15(1—v, (X —1)¢
=g (s Hi ) (2.33)
7-5v, +2(4-5v,)(“1 — (1 ~1))
m Hp
_ Moy B

i, = [+ (ﬂm 1) A +BC, 4] (2.34)

where

42 Hn — H; % 2
A =—""—4(¢°-D)°3
Su, 1-v,

m

7
B, =[(7 ~10v,) — (7 ~10v,,) 9J4¢* + (7 ~10v,,) 9
 =—+
Hp 15(1_ Vm) Hm 15(1_Vm)
9= (7+5v;) gy +4(7=10v; ) 1,
A P

_ M 7-5v, (1_i)+2(4_5‘/m)(1_5_i)¢

an

(2.35)

It can be seen that, at low volume fractions, both the bounds of Hashin's model

and our model can give reasonable predicted values, compared with the

experimental data. However, when the volume fraction of the inclusions

increases, the lower bound of Hashin's model fails to give reasonable

predictions, while its upper bound values and predicted values from our model

still show good agreement with the experimental data.
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Figure 2.4 Comparison of the effective shear modulus predicted by this work

(Equ.(2.24)), lower bound of shear modulus of Hashin model,
4 (Equ. (2.33)) and upper bound of shear modulus of Hashin

model, «, (Equ. (2.34)) with experimental data of Smith [Smith,
1976].

For effective piezoelectric coefficients comparisons, predicted values using

equations (2.28) and (2.29), Wong et. al.’s scheme [Wong et. al., 2001] and

other models [Furukawa et. al., 1976, Jayasundere et. al., 1994] are compared

with the experimental data given by Furukawa [Furukawa, 1989] and Zou et al.

[Zou et. al., 1996], as shown in figures 2.5 and 2.6.

Fig. 2.5 shows the d,, comparison results for a PZT/PVDF system [Furukawa,

1989]. The Poisson’s ratios of the PZT inclusion and the matrix are 0.3 and 0.4

respectively and the Young’s modulus of the inclusion and the matrix are 58.7
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GPa and 2.52 GPa respectively. The dielectric constants are 1900 for the

inclusion and 14 for the matrix. The d,, and d,; values for the inclusion are

-180 pC/N and 450 pC/N respectively. For this composite system, the matrix

phase PVDF is not polarized and does not exhibit piezoelectric effect. This

means that the effective piezoelectric activity of the composite is contributed

by the inclusion phase only. For this comparison, Furukawa model [Furukawa

et. al., 1976] is also included. Their expression for and d is given by

d=dlcL.d, (2.36)
where L. and L, are
L, = 3 (2.37)
(1-9)e; +(2+9)s,
5c¢,

L, = ' 2.38
T 3¢, +2¢, —3¢(c, —¢,) (2.38)
and c is the Young’s modulus (or shear modulus) since both phases are

assumed to be incompressible.

Fig. 2.5 shows that, for dilute suspension cases, our scheme and the scheme of

Wong et al. using g, show similar performance, while the Furukawa model
underestimates the piezoelectric coefficient. At higher volume fractions, the
Furukawa model fails obviously, while our scheme and Wong et. al.’s scheme

still show similar performance.
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Figure 2.5
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Predictions of the effective piezoelectric coefficient d,, by this
work (Equ.(2.28)), Wong et al.'s model [Wong et. al., 2001] using
lower and upper bounds of shear modulus of Hashin [Hashin,
1962] and Furukawa's model [Furukawa et. al., 1976].
Experimental data are taken from [Furukawa, 1989] of
Furukawa.

Fig. 2.6 shows the d,; comparison results from various models with the

experimental data for a PbTiO3/P(VDF/TeFE) system [Zou et. al., 1996]. They

obtained their experimental values only at high volume fractions of the

inclusions. The Poisson’s ratios of the inclusion and the matrix are 0.22 and 0.4

respectively and the Young’s modulus of the inclusion and the matrix are 126.7

GPa and 2.81 GPa respectively. The d,, and d,, values for the inclusion are

-9.5 pC/N and 94 pC/N respectively. The dielectric constants are 150 for the

inclusion and 6 for the matrix respectively. In their experiment, only the

inclusion phase is polarized.
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Jayasundere model [Jayasundere et. al., 1994] is also included for comparison.

Their expression for d is given below

3pe;

2¢,, + &

d=d £+ ) (2.39)
E.

In equation (2.39), the effective permittivity & they used is given by

Jayasundere [Jayasundere et. al., 1993]:

3¢ps,, 1+34 & — &,
& +2¢, & +2¢,

A=)+ Vo {1+3¢ “*‘gm}
& +2¢,

Em (1_¢) +&

£= (2.40)

 +2¢ & +2¢,

Fig. 2.6 shows that, for this case, almost all experimental data fall within the

bounds of Wong et al. [Wong et. al., 2001]. Our scheme fits reasonably good to

the data. On the other hand, the Jayasundere model obviously overestimates the

coefficient.
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Figure 2.6 Predictions of the effective piezoelectric coefficient d,, by this
work (Equ.(2.29)), Wong et al.'s model [Wong et. al., 2001] using
lower and upper bounds of shear modulus of Hashin [Hashin,
1962] and Jayasundere's model [Jayasundere et. al., 1994].
Experimental data are taken from [Zou et. al., 1996] of Zou et al..

To conclude, our scheme and Wong et al. scheme [Wong et. al., 2001] provide
two different approaches for the predictions of the effective piezoelectric strain
coefficients. While Wong et. al.’s scheme can only provide the lower and the
upper bound values, our scheme can give reasonable predictions for the whole

range of the volume fractions of the inclusions.
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2.4 Explicit formulae of the effective piezoelectric coefficients
2.4.1 Theory
In the following, we shall further extend the idea used by Poon and Shin for

treating the piezoelectric problems of a 0-3 composite.

Consider a composite with volume fraction ¢ of the piezoelectric inclusions
subjected to external stresses T,, T, and T,, and an electric field E,

applied in the Z direction.

For electrical properties, because the applied electric field can induce strain
inside the constituents, we consider that both constituents are piezoelectrically
transversely isotropic. In this case, the piezoelectric behaviour of the

constituents is described by the following relation [ANSI/IEEE Std.,

176-1987],
Tllp Cllp ClZp ClZp - eSlp Sllp
T22 Pl C12 p C11 p C12 p €31 p S22 p
T33 p C12 p C12 p C11 p €33 p S33 p
D, D €i1p  €3p  C53p &y E, D

(2.41)
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Based on Poon and Shin idea and using equation (2.41), equation (2.5) can be
modified to the following
AD =-2¢, AE +¢(g; — ¢, )<E3i > +d(8yy — e31m)<slli>

+ ¢(eali ~ €31 )<Szzi > + ¢(e33i — €3 )<S33i > (2-42)

where e, , and e,,, are the transverse and longitudinal piezoelectric stress

coefficients respectively.

For mechanical properties, when external stresses are applied to the
piezocomposite, electric fields are induced inside the constituents. Using the
Poon and Shin idea and the constitute piezoelectric relation, we obtain new

oT,., oT , and OT . expressions, as follows

<||—\

I (Tll - (Cllm Sll + ClZmSZZ + C12mS33 - e31m E3m )]dv
\

= ¢(AC11<Sni > +AC,, <822i > +AC,, <S33i > - Ae31<Esi >) (2.43)

I (T22 - (C12m811 + Cllm S22 + C12mS33 - e31m E3m )]dV
\

<||—\

= ¢(AC12 <Slli > + AC11<822i > +AC,, <S33i > - Ae31<Esi >) (2.44)

m2

1
V_[ (Tss - (C12m811 + ClZmSZZ + CllmSSS - e33m E3m )]dV
Y

= ¢(AC12 <Slli > +AC,, <Szzi > + ACn<833i > - Ae33<Esi >) (2.45)
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where

A8y =63, — €5, Ay,

€331 — Caam

AC,, =Cyy; —Cyy,, AC, =Cpy, —Cyy,

4 2
Cllp :kp+§:upa ClZp :kp_gﬂp

Equation (2.19) is modified to the following

AT, A B B) AS, ol
AT, |=|B A B | AS, [+|dT,, (2.46)
AT, B B AJ\AS, OT s

Combining equations (2.42) and (2.46), we have

AT, A B B 0 YAS AC,, AC, AC, —Aey \(Sy
AT, | |B A B 0 |Aas, y AC, ACy, AC, —Aey |(Sy
AT, | |B B A 0 |AS, AC,, AC, AC, —Aey | (S
AD,) (0 0 0 -2¢, \AE, Aey, Aey Aey & —e, )\ (Ey

(2.47)

From the definition of the volumetric averages and using equation (2.41), we

have

(2.48)
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O 00

D

31i

C12i — €y
C12| — €y
Clli - e33i
€33 &
Cllm
C
+ (1_ ¢) 12m
12m
e3lm

(S.)
(S )
()
(Ea)
C12m C12m
Cllm C12m
C12m C11m
eZ'}lm e33m

Using equation (2.47) and the constitutive piezoelectric relations, we get

Ci(8i)=Cun(Sn) = L((S: ) =(Sn)) +M(S))

where

Cllp
C

C ; = 12p
C12 p
e31p
A
B

L=

B
0

o W >» W

After rearrangement, we obtain

- eSlp
- eSlp

— €33,

AC,,
AC,,
AC,,
Ay,

[C —(L+oM)I(S;) = (C,, —L)(S,)

(2.50)

—Agy,

E — &

(2.51)
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Multiplying [C, —(L+#M)] on both sides of equation (2.48), we get
[Ci —(L+#M)I(S) =¢[C, —(L+gM)XS;)+A-P)IC, - (L+gM)XS,,)

(2.52)

(
where <S>52
{

Using equation (2.51), equation (2.52) becomes
[C, —(L+gM)KS)=g(C,, —L)(S,)+ L= 9)IC, - (L+gM)XS,,)
(2.53)
After simplifying, we have
(Sn) ={4(C,, ~L) + L= 9)IC, — (L + M)} '[C, - (L+gM))S)
(2.54)
Multiplying (C, —L) on both sides of equation (2.48), we get
(Cp = L)(S)=¢(Cy —L)(S)+ L= 9)(C,, —LXS,)
(2.55)

Using equation (2.51), equation (2.55) becomes

(Cr = LX(S)=¢(C,, —LXS;)+ A= 9)IC, — (L+¢gM)KS;)  (256)
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After simplifying, we have
(Si)={¢(C, — L)+ 1-9)IC; — (L+ M)} '(C,, - LXS)
(2.57)
Substituting equations (2.54) and (2.57) into equation (2.49), we get
(TYy=¢C(S;)+(@1-#)C,(S,)
={C{¢(C,, - L)+ L-#)IC, - (L+4M)I}(C, - L)
+(1-#)Co{é(C,, — L) + 1= )IC; — (L + M)} '[C; — (L +¢M)]KS)

(2.58)
()
()
T)=
where < > <-|-3>
(D,)
After simplifying, we get, in matrix form
<T1> C11 C12 C13 — €5 <Sl>
<T2> _ ClZ C11 C13 — €5 <Sz> 2 59
<T3> C13 C13 C33 — €5 <Ss> ( )
<D3> €1 €3 €5 € <E3>

where the effective piezoelectric and mechanical coefficients are given by
€ = ¢[|41i (Cllm - A+ C12m - B) + |43i (ClZm - B) + |44ie31m]
+ (L= @)1, (Cyy; —gAC,;, — A+Cy, —gAC, - B)

+ I43m (Clzi - ¢AC12 - B) + |44m (e31i - ¢Ae31)] (2-60)
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€33 = ¢[2|41i (ClZm - B) + |43i (Cllm - A) + |44ie33m]

+ (1_ ¢)[2 I 41m (C12i - ¢A012 - B) + I43m (Clli - ¢AC11 - A) + I44m (e33i - ¢Ae33)]

(2.61)
C11 = ¢[|11i (Cllm - A) + (|12i + |13i )(Clzm - B) + Il4ie31m]
+ (L= @)111, (Cryy —AAC,, = A) + (1 5 + 115, )(Crp —#AC,, — B)
+ I14m (e31i - ¢Ae31)] (2-62)
ClZ = ¢[|12i (Cllm - A) + (Illi + |13i)(C12m - B) + Il4ie31m]
+ (L= @)1 15, (Cpyy —AC, = A) + (11, + 115, )(Cop —#AC,, — B)
+ I14m (e31i - ¢Ae31)] (2-63)
C13 = ¢[|13i (Cllm - A) + (Illi + IlZi)(C12m - B) + Il4ie33m]
+ (L= @)1 13, (Cpyy —AC, = A) + (1, + 115, )(Cyp —#AC,, — B)
+ I14m (e33i - ¢Ae33)] (2-64)
Cas = ¢[|33i (Cllm - A) + (|31i + |32i )(C12m - B) + |34ie33m]
+ (L= @)1 55, (Cpyy —PAC,; — A) + (15, + 135, )(Cpp; —pAC,, — B)
+ |34m (e33i - ¢Aeas )] (2-65)
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The symbols 1,,, in equations (2.60) to (2.65) are defined below, in which the

subscripts k,1=1,2,3 refertothe X, Y and Z directions.

I11p IlZp I13p I14p Cllp C12p C12p _e31p |11 |12 |13 - |14
I12p Illp |13p I14p _ C12p Cllp C12p _eSIp |12 |11 |13 - |14
|31p |31p |33p I34p C12p C12p Cllp _e33p |13 |13 |33 - |34
I41|0 I41p |43p I44p e31p e31p e33p 8p I14 I14 I34 I44
where
|11 |12 |13 |14 C11m -A C12m -B C12m -B - e31m
|12 |11 |13 |14 _ ¢ C12m -B Cllm - A C12m -B - e31m
I13 |13 |33 |34 C12m -B C12m -B Cllm -A - €33m
Ly, 1y la 1y €31m €31m €33m 3¢,
C11i - ¢AC11 - A C12i - ¢AC12 -B C12i - ¢AC12 -B —€y t ¢Ae31
n (l— ¢) C12i - ¢AC12 -B C11i - ¢AC11 - A C12i - ¢AC12 -B —€y t ¢Ae31
C12i - ¢AC12 -B C12i - ¢AC12 -B C11i - ¢AC11 -A — €35 t ¢A633
A A= €35 — PAE;; & +2¢, —d(e, — &)

Combing the two effective piezoelectric stress coefficients and the four

stiffness constants, two effective piezoelectric strain coefficients (d,, and d.,)

are obtained. For a transversely isotropic material, the relation are given by

Ca _ Gy
_ Cu Gy
* Cu+Cyp _ 2C,,
Cis Cy
€y Eg
d.. = C,+C, 2C,
33 C C
13 33
C.+Cp, 2C;,

(2.66)

(2.67)
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In the following section, our model is compared with some experimental results.
Wong et al.’s scheme [Wong et. al., 2001] is also included in the comparisons.
They have assumed that the whole composite is elastically isotropic. If we also

take this assumption (i.e. C,, =C,, and C,; =C,,), then the two effective

piezoelectric strain coefficients (d,, and d,;) become:

G _ G
4y =~z Cu (2.68)
Cll + C12 _ 2C12
ClZ Cll
e31 _ e33
C,+C 2C
d33 — llC 12 C 12 (269)
12 _ 11

C11 + C12 2012

2.4.2 Comparisons with experimental data and discussions

In this subsection, predictions made by Wong et al. [Wong et. al., 2001] and our
model (with and without assuming elastic isotropy) are compared with the
experimental data of Furukawa [Furukawa, 1989], Chan et al. [Chan et. al.,

1995] and Zeng et al. [Zeng et. al., 2002] for the d,, of PZT/PVDF

composites (with only the ceramic phase polarized), the d,, of

PZT/P(VDF-TrFE) composites (with both phases polarized in the same

direction) and d,, d,, of PZT/P(VDF-TrFE) composites (with the two

phases polarized in opposite directions). The parameters of the constituents
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adopted in the calculations are listed in tables 2.1 to 2.3. Elastic moduli Y,
and Poisson’s ratios v, in tables 2.1 and 2.2 can be transformed to obtain the

stiffness constants C,,, and C,,, viathe relations [Saada, 1993]

Y, 2 Y,
Cup = + 2 (2.70)
3L-2v,) 3(L+v,)
% Y
P 1 % (2.71)

C,, = -
3-2v,) 3(l+v,)

The constituents’ parameters of shear moduli 4, and Poisson’s ratios v, in
table 2.3 can be transformed to obtain the stiffness constants C,,, and C,,,
via the following relations [Saada, 1993]

20+v,)u, 4
Skl Ll B 2.72
w7 T3o2r,) 30 (@.72)
B 20+v )u, 2

_ 2.73
2" 30-2v,) 3" (2.73)
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Table 2.1. Properties of the constituents for PZT/P(VDF-TrFE) 0-3 composite
adopted in our calculations in Fig. 2.7. Both phases are polarized in
the same direction.[Wong et. al., 2001].

Elastic Poisson’s
. - d31 d33
ele, Modulus Ratio
pC/N) (pC/N)
(GPa)
PZT 1159 16.8 0.35 127.9 314.4
P(VDF-
10.7 2.32 0.39 -15.3 -38.4
TrFE)

Table 2.2. Properties of the constituents for PZT/PVDF 0-3 composite adopted
in our calculations in Fig. 2.8. Only the inclusion phase is

polarized.[Wong et. al., 2005]

Elastic . ,
Poisson’s
Modulus ) -d,, dg,
ele, Ratio
(GPa) (pC/N) (pPC/N)
PZT 1900 36 0.3 180 450
PVDF 14 1.3 04 0 0

Table 2.3 Properties of the constituents for PZT/P(VDF-TrFE) 0-3 composite

adopted in our calculations in Fig. 2.9. [Zeng et. al., 2002]

Shear

Poisson’s

ele, Modulus Ratio . O
(GPa) (pC/N) (pC/N)
PZT 1700 27 0.3 175 400
P(VDF- 9.9 0.8 0.4 -6.2 -22.1
TrFE)
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Figure 2.7 shows the d,, comparison results of the theoretical predictions and
the experimental data of Chan et al [Chan et. al., 1995]. Note that because the
piezoelectric coefficients of PZT and P(VDF-TrFE) have opposite signs, the
piezoelectric activity of the composite vanishes at ¢~0.45 when both

phases are polarized in the same direction.

Obviously, both our model and Wong et al’s scheme give similar reasonable

performance.

— This work (equation (2.67))

- - - - This work (equation (2.69))

------- Wong et al. (using lower bound) ]

40 4 - \Wong et al. (using upper bound) A
X Experiment :

60

d,, (PC/N)

r T T r T T T T
0.0 0.1 0.2 03 0.4 05 06 0.7

Volume Fraction

Figure 2.7 Predictions of effective piezoelectric coefficient d,; by our model

(equations (2.67) and (2.69)) and Wong et al.’s scheme [Wong et.
al., 2001] with the experimental data of H.L.W Chan et al. [Chan
et. al., 1995] of PZT/P(VDF-TrFE) composite, with inclusion and
matrix polarized in the same direction.
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Figure 2.8 shows the d,, comparison. In this composite material, the effective
piezoelectric activity is contributed by the inclusion phase only. It can be seen
that, at low volume fractions, both our model and Wong et al.’s scheme give
similar performance. However, at high volume fractions, some of the
experimental data are not even within the bounds calculated by Wong et al’s

scheme but our model still fits well to the experimental data.

40 -

—— This work (equation (2.66))

35_' - - - - This work (equation (2.68))
| Wong et al. (using lower bound)
s0d Wong et al. (using upper bound)

* Experiment

-d_, (pCIN)

T T T T T T T
0.0 0.1 02 03 0.4 0.5 06 0.7

Volume Fraction

Figure 2.8 Predictions of effective piezoelectric coefficient d,, by our model

(equations (2.66) and (2.68)) and Wong et al.'s scheme [Wong et.
al., 2001] with the experimental data of Furukawa [Furukawa,

1989] of PZT/PVDF composites. Only the inclusion phase is
polarized.
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Zeng et al [Zeng et. al., 2002] reported experimental values of the piezoelectric
coefficients d,, and d,, of a PZT/P(VDF-TrFE) composite, with the two
phases polarized in opposite directions. The comparisons of the experimental
data with some theoretical predictions are shown in Figure 2.9. When compared
with Wong et al.’s scheme, our model obviously gives more reasonable
predictions to the experimental data. As a research, the abrupt decrease of the
piezoelectric coefficient value at ¢ ~0.5, according to Zeng et. al., may be due
to the redistribution of space charges at the interface between the inclusion and
the matrix. These changes could lead to some degree of depolarization and

hence decrease the piezoelectric activity.

Since both our model and Wong et al’s scheme have assumed that the
constituents are fully polarized, this may be the reason why both models show
deviations to the experimental values, at high volume fractions of the

inclusions.
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—— This work ( transverse isotropy )

509 - - - This work ( isotropy ) 190
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i ‘Wong et al. (using upper bound) r ]
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Figure 2.9 Predictions of effective piezoelectric coefficients d,, (equations
(2.67) and (2.69)) and d,, (equations (2.66) and (2.68)) by our
model and Wong et al.’s scheme [Wong et. al., 2001] with the
experimental data of Zeng et al. [Zeng et. al. 2002] of
PZT/P(VDF-TrFE) composite with inclusion and matrix polarized
in opposite directions.

From the above comparisons, it also shows that the two different assumptions
(isotropic or transversely isotropic) concerning the mechanical properties of the
two phases give similar performance. This means that the effects of

polarization on the elasticity of the materials are very small.
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Chapter 3 Effective piezoelectric coefficients of 1-3 composites

based on an effective medium theory

3.1 Introduction

1-3 piezoelectric composites usually consist of piezoelectric rods or fibers
embedded in a polymer matrix. They have been widely used in ultrasonic
transducers in underwater and other ultrasonic medical applications [Smith,
1989]. The polymer phase can be either a passive (e.g. epoxy) or an active (e.g.
PVDF-TrFE) matrix medium [Taunaumang et. al., 1994]. For the former, the
polymer phase is responsible only for stress transfer to the inclusion phase. For
the latter, the effective piezoelectric properties of the composite are contributed
by both the inclusion phase and the polymer phase. Due to the opposite signs of
their piezoelectric activities, it is possible to pole the two phases in opposite
directions to increase the effective piezoelectric coefficients d,, and d,, of
the composite material [Taunaumang et. al., 1994]. In this work, we consider

the former case only, since it is the mostly used case in actual applications.

In this chapter, we consider the piezoelectric problems of 1-3 piezoelectric rod

composite having small aspect ratios. Its effective piezoelectric coefficients are
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determined based on an effective medium theory (EMT). This theory considers

the volume fraction of the inclusions (¢) and the matrix properties as

independent variables, and then expressions of the effective properties for the

high volume fraction cases can be obtained from the dilute limit results. The

EMT formulation employed in this project was first developed by Shin et. al.

[Shin et. al., 1989] and has been used in treating the dielectric [Shin et. al.,

1989], piezoelectric [Wong et. al., 2003] and pyroelectric [Chew et. al., 2003]

problems of binary 0-3 composites. EMT equations can be either solved

analytically or numerically. The comparisons of the predictions made by

analytical EMT and numerical EMT and the published data are presented in the

results and discussions section.
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3.2 Theory

In the following, we use the subscripts 1 and m to represent the inclusion

phase and matrix phase respectively and use the symbol p to refer either i

or m. The subscripts 1, 2 and 3 denote the X, Y and Z directions

respectively.

3.2.1 An effective medium theory (EMT)

The EMT formulation used in this project was first developed by Shin et. al.

[Shin et. al., 1989]. Suppose we have a binary composite with an effective

physical property P . This composite property P should be a function of the

matrix property P_, the inclusion property P, and the volume fraction of the

inclusions ¢. That is

P=1f(P,.R.¢) (3.1)

Suppose we start with a pure matrix with the physical property P, . Now, we

add some inclusions with the physical property P, into it. Assuming that the

volume fraction of the inclusions of this resulting composite at this stage is ¢, .

The effective property P, should be given by

P =1(P.,F.¢) (3.2)
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Now, we take this composite as a new matrix and we add inclusions into this
new matrix such that the volume fraction with respect to this new matrix is ¢, .
The effective property P, of the resulting composite is then

P,=f(P.P.4,)

= £(1 (P, P ). Ps) (3.3)

If the actual volume fraction of this composite is ¢, we must have

f(Py.P.¢) = T(F(R,.F.4).P.¢,) (3.4)

and

¢= ¢2 + (1_¢2)¢1 (3-5)

Differentiating equation (3.4) with respectto ¢,, then setting ¢, =0, we get

1-¢)

6f(Pm,Pi,¢)zaf(Pm,F’i,qé){af(Pm,F’i,@} (3.6)
o¢ oP, o¢ 5o '

Equation (3.6) is the first order partial differential equation which involves one
matrix variable only. In the following subsection, we use the same idea, but
take into account more matrix variables, in order to find the effective

piezoelectric coefficients of 1-3 composites.
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3.2.2 Effective piezoelectric stress coefficients of a 1-3 composite based on
analytical EMT approach
As described in the previous section, EMT is an approach to obtain expressions
of the effective properties at high volume fraction cases based on the dilute
limit results. Therefore, before applying this approach, we have to consider the
piezoelectric problem of a 1-3 composite with low volume fraction of
inclusions. Suppose we have a composite with a single piezoelectric fiber
embedded in a piezoelectric matrix and the fiber (and hence the composite) is
poled along its axial direction (Z directions). We assume that both phases are
transversely isotropic materials. Under proper boundary conditions, expressions
of the effective piezoelectric stress coefficients (e,, and e,;) and the stiffness

constants (C,;,, C,, and C,,) can be found, as follows (see Appendix C)

2C
Py élm +(1-P)e,n,
e31 = 2C (37)
11m +1-
¢7C ¢

— C13i ¢(1_ ¢)

C 2C,,
Sum g
¢ ¢

C
€33 = @By + (1— @)y, +2 L (a1 —€31m) (3.8)

2C
¢C11i élm + (1_ ¢)C11m
Cll = 2C (39)
11m +1-
¢7C ¢

2C
¢C12i élm + (1_ ¢)C12m
C12 = 2C (310)
poom +1mg
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2C
d:l3i élm + (1_ ¢)C13m
Cy = ’ (3.11)
¢ Lm A1

where C=C,;; +Cyp,; +Cy,, —Cyyy,

and C €y, and e,, are stiffness constants, transverse piezoelectric

afip !

stress coefficients and longitudinal piezoelectric stress coefficients of the

constituents respectively.

Now we apply the EMT approach to find the effective piezoelectric stress
coefficients for non-dilute cases. The expressions (3.7), (3.8) show that e,
and e,, involve five and three matrix parameters respectively. By taking
analogy to equation (3.6), the first order partial differential equations that e,

and e, should satisfy

o Oty | O 0y | 09 0Cy | 09 OCoom

o

(1) B _ O _6633} , O {6%} L O {acn} L0y [ac12
#=0 $=0 $=0

+

o, 'acls}
$#=0

aC13m L a¢
(3.12)
(1) o _ {aeﬂ} , 08y {acn} L0y {acn} (3.13)
o¢ aeslm ¢ $=0 aCllm o¢ $=0 aClzm o¢ $=0
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The characteristic equations of (3.12) and (3.13) are (3.14) and (3.15),

respectively.

B d¢ _ de33m de31m dCllm

1-¢ [oes/08],, [oey/0¢),, [0C,/104],.,

d C12m _ dClSm
[oCy, 104],, [6Cy; 108,

— d¢ _ de31m dCllm _ dClZm

1-¢ [oe,/04),, [oC,l04],, [06C,104],,

(3.14)

(3.15)

The derivatives of the effective stiffness constants and the effective

piezoelectric stress coefficients of the composite with respect to ¢ at the

dilute limit can be obtained from expressions (3.7) to (3.11), as follows

_acll | _ 2Cllm (C -C )
- 11 11m
L 09 |,, C
(G| 2w ¢
- 12i 12m
L 09 |,, C
_aClS | _ 2Cllm (C -C )
- 13i 13m
L 09 |,, C
% = chm (631i _e3lm)
L 0¢ |,, C
[ ey, | 2(Cps —Cua)
_a_;s_ s = €331 — €y _%(esﬂ - e31m)
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From equation (3.15), we can write

de31m d(':llm + dClZm

= (3.16)
[aesl /o ¢]¢:o [6C11 / 6¢]¢:o + [aclz /o ¢]¢:o
After integration, we get
C,-C,+C, —-C
€31 =€ — (e3li - e3lm) = = = = (3.17)

Clli - Cllm + C12i - C12m

The equalities in equation (3.15) linking e, C,, and C, can be integrated

to yield a first integral

€311 — €1
y= (3.18)
Clli - C11m + ClZi - C12m

Another first integral can be obtained by considering the equality in equation

(3.14) that links e,, and C,,

o= Cl3i B C:le (319)

€311 — €3
With the use of the equalities in equation (3.14) and the first integrals » and

o, we get

—dg _ dey,, — 2yewdey,
1-¢ [5633 /5¢]¢:0 - 270)[8(331 /a¢]¢:o

(3.20)
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Equation (3.20) can be integrated to give

€33 = By — 270 (Byy; —€y) — (1 - ¢)[(933i — €34 ) — 270(83y — €5y, )] (3.21)

Two analytical EMT expressions of e,; and e, (equation (3.17) and (3.21))

are therefore obtained.

3.2.3 Numerical calculation using EMT
Chen [Chen, 1998] outlined the calculation steps of a numerical EMT scheme
in solving the elastic problems of 1-3 composite, as follows. For a pure matrix,
its volume fraction of inclusion is ¢, =0. When a small volume fraction &
of inclusion is added into it, the resulting composite has a volume fraction
@ = o . The effective modulus of the composite is approximately equal to
Effective modulus =~ matrix’s modulus + derivates of the effective modulus
with respect to volume fraction ¢ evaluated at ¢ =0

X O

The above expression is valid only for small volume fraction ¢ . We take this
composite as a new matrix and add the same volume fraction of the inclusions

into this new matrix. At this stage, the volume fraction of the composite
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becomes ¢, = ¢, +0 — @0 . By repeating this step, the effective modulus at the

higher volume fractions can be estimated.

Following these steps, we have estimated the effective piezoelectric properties
of 1-3 composites at different volume fractions of the inclusions. Results from
both the analytical and numerical EMT schemes are presented in section 3.3.1

and 3.3.2 for the comparisons with some published data.

3.2.4 Effective piezoelectric strain coefficients d,, and d,;

For transversely isotropic materials, the piezoelectric strain coefficients can be

calculated by the following relations [ANSI/IEEE Std., 176-1987].

Cu _ €
C, C
nE e (322)
C11 + C12 _ 2C13
ClS C33
e31 _ e33
C,+C 2C
d33 — llC 12 C 13 (323)
13 33

In the analytical EMT calculation, we have adopted Chen model [Chen, 1998].
The transverse bulk modulus (K), transverse shear modulus (G,), axial

Poisson's ratio (v,) and axial Young’s modulus (E,), as given by Chen are
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2 1
KG-?I ( _¢) (7T+?_GT|) (a_?ﬂ) KG‘|?| ( _¢) ( m Ki G GTm GTI)
1,13 N
1-9) (a+Kfi) (GTm + Ki)
(3.24)
Where W = (KI B Km)(GTi _GTm)z
N (Km +GTm)GTm
(Ki _K)(GTi _GT) _ (Ki B Km)(GTi _GTm) (1_¢)3 (3_25)
(K+GT)GT (Km +GTm)GTm
K K
v )= m —v. 3.26
(K, —K) Va—va) (Ki_Km)(VAm Vai) ( )
_ - AVan V) 1-¢ ¢ 1 3.27
B =B+ (=B + 2 (=) (3.27)
G )

m i

Using equations (3.24) — (3.27), the four effective stiffness constants can be

determined [Christensen, 1991]
C,=K-G,
C, =K+G;
C, =2Kv,

C, =E,+4viK

(3.28)

(3.29)

(3.30)

(3.31)

Using equations (3.17) and (3.21) - (3.31), d,, and d,, can be determined.
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Results and Discussions
3.3.1 Comparisons with experimental data
Predictions based on our formulae are compared with the experimental data of

Klicker [Klicker et. al., 1981] for d,, of a PZT/Epoxy 1-3 composite. The

properties of the constituents adopted in our calculations are listed in Table 3.1.

Table 3.1 Material parameters of PZT and Epoxy [Klicker et. al., 1981]
adopted in this calculation

PZT
C,, (GPa) 118.4 C, (GPa) 58.5
C,; (GPa) 59.6 Cy; (GPa) 102.8
ds; (PC/N) 450 d,, (pC/N) =210
Epoxy
C,, (GPa) 6.5 C, (GPa) 3.5

Klicker et. al. [Klicker et. al., 1981] investigated the effects of the inclusion

diameter on the effective piezoelectric strain coefficients d,, of the composite.
They reported experimental data of d, for inclusion diameters 400zm ,
6004m and 840um. The thickness of these samples was 4mm. The ratio of
the diameter of the inclusion to its thickness is called the aspect ratio. In this
chapter, we only consider the piezoelectric problem of composite system
having small aspect ratios. As the axial and radial displacement functions of a

single piezoelectric fiber composite (see Appendix C) are independent of z
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coordinate, our EMT models can only be applied for the small aspect ratios

composites. For comparison purposes, we choose experimental data of d,,

corresponding to the smallest inclusion diameter. As shown in fig. 3.1, both

analytical and numerical EMT schemes give similar predicted values and they

have fairly good agreement with the experimental data.

d,, (PCIN)

500 —
* el
N _‘.,.-—»-I*'¥‘
400 - T
| OE
B
e
’ ¥
300 K
o W Analytic EMT
* --®- Numeric EMT
200 4 X Experimental data
100
0 T T T T T T T
0.0 0.1 0.2 03 0.4 05

Volume Fraction

Figure 3.1 Comparison of theoretical predictions of EMT schemes with the
experimental data of Klicker [Klicker et. al., 1981] for d,, of

PZT/Epoxy composites
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3.3.2 Comparison with simulated data obtained from a finite element

method (FEM)

Our formulae are also compared with the simulated data for the effective

piezoelectric stress coefficients (e,, and e,;) of a PZT-5/polymer composite

reported by Berger et. al. [Berger et. al., 2005], using numerical finite element

method. Figs. 3.2(a) and (b) show the e,, and e,, comparisons respectively.

The material properties of the constituents used in our calculations are shown in

Table 3.2.

Table 3.2 Material parameters of PZT-5 and polymer [Berger et. al., 2005]
adopted in this calculation

PZT-5
C,, (GPa) 121.0 C, (GPa) 75.4
C, (GPa) 75.2 C, (GPa) 111.0
e, (C/m?) 158 e, (C/m?) 4
polymer
C,, (GPa) 3.86 C, (GPa) 257

Fig. 3.2(a) shows that equation (3.17) has good performance for dilute

suspension cases. At high volume fractions (¢ >0.3) , there are tiny

discrepancies between the theoretical values and the FEM data. This may be

due to the fact that Berger et. al. [Berger et. al., 2005] have calculated the

effective properties by using a 1-3 composite having periodic structure. Their
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composite model consists of spatially periodic representative volume elements
(RVEs). Each RVE consists of a single piezoelectric fiber embedded in a
polymer matrix. The volume fraction of the 1-3 periodic composite is altered by
modifying the diameter of each fiber inside a RVE. This may explain the very
small deviations of our values at high volume fractions. However, for e,,
comparison (shown in Fig. 3.2(b)), equation (3.21) agrees quite well with their

simulated values.
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Figure 3.2 Comparison of theoretical predictions of EMT schemes with the
simulated data of Harald Berger et. al. [Berger et. al., 2005] for (a)
e, and (b) e, of PZT-5/polymer composites
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Chapter 4 Conclusions

In this project, | have succeeded in extending Poon and Shin approach [Poon
and Shin, 2004] for treating elastic problem and piezoelectric problem of 0-3
composites. In the first part of Chapter 2, | have derived two explicit formulae
of the effective stiffness constants. These formulae are then compared with
some published experimental data. It demonstrated that the model can give
reasonable predictions. There formulae and the explicit formula of the effective
dielectric constant reported by Poon and Shin [Poon and Shin, 2004] are then
incorporated into Wong et. al.’s scheme [Wong et. al., 2001] for the predictions
of d, and d,;. Results calculated made by the present scheme, Wong et. al.’s
scheme and other theoretical works [Furukawa et. al., 1976, Jayasundere et. al.,
1994] are then compared with the experimental data of a PZT/polymer
composite [Furukawa, 1989, Zou et. al., 1996]. The comparison showed that
the scheme has comparable performance with Wong et. al.’s scheme. In the
second part of Chapter 2, assuming that both constituents are dielectrically and
elastically isotropic even they are polarized, expressions of two piezoelectric
stress coefficients (e, and e,;) and four stiffness constants (C,;, C,,, C

and C,,;) are derived. Combining with the derived results, two expressions of
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effective piezoelectric strain coefficients are obtained. Predictions made by our
model and Wong et. al.’s model [Wong et. al., 2001] are compared with the
experimental data of a 0-3 PZT/polymer composite system [Furukawa, 1989,
Chan et. al., 1995, Zeng et. al., 2002] having three different polarization states:
only the inclusion phase is polarized, both phases polarized in the same
direction and the two phases polarized in opposite directions. For the first two
cases, both our model and Wong et. al.’s model [Wong et. al., 2001] give
similar performance. For the last case, when compared with Wong et. al.’s

model [Wong et. al., 2001], our model give more favourable predictions.

In chapter 3, | have applied an EMT method in treating the piezoelectric
problem of a 1-3 piezoelectric fiber composite. Expressions of the effective
piezoelectric stress coefficients (e,, and e,,) are derived. This method has
been used in treating the elastic problems of 1-3 composite and the resulting
formulae shows fairly good agreement with experimental data, even at high
volume fraction cases [Chen, 1998]. The formulae obtained are then combined
with Chen’s results [Chen, 1998] to evaluate the effective piezoelectric strain
coefficients. Predictions are compared with the experimental data of d,; of a

1-3 PZT/epoxy composite [Klicker et. al., 1981] and the simulated values of
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e,, and e, of al1-3 PZT/polymer composite [Berger et. al., 2005]. Numerical

EMT calculations are also carried out for comparison purposes. The d,,

comparisons show that our predicted values agree well with the experimental

data. For piezoelectric stress coefficients comparisons, there are, however,

small discrepancies between the predicted values and the numerical FEM data

[Berger et. al., 2005] when the volume fractions are above 0.3. This may be due

to the fact that in the FEM calculation, different volume fractions were obtained

by merely changing the diameter of the single fiber inside each representative

volume element.

Up to now, | have used Poon and Shin’s idea to find the effective properties of

0-3 piezoelectric composites. In the future, it is interesting to investigate

whether this approach can be extended in treating 1-3 piezoelectric composite

problems.

For the 1-3 composite, | have applied effective medium theory (EMT) to find

the effective piezoelectric properties of 1-3 composites with high inclusion

concentrations. However, it is applicable only for 1-3 composites having fibers

with small aspect ratio. As have been mentioned in section 1.2.2, there are

80



many theoretical works on the study of the effect of aspect ratio on the effective

piezoelectric coefficients of 1-3 composites. However, those models are useful

for low volume fraction composites. For further study, the idea of EMT can be

extended to study the effect of aspect ratios on the effective piezoelectric

coefficients of 1-3 composite at high volume fractions of the fibers.
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Appendix A

Analytical elastic solutions of a single sphere composite

Goodier [Goodier, 1933] studied the elastic properties of a single inclusion
embedded in an infinite matrix. Suppose a single inclusion composite was
subjected to an external stress T, and a uniform tension T, is acting in the
matrix far away from the inclusion. Expressions of the non-vanishing
displacement (u) and stress (T ) components of the constituents, in spherical

coordinates (r, 4, ¢), were found to be

A 3A, |5-4v, A, 9A T,a
Uy =——— + — - cos26 + 1-v. )+ @+v,)cos20
e i Y Wi R g, (A=) + Wrvy)c0s20]
(A1)
2 . T :
U :—(—'62‘3+ G'Af}sm ZH—La(lJrvm)sm 20 (A2)
r r 2E,,
2A  2v, C 12B 2b-v,,) C 36B
Tom =24, T3 —— T —+ +| - = — + cos 26
rrm /um O{rg 1_2Vm r3 r5 |: 1_2Vm r3 I,5 :| }
TO
+ > (1+2cos20) (A3)
A 2v, A 3A A, 21A
Toom ZZ”mT{_F_l—var_S_ r52+ P r52 cos20
TO
+?(1—2c052<9) (A4)
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r r? rs

T :2;;5{—%——2(1 Vn) A 9, (3A3 Sika: jcosw} (A5)

21+v.)C 24B] . T, .
Togn =24, To| — me— 4 sin20 ——2sin 26 A6
o " { 1-2v, r* r° } 2 (A0)
u,; = B,r +B,r +2v,B,r® + (3B,r + 6v,B,r*)cos 26 (A7)
—[3B,r + (7 - 4v,)B,r*fsin 26 (A8)
1+ | 2 2
Ty =247, o B, + B, —v;B,r° + (3B, —3v,;B,r°)cos 26 (A9)
1+ | 2 2
T = 24Ty 17 1B, +B, ~5v,Byt —[sB, +7(2-v,)B,r*Jcos 20 (A10)

T, :ZyiT{l 2v| B, — 2—(15—7vi)|33r2—(7+11vi)83r2cosze} (Al1)

T = —244T,[3B, + (7 +2v,)B,r? |sin 20 (A12)
where a, E,, v were the radius of an inclusion, the elastic modulus of the
matrix and the Poisson’s ratio. A, A,, A,, B,, B, and B, were constants.

Goodier [Goodier, 1933] had worked out A, A, and A,. The remaining

constants can be found in Wong et. al.’s paper [Wong et. al., 2001].

ﬁ - _ 1 Hyn — H;
a3 8:um (7 - 5Vm )/um + 2(4 - 5Vm ):ul
y 2(1-2v;)(6-5v, ) ut, + (3+19v, —20v, v,) 1

2(0=2v; ) gty + A+ 5

@+v)
{(1 m) (A+v ) :|/ui -(1-2v))u,

4y, 2(1-2v ) pty + AL+ v

(A13)
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i - _ 1 Hn — H, (A14)
a5 8:um (7 _5Vm )zum + 2(4_5Vm )zul
i _ 1 5(1_ 2Vm)(:um _/ui) (A15)
3.3 8/um (7 _5Vm )zum + 2(4_5vm )zul
:E. 51-v,) (A16)
' 4 (7_5Vm )zum + 2(4_5Vm )zul
1Q-v,) 1-2v, (A7)

P2 (U vy) 20— 20y + (L4 )4,

B,=0 (A18)
By transforming the Goodier’s solution to Cartesian coordinates, we obtain the
stress components inside the constituents and their expressions are given as

follows

T, =T sin*@dcos® p+T,, cos®>@cos’ p+T__sin® ¢+ 2T, sin Fcosdcos’ ¢
11i rri o4 [ ré

=2ui(11+—vi|31—252j=3ki|31 —4u.B, (A19)

—2v,

Ty =T, SiN? @sin? 9 +T,, cos’ @sin® ¢ + T, cos’ ¢ + 2T, sin 9cos@sin’ ¢
22i rri oG Qi ré

=2ui(11+—vi|31—252j=3ki|31 —4u.B, (A20)

—2v,

Tay =T, €08 0+ T,,sin? @+ 2T, sin 9cos

- zui(l“—vi B, +4BZJ —3k,B, + 8B, (A21)

—2v,
The general stress-strain formulae are
|4
T, = zﬂ[ﬁ(sn +S, + S33)"' Sll:l
— 2V

1%
Ty = 2#{ (811 +3, + 833)+ Szz:l
1-2v
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Ty, = 2;{# (Syy +S, +S5)+ 333} (A22)
Using equations (A19)-(A22), expressions of strain components S of the
inclusion can be obtained.

S, =S,; =B, —2B, (A23)
Ss =B, +4B, (A24)
For the matrix phase, its stress components were given by

Tim =Tpom =0 (A25)
Tyn =T (A26)
Using the equation (A22), (A25) and (A26), expressions of strain components

of the matrix can be obtained.

2
Sllm = S22m = gkmﬂm To (A27)
2(k, +‘;m)
Saam :WTO (A28)
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Appendix B
Derivations of the effective bulk and shear modulus for 0-3

composites having high volume fractions of the inclusions

Equation (2.19) can be written in the following form
<Ti>:<Tm>+M1<Si>_N1<Sm> (B1)

where

(Sup)
<TD>E <T22p> : <SP>E 2 22p> :

S
<T33p> S33p>

A+¢C B+dG B+dG
M, =B+dG A+¢C B+gG| N,
B+dG B+gG A+4C

A
B
B

o > W
> W

and the subscript p denotes i or m.

Since both phases are isotropic materials, their elastic behaviours can be
described by equation (2.14). Using equation (2.14), (B1) can be expressed as
follows

(Ri _M1)<Si>:(Rm _N1)<Sm> (B2)
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where R, =|k, ——u, Kk, +-pu,

Combining the equations of 6T, JT,, and JT,;, we obtain

(R - Rm )<S> = ¢(R| - Rm)<sl>

where

From equation (B2), we get

2

K——u k+§y K——u

K—Zu K-Spu k+=
M 3 7

3

2

k——u k——=pu

3
4

2

2

3
2

3

(B3)

(RiA + 2RiB )(<Slli > + <822i > + <Ss3i >) = (RmA + 2RmB )(<Sllm > + <822m > + <S33m >)

(RiA - RiB)(<Slli > _<822i >) = (RmA - RmB)(<Sllm > - <Szzm >)

where

Rmzh+%ﬂf%A+ﬂ»’Rmzh_gﬂf48+#n

RmA =km +%:um _A’

I:emB = km _Ezum -B

(B4)

(B5)

(B6)

(B7)
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Using equation (B3), we obtain

(R:A + 2Ré)(<811> + <822>+ <Sas>) = ¢(RiIA + 2RiIB)(<Slli > + <822i > + <SS3i >)

(B8)
(R:A - RI'B)(<Slli > _<Szzi >) = ¢(RiyA - RiIB)(<Slli > _<822i >) (BQ)
where
: 4 , 2
RA:(k_km)+§(/u_:um)' RB=(k—km)—§(ﬂ—/Jm) (BlO)

R;A=(ki—km)+§(ui—um), R;B=<ki—km)—§<ﬂi—um> (B11)

From the equation (2.21), we have

(<811> + <Szz > + <Sas >) = ¢(<Sni > + <822i > + <Sasi >) +(1- ¢)(<Snm > + <822m > + <Ss3m >)

(B12)
(<811> - <322 >) = ¢(<811i > - <Szzi >) + (1_ ¢)(<Snm > - <Szzm >) (813)
Substituting the equations (B4) and (B12) into equation (B8), we obtain
. . , , 1
(RA +2RB) :¢(RiA +2RiB) (814)
(Rin +2R;)
¢+ (1_ ¢) (RmA + 2RmB)
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Substituting the equations (B5) and (B13) into equation (B9), we get

1
(RiA - RiB)
(RmA - RmB)

(R:A - R['B) = ¢(Ri'A - RiIB)

(B15)
g+(1-9)

Substituting the equations (B6), (B7), (B10), (B11) and (2.12) into equations
(B14) and (B15), two explicit formulae of the effective bulk modulus k and
the effective shear modulus x4 are obtained.

¢(k| - km)(km + :ﬂm)

k=k_ -+ 2 2
(l_¢)[km +§:um +(1_¢)(k| _km)]+¢(km +§/um)

m

(B16)
i+ ¢(/u| _/um) 6(km+2ﬂm)
S Su, 3k, +4u.,) B B Su,, (3K, +4u,)
O g ) g S

(B17)

89



Appendix C
Effective piezoelectric coefficients of a single piezoelectric fiber

composite

Consider a composite consisted of a single piezoelectric fiber inclusion
embedded in a piezoelectric matrix. Both phases are transversely isotropic
materials. An external electric field E is applied in its axial direction (Z
direction). We assumed that the electric field strengths inside both phases are
equal to the applied electric field (i.e. E, =E, =E). Suppose the composite is
poled along Z direction. The piezoelectric relations of the constituents, in our

case, are given by

Tip =CopSip +Cppp Sy +CiapSazp — €5, E (C1)
Top =Ci2pSip +CrapSap +CispSas, —€31,E (C2)
Tasp = CispSp +Cisp S +CaspSasp, — €55, E (C3)
Dsp =€31,S,, +€31,S g +€33,S33, + €55, E (C4)

where T, S, C,, and &,, are the stress, strain, stiffness constants and

dielectric constants, respectively. The subscripts r and & represent the radial

and tangential directions respectively.
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The radial displacement U, and the axial displacement U, are given by
U,=Ar+—2 (C5)
U, =¢ 2 (C6)

where A, B, and & are constants to be determined by boundary conditions,

as follows

(1) Along the symmetry axis of the inclusion (i.e. r =0), the solution must

be bounded. Hence B, =0.
(i) At the interface between the inclusion and the matrix (i.e. r =R, where

R is the radius of the fiber), we have

U,=U,_ (C7)

T,.=T.m (C8)
From (C7), we get

A=A (c9)

Before applying the boundary condition (C8), we need to determine the strain

components of the constituents. Using equations (C5) and (C6), strain values

can be determined.

Srrp = Ap _r_g (ClO)
B

Sup = Ay + 7 (C11)

Sasp =< (C12)
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Substituting equations (C10) to (C12) into equation (C1), we have
Thi =CiiA +Cy S +Cpi 8 —eyE (C13)

Bm Bm
Trrm = Cllm (Am - ?) + ClZm (Am + R_) + C13m6g — €31 E (C14)

2

Substituting equations (C9) into (C13) and (C14) and using equation (C8), we

get

_ 2C, Ay +(Cray =Cig) & + (B —€410)E (C15)

A C

where C=C,;; +Cy,; +Cy,, —Cyyp,

After transforming the strain components of the constituents into Cartesian
coordinates, we get

S,; =S,;c08°@+S,,sin’ 0 =A (C16)
S, =S,;8in*@+S,,cos’ 0 =A (C17)

Sy =S, COSZ O+ S, sin” 6

Bm

=A, —r—zcos 20 (C18)

S,om =Sy SiNZ 0 +S,,, c0s* 6

= A, +%cos 20 (C19)
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After taking the volumetric average, we obtain

<Slli> = <822i> = Au and <Sllm> = <822m> =

(C20)

The volumetric average of the Cartesian stresses and electric displacements of

both phases can then be obtained.

And the strains of the composite are obtained as follow
<811> = <Szz> = ¢A| + (l_¢)Am

<833> = ¢<833i > + (l_¢)<833m> =&

(C21)

(C22)

(C23)

(C24)

(C25)

(C26)

where <x> denotes the volumetric average of the physical quantity X over

the respective material and ¢ is the volume fraction.

Using equation (C15) and (C25), we can obtain the following relations.

C m_C i €31 — Cam
<Sll>_¢ 13 c 13 §_¢ 31 c 31 E
A ™ ¢%+1_¢
C

(C27)
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Ciam —Cuai €31 — C31m
<822>_¢%§_¢%E o8
Am - 2C11 ( )
¢?m+1—¢

From the definition of the volumetric average, we have
<T11> = ¢<Tlli > + (l - ¢)<T11m > (C29)

<T33> = ¢<T33i > + (l - ¢)<T33m > (C30)

Substituting equation (C21) into equation (C29), we get
<T11> = ¢(C11i <Slli > + ClZi <822i > + C13i <SS3i > — €y E)

+ (l - ¢)(C11m <Sllm > + C12m <SZZm > + C13m <833m > — €31 E) (C31)

Substituting equation (C23) into equation (C30), we get
<T33> = ¢(C13i <Slli > + C13i <822i > + C33i <833i > — g E)

+ (1_ ¢)(C13m <Sllm > + C13m <SZZm > + C33m <SS3m > — € E) (C32)

Substituting equation (C20) and equation (C12) into equation (C31) and
equation (C32), we obtain
<T11>:¢(C11iAi +C12iAi +C13i§_e31iE)

+ (1_ ¢)(C11m Am + C12m Am + C13m§ ~ €3 E) (C33)
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<T33> = ¢(C13i Au + ClSi A. + C33i§ — €45 E)

+ (1 - ¢)(C13m Am + C13m Am + Casmf — €3 E) (C34)

Using equations (C15) and (C26) to (C28), (T,;) and (T,) can be expressed
interms of (S}, (S,), (Sy) and E,
(Ti) =Cuy(S11) +Cpp(Sy) +Ci3(Sys) — €4 E (C35)
(Tg3) =Ci3(S11) +Ci3(Sp) + Cyy(Sys) —€5E (C36)
where C,, C,, C,, C,;, €, and e, are the effective coefficients. They

are now derived to be

2Cy,
¢C11i S +(1_¢)Cllm
Cy = ¢
11

¢ ZC11m

(C37)
+1-¢

2Cy,
lei S +(1_¢)C12m

Cy = ¢

12

¢ 2C:llm

(C38)
+1-¢

2Cy,
¢C13i S +(1_¢)C13m

Cp= ¢

13

¢ ZC:llm

(C39)

+1-¢

Cpsy —Cos
Cos =¢#Ca + (1-9)Cosp, +2¢C,5 %

2Cllm

2|:w13i + (1_ ¢)C13m:| C _ C
_ ¢ 13m 13i
p 20 11— ¢

(C40)
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2C:llm

?ey; C +(1-d)ey,
e31 = ZC (C41)
6% 11
ey = oy + (=P, +272 8 HED e o) (o)
§2Cmn 1

96



References

Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero

J.A. and Bravo-Castillero, J. “An analytical and numerical approach for

calculating effective material coefficients of piezoelectric fiber composites”.

International Journal of Solids and Structures, v 42, 2005, pp. 5692-5714

Bruggeman, D.A.G. “Berechnung verschiedener Konstanten von heterogenen

Substanzen: 1. Dielektrizitdtskonstanten und Leitfahigkeiten der Mischkdrper

aus isotropen Substanzen”. Annalen der Physik(Leipzig), v 24, 1935, pp.

636-679

Cao, W., Zhang, Q.M. and Cross, L.E. “Theoretical study on the static

performance of piezoelectric ceramic-polymer composites with 1-3

connectivity”. Journal of Applied Physics, v 72, n 12, 1992, pp. 5814 — 5821

97



Chan, H.L.W., Chan, W.K., Zhang, Y. and Choy, C.L. “Pyroelectric and

piezoelectric properties of lead titanate/polyvinylidene

fluoride-trifluoroethylene 0-3 composites”. IEEE Transactions on Dielectrics

and Electrical Insulation, v 5, n 4, 1998, pp. 505-512

Chan, H.LW., Chen, Y. and Choy, C.L. “Study on PZT4/VF,/VF;

piezoelectric 0-3 composites”. IEEE International Symposium on Applications

of Ferroelectrics, 1994, pp. 198-201

Chan, H.L.W., Chen, Y. and Choy, C.L. “A poling study of PZT/P(VDF-TrFE)

0-3 composites”. Integrated Ferroelectrics, v 9, 1995, pp. 207-214

Chan, H.L.W., Ng, P.K.L. and Choy C.L. “Effect of poling procedure on the

properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene

composites”. Applied Physics Letters, v 74, n 20, 1999, pp. 3029-3031

98



Chan, H.LW. and Unsworth, J. “Simple model for piezoelectric

ceramic/polymer 1-3 composites used in ultrasonic transducer applications”.

IEEE Transactions on Ultrasonic. Ferroelectric. and Frequency Control., v 36,

n 4, 1989, pp. 434-441

Chen, L.T. “Effective medium theory of elastic and thermoelastic properties of

fiber composites”. M. Phil. Thesis, The Hong Kong Polytechnic University

(1998).

Chew, K.H., Shin, F.G., Bloss, B., Chan, H.L.W. and Choy C.L. “Primary and

secondary pyroelectric effects of ferroelectric 0-3 composites”. Journal of

Applied Physics, v 94, n 2, 2003, pp. 1134-1145

Christensen, R.M. “Mechanics of Composite Materials”. Krieger Publishing

Company, Malabar, Florida, 1991.

Dias, C.J. and Das-Gupta, D.K. “Electroactive polymer-ceramic composites”.

Proceedings of the 4th International Conference on Properties and Applications

of Dielectric Materials (Cat. N0.94CH3311-8), v 1, pt. 1, 1994, p 175-178.

99



Dias, C.J. and Das-Gupta, D.K. “Inorganic ceramic/polymer ferroelectric

composite electrets”. IEEE Transactions on Dielectrics and Electrical

Insulation, v 3, n 5, 1996, p 706-734.

Furukawa, T. “Piezoelectricity and pyroelectricity in polymers”. IEEE

Transactions on Electrical Insulation, v 24, n 3, 1989, pp. 375-394

Furukawa, T., Fujino, K. and Fukada, E. “Electromechanical properties of

epoxy resin and PZT ceramics”. Japanese Journal of Applied Physics, v 15,

1976, pp. 2119-2129

Furukawa, T., Fujino, K. and Fukada, E. “Piezoelectric properties in the

composite systems of polymers and PZT ceramics”. Journal of Applied Physics,

v 50, 1979, pp. 4904-4912

Goodier, J.N. “Concentration of stress around spherical and cylindrical

inclusions and flaws”. Transactions of the ASME, v 55, 1933, pp. 39-44

100



Hashin, Z. “The elastic moduli of heterogeneous materials”. Journal of

Mechanics, v 29, 1962, pp. 143-150

He, L.H. and Lim, C.W. “Electromechanical responses of piezoelectric fiber

composites with sliding interface under anti-plane deformations”. Composites:

Part B, v 34, 2003, pp. 373-381

IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987.

Jayasundere, N. and Smith, B.V. “Dielectric constant for binary piezoelectric

0-3 composite”. Journal of Applied Physics, v 73, 1993, pp. 2462-2466

Jayasundere, N., Smith, B.V. and Dunn, J.R. “Piezoelectric constant for binary

piezoelectric 0-3 connectivity composites and the effect of mixed connectivity”.

Journal of Applied Physics, v 76, 1994, pp. 2993-2998

Klicker, K.A., Biggers, J.V. and Newnham, R.E. “Composites of PZT and

epoxy for hydrostatic transducer applications”. Journal of the American

Ceramic Society, v 64, n 1, 1981, pp. 5-9

101



Levin, V.M. and Luchaninov, A.G. “On the effective properties of thermo-

piezoelectric matrix composites”. Journal of Physics D: Applied Physics, v 34,

2001, pp. 3058-3063

Levin, V.M., Michelitsch, Th. and Sevostianov, I. “Spheroidal inhomogeneity

in a transversely isotropic piezoelectric medium”. Archive of Applied

Mechanics, v 70, 2000, pp. 673-693

Li, L. and Sottos, N.R. “Predictions of static displacements in 1-3

piezocomposites”. Journal of Intelligent Material Systems and Structures, v 6,

1995, pp. 169 — 180

Li, L. and Sottos, N.R. “Improving hydrostatic performance of 1-3

piezocomposites”. Journal of Applied Physics, v 77, n 9, 1995, pp. 4595 — 4603

Mori, T. and Tanaka, K. “Average stress in matrix and average elastic energy

of materials with misfitting inclusions”. Acta Metallurgica, v 21, 1973, pp.

571-574

102



Nan, C.W. and Jin, F.S. “Multiple-scattering approach to effective properties of

piezoelectric composites”. Physical Review B, v 48, n 12, 1993, pp. 8578 —

8582

Nan, C.W. “Effective-medium theory of piezoelectric composites”. Journal of

Applied Physics, v 76, n 2, 1994, pp. 1155 - 1163

Nan, C.W. “Physics of inhomogeneous inorganic material physics”. Progress in

Materials Science, v 37, n 1, 1993, pp. 1 — 116

Newnham, R.E., Skinner, D.P. and Cross L.E. “Connectivity and piezoelectric -

pyroelectric composites”. Materials Research Bulletin, v 13, n 5, 1978, pp.

525-36

Ng, K.L., Chan, HLL.W. and Choy, C.L. “Piezoelectric and pyroelectric

properties of PZT/P(VDF-TrFE) 0-3 composites with constituents phases poled

in parallel or antiparallel directions”. IEEE Transactions on Ultrasonic.

Ferroelectrics. And Frequency Control., v 47, n 6, 2000, pp. 1308-1315

103



Prasad, G., Bhimasankaram, T., Suryanarayana, S.V. and Kumar, G.S.

“Dielectric and piezoelectric properties of polymer piezoelectric 3-0

composites”. Modern Physics Letters B, v 10, 1996, pp.1205-1215

Poon, Y.M. and Shin, F.G. “A simple explicit formulae for the effective

dielectric constant of binary 0-3 composites”. Journal of Materials Science, v

39, 2004, pp. 1277-1281

Ray, M.C. and Pradhan, A.K. “The performance of vertically reinforced 1-3

piezoelectric composites in active damping of smart structures”. Smart

Materials and Structures, v 15, 2006, pp. 631-641

Ren, H. and Fan, H. “The role of piezoelectric rods in 1-3 composite for the

hydrostatic response applications”. Sensors and Actuators A, v 128, 2006, pp.

132-139

Saada, Adel S. “Elasticity theory and applications, Second Edition”. Krieger

Publishing Company, Malabar, Florida, 1993

104



Shin, F.G., Tsui, W.L. and Yeung, Y.Y. “Dielectric constant of binary

mixtures”. Journal of Materials Science Letters, v 8, 1989, pp. 1383-1385

Smith, J.C. “Experimental values for the elastic constants of a particulate-filled

glassy polymer”. Journal of Research of the National Bureau of Standards,

Section A, Physics and Chemistry, v 80A, n 1, 1976, pp. 45-49

Smith, W.A. “The role of piezocomposites in ultrasonic transducers”. IEEE

1989 Ultrasonics Symposium Proceedings (Cat. No.89CH2791-2), v 2, 1989,

pp. 755-766

Smith, W.A. “Modeling 1-3 composite piezoelectrics: thickness-mode

oscillations”. IEEE Transactions on Ultrasonic. Ferroelectric. and Frequency

Control., v 38, n 1, 1991, pp. 40-47

Smith, W.A. “Modeling 1-3 composite piezoelectrics: hydrostatic response”.

IEEE Transactions on Ultrasonic. Ferroelectric. and Frequency Control., v 40,

n 1, 1993, pp. 41-49

105



Sottos, N.R. and Li, L. “Optimizing the hydrostatic properties of 1-3

piezocomposites”. Proceedings of the SPIE - The International Society for

Optical Engineering, v 2189, 1994, p 50-61

Stansfield, D. “Underwater electroacoustic transducers”. Bath University Press

and Institute of Acoustics, 1990.

Taunaumang, H., Guy I.L. and Chan, H.L.W. “Electromechanical properties of

1-3 piezoelectric ceramic and piezoelectric polymer composites”. Journal of

Applied Physics, v 76, n 1, 1994, pp. 484-489

Tressler, J.F., Alkoy, S., Dogan, A. and Newnham R.E. “Functional composites

for sensors, actuators and transducers”. Composites: Part A, v 30, 1999, pp.

477-482

Wong, C.K., Poon, Y.M. and Shin F.G. “Explicit formulas for effective

piezoelectric coefficients of ferroelectric 0-3 composites”. Journal of Applied

Physics, v 90, n 9, 2001, pp. 4690-4700

106



Wong, C.K., Poon, Y.M. and Shin, F.G. “Explicit formulas for effective

piezoelectric coefficients of ferroelectric 0-3 composites based on effective

medium theory”. Journal of Applied Physics, v 93, n 1, 2003, pp. 487-496

Wong, C.K. and Shin, F.G. “Role of interfacial charge in the piezoelectric

properties of ferroelectric 0-3 composites”. Journal of Applied Physics, v 97, n

3, 2005, pp. 034111-1 — 034111-9

Yamada, T., Ueda, T. and Kitayama, T. “Piezoelectricity of a high-content lead

zirconate titanate/polymer composite”. Journal of Applied Physics, v 53, 1982,

pp. 4328-4332

Zeng, R., Kwok, K.W., Chan, H.L.W. and Choy, C.L. “Longitudinal and

transverse  piezoelectric  coefficients of lead titanate/vinylidene

fluoride-trifluoroethylene composites with different polarization states”.

Journal of Applied Physics, v 92, n 5, 2002, pp. 2674-2679

107



Zhang, Q.M., Cao, W., Wang, H. and Cross, L.E. “Characterization of the

performance of 1-3 type piezocomposites for low-frequency applications”.

Journal of Applied Physics, v 73, n 3, 1993, pp. 1403 — 1410

Zou, X., Zhang, L., Yao, X., and Wang, L. and Zhang, F. “Hydrostatic

piezoelectric property of composite PbTiOs-P(VDF/TeFE) for hydrophone

applications”. Proceedings of the Tenth IEEE International Symposium on

Applications of Ferroelectrics 1996 (ISAF ’96), v 2, 1996, pp. 1023-1026

108



	theses_copyright_undertaking
	b20940324

