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Abstract of thesis entitled
‘Singularity Detection for Regularity Scalable Image Coding’
submitted by HO Yuk Fan for the degree of Master of Philosophy
at The Hong Kong Polytechnic University in October 2002

Scalability has been one of the important design criteria of modern image and video
codec. The features such as resolution and SNR scalable coding provided in the EZW of
MPEG-4 and the EBCOT in JPEG2000 are typical examples. However, the quality levels
provided by the above two scalabilities do not correlate with visual perception, which
means they do not particularly emphasize the display of some important features such as
edges, boundaries, textures and surfaces of an image. So various feature-based
progressive or scalable wavelet image coding algorithms were proposed. Nevertheless,
their implementation cannot simultaneously satisfy some practical concerns such as
coding efficiency and implementation complexity. In this thesis, a new scalable coding
technique, namely, regularity scalable image coding, is proposed. We refer to a coding
system that generates compressed bitstream in the order of the regularity of the image
concerned. This algorithm can be fully embedded into any existing wavelet codec and
avoi.d the problems that the other feature-based scalable coders encounter.

From fluid dynamics in physics to pattern recognition or computer vision in
engineering, it is known that regularity (or singularity) of signals or images can be
estimated from the interscale evolution of their wavelet transform. However, our
regularity scalable coding algorithm is embedded into a wavelet codec, where the
separable wavelet transform with decimation is applied. Therefore, the first objective of
our work is to investigate the approach for estimating Lipschitz regularity from the

separable wavelet transform. To avoid the error and ambiguities when tracing the



modulus maxima at coarser scales, we study the existing interscale evolution of the
magnitude sums over the ‘cone of influence’. Since it cannot be applied here directly to
estimate the Lipschitz regularity, we determine the magnitude sums over the decimated
‘cone of influence’, which was not developed before. The PSNR and subjective quality
results show that the coding efficiency is higher than applying resolution scalability alone.

Multiwavelet transform has been applied to image compression and denoising in the
past few years. Multiwavelet transform is a generalization of the traditional single
wavelet with higher multiplicity. It offers simultaneous orthogonality, symmetry and
short supports, which are not possible with single wavelet transform. Due to the shorter
support and higher vanishing moments of the multifilters, it generally outperforms the
single wavelet transform. As the second part of our work, the singularity detection is
further extended to multiwavelet systems. Again we investigate the relationship between
the interscale evolution of the multiwavelet coefficients and Lipschitz regularity. The
shorter supports of the multifilters introduce smaler size of ‘cone of influence’, which
can be more clearly determined at lower scales. Hence improved results for singularity
detection can be achieved. We also perform thresholding according to the interscale
difference of the magnitude sum, which is complementary to the interscale ratio, in the
denoising algorithm. The MSE and subjective quality results depict the performances

from our theory.
Singularity detection by the Lipschitz regularity condition plays an important role in
the above signal processing applications, because it fully represents the characteristics of

the features of a signal or an image. We believe that it can be further applied to more

signal processing applications.
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Statement of Originality

The following contributions reported in this thesis are claimed to be original.

1.

The Lipschitz regularity condition for separable wavelet transform (Chapter 3,

Section 3.3)

Lipschitz regulanty is characterized by the wavelet transform and the Lipschitz
exponents can be determined from the magnitude of the wavelet transform across
scales. As there are many advantages to embed the proposed scalable coding
algorithm into a wavelet image coder, where the separable wavelet transform with

decimation is applied, we need to characterize Lipschitz regularity from the

. separable wavelet transform. We prove the Lipschitz regularity condition for the

separable wavelet transform (Appendix I).

The adaptive regularity scalable wavelet image coding algorithm (Chapter 3,
Section 3.3)

Since the existing WITMS over the COI cannot be directly applied to the separable
wavelet transform with decimation, in this algorithm, the regularity of a signal is
estimated by computing the WIMS over the decimated COI of the separable
wavelet transform with decimation. This is based on the work in the first statement
of originality. Then the wavelet coefficients are selected and classified to various
regularity levels according to their interscale ratios (and differences) of their
WTMS. The comparison with the existing feature-based scalable wavelet image
coding algonthms showed that the decoded images are higher in PSNR and have
better visual quality at the same bit rates. Significant improvements of the edges
and textures components of a decoded image are obtained at lower bit rates. When
we combine this scalable coding algorithm with resolution scalability, the bit rates

of a decoded image can be greatly reduced at the same quantization level. This

e i g am oy




scalable coding algorithm also possesses good noise robustness and it is image

adaptive. It would be very useful in image browsing and retrieval applications.

The Lipschitz regularity condition for the multiwavelet transform (Chapter 4,

Section 4.3)

Lipschitz regularity is characterized by the interscale evolution of the single
wavelet transform iﬁ terms of Lipschitz exponent. For multiwavelet transform, as
the supports of the multifilters are shorter, the width of the ‘cones of influence’
becomes narrower and the overlappings of the singularities at coarser scales
become less. Furthermore, the vanishing moments of the multifilters is sufficient to
provide a better signal approximation so that the wavelet coefficients produced at
fine scales become smaller. Therefore, we attempt to state and prove the
relationship between the interscale evolution of the multiwavelet transform and the
Lipschitz exponent in order to perform singularity detection in multiwavelet

transform and verify the above nice properties of multiwavelet transform over the

single wavelet transform. (Appendix II)

The signal denoising algorithm using the multiwavelet singularity detection

(Chapter 4, Section 4.3)

In this algorithm, we estimate the Lipschitz regularity of a noisy signal by
. computing the multiwavelet transform magnitude sum over the COI of the
multiwavelet transform. We use the interscale ratio and difference of the modulus
of the two magnitude sum components to reject wavelet coefficients which belong
to the notse components. We experimented two selection approaches, they are
thresholding the coefficients within the COI and thresholding the maxima
coefficients inside the COL. We then simply reconstruct the denoised signal by
simply applying the inverse multiwavelet transform. We found that signal denoising
using the multiwavelet singularity detection is better than signal denoising using the

single wavelet singulanty detection.
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Chapter 1

Introduction

1.1  Objectives of our research

Current feature-based scalable wavelet iﬁlage coding algorithms cannot fulfill fully
the concern of the correlation with visual perception, coding efficiency and
implementation complexity. This motivates us to develop a stmpler and more
effective scalable wavelet image coding algorithm. The proposed scalable coding

algorithm should achieve the following properties:

The scalability is based on the visually important features of an image.

. It is image adaptive.

. It can combine with other scalable coding algorithms such as the resolution
and SNR or accuracy scalabilities simultaneously, without rearrangement of
bitstream.

. [t maintains a reasonably high coding efficiency.
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1.2 Significance of our works

To achieve the first objective, we need to quantify the regularity of an image and
produce a scalable representation. Edge of different structures that appear in an image
is often the most important feature which characterizes the regularity of an image. In
computer vision or pattern recognition, muitiscale edges of images are often detected
by oriented wavelets with partial derivative of order one [4,39]. Visually important
features such as edges are further quantified from the interscale evolution of the
oriented wavelet transform. Visual smoothness or regularity of an image is related to
the asymptotic decay of oriented wavelet transforms in the corresponding
neighborhood in two directions, aﬁd the decay is controlled by the wavelet transform
modulus [40,76]. Mathematically, it was shown in [40] that the local wavelet
transform modulus maxima (WTMM) provide numerical procedures to compute
Lipschitz exponents, which quantify the local visual smoothness of an image.
Nevertheless, errors and ambiguities are introduced when tracing WTMM at coarser
scales, so wavelet transform modulus sum (WTMS) was proposed [32] as a
replacement of WTMM. This was applied as a post-processing technique to preserve
the edges of noisy natural or tomographic images {32,89,6]. In order to maintain a
high coding efficiency, as stated in the forth objective, an obvious approach is to

embed the algorithm in the wavelet image coder. Whereas for image compression in
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wavelet image coder, the separable wavelet transform with decimation is usually
performed for the decomposition. For the implementation, the wavelet coefficients arc
computed with fast filter bank algorithm that cascades discrete convolutions with
dilated filters and subsamplings [53,68,69,83,84,70,78,79,82]. Operating on these
decimated coefficients is more convenient and less computative, as the process is
embedded and less amount of coefficients is involved. WTMM and WTMS
algorithms only operate on the oriented wavelet transform, which is undecimated or
without any subsamplings. From [40,72,74,75,76,80], the Lipschitz regularity
condition, which determines the Lipschitz exponents, was just derived for the oriented
wavelet transform. With the assumption of using a jointly shiftable translation
invariant wavelet transform [25,46,67], we reckon that separable wavelet transform
also have a similar Lipschitz regularity condition, and this is shown in our work [30].
After the Lipschitz regularity of a separable wavelet transformed image 1s
quantified, we seck for a regularity scalable representation for it. With a set of well
designed wavelet ﬁl.ters, [46] shows that a 2-d wavelet transform can be jointly
shiftable in position and orientation. Wavelet coefficients corresponding to different
regularity levels can then be obtained by selecting wavelet coefficients at some
interscale ratio thresholds, which are related to the Lipschitz exponents. There are

errors and ambiguities of tracing WTMM at coarser scales, and the decimation may
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clear some maxima points and make it may become inaccurate to estimate the
Lipschitz regularity. The reconstruction process is also very complicated. So the
WTMS algorithm becomes the ultimate solution. It is because it can consider a wider
range of the effect from a singularity in the frequency domain, which is more
localized, on the other side, in the spatial domain, especially at coarser scales with
denser subsamplings. This better measurement of regularity is verified in [32).
However, for the separable wavelet transform, we cannot compute magnitude sum
directly to estimate the Lipschitz exponents in turn to produce a regularity scalable
representation of an image. ‘Cone of influence’ is the influential region of the
response produced by an impulse bounded by the support of the wavelet kemnels. It is
proportional to the scale. Here we construct the decimated ‘cone of influence’ for
computing the magnitude sums of the separable wavelet transform. Moreover, the
effect of decimation to the magnitude sum is relatively less than the maxima.

There are many advantages of adopting the scalable coding algorithm into zerotree
wavelet image coders. Apart from the high coding efficiency it could enjoy from the
image coders, the regularity levels defined can be adaptive to images. Normalization
of the interscale ratio of the magnitude sums is performed for obtaining an even
progression of regularity across the scalability levels. As the magnitude of a

coefficient represents the energy of the coefficient possesses, with partial ordering of
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the magnitudes of the coefficients and the interscale ratios of their magnitudes or
magnitude sums, we obtain an optimal arrangement of the encoding order so that
lower regularity components of an image are encoded first. Since the regularity
scalability can be exhibited with the resolution and SNR scalabilities simultaneously,
no change in the original bitstream format is needed. Furthermore, the combination of
bitstream that produces the sequence for transmission is simple. Image data is
encoded and transmitted in the order of regularity evaluated from the interscale
evolution of the wavelet coefficient magnitudes or their sums. Then it is undergone
the zerotree structure coding, and the lower regularity components, which is more
visually important, are encoded and transmitted first at certain resolution and
accuracy, with higher regularity components are encoded progressively as more bits
are allowed. Therefore, it provides good visual perception at very low bit rates or an
emphasis on a particular feature at a certain regularity of an image. Typically, the
encoding process can be stopped before or when the target bit rate is met. Similarly,
the decoder can interrupt decoding at any point in the bit stream and reconstruct an

image at a certain regularity level, resolution and accuracy.
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1.3  Organization of this thesis

In chapter 2, we make a brief review on the wavelet transform. We begin with the
history and development of the wavelet transform. We outline its important features
and its realization, from fast dyadic transform to discrete filter bank implementation.
We then come to the studies of the wavelet singularity detection and its applications in
pattern recognition, computer vision and signal processing. As we further extend the
singularity detection to the multiwavelet transform, we also briefly review the history
and development of the multiwavelet transform. We outline its important features and
its realization with the prefiltering.

In chapter 3, we present the p'roposed adaptive regularity scalable wavelet image
coding algorithm. We first recall several existing feature-based scalable wavelet
image coding algorithms, their features and their performances. Then we investigate
the Lipschitz regularity condition for the separable discrete wavelet transform. We
determine the decimated COI for the magnitude sums in th_e separable discrete
wavelet transform. Then this is applied to our proposed algorithm. Next we present
the procedures of implementing the proposed scalable coding algorithm, the results
and the comparison with various existing scalable wavelet image coding algorithms.

In chapter 4, we further extend the concept of our scalable coding algorithm, the

singularity detection, to the multiwavelet transform. We estimate the Lipchitz



Chapter | Introduction 7

regularity of a signal from the interscale evolution of the individual coefficient
magnitudes and the modulus of the coefficient magnitude components. We investigate
the approaches for signal denoising using multiwavelet singularity detection and
propose a denoising algorithm. Two selection approaches, thresholding the
coefficients within the COI and thresholding the maxima coefficients inside the COl,
were preliminarily applied to a 1-d test signal which is corrupted with white Guassian
noise and impulsive noise. There is significant improvement compared with the
WTMS denoising algorithm in the single wavelet transform.

We present the general cénclusion in chapter 6, where some suggestions for

further development can also be found.



Chapter 2

Preliminaries

2.1 Introduction |

In this chapter, we review the background of wavelet transform and multiwavelet
transform. In both parts we start with their history and development and their
realization related to singularity detection. It also includes the wavelet transform
modulus maxima and the wavelet transform modutus sum approaches. Then we
review their applications in siénal and image processing, particularly for edge

detection and denoising.
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2.2 Wavelet transform

In the past fifteen years, wavelet transform aroused much interest in the research area
of signal processing in the engineering discipline. Wavelet transform is actually based
on concepts that were dev_elgped independently under various forms in mathematics,
physics and engineering. The emergence of the wavelet theory came from the
connection of these multidisciplinary efforts. For signal processing, this formalization
created a flow of ideas beyond the construction of new bases or transform. These
ideas include the application of singularity detection for edge detection and signal and
image denoising. In this part, we briefly review the history and development of the

wavelet transform and wavelet singularity detection, and their applications in the

signal and image processing.

2.2.1 History and development of the wavelet transform

Fourier Transform

A linear time-invariant operator L is entirely specified by the eigenvalues !;(a)),
VoeR, Le'™ = h{w)e™, 2.1)

where the sinusoidal waves e are the eigenvectors of the linear time-invariant

operators. To compute Lf, a signal f is decomposed as a sum of sinusoidal
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eigenvectors {e“’” }WH, f (t)z—l—r flok™dw. (2.2)
2 e
If / has finite energy, the theory of Fourier integrals proves that the amplitude
f(@) of each sinusoidal wave & is the Fourier transform of f,
J@)= [ r)e™ar. (2.3)
Applying the operator L to f in eqn.2.2 and inserting the eigenvector expression
eqn.2.1 gives Lf(e)= 1 rf(w)};(w)e’“dm . (2.4)
27 -
The operator L amplifies or attenuates each sinusoidal component e of f by
h(a)) It is a frequency filtering of f .

The Fourier transform rules over linear time-invariant signal processing in early
years. [t proceeds simple answers to most questions in a wide range of applications
such as signal transmissions or stationary signal processing. However, the Fourier
transform is not tailored for transient phenomena which are in finite time segments.
The Fourier coefficient is obtained in eqn.2.3 by correlating f with a sinusoidal

wave e™ . Since the support of " covers the whole real line, f(w) depends on

the values f(t) for all times re® . It becomes difficult to analyze any local
property of f from f So we need local time-frequency transforms, which
decompose the signal over waveforms that are well localized in time and frequenc.y.
Time-Frequency Wedding

The uncertainty principle states that the energy spread of a function and its Fourier
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transform cannot be simultaneously arbitrarily small. Motivated by quantum
mechanics, in 1946 the physicist Gabor {20] defined elementary time-frequency
waveforms that have a minimal spread in a time-frequency plane. To measure
time-frequency information content, he proposed decomposing signals over these
elementary time-frequency waveforms. By showing that such decompositions are
closely related to our sensitivity to sounds, and that they exhibit important structures
in speech and music recordings. Gabor demonstrated the importance of localized
time-frequency signal processing.

A unified interpretation of local time-frequency decompositions follows the
time-frequency energy density approach of Ville. In parallel to Gabor’s contribution,
in 1948 Ville [54], who was an electrical engineer, proposed analyzing the
time-frequency properties of signals f with an energy density defined by

P flto)= [:f(H—Z;J f'[t—%]e""‘”dr.
Actually this distribution had already been introduced in 1932 by Wigner [35] in the
context of quantum mechanics.

Windowed Fourier Transform

Gabor waveforms are constructed by translating in time and frequency a time window

g: g.:(1)=glr—ule™.

The energy of g,. is concentrated in the neighborhood of u over an interval of
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size o,, measured by the standard deviation of Igfz. Its Fourier transform is a
translation by ¢ of the Fourier transform & of g,
8. (@)= glo-&)™0). (2.5)
The energy of g, is therefore localized near the frequency &, over an interval of
size o, , which measures the domain where g(w) is non-negligible. In a
time-frequency plane (t,), the energy spread of the g,. is symbolically
represented by the Heisenberg rectangle illustrated by figure 2.1. This rectangle is
centered at (,£) and has a time width o, and a frequency width o, . The
uncertainty principle proves that its area satisfies o, 0, 2%. This area is minimum
when g is a Gaussian, in which case waveforms g, , are called Gabor functions.
The windowed Fourier transform defined by Gabor correlates a signal f with
each waveform g, /(&)= [ f()gi ar= [ f(t)el-wear. (2.6)
It is a Fourier integral that is localized in the neighborhood of u by the window
g(r - u). This time integral can also be written as a frequency integral by applying the
Fourier Parseval formula, SF(w,¢) L fl@)g, (o . (2.7)

:EI’

The transform Sf(u,£) thus depends only on the values f(r) and f{w) in the

time and frequency neighborhoods where the energies of g.. and g, . are
concentrated. Gabor interprets this as a “quantum of information” over the

time-frequency rectangle itlustrated in figure 2.1.
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N )
g, o)l %
W ~+ |19,
lg g(m)l !
g> .......... -t GC!J
lgys © g, ]
; /\ t
0 M v

Figure 2.1 Time-frequency boxes (“Heisenberg rectangles”)

representing the energy spread of two Gabor atoms.

When listening to music, we perceive sound that has a frequency that varies in
time. Measuring time-varying harmonics is an important application of windowed
Fourier transforms in both music and speech recognition. A spectral line of f
creates high amplitude windowed Fourier coefficients Sf (u,£) at frequencies 10
that depend on the time u. The time evolution of such spectral components Iis

therefore analyzed by following the location of large amplitude coefficients.

Wavelet Bases
In 1910, Haar {28] realized that one can construct a simple piecewise constant
1 if 0<t<l1/2

function, wlt)=4 -1 if 251 <l,
0 otherwise

whose dilations and translations generate an orthonormal basis of L* (R),

1 t-2'n
v, a(0)= w[ , ” . (2.8)
{ .\/ET 2 (rm)e2?




Chapter 2 Preliminaries 14

Any finite energy signal f e [*(R) can be decomposed over this orthogonal basis

{Wj.ﬂ }(j.n)ez’ 4

00

/-5

j=*¢3ﬂ

M

(fo i );n- (2.9)

i

These basis were called wavelets. Since (¢) has a zero average, each partial sum

+m

d’([)=n§<f AW a(0)
can be interpreted as detail variations at the scale 2/. These layers of details are
added at all scales to progressively improve the approximation of /. In practical, we
obtain a precise approximation by truncating the sum {(eqn.2.9). The resulting
approximation at a scale 2’ is L(t):id ; (). The development of this plecewise
j=Jt

constant approximation was proceeded by Daubechies and Strémberg [11,100]. The
systematic theory for constructing orthonormal wavelet bases was established by
Meyer and Mallat through the elaboration of multiresolution signal approximation
[37]. The properties of orthogonal wavelets and multiresolution approximations did
light a surprising relation with filter banks constructed with conjugate mirror filters.
Filter Banks

Motivated by speech compression, in 1976 Croisier, Esteban and Galand [85]
introduced an invertible filter bank, which decomposes a discrete signal f[n] in two

signals of half its size, using a filtering and subsampling procedure. They showed that

f[n] can be recovered from these subsampled signals by canceling the aliasing terms
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with a particular class of filters called quadrature mirror filters. This breakthrough lted

to a ten-year research effort to build a complete filter bank theory. However, besides

the simple Haar filter [28], a quadrature mirror filter cannot have a finite impulse

response. In 1984, Smith and Bamwell [98] and Mintzer [41] found necessary and

sufficient conditions for obtaining perfect reconstruction orthogonal filters with a
finite impulse response, that they called conjugate mirror filters. The theory was

completed by the biorthogonal equations of Vetterli [52] in 1986 and the general

paraunitary matrix theory of Vaidyanathan [51] in 1987. More complete presentations

of filter banks can be found in the books [62,63,81,83,84].

Wavelet Transform

In reflection seismology, Morlet knew that the modulated pulses sent underground

have a duration that is too long at high frequencies to separate the returns of fine,

closely-spaced layers. Instead of emitting pulses of equal duration, he thus thought of
sending shorter waveforms at high frequencies. Such waveforms are simply obtained

by scaling a single function called a wavelet. Grossmann, who was working in

theoretical physics, recognized Morlet’s approach that was close to his own work on

coherent quantum states. Nearly forty years after Gabor, Morlet and Grossmann

reactivated a fundamental collaboration between theoretical physics and signal

processing, which led to the formalization of the continuous wavelet transform [62].
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Yet, these ideas were not totally new to mathematicians working in harmonic analysis,
or to computer vision researchers studying multiscale image processing. It was thus
only the beginning of gathering scientists with very different backgrounds to have
rigorous discussion.

To analyze signal structures of very different sizes, it is necessary to use
time-frequency waveforms with different time supports. The wavelet transform
decomposes signals over dilated and translated wavelets. A wavelet y 1s a function
of zero average, [:;y(t)dr =0. (2.10)
It is normalized || =1, and centered in the neighborhood of +=0. A family of

time-frequency waveforms is obtained by scaling by a scale parameter s, and

translating it by u,

v, (0)= T [!_ J 2.11)

The wavelet transform of f at the scale s and position # is computed by
correlating f with a wavelet function
f—u —
W (0ss)=(f.:) = [ O (a-rwt) @

with

/[3)

The Fourier transform of #7,(r) is tﬁ_‘(a))zxf;,&'(sa)). Since g&(())zf

oy

ol

w(t)dr =0,
it appears that 7 is the transfer function of a band-pass filter. The convolution

(eqn.2.12) computes the wavelet transform with dilated band-pass filters.
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Wavelet Transform and Filter Banks

The equivalence between the continuous time wavelet theory and discrete filter banks
led to the interface between digital signal processing and harmonic analysis. However,
dilations are not-deﬁned over discrete sequences and discrete wavelet bases have
therefore a more complicated structure. The regularity of a discrete sequence is also
not well defined, and this makes it more difficult to interpret the amplitudes of
wavelet coefficients. So the role of the theory of continuous time functions is to give
asymptotic results for discrete sequences with sampling intervals tending to zero. It is
because these asymptotic results are precise enough to understand the behaviour of
discrete algorithm.

Frame Theory

The continuous windowed Fourier transform Sf(,&) and the wavelet transform
Wf(u,s) are 2-d representations of a 1-d signal f. This indicates the existence of
some redundancy that can be reduced and even removed by subsampling the
parameters of these transforms. Eqn.2.6 and eqn.2.12 can be written as inner products
in (%), §f(u.s)= [ fl)gs ()t ={f.2.s)

and wflus)= [ f @l =1 p..).

Subsampling both transforms defines a complete signal representation if any signal

can be reconstructed from linear combinations of discrete famitlies of windowed
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{ - }(n.k)ez’ and {Wu,,,.vj i(f.n)eZ‘ . The frame theory discusses what conditions these

families of waveforms must meet if they are to provide stable and complete
representations. Signal reconstructions from regular and irregular samplings are
examples of applications. The frame theory was originally developed by Duffin and
Schaeffer [19] to reconstruct band-limited signals f from irregularly spaced
samples {f(t, )}nez. The general sampling theorem, which proves that if f has a

Fourier transform included in [-7/T,7z/T], then f(tn)=%<f(r),hr(t—rn)> with

sinlzm/T) . . . : : .
hT(r)=%/), gives a sufficient condition for reconstructing a signal from its
¥4

samples. Daubechies [12,67] proves several necessary and sufficient conditions for

constructing a bounded frame of Z*(R) with dilated windows, windowed Fourier

transform and wavelet transform.

2.2.2 Important features of the wavelet transform

Like a windowed Fourier transform, a wavelet transform can measure the time
evolution of frequency transients. To analyze the phase information of signals, a
complex analytic wavelet is used. We skip the details of the properties of the analytic
wavelet transform and its application to the measurement of instantaneous frequencies
here. [t is because we are interes_ted in sharp signal transitions, which are detected by

eal wavelets. So we introduce the elementary properties of real wavelets as the
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following.

Suppose i is real. Since it has a zero average, a wavelet coefficient Wf (u,s)
measures the varation of f in the neighborhood of u whose size is proportional to
5. When the scale s goes to zero, the decay of the wavelet coefficients characterizes
the regularity of / in the neighborhood of u. Sharp signal transitions create high
amplitude wavelet coefficients. In section 2.2.4, the pointwise regularity of f is
related to the asymptotic decay of the wavelet transform W/ (u,s) when s goes to
zero. Singularities are detected by following across scales the local maxima of the
wavelet transform. If Wf(u,s) has no modulus maxima at fine scales, then fis
locally regular. In images, high a:_nplitucle wavelet coefficients indicate the position of
edges, which are sharp variations of image intensity. Different scales provide the
contours of image structures of varying sizes. Such multiscale edge detection is
particularly effective for pattern recognition in computer vision [4].

A real wavelet transform is complete and maintains energy conservation, as long
as the wavelet satisfies a weak admissibility condition. This theorem was first proved
in 1964 by the mathematician Calderdn [3]. Calderdn defines a wavelet transform as a
convolution operator that decomposes the identity. Grossmann and Morlet [4] also
proved the same formula for signal processing. If 1/3'(0): 0 and w(a)) is

continuously differentiable then the admussibility condition is satisfied. With the
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admissibility condition satisfied, one can verify that wl{w) is continuously
differentiable if y has a sufficient time decay E(l+|t|)|z,u(t)[dt<+oo.
Multiresolution Approximation

Orthogonal wavelets (eqn.2.8) dilated by 2/ carry signal variations at the resolution
27/ . The construction of these bases can thus be begun with multiresolution signal
approximations. This leads to equivalence between wavelet bases and conjugate
mirror filters used in cliscre.te multirate filter banks. The multiresolution theory of
orthogonal wavelets [37] proves that any conjugate mirror filter characterizes a
wavelet  that generates an orthonormal basis of Z?(®). Eqn.2.9 can indeed be
interpreted as the difference between two approximations of f at the resolution

27*' and 27/ . Multiresolution approximations compute the approximation of

signals at various resolutions with orthogonal projections on different spaces {VJ }jez

Definition 2.1 Multiresolution

A sequence {Vj}er , of closed subspaces of L}R) is a multiresolution

approximation if the following 6 properties are satisfied:

v(j.k)e Z?, fOev, = fli-22k)ev, (2.13)
Viel, Va.ucl, (2.14)
VjieZ, eV o f(%] eV, (2.15)
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J=—-: j::-ca

lim ¥, = closure( Uv, J =L*(R). (2.17)
There exists 8 such that {9(t —n) }ne ; isa Riesz basisof V.

Property eqn.2.13 means that ¥, is invariant by any translation proportional to the

scale 2/, which characterizes the signal approximation at the resolution 27/ .
Eqn.2.14 is a causality property which proves that an approximation at a resolution

27/ contains all the necessary information to compute an approximation at a coarser

resolution 2°/~'. Dilating functions in V, by 2 enlarges the details by 2 and

eqn.2.15 guarantees that it defines an approximation at a coarser resolution 277,

When the resolution 2™/ goes to zero eqn.2.16 implies that we lose all the details of

f and lim P,,J_f”=0. On the other hand, when the resolution 27/ goes to +o,

Jreon

property eqn.2.17 imposes that the signal approximation converges to the original

signal and lim ” f-P f ”: 0. When the resolution 2™/ increases, the decay rate of
S /
the approximation error “ f -f f ” depends on the regularity of f. Section 2.2.4

relates this error to the uniform Lipschitz regularity of f.

2.2.3  Realization of the wavelet transform

Frame Construction

In the realization of the wavelet transform, we practically seek for the minimal
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requirement for a complete signal representation. Frame theory reveals the possibility
of removing the redundancy of wavelet transform representation by subsampling the
transform under various conditions. The frame theory analyzes the completeness,

stability and redundancy of linear discrete signal representations. A frame is a family

of vectors {¢,, }ner that characterizes any signal f from its inner products
{( f ,¢n>}ner. Intuitively, to construct a frame we need to cover the time-frequency

plane with the Heisenberg boxes of the corresponding discrete wavelet family. A
wavelet y,, has an energy in time that is centered at u overa domain proportional
to 5. Over positive frequencies, its Fourier transform y,, has asupport centered at
a frequency 7/s, with a spread proportional to 1/s. To obtain a full cover, we
sample s along an exponential sequence {a’ }jez , with a sufficiently smatl dilation

step a>1. The time translation » is sampled uniformly at intervals proportional to

' : 1 t-nua’ ) .
the scale a’. Let us denote a wavelet frame ﬂ(t)= =/ o yields
va’ a’

‘inner products that sample the continuous wavelet transform at time intervals a’u,,
()= £+7, (na'u, )= W) (na'u, a’).

Translating f by t gives
<f, ,1;/1.,,> =f*7, (nafun —~ r): Wf(na"'uu - r,a"').

We can see that if the sampling interval a’u, is large relative to the rate of variation

of f*y , (), then the coefticients <f,4//jv"> and <fr,y/m> may take very different
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values that are not translated with respect to one another. This is particularly acute for
wavelet orthogonal bases where u, is maximum. The same translation distortion
phenomena also appear in windowed Fourier frames.

Fast Dyadic Transform

In pattern recognition, it is important to construct signal representations that are
translation invariant. When a pattern is translated, its numerical descriptors should be
translated but not modified. Indeed, a pattern search is particularly difficult if its
representation depends on its location. Continuous wavelet transforms and windowed
Fourier transform provide translation-invariant representations, but uniformly
sampling the translation parameter destroys this translation invariance. There are
several strategies for maintaining the translation invariance of a wavelet transform. If
the sampling interval a’u, is small enough then the samples of f*v, (r) are
approximately transiated when [ is shifted. The dyadic wavelet transform is a
translation-invariant representation that discretizes the scale s into a dyadic
sequence {2’}152 but does not sample the translation factor u. It thus creates a
highly redundant signal representation. Suppose that the scaling functions and
wavelets ¢, w, ;; and  are designed with the filters A4, g, h and §A.Afast
dvadic wavelet transform is calculated with a filter bank algorithm called in French

the algorithme a trous, introduced by Holscheneider, Kronland-Martinet, Morlet and
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Tchamitchian [71]. Consider the signal f (t) =f (N "t), whose samples have distance
equal to 1. A change of variable in the dyadic wavelet transform integral shows that
wr(w,2 )= Ny (Nu, N2 ).

We suppose that the samples a, [n] of the input discrete signal are not equal to
f(n) butto alocal average of f in the neighborhood of f = n. The samples a, [n]
are written as averages of f{t) weighted by the scaling kernels #t-n),

a,[n]=(/( )= [ ol

Forany j =0, we denote

1
o b= (1008, (=) vith 4,00-7=A 57
_For j>0, dj[n]=Wf(n,2j)=( o, (- n))
Note that we insert 2’ —1 zeros between each sample of the filters. Inserting zeros in

the filters creates holes (trous in French). Let X, [n]= X; [-n]. The following
proposition gives convolution formulas that are cascaded to compute a dyadic wavelet

transform and its inverse.

Proposition 2.1 Fast Dyadic Transform

Forany j20, a}.ﬂ[n]:aj*}z.[n], dj+,[n]=aj*§j[n],

and aj[n]= ( a., xh. [n]+d §J[n])
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Figure 2.2 Fast dyadic transform. (a) The dyadic wavelet
coefficients are computed by cascading convolutions with
dilated filters. (b) The original signal is reconstructed through

convolutions.

To reduce the representation size while maintaining translation invariance, one can
use an adaptive sampling scheme, where the sampling grid is automatically translated
~when the signal is translated. For each scale a’, Wf(u,a’)=f*t}79, () can be
sampled at location u where ]Wf (u,a’)] is locally maximum. The resulting
representation is translation invariant since the local maxima positions are translated
when f and hence f*i, are translated. However, the reconstruction 1S
complicated. To study the completeness and stability of wavelet maxima
representations, Mallat and Zhong introduced an alternate projection atgorithm [39]
that recovers signal approximations from their wavelet maxima. Several other
algorithms have been proposed more recently [10,27,64]. For general dyadic wavelets,
Meyer [77] and Berman [1] proved that exact reconstruction is not possible, and

signals with the same wavelet maxima differ from each other only slightly, which
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explains the success of numerical reconstructions [39].

Filter Bank Implementation and Perfect Reconstruction

It was proved that multiresolution approximations are entirely characterized by_ a
particular discrete filter that governs the loss of information across resolutions. These
discrete filters provide a simple procedure for designing and synthesizing orthogonal
wavelet bases. Let ¢ be a scaling function that generates an orthoéonal basis of each

space ¥;. We study the properties of ¢ which guarantee that the spaces V, satisfy
all conditions of a multiresolution approximation. It was proved that any scaling

function is specified by a discrete filter called a conjugate mirror filter.

The multiresolution causality property eqn.2.14 imposes that ¥V, c¥V,,. In
particular 272 ¢(t/2)eV, cV,. Since {#{t—n)},., is an orthonormal basis of V,,

we can decompose

%4%] = S Hlnlple ), 218)

Hho—0

with H[n]= <%¢(%J’¢(’ —n)>. (2.19)

This scaling equation relates a dilation of ¢ by 2 to its integer translations. The

sequence A[n] will be interpreted as a discrete filter. Since {q}j_n} and {y/ i }nez

neZ
are orthonormal bases of V, and W, (V. =V, @W ), the projection in these spaces
is characterized by a, [n] = <f,¢j.n> and d, [n] = (f,y@.ﬂ) .

The following theorem [38,95] shows that these coefficients are calculated with a
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cascade of discrete convolutions and subsamplings. We denote ¥[r)= x[-»] and

f={ ] fn=2p (2.20)
0 ifn=2p+l1 .

Theorem 2.1 Fast Orthogonal Wavelet Transform
At the decomposition,  a,,[p]= ih[n ~2pla [n]=a, *A[2 P] (2.21)
4ulpl= Y eln-2pH =4, *2l2s] 222)

At the reconstruction, a[p]='3 Hp-2nla,,[n]+ 3 glp-2nld,[n]
=d,, *hpl+d,, ~glp] (2.23)

Theorem 2.1 proves that a,,, and d ,, are computed by taking every other sample
of the convolution of a, with h and g respectively, as illustrated by figure 2.3.
- The filter 4 removes the higher frequenciés of the inner product sequence a,
whereas g is a high-pass filter which collects the remaining highest frequencies.
The reconstruction eqn.2.23 1s an interpolation that inserts zeros to expand a,,, and

d,, and filter these signals, as shown in figure 2.3. An orthogonal wavelet

J+l

representation a, =<f,¢L_n> is composed of wavelet coefficients of f at scales
2" <2/ <27 plus the remaining approximation at the largest scale 27,

{df}f_qs.f’ a;
It is computed from a, by iterating eqn.2.21 and 2.22 for L < j<J. The original

signal a, is recovered from this wavelet representation by iterating the

reconstruction eqn.2.23 for J> > L.
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Figure 2.3 Fast wavelet transform. (a) The forward is computed
with a cascade of filterings followed by a factor 2 subsampling. (b)
The inverse reconstructs progressively by inserting zeros between
the samples, filtering and adding the output.

A two-channel multirate filter bank convolves a signal a, with a low-pass filter
- h[n]=h[-n] and a high-pass filter g[n]= gl- ], and subsamples by 2 the output:
a[n]=a,*k[2n] and d[n]=a,*g2n]. (2.24)
A reconstructed signal a, is obtained by filtering the zero expanded signals with a
dual low-pass filter % and a dual high-pass filter &, as shown in figure 2.4. With

the zero insertion (eqn.2.20) it yields

@ [n]=a, *hln]+d, *g[n]. (2.25)
— h —{2 —-—-aI[n]-.._..—fz h
agn] %— (0]
— 5 Hi2 —dn 42— &

Figure 2.4 A two-channel multirate filter bank. The input signal is
filtered by a low-pass and a high-pass filter and subsampled. The

reconstruction is performed by inserting zeros and filtering with
dual filters # and 3.
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The following theorem [52] gives the necessary and sufficient conditions on 4, g,

h and g to guarantee a perfect reconstruction @, =a,.
Theorem 2.2 Perfect Reconstruction for Two-channel Filter Bank

The filter bank performs an exact reconstruction for any input signal if and only if

I
-

B lw+nh(e)+ g (0+7)g(w)=0 (2.26)
and i oh(0)+ 8 (0)5(0)=2. @27)

Theorem 2.2 proves that the reconstruction filters h and g are entirely specified

by the decomposition filters # and g.In matrix form, it can be rewritten as

[ﬁ(i(ﬁ) g(g())MM]@ 028)

The inversion of this 2x2 matrix yields

n(w)|_ 2 [&+r)
[g-(w] a(w)(—h(m)J 22
where A(w) is the determinant

AMw)=ho)g{o+7)- Ao + 7)g(w). (2.30)

The reconstruction filters are stable only if the determinant does not vanish for all

@ € [-m,x]. This result is extended to multirate filter banks with an arbitrary number
M channels by showing that the resulting matrices of filters satisfy paraunitary

properties in [31].
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Boundary Problems

For the realization of the wavelet transform, we need to handle the filtering at the
boundaries of finite signals. Boundary wavelets are designed in order to provide this
necessary complement. The main difficulty of constructing boundary wavelets is to
keep their vanishing moments. There are three common approaches to solve this
problem, periodic wavelets, folded wavelets and custom-designed boundary wavelets.
In the first approach, we treat f [n] and the wavelets [n] as periodic signals of
period N . The discrete wavelet transform can then be written as a circular
convolution which is calculated with the fast Fourier transform algorithm requiring

- O(Nlog, N) operations:

N-1

wflna' )= ) fmly:m=n] (2.31)
where 7, [n]=y [-n] . If a=2" | there are viog,(N/(2K)) scales
a’ e [21\/",1{ "J. The total number of operations to compute the wavelet transform
over all scales is therefore O(vN(iogzN)z) (44]. Periodic wavelets have no
vanishing moments at the boundary, whereas folded wavelets, which is done by
symmetric extension of the signal at the boundaries, have only one vanishing

moments, The custom-designed boundary wavelets [9] can have many vanishing

moments but are more complicated to construct.
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2.2.4  Wavelet singularity detection

Lipschitz Regularity
The Taylor formuia relates the differentiability of a signal fe L2(€H,C) to local
polynomial approximations. Suppose that f 1s m times differentiable in

[v -hyv+ h]. Let p, be the Taylor polynomial in the neighborhood of v:
m=l (k Vv
p )= L )y
k=0 '

The Taylor formula proves that the approximation error
&)= /0)-p0)

s,(t)lslr—v‘m sup If’"(u)|.

m! welv-h,v+h]

satisfies Yt e [v -hv+ h],

The m"™ order differentiability of / in the neighborhood of v yields an upper
bound on the error e,(r) when ¢ tends to v. The Lipschitz regularity refines this
upper bound with non-integer exponents. Lipschitz exponents are also called Holder

exponents in the mathematical literature.

Definition 2.2 Lipschitz regularity

A function [ is pointwise Lipschitz a>0 ar v, if there exist K>0, and a
polynomial p, of degree m=LaJ such that
vveR, [f()-p ()< Kli-v]. (2.32)

A function [ is uniformly Lipschitz « over [a,b] if it satisfies the above
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condition for all vela,b], with a constant K that is independent of v. The

Lipschitz regularity of f at v or over [a,b] is the sup of the @ such that f is

Lipschitz a .

Remarks

1. At each v the polynomial p.(x) is uniquely defined. If f is m=|_o:_| times
continuously differentiable in the neighborhood of v, then p, is the Taylor
expansionof f at v.

2. Since pointwise Lipschitz exponents may vary arbitrary from abscissa to abscissa,
to obtain a more global measurement of regularity, that is, [ has the same
Lipschitz regularity over the neighborhood of v, we need uniform Lipschitz
regularity.

3. If 0<a <], then there exists K >0, and a polynomial p, (x)=f (v) such that
the Lipschitz condition in definition 2.1 becomes

Vie R, |f(f)—-f(v)[SK|[—v|a.
4. A function that is bounded but discontinuous at v is Lipschitz 0 at v.

I[f the Lipschitz regularity is a<1 at v, then [ is not differentiable at v and

Ly

a characterizes the singularity type.
Estimation of the Lipschitz Regularity

To analyze signal structures of very different sizes, it Is necessary to use
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time-frequency waveforms with different time supports. The wavelet transform

decomposes signals over dilated and translated wavelet. A wavelet is a function

w € I*(R) with a zero average, [:w(t)dt =0.

It is normalized [i||=1, and centered in the neighborhood of 7=0.

Definition 2.3 Wavelet Transform

Let ¢ be a scaling function and w be the corresponding wavelet generating a

wavelet orthonormal basis of L[*(R). Let ¢u‘_\,(x)=71_-¢[5-:£) be the set of
s s

translation by wu and dilation by s of the mother wavelet ¢ . Let

W, (I)=—1—t//[£_—uJ be the set of translation by u and dilation by s of the

Js \ s

mother wavelet =1. The wavelet transform of f e L*(R,C) at

time u andscale s is Wi (u,s fu/“ [f(t [ ;u]dt‘,
and Lf{u,s)=(f.4.,).

The uniform Lipschitz regularity of f over R can be related to the asymptotic
decay of its Fourier transform. The Fourier transform is a powerful tool for measuring
the minimum global regularity of functions. However, it is not possible to analyze the
regularity of f at a particular point v from the decay of ‘f(a))( at high frequency
w . In contrast, since wavelets are well localized in time, the wavelet transform gives
Lipschitz regularity over intervals and at points.

To measure the local regularity of a signal, it is not so important to use a wavelet
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with a narrow frequency support. Vanishing moments are crucial. If the wavelet has
n vanishing moments then it can be shown that the wavelet transform can be
interpreted as a multiscale differential operator of order n. This yields a first relation
between the differentiability of f and its wavelet transform decay at fine scales.

The Lipschitz property eqn.2.32 approximates f with a polynomial p, in the
neighborhood of v, fe)=p,(t)+&,{t) with ’sv(t)] < Klt—vla.

A wavelet transform estimates the exponent o by ignorihg the polynomial p,. For
this purpose, we use a wavelet that has » >« vanishing moments,

[Ctyfe)ar=0 for 0<k<n.
A wavelet with »n vanishing moments is orthogonal to polynomials of degree n—1.
Since a <n, the polynomial p, has degree at most n—1. With the change of
variable ' ={r-u)/s,

Wp,(u.s)=(p,.w,,}=0. (2.33)
Since f=p, +¢,, Wf(u,s)=We, (u,s).

In this part we explain how to measure o from |W/(u,s)| when u is in the
neighborhood of v. In fact, the decay of the wavelet transform amplitude across
scales is related to the uniform and pointwise Lipschitz regularity of the signal.
Measuring this asymptotic decay is equivalent to zooming into signal structures with a

scale that goes to zero. We suppose that the wavelet  has n vanishing moments
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and is n times continuously differentiable with derivatives that have a fast decay.

This means that forany 0<k <» and me N there exists C_ such that

r_ (2.34)
T+]¢]

Vte R, Iw(”(t)’ <

The following theorems ;elate the uniform and pointwise Lipschitz regularity of f
on an interval to the amplitude of its wavelet transform at fine scales. All theorems
remain valid if we restrict s to the dyadic scales {2’ },.'ez :

Theorem 2.3 Uniform Lipschitz Regularity

If fel’(R,C) is uniformly Lipschitz a<n over [a,b], then there exists A>0
such that V(u,s)efa,blx R, (#F(y,s)|< 45

Conversely, suppose that f isA bounded and that Wf{u,s) satisfies the above
condition for an @ < n that is not an integer. Then [ is uniformly Lipschitz a on
[a+5,b+5‘],f0rany €>0.

The proof of theorem 2.3 can be found in [40,74,75,76].

The study of pointwise Lipschitz exponents with the wavelet transform is a
delicate topic long time ago. Characterizing the regularity of / ata point v can be
difficult because f may have very different types of singularities that are aggregated
in the neighborhood of v. The following theorem gives a necessary condition and a
sufficient condition on the wavelet transform for estimating the Lipschitz regularity of

J/ atapoint v. We still assume the wavelet  has » derivatives and a fast decay.
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Theorem 2.4 Pointwise Lipschitz Regularity

If feI}(R,C) is pointwise Lipschitz a<n at v, then there exists A>0, such

)

Conversely, if @ <n is not an integer and there exist A and a'<a such that

)

u—-v

that V(u,s)e Rx R, |Wf(u,s)| < As‘””z[l +
5

u—-v

V(u,s)e RxR*,  |Wfl(u,s)|< As‘”‘"z[} +

$
then fis Lipschitz a at v.
The proof of theorem 2.4 can also be found in [40,74,75,76).
Theorem 2.3 and 2.4 prove that the local Lipschitz regularity of f at v
depends on the decay at fine scales of |Wf (u,s)| in the neighborhood of v.
Measuring this decay directly in the time-scale plane (u,s) i1s not necessary.
Singularities create sequences of maxima that converge towards the corresponding
Jocation at fine scales, and the Lipschitz regularity can be calculated from the decay of

the maxima amplitude. We use the term modulus maximum to describe any point

(«,,s,) such that |Wf(u,s)| is locally maximum at u=u,. This implies that

WS (u,,s,)

ou

= 0. The local maximum should be a strict local maxima in either the
right or the left neighborhood of u,, to avoid having any local maxima when
|Wf(u,5)| is constant. Singularities are detected by finding the abscissa by following

the wavelet modulus maxima which converge at fine scales. We call maxima line any
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connected curve s(u) in the scale-space plane (u,5) along which all points are
modulus maxima.

It was observed that a wavelet transform may have a sequence of local maxima
that converge to an abscissa v even though f s perfectly regular at v. To detect
singularities it is ther.efore not sufficient to follow the wavelet modulus maxima
across scales. The Lipschitz regularity is calculated from the decay of the modulus
maxima amplitude. Let us suppose that for s <s, all modulus maxima that converge
to v are including in a cone |u - v[ < Ks, where K is the size of the support of the
wavelet. f does not have oscillations that accelerate in the neighborhood of v. That
is, when potential singularity at v is isolated, the decay of |Wf (u,s)| in the
neighborhood of v is controlled by the decay of the modulus maxima included in the
cone fu - v| < Ks . Recall theorem 2.3 and take log at both sides,

log,| Wf (u,s)| < log, 4+ (& +1/2)log, 5.
The Lipschitz regularity at v is thus the maximum slope of logszf(u,s)| is a
function of log, s along the maxima lines convergingto v.

In numerical calculation, the finest scale of the wavelet transform is limited by the
resolution of the discrete data, s> AV™'. A must be large enough to avoid sampling
coarsely the wavelets at the finest scale. The « of a singularity is then estimated by

measuring the decay slope of loglfo(u,sN as a function of log,s for
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2/ > s> AN™'. We usually take the largest scale 2’ to be smaller than the distance
between two consecutive singularities to avoid having other singularities influence the
value of Wf(u,s).

Later it was found that there are many errors and ambiguities in tracing the
maxima curves in the- scale-space plane. So the wavelet transform modulus sum
(WTMS) was proposed [32]. The selection of wavelet coefficients by the interscale
ratio and difference of WTMS inside the COI was used to select wavelet coefficients,
instead of directly determine the Lipschitz regularity of a signal. Indeed, the m;'iin
difference of using WTMS instead of WTMM is that the processing of WTMS is over
the regularity located wavelet coefficients while the processing of WTMM is over
irregularly located maximum points of the wavelet coefficients. This significantly
decreases the computational complexity in processing.

Definition 2.4 Wavelet Transform Modulus Sum
Suppose the wavelets have compact support [~ K,K]. The cone of influence is
Cof,, ={u :|u—v]£K(2’ )} for any particular point v. The integral sum of the

magnitude of the wavelet coefficients inside this COl is determined as

N, f= [‘OIJWJ. flu)ldu.
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Theorem 2.5

If fel*(R,C) is uniformly Lipschitz a z:n the neighborhood of v, if and only if
there exists a finite constant A >0 suchthat N, f < A(Q" )a“.

This theorem is proved in [73}.

Again we need not estimating the Lipschitz exponent directly. It is known that the
Lipschitz exponent « of Guassian noise usually possesses negative value when it is
measured by the wavelet transform with wavelet of one vanishing moment [40]. In the
case a <-1, N NS, for 1< J,
where .J is the total number of scales. It implies that for a strong irregular point

which has o < -1, we can easily detect it by measuring the interscale ratio of N, f

N,
such that —-"—”i’~f—=2"”sl for 1< j<J and o <-1.

Nj_vf
That is, the function N,/ will decrease or remain the same as the scale increases.

If the point v corresponds to the edge or the regular part of the function f, then

a>0. This point can also be easily detected by measuring the interscale ratio of

N.Hl."f
N_j,vf

N,,f such that =2 >2 for 1< j<J and a20.

That is, the function N,/ will increase at least twice as the scale increases. By
selecting the wavelet coefficients fulfilling the above condition, we can effectively

distinguish and remove noise while the edges and the regular parts can be preserved.



Chapter 2 Preliminaries 40

Since it is observed in [32] that some small irregular signals, which have
—1<a <0, will have their wavelet coefficients wrongly fulfill the above criterion,
another criterion, the interscale difference of WTMS, was introduced,

N f=N =AY 242 for @20
] =N, = -] r az0.
The edge and regular part of the signal can be extracted out by the following condition,
Nj+l,vf - Nj,vf > :’V ’
where y is a threshold that is appropriately selected.

Applications

Multiscale Edge Detection using WTMM (Canny’s Edge Detector)

The edges of the different structures that appear in an image are often the most
important features for pattern recognition. Edges points are often located where the
image intensity has sharp transitions. Image textures do also have sharp intensity
variations that are often not considered as edges. The discrimination of edges versus
textures depends on the scale of analysis. This has motivated computer vision
researchers to detect sharp image variations at different scales. So there is a large class

of edge detectors look for points where the gradient of image intensity has a modulus

which is locally maximum.

Canny’s edge detector is a multiscale version of this approach [4]. Canny stated

that a good edge detector should possess the following three properties: good
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localization, high SNR and good continuity. The Canny operator works in a
multi-stage process. First of all the image is smoothed by a convolution kernel 9(x)
that is dilated. Since a wavelet with » vanishing moments can be written as the »"
order derivative of the function (x), the resulting wavelet transform is a multiscale
differential operator. Derivatives of Guassian function are most often used to
guarantee that all maxima lines propagate up to the finest scale. Then a simple 2-d
first derivative operator is applied to the smoothed image to highlight regions of the
image with high first spatial derivatives. Edges give rise to ridges in the gradient
magnitude image. The algorithm then tracks along the top of these ridges and sets to
zero all pixels that are not actually on the ridge top so as to give a thin line in the
output, a process known as non-maximal suppression. The tracking process exhibits
hysteresis controlled by two thresholds: T/ and 72, with T/ > T2. Tracking can only
begin at a point on a ridge higher than 7/. Tracking then continues in both directions
out from that point until the height of the ridge falls below 72. This hysteresis helps to '
ensure that noisy edges are not broken up into multiple edge fragments.

Signal denoising using WTMM

WTMM carry the properties of sharp signal transitions and singularities. If one can
reconstruct a signal from these maxima, it is then possible to modify the singularities

of a signal by processing the WTMM. The strength of singularities can be modified
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by changing the amplitude of the maxima and we can remove some singularities by
suppressing the corresponding maxima. The interscale evolution property as shown in
theorem 2.1 was first used in image denoising algorithms [10,39]. The noisy wavelet
coefficients are detected by evaluating the Lipschitz exponents based on the maxima
curve inside the COI in the scale-space plane.

Using the same wavelet kernel as the Canny edge detector, we perform the dyadic
wavelet transform of a noisy signal. Then the Lipschitz exponents are estimated by
tracing the maxima curves inside the COI in the scale-space plane. The maxima
curves are removed or adjusted when they possess negative Lipschitz exponents. The
denoised signal is then reconstructed from the processed WIMM by alternative

projection algorithm such as the POCS technique [39].

Signal and image denoising using WTMS

In signal or image denoising applications, we use the interscale ratio and interscale
difference of WTMS as the criteria to identify the noisy wavelet coefficients [32].

For 1-d signal, we perform the same dyadic wavelet decomposition. Then we
compute N, f over the COI for all levels 1< j<J. 1f N_f.+,',,f/Nj_l,f>2 and
NS -N,,f2y, where y isa threshold value, then we will select ij(v) and
the coefficients within the COI at the remaining scales. We repeat this process until all

the coefficients corresponding to all the signal points have been processed. We then
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reconstructed the denoised signal from the selected coefficients simply using the

inverse wavelet transform.
For 2-d image, after the dyadic wavelet decomposition (in a non-separable way),

we compute N, f over the directional COI for all levels 1< j<J. Then select

w'f(v) and W2 f(v) if N, f/N;,f>2 and N, ,f-N, f2y, where y is

J

a threshold value. Repeat until all the coefficients are processed. The denoised image

can be reconstructed by simply applying the inverse wavelet transform.
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2.3 Multiwavelet transform

Wavelet transforms with single scaling and wavelet functions have been studied
extensively for more than a decade. Multiwavelet transform, with multiple scaling and
wavelet functions operate in vector and matrix forms, have recently drawn much
attention in the research community since the multiwavelet functions constructed by
Geronimo ef al. in 1994 have more desirable properties than any single wavelet
transform. In this section, we briefly review the history and development, the

important features and the realization of the multiwavelet transform.

2.3.1 History and development of the multiwavelet transform

Generalization of Scalar Wavelet

The study of multiwavelets was initiated by Goodman, Lee and Tang [22] in 1993.
They extended Mallat’s construction of orthonormal wavelets generated by a single
function to multiwavelets generated by a finite set of functions. They found that there
is a relationship between wavelets and the concept of wandering subspaces in operator
theory. This provides a general setting to wavelets in Hilbert space where the
translation and dilation operators are replaced by unitary operators. They proved the

-xistence of orthonormal wavelet bases for V, generated by a finite number of
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vectors. They also proved the existence of bases of orthonormal wavelets for W,
and derive other results which are reminiscent of multiresolution approximation.
GHM Multiwavelets

Later in 1994, Goodman and Lee derived the necessary and sufficient conditions for
the translates of ¢,--,4,, w,,~¥, toform aRieszbasis for ¥, [23]. The resulting
decomposition and reconstruction sequences lead to the construction of dual bases for
¥, and its orthogonal complement W in V. The general theory can be applied to
the construction of spline wavelets with multiple knots (spline multiwavelets) [23,24].
Algorithms for the construction of these multiwavelets in some special cases are given
in [23]. After that, Goodman constructed multiwavelets that have certain derivatives
vanishing at the integers and satisfy certain interpolating conditions [24]. On the other
hand, Geronimo, Hardin and Massopust proposed a method for constructing
translation and dilation invariant function spaces using fractal functions defined by a
certain class of iterated function systems in the same year [21]. These function spaces
are generated by several scaling functions and their integer-translates. They also gave
necessary and sufficient conditions for these function spaces which form a
multiresolution analysis of L*(®). These multiwavelets are known as the GHM
multiwavelets and the filter coefficient matrices are shown in appendix 1V. In 1995,

Strang and Strela carried out that the final step of the construction and produced
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vector-valued wavelets by using paraunitary vector filter bank theory. In particular,
they constructed vector-valued Meyer wavelets that are band-limited. They classified
and constructed the vector-valued wavelets with sampling property. As an application,
multiwavelets can be constructed from these vector-valued wavelets. They also
showed that certain linear combinations of known scalar-valued wavelets can yield
multiwavelets. In addition, they presented the discrete vector wavelet transform for
discrete-time vector-valued (or blocked) signals, which can be thought of as a family
of unitary vector transforms.

Prefiltering

It was found that in order to have a reasonable decomposition for discrete
multiwavelet transforms, prefiltering is necessary [49,57]. A‘ prefilter design method
was introduced by Xia, Geronimo, Hardin and Suter in 1996 [57], where the idea is
based on the computability of the multiwavelet transform coefficients from uniformly
sampled signals. Moreover, an interpretation of the lowpass and highpass properties
for vector filters was introduced. The criterion 1s, however, only good for the first step
discrete multiwavelet transform decomposition. The prefilters designed with this
method may be nonorthogonal, which might kill the gain of the energy compaction in
the transform domain after the decoding is performed.

In {29], a different approach was proposed by Hardin and Roach for preserving
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the orthogonality by using the approximation order criterion. In {35,92}, Lebrun and
Vetterli studied the balanced muitiwavelets, where prefiltering for these kinds of
multiwavelets is not necessary, but the other properties such as the short su;ﬁport and
the smoothness, are not as good as the GHM multiwavelets.

In 1998, Xia introduced a new prefilter design technique which deals with all
decomposition steps for the discrete multiwavelet transform [59]. The preftlter design
technique is based on approximating a function with the lowpass property. The
orthogonality of their translations is obtained from the linear combination of the
multiscaling functions and their translations. The prefilter is not maximally decimated,
which allows more freedom in designing. This prefilter was designed with the
constraint that their combination with the multiscaling and multiwavelet filters will
have lowpass and highpass property. Although it is orthogonal which is energy
preserving, it is first order only. While Plonka’s prefilter [43] is symmetric and second
order. It is synthesized with perfect reconstruction filters having linear phase.

In 1998, Jiang introduced a procedure of designing orthogonal multiwavelets with
good time-frequency resolution [34]. Formulas for computing the time-durations and
the frequency-bandwidths of the scaling functions and multiwavelets are also obtained.

Parameter expressions for the matrix coefficients of the vector filter banks that

generate symmetric/antisymmetric scaling functions and multiwavelets supported in
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[O,N] were presented for N =2,--,6. Moreover, orthogonal multiwavelets with
optimum time-frequency resolution were constructed with some optimal multifiiter

banks provided. All the popular prefilter coefficient matrices are shown in the

appendix IV.

2.3.2 Important features of the multiwavelet transform

One may interest at the features of the multiwavelets that the single wavelet cannot
POSSESS simultaneously. It was verified by Strang and Strela in 1995 [48] that for any
single function ¢ apart from the Haar’s piecewise constants, it is impossible that ¢
is symmetric (linear phase), short.support (two intervals or less), and their translation
form an orthogonal family. However, those properties can be readily achieved by
introducing 2x2 matrix coefficients. They also demonstrated the nice properties of
the multiwavelets, for example, the scaling functions derived by Geronimo, Hardin
and Massopust in 1994 [21]. The properties are shown as the following.

1. Symmetry: ®, and ®, are even after a shift of the origin, that is, they are

linear phase filters.

2. Short suppori. ®, vanishes owtside the interval [O,i]. GHM scaling functions

have supports [O,l] and [0,2] and their supports are slightly shorter than CL

multiwavelet filters.
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3.

Orthogonality: The translates CD](t—k) and ®,(t-k) are all mutually
orthogonal.

Regularity (approximation order and smoothness): Classical notions of
regularity are the approximation power and smoothness. GHM multifilters have
second-order approximation, (linear combination of the scaling and wavelet
functions can reproduce constant and linear functions). CL multifilters have
third-order approximation. GHM multifilters are smoother than CL multifilters.
Vanishing moment (order of multiscale differential operator): Multiscale
differential operator is used to produce multiscale modulus maxima which locate
discontinuities of a signal. One vanishing moment: the modulus maxima will be
the maxima of the first order derivative of the signal smoothed by the kernel

function; two vanishing momenis: the modulus maxima will correspond to high

- curvatures. The more vanishing moments the filters have, the smaller transform

coefficients will be produced at fine scales. GHM multiwavelets have enough

vanishing moments.

Multiresolution Approximation

Let us define a multiresolution analysis of L?(9) generated by several scaling

functions, with an increasing sequence of function subspaces {VJ },.-Ez in L’ (‘JI),

Olccv, cV,cVc-c ') (2.35)
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Subspaces V¥, are generated by a set of scaling functions, namely, multiscaling

functions, such that ¥, is the closure of the linear span of { ,(_‘,iJ}I vy i D(R),

where

(0)=27"¢,(21 k), VieR. (2.36)
"Then we have a sequence of multiresolution subspaces {Vf}je , generated by a set of
multis;caling functions, where the resolution gets finer and finer as j increases.

Let us define inter-spaces W, < L}{R) such that Va=V,@W, YjeZ. W, is
the complement of ¥, in V,, and thus #, and W, with j=/ may not be
orthogonal to each other. Subspaces W, can be generated by r base functions that
are the multiwavelets w,,y,, -y, . The subspaces W, is the closure of the linear

span of {w,(j;) }1 gor ez WhETE

p()=2Py (2 1-k),  VieR. 2.37)

2.3.3 Realization of the multiwavelet transform

The pyramid algorithm for computing the single wavelet transform coefficients can be
implemented by using tree-structured multirate filter banks. But for the multiwavelets,
in 1996, Xia, Geronimo, Hardin and Suter proposed a general algorithm to compute
the multiwavelet transform coefficients by adding proper pre-multirate filter bank (or

prefilter) [57] before the vector filter banks that generate multiwavelets [58]. This
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preprocessing is usually performed before the multiwavelet decomposition. It can be
thought as the vectorization of an input signal to produce a certain discrete-time
vector-valued signals for the discrete vector-valued wavelet transform. After the
multiwavelet reconstruction, postprocessing (or postfiltering) is applied to give a
one-stream recovered signal. Preprocessing does not exist in single wavelet transform.
Prefiltering often produce correlated coefficients which contain information of the
regularity of the input signal. Multifiltering captures this information and further
characterizes it with its vector-valued transform.

Some numerical experiments were also done by them to illustrate the energy
compaction of the combined discrete multiwavelet transform could be higher than the
conventional discrete single wavelet transform. In this part, we briefly review the
implementation of the discrete multiwavelet transform and the perfect reconstruction
conditions. A generalized. prefilter design was proposed by Xia in [59]. It is
orthogonal but is 1* order only. Plonka’s prefilter is 2™ order and symmetric [43],
while Yang er. al ‘s prefilter is 2" order and orthogonal [60]. We review the
realization of multiwavelet transform combined with the pre- and postfiltering in [57].

Consider N general orthogonal wavelets with compact support, that is ¥
compactly supported scaling functions $(t), 1=12,-,N,and N mother wavelet

functions z;/,(f), [=1,2,-,N, where .,fé,(!——k), keZ, =12, N which are
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mutually orthogonal. 2”2%(2’[—!\:), j,keZ, 1=12,-- N form an orthonormal
basis for [*(R). Let H{w) and G(w) be their corresponding NxN matrix
quadrature mirror filters with impulse response H,, and G,, ke Z, respectively.
Let ®)=(g ()0 ()) and ®(O)=(p(c) .y () . Then @() and ¥(r)

can be expressed by the following matrix dilation equations,

dr)=2> H D2 -k), (2.38)
and ¥(t)=2> GO k). (2.39)

For each fixed je Z, let ¥, be the closure of the linear span of 24, (ZJI—Ic),
{=12,--,N , keZ . Then, the spaces ¥, , jeZ form an orthogonal
multiresolution analysis for Lz_(‘R) . Although they only focus on two-band
multiwavelets, the theory developed can be easily generalized to A -band wavelets
where there are N scaling functions and (M —1)N mother wavelet functions.

Let feV,,then

v

f(f)z ZZCI.D,kfﬁr({_k)’ (2.40)

i=l kel

= f{r)= iZC,JMZJ""ZgIﬁ,(QJ"r—k)+i > Zd,_j_kzmw,(zu-k), (2.41)

i=l keZ 1=l JpsystkeZ

where J, <0 and ¢, ., d,,, aredefined as
Cox = J-f(t)zjﬁ‘?’.' (2}[_'%)9'{ ’
and d .= J-f(r)?ﬁw,(?t —k)d[ .

Let ¢, =, ey, ) and d, =(d,,, -y, ] . Then, the decomposition and
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reconstruction formulas are

Crn = “'EZ H,C} sn s (2.42)
n
d_, =v2Y.Gd, .., (2.43)
n
and ¢;r = V2 NH o sn + Gl ). (2.44)
vk

Therefore, to determine thce wavelet coefficients ¢, , and d,, for J,</<0,
keZ from the samples of f(t), it is only necessary to determine the coefficients
¢,, for keZ from the samplesof f ().

Suppose the samples f] (-A—’;—] of f{t) with sampling rate —fg—{— are known. Let

xln]= f[i], neZ, X(@)= 3 s,

Wn

X, (@)= x[Mn+mle™, (2.45)

vn

where X (w) is the mth polyphase component of X(w) for m=0,,---,M-1.

Let Pm,,(w)=Z¢;(%+"Jew’ 1=12,N, m=0l-,M=1, (246)
W

and C (@)=>Tc e, /=12, N, jeZ. (2.47)
Yk

Let P(w) be the following M x N matrix function

P(w)= P'-':(a’) _ ""s(w) . (2.48)

P.w-u(w) Rw-i,z(w) o Puaw (0))
The Fourter transform of eqn.2.40 with ¢ = % +n, m=01L-- M-1 yields
!

(Xo (a)) ‘X’M—I(a)))r = P(w)(cl,o(w) C.v_o (w))r (2-49)

Since all ¢(r), {=1,2.---, ¥ are assumed to have compact supports and all the
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entries of the matrix- function P(a)) are polynomials of e, by eqn.2.49, the

following proposition gives the solvability of the transform coefficients from samples.

Proposition 2.2

The wavelet transform coefficients ¢, , and d,, for J,<j<0, keZ can be
exactly computed from [ (_A'ZJ_)' neZ, ifand only if M 2N and the rank of the
matrix P(w) ineqn2.54isalways N forall we [0,27).

Since efficient sampling is used, the sampling rate should be as small as possible.

So based on proposition 2.2, we can assume M =N and have these corollaries.

Corollary 2.1

The wavelet transform coefficients ¢, , and d;, for Jy<j<0, keZ can be
exactly computed from f [—:7), ne Z, if and only if the determinant function of the
matrix function P(a)) does not have any zeros for @€ [0,2;1), that is, the inverse of
P(w) exists.

Corollary 2.2

The inverse of P{w) is FIR if and only if the determinant of P(w) is ce™* fora
certain nonzero constant ¢ and a certain integer my.
Let Q(@) be the inverse of P(w), that is, P(w)Q{w) = {,, . The decomposition and

. ny . .
reconstruction of ¢, and d,, from f(ﬁ] is shown in figure 2.5,
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Fig 2.5 Discrete multiwavelet filter banks with Xia's
prefilter [91]. (a) Decomposition (b) Reconstruction.

Proposition 2.3

The system in figure 2.3 is perfect reconstruction, that is, i[n]-—- x[n], if and only if

the matrix quadrature mirror filters H(w) and G(w) satisfy

H(w)H' (0)+H{w+n)H (0 +1)=1,, (2.50)
G()G*(0)+Glo+n)G (w+n)=1,, (2.51)
H(0)G' (0)+H(o+7)G (0 +7)=0,, (2.52)
and P(0)Q(w)=1, . (2.53)

When a discrete-time signal x[n] is considered, proposition 2.3 also suggests that

one may use other pre- or post-filters Q{w) and P(w) rather than the one in
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eqn.2.49. So for fixed H(a)) and G(w), there are many algorithms in terms of
different Q(e) and P{w). Which one is good? The combined filters H(w)Q(w)
and G(w)Q(w) that have lowpass and bandpass properties respectively are preferred.
Since a NxN matrix filter F(a)) is also a polyphase matrix of N filters
F (co),---,F v (a)), one way to interpret the lowpass and bandpass properties of a matrix

filter F(w) is to use the lowpass and bandpass properties of its associated N filters
F,(a)), where [ =1,2,---,N. Let H(m)Q(aJ) be the polyphase matrix of 1:1,(50),
[=12,-,N and G(@)Q(») be the polyphase matrix of Glw), 1=12,-,N.
Assume A(r)=0, =12, N (2.54)
and G(r)=0, I=12,,N. (2.55)
If the prefilter Q(a)) that have the inverse (or the postfilter) P(a)), has determinant
det{Q(0))= %1, and satisfies eqn.2.54 and eqn.2.55, then Q(w) are called good

prefilters with respect to H(») and G(o).
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2.4  Summary

In this chapter, we reviewed the history and development of the wavelet and
multiwavelet transform. We highlighted their important features, such as
time-frequency localization and multiresolution approximation, which are crucial to
the singularity detection and the algorithms proposed in the next two chapters. We
also reviewed the realization of them by discrete filter bank and multifilter bank
respectively with perfect reconstruction. For the wavelet transform, we reviewed the
background of the singularity detection. For the multiwavelet transform, we will

present it in chapter 4 because it was not developed before.



Chapter 3

Regularity Scalable Wavelet Image Coding

3.1 IntroductionA

In this chapter, we suggest making use of the estimation of Lipschitz regularity to
achieve an efficient regularity based scalable image coding algorithm. In section 2.2.4,
Lipschitz regularity was proven to be characterized by the wavelet transform for
image analysis applications such as pattemn recognition and computer vision. In
current wavelet image coders, wavelet coefficients are often computed by fast filter
bank algorithm, where separable discrete convolutions are usually performed,
followed by subsamplings. This is the separable wavelet transform with decimation
we refer to here, and we need to check whether it is plausible to estimate the Lipschitz
regularity from the evolution of the separable wavelet transform across scales at all
orientations. So we proved the Lipschitz regularity condition for the separable wavelet
transform [30]. Then based on this, we proposed a scalable wavelet image coding
algorithm [30,86] which utilizes tree structured data organization. The comparison
with the existing feature-based scalable wavelet image coding algorithms showed that

the decoded images are higher in PSNR and have better visual quality at the same bit
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rates. Significant improvement of the edges and textures components of a decoded
image can be shown at lower bit rates. When we combine this scalable coding
algorithm with resolution scalability, the bit rates of a decoded image can be greatly
reduced at the same quantization level. Although the PSNR is also decreased, the
decrement is very small and the change in visual quality is negligible.

The organization of this chapter is the following. We first review the existing
scalable wavelet image coding algorithms, which are based on the image features.
Then we prove the Lipschitz regularity condition for the separable wavelet transform.
Since wavelet transform magnitude sum developed before cannot be directly applied
in this case, we determine the decimated COI for the magnitude sum of the separable
wavelet transform. We show how it is used to detect singularities or estimate the
Lipschitz regularity. Next we propose a simple, efficient and adaptive regularity
scalable image coding algorithm based on this. Finally, the results and the

improvements over the several existing algorithms are shown, followed by a short

surnmary.
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3.2 The present works

With the decreasing cost and increasing performance of digital multimedia capture
devices, computing power and storage capabilities, more and more visual information
will be available on-line in large image and video repositories [101]. For rapid
transmission or fast image browsing from the database, if there is insufficient
bandwidth in the network, packets will be dropped indiscriminately during congestion.
Even with the advanced resource management QoS, there are still many irresponsible
error condition and non-scalable state information on a per-flow granularity. Therefore,
one should provide a fast coarse approximation of the image, and then progressively
enhance it as more bits are transmritted and received. This fascinates numerous signal
processing researchers to design and implement scalable image and video coding
algorithms for these multimedia communication applications, so that at the same time,

the target bit-rate need not to be known at the time of compression.

3.2.1 Resolution and SNR scalable wavelet image coding

Current well-known wavelet image compression algorithms such as EZW algorithm
[47] in MPEG-4 [104], SPIHT algorithm [45] and EBCOT algorithm [30] in

JPEG?2000 [105] provide scalabilities in resolution and SNR or accuracy. Resolution
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scalability (figure 3.1) allows different resolutions or sizes of a decoded image to be
displayed, mostly affects the bit rates. SNR or accuracy scalability (figure 3.2) allows
images with different numbers of significant bit-p}anes decoded, while fhc total
number of encoded bit-planes, which represents the precision of the decoded wavelet
coefficients allowed, is regulated by the quantizer of the image coder. These
scalabilities only allow a coarse to fine approximation of images at various bit rates.
However, these quality levels are produced without any correlation with the visual
perception, because they are not scalable on the features of an image. Naturally, edges,
boundaries, textures and surfaces are considered to be the visually important features
of an image. The visual quality of an image will be improved if the information of
these features is increased. So Scalability on these features can provide a better visual
appearance of an image at very low bit rates, as the display of the shape or the
visually important features in a decoded image is allowed first at very low bit rate. It

can also emphasize a particular feature of an image at a certain bit rate.



Chapter 3 Regularity Scalable Wavelet Image Coding 63

Fioure 3.2 {Hlustration of SNR scatahility.
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3.2.2 Edge-enhanced wavelet image coding

For image browsing and retrieval over a bandwidth varying network, it is desirable to
display or recognize the shape‘ of an image at very low bit rates, and then
progressively enhance it as more bits are received. So various progressive or scalable
wavelet image coding algorithms based on edges and surfaces of an image were
proposed [91,94,97]. Before going to the scalable coding algorithms, let us investigate
the other approaches, which can achieve the above objectives. In [97], an
edge-enhanced image coding algorithm which combines the edge detection algorithm
SUSAN with the SPIHT algorithm [45] was proposed (figure 3.3). However, the
combination is not simple for the edge-enhanced reconstruction, so it is complicated
to provide scalability on the edges based on this algorithm, though it improves the
recognizability of decoded images at very low bit rates (figure 3.4), and the edge
detection algorithm itself is insensitive to noise and has a good edge localization.
Moreover, the multiring chain code used is particularly effective for long and smooth

curves only. So the edge coding is too costly for most images.
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Figure 3.3 Edge-enhanced image coding algorithm in [97].
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Figure 3.4 Edge-enhanced images using algorithm in [97].
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3.2.3 Edge-oriented scalable wavelet image coding

Traditional scalable coding techniques encode images starting from the lowest
resolution subband. One may encounter a situation that, at very low bit rate, the low
frequency information together with the blurred and blotchy artifacts will dominate
the decoded image. In hierarchical octave-band wavelet image coding, wavelet
coefficients at different scales and orientations can produce different effects to these
features. To perform scalability on these features, we need to quantify them with
crtical determination of how to select the appropriate coefficients from their wavelet
decomposition, how to combine them and in what sequence to encode and transmit
them. In {91], another progressive coding scheme was proposed (figure 3.5). The
wavelet transform is used to produce a multiple resolution framework so that high
resolution and visually important components of images such as edges is sent first,
and the skeleton shape of a decoded image 1s outlined at low bit rates (figure 3.6).
This can be achieved by encoding and transmitting subbands starting from the highest
resolution one. Although effictency can be improved without any significant effects to
a decoded image by discarding the first highest resolution subband, numerous bits are
still needed to encode the higher resolution subbands first for the simplest edges.
Moreover, the impression of the decoded images is generally not good because the

uray level is not displuyed almost unul all the subbands are received and decoded.
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3.2.4  Surface-oriented scalable wavelet image coding

According to the properties of HVS, surface orientation is important for recognition
and extraction of visual objects. Therefore, in [94], a scalable coding algorithm based
on surface orientation was proposed. It was suggested that the gray levels should be
maintained at all time for a ‘good impression’ of the decoded images. The surface
orientation from the shadings of images is used as the criteria to decide the ordering of
the subbands and their bit-planes for encoding and transmission (figure 3.7). The
surface orientation is measured by the stereographic projection of the reflectance map
obtained from the image brightness. With this algorithm, coarse shapes of objects are
first decoded, with shading infoﬁnation added progressively. This avoids using many
bits for edge coding like the above two algorithms. The sequence of encoding the
subbands at different bit-planes is shown in figure 3.8. However, since the
complicated mathematical relation between the wavelet coefficients at different scales
and orientations and the surface orientation is still not concrete, only a trial method
can be utilized and thereafter the surface orientation is evaluated. Moreover, due to
the assumption of point light source and lambertian object surfaces, the scope of
images suitable for this algorithm is limited. Furthermore, when the bit rate is higher,
the recovered images become more similar to the original one (figure 3.9}, and it

becomes harder to determine the transmission sequence as the surface ortentations of
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the images are similar. With these unsolvable problems, it still cannot be a desirable

feature-based scalable wavelet image coding algorithm.
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Figure 3.7 Surface-oriented scalable image coding algorithm in [94].
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Figure 3.8 Sequence of encoding and transmitting the subbands at different bit-planes
determined by the scalable image coding algorithm in [94].
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Figure 3.9 Results of the surface-oriented progressive image coding algorithm in [94).
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3.3  The proposed algorithm

There are many nice features to embed the scalable coding algorithm into the current
wavelet based image codec, where separable wavelet transform with decimation is
performed. So we first introduce the separable wavelet transform and the Lipschitz
condition [30]. Then we determine the decimated cone of influence (COI) for the
magnitude sum and present the proposed scalable coding algorithm [30,86).

Definition 3.1 Separable Wavelet Transform

Let 1<1<3 be the indices of the orientations and denote again x=(x,x,) and
u=(u,u,). Let ¢ be a scaling function and y be the corresponding wavelet
generating a wavelet orthonormal basis of LZ(ER). A separable wavelet orthonormal
basis {wf}ls,sj is then constructed with tensor products of the scaling function ¢
and the wavelet function y. That is, ' (x)=¢{x w(x,), ¥’ (x)=w(x)é(x,) and
v’ (x)=yw(x)w(x,). Let t,l/j..u(x) be the set of translations and dilations of the
mother wavelet {yf’}ls‘ss, !,.L/;.u(x)=2""1,1/’(2"‘:«:1 —u,,2'jx2—u2), so that {y/jlu}lgﬂ
is an orthonormal basis of r (fRz ) (figure 3.10). Let
¢ (x)= 2”’(z§2(2“'xl -u,27 x, —uz), where ¢'(x)=¢(x)p(x,)} and J is the
total number of scales. Then the separable wavelet transform of a signal f < L (9’1’2)

wuis  ASS={18)WW=(rvi), ) G.1)
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Figure 3.10 Dyadic rectangles indicate the frequency regions for

which the energy of the y!,(x) is mostly concentrated.

Theorem 3.1

If f is uniformly Lipschitz a <n in the neighborhood of v, U (v), there exists a

finite constant such that
v(j,u)e S, W rl)|s 4l ). (32)

Conversely, suppose that [ is bounded and a <n is not an integer. If there exists

a finite generic A'>0 and o' <a such that
v(ju)e SV, W flw)|< AR (3.3)
then f isLipschitz a in U,(v), where the region
Uy0)={u:ju,—v|<e+68, lu,~w|<e+8}, for 650,
belongs to the support of ' ,(x).

The proof is shown in Appendix L.
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By theorem 3.1, it is plausible to characterize Lipschitz regularity from the
evolution of the separable wavelet transform across scales. Experimental observations
indicate that strong edges achieve equality in eqn.3.2 [5]. This is the extreme case of
the condition in egn.3.2 which we can distinguish different levels of Lipschitz
regularity by computing the interscale ratios of the coefficient magnitudes. Therefore,
one may suggest that different extents of regularity can be obtained from the selection
of the decimated wavelet coefficients by the interscale ratios of their magnitudes.
Wavelet zero-trees take advantage of the decay of wavelet coefficients by relating
these coefficients across scales with quad-trees [36]. For each orientation, {=1,2,3,
we create quad-trees by relating each coefficient Wj’ f [u] to the following four
children at the next finer scale 2/, that is W/ f[2u,2u,], W', f[2u,~1,2u,],
W' f[2u,2u,~1] and W/ fl2u, 1,24, ~1]. At the largest scale 2, the children
of §,f [u] are defined as the three wavelet coefficients at the same scale and location
w) flu], wiflu] and W) f[u]. The construction of the quad-trees is illustrated in
figure 3.11. The value of a wavelet coefficient and its four children depends on the
variation of the image gray level in that spatial area. So we compute the interscale

ratios as the following,

w! '
Riuf =5 7/l , (.4.1)
Z ZlW’ lf 2u, —u/, 2u, —u;]

=0 uy=N
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and at the coarsest scale j=.,

o oIS/l
i —|W;, f[u”- (3.4.2)

Therefore, the children belonging to a parent are set to zeros when they are found to

be below a certain level of regularity, so that different levels of regularity of an image

could be produced by this relationship,

] a+l
R, f=2". (3.5)
Apart from this, a finer estimation can also be performed with the expense of

computations by computing the interscale rattos for each coefficient at the finer

scales,
W
R it rugi ] =7 ' ’f{”” ———,  for uj,u;=0,1, (3.6)
’WJ._,f[Zu,-—ul,Zuz—uz]'
and
R, f=2°. (3.7)
W f{n)
8, sl S
— \ Ssz[u] o..____:s

W) STl ~~— EW; S
\.

VIS

W alG W flullt
l \lif":i.;_f[uj ] §L \l-/-. .
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Figure 3.11 The decimated separable wavelet transform and the construction of quad-trees.
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It has been shown in [32] that the interscale ratios of the magnitude sums over the
COI can give a better estimation of Lipschitz regularity. We further apply this
approach to define different levels of regularity for our scalable cpding algorithm.
Using the interscale ratio of the magnitude sum to estimate the regularity of a signal is
especially good for ﬁlter- bank implementation of the separable wavelet transform
with decimation. It is because the maxima points of the wavelet transform may be
decimated out and there may have error for the localization of the singular points
detected. Therefore, we cannot apply the WTMS approach developed before. To
compute the magnitude sum, we need to determine the range, that is the COl, for 1t
Let us first consider the COI for the magnitude sum (figure 3.12) at v over the
undecimated wavelet transform. Suppose ¢ and y have compact supports
[—K,,Kl] and [_KZ’KZ] respectively. Denote u = (u,,u,) and v=(v,,v2). The

undecimated COl at v are the following.

u, _Vzl < K22j}.

For /=1, COI}'V={(j,u):|u,—vl[SKl2j,
For [=2, COI}I,={(j,u):|u,—v,|.<_K22j,|u2—v2|sK12*"}.

u, —v2| < K22j}.

For 1=3, cor, ={(ju):ju-v|< K2,
When each subband is downsampled by 2/, its size would be equal to that of the

decimated wavelet transform. So we determine the decimated COI for the separable

wavelet transform with decimation as the following.
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For /=1, dCOI}_,={(j,u): %- |<kK, 12‘%—% us}.
For /=2, dCOI}, ={(j,u): %— £ K, -;%—vz SKI}.
For /=3, dcor, ={(j,u): %—v, <K, %-»2 sxz}.
We then compute the magnitude sums,
N, f:dmzﬂ W, flull, (3.8.1)
b
and N, .f= MZIJ S, flu]|. (3.8.2)

Similar to eqn.3.4 and eqn.3.6, we obtain their interscale ratios as,

, NS
R_::'.vfz i 1 fj' b (391)
z Z Nj-l.Zv,—v'z.Zv,—v'zf
v=0v,=0
. N
and at the coarsest scale j=J, R, f= %f-, (3.9.2)
NJ.vf

N

or R:;.Zv.-vi.hg-vif = ____[J;"f_ , for V;, v:‘! =0,1. (310)
Jo2u=v, 2wy vy

By theorem 2.6 and 3.1, we have NivaA”(Z")aH, where A">0 is a finite

constant. Similar to eqn.3.5 and eqn.3.7, we have the interscale ratios for the

magnitude sums over the decimated COI for eqns.3.9 and eqn.3.10 as

R, f=2%" (3.11)
and R, f=2"" (3.12)
respectively. As a result, we do not need to directly compute the Lipschitz exponents

and avoid the errors and ambiguities that occur when tracing the evolution of the

wavelet transform coefficient magnitudes at coarser scales.
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Figure 3.12 The decimated COI of

separable discrete wavelet transform.

To develop an efficient image coding algorithm that possesses regularity
scalability, the regularity at different parts of an image should first be evaluated.
Traditionally, a jointly shiftable wavelet transform [46] is used to represent multiscale
signals and perform image analysis, because the transform coefficients are translation
invariant in position and orentation. There is also no aliasing effect upon
subsamplings and zero interpolation, and the wavelet filters used have compact
supports in Fourier domain or finite impulse responses. Since we aim at image
compression, it is usually more desirable to obtain a representation of signal
information with a minimal degree of correlation and redundancy but a maximal
concentration of energy distribution, so that the compression rate is maximized.
Therefore, regularity is measured from the wavelet transform coeflicients obtained

from the transform coding part of the wavelet image coder, even though this is not the
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best decomposition for analyzing the features with that set of wavelet filters. In the
previous section, we have shown that we can estimate the Lipschitz regularity from
the interscale ratio of the transform coefficient magnitude or the magnitude sum over
the decimated COIL With the partial ordering of the Lipschitz regulanty and
magnitude of the wavelet coefficients, the entropy of the ordered coeflicients become
lower after the first few selections. Then we completely embed the regularity scalable
coding into the wavelet image coder so that it becomes simpler to be implemented. In
addition, it is less computationally demanding to operate on the decimated wavelet
coefficients as fewer coefficients are involved.

Algorithm (selection based on wavelet transform magnitudes)

1. Obtain the decimated separable wavelet transformed image (eqn.3.1) from the

encoder.

2. Vj, I, compute and normalize their interscale ratios Rj.'v [ (eqn.3.4 or

eqn.3.6).
3. Normalize the magnitudes of the wavelet coefficients in step 1 and the results

from step 2 individually. Combine them and compute R),[ again after this

adjustment.

4. Determine «, for i=12,.,L, where L is the regularity levels, so that an

even progression of regularity across different regularity levels is obtained.
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Thenwe set R, ,.f =2%for each i.

3. Vj, 1, perform selection on WJ.I f [u] by eqn.3.5 or eqn.3.7. That is, for each
i, we select WJ‘ f [u] if R;.v f< Rj.,,‘,. [ . so that those coefficients with larger
magnitudes and smaller R;’V [ have the higher priority to be encoded first.

6. The selected coefficients are subsequently encoded by the quantizer and the
entropy coder to form a regularity and resolution scalable bitstream.

Algorithm (selection based on the wavelet transform magnitude sum)

1. Obtain the decimated separable wavelet transformed image (eqn.3.1) from the
encoder.

2. Compute the magnitude sums using eqn.3.8, where 1< j<J and 1</<3.

3. Compute the interscale ratios Rj.'v [ of the magnitude sums (eqn.3.10).

4. Normalize the magnitudes of the wavelet coefficients (step 1) and the results

from step 3 individually. Combine them and compute R;.V [ again after this

adjustment.

5. Determine a, for i=12,..,L, where L is the total number of regularity '

levels. Set R! .=2%"" foreach i aseqn.3.12.

FRN

1

6. Swarting at j=J, for regularity level i, select W/ 'f [v] if R}’.‘V fsR . f

. . . . !
Vj, 1, so that those coefficients with larger magnitudes and smaller R f

have the higher priority to be encoded first.
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7. The selected coefficients are subsequently encoded by the quantizer and the

entropy coder to form a regularity and resolution scalable bitstream.

In step 1, we obtain the wavelet coefficients from the image coder. We compute
the magnitude sums and also their interscale ratios in step 2 and 3. Wavelet
coefficients have large arﬁplitudes where the signal has sharp transitions. The larger
the magnitude, the more the energy and the visually important information are
contained by the wavelet coefficient. So we combine this measurement with the
estimated regularity of the image (step 4). With this combination, we can eventually
obtain the optimal arrangement of the encoding order to ensure the lower regularity
components of an image are encoded first. In step 2 and 4, we perform normalization
(or scaling them to the same range) for an even progression of regularity across the
scalability levels. This is because the dynamic ranges of different images are different.
We do the combination in the simplest way, that is, a simple matrix multiplication. '
The regularity levels are defined in step 5. The wavelet coefficients are sorted
according to the selection in step 6, so that those coefficients with larger magnitudes
and smaller adjusted interscale ratios have a higher priority to be encoded first. This
arrangement of bitstream effectively increases the coding efficiency of the regularity
scalable coded images at different resolutions because the entropy of the first few

regularity levels of wavelet coefficients are lowered after this utilization.
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entropy of the first few regularity levels of wavelet coefficients are lowered after this
utilization.

We also propose a possible implementation of the regularity scalable wavelet
image coder as shown in figure 3.13. It shows how the scalable coding algorithm can
be embedded in a zerotree wavelet image coder. In summary, the regularity of a
recovered image depends on the bit rate budget allowed, which is also decided by
criteria such as the resqlution required, the fixed or varying quantization steps used,

the precision of the wavelet coefficients required or the number of significant bits

used.
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Figure 3.13 The combination of the proposed algorithm with a wavelet

zerotree image encoder.
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3.4 Results

We combine the proposed algorithm to MPEG-4 still image coder with the popular
Daubechies 9/3 biorthogonal filters (X, =4, K, =1) (appendix IV). The proposed
algorithm introduces regularity scalability in addition to the resolution scalability with
no change in bitstream format. This is an important advantage of the proposed
approach. Basically it can work with any kind of scalable coding techniques without
changing the bitstream format. Well-known USC test images “Lena” and “Pepp.ers”
are used as test images. Masks shown in figure 3.14 indicate the positions of the
selected wavelet coefficients according to different regulanty levels determined by the
interscale ratios of magnitudes énd magnitude sums. The selected coefficients are
encoded and transmitted first. Note that the lower regularity wavelet coefficients
associated with the edges and textures are selected first, followed by the higher

regularity wavelet coefficients which correspond to the smoother areas or surfaces of

the objects.
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Figure 3.14{a) Masks ([=1 subbands) of the selected wavelet coefficients
bv different regularity levels from the selection bassd on the interscale
ratios of wavelet transform magnitudes (top), and wavelet transtorm

magnitude sums (bottom).
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Figure 3.14(b) Masks (I=2 subbands) of the selected wavelet

coefficients by different regularity levels from the selection based on

the interscale ratios of wavelet transform magnitudes (top), and wavelet

transform magnitude sums (bottom).

84
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Figure 3.14{c) Masks (=3 subbands) of the selected wavelet

coefficients by different regularity levels from the selection based on

the interscale ratios of wavelet transform magnitudes (top), and wavelet

transform maygnttude sums (bottom).
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In figure 3.15, 3.16 and 3.17, the recovered images from our proposed algorithm
are compared with the recovered images from the original coding algorithm with

resolution scalability only. From the curves (figure 3.15), we can see the rate of

change of PSNR against the bit rate at each resolution scale. The overall PSNR for all
resolution scales of our scalable coding algorithm outperforms significantly the

original coding algorithm with resolution scalability only.
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Figure 3.15 Performances of Resolution Scalability VS. Resolution and
Regularity Scalability. (a} at resolution scales 2-5, (b) at resolution scales 4-5.
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Table 3.1 shows the quantitative results (comparison A). For example, when the
quantization step size equals to 6, we can see that up to 34.98% reduction in bit rate
can be obtained with almost the same quality (less than 2.53% reduction in PSNR} at
the resolution scale 2 for encoding the image “Lena”. Figure 3.16 and 3.17 shows the
qualitative comparison results (comparison B). All the recovered images are scaled to
the same size in the illustration. Since the selected coefficients are encoded and
transmitted first, as shown in the figures, lower regularity components such as the

edges and textures are enhanced significantly with a small addition of bit rate.

Regularity and
Resolution Scalable resolution Scalable Percentage Change
PSNR Bit rates PSNR Bit rates PSNR Bit rates
Qstep size | (dB) (bpp) (dB) (bpp) (%) (%)

2 34.5795 | 1.49017 | 33.5911 | 0.83072 -2.86 -44.25
4 345229 | 1.14035 | 33.5762 | 0.67340 -2.74 -40.95
6 34.4211 | 0.89929 | 33.5495 | 0.58475 -2.53 -34.98
8 34.3012 0.73837 33.5113 0.52167 -2.30 -29.35
32 32.5595 0.25671 32.4216 0.24667 -0.42 -3.91
64 .30.4063 0.13934 30.4040 0.13931 -0.01 -0.02

Table 3.1 Effect of quantization to the regularity scalable coding at resolution scale 2.
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0.02155bpp 0.05042bpp

Figure 3.16(a) Reconstructed images “Pepper”. 17 row: Resolution Scalability only, 2™
row: Resolution and Regularity Scalability; 1* column: at resolution scale 5, 2"’ column:

at resolution scale 4.
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0.50168bpp

Figure 3.16(b) Reconstructed images “Pepper”. 1> row: Resolution Scalability only, oM

nd

row: Resolution and Regularity Scalability; 1¥' column: at resolution scale 3, 2" column:

at resolution scale 2.
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0.02121bpp

Figure 3.17(a) Reconstructed images “Lena”. 1% row: Resolution Scalability only, 2™
row: Resolution and Regularity Scalability; 1% column: at resolution scale 5, 2™

column: at resolution scale 4.
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o

0.51822bpp

0.15933bpp

Figure 3.17(b) Reconstructed images “Lena”. |* row: Resolution Scalability only, o

1 51 nd

row: Resolution and Regularity Scalability; column: at resolution scale 3, 2

column: at resolution scale 2.
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(a)

Figure 3.18 Different parts of the reconstructed image “Lena” at resolution scale 2 with the
highest precision. (a) 1 column: resolution scalable only (34.5795dB, 1.49017bpp); (b) 2™
column: regularity and resolution scalable (33.5911dB, 0.83072bpp); (c) 3 column:

original image at 3.25668bpp; 4" column: differences of 1% and 2" column images.
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Recall that the embedded coding is initiated with the largest quantization step
which is progressively decreased. The coding precision increases as the number of
quantization refinement increases. Therefore, to visualize the best qualitative and
quantitative improvement from the regularity scalability, we preserve the highest
precision by not performing quantization for the results in figure 3.15 and 3.18.

Recall that [91] suggested encoding the higher resolution subbands first, so that
the visually important edges are decoded and displayed first, while it was traditionally
suggested that the lowest resolution subband should be encoded first so that the gray
levels can be displayed at all time for a visually better decoded image. Here we adopt
our proposed algorithm into these two transmission schemes. We use the popular 9/3
biorthogonal wavelet filters with a five-level transform. Results of the well-known
USC images “Pepper” are presented. For the transmission scheme based on [91],
which is shown in figure 3.19, it is worth to note that the skeleton shapes of the
images are significantly enhanced at very low bit rate. We can see that the overall
quality of the decoded images starting at the same bit rate is also improved. For the
traditional transmission scheme with the surface-oriented scalability [94], we found
that the overall quality, especially the boundary shapes and edges of the decoded

images, are improved with our proposed algorithm.
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Figure 3.19(a) Comparison of the recovered images “Pepper” by our proposed
algorithm [86] and the edge-oriented progressive coding algorithm [91]. (1) top:
0.0120bpp from [91]; bottom: 0.0120bpp from our proposed algorithm [86], (i1) top:
0.2227bpp from [91]; bottom: 0.2203bpp from our proposed algorithm [86].



Chapter 3 Regularity Scalable Wavelet Image Coding 96

(i) (iv)

Figure 3.19(b) Comparison of the recovered images “Pepper” by our proposed
algorithm [86] and the edge-oriented progressive coding algorithm [91]. (111) top:
0.3004bpp from [91]; bottom: 0.2990bpp from our proposed algorithm [86], (iv) top:
0.3274bpp from [91]; bottom: 0.3235bpp from our proposed algorithm [86].
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(1) (if)

Figure 3.20(a) Comparison of the recovered images “Pepper” by our proposed
algorithm [86] and the surface-oriented scalable coding algorithm [94]. (i} top:
0.0367bpp from [94]; bottom: 0.03738bpp from our proposed algorithm [86]. (i1} top:
0.0524bpp from [94]; bottom: 0.05368bpp from our proposed algorithm [86].



Chapter 3 Regularity Scalable Wavelet Image Coding 98

(iii) (iv)

Figure 3.20(b) Comparison of the recovered images “Pepper” by our proposed
algorithm [86] and the surface-oriented scalable coding algorithm [94]. (iii) top:
0.1442bpp from [94]; bottom: 0.1443bpp from our proposed algorithm [86], (iv) top:
0.2808bpp from [94]; bottom: 0.2822bpp from our proposed algorithm [86].
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3.5 Summary

In this chapter, an adaptive regularity scalable wavelet image coding algorthm was
presented. Based on the Lipschitz regularity condition derived for the separable
wavelet transform, regularity measurement and singularity detection can be performed
in image coding algorithm. We first give a regularity scalable representation of an
image by selecting the wavelet coefficients according to their interscale ratios. WTMS
over the COI can provide a better regularity estimation, but we cannot directly apply it
to determine the scalable representation. So we select the wavelet coefficients in
various extents according to the interscale ratios of their magnitude sums over the
decimated COI A wavelet image decomposition provides a hierarchical data structure,
and this selection utilizes the tree structured data organization. With partial ordering
of the wavelet coefficient magnitudes, the entropy of the selected coefficients at the
first few regularity levels are lowered. This accounts for why the regularity scalable
coding algorithm can provide us a higher image compression capability.

From the simulation results and the comparison with several scalable coding
techniques, we conclude that our regularity scalability can provide a better visual
perception of an image at very low bit rate. Moreover, the algorithm operates on the
decimated wavelet coefficients and hence much less computation 1s needed than

operating on the undecimated coetficients. The proposed algorithm is adopted in
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MPEG-4 still image codec and benefited by its high coding efficiency. It can also
work with other kinds of scalabilities such as the resolution scalability, without
changing the bitstream format. We found that the proposed algorithm outperforms
various existing scalable coding algorithms in terms of visual perception,
implementation complexity and coding efficiency. In addition, it can possess good
noise robustness by appropriately adjusting the threshold of the first regularity level,
which behave as the adaptive denoising algorithms in [32,89,6], to reject wavelet
coefficients with negative Lipschitz exponents which correspond to noise.

This scalable coding algorithm would be very useful in image browsing and
retrieval applications. For image database browsing, a user may want to search
through the database to find an image with particular features but minimize the
number of bits transmitted for faster response. With the proposed scalable coding
algonthm, which is based on Lipschitz regularity, an image becomes easier to be
recognized at low bit rates and any of the important features of an image can be

visualized first at a certain bit rate.



Chapter 4

Multiwavelet Denoising using Singularity

Detection

4.1 Introduction

Multiwavelets have been proposed as a generalization of the traditional scalar wavelet,
with multiresolution analysis of multiplicity » . It has been proposed that
multiwavelet bases should be better in wavelet applications than other wavelet bases
[48]. It is because there are limitations for the single wavelet decomposition. First of
all, it cannot offer simultaneous orthogonality, symmetry and compact support
together with high regularity (or approximation order greater than one) [66,67].
Among the single wavelets only the Haar wavelet fulfils the above properties, but it is
discontinuous in the spatial domain. Multiwavelet systems based on two scaling
functions and two wavelets allow these properties simultaneously. Therefore, the

design of multiwavelet filters is more flexible.
Multiwavelet transform has been applied to image compression and denoising in

the past few years. Experimental results [18,49,92,99] showed that the multiwavelets

generally outperform the single wavelet in signal and image denoising using the
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thresholding approach. It is because the multiwavelets can offer higher vanishing
moments with shorter filter supports. The number of high amplitude wavelet
coefficients created by a brutal transition like an edge is proportional to the size of the
supports of the filters. For a more accurate localization of singularities, the number of
high amplitude wavelet éoefﬁcients produced should be as small as possible, and so
the supports of the filters should be as short as possible. Moreover, the more the
vanishing moments, the smaller the coefficients can be produced at fine scales.
Therefore, the multiwavelet coefficients that belong to the noise component can be
more easily distinguished at fine scales.

In this chapter, we study the approaches for signal and image denoising using
sigularity detection with the multiwave.lets, as a work further extended from the
regularity scalable coding. We investigate the evolution of the multiwavelet
coefficients across scales from their interscale ratios. Then we perform the magnitude
sums over the COI and estimate the regulanty from their interscale ratios, as it can be
verified that the COI can be more clearly determined than in the single wavelet
transform, especially at lower scales. To illustrate the advance of the multiwavelet
regularity estimation, we propose a signal denoising based on this. The denoising
algonthm treats the individual coefficients or the coefficients vectors as a whole entity.

Compared to the single wavelet case [32,88], improved results for singularity
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detection and signal denoising can be achieved for white Gaussian noise and
impulsive noise.

The organization of this chapter is the following. We first review the current signal
and image denoising techniques using the single wavelet and multiwavelet transform.
We then develop the Lipschitz condition for the multiwavelet transform. The

denoising algorithm is presented next, followed by the results and the summary.

/’?b Pao Yue-kong Library
QL';/ PolyU * Hong Konz



Chapter 4 Multiwavelet Denoising using Singularity Detection 104

4.2  The present works

Signal and image denoising using the wavelet transform began to receive much
attention since 1992, when Mallat proposed to use the WTMM to estimate the local
Lipschitz exponent of a signal by tracing the evolution of its WTMM across scales
[39] (Please refer to section 2.2.4 for the detail.). However, irregular sampling nature
complicates the reconstruction process. On the other hand, signal and image denoising
using thresholding techriques was pioneered by Donoho and Johnstone in 1994 and
1995 [13,14,15,16]. Soft or hard thresholding is performed to the detail discrete
wavelet coefficients of a noisy signal. Although it offers the advantages of smoothness
and adaptation, it produces visual artifacts. Translation-invariant denoising scheme
[65] was proposed to suppress such artifacts by averaging the denoised signals. Later
in 1997, a signal and image denoising algorithm which combines the approaches of
Mallat and Donoho without their disadvantages, was proposed by Hsung et. af [32,88].
Thresholding is performed to the detail wavelet coefficients according to the
interscale ratio and difference of the magnitude sum of the wavelet coefficients over
the COI and the denoised signal can be obtained by simple inverse wavelet transform.
Since the multiwavelet transform has some nice properties that cannot be obtained
from the single wavelet transform, and it offers higher flexibility in designing the

filters. Strela er. af suggested a way to construct biorthogonal muiftiscaling functions
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and applied it to signal and image denoising [49,99]. Downie and Silverman fully
utilized the multiple wavelet transform for signal and image denoising by bivariate
thresholding [18]. Several threshold estimators for the single wavelet transform are
experimented by Ling for the multiwavelet transform [93]. We can see that denoising
algorithms and threshold estimators using the single wavelet transform can be

extended to multiwavelet systems and improved results can be obtained.

4.2.1  Thresholding estimation

Denoising problem is actually the estimation of signals in additive noise, which is
optimized by finding a representation that discriminates the signal from the noise.
Suppose that a signal of interest f has been corrupted by noise, so that we observe a
signal g: g[n]:f[n]+az[n], n=0,1,--- N-1, where z[n] 1s a unit-variance,
zero-mean white Gaussian noise. We consider estimators computed with an
orthonormal basis B = {4, }05”,< v» and the noisy data is decomposed in B. The inner
product with h, gives gglm]={g.n), film]=(f,h,) and z[m]=(z,4,) and
so gsln]= foln]+ o zgln].

An estimation is calculated by an operator that attenuates the noise while
preserving the signal. There are two ways to perform thresholding estimation, the

hard and soft thresholding. A hard thresholding is implemented with
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x if |x| >A
=y= . 4.1
O A a
A soft thresholding is implemented with
x—A1 if x2 A
pix)=y={x+2 if x<-4. (4.2)
0 fMSA
y 4 y 4
» X >
A A
(2) (b)

Figure 4.1 (a) Hard thresholding (b) Soft thresholding.

The hard thresholding will kill all the transformed coefficients whose magnitudes
are less than the threshold to zero while keeping the remaining coefficients unchanged.
The soft thresholding kiils the smaller coefficients as well. However, all the
coefficients whose magnitudes are greater than the threshold wilt be reduced by the
amount of the threshold. The risk (or the mean square error) of hard thresholding is

N-1
(7.2)= S el pulealm]f (@3
which depends on the threshold A used.
In addition, the semi-soft thresholding, which was proposed in {103], generalizes the

hard and soft functions by using two thresholds, including both the hard and soft as
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the special case.

4.2.2  Threshold refinement

Suppose A = Gm , to reduce the thresholding risk, we can actually choose a
threshold which is smaller than A . Then the threshold is adapted to the data and it
can be calculated by minimizing an estimation of the risk. Improvement of
thresholding estimators can be obtained with a translation invariant algorithm.

SURE Threshold

To study the impact of the threshold on the risk, we denote by r{f,A)} the risk of a
soft thresholding estimator calculated with a threshold A. An estimate 7(f,A) of
r(f,A) is calculated from the noisy data g, and A is optimized by minimizing
7(f,4).

To estimate the risk (f,1), observe that if !g,[m]l <1 then the soft
thresholding sets this coefficient to zero, which produces a risk equal to ] /3 [m”z.
Since E{| gB[m]'zfzIfB[m]|2 +0?, one can estimate | f[m]]" with | gz[m]] —c’.
If ’ga[m” > A, the soft thresholding substracts A from the amplitude of gB[m].
The expected risk is the sum of the noise energy plus the bias introduced by the
reduction of the amplitude of gu[m] by A.Itisestimated by o+ A’. The resulting

estimator of r(f,4) is
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#r.4)= > (| gslm]’) (4.4)
with o) = {G‘fi ‘f!f ”jj;.

To find the 1 that minimizes the Stein’s unbiased risk estimation (SURE) 7(f,1),
the N data coefficients gB[m] are sorted in decreasing amplitude order with
O(NlogzN) operations. Let g;[k]ng[mk] be the coefficient of rank £ :
galk]zgilk+1] for 1<k<N . Let [ be the index such that

ga [l]l <A< l gg[l + 1]| . We can rewrite eqn.4.4 as

gk (v -1 + (o7 + ) (4.3)

rcf.z)=§

To minimize 7(f,A) we must choose A = g;[f” because r{f,1) is increasing in
2. To find the 1 that minimizes 'F(f ,/1), it is therefore sufficient to compare the
N possible values {I gg[l]‘ LksN , that requires O(N) operations if we
progressively recomputed the eqn.4.5. The calculation of A is thus performed with
O(Nlog, N} operations.

When signal energy is small relative to the noise energy, that is
||f“2 << E{”cJ'Z“2 }: No?. In this case, one must impose A = am in order to
remove all the noise. Since E“lg“2}:||f”1+Na:, we estimate ”f”l with

||g,'“3—1'\/’0'2 and compare this value with a minimum energy level

e, =o’N"(log, N)"*. The resulting SURE threshold is
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- {Jﬁ—lo_g,—f‘/ if gl ~No* ey 46)
7 Flel’ - 0" > e,

Translation Invariant Thresholding

An improved thresholding estimator is calculated by averaging estimators for
translated versio.ns of the signal. The translation invariant algorithm of Coifman and
Donoho [65,102] estimatés all transiations of f and averages them after a reverse
translation. For all 0<p<N , the estimator F? of f* is computed by
thresholding the translated data g"[n]=f[n—p] as F* = iﬁz (gg[m])gm . The

m=0

translation invariant estimator is obtained by shifting back and averaging these

estimates as

U (e

F[n]z—-ZF"[n-{-p]. 4.7)

N
In general, this requires N times more calculations than for a standard thresholding
estimator.
Other variation of the threshold refinement such as BayesShrink, which advocates

soft shrinkage in a certain Bayesian framework and outperforms SureShrink
estimation [16] in the context of denoising image, can be found in [7].

Cross-validation is also applied to determine the threshold [33,42].
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4.2.3 Wavelet thresholding

Thresholding wavelet coefficients is equivalent to estimating the signal by averaging
it with a kernel that is locally adapted to the signal regularity [61). A filter bank of
conjugate mirror filters decomposes a discrete signal in a discrete orthogonal wavelet
basis. The discrete wavelets v, [n]: W, [n—N 2/ m] are translated modulo
modifications near the boundaries. The support of the signal is normalized to [0,1]
and has N samples spaced by N~'. The scale parameter 2/ thus varies from

28 =N" wp 10 27 <1, B=[{wj,m[n]}wy_osm_,,{¢J_m[n]}osm_,] . A thresholding

estimator in this wavelet basis can be written as

F= i Epi((g,yfj.,,.))//j_m +§p1((g)¢1.m>)¢.f,m

j=L+lm=D m=0

Noise Variance Estimation
The signal f of size N has N/2 wavelet coefficients {< f ’Wf-M>}ug wp & the

1s small if f 1s smooth over

finest scale 2’ =2N"'. The coefficients I(f,y/!’m>

(fwin)] s

the support of v, , in which case (f,y/,lm> ~ (o‘z,w,ﬂ). In contrast,
large if [ has sharp transition, and hence produces a number of large coefficients
that is small compared to N/2. At the finest scale, the signal 7 thus influences the
value of a small portion of large amplitude coefficients (f,%,m>- All others are

approximately equal to (g:':yl,m>, which are independent Gaussian random variables
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of variance o’.
To estimate the variance o’ of the noise from the data, we need to suppress the
influence of f. When f is piecewise smooth, a robust estimator is calculated from

the median of the finest scale wavelet coefficients {( £ y/,,m> }OSm<N/2 [13].If M 1s

the median of the absolute value of P independent Gaussian random variables of
zero-mean and variance o,’, then one can show that E{M}=~0.6745c,. The

. 2 v - . -
variance ¢~ of the noise is estimated from the median M, of {(f ,W:,m)}osmm

by neglecting the influence of [,

L (4.8)

Indeed f is only responsible for few large amplitude coefficients, and these have
little impacton M .
Hard or Soft Thresholding
The wavelet thresholding algorithm is shown as the following.
Wavelet thresholding denoising algorithm
1. Apply J steps of the cascade discrete wavelet transform to get the
N—-N/2)  wavelet coefficients and N/2'  scaling  coefficients
corresponding to g[n].
2. Choose a threshold A = om and apply thresholding (soft or hard)

to the wavelet coefficients and leave the scaling coefficients alone.
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3. Invert the cascade discrete wavelet transform to get the denoised signal.

Note that the soft thresholding guarantees with a high probability that

= oul(gvin))| <|(Fwm)

l(ﬁ r':”f.m)
The estimator F is at least as regular as / because its wavelet coefficients have
smaller amplitudes. This is not true for the hard thresholding estimator, which leaves
unchanged the coefficients above A, and which can therefore be larger than those of
f because of the additive noise component.
Multiscale SURE Thresholding
Piecewise regular signals have a proportion of large coefficients ( f ,w,lm> that
increases when the scale 2/ increases. Indeed, a singularity creates the same number
of large coefficients at each scale, whereas the total number of wavelet coefficients
increases when the scale decreases. To use this prior information, one can adapt the
threshold choice to the scale 2/. At large scale 2/ the threshold A; should be
smaller in order to avoid setting too many large amplitude wavelet coefficients of

signal to zero, which would increase the risk.
Wavelet thresholding denoising algorithm with SURE thresholds
[ Apply J steps of the cascade discrete wavelet transform to get the

N-—NJ/2'  wavelet coefficients and N/ 27 scaling  coefficients

corresponding to g[n].
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2. Compute an estimate &1 of the noise variance o with the median
formula (eqn.4.8) at the finest scale.

3 At each scale 27, calculate a different threshold from the 27/ noisy
coefficients {( f ’w’-"'>}05m<~/z with the algorithm in section 4.2.2
(eqn.4.4-4.6). (The SURE threshold A is calculated by minimizing an
estimation (eqn.4.5) of the risk at the scale 277)

4. Perform soft thresholding at each scale 27/ with the threshold A,.

3. Invert the cascade discrete wavelet transform to get the denoised signal.
Note that for hard thresholding, we have no reliable formula with which to estimate
the risk and hence compute the adapted threshold with a minimization. We usually
simply multiply by 2 the SURE threshold calculated for a soft thresholding.
Translation Invariance
Thresholding noisy wavelet coefficients would create small ripples near
discontinuities. Indeed, setting a coefficient ( v j_m) subtracts ( SV im )l,bf jm from
f, which introduces oscillations whenever ( v Lm) is non-negligible. These
oscillations are attenuated by a translation invariant estimation (eqn.4.7).
Thresholding wavelet coefficients of translated signals and translating back the
reconstructed signals yields shifted oscillations created by shifted wavelets that are set

to zero. The averaging partially cancels these oscillations, reducing their amphtude.
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When computing the transtation invariant estimation, instead of shifting the signal,

one can shift the wavelets in the opposite direction,
(f[n—ply/j‘m[n]) =<f[n],wj|m{n +p]) = ( f[nly/j[n— N2'm +p]> .

If f and all wavelets y; are N periodic then all these products are provided by

the dyadic wavelet transforr‘n defined in section 2.2.3,

PI/f[2f,p]=(f[n],wj[n—p]) for 0<p<N.
The “algorithme a trous” of section 2.2.3 computes these Nlog, N coefficients for
L<;j<0 with O(N log, N ) operations. One can verify that the translation
invariant wavelet estimator (eqn.4.7) can be calculated by thresholding the dyadic

wavelet coefficients ( g[n],y/ y [n - p]) and by reconstructing a signal with the inverse

dyadic wavelet transform.

4.2.4 Multiwavelet thresholding

Let us first construct a one-dimensional compactly supported multiwavelet transform
with multiplicity two. We begin with two vector functions, the orthonormal

multiscaling and multiwavelet vector functions which satisfy the following refinement

equations. Off) = 2§de>(2t—k), (4.8.1)
()= 2LZ-1:G,((D(21 ~k), (4.8.2)

k=0

where the two matrices H(w)=)  H.e™ and Glw)= W, e are
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trigonometric polynomials satisfying

H{w)H (0)+ Hw+7)H (0+7)=1,, (4.9.1)
H(@)G (@)}+ Ho+7)G (@0 +7)=0,, (4.9.2)
G(w)G @)+ Glo+7)G (w+r)=1,, (4.9.3)

with real coefficients where H' denotes the complex conjugate transpose of A .

From eqn.4.9, {H, }o.c,., and {Glcreps are MxM filter matrices form an
orthogonal FIR multifilter bank and so they generate a compactly supported scaling

and multiwavelet vector functions, ®=(g,,4,)" and ¥ ={y,,w,)", respectively.
Let ¥, be the multiresolution analysis space generated by @, that 1s,

V, =span{2%¢,(2ft—k)} . As V=V, ®@W,, W, is the orthogonal

18ig2, keZ’

complement of ¥, in ¥, , wealso have #; = span{Z%w, (2“: - k)}
112, kel

Definition 4.1 * Continuous Multiwavelet Transform
For any continuous function f(t) in V, , it can be expanded as

7le)= Z (Cl(gt)qﬁl (t-n (°)¢ (t- )) The function f is completely determined by the

sequence O OF S 1ot T be the lowest number of decomposition level which is
1,n ina p

negative. Since Vy =W, @V, ==, @ ®W, @V, and 24,2 k) and

7, .
2/3 ¥, (2’ - k) are orthonormal to each other, [ can also be expanded as,

0-3{g ol $e o)

I

g gt
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where cY) and dY) eR aregiven by

= f(r)2% 8,27t —k)dt,

a¥) = | f(t)2% w (27 -k)dr.
Univariate VS Bivariate Thresholding
Strela et al. applied the single wavelet thresholding method (univariate) to a GHM
multiwavelet decomposition to produce some encouraging signal denoising results
[49]. Even though univariate thresholding does work in multiwavelet denoising,
further noise reduction is possible. This is because multiwavelet transform normally
produces correlated vector coefficients. If there is a signal component present at a
particular time-frequency location, then we would also expect the other element in
that vector coefficient contains signal component. Any prefilter except the identity
prefilter gives these correlated coefficients, but the identity prefilter gives poor
denoising results with the thresholding approach. Therefore, Downie and Silverman
proposed to use a thresholding method that will treat the multiwavelet vector
coefficient as a whole entity [18]. Accordingly, the multivariate (for multiplicity 2,
bivariate, that is, using two scaling and wavelet functions) thresholding method
accounts for the noise and signal components within the whole vector. They also
showed that the repeated signal prefilter is very good for denoising applications [18].

The theory behind bivariate thresholding is briefly reviewed as the following.
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Suppose we apply the discrete multiwavelet transform in definition 4.1 with an
appropriate prefilter to a noisy signal, then we obtain two streams of vector
coefficients in the form D,, =D, +E,, , where D], is the vector signal
coefficient and £,, has 2 multivariate normal distribution N, (O, C J.). The matrix

C, is the covariance matrix for the error term that depends on the resolution scale .

Using the standard transform 6}, = Iz i I C]D,,, we obtain a positive scalar value
that, in the absence of any signal component, will have a X} distribution. The

threshold rule is based on these values. To find the universal threshold, we choose a

sequence such that lim Pr(M_<A,) is strictly between 0 and 1, where M, is the

n—rm

maximum i.i.d. X} random variables. An appropriate threshold sequence is
A, =2logn+{(M —2)log(logn). When M =2, the universal threshold for muitiple
wavelets simplifies to A, =2logn. Unlike the single wavelet thresholding, the

variance term o does not appear in the universal threshold formula. Then the hard

thresholding rule in bivariate thresholding can be written as

5 {D f0,,24,

.Ik = . .
! 0 otherwise

The bivariate soft thresholding can be formulated as

A :
b, - DM(I—Q ] if0,, 24,
0

J.k
othenvise

To compute &,,, we need C,, which can be obtained from C, :Var(Dj‘,‘). The
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covariance structure of the wavelet coefficients at each level can be obtained
explicitly.

Translation Invariant VS non-Translation Invariant Multiwavelets

It was concluded by Bui and Chen in [2] that translation invariant multiwavelet
denoising is generally better than non-translation invariant multiwavelet denoising, no
matter what thresholding method is used. However, it was found that translation
invariant multiwavelet denoising does not always outperform translation invariant
single wavelet denoising. They also verified that signal denoising using bivanate

thresholding is better than using univariate thresholding.
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43  The proposed algorithm

In [56], vector-valued multiresolution analysis (VMRA) for vector-valued signals is
introduced. The vector-valued scaling and wavelet functions are also defined. They
can be generated from some lowpass and bandpass filters in matrix form, which is
called matrix quadrature mirror filter (MQMF). Multiwavelet transform includes the
prefiltering and postfiltering process, which vectorize a scalar input signal for VMRA.
The concepts of orthogonality and orthonormal bases for multiwavelet transform are
similar to the traditional scalar wavelet transform in Hilbert spaces. The matnix
dilation equations are also similar to those in the traditional scalar wavelet transform.
As the component functions in vector-valued wavelets can form multiwavelets,
certain linear combinations of scalar-valued wavelets can yield multiwavelets.
Suppose that the multiwavelet , is a complex-valued function on R that has

n, vanishing moments and is n, times continuously differentiable with derivatives

that also have a fast decay. This means that for any 0<k<n and meN there

exists continuous function C,, such that

C .

Ly
_— (4.10)
L+

Vie®R, |y/,(£)] <

Now multiwavelet functions y, and w, have n, and »n, vanishing moments

respectively.  Multiwavelet ¥ has n:min(n,,nz) vanishing moments is
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orthogonal to polynomials of degree min(nl—l,nz—l). When we estimate the
Lipschitz exponents of f, we also ignore the wavelet transform of the Taylor
polynomial p, in section 2.2.4 if we use a multiwavelet W that has n>f_a _I
vanishing moments. It is because if #>|a ], polynomial p, has degree at most
n—1 and its multiwavelet transform also vanishes.
For /=12, Epv(t)Zzw,(ft—k)dt =0. (4.11)
The number of high amplitude wavelet coefficients created by a brutal transition
like an edge is proportional to the width of the supports of the filters. For a more.
accurate localization of singularities, the number of large amplitude wavelet
coefficients produced should be as small as possible. So the supports of the filters
should be as short as possible. Multifilters are possible to have shorter supports and
more vanishing moments. Moreover, the more the vanishing moments, the smaller the
coefficients can be produced at fine scales. Therefore, the multiwavelet coefficients
that belong to the noise component should be more easily distinguished at fine scales.
Apart from this, computational complexity can be greatly reduced by multiwavelet
transform. The relation between uniform and pointwise Lipschitz regularity and
wavelet transform has already been proposed and proved in [30,72,74,75,76,80].
Regularity 1s measured by looking at the asymptotic decays of wavelet transform

coefficients instead of Founer transform coefficients. This is because wavelets can
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simultaneously localize signals in time and frequency domains. The property of
localization in time enables us to estimate local regularity, whereas the localization in
frequency enables the measurement. Multiwavelets are generated by several scaling
functions. Preprocessing is necessary when applying discrete multiwavelet filter bank
to scalar signals. The combined filter responses may not provide localization in
frequency domain. However, it can be shown that with an appropriate designed
prefilter and postfilter, one can estimate the Lipschitz regularity from multiwavelet
coefficients. In theorem 4.1, we relate the uniform Lipschitz regularity of a signal f
on an interval [a,b] to the amplitude of its multiwavelet transform [31].

Definition 4.2  Discrete Multiwavelet Transform

Let us denote ¢\ =(c,(j;),c§"’3)r and d¥ =( () dgj))r, we have the decomposition

1n? n

' algorithm as,

Z(C,Ef))’rz% ®2/t-n)= Z[(cﬁf‘”)rzj% o271 =n)+ (a0 2" w(a —n)],

n H

with the following dilation equations

UM =2y H, e, (4.12.1)

and dV =23 G, V. (4.12.2)

At the synthesis bank, we have the reconstruction algorithm as

W =23 (HL,, M +GL,, b ). (4.13)

These relations enable us to construct a multi-input multi-output filter bank with
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multiplicity two.

Theorem 4.1

If fel*(R,C) is uniformly Lipschitz a over [a,b], then there exists a finite
constant A such that V(n,Z‘j )e[a,b]xﬂ%*,

@) < A ", (4.14)

for =12, where d,(_{,) is defined in definition 4.1. Conversely, suppose that [ s
bounded and for [ =12, d,{j;) satisfies eqn.4.14 for an « that is not an integer.
Then f isuniformly Lipschitz a on [a,b].

The proof is shown in Appendix II.

To relate the Lipschitz regularity of f on an interval [a,b] to the magmtude
sumn of its discrete multiwavelet transform over the COI, we need the pointwise
Lipschitz regularity condition [31].

Theorem 4.2
If feL*(R,C) is pointwise Lipschitz @ at v, then there exists a finite constant
A such that

v(n27)emxme, || SA(z-f)“"“[H[n—2!&"’]. (4.15)
Conversely, if a is not an integer and there exists a finite constant A and a'<a

such that

vn2 i )emxar. o] gA(z-f)‘“'“(H]n_zivj“') (4.16)
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Then f isLlipschitz a at v.
The proof is shown in Appendix III.

By theorem 4.1, we can characterize regulanity from the evolution of the
magnitudes of the multiwavelet coefficients across scales. Different extents of
regularity, which are ref)resented by the Lipschitz exponents, can be estimated from
the interscale evolution of the magnitudes of the multiwavelet coefficients. By using
the interscale ratio as the criteria to perform the thresholding of the multiwavelet
coefficients, we can reject those coefficients corresponding to the noise component.
We compute the interscale ratio threshold as the following,

_ d(a;) A 2-] ~ .
RY = d[j.ﬂ) < A(z(-(f”)))“ =2°, (4.17)

I.n

For multiwavelets case, we estimate the Lipschitz regularity from the
multiwavelet transform magnitude sum over the COI and perform denoising by
thresholding the multiwavelet coefficients according to their interscale ratios and
difference of the multiwavelet transform magnitude sums. Let the support of y, be
[-X,,K,] for 1=1,2. The COIl of v in the scale-space plane, CO[,{'{), is the set of
index patrs (n,Z'f) such that » is included in the support of y,. Since the support
of w, is equal to [(v-—KJ )2"',-(v+K,)2"'J , the COI of v is defined by
|n-27v| <K, 27, that is COIY ={(n2 ){n-277v| s K,27/{. The magnitude

sums are computed as
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(4.18)

Ner= Y d).
(tmecorfl)

The COI of an abscissa v consists of the scale-space points ( n,2'f) for which
the support of , intersects r=v.If »n is inside the COl of v then d ,{{,) depends
on the value of f in the neighborhood of v. Since |n-v|/27/ <K, the pointwise
Lipschitz condition in theorem 4.2 can be written ‘d,(j;)l < A’(z'f )‘”W , which 1s
identical to the uniform Lipschitz condition in theorem 4.1.

The denoising aigorithm is simple and easy to be implemented. The procedures
are listed as the following.

Multiwavelet denoising algorithm using singularity detection (basic)

1. Perform the discrete multiwavelet transform (five levels of decomposition)
after prefiltering the noisy test signal (eqn. 4.12 and 4.13).

2. Determine the COI for all scales and compute the magnitude sum of the
transformed coefficients over the COI for all positions.

3. Compute the interscale ratio of the magnitude sum at each position. Retain
those multiwavelet coefficients with values higher than 2.

4. Reconstruct the signal from the selected multiwavelet coefficients using the
inverse discrete multiwavelet transform and postfiltering.

Remarks

[ As it is observed by the authors in [32) that WTMS of some small irregular
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signals with Lipschitz exponents between —1 and 0 will also increase as
the scale increases. This enables them to falsely fulfill the interscale ratio
thresholding criterion. So the interscale difference thresholding criterion
was also employed here.

2. Two approaches of retaining coefficients were experimented. They are
retaining the coefficients within the COI and retaining only the maximal
coefficients (coefficients at the position of the maxima of transformed
impulse) inside the COI

3. The suitable threshold values for the interscale ratio is 2 and the
interscale difference is 0.1 for retaining the coefficients within the COI.
While they are respectively V2 and 0.01 for retaining the maximal
coefficients inside the COl.

4. Both of the approaches use a simple joint selection, that Is, consider the
magnitude sum of the square sum of the magnitudes of the two coefficient

COMPONEntSs.
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4.4 Results

The multiwavelet transform of the noisy signal is shown in figure 4.2. The selected
transform coefficients are shown in figure 4.3. We can clearly see that those
coefficients belonging to the noise components are distinguished and rejected. The
reconstructed denoised signal is shown in figure 4.4(b) and figure 4.5(b). As a
preliminary work, we experimented the above denoising algorithm to a length-256 1-d
noisy signal using the Xia’s prefilter [59] and the GHM multifilters [21] (appendix
IV). The original signal contains various features such as steps, regular slope, steep
slopes and irregular structures. White Gaussian noise with noise variance equal to 0.1
is added to the original signal to produce a noisy signal with MSE equal to 0.0085
(figure 4.4(a)). 30.63% reduction in MSE was obtained (the MSE decreases from
0.007387 to 0.005124) by the previous denoising algorithm using the single wavelet
singularity detection [88]. In our experiment, 34.1% reduction in MSE can be
obtained (the MSE decreases from 0.0085 to 0.0056) by the denoising algorithm using

the multiwavelet singularity detection {87].

We also experimented the same original signal corrupted by white Gaussian noise
with noise vanance equal to 0.05 and impulsive noise to produce a noisy signal with a
MSE equal to 0.0343 (figure 4.5(a)). We used the Plonka’s prefilter [43] and the GHM

multifitters [21] (appendix [V) for the multiwavelet decomposition. 77.96% reduction
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in MSE was obtained (the MSE decreases from 0.036909 to 0.008133) by the
previous denoising algorithm using the single wavelet singularity detection in [32]. In
our experiment, 81.04% reduction in MSE can be obtained (the MSE decreases from
0.0343 to 0.0065) by the denoising algorithm using the multiwavelet singularity
detection [87]. The reconstructed denoised signal is shown in figure 4.5(b).

We found that retaining those coefficients within the COI is effective for
denoising the white Gaussian noise, while retaining those maxima coefficients
(remark 2} in the COIl is more effective for denoising the white Gaussian noise and
impulsive noise. Moreover, it was found that performing selection in a simple joint

manner (remark 4) is better than in an individual manner.
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Figure 4.2 The multiwavelet transform of the noisy signal. The ¥
column and the 2™ column are the two transform components.
The 3™ column is the modulus of these two components. Down

the rows is the decreased scales of the multiwavelet transform.
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Figure 4.4 (a) The noisy signal corrupted by white Gaussian
noise, (b) the denoised signal by the denoising algorithm

using multiwavelet singularity detection.
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4.5 Summary

In this chapter, we extended the singularity detection from the single wavelet
transform to the multiwavelet transform. We first reviewed the existing wavelet and
multiwavelet denoising techniques. We then developed the multiwavelet singularity
detection and implemented a signal denoising algorithm.

From the preliminary denoising results of 1-d white Gaussian noise and impulsive
noise corrupted signals, we verified the advantageous properties of the multiwavelet
transform over the single wavelet transform for singularity detection. First of all, the
shorter supports of the multifilters contribute to the improvement of the singularity
detection, as the width of the COI becomes narrower and so the overlappings of the
non-isolated transformed singularities become less. The vanishing moments of the
multifilters is also high enough to provide good signal approximation, so that the
wavelet coefficients produced at fine scales become smaller and a higher extent of
noise attenuation upon thresholding can be obtained. Although multiwavelet
transform requires more memory than single wavelet transform due to parallel vector
processing, and it has a higher computational complexity [96], we still conclude that
signal denoising using the multiwavelet singularity detection is better than signal

denoising using the single wavelet singularity detection.
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Conclusion

5.1 General conclusion

In this work, we presented the application of the wavelet singularity detection to a
regularity scalable image coding algorithm. We further extended the singularity
detection to the multiwavelet transform. A signal denoising algorithm was then
implemented to verify this result. In this section, we draw some conclusions in these
aspects.

First of all, we reviewed the history and development of the wavelet transform in
chapter 2. We started from Fourier transform to the time-frequency wedding and the
windowed Fourier transform, which are not able to provide sufficient time-frequency
localization for transient signals. Then we reviewed the introduction of the wavelet
transform, and its relation with the discrete implementation by filter banks. We
highlighted the difference between the continuous time wavelet theory and the
discrete filter banks. which become equivalent through the elaboration of orthogonal
wavelets and muluresolution approximations. We then described the important

features of the wavelet transform. For the realization of the wavelet transform, fast
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dyadic transform and the algorithme & trous were first introduced. In the discrete
implementation, we concerned the filter banks with perfect reconstruction. It is
because the signals involved in the denoising algorithms and the proposed scalable
coding algorithm using singularity detection are decomposed, processed and simply
reconstructed by the inverse transform. We also went through different boundary
filtering techniques for finite signals. Next, we reviewed the wavelet singularity
detection. Lipschitz regularity of continuous time signal was defined and the
estimation of Lipschitz exponents from the evolution of the oriented wavelet
transform were presented. We reviewed two approaches for the estimation of the
Lipschitz regularity — the wavelet transform modulus maxima and the wavelet
transform modulus sum. We listed out the applications of these theories in edge
detection and signal and image denoising.

Since we extended the singularity detection from the single wavelet transform to
the multiwavelet transform, we also reviewed the background of the multiwavelet
transform in chapter 2. We outlined the important and specific features that can only
be simultaneously obtained from the multiscaling functions. We reviewed the concept
of the prefilter design and the vector filter bank implementation for the realization of

the multiwavelet transform.
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Chapter 3 is the core of this dissertation. We designed and implemented a
regulanity scalable image coding algorithm which is adaptive to image signal. It can
avoid the disadvantages occurred in the existing feature-based scalable image coding
algorithms. We first reviewed the resolution and SNR scalable coding algorithms, the
edge-enhanced coding algorithm, the edge-oriented scalable coding algonthm and the
surface-oriented scalable coding algorithm. Since the existing WTMS approach
cannot directly be applied to our proposed algorithm, where the separable wavelet
transform with decimation is used to decompose image signal in a wavelet image code,
we developed the singularity detection by the magnitude sum over the decimated COL
A wavelet image decomposition provides a hierarchical data structure, and this
selection utilizes the tree structured data organization. With partial ordering of the
wavelet coefficient magnitudes, the entropy of the selected coefficients at the first few
regulanty levels are lowered and the compression rate is increased. The proposed
algorithm and the results were presented. Compared to the performance of the wavelet
image coder with resolution scalability only, we found that 44.25% reduction in bit
rate and only 2.86% reduction in PSNR, can be obtained by the proposed algorithm
when it Is combined with resolution scalability. Here the test image “Lena” is encoded
with quantization step size 6 at resolution scale 2. Zooming and observing the

difference of the decoded images, we also found that the quality of the strings on the
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hat are better as a result of bits being assigned to code that level of regularity first.
While it is not the case for the smooth shoulder area, where the degradation is severe
but it 1s not noticeable. The quality of the stripe pattemn of the hat is lying between
them. Compared to the other feature-based scalable wavelet image coding algorithm,
improved visual quality of the reconstructed images at different bit rates can be
obtained.

As a further development of the application of wavelet singularity detection, we
extended the singularity detection to the multiwavelet transform. In chapter 4, we
presented the preliminary results. We first reviewed the signal and image denoising
using thresholding techniques. This includes the thresholding estimation and
refinement and the previous works of wavelet thresholding. The univariate
thresholding was presented as an initial work of multiwavelet denoising and later the
bivariate thresholding, which utilizes the multiplicity of multiwavelet transform, was
presented. We also present the importance of translation invariance in the single
wavelet and multiwavelet denoising. To demonstrate the advantages of the
multiwavelet transform, we implemented a denoising algorithm based on
multiwavelet singularity detection. We showed the Lipschitz regularity condition of
the discrete multiwavelet transform. Based on this result we implemented a signal

denoising algorithm. Preliminary results showed that the denoising algorithm using
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multiwavelet singularity detection (34.1% reduction in MSE) is better than the
denoising algorithm using single wavelet singularity detection (30.63% reduction in
MSE) for a white Gaussian noise corrupted signal. For a white Gaussian and
impulsive noise corrupted signal, 81.04% reduction in MSE can be obtained by the
denoising algorithm using multiwavelet singularity detection, which is also better than
the denoising algonthm using single wavelet singularity detection (77.96% reduction
in MSE).

We accounted for the above results as being due to the shorter supports and high
vanishing moments that the multifilters can achieve. Intuitively, the shorter filter
supports means the narrower COI and better frequency localization that the magnitude
sum can have for measuring the regularity using their interscale ratios. It is because
the width of the COI becomes smaller and so the overlappings of the non-isolated
transformed singularities become less. The vanishing moments of the multifilters is
aiso high enough to have good signal approximation, so that the wavelet coefficients
produced at fine scales become smaller and a higher extent of noise attenuation upon
thresholding can be obtained. Moreover, the correlated vector transform coefficients

produced by the preprocessing also provide more information on the regularity of the

signal.
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5.2 Future developments

The results obtained in this work are in fact small contributions to the development of
wavelet singularity detection for signal and image processing. Yet our works provides
plausible solutions to the problems mentioned above and introduces new ideas for
further research. In this section, we discuss some of the possible future developments.
There are some tasks that are going to be completed in short term. To make the
work more complete, we need the derivation of the Lipschitz condition for the
multiwavelet transform magnitude sum, for the joint coefficient components, such as
the square sum of the magnitudes of the two components, and the individual
coefficient components. For the denoising algorithm, we can further investigate the
individual and joint selection of the coefficients. For the joint selection, we need to
define good criteria to combine the components of the coefficient vector. Square sum
is the simplest but representative combination. We can also trace the evolution of the
argument between these components. The criteria can then be applied to the selection
of coefficients by retaining those coefficients within the COI or those coefficients
located at the maxima of the transformed impulse inside the COI. With some
experiments on these different criteria we can then develop the best algorithm for
image denoising. To embed the denoising algorithm in a rﬁultiwavelet image coder

[90], we have to investigate the singularity detection and coefficient selection
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algorithm for the decimated case.

In long term we can explore the following areas. Since prefiltering produces
correlated coefficients which contain information of the regularity of an input signal,
we can investigate how to capture this information from the combined filtering and
characterize it. This can be achieved by suitably designing a set of prefilter and
postfilter with this eligibility. We can also experiment the algorithm developed above
with different existing prefilters and multifilters. Actually the multiwavelet filter and
prefilter design is a broad and deep topic. We can study and develop a new set of

prefilter and multifilters which is specific to our purposes.
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Proof of the necessary condition (eqn.3.2) in theorem 3.1
Since [ is Lipschitz a in U(v), [ is also Lipschitz o at v, vvelU(v), by

eqn.2.37, there exists a polynomial p, of degree n> |_cz_j and K >0 such that

14

[Flsm)- )< kol wl-wf P an
’W;f(u”=“Ef(x|=x2)‘/jj,u(xlsx2)
={ J‘_[::(f(xl5x2)_pv(xl"YZ))Wj',u(xl’xl)

by eqn.2.33,
< [T o) 225 ) [, G, )

< [k~ oLl J o)
"+ o)

|W}’f(u)' <A j[:(|x, —vl[a +|x2 —v2|a)lwi.u(x,,x2)ldx,dx2 .

dx dx,, by eqnAl. 1.

By Cauchy Schwarz Inequality, |a+b|" < 2’(

With the change of variables, x| =27x,—u, and xy=2"x,—u,, we have

|qu 2" [If| lle,u X, %)

+Iu| -2y,

dxjdr; + [ [ sl ' (e, %) e dx;

SIS

Since we usually just consider the vanishing moment of the mother wavelet w(x), so

dx, dx; + |u, -2/ Vs

dx, dx;, )

C ! (x5, %%)
de]

w'(x) has n vanishing moments for all I, and is C" with derivatives that have a

fast decay. So by eqn. 2. 34, we have

'J'V:f(u)r <d (2’)!(2 +f w =27 v[‘+|u2 -27 Vll) (A1.2)
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For uelU(v), we can choose v= (2'j vl,Z‘jvz)z u, so we have ‘ ij(u)| <A (Zj)a :
Proaof of the sufficient condition (eqn.3.3) of theorem 3.1
To prove that f is uniformly Lipschitz o in U(v}, we must verify that there exists

K >0 such that for all veU,(v), we can find a polynomial p, of degree l_aJ

such that Vx,veR?,

|f(x,,x2)—f(v],v2)|s1<(|xl —y’ +]x2—v2|2)%. (A1.3)
Case! xeU,,(v)
Then |x,—v|28/2 and |x,—v,|26/2.
Since f is bounded, eqn.A1.3 is verified with a constant K >0 that depends on& .
Case2  xeUs,(v)

Since [ can be decomposed in a Littlewood-Paley type Sum

f(x)= faj(x) (Al.4)

Jor-m

with A j(x)=CL N f ! f(u)i,wf(zfx—u)j—fdu,duz, (A1.5)
o

- 2
where C,=C,C, or C,=C,C,. C,=|_ "’(::’)' dw<too s a weak

admissibility condition by Calderon [3] and s=2'.

r

Let (D) = 9 be a differential operator and D/"'D; A, be the kth derivative of

;
i

A,. To prove that [ is uniformly Lipschitz a in U (v) we shall approximate [

with a polynomial p, (x) = f(v) that generates the Taylor polynomial,
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f[ F,16) . (A1.6)

;—b-mk 0

Since l,z/'(x) has fast decay, by eqn.2.34 and eqn.A1.2, we have

A (x)|sciw I Jj",qsa[uyul,.z-fvlr;[uz_z-fvz '

JI+(2‘jxl—u,)q-{~(2"'x2 —u2)q 5

a

2+’ -2 v +’u2 27| dudu, AL7
J-'[’“"1+ 2’x1—u) (2"x2—u2)q 2 (AL

- r+|c~b|r), with a=u, b=2"7v and

By the ineguality 'a—b[rST(

c=2"x, and with the change of variables, u,=u —-27x, and w,=u,-27x,,

a

_-(xz _vz)

2+’u'l|a'+|u'2 (x, —v,) i

|A (x 21 If 1+(u’)q+(u')q

1] t
du du,

1 2
After choosing m=a'+2, we have,

|a,(x)|s k(27 )“[2 + 2“’( 27/ (x,

+]2‘f'(x2—v2)|"'j]. (A1.8)
Note that this is also applied to the partial derivatives of A (x), Vk<|a]+1,
|Di Dy A (x)] < K{(zf)""“’@ +[279(x -vl)\“'j + (2f)""(1 +[27(x, - vz)f"')] (AL9)
At x=v, it follows that Yk <|a |+1,

|D{7D; A (x)|< K[(zf)" e (2f)""] (A1.10)
Before computing | f(x)- p,(x)| directly, we first need to check if the polynomial
p, (eqn.A1.6) has finite number of coefficients.

Case 2.1 ue U(v)

For ueU(v). ‘we can choose v = (2“"' v,277 vz): u, so egn.A1.7 becomes
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1 dudu, .
1+(2'f X — 4, )q + (2-jx2 —uz)q 2/

la,@| <k @) [[°
By the fast decay with g=a'+2 andat x=v, wecan have
DD} 4,(x)|< K[(zf F (2 )] . Vks|a]+1,
from eqn.A1.10 directly.

Case2.2 ueU(v)

Observing that |27 x,~u|>8/2 and 275, ~w|28/2 for xeUs,(v)
and a is not an integer so a>|a]. These guarantee a fast decay of
DD} yi(x)| ineqn.ALS when 2’ goes to zero. At large scales 2/, since
|w] 7= A v |, with the change of variables W=2"7x-u inegnAlys,

we have

! .
¥ Sl

and hence  |D{7Dj A, (x){<K [(2f s (2!’)""] , Vk<|la+l.

Together with eqn.Al.10 this proves that the polynomial p, defined in

eqn.A1.6 has coefficients that are finite.

Now, with the Littlewood-Paley decomposition, we compiite directly

i [A_j(‘xl'xz)—% [((xl "Vl)Dl + (xzk’!vz)Dz)kAj](vwvz)”

oo

| f(x)-p.x)|=

k=0

The sum over scales is divided into two at 27 such that 27 2 |x— v| >277",
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For j=J:we can use the classical Taylor theorem to bound the Taylor expansion of

A, I =

A (xnxz i[ D +(x2 VZ)Dz) -](Vl,vz)

k!

| 500 [((x. WD+ (xy w0, 5, ()
< Z (LaJ+ 1)!

j=J

I_a 1 4+
I_ J+1 _ I_‘IJ*l f La}ﬂ—r r A,
STl & o o) oot

Inserting eqn.A1.9 yields

Lakt 40
O STE EL RS 5 (5] S
r=0

j=d

2'""()52 —vz) al]

2 )|+ )

a
and since 212|x,.—vt.|?_2“'_' for i=1,2, weget ]SK(]xl—v,|2+|x2—v2|2)2.

For j<J:
i =‘i[aj(x1;x2)_g[(( e i e ]

SJi|Aj(x,,x2)| +§; 2[((—"]_Vl)D|+(x2;!v2)D2)kAj](v”v2)

By eqn.A1.8, the first term

J-1

Z ‘Aj(x],xz)l <K :Z__;(Z"}a[2+ 2"'( ‘ 2""(x, —vl)|a' + |2_j(x2 —vz)

J— -

sK(Q"" + 2J(a—a')(|x1 _vl|“' + |)c2 —v2|a'))

Also, by eqn.A1.10, the second term is bounded by

(5§ E ) ) (et )

j=r— r=0

r!

abe r
(x, = )M (3, -v,) (g talabr) 4 59000

l

r!
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and since ZJZIX,.—VJZQJ_] Jor i=1,2, weget ]]SK(|x,—v,|2+|X2—V2|2)2-

As a result, If(x,,xz)—f(v,,v2)| < I+ = K(|x]—vl|2+]x2—v2|2)5, which

proves that f s uniformly Lipschitz a in U,(v).
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Proof of the necessary condition of theorem 4. 1

For 1=12, |dY =\[:f(z)2f”w,(2fz—n)dz‘
Ry (th—n)dt’, by eqn.4.13,
< '[:K|t—v|ﬂr 2"’12’1//,(2"'t—n)|dt, by definition 4.2.

With the change of variable, x=2't—n, we have

)| < [ K2~ x+27n= 27727y, (x)ax

=i [:K|2‘fx +27n -\ [, (x)ax.

a|r +|b|r ) we have

By Cauchy Schwarz Inequality, |a +b!r < 2’(
4| <k -2° -2'}"2(2”"’ [Vl |w, () e+ 277 m=v[ E1w,(x)|dx]
= K2*° (2_1)““/2( [:|x|a|(y,(x)|dx + ’ n ~—2jv‘a _[j ¥, (x)|dx]

_ praafq-i Y2 a [m|l/!, |dx
=K2 (2 )a [jr| |, (x)|dx D ™ |dx|

<27 )“”’2(1+|n 2y |) (A2.1)

( - )au/z

o

-2y

For ne [a,b], we can choose n=2'v, we have
Proof of the sufficient condition of theorem 4.1

As the discrete wavelet decomposition formula is given as the jollowing

1) Z[Zc 2%¢,(2"z—n)+zlid,(:,2/ (2-"txn)]

=1t
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: 2 N4 )
Let Aj(f)—_- Zdej,}Z’? y/,(Z’r —n). If f is n times differentiable at v, then
no 0=l
p, corresponds to the Taylor polynomial but this is not necessarily true. We shall
first prove that ZA‘:’ (fXv) is finite by getting upper bounds on |A(f)( f )(z‘j These

j=—=

sums may be thought of as a generalization of pointwise derivatives.
To simplify the notarionl, we denote by K a generic constant which may change
value from one line to the next but does not depend on j and t. The hypothesis
eqn.4.14 and the asymptotic decay condition eqn.4. 10 imply rha.r
|a,()] = Zid,{{,)zf@,(zf:un)
n =l
<ZZ‘d(J) (2’1—:7)’
Y

2/2

n =l
n i=l

=cl2 " (A2.2)
Using the localization of wavelets and of their derivatives, we also get
|a9()] sclr ™
and so |a(r) <c2 @V f™ (A2.3)
where C is a generic constant which changes from line (o line.

Let J be such that 2"’S‘f—vls2-2"’.

Then )< 2]a, (0=, + Zia, X)) ¢ 4, (X))

15/

Using the mean value theorem and the results of eqn.A2.2 and 42.3, the first sum is

bounded by CZ]! —v |2’(2" )mm < er -v |a,
ped
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and the second sum is bounded by CZ(Z" )mw < C| t-v |a.

j»d

Therefore, [ is uniformly Lipschitz « over [a,b]‘
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Proof of the necessary condition of theorem 4.2

By eqn A2.1, eqn.4.15 is proved to be true for f is Lipschitz a at v.

Proof of the sufficient condition of theorem 4.2

Zidmzf‘;% (21“, —-n)
a sl

< Zi]d}j}]z%l w2 - n)l
n l=l
< ZiA(z'f)‘”"z(H[n—zfv

|a, ()] =

“ JQ%I W, (2’[ - n), by eqn.4.16,

n =l
—_-A(2"')GZZZ:[1+|H—2"V al)w,(Zfr—nM
a fal
SA(Z")aZi[I+|n—2fv a]———c"’—q by eqn.4.10,
o=t l+|2"t—-n'

’ 1+]n—2fvr'

=cL7f Y.

n 1=l l+|2fr—n|q

Since |u —v!a' < 2"'(lu —!|a' +|z‘—v|a'), replacing u with 27/ n we have

a

l+2"na: r—v
e 2 27/ 27
8,00 sc@f Y :
sl t—-2"n
1+
2']
. . . 27n-1
With the change of variable n' = > yields
f—v «

, l+{n’|a' +

|a,(f)] <clYTy

il ] +|n' |q
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Choosing g=a'+2 yields

o
t—v

|4, ()] sc(z'f)"(1++ =

]. (A3.1)

The same derivation applied to the derivatives of A ; ( f )

Vi <|a]+1, [A(j?(f)fsx(z“f)""‘(lﬂ—:—’a)_
At t=v it follows that
vk <|a], |9k (A3.2)

This guarantees a fast decay of ,A(j’.‘}( f )[ when 27/ goes to zero, because « is

not an integer so o > I_aJ. At large scales 277, since [d,(;’,)[ < ll f ”"W; ”

|8, = Zid‘i’%%@’f—n)

n (=]

2

(2ff n[

y/,(Zfr n)l

-ufunw.nzv”iw](z’f n)|

k=0 j=-am k!
has coefficients that are finite.
Now, with the Littlewood-Paley decomposition we compute
70701 £ [2,0- St
== k=0 :
Again, the sum over scales is divided in two at 27 such that 2™ <|¢ - v[g2-27
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For j=>J, we can use the classical Taylor theorem to bound the Taylor expansion of

5,0- S a0

A, 7 =ZJ:
=

Inserting eqn.A3.1 yieldé

I <Kty Yy

j=J

2j(t —v)|a,

and since2™ S|t—v|$2-2'“’, we get [ $C|t—vla.

8,0)-S5 a0yt

«0 k!

For j<J, nm =53

SKE[(2*’)"(1+\2f(:—v)1“'j+g(f;j)" (2‘f')“"‘)

jemeo

’ ’ o — k -
sy el S e
k=0 kI
and since2”™” s}t—v|52-2'“', we get If SK|v—t|a.Asa result

1F@)-p )< i+ <K|v-t|*

which proves that [ is Lipschitz a at v.
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Wavelet Filter Definitions
1. Daubechies’s biorthogonal 9/3*:
Hn]=(/2 14 12)
gln]=(3/128 -3/64 -1/8 19/64 45/64 19/64 -1/8 -3/64 3/128)

Multiwavelet Filter Definitions
Prefilters and Postfilters

1. Identity:

_10
=y I

2. Interpolation:

0 _[3/8«/6 5/4\/8] Q_”3/8J€ 0]
Lo o ) LYVB o)

(0 0 (o V3
‘%—(4«/3/5 —345/10]’ "o —3\6/10)

3.  Minimax [106]:
0, = 242 -2
“L1o0 )
P - 0 1
ol -1/N2 2)
4. Minimal Repeated Signal [49]:
T ) ~
defined by the vector 7, =(ﬁ 1) , which is the first eigenvalue of # (0).
ﬁ]

So.k = fm[ |
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5. Plonka* [43]:

(5 )

(v 3}

6. Xiaet al [57]:

H{zﬂ/i/io‘ 2-42/10
P V2320 V2-320)

7. Xia* [59]:
o (J_ /2 V6 +1/7J

8.  Yanger al [60]:

o 2( V6/9 2\/3/9}
=3 af3fe)

Multifilters

l. GHM*[21]:

[3/10 25/5} Hi—( 3/10 OJ

H , = ,
" (~v2/40 -3/20 9V2/40 12

f,

0 0

(9\/" 2/40 —;/20} H3:[—J§/4o o}'

c [ V2/40 —3/20} . [9f/4o —1/2
“l-y20 -3v2/20) 920 o0 )

. {9&/40 -3/20} o _[—V2/40 0
=920 3v2/20) L y20 o)
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2. Chui-Lian* [8]:

—1( wl//;/zl —\1;72/4} H':'zl"((l) 1/(J2J’

2 -12
=3l fis )
%[ 1/1{12 —1/1512] G‘:':Iz{(; ﬁo/z]’
(-2 12
2_5( /4 1/4}'

* . simulation results are shown in this thesis
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