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Abstract

Low-density parity-check (LDPC) codes can be applied to many different

types of communication systems such as video broadcasting and satellite communi-

cations. However, the performance of the codes in practice may deviate a lot from

the theoretical limits, achievable only by codes with infinite length. In this thesis,

we will conduct a detailed investigation on the performance of short-length LDPC

codes over additive white Gaussian noise (AWGN) channels.

First, we look into the rich dynamical behavior occurring at the LDPC de-

coders when the LDPC code has a finite length. We will report the various types of

bifurcation phenomena as the signal-to-noise ratio (SNR) increases. By linearizing

the iterative equations used for decoding the signals, we are able to evaluate the

eigenvalues corresponding to the fixed points. Based on the eigenvalues, we can

further characterize the properties of the fixed points. In addition, we make use of

a simple feedback technique in an attempt to improving the convergence rate of the

decoder at the waterfall (medium-SNR) region.

Then, we attempt to “optimize” the distributions of the variable-node degrees

and check-node degrees such that lower error rates can be produced. Although some

“optimized” variable-node and check-node degree distributions have already been

reported in the literature, they are found based on the assumption that the LDPC

codes having an infinite length. Therefore, the error performance of a finite-length

LDPC code obeying such degree distributions may not be “optimized” and there

are possibilities that codes following other degree distributions may produce better

performance in terms of block/bit error rates (BLERs/BERs). Since the LDPC de-

coders rely on passing messages iteratively between the set of variable nodes and the

set of check nodes, decreasing the short average path length (APL) will no doubt

accelerate the exchange of messages among the variable nodes, thereby reducing
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the number of iterations the decoder algorithm takes to converge. Inspired by the

short average path length (APL) between nodes in complex networks with scale-free

(SF) degree distributions, we make the first attempt in applying complex-network

theories to communications engineering and build short-length LDPC codes with

variable-node degrees following SF degree distributions. Not only have we eval-

uated the theoretical performance of our SF-LDPC codes, but also the simulated

error rates. Furthermore, we compare our results with those of other well-known

LDPC codes.

As we simulate the BLER of short-length LDPC codes with an increasing

SNR, we further observe that the BLER is decreasing with a much lower rate when

the SNR becomes large, implying that the BLER has reached an error floor. Investi-

gations have revealed that the block errors at the high SNR region are mainly caused

by trapping sets (TSs) with their induced connected subgraphs forming one or more

cycles. To easily differentiate trapping sets with (i) no cycle, (ii) a single-cycle or

(iii) multiple cycles, we introduce a new parameter, namely cycle indicator. More-

over, we define a “primary trapping set (PTS)” with an aim to identifying harmful

TSs to the decoder. Realizing the types of PTSs that are more likely to contribute

to the error floor, we propose a code-construction method that aims to avoid such

harmful PTSs. Codes so constructed will be evaluated and compared with those

built using other mechanisms.

Finally, as we keep increasing the SNR, a point will be reached where running

Monte Carlo (MC) simulations will no longer be feasible. It is because the BLER

has become so low that it will take an extremely long simulation time before an

adequate number of errors are collected. In order to evaluate more effectively and

efficiently the extremely low error rates of the codes at the high SNR region, we

propose a simulation scheme that combines the use of importance sampling (IS) and

PTS identification. Compared with the MC simulations, the proposed IS scheme

produces speed-up gains of up to 3.9184× 109.
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Chapter 1

Introduction

1.1 Motivation and objectives

Turbo codes [1–3] and low-density-parity-check (LDPC) codes [4] have been

widely proposed for use in coding digital messages. Their ability to provide bit-

error performance close to the Shannon limit [5] has aroused much interest in the

research community over the past decade. The LDPC codes were first proposed by

Gallager [4] in the early 1960s. The idea was subsequently forgotten. Recently, with

the rapid development of the computational techniques as well as the popularization

of the personal computers, LDPC codes have been revisited [6–9] and shown to

outperform the popular turbo codes with lower error floor, comparatively lower

decoding complexity, and simpler implementation in hardware circuits.

The original regular LDPC codes, where viewed in a matrix format, have

nearly uniform weights per row and per column. The use of bipartite graph to rep-

resent the codes [10] further brings the variation and extension of the original def-

inition to irregular LDPC codes, of which the node degrees in the bipartite graphs

are chosen according to some degree distributions. It has been shown, in general,

that irregular LDPC codes outperform regular ones in terms of error rate under sim-

ilar scenarios [11]. Suppose the most common algorithm, namely the sum-product

iterative decoding algorithm or the belief propagation (BP) algorithm [11], is used

in the decoder. The optimized degree distribution for irregular LDPC codes can
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be found by maximizing the threshold in the well-known “density evolution (DE)”

mechanism. The threshold in fact determines the performance of the code when

the code length is infinite. For example, for the bit erasure channel (BEC) [12–14]

and the additive white Gaussian noise (AWGN) channel [11, 15], the threshold can

be viewed as the maximum erasure probability and maximum standard deviation of

noise, respectively, below which the bit error rate (BER) of the code tends to zero.

Therefore, by varying the variable-node and check-node degree distributions, re-

searchers have been able to optimize the achievable error performance of the LDPC

codes under different channel conditions [11, 13, 16–19].

Two assumptions have been made, however, during the application of DE.

First, it is assumed that in the BP decoding algorithm, the updated messages pass-

ing forward and backward between the set of variable nodes and the set of check

nodes are of analog nature, i.e., the messages can assume the values of any real

numbers. Practically, all numbers have to be quantized or discretized for compu-

tation by hardware. To evaluate the exact behavior of the discretized BP decoder,

“discretized density evolution (DDE)” has been developed [20]. It has been con-

cluded that when the messages are quantized into discrete levels using practical

quantizers with 10 or more bits, there is little discrepancy between the results ob-

tained by DE and DDE. The other assumption made in the DE algorithm is that

the messages propagated along the edges are independent of one another, implying

that the code should have an infinite length. In the case of an infinite code length,

the decoder will converge to a stable error free codeword if the channel parameter

is below the threshold. Unfortunately, codes of infinite length are not applicable

in practice. The appearance of cycles in the bipartite graphs associated with finite-

length LDPC codes ruins the “independence” assumption, resulting in performance

degradation to some extent. Nonetheless, the achievable error performance of an

LDPC code with finite length will approach that of an infinite-length LDPC code

asymptotically as the code length increases.

With DDE and code rate 1/2, the achievable error performance of an LDPC

code has been found to lie within 0.0045 dB of the Shannon limit under a binary-

input AWGN channel [20]. Simulations have also shown that within 0.04 dB of

the Shannon limit, a bit error rate of 10−6 can be achieved with a code length of

107 and about 800 to 1100 iterations [20]. Yet, code lengths larger than 106 are
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not very practical for many applications because of the huge hardware complexity

involved and the long time delay incurred if 1000 iterations are required to decode

one codeword [21,22]. In reality, short-length (around one thousand or less) LDPC

codes will find a lot more applications, however their performance may deviate a

lot from the asymptotical one.

As aforementioned, the existence of cycles has destroyed the independence

assumption required by the BP algorithm. In consequence, the decoder of short-

length LDPC codes may not converge even as the channel parameter is less than the

threshold. Thus the degree distribution optimized by “density evolution” under an

“infinite-length scenario” may not be the best choice for short-length codes. Mo-

tivated by this, we decide to perform a detailed performance study of short-length

LDPC codes. In particular, we study the codes over an AWGN channel because

among various channel settings, the AWGN channel produces simple and tractable

mathematical models which can provide insight into the underlying behavior of

communication systems [23].

Realizing that the error performance of the short-length LDPC codes will be

somewhat degraded compared with that of the infinite ones, we first attempt to

modify the decoder so as to produce lower error rate. Hence, we will study the non-

linear dynamical behavior of the short-length LDPC decoders. Beside fixed points,

bifurcations, including fold, flip and Neimark-Sacker bifurcations [24], have been

observed in the decoders when the signal-to-noise ratio (SNR) lies in the waterfall

region. Based on the observations, a simple feedback control technique [25] has

been proposed with an aim to improving the convergence rate of the decoder. How-

ever, the decoding systems of short-length codes with several hundreds or more

bits are high dimensional nonlinear systems. With the totally unknown targets,

the contribution of the proposed feedback control techniques in lowering the error

rates of the codes is found to be minimal. In the second part, we will attempt to

improve the error performance of the codes by “optimizing” the distributions of

the variable-node degrees and check-node degrees. Although some “optimized”

variable-node and check-node degree distributions have already been reported in

the literature, they are found based on the assumption that the LDPC codes having

an infinite length. Therefore, the error performance of a finite-length LDPC code

obeying such degree distributions may not be “optimized” and there are possibili-

3



ties that codes following other degree distributions may produce better performance

in terms of block/bit error rates (BLERs/BERs). Since the LDPC decoders rely

on passing messages iteratively between the set of variable nodes and the set of

check nodes, decreasing the short average path length (APL) will no doubt accel-

erate the exchange of messages among the variable nodes. Inspired by the APL

between nodes in complex networks with scale-free (SF) degree distributions, we

make the first attempt in applying complex-network theories to communications en-

gineering and build short-length LDPC codes with variable-node degrees following

SF degree distributions. Our study discloses that short-length LDPC codes with

SF degree distributions can produce very low bit error rates. Moreover, they can

even outperform codes with state-of-the-art degree distributions when constructed

under the same constraints. We further observe that short-length LDPC codes suf-

fer from the error-floor problem at the high SNR region [26], regardless of their

degree distributions. In the third part of our thesis, we dissect the LDPC codes and

investigate the root of the error-floor phenomenon. We discover that “primary trap-

ping sets (PTSs)” with certain characteristics are the key elements causing decoding

failures at the high SNR region. Based on the findings, we subsequently propose

a novel algorithm to construct short-length LDPC codes with an aim to avoiding

the detrimental PTSs. As we increase the SNR further, the error rates will become

extremely low. The Monte Carlo (MC) method we use to evaluate the error rates

becomes not feasible because of the enormous number of simulations required to

obtain an adequate number of error counts. To resolve this problem, we introduce

a new evaluation approach based on importance sampling and primary-trapping-set

identification. Speed up gains of millions of times are then accomplished.

1.2 Nonlinear dynamics of short-length LDPC de-

coders

It is well known that the BP decoding algorithm can achieve very good error

performance when the bipartite graph representation of an LDPC code is cycle-free.

Further, a “cycle-free” LDPC code can be achieved asymptotically by increasing

the block length of the code. As the block length tends to infinity, the behavior

of all the individual codes will then concentrate around its expected behavior of
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the ensemble. Many researchers have proposed different methods to analyze the

convergence behavior of the iterative decoders as the code length becomes infi-

nite [11, 15, 17, 27, 28]. One of the most popular analysis methods for studying

LDPC decoders is density evolution (DE) [11], which allows the BP decoding al-

gorithm to converge as the block length tends to infinity. As of today, the asymp-

totic behavior (as the block-length tends to infinity) of iterative decoding systems

has been reasonably well understood. For some classes of channels, there exists a

maximum channel parameter σ∗ (the threshold) such that the BER tends to zero if

σ < σ∗ and converges to a nonzero fixed point if σ > σ∗. In this case, bifurcation

phenomena have been observed at the LDPC decoders as the SNR increases beyond

the threshold.

In practical scenarios, error-correcting codes of finite-length, especially short-

length, are of broader applications [29–34]. However, short codes may show much

different properties, such as error performance, from their asymptotically ones due

to the appearance of many short cycles [35]. In this regard, various literatures

have looked into re-designing short-length LDPC decoders for better performance.

In [36–39], different scheduling schemes, e.g., probabilistic schedule, edge-based

schedule and node-based schedule, that pass the messages between the variable

nodes and the check nodes in a certain order have been applied to LDPC decoders.

The other mainstream of the study combines BP decoder and reliability-based de-

coding, and aims to achieve a tradeoff between the decoding complexity and error

performance [40, 41].

In [42] and [2], by modeling a decoder as a discrete dynamical system, the

authors have studied in detail the turbo decoding algorithm with a finite code length

and under a Gaussian noise channel. They have shown that in addition to fixed

points, bifurcations leading to period doubling and oscillations may be produced by

the decoding algorithm. In [43], it is further discovered that chaos exists in turbo

decoding and a control method has been proposed to improve the convergence rate

under such a scenario. Since both the turbo decoders and the LDPC decoders are

iterative systems, it is highly probable that the LDPC decoding processes are also

rich in nonlinear dynamical phenomena.

In this thesis, we first attempt to study in depth the behavior of short-length

LDPC decoders over AWGN channel by analyzing the phase trajectories of the
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posterior probabilities as the iterative process progresses. Simulation results have

shown that bifurcations, including fold, flip and Neimark-Sacker bifurcations, oc-

cur in the whole SNR region. Specifically in the waterfall region, oscillations and

chaos are produced and the decoding algorithms do not converge to the fixed points.

However, the exact bifurcation behavior in the waterfall region varies for different

noise realizations.

Further, we exploit the properties of the two types of fixed points in the de-

coder: unequivocal fixed point and indecisive fixed point. The unequivocal fixed

point corresponds to the case when the decoder has converged to a valid codeword.

It is stable in the whole SNR. Nevertheless, the attracting basin of the unequivocal

fixed point shrinks as SNR decreases, resulting in non-convergence or convergence

to another fixed point, i.e., indecisive fixed point, at the low SNR and waterfall

regions. The indecisive fixed point, which corresponds to a decoding failure, is

unstable and will disappear as SNR increases. Based on our findings, we have ap-

plied a feedback control technique to the decoder with an aim to suppressing the

oscillation and chaos in the waterfall region. The technique enables the decoder to

converge more likely to the stable fixed point without any prior knowledge of the

transmitted signals.

1.3 Short-length LDPC codes built on scale-free net-

works

In recent years, complex networks have been studied across many fields of

science, including computer networks, biological networks, social networks and

power networks [44–47]. Synchronization and stability of different complex dy-

namical networks have also gained much research interest in the engineering disci-

pline [48–52]. A recent significant discovery in the complex network theory is that

some complex networks, such as the Internet and the worldwide web, have their

node degrees following power-law distributions. It implies that a small number of

nodes have very large numbers of connections (degrees) while a great majority of

the nodes have very few connections. Such kind of networks are called scale-free

networks [45]. Compared with regular-coupled networks, small-world networks
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and random networks, scale-free networks of the same size (number of nodes) and

with the same number of connections are found to accomplish the shortest average

path length [53]. While for the same average path length, among the aforemen-

tioned networks, complex networks with the scale-free property have the smallest

number of connections.

In this thesis, we exploit the shortest-average-path-length property of scale-

free networks and apply it to the design of short-length LDPC codes. Specifi-

cally, we will propose constructing short-length LDPC codes with variable-node

degrees following power-law distributions. Here, we refer such LDPC codes to as

scale-free LDPC (SF-LDPC) codes. We will compare the achievable error perfor-

mance (threshold) and the complexity (in terms of average number of node degrees)

between the proposed short-length SF-LDPC codes and other best-known LDPC

codes. Moreover, we will construct SF-LDPC codes of various code rates and code

lengths, and simulate their error performance under an AWGN channel environ-

ment. Finally, we will compare the error rates and the average convergence time

between the constructed SF-LDPC codes and some other best-known LDPC codes.

1.4 Error floor of short-length LDPC codes

1.4.1 Code construction

Regardless of the degree distributions that have been adopted in the finite-

length LDPC codes, the associated bipartite graphs will inevitably comprise a vari-

ety of cycles, which undermines the independence assumption required by the BP

decoder. Mao and Banihashemi have related the error performance of LDPC codes

to the distribution of lengths of the smallest cycles passing through each variable

node in the associated bipartite graphs [35]. The results in the literature have con-

cluded that too many short cycles will degrade the performance of the decoder. To

construct short-length LDPC codes with large girth (cycle length), a broad class of

methods have been proposed [54, 55], among which the progressive edge growth

(PEG) [55] is one of the most effective algorithms. Compared with random graph

codes and other known good codes, codes constructed with the PEG algorithm can

produce lower error rates in the waterfall regions. However, such codes may still
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suffer from the problem of error floor. The existence of error floor poses a great con-

cern for potential applications of LDPC codes such as data storage and deep-space

communications, which require BER as low as 10−15 [56]. Thus, constructing good

short-length LDPC codes with very low error floor is an important issue.

There have been various literatures looking into the error-floor issue of short-

length LDPC codes [14, 57–61]. For example, Di et al. have thoroughly inves-

tigated the error floor of LDPC codes over a BEC channel [14]. Moreover, they

have proposed a concept known as “stopping set”, which defines the set of variable

nodes causing the decoder to fail if all bits corresponding to the set are lost during

the transmission. The stopping set is also characterized by each of its neighbor-

ing check nodes having more than one connections to the set itself. Such a feature

implies that the connected subgraph induced by the stopping set consists of one or

more cycles. In addition, Tian et al. [57] have pointed out that some stopping sets

with small sizes will degrade the performance of short-length LDPC codes over an

AWGN channel at high SNR. They have further discovered that short cycles with

few connections to other nodes are likely contributors to small-size stopping sets.

With the use of “Approximate Cycle Extrinsic message degree (ACE)” that mea-

sures the connectivity of a cycle to all other nodes, Tian et al. have proposed an

algorithm to generate code matrices with low error floor by avoiding short cycles

with ACE less than a given threshold. However, setting the ACE threshold value

is not trivial. If the threshold is set too large, there are chances that no code ma-

trix satisfying the requirements will be found. Yet if it is too small, there will be

a high probability for short cycles to combine and form small-size stopping sets.

In [58], a trellis-based search algorithm has been presented to detect stopping sets.

Unfortunately, the method fails to identify several typical stopping sets which are

critical to code performance. Furthermore, in the aforementioned references, cycle-

length distribution of the code graph has not been considered, though the existence

of short-length cycles has been known to degrade the code performance in the wa-

terfall region.

To design codes with good performance at both the waterfall region and the

high SNR region, studies have been carried out on a series of PEG-based methods

[62, 63]. In [62], a PEG-ACE construction algorithm has been proposed by using

a combined PEG-and-ACE measure. Simulation results have confirmed that for
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some particular codes, the PEG-ACE constructed codes, compared with the codes

constructed by the PEG-only algorithm, possess similar error performance at the

waterfall region and lower error rates at the high SNR region. In [63], the authors

have also tried to avoid all the small-size stopping sets consisting of variable nodes

with degrees no larger than three in the PEG construction method. However, the

computation complexity would have increased exponentially if variable nodes with

larger degrees are to be considered in the code construction.

In a similar time frame, another concept, known as the “trapping set (TS)”, has

been proposed and exploited as an effective tool to evaluate the error performance

of a regular LDPC code at high SNR [26, 64]. Generally speaking, a trapping set

is simply a set of variable nodes. Thus, all stopping sets can be considered as

trapping sets. A trapping set with the label [w; u] is further defined as a set of w

variable nodes with exactly u of the neighboring check nodes having odd number

of connections to the (trapping) set. The value of w determines how likely that all

nodes in the [w; u] TS are in error. If the value of w is smaller, the scenario that all

the w variables in the [w; u] TS are erroneous (an “error pattern”) will become more

likely to occur during the LDPC decoding process. When an error pattern occurs,

the amount of valid information that can flow into the [w; u] TS and help rectifying

the errors is affected by the value of u. In the extreme case when all the variable

nodes residing outside the TS have been decoded correctly, the check equations

of the u neighboring check nodes having odd number of connections to the TS will

become unsatisfied1. Since these u neighboring check nodes are the only instrument

through which the TS can collect valid information from nodes outside the TS, a

small value of u will limit the amount of valid information that flows into the TS,

jeopardizing the capability of the TS to correct its own errors. As a consequence,

[w; u] TSs with small w and u values, named as the dominant TS, may cause the

decoder to oscillate and fail to converge at the high SNR region [26]. Miloš et

al. [65] have proposed an effective algorithm to construct codes with low error floor

over BSC by eliminating the TSs based on the pre-information of dominant TSs.

However, the authors have not mentioned how to identify the dominant TSs.

In our study, we also observe that trapping sets are the main error contributors

1We define a check node as a “satisfied check node” if there is an even number of neighboring
variable nodes decoded as “1”. Otherwise, we define the check node as an “unsatisfied check node”.
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to the rare error events of irregular LDPC codes over AWGN channel at the high

SNR region. However, TSs with the same label [w; u] are not identical in general

and contribute differently to the error floor, particularly for irregular LDPC codes.

In other words, not all dominant TSs are harmful to the decoder. In this thesis, we

will investigate the connected subgraphs induced by the TSs and categorize them

into those with (i) no cycle, (ii) a single-cycle and (iii) multiple cycles. We will

also study the properties of these induced connected subgraphs and show that using

[w; u] alone is not adequate to describe the features of the TSs, particularly features

that are crucial to determine the harmfulness of the TSs. We will introduce a new

parameter, namely cycle indicator and denoted by e, that further characterizes TSs.

Moreover, we define “primary trapping sets (PTSs)”, the main use of which is to

identify detrimental TSs. Based on our findings, we then propose a code construc-

tion algorithm that aims to avoid detrimental TSs. Finally, we will perform simula-

tions and compare the error rates of the codes constructed by our proposed method

and other codes adopting the same code rate, code length and degree distributions.

1.4.2 Evaluation of the extremely low error rate

Having constructed an LDPC with a certain length, we run simulations to

evaluate its block error rate (BLER) and bit error rate (BER). Using Monte Carlo

(MC) simulations, we can produce BLERs as small as 10−6 within a day or so.

However, if we are to increase the SNR further, the resultant BLER may go down

to 10−12, or even lower. Under such circumstances, using the MC technique to

evaluate the BLER becomes not feasible due to the prohibitive amount of simulation

time needed to arrive at a meaningful BLER.

To resolve the above issue, importance sampling can be applied. Importance

sampling is a very powerful tool for evaluating the low probability error events in

digital communication systems [66]. The basic idea of IS is to modify the probabil-

ity density function (pdf) of the input random process, making the low probability

events occurring more frequently. Mean translation (MT) [66] is the most efficient

IS scheme. It achieves the unbiased estimation by shifting the input density to the

boundary of error region. Mean translation is implemented in a divide-and-conquer

manner for multidimensional systems, e.g., the coding system. In particular, the
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error region is partitioned into independent sub-regions, and then the BLER is ap-

proximated by adding together the error probability estimated for each sub-region

with MT.

For regular LDPC codes, it has been reported that the error region is dominated

by important TSs [26], and a two-stage scheme based on MT has been proposed to

help predicting the performance of LDPC codes at the high SNR region [67–74].

The first stage is to identify as many TSs as possible using a heuristic search method.

In the second stage, TSs with the same label are considered equivalent under the au-

tomorphism of the graph of regular code [26] and categorized into one class. Then

the error probability associated with an individual representative selected from each

class is approximated. In some special cases [70, 71, 74], the authors have circum-

vented the need to classify the entire important TSs. However, such methods are

restricted to regular LDPC codes which possess simple structures. In [75], a [w;u]

absorbing set has been defined as a [w;u] TS in which each element has strictly

fewer neighboring check nodes with odd degree than those with even degree. The

minimal absorbing sets are the ones with the smallest possible u among those with

the smallest w. Based on the properties of the absorbing set, an analytical model

can be given for array-based LDPC codes, and the maximum possible number of

the minimal possible absorbing sets can be exactly calculated. But as for the gener-

ally constructed regular codes and the irregular codes, we still have to resort to the

heuristic search methods to identify as many absorbing sets or trapping sets as possi-

ble. Canvus et al. [67] have found that trapping sets consisting of overlapping short

cycles appear more frequently in the LDPC decoding failures. They have proposed

a graph search technique that lists all existing short cycles for each variable node in

the bipartite graph. Such a method, however, would be very time-consuming in the

case of medium-length or long codes.

In [73], taking a variable node of degree 3 as the root node, a tree is obtained

by expanding the root node’s connection in a breadth-first way to some depth. The

tree, starting from the root node in the first tier, will possess alternate tiers of vari-

able nodes and check nodes. A four-variable-node combination is then defined as

the set of four variable nodes with the root variable node, and one variable node

from the set of variable nodes in the third tier associated with each of three neigh-

boring check nodes of the root. It is proved that, for regular codes with variable node
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degree 3 and check node degree 6, a dominant TS must comprise a four-variable-

node combination. Subsequently, error impulses are applied to the bit positions in

the four-variable-node combination as the input to the decoder. During the decoding

process, if the decoder fails to find a valid codeword after reaching the maximum

iteration number, the [w; u] TS with the smallest u will be picked by analyzing the

decoding history with hard decisions. After the dominant TSs have been found, the

“average Euclidean-squared distance” of a TS to the error boundary is measured

to identify TSs with large BLERs. However, if the code contains tens of thou-

sands of different TSs, the average Euclidean-squared distance of each of these TS

needs to be calculated individually, which may not be feasible. Though the authors

in [73] have claimed that a similar idea, by considering dk-variable-node combi-

nations at variable nodes of degree dk, could be applied to the irregular codes, a

prohibitive amount of computation time may be involved. Take a degree-6 vari-

able node with neighboring check nodes of degree 8 as an example, there will be

(8−1)6 = 117, 649 different types of seven-variable-node combinations to consider.

Yet, in all the above discussions, TSs are classified based on [w; u] and only

regular LDPC codes have been studied. To the best of our knowledge, no concrete

suggestions nor results have been produced for evaluating irregular LDPC codes

identified with [w; u; e] TSs. Thus, we will propose evaluating irregular LDPC code

performance at the high SNR region using the importance sampling (IS) [76, 77]

approach in conjunction with PTSs identification. In particular, we will propose

a three-stage technique to search as many detrimental PTS as possible for a given

irregular LDPC code. Next, the error region of the code will be divided into various

sub-regions in terms of PTS. The sub-regions subjected to PTS with the same label

[w; u; e] will be classified into the same group. Then, IS is applied to a representative

of each group to evaluate the BLER of each group of PTS. Based on the results, the

extremely low BLER of the LDPC code at high SNR is estimated.

1.5 Outline of the thesis

Chapter 2.1 gives a brief review of LDPC codes. In Section 2.1 we present

two types of representations of LDPC codes. Section 2.2 elaborates the belief prop-

agation algorithms in the probability field, likelihood ratio field and log-likelihood
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ratio field. In Section 2.3 we introduce the density evolution algorithms that ana-

lyze the performance of infinite-length LDPC codes. Section 2.4 further reviews

two popular methods for constructing short-length LDPC codes.

The results of our study in short-length LDPC codes will be given in Chapter 3

to Chapter 6. Chapter 3 is devoted to investigating the dynamical behavior of short-

length LDPC decoder for a wide range of SNRs. In Section 3.2, we derive the

Jacobian of the decoding system and calculate the eigenvalues corresponding to

the fixed points. In Section 3.3, we perform extensive simulations on both regular

and irregular LDPC codes. The results illustrate the rich dynamics, including fixed

points, bifurcations and chaos, at the decoder as the SNR varies. Furthermore, a

feedback control method is designed in Section 3.4 to assist the decoder converging

at the waterfall region.

In Chapter 4, we explore the feasibility of building LDPC codes from complex

networks. In Section 4.1 we briefly present the major types of complex networks.

Section 4.2 explains how to build LDPC codes of infinite length when the variable-

node degree distribution follows a power law. In Section 4.3, the performance of

scale-free LDPC codes with finite-length are evaluated both analytically and by

simulations.

In Chapter 5 and Chapter 6, we will provide a detailed investigation of the

error floor in short-length LDPC codes. Chapter 5 aims at finding the cause of the

error-floor problem and proposing methods to reduce the error floor. In Section 5.1,

we investigate the connected subgraphs induced by the TSs and categorize them

into those with (i) no cycle, (ii) a single-cycle and (iii) multiple cycles. Section 5.2

discusses the error contributions of different types of trapping sets to the error floor

in terms of the configurations of their induced connected subgraphs. In Section 5.3,

we define a “primary trapping set (PTS)”, the main use of which is to identify the

detrimental TS. Section 5.4 elaborates our proposed PEG-ACSE code-construction

method that aims at avoiding detrimental TSs and hence producing short-length ir-

regular LDPC codes with low error floor. The codes so constructed are further eval-

uated over an AWGN channel using the Monte Carlo simulations, and the results

are presented in Section 5.5.

Chapter 6 is devoted to the evaluation of the extremely low error rate of short-

length LDPC codes at the high SNR region. We will propose an importance sam-
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pling technique in conjunction with PTS identification which can efficiently and

effectively estimate the BLER of the codes when the BLER is very low. A brief

introduction of IS technique is given in Section 6.1. In Section 6.2, we propose a

three-stage search method to identify as many detrimental PTSs as possible. Sec-

tion 6.3 presents the results when we apply our proposed IS scheme to several ex-

isting LDPC codes and LDPC codes constructed by our proposed methods.

Finally, in Chapter 7, we summarize our contributions of this thesis and pro-

pose some future work.
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Chapter 2

Review of LDPC codes

2.1 Representations of LDPC codes

2.1.1 Graph representation

Low-density-parity-check (LDPC) codes were first proposed by [4] in the

early 1960s and have been revisited by Wiberg [6] and MacKay [7] in the 1990s.

Low-density-parity-check codes are in fact linear block codes [78] which can be

represented by bipartite graphs consisting of two sets of nodes, namely variable

nodes and check nodes. The variable nodes represent the elements of the codeword

and the check nodes represent the sets of parity-check constraints satisfied by the

codewords of the code. The block length of the code, denoted by N , is the number

of variable nodes; while the check length of the code, denoted by M , is the number

of check nodes. The connections between the two different types of nodes are called

edges. The number of edges emanated from a node is referred to as the degree of the

node. The key property of LDPC codes is the sparsity of the graph. In other words,

the degree of each node is very low. Also, there are two kinds of LDPC codes —

regular and irregular.

For regular LDPC codes, all nodes of the same type have the same degree. For

irregular LDPC codes, the degree of each set of nodes is chosen according to some
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distributions. For a given distribution pair (λ, ρ) of an LDPC ensemble,

λ(x) :=
dv∑

k=2

λkx
k−1 and ρ(x) :=

dc∑

k=2

ρkx
k−1 (2.1)

specify the variable node degree distribution and the check node degree distribu-

tion, respectively, where λk denotes the fraction of edges connected to degree-k

variable nodes and ρk denotes the fraction of edges connected to degree-k check

nodes. Moreover, dv and dc denote the maximum variable-node degree and maxi-

mum check-node degree, respectively. Note that regular code forms a special group

among the irregular ones. For regular codes with a variable-node degree dv and a

check-node dc, all variable nodes are connected with dv edges, i.e.,

λk =

{
1 if k = dv

0 otherwise,
(2.2)

and consequently, we have λ(x) = xdv−1. For the same reason, we have ρ(x) =

xdc−1.

Based on the degree distributions, the code rate of the system, denoted by R,

can be obtained using

R = 1−
∫ 1

0

λ(x)dx/

∫ 1

0

ρ(x)dx. (2.3)

In Fig. 2.1, an example of (10, 5) irregular LDPC code is shown. The (10, 5)

code indicates that there are 10 variable nodes (as shown on the left hand side)

and 5 check nodes (as shown on the right hand side) in the bipartite graph. Each

check node represents a check equation satisfied by the codeword. Referring to the

figure, it can be observed that two edges emanate from v1 and hence the degree

of node v1 equals 2. The total number of edges is 23, among which 9 edges are

connected to degree-3 variable nodes and 14 to degree-2 variable nodes. So the

degree distribution of the variable nodes is expressed as λ(x) = 14
23

x + 9
23

x2. Hence

the fraction of variable nodes with degree-3 is readily shown equal to 3
10

.
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Figure 2.1: A graph representation of a (10, 5) LDPC code. The path v1−c1−v10−
c2 − v1 forms a cycle of length 4. The variable-node set {v2, v3, v7} is a stopping
set. Variable nodes are represented by filled circles and check nodes are represented
by filled squares.

2.1.2 Matrix representation

Consider a linear block code with (N−M) information bits and M check bits.

The set of codewords Ψ can be described as a (N−M)-dimensional vector subspace

of the space of all N -tuples over FN
2 , where FN

2 represents the binary field with N

dimensions. In other words, the set of all N -bit vectors in Ψ are formed by linear

combinations of (N −M) linearly independent basis vectors {g1,g2, ...,g(N−M)}
over FN

2 , and the basis vectors can be arranged as rows of a (N−M)×N generation

matrix G such that G = [gT
1 gT

2 ... gT
(N−M)]

T (T denotes the transpose of the vector

or matrix). The null space of G is associated with a matrix H, which is called the

parity-check matrix. The (j, i)th element of the parity-check matrix H, denoted by

hji, is 1 if and only if the jth check node is connected to the ith variable node. As

a consequence, the LDPC code can be defined as the set of vectors Ψ such that all

elements ψ ∈ Ψ satisfy ψHT = 0. In the bipartite graph, such as the one shown

in Fig. 2.1, each edge will correspond to a “1” in a particular position in the parity-

check matrix. Therefore, based on the bipartite graph, the corresponding matrix
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representation of the LDPC code can be derived. For example, it is readily shown

that the parity-check matrix of the (10, 5) code in Fig. 2.1 is given by

H =




1 0 0 0 1 1 0 1 0 1

1 1 0 0 0 0 1 1 0 1

0 1 1 0 0 1 0 0 1 1

0 0 1 1 0 0 1 0 1 0

0 0 0 1 1 0 0 1 1 0




. (2.4)

2.2 Decoder of LDPC codes

2.2.1 Overview

Low-density-parity-check codes can be decoded with various decoding meth-

ods, including hard-decision decoding and soft-decision decoding [79, 80]. Hard

decision methods such as bit flipping [81, 82] and one-step majority-logic [83] are

simple for hardware implementation but are not good in error performance com-

pared to soft-decision decoding methods. On the other hand, the maximum likeli-

hood decoder [84] provides the lowest error rates among the various decoding algo-

rithms, but is too complex to be implemented in practice. A widely used algorithm

that represents a good compromise between complexity and error performance is

the iterative decoding based on belief propagation (BP) [79].

The BP algorithm is one of the message-passing algorithms, which allow the

exchange of information between the variable nodes and the check nodes in the

graph-based model during each iteration. The message from a variable node v to a

check node c is calculated based on the received messages from both the channel

and the neighboring check nodes except c. Similarly, the message from a check

node c to a variable node v is computed based on the incoming messages from

the neighboring variable nodes except v. Without loss of generality, we consider

a binary-input AWGN channel and a transmitted codeword with a block length N .
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Also, we represent the number of check nodes by M . We denote the ith code

bit (i = 1, 2, ..., N ) by ψi ∈ {0, 1}. The transmitted signal corresponding to this

code bit equals (−1)ψi+1. The received signal, denoted by yi, is given by yi =

(−1)ψi+1 + zi, where the variables zi are independent and identically distributed

zero-mean Gaussian random variables with variance (noise power) σ2.

Given the received signal y = [y1, y2, ..., yN ]. To decode the code bit ψi, we

can make use of either

1. a posteriori probabilities (APPs), denoted by Pr(ψi = 0|y) and Pr(ψi = 1|y)

in the probability field; or

2. the APP ratio, denoted by Pr(ψi=0|y)
Pr(ψi=1|y)

, in the likelihood ratio (LR) field; or

3. the log-APP ratio, denoted by log(Pr(ψi=0|y)
Pr(ψi=1|y)

), in the log-likelihood ratio (LLR)

field

where Pr(E) denotes the probability that the event E occurs.

The computation of APP, APP ratio or log-APP ratio in the iterative algorithm

is based on the Tanner graph of the code. For the l-th iteration (l = 0, 1, ...), we

denote the message along the edge from check node cj to variable node vi as m ↑(l)
ij

and the message along the edge from variable node vi to check node cj as m ↓(l)
ij .

The messages can be the APP, APP ratio or log-APP ratio. Consider the variable

node vi in Fig. 2.2 (a). The outgoing message m ↓(l)
i0 contains the conditional prob-

ability of code bit ψi being b (b = 0, 1), which is given by

Pr(ψi = b|yi,m ↑(l)
i1 ,m ↑(l)

i2 , ..., m ↑(l)
i(dv−1)). (2.5)

Assume that all the incoming messages are independent. Thus the above conditional

probability equals

Pr(ψi = b|yi,m ↑(l)
i1 ,m ↑(l)

i2 , ..., m ↑(l)
i(dv−1)) = Pr(ψi = b|yi)

dv−1∏

k=1

Pr(ψi|m ↑(l)
ik )

(2.6)

Furthermore, consider the check node cj in Fig. 2.2 (b). Denote Pj as the check

equation at check node cj . The outgoing message m ↑(l)
0j contains the probability of
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check equation at cj being satisfied, which is given by

Pr(Pj = 0|m ↓(l)
1j ,m ↓(l)

2j , ..., m ↓(l)
(dc−1)j). (2.7)

With the assumption that all the incoming messages are independent, the condi-

tional probability can be rewritten as

Pr(Pj = 0|m ↓(l)
1j ,m ↓(l)

2j , ..., m ↓(l)
(dc−1)j) =

dc−1∏

k=1

Pr(Pj = 0|m ↓(l)
kj )). (2.8)

In the following, we will elaborate the BP algorithm in the probability field, likeli-

hood ratio field and log-likelihood ratio field, respectively.

2.2.2 Belief propagation in the probability field

For b = 0, 1, we define q
(l)
ij (b) (equivalent to m ↓(l)

ij in Sect. 2.2.1) as the con-

ditional posterior probability of the bit ψi being equal to b at iteration l; and r
(l)
ji (b)

(equivalent to m ↑(l)
ij in Sect. 2.2.1) as the conditional posterior probability of the

event that the jth check equation being satisfied at iteration l for l = 0, 1, ..., Imax,

where Imax is the maximum iteration number. We further assume that the outgoing

message q
(l)
ij (b) from the variable node vi is calculated based on messages passed

from the neighboring check-node set Ci excluding the check node cj at iteration l;

and the outgoing message r
(l)
ji (b) from check node cj is calculated based on mes-

sages passed from the neighboring variable-node set Vj excluding the variable node

vi at iteration l. Assuming that the passed messages in the iterative process are in-

dependent random variables, the BP algorithm in the probability domain proceeds

as follows.

1. Estimate the noise power σ2. For i = 1, 2, ..., N and b = 0, 1, initialize

Pi(b) := Pr(ψi = b|yi), where Pr(ψi = b|yi) denotes the posterior probability

that bit ψi equals b given the received signal yi. Set q
(0)
ij (b) = Pi(b) if the i-th

variable node vi and the j-th check node cj are connected.

2. Update {r(l)
ji (b): i = 1, 2, ..., N ; j = 1, 2, ..., M ; l = 0, 1, ..., Imax and b =
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Figure 2.2: The decoding mechanism at a specific variable node and a specific check
node.

0, 1} using





r
(l)
ji (0) = 1

2
+ 1

2

∏

i′∈Vj/i

(1− 2q
(l)
i′j(1))

r
(l)
ji (1) = 1− r

(l)
ji (0).

(2.9)

3. Update {q(l+1)
ij (b): i = 1, 2, ..., N ; j = 1, 2, ..., M ; l = 0, 1, ..., Imax and

b = 0, 1} using

q
(l+1)
ij (b) = A

(l)
ij Pi(b)

∏

j′∈Ci/j

r
(l)
j′i(b) (2.10)

where A
(l)
ij is chosen to ensure that q

(l+1)
ij (0) + q

(l+1)
ij (1) = 1.
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4. Compute the posteriori probability of bit ψi = b for b = 0, 1 using

Q
(l)
i (b) = A

(l)
i Pi(b)

∏
j∈Ci

r
(l)
ji (b) (2.11)

where A
(l)
i is chosen to ensure that Q

(l)
i (0) + Q

(l)
i (1) = 1.

5. For i = 1, 2, ..., N , set

Q
(l)
i (1)

ψ̂i=1

>
<

ψ̂i=0

Q
(l)
i (0). (2.12)

where ψ̂i is the i-th estimated codeword bit by hard decision. If ψ̂HT = 0 or

the number of iterations equals the maximum limit, stop; else, go to Step 2.

2.2.3 Belief propagation in the likelihood ratio field

Define lPi as the channel message in the likelihood ratio (LR) field at i-th

variable node vi corresponding to received signal yi. Define lr
(l)
ji (equivalent to

m ↑(l)
ij in Sect. 2.2.1) as the message in LR field passed from check node cj to

variable node vi at iteration l and lq
(l)
ij (equivalent to m ↓(l)

ij in Sect. 2.2.1) as the

message in the LR field passed from variable node vi to check node cj at iteration l.

Then the iterative equations of the decoder are given as follows [79].

1. Estimate the noise power σ2. Then for i = 1, 2, . . . , N , initialize lPi =
Pr(ψi=1|yi)
Pr(ψi=0|yi)

. Set lq
(0)
ij = lPi if the i-th variable node vi and the j-th check node

cj are connected.

2. Update {lr(l)
ji : i = 1, 2, ..., N ; j = 1, 2, ..., M ; l = 0, 1, ..., Imax} using

lr
(l)
ji =


1−

∏

i′∈Vj\i

1− lq
(l)
i′j

1 + lq
(l)
i′j


 /


1 +

∏

i′∈Vj\i

1− lq
(l)
i′j

1 + lq
(l)
i′j


 . (2.13)

3. Update {lq(l+1)
ij : i = 1, 2, ..., N ; j = 1, 2, ..., M ; l = 0, 1, ..., Imax} using

lq
(l+1)
ij = lPi

∏

j′∈Ci\j
lr

(l)
j′i. (2.14)
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4. Compute the LR value of the code bit ψi using

lQ
(l)
i = lPi

∏
j∈Ci

lr
(l)
ji . (2.15)

5. For i = 1, 2, ..., N, set

lQ
(l)
i

ψ̂i=1
>
<

ψ̂i=0

1. (2.16)

If ψ̂HT = 0 or the number of iterations equals the maximum limit, stop; else,

go to Step 2.

2.2.4 Belief propagation in the log-likelihood ratio field

Define LPi as the channel message in the log-likelihood ratio (LLR) field at

variable node vi corresponding to received signal yi. Define Lq
(l)
ij (equivalent to

m ↓(l)
ij in Sect. 2.2.1) as the conditional LLR at iteration l computed based on (i) the

received LLR information LPi, and (ii) the message Lr
(l−1)
j′i passed from the neigh-

boring check-node set Ci excluding the check node cj . Also, we define Lr
(l)
ji (equiv-

alent to m ↑(l)
ij in Sect. 2.2.1) as the conditional LLR at iteration l computed based

on the message Lq
(l)
ij passed from the neighboring variable-node set Vj excluding

the variable node vi. The message-passing algorithm then proceeds as follows.

1. Estimate the noise power σ2. Then for i = 1, 2, . . . , N , initialize LPi =

log
(

Pr(ψi=1|yi)
Pr(ψi=0|yi)

)
. Set Lq

(0)
ij = LPi if the i-th variable node vi and the j-th

check node cj are connected.

2. Update {Lr
(l)
ji : i = 1, 2, ..., N ; j = 1, 2, ..., M ; l = 0, 1, ..., Imax} using

Lr
(l)
ji =


 ∏

i′∈Vj/i

sign(Lq
(l)
i′j)


× φ


 ∑

i′∈Vj/i

φ(Lq
(l)
i′j)


 (2.17)

where φ(x) = − log(tanh(|x/2|)) and the unconventional probabilistic defi-
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nition of the sign function sign(x) is given by

sign(x) =





0 for x > 0

0 with probability 1/2 for x = 0

1 with probability 1/2 for x = 0

1 for x < 0.

(2.18)

3. Update {Lq
(l+1)
ij : i = 1, 2, ..., N ; j = 1, 2, ..., M ; l = 0, 1, ..., Imax} using

Lq
(l+1)
ij = LPi +

∑

j′∈Ci/j

Lr
(l)
j′i. (2.19)

4. Compute the LLR value of the code bit ψi using

LQ
(l)
i = LPi +

∑
j∈Ci

Lr
(l)
ji (2.20)

5. For i = 1, 2, ..., N, set

LQ
(l)
i

ψ̂i=1
>
<

ψ̂i=0

0. (2.21)

If ψ̂HT = 0 or the number of iterations equals the maximum limit, stop; else,

go to Step 2.

2.2.5 Summary

In all, the BP algorithm in the probability field is more readily understood

from a physical point of view. The BP algorithm in the LLR field, on the other

hand, converts all multiplication/division operations into addition/subtraction oper-

ations with the use of the log function, which can be realized by using a look-up

table and hence more easily implemented by hardware. However, it takes a com-

paratively longer time to execute the log operations than the multiplication/division

operations when we run the decoding algorithm on a computer. Thus, in the com-

puter simulations, the BP algorithm in the LR field is preferred if the simulation

time is a concern.
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2.3 Performance analysis of infinite-length LDPC

codes

Suppose the path between a variable node and the immediate neighboring

check node contributes to a unit depth. Define the neighborhood of a variable

(check) node v (c) to a depth d as the induced subgraph by traversing the vari-

able (check) node v (c) along its connections to a depth d. The flow of the iterative

BP decoding algorithm for the l-th iteration can be visualized on the neighborhood

of each variable node to a depth 2l (l = 0, 1, ...), as shown in Fig. 2.3. This tree-like

topology consists of 2l+1 layers having alternate layers of variable nodes and check

nodes. Assuming the root variable node is lying on the first layer, the (2l′ − 1)-

th layer and the 2l′-th layer has alternatively variable nodes and check nodes for

l′ = 1, 2, ..., l. The “independence” assumption among the passing-messages im-

plies that the neighborhood of each variable node to a depth 2l is cycle-free. As

l increases, the assumption can only be met with code length approaching infinity.

When the assumption is satisfied, however, density evolution can be utilized to track

the distributions of the output messages at the variable nodes and the check nodes.

2.3.1 Density evolution

Suppose the belief propagation (BP) algorithm with regard to the log-likelihood

ratio (LLR) is used as the iterative decoder [79]. Denote the density associated with

the messages from the variables nodes to the check nodes during the l-th iteration

by P̃l and that from the check nodes to the variable nodes by Q̃l. Moreover, over

the AWGN channel, the initial message density has been shown equal to [11]

P̃0(yi) =
1√
8πσ

exp

[−(yi − 2
σ2 )

2σ2

8

]
(2.22)

where i = 1, ..., N .

Assuming that all the messages at each node are independent of one another,

it has been shown that for l = 1, 2, ... [11, 15]

P̃l = P̃0 ⊗ λ(Q̃l) (2.23)

25



2

2l-1

2l

…

1

2l+1

v

(1) ( )C v

( ) ( )l
C v

…

Figure 2.3: The neighborhood of a variable node to a depth 2l. The tree-like topol-
ogy of 2l + 1 layers, starting from the root variable node in the first layer, com-
prises variable nodes and check nodes in layer 2l′−1 and layer 2l′, respectively, for
l′ = 1, ..., l. C(l)(v) represents the check-node set at the 2l-th layer of the neighbor-
hood of the variable node v.

where ⊗ represents convolution and λ(.) denotes the variable-node degree distribu-

tion, as defined in (2.1). To compute Q̃l, we represent the messages {Lq
(l)
ij } in an

alternative way. We define the map β : [−∞, +∞] → GF(2) × [0, +∞]. Given a

random variable a ∈ [−∞, +∞] with distribution Fa and a 6= 0. Let

β(a) := (β1(a), β2(a)) := (sign(a),− ln(tanh |a/2|)) . (2.24)

We also define the “distribution” of β(a) as

Γ(Fa)(ς, x) = δ{ς=0}Γ0(Fa)(x) + δ{ς=1}Γ1(Fa)(x) (2.25)

where

Γ0(Fa)(x) = Pr(β1(a) = 0, β2(a) ≤ x)
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= Pr(a ≥ − ln tanh(x/2)) (2.26)

Γ1(Fa)(x) = Pr(β1(a) = 1, β2(a) ≤ x)

= Pr(a ≤ ln tanh(x/2)) (2.27)

and δ{ς=b} equals 1 if ς = b for b = 0, 1; and equals 0 otherwise. Thus, (2.17) can

be written as

Lr
(I)
ji = β−1


 ∑

i′∈Vj\i
β

(
Lq

(l)
i′j

2

)
 (2.28)

and the density of Lr
(l)
ji is given by

Q̃l = Γ−1(ρ(Γ(P̃l−1))), (2.29)

where ρ(.) denotes the check-node degree distribution, as defined in (2.1). Finally,

P̃l can be expressed as

P̃l = P̃0 ⊗ λ(Γ−1(ρ(Γ(P̃l−1)))). (2.30)

Having found the density P̃l, the associated distribution can be computed using

integration. For the symmetric linear block code and output-symmetric memoryless

AWGN channel, we assume that all-zero codewords are used in the transmissions

[15]. Thus, the iterative process can determine whether the expected fraction of

incorrect messages, i.e., those with non-negative values with regard to decoding

in the LLR field, will go to zero as iteration continues. For fixed dv and dc, one

can then find the largest value of σ, i.e., best achievable performance or threshold

of the LDPC code, by varying the distribution pair (λ, ρ) such that the expected

fraction of incorrect messages will go to zero [15]. Optimization of the threshold

has been carried out and the degree distributions of some good codes have already

been found [85]. However, such codes provide optimal error performance only

under an infinite code length and an infinite number of iterations for decoding.

2.3.2 Discrete density evolution

In the previous section, we have shown that density evolution (DE) together

with belief propagation algorithm can serve as a powerful tool for finding degree
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distributions that can maximize the threshold σ. However, the computation in-

volved in DE is fairly intensive. Other techniques that are comparatively easier

to visualize and less computational intensive than DE include “extrinsic informa-

tion transfer (EXIT)” chart [86–88] and “Gaussian approximation density evolution

(GA-DE)” [27]. These methods give suboptimal performance compared with DE

though. Also, they assume that as the number of iterations increases, the probability

density functions of the messages from variable nodes to check nodes are approach-

ing Gaussian-like distributions. In order to achieve low computational complexity

and to maintain the performance of DE, a different implementation of DE based on

the quantization technique and fast Fourier transforms (FFT), also known as “dis-

crete DE (DDE)” has been proposed [20] and is briefly reviewed as follows.

Let Q(m) be the quantized message of m, i.e.,

Q(m) =





bm
∆

+ 1
2
c if m ≥ ∆

2

dm
∆
− 1

2
e if m < −∆

2

0 otherwise

(2.31)

where Q is the quantization operator; ∆ is the quantization interval; bxc is the

largest integer not greater than x; and dxe is the smallest integer not less than x. In

this regard, we denote by P̂l(k) as the probability that the messages from variable

nodes to check nodes being k∆ during the lth iteration; and we represent Q̂l(k)

as the probability that the messages from check nodes to variable nodes being k∆

during the lth iteration. Then the probability associated with the initial messages

being k∆ is given by

P̂0(k) = Q
(

1√
8πσ

exp

[−(k∆− 2
σ2 )

2σ2

8

])
. (2.32)

For the calculation of Q̂l, instead of involving the complicated convolution over a

different domain GF(2)× [0, +∞] (see (2.24) to (2.29)), the new DE implementa-

tion employs a look-up table for the direct convolution of the discrete log-likelihood

ratio probabilities.
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First, define a two-input operator R as

R(m̂1, m̂2) = Q
(

2 tanh−1

(
tanh

m̂1∆

2
tanh

m̂2∆

2

))
(2.33)

where m̂1 and m̂2 are two quantized messages. Obviously, this operation can be

accomplished using a pre-computed table. Let m̂3 = R(m̂1, m̂2) and denote the

probability of m̂n by pm̂n [kn], n = 1, 2, 3. Then

pm̂3 [k3] =
∑

(k1,k2):k3∆=R(k1,k2)

(pm̂1 [k1]pm̂2 [k2]) (2.34)

where k1, k2 and k3 are integer variables. Using ∗R to denote the operator

(f ∗R g)[k3] =
∑

(k1,k2):k3∆=R(k1,k2)

(f [k1]g[k2]), (2.35)

(2.34) can be re-written as

pm̂3 = pm̂1 ∗R pm̂2 . (2.36)

Thus,

Q̂l =

j=dc∑
j=2

ρj(P̂l ∗R (P̂l, ..., ∗R(P̂l ∗R P̂l)))︸ ︷︷ ︸
j P̂ls

. (2.37)

Furthermore, with reference to (2.23), the probability P̂l(k) (l = 1, 2, ...) can be

written as

P̂l = P̂0 ∗ λ(Q̂l) (2.38)

where P̂l = {P̂l(k)}, Q̂l = {Q̂l(k)} and ∗ denotes the discrete convolution. The

calculation can be readily accomplished using FFT together with point-wise multi-

plication of the Fourier transforms of the probability distributions.

Without loss of generality, we send all-zero codewords over the channel while

fixing the channel parameter at σ. Then, the probability of error is given by the

probability of Q̂l being negative. Afterward, the algorithm runs until the probability

of error tends to zero or converges to a positive fixed point. Finally, the threshold

σ∗ is defined as the maximum channel parameter such that the probability of error

tends to zero as the number of iterations tends to infinity.
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2.3.3 Remark

Consider a binary-input AWGN channel and an LDPC code with rate 1/2.

Using the “discrete density evolution (DDE)”, the threshold of the best code has

been found to lie within 0.0045 dB of the Shannon limit [20]. Further, a bit error rate

of 10−6 has been achieved within 0.04 dB of the Shannon limit using a block length

of 107 [20]. In [89], the authors have proposed a “fast density evolution (FDE)”

method. It exploits fully the symmetry of the BP algorithm and claims to give much

more accurate results with much less computational complexity than DDE and other

methods. Yet, when we develop a computer program for the FDE algorithm, the

program is found failing to optimize the degree distributions of irregular codes.

Such a failure has also been reported by other researchers [90]. Thus, in this thesis,

we will make use of the DDE to design LDPC codes with large thresholds.

2.4 Construction of short-length LDPC codes

In the previous section, we have reviewed several mechanisms that can serve

to evaluate the achievable error performance of infinite-length LDPC codes. The

achievable performance of an LDPC code with finite length, moreover, will ap-

proach that of with infinite length asymptotically as the code length increases. Nev-

ertheless, it is not very practical to implement such long codes in many applications

due to its hardware complexity as well as the incurred time-delay problems [21]. In

reality, short-length (less than several thousands) LDPC codes will find a lot more

applications, but they may show very poor error performance compared with the

infinite-length codes. In the following, we present two methods for constructing

short-length LDPC codes with good error performance.

2.4.1 Progressive edge growth

Definition 2.1 (Cycle) A cycle in a bipartite graph is a path, consisting of edges

connecting the two sets of nodes, that originates from and terminates at the same

node. Moreover, each edge can only be used once in the cycle and the length of the

cycle is given by the number of edges making up the cycle. For example, the path
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v1 − c1 − v10 − c2 − v1 in Fig. 2.1 forms a cycle of length 4.

Define the “girth” of a variable node as the length of the smallest cycle in the

bipartite graph that is originated from the variable node. The “girth average” is

then the mean of the girths over all the variable nodes. In [35], the authors have

related the error performance of LDPC codes to the girth average in the associated

bipartite graph. The results have concluded that short-length codes with good error-

correcting performance usually have a large girth average. To construct short-length

LDPC codes with large girth, a broad class of methods have been proposed [35,

55]. Among the methods, progressive edge growth (PEG) [55] is one of the most

effective algorithms to enlarge the girth as well as the hamming weight of the codes.

Given that there are N variable nodes and M check nodes. Moreover, the

degree of the i-th variable node is denoted by di. Referring to Fig. 2.3, we define

C(l)(vi) as the check-node set at the 2l-th layer of the neighborhood of the variable

node vi. Then, the PEG code-construction algorithm can be described as follows.

• Sort the variable nodes such that di ≤ dj for i ≤ j.

• For i = 1 to N

– For k = 1 to di

∗ If k == 1

· Connect the first edge of vi randomly with a check node, which

has the lowest check-node degree under the current graph set-

ting.

∗ Else

· Expand the neighborhood of vi up to the depth 2l− 1 under the

current graph setting such that the check-node set at the 2l-th

layer is not empty but the check-node set at the (2l+2)-th layer

is empty, i.e., C(l)(vi) 6= ∅ and C(l+1)(vi) = ∅.

· Connect the kth edge randomly with a check node in the set

C(l)(vi) that has the lowest degree under the current setting.

∗ End (if...else)

– End (k = 1 to di)
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• End (i = 1 to N )

Note that sorting the variable nodes in a non-decreasing order can prevent low-

degree variable nodes from involving in the short cycles when the PEG algorithm

is completed. It is particularly crucial for degree-2 nodes because they do not give

rise to any extrinsic connections in cycles.

2.4.2 ACE-based code construction

While short cycles are found to be harmful to the code performance, not all

short cycles are equally harmful. To explain the scenario, we resort to the concept

of stopping set which has been first introduced when studying LDPC codes under a

BEC channel [14].

Definition 2.2 (Stopping set) A stopping set S of an LDPC code is a subset of

variable nodes with no singly-connected check nodes attached to the subset. The

size of a stopping set represents the number of variable nodes contained in the set.

For example, the variable-node set {v2, v3, v7} in Fig. 2.1 is a stopping set.

Under a BEC channel, if the bits corresponding to the variable nodes in a

stopping set are erased, they can never be recovered regardless of the number of the

iterations being conducted. It has also been pointed out that signals (correspond-

ing to variable nodes) which have very poor observation reliability over an AWGN

channel are analogous to the erasures over a BEC channel. Thus stopping sets may

also degrade the performance of the BP decoder over the binary-input AWGN chan-

nel [57]. In particular, consider a stopping set with all the neighboring check nodes

having an even number of connections. With an all-zero codeword transmitted, if

the variable nodes in a stopping set have been decoded as “1” and all other variable

nodes have been decoded as “0”, the decoder will have converged to a non-all-zero

codeword because all check equations are now satisfied. Though the non-all-zero

codeword is a valid one, it is not the transmitted one (all-zero codeword). An er-

ror will therefore occur. Since the error floor of LDPC codes using a BP decoder

depends on the minimum weight codewords as well as their multiplicities [26], in-

creasing the size of the minimum stopping set in a code is beneficial to the error

performance.
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Moreover, consider the subgraph from by a stopping set and its neighboring

check nodes. Since the check nodes are not singly-connected to the stopping set,

each of the check nodes must have a minimum degree of 2 in the subgraph. In

consequence, the subgraph should comprise one or more cycles.

Suppose we want to find out all stopping sets of size w that involves a partic-

ular variable node. Starting from that particular variable node, we then construct

the neighborhood of the node to a depth such that the variable nodes in all pos-

sible stopping sets of size w have to be included. To satisfy the requirement, a

depth of w has to be used. Hence, the neighborhood will consist of w + 1 lay-

ers. The first layer contains the particular variable node being considered. Then

the second layer will contain at most dv check nodes (recall that dv represents the

maximum degree of the variable nodes) and consequently the third layer will have

at most dv × (dc − 1) variable nodes (recall that dc represents the maximum degree

of the check nodes). Following this manner, in the 2l-th layer and the (2l + 1)-th

layer, there will be at most, respectively, dv(dv − 1)l−1(dc − 1)l−1 check nodes and

dv(dv − 1)l(dc − 1)l−1 variable nodes. Therefore, consider the (w + 1)-th layer

when w is odd and even respectively. If w is odd, the w + 1 layer will have at most

dv(dv − 1)(w+1)/2−1(dc− 1)(w+1)/2−1 check nodes. If w is even, however, the w + 1

layer will consist of at most dv(dv − 1)w/2(dc − 1)w/2−1 variable nodes. In conse-

quence, summing up the number of variable nodes at different layers, any stopping

set with size w and involving the particular variable node must be a subset of the

variable-node set with size

|T | =




min
(
N, 1 + dv(dc − 1)1−((dv−1)(dc−1))w/2

1−(dv−1)(dc−1)

)
if w is even

min
(
N, 1 + dv(dc − 1)1−((dv−1)(dc−1))(w−1)/2

1−(dv−1)(dc−1)

)
if w is odd.

(2.39)

Note that as w gets large, |T | → N . Moreover, the number of possible combina-

tions for the trapping set equals (w
|T |), where

(
w
|T |

)
=

|T |!
(|T | − w)!w!

(2.40)

In general, to find out all the stopping sets with size no more than w in a given

LDPC code, the number of possible combinations becomes N
∑w

l=1(
l
|T |). Even

for N = 1000, dv = 6, dc = 3 and a small w, say w = 5, there are more than
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1015 combinations, which is an enormous number. Instead of detecting all possible

stopping sets with small w directly, Tian et al. search likely contributors to the

small-size stopping sets based on the use of “approximate cycle extrinsic message

degree (ACE)” [57] .

Definition 2.3 (Extrinsic message degree (EMD)) An extrinsic check node of a vari-

able node set is a check node that is singly-connected to this set. The EMD of a

variable-node set is the number of extrinsic check nodes of this variable-node set.

Definition 2.4 (Approximate cycle EMD (ACE)) The ACE of a cycle with length 2l

is
∑i=l

i=1(di − 2), where di is the degree of the i-th variable node in this cycle. We

also say that the ACE of a degree-di variable node is (di − 2) and the ACE of any

check node is 0.

It has been found in [57] that short cycles with small ACE are likely contribu-

tors to the small size stopping sets. Subsequently, the authors of [57] have proposed

an algorithm to construct short-length LDPC codes with low error floor by avoiding

short cycles with small ACE. In the following, we briefly describe the algorithm.

• Sort the variable nodes such that di ≤ dk for i ≤ k.

• Initialize H to be an empty matrix.

• For i = 1 to N

– Randomly connect the variable node vi to di check nodes. Record the

connections by the vector hi = [h1i h2i . . . hMi]
T , where hji is 1 if the

variable node vi is connected to the check node cj , and is 0 otherwise.

– If (i ≤ M ) (i.e., vi is a parity bit)

∗ Perform Gaussian elimination (GE) on H.

∗ While hi is linearly dependent on the space spanned by the columns

of H)

· Randomly connect the variable node vi to di check nodes. Record

the connections by the vector hi = [h1i h2i . . . hMi]
T , where

hji is 1 if the variable node vi is connected to the check node

cj , and is 0 otherwise.
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∗ End (while)

– Add hi to the i-th column of H.

– Use
∑i=l

i=1(di − 2) to calculate the ACE values of all cycles, originated

from vi, with length 2dACE or smaller.

– While (The minimum ACE value at the current step is below a given

threshold)

∗ Remove hi from H.

∗ Randomly connect the variable node vi to di check nodes. Record

the connections by the vector hi = [h1i h2i . . . hMi]
T , where hji is

1 if the variable node vi is connected to the check node cj , and is 0

otherwise. Add hi to the i-th column of H.

∗ Use
∑i=l

i=1(di − 2) to calculate the ACE values of all cycles, origi-

nated from vi, with length 2dACE or smaller.

– End (while)

• End (i = 1 to N )

2.4.3 Remark

In both the PEG and the ACE-based code-construction methods, the variable

nodes have been arranged with degrees in a non-decreasing manner. To protect

the information bits, the first M variable nodes are assigned to parity bits and the

remaining (N−M) nodes with relatively larger degrees are assigned to information

bits. Consider the parity matrix H. Denote the M×M sub-matrix corresponding to

the first M variable nodes as H1, and the M × (N −M) sub-matrix corresponding

to the remaining (N −M) nodes as H2. Then the parity matrix H can be re-written

as

H = [H1|H2]. (2.41)

Further, denote the number of degree-2 variable nodes by Nv2. In the PEG

algorithm, min{M,Nv2} degree-2 nodes are actually connected in a zigzag man-

ner, as shown in Fig. 2.4. (The connection of degree-two variable nodes in a zigzag

manner maximizes the length of possible cycles involved with only degree-2 vari-

able nodes, and prevents the degree-2 variable nodes from forming small cycles
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with ACE equaling zero.) Moreover, in the figure, Ngap = max(M − Nv2, 0). It

has been shown that if Ngap is small, the H in approximate lower triangular form

will have a low encoding complexity [91]. In the special case of Ngap = 0, i.e.,

Nv2 ≥ M , the M -th degree-2 variable node can be further converted to a degree-1

variable node without resulting in much performance degradation [92]. Under such

circumstances, the M × M sub-matrix H1, corresponding to (M − 1) degree-2

variable nodes and one degree-1 variable node, becomes invertible. Moreover, H−T
1

becomes a matrix with all the upper-diagonal elements equaling 1. Subsequently,

the generating matrix G corresponding to H can be written as

G = [(H−1
1 H2)

T |IM ], (2.42)

in which differential encoding with low complexity can be applied with the use

of an accumulator. Furthermore, the matrix IM in G denotes an M × M identity

matrix.

2.5 Summary

This chapter presents a brief review of the LDPC codes. We have introduced

both the bipartite graph representation and the matrix representation of the LDPC

codes. With the help of the bipartite graph representations, we have elaborated the

decoding algorithm and have shown that the decoder is optimal if and only if the

“independence” assumption holds, i.e., the associated bipartite graph is cycle-free.

Under such circumstances, the degree distributions of the codes can be optimized by

“density evolution (DE)” which is described in Section 2.3.1. We have further pre-

sented a specific implementation scheme of DE, namely “discrete density evolution

(DDE)”. However, infinite-length codes are not realizable in practice. Short-length

codes are more applicable but their performance varies as their bipartite graphs

change. Furthermore, we have presented two popular methods that aim at building

short-length LDPC codes with good error-correcting performance.

Regardless of the code-construction methods, short-length LDPC codes will

inevitably contain cycles that will violate the “independence” assumption required

by the BP decoder. In consequence, the decoder will not always converge to a fixed
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Figure 2.4: An example of matrix with degree-2 variable nodes connected in a
zigzag manner.

point. Rich nonlinear dynamical phenomena should therefore be visualized at the

decoder as the SNR changes. In the next chapter, we will begin our research of

short-length LDPC codes by exploring the nonlinear dynamics of the BP decoders.
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Chapter 3

Nonlinear dynamics of finite-length LDPC

decoder

In this chapter, we begin our study into LDPC codes with an investigation

of the decoding algorithm. By considering the finite-length LDPC decoders as

high-dimensional nonlinear dynamical systems, we will investigate their dynamical

behavior and bifurcation phenomena for a range of signal-to-noise ratios (SNRs).

Moreover, we will derive the Jacobian of the system and calculate the corresponding

eigenvalues at the fixed points for stability analysis. Based on the observations and

findings, we propose a control scheme and evaluate its effectiveness in improving

the error performance of the decoder.

3.1 Introduction to dynamical systems

The concept “dynamical system” [93] has its origins in Newtonian mechanics,

and has been widely used in many natural science and engineering disciplines. In

a dynamical system, the subsequent states of the system can be determined from

the current states according to a given rule, which is usually described by a set

of equations. A collection of the states as the equations iterate forms a trajectory

or orbit. Given different initial conditions, the system may produce very different

trajectories.
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Moreover, the behavior of the trajectories is a function of the system param-

eters. As a certain parameter varies, the dynamical system may experience bifur-

cations, i.e., sudden “qualitative” or topological changes, in its behavior. There are

several types of bifurcations, such as fold bifurcation, flip bifurcation and Neimark-

Sacker bifurcation [94]. A fold bifurcation occurs when the system trajectory sud-

denly jumps from one fixed point to another fixed point. For a flip bifurcation, it

happens whenever the period of the system doubles. Further, a Neimark-Sacker

bifurcation takes place when a fixed point in the system loses stability and under-

goes quasi-periodic oscillations. The types of bifurcation can also be determined by

looking at the eigenvalues of the Jacobian, which is formed by the linearization of

the system equations at the fixed points. If one of the eigenvalues is equal to unity,

the bifurcation is a fold bifurcation. When the eigenvalue is equal to −1, it will

form a flip bifurcation. If two pairs of complex eigenvalues approach the unit circle

simultaneously, a Neimark-Sacker bifurcation occurs.

A dynamical system may also exhibit chaos if the system is nonlinear. Fur-

thermore, the chaotic system is highly sensitive to the initial conditions and the

system states appear to be random-like [95]. Given two different but very close

initial points X0 and X0 + ∆X0, where ∆X0 → 0. Then the separation between

the two trajectories generated using the system equations, denoted by ∆X(X0, t)

where t denotes the time, will behave erratically. Define the mean exponential rate

of divergence of the two initially close trajectories by the “Lyapunov exponent” λL,

which is given by

λL = lim
t→∞

1

t
ln

∆X(X0, t)

∆X0

. (3.1)

If λL < 0, the trajectory will be attracted to a stable fixed point or a stable periodic

orbit. The trajectory will be an unstable fixed point if λL = 0. Finally, if λL > 0,

the trajectory is unstable and chaotic.

3.2 BP decoder as a dynamical system

Consider a finite-length LDPC code with N variable nodes and M check

nodes. Assume that the Belief Propagation (BP) algorithm in the probability field

is used. To analyze the convergence behavior of a finite-length LDPC decoder, we
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can re-write the whole iterative process in the probability field (see Sect. 2.2.2) as

{
q(l)(0, σ) = f1(r

(l)(0, σ))

r(l+1)(0, σ) = f2(q
(l)(0, σ))

(3.2)

where both r(l)(0, σ) and q(l)(0, σ) are vectors parameterized by σ and of length

Nλ(1)/
∫ 1

0
λ(x) dx. (Recall that λ(x), as defined in (2.1), specifies the variable-

node degree distribution.) It can be observed that the whole process is parameterized

by the probabilities Pr(ψi = 0|yi) for i = 1, 2, ..., N , which are determined by the

transmitted codeword and the noise values. Simulations have also shown that the

iterative decoder is very sensitive to such parameters.

Suppose that a fixed point exists in the dynamical system. Linearizing (3.2)

around the fixed point, we get

{
q(l)(0, σ′) = J1r

(l)(0, σ′)

r(l+1)(0, σ′) = J2q
(l)(0, σ′)

⇒ r(l+1)(0, σ′) = J2J1r
(l)(0, σ′)

∣∣
r(l+1)=r(l) = Jr(l)(0, σ′)

∣∣
r(l+1)=r(l) (3.3)

where J1 and J2 are the Jacobian matrices of the functions f1 and f2, respectively,

J = J2J1, and σ′ is the parameter at the fixed point. For specific variable nodes i

and i1 and check nodes j and j1, the (ϕ(i, j), ϕ(i1, j1))-th element of the matrix J

can be shown equal to

Jϕ(i,j)ϕ(i1,j1) =

(2r
(l+1)
ji (0)− 1)× Pi1 ×

∏

j′∈Vi1
/j

R(l)
j′i1


1−


Pi1 ×

∏

j′∈Vi1
/j

R(l)
j′i1




2
× r

(l)
j1i1

(0)× r
(l)
j1i1

(1)

× δ(i, j, i1, j1)

(3.4)

where Pi = Pr(ψi=1|yi)
Pr(ψi=0|yi)

and R(l)
ji =

r
(l)
ji (1)

r
(l)
ji (0)

. ϕ(i, j) is an index function defined as

ϕ(i, j) =
i−1∑

i′=1

M∑

j′=1

hj′i′ +

j∑

j′=1

hj′i, (3.5)

where hji is 1 if the j-th check node is connected to the i-th variable node; other-

wise, it is 0. The output range of ϕ(i, j) is from 1 to N λ(1)∫ 1
0 λ(x) dx

. For the function
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δ(i, j, i1, j1), its value equals 1 if the i-th and the i1-th variable nodes are both con-

nected to the j-th check node, with the j1-th check node connected to i1-th variable

node; otherwise, it equals 0.

The stability of the fixed point can then be determined from the eigenvalues

of the Jacobian of the iterative system evaluated at the fixed point. Perturbations

grow exponentially if one of the absolute value of the eigenvalues is larger than 1

and decay if all the eigenvalues lie in the unit circle. A fixed point is said to be

stable if all sufficiently small disturbances remote from it damp out in time. On the

other hand, unstable equilibria, in which disturbances grow in time, are represented

by unstable fixed points. If an eigenvalue approaches −1 and 1, respectively, flip

bifurcation and fold bifurcation would occur. Also, Neimark-Sacker bifurcation

occurs when a pair of complex conjugate eigenvalues move towards the unit circle

from inside [96].

Although we can find the entire phase trajectories of r(l)(0, σ) and q(l)(0, σ),

it is impractical to plot and study them all because both r(l)(0, σ) and q(l)(0, σ) are

very high dimensional variables in the order of thousands. Instead, we make use

of the measure E(l) to investigate the dynamical behavior of the decoder, and E(l)

is defined as the mean-square value of the posterior probabilities of the code bits

being equal to 0 at the l-th iteration, i.e,

E(l) :=
1

N

N∑
i=1

[Q
(l)
i (0)]2 (3.6)

where Q
(l)
i (0) is the probability of the i-th bit being 0 at the l-th iteration. In our

study, codewords with all zeros are used because it is known that the all-zero code-

word is adequate for assessing the performance of a linear code with a symmetrical

channel and a symmetrical decoding algorithm. Therefore, if all code bits are de-

tected correctly after some iteration number, Q
(l)
i (0) = 1 for all i and consequently

E(l) = 1.
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3.3 Bifurcation phenomena by simulations

Suppose the noise samples are represented by z = (z1, z2, ..., zN). If the ratios

between consecutive sample values, i.e., (z1/z2, z2/z3, ..., zN−1/zN), are fixed, we

refer to such noise samples as one noise realization. Different noise realizations

correspond to different noise-ratios vectors. For a given noise realization, the noise

vector z completely determines the SNR because 1/(2R×SNR) = σ̂2 = 1
N

∑N
i=1 z2

i

where R is the code rate. Usually, N is a large integer and σ̂2 will be a good

approximation of the channel noise power σ2.

Extensive simulations have been performed to identify the relevant dynamics.

In particular, it is found that fold bifurcation, flip bifurcation and Neimark-Sacker

bifurcation occur within a certain range of the SNR called the “waterfall” region.

For regions with high and low SNRs, two kinds of fixed points in the decoding

system are observed, namely the unequivocal fixed point and indecisive fixed point.

Note that the unequivocal fixed point is the desired fixed point which produces a

definite decoding outcome. In Fig. 3.1, we plot the histograms of the posterior

probability (based on (2.11)) at the fixed points for an arbitrary LDPC code. For an

unequivocal fixed point, all the probability values converge to either 1 or 0, which is

unequivocal for hard decision (see Fig. 3.1(a)). On the other hand, we refer to a fixed

point as an indecisive fixed point when the LDPC decoding algorithm is relatively

ambiguous regarding the values of the information bits, with posterior probability

values heavily clustered around 0.5 (see Fig. 3.1(b)). It is also interesting to note

that the algorithm converges to the unequivocal fixed point if and only if the decoder

finds a valid codeword.

3.3.1 Irregular LDPC codes

We first consider an irregular (1008, 504) LDPC code [97] and study the tra-

jectories of the iterative decoding algorithm. Here, 1008 denotes the block length

and 504 denotes the check length.

42



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q(0)

F
re

q
u

en
cy

(a)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Q(0)

F
re

q
u

en
cy

(b)
Figure 3.1: Histogram of posterior probability corresponding to (a) an unequivocal
fixed point, and (b) an indecisive fixed point.
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3.3.1.1 Fold Bifurcation

For some noise realizations, only fold bifurcations occur as we vary the SNR.

Figure 3.2 shows the changes in the phase trajectories induced by a typical fold

bifurcation for a particular noise realization. The figures on the left hand side plot

the value of E(l) against l, whereas those on the right plot the number of error bits

against l. At an SNR value of 0.911785184 dB, the phase trajectory of the LDPC

decoder converges to a stable indecisive fixed point, as indicated by the plots in

Fig. 3.2(a). As the SNR is increased to 0.911785185 dB, the indecisive fixed point

disappears and the phase trajectory is able to move away from this neighborhood

and converges to an unequivocal fixed point. But there is a long time transient

behavior of about 400 iterations before convergence finally takes place, as seen in

Fig. 3.2(b). When the SNR is further increased to 0.92 dB, it takes less than 60

iterations for the trajectory to converge. In Fig. 3.3, the values of E(l) at the steady

state are plotted against SNR. It can be seen that in the low SNR region, the iterative

algorithm converges to an indecisive fixed point, whereas in the high-SNR region,

the algorithm converges to an unequivocal fixed point. Also, the two SNR regions

are separated by a fold bifurcation.

3.3.1.2 Flip Bifurcation and Neimark-Sacker Bifurcation

For some other noise realizations, both flip bifurcations and Neimark-Sacker

bifurcations occur. Figure 3.4 illustrates such bifurcations occurring at the LDPC

decoder for another noise realization.

At an SNR value of 0.30 dB, the LDPC decoding algorithm converges to a sta-

ble indecisive fixed point (see Fig. 3.4(a)). As the SNR increases to about 0.44 dB,

flip bifurcation occurs. Figure 3.4(b) shows a stable period-two cycle at the steady

state at SNR = 0.55 dB. The periodic points lose their stability and eventually bifur-

cate at around SNR = 0.595 dB. Figure 3.4(c) shows that the trajectory converges to

an indecisive fixed point at SNR = 0.601 dB. When the SNR is further increased to

0.615 dB, the phase trajectory converges to the steady state much slowly, as can be

seen in Fig. 3.4(d). At around SNR=0.62 dB, the fixed point undergoes a Neimark-

Sacker bifurcation and the phase trajectory goes into an invariant set. As a result,

after a transient period, the phase trajectory converges to a quasi-periodic orbit.
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Figure 3.2: A typical fold bifurcation. Left: E(l) versus l. Right: Number of error
bits versus l. (a) SNR = 0.911785184 dB; (b) SNR = 0.911785185 dB; (c) SNR =
0.92 dB.

45



-0.5 0.0 0.5 1.0 1.5 2.0
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

unequivocal   
  fixed point

indecisive fixed 
        point

 

 

E(
l)

SNR(dB)

Figure 3.3: Bifurcation diagram of E(l) for a particular noise realization. Dotted
line corresponds to the SNR at which a fold bifurcation occurs.

46



Figure 3.4(e) depicts the quasi-periodic orbit at the steady state at SNR = 0.65 dB.

As the SNR increases, the trajectory finally loses its stability and chaos emerges at

SNR = 0.85 dB. The chaotic trajectory at SNR = 0.94 dB is shown in Fig. 3.4(f).

Finally, when the SNR is large enough, the LDPC decoding algorithm is able to find

an unequivocal fixed point after a number of iterations. A trajectory corresponding

to SNR = 1.004 dB is shown in Fig. 3.4(g).

In Fig. 3.5, the values of E(l) at the steady state are plotted against SNR. It

can be observed that bifurcations occur in the SNR range of around 0.45 dB to 1 dB.

In the SNR range of 0.45 dB to 0.595 dB, the oscillations can hardly be displayed

in the figure because the amplitude of the oscillation, typically in the order of 10−4

as shown in Fig. 3.4(b), is too small.

Based on the values of E(l) as the iteration progresses, we compute the Lya-

punov exponent based on (3.1). In Fig. 3.6, we plot the Lyapunov exponent value

against SNR. It is found that the Lyapunov exponent value approaches zero at

SNR = 0.45 dB and at SNR = 0.62 dB, where flip bifurcation and Neimark-Sacker

bifurcation occur, respectively. At SNR = 0.86 dB, the exponent turns positive,

corresponding to the beginning of the chaotic region in Fig. 3.5. As the SNR is in-

creased to around 1 dB, the Lyapunov exponent rapidly drops from a positive value

to less than −30 (not shown in the figure due to its large negative value), indicating

the super-stability of the unequivocal fixed point. Comparing Fig. 3.2 and Fig. 3.4,

we also find that although different noise realizations produce different bifurcation

diagrams, the whole SNR range can be roughly divided into three regions: (i) low-

SNR region corresponding to indecisive fixed points; (ii) waterfall region where

bifurcations occur; and (iii) high-SNR region corresponding to unequivocal fixed

points.

3.3.2 Regular LDPC codes

In this section, we present some results for the regular LDPC codes. From

our extensive simulation results, we observe that decoders for regular LDPC codes

have similar behavior as those for irregular codes. Here, we choose the regular

LDPC code (504, 252) (504 denotes the block length and 252 denotes the check

length.) with variable-node degree being 3 and check-node degree being 6. To
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Figure 3.4: Typical flip bifurcation and Neimark-Sacker bifurcation. Left: E(l)
versus l. Right: Number of error bits versus l. (a) SNR = 0.30 dB; (b) SNR =
0.55 dB; (c) SNR = 0.601 dB; (d) SNR = 0.615 dB; (e) SNR = 0.65 dB; (f) SNR =
0.94 dB; (g) SNR = 1.004 dB.
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Figure 3.6: A plot of the Lyapunov exponent value against SNR with a particular
noise realization.

describe the characteristics of bifurcations more clearly, we plot E(l) against l and

also the eigenvalues of the Jacobian for the corresponding fixed points.

In Fig. 3.7, at SNR = 1.400 dB, all the eigenvalues for the indecisive fixed

points fall within the unit circle, indicating the stability of the fixed points. As

SNR increases to 1.478 dB, one of the eigenvalues approaches 1, implying that fold

bifurcation occurs. At SNR = 1.480 dB, the indecisive fixed point disappears, and

an unequivocal fixed point appears.

To analyze the stability of the unequivocal fixed point, we derive the Jacobian

as follows. As we know, when the algorithm converges to an unequivocal fixed

point, all the messages passing between the variable nodes and check nodes con-

verge to either 1 or 0. In our simulations, only the all-zero codes are transmitted,

and hence the messages r(l)(0, σ) and r(l)(1, σ) converge to the all-one vector and

all-zero vector, respectively. So, the (ϕ(i, j), ϕ(i1, j1))-th element of the Jacobian
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Figure 3.7: A typical fold bifurcation. Left: E(l) versus l. Right: polar plots of
eigenvalues. (a) SNR = 1.400 dB; (b) SNR = 1.478 dB; (c) SNR = 1.480 dB.
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J where δ(i, i, i1, j1) = 1 can be written as

Jϕ(i,j)ϕ(i1,j1) = lim
r(l)(0, σ) → 1

r(l)(1, σ) → 0

(2r
(l+1)
ji (0)− 1)× Pi1 ×

∏

j′∈Vi1
/j

R(l)
j′i1


1−


Pi1 ×

∏

j′∈Vi1
/j

R(l)
j′i1




2
× r

(l)
j1i1

(0)× r
(l)
j1i1

(1)

= lim
x→0

Pi1 × x(di1
−1)

x
=

{
Pi1 ifdi1 = 2

0 otherwise.
(3.7)

The above equation indicates that if the degree of the variable nodes is larger than

2, i.e., λi1 > 2(i1 = 1, 2, . . . , N ), the eigenvalues at the unequivocal fixed point

are all zeros and have nothing to do with the channel parameter. In Fig. 3.7(c),

the eigenvalues all lie in the circle of diameter less than 8× 10−20 (nonzero values

caused by small computational inaccuracy).

With other noise realizations, the phenomena of Neimark-Sacker bifurcation

(see Figs. 3.8 and 3.9) as well as flip bifurcation (see Figs. 3.10 and 3.11) can

be observed. Note that the noise realization used to observe a Neimark-Sacker

bifurcation is different from that used to observe a flip bifurcation.

3.4 Feedback control techniques

3.4.1 Methodology

In the previous section, the dynamic behavior of the iteration algorithm has

been studied under different noise realizations. Fixed points, periodic oscillations,

quasi-periodic oscillations and chaos have been observed. Given a noise realization,

we can plot the schematic bifurcation diagram [98], as in Fig. 3.5. The whole SNR

region can be divided into three parts: low SNR region, waterfall region and high

SNR region. In the low SNR region, the decoder converges to a stable indecisive

fixed point. As the SNR increases, the fixed point loses its stability and bifurcation

occurs, leading to the phenomena of oscillation and chaos. As SNR gets higher, the

algorithm finds another stable fixed point called unequivocal fixed point. Note that

for different noise realizations and different codes, the waterfall region varies.
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Figure 3.8: Phase trajectory of E(l) before Neimark-Sacker bifurcation. Left: E(l)
versus l. Right: polar plots of eigenvalues. SNR = 0.80 dB. (Note that two pairs of
complex eigenvalues approach the unit circle.)
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Figure 3.9: Phase trajectory of E(l) after Neimark-Sacker bifurcation. SNR =
0.85 dB.
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Figure 3.10: Phase trajectory of E(l) before flip bifurcation. Left: E(l) versus
l. Right: polar plots of eigenvalues. SNR = 0.60 dB. Note that one eigenvalue
approaches −1.
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Figure 3.11: Phase trajectory of E(l) after flip bifurcation. SNR = 0.65 dB.
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Although the stable unequivocal fixed point exists in the whole SNR region,

without any prior knowledge of the transmitted signals, it is very difficult to identify

the attraction bin of the unequivocal fixed point in the high dimensional decoding

system. In this section, we evaluate the effectiveness of feedback techniques that

aim to facilitate the decoder to converge to the unequivocal fixed points. First, we

investigate the time-delay feedback control method, which involves a control signal

formed from the difference between the current state and the state of the system

delayed by some time period. The technique needs no information about the target

and can force the algorithm to stabilize at periodic orbits when the time-delay factor

equals the period of the orbit. For a fixed point, the time-delay factor equals unity.

However, this kind of feedback may also stabilize the indecisive fixed point and

leads to an incorrect decoded codeword.

Suppose the iterative algorithm converges to an unequivocal fixed point. All

the posterior probability values of the messages passing between variable nodes

and check nodes tend to be either 1 or 0. Although we do not know which poste-

rior probability values are 1s, the values passing from or going to the same variable

nodes will be the same. In other words, if the algorithm converges to the unequiv-

ocal fixed point, the LLR messages Lr
(l)
ji will be the same for any j-th check node

connected to the same i-th variable node. It is a unique characteristic for unequivo-

cal fixed points. Therefore, instead of time-delay feedback, we can use spatial-delay

feedback method [99], i.e., xi(t) − 1
di

∑di

i′=1 xi′(t), where xi(t) is the current state

of the i-th node of the network and di is the total number of nodes connected to the

i-th node.

For a highly nonlinear system, it is recommended that a nonlinear feedback

function g(xi(t)− 1
di

∑di

i′=1 xi′(t)) where g(0) = 0, should be used [100]. Note that

the control term will vanish as the target is realized. Since the LDPC decoder is a

highly nonlinear coupled system, we choose the nonlinear spatial-delay feedback

as our control method. With the control term, the system equations of the decoder

in the log-likelihood ratio (LLR) field can be written as

Lr(l+1) = f(Lr(l))− η(f(Lr(l))− L̄r
(l)

) (3.8)

where the elements of L̄r
(l), denoted by { ¯

Lr
(l)
ji }, is given by 1

di

∑
j′∈Ci

Lr
(l)
j′i. Here,

i and j denote, respectively, the i-th variable node and the j-th check node. Also, di
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is the degree of the i-th variable node, and η is the feedback gain factor. Note that

f(Lr(l))− L̄r
(l) is the control signal vector, which is the function of the difference

between the messages produced by current node and the average messages produced

by other nodes connected to the current node.

3.4.2 Stability Analysis at the fixed points

Linearizing (3.8) at the fixed point, we can get:

Lr(l)(σ′) = JLr(l)(σ′) (3.9)

where J is the Jacobian matrix of the function f , and σ′ is the parameter at the fixed

point. For specific variable nodes i and i1 and check nodes j and j1, we define the

connection function δ1,2(i, j, i1, j1) as follows. For the function δ1(i, j, i1, j1), its

value equals 1 if i1 = i and j1 ∈ Ci; otherwise, it equals 0. For δ2(i, j, i1, j1), its

value equals 1 if the variable nodes i and i1 are both connected to the check node

j, with check node j1 connected to variable node i1; otherwise, it equals 0. So, the

(ϕ(i, j), ϕ(i1, j1))-th element of the matrix J can be shown equal to

Jϕ(i,j)ϕ(i1,j1) = (1− η)f ′i,j,i1,j1
× δ2(i, j, i1, j1) +

η

di

δ1(i, j, i1, j1) (3.10)

where

f ′i,j,i1,j1
=

exp(Lr
(l)
ji )− exp(−Lr

(l)
ji )

exp(LPi1 +
∑

j′∈Ci1
/j Lr

(l)
j′i1)− exp(−LPi1 −

∑
j′∈Ci1

/j Lr
(l)
j′i1)

(3.11)

and (ϕ(i, j) is the index function defined in (3.5). Here, LPi1 denotes the initial

messages at the i1-th variable node as defined in Section 2.2.4.

When the algorithm converges to an unequivocal fixed point, for an all-zero

transmitted codeword, the conditional posterior probability values of the messages,

passing between variable nodes and check nodes, that the code bit equals 0 tend to

unity. Hence, the corresponding conditional LLR messages Lr
(l)
ji → ∞. Note that

for codes without degree-2 variable nodes, f ′i,j,i1,j1
→ 0 for any i, j, i1, j1. So the
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Jacobian matrices can be given as

J =




η
d1

1d1 0 . . . 0
0 η

d2
1d2 0 0

. . . . . . . . . . . .

0 . . . 0 η
dn

1dn




. (3.12)

where 1di
is the all ones matrix with dimension di×di, and n = N λ(1)∫ 1

0 λ(x) dx
denotes

the total number of edges. For the special Jacobian matrix, it is easy to show that

the largest eigenvalue equals η
di

di = η. Therefore, to maintain the stability of the

unequivocal fixed point after introducing the control, η should be selected under the

constraint η < 1.

3.4.3 Results and discussion

We consider the high rate (273, 82) code [97]. Here, the two numbers in brack-

ets denote the block length of the code and check length of the code respectively.

Extensive simulations have been performed. Two decoders are under investigation,

namely the one based on the original BP and the one with the nonlinear spatial-delay

feedback introduced. The maximum iteration number is set as 50, and 5000 differ-

ent noise samples are produced for evaluating the performance of the two decoders.

The feedback gain factor η should be chosen carefully. If η is too small, it exerts no

effect on the iteration algorithm. When η is too large, however, the magnitude of the

control term will be so large that it destroys the structure of the system. Extensive

simulations have been performed and results show that a proper value of η should

lie between 0.05 and 0.2. We also find that 0.2 is the most appropriate value for the

(273, 82) code so we set η = 0.2.

Moreover, in the original BP algorithm, the LLR values of Lr
(l)
ji in the decod-

ing process will spread over a very large range. Lr
(l)
ji with large values indicate that

the corresponding bits are either of high reliability or seriously corrupted by noise.

To avoid the use of the seriously corrupted bits as the control terms, we set a thresh-

old ηth such that the control terms should be added only to those variables whose

absolute values are beblow ηth. In our simulations, we set ηth = 2.

Fig. 3.12 and Fig. 3.13 shows the block error rate (BLER) and bit error rate
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Figure 3.12: Block error rate (BLER) of the (273, 82) codes with and without con-
trol.
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(BER) of decoders, respectively. It can be observed that while the proposed iter-

ative algorithm with control provides a lower BLER compared to the original BP

algorithm, there is no significant difference in the BER performance between the

two decoding algorithms. Fig. 3.14 show the histogram of the number of errors per

block when SNR= 3.1 dB. It is found that the proposed algorithm has increased

the number of error-free blocks compared to the original BP algorithm, meaning

that the success rate for the proposed algorithm to find a valid codeword is higher.

Moreover, the proposed algorithm reduces the number of blocks with 1 to 15 er-

rors. However, our method produces more blocks with errors larger than 15. When

summing all the errors over all blocks, the proposed method and the BP algorithm

produce comparable number of errors, as shown in Fig. 3.13. Fig. 3.15 shows the

results again for SNR= 3.3 dB, and similar observations can be found.

3.5 Summary

In this chapter, we have observed fixed points, bifurcations, oscillations and

chaos in the phase trajectory of a finite-length LDPC decoder. Furthermore, we

have investigated the effectiveness of a simple feedback technique that controls the

transient behavior in LDPC decoding algorithm. A small BLER performance has

been observed but there is no significant improvement of the BER.

Unlike infinite-length LDPC codes, LDPC codes with finite length do not al-

ways converge, as shown in the simulation results in this chapter. Thus, degree

distributions optimized by “density evolution” so as to maximize the threshold will

guarantee excellent performance for infinite-length LDPC code, but may not be the

best choice for finite-length LDPC codes. In the next chapter, we attempt to tackle

this issue by applying the complex network theory to the design of short-length

LDPC codes.
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Figure 3.14: Frequency distribution of the number of errors at SNR=3.1 dB.
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Figure 3.15: Frequency distribution of the number of errors at SNR=3.3 dB..
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Chapter 4

Short-length LDPC codes built on scale-

free networks

Study of complex networks has been conducted across many fields of science,

including computer networks, biological networks and social networks. Charac-

teristics of different types of complex networks such as random networks, regular-

coupled networks, small-world networks, and scale-free networks, have been dis-

covered by researchers. Application of such network properties to solve engineer-

ing problems, however, is still at the infancy stage. In this chapter, we make one

of the first attempts in applying complex-network theories to communications en-

gineering. In particular, inspired by the shortest-average-path-length property of

scale-free networks, we design short-length LDPC codes with an aim to improving

the convergence rate of the LDPC codes. We will also compare the error perfor-

mance, both theoretically and by simulations, of the proposed codes with those of

other well-known LDPC codes.

4.1 Review of complex networks

Complex networks, like graphs, consist of nodes interconnected by edges

(links). In the study of networks and graphs, the degree of a node represents the

number of edges connecting the node to other nodes. The node degrees over a

network are characterized by a probability distribution Pr(k) which gives the frac-
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tion of nodes having degree k = 1, 2, 3, .... Consider any two nodes in a network.

The two nodes are connected if there is a path composing one or several node(s)

and edge(s) between them. The distance between the two nodes is defined as the

number of edges along the shortest path connecting them. The average path length

(APL) of the whole network is then the mean distance between any two nodes, i.e.,

averaging the distance over all pairs of nodes.

Consider a network with N nodes. Referring to Fig. 4.1, there are four well-

known and much studied classes of complex networks: random network, lattice,

small-world network and scale-free network. Random network was first defined by

Erdős and Rényi in 1959 [101]. A random network is obtained by starting with

N nodes and adding an edge to each pair of nodes with a given probability. The

node degrees of a random network follow a Poisson distribution while the APL is

proportional to log(N). In contradiction to random network, a lattice is constructed

by connecting each node to a fixed number of adjacent nodes. The APL of a lat-

tice is large and tends to infinity as N approaches infinity. However, most of the

real-world networks are neither entirely regular nor entirely random. In 1998, a

model for a small-world network was proposed [44]. Starting with a regular lattice

containing N nodes, each link is rewired randomly with a probability of p. The

rewiring process significantly shortens the APL of the network to O(log(N)). The

probability distribution of the node degrees over the rewired network, moreover, is

determined by the rewiring probability p. In the extreme case of p = 0, the regular

lattice remains untouched all node degrees are identical. If p = 1, however, all the

original links will be rewired and the new network becomes a random network with

node degrees being Poisson-distributed.

A recent significant discovery in the complex network theory is that some

complex networks, such as the Internet and the worldwide web, have power-law de-

gree distributions. It implies that a small number of nodes have very large numbers

of connections (degrees) while a great majority of the nodes have very few connec-

tions. Such kind of networks are called scale-free networks [45], and their degree

distributions can be written as Pr(k) = Akγ where γ is the characteristic exponent

and A is the normalizing coefficient. Compared with regular-coupled networks,

small-world networks and random networks, scale-free networks of the same size

(number of nodes) and with the same number of connections are found to accom-
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Figure 4.1: (a) Random network; (b) lattice; (c) small-world network; (d) scale-free
network.
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plish the shortest average path length [53]. While for the same average path length,

among the aforementioned networks, complex networks with the scale-free prop-

erty have the smallest number of connections. In particular, it has been shown that

when (i) the value of the characteristic exponent, i.e., γ, lies between 2 and 3; and

(ii) the network arrives at the natural cutoff (i.e., the maximum node degree equals

the minimum node degree times N1/(γ−1)), the average path length of the scale-free

networks is O(log(log(N))) [53]. Table 4.1 compares the main properties for the

four network topologies.

4.2 Scale-free LDPC codes

4.2.1 “Pure” scale-free LDPC codes

Recall that as the iterative decoding process proceeds, the information gener-

ated by each variable node will eventually be conveyed to all other variable nodes

via the check nodes. To visualize the flow of messages among the variable nodes,

we remove the check nodes and construct a complex network using only the vari-

able nodes. Moreover, two variable nodes vi and vj are connected in the complex

network only if they are connected to the same check node in the original bipartite

graph. Figure 4.2(b) shows the complex network formed based on the LDPC code

in Fig. 4.2(a).

For the complex network so formed, the average path length corresponds to

the average number of iterations required for an updated message from one vari-

able node to eventually pass to another variable node. Decreasing the average path

length will no doubt accelerate the exchange of messages among the variable nodes,

thereby reducing the number of iterations the decoding algorithm takes to converge.

This is particularly useful in the high SNR region where the decoder has a much

higher chance to converge. As scale-free networks have been shown to provide a

very short average path length [53], it will be an advantage if LDPC codes are de-

signed in such a way that the resultant complex network formed by the variable

nodes has a scale-free property.

One approach is to start with a complex network (like Fig. 4.2(b)) with a
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(b)
Figure 4.2: A (10, 5) LDPC code. (a) Bipartite graph representation; (b) Complex
network formed by removing the check nodes.

66



Table 4.1: Comparison of the main properties for random network, lattice, small-
world network and scale-free network.

Network topology Average Path Length Degree distribution
Random network O(log(N)) Poisson

Lattice O(N) Delta
Small-world network O(log(N)) -
Scale-free network O(log(log(N))) [53] Power-law

power-law degree distribution and convert it directly into a bipartite graph (like

Fig. 4.2(a)) that represents the LDPC code. However, the conversion task is not a

trivial one as it can be envisaged that the mapping from the complex network to the

bipartite graph is not unique. An alternate way is to begin with a bipartite graph and

convert it into a complex network. The challenge would then become ensuring that

the complex network has a scale-free property. It is because the variable nodes are

interconnected via the check nodes and hence it may not be possible to determine

the properties of the resultant complex network when the check nodes are removed.

To resolve the issue, we apply a theorem in [102], which states that if the degree

distribution of one set of nodes in a bipartite graph follows a power-law distribu-

tion, the degree distribution of the unipartite graph (network) formed when the other

set of nodes is removed also follows a power-law with the same exponent. In other

words, if we can construct LDPC codes such that their variable-node degrees follow

power-law distributions, the complex networks formed by the variable nodes alone

will also follow power-law distributions with the same exponent. Consequently, the

average path length between the variable nodes will be small which would enhance

the convergence rate of the LDPC decoder.

We denote the probability that a variable node has k connections by Prλ(k).

Define an LDPC code built on scale-free network as a scale-free LDPC (SF-LDPC)

code. To construct a SF-LDPC code, we assign the fraction of variable nodes with

degree k according to a power-law function, i.e., Prλ(k) ∝ k−γ , where γ is the

characteristic exponent for the variable-node degree. Since
∑

k Prλ(k) = 1, the

fraction of edges connecting to variable nodes with degree k can be readily shown
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equal to

λk =
k1−γ

∑dv

i=2 i1−γ
(4.1)

where dv denotes the maximum variable-node degree. Then the variable-node de-

gree distribution in (2.1) can be re-written as

λ(x) =
dv∑

k=2

k1−γ

∑dv

i=2 i1−γ
xk−1. (4.2)

In addition, the average variable-node degree, denoted by < kv >, can be com-

puted from

< kv >=

∑dv

k=2 k1−γ

∑dv

i=2 i−γ
. (4.3)

As for the check nodes, it has been well-known that the degrees of the check

nodes should be kept almost the same in the design of good LDPC codes [11, 15].

Here, we restrict the check-node degrees to three consecutive integers, i.e., dc −
2, dc − 1 and dc and that the check-node degrees are taken to follow a Poisson

distribution with parameter ν. The advantage of such a model is that there are only

two variables to manipulate — dc and ν. Consolidating the above conditions, the

probability that a check node has k ∈ {dc − 2, dc − 1, dc} connections, denoted by

Prρ(k), equals Prρ(k) = νk exp(−ν)
k!

. Then, the fraction of edges connecting to check

nodes with degree k equals

ρk =

νk exp(−ν)
(k−1)!∑dc

j=dc−2
νj exp(−ν)

(j−1)!

k ∈ {dc − 2, dc − 1, dc} (4.4)

and the check-node degree distribution in (2.1) can be re-written as

ρ(x) =
dc∑

k=dc−2

νk exp(−ν)
(k−1)!∑dc

j=dc−2
νj exp(−ν)

(j−1)!

xk−1. (4.5)

Combining the results in (4.2), (4.3) and (4.4), it can be readily shown that for
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a given rate R,

< kv >

1−R
=

∑dc

k=dc−2
νk exp(−ν)

(k−1)!∑dc

j=dc−2
νj exp(−ν)

j!

=
(dc − 2)(dc − 1)dc + (dc − 1)dcν + dcν

2

(dc − 1)dc + dcν + ν2
.

(4.6)

Since dc is an integer greater than 2, we can conclude that

dc − 2 <
< kv >

1−R
< dc (4.7)

and

dc =

⌈
< kv >

1−R

⌉
,

⌈
< kv >

1−R

⌉
+ 1. (4.8)

When dc is selected, the corresponding ν can also be found using (4.6).

4.2.2 Constrained scale-free LDPC codes

When LDPC codes are randomly constructed, there is a high probability that

small cycles, say cycles of length less than 10, consisting of only degree-2 vari-

able nodes are formed. Since these small-size cycles have ACE (approximate cycle

extrinsic message degree) value of zero, they are detrimental to the decoder (more

details are provided in Section 2.4.2). There are effective code construction algo-

rithms, such as progressive edge growth (refer to Section 2.4.1), that can maximize

the length of possible cycles involving only degree-2 variable nodes. However,

if the number of degree-2 variable nodes, denoted by Nv2, is far larger than the

check length M , the excess number of degree-2 nodes over the check length, i.e.,

Nv2−M degree-2 variable nodes, will produce small-size cycles with ACE value of

zero, giving rise to a high error rate. Therefore, in practice, the fraction of degree-

2 variable nodes in any optimized degree distributions should not greatly exceed
M
N

= 1−R. To overcome the aforementioned problem, an additional constraint has

been proposed if the fraction of DE-optimized degree-2 variable nodes is far larger

than 1 − R [92, 103–105]. The DE mechanism that has incorporated the degree-2

variable-node constraint is called “constrained DE”, and the corresponding degree

distribution obtained is called “constrained degree distribution”.
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Applying the above concept to the SF-LDPC codes, we can form “constrained

SF-LDPC” codes. Denote the fraction of degree-2 variable nodes by Fr(2) = Nv2

N
.

For constrained SF-LDPC codes with a maximum variable-node degree of dv, the

variable-node degree distribution will be given as

λk =





2Fr(2)

2Fr(2)+
∑dv

i=3 i1−γ (1−Fr(2))
∑dv

i=3 i−γ

if k = 2

k1−γ(1−Fr(2))

2Fr(2)+
∑dv

i=3 i1−γ (1−Fr(2))
∑dv

i=3 i−γ

otherwise.
(4.9)

Using the same method as described in Section 4.2.1, the optimized check-node

degree distribution, ν, dc and < kv > can be readily found.

4.3 Performance of scale-free LDPC codes

4.3.1 Achievable Error Performance of SF-LDPC Codes

In this section, we present the analytical performance and the simulated results

for SF-LDPC codes. First, we compare the achievable error-correcting capability

(threshold) between SF-LDPC codes and other best-known LDPC codes [85]. We

assume an AWGN channel and code rates of 0.5, 0.75 and 0.82.

4.3.1.1 Rate-0.5 SF-LDPC codes

First we consider the code of rate 0.5. Suppose the maximum variable-node

degree equals 20, i.e., dv = 20. We select a value for γ, say γ = 2.0. Based on

(4.3), (4.8) and (4.6), we can find the values of dc and µ, respectively. Table 4.2

shows the possible values of < kv >, dc as ν varies.

We then substitute the distributions of the variable nodes and check nodes into

the DE algorithm and obtain the achievable error performance σ∗ of the SF-LDPC

codes. Figure 4.3 plots the value of σ∗ as γ increases from 1.95 to 2.50. From the

results, we observe that σ∗ accomplishes a maximum value of 0.945 at γ = 2.35

and dc = 9. Within the range of γ being considered, i.e., [1.95, 2.50], note that

dc = 8 and dc = 10 are, respectively, valid only in the ranges γ ∈ [2.18, 2.50] and
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Table 4.2: Possible values of dc at different ranges of γ. dv = 20 and R = 0.5.

Range of γ Possible values of dc

1.727–1.934 10,11
1.934–2.183 9,10
2.183–2.501 8,9
2.501–2.963 7,8
2.963–3.830 6,7

γ ∈ [1.95, 2.18]; whereas dc = 9 is valid within the whole range (see Table 4.2 for

reference).

Using the same methodology, we can evaluate the best achievable error per-

formance (threshold) σ∗ of the SF-LDPC codes with code rate R = 0.5 under

different values of dv. In Table 4.3, we list the highest thresholds achieved by

SF-LDPC codes and the corresponding parameters used, alongside with the thresh-

olds of other best-known LDPC codes [85]. It can be observed that in all cases,

the largest threshold values σ∗ for the SF-LDPC codes are comparable with those

for other best-known LDPC codes (less than 2% difference). However, the average

number of connections (< kv >) for the SF-LDPC codes is significantly smaller (12

to 15% reduction) compared to those for other LDPC codes. Note that the fractions

of degree-2 variable nodes shown in the table, i.e., Fr(2), are less than or slightly

larger than 1−R.

4.3.1.2 High rate SF-LDPC codes

We first use (4.2) to attempt optimizing the degree distributions for rate-0.75

and rate-0.82 SF-LDPC codes. However, the Fr(2) obtained is far larger than 1−R,

i.e., 0.25 and 0.18. Hence, we resort to the constrained SF-LDPC codes for the rates

0.75 and 0.82. In addition, to ensure an easy implementation of the encoder, Fr(2)

is set equal to or slightly larger than 1 − R [92]. We begin with Fr(2) = 1 − R,

and increase it with a step size of 0.001 until (1−R, 1−R + 0.05) is reached. For

each value of Fr(2), the largest threshold and the corresponding constrained degree

distributions of the SF-LDPC code are recorded. Among all the results, the largest
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Figure 4.3: Achievable error performance (threshold) σ∗ versus γ. R = 0.5 and
dv = 20.

threshold and the corresponding optimized, constrained degree distributions of the

SF-LDPC code is then selected. Table 4.4 presents the highest thresholds achieved

by rate-0.75 and rate-0.82 constrained SF-LDPC codes as well as other best-known

high rate codes. The corresponding parameters used are also tabulated. The results

indicate that the “pure” DE produces a slightly larger σ∗ compared with other LDPC

codes. However, “pure” DE also produces the fraction of degree-2 variable nodes

almost two times of (1−R), i.e., Fr(2) ≈ 2(1−R). We also observe that constrained

DE and constrained SF-LDPC produce very similar σ∗ and < kv >.

4.3.2 Characteristics of Short-Length SF-LDPC Codes

Next, we form SF-LDPC codes of finite lengths using the parameters listed in

Table 4.3. We select two codes randomly from the SF-LDPC code ensemble. The

first one has a block length of 1, 000 (i.e., number of variable nodes 1, 000) and a

maximum variable-node degree of dv = 15 while the other one has a block length

of 10, 000 and a maximum variable-node degree of dv = 20. Then, we remove

the check nodes and form complex networks with the remaining variable nodes,

like the one shown in Fig. 4.2(b). Figure 4.4 shows the degree distributions of the
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Table 4.3: Comparison of the threshold value and the average number of con-
nections between SF-LDPC codes and other best-known LDPC codes. Code rate
R = 0.5.

Common
Parameters dv 10 15 20 30 50

Abbreviation DE10 DE15 DE20 DE30 DE50
Optimized σ∗ 0.956 0.962 0.965 0.969 0.972

Codes in [85] < kv > 3.663 4.009 4.164 4.496 5.077
Fr(2) 0.461 0.477 0.458 0.441 0.435

Abbreviation SF10 SF15 SF20 SF30 SF50
dc / 9 9 9 9
γ / 2.35 2.35 2.36 2.35

SF-LDPC ν / 7.355 7.844 8.561 9.417
Codes σ∗ / 0.943 0.945 0.951 0.954

< kv > / 3.512 3.719 3.972 4.304
Fr(2) / 0.505 0.497 0.493 0.489

complex variable-node networks of the two randomly selected codes. We observe

that the degree distributions of the resultant network do follow power-laws with

characteristic exponents equaling 2.35. Moreover, when the code length becomes

longer, the scale-free property gets more prominent.

4.3.3 Error Performance of Short-Length SF-LDPC Codes

Further, the error performance of several short-length LDPC codes with code

rates 0.5, 0.75 and 0.82 is studied. The variable nodes and the check nodes for each

code are connected using the progressive-edge-growth (PEG) method, which has

been shown to produce codes with both large girth and large Hamming distance [55]

(see also Sect. 2.4.1).

4.3.3.1 Error Performance of Short-Length SF-LDPC Codes with Rate 0.5

We first consider the design of rate-0.5 codes. The first two code types, abbre-

viated by “DE15” and “DE10”, are LDPC codes of which the degree distributions
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Table 4.4: Comparison of the threshold value and the average number of con-
nections between constrained SF-LDPC codes and other best-known LDPC codes.
Code rate R equals 0.75 and 0.82. The letters in the code name denote the type of
code, including DE, constrained DE (abbreviated by “CDE”) , and constrained SF-
LDPC (abbreviated by “CSF”). The digits in the code name denote the maximum
variable node degree of the code.

Code Rate R Code Name dv Fr(2) σ∗ < kv > dc γ

DE14 14 0.446 0.664 4.526 20 /
0.75 CDE12 12 0.250 0.663 4.000 16 /

CSF12 12 0.278 0.647 3.974 17 2.38
CSF20 20 0.280 0.651 4.005 17 2.80
CSF28 28 0.294 0.653 4.054 17 2.90
DE8 8 0.405 0.585 3.459 21 /

0.82 CDE8 8 0.180 0.580 3.459 21 /
CSF10 10 0.176 0.577 3.468 21 3.80
CSF14 14 0.191 0.579 3.465 21 3.95

are optimized by purely the DE algorithm [85]. The corresponding variable-node

degree distributions are given by

λ1(x) = 0.23802x + 0.20907x2 + 0.03492x3 + 0.12015x4

+ 0.01587x6 + 0.00480x13 + 0.37627x14 (4.10)

and

λ2(x) = 0.27165x + 0.25105x2 + 0.30938x3 + 0.00104x4

+ 0.43853x9, (4.11)

and they have maximum variable-node degrees 15 and 10, respectively. The other

two codes, abbreviated by “SF20” and “SF30”, are our proposed SF-LDPC codes.

Details of all the aforementioned codes have been given in Table 4.3. The fractions

of degree-2 variable nodes for the four codes are 47.71%, 46.06%, 49.74% and

49.32%, respectively, and are about (1− 0.5). Three different code lengths are used

— 2016, 1008 and 504, while the code rate is kept at 0.5. For the codes denoted by

“DE15” (except the one with code length 2016), we directly apply the codes in [97],
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Figure 4.4: The degree distributions of the complex variable-node networks of the
two randomly selected codes. (a) Block length 1, 000 and maximum variable-node
degree 15; (b) block length 10, 000 and maximum variable-node degree 20.

which are the best known LDPC codes in terms of error performance that possess
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the properties listed in Table 4.3.

For a given code, define the average path length (APL) of the corresponding

bipartite graph as the path length between any two variable nodes averaged over the

whole bipartite graph. Consider codes with the same code length and the same av-

erage variable node degree. The code graphs with smaller APLs are more efficient

in spreading information than those with large APLs. Similarly, under same code

length and the same APL, code graphs with smaller average variable-node degree

can be regarded as less complex. To measure the merit of a given code, we define the

average-path-length-variable-node-degree-product (APVP) of a code as the product

of the average path length of the bipartite graph and the average variable-node de-

gree of the code. In general, codes with smaller APVPs are preferred. Table 4.5

shows the average variable-node degrees (< kv >), APLs and APVPs of the four

types of codes under study. It is observed that increasing the maximum variable-

node degrees will decrease the APLs of SF-LDPC codes, i.e., code “SF30” has

smaller APLs than code “SF20”. However, the corresponding APVPs increase due

to the proportionally larger increase in the average variable-node degrees. In partic-

ular, code “SF20” has lower APVPs compared to code “DE15” and similar APVPs

compared to code “DE10”; whereas code “SF30” has almost identical APVPs as

code “DE15”.

In Figs. 4.5(a) and (b), we plot the simulated bit error rates (BERs) and block

error rates (BLERs), respectively, for codes “DE10”, “DE15” and “SF20”. We

choose code “SF20” as a representative of the SF-LDPC codes for performance

comparison since it has lower APVP than code “SF30”. The maximum number

of iterations performed to decode one codeword is limited to 50 and the decoding

process will be terminated once the maximum number is reached. It can be observed

that the SF-LDPC codes “SF20” provide similar BER and BLER performance as

“DE10” and “DE15” codes at low SNR, and outperform them at higher SNR values.

In addition, Fig. 4.5(c) depicts that SF-LDPC codes “SF20” can be decoded with

a slightly smaller number of iterations, on average, compared with the other DE-

optimized codes.

To further compare the performance of the codes, we define the metric “av-

erage convergence time”, denoted by tc, as the product of the average number of

iterations to converge (Ī) and the average variable-node degree (< kv >). In gen-
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Figure 4.5: Performance of three different types of LDPC codes — “DE10”,
“DE15”and “SF20”. Code lengths are 2016, 1008 and 504 while the code rate
is 0.5. (a) Bit error rate; (b) block error rate; (c) average number of iterations to
decode a codeword (tc).
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Table 4.5: Comparison of several rate-0.5 codes. APL: average path length; APVP:
average-path-length-variable-node-degree-product.

Code length
Name of Code Properties 504 1008 2016

< kv > 3.651 3.658 3.662

DE10 APL 2.256 2.495 2.693

APVP 8.237 9.127 9.862

< kv > 3.996 4.001 4.006

DE15 APL 2.110 2.346 2.565

APVP 8.432 9.386 10.275

< kv > 3.704 3.710 3.715

SF20 APL 2.217 2.462 2.670

APVP 8.208 9.134 9.919

< kv > 3.968 3.972 3.976

SF30 APL 2.121 2.344 2.565

APVP 8.416 9.310 10.198

eral, the smaller the “average convergence time”, the less time the decoder takes to

decode a codeword. Table 4.6 shows the typical results for the “DE10”, “DE15” and

“SF20” codes for the code lengths 504, 1008 and 2016. It indicates that “DE10” and

“SF20” have almost identical “average convergence time” while “DE15” requires,

on average, 10% more time (resources) to decode a codeword. The results are con-

sistent with the fact that “DE10” and “SF20” have similar APVPs while “DE15” has

the largest APVPs. However, note that “SF20” produces less errors than “DE10”

and “DE15” at higher SNR values

4.3.3.2 Error Performance of Short-Length SF-LDPC Codes with Rate 0.75

Further, three codes of rate-0.75 are constructed using the PEG method. The

first one has a DE-optimized variable-node degree distribution given by

λ3(x) = 0.1970x + 0.0.0801x2 + 0.2410x3 + 0.0082x4 + 0.4736x13, (4.12)
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Table 4.6: Comparison of average convergence times for rate-0.5 codes.

SNR /Code length 3.6 dB/504 3.0 dB/1008 2.2 dB/2016

Code type DE10/DE15/SF20 DE10/DE15/SF20 DE10/DE15/SF20

Ī 3.72/3.78/3.69 5.27/5.31/5.19 8.41/8.41/8.25

< kv > 3.65/4.00/3.70 3.66/4.00/3.71 3.66/4.01/3.71

tc = Ī× < kv > 13.59/15.09/13.68 19.26/21.23/19.26 30.78/33.67/30.64

Normalized tc 0.99/1.10/1.00 1.00/1.10/1.00 1.00/1.10/1.00

and the second one possesses a constrained DE-optimized variable-node degree dis-

tribution given by [92, 103]

λ4(x) = 0.1250x + 0.4460x2 + 0.4078x11 + 0.0213x11. (4.13)

They are abbreviated as “DE14” and “CDE12”, respectively. The third one is a

constrained SF-LDPC code with a maximum variable-node degree of 20 and is de-

noted by “CSF20”. Details of the aforementioned three codes are listed in Table 4.4.

Moreover, the lengths of the three types of codes are set to be 2016.

The APLs and the APVPs of the three types of codes are listed in Table 4.7. It

is observed that even under the constraint in the fraction of degree-2 variable nodes,

“CSF20” and “CDE12” have similar APVPs and have lower APVPs compared with

“DE14”.

Figure 4.6 plots the simulated BERs, BLERs as well as Ī for the three rate-

0.75 codes. The performance curves in Fig. 4.6 (a) show that the constrained SF-

LDPC code “CSF20” suffers slight degradation of BER and BLER performance

compared with “DE14” and “CDE12” at low SNR, but outperform them at higher

SNR values. In addition, Fig. 4.6(b) indicates that “CSF20” requires, on average, a

slightly smaller number of iterations for decoding compared with the DE-optimized

and constrained DE-optimized codes.

In particular, the results in Table 4.8 indicates that “CDE12” and “CSF20”

have almost identical “average convergence time” (tc) while “DE14” requires, on

average, 20% more time (resources) to decode a codeword. The results are consis-

tent with the fact that “CSF20” and “CDE12” have similar APVPs and have smaller
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Figure 4.6: Performance of three different LDPC codes — “DE14”, “CDE12”and
“CSF20”. Code lengths are 2016 and the code rate is 0.75. (a) BER and BLER; (b)
average number of iterations to decode a codeword (Ī).
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Table 4.7: Comparison of APVPs of several rate-0.75 and rate-0.82 codes.

Code rate Abbreviation < kv > APL APVP
DE14-2016 4.526 2.059 9.319

0.75 CDE12-2016 4.000 2.161 8.644

CSF20-2016 4.005 2.154 8.627

DE8-2800 3.459 2.263 7.828

0.82 CDE8-2800 3.459 2.255 7.800

CSF14-2800 3.465 2.250 7.796

APVPs than “DE14”.

4.3.3.3 Error Performance of Short-Length SF-LDPC Codes with Rate 0.82

Finally, we study rate-0.82 codes built on (i) constrained SF-degree distribu-

tion with a maximum variable-node degree of 14 (denoted by “CSF14”); (ii) DE-

optimized variable-node degree distribution given by (denoted by “DE8”)

λ5(x) = 0.2343x + 0.0.3406x2 + 0.2967x6 + 0.1284x7; (4.14)

and (iii) constrained DE-optimized variable-node degree distribution given by [92,

103] (denoted by “CDE8”)

λ6(x) = 0.1021x + 0.5895x2 + 0.1829x6 + 0.1262x7. (4.15)

Details of the codes are listed in Table 4.4. The lengths of the three types of codes

are also set to be 2800.

The results in Table 4.7 have shown that “CSF14” and “CDE8” have APLs

and APVPs extremely close to each other, and have APLs and APVPs slightly less

than those of “DE8”. Figure 4.7 further plots the BLER, BER and Ī of the three

codes. We can observe that the constrained SF-LDPC code “CSF14” slightly under-

performs compared with “DE8” and “CDE8” at low SNR but it achieves the lowest

error floor at higher SNR values among the three codes. Moreover, Fig. 4.7(b)

shows that “CSF14” can decode the codewords with the smallest number of itera-
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Table 4.8: Comparison of the average convergence times for rate-0.75 codes at high
SNR values.

SNR/Code length 5.0 dB/2016 4.8 dB/2016 4.6 dB/2016

Code type DE14/CDE12/CSF20 DE14/CDE12/CSF20 DE14/CDE12/CSF20

< kv > 4.53/4.00/4.01 4.53/4.00/4.01 4.53/4.00/4.01

Ī 5.94/5.69/5.57 6.88/6.63/6.48 8.20/7.97/7.85

tc = Ī× < kv > 26.91/22.76/22.34 31.17/26.52/25.98 37.15/31.88/31.48

Normalized tc 1.20/1.02/1.00 1.20/1.02/1.00 1.18/1.01/1.00

tions on average.

We also list the “average convergence time” (tc) of the three rate-0.82 codes

at high SNRs in Table 4.9. The results show that code “CDE8” and code “CSF14”,

compared with code “DE8”, require 10% less time (resources) on average to decode

a codeword.

4.4 Summary

In this chapter, we have applied complex-network theories to design short-

length LDPC codes with good error performance. We have shown that theoretically,

our proposed scale-free LDPC (SF-LDPC) codes and constrained SF-LDPC codes

can accomplish very similar achievable error performance (threshold) compared

with DE-optimized and constrained DE-optimized LDPC codes. We have also built

the codes and simulated their error performance under an additive white Gaussian

noise channel. The results have shown that SF-LDPC codes can outperform other

DE-optimized codes, producing lower block/bit error rates at high SNRs. More-

over, the average convergence times of the SF-LDPC codes are no worse than those

of the DE-optimized codes. Similar conclusions can also be drawn regarding the

constraint SF-LDPC codes.

In this chapter, we further observe that at the high SNR region, all the codes

suffer from error-floor problem, i.e., the BLER/BER decreases at a slower rate as

the SNR increases. In the next chapter, we will follow up this issue and investigate
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Figure 4.7: Performance of three different LDPC codes — “DE8”, “CDE8”and
“CSF14”. Code lengths are 2800 and the code rate is 0.82. (a) BER and BLER; (b)
average number of iterations to decode a codeword (Ī).
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Table 4.9: Comparison of average convergence times for rate-0.82 codes at high
SNR values.

SNR/Code length 6.0 dB/2800 5.8 dB/2800 5.6 dB/2800

Code type DE8/CDE8/CSF14 DE8/CDE8/CSF14 DE8/CDE8/CSF14

< kv > 3.46/3.46/3.46 3.46/3.46/3.46 3.46/3.46/3.46

Ī 4.96/4.61/4.55 5.84/5.40/5.32 7.10/6.53/6.42

tc = Ī× < kv > 17.16/15.95/15.74 20.21/18.68/18.41 24.57/22.59/22.21

Normalized tc 1.09/1.01/1.00 1.10/1.01/1.00 1.11/1.02/1.00

the main cause of the error floor. We will also propose a novel method to construct

short-length LDPC codes with lower error floors.
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Chapter 5

Constructing short-length LDPC codes

with low error floor

In the previous chapter, our simulation results have shown that at the high

signal-to-noise ratio (SNR) region, the block/bit error rate (BLER/BER) of the

LDPC codes decrease at a slower rate as the SNR is further increased, indicat-

ing that the existence of the error floor. As a consequence, in this chapter, we will

continue our study by looking into the main cause of the error floor and proposing

construction methods to mitigate the error-floor problem.

In [26], it has been reported that [w; u] trapping sets (TSs) with small w and

relatively smaller u are more harmful to the decoder. To begin our investigation,

we will first analyze the connected subgraphs induced by the TSs and categorize

them into those with (i) no cycle, (ii) a single-cycle and (iii) multiple cycles. We

will also study the properties of these induced connected subgraphs and show that

using [w; u] alone is not adequate to describe the features of the TSs, particularly

features that are crucial to determine the harmfulness of the TSs. We will introduce

a new parameter, namely cycle indicator (CI), that further characterizes TSs. More-

over, we define primary trapping sets (PTSs), the main use of which is to identify

detrimental TSs. Based on our findings, we propose a code construction algorithm,

namely the PEG-ACSE method, that aims to avoid detrimental TSs. We will com-

pare the characteristics of the codes built using the proposed method with those built

using other PEG-based algorithms.

86



5.1 Connected Subgraphs Induced by Trapping Sets

Given a TS labeled as [w; u]. Recall that w denotes the number of variable

nodes in the TS and u represents the number of neighboring check nodes having

odd number of connections to the TS. Considering the connected subgraph induced

by the TS, we define

• di as the degree of the ith variable node;

• Nc,2k−1 and Nc,2k, respectively, as the number of check nodes having 2k − 1

and 2k (k = 1, 2, . . .) connection(s);

• Nc as the total number of check nodes;

• Mv,edges as the total number of connections emanating from the variable nodes;

• Mc,edges as the total number of connections emanating from the check nodes.

Based on the aforementioned definitions, we can readily obtain the following equa-

tions.

u =
∑

k

Nc,2k−1 (5.1)

Nc =
∑

k

Nc,2k−1 +
∑

k

Nc,2k (5.2)

= u +
∑

k

Nc,2k (5.3)

Mv,edges =
w∑

i=1

di (5.4)

Mc,edges =
∑

k

(2k − 1)Nc,2k−1 +
∑

k

2kNc,2k (5.5)

= u +
∑

k

(2k − 2)Nc,2k−1 +
∑

k

2kNc,2k (5.6)

In addition, the total number of edges emanated from the check nodes should equal

the total number of edges from the variable nodes in the subgraph, giving

Mv,edges = Mc,edges
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⇒
w∑

i=1

di =
∑

k

(2k − 1)Nc,2k−1 +
∑

k

2kNc,2k (5.7)

⇒ u =
w∑

i=1

di −
∑

k

(2k − 2)Nc,2k−1 −
∑

k

2kNc,2k. (5.8)

We further consider all possible configurations of the connected subgraph in-

duced by the [w; u] TS. Broadly speaking, we can categorize the TSs according to

the number of cycles contained in their induced connected subgraphs (ICSs). In

our following discussion, we will divide TS-ICSs into those consisting of (i) no

cycle, (ii) a single cycle and (iii) multiple cycles. We do not consider cases where

the TS-ICSs containing a single cycle or multiple cycles possess variable nodes not

involved in the cycles. For these cases, we shall discard the variable nodes not in-

volved in the cycle(s) and investigate only on the TS-ICSs formed by the variable

nodes involved in the cycle(s).

5.1.1 No Cycle

Suppose there is no cycle in the connected subgraph induced by a [w; u] TS.

We can arbitrarily select a variable node in the TS-ICS as the root node and ex-

pand its connections into various layers until all nodes are included. Figure 5.1(a)

presents the TS-ICS in a tree-like form after the expansion.

Assume that there is a total of 2L layers in the subgraph. Denote the number

of variable nodes at Layer 2l−1 by N
(2l−1)
v and the number of check nodes at Layer

2l by N
(2l)
c , where l = 1, 2, . . . , L. Denote d

(2l−1)
j as the degree of the jth variable

node at Layer (2l − 1) for l = 1, 2, . . . , L. At Layer 1, there is only one variable

node (i.e., N
(1)
v = 1) and all of its edges are connected to the check nodes in Layer

2. Next, for the jth variable node in Layer (2l − 1) (l = 2, 3, . . . , L), one of its

edges is connected to a check node in Layer (2l−2) while the remaining d
(2l−1)
j −1

edges are connected to check nodes in Layer 2l. Since each check node in Layer 2l

is connected to one and only one variable node in Layer (2l − 1) (l = 1, 2, . . . , L),

the number of check nodes in Layer 2l is given by

N (2l)
c =





d
(1)
1 N

(1)
v = d

(1)
1 for l = 1

∑N
(2l−1)
v

j=1

(
d

(2l−1)
j − 1

)
for l = 2, . . . , L.

(5.9)
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Then the total number of check nodes in the subgraph can be found by sum-

ming up the number of the check nodes at all layers, i.e.,

Nc =
L∑

l=1

N (2l)
c

= N (2)
c +

L∑

l=2

N (2l)
c

= d
(1)
1 +

L∑

l=2

N
(2l−1)
v∑
j=1

(
d

(2l−1)
j − 1

)

= 1 +
L∑

l=1

N
(2l−1)
v∑
j=1

(
d

(2l−1)
j − 1

)

= 1 +
w∑

i=1

(di − 1) . (5.10)

In (5.10), the last equation holds because the second terms in both the last and the

second last equations represent the sum of all resultant variable-node degrees when

one is subtracted from the degree of each variable node in the TS-ICS.

Combining (5.3) and (5.10), we have

u = 1 +
w∑

i=1

(di − 1)−
∑

k

Nc,2k. (5.11)

Finally, multiplying (5.11) by 2 and subtracting (5.8) from it, we obtain

u = 2 +
w∑

i=1

(di − 2) +
∑

k

(2k − 2)(Nc,2k−1 + Nc,2k). (5.12)

5.1.2 Single cycle

Assuming that there is a single-cycle in the TS-ICS, all the check nodes must

then have degrees no greater than two, i.e., Nc,2k−1 = Nc,2k = 0 for k ≥ 2, as

shown in Fig. 5.1(b). Otherwise, more than one cycle will exist in the TC-ICS,

which contradicts our assumption. As a result, there is no odd-degree check nodes

with degree larger than or equal to three. Therefore, (5.1) is reduced to u = Nc,1.

Moreover, each of the variable nodes will have consumed two edges connecting to
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two different check nodes in the cycle and will connect its remaining edges to check

nodes singly connected to the TS (i.e., check nodes outside the cycle). As shown

in Fig. 5.1(b), the number of singly-connected check nodes equals the number of

variable-node edges not included in the cycle. Therefore,

u = Nc,1 =
w∑

i=1

(di − 2). (5.13)

5.1.3 Multiple cycles

In a TS-ICS that contains multiple cycles, we define a node that is connected

to two or more different cycles as a “T-type node”. A T-type node can be a vari-

able node or a check node, and must have a minimum of three edges. Figure 5.2

demonstrates some typical TS-ICSs that contain multiple cycles. In the following,

we discuss these cases in more detail.

5.1.3.1 All T-type nodes are variable nodes

As in Fig. 5.2(a) and (b), when all the T-type nodes are variable nodes, the

check nodes in the TS-ICS cannot connect to three or more variable nodes, i.e.,

Nc,2k−1 = Nc,2k = 0 for k ≥ 2. Thus, all the check nodes must have degree one

or two. Further, (5.1) will be reduced to u = Nc,1. Denoting the number of edges

emanating from the variable nodes and involved in the cycles as Mv,cycles−edges, we

have

Mv,cycles−edges =
w∑

i=1

di − u. (5.14)

Moreover, each variable node in the TS-ICS must contribute at least two edges

to form the multiple cycles. Also, there must exist (i) at least one variable T-type

node that have four or more edges involved in the cycles (see Fig. 5.2(a)); or (ii) at

least two variable T-type nodes, each of which contributes three or more of its edges

to the cycles (see Fig. 5.2(b)). Since the total number of variable nodes equals w,

the total number of edges emanating from these nodes and involved in the multiple
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(a) (b)

Figure 5.1: (a) A TS-induced connected subgraph with (a) no cycle; (b) a single
cycle. Filled circles and filled squares represent, respectively, variables nodes and
check nodes. A solid line represents a direct connection between the variable nodes
and the check nodes. A dashed line depicts that there is a path between the two
nodes.
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(a) (b)

(c) (d)

Figure 5.2: Trapping set-induced connected subgraphs containing multiple cycles.
(a), (b) All T-type nodes are variable nodes; (c) all T-type nodes are check nodes;
(d) T-type nodes involve both variable node(s) and check node(s).

92



cycles must exceed 2w by at least two, i.e.,

Mv,cycles−edges ≥ 2w + 2. (5.15)

Combining (5.14) and (5.15), we obtain

w∑
i=1

di − u ≥ 2w + 2

⇒
w∑

i=1

(di − 2)− u ≥ 2. (5.16)

5.1.3.2 All T-type nodes are check nodes

In Fig. 5.2(c), we show the case when all the T-type nodes are check nodes.

Under such circumstances, each variable node in the TS-ICS can contribute only

two of its edges to form the multiple cycles while the remaining edges will connect

to singly-connected check nodes. Hence, the number of edges emanating from the

variable nodes and connecting to singly-connected check nodes equals

w∑
i=1

(di − 2) = Nc,1

≤
∑

k

Nc,2k−1

= u. (5.17)

5.1.3.3 T-type nodes involve both variable node(s) and check node(s)

Figure 5.2(d) illustrates the scenario when the T-type nodes involve both vari-

able node(s) and check node(s). Here, we cannot deduce any useful information out

of this configuration.
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5.1.4 Regular LDPC Codes

For regular LDPC codes, all the variable-node degrees are identical and must

be no less than three. Denoting the common variable-node degree by dv, we have

di = dv ≥ 3 for i = 1, 2, . . . , w. (5.18)

Based on (5.18), we evaluate the characteristics of TS-ICSs for regular LDPC codes.

5.1.4.1 No Cycle

Substituting (5.18) into (5.12), we obtain

u = 2 + w(dv − 2) +
∑

k

(2k − 2)(Nc,2k−1 + Nc,2k)

⇒ u− w = 2 + w(dv − 3) +
∑

k

(2k − 2)(Nc,2k−1 + Nc,2k)

⇒ w − u ≤ −2 < 0. (5.19)

The equality w − u = −2 holds only when dv = 3 and no check nodes with degree

greater than two exists in the TS-ICS (i.e., Nc,2k−1 = Nc,2k = 0 for k ≥ 2).

5.1.4.2 Single Cycle

Substituting (5.18) into (5.13), we have

u = w(dv − 2)

⇒ w − u = −w(dv − 3) ≤ 0 (5.20)

in which equality holds only when dv = 3.

5.1.4.3 Multiple cycles

• All T-type nodes are variable nodes

Putting (5.18) into (5.16), we obtain

w(dv − 2)− u ≥ 2
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⇒ w − u ≥ −w(dv − 3) + 2. (5.21)

Note that to satisfy (5.21), w−u can be negative (e.g., w = 4, u = 6, dv = 4),

positive (e.g., w = 4, u = 2, dv = 3) or even zero (e.g., w = u = 4, dv = 4).

• All T-type nodes are check nodes

The equation in (5.17) can be written as

w(dv − 2) ≤ u

⇒ w − u ≤ −w(dv − 3) ≤ 0. (5.22)

Note that w − u = 0 occurs only when dv = 3 and there are no odd-degree

check nodes with degree larger than or equal to three in the TS-ICS.

• T-type nodes involve both variable node(s) and check node(s)

No useful information can be obtained.

5.1.5 Irregular LDPC Codes

Unlike regular LDPC codes in which the smallest possible degree of variable

nodes is three, the smallest possible degree of variable nodes in the case of irregular

codes is only two, i.e., di ≥ 2 for all i.

5.1.5.1 No Cycle

Subtracting w from both sides of (5.12), we obtain

u− w = 2 +
w∑

i=1

(di − 3) +
∑

k

(2k − 2)(Nc,2k−1 + Nc,2k)

⇒ w − u = −2−
w∑

i=1

(di − 3)−
∑

k

(2k − 2)(Nc,2k−1 + Nc,2k). (5.23)

Note that to satisfy (5.23), w − u can be negative (e.g., w = 3, u = 7, d1 = 3, d2 =

d3 = 4 and Nc,2k−1 = Nc,2k = 0 for k ≥ 2, as shown in Fig. 5.3(a)), positive

(e.g., w = 3, u = 2, di = 2 for i = 1, 2, 3 and Nc,2k−1 = Nc,2k = 0 for k ≥ 2, as
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shown in Fig. 5.3(b)) or even zero (e.g., w = 3, u = 3, d1 = 3, d2 = d3 = 2 and

Nc,2k−1 = Nc,2k = 0 for k ≥ 2, as shown in Fig. 5.3(c)).

5.1.5.2 Single Cycle

Subtracting w from both sides of (5.13), we have

u− w =
w∑

i=1

(di − 3)

⇒ w − u = −
w∑

i=1

(di − 3). (5.24)

Again, to satisfy (5.24), w − u can be negative (e.g., w = 3, u = 4, d1 = 4

and d2 = d3 = 3 as shown in Fig. 5.4(a)), positive (e.g., w = 3, u = 1, d1 = 3

and d2 = d3 = 2 as shown in Fig. 5.4(b)) or even zero (e.g., w = 3, u = 3 and

d1 = d2 = d3 = 3 as shown in Fig. 5.4(c)).

5.1.5.3 Multiple Cycle

• All T-type nodes are variable nodes

The equation in (5.16) can be rewritten as

u− w ≤
w∑

i=1

(di − 3)− 2

⇒ w − u ≥ −
w∑

i=1

(di − 3) + 2. (5.25)

However, no useful information can be obtained from the sign of w − u us-

ing (5.25). Take a TS-ICS with only two T-type variable nodes as an ex-

ample. Suppose each T-type variable node contributes exactly three edges

to the multiple cycles. Under such conditions, w − u can be negative (e.g.,

w = 4, u = 5, d1 = d3 = d4 = 4 and d2 = 3 as shown in Fig. 5.5(a)); positive

(e.g., w = 4, u = 0, d1 = d2 = 2 and d3 = d4 = 3 as shown in Fig. 5.5(b))

or even zero (e.g., w = 4, u = 4, d1 = d2 = 3 and d3 = d4 = 4 as shown in

Fig. 5.5(c)).

96



(a) (b) (c)

Figure 5.3: Examples of subgraphs containing no cycle with (a) w = 3, u = 7; (b)
w = 3, u = 2; and (c) w = 3, u = 3.

(a) (b) (c)

Figure 5.4: Examples of subgraphs containing a single cycle with (a) w = 3, u = 4;
(b) w = 3, u = 1; and (c) w = 3, u = 3.

• All T-type nodes are check nodes

The equation in (5.17) can be rewritten as

u− w ≥
w∑

i=1

(di − 3)

⇒ w − u ≤ −
w∑

i=1

(di − 3). (5.26)

Again, no useful information can be deduced from the sign of w−u in (5.26)

because of the existence of degree-two variable nodes. For example, in a

subgraph with w = 4, d1 = d2 = d3 = 2 and two T-type check nodes with

degree 3, w− u is negative when u = 5 and d4 = 5 (as shown in Fig. 5.6(a));

positive when u = 3 and d4 = 3 (as shown in Fig. 5.6(b)); and zero when
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u = 4 and d4 = 4 (as shown in Fig. 5.6(c)).

• T-type nodes involve both variable node(s) and check node(s)

No useful information can be obtained. Take a subgraph with w = 4, one

T-type variable node of degree 3 and one T-type check node of degree 3 as an

example. The value of w− u can be negative if u = 5, d1 = d2 = d3 = 3 and

d4 = 4 (as shown in Fig. 5.7(a)); or positive if u = 1, d1 = d2 = d3 = 2 and

d4 = 3 (as shown in Fig. 5.7(b)); or zero if u = 4, d1 = 2, d2 = d3 = 3 and

d4 = 4 (as shown in Fig. 5.7(c)).

Based on the observations, no useful information can be obtained regarding

the configuration of the TS-ICS based on the values of w and u alone.

5.1.6 Observations

Given a [w; u] TS found from a regular LDPC code. If w > u, (5.19) and

(5.20) imply that it is not possible for the connected subgraph induced by this TS to

contain no cycle or a single cycle. In other words, the TS-ICS must possess multiple

cycles. Further, based on (5.22), we can conclude that these multiple cycles must

include at least one T-type variable node. However, if it is given that u > w, no

concrete conclusions on the configuration of the TS-ICS can be made.

As for the irregular LDPC codes, no useful information can be obtained re-

garding the configuration of the TS-ICS even given the values of w and u of the

TS.

(a) (b) (c)

Figure 5.5: Examples of subgraphs containing multiple cycles involving only T-
type variable nodes with (a) w = 4, u = 5; (b) w = 4, u = 0; and (c) w = 4,
u = 4.
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(a) (b) (c)

Figure 5.6: Examples of subgraphs containing multiple cycles involving only T-type
check nodes with (a) w = 4, u = 5; (b) w = 4, u = 3; and (c) w = 4, u = 4.

(a) (b) (c)

Figure 5.7: Examples of subgraphs containing multiple cycles involving both T-
type check nodes and T-type variable nodes with (a) w = 4, u = 5; (b) w = 4,
u = 1; and (c) w = 4, u = 4.
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5.2 Contributions of [w; u] Trapping Sets to Error

Floor

In the previous section, we have shown that knowing the values of w and u in

a [w; u] TS does not provide us much information on the configuration of the associ-

ated TS-ICS, particularly for irregular codes. Yet, [w; u] TSs with different TS-ICS

configurations can contribute very different error rates to the overall performance of

the code at the high SNR region. For example, it has been found that short cycles

with few connections to other nodes are likely contributors to small-size stopping

sets, which in turn degrade the performance of short-length LDPC codes over an

AWGN channel at high SNR [57]. The finding has implied that TS-ICSs with a

single cycle are contributing to the error floor to a certain extent. On the other hand,

to the best of our knowledge, no literature has reported that TS-ICSs with no cycles

are related to the error-floor issue. Our own simulation results have also shown that

TS-ICSs with one or more cycles are the main contributors to the error floor. Fig-

ure 5.8 shows three different configurations of the induced connected subgraphs of

a [9; 1] TS. It is obvious that each of these configurations will contribute differently

to the error floor.

Consider the scenario that an all-zero codeword is received with a high SNR

and assume that the likelihood-message-passing algorithm is used in the iterative

decoder [11,15]. Without loss of generality, we assume that as the decoder iterates,

the message along an edge should approach zero if it carries the reliable information

that the “variable-node bit” equals “0”. Otherwise, the message should approach

infinity when it conveys the fallacious information that the bit equals “1”. Suppose

that during the course of the belief propagation (BP) decoding process, the variable

nodes in a [w; u] TS-ICS have been mis-decoded as bits “1” while those residing

outside the TS-ICS have been decoded correctly as bits “0”. Recall that there are u

check nodes with odd number of connections in the TS-ICS. The check equations

corresponding to these check nodes are hence “unsatisfied” because each of these

check nodes is connected to an odd number of variable nodes decoded with bits “1”.

In the following, we briefly explain the phenomena for several scenarios as the BP

decoder continues to iterate.
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Figure 5.8: Three different induced connected subgraphs of a [9; 1] trapping set.
(a) A [9; 1; 4] PTS-ICS contains three distinguishable cycles; (b) a [9; 1; 2] PTS-ICS
contains two distinguishable cycles; (c) a [9; 1; 0] PTS-ICS contains a single cycle.
Filled circles and filled squares represent, respectively, variables nodes and check
nodes. A solid line represents a direct connection between the variable nodes and
the check nodes.

5.2.1 TS-ICS With No Cycle

For a TS-ICS that contains no cycles, the erroneous message starting from a

particular variable node cannot propagate back to itself via only the connections

within the TS-ICS because of the non-existence of a return path. In consequence,

the erroneous bits in the TS-ICS are more likely to be corrected by the valid infor-

mation flowing into the TS-ICS through the unsatisfied check nodes.

5.2.2 TS-ICS with a Single Cycle

Referring to Fig. 5.9(a), suppose there is a single cycle in a [w; u] TS-ICS that

possesses no singly-connected check nodes, i.e., u = 01. Then, when most, even

if not all, of the variable nodes in the cycle are erroneous (decoded as “1”), the

(erroneous) message starting from any of the variable nodes will be enhanced as it

passes through each of the erroneous variable nodes in the cycle. After a number of

iterations (equal to the number of variable nodes in the cycle), the enhanced message

will return to the same variable node, further reinforcing the incorrect belief of the

1In this scenario, the TS is also a stopping set.
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Figure 5.9: Trapping set-induced connected subgraphs. (a) A single-cycle TS-ICS
without singly-connected check nodes (another message flow in an anti-clockwise
direction); (b) a single-cycle TS-ICS with singly-connected check nodes; (c) a
multiple-cycle TS-ICS with singly-connected check nodes.

variable node. The end result is that all variable nodes in the cycle (or TS-ICS) will

become erroneous. Moreover, if all the variable nodes residing outside the TS-ICS

have been decoded correctly as bits “0”, all the check nodes will become satisfied

and the decoder converges — to an incorrect codeword though. In consequence,

[w; 0] TS-ICSs with small w are very likely to give rise to errors even at the high

SNR region.

On the other hand, when there are check nodes singly connected to the variable

nodes in a [w; u] TS-ICS with a single cycle, i.e., u > 0, erroneous bits in the TS-

ICS may be corrected by the valid information flowing into the TS-ICS through

the unsatisfied check nodes. Take the Variable Node i in Fig. 5.9(b) for example.

During the iterative decoding process, the outgoing message from Variable Node i

to Check Node j1 equals the product of the following items.

1. The initial message computed for Variable Node i using the corrupted re-

ceived signal.

2. The incoming message from the other neighboring check node involved in
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the cycle, i.e., from Check Node j2.

3. The incoming messages from the (unsatisfied) check nodes outside the cycle,

i.e., from Check Node j3 to Check Node jdi
2.

The initial message is of the order O(1) and is relatively insignificant compared

with the other items. The message from the neighboring Check Node j2 involved

in the cycle, however, carries the fallacious information “1” and bears a very large

value. On the other hand, each of the incoming messages from the (unsatisfied)

check nodes outside the cycle carries the reliable information “0” and bears a very

small value. Thus, the reliable information “0” coming from the (unsatisfied) check

nodes outside the cycle can “neutralize” or even “overcome” the fallacious informa-

tion from Check Node j2 to Variable Node i, allowing Variable Node i to produce

a reasonably correct message to Check Node j1. Recall that in a [w; u] TS-ICS

that contains a single cycle, there are u check nodes singly connected to the vari-

able nodes in the cycle. In consequence, with a larger value of u, there is a larger

number of “reliable messages” coming from check nodes outside the cycle, making

it more likely that the errors in the cycle can be corrected. In contrast, suppose

there is/are only one or two singly-connected check node(s) in the TS-ICS with a

single cycle. Then, not only the incorrect messages within the cycle may not be

corrected, but also be relayed to nodes outside the cycle, causing other nodes to be-

come erroneous during the iterative decoding process. Under such circumstances,

the decoding process may not converge, thus giving rise to the error floor.

5.2.3 TS-ICS with Multiple Cycles

In the case of a TS-ICS with multiple cycles, we consider the scenario where

only T-type variable nodes exist. It is because multiple-cycle TS-ICS with T-type

check nodes have not been found contributing much to the error floor [56]. Con-

sider the T-type Variable Node i with degree di (di ≥ 3) in the TS-ICS shown in

Fig. 5.9(c). Among the di edges of the variable node, suppose di,cycle of them are

involved in the multiple cycles. Similar to the single-cycle case, during the iterative

decoding process, the outgoing message from Variable Node i to Check Node j1

2Recall that di represents the degree of Variable Node i.
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equals the product of (i) the initial message computed for Variable Node i using the

corrupted received signal; (ii) the incoming messages from the other neighboring

check nodes involved in the multiple cycles, i.e., from Check Node j2 to Check

Node jdi,cycle
; and (iii) the incoming messages from the (unsatisfied) check nodes

outside the cycles, i.e., from Check Node jdi,cycle+1 to Check Node jdi
.

The initial message is relatively insignificant. If the number of check nodes

that convey the fallacious information “1” (i.e., neighboring Check Nodes j2 to

jdi,cycle
) to Variable Node i is larger than the number of check nodes that pass the

reliable information “0” (i.e., neighboring Check Nodes jdi,cycle+1 to jdi
) to Variable

Node i , there is a high chance that the message passing from Variable Node i to

Check Node j1 carries the fallacious information “1”. Furthermore, if u is small,

there will be a small number of singly-connected check nodes attached to the vari-

able nodes in the cycles, indicating a high chance that the aforementioned scenario

is occurring. Compared to the case of a single cycle, there are multiple paths by

which the incorrect message can pass back to Variable Node i in a multiple-cycle

TS-ICS. Thus, under the same set of {w, u}, a TS with multiple cycles is more detri-

mental than that with a single cycle. Conversely, if the number of check nodes that

convey the fallacious information “1” to Variable Node i is smaller, the messages

carrying the reliable information are more likely to overcome those carrying the fal-

lacious information. Thus, the message from Variable Node i to Check Node j1 will

become more reliable. In addition, same as the single-cycle case, the augmented fal-

lacious information within the multiple cycles can be relayed to the nodes outside

the cycles through the singly-connected check nodes. Under such conditions, the

decoding process may oscillate and is unable to converge, causing the error floor.

5.2.4 Summary

In this section, we have analyzed the reasons why [w; u] TSs with the same w

and u may produce very different effect to the error floor. Based on the findings, we

can conclude that tackling the error-floor issue by avoiding [w; u] TSs with small

w and u during the code-construction process is not the best strategy. Instead, we

should focus on avoiding [w; u] TSs that are more harmful (those with one or more

cycle(s) in the corresponding TS-ICSs) rather than avoiding all [w; u] TSs with the

104



same w and u. However, determining whether there is a cycle and also the number

of cycles in a TS-ICS can be very complicated and time consuming. It will be very

useful if there is a simple way of evaluating the configuration of a TS-ICS.

5.3 Refined [w; u; e] Trapping Set

5.3.1 Cycle Indicator

To determine whether there is a cycle and also the number of cycles in a TS-

ICS, we introduce a parameter called “cycle indicator (CI)”, which is denoted by e

and is computed by

e =

[
w∑

i=1

(di − 2)

]
− u. (5.27)

Based on the results in Sect. 5.1, we evaluate the values of e under different sce-

narios and present the results in Table 5.1. The results indicate that regardless of

regular or irregular codes, for a TS-ICS with

• no cycle, e < 0;

• a single cycle, e = 0;

• multiple cycles, T-type variable nodes but no T-type check nodes, e > 0;

• multiple cycles, T-type check nodes but no T-type variable nodes, e ≤ 0.

Still, no useful comments can be drawn for the case of TS-ICS with multiple cycles

and both T-type variable node(s) and T-type check node(s). With the introduction

of the CI, we can refine the definition of a TS.

5.3.2 Trapping Set with Label [w; u; e]

Definition 5.1 ([w; u; e] trapping set) A [w; u; e] trapping set is defined as a set of

variable nodes of size w, with u neighboring check nodes having odd numbers of

connections to the set, and the cycle indicator e computed using (5.27) where di

represents the degree of the ith variable node in the set.
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Table 5.1: Types of trapping set-induced connected subgraph (TS-ICS) and the cor-
responding cycle indicator values e. The LDPC codes can be regular or irregular.

Type of TS-ICS Cycle indicator e

No cycle e < 0

Single cycle e = 0

Multiple cycles and all T-type
nodes are variable nodes e > 0

Multiple cycles and all T-type
nodes are check nodes e ≤ 0

Multiple cycles and T-type nodes
involve both variable node(s) e <=> 0

and check node(s)

Furthermore, research reports [56] and our own simulation results have indi-

cated that the decoding errors at the high SNR region are caused mainly by TSs

with their ICSs containing either (i) a single cycle, or (ii) multiple cycles with T-

type variable nodes but no T-type check nodes. In contrast, TSs with their ICSs

containing multiple cycles and T-type check nodes have not been found contribut-

ing significantly to the error floor. In order to focus our attention to TSs that are

contributing to the error floor, we define a primary TS (PTS) as follows.

5.3.3 Primary trapping set

Definition 5.2 ([w; u; e] primary trapping set) A [w; u; e] primary trapping set (PTS)

is defined as a [w; u; e] TS where no check node of degree three or larger exists in

the induced connected subgraph (ICS) of the TS if the TS-ICS contains two or more

cycles. In other words, the induced connected subgraph of a PTS containing mul-

tiple cycles cannot have any T-type check nodes. Moreover, we define the size of a

[w; u; e] PTS-ICS as the number of variable nodes the subgraph contains, i.e., w.

In particular, a [w; 0; e] PTS represents a codeword with a hamming weight of

w. Consider a binary vector. Let the non-zero bits in the vector correspond to all

the w variable nodes in the [w; 0; e] PTS. In this case all the parity check equations
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of the code will be satisfied and thus the vector forms a codeword of weight w.

Note that for a [w; u; e] PTS-ICS with one or more cycle(s), the CI also pro-

vides an insight into the exact number of cycles existing in the PTS-ICS. We rewrite

(5.27) as

e =

(
w∑

i=1

di

)
− 2w − u. (5.28)

The first term on the RHS of (5.28),
∑w

i=1 di, represents the total degree of all the

variable nodes in the [w; u; e] PTS-ICS, which is equivalent to the total number of

connections. The second term, 2w, reflects the total number of connections that the

w variable nodes need to contribute when forming a single cycle. The last term, u,

denotes the number of singly-connected check nodes in the [w; u; e] PTS-ICS (as

all check nodes in such a PTS-ICS have degrees either one or two). Since 2w + u

also represents the number of connections in a PTS-ICS containing a single cy-

cle and u singly-connected check nodes, e can be viewed as the number of “extra

connections” used to build multiple cycles based on an existing single-cycle PTS-

ICS. It can be readily shown that for every two “extra connections”, an additional

“distinguishable cycle” will be formed. Here, we describe a set of cycles as “distin-

guishable” if each cycle in the set contains one or more variable or check node(s)

that all other cycles in the set do not possess. Then, we can conclude that a [w; u; e]

PTS-ICS contains e/2 + 1 “distinguishable” cycles when e ≥ 0 (recall that e < 0

when a PTS-ICS contains no cycle).

Fig. 5.8 presents examples of [9; 1; 4], [9; 1; 2] and [9; 1; 0] PTS-ICSs. When

there are more “distinguishable” cycles in a PTS-ICS, there are more chances that

an erroneous message being enhanced in the PTS-ICS, making the decoder harder

to converge to the correct value. Thus, if 0 ≤ e1 < e2, a [w; u; e2] PTS-ICS will

contribute more to the error floor at high SNR than a [w; u; e1] PTS-ICS. We further

define a “detrimental PTS-ICS” as a single-cycle or multiple-cycle [w; u; e] PTS-

ICS with small w and u. Detrimental PTS-ICSs are more harmful to the decoder.

Therefore, to build codes with low error floor, an effective way is to construct codes

by avoiding detrimental PTS-ICSs.
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5.3.4 Observations and summary

In this section, we have refined the trapping set by the label [w; u; e] where e

is the newly introduced cycle-indicator (CI). We have defined a “primary trapping

set (PTS)” for use in identifying the possible harmful trapping sets. By looking into

the definitions of TS and PTS, we can see that PTS is just a special case of TS.

Figure. 5.10 further presents the relations among stopping set, TS, dominant

TS, PTS and detrimental PTS. We use the circle to represent the set of [w; u; e]

trapping sets. The circle has been divided into five sub-regions, denoted by A, B, C,

D and E, to represent the TSs with their ICSs having (a) no cycle; (b) single cycle;

(c) multiple cycles with all T-type nodes being variable nodes; (d) multiple cycles

with all T-type nodes being check nodes and (e) multiple cycles involving both T-

type variable nodes and T-type check nodes, respectively. We also denote the set of

[w; u; e] TSs with small w and relatively smaller u, i.e., the dominant [w; u; e] TSs,

by the striped area in the unit cycle. Recall that a stopping set is a set of variable

nodes with the neighboring check nodes having more than one connections to the

set of variable nodes. The definition indicates that the ICS of a stopping set should

contain (i) a single cycle or multiple cycles with check nodes of degree only two

or (ii) multiple-cycles with no check nodes of degree less than two and at least one

T-type check node. Based on the aforementioned features, we make use of the grey

areas within B, C, D and E in the figure to represent the set of stopping sets.

Since a PTS is a TS with no check nodes of degree three or larger if the TS-

ICS contains two or more cycles, the set of PTSs can be denoted by union of areas

A, B and C. Subsequently, the set of detrimental PTSs can be denoted by the striped

areas within B and C. Further, it is interesting to see that the grey areas within

B and C represent the set of [w; 0; e] PTSs. It is because stopping sets of size w

with their ICSs containing no odd degree check nodes are actually [w; 0; e] PTSs,

which indicate the existence of codewords of weight w. Thus small-size stopping

sets might give rise to low weight codewords, which are extremely harmful to the

decoder.

Based on the aforementioned observations, we can conclude that not all the

dominant trapping sets as well as all the small-size stopping sets are contributors to

the error events of LDPC decoder at high SNR. To exactly describe such contribu-
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Figure 5.10: Graphic illustration of relations among TS, PTS, detrimental PTS and
stopping set. The areas A, B, C, D, and E in the circle represent separately TSs
with their ICSs containing (a) no cycle; (b) single cycle; (c) multiple cycles with all
T-type nodes being variable nodes; (d) multiple cycles with all T-type nodes being
check nodes and (e) multiple cycles involving both T-type variable nodes and T-
type check nodes. Grey area: stopping sets. A ∪B ∪ C : PTS. Grey area ∪B ∪ C :
[w; 0; e] PTS.

tors, we should resort to the PTS and detrimental PTS.

5.4 Proposed code-construction method

Based on the previous findings, we will propose a code construction method,

called PEG-ACSE algorithm, that aims to avoid [w; u; e] PTS-ICS with small w,

small u and e ≥ 0.

5.4.1 Cycle set EMD (CSE)

To reduce the occurrences of detrimental PTS-ICSs, we introduce a new met-

ric called “cycle set extrinsic message degree (CSE)” and make use of it when con-

structing codes.

Definition 5.3 (Cycle set (CS)) A cycle set consists of one or more cycle(s) linked

together by a common (root) variable node. The size of a cycle set, denoted by w′,

is defined as the total number of variable nodes it contains.
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Definition 5.4 (Cycle set EMD (CSE)) The CSE of a cycle set, denoted by u′, is

defined as the number of extrinsic-message edges emanating from the cycle set to

the check nodes singly connected to variable nodes in the set. It is used to measure

the connectivity of a cycle set to all other nodes.

We further denote the cycle-indicator (CI) of a cycle set by e′ and define the

CI of a cycle set with size w′ as e′ =
∑i=w′

i=1 (d′i − 2)− u′ where d′i is the degree of

the ith variable node in the cycle set. We can thus label a cycle set of size w′ with

CSE value u′ and CI value e′ as a [w′; u′; e′] CS. Using the same arguments as in

Sect. 5.3.3, we can readily show that there are e′/2 + 1 “distinguishable” cycles in

a [w′; u′; e′] CS. Figure 5.11 illustrates some [w′; u′; e′] CS examples. The variable

node with degree 6 is the common node linking up the cycles. The CSE values of

the cycle sets in Fig. 5.11(b), (c) and (d) are, respectively, 4, 2 and 0.

Comparing Fig. 5.11 with Fig. 5.8 and Fig. 5.9 , it can be easily seen that PTS-

ICSs can be formed by combining one or more cycle set(s) and the singly-connected

check nodes. Hence, by eliminating [w′; u′; e′] CS with small w′, relatively smaller

u′ and e′ ≥ 0 during the code construction process, detrimental PTS-ICSs can be

effectively avoided.

5.4.2 Estimation of the minimum CSE of a cycle set

Consider a variable node, denoted by v, and expand its connections to a depth

of D to form a subgraph. If all possible cycle sets, under the condition that the

variable node v is the common node, have to be found and their CSE values evalu-

ated, it will be a very complex and time-consuming process. Instead, we estimate

the minimum CSE of cycle sets with different sizes as follows. Note that all cycles

refer to those beginning and terminating at v.

1. Denote the degree of the variable node v by dv. Number the edges em-

anated from the variable node v as τ1, τ2, ..., τdv , and form the set Z(v) =

{τ1, τ2, ..., τdv}. Initialize another set Zc(v) to be an empty set.

2. Set k = 1. Search for all (single) cycles in the subgraph and select the one

with the smallest ACE (please refer to Section 2.4.2 for the definition of ACE)
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Figure 5.11: Cycle sets and CSE values. (a) A variable node with degree 6; (b)
A [3; 4; 0] cycle set L1 containing one cycle and CSE of L1 equals 4; (c) a [5; 2; 2]
cycle set L2 containing two cycles and CSE of L2 equals 2; (d) a [7; 0; 4] cycle set
L3 containing three cycles and CSE of L3 equals 0.
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value. Denote the selected cycle by lk. Suppose the two edges numbered

τk1 , τk2 ∈ Z(v) are contained in the cycle lk. Then we set the cycle set Lk =

{lk} and Zc(v) = {τk1 , τk2}. Moreover, the CSE value of Lk, denoted by Υk,

equals the ACE value of lk.

3. Increase k by 1. Search for all remaining cycles that begin with an edge

numbered τi ∈ (Z(v)\Zc(v)) in the subgraph. Add the cycle, denoted by lk,

to Lk−1 such that the CSE of the new cycle set Lk = {l1, l2, . . . , lk}, i.e., Υk,

is the smallest. Then add the edge(s) appearing in both the selected cycle lk

and Z(v)\Zc(v) to Zc(v).

4. Repeat Step 3 until the cycles in the cycle set Lk have included all edges

emanated from v, i.e. Zc(v) = Z(v).

5. The approximate minimum CSE (ACSE) value among all possible cycle sets

with v as the root node is then obtained from mink Υk.

Given an LDPC code. We can make use of the aforementioned method to

obtain the ACSE value of every variable node, and hence the minimum ACSE value

among all variable nodes. Note that because of the estimation, there may exist, with

a small chance though, cycle sets with CSE values lower than the minimum ACSE

value obtained.

5.4.3 PEG-ACSE Code Construction Algorithm

In the following, we present the PEG-ACSE code construction algorithm, in

which cycle sets with small ACSE values are avoided (compared with the PEG-

ACE algorithm in which single cycles with small ACE values are avoided). Sup-

pose we are given the length of an LDPC code and also the degree distributions of

the variable nodes and check nodes. We then assign each variable node with a de-

gree randomly picked from the variable-node degree distribution. Next, we sort the

variable nodes according to their degrees in a non-decreasing manner, i.e., di ≤ dj

for i < j. To design codes with low error floor, variable nodes with small degrees

should be involved in cycles which are as large as possible because these variable

nodes contribute few extrinsic connections. It is particularly crucial for degree-2

variable nodes because they do not give rise to any extrinsic connections in cycles.
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Denote the block length, check length and the number of degree-2 variable

nodes by, respectively, N , M and Nv2. Also, define C(D)(vi) as the check-node

set reached by a subgraph expanding from a variable node vi at a depth D. Then

we connect min{M,Nv2} degree-2 nodes in a “zigzag” manner, as in [55, 106],

to guarantee that the cycles formed by the degree-2 variable nodes are the largest

possible. For the remaining nodes, connections are made based on the following

algorithm.

• Set the ACSE threshold value ζ with a positive integer.

• For i = (min{M,Nv2}+ 1) to N

– Set threshold satisfied = 0;

– While threshold satisfied == 0

∗ For k = 1 to di

· Connect the edges of the variable node vi to the check nodes in

the set C(D)(vi) using the PEG algorithm [55].

∗ End (k = 1 to di)

∗ With vi as the root node, evaluate the ACSE value among all cycle

sets of different sizes using the algorithm in Sect. 5.4.2.

∗ If the ACSE value is smaller than the threshold ζ

· threshold satisfied=0;

∗ Else

· threshold satisfied=1;

∗ End (if...else)

– End (while)

• End (i = (min{M,Nv2}+ 1) to N )

(Note that in the case of the PEG-ACE algorithm [62], only single cycles instead of

cycle sets will be considered.)
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5.4.4 Performance analysis of PEG-only, PEG-ACE and PEG-

ACSE construction algorithms

In the PEG-based construction algorithms, a bipartite graph is grown step-by-

step by picking a variable node and adding connections between the variable node

and the candidate check nodes. Consider the jth variable node in the construction

process. We call the variable node “completed” when all its dj connections have

been connected to the check nodes. Since the variable nodes are picked in a non-

decreasing manner according to their degrees, the bipartite graph obtained when the

ith degree-k variable node is “completed”, which we denote by Gk,i, will contain

only variable nodes with degrees ranging from 2 to k.

Denote the smallest cycle length (i.e., number of edges in the cycle) incurred

by any of degree-k variable nodes in the graph Gk,i by sk,i
3 and the corresponding

(root) degree-k variable node by Rk,i. We further consider the possible cycle sets

with Rk,i as the common node. We denote S(Rk,i, t), where 2 ≤ t ≤ k, as the

smallest possible cycle set possessing the following two features.

• The cycle set involves t out of k edges emanating from the root node Rk,i.

• The cycle set contains T-type variable node(s) but no T-type check nodes.

Here, the size of the cycle set S(Rk,i, t), denoted by |S(Rk,i, t)|, is defined as the

number of variable nodes in the cycle set.

Theorem 5.1 For k = 2, 3, ..., dv where dv is the maximum variable-node degree

and t = 2, 3, ..., k, the size of the cycle set S(Rk,i, t) in Gk,i is given by

|S(Rk,i, t)| = sk,i

2
+

(⌈sk,i

4

⌉
− 1

)
(t− 2) (5.29)

where dxe is the smallest integer larger than or equal to x.

Proof: According to the definition of S(Rk,i, t), when t = 2, S(Rk,i, 2) repre-

sents the smallest possible single cycle originating from and ending at Rk,i. Since

the length of the smallest cycle has been denoted by sk,i and the number of variable

3Note that sk,i is always an even number.
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nodes in a cycle equals half the cycle length, the size of S(Rk,i, 2) is given by

|S(Rk,i, 2)| = sk,i

2
k = 2, 3, ..., dv; i = 1, 2, . . . . (5.30)

Thus, (5.29) is true for t = 2. Next, when t = 3, the smallest possible cycle set

will be formed if, in addition to S(Rk,i, 2), a new path with the shortest possible

length is created between Rk,i and S(Rk,i, 2). Consider a new path, denoted by l
(3)
X

in Fig. 5.12, that joins S(Rk,i, 2) at the variable node X4. We further decompose the

smallest cycle S(Rk,i, 2) into two paths — the first one from Rk,i to variable node

X , denoted by l
(1)
X ; and second one from X to Rk,i, denoted by l

(2)
X . Denoting the

length of a path l
(ν)
X by ||l(ν)

X ||, ν = 1, 2, 3, we have

||l(1)
X ||+ ||l(2)X || = sk,i ≡ 2s̃k,i (5.31)

where

s̃k,i =
sk,i

2
(5.32)

is equivalent to the number of variables nodes in the smallest cycle S(Rk,i, 2), i.e.,

s̃k,i = |S(Rk,i, 2)|. Without loss of generality, we also assume that the path of l
(1)
X is

longer than or equal to that of l
(2)
X , i.e.,

||l(1)X || ≥ ||l(2)X ||. (5.33)

Then, the new path l
(3)
X must be longer than or equal to the length of ||l(1)X ||, i.e.,

||l(3)X || ≥ ||l(1)X ||. (5.34)

Otherwise, if l
(3)
X has a smaller length than l

(1)
X , it would have combined with l

(2)
X to

form the smallest cycle S(Rk,i, 2), which contradicts our assumption. Further, we

substitute (5.33) into (5.31) to obtain

||l(1)X || ≥ s̃k,i. (5.35)

Since all the paths being considered here start and end at variable nodes, the path

4X has to be a variable node because we do not consider cycle sets with T-type check nodes.
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lengths must be even numbers. Thus, (5.35) can be rewritten as

||l(1)
X || ≥





s̃k,i when s̃k,i is even

s̃k,i + 1 when s̃k,i is odd.
(5.36)

Combining (5.34) and (5.36), we can conclude that the shortest possible path length

of l
(3)
X equals (i) s̃k,i when s̃k,i is even; and (ii) s̃k,i + 1 when s̃k,i is odd. With

reference to Fig. 5.12, we can observe that the path l
(3)
X will add ||l(3)X ||

2
− 1 extra

variable nodes to S(Rk,i, 2). Thus, when t = 3, the size of the smallest possible

cycle set, i.e., |S(Rk,i, 3)|, can be expressed as

|S(Rk,i, 3)| =





sk,i

2
+

s̃k,i

2
− 1 when s̃k,i is even

sk,i

2
+

s̃k,i+1

2
− 1 when s̃k,i is odd

=
sk,i

2
+

(⌈sk,i

4

⌉
− 1

)
. (5.37)

Therefore, (5.29) is true for t = 3. Using a similar argument, whenever t ≥ 3, the

smallest possible cycle set S(Rk,i, t) will be formed if t− 2 new paths, with length

equal to the shortest possible path length of l
(3)
X above, are created between Rk,i and

the variable node X in S(Rk,i, 2). Subsequently, it can be readily proven that the

size of S(Rk,i, t) equals that given in (5.29).

Corollary 5.1 When all the degree-k variable nodes are “completed”, we denote

• Ĝk as the graph obtained;

• ŝk as the smallest cycle length incurred by any of degree-k variable nodes in

Ĝk;

• Rk as the corresponding (root) degree-k variable node;

• S(Rk, t), t = 2, 3, . . . , k, as the smallest possible cycle set involving t out of

k edges emanated from Rk but containing no T-type check nodes.

Then, for k = 2, 3, . . . , dv, the size of S(Rk, t) in Ĝk is given by

|S(Rk, t)| = ŝk

2
+

(⌈
ŝk

4

⌉
− 1

)
(t− 2). (5.38)
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Figure 5.12: The smallest cycle S(Rk,i, 2) is decomposed into two paths — the first
one from Rk,i to variable node X , denoted by l

(1)
X ; and the second one from X to

Rk,i, denoted by l
(2)
X . A new path, denoted by l

(3)
X , joins S(Rk,i, 2) at X .

Proof: (5.38) is obtained when i in (5.29) equals the number of variable nodes

with degree k.

Corollary 5.2 Given the graph Ĝk with k ≥ 2. For e ≥ 0, the minimum possible

size of a [w; 0; e] PTS-ICS (i.e., w) equals mint(|S(Rt, t)|) where t ∈ {2, 3, . . . , k}.

Proof: When e ≥ 0, a [w; 0; e] PTS-ICS contains one or more cycles, which

can be made up of one or more cycle sets (CSs). The minimum possible size of a

[w; 0; e] PTS-ICS, therefore, can be readily shown equivalent to the minimum pos-

sible size of a [w′; 0; e′] CS with no T-type check nodes and e′ ≥ 0. Moreover, the

“0” in the [w′; 0; e′] CS indicates that there are no check nodes singly-connected to

the variable nodes in the CS. In other words, all edges emanated from the variable

nodes must be involved in the cycle(s). In consequence, a [w′; 0; e′] CS with the

minimum possible size is equivalent to a S(Rt, t), t = 2, , 3, ..., k, in which all vari-

able nodes are connected to check nodes within S(Rt, t). Thus, we can conclude
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that the minimum possible size of a [w; 0; e] PTS-ICS equals mint(|S(Rt, t)|) where

t ∈ {2, , 3, ..., k}.

Corollary 5.3 Given the graph Ĝk with k ≥ 3. For e ≥ 0, the minimum possible

size of a [w; 1; e] PTS-ICS equals mint(|S(Rt, t− 1)|) where t ∈ {3, 4, . . . , k}.

Proof: The minimum possible size of a [w; 1; e] PTS-ICS is equivalent to the

minimum possible size of a [w′; 1; e′] CS with no T-type check nodes and e′ ≥
0. Moreover, the “1” in the [w′; 1; e′] CS indicates that there is only one check

node singly-connected to the variable nodes in the CS. Such a CS is equivalent to

(i) a S(Rt, t − 1) if the singly-connected check node is attached to the degree-

t (root) variable node; or (ii) S(Rt, t) if the singly-connected check node is at-

tached to one of the other variable nodes in S(Rt, t) except the degree-t root node.

In consequence, the minimum possible size of a [w; 1; e] PTS-ICS in Ĝk equals

mint(min{|S(Rt, t−1)|, |S(Rt, t)|}) = mint(|S(Rt, t−1)|) where t ∈ {3, 4, ..., k}.

(Note that the last equality results from (5.38).)

Corollary 5.4 Given the graph Ĝk with k ≥ 3. For e > 0, the minimum possible

size of a [w; 1; e] PTS-ICS equals min{|S(R3, 3)|, mint(|S(Rt, t − 1)|)} where t ∈
{4, 5, ..., k}.

Proof: We use a similar procedure as in the proof of Corollary 5.3. Since

e > 0, a [w; 1; e] PTS-ICS contains more than one cycle. Using the results in Corol-

lary 5.3, when t = 3, a [w′; 1; e′] CS with e′ > 0 can only be formed from |S(R3, 3)|
if the singly-connected check node is attached to one of the other variable nodes in

|S(R3, 3)| except the degree-3 root node. Therefore, when e > 0, the minimum pos-

sible size of a [w; 1; e] PTS-ICS in Ĝk is given by min{|S(R3, 3)|, mint(|S(Rt, t −
1)|)} where t ∈ {4, 5, ..., k}.

In the PEG-only construction algorithm, suppose the smallest cycle length

incurred by a degree-3 variable node in Ĝ3 is found to be 12 during the construction

process, i.e., ŝ3 = 12 . Corollary 5.1 shows that

|S(R3, 3)| = 12

2
+

(⌈
12

4

⌉
− 1

)
(3− 2) = 8. (5.39)

Based on Corollary 5.2 and Corollary 5.4, we can further conclude that [8; 0; e] and
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[8; 1; e] PTS-ICSs with e > 0 (multiple cycles) may reside in the code graph. These

small size PTS-ICSs will undoubtably contribute significantly to the error floor.

In the proposed PEG-ACSE construction algorithm, two parameters have to

be set — the ACSE value threshold ζ and the depth threshold D. To reduce as

many detrimental PTS-ICSs as possible, ζ and D should be set large. However,

setting a larger D implies cycle sets with larger sizes will be searched, resulting a

higher chance that cycles/cycle sets not able to meet the ACSE thresholds. Alterna-

tively, ζ has to be reduced or else no codes fulfilling the requirements can be found.

Nonetheless, if we need to evaluate cycle lengths of lcycle, D should be set no less

than half of lcycle, i.e., D ≥ lcycle/2. For example, if we intend to remove the [8; 0; e]

and [8; 1; e] PTS-ICSs with e > 0, cycle lengths up to 12 should be considered and

hence we must set D no less than 6.

In addition, the value of ζ should be carefully designed to guarantee the effi-

cient removal of detrimental PTSs. For example, consider the [w; 0; e] and [w; 1; e]

PTS-ICSs shown in Fig. 5.13(a) and (b). In the figure, the solid line represents that

the check node is directly connected to the variable node. The dash line represents

that there is a path between the check node and the variable node. Assume that a

degree-3 variable node giving rise to the smallest cycle length ŝ3 is contained in

each of two PTS-ICSs in the figure. Denote the degree-3 variable node by R3 and

consider it as a root node. Further, denote the three “distinguishable” cycles in the

[w; 0; e] and [w; 1; e] PTS-ICSs by l1, l2 and l3. Consider the cycle set S(R3, 3) orig-

inating from R3 and comprising l1 and l2. From Theorem 5.1, the size of S(R3, 3)

is no less than ŝ3

2
+

⌈
ŝ3

4

⌉ − 1. When the cycle l3 is added to the cycle set S(R3, 3),

at least on extra variable node will be added. Therefore, the size of the [w; 0; e] or

[w; 1; e] PTS-ICS is governed by

w ≥ ŝ3

2
+

⌈
ŝ3

4

⌉
− 1 + 1

=
ŝ3

2
+

⌈
ŝ3

4

⌉
. (5.40)

Moreover, the equality hold if all the three “distinguishable” cycles l1, l2 and l3

achieve the smallest cycle length ŝ3 in Ĝ3. For example, if it is found that ŝ3 = 8,

then w ≥ 4 + 2 = 6.
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Figure 5.13: The (a) [w; 0; 4] PTS-ICS and (b) [w; 1; 4] PTS-ICS generated during
the construction of LDPC codes by employing the PEG-ACSE algorithm with ζ ≤
3. The solid line represents that the check node is directly connected to the variable
node. The dash line represents that there is a path between the check node and
variable node.

Further, as shown in Fig. 5.13(a), the smallest CSE of the cycle sets emanated

from root node R3 in the [w; 0; 4] PTS-ICS is 2 (e.g., the CSE of S(R3, 3) is 2). Also,

from Fig. 5.13(b) we can see that the CSEs of all the cycle sets emanated from the

root node R3 in the [w; 1; 4] PTS-ICS are larger than or equal to 3. The results show

that if the ACSE threshold ζ is set to less than or equal to 3, i.e., ζ ≤ 3, the PEG-

ACSE construction algorithm cannot avoid the [w; 0; 4] and [w; 1; 4] PTS-ICSs as

shown in Fig. 5.13.

5.5 Results and discussions

In this section, we compare the performance of LDPC codes constructed using

the PEG-only, PEG-ACE and PEG-ACSE algorithms.
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5.5.1 “DE15” with code length 1008

First, we consider the DE-optimized code “DE15”. Properties of the code

have been listed in Table 4.3. Moreover, the corresponding variable-node degree

distribution, given in (4.10), is shown as follows.

λ1(x) = 0.23802x + 0.20907x2 + 0.03492x3 + 0.12015x4

+ 0.01587x6 + 0.00480x13 + 0.37627x14 (5.41)

Suppose a code length of 1008 is used. We observe that during the PEG-only code-

construction process, ŝ3 = 12. Based on the analysis in Sect. 5.4.4, we set the

depth threshold D to be larger than ŝ3/2 = 6 in the PEG-ACE and PEG-ACSE

construction algorithms, with an aim to avoiding any [8; 0; e] and [8; 1; e] PTS-ICSs

with e > 0. Furthermore, given D > 6, our code-construction results have shown

that the largest ACE/ACSE threshold that can be achieved equals 4 if the LDPC

codes are to be constructed successfully. When ζ = 3 and ζ = 4, the largest

possible depths D are, respectively, 12 and 8.

Five different codes of length 1008 are constructed based on “DE15”. We

denote the five codes by the abbreviations “PEG-only”, “PEG-ACE-12-3”, “PEG-

ACE-8-4”, “PEG-ACSE-12-3” and “PEG-ACSE-8-4” respectively. The code “PEG-

only”, which is exactly the same as the code “PEGirReg504x1008” in [97], is used

a reference here for performance comparison. For the other codes, the first two

blocks of alphabets in the abbreviations represent the code-construction method be-

ing used; the third block of digit(s) denotes the value of D; and the last digit gives

the value of ζ . For example, the code “PEG-ACE-12-3” is constructed based on the

PEG-ACE mechanism with D = 12 and ζ = 3.

5.5.1.1 Error Rates

Assuming an AWGN channel, the belief propagation decoder will iterate a

maximum of 50 times for each received codeword. For each of the codes, the simu-

lation will continue until 100 decoding failures are collected. Figure 5.14 plots the

bit-error-rate (BER) and the block-error-rate (BLER) curves of the five codes. It can

be seen that, the PEG-ACSE-constructed codes have very similar error performance
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as the PEG-only-constructed and the PEG-ACE-constructed codes at the waterfall

region and outperform them at the high signal-to-noise ratio (SNR) region. At a

BER of 10−7, the code “PEG-ACSE-8-4” outperforms the codes “PEG-only” and

“PEG-ACE-8-4” by about 0.1 dB and 0.2 dB, respectively. We also observe that the

code “PEG-ACSE-8-4” has a lower error floor than the code “PEG-ACSE-12-3”

while the code “PEG-ACE-8-4” has a lower error floor than the code “PEG-ACE-

12-3”. The results have shown that raising the ACE/ACSE threshold from 3 to 4

and at the same time reducing the depth threshold D from 12 to 8 can produce codes

with lower error floors.

5.5.1.2 Decoding failures and [w; u; e] PTSs

Also, for each of the codes and at a high SNR, we look into the 100 decod-

ing failures to check if the failures are related to [w; u; e] PTSs. We find that al-

most all the decoding failures are caused by single-cycle or multiple-cycle [w; u; e]

PTSs, i.e., [w; u; e] PTSs with e ≥ 0. In addition, failures caused by multiple-cycle

[w; u; e] PTSs far exceed those by single-cycle ones. In Table 5.2, we tabulate the

failure statistics for the five codes when the SNR equals 2.8 dB. In the table, Nt

denotes the number of transmitted blocks resulting in the 100 decoding failures.

η̂e>0 and η̂e=0 represent the number of failures caused by [w; u; e] PTSs with e > 0

(multiple-cycle) and e = 0 (single-cycle), respectively. The results have indicated

that out of the 100 failures, 94 to 98 of them are caused by PTSs with one or more

cycles. Furthermore, multiple-cycle PTSs are causing a lot more errors than single-

cycle ones.

In Table 5.2, we have also shown, for each of the codes, the labels of the

failure-causing [w; u; e] PTSs with small w, small u and e > 0 (multiple-cycle).

The number of failures caused by PTSs with the same label [w; u; e] and the corre-

sponding weighted block error rate are denoted by, respectively, η̂w,u,e and P̂w,u,e(=

η̂w,u,e/Nt). We find that the most detrimental PTS in the code “PEG-ACSE-8-4” is

[16; 0; 2] PTS, giving rise to an error probability of around 4.00× 10−8. Moreover,

the most detrimental PTS in the code “PEG-ACE-12-3” is [9; 1; 4] PTS, producing

an error probability of around 2.43 × 10−6. For all the other codes “PEG-only”,

“PEG-ACE-8-4” and “PEG-ACSE-12-3”, the most detrimental PTSs are causing

error probabilities in the order of 10−7. The above observations are consistent with
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Figure 5.14: The BER and BLER performance of LDPC codes with length 1008
and degree distribution following “DE15”. Codes are constructed using PEG-only,
PEG-ACE, and the proposed PEG-ACSE algorithms.

the BER results in the previous section, which show that “PEG-ACSE-8-4” is the

best-performing code; “PEG-ACSE-12-3”, “PEG-ACE-8-4” and “PEG-only” have

similar error performance; and “PEG-ACE-12-3” has the highest error floor at high

SNR.

5.5.1.3 Minimum possible size of [w; 0; e] and [w; 1; e] PTS-ICSs with mul-

tiple cycles in the code “PEG-ACE-12-3”

We further take the code “PEG-ACE-12-3”, which has a comparatively high

error floor for analysis. As the variable node degrees in “PEG-ACE-12-3” follow

the distribution in (5.41), the variable nodes can only attain degrees of 2, 3, 4, 5, 7,

14 and 15. In addition, during the code construction process based on the PEG-ACE

algorithm, we have found that the minimum cycle lengths ŝk in Ĝk are 12, 12, 10,

8, 6, 6, for k = 3, 4, 5, 7, 14, 15, respectively. (Note that the minimum cycle length

at k = 2 needs not to be considered when evaluating multiple-cycle PTSs.) Thus,

according to Corollary 5.2 and Corollary 5.4 in Sect. 5.4.4, the minimum possible
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Table 5.2: Failure statistics for the codes with degree distribution “DE15”. Code
length is 1008. SNR equals 2.8 dB.

Code Nt η̂e>0 η̂e=0 [w; u; e] η̂w,u,e P̂w,u,e

[13; 0; 2] 8 2.81× 10−7

PEG-only 28,448,370 89 9 [9; 1; 2] 8 2.81× 10−7

[10; 1; 2] 5 1.76× 10−7

[8; 2; 2] 1 3.52× 10−8

[17; 0; 6] 1 6.38× 10−8

PEG-ACE-12-3 15,667,615 92 5 [9; 1; 4] 38 2.43× 10−6

[10; 1; 2] 1 6.38× 10−8

[7; 2; 2] 2 1.28× 10−7

[12; 0; 2] 15 7.44× 10−7

PEG-ACE-8-4 20,150,438 84 10 [13; 0; 2] 6 2.98× 10−7

[12; 1; 2] 2 9.93× 10−8

[7; 2; 2] 6 2.98× 10−7

[14; 0; 4] 8 1.34× 10−7

PEG-ACSE-12-3 29,947,195 92 4 [16; 0; 4] 1 3.34× 10−8

[10; 1; 4] 12 4.01× 10−7

[10; 2; 2] 1 3.34× 10−8

[16; 0; 2] 2 4.00× 10−8

PEG-ACSE-8-4 50,017,093 91 5 [17; 0; 4] 1 2.00× 10−8

[12; 1; 2] 1 2.00× 10−8

[9; 2; 2] 1 2.00× 10−8
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size of multiple-cycle [w; 0; e] PTS-ICSs equals

min
k∈{3,4,5,7,14,15}

[|S(Rk, k)|] = min
k∈{3,4,5,7,14,15}

[
ŝk

2
+

(⌈
ŝk

4

⌉
− 1

)
(k − 2)

]

= min[8, 10, 11, 9, 15, 16]

= 8 (5.42)

while the minimum possible size of the multiple-cycle [w; 1; e] PTS-ICSs is given

by

min

[
|S(R3, 3)|, min

k′∈{4,5,7,14,15}
(|S(Rk′ , k

′ − 1)|)
]

= min

[
ŝ3

2
+

⌈
ŝ3

4

⌉
− 1, min

k′∈{4,5,7,14,15}

(
ŝk′

2
+

(⌈
ŝk′

4

⌉
− 1

)
(k′ − 3)

)]

= min[8, 8, 9, 8, 14, 15]

= 8. (5.43)

Thus, if the ACE threshold ζ = 3, it is possible that the PEG-ACE construction

method produces [8; 0; e] and [8; 1; e] PTS-ICSs with multiple cycles. In our study,

we do not find such PTS-ICSs. The smallest size multiple-cycle [w; 0; e] PTS-ICS

has the label [17; 0; 6] and has a much larger size than [8; 0; e] PTS-ICS. In addition,

multiple-cycle PTS-ICSs with labels [9; 1; 4] and [10; 1; 2] are found, which have

size very close to the minimum possible [8; 1; e] PTS-ICS with multiple cycles.

5.5.2 “DE15” with code length 2016

Next, we consider the case when a code length of 2016 is used together with

the degree distribution following “DE15”. The largest value of ζ we can achieve is

5 and the corresponding depth threshold is D = 9 for both the PEG-ACE and PEG-

ACSE construction methods. Fig. 5.15 plots the BER/BLER curves of the codes

constructed with different algorithms. The results have shown that at a BER of 10−7,

the code constructed with the PEG-ACSE method outperforms those produced with

the PEG-ACE method and the PEG-only method by around 0.3 dB and 0.1 dB,

respectively.
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Figure 5.15: The BER and BLER performance of LDPC codes with length 2016
and degree distribution following “DE15”. Codes are constructed using PEG-only,
PEG-ACE, and the proposed PEG-ACSE algorithms.

5.5.3 “DE10” with code length 1008

We consider the codes with length 1008 and the degree distribution follow-

ing “DE10”. (Details of the code “DE10” can be found in Table 4.3 and (4.11).)

The largest value of ζ we can achieve is 3 and the corresponding depth thresh-

old is D = 12 for both the PEG-ACE and PEG-ACSE construction methods. At

low and medium SNR regions, the codes constructed with the PEG-only, PEG-ACE

and PEG-ACSE mechanisms perform very similarly. Significant differences are ob-

served only at the high SNR region. In Table 5.3, we show the BERs and BLERs of

the three codes at SNR=2.8 dB and SNR=3.0 dB. In this case, the code constructed

with the PEG-ACSE method is still the best performer while that produced with the

PEG-ACE algorithm outperforms the code created with the PEG-only method.

5.5.4 “DE14” and “CSF20” with code length 2016

We consider two rate-0.75 codes following degree distributions “DE14” and

“CSF20”. (Details of such degree distributions are provided in Table 4.4 in Chap-
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Table 5.3: Bit error rate (BER) and block error rate (BLER) for the codes with
degree distribution “DE10”. Code length is 1008. SNR equals 2.8 dB and 3.0 dB.

Code PEG-only PEG-ACE-12-3 PEG-ACSE-12-3
BER (2.8 dB) 5.20× 10−7 2.58× 10−7 1.19× 10−7

BLER (2.8 dB) 9.57× 10−6 5.83× 10−6 4.53× 10−6

BER (3.0 dB) 2.32× 10−7 1.02× 10−7 8.79× 10−8

BLER (3.0 dB) 4.89× 10−8 2.20× 10−8 1.98× 10−8

ter 4.) Code lengths of 2016 are used. The corresponding ŝ3 observed during the

PEG-only code construction process for the two degree distributions are both 10.

Based on the analysis in Section 5.4.4, the ACSE threshold ζ should be set larger

than 3 so as to avoid the generation of [6; 0; 4], [6; 1; 4], [7; 0; 4] and [7; 1; 4] PTSs.

However, we find that setting ζ = 4 fails to generate any LDPC codes from the

PEG-ACSE method. Even when ζ = 3 is used, no LDPC codes can be successfully

constructed.

We then modify the original PEG-ACSE method as follows. We set a starting

threshold ζ0 to 3, and a minimum threshold ζmin,k to 3 for k = 2 and 2 for k =

4, 5, ..., dv. Consider the variable node with degree di. After all its edges have been

connected to the check nodes using the PEG method, we will evaluate the ACSE

value among all cycle sets of different sizes. If the ACSE value is larger than or

equal to the starting threshold ζ0, the requirement is satisfied and the next variable

node in the sequence will be considered. Otherwise, the edges of the variable node

will be reset and re-connected again using the PEG method. The ACSE value is

then checked against the required threshold. The reset, re-connect and ACSE-check

process will continue to iterate if the ACSE value fails to meet the starting threshold

requirement. In the modified PEG-ACSE method, after a number of iterations, say

100 iterations, we will reduce the ACSE threshold from ζ0 to ζmin,k such that the

threshold requirement can be met with a higher chance. With such an arrangement,

we might still achieve a certain performance improvement by reducing the number

of small-size [w; 0; 4] PTS-ICSs.

Figures 5.16 and 5.17 present the BER and BLER curves of the two types

of codes constructed using PEG-only, PEG-ACE-6-3 and PEG-ACSE-6-3 methods.
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The codes are abbreviated as “PEG-only”, “PEG-ACSE-6-3” and “PEG-ACSE-6-

3”. The digit 6 is the value of D while 3 represents the value of ζ0. We observe that

for both degree distributions “DE14” and “CSF20”, code “PEG-ACSE-6-3” has

outperformed code “PEG-only” and code “PEG-ACE-6-3” and produces a lower

error floor.

5.6 Summary

In this chapter, we have fully investigated the main cause of the error floor of

LDPC codes. Given a [w; u] trapping sets (TS) found from an LDPC code. We have

shown that for a regular code, if w > u, the connected subgraph induced by this TS

must possess multiple cycles. But for an irregular code, no useful information on

the TS-induced connected subgraph (TS-ICS) can be deduced even given the values

of w and u. Moreover, we have illustrated that TSs with the same label [w; u] are

not identical in general.

To distinguish different types of TSs, we have categorized TSs based on their

ICSs having (i) no cycle, (ii) a single-cycle and (iii) multiple cycles. We have also

proposed a cycle indicator (CI), denoted by e, as a simple metric of identifying

different types of TS-ICSs. Further, we have proven that regardless of regular or

irregular codes, for a TS-ICS with (i) no cycle, then e < 0; (ii) a single cycle, then

e = 0; (iii) multiple cycles and T-type variable nodes but no T-type check nodes,

then e > 0. Based on the CI, we have refined the label of a TS to [w; u; e]. Moreover,

we have defined a [w; u; e] primary TS (PTS) and have proposed that single-cycle or

multiple-cycle [w; u; e] PTS-ICS with small w and u are more harmful to the LDPC

decoder.

Furthermore, we have analyzed the progressive-edge-growth (PEG) [55] code

construction method. Based on the graph obtained when all the degree-k variable

nodes have their edges connected to the check nodes, we have derived the relation-

ship between the smallest cycle length and the smallest possible cycle set. Subse-

quently, we have proposed a PEG-ACSE (PEG-Approximate Cycle Set Extrinsic

message degree) code construction algorithm with an aim to avoiding PTSs with

single and multiple cycles. The simulation results have shown that LDPC codes

constructed using the proposed PEG-ACSE method can provide the lowest error
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Figure 5.16: The BER and BLER performance of LDPC codes of rate-0.75 with
length 2016 and degree distribution following “DE14”. Codes are constructed using
PEG-only, PEG-ACE-6-3 and the proposed PEG-ACSE algorithms.

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR(dB)

B
E

R
\B

LE
R

CSF20

PEG−only (BLER)
PEG−ACE−6−3 (BLER)
PEG−ACSE−6−3 (BLER)
PEG−only (BER)
PEG−ACE−6−3 (BER)
PEG−ACSE−6−3 (BER)

Figure 5.17: The BER and BLER performance of LDPC codes of rate-0.75 with
length 2016 and degree distribution following “CSF20”. Codes are constructed
using PEG-only, PEG-ACE and the proposed PEG-ACSE algorithms.
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floors. A further look into the decoding failures at a high SNR reviews that al-

most all the decoding failures are caused by single-cycle or multiple-cycle [w; u; e]

PTSs, i.e., [w; u; e] PTSs with e ≥ 0. In addition, failures caused by multiple-cycle

[w; u; e] PTSs far exceed those by single-cycle ones. We have also found that single-

cycle or multiple-cycle [w; u; e] PTS-ICS with small w and u can be successfully

avoided by using the proposed PEG-ACSE method.

Finally, tens of millions of received codes have to be decoded in order to arrive

at a reasonably reliable BER/BLER performance at the high SNR region (no larger

than 3 dB). If the SNR is to be increased further, we will be not able to evaluate

the code performance using Monte Carlo (MC) simulation due to the extremely low

error rate and hence the prohibitive amount of simulation time needed to arrive at a

meaningful error rate. To address the aforementioned issue, in the next chapter, we

will propose evaluating irregular LDPC code performance at the high SNR region

using the importance sampling (IS) approach in conjunction with PTSs identifica-

tion.
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Chapter 6

Performance evaluation of extremely

low error rate at high SNR

In Chapter 5, we have demonstrated that trapping sets (TSs) with the same

label [w; u] (w denotes the number of variable nodes in the TS and u represents

the number of check nodes with odd number of connections to the TS) may con-

tribute very differently to the error floor, particularly for irregular LDPC codes.

Subsequently, we characterize TSs with the refined label [w; u; e] where e is a new

parameter called “cycle indicator (CI)”. Moreover, we define and make use of pri-

mary trapping sets (PTSs) to identify detrimental TSs that contribute more to the

error floor. We have also constructed irregular codes and have shown their superior

error performance compared with existing codes. However, at the high signal-to-

noise-ratio (SNR) region, we are not able to evaluate the code performance using

Monte Carlo (MC) simulation due to the extremely low error rate and hence the

prohibitive amount of simulation time needed to arrive at a meaningful error rate.

In this chapter, we attempt to evaluate irregular LDPC code performance at

the high SNR region using the importance sampling (IS) approach in conjunction

with PTS identification. For any given LDPC code, we will first apply a three-step

method that aims to search as many single- and mutiple-cycle PTSs within the code

as possible. Then, we will classify these PTSs into different groups based on their

labels, i.e., [w; u; e]’s. Further, by dividing the error region into various sub-regions

centered by PTSs, we apply the IS simulator to evaluate the error rate of each of
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the sub-regions. Based on the error rates of all the sub-regions, we can estimate the

overall error rate of the LDPC code.

6.1 Importance sampling for regular LDPC codes

6.1.1 Review of MC simulator and IS simulator

For a random variable vector x = [x1, x2, ..., xN ] with joint pdf f(x) and

corresponding “error region” E , the block error rate (BLER) of x equals PE =∫
E (x ∈ E). Then the MC estimator of PE using NMC simulation runs can be ex-

pressed as

P̂MC =
1

NMC

NMC∑
i

1E(x), (6.1)

where 1E(x) is the indicator function of the error region E , i.e.,

1E(x) =

{
1 if x ∈ E
0 otherwise.

(6.2)

The MC approach becomes not viable when the error events have an extremely low

probability of occurrence. It is because most of the time, the simulated events are

correct and therefore of no importance.

In an IS estimator, a new random vector x∗ sampled from the biased distribu-

tion f ∗(x∗) is designed to increase the occurrence of rare error events. Then, using

the biased distribution, the IS simulator of PE for NIS runs is given by [77]

P̂IS =
1

NIS

NIS∑
i

[1E(x∗)ω(x∗)], (6.3)

where ω(x∗) is the weight function given by

ω(x∗) =
f(x∗)
f ∗(x∗)

. (6.4)

Mean translation (MT) is one of the popular techniques to form the biased density.

The idea of MT is to shift the mean of the original density function to the boundary
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of the error region, i.e., f ∗(x∗) = f(x∗ − µ), where µ = [µ1, µ2, ..., µN ] is a point

lying on the boundary. Then the weight function can be re-written as

ω(x∗) =
f(x∗)

f(x∗ − µ)
. (6.5)

Denote E(·) and var(·) as the expectation operator and variance operator, re-

spectively. Theoretically,

E(P̂IS) =

∫

E

f(x∗)
f ∗(x∗)

f ∗(x∗)dx

=

∫

E
f(x∗)dx = E(P̂MC)

= PE , (6.6)

which shows that both MC and IS are unbiased estimators of the BLER PE . More-

over, the well-known variance formulas of standard MC and IS estimators are given

by [67]

var(P̂MC) =
P̂MC − P̂ 2

MC

NMC

≈ P̂MC

NMC

, (6.7)

and

var(P̂IS) =
1

NIS

∑NIS

i [1E(x∗)ω(x∗)]2 − P̂ 2
IS

NIS

, (6.8)

respectively.

In order to evaluate the quality of the estimators, the normalized error of MC

and IS simulators are calculated as [67]

φMC =

√
var(P̂MC)

P̂MC

≈ 1√
P̂MCNMC

, (6.9)

and

φIS =

√
var(P̂IS)

P̂IS

=

√√√√ 1

N2
ISP̂

2
IS

NIS∑
i

[1E(x∗)ω(x∗)]2 − 1

NIS

, (6.10)

respectively.

To ensure that the IS simulator provides a good estimation of PE , the IS simu-
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lation should be continued until φ2
IS ≤ φ2

MC is satisfied [67], i.e.,

∑NIS

1 [1E(x∗)ω(x∗)]2

{∑NIS

1 [1E(x∗)ω(x∗)]}2
− 1

NIS

≤ 1

P̂MCNMC

. (6.11)

Note that P̂MCNMC is actually the number of error events collected in the MC simu-

lator. Moreover, a speed up gain of an IS simulator relative to MC can be calculated

using [67]

γs =
NMC

NIS

|φIS=φMC
. (6.12)

6.1.2 IS scheme for regular LDPC codes

Assume an all-zero codeword with a block length N is transmitted over a

binary-input additive white Gaussian noise (AWGN) channel with mean zero and

variance (noise power) σ2. Denote the ith code bit (i = 1, 2, ..., N ) by ψi ∈ {0, 1}.

The transmitted signal corresponding to this code bit equals (−1)ψi+1. With an all-

zero codeword transmitted, the received vector x = [x1, x2, ..., xi, ..., xN ] is given

by x = −1 + z, where z = [z1, z2, ..., zi, ..., zN ] is an independent and identically

distributed sequence with probability density function (pdf)

1

(2π)N/2σN
exp(− 1

2σ2

N∑
i=1

z2
i ). (6.13)

Suppose a message-passing algorithm [11] is used in the iterative decoder to

decode the LDPC codes with input x. To apply IS to LDPC codes at high SNR

region, the error region is divided into independent sub-regions with respect to TSs.

For a regular code, TSs with the same label [w; u] are considered equivalent and

categorized into one class.

The simulated error probability of a representative randomly picked from each

class is obtained by employing the IS simulator. For each sub-region associated with

a [w; u] TS, the mean of the original density function is biased to [µ1, µ2, ..., µi, ..., µN ]

based on MT. Then the weight function associated with the vector x∗ sampled from
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the biased distribution is given as

ω(x∗) =
exp(− 1

2σ2

∑N−1
i=0 (x∗i + 1)2)

exp(− 1
2σ2

∑N−1
i=0 (x∗i − (−1 + µi))

2)
. (6.14)

Moreover, to ensure that the mean of the biased density is on the boundary of the

error region, the value of µi will be set as follows. If the ith bit is in the TS,

µi = µ; otherwise µi = 0. Usually, applying the bisection method within an interval

[µl, µh], an optimal µ can be obtained by running the IS simulations until the ratio

of decoding errors over the total number of trials for the specific TS is about 0.5

[70, 73]. Further, in order to achieve a robust estimation, the IS simulation for a

representative TS from each class will be continued until (6.11) is satisfied.

Finally, the cumulative BLER of each class is obtained by multiplying the

simulated error probability of its representative with the total number of elements

in the class, and the overall BLER of the LDPC code is calculated by adding the

cumulative BLERs of all classes.

Unfortunately, the IS scheme proposed for regular LDPC codes is not appli-

cable to irregular codes. The main reason is that, as shown in the previous chapter,

TSs with the same label [w; u] can be configured very differently in terms of their

induced connected subgraphs.

6.2 Our proposed IS scheme for LDPC codes

Our proposed scheme consists of three main stages. First, we search for the

detrimental primary trapping set-induced connected subgraphs (PTS-ICSs) in the

given code, i.e., those [w; u; e] PTS-ICSs with small w, relatively smaller u and

e ≥ 0. Then, we classify the detrimental PTS-ICSs into groups. Finally, we apply

IS to a representative from each PTS-ICS group and also to all elements in some

selected groups. Based on the IS simulation results, we estimate the BLER of the

code at the high SNR region.
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Figure 6.1: Three different induced connected subgraphs of a [9; 1] trapping set.
(a) A [9; 1; 4] PTS-ICS contains three distinguishable cycles; (b) a [9; 1; 2] PTS-ICS
contains two distinguishable cycles; (c) a [9; 1; 0] PTS-ICS contains a single cycle.
Filled circles denote variable nodes and filled squares denote check nodes.

6.2.1 Search for PTS-ICSs

The first step of our proposed IS scheme is to search as many detrimental

PTS-ICSs as possible within the code graph by using a three-stage search method.

6.2.1.1 Step one

In Sect. 2.4.2, “approximate cycle extrinsic message degree (ACE)” has been

defined as a metric to measure the number of check nodes singly connected to a

cycle. In particular, the ACE of a cycle with length 2l equals
∑i=l

i=1(di−2), where di

is the degree of the ith variable node in this cycle. Moreover, detrimental PTS-ICSs

contain a single cycle or multiple cycles formed by a combination of short cycles.

Thus, identifying short cycles with few extrinsic edges will facilitate us searching

for detrimental PTS-ICSs. In other words, we should search for short cycles with

small ACE values, which can accomplished using the method in Sect. 2.4.2. In the

following, we briefly outline the procedures.

• Set the depth threshold (θ) and the ACE threshold (χ).

• Sort the variable nodes according to their degrees in non-decreasing order, i.e,

di ≤ dj , if i < j.
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• Initialize i = 1.

• A subgraph is obtained by traversing the bipartite graph of the LDPC codes

breadth-first from the ith variable node to depth θ.

• Search the subgraph and list all the cycles originating from and terminated at

the ith variable node with ACE less than χ.

• Set i = i + 1 and repeat searching for the cycles, until all the variable nodes

have been considered, i.e., i = N .

Note that to avoid repetitive counting, the subgraph expanded from the ith variable

node excludes all the variable nodes with index less than i. At the end of the pro-

cedures, we will have recorded a number of (single) short cycles with ACE values

less than χ. These cycles are indeed PTS-ICSs with a single cycle.

From the results in [15], it can be observed that all of the variable-degree dis-

tributions optimized by the density evolution algorithm contain degree-2 variable

nodes. However, an irregular code containing degree-2 variable nodes, if not well

constructed, may contain many detrimental [w; u; e] PTS-ICSs with small w. Sup-

pose that the single-cycle and multiple-cycle PTS-ICSs of size within Ws and Wm

are relatively more harmful to the decoder. Then, in order to find out the most detri-

mental PTS-ICSs, we need to set the depth threshold (θ) to be large enough such

that single-cycle [w; u; e] PTS-ICSs with w ≤ Ws and multiple-cycle [w; u; e] PTS-

ICSs with w ≤ Wm can be found in future steps. Afterward, χ would be set to

strike a balance between the computation time and accuracy in a heuristic manner.

In the following, we will derive the bound of the depth threshold for given irregular

LDPC codes when Ws and Wm are provided.

First, we consider the PTS-ICSs with single cycles. To ensure the identifica-

tion of all possible single-cycle PTS-ICSs of size withinWs, it can be readily shown

that the depth threshold should be set larger than Ws, i.e.,

θ ≥ Ws + 1. (6.15)

Next, we consider the PTS-ICSs with multiple cycles. The PTS-ICSs with multiple

cycles can be linked together by one or more common variable nodes. If we intend
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to identify all possible [Wm; u; e] PTS-ICSs, the depth threshold should be set large

enough to cover at least one of the cycles in the PTS-ICSs. In other words, the depth

should be larger than or equal to half of the largest achievable smallest cycle length

over all possible configurations of the PTS-ICSs. Denote the smallest cycle in a

[Wm; u; e] PTS-ICS by lmin and the length of the cycle lmin by ||lmin||. We randomly

select a T-type variable node in the cycle lmin as the root node R. Consider a two-

cycle cycle set in the [Wm; u; e] PTS-ICS with the node R being the common node

and one cycle being lmin (see Fig. 6.2). The size of the cycle set is denoted by W ,

where

W ≤Wm. (6.16)

The equality holds if and only if the PTS-ICS is composed of the two-cycle cycle set

and some extra edges. Consider the cycle set in Fig. 6.2(a). It consumes three edges

from the root variable node R. Given the minimum cycle length ||lmin||. Based on

Theorem 5.1 in Chapter 5. The size of cycle set is bounded by

W ≥ ||lmin||
2

+

(⌈ ||lmin||
4

⌉
− 1

)
(6.17)

From (6.16) and (6.17), we have

Wm ≥ ||lmin||
2

+

(⌈ ||lmin||
4

⌉
− 1

)
. (6.18)

Denote the largest integer ||lmin|| satisfying the inequality (6.18) by ||l∗amin||. We

further consider the cycle set in Fig. 6.2(b), which has two cycles sharing only one

variable node. Recall that lmin is the smallest cycle in the PTS-ICS. Denote the

other cycle by lcycle and its length by ||lcycle||. Hence, we have

||lcycle|| ≥ ||lmin||. (6.19)

In addition, the total number of variable nodes contained in the cycle set, i.e., the

size of the cycle set, is the sum of the number of variable nodes in cycle lcycle and

the number of variable nodes in cycle lmin minus 1. Thus,

||lcycle||
2

+
||lmin||

2
− 1 = W (6.20)
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From (6.16), (6.19) and (6.20), we obtain

||lmin|| ≤ W + 1

⇒ ||lmin|| ≤ Wm + 1. (6.21)

Denote the largest integer satisfying the above inequality by ||l∗bmin||. Then ||l∗bmin|| =
Wm + 1. Note also that if we substitute ||lmin|| = Wm + 1 into (6.18), the inequal-

ity is satisfied. Thus, we can conclude that ||l∗amin|| ≥ ||l∗bmin|| and that the largest

achievable smallest cycle length over all possible [Wm; u; e] PTS-ICSs, denoted by

||l∗min||, equals

||l∗min|| = max(||l∗amin||, ||l∗bmin||) = ||l∗amin||. (6.22)

Finally, combining all the above results, the depth threshold θ should therefore be

set to

θ ≥ max(Ws + 1,
||l∗min||

2
+ 1), (6.23)

where ||l∗min|| is the largest integer ||lmin|| satisfying (6.18).

6.2.1.2 Step two

Suppose W single cycles have been discovered in the previous step. To iden-

tify all the possible detrimental PTS-ICSs, one way is to consider the single cycles

under all kinds of combinations, which will result a total of (W
2 )+(W

3 )+ ...(W
W ) pos-

sibilities. However, this is a prohibitive number due to the very large W . Instead of

using the above computation-intensive method, we apply a multi-bit error impulse

technique which creates impulse errors to all the variable nodes in a single cycle.

Details of the technique is described as follows.

Consider one of the single cycles. We apply some unnatural noises, called

“error impulses” with amplitude ε, to all the bit positions in the cycle. We also

scale the remaining bits in the codeword by a relatively smaller parameter α [73].

Without lost of generality, we assume that the first few bits of the codeword are

involved in the single cycle. Then, when an all-zero codeword is transmitted, the

deterministic input to the decoder can be represented by

xe = [ −1 + ε,−1 + ε, . . . ,−1 + ε︸ ︷︷ ︸
bits in the single cycle

,−α,−α, . . . ,−α,−α︸ ︷︷ ︸
bits not in the single cycle

]. (6.24)
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l
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minl

…
…

cyclel

(a) (b)

Figure 6.2: Examples of two possible configurations of cycle set comprising: (a)
two cycles with one common path (the path has at least one edge); (b) two cycles
with one common node, i.e., root node R.

The error impulse ε has to be larger than one such that the bits in the single

cycle will change state. Further, the scaling parameter α should be positive such

that the bits not in the single cycle will be decoded correctly when the initial hard

decisions are made. Yet, α should be smaller than one to (i) allow the fallacious

information from bits in the single cycle to thoroughly propagate further out to

nodes outside the cycle; and (ii) reduce the amplitude of the valid information trying

to correct the variable nodes in the single cycle. Then, we run the decoder with the

deterministic input xe. The hard decision vector x̂l at each iteration is recorded

until the decoder reaches the maximum number of iteration and fails to find the

valid codeword, where l = 1, 2, . . . , Imax and Imax denotes the maximum iteration

number.

Note that when a very small α and very large ε is selected for the determin-

istic input, more bits in the decoder are likely to become incorrect, leading to the

discovery of a very large number of [w; u; e] PTS-ICSs and a very long searching

time. Thus, to achieve a balance between efficiency and effectiveness of the search

method, the parameters ε and α should be selected with care.

Compared with the search method proposed by Cole et al. [73], our method,

i.e., applying error impulses to single cycles, makes the decoder more likely to

fail on detrimental [w; u; e] PTS-ICSs consisting of 2 or 3 “distinguishable” cycles.
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However, both our method and Cole’s search method are not capable of identify-

ing [w; u; e] PTS-ICSs with (i) 5 or more “distinguished” cycles linked by several

common nodes, as presented in Fig. 6.3 or (ii) a relatively large u, e.g., u > 4.

Furthermore, we observe that when we apply our multi-bit error impulse approach

to single cycles involved in the aforementioned two categories of PTS-ICSs, the de-

coder either succeeds in decoding or fails to decode without affecting many “non-

error-impulsed” bits, regardless of the combination of ε and α. Thus, the error rate

associated with those PTS-ICSs may be seriously underestimated, resulting in an

underestimated BLER if such detrimental PTSs contribute significantly to the error

floor. Fortunately, the PTS-ICSs in the former category (Category (i)) usually has

a large w, implying that the errors are of low probability to occur in the PTSs at

high SNR. For PTSs in the latter category (Category (ii)), a relatively large u means

that there is adequate check-node information to correct the errors in the PTSs.

Thus in both situations, each individual [w; u; e] PTS-ICS contributes very little to

the overall error probability. Nonetheless, if the group size of such PTS-ICSs is

extremely large, the overall error contribution from all such PTS-ICSs might still

be non-negligible. Finally, irregular LDPC codes built on optimized degree distri-

butions usually have large proportions of variable nodes with degree less than 5.

Under such circumstances, most of the detrimental [w; u; e] PTS-ICSs consist of 2

or 3 “distinguishable” cycles with u ≤ 4 and they will dominate the error proba-

bility at the high SNR region. For these cases, our method will be able to identify

most of such PTS-ICSs.

6.2.1.3 Step three

In the previous step, we have recorded sequences of hard decision vectors

when the decoder fails to converge. Consider a particular sequence. For each vector

x̂I (I = 1, 2, . . . , Imax) in the sequence, a PTS or PTS-ICS can be observed by

considering the set of variable nodes decoded as “1”. However, to locate the PTS

or PTS-ICS most detrimental to the decoder, not only the final state of the decoder

but also the sequence of hard decision vectors should be taken into account. In [73],

the authors have selected the target TS as the set of variable nodes corresponding to

141



��������

Figure 6.3: A [12; 4; 8] PTS-ICS containing 5 “distinguishable” cycles.

bits decoded as “1” in x̃, where

x̃ = min
l

ωH(x̂lH
T ) (6.25)

Here, H represents the code matrix and ωH(·) denotes the hamming weight of a

vector. But then, in this manner, some redundant TSs or TS-ICSs may be recorded.

For instance, suppose in two different vector sequences, two target TSs are found

and their induced connected subgraphs are as shown in Fig. 6.4(a) and (b). First, we

observe that in Fig. 6.4(a), there are two variable nodes lying outside the multiple-

cycle TS-ICS. These nodes, being outside the multiple-cycle TS-ICS, has minimal

effect in enhancing the erroneous information within the cycles and are therefore

not playing any significant role in this particular [11; 1; 2] PTS-ICS. When these two

variables nodes and their associated connections are removed, the [11; 1; 2] TS-ICS

becomes exactly the same as the [9; 1; 2] TS-ICS in Fig. 6.4(b). As a consequence,

the [11; 1; 2] TS-ICS should be removed from the list of detrimental TS-ICSs if the

[9; 1; 2] TS-ICS is already in the list.

In our proposed method, to ensure that redundant PTSs or PTS-ICSs will not

be counted, we select PTS-ICSs as follows. First, we select x̃ using (6.25). Then,

142



we form the PTS-ICS from the set of variable nodes decoded as “1” in x̃. Next, we

modify the PTS-ICS by removing all the variable nodes not in the cycles and their

associated edges. Finally, if the modified PTS-ICS does not exist in our detrimental-

PTS-ICS list, it is added to the list. By the end of this stage, we will have compiled

a list of detrimental PTS-ICSs.

6.2.2 Classification of detrimental PTS-ICSs

Assume that Ω detrimental PTS-ICSs have been found. We then classify the

PTS-ICSs into the same group if they have the same label [w; u; e]. Suppose a total

ofD PTS-ICS groups are formed. We can label these groups with [wn; un; en] where

n = 1, 2, . . . ,D. Note also that there is no guarantee that PTS-ICSs with the same

label [wn; un; en] (i.e., in the same PTS-ICS group) are configured equivalently un-

der the graph of irregular codes. Fig. 6.4 (b) and (c) illustrates two [9; 1; 2] PTS-ICSs

with different configurations. The PTS-ICS in Fig. 6.4 (b) contains one degree-4,

one degree-3 and seven degree-2 variable nodes, while the PTS-ICS in Fig. 6.4 (c)

possesses three degree-3 and six degree-2 variable nodes. Further delicate classifi-

cations of the PTS-ICSs may result a better accuracy in error-floor prediction, but

also give rise to higher computation complexity.

6.2.3 Implementation of IS on each PTS-ICS

From our simulation results in Sect. 6.3.2, we find that error probabilities of

PTS-ICSs in the same group, though may not be the same, lie within the same

order. Based on the observation, we propose a two step approach in providing a

better estimation of the error-floor without delicate classifications of PTS-ICSs.

6.2.3.1 Rough estimation

For each group of PTS-ICS, we randomly select one representative and use

an IS simulator to estimate its BLER. Hence, we obtain a total of D different error

probabilities, denoted by P̌IS(n), n = 1, 2, . . . ,D.
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(a)

(b)

(c)

Figure 6.4: The (a) [11; 1; 2] PTS-ICS and (b) [9; 1; 2] PTS-ICS and (c) [9; 1; 2]
PTS-ICS.
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6.2.3.2 Fine estimation

Suppose the largest value among the BLERs found in the previous step (P̌IS(n),

n = 1, 2, . . . ,D) is of the order 10−I, where I is a positive integer. We then further

consider groups with representatives giving rise to error probabilities larger than

10−I−1. Denote the set of the indices of such groups by Sfine. For Group n′ where

n′ ∈ Sfine, we will apply IS simulator to estimate the error probabilities of all its

PTS-ICS elements. Denoting the error probability of the kth element in Group n′

by P̌IS(n
′, k), the overall BLER, P̂IS, of the code can then be estimated using

P̂IS =
∑

n′∈Sfine

∑

k

P̌IS(n
′, k) +

D∑

n=1,n/∈Sfine

MnP̌IS(n) (6.26)

whereMn represents the multiplicities of Group n.

6.3 Results and discussion

Although the proposed importance sampling (IS) approach in conjunction with

PTS identification aims at evaluating the BLER of irregular LDPC codes, it is read-

ily applied to evaluate the BLER of regular ones. In the following, we show some

of the results when the proposed method is applied to regular and irregular LDPC

codes.

6.3.1 Regular codes

We first study the short-length, regular code “Mackay (3; 6)” [97] which has a

variable-node degree dv of 3, a check-node degree dc of 6 and a block length N of

1008. Using the program provided in [97], we search for the smallest cycle length

and the second smallest cycle length in the bipartite graph of the regular code. We

then discover seven cycles with the smallest cycle length of 8 and more than 1000

cycles with the second smallest cycle length of 10.

Denoting the length of the second smallest cycle as 2ι, we can safely assume

that there is a very small probability for a detrimental PTS-ICS to be formed by

cycles with lengths all larger than 2ι. Thus, when we search for detrimental PTS-
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ICSs using our proposed IS scheme in Sect. 6.2.1, we only need to set the depth

threshold θ to ι + 1 to ensure that all single cycles with length 2ι are to be found.

Moreover, the corresponding ACE value of a cycle of length 2ι can be readily shown

equal to (dv − 2)ι. Since the ACE threshold χ should be larger than (dv − 2)ι, we

can set χ to

χ = (dv − 2)ι + 1 = (dv − 2)(θ − 1) + 1. (6.27)

In the “Mackay (3; 6)” regular code being studied, 2ι = 10 leads to a depth thresh-

old of θ = ι + 1 = 6 and an ACE threshold of χ = (dv − 2)× 5 + 1 = 6.

We apply the depth threshold and the ACE threshold found above to Step One

in Sect. 6.2.1 to search for single cycles with ACE less than χ. Denote S1 as the

set containing sets of variable nodes forming such single cycles. The size of S1,

denoted by |S1| (also equal to W ), is found to be 10, 833. Then a total number

of 10, 833 trials have to be conducted in Step Two with the application of impulse

errors to each element of S1. At each decoding, the decoder will try to recover

the all-zero message from the deterministic input parameterized by ε and α. Note

that another parameter, namely the SNR, is required in the BP decoder for message

initialization [79]. Since the SNR does not affect the BP decoding significantly, we

set it arbitrarily to 6 dB here. For each input vector which is only parameterized by

ε and α, the BP decoder will iterate with a maximum of 30 times. Three groups of

search parameters (ε, α) used for S1, as well as the mean number of iterations N̄it

taken at each decoding associated with each set of search parameters, are listed in

Table 6.1. Moreover, the detrimental PTS-ICSs found and their numbers are also

shown in the same table. At ε = 2.6 and α = 0.4, relatively fewer detrimental PTS-

ICSs have been discovered with a mean of 22 iterations taken to decode a message

block. As ε is reduced to 2.1, a smaller α is used to trigger the decoder to fail and an

increase number of detrimental PTS-ICSs is found. It takes 18 iterations on average

to decode, leading to a relatively shorter running time of the program.

For comparison purpose, we also make use of the “four-variable-node” combi-

nations [73] proposed for evaluating regular LDPC codes as the basis for searching

PTS-ICSs. According to [73], there is a total of (dc − 1)dv possible “four-variable-

node” combinations for every variable node in the regular code, with the variable

node being considered at the center. Denoting S2 as the set consisting of all such

“four-variable-node” combinations in the regular code, the size of S2, represented
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Table 6.1: Parameters used for finding the detrimental PTS-ICSs in the “MacKay
(3;6)” code and the number of detrimental PTS-ICSs returned.

Proposed Scheme Based on “Four-variable-node”
Single Short Cycles S1 Combinations S2

Set Size
|Sκ| 10, 833 126, 000

(ε, α) (2.6, 0.4) (2.5, 0.30) (2.1, 0.20) (4.2, 0.60) (3.8, 0.40) (2.5, 0.20)

N̄it 22 15 18 7 7 9

N̄it × |Sκ| 238, 326 162, 495 194, 994 882, 000 882, 000 1, 134, 000

[9; 3; 6]

PTS-ICSs 1 1 1 1 1 1
[11; 3; 8]

PTS-ICSs 5 8 8 0 8 9
[13; 3; 10]

PTS-ICSs 0 3 12 0 2 12
[6; 4; 2]

PTS-ICSs 1 1 1 1 1 1
[8; 4; 4]

PTS-ICSs 48 44 43 29 48 47
[10; 4; 6]

PTS-ICSs 89 82 95 0 89 117
[12; 4; 8]

PTS-ICSs 4 25 52 0 4 37
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by |S2|, can be readily shown equal to |S2| = N(dc − 1)dv . For the regular code

“Mackay (3; 6)” being considered, |S2| = 1008× (6− 1)3 = 126, 000. The set S2

will then pass to Step Two, in which impulse errors will be applied to each element

of S2. The parameters (ε, α) used for S2 and the corresponding results are listed in

Table 6.1. According the results, larger multiplicities of detrimental PTS-ICSs are

returned from the search when (ε, α) = (2.5, 0.20).

Comparing the results in Table 6.1, firstly we observe that the size of the

single-short-cycle set (i.e., S1 = 10, 833) is much smaller than the set containing

“four-variable-node” combinations (i.e., S2 = 126, 000). It implies that the single-

short-cycle set provides a much smaller search space for dominant error events.

Secondly, although the elements in the single-short-cycle set S1 require a relatively

larger average number of iterations (N̄it) to converge compared with the “four-

variable-node” combinations, the total number of iterations required (N̄it × |Sκ|) to

search for detrimental PTS-ICSs based on the single-cycle set is still significantly

lower than that based on the “four-variable-node” combinations.

We then apply the IS simulation to a representative PTS-ICS from each of the

PTS-ICS groups. We assume an all-zero codeword being transmitted. Also, the ith

input is from shifted −1 + zi to −1 + µi + zi (i = 1, 2, ..., N ), where zi is a ran-

dom AWGN noise sample. To ensure that the mean of the biased density is on the

boundary of the error region, the value of µi will be set as follows. If the ith bit is

in the PTS-ICS, µi = µ; otherwise µi = 0. The decoder will iterate a maximum of

50 times for each input vector. Further, it has been reported that for binary AWGN

channel, the optimal biased-density center should reside close to the boundary be-

tween the error region and the region that can be decoded successfully [68]. Hence,

we set µ = 1 for [w; 0; e] detrimental PTS-ICSs. For [w; u; e] detrimental PTS-ICSs

with u > 0, µ has to be bigger than one and a bisection technique is further ap-

plied to search for the optimal µ in (µl, µu) where µl and µu are set to 1 and 3.2,

respectively.

Fig. 6.5 presents the block-error-rate (BLER) performance of code “MacKay

(3;6)” over an AWGN channel when evaluated using the MC method and the pro-

posed IS technique separately. When the MC method is used, no more than 50 itera-

tions are allowed for each decoding and the simulations ends when 100 block errors

have been collected. Analyzing the block errors occurring at an SNR of 3.0 dB
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shows that 79 out of the 100 error events are caused by detrimental PTS-ICSs while

the other 21 are not. Moreover, for the error events not caused by detrimental PTS-

ICSs, the number of bit errors has remained over 100 for every iteration during the

decoding process. On the other hand, the detrimental PTS-ICSs creating the 79 er-

ror events are found to have 49 different [w; u; e] labels. They include one [11; 3; 8]

PTS-ICS, one [8; 4; 8] PTS-ICS and 47 [w; u; e] PTS-ICSs with u > 4. The error

results reflect that when the SNR is not large enough (3.0 dB for this regular LDPC

code), the majority of the error events are either caused by [w; u; e] PTS-ICSs with

u > 4 or caused by other reasons not related to PTS-ICSs. In consequence, our

proposed IS scheme, which focuses on predicting the error floor based on [w; u; e]

PTS-ICSs with u ≤ 4 (see Table 6.1), may not produce consistent results with those

predicted by the MC method. Nonetheless, the proposed IS scheme will be more

accurate in predicting the error floor when the SNR increases and most error events

are due to [w; u; e] PTS-ICSs with u ≤ 4.

To further validate the accuracy of our proposed IS scheme in predicting the

error floor of short-length, regular LDPC codes, we investigate the regular code

“96-3-963” [97] which is known to have a high error floor. The code has a variable-

node degree of 3, a check-node degree of 6 and block length of 96. For this code,

the values of the parameters used in our proposed IS scheme to search for the detri-

mental PTS-ICSs are θ = 6, χ = 6, ε = 1.8 and α = 0.8. Block error rates obtained

by both the proposed IS and MC techniques are presented in Fig. 6.5. It can be seen

that the BLERs predicted by the proposed IS scheme match with those found by the

MC technique. Moreover, a closer look into the error events simulated in the MC

technique further reviews that the errors are mainly caused by [w; u; e] PTS-ICSs

with w < 9, u = 0, 1, and e > 0. Based on the aforementioned results, we conclude

that the proposed IS scheme can accurately predict the error floor of short-length

LDPC codes when most error events are due to [w; u; e] PTS-ICSs with small u.

6.3.2 Irregular codes

6.3.2.1 Rate 0.5 LDPC codes

First, we consider LDPC codes with rate 0.5. We apply the proposed PTS-

ICSs search methods to three irregular LDPC codes: “PEG-only-DE15” (“PEGir-
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Figure 6.5: Block error rates obtained by the standard MC technique and our pro-
posed IS technique for “MacKay (3; 6)” and code “96-3-963” codes.

Reg504x1008” from [97]), “PEG-ACSE-8-4-DE15” and “PEG-only-DE10”. We

run the MC simulations on each of the codes at SNR=2.8 dB until we have col-

lected 100 block errors, which include the cases when the decoder fails to converge

within 50 iterations. We observe that most of the block errors are due to single-

cycle [w; u; e] PTS-ICSs with w < 11 or multiple-cycle [w; u; e] PTS-ICSs with

w < 17, i.e., Ws = 10 and Wm = 16. According to (6.23) and (6.18) in Sec-

tion 6.1.2, ||lmin|| = 22 and θ ≥ max(10 + 1, 11 + 1) = 12. Moreover, among

the multiple-cycle PTS-ICSs related to the block errors, most are formed by com-

binations of single cycles with ACE values not larger than 6. Therefore, during the

search for single cycles in the codes, we set θ = 12 and χ = 6 to ensure that all

the detrimental PTS-ICSs mentioned above can be captured. Next, we select ε and

α with an aim to maximizing the number of detrimental multiple-cycle PTS-ICSs

found. The mechanism of selecting parameters ε and α at Stage Two is the same as

that described in the previous section. In Table 6.2, we present the parameters used

and the number of single-cycles (W ), the number of detrimental PTS-ICSs (Ω) and

the number of PTS-ICS groups (D) found for the three irregular codes.

Table 6.3 further shows the multiplicities of single-cycle ([w; u; 0]) PTS-ICSs

150



Table 6.2: Parameters used for finding the detrimental PTS-ICSs in the irregular
codes and the results returned.

Code PEG-only-DE15 PEG-ACSE-DE15 PEG-only-DE10
W 39,221 39,845 57,738

(ε, α) (1.7, 0.50) (1.5, 0.35) (1.7, 0.60)

N̄it 13 12 12

Ω 43, 071 43, 468 61, 765

D 155 153 138

with w < 11 and u = 1, 2 whereas Fig. 6.6 presents the multiplicities of multiple-

cycle (e > 0) [w; u; e] PTS-ICSs with w < 17 and u = 0, 1 found in the codes.

From the results, we can see that Code “PEG-only-DE10” contains one [11; 0; 2]

PTS-ICS, three [9; 1; 2] and two [10; 1; 2] PTS-ICSs. Due to the existence of the

[11; 0; 2] PTS-ICS, we can conclude that the minimum hamming weight of Code

“PEG-only-DE10” is no larger than 11. Furthermore, Code “PEG-only-DE15” pos-

sesses one [13; 0; 2] PTS-ICS, one [9; 1; 2] PTS-ICS and three [10; 1; 2] PTS-ICSs.

Since Code “PEG-only-DE15” does not seem to contain any [w; 0; e] PTS-ICSs

with w < 13, it might have a larger minimum hamming weight compared with

Code “PEG-only-DE10”. As for Code “PEG-ACSE-DE15”, the minimum [w; 0; e]

PTS-ICS is possibly [16; 0; 2], which suggests that the code might have the largest

hamming weight among the three codes. Moreover, no [w; 1; e] PTS-ICSs with w

less than 12 have been detected in the same code. Since multiple-cycle PTS-ICSs

contribute more to error floor than single-cycle PTS-ICSs, the aforementioned find-

ings imply that at high SNR, Code “PEG-ACSE-DE15” should outperform Code

“PEG-only-DE15”, which in turn outperforms Code “PEG-only-DE10”. The im-

plication is also consistent with the conclusion drawn in Chapter 5.

Then, for each of the codes, we apply the IS simulation to a representative

PTS-ICS from each of the PTS-ICS groups. As in Sect. 6.3.1, we set µ = 1 for

[w; 0; e] detrimental PTS-ICSs and we use a bisection technique to search for the

optimal µ for [w; u; e] detrimental PTS-ICSs with u > 0. Moreover, for each indi-

vidual PTS-ICS, the IS simulator is called “converged” if condition (6.11) is satis-

fied. Since our MC simulator continues until 100 block errors have been collected,
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Figure 6.6: Multiplicities of multiple-cycle [w; u; e] PTS-ICSs with w < 17 and
u = 0, 1 (e > 0) in Codes “PEG-only-DE15”, ”PEG-ACSE-8-4-DE15” and “PEG-
only-DE10”.
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Table 6.3: Multiplicities of single-cycle ([w; u; 0]) PTS-ICSs with w < 11 and
u = 1, 2 in Codes “PEG-only-DE15”, “PEG-ACSE-8-4-DE15” and “PEG-only-
DE10”.

Code PEG-only PEG-ACSE PEG-only
-DE15 -8-4-DE15 -DE10

[7; 1; 0] PTS-ICS 3 0 9
[8; 1; 0] PTS-ICS 5 6 2
[9; 1; 0] PTS-ICS 1 3 2
[10; 1; 0] PTS-ICS 13 19 9
[6; 2; 0] PTS-ICS 0 0 57
[7; 2; 0] PTS-ICS 89 0 207
[8; 2; 0] PTS-ICS 126 58 163
[9; 2; 0] PTS-ICS 63 58 105
[10; 2; 0] PTS-ICS 132 121 103

i.e., P̂MCNMC = 100, (6.11) can be written as

φ2
IS(NIS) =

∑NIS

1 [1E(x∗)ω(x∗)]2

{∑NIS

1 [1E(x∗)ω(x∗)]}2
− 1

NIS

≤ 0.01. (6.28)

Denote Nf as the number of decoding failures when the IS simulation progresses.

Also, we define

φ2
IS(Nf ) =

∑Nf

1 [1E(x∗)ω(x∗)]2

{∑Nf

1 [1E(x∗)ω(x∗)]}2
− 1

Nf

. (6.29)

When the IS simulation applies to a PTS-ICS, we can observe the change of φ2
IS(Nf )

as Nf increases. For example, Fig. 6.7(a) plots the values of ω(x∗) and φ2
IS(Nf )

versus Nf when IS simulation applies to a [9; 1; 2] PTS-ICS in Code “PEG-only-

DE15”. The value of φ2
IS(Nf ) decreases steadily and reaches below 0.01 at Nf ≈

10, 000.

For some [w; u; e] PTS-ICSs, especially [w; u; e] PTS-ICSs with u > 2, we

observe that when Nf increases, φ2
IS(Nf ) occasionally surges and fails to reach

below 0.01 even when Nf is very large. In consequence, the estimated error rates

obtained by applying IS on such PTS-ICSs keep changing as Nf increases. For
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Figure 6.7: Plot of ω(x∗) and φ2
IS versus number of decoding failures for the Code

“PEG-only-DE15” during an IS simulation. The IS simulator (a) converges to a
[9; 1; 2] PTS-ICS; (b) fails to converge to a [8; 3; 2] PTS-ICS; (c) converges to a
[8; 3; 2] PTS-ICS after implementing the threshold restriction.154



example, Fig. 6.7(b) plots the values of ω(x∗) and φ2
IS(Nf ) when the IS simulation

applies to a [8; 3; 2] PTS-ICS. It is clearly seen that φ2
IS(Nf ) fails to converge even

with 5.5 × 104 block errors. By investigating the biased inputs with noise at such

instances, we find that such inputs actually fall into the domain of another PTS-

ICS instead of the simulated one. In this particular case, the inputs have fallen into

the domain of a nearby [11; 3; 2] PTS-ICS instead of the intended [8; 3; 2] PTS-ICS,

as shown in Fig. 6.8. Such noise realizations should be discarded because only

error events initiated by the intended PTS-ICS should be taken into account. To

overcome the problem, we establish a threshold ϕ. If the percentage change in

φ2
IS(Nf ) is greater than ϕ, i.e.,

φ2
IS(Nf )− φ2

IS(Nf − 1)

φ2
IS(Nf − 1)

> ϕ, (6.30)

ω(x∗) at the current decoding step is discarded and another noise realization will

be used. Here we set the threshold to be 10%. With the introduction of the new

restriction, we run the IS simulation again for the same [8; 3; 2] PTS-ICS. Results

show that φ2
IS(Nf ) is capable of converging, as depicted in Fig. 6.7(c).

In Table 6.4, we present the error contributions of several PTSs in code “PEG-

only-DE15” at SNR= 3.0 dB. Recall that P̌IS(n
′, k) denotes the error probability

of the k-th element in Group n′. We also denote NIS(n
′, k) as the number of IS

simulation runs used to obtain the error probability. Moreover, [w; u; e]k represents

the kth PTS from the same [w; u; e]-PTS class. The results have verified the conjec-

ture that a [w; u; e2] PTS will contribute more to the error floor at high SNR than a

[w; u; e1] PTS if 0 ≤ e1 < e2. For example, the error probability due to the [9;1;2]

PTS is higher than that due to the [9;1;0] PTS. Furthermore, we observe that the

error probabilities of PTS-ICSs in the same group may vary within the same order.

For example, all [10; 1; 2]k PTS (k = 1, 2, 3) produce errors in the order of 10−8.

In Fig. 6.9, we present the BLERs of the three irregular codes estimated by

both the standard MC technique and our proposed IS technique. It is clear that the

Code ‘PEG-ACSE-8-4-DE15” provides the best performance, while “PEG-only-

DE10” is the worst. Consider further the error results for the Code ‘PEG-ACSE-8-

4-DE15”. At an SNR of 5.5 dB, the proposed IS technique predicts an error rate of

10−13 for the code. Note that at SNR = 2.8 dB and 3.0 dB, there are discrepancies
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[8;3;2] PTS-ICS

[11;3;2] PTS-ICS

Figure 6.8: A [8; 3; 2] PTS-ICS overlaps with a [11; 3; 2] PTS-ICS. The filled circles
denote the variable nodes and the filled squares denote the check nodes.

Table 6.4: The error contributions of several PTS-ICSs from code “PEG-only-
DE15” at SNR= 3.0 dB. P̌IS(n

′, k) denotes the error probability of the k-th element
in Group n′. NIS(n

′, k) denotes the number of IS simulation runs used to obtain the
error probability.

PTS-ICS P̌IS(n
′, k) µ NIS(n

′, k)

[7; 1; 0]1 4.28× 10−9 1.66 8, 135

[8; 1; 0]1 1.03× 10−9 1.55 10, 954

[8; 1; 0]2 2.22× 10−9 1.55 27, 507

[9; 1; 0]1 2.21× 10−9 1.45 54, 307

[9; 1; 2]1 1.75× 10−7 1.28 21, 248

[10; 1; 0]1 2.74× 10−10 1.45 38, 425

[10; 1; 2]1 3.49× 10−8 1.28 9, 843

[10; 1; 2]2 4.45× 10−8 1.24 7, 522

[10; 1; 2]3 5.59× 10−8 1.24 8, 627

[11; 1; 0]1 2.68× 10−10 1.38 15, 190

[11; 1; 2]1 1.65× 10−8 1.26 26, 436
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between the BLERs found by the MC and IS techniques. The main reason is that

at such (comparatively low) SNR levels, many of the error events are caused not by

detrimental PTS-ICSs because the error floor is not yet reached. Nonetheless, the

proposed IS scheme should be more accurate in predicting the error floor at higher

SNR values.

Table 6.5 shows the number of simulation runs (up to 2 decimal places) for

the standard MC technique and the proposed IS technique for the three codes at

different SNR values. The standard MC simulator terminates until 100 block errors

are collected. But for extremely low BLERs, instead of running the MC directly, the

number of MC simulation runs (NMC) is estimated using 100/P̂IS. The results show

that the proposed IS technique can estimate the BLER with much less simulation

runs. In particular, a speed-up gain of 3.87 × 109 (= 3.51 × 1015/9.07 × 105) is

achieved at SNR=5.8 dB for Code “PEG-ACSE-DE15”.

6.3.2.2 Rate 0.75 LDPC codes

Next, we apply our proposed IS scheme to rate-0.75 LDPC codes: “PEG-

only-DE14”, “PEG-only-CDE12” and “PEG-only-CSF20”. A close look into the

decoding failures collected at 5.2 dB indicates that for such codes, most of the

failures are caused by single-cycle [w; u; e] PTS-ICSs with w < 10 and multiple-

cycle [w; u; e] PTS-ICSs with w < 12. The observations give Ws = 8 and Wm =

11. Substituting the values ofWs andWm into (6.15) and (6.18), we have ||l∗min|| =
16 and θ ≥ max(8+1, 16/2+1) = 9. Moreover, among those PTS-ICSs related to

the block errors, few are found containing single cycles with their ACE values larger

than 4 for code “PEG-only-DE14”, and 5 for codes “PEG-only-CDE12” and “PEG-

only-CSF20”. Therefore, we set θ = 9 for all the three codes under study, χ = 4

for code “PEG-only-DE14” and χ = 5 for codes “PEG-only-CDE12” and “PEG-

only-CSF20”. The mechanism of selecting the parameters ε and α at Stage Two is

the same as that used for rate-0.5 codes. In Table 6.6, we present the parameters

used and the number of detrimental PTS-ICSs (Ω) and groups (D) found for those

rate-0.75 codes.

Fig. 6.10 presents the multiplicities of multiple-cycle (e > 0) [w; u; e] PTS-

ICSs with w < 12 and u ∈ {0, 1} found in the codes. From the figure, we can see
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Table 6.5: The number of simulation runs of standard MC technique and our pro-
posed IS technique as well as the speed-up gains for codes “PEG-only-DE15”,
”PEG-ACSE-8-4-DE15” and “PEG-only-DE10”. The symbol γs denotes the speed-
up gain of IS compared to MC. The symbol ∗ indicates that the number of MC
simulation runs (NMC) is estimated using 100/P̂IS.

Name of code SNR(dB) NMC NIS γs

2.8 2.84× 107 8.69× 105 33
PEG-only-DE15 3.0 6.50× 107 7.58× 105 86

3.8 1.83× 109* 8.07× 105 2, 266

4.8 1.34× 1011* 5.97× 105 2.24× 105

5.8 2.58× 1013* 4.00× 105 6.44× 107

2.8 5.00× 107 1.19× 106 42
PEG-ACSE-8-4-DE15 3.0 1.55× 108 1.11× 106 133

3.8 2.35× 1010* 1.03× 106 2.29× 104

4.8 4.95× 1012* 8.92× 105 5.55× 106

5.8 3.51× 1015* 9.07× 105 3.79× 109

2.8 1.01× 107 5.49× 105 18
PEG-only-DE10 3.0 2.07× 107 5.56× 105 37

3.8 3.59× 108* 5.38× 105 666
4.8 1.32× 1010* 2.01× 105 6.61× 104

5.8 1.35× 1012* 1.68× 105 8.03× 106
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Figure 6.9: BLERs obtained by standard MC technique and our proposed IS
technique for codes “PEG-only-DE15”, ”PEG-ACSE-8-4-DE15” and “PEG-only-
DE10”.

that code “PEG-only-DE14” contains one [7; 0; 4] PTS-ICS, while code “PEG-only-

CDE12” and code “PEG-only-CSF20” contain one [7; 0; 2] PTS-ICS. The observa-

tions show that the minimum hamming weights of the three codes are no larger than

7. The figure further depicts that code “PEG-only-DE14” has the largest number of

detrimental [w; 0; e] PTS-ICSs among the three codes. In particular, it possesses

one [7; 0; 4], twelve [8; 0; 2] PTS-ICSs and one hundred and thirty-eight [10; 0; 2]

PTS-ICSs which in total will contribute many errors to the decoder. Code “PEG-

only-CDE12” has a comparable number of detrimental [w; 0; e] PTS-ICSs as code

“PEG-only-CSF20”, but possesses more [w; 1; e] PTS-ICSs. As a consequence,

code “PEG-only-CSF20” should produce the best error performance at high SNR

while code “PEG-only-DE14” should give the highest error floor. The inference is

already verified by the results shown in Fig. 4.6 of Chapter 4.

In Fig. 6.11, we present the BLERs of the rate-0.75 codes estimated by both

the standard MC technique and our proposed IS technique. It is observed that for

code “PEG-only-DE14” which has a relatively higher error floor, the performance

curve obtained from IS matches well with that from MC at 5.2 dB, 5.4 dB and

5.6 dB. For codes “PEG-only-CDE12” and “PEG-only-CSF20”, a small gap is ob-
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Figure 6.10: The multiplicities of [w; u; e] PTS-ICSs with w < 12, u ∈ {0, 1} and
e > 0. Codes “PEG-only-DE14”, “PEG-only-CDE12” and ”PEG-only-CSF20”
with rate 0.5 are used.
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Table 6.6: Parameters Used and Results in the Search of detrimental PTS-ICSs in
the irregular rate-0.75 codes.

Code PEG-only-DE14 PEG-only-CDE12 PEG-only-CSF20
ε 1.28 1.40 1.37

α 0.65 0.50 0.55

Ω 345524 793275 302162

D 58 111 97

served between the IS curve and the MC curve and it is reduced slightly as the SNR

increases from 5.0 dB to 5.2 dB. Further, the performance curves show that con-

strained SF-LDPC code outperforms code “PEG-only-CDE12” by about 0.4 dB at

BLER of 10−6, which in turn outperforms code “PEG-only-DE14” by about 0.2 dB.

We further analyze the estimated error contribution of each PTS at different SNR

values. It is found at SNR = 8.0 dB (BLER of order 10−10), the [w; u; e] PTS-ICSs

with w < 8, u = 0, 1 and e ≥ 0 account for 56.34%, 83.03% and 95.83% of block

errors for codes “PEG-only-DE14”, “PEG-only-CDE12” and “PEG-only-CSF20”,

respectively. At SNR = 5.2 dB (BLER of order 10−5 or slightly lower than 10−5),

those PTS-ICSs only account for 46.96%, 49.55% and 59.55%. In other words, the

error events at very high SNR, i.e., extremely lower block error rates, are more re-

lated to the detrimental [w; u; e] PTS-ICSs with very small w, u = 0, 1 and e ≥ 0.

Under such circumstance, the proposed IS scheme should be more accurate in pre-

dicting the error floor.

The speed-up gains γs are listed in Table. 6.7. The table shows that compared

to MC, our proposed IS scheme performs well for high rate codes by providing

good estimations of BLER with much fewer simulation runs. A speed-up gain of

1.89× 108 (4.57× 1012/24178) is achieved at BLER 2.19× 10−11 for code “PEG-

ACSE-CSF20” with our proposed IS technique.

6.4 Summary

Given a particular LDPC code. We have developed in this chapter a three-step

method to search for as many detrimental primary trapping set-induced connected
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Table 6.7: The number of simulation runs of standard MC technique and our pro-
posed IS technique as well as the speed-up gains for rate-0.75 codes “PEG-only-
DE14”, “PEG-only-CDE12” and “PEG-only-CSF20”. The symbol ∗ indicates that
the number of MC simulation runs (NMC) is estimated using 100/P̂IS.

Name of code SNR(dB) NMC NIS γs

5.2 1.53× 106 3.70× 105 4
PEG-only-DE14 5.4 5.51× 106 4.13× 105 13

5.6 1.30× 107 4.73× 105 27

6.6 1.05× 109* 2.15× 105 4, 884

7.0 7.30× 109* 2.43× 105 32, 304

8.0 1.39× 1012* 1.35× 105 1.03× 107

5.0 1.28× 106 5.97× 105 2
PEG-only-CDE12 5.2 2.84× 106 9.13× 105 3

5.4 7.95× 106 7.04× 105 11

6.6 2.14× 109* 3.11× 105 6, 881

7.0 1.25× 1010* 2.29× 105 54, 585

8.0 1.80× 1012* 2.59× 105 6.98× 106

5.0 6.78× 106 7.15× 105 10
PEG-only-CSF20 5.2 1.48× 107 7.38× 105 20

6.0 6.65× 108* 4.66× 105 143
7.0 3.84× 1011* 7.35× 105 8.69× 106

8.0 4.57× 1012* 24, 178 1.89× 108
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Figure 6.11: BLERs obtained by standard MC technique and our improved IS
technique for rate-0.75 codes “PEG-only-DE14”, “PEG-only-CDE12” and “PEG-
only-CSF20”.

subgraphs (PTS-ICSs) as possible in this code. Then we classify the PTS-ICSs

based on the label [w; u; e]. Furthermore, we propose a two-step IS simulator to es-

timate the BLER of the code at the high signal-to-noise ratio (SNR) region. Results

show that our proposed scheme can achieve a good accuracy of BLER estimation

compared with the standard MC technique. In addition, speed-up gains of up to

3.87× 109 times can be achieved.
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Chapter 7

Conclusion and future work

7.1 Conclusions

In this thesis, we have presented a detailed study of short-length LDPC codes.

First, we have analyzed the dynamical behavior of short-length LDPC decoders

as the SNR varies. In particular, it has been found that fold bifurcations, flip bi-

furcations and Neimark-Sacker bifurcations occur within the waterfall region. For

regions with high and low SNRs, two kinds of fixed points have been observed in

the decoding system, namely the unequivocal fixed point and the indecisive fixed

point. The decoder will converge to an unequivocal fixed point if it finds a valid

codeword. We have also evaluated the eigenvalues from the Jacobian matrices at

such fixed points for stability analysis. The indecisive fixed points are found to be

unstable and will disappear as SNR increases. The unequivocal fixed points are sta-

ble in all range of SNR but their attraction bins shrink as SNR decreases. We have

further analyzed the effectiveness of a spatial-delay feedback control technique in

guiding the decoder to converge to the unequivocal fixed points. Results show that

there is a small improvement in block error rates but no apparent improvement in

terms of bit error rates.

Second, we have proposed a specific type of LDPC codes, namely scale-free

LDPC (SF-LDPC) codes. Such codes are characterized by having variable-node de-

grees following power-law distributions. To produce codes with good performance,
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the check nodes are designed to have only a few different degrees, which follow

Poisson distributions. We have also evaluated the achievable error-correcting capa-

bility (threshold) of the SF-LDPC codes using density evolution. Results show that

the optimized threshold values for the SF-LDPC codes are comparable to those for

other best-known LDPC codes (less than 2% difference). Then several short-length

SF-LDPC codes of various rates have been constructed using a popular algorithm

called progressive edge growth (PEG). The simulation results show that short-length

SF-LDPC codes outperform the other best-known codes by about 0.2 dB at high

SNR under the same code length, same code rate and slightly less implementation

complexity.

Moreover, we have observed in our simulations that short-length LDPC codes

suffer from the problem of error floor. While trapping sets (TSs) are the main cause

of the error floor, we have discovered that not all trapping sets are equally harmful.

In addition, we classify the induced connected subgraphs (ICS) of TSs into those

with (i) no cycle; (ii) single cycle and (iii) multiple cycles. By defining the node

having more than two edges involved in the multiple cycles as a “T-type node”, the

TS-ICSs with multiple cycles are then further categorized according to the T-type

nodes they contain, i.e., (i) all T-type nodes are variable nodes; (ii) all T-type nodes

are check nodes; and (iii) both T-type variable nodes and T-type check nodes exist.

We have found that the majority of error events at high SNR are due to the incidents

that the decoder being trapped by some specific types of TSs, the ICSs of which

containing single cycle or multiple cycles without T-type check nodes. Moreover,

we have shown that using [w; u] alone is not adequate to indicate the characteristics

of a TS. (w denotes the number of variable nodes in the TS and u represents the

number of check nodes with odd number of connections to the TS.) To overcome

this problem, have refined the [w; u] TS with the label [w; u; e], where e the newly

introduced parameter called “cycle-indicator”. Furthermore, we define “primary TS

(PTS)” and show that [w; u; e] PTSs with small w, relatively smaller u and e ≥ 0

are contributing to the error floor. Subsequently, we propose a code construction

method that aims to avoid these PTSs. Then, several short-length irregular LDPC

codes have been constructed based on the proposed method and they show superior

performance at the high SNR region.

In order to effectively and efficiently evaluate the error rates of the codes at the
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high SNR region, we have designed a novel scheme combining importance sam-

pling (IS) and PTSs identification. The proposed IS scheme has been applied to

both the regular and irregular LDPC codes. Results show that the error rate estima-

tion is very good and a speed-up gain of 3.5184× 109, compared with Monte Carlo

simulations, is achieved at BLER 3.5151× 10−15.

7.2 Contributions of the thesis

• The dynamical behavior of short-length LDPC decoders has been character-

ized.

• A spatial-delay feedback technique has been applied to improve the error-

correcting capability of short-length LDPC decoders.

• Scale-free LDPC codes have been proposed and optimized.

• Optimized scale-free LDPC codes have been evaluated analytically, constructed

and further evaluated by simulations.

• Induced connection subgraphs (ICSs) of trapping sets are classified.

• Trapping sets are refined with the introduction of the new parameter “cycle

indicator”.

• A new method have been developed to build short-length LDPC codes with

lower error floor.

• An improved importance sampling scheme has been designed to evaluated

the extremely low error rates of LDPC codes at high SNR region.

7.3 Future work

Based on the findings in the thesis, we propose the following topics for future

research.

• Application of complex-network theories to other error-correcting codes, such

as LT codes.
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• Study of the relationships between other properties of scale-free networks,

e.g., clustering coefficient and betweenness, and the error-performance of

short-length LDPC codes.

• Study the rate-compatible SF-LDPC codes.

• Implementation of SF-LDPC codes and rate-compatible SF-LDPC codes us-

ing hardware.

• Apply SF-LDPC codes to MIMO-OFDM system.

• Investigation of more accurate and efficient search method for detrimental

PTS-ICSs.

• Study short-length Q-ary LDPC codes.

– Optimization of the degree distributions of Q-ary LDPC codes

– Investigation of factors determining the performance of short-length Q-

ary LDPC codes

– Study whether error floors exist in short-length Q-ary LDPC codes

• Investigate the relation between Turbo codes and LDPC codes and apply the

idea of interleaver design to the design of short-length LDPC codes.
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