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The global competition that demands high quality plastic products and short
time-to-market has made the current trial and error practice in the determination of
iitial process parameters for injection moulding become inadequate. According to the
nature of the problem in initial process parameter setting for injection moulding, case
based reasoning (CBR) is deemed to be a promising technique to handle the experience-
based problems. In this research, a hybrid neural network and genetic algorithm (NN-
(GA) approach was introduced to complement the CBR approach in the determination of
initial process parameters for injection moulding, from which a Hybrid Systerﬁ foi -
Injection Moulding (HSIM) was developed. In the system, initial process parameters of
injection moulding are generated in two attempts. In the first attempt, initial process
parameters are generated based on CBR approach. If there is no workable solution to be
obtained from the first attempt, the second attempt in the generation of initial process
parameters for injection moulding is performed based on hybrid NN-GA approach.

HSIM. was validated by using a commercial simulation package for injection
moulding. Results of the system validation indicate that HSIM can generate a set of
initial process parameters for injection moulding that can lead to the production of good
quality moulded parts. Implementation of HSIM has also demonstrated that the time for
the determination of initial process parameters for injection moulding can be greatly
reduced, daily experience of moulding personnel in initial process parameter setting can

be captured, and self-learning capability can be facilitated.
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CHAPTER ONE - INTRODUCTION

1.1 Process Design of Injection Moulding

Plastic industry has been growing rapidly in recent years. The growth will be
accelerated by the tendency of substituting plastics for metal, which is appearing
throughout the world. Injection moulding is the most common and versatile process for
mass production of complex plastic parts with good dimensional tolerance. It is a
process by which plastic pellets are melted and injected into a cavity to form a complex
three-dimensional part in a single operation. Approximately 32% by weight of all
plastic parts are made by injection moulding [C-MOLD 1997]. Injection moulded
plastic parts can be found easily in a number of consumer product_s such as mobile
phones, electronic dictionaries and notebook computers.

Primary goal of injection moulding is to produce moulded parts with acceptable
quality. To achieve this goal, various design and engineering activities including
product design, process design and process control have to be involved. Process design
of injection moulding is one of the crucial activities in the development of plastic
products. Good process design can minimise the possible production problems, shorten
the time-to-market, reduce product development cost and improve the quality of
moulded parts. Process design of injection moulding involves a series of activities
which mainly include the selection of injection moulding machines, injection mould
design, cost estimation and determination of process parameters for injection moulding.

Basically, a proper injection moulding machine should provide sufficient shot
size, plasticising rate, injection pressure and clamping force for the moulding

application as well as allow the injection mould to be mounted on the machine platen.



Injection mould design involves a number of activities such as determination of
cavity layout, design of side pulls/ internal lifters/ unscrewing devices, selection of
mould base, runner and gating system design, cooling system design and ejection
system design. In the current practice, injection mould design is mainly done by mould
designers and the quality of the design is dependent totally on their knowledge and
experience. Recently, more and more compgnies attempt to use computer-aided
engineering (CAE) analysis packages in injection mould design in order to maintain or
even enhance the quality of mould design even if no well experienced mould designer
can be recruited.

Cost estimation for injection moulding can be divided into three components,
which are tooling cost estimation, processing cost estimation and material cost
estimation. Tooling cost is related to the cost involved in producing the injection
mould(s). Processing cost involves the cost in production. Material cost refers to the
cost of polymer material used in the injection moulding process.

Once proper moulding machines were selected and the injection mould was
manufactured and installed in the moulding machine, trial-run of moulding can be
performed to determine a proper set of process parameters for producing defect-free
moulded parts. Process parameter setting of injection moulding involves two types of
activities: initial process parameter seiting and process parameter resetting. Initial
process parameters for injection moulding are usually determined based on the
guidelines provided by resin suppliers and/ or experience of moulding personnel. Since
injection moulding is a highly complex process where a large number of factors are
involved, it is difficult to produce good quality/ defect-free moulded parts based on the

initial process parameter setting obtained from the previous methods. Therefore, process



parameter resetting is required many times in order to reduce or eliminate the defects of

moulded parts.

1.2  Statement of Problem

This research is focused on the determination of process parameters for injection
moulding which is one of the critical activities in the process design of injection
moulding. Once the moulding material has been selected and the required injection
mould has been designed and produced, quality of moulded parts largely depends on the
setting of process parameters. Improper parameter setting could lead to various types of
moulding defects in moulded parts, such as voids, burn marks and crazing. Many
experimental works were carried out to investigate the influence of the injection
moulding parameters on the quality of moulded parts [Cox 1986, Hsiung 1990, Lee
1994] and the occurrence of moulding defects [Liou 1990, Kurosaki 1992, Hamada
1996, Yoshii 1996]. The experimental findings have indicated that moulding parameters
have significant influence on the quality of moulded parts. For example, increasing both
the holding pressure and holding time could reduce sink marks of moulded parts, while
decreasing injection speed could eliminate flow marks for the case of amorphous
polymer.

As mentioned in Section 1.1, process parameter setting of injection moulding
involves the determination of initial process parameters and process parameter resetting.
Determination of initial process parameters for injection moulding generally is done by
moulding personnel. Setting these initial process parameters is a highly skilled job and
based on skilled operator's “know-how” and intuitive sense acquired through long-term

experience rather than a theoretical and analytical approach. They often recall their
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previous works to find out the design of a moulded part that is similar to the current
one. The corresponding tested moulding parameters with intuitive adjustments and
modifications are then used as a start for the new moulding application. Therefore,
effectiveness of initial process parameter setting is largely dependent on the experience
of moulding personnel.

Due to the complexity of injection moulding process, the process parameter
resetting is required many fimes in order to obtain good quality/ defect-free moulded
parts. This resetting process is repeated until the quality of moulded parts is found
satisfactory. Length of the time required to perform the process parameter resetting is
much dependent on the experience of moulding personnel. Unfortunately, plastic
industry has been facing a serious problem that the growing demand of experienced
moulding personnel far exceeds the supply. Moulding personnel typically needs 10 to
20 years' experiences to become an expert. Shortage of experienced moulding personnel
has been resulted in the need for a new solution.

Although some suppliers of thermoplastic material have provided guidelines to
assist moulding personnel in setting process parameters of injection moulding for a
particular thermoplastic material, the information provided is mainly empirical in nature
and only provides the general guidelines for parameter setting. Besides, several
computer aided engineering (CAE) tools are commercially available in market for
injection moulding such as C-MOLD from AC Technology Co. [C-MOLD 1998] and
MoldFlow from MoldFlow (AUST) Pty Ltd. [MoldFlow 1995]. The CAE tools can
provide satisfactory prediction of moulding quality based on input process parameters.
However, if the initial input process parameters for the CAE analysis are improper, a lot

of time may be required to iterate the analyses in order to obtain a satisfactory result.



Quite 2 few number of injection moulding machine manufactures such as Chen
Hsong, TMC, Kawaguchi and DongShin have employed database technology to help
machine operators in the setting of moulding parameters. Normally, database systems
are built into their machines which allow moulding personnel to tnput successful
moulding parameters and results. The parameters and results are stored in the system
and can be recalled and reused for the next production of identical moulded parts. The
database systems mainly deal with the case of exact-matching and some may handle
very limited partial matching. Some injection moulding machine manufactures such as
Niigata and Mitsubishi have used database technology combining with mathematical
equations in the determination of initial machine setting for a new application. To
determine the machine parameter setting, information and data are required to be input
to the systems which include type of resin, part weight and thickness, gate thickness and
mould thickness. However, some parameters that could largely affeizt the setting of
initial moulding parameters such as part complexity, runner type and size, and projected
area of moulded parts are not considered in their database system.

Facing with the global competition with emphasis on the high quality plastic
products and short time-to-market, the current practices in the determination of process
parameters for injection moulding seem to be inadequate. More efficient approaches

and techniques to the determination of process parameters are necessary to be explored.

1.3 Research Scope and Objectives

This research is focused on the area of initial process parameter setting for
injection mou]d_ing. According the nature of the problem in initial process parameter
setting for injection moulding, Case-based reasoning (CBR) approach [Riesbeck 1989]

is deemed to be a promising artificial intelligence (AI) technique to handle the
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experience-based problems. However, a poor solution or even no solution is resulted, if
there is no relevant case found from the case library of a CBR system. To make up the
deficiency, a hybrid neural network [Picton 1994] and genetic algorithm [Goldberg
1989] (NN-GA) approach is introduced in this research to complement the CBR
approach in the determination of initial process parameters for injection moulding.

The major objective of this research is to explore the effectiveness of combined
CBR and hybrid NN-GA approach in the determination of initial process parameters for
injection moulding. It is expected that the proposed approach not only mutually
strengthens the three artificial intelligence (Al) techniques, but also avoids their weak
aspects. Based on the combined approach, a computer-aided system can be developed
for the determination of initial process parameters for injection moulding. The major
purpose of the system is to provide a set of initial process parameters for injection
moulding that could lead to thc\production of good quality moulded parts in very short
time without relying heavily on experienced moulding personnel.

During the past two decades, numerous attempts have been made to develop
various injection moulding processes to produce moulded parts. These efforts have
resulted in a number of processes, including co-injection (sandwich) moulding,
injection-compression moulding, gas-assisted injection moulding etc. In this research,
the injection moulding of thermoplastic materials with employing the reciprocating-
screw injection machines is considered, as it is the most popular manufacturing process

in Hong Kong manufacturing industry.

14 Thesis Outline
In Chapter Two, a general review of research in process design of injection

moulding is firstly presented. It is then followed by a comprehensive review of research
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in the determination of process parameters for injectiQn moulding. The potentials and
limitations of individual approaches to the determination of process parameters for
injection moulding are discussed in the end of the chapter. The issues of design and
development of the proposed system are disqussed in Chapter Three. System
implementation and validation are described in Chapter Four. Discussion of this
research is given in Chapter Five while conclusions and future works of this research

are presented in the last chapter.



CHAPTER TWO - LITERATURE REVIEW

2.1 Introduction

In this chapter, a general review of research in process design of injection
moulding is firstly presented in Section 2.2. In the section, five approaches for
supporting the process design of injection moulding including computer-aided
engineering (CAE), knowledge-based systems, case based reasoning (CBR), neural
networks (NNs) and structured models are briefly described. It is then followed by a
comprehensive review of research in the determination of process parameters for
injection moulding. In Section 2.3, researches based on various approaches to the
determination of process parameters for injection moulding, including mathematical
model.s, numerical simulation, process window, design of experiments (DOE),
knowledge-based systems, neural networks (NNs), case based reasoning (CBR) and
genetic algorithms (GAs), are described. Finally, the potentials and limitations of
individual Iapproaches to the determination of process parameters for injection moulding

are discussed in Section 2.4,

2.2 Review of Research in Process Design of Injection Moulding

Process design of injection moulding involves a series of design and engineering
activities which mainly include the selection of injection moulding machines, injection
mould design, cost estimation and determination of process parameters. A general
review of research in the process design of injection moulding is presented in this
section. The review does not cover the area of the determination of process parameters
for injection moulding, which will be described in details in Section 2.3. In the
following, five approaches for supporting the process design of injection moulding,
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computer-aided engineering (CAE), knowledge-based systems, case based reasoning

(CBR), neural networks (NNs) and structured models, are described.

2.2.] Computer-aided engineering (CAE)

Computer-aided engineering (CAE) is the most common approach to perform
the process design in injection moulding which is the use of computer simulation to
acquire engineering process insights. Currently, CAE tools are well developed at
different levels of sophistication to aid the process design of injection moulding. More
than half a dozen CAE analysis packages for injection moulding are commercially
available in market such as C-MOLD from AC Technology Co. [C-MOLD 1998] and
MoldFlow from MoldFlow (AUST) Pty Ltd. [MoldFlow 1995]. The process behaviour
of injection moulding predicted by the CAE analysis packages can help moulding
personnel determine whether plastic parts are manufacturable and economically viable
at the early design stage. With the analysis results, moulding personnel can make
"early” process design decisions with more understanding of the possible defects of
moulded parts.

Several efforts have been made in injection mould design based on the results of
CAE analyses such as runner system design [Beaumont 1989, Bunch 1992], gating
design [Payne 1994, Picarsic 1994] and cooling system design [Himasekhar 1992).
Bourdon K. {Bourdon 1989] developed a computer program for the selection of
moulding machines and process parameter setting of injection moulding. In his study, a
weighting system was developed for the machine selection in which an order of rank of
potential machines is determined based on the results of machine capacity utilisation

assessment. Some process windows are established to determine the process parameter
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setting for injection moulding. Wang K.K. [Wang 1997] proposed an implementation
plan to integrate all main functions in producing injection moulded parts into a unified
system called IMS (Integrated Moulding System). The IMS is intended to make full use
of existing CAD/CAM/CAE tools and to develop new necessary software and
technologies.

In-order to reduce the human intervention in the use of CAE tools, quite a few
attempts have been made to incorporate the CAE analysis with an optimisation theory
for facilitating injection mould design. The work involves the determination of gate
location [Pandelidis 1990a, Lee 1996a], runner sizing and balancing [Jong 1990, Lee
1996b] and cooling system layout [Zou 1992, Tang 1998]. In their work, an objective
function is established to represent the quality of mould design. Numerical optimisation
techniques, such as hill-climbing techniques and simulated annealing, are applied to
adjust the mould design variables such as the gate location and runner diameter for
running the CAE analyses. A number of analyses are usually required in order to obtain

a near-optimal/optimal solution.

2.2.2 Knowledge-based systems

Technological advances in computer engineering, especially in artificial
intelligence (AI), have boosted the development of compute-aided systems for the
process design of injection moulding. One popular Al technique being employed is
knowledge-based systems. Knowledge-based systems are software programs designed
to simulate the human reasoning process by applying specific knowledge and
inferencing. The domain knowledge can be represented in a number of ways such as

semantic networks, production rules, decision tables, frames and objects.
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Rule based reasoning is the most common approach to develop a knowledge-
based system. In the rule-based systems, the knowledge is represented as a set of
production rules, which are usually extracted from a number of domain experts. These
rules are constructed in the form of condition-action pairs, which can be read as "IF
condition are satisfied, THEN performs actions". Rule-based systems solve problems by
taking an input specification and then "chaining" together the appropriate set of rules
from the rule base to arrive at a solution.

Rule-based systems have been used in the process design of injection moulding
such as the selection of injection moulding machines {Elsayed 1992], mould making
planning and injection mould cost estimation [Chin 1995]. In order to handle the
numerous decision factors in mould cost estimation, Chin K.S. et al. [Chin 1996a]
considered decision tables as a logic representation method in the development of a
knowledge-based system called DTMOLD-1 for mould cost estimation. Some efforts
have also been made in the use of object-oriented programming and rule-based
reasoning to encode mould design knowledge in the knowledge base. This knowledge
representation method allows an easy expansion of the knowledge base due to their
modular s&ucMes. Based on the rule-based and object-oriented approach, Ong S. K.
et.al. [Ong 1995] developed a knowledge-based system called CADFEED for gating
design. Chin K.S. et al. [Chin 1996b] and Lee R.S. et al. [Lee 1997] also developed two
prototype knowledge-based systems to generate major parameters for injection mould
design. In fact, quite a few rule-based systems have been developed to determine the
process parameters for injection moulding. Details of them are described in Section
2.35.

Recently, a research project was conducted in the National University of

Singapore which is to develop a computer-aided system for injection mould design. In
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the project, a knowledge-based system named IMOLD was developed and
commercialised [Lee 1996¢c, IMOLD 1999]. IMOLD consists of a number of modules,
such as filling design, mould base selection, cooling design and ejecting design. The
object-oriented paradigm (OOP) was utilised in the development of IMOLD, in which
knowledge about the product is encapsulated in a special product model.

Kwong C.K. et al. [Kwong 1998} employed blackboard architecture to organise
the multi-disciplinary knowledge into a single knowledge-based system called CSPD in
order to perform concurrent process design of injection moulding. CSPD firstly derives
the process solution, including the selection of injection moulding machine and mould
base, tooling and processing cost estimation and production scheduling, based on the
blackboard-based expert-system approach. It is then followed by the determination of
initial process parameters for injection moulding based on case based reasoning

approach.

2.2.3 Case based reasoning (CBR)

In the middle of the 1980s, Riesbeck C. K. and Schank R. C. [Riesbeck 1989)]
pioneered case based reasoning (CBR) techniques as an alternative to the more
traditional ‘rule-based reasoning technique. The basic idea of CBR is that a case based
reasoner solves a new problem by adapting solutions that were used to solve the old
problems. The new problem is matched against the cases in the case library and one or
more similar cases are retrieved. The most similar one is then repaired to yield the
solution.

Recently, CBR has been applied in the development of computer-aided systems

for process design of injection moulding. Nedebb C. et al. [Nedebb 1997] and Hu W. G.
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[Hu 1998] employed CBR approach to develop CBR systems for injection mould
design. The systems aim to aid mould designers in the determination of the major
parameters of mould design such as type of spure, cavity layout and type “of
demoulding. Garman T.B. [Garman 1996] also employed CBR concept to develop a
system to reduce the time in the preparation of drawings for new standard mould
frames. Regarding the cost estimation of injection moulds, Filz P. F. et al. [Filz 1997]
developed a system called Moldcalc based on the fact that similar moulds generally
give rise to similar costs. Some CBR systems were developed to determine initial
process parameters of injection moulding. Details of them are described in Section

2.3.6.

2.2.4 Neural networks (NNs)

Neural networks (NNs) are an information processing technique that emulate the
neural reasoning behaviour of biological neural systems [Picton 1994). A NN consists
of several interconnected layers of non-linear processing units. An input layer accepts
scaled input values and passes these values along to a series of hidden layers and finally
to an output layer. A NN must be trained by methodically examining sets of input
values and their associated outputs. A trained NN system has the ability to transform
non-linear mathematical modelling into a simplified black-box structure that is capable
of generalisation over the set of previously learned instances.

Lee B.H and Kim B.H [Lee 1996a) applied NN approach in the determination of
optimal gate location(s) of injection mould. In their study, a trained NN was employed
to perform a nonparametric functional mapping between ten thermomechanical

properties such as bulk temperature, shear stress and volumetric shrinkage (inputs), and
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Izod impact strength (output). The predicted Izod impact strength is treated as one of
the evaluation criteria to evaluate quality of several gating plans (gate locations). Rawin
R. and Venkat A. [Rawin 1997] also developed a model based on the NN approach for
the computation of injection mould complexity. In the model, inputs are the fourteen
cost drivers of manufacturing an injection mould such as moulded part size, number of
cavities per mould, mould base type and mould material while output is a numerical
index which describes the degree of mould complexity. Due to the fact that the higher
complexity of mould normally leads to higher mouid cost. The mould complexity index
obtained from the model can be used to estimate the mould cost. Some NN based
models were developed for the determination of process parameters for injection

moulding. Details of them are presented in Section 2.3.7.

225 Structured models

Some efforts were made in the development of structured models for estimating
costs in injection moulding. Boothroyd G. and Dewhurst P. {BDI 1993] developed
operation-based cost models for injection moulded parts in their commercial Design for
Manufécture (DFM) software package. Along with‘ providing the component cost of an
injection moulded part, the software provides the estimation of mould cost, processing
cost and materials cost for the part. Some process parameters, such as fill time, cooling
time and cycle time, can also be estimated by the software. Group technology (GT) was
applied in the mould cost estimation by Poli C. et al. [Poli 1992]. They conducted a
research to develop a coding system based on the group technology which is used to

evaluate the part/mould complexity and estimate the mould cost.
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2.3  Review of Research in the Determination of Process Parameters for

Injection Moulding

Determination of process parameters for injection moulding is one of the crucial
activities in the process design of injection moulding. An appropriate set of process
parameters can effectively shorten the time in initial set-up and moulding trials, and
improve quality of moulded parts. The process can be split into two subtasks: initial
process parameter setting and process parameter resetting. In the following, research
based on various approaches to both the initial précess parameter setting and process
parameter resetting are described which include mathematical models, numerical
simulation, process window, design of experiments (DOE), knowledge-based systems,

neural networks (NNs), case based reasoning (CBR) and genetic algorithms (GAs).

2.3.1 Mathematical models

Quite a few mathematical models for describing the physical process of
injection moulding were developed based on the first principle. Kamal M.R. et al.,
[Kamal 1972], Wu P.C. et al. [Wu 1974] and Stevenson J.F. [Stevenson 1978]
developed the mathematical models to describe the filling in a centre-gated disc.
Besides, Williams G. et al. [Williams 1975] developed the mathematical models to
describe the filling in a circular tube and rectangular cavities. These filling models all
are limited to one-dimensional geometry. Network flow approach [Krueger 1978] and
branching flow approach [Richardson 1980] were attempted to develop the filling
models for multi-cavity layout. The filling models could be used to estimate the filling
time and injection time. Regarding the mould cooling, White J.L. [White 1983] derived

a mathematical model for cooling time estimation in which the cooling time is defined
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as a simple approximation for defining the transfer of heat within the moulded part
during the cooling process in injection moulding. Another mathematical model for the
estimation of cooling time was recommended by Kwon T.H. et. al. [Kwon 1987} in
which the cooling time is defined as the time needed for the average melt temperature to
reach the ejection temperature.

Some of the mathematical models were combined with the other techniques in
the determination of process parameters for injection moulding. Tan K.H. et al. [Tan
1996] developed a computer-aided system for deriving initial process parameter setting
for injection moulding. In their system, the initial processing condition including melt
temperature, melt pressure, mould temperature and filling time is determined by fuzzy
reasoning. The fuzzy inferencing is used to quantify the qualitative relationship between
the process parameters and mould geometry. Once the initial processing condition is
determined, the corresponding machine setting, such as nozzle temperature, injection
pressure, coolant temperature and injection speed, can be calculated by using
mathematical models. Tan K.H. et al [Tan 1997a] also developed a simplified
analytical model for the injection moulding process in which the process parameters of
injection moulding, such as the filling pressure, cavity force, shear stress, shear rate and

temperature at different time and locations, can be calculated.

2.3.2 Numerical simulation

Typical numerical simulation models are developed based on the combination of
mathematical models, numerical methods and user interface programming. Quite a few
numerical simulation models were developed to simulate the process behaviour of
injection moulding in the filling, postfilling and cooling stages. Hieber, C. A. et al.
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[Hieber 1980] and Wang, V. W. et al. [Wang 1986] employed a finite-element/finite
difference scheme for simulating filling of thin cavities of general planar geometry.
These models were implemented based on the generalised Hele-Shaw flow for an
inelastic, non-Newtonian fluid under non-isothermal conditions. Chiang, H. H. et al.
[Chiang 1991] developed a unified simulation model for the filling and postfilling
stages based on hybrid finite-element/finite difference numerical solution of the
generalised Hele-Shaw flow for the compressive viscous fluid under non-isothermal
conditions. Himasekhar, K. et al. [Himasekhar 1992] developed a numerical simulation
model for three-dimensional mould heat transfer during the cooling stage. Some of the
achievements in simulating the injection moulding process were commercialised in

CAE analysis packages as described in Section 2.2.1.

2.3.3 Process window

Since the quality of moulded parts is greatly affected by the conditions under
which it is processed, there are several attempts that aim to determine a feasible process
zone for injection moulding. This process zone is always referred as a process window.
The process window as shown in Figure 2.1 is represented by a set of boundaries that
define a w:indow-like shape. It indicates the influence of injection pressure versus melt
temperature. If the melt temperature is too low, higher injection pressure 1s required to
deliver the melt polymer into the cavities. If the melt temperature is too high, material
degradation may occur. On the other hand, if the injection pressure is too low, a short
shot may be resulted. If the injection pressure is too high, flash may occur. The initial

process parameters usually are defaulted as the centre of the process window.
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Figure 2.1 A typical process window (injection pressure vs. melt temperature)

There are various techniques that were introduced in the development of a
process window for injection moulding. Quite a few researches [Bourdon 1989,
Nagarsheth 1989, Pandelidis 1990b] developed a process window thrémgh a number of
simulation trials with different combination of process parameters for injection
moulding. Their simulation trials normally are based on a specific material and the
machine capability as well as the approximated geometry of moulded parts. Murakami,
T. et al [Murakami 1993] employed constraints processing method and the simulation
results in the development of process windows. The thermal analysis, named
Thermogravimetric Analysis (TGA), was also used to develop a process window for
injection mdoulding [Hutchins 1995).

To obtain optimal / near-optimal parameter setting from a process window, quite
a few techniques have been employed. Nagarsheth, P.S. [Nagarsheth 1989] formulated
the linear quadratic model by regression analysis of the simulated data for the
optimisation of one dependent variable. Pandelidis 1. et al. [Pandelidis 1990b]
quantified the quality as a function of flow simulation outputs and constituted this

objective function that must be minimised. Murakamj T. et al. [Murakami 1993)

-18-



proposed to use constraints processing method based on knowledge or operators’

experience for optimising the moulding conditions.

2.3.4 Design of experiments (DOE)

When injection moulding is studied, an experiment is traditionally conducted in
which only one process parameter is varied at a time until the quality of moulded parts
is found satisfactory. Such a method ignores the effect of interactions among the
process parameters in injection moulding. In fact, the process parameters involved in
injection moulding are interacting with each other, Design of experiments (DOE)
techniques are attempted to obtain the understanding of injection moulding process
[Skourlis 1997]. Among the various DOE techniques, Taguchi method was widely used
to determine optimal process parameters for injection moulding. Figure 2.2 shows the
typical processes of using DOE techniques in the determination of optimum process
parameters for injection moulding.

Researches were done on the optimisation of the injection moulding conditions
by using Taguchi parameter design [Kyle 1990, Bourdon 1991, Vaatainen 1994,
Blyskal 1994, Dillman 1996). Their studies show that Taguchi experiment design can
uncover subtle interactions among process variables with minimum number of test runs.
Furthermore, analysis of the experimental results could help to develop a model of
injection moulding process, which allows the prediction of part characteristics as a
function of process conditions. Such a model can then be used to find the optimal

setting of process parameters.
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Figure 2.2. Procedural steps of DOE techniques for process analysis and
optimisation
Ta improve the effectiveness of the DOE, other techniques were incorporated
with the use of Taguchi method. Yeung W.S. et al. [Yeung 1997] attempted linking
Quality Function Deployment (QFD) with DOE to establish a prioritis_ation mechanism
for the setting of selected parameters with respect to the quality characteristics. This
could allow the best trade-off among the customer satisfaction, significance of control

parameters, and the response for quality control. Kuhmann K et al, [Kuhmann 1996]
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combined the Taguchi method and the Shainin method to improve the robustness of

injection moulding process.

2.3.5 Knowledge-based systems

Quite a few rule-based systems were developed to recommend the qualitative
correction instructions [Luong 1997] and/or the quantitative change of moulding
parameters [Jan 1992, Jan 1993, Tan 1995, Catic 1996, Jong 1997) in response to the
input moulding defects. Figure 2.3 shows the block diagram of a typical rule-based
system for injection moulding defect correction. It consists of two major elements, a
knowledge base and an inference engine. The knowledge base contains facts and
heuristics about the domain and the relationships between them. Inference engine may
be described as a control mechanism that organises the correct sequence of heuristic
activation. Its function is to access and manipulate the knowledge base according to the

specific problem data contained in the working memory.

Input

- Moulding material

- Current setting of
moulding parameters

- Observed defect(s)
e.9. Bum marks

Inference Knowiedge
Engine base

Output
Recommended comective
actions
eq.

- Increase barrel temp. 20%
- Reduce back pressure 15%
- Reduce injection speed 15%

Figure 2.3 A typical expert system for injection moulding defect correction

-21-



Initially, the system prompts users to input information about the material to be
processed, the current setting of moulding parameters and the moulding defects being
observed. After the inputs, the knowledge base is inferenced and then the corrective
actions are recommended.

Various techniques have been attempted in the development of rule-based
systems for injection moulding defect correction. Jan T.C. et al. [Jan 1992, Jan 1993]
developed an algorithm to calculate the decision indexes that show the likelihood of the
influencing variables being responsible for defects. Normally, the corrective action with
the highest value of the decision index is firstly recommended. Certainty factors were
introduced in the development of rule-based expert systems for injection moulding
[Jong 1997, Catic 1996]. They are used to specify the assurance of possible remedies
for the given injection moulding problems. Propositional logic and fuzzy logic [Tan
1995a, Tan 1995b] were applied in the development of a rule-based expert system,
which can recommend the quantitative change of moulding parameters. Another
technique, tﬁe Multi-dimensional Matrix, was applied to develop a rule-based expert
system called ESIM to realise the skilled operators’ inference procedures into the system
[Kameoka 1993]. The ESIM does not generally use a single countermeasure that is
considered best, but prepare plural potential countermeasures from past experiences at

the same time.

2.3.6 Case based reasoning (CBR)

CBR was widely applied in different engineering applications such as assembly
planning, building design and system diagnosis. For process design, CBR approach has

been applied in the determination of parameters for die casting process [Price 1993,
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Price 1995] and grinding process [Rowe 1996). Recently, CBR approach has also been
attempted in the determination of initial process parameters for injection moulding.
Kwong CK. et al. [Kwong 1997] developed a CBR system called CBRS to obtain
proper initial process parameters for injection moulding based on the old solutions. The

basic algorithm of reasoning in the CBRS is shown in Figure 2 4.

Part envelope length
Part envelope width

Part envelope height
Part volume
thput Average wall thicknass
User Moulding material

Complaxity indexas

Productior: volume
Production day

Case Matching
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matenial
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Case Retrioval and
two lovels of
similarity analysis
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indexas: wall thicknass,
part complexity index,
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part size, part voluma
and production volume
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case acceplable?,

Update Memory

‘fis

Case Adaptation
based on substitution
and transformation

models

Display the
Tecommended process
paramaters for injection
moulding

Figure 2.4. Basic algorithm of reasoning in the CBRS
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The cases of CBRS are stored in case library in a structured manner. Each case
is assigned with the indexes to facilitate the case retrieval. In the CBRS, the critical
indexes are the moulding material and wall thickness. The input problem is then
matched against the cases in the case library. Some potential cases are retrieved and
similarity analysis is applied to find out the most similar case. Adaptation models are
then used to perform the repairing on the most similar case.

Shelesh-Nezhad K. et al. [Shelesh 1997] also applied the CBR approach in
deriving the initial process parameter setting of injection moulding. Unlike the CBRS,
their CBR system only derives the optimum magnitude of the process parameters in the
cavity based on the linear relationships between the operating conditions and the
dimensions of moulded parts. The other required magnitudes of parameters are

determined by a mould flow aﬁalysis sub-system.

2.3.7 Neural networks (NNs)

| Neural network approach had been applied in building a process model for
quality control in injection moulding [Souder 1994, Smith 1996, Hausler 1996a). Inputs
to the networks are the process parameters of injection moulding and the outputs are the
quality characteristics. After supervised learning, these process models can project the
process parameters onto the quality characteristics for on-line quality forecast or quality
control. Figure 2.5 shows the structure of a NN for the quality prediction of moulded

parts.
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Figure 2.5. Structure of neural network for moulded part quality prediction.

To obtain the optimal parameter setting for injection moulding, Choi G.H. et al.
[Choi 1994] quantified the part quality in terms of a performance index which is
essentially a function of two geometrical characteristic-:s of a moulded part, namely
variance of linear shrinkage and sink index. A set of optimal process parameters can be
obtained by minimising the performance index.

Some efforts have been made in incorporating fuzzy logic with neural networks
to develop an intelligent system for process parameter resetting [He 1998]. The theory
of fuzzy logic provides mathematical strength to capture the uncertainty, ambiguity and
vagueness assoctated with the process of parameter resetting. In the system, inputs are
the common injection moulding defects and the "fuzzified" dimensional parameters of
the part while outputs are the recommended adjustments of process parameters, The

trained neural network was treated as a fuzzy inference system to provide better outputs.
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2.3.8 Genetic algorithms (GAs) and evolutionary strategies

More and more artificial intelligence (AI) techniques are being developed from
the observation of nature. Two of them are genetic algorithms (GAs) [Goldberg 1989]
and evolutionary strategies [Schwefel 1995]. Both of them draw inspiration from the
natural search and selection processes leading to the survival of the fittest individuals.
The principal difference between them is that evolutionary strategies use mutation as
the primary search mechanism, while genetic algorithm relies on crossover to locate
better solutions.

GA approach has been applied in the development of a system for the
optimisation of the process parameters for injection moulding based on the results of
flow simulation [Kim 1996]. The behaviour of GAs can be subtle, but their basic
construction and execution cycle are straightforward. Figure 2.6 shows a typical process
flow for the optimisation of process parameters for injection moulding based on GA
approach.

In the system, initial process parameters of injection moulding are randomly
chosen within the feasible search space and evaluated by a mould flow simulation
package. The quality of moulded parts is quantified by a fitness function. The process
iterates until an optimal or near optimal process parameter setting of injection moulding

is found.
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Figure 2.6. Typical process flow for the optimisation of the injection mou}ding

parameters based on GA approach

Since the optimisation of process parameters for injection moulding is not a
static process, an optimisation system called Ibos-Pro has been developed based on
evolutionary strategy approach for on-line optimisation of the process parameters
[Haupt 1989, Offergeld 1992]. In the system, the calculated working point from off-line
optimisation or the empirical data provided by machine operators is used as the starting
value. Optimisation is performed on the real process by automatically interrogating the
input values such as holding pressure, holding time and metering stroke through the
master computer interface. The output values such as cycle time, flash formation and
part weight are analysed by the optimisation system. The derived operating point setting

1s then transferred to injection moulding machines.
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2.4  Discussions

In Section 2.2, five approaches to the process design of injection moulding
including computer-aided engineering (CAE), knowledge-based systems, case based
reasoning (CBR), neural networks (NNs) and structured models were briefly discussed.
CAE is the most common approach to perform the process design of injection
moulding. The CAE analyses can provide useful information about part design as well
as process design of injection moulding. The process behaviour predicted by the CAE
analyses can help novice engineers overcome the lack of experience in injection
moulding and assist experienced engineers in pinpointing factors that may otherwise be
overlooked. Several efforts had been made in the selection of injection moulding
machines and injection mould design such as runner system design, gating design and
cooling system design based on the results of CAE analyses.

Most of the CAE analysis packages are based on the mathematical modelling of
plastic melt flow during injection process. To reduce the degree of complexities in
solving the governing partial differential equations of conservation of mass, momentun
and energy, some assumptions and simplifications were used in the development of
mathematical models of filling mould cavities. For example, Hele-Shaw model was
generally ?ssumed in the filling of thin cavities, in which the flow in the thickness
direction of cavities was neglected and only 2-D flow in the plane of the cavities was
considered. Batch G.L. [Batch 1993, Batch 1994] reported that the assumption of the
Hele-Shaw flow was reasonable for large thin-wall parts, but could lead to numerically
inaccuracy for small ones.

In addition, a mid-plane finite element mesh (FEM) model must be created
before running any finite element analysis (FEA) in the CAE analysis packages. The

preparation of a FEM model can take a considerable amount of time. The meshing size
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can profoundly affect the accuracy of the analyses and the processing time {Ni 1997)].
Coarse meshing could cause an unacceptable result, while too fine meshing of course
could lead to more accurate results but requires excessively long computing time. Based
on the FEM model, users are required to evaluate alternative design and to interpret the
analysis results correctly and intelligently until the solution reaches the requirements of
users. Therefore, effectiveness of the approach relies heavily on the proficiency of
users. A novice moulding personnel could perform a number of CAE analyses without
getting any useful information.

Application of artificial intelligence (AI) techniques in engendering knowledge-
based systems in the process design of injection moulding could abate some of the
problems asspciated with the CAE tools. Rule based reasoning is the most common
approach to develop a knowledge-based system. Quite a few rule-based systems were
developed for the injection mould design, mould cost estimation and the selection of
injection moulding machines. The rule-based systems are found suitable for use in
injection moulding because of the large amount of on-the-job experience and empirical
knowledge that are always involved. They can provide assistance to moulding personnel
in the process design of injection moulding. However, in the domain of process design
of injection moulding, the domain experts including mould designers, mould makers
and moulding personnel rely heavily upon their experiences rather than upon explicit-
stated rules. Their experience probably exceeds their understanding of the technology
and sometimes it is hard for them to explain the reason for actions that they have taken.
Since the nature of the experience is fragile and not well structured, it may not be
acquired easily or readily transformed into rules format.

CBR is an alternative to the rule-based reasoning. Some CBR systems were

developed for injection mould design and mould cost estimation. This approach
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eliminates the knowledge elicitation bottleneck which is inherent in rule-based systems.
Instead of generalising knowledge into rules, CBR represents the knowledge as
individual problem solving episodes. In CBR, knowledge elicitation becomes a task of
gathering case histories. However, effectiveness of a CBR system depends largely on
the size of case library, effectiveness of indexing and the relevance of old cases stored
in the case library.

Some NNs were also employed to handle the complex relationship among the
parameters involved in the process design of injection moulding. Unlike some other
techniques such as non-linear regression, NNs do not require any prior assumption of
the function such as linear, first-order polynomial and logarithmic to form the process
models. They can derive their “knowlgdgc” of the processes from examining sets of
input data and their corresponding outputs. Therefore, this approach is found suitable to
deal with the process design of injection moulding where quite a large amount of
knowledge is fragile and ill-structured. However, there is no defined methodology
available which could help users design a NN for a given problem domain. Network
builders have a high degree of freedom to define the structure of a NN. They need to
determine the number of nodes, the connectivity between nodes, and the number of
layers of {10des in a network in order to identify a network structure. The process is
trial-and-error in nature and could be quite time consuming.

In Section 2.3, researches based on various approaches to the determination of
process parameters for injection moulding, including mathematical models, numerical
simulation, process window, design of experiments (DOE), expert systems, neural
netwofks (NNs), case based reasoning (CBR) and genetic algorithms (GAs), were
described. The literature review shows that there are quite a few mathematical equations

available for the determination of initial process parameters for injection moulding. The
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initial process parameters can be derived from the mathematical models in very short
time. However, a general comprehensive mathematical model describing the actual
filling process is not yet available because of the complexity of the mould filling
process and difficulties in obtaining an accurate rheological description of the actual
matenal being processed. Nedess C. et. al. [Nedess 1992} reported that the different
mathematical models for injection moulding give vastly different results even for
identical operating conditions. The problem could be alleviated by the introduction of
CAE analysis packages. However, this approach involves creating a FEM model and
running a number of CAE analyses in order to obtain the acceptable process parameters
for injection moulding. As the time required to run a mould flow analysis of a plastic
part, such as a casing of mobile phones, could take an hour or even more, it may not be
practical to perfbnn CAE analyses in shop floor production environment.

Several attempts have been made in utilising the CAE analysis results to
determine a set of process parameters for injection moulding. Some tend to define a
defect-free moulding region or process window for injection moulding., Some applied
DOE techniques to define an acceptable parameter setting. The process parameters of
injection moulding can be obtained easily from process windows. Normally, an
acceptable result of injection moulding can be yielded based on the process window
approach. However, development of a full set of process windows would be very
difficult because of the large number of process parameters involved and the number of
possible interactions among the parameters. Moreover, development of process
windows is by means of a number of mould flow analyses or test-runs of injection
moulding. It could be a time consuming and costly process in the production
environment. The DOE approach requires a certain measure of expert knowledge of

both statistics and processes in experiment planning. If the properties of experiment
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plans are not fully understood, it is possible that interaction between two factors could
bring out pseudo effects on other parameters, thus leading to incorrect interpretation.
Therefore, moulding experts need to be involved in the determination of importance of
individual process parameters for injection moulding during the DOE process.
Moreover, during the experiments, production generally has to be interrupted for setting
the experiment points and quantifying the target variables.

Some artificial intelligence (Al) techniques such as knowledge-based systems,
neural networks (NNs), genetic algorithms (GAs) and case based reasoning (CBR) have
been attempted in the determination of process parameters for injection moulding. Some
knowledge-based systems could provide useful information to moulding personnel in
process parameter resetting. However, a typical symbolic knowledge-based system is
not easy to be implemented in the area of the process parameter resetting due to its
incomplete integration of qualitative and quantitative reasoning [He 1998].

NNs have been shown to be an effective technique for modelling complex non-
linear processes which enables NNs to be an effective technique in handling the
problem of initial process parameter setting of injection moulding. In order to obtain an
optimal set of initial process parameters of injection moulding, NNs must be
incorporatc?d with some optimisation techniques. On the other hand, NNs cannot
communicate their working to users so that it may be difficult to see what they are
going wrong. As a consequence, users cannot gain the understanding of process through
the NNs.

With the aid of the GAs and evolutionary strategies, optimal/near-optimal
process parameter setting of injection moulding could be obtained even without
knowledge of injection moulding process. If a dynamic optimisat.ion is carried out, any

disturbance occurring in moulding can be compensated. Effectiveness of the GAs and
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evolutionary strategies is much dependent on the choice of the operating range of
process pa.raméters and design of a fitness function which is used to quantify the quality
of moulded parts. If a poorly defined fitness function and improper operating range are
adopted, the optimisation process may either converge prematurely to a sub-optimal
solution or become an inefficient random walk through the solution space. Therefore,
experienced fnoulding personnel need to be involved in system development stage.
Besides, the_ control parameters of GAs and evolutionary strategies such as population
size, crossover rate and mutation rate must be properly defined. Otherwise, exploitation
and exploration could not be balanced due to the poor setting of these control
parameters.

CBR systems can determine a set of initial process parameters for injection
moulding quickly based on the pervious successful case(s) without -relying heavily on
expert moulding personnel. A self-learning capability can be incorporated into the CBR
systems that enable expertise in setting of moulding parameters to be easily embodied.
However, the performance of the CBR systems is limited by the size of case library and
the relevance of old cases stored in the case library. On the other hand, their
effectiveness is dependent on the design of case retrieval algorithm, adaptation models

and indexing method.
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CHAPTER THREE - SYSTEM DESIGN AND DEVELOPMENT

3.1 System Architecture of an Intelligent System for the Determination of Initial

Process Parameter Setting for Injection Moulding, HSIM

In this research, a hybrid neural network and genetic algorithm (NN-GA)
approach was firstly proposed to complement case based reasoning (CBR) approach in
the determination of initial process parameters for injection moulding. Based on the
combined CBR and hybrid NN-GA approach, a Hybrid System for Injection Moulding
(HSIM) was developed to the determination of initial process parameters for injection
moulding. Figure 3.1 shows a basic architecture of HSIM that mainly consists of an user
interface, a case based reasoning (CBR) module and a hybrid neural network and

genetic algorithm (NN-GA) module.

User Interface

Case-Based
C;se-Based Reasoning (CBR)
easoner
Module

Genetic Algorithm Hybrid Neural Network

& Genetic Algorithm
{NN-GA) module

Population
Neural Network

Figure 3.1. Basic Architecture of HSIM

The user interface allows system users to input required information and data to
the system. The CBR module composes of two elements, a case library and a case-
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based reasoner. The case library stores the old cases in a structured manner, while the
case-based reasoner performs the case indexing, case retrieval and case adaptation to
‘generate initial process parameters of injection moulding for an input problem. The
hybrid NN-GA module is used to generate and optimise initial process parameters of
injection moulding within a pre-defined searching space if there is no relevant case
found in the CBR module. The initial process parameters recommended by HSIM could
be used in CAE analyses or actual trial-run of moulding. Once the parameters are
validated, they can be stored in the case library through the user interface for future
reference.

In the next section, basic algorithm of reasoning in HSIM is depicted. The issues
of design and development of the CBR module and the hybrid NN-GA module are

discussed in Section 3.3 and Section 3.4 respectively.

3.2 Basic Algorithm of Reasoning in HSIM
Figure 3.2 shows the basic algorithm of reasoning in HSIM which mainly

involves the following processes:

a. Problem input
FilTStly, production requirements including production volume, allowable
working days, number of shifts per day, reject rate and machine utilisation, and
parameters of part design including moulding material, part envelope size,
projected area, part volume, wall thickness and part complexity are required to
be input. The input data and information will form the description of a problem.

* Some of them will be identified as the indexes for case matching.
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Matching of critical indexes
Some input data and information are identified as critical indexes to filter out
irrelevant cases. By matching the critical indexes, a cluster of potential cases are

retrieved for further evaluation.

I

Problem tnput

Hybrid

: NN-GA module .
Generation of
" nitial Popuation

h

Salection of most

Case Library Similar Cases Pradiction of

|

|

|

i

Part Quality l
' I
i

|

|

|

|

|

4

Oplimisation of Initial
Procass Parameters

Memory Update

YES
i

Construction of
Solution

I
|
1)
I
|
[
I Fitness Evaluation
'
I
I
I
|
)
|

————

-———

Recommended Initial
S Procaess Parameters of
irjection moulding

Figure 3.2 Basic algorithm of reasoning in HSIM

Selection of the most relevant cases

In this process, similarity analysis is performed on the potential cases and a
small batch of the most similar cases are identified.

Construction of solution

This process looks for prominent differences between the similar cases obtained
in process (c) and the input problem, and then applies some adaptation
techniques to take those differences into account. The adapted case, which
contains a set of initial process parameters for injection moulding, is
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recommended to system users as a starting condition for performing CAE
analyses or actual tnal-run of moulding.

Generation of initial population

If no good matching case 1s retrieved in process (¢), the hybnd NN-GA module
will be invoked to determine the initial process parameters of injection
moulding. An initial population is required to be generated first.

Prediction of part quality

Once the initial population has been generated, each string stored in it will be
fed into a trained neural network for the quality prediction of moulded parts.
Outputs from the neural network are quality measures of a moulded part.

lj"itness Evaluation

A fitness function is used in this process to evaluate the fitness of the strings
based on the quality measures obtained in process (f).

Optimisation of process parameters

This process aims to generate optimal/ near optimal initial process parameters of
injection moulding within a pre-defined searching space. The optimisation
process 1s terminated if an optimal solution is obtained. Otherwise, a new
population is generated and the processes (f), (g) and (h) are repeated.

Memory update

The recommended solution, either obtained from the CBR module or from the
hybrid NN-GA module, will be executed in real-world environment. After the
execution, a real-world solution, which probably deviates from the system

solution, is stored into the case library so as to solve similar problems in future.
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3.3 Case Based Reasoning (CBR) Module

In HSIM, the role of the CBR module is twofold. Firstly, if there are good
matching cases in the case library, the CBR module will generate a set of initial process
parameters of injection moulding for the input problem based on the past successful
cases. Secondly, if no good matching case is retrieved from the case library, the CBR
module will retrieve a number of partially matched cases as a part of the initial
population for performing GA based optimisation in the hybrid NN-GA module.

In the design and development of the CBR module, four important issues have
to be addressed and settled before any implementation attempts, which are the case
library design, case indexing, case retrieval and case adaptation. Individual issues are.

described in subsequent sections.

3.3.1 Case library design

The case library stores a number of old cases in an organised structure. Contents
of each case stored i-n the case library are basically a description of the previously
solved problem. In the‘ CBR module, each case is made up of three components: a
problem description, a stored solution and an outcome. Structure of each case can be
represented as follows:

Case {P, .S,-, oy}
where Pj is the problem descriptions of the i-th case, S; is the solution of the i-th case
and O; is the outcomes of the i-th case

The problem descriptions are referred to the features in a case that are used to
describe a problem. As shown in Table 3.1, a problem depicted in this research is

described by the information and data of production requirements, moulded part design,
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injection mould design and injection moulding machines. In HSIM, parameters of
injection mould design to be studied are limited in the runner and gating system design.
It is because runner and gating system largely affects the mould filling process, and thus
the quality of moulded parts as well as the process parameter setting of injection

moulding [Menges 1993).

— Allowable Working Days

Production Information — Number of Shifts per Day
— Reject Rate

— Machine Utilisation

— Moulding Material

— Part Envelope Size
Part Design Information — Projected Area

— Part Volume

— Wall Thickness

— _Part Complexity

— _Number of Cavities

-~ _Runner Type and Size

Mould Design Information | -~ Runner Layout
— Flow Length
—~ Gate Type and Size
, — _Number of Gates
Machine Information - Machine Model Number

Table 3.1 Features of problem description

The solution states the derived solution to an input problem specified in the
problem descriptions. As shown in Table 3.2, a solution of the system contains a set of
initial process parameters of injection moulding for an input problem. The outcome is

the remarks of the case, which could describe the yield of moulding, part defects etc.
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— Nozzle temperature °C
— Barrel temperature (Rear) °C
— Barrel temperature (Middle) °C
—_ Barrel temperature (Front) °C
— Injection pressure bar
— Holding pressure bar
— Back pressure bar
— Clamping force ton
— _Screw rotating speed Ipm
— _Fill time sec.
— Holding time sec.
— Cooling time sec.
— Cycle time sec.

Table 3.2 Contents of a solution

Contents of cases can be represented in a number of ways, such as attribute-
value pairs, text, object-oriented representation, graphs and multimedia representations
[Maher 1995]. In the CBR module, attribute-value pairs representation is employed to
represent the cases, in which each case stored in the case library is described by a set of
features and each feature takes on a value. The features define the vocabulary for
describing the cases, and the values identify the information specific to one case. An

example of the attribute-value pairs representation is shown in Figure 3.3.

Case number 31
Part name : Sample
Resin : ABS

Wall thickness :2mm

Attribute-n : Value-n

Figure 3.3 An example of attribute-value pairs representation
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The attribute-value pairs representation follows the common practice of
documentation of machine setting in injection moulding shop floor. The representation
paradigm is generic and does not imply any specific forms of knowledge. Of course,
attribute-value pairs representation is not the only way to make cases people-readable.
For the prototype system development, however, the attribute-value pairs representation
has been shown to be quite adequate.

Another major consideration of the case library design is case organisation. The
case library should be organised in a manageable structure that supports efficient search
and retrieval methods. The case library can be organised in various forms such as flat
structure, feature-based structure, hierarchical structure or a combination of all these
forms. Figure 3.4 shows the organisation of the case library of the CBR ﬁlodule, which _
organises the cases in a combination of feature-based structure and flat structure.
Although the organisation structure may not be an optimal one, it is still effective to

reduce the searching space.

Material
ABS PC PS5
Wall thickness Wall thickness Wall thickness

Thin Medium Thick

I f |
[ [ [
ul . -

Figure 3.4 Organisation of case library
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Effectiveness of the feature-based structure is greatly dependent on the key
features that are used to differentiate cases. In HSIM, two features, moulding material
and wall thickness, are employed to form a shared-feature network. Identification of
these two features for the construction of the shared-feature network will be discussed
in Section 3.3.2. In a flat structure, cases are organised in a sequential data structure,
such as a list. The cases stored in the case library are decomposed into three chunks in
order to reduce the size of stack memory being used and improve the computing
efficiency. As shown in Figure 3.5, the chunks are indexed independently from the large

case to which they physically belong.

Production iti
Requirements Mould Design ;2::;2;:::::;
and Part Design Information Injection Moutdin
Information J °

Figure 3.5 Structure of a case

3.3.2 Case indexing

A case library may contain a large number of cases. Cases need to be assigned
with labels to guide their retrieval under the appropriate circumstances in order to
retrieve cases in an appropriate amount of time. These labels are usually refereed as
indexes of individual cases. In general, there are two kinds of heuristic methods for
index selection, which are explanation-based technique [Barletta 1988] and checklist-
based indexing [Kolodner 1993]. Explanation-based technique determines relevant
features of each case. This method analyses each case to find which features are

predictive ones. Cases are then indexed by those features. In checklist-based indexing,
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the problem domain is analysed and the features that tend to be predictive across the
entire domain are identified. These features are then put in a checklist and used as
indexes to judge the appropriateness of an old case to a new situation. This kind of
index selection method is used in this research.

Kwong CK. et. al. [Kwong 1997] had used the checklist-based indexing to
identify the critical indexes. In their study, a relationship diagram was constructed to
uncover the relationship between part design parameters and initial process parameters
of injection moulding. Degree of influence of part design parameters on initial process
parameter setting of injection moulding was described by using a crisp value with the
scale from 1 to 10. The critical indexes were then identified based on the sum of the
crisp values. The method is simple and easy to be implemented. However, there are two
drawbacks of their work. Firstly, the significance of individual process paraméters to
the quality of moulded parts was not considered, which could affect the accuracy of
indexing. Secondly, their work did not deal with the fuzziness in the determination of
the degree of influence of part design parameters on initial process parameters of
injection moulding.

In this research, a relationship diagram (process parameters of injection
moulding versus moulding defects) as shown in Table 3.3 was constructed based on the
work of Lau Y.K. [Lau 1996] to determine the relative importance of individual process
parameters to the quality of moulded parts. In the diagram, “0” means that the
corresponding process parameter has no or insignificant effect on the reduction of the
corresponding moulding defect, while “1” means that the corresponding process
parameter has significant effect on the occurrence of the corresponding moulding

defect.
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Process Parameters
of Injection
Moulding

Barrel Temperatures
Nozzle Temperature
Injection Pressure
Holding Pressure
Back Pressure
Clamping Force
Screw Rotating Speed
Holding Time
Cooling Time

Fill Time
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Table 3.3 A relationship diagram (process parameters of injection moulding versus
moulding defects)

The relationship diagram reveals the correlation between the process parameters
of injection moulding and the twenty common moulding defects. For example,
improper setting of barrel temperature could cause 18 moulding defects, such as short
shot, warpage, mould flash and so on. In other words, proper setting of barrel
temperature is critical to produce moulded parts with good quality. The normalised
values as shown in the last column of Table 3.3 are used to indicate the relative
importance of individual process parameters for injection mouiding. Higher normalised
value indicates that more importance of the corresponding process parameters in
producing moulded parts with good quality.

Once the relative importance of individual process parameters for injection
moulding is determined, another relationship diagram (process parameters of injection
moulding versus parameters of part design and injection mould design) as shown in
Table 3.4 was constructed in order to identify and classify the indexes. The diagram was

completed with the help of experienced moulding personnel, in which the degree of
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influence of the parameters of part design and injection mould design on initial process
parameters of injection moulding is represented by using four linguistic terms, strong,

moderate, weak and very weak.

Relationship : g g,,
®  Strong 5 8 -
®  Moderate aA £ 221,13 o e
O  Weak 5318 |5 |g E 3 § | < £ % 8 | 8
A Very Weak &ggiaﬁgsgts&%ﬁ
- ¥} (V]
csl2|EEIEIS|E 18 |8 (5|8 |8
SElEE R EE R
Y o o = =9
e =¥
§ 2 =
Process Parameters of & 5
Injection Moulding A g
Barrel Temperatures ioJ]@e|ojO| @
Nozzle Temperature 07l®ejo|O|®
Injection Pressure 6le|alol@e|lo|A]O|@® OO
Holding Pressure dlo|leje|o|®|0|0|® OO
Back Pressure 03] A
Clamping Force 0.1 o ® ® ®
Screw Rotating Speed o3|l@|O{A|A|ATA
Holding Time Y ICRECRECAR AR ® | 0|06
Cooling Time 02]@ | AL @ Al A
Fill Time 06| @ | A |G NN ERECARCARS

Table 3.4. A relationship diagram (process parameters of injection moulding
versus parameters of part design and injection mould design)

Critical indexes can be identified based upon the normalised technical
importance (NTI) ratings [Cole 1990]. Conventionally, the symbols used in the
relationshii) matrix are substituted with crisp values (e.g. © =9, ®=7,0=4and & =
2) in the calculation of NTI ratings which can be computed by using the following

equations:
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IDR;= ) IFR;eX  i=1._n (3.1)
i=1

NTL = IDR i / IDRpax (3.2)
where NTI; and IDR; is the normalised technical importance rating and the individual
rating of the i-th part design parameter or mould design parameter respectively, IDRmax
is the maximum individual rating, m is the number of process parameters to be studied,
n is the number of parameters of part design and injection mould design to be studied,
IFR;; 1s the degree of influence of the i-th part design parameter or mould design
parameter on the j-th process parameter and X; is the normalised importance weighting
of the j-th process parameter.

In order to deal with the ambiguousness in the determination of the degree of
influence of the parameters of part design and injection mould design on the initial -
process parameter setting, triangular fuzzy numbers (TFNs) [Khoo 1996] as shown in
Table 3.5 are employed to represent the semantic of the linguistic terms. Table 3.5

shows the linguistic valuables and their corresponding TFNS.

r——
AL e

R R R L e TR R T e e R T
Einguisticvariable Rz zy hurmBet

O] Strong [0.70, 0.90]
e Moderate [0.50, 0.70]
o Weak [0.30, 0.60}
A Very Weak | [0.10, 0.30]

Table 3.5. Definition of linguistic variables [Khoo 1996]

Mathematically, the TFNs can be expressed as:
Ay = [ougj , o] (3.3)

where Ajj is a symmetrical TFN represented by the interval [a;; , o).
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The scalar multiplication of TFN and the sum of two symmetrical TFNs can be
represented as follows [Kaufmann 1985]:
Ao o, oz] =[Aeay, Ae oyl (3.4)

[ot, 2] + B, B2] = [0t + By, 02 + Ba] (3.5)
where A is the scalar quantity and [on, oz and [B), B2] are the intervals of two
symmetrical TFNs respectively.

Based on equation (3.4) and (3.5), representation of individual rating can be

expressed as:

"

IDR; = ZA,;,.XJ. Ay =lay,ay,],i=1"n (36)
s=l

24

where Aj is the degree of influence of the i-th part design parameter or mould design
parameter on the j-th process parameter.

The individual rating and NTI rating of each index can be calculated by using
equation (3.6) and (3.2) respectively. For example, the individual rating of wall
thickness can be calculated as follows:

IDRw = 1.0[0.30, 0.60] + 0.7[0.30, 0.60] + 0.6[0.70, 0.90] +

0.3[0.70, 0.90] + 0.3[0.10, 0.30] + 0.4[0.70, 0.90] +

0.2[0.50, 0.70] + 0.6[0.70, 0.90]

[1.97,2.96]

IDR,, =247

Based on the value of NTI ratings, the indexes can be divided into two classes:
critical index and general index. Table 3.6 shows the calculated individual rating and
NTI rating of individual parameters, and the classification of indexes. The critical index
implies that the index has significant influence on the determination of initial process

parameters for injection moulding. The general index is to reflect that the index has

-47.



substantial influence on the determination of initial process parameters for injection
moulding. As shown in Table 3.6, the indexes, moulding material and wall thickness,
are identified as the critical indexes which are used to perform "exact-matching" in the

case retrieval process.

"?-.1'#“ Fauldh L3 b iapnsluaiing eveiheieas SR R T R s e i \.iﬁ -- :
Moulding Material [2.68, 3.56] 3.12 1.00 Critical index
Part Size [1.26,2.31] 1.79 0.57 General index
Wall Thickness [1.97, 2.96] 2.47 0.79 Critical index
Part Complexity [1.71, 2.37] 2.04 0.65 General index
Part Volume [0.72, 1.26] 0.99 0.32 General index
Projected Area [0.57, 1.05] 0.81 0.26 General index
Runner Type [0.89, 1.36] 1.13 0.36 General index
Runner Size [1.20, 1.60] 1.40 0.45 General index
Gate Type [1.33,1.71] 1.52 0.49 General index
Gate Size [1.38, 1.78] 1.58 0.51 General index

Table 3.6 Individual rating of parameters of part design and injection mould design
In this research, the wall thickness is classified into different classes or sets
which are "thin", "medium" and "thick" so as to facilitate the case matching process in
qualitative manner. Conventionally, the classification is determined by clear defined
boundaries or crisp sets, in which an element either belongs or does not belong to a
crisp set. This binary issue of membership can be represented mathematically with the
following indicator (characteristic) function.

I, ifxeA

) = {o, if x & A

where the symbol y4(x) gives the indication of an unambiguous membership of element
X in crisp set A.

Since the classification method does not differentiate different degrees of
membership, some marginal cases could be ignored in the case retrieval process. In

order to alleviate this problem, fuzzy set theory is introduced in this research. A key
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difference between crisp and fuzzy sets is their membership function. A cnisp set has a
unique membership function, while a fuzzy set can have an infinite number of
membership functions to represent it.

A fuzzy set is a set containing elements that have varying degrees of
membership in the set. Elements of a fuzzy set are mapped to a universe of membership
values using a function-theoretic form. This function maps elements of a fuzzy set to a
real numbered value on the interval 0 to 1, where the endpoints of 0 and 1 conform to
no membership and full membership and the infinite number of values in between the
endpoints can represent various degrees of membership for an element in some set on

the universe. For example, if an element in the universe, say x, is a member of fuzzy set

4, then the functional mapping is given below:

#46) €[0,1]
where w1, (x) is the degree of membership of element x in fuzzy set 4. Therefore,

H 4(x) i1s a value on the unit interval that measures the degree to which x belongs to

fuzzy set f[ .

Since membership values can reflect the degree that an object belongs to a set,
marginal cases can be handled properly in the case retrieval process. Table 3.7 shows
the recoMendcd wall thickness of three common thermoplastic materials, ABS, PC
and PS. In this research, the wall thickness is classified in three fuzzy sets which are
“thin”, “medium” and “thick”. Figure 3.6 shows the membership functions of individual

fuzzy sets for wall thickness.

Table 3.7. Recommended wall thickness (ABS, PC and PS)
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Figure 3.6 Membership functions of wall thickness for ABS
The membership functions are represented in a series of equations in the CBR
module. For example, the membership functions of wall thickness for ABS can be

expressed below:

Ly (%) =1 ifx <12 (.7)
= (225-x)/1.05  if12<x<225 (3.8)

g () =(x-12)/1.05 if1.2<x <225 (3.9)
=1 ifx=225 (3.10)
=(2.25-x)/1.05 if2.25<x <33 (3.11)

Hpl®)  =(x -3.3)/1.05 if2.25<x <33 (.12)
=1 if x> 3.3 (3.13)

where x is the wall thickness in mm
In this research, an object belongs to a set if its membership value is equal to or
greater than a hurdle value called a-cut. For example, if the moulding material of an

input problem is ABS and the wall thickness of the plastic part is 1.74 mm, it can be
fuzzified as (thin/.49, medium/.51, thick/0) based on the membership functions as

shown in Figure 3.6. If the a-cut is set as 0.45, the wall thickness of the part is
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classified as “thin” and “medium” and thus the matching indexes of the input case will

be ABS_ TN and ABS_ME.

3.3.3 Case retrieval
In the CBR module, the retrieval process involves three main steps as shown in
Figure 3.7. They are the matching of fuzzy indexes, first level of similarity analysis and

the second level of similarity analysis.

Matching
of fuzzy indexes

Qutput
1st Batch of Cases

First level
of similarity anatysis
based on
image comparison and
nearesk-neighbour algorithrm |

FS2SIE DA TRIERAND DT RE R

Number of retrieved cases

L 4
Qutput
2nd Batch of Casej

Second level
of similarity analysis
based on the
nearest-neighbour algarithm |-

h 4

. S

Qutput v

the closest cases

decrease

Figure 3.7 Retrieval process of HSIM
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The retrieval process starts with matching the fuzzy indexes identified in Section
3.3.2. After the matchihg, a number of cases can be retrieved. Similarity analysis is then
performed on the retrieved cases to determine the degree of similarity between the
retrieved cases and the input problem. The retrieved cases are then ranked in descending
order according to their similarity values. The top several cases are retrieved for further
processing. Unlike the conventional CBR systems, two levels of similarity analysis are
employed in the HSIM in order to speed up the selection process and improve the
accuracy of matching [Adalier 1992]. The first level of similarity analysis is based on
the part complexity. Part complexity is described as the complexity of moulded part
design in terms of basic complexity, subsidiary complexity and surface finish/
tolerances requirements. In this research, part complexity is determined by the
quantitative assessment based on the Poli’s codiﬁg method and the nearest neighbour
algorithm, as well as the qualitative assessment based on the image comparison. The
second level of similarity analysis is based on the matching of the indexes including the
wall thickness, part envelope size, part volume, projected area and the hydraulic
diameters of gates and runners. Detailed discussions of individual processes are given

below.

3.3.3.1 Case matching

As mentioned in Section 3.3.1, the case library is organised in a combination of
feature-based structure and flat structure as shown in Figure 3.8. Therefore, the search

of cases involves depth-first search and serial search algorithm.
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Figure 3.8 Case matching in HSIM

Once the value of the wall thickness of an input problem is fuzzified, the
fuzzified wall thickness combining with the type of moulding material is used to
retrieve a cluster of potential cases. Besides, the number of cavities of the retrieved
cases must be equal to or larger than the required number of cavities of the input
problem in order to fulfil the production requirements. For those less than the required
number of cavities will not be selected. Derivation of the mathematical model for the
calculatioﬂ of the required number of cavities is given in Appendix A. The cluster of
retrieved cases are then stored in a flat structure. Similarity analysis is performed on

them in order to determine the most similar case.

3.3.3.2 First level of similarity analysis

The first level of similarity analysis is based on the matching of the part

complexity which is obtained by using the quantitative and qualitative assessment. To
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determine the part complexity quantitatively, a coding system developed by Poli E. et
al. [Poli 1992] in the University of Massachusetts, Amherst, for the description of part
complexity is adopted in this research. The coding system was developed based on the
group technology (GT) based complexity rating approach, in which the complexity is
described by three measures: basic complexity (BC), subsidiary complexity (SC), and
surface finish / tolerances requirements (ST).

The basic compléxity is a function of part envelope size, the presence of features
such as external undercuts and internal undercuts, and whether or not the parting line is
a planar or non-planar surface. The subsidiary complexity refers to the cavity details
and the complexity of external undercut. The effects of the surface finish and tolerances
of parts are accounted for the determination of measure of surface finish and tolerance
complexity. Based on the features of moulded parts, the measures of BC, SC and ST
can be determined from the rating tables as shown in Appendix B. Once these measures

are available, degree of matching on the part complexity can be calculated based on the

nearest-neighbour algorithm [Zhang 1992] and denoted as SI;,, . Detailed descriptions of

the algorithm are given in Section 3.3.3.2,

The coding system provides a consistent and systematic method for analysing
the complexity of moulded parts and has been successfully used in tooling/mould cost
estimation. However, in the determination of process parameters of injection moulding,
the quantitative assessment method may provide inaccurate results in some
circumstances. For example, part A and part B as shown in Figure 3.9 and Figure 3.10
respectively have identical envelope size, and same number and size of bosses. The part

complexity of them is calculated based on Poli’s method and shown in Table 3.8.
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Surface finish: SPI-3

Partig Lire)

Figure 3.9 Moulded part "A"

Surface finish: SPI-3
Tolerances: Commercial
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I

Porting Line 1

Figure 3.10 Moulded part "B"

1.64
1.00
1.00

164
1.00
1.00

Basic complexity (BC)

Subsidiary complexity (SC)
Surface finish / tolerances
requirements (ST) ‘

Table 3.8 Part complexity indexes of two cases
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It can be found that the values of part complexity of them are identical.
However, two parts obviously have different mould flow characteristics which would
lead to different process parameter setting of injection moulding. In this research, image
comparison between retrieved cases and input problem based on triangular fuzzy
numbers (TFNs) [Khoo 1996] was firstly introduced to improve the accuracy of part
complexity calculation. Three geometric features, part shape, internal surface details,
and external surface details, are used to define the degree of similarity. Part shape refers
to the external profile of moulded parts. Internal surface details refer to the study of
features on the internal surface of moulded parts inciuding their types and locations.
External surface details refer to the study of features on the external surface of moulded
parts inpluding their types and locations.

Degree of similarity between the part image of retrieved cases and the part
image of an input problem is described by using the qualitative descriptors: {Very
similar, Similar, Medium, Different, Very Different}, which is assigned by system
users. The descriptors are represented in triangular fuzzy numbers (TFNs) as shown in

Table 3.9 in order to facilitate the similarity analysis in quantitative manner.

DeSCTiDton v by nubers
Very Similar [0.8, 1.0]
Similar [0.5, 0.9]
Medium [0.3,0.7]
Different [0.1,0.5]
Very Different [0.0, 0.3]

Table 3.9 Fuzzy numbers for five descriptors
To determine the weighting of the part shape, internal surface details and the
external surface details in the initial process parameter setting, a pairwise comparison
matrix was constructed based on Saaty’s matrix [Saaty 1980] which can be generalised

as shown below:
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where A is Saaty’s matrix of pairwise comparisons, n is the number of features to be
studied, ajj is the relative importance between the i-th feature and the j-th feature based
on a nine-point intensity scale as shown in Table 3.10 and w; is the weighting of the i-th

feature.

IfXis.... ) then the preference
.....as {than) Y number to assign is
equally important

more important

strongly more important
very strongly more important
extremely more important
Compromise between two
adjacent judgements

B ND ~] Lh LD e

,4,6,8

Table 3.10. Nine-point intensity scale [Saaty 1977]
The pairwise comparison matrix was completed with the help of experienced

moulding personnel and is shown below:

Fir F F3

Fy 1 2 4

A= F 12 1 3
F3 174 173 1

where A is the pairwise comparison matrix, Fy, F; and F; are the three geometric

features, part shape, internal surface details, and external surface details respectively.
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After the construction of the pairwise comparison matrix, eigenvector method
[Saaty 1977] was applied to determine the weighting of features. In the method,
eigenvectors in each row of the matrix (V;) are firstly determined by the geometric

mean as shown below.

v =1fﬁa,.j Ji=1l..n (3.14)
j=l

The eigenvectors are then normalised to obtain the weighting (w;) of each
feature to the initial process parameter setting of injection moulding.

.
‘ (3.15)

v

i=l

W=

In order to reduce the inconsistency of human judgement in the completion of
the pairwise comparison matrix, the consistency of the judgements has been examined
by using an index called consistency ratio (CR). To calculate the consistency ratio, the

consistency index (CI) is firstly determined by using the following equations:

v, =Y a, ,j=1l..n (3.16)
i=]

T 617
=l

CIJ‘:"_"I" (3.18)

where v; is the sum of relative importance values in the j-th column, Anqy is the largest
eigenvalue and v;is the sum of relative importance values in the i-th column.
CI divided by the random consistency number of the same size of matrix [Saaty

1980] yields the consistency ratio (CR). The human judgements are considered to be
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consistent if CR is less than 0.1. Otherwise, re-examination of the pairwise judgement is

required. The final result of the pairwise comparison is shown in Table 3.11.

shape

Internal 172 1 3 1.14 0.32

surface details

External 1/4 173 1 0.44 0.12

surface details

(vi) 1.75 3.33 8 Amax | 3.0056
: CI: 0.0028
CR: 0.0050

Table 3.11 A pairwise comparison matrix (part shape, internal surface details and
external surface details)
Once the weighting of individual features is determined, the degree of similarity

between the i-th retrieved case and the input problem can be calculated and denoted as

SI ;, . For example, Table 3.12 shows the results of image comparison while Table 3.13

shows the results after the mapping of fuzzy numbers. The SI;, for the case 1 and the

input problem can be calculated by using the equation (3.6) as shown below:
IDR;; = 0.56[0.8, 1.0] + 0.32[0.3, 0.7] + 0.12[0.1, 0.5]

= [0.556, 0.844]

SI!, = IDR, =07

S Case Nl
Similar
Internal Surface  (0.32) | Similar Very Different
Details Similar
External Surface  (0.12) | Different Similar Similar
Details

Table 3.12 Results of image comparison
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[0310]

[3 0.7

[05 09]

Internal Surface (0.32) | {0.3,0.7] [0.8, 1.0] [0.1, 0.5]
Details
External Surface  (0.12) { {0.1,0.5] [0.5,0.9] [0.5,0.9]
Details

Slf?, . *(0.70 0.65 0.57

Table 3.13 Similarity values based on the resuits of image comparison

After the quantitative and qualitative assessment of part complexity, the

similarity indexes, SI),and SI, can be determined. It is then followed by the
combination of these two indexes into an index which can be used to describe the
similarity between two parts in terms of part complexity. There are some common
methods available to derive a combined index such as simple additive weighting (SAW)
method and weighted product method. The underlying assumption of the methods is
that the contribution of an individual attribute to the total score is independent of other
and SI

attribute values. In view of the nature of the similarity indexes, SIf their

n *
values are interdependent.

In this research, a multiple attribute decision making algorithm, TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) algorithm [Yoon
1995], is used to combine the two similarity indexes into an index. TOPSIS algorithm
selects the alternative based on the concept that the chosen alternative should not only
have the shortest Euclidean distance to the positive-ideal solution in a geometrical sense
but the longest Euclidean distance from the negative-ideal solution. In this research, the
positive-ideal solution is defined as the- case which is identical to the input problem

while the negative-ideal solution is the case which is totally different from the input

problem. Based on the TOPSIS algorithm, the indexes, SI, and SI,, are combined and
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a TOPSIS index can be obtained to express the similarity between two parts in terms of
part complexity. TOPSIS index is defined by combining the proximity to the positive-
ideal solution and the remoteness from the negative-ideal solution.

To apply TOPSIS algorithm in this work, a decision matrix (D) has to be

constructed firstly as shown below:

S“r Sy e S]n

S Sz S2n
D=

Sml Sm2 Smn

where S; 1s the similarity value of the i-th retrieved case obtained from the j-th
similarity assessment of part complexity, m is the number of retrieved cases to be °
studied and n is the number of similarity assessments of part complexity.

Then the vector normalisation is used for computing r;;, which is given as:

ry=—F——=,i=lL.mj=1.n (3.19)
O o 2
1{28.1 .
i=l

The weighted normalised value is calculated as:

vi=wirpi=1..m;j=1...n (3.20)
where rjj is the normalised similarity value of the i-th retrieved case obtained from the j-
th similarity assessment and w; is the weighting of the j-th similarity assessment.
Weighting of the quantitative and qualitative assessment are both preliminarily set as

0.5 and will be fine-tuned in system validation.
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The separation of each retrieved case from the positive-ideal solution, D;*, can

be calculated by using the following equation:

D! = fi(v,.j -v)?,i=l.m (3.21)
J=

where v;" is the best similarity value obtainable from the j-th similarity assessment
Similarly, the separation from the negative-ideal solution, Dy, can be calculated

by using the following equation.

D = fznl(v,.j -v;)?,i=l.m (3.22)
s=

where vj is the worst similarity value obtainable from the j-th similarity assessment
Finally, the TOPSIS index of individual cases, TOP;, can be calculated by using

the following equation:

D
TOP;= ——— ,i=1...m (3.23)
D +D/

The retrieved cases, with the TOPSIS index larger than a threshold value, are
considered as the potential cases. The top five most similar cases are selected to
perform the second level of similarity analysis. If there is no good matched case found
in the case library, the CBR module stops processing and the hj.(brid NN-GA module is
invoked to determine the initial process parameters of injection moulding for the input
problem. A pre-defined number of partially matched cases retrieved in the first level of
similarity analysis are injected into the hybrid NN-GA module as a part of the initial
population for pérforrning GA based optimisation. Detailed description of the

operations of the hybrid NN-GA module is given in Section 3.4.
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3.3.3.3 Second level of similarity analysis

After the first level of similarity analysis, the five most similar cases are
retn'eved' according to the values of TOPSIS index. In order to determine the closest
case, second level of similarity analysis is performed on these five cases based on the
matching of the indexes, wall thickness, part envelop size (length, width, depth), part
volume, projected area, hydraulic diameter of runners and gates.

In the second level of similarity analysis, the similarity between an input
problem and a retrieved case is assessed by using a similarity analysis function. Two
common similarity analysis functions are found in the area of CBR. The first one is to
assess the similarity based on the nearest neighbour algorithm [Duda 1973], while
another one is based on Tversky’s contrast function [Tversky 1977]. The nearest-
neighbour algorithm is widely used in CBR systems. Nearest-neighbour algorithm
assesses the overall similarity by a weighted linear combination of similarities along
indexes. Tversky’s contrast function is based on the cognitive notions of similarity that
requires a contrast model. A contrast model expresses similarity among objects as a
combination of their common and distinctive features. Tversky’s contrast function does
not include the weights associated with the indexes, in which similarity along indexes is
assumed to be binary.

Since all the indexes in the second level of similarity analysis are quantitative
and each index has different significance (weights) to initial process parameter setting
of injection moulding, the use of nearest-neighbour algorithm is found more suitable to
assess the similarity between a retrieved case and an input problem. The nearest-
neighbour algorithm developed by Zhang H [Zhang 1992] is adopted in this research, in
which the similarity between two cases Sim(case'(Cy), case’(Cw)) is defined as the

inverse of the distance between these two cases :
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Sim (case' (C,), case’(Cm)) = 1 - Dist (case'(Cy,), case*(Cm)) (3.24)
Dist (case'(Cy), case*(Cy)) is computed as the normalised Euclidean distance between

the corresponding cases :

Dist (case'(C), case’(Cy)) = %iwf [case!(C,)-case}(C,)}  (3.25)

where casez is the value of the j-th index of the i-th case, k = |A1u1\2 |, A(=1,2)-

the set of indexes of the corresponding cases, w; is the importance of the j-th index.

To apply the nearest-neighbour algorithm in similarity analysis, weighting of
individual indexes should be firstly determined. The conventional method to determine
the weightings is based on human judgement. This method inherits the disadvantage of
intuition and could result in poor solution to be obtained. Moreover, weighting all the
indexes at the same time may impose a heavy cognitive burden on system designers.

To make up the deficiency of the intuitive method, many weighting assignment
methods have been proposed such as the eigenvector method [Saaty 1977]) and the
weighted least square method {Chu 1979]. In this research, the eigenvector method is
adopted to determine the weighting of individual indexes, which has been successfully
applied in Analytic Hierarchy Process (AHP) [Saaty 1-980] for various applications. The
procedures of obtaining the weighting of individual indexes are same with those
described in Section 3.3.3.2.

The weightings are globally assigned to individual indexes for computing the
overall similarity value. The relative importance of the first and second level of
similarity analysis is determined by using the mean individual ratings as shown in Table

3.6 and is calculated by using the following equations.

-64 -



S_IR,

IPT, = (3.26)
S_IR +S_IR,

1, = —S1% (3.27)
S IR +S_IR,

where IPT) is the weighting of the first level of similarity analysis, S_IR; is the sum of
mean individual rating of the indexes defined in the first level of similarity analysis,
IPT, is the weighting of the second level of similarity analysis and S_IR; is the sum of
mean individual rating of the indexes defined in the second level of similarity analysis
Table 3.14 shows two retrieved cases and an input problem while Table 3.15
shows the results of two levels of similarity analysis and the computed overall similarity

value of the reference cases.

ype of resin ABS ABS ABS
Basic complexity 0.2 0.3 0.3
Subsidiary complexity 0.5 0.4 0.6
Tolerance & Surface finishing index 0.6 0.8 0.5
Wall thickness (mm) 1.5 1.3 1.5
Part volume (mm°) 13944 9100 12310
Projected area (mm?) 4754 3902 5221
Part envelope length (mm) 132 130 134
Part envelope width (mm) 48 46 54
Part envelope height (mm) 13 13 14
Hydraulic diameter (runner) 4.80 4.60 4.60
Hydraulic diameter (gate) 1.35 1.20 1.38

Table 3.14 Information and data of an input problem and two retrieved cases
The case with the highest overall similarity value is considered as the most
similar case to the input problem. Two verification tests were conducted to investigate
retrieval accuracy and consistency of the CBR module. Results of the verification tests
as shown in Appendix C indicate that HSIM has high accuracy and consistency in éase

retrieval.
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Subsidiary complexity 0.31 _0.26 0.21

Tolerance & surface 0.23 0.18 0.09
finishing index

SI f,,. 0.5 0.75 0.76

SI ; . 0.5 0.8 0.74

Similarity value (first level) : 0.77 0.75

Second level of similari

e T T LU
ESSRAt ATty

Part volume
Projected area

Part envelope length
Part envelope width
Part envelope height
Hydraulic diameter
(runner)

Hydraulic diameter 0.15 0.15 0.13
(gate)

Similarity value (second level) : 0.94 0.86

First level similarity 030 0.77 — 0.75
Second level similarity 0.70 0.94 0.86
Overall similarity value : 0.89 0.83

Table 3.15. Calculation of overall similarity value

3.3.4 Case adaptation
Case adaptation is a process that looks for prominent differences between the
reference case and the input problem and then .uses adaptation techniques to take those

differences into account. This process can be done manually or automatically.
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Traditionally, the reference case is adapted by system users. It is no doubt that this
approach encourages human collaboration in decision support. However, performance
of the adaptation quite relies upon the experience of system users. In HSIM, case
adaptation is done automatically.

Case adaptation could be as simple as substituting one component of a solution
into another or as complex as modifying the overall structure of a solution. In general,
there are three kinds of adaptation in CBR: substitution, transformation and derivational
replay. In this research, direct substitution was applied to derive the parameters for
runner and gating design such as runner type, runner layout, gate location and gate type.
Therefore, information and data of the runner and gating design for a particular
reference case are directly recommended to system users. Once the runner type and the
gate type of an input problem have been determi'ned, the corresponding parameters of
runner and gating design can be obtained by using the structured adaptation models as
shown in Appendix D.

For example, if the recommended gate type for an input problem is edge gate as
shown in Figure 3.11, the corresponding design parameters of the gate can be simply

determined by using the following equations [Pye 1989]:

W=(eA?)/30 (3.28)
h=net (3.29)
L =0.5 mm (minimum) (3.30)

where W is the gate width in mm, h is the gate depth in mm, L is the land length in mm,
t is the wall section thickness of the input problem in mm, A is the surface area of

cavity of the input problem in mm?, and n is the material constant
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Figure 3.11. Edge gate

Regarding the adaptation of the initial process parameters for injection
moulding, Kwong CK. et. al. [Kwong 1997] developed structured transformation
models for some initial process parameters of injection moulding. Further development
of the structured transformation models has been done to account for the effect of
runner and gating system design on the initial process parameters of injection moulding
[Mok 1999]). In the both studies, the structured transformation models are used to
compensate the deviations between the theoretical solution and the actual solution. It

can be generalised and expressed below.

Saref
Sa,,., =St 0| —= (3.31)
Stos

where Sapey is the solution of input problem, Sa is the actual solution of reference
case, Styew 15 the theoretical solution of input problem, St is the theoretical solution of
reference case and (Sas/ Steer) 1s a correction factor.

The structured transformation models can adapt a reference case to fit with a
new problem in very short time. However, structured transformation models of some
initial process parameters of injection moulding are not easy to be developed due to the
unusual complexity of injection moulding.

Shelesh-Nezhad K. et. al. [Shelesh-Nezhad 1997} employed retrieved cases to

establish a model for the adaptation of process parameters for injection moulding. In
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their research, three sets of linear equations are established by using the data stored in
four retrieved cases such as flow length, part thickness, melt temperature, mould
temperature, injection time and injection pressure. The equations can then be used to
derive the melt temperature, injection pressure and tl;e injection time for an input
problem. The other process parameters including the barrel temperature, injection
speed, hydraulic pressure, switch over time and plasticizing stroke are determined by
using mould flow analysis. This approach makes use of the similar old cases to establish
the linear relationship between the part design parameters and process parameters of
injection moulding, from which initial process parameters of injection moulding for an
input problem can be determined. However, injection moulding in fact is a non-linear
process, in which over a dozen adjustable process parameters are involved and some of
them interact with one another in subtle ways. Therefore, this approach is limited in a
certain range of flow length and part thickness where the process parameters exhibit
linear relationship with the flow length and part thickness.

Neural network approach was also employed in the case adaptation. This kind of
adaptation, called neuro-adaptation, uses a set of similar cases obtained from the case
retrieval process to train a neural network for a particular input problem. The output of
the neural network is a generalised solution from the similar cases, which contains a set
of initial process parameters of injection moulding for the input problem. Corchado
JM. et. at. [Corchado 1998] have attempted the neural network approach to develop an
adaptation model for forecasting the behaviour of a new oceanographic environment.
The behaviour of oceanographic environment is very complex, in which the underlying
knowledge of the domain is not completely available, the rules governing the system are
fuzzy and the sets of data samples are limited and incomplete. Results of their research

have indicated that the neuro-adaptation could combine the ability of CBR in selecting
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similar cases and the ability of neural networks in generalising the similar cases to
perform the adaptation.

In this research, the artificial neural network approach was firstly employed in
the formulation of an adaptation model for initial process parameters of injection
moulding. In the CBR module, a back-propagation network (BPN) is trained by the five
most similar cases obtained from the case retrieval process. The trained network is used
as an adai)tation model to derive initial process parameters of injection moulding for the
input problem. A BPN is currently the most general-purpose and commonly used neural
network paradigm [Skapura 1996] which is found particularly useful in classification
and pattern-recognition problems as well as the tasks that require mapping continuous
input values to continuous output values. In fact, the BPNs have been widely applied in
building a process model for many manufacturing processes such as abrasive flow
machining (AFM) [Petri 1998] and injection moulding [Souder 1994, Smith 1996,
Haeussller 1996]. The work of Hausler, J. et. al., Woll, S. et. al. and Richard, C. et.al.
[Hausler 1996, Woll 1996, Richard 1994] have already proved that BPNs can provide
more accurate results in quality prediction of moulded parts than other methods, such as
multiple regression modelling and statistical process control, due to their ability in
dealing with non-linear effects and interactions.

Figure 3.12 shows the basic architecture of a three-layer BPN which is used for
the case adaptation in HSIM. The network comprises of an input layer, a hidden layer
and an output layer. Number of hidden layers could be two or more which could affect
the performance of networks. However, a study by Lapedes, A. and Farber, R. [Lapedes
1988] shows that networks containing more than two hidden layers offer no significant

advantage over the two-hidden-layer network. In practice, BPNs with one hidden layer
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are usually enough to accomplish all pattern recognition and classification tasks [Souder

1994].

Part desigm
parameters
‘\" 'f’ Inial procass
, ‘ ‘ parameters for
+ 0 c. injection moulding

M.‘ o \

Mould design
parameters

fnput Layer Hidden Layer . Output Layer
Figure 3.12. A neural network for case adaptation
As shown in Table 3.16, inputs to the network are a combination of the part
design parameters and mould design parameters while outputs from the network are a

set of initial process parameters for injection moulding.

Finputs s S

1. Number of cavmes l Nozzle temperature

2. Moulding material 2. Barrel temperature (Rear)
3. Part envelope length 3. Barrel temperature (Middle)
4. Part envelope width 4. Barrel temperature (Front)
5. Part envelope height 5. Injection pressure

6. Projected area 6. Holding pressure

7. Part volume 7. Back pressure

8. Wall thickness 8. Clamping force

9. Part complexity 9. Screw surface speed

10. hydraulic diameter (gate) 10. Fill time

11. hydraulic diameter (runner) | 11. Holding time

12. Flow length 12. Cooling time

Table 3.16. Inputs and outputs of the neural network for case adaptation

Number of nodes in the input and output layers can be specified based on the

number of inputs and outputs of the network. However, the number of nodes used in the
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hidden layer is dependent upon the problem itself. In this research, the number of nodes
used in the hidden layer is determined by using the following equation [NeuroShell
1989]:

NHN =2x+/Ino+Ono (3.32)
where NHN is the number of nodes in the hidden layer, Ino is the number of nodes in
the input layer and Ono is the number of nodes in the output layer.

The derived value of NHN is rounded down to the nearest integer. Since there
are 12 inputs and 12 outputs in the adaptation model, 10 hidden nodes are required
based on the equation (3.32).

Two crucial steps for implementing a neural network as a computation model
are pre-processing of the network inputs and post-processing of the network outputs.
Pre-processing involv;:s normalisation of inputs of a network while post-processilig is to
interpret the output results from a network. In general, there are two common methods
for normalising the 'input data into the interval [0 to 1] which are range method and
standardised method. Both methods would lead to the same results. In this research, the
range method is used in the normalisation of network inputs because it is easier to be
implemented and understood than the standardised method. In the range method, input

data is normalised by using the following mapping function.

; vi., . -VI.
VI' - nomi min

; : 3.33
norm VI:nax _ VI:nin ( )

where VI, is the normalised value of the i-th input of the network, VI, is the

T

nominal value of the i-th input of the network, VI’ is the minimum value of the i-th

m

input of the network and V1! is the maximum value of the i-th input of the network
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For example, if the wall thickness of a ABS moulded part is 1.5 mm and the
recommended maximum and minimum wall thickness of plastic parts in ABS material
are 1.0 mm and 3.8 mm respectively, the normalised value of the wall thickness is:

Vi = ;‘3_1' =0.18

<

<

Similarly, the normalised values of outputs of NNs can be mapped back to the

nominal values by using the following mapping function.

=VO!

norm

Vo'

nomi

(VO., -VO.. )+VO'. (3.34)

where VO!_ is the normalised value of the i-th output of the network, VO'  is the

norm nomi

nominal value of the i-th output of the network, VO_, is the minimum value of the i-th

output of the network and VO!_ is the maximum value of the i-th output of the

network

In a back-propagation network, each connection between two nodes has an
associated weight. As shown in Figure 3.13, each node in the network forms a weighted
sum of the inputs from previous layers to which it is connected, and passes the sum

through a non-linear activation function to produce an output for the node.

5} —* ¥y

Figure 3.13 The anatomy of a node

The activation function could be square root, IT (product), log, €* and so on,

However, mathematicians and computer scientists have found that the sigmoid (S-
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shaped) function is particularly advantageous [Quantrille 1991]. Figure 3.14 shows a
plot of a sigmoid function (logistic function), which is monotonically increasing, with
limiting values of 0 (ét X = -o0) and 1 (at x = +<d). Because of the limiting values,
sigmoid functions can be considered as threshold functions.

1=

Figure 3.14 A plot of sigmoid functions

If sigmoid functions are used as an activation function, the inhibitory and
excitatory effects of weight factors are straightforward. Inhibitory effect refers to w; < 0
while w; > 0 is called excitatory effect. Since sigmoid functions are continuous,
differentiable, monotonic, and well-behaved even if x approaches + og they could
provide more efficient training. For this reason, the logistic function, one type of
sigmoid functions, is used as an activation function in the BPN.

Responses from the nodes in the hidden layer (h;) and the output layer (r) can

be computed by using the following equations.

hy = f(z v,.jx,.] (3.35)

1y = f[ij*th | (3.36)

fx)= (3.37)

1+e™*
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where vj is the weight of the connection between the i-th input node and the j-th hidden
node, wj is the weight of the connection between the j-th hidden node and the k-th
output node, and x; is an input to the i-th input node. The function f( ) is the logistic
function.

Based on the input-output patterns obtained from the five most similarly
retrieved cases, supervised learning can be performed. Generally, there are two types of
learning algorithms applied in BPNs which are vanilla back-propagation algorithm and
generalised delta-rule (GDR) algorithm. The vanilla back-propagation algorithm is a
gradient-descent learning technique that minimises the error between the input and
desired output. The advantage of this method is that weight changes are estimated
systematically rather than arbitrarily. The main problem of the vanilla back-propagation
algorithm is excessive learning time.

The GDR algorithm makes use of momentum and a bias function, which are two
distinguishing features between the GDR and the vanilla back-propagation algorithm.
Momentumn is an extra weight added onto the weight factors when they are adjusted. It
accelerates the change in the weight factors, and thus improves the training rate and
prevents the network stuck in a local minimum. In the GDR algorithm, the internal
thresholds become a bias function by adding a fixed number to the nodal summation.
When serving as a bias function, the internal threshold values are not changed or
updated as training processes. By using momentum coupled with a bias function, the
GDR algorithm is found more efficient than the vanilla back-propagation algorithm
[Quantrille 1991]. In this research, the GDR is adopted to perform the training of the
BPN in this research. Details of the GDR algorithm used in HSIM are described in

Appendix E.
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In the GDR algorithm, operations of networks are affected by two factors,
learning rate (n) and momentum factor (o). Learning rate is the constant of
proportionality while momentum factor determines the proportion of the last weight
change that is added into the new weight change. In this research, learning rate and
momentum factor are set as 0.6 and 0.9 respectively, which are found to be a proper
setting in most problems [NeuroShell 1989].

Once the BPN has been trained by the similar old cases, it can be used as an
adaptation model to derive initial process parameters of injection moulding for an input

problem.

3.4  Hybrid Neural Network and Genetic Algorithm (NN-GA) Module

The major propose of the hybrid NN-GA module is to complement the CBR
module in the determination of initial process parameters for injection moulding if there
is no similar case retrieved from the CBR module. As shown in Figure 3.15, the hybrid
NN-GA module comprises of two units, a NN prediction unit and a GA optimisation
unit.

The NN prediction unit, which is a trained neural network, is used to predict
quality of moulded parts. The GA optimisation unit is used to optimise the process
parameters of injection moulding within a constrained searching space. As shown in
Figure 3.15, an initial population is firstly generated and then the strings stored in it are
individually fed into the NN prediction unit for the quality prediction of moulded parts.
The predicted qhality measures of moulded parts are used to indicate the fitness of
strings. Finally, the GA optimisation unit is used to find out the best combination of
process parameters by applying genetic operators. The cycle is repeated until an
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optimal/near-optimal solution is found. In the following, issues of design and

development of the hybrid NN-GA module are discussed.

Trained neural network

Input layer

Output layer

lll;jj.

Post-processing

Fitness Evaluation

1}
I
1
|
1
|
1
|
1
! Hidden layer
I
]
I
[}
|
]
|

Process Parameters for
injection moulding

Figure 3.15 Basic architecture of hybrid NN-GA module

3.4.1 Initial population and strings

The hybrid NN-GA module is started with the generation of an initial population
which contains a predefined number of chromosomes (strings). Contents of a string

stored in the initial pophlation is shown in Figure 3.16. Each string contains a set of part
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design parameters, mould design parameters and process parameters of injection

moulding.

where TR is the type of resin, EL is the envelope length, EW is the envelope width, EH is the envelope height, WT

is the wall thickness, PV is the part volume, PA is the projected area, PC is the part complexity, NC is the number of
cavities, HR is the hydraulic diameter of runners, HG is the hydraulic diameter of gates, ME is the melt temperature, MO
is the mould temperature, IP is the injection pressure, HP is the holding pressure, BP is the back pressure, CF is the

clamping force, SS is the screw surface speed, FT is the fill time, HT is the holding time and CT is the cooling time.

Figure 3.16 Contents of a string

The string can be represented / encoded in a binary string (binary-coded GA), or
in a set of real numbers (real-coded GA). Binary encoding is the most common method
to represent strings in GAs. This type of encoding can give many possible strings even
with a small number of alleles (feature values). However, binary encoding is 6ﬂen not
natural for many problems, such as where many real numbers are involved. In the
determination of initial process parameters for injection moulding, a large number of
real numbers are involved. Hence, real number encoding is found more suitable to
represent the strings in the GA optimisation unit, in which each string is represented by
a set of real numbers.

For example, Table 3.17 shows the information and data of design and moulding
of a moulded part. Then, its corresponding string is represented as {1, 150, 48, 15, 1.5,
15000, 4800, 0.6, 1, 4.8, 2.6, 250, 80, 300, 150, 5, 50, 550, 0.5, 3, 5}.

The parameters of part design and injection mould design are directly obtained
from system users through the user interface. Since these parameters are used to
describe the input problem, they will not be altered during the GA based optimisation

process. The process parameters of injection moulding are varied within their operating
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ranges in each generation in order to search for the best combination of process
parameters within a constrained searching space. The operating range of the process

parameters for the materials, ABS, PC and PS, can be found in Appendix F.

ABS (1)
Envelope length 150 mm
Envelope width 48 mm
Envelope height 15 mm
Wall thickness 1.5 mm
Part volume 15000 mm’
Projected area 4800 mm®
Part complexity 0.6
Number of cavities 1
Hydraulic diameter (runner) 4.8
Hydraulic diameter (gate) 2.6
Melt temperature 250°C
Mould temperature 80°C
Injection pressure 300 bar
Holding pressure 150 bar
Back pressure 5 bar
Clamping force 50 ton
Screw surface speed 550 mm/s
Fill time 0.5 sec.
Holding time 3 sec.
Cooling time 5 sec.

Table 3.17 Contents of a string

In this research, the population size, crossover rate and the mutation rate of the
GA optimisation unit are set as 50, 0.6 and 0.001 respectively which are based on the
suggestions from Delong K.A. [DeJong 1975]. Unlike the conventional GAs, the initial
population of the hybrid NN-GA module is generated by a combination of randomly
generated strings and the partially matched cases retrieved from the CBR module. This
combination can establish a better balance between exploration and exploitation of the
searching space and hence provide a more efficient search [Louis 1997]. In the GA
optimisation unit, 10% of the initial population come from the partially matched cases

retrieved from the CBR module. The others are generated from random number
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generation. Once the initial population has been formed, each string of it is fed into the

NN prediction unit for the quality prediction of moulded parts.

3.4.2 Neural network based quality prediction

The NN prediction unit was developed based on the neural network aﬁproach. A
back-propagation network with sigmoid function is employed as a i)rocess model to
predict the quality of moulded parts. Figure 3.17 shows the basic architecture of the 21-
10-4 multi-layered BPN used in the NN prediction unit, which comprises of an input
layer, a hidden layer and an output layer. Design processes of the network are very

similar to those of the network which is used in the case adaptation of the CBR module.

Part design
parameters

+

Mould design

parameters Quality

measures

+

Process
parameters of
injection
mautding

Input layer Hidden layer Qutput layer

Figure 3.17 Structure of the neural network used in the hybrid NN-GA module

The input layer receives information from an external source and passes this
information into BPN for processing. The input pattern to the NN prediction unit is a
combination of the part design parameters, mould design parameters and the process

parameters of injection moulding. The part design parameters and mould design
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parameters are directly obtained from the CBR module while the process parameters are
generated by the GA optimisation unit.

The hidden layer receives information from the input layer, and “quietly” does
all of the information processing. The hidden layer of the NN prediction unit models the
relationship between the inputs and the outputs of the network. This processing step is
hidden from the view.

The output layer receives processed information from the BPN and sends the
results out to an external receptor. Qutputs from the network are the quality measures of
moulded parts including the maximum wall shear stress, maximum representative shear
rate, mould temperature difference and the cycle time. The predicted cycle time is used
to measure the productivity of injection moulding process. The other three quality
measures are indirect type of measurement and used as an indication of possible
moulding defects appearing in moulded parts.

Wall-shear stress i1s defined as the shear force at the mould wall per unit area
and is proportional to the pressure gradient at each location. Shear stress is an indirect
indication of the degree of molecular or fibre orientation. Higher shear stress would
induce higher orientation, especially near the surface of the moulded part. In addition,
flow instability, such as melt-fracture, has been shown experimentally to correlate
directly with the shear stress level. As a rule of thumb, the maximum wall shear stress
should not exceed the maximum value recommended by resin suppliers.

Repreéentativc shear rate is derived from the wall-shear stress and the fluidity.
The representative shear rate can characterise the magnitude of the shear rate at any
cross section. Therefore, the results can be used to identify the areas of higher shear rate
and frictional heating. To establish an objective function, an average or weighted-

average of the shear rate across the thickness is not desirable because a straight average
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would result in a misleadingly low value. As a rule of thumb, the maximum
representative shear rate should not exceed the critical value recommended by resin
suppliers. Otherwise, polymer degradation may occur.

Mould temperature difference is the difference between the core and the cavity
mould-wall temperature. The temperature difference leads to asymmetric cooling, and
thus contributes to thermal residual stresses in moulded parts. Therefore, these data can
indicate the occurrence of warpage due to uneven mould cooling. Ideally, the mould
temperature difference should be zero so that non-uniform shrinkage can be eliminated.
As a rule of thumb, the temperature difference should not exceed 20° C.

Before the BPN can be used to predict the quality of moulded parts, it must be
trained properly. To train the network, a certain number of input-output pairs must be
available. In this research, the input-output pairs are obtained by performing a numbenl
of mould flow analyses. The obtained input-output pairs are then divided into a training
set and a test set respectively. The network is trained with the training set and the
performance of the network is tested periodically using the test set. The results of the
training and the testing are shown in Appendix G.

Once the input-output pairs are available, generalised delta-rule (GDR) training
algorithm with momentum term can be performed to train the BPN. During training, an
input pattern is sent to the network and an output is obtained. The output is compared
with the known output for the pattern and the error is propagated back through the
network by adjusting the weights; This helps to minimise the error associated with the
present input-output set. Details of the GDR training algorithm have been described in
Section 3.3.4. If the BPN is properly trained, it not only can correctly evaluate patterns

that have been trained upon but also can interpolate between these patterns to describe
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unfamiliar but related input patterns. The outputs from the neural network, which are

the quality measures of moulded parts, are then evaluated by a fitness function.

3.4.3 Fitness function
In this research, a fitness function was established to evaluate each string in the

processing population which is shown below:

allow

' t
Minimise 1 F(X)= a[i"—ﬂi-}rb o +C(T—:J+d(—c~¥f~lij (3.38)
Teritical -Y . Td
critical

Subjectto :  Ci(X) : Twmay € Taitiear (10 prevent flow instability)

Ca(X) ¥ max € ¥ aritien (t0 prevent degradation)
Ci(X) : Ta< TG (to prevent warpage)

Ca(X) : teyere € tanow (o ensure productivity)

where Ty 18 the maximum wall shear stress, Teiicar 15 the critical wall shear stress, v pax

ts the maximum representative shear rate, ¥ criicar iS the critical representative shear rate,
Ty is the maximum temperature difference, T} is the allowable temperature difference,

teyele 1S the cycle time, taow is the allowable processing time, and a,b,c and d all are the
weighted factors.

Minimising the fitness function implies the minimisation of moulding defects
and the maximisation of productivity. In order to maintain uniformity over various
problem domains, values obtained from the fitness function are normalised to a range of
0 to 1. In this research, the normalised values are considered as the fitness of a string,

which are calculated by the following equation:



fit, = FV i = FV (3.39)
' FVmax"FVmin

where fit; is the fitness of the i-th string, FV; is the value of the i-th string
obtained from the fitness function, and FV . and FV,;, is the maximum and minimum

value obtainable from the fitness function respectively.

3.4.4 Control population

After the first generation, the strings are ranked in descending order based on
their fitness value. The top ten strings are stored in a temporary population, called
control population. In successive generations, the fitness value of each string stored in
the processing population compares with the fitness value of each string stored in the
control population. If the fitness value of a string of the processing population is better
than the one with the smallest fitness value stored in the control population, the former
will be copied to the control population while the latter stored in the control population
will be removed. Then the strings stored in the control population are re-ranked
according to their fitness values. While the iterations show declining in fitness, all the
strings stored in control population will be copied to replace the ten weakest strings

stored in the processing population.

3.4.5 Termination criteria

Two termination criteria, settling boundary and maximum number of iterations,
are defined in the GA optimisation unit. Settling boundary is used to determine whether
the population has converged, while maximum number of iterations is used to avoid

excessive computer time. Settling boundary is determined based on the difference
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between the largest and smallest fitness value of the strings stored in the control
population.

SB = FCom = FCan 1009 (3.40)
FC

where SB is the settling boundary, and FCpa and FCpip are the largest and smallest
fitness value of the strings stored in the control population respectively.

In this research, the settling boundary is defaulted as 0.1 % while the maximum
number of iterations is set as 1,000. These values can be modified by system users. If
the settling boundary is less than 0.1% or the pre-defined number of iterations is
reached, the GA process stops and the string with the largest fitness value, which
contains a set of initial process parameters for injection moulding, is recommended to

system users.

3.4.6 Generation of new population

If the termination criteria have not been fulfilled, the GA operators including
selection, crossover and mutation will be applied to generate a new population.
Selection is an operation for the determination of the combination that performs
crossover. There are quite a few selection techniques such as roulette-wheel selection,
Boltzman selection, tournament selection, rank selection and steady state selection. In
this research, the roulette-wheel selection and the rank selection are considered.

The roulette-wheel selection is the most common technique for selecting strings,
which allocates offspring based on the ratio of string’s fitness value to the population’s
average fitness value. There are two shortcomings in the use of this selection scheme.

Firstly, in the initial generations of the genetic algorithm, a large number of offspring
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may be generated from a few strings with relatively high fitness values. It can cause a
premature convergence. Secondly, when the variance in individual fitness values
becomes small, approximately equal number of offspring may be generated from
individual strings. It can deplete the driving force to promote better strings.

In rank selection, the population is sorted according to the fitness values. The
fitness assigned to each string depends only on its position in the individuals rank and
not on the actual fitness value. It has been proved that rank selection behaves in a more
robust manner than roulette-wheel selection [Back 1991]. Hence, the rank selection is
adopted in the GA optimisation unit.

After selection, strings are subjected to crossover in order to produce more
adapted string (better solution). The simplegt approach to perform crossover is single-
point crossover. Single-point crossover is to choose a random cut point along the string
of values and generate the offspring by combining the segment of one parent to the left
of the cut point with the segment of the other parent to the right of the cut point. Single-
point crossover has very strong positional bias, but no distributional bias. Experimental
results have indicated that the combination of biases is far from optimal and has
undesirable side-effects on the exploratory power of crossover [Eshelman 1989].

There are quite a few crossover methods available to overcome the
shortcomings of single point crossover such as two-point crossover, multi-point
crossover, segmented crossover, shuffle crossover and uniform crossover. In this
research, two-point crossover and uniform crossover are considered. In the two-point
crossover scheme, two crossover points are randomly chosen within the length of
strings and segments of strings between them are exchanged. In the uniform crossover
scheme, the bits are exchanged randomly at each string position. Therefore, uniform

crossover exchanges bits of a string rather than segments.
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Empirical evidence shows that uniform crossover is more suitable for small
populations, while for larger populations, the less disruptive two-point crossover is
better [Srinivas 1994]. Since a relatively small population is used in the GA
optimisation unit, uniform crossover is adopted in order to sustain a highly explorative
search in the population. Operations of uniform crossover are illustrated below:

For example, uniform crossover is performed on a pair of selected strings, string

1 and string 5, and crossover break point is set as 0.2.

String 1 [250, 70, 300, 150, 5, 50, 55, 80, 05 3 5 90
String 5: [270, &, 250, 150, & 35 70, 120, 06, 35 5 90
Randomno.: {35, .15, .23, .65, .50, .66, .78 .18, .28, .33, .88, .56]

In this example, the second token and eighth token of the pair of strings have a
random number smaller than the crossover break point. Therefore, these tokens will

exchange and their offspring will be:

String I: [250, 85 300, 150, 5 50, 5SS, 120, 05 3 5, 90
String 5: [270, 70, 250, 150, 8 35, 70, 80, 06 35 5 90

The number of strings selected to perform crossover in each generation can be
calculated by using the following equation.

NC=CR x PS (3.41)
where NC is the number of strings to perform crossover in each generation, CR is the
crossover rate and PS is the population size.

After crossover, mutation is applied to each string. Mutation is used to increase
the variability of the population by introducing a small amount of random search.
During mutation, each fundamental unit (bit, position or token) in a string has a finite
probability of changing. Therefore, the probability of searching any region in the

problem space is never zero, which prevents complete loss of genetic material through
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selection and elimination. Operations of mutation are illustrated by using the following
example.

If mutation rate is set as 0.01, the token to be mutated is selected as follows:

String 1: 270, 70, 300, 150, 35 50, 33, 120, 05 3 3, 907

Random no.:  [.005. 422, 923, 645 150, .066, .078, 106, 328, .343, 858 . .546]

In this example, the first token of string 1 has a random number smaller than the
mutation rate 0.01. Therefore, mutation is done on the token randomly within the range
of it. As the first token represents melt temperature and its operating range is between

210 and 260, string 1 may be changed as follows:
String I: [256, 70, 300, 150, 5, 50, 55, 120, 0.5 3. 5, 207

The number of tokens to perform mutation in each generation can be calculated
by the following equation.

NM=MR x SL x P§ (3.42)
where NM is the number of tokens to perform mutation, MR is the mutation rate, SL is
the string length and PS is the population size.

The newly generated strings are then fed 'to the NN prediction unit for the

quality prediction of moulded parts.
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CHAPTER FOUR - SYSTEM IMPLEMENTATION AND VALIDATION

4.1 System Implementation

The prototype system for the determination of initial process parameters for
injection moulding, HSIM, has been developed. The system which consists CBR
module and NN-GA module was implemented in Visual Basic programming language
based on combined case based reasoning (CBR) and hybrid neural network and genetic

algorithm (NN-GA) approach. Figure 4.1 shows the overall process flow of HSIM.

User Input

{Information and data of part
dasign and production
requiremans)

'

Invoke
CBR module

!
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Display some
pararneters of
mould design

User Input

{Information and daia of
injection mould design}

'
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r
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Display initial
process parameters
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moulding

Figure 4.1 Overall process flow of HSIM
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In this chapter, capabilities and operations of HSIM are described and
demonstrated. Determination of initial process parameters for injection moulding of a
mobile phone casing as shown in Figure 4.2 is used as an example for illustration
throughout this section. The demonstrations are shown in two scenarios. In the first
scenario, there are good matching cases found in the case library and the initial process
parameters of injection moulding for the input problem are determined by the CBR
module. In the second scenario, no good matching cases can be retrieved from the CBR
module and the initial process parameters of injection moulding for the input problem

are determined by the hybrid NN-GA module.

Figure 4.2 A mobile phone casing (for illustration)
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4.1.1 Determination of initial process parameters foﬂr injection moulding based on CBR
approach
Firstly, the part design parameters and production requirements are input to the
system through the user interface as shown in Figure 4.3. Based on the production
requirementé of the input problem, the required number of cavities can be calculated

which is one of the critical indexes for case matching.

Figure 4.3 User input interface of HSIM

After the input, the CBR module is invoked to determine the initial process
parameters of injection moulding. Case retrieval starts with matching the pre-defined
indexes. After the matching, a number of cases are retrieved. The first level of similanty
analysis is then performed on the retrieved cases based on the part complexity. The part
complexity is determined by both the quantitative assessment (based on the Poli's

method) and the qualitative assessment (based on the image comparison). Figure 4.4
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shows the results of the quantitative assessment while Figure 4.5 shows the interface for

performing the image comparison. Results of the first level of similarity analysis are

shown in Figure 4.6.

| & Matching Result

'3 Mirifium nimBer of caiviies = 2

N:t.ﬁ_:nbéi ufrnoubd 'b_a_se[s]'iequired =1
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. t:asg13‘[94:z match ] - RO

Please pleés [lniabe Comparison] to qu,aﬂétive!‘y evaluate the cases

Figure 4.4 Results of quantitative assessment

Figure 4.5 Interface for image comparison
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| & TOPSIS Algorithm

Figure 4.6 Results of first level of similarity analysis

After the first level of similarity analysis, the second level of similarity analysis
is performed on the retrieved cases based on the indexes, wall thickness, part envelop
size (length, width, depth), part volume, projected area and hydraulic diameter of

runners and gates. Results of the similarity analysis are shown in Figure 4.7.

Figure 4.7 Results of second level of similarity analysis
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After the two levels of similarity analysis, the overall similarity value of
individual cases is obtained. The five most similar cases are used as training sets for
formulating a neuro-adaptation model. The initial process parameters of injection
moulding and some mould design parameters of the closest case are shown in Figure
4.8 and Figure 4.9 respectively. The mould design parameters are directly

recommended to system users which could be used in the injection mould design.

Figure 4.8 Process parameter setting of a selected case
If the recommended mould design parameters are accepted, a set of initial
process parameters of injection moulding for the input problem is then output to system

users as shown in Figure 4.10 after the case adaptation.
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Figure 4.10 Initial process parameter setting for an input problem
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If the mould design parameters recommended by the CBR I-nodule are modified,
such as the change of gate size and runner size, the second level of similarity analysis is
performed again in order to take the influence of the changes into account. The overall
sirnilarity values are then re-calculated. The five most similar cases are identified again
to formulate an adaptation model based on neural network approach. For example, if the
gate size is changed from l.lmm x 2.5mm to 1.2mm x 3mm, a new set of initial

process parameters recommended by the CBR module is shown in Figure 4.11.
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Figure 4.11 Process parameter setting of an adapted case
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4.1.2 Determination of initial process parameter for injection moulding based on hybrid
NN-GA approach
If the highest TOPSIS index obtained from the first level of similarity analysis is
less than the threshold value (0.7) as shown in Figure 4.12, system users are required to

input the mould design parameters through the user interface as shown in Figure 4.13.

e

5&;@& ;
mouldin

Figure 4.13 User interface for the input of mould design parameters
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The second level of similarity analysis is performed to retrieve a number .of
similar cases. These similar cases become one part of the initial population for
performing the GA based optimisation in the hybrid NN-GA module. Figure 4.14 shows
the user interface of the hybrid NN-GA module, in which the GA control parmneteré

including population size, mutation rate, crossover rate and settling boundary can be

altered.

& Neural Network and Genetic Algorithm (N...
N

A

Figure 4.14 Interface of hybrid NN-GA module

The hybrid NN-GA module then applies the genetic operators to obtain an
optimal solution. If the difference between the largest and smallest fitness values of the
strings stored in the control population is less than 0.1% or the pre-defined number of
iterations is reached, the GA process stops and the string with the largest fitness value
will be recommended to system users. Figure 4.15 shows the contents of a string

recommended by the hybrid NN-GA module.
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Figure 4.15 Recommended solution from the hybrid NN-GA module

4.2  System Validation
4.2.1 Methodology of system validation

Validation of HSIM can be performed in two stages. The ﬁrst-stage of system
validation involves the investigation of the effectiveness of HSIM by using a CAE
analysis package for injection moulding. The second stage of system validation involves
the application of HSIM in real world environment. One or more manufacturing
companies have to be involved in this stage. Since the manufacturing companies are
still not identified, it seems that the second stage of system validation probably cannot

be done by the end of this research. Details of the first stage of system validation is

described below.

-99 .



A commercial CAE analysis package for injection moulding called C-MOLD
was employed in the first stage of system validation to validate the solutions generated
by the HSIM. Previous applications of C-MOLD have already shown that the package
can provide a good estimation of actual moulding results under quite a wide range of
conditions. Solid models of mobile phone casings were created by using
ProfENGl'NEER CAD software [Pro/ENGINEER 1997] and converted into mid-plane
FEM models for the C-MOLD analyses.

Two validation tests were conducted in the first stage of system validation. The
tests aim to investigate the effectiveness of HSIM when there are good and bad cases
retrieved from the CBR module. In general, if there are good matching cases retrieved
from the case library, only the CBR module is invoked to determine the initial process
parameters. Otherwise, the hybrid NN-GA module is invoked. In order to investigate
the effectiveness of individual modules, both modules are invoked in individual
validation tests. Hence, two sets of initial process parameter setting are obtained for
comparison in each test.

The initial process parameters of injection moulding for an input problem
generated either from the CBR module or from the hybrid NN-GA module are used as a
starting condition for running the C-MOLD analyses. The analysis results are assessed
based on the quality criteria for moulded parts developed by Tan K.H. [Tan 1997b]. The
quality criteria are summarised as follows:

C1: Twar < Terisicat

C2: Y max S ¥ eritical

Cs: VS < ?S:ncl:epl

C4 N Tcaw'ly < Tdemo{a'
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where 1 is the maximum wall shear stress, 1, 1S the critical wall shear stress, vy ..

is the maximum representative shear rate, y ;. is the critical representative shear rate,

VS is the average volumetric shrinkage, Fgam, is the acceptable average volumetric

shrinkage, Tca\,,-,y is the average cavity temperature, and fdm,d is the material

demoulding temperature.

The quality criteria are briefly explained below [Tan 1997]:

1.

The first criterion is used to prevent flow instability, which is correlated to the
maximum wall shear stress. Flow instability is considered to be not existed if the
maximum wall shear stress is below its critical value.

The second criterion is used to prevent polymer degradation due to shear heating
which is correlated to the maximum representative shear rate. This defect is
considered to be not existed if the maximum representative shear rate is below
its critical value.

The third criterion is used to prevent excessive linear shrinkage. Volumetric
shrinkage is a qualitative indication of linear shrinkage and can be used to
correlate this defect indirectly. Excessive linear shrinkage is considered to be not
existed if the average volumetric shrinkage of the moulded part is below the
acceptable value.

The fourth criterion is used to prevent warpage due to insufficient rigidity. This
defect is considered to be not existed if the end-to-cool average cavity
temperature is below the material demoulding temperature.

If the analysis results of a moulded part do not violate any quality criterion, the

moulded part will be considered as free of the above defects and the corresponding
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initial process parameter setting can be considered to be acceptable. Results of the

system validation are summarised in the following sections.

4.2.2 Validation test one

The data and information of a mobile phone casing as shown in Figure 4.16 are
input to the system for the determination of initial process parameters for injection
moulding. Table 4.1 shows the operating results of the CBR module and the hybrid NN-

GA module respectively.

odule, Hybrid:NN-GA:Modu
Overall similarity index : 0.90 Highest fitness value : 0.68
Reference case no: 3 Number of iterations : 124
Table 4.1 Operating results of CBR module and hybrid NN-GA module (Test 1)

Production Volume: 100,000 Parts
Part Number : ER 233 Allowable Working Days: 27 Days
No. of Shifts per Day: 2 Shifts
Reject Rate: 1%
Machine Utilisation: 85%
Required no. of cavities: 1 cavity
Wall Thickness: 1.8 mm
Part Envelope Length: 132 mm
Part Envelope Width: 48 mm
Part Envelope Height: 13 mm
Projected Area: 35.12 cm®
Part Volume: 15.19 cm®
Moulding Material: ASAHI CHEM/
ABS STYLAC-ABS 100
Machine : Kawaguchi/K25-B
Coolant Material: Water (pure)
Mould Material: Tool Steel P-20

Figure 4.16 Input problem of validation test one
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Table 4.2 shows two sets of initial process parameters for injection moulding of
the mobile phone casing, which were obtained from the CBR module and the hybrid

NN-GA module respectively.

4

x{..’:

Nozzle temperature °C 265

Barrel temperature °C 265, 245,230, 220 | 260, 240, 225, 215
Injection pressure bar 365 273

Holding pressure bar 295 219

Back pressure bar 5 6

Clamping force ton 10 10.5

Fill time sec. 0.8 0.84

Holding time sec. 6.0 5.0

Cooling time sec. 8.5 8.9

Table 4.2 Two sets of initial process parameters for injection moulding (Test 1)
The two sets of initial process parameters for injection moulding were then input
to the C-MOLD analysis package for mould flow simulation. Results of the C-MOLD

analyses are summarised in Table 4.3.

Qiiality Meéasur "ResuléB
Maximum \.z-vall Shear stress 0.264 | 0.263 |
Maximum representative shear rate | 1/s 7.78x10° 7.23x10°
Average cavity temperature °C 94 93
Average volumetric shrinkage % 1.5 1.5

Result A - C-MOLD results based on the initia! process parameters recommended by CBR module

Result B - C-MOLD results based on the initial process parameters recommended by hybrid NN-GA
module

Table 4.3 Results of flow simulation {Test 1)

Apart from the above quantitative data, plots of the melt-front advancement, air
trap locations and the weld line locations obtained from the C-MOLD analysis are

shown as follows:
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a. Meit front advancement
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Figure 4.17. Melt front advancement (validation test 1. CBR modﬁle)
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Figure 4.18. Melt front advancement (validation test 1: hybrid NN-GA module)
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Aair trap locations
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Figure 4.19. Air trap locations (validation test 1: CBR module)
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Figure 4.20. Air trap locations (validation test 1: hybrid NN-GA module)
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C. Weld line locations
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Figure 4.21. Weld line locations (validation test 1: CBR module)
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Figure 4.22. Weld line locations (validation test 1: hybrid NN-GA module)
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4.2.3 Validation test two

The data and information of another mobile phone casing as shown in Figure

4.23 are input to the system for the determination of initial process parameters for

injection moulding. Table 4.4 shows the operating results of the CBR module and the

hybrid NN-GA module respectively.

CCBRModule: . S Hybrid NNSGA Module: .-
Overall sumlanty mdex 0 52 Highest fitness value : 0.64
Reference case no: 7 Number of iterations : 232

Table 4.4 Operating results of CBR module and hybrid NN-GA module (Test2)

Production Volume:
Part Number : PE 933
No. of Shifts per Day:
Reject Rate:

Machine Utilisation:
Required no. of cavities:
Wall Thickness:

Part Envelope Length:
Part Envelope Width:
Part Envelope Height:
Projected Area:

Part Volume:

Moulding Material:
Machine :

Coolant Material:
Mould Material:

Allowable Working Days:

110,000 Parts

28 Days

2 Shifts

1%

85%

| cavity

1.6 mm

110 mm

42 mm

I3 mm

28.92 cm’

10.14 cm®

ASAHI CHEM/ABS 100
Battenfeld/BA230/50E
Water (pure)

Tool Steel P-20

Figure 4.23 Input problem of validation test two

Table 4.5 shows two sets of initial process parameters of injection moulding for

the mobile phone casing, which were obtained from the CBR module and the hybrid

NN-GA module respectively.
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PTnjectionMoniding H{Unit

T
il YEBRn %3 Teics g aNNE

RBTocessBarameterseil

Nozzle temperature °C 245

Barrel temperature °C 245, 225,210,200 | 259,239,224, 214
Injection pressure bar 417 370

Holding pressure bar 250 296

Back pressure bar 5 7

Clamping force ton 10 10

Fill time sec. 0.8 0.58

Holding time sec. 6.0 8.6

Cooling time sec. 10.5 11.2

Table 4.5 Two sets of initial process parameters for injection moulding (Test 2)
The two sets of initial process parameters for injection moulding were then input
to C-MOLD analysis package for mould flow simulation. Results of the C-MOLD

analyses are summarised in Table 4.6.

o T

TORality Measur

Bl S IR RN - e e ot LA vy L [ 1A 8 2l PR N
Maximum wall shear stress MPa l-< 0.28 0.28 0.27
Maximum representative shear rate | 1/s <1.2x10* | 9.4x10° 1.08x10°
Average cavity temperature °C <120 76 82
Average volumetric shrinkage %o <1.8 3.9 1.75

Result A - C-MOLD results based on the initial process parameters recommended by CBR module

Result B - C-MOLD results based on the initial process parameters recommended by hybrid NN-GA
module

Table 4.6 Results of flow simulation (Test 2)
Plots of the melt front advancement, air trap locations and the weld line locations

obtained from the C-MOLD analysis are shown as follows:

-108 -



a. Melt front advancement
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Figure 4.24. Melt front advancement (validation test 2: CBR module)
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Figure 4.25. Melt front advancement (validation test 2: hybrid NN-GA module)
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b.

Air trap locations
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Figure 4.26. Air trap locations (validation test 2: CBR module)
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Figure 4.27. Air trap locations (validation test 2: hybrid NN-GA module)
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C. Weld line locations
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Figure 4.28. Weld line locations (validation test 2: CBR module)
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Figure 4.29. Weld line locations (validation test 2: hybrid NN-GA module)
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CHAPTER FIVE - RESULTS AND DISCUSSIONS

5.1 Discussions on Validation Results

In this research, two validation tests have been performed to validate the
effectiveness of HSIM. In the validation tests, four quality criteria are used to assess the
quality of moulded parts. It should be noted that the quality criteria do not reflect all
types of defects. For example, diesel effect (bumns), which is strongly related to the
venting condition, is not considered in the quality criteria. In spite of the limitations, the
experimental results show that these quality criteria are adequate for practical usage
[Tan 1997].

Two validation tests were performed on a desktop computer with a PII-300
processor and 128 Mbytes of memory. In the validation test one, the results of C-
MOLD analyses, based on the two sets of initial process parameters obtained from the
CBR module and the hybrid NN-GA module respectively, show that no quality criterion
was violated. Plots of melt front advancement as shown in Figure 4.17 and Figure 4.18
indicated that the casing of mobile phone was filled successfully. Plots of air trap
locations as shown in Figure 4.19 and Figure 4.20 indicate that only few air traps would
appear in the moulded part. The air traps can be eliminated easily by placing proper
venting in the cavity. On the other hand, plots of weld line locations as shown in Figure
421 and Figure 4.22 show that some weld lines would appear in the moulded parts. In
practice, weld lines are difficult to be eliminated from moulded parts. However, use of
surface texture combined with dark colour of plastic material or painting on plastic parts
can easily make the weld lines invisible. In overall, results of the C-MOLD analyses

indicate that the initial process parameters of injection moulding generated from the
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CBR module can lead to the moulding of good quality parts when good matching cases
can be retrieved from the CBR module.

In the validation test two, no good matching case was retrieved from the CBR
module and the hybrid NN-GA module was invoked to determine the initial process
parameters of injection moulding. The results of C-MOLD analyses, based on the initial
process parameters obtained from the hybrid NN-GA module, indicate that no quality
criterion was violated. However, when the initial process parameters obtained from the
CBR module was used in the C-MOLD analyses, the quality criterion, volumetric
shrinkage, was found to be violated. The average volumetric shrinkage obtained from
the simulation exceeds the acceptable average volumetric shrinkage. It could lead to
various defects in moulded parts such as incorrect dimensions. Plots of melt front
advancement as shown in Figure 4.24 and Figure 4.25 indicated that the casing of
mobile phone was filled completely at the end of filling. In other words, no short shot
was resulted. Plots of air trap locations as shown in Figure 4.26 and Figure 4.27 and
plots of weld line locations as shown in Figure 4.28 and Figure 4.29 show that few air
traps and weld lines would appear in the casing of mobile phones. In overall, results of
the C-MOLD analyses indicate that even no good matching case is retrieved from the
CBR module, HSIM can still generate initial process parameters of injection moulding
based on the hybrid NN-GA approach which can also lead to the moulding of good
quality parts.

From the two validation tests, it can be observed that the performance of the
CBR module greatly depends on the relevance of retrieved cases and the deficiency can
be made up by the hybrid NN-GA module.

In each validation test, HSIM totally takes about 3 minutes including the time

for user input to obtain a set of initial process parameters corresponding to an input
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problem. In view of the CAE analyses performed in the validation tests, the time to run
a CAE analysis for individual validation tests takes about 55 minutes which excludes
the time for the creation of the FEM model and the interpretation of the analysis results.
It can be seen that HSIM can greatly reduce the time to generate initial process
parameters of injection moulding in comparison with the CAE analyses for injéction

moulding.

5.2 General Discussions

Based on the combined CBR and hybrid NN-GA approach, a prototype system
for the determination of initial process parameters for injection moulding, HSIM, was
developed in this research. The prototype system not only generates initial process
parameters for injection moulding, but also provides some parameters of injection
mould design such as runner and gate size. The solutions generated by HSIM can be
used in the following areas.

Firstly, the initial process parameters of injection moulding obtained from HSIM
can be used as a starting condition to perform CAE analyses for injection moulding or
actual trial-runs of moulding. It is believed that proper initial process parameter setting
can reduce the time and efforts required to obtain an optimal/near optimal solution in
CAE analyses and also reduce the time of trial-runs of moulding. Secondly, the
parameters of injection mould design obtained from HSIM could be used to design the
runner and gating system of the injection mould for the input problem. Since the mould
design parameters are derived based on the previous successful mould design, the risk

of producing poor design can be reduced. Finally, the cycle time estimated by HSIM
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could be used in the estimation of processing cost of moulded parts. This could help to
reduce the demand of experienced moulding personnel in the cost estimation.

HSIM is not intended to replace the existing CAE analysis packages for
injection moulding. In fact, HSIM can complement them in several ways. HSIM can
handle some special cases where the existing CAE analysis packages for injection
moulding may hardly deal with. It is no doubt that the CAE analysis packages can
provide satisfactory results under a wide range of situations. However, the CAE
analyses could generate less accurate results in some cases such as the use of regrind
materials and moulding of thin-wall moulded parts. In fact, considerations of these
special issues can be easily embedded into the HSIM. In the CAE analysis for injection
moulding, a knowledgeable moulding personnel is generally required to interpret the
results of the analysis in order to obtain a set of initial process parameters for injection
moulding. In view of the time required to interpret the analysis results and the demand
of knowledgeable moulding personnel, the CAE analysis seems not to be appropriate in
moulding shop floor application. However, HSIM can generate initial process
parameters for injection moulding without the interpretation of results and demand of
knowledgeable moulding personnel which makes it as a potential tool to be used in
moulding shop floor environment. Existing CAE analysis packages for injection
moulding cannot learn from thein; previous analyses. In HSIM, setting of process
parameters for injection moulding after successful trial-run of moulding can be stored in
the case library which could be referenced in future for solving the similar problems.

Although the problem domain of this research to be studied is injection
moulding, the approaches and techniques proposed in this research could be applied in
other moulding processes such as gas-assisted injection moulding, compression

moulding and transfer moulding. Nevertheless, HSIM is by no means a panacea for
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solving all the moulding problems and some limitations should be noted. In this
prototypical stage, HSIM can only support the injection mould design in the aspects of
runner system design and gating design. In addition, only two-plate type injection
mould is considered in the development of HSIM. Although the mould design
parameters recommended by HSIM are very likely to be applied in the input problem,
the parameters may not yield optimal design. To enhance the capability of mould design
of HSIM, more sophisticated adaptation models have to be developed. Nevertheless,
HSIM has high potential to be further developed for detailed injection mould design. In
fact, the research work of Hu W.G. et. al. [Hu 1998] have shown that CBR has high
potential to be used in injection mould design.

Implementation of HSIM in real world environment involves two
considerations. Firstly, HSIM was developed and used in stand-alone environment. For
the system implementation in real world environment, a local area network (LAN)
should be constructed to allow system users sharing the data and information stored in
the case library. An application server has to be dedicated to access vast amounts of
moulding data and information while maintaining performance and security to system
users. Since server-based sharing of data is centrally administered and controlled,
security can be easily managed by authorised persons and the data can be backed up on
a regular schedule. Secondly, in actual moulding practice, quality of moulded parts is
assessed by moulding personnel qualitatively such as little weld line, serious flash and
obvious sink mark. In order to capture those kinds of quality information in HSIM and
facilitate case retrieval based on the quality information, quantitative measures of
moulded part quality should be developed. One possible way is to introduce rating

method in the part quality assessment.
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5.3  Discussions on the Design and Development of the CBR Module and

Hybrid NN-GA Module

In the case retrieval, image comparison was introduced to improve the similarity
analysis of part complexity. In the image comparison, degree of similarity can be
assigned easily between the part design of two cases. However, it should be noted that
the image comparison involves subjective judgements in the assignment of the degree
of similarity. If the difference between two part designs is fuzzy, the subjective
judgements may result in the unreliable assignment. Therefore, a method that can deal
with the fuzziness in the assignment of the degree of similarity should be investigated.

In the case adaptation, NN approach was introduced to forrpulate a neuro-
adaptation model for the determination of initial process parameters of injection
moulding. Since the model can handle the complex and non-linear relationships among
the mould design parameters, part design parameters and the process parameters, a more
accurate solution could be obtained in comparison with the conventional structured
adaptation models. However, since the neuro-adaptation model is formulated by
generalising the cases that are similar to a particular input problem, it should not be
employed as a generic model for the determination of initial process parameters for
injection moulding.

In the hybrid NN-GA module, the NN prediction unit was trained by using back-
propagation training scheme. In the prototypical stage, only thirty-five input-output
pairs were obtained from the CAE analyses for training the NN prediction unit.
Consequently, there may have a risk that new cases may fall into the regions that could
be beyond the range of the training set. This may affect the accuracy of the results

obtained from the hybrid module. To enhance the capability of the NN prediction unit,
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more training pattérns should be obtained in the system validation under the real world
environment.

In the GA optimisation unit, the setting of GA control parameters such as
mutation rate, crossover rate and population size are the key factors in the determination
of the exploitation/exploration balance and the performance of the genetic search. In
this research, the standard GA control parameters suggested by DeJong K.A. [Delong
1975] are used_ in the development of the GA optimisation unit. The suggested setting of
control parameters works well in a wide range of problems and is good enough for the
development of this prototype system. However, it should be noted that a fixed
parameter setting may not be good enough over the whole run. Since the population is
diverse initially, a high crossover is the best way to put good information together.
When the population converges on a small section of search space where crossover is of
much less use, a high mutation operator should be used to search for better solutions.
On the other hand, the population size should also be varied throughout the evolutionary
process to balance the speed of evolution with gene diversity. Performance of the GA
optimisation unit could be further improved if an adaptive technique can be introduced
to dynamically change and optimise the setting of control parameters throughout the

oplimisation cycle.
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CHAPTER SIX — CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

Determination of initial process parameters is one of the crucial activities in the
process design of injection moulding. Proper setting of initial process parameters can
shorten the development time and improve the quality of moulded parts. Determination
of initial process parameters for injection moulding is a highly skilled job and based on
skilled operator’s “know-how” and intuitive sense acquired through long-term
experience rather than a theoretical and analytical approach. Facing with the global
competition with emphasis on the high quality plastic products and short time-to-
market, the current practices in the determination of initial process parameters for
injection moulding seem to be inadequate.

This research aims to explore the mechanism of process parameter selection and
to develop techniques for determining the process parameters for injection moulding.
Various approaches to the determination of process parameters for injection moulding
including mathematical models, numerical simulation, pfocess window, design of
experiments (DOE), knowledge-based systems, neural networks (NNs), case based
reasoning (CBR) and genetic algorithms (GAs) were reviewed in this research. The
potentials and limitations of individual approaches were also discussed. In view of the
nature of the determination of initial process parameters for injection moulding, CBR is
deemed to be a promising approach to deal with the problem of imitial process
parameter setting for injection moulding due to its capability of capturing experience
from moulding personnel. However, the performance of CBR is limited by the size of
case library, effectiveness of indexing, relevance of old cases stored in the case library

as well as the design of adaptation models.
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To make up the deficiencies of CBR in the determination of initial process
parameters for injection moulding, a hybrid neural network and genetic algorithm (NN-
GA) approach to the determination of initial process parameters was proposed. Based
on the combined CBR and hybrid NN-GA approach, a computer-aided system for the
determination of initial process parameters for injection moulding, called HSIM, was
developed and implemented in Visual Basic programming language.

‘HSIM mainly consists of two modules: a case based reasoning (CBR) module
and a hybrid neural network and genetic algorithm (NN-GA) module. The CBR module
is firstly invoked to retrieve a number of similar cases from the case library. If there are
similér cases found in the case library, a neuro-adaptation model is formulated based on
the similar cases which can derive a set of initial process parameters for injection
moulding corresponding to the input problem. If no good matching case is retrieved
from the case library, a pre-defined number of partially matched cases are retneved and
set as a part of the initial population for performing GA based optimisation in the hybrid
NN-GA module. The hybrid NN-GA module is then activated to generate a set of initial
process parameters for injection moulding. The initial process parameters recommended
from HSIM can be used in actual trial-runs of moulding. Eventually, the validated
parameters and the corresponding moulding results could be stored in the case library
through the user interface for future reference.

In the design of the CBR module, some techniques have been introduced to
enhance the capability of the CBR module in dealing with the problem of the
determination of initial process parameters for injection moulding. They include fuzzy
set theory in case indexing and case retrieval, similarity assessment of part complexity
based on image comparison, Saaty's matrix and TOPSIS algorithm, and neural network

in case adaptation. In the design of the hybrid NN-GA module, partially matched cases
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retrieved from the CBR module are used as a part of the initial population in order to

improve the searching process of the module.

HSIM was preliminarily validated by using the CAE analysis package for
injection moulding, C-MOLD. Two validation tests were performed to investigate the
effectiveness of HSIM. Results of the two validation tests indicate that HSIM can
determine a set of initial process parameters for injection moulding quickly without
relying on experienced moulding personnel, from which good quality moulded parts can
be produced.

Implementation of HSIM has demonstrated that the time required to the
determination of initial process parameters for injection moulding can be greatly
reduced. The solutions recommended by HSIM can contribute to the production of good
quality moulded parts. Daily experience of moulding personnel can be captured and
self-learning capability can be facilitated. In the following, major contributions of this
research are summarised.

1. In view of the nature of the determination of initial process parameters for
injection moulding, CBR is found to be a promising approach to deal with the
problem of initial process parameter setting because of its inherent characteristic
of capturing of human's experience and self-learning. However, the performance
of CBR system is limited by the size of its case library, effectiveness of
indexing, relevance of old cases stored in the case library as well as the design
of adaptation models. In this research, the hybrid NN-GA approach was
introduced to make up the deficiencies. In some cases, CBR may not generate
the solution. The initial process parameters of injection moulding can still be

determined based on the hybrid NN-GA approach. This research is believed to
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be the first work in the determination of initial process parameter setting for
injection moulding based on the combined CBR and hybrid NN-GA approach.
In the calculation of part complexity, as Poli's method cannot derive accurate
part complexity of a plastic part design in some circumstances as mentioned in
Chapter Three, the qualitative assessment based on image comparison was
firstly introduced in this research to improve the accuracy of part complexity
calculation. In addition, a multiple attribute decision making algorithm called
TOPSIS algorithm was employed to combine the quantitative and qualitative
similarity indexes into an index which can be used to assess the similarity of part
complexity between a retrieved case and an input problem more accurate.

This study can be seen as the first attempt to employ neural network approach in
the formulation of an adaptation model for initial process parameters of injection
moulding. With the use of the NN approach, the non-linear and complex
relationships among the part design parameters, mould design parameters and
the initial process parameters of injection moulding can be properly modelled.
This can help to generate more accurate initial process parameters of injection
moulding from the CBR module in comparison with using the conventional
structured adaptation models.

The implementation of HSIM based on the combined CBR and hybrid NN-GA
approach demonstrates that initial process parameters for injection moulding can
be derived in short time and without the involvement of experienced moulding
personnel. This enables HSIM as a potential tool to be applied in moulding shop

floor environment for the provision of initial process parameter setting.
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6.2  Future Research
Introduction of the combined CBR and hybrid NN-GA approach to the

determination of initial process parameters for injection moulding has raised several

further research issues.

1. Setting of the control parameters in HSIM, such as a-cut, number of partially
matched cases injected to the hybrid NN-GA module, initial population size,
crossover rate, mutation rate etc., could be further studied to improve the
performance of the system. For example, in the GA optimisation unit, it is
possible to introduce fuzzy logic techniques in the control and optimisation of
GA control parameter setting throughout the GA based optimisation process.

2. Some sophisticated techniques and approaches for case representation and
organisation, such as object-oriented representation, could be further
investigated in order to deal with the problem of explosive growth in the number
of cases stored in the case library. Besides, apart from the similarity value
(distances between two cases), more indexes for assessing the usefulness of a
retrieved case to an input problem could be considered in the further
development of the system. For example, user requirements of injection mould
design, such as the aesthetic requirements of moulded parts and mould costs,
could be considered in the determination of the usefulness of an old injection
mould design to an input problem.

3. In this research, a hybrid NN-GA approach was introduced to complement CBR
when there is no relevant case found in the case librafy. Neural network
approach was also explored to improve the case adaptation. Further research of
adoption of NN and GA in CBR paradigm could be explored in order to improve
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the performance of HSIM. For example, the use of neural networks in similarity
analysis could be explored. Genetic algorithms could be considered to determine
weighting of indexes for the CBR module.

Fuzzy set theory was introduced to handle the fuzziness involved in the case
retrieval process. In fact, it could also support fuzzy induction of rules when a
certain number of cases are stored in the case library. After converting all
numerical attributes into fuzzy terms, regular induction procedure can be applied
to induce rules or decision trees from the cases stored in the case library.
Through the application of these rules, new problem can be solved in more
direct and effective way. Moreover, it could also help to uncover the
interrelations among the parameters involved in injpction moulding.
Determination of process parameters for injection moulding contains two
subtasks, initial process parameter setting and process parameter resetting. In
this research, an intelligent system was developed to deal with the problem in
the determination of initial process parameters. Further research could explore
the CBR techniques in conjunction with other techniques in the resetting of
process parameters for injection moulding.

HSIM could be further expanded to support concurrent process design activities.
Apart from the determination of process parameters, some other activities
including the selection of injection moulding machines, injection mould design
and cost estimation are involved in the process design of injection moulding.
Therefore, various modules are required to be developed to capture the multi-
disciplinary knowledge. The modules are then organised into a unified system

by using an information system architecture such as blackboard architecture and
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co-operative distributed problem solving in order to facilitate a concurrent
process design system for injection moulding.

The second stage of system validation is planned to be carried out in order to
assess the effectiveness of the system in real world environment. In this stage,
HSIM will be validated incorporating with a local injection moulding company.
The initial process parameters of injection moulding recommended by HSIM
will be used in actual moulding. Results of the moulding and the system
effectiveness will be evaluated with the assistance from experienced moulding

personnel of the company.
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APPENDIX A

Mathematical Models of Number of Cavities

According to the work of Busch, J.V. et. al. [Liang 1992], cycle time can be
calculated by using the following equation. This equation was derived based on a

combination of theoretical and statistical methods.

+8.87 ___(AD

cay

S? 8 (0,-0,
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n e Vw
where T, is the estimated cycle time in sec., S is the maximum wall thickness in mm,
« is the thermal diffusivity of the material in cm*/sec, W, is the part weight in gm, N,

is the number of cavities in the mould, 6, is the melt temperature in °C, 8, is the mould

temperature in °C and 6, is the e¢jection temperature in °C.
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T=NS x MU x 8 x 3600
where PV is the production volume, K is the reject factor, PD is the number of
production days, T is the total operation time per day in sec., RR is the rejection rate,

NS is the number of shifts per day and MU is the machine utilisation.
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Combining the equation (A2) and (A3), the required number of cavities can be
determined by using the following equation:

_ PVxAxK
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APPENDIX B

Poli's Coding Method
L <250 mm
Number of external undercuts
. ) zero | one | two | more
Basic Complexity than
two
0 1 2 3
Parts whose peripheral Part in one 1.64 | 1.87 | 2.02 | 2.16
half
Parts without internal Height from a planar Part not in 1.69 | 2.09 | 2.24 | 238
undercuts dividing surface is constant one half
Parts whose peripheral height from a 1.92 | 2,15 | 229 | 2.44
planar dividing surface is not constant, or
parts with a non-planar dividing surface
Parts whose ONLY dividing surface is 3.19 | 343 | 357 | 3.72
On only planar, or parts whose peripheral height
one face | from a planar dividing surface is constant
of the Parts whose peripheral height from a 373 | 397 | 411 | 426
Parts with part planar dividing surface is not constant, or
internal parts with a non-planar dividing surface
undercut Parts whose ONLY dividing surface is 537 | 561 | 575 | 5.89
On more planar, or parts whose peripheral height
than one | from a planar dividing surface is constant
face of Parts whose peripheral height from a 628 | 6.52 | 6.66 | 6.81
the part planar dividing surface is not constant, or
parts with a non-planar dividing surface
Table B.1. Basic complexity rating table for box-sharp component
External Undercut Complexity
Subsidiary Without With extensive
Complexity extensive external
external undercuts
undercuts
0 1
Low 1.00 1.25
1.45 Moderate 1.25 1.45
High 1.60 1.75

Table B.2. Subsidiary complexity rating table
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L OcAlSEd heaties s ol ONO LYoot Eeatures: il . Benalty:
Peripheral ribs 0 0
All around 1
0 0
Longitudinal ribs 3 2
3 3
0 0
Lateral ribs 3 2
3 3
0 0
Radial ribs 3 2
3 3
-0 0
Concentric ribs 3 2
3 3
0 0
Bosses 3 1
3 2
0 0
Holes 3 1
3 2
None 0
Side shut-offs In one side 1
Two or more 2
‘ None 0
Lettering Localised 1
Extensive 2
Regularity Regular 0
Irregular 1

Table B.3. Penalty table for the determination of cavity detail

IRUTeSortheibeteriinafioniof Cavity:Detail .0 .
IF THEN
Total Penalty < 4 Low Cavity Detail
4 <Total Penalty < 8 Moderate Cavity Detail
Total Penalty > 8 High Cavity Detail

Table B.4. Rules for the determination of cavity detail



Tolerance & Tolerance
Surface Finish Commercial Tight
0 1
SPI 5-6
‘Surface | SPI5-6 1.00 1.05
Finish Texture 1.05 1.10
SPI 5-6 1.10 1.15

Table B.5. Tolerance and surface finish rating table




APPENDIX C

Verification Tests of the CBR Module

In this research, two validation tests were conducted to investigate the retrieval
accuracy and consistency of the CBR module. Results of the verification tests are

shown as follows.

C.1 Vertfication test one

Verification test one involves the study of retrieval accuracy of the CBR
module. Figure C.1 shows some data and information of a case (case number: 26),
which in fact is one of the cases stored in the case library. The data and information
were input to the CBR module and a set of initial process parameters for injection
moulding was generated. Table C.1 shows the contents of the solution stored in the

input case and the contents of the solution recommended by HSIM.

Production Volume: 120,000 Parts
Part Number : CR_26 Allowable Working Days: 28 Days
No. of Shifts per Day: 2 Shifts
Reject Rate: 1 %
Machine Utilisation: 85%
Required no. of Cavities: 1 cavity
Wall Thickness: 1.3 mm
Part Envelope Length: 130 mm
Part Envelope Width: 46 mm
Part Envelope Height: 13 mm
Projected Area: 39.0 cm®
Part Volume: 9.1 cm®
Moulding Material: ABS

Figure C.1 Input problem of verification test one
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‘njection'Moulding, - 2EUnie=h o%‘i’i’;‘"’é“ﬁ‘z"”f'é S““luﬁi‘fﬁ?%'f“ﬁ 0
Eﬁ.&@é‘ ﬁ“@t&i [y Iﬁﬂ%l‘x =
Nozzle temperature °C 230 230
Barrel temperature °C 230,210, 195, 185 | 230, 210, 195, 185
Injection pressure bar 561 561
Holding pressure bar 285 285
Back pressure bar 5 5
Clamping force ton 18 18
Fill time sec. 0.30 0.30
Holding time sec. 3.10 3.10
Cooling time sec. 3.30 3.30
Cycle time sec. 6.6 6.6

Table C.1 Results of verification test one
From the Table C.1, it can be observed that the solution recommended by HSIM
is exactly same with the solution stored in the case (case number: 26). This indicates

that HSIM can perform high accuracy of case retrieval.

C.2. Verification test two

Verification test two involves the study of retrieval consistency of the CBR
module. The data and information of an input case are shown in Figure C.2. The data
and information were input into HSIM two times and hence two sets of initial process
parameters for injection moulding were obtained. Table C.2 shows the contents of the

two sets of initial process parameters for injection moulding.
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Production Volume: 115,000 Parts
Part Number : CR_21 Allowable Working Days: 28 Days
No. of Shifts per Day: 2 Shifts
Reject Rate: 1%
Machine Utilisation: 85%
Required no. of Cavities: 1 cavity
Wall Thickness: 1.5 mm
Part Envelope Length: 140 mm
Part Envelope Width: 48 mm
Part Enve]ope. Height: 13 mm
Projected Area: 41.06 cm?
Part Volume: 11.27 cm’
Moulding Material: ABS

Barrel temperature °C 230,210, 195, 185 | 230, 210, 195, 185
Injection pressure bar 561 561

Holding pressure bar 285 285

Back pressure bar 5 5

Clamping force ton 475 475

Fill time sec. 0.40 (.40

Holding time Sec. 2.60 2.60

Cooling time sec. 4.30 4.30

Cycle time sec. 7.7 7.7

Table C.2 Results of verification test two
From the Table C.2, it can be observed that the two sets of initial process

parameters are identical. It indicates that HSIM has high consistency in case retrieval.
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APPENDIX D

Structured Adaptation Models of HSIM

D.1. Adaptation models of runner dimensions

As shown in Figure D.1, three types of runner cross-sectional design are
considered in the HSIM, namely fuil round runner, trapezoidal runner and modified
trapezoidal runner. The adaptation models for these three types of runner design are

given below:

Figure D.1. Full round runner, trapezoidal runner and modified trapezoidal runner

> Full-Round Runner
D=(Wt"#*L%)/37
where D is the runner diameter of the input problem in mm, Wt is the part weight of

the input problem in gm and L is the runner length of the reference case in mm.
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» Trapezoidal Runner

D=W=(Wt*P*L%/37
where D and W are the depth and width of the runner of thé input problem in mm, Wt
is the part weight of the input problem in gm and L is the runner length of the reference
case in mm.
> Modified Trapezoidal Runner

D=(Wt*L% /37,

R =D7/2, Taper angle = 10°
where D is the depth of the runner of the input problem in mm, R is the radius of the
runner of the input problem in mm, Wt is the part weight of the input problem in gm

and L is the runner length of the reference case in mm.

D.2.  Adaptation models of gate dimensions
Two types of gate design are considered in the HSIM, which are edge gate as
shown in Figure D.2 and submarine gate as shown in Figure D.3. The adaptation

models for these two types of gate design are given below:

Figure D.2. Edge (rectangular) gate Figure D.3. Submarine gate
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> Edge (rectangular) gate

W=(nA"2)/30

h=nt

L = 0.5 mm (minimum)
where W, h and L are the gate width, depth and land length of the input problem in
mm, t is the wall section thickness of the input problem in mm, A is the surface area of

cavity of the input problem in mm? and n is the material constant (ABS =0.7, PC=0.7,

PS =0.6).
> Submarine gate
d=nCA™

L =19 mm (minimum)
where d and L are the gate diameter and land length respectively of the input problem
in mm, A is the surface area of cavity of the input problem in mm?, C is the function of
the wall section thickness based on the input problem and n is the material constant

(ABS = 0.7, PC = 0.7, PS = 0.6).
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APPENDIX E

Generalised Delta-Rule (GDR) Training Algorithm

In this research, the generalised delta-rule (GDR) algorithm was adopted to
perform the training of the back-propagation network of HSIM. A typical three-layer

back-propagation network is shown in Figure E.1. The GDR algorithm is described

below:

Network Input Network Output

Input layer Hidden layer Output layer

Figure E.1. Typical three-layer back-propagation network

Stepl. The weights of v;; and wj are randomly assigned with values between 0 and 1.

The internal threshold values are assigned as follows: all input-layer thresholds

(Ti) are set to be 0, and all hidden- (T5;) and output-layer (Ts) are set to be 1.
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Step2.

Step 3.

Step 4.

Step 5.

The input vectors (I;) are introduced into the network and the output from the
first layer (a;) can be calculated by using the following equations:
Xi=li-Tii=Li-0=]

1
1+e™

a; =

This calculation is a function of the difference, or error between the input
function and the internal threshold.
Once the output from the first layer has been determined, output from the second

layer can be calculated by using the following equation.

bj = f(Z(Vyai)+ T'ZJJ

where f() is the sigmoid function, L is the number of input nodes, and Ty are 1.
Once the output from the second layer has been determined, the result from the

output layer can be calculated by using the following equation.

Cx = f(i(wﬂbj)-f- TM)

i=1
where f( ) is the sigmoid function, m is the number of hidden nodes and Tsy are
1.

Step 1 - 4 are repeated for M number of training patterns presented to the input
layer. Then the total-squared error, E, can be calculated by using the following

equation.

E= 35y -cf )

melk =]
where n is the number of output nodes, d is the desired output and ¢ is the

actual value calculated from the network.
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Step 6: Once the m-th pattern is determined, the gradient-descent term for the k-th node

in the output layer (layer 3) for training pattern m, &c;y,, can be calculated by

using the following equation.

&5 = ar -7} L

k

where f is the sigmoid function of xy:

J e-Xk m myym m
B = Qe @4 A Twib] T

Step 7: Once the m-th pattern is determined, the gradient-descent term for the j-th node

in the hidden layer (layer 2) for training pattern m, dcy;, can be calculated by

using the following equation.

m mom )
&‘Zj =(§&3kwﬁ)ax_j

where f'is the sigmoid function of x;:

_x,
o =—¢ and x7 = va’a,.’" +17
ox, (1+e™) T ’

J
Step 8. Once & for the hidden layer and &c;, for the output layer have been
determined, the weight changes can be calculated by using the equations:

Av] =néyal +alvy -
AW}, =ndpbT +adwy”
where 1 is the learning rate, and « is the momentum factor.

aAw;.';" and aAv;'" are fractional values of the weight change from the

previous iteration.
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Step 9. Once the weight changes have been determined, the weights can be updated by

using the following equations.

mo__ . om-l L
Wi =Wy AW,

m __m-1 m
v, =V + Av,}.

Step 2 - 9 are repeated for all training patterns until the squared error is less than a
threshold value called learning threshold. In this research, the learning threshold is

defaulted as 0.001.
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APPENDIX F
Operating Range of Process Parameters of Injection

Moulding

The operating range of initial process parameters of injection moulding defined
by Whelan T. and Goff J. [Whelan 1991] is employed in the genetic algorithm (GA)

optimisation unit of the NN-GA module and is shown in Table F.1.

Outputs Unit ABS - PC - PS

Min. | Max. | Min. | Max. | Min. | Max.
Barrel rear °C 180 230 275 300 150 180
Barrel middle °C 180 240 285 315 180 230
Barrel front °C | 210 260 285 315 210 250
Nozzle temperature °C 210 260 280 310 210 -} 280
Mould temperature °C 60 90 80 120 10 80
Melt temperature °C 210 260 280 320 200 250
Clamping force ton/in® 2.5 4.0 3.0 5.0 1.0 2.0
Injection pressure bar 420 { 1400 | 700 | 2100 | 700 [ 2100
Holding pressure bar 210 840 280 | 1260 | 280 | 1260
Back pressure bar S 150 10 150 5 150
Screw surface speed mm/s 550 650 400 500 800 950
Injection time 5eC. ITwin | ITwax | IToin | ITmas | ITmin | ITimax
Holding time sec. HTin | HTmax | HTmio | HTmax | HTmin | HT max
Cooling time sec. CTin | CTiax | CTuin | CTiax | CTanin | CThiax

Table F.1. Operating range of process parameters of injection moulding [Whelan 1991]

> Minimum and maxinmom injection time, holding time and cooling time

Based on the cycle time estimated by the equation (A.1.) given in Appendix A,
the minimum and maximum value of injection time, holding time and cooling time can
be determined by using the following typical estimation [Whelan 1991]:

Injection Time = 5 - 25 % of cycle time

Holding Time = 5 -50 % of cycle time

Cooling Time = 50 - 85 % of cycle time
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Thus,
ITmin = 0.05 x Teye IT pax = 0.25 x Teye

HTmin = 0.05 x Teye ™ HTmax = 0.50 x Ty

CTmin=050xTeye  CTrux = 0.85 x Teye

where IT i, and [T are the minimum and maximum injection time respectivély,
HT,,;, and HT o« are the minimum and maximum holding time respectively, CTyi, and
CToax are the minimum and maximum cooling time respectively and Tey. 1s the
estimated cycle time.

Once the optimal set of process parameters has been found by genetic search, the
corresponding machine setting can be calculated by the following equations [Tan 1996]:
> Injection stroke, metering stroke and cushion length

The injection stroke is set at the position at which the mould 1s volumetrically

filled and 1t is given below.

IST:L

Aserew * P
where IST is the injection stroke in mm, W is the shot weight in kg, Ascrew IS the
cross-sectional area of the screw in cm”® and p is the polymer melt density in ofcm’
The metering stroke depends on the shot volume required. In order to account
for possible back flow or leakage during injection, the volume yield of the screw, C, is

included in the equation:

MS = —W— where C = 0.85
CxA,,.xp

Forgw

The cushion length is set to 10% of the metering stroke and has a range with an

upper limit of 9mm for large machines and a lower limit of 3 mm for small machines.

A-17



> Screw rotational speed

The screw rotational speed, RS, can be calculated by using the following

equation:

AN
D_. x0.0524

screw

RS =

where RS is the rotational speed in rpm, Dscrew is the screw diameter of the selected
moulding machine in mm and SS is the screw surface speed obtained from the hybnd
NN-GA module in mm/s.
» Coolant temperature

The coolant temperature is set as 15°C lower than the required mould

temperature.
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Training and Testing Results of the Hybrid NN-GA Module

In this research, 35 input-output pairs were obtained from C-MOLD analyses.

The 35 input-output pairs are then divided into a training set which contains 30 input-

APPENDIX G

output pairs and a test set which contains 5 input-output pairs.

The neural network prediction unit was trained for 671,450 learning cycles with
the training set and the performance of the network was tested periodically with the test
set by using a commercial neural network software package, NeuroShell™ Rel.3.2
[NeuroShel! 1989]. A summary of network factors is shown in Table G.1. Results of

training and testing the neural network prediction unit are summarised in Table G.2 and

Table G.3 respectively.

). 80060
00081
.60890
60600
90060
.09600
.00060
06900
.06O00
peesiey

Metwork Factors

OQutput threshold (9.0 - 1.0)

Learning threshold (0.0 - 3.0}

Hidden nodes - 0 means default (0 - 32767)
Learning rate (8.01 - 1.0)

Momentum (0.0 - 0.9)

Maximum cases 1n memory (1 - 32767)

Maximum characteristic deflinilions (3 - 32767)
Preseniation: O=rotale. l=random -
Charncleristics: digits left of decimal (1 - &)
Characleristics: digils right of decimal {0 - )

Table G.1. Summary of network factors

Summary of Learning Error Factors

Error range Count  Percent Histogram

.0001
o001
.1001
.0501
.0201
.0101
.0051
.0001
.0006

1
0
0
0
0
B8
0
0
0

99999.

SOOOWOOWOOoOD

0
0
0
0
Q
0
0
0
30

-
=

Input nodes: 21 Hidden nodes: 10 Output nodes: 4

Table G.2. Summary of learning error factors
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Trial set #1

Quality Measures Unit Desired Predicted | Error
value value (%)
Wall shear stress MPa 0.13 0.13 0.0
Representative shear rate x10* 1/s | 0.96 0.98 2.1
Mould temperature difference °C 3.00 3.08 2.7
Cycle time sec. 8.20 8.25 0.6
Trial set #2
Wall shear stress MPa 0.09 0.09 0.0
Representative shear rate x10*1/s [ 0.73 0.72 1.4
Mould temperature difference °C 2.00 1.93 3.5
Cycle time sec. 11.20 11.15 0.4
Trial set #3
Wall shear stress MPa 0.10 0.10 0.0
Representative shear rate x10*1/s | 0.77 0.77 0.0
Mould temperature difference °C 3.00 3.08 2.7
Cycle time sec. 8.60 8.67 0.8
Trial set #4
Wall shear stress MPa 0.22 0.22 0.0
Representative shear rate x10* 1/s | 1.61 1.56 3.1
Mould temperature difference °C 5.00 4.91 1.8
Cycle time sec. 6.60 6.53 1.1
Trial set #5
Wall shear stress MPa 0.13 0.13 0.0
Representative shear rate x10*1/s | 1.39 1.40 0.7
Mould temperature difference °C 4.00 3.90 2.5
Cycle time sec. 7.10 7.05 0.7

Table G.3.

Summary of testing results
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