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Abstract 
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Abstract 

The mechanical properties of yarns have a considerable effect on the processing 

behavior and performance characteristics of yarns and fabrics. The absorbency 

and transportation of liquids by textile yarns are important factors in the dyeing 

and finishing of yams and fabrics. The wicking mechanism in a yarn is coupled 

with the mechanical behavior of the yarn and constituent fibers with presence of 

diffusion of the wicking liquid into fibers. Therefore, the mathematical modeling 

of mechanical behavior of yarn, liquid transport behavior of yarn and the coupled 

mechanism were the subjects of this research. Knowledge of mechanical and 

liquid transfer behavior of yarn is fundamental to examine the coupled 

mechanism. 

A comprehensive mechanical model of yarn to predict tensile as well as torsional 

behavior of singles yarn was developed. On the basis of a discrete modeling 

principle, the yarn was treated as an assembly of discrete fibers whose shapes 

followed perfect helices. Migration of fibers and interfiber slippage were not 

investigated in this research. An energy method was employed to calculate 

applied external forces, and nonlinearities of tensile, bending and torsional 

behavior of fibrous material were considered in the calculation. Experimental 

validation showed that the prediction agreed well with the experimental results 

under limited conditions of small strain. 
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Many textile fibers, especially synthetic fibers, have a circular section. Fibers 

inside a yarn are more or less parallel to each other. Therefore, an investigation of 

the wicking mechanism in the gap between cylinders may provide a basic 

understanding of capillary rise in twisted yarn. A mathematical model to simulate 

the capillary rise between cylinders was developed for this purpose. Using an 

interfacial analysis, wicking height of the liquid at equilibrium was derived in 

terms of interfacial features and characteristics of the liquid. An experimental 

apparatus was designed and a series of experiments was conducted using this 

apparatus. 

On the basis of the model of wicking between cylinders, a mathematical 

description of the capillary rise in twisted yarn was presented. Uniform packing of 

fibers was assumed. The governing equation of the wicking liquid was derived 

from a macroscopic force balance analysis of the liquid, and the wicking time was 

obtained in the form of the capillary rise by solving the governing equation. Then 

the theory was extended to investigate non-uniformly packing yarn, and swelling 

and change of mechanical properties of fibers after absorption were also 

considered. The wicking mechanism was coupled with the mechanical behavior 

of yarn and fiber in a manner that absorption of the wicking liquid of fibers during 

wicking caused the fibers to swell and change their mechanical properties; on the 

other hand, change of mechanical properties and geometric features of fibers 

altered pore structures between fibers and capillary pathways, thus affected the 

wicking process. A mechanical model of yarn and a model of wicking in yarn 



Abstract 

 III

were combined to study the coupled mechanism, and a basic understanding of the 

coupled mechanism was developed.
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Chapter 1. Introduction 

1.1 General introduction 

There is a wide range of structures to be considered in textile research, including 

fiber structures, yarn structures, fabrics, and finished goods or garments. Among 

them yarns form an important intermediate stage in many methods of textile 

production. They may be defined as long, fine structures capable of being 

assembled or interlaced into textile products as woven and knitted fabrics, braids, 

ropes and cords. Despite the growing use of several forms of nonwoven fabrics 

directly assembled from fibers, fabrics composed of interlaced yarns will continue 

to be important for many years. The study of yarn is thus a necessary part of 

textile technology, and therefore this project focuses mainly on textile yarns. 

The mechanical properties of yarns have a considerable effect on the processing 

behavior and performance characteristics of yarns and fabrics. They directly 

influence the strength of the yarns, their knittability, twist distribution, yarn-twist 

instability and the tendency of yarns to snarl, all of which are important to the 

final appearance and aesthetics of fabric. The strength of the yarn is greatly 

determined by the tensile behavior of the fibers and yarn geometry, and it is one 

of the important factors that should be considered in the processing of fabrics. 

When we move from one-dimensional yarn state into the two-dimensional fabric 

state, we must bend or coil the yarn to fit the interlaced structure of a woven 
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material or a knitted fabric. Then the bending and torsional behaviors of the yarn 

become a matter of considerable importance, and study on such behaviors is of 

great values. With the speedy development of computer technology CAD/CAM 

techniques are widely used in the textile industry today. On the basis of yarn 

modeling the configuration and deformation of yarn/fabric can be dynamically 

visualized, and this can offers illustrious reference to textile design. 

There have also been important technological developments such as the 

introduction of new yarn types, the use of new spinning methods, and the 

availability of new fibers for incorporation in yarns. All these innovations make it 

important to have a sound understanding of the basic features of yarn structure 

and properties. 

Liquid flow is one of the most frequently observed phenomena in the processing 

and use of fibrous materials. Water or other liquid may be transported through 

fibrous structures driven by external pressure or capillary force. Capillary flow, 

also termed wicking, was one of the subjects of this research. Study of capillary 

flow in textile media is of great interest for two main reasons. Firstly, it allows a 

better understanding of liquid/fiber contact in order to characterize any liquid 

flow of spin finishes, dyeing, or coating of either fabrics or yarns. Secondly, it 

enables the characterization of textile structures, their heterogeneity, and more 

precisely their porosity resulting from the capillaries formed by the inter-filament 

spaces in which the liquid flows. 
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Many textile fibers, especially natural fibers, absorb the wicking liquid during 

wicking due to their internal chemical compositions and structural features. The 

property of absorption is a valuable feature of clothing materials. Apart from its 

direct utility in keeping the skin dry, the absorption of water causes the fabric to 

act as a heat reservoir, protecting the body from sudden changes of external 

conditions. The absorption changes the properties of fibers. It causes swelling to 

occur which alters the geometry, dimension and mechanical properties of fibers. 

For example, wool fibers and cotton fibers can increase their cross section area by 

30% from dry to wet. The modulus and tensile strength of viscose fibers can 

change by 50% from dry to wet. The swelling of fibers also greatly changes the 

internal structure of yarn, such as shape and dimension of pores which directly 

influence the liquid flow process through the yarn. In this respect, the study of the 

coupled mechanism is of great practical importance. 

With these considerations, the research of this project focus mainly on three parts, 

i.e. mechanical properties of textile yarns, liquid flow through parallel cylinders 

and twisted yarns, and coupled mechanical and liquid transfer behavior of textile 

yarns. Knowledge of the first two parts is fundamental and necessary to 

investigate the coupled mechanism. In order to derive a good mathematical 

description of the coupled mechanism, highly accurate outputs from mechanical 

modeling and liquid transport simulation of textile yarns are required. 
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1.2 Research background 

Study on mechanical properties of textile yarns can be dated back to 1907 

(Gegauff, 1907). In Gegauff’s model, a continuous filament yarn was assumed to 

be composed of a series of coaxial helices, and all such helices had a pitch equal 

to the reciprocal of the twist of the yarn. Gegauff’s basic model forms a 

foundation of the subsequent modeling of yarn structure. In the middle of the 

twentieth century, based on Gegauff’s model many research have been carried out 

to study the tensile properties (Hearle, 1959, 1960, 1969; Platt, 1950a; Platt et al., 

1958) as well as the bending and torsional behaviors of continuous filament yarn 

using the force method (Leaf, 1995; Postle et al., 1964). In these models, good 

agreement was found between the prediction and the experimental investigation. 

The force method is a traditional and commonly used method to study yarn 

mechanics. Using the force method, we can obtain a whole force-deformation 

relationship of yarn, stress distribution within the yarn or fiber, interaction 

between fibers, and so on, from the characteristics of fibers. However, because 

stress is a tensor, it is very complex to implement the stress analysis when all 

stress components are considered. Furthermore, if large deformation and 

deviation of fiber material from Hooke’s law are considered, the analysis 

becomes more complicated. 

Besides the force method, the finite element method (FEM) (Van Luijk, 1981) 

and the energy method (Treloar and Riding, 1963) have also been employed to 
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examine yarn mechanics. The FEM has been confirmed to be successful in 

solving engineering problems. However, the derivation of final FE equations of 

fibrous elements is very complicated due to the complexity of the deformation 

modes of fibrous elements. On the other hand, the assumption that the yarn is a 

continuum medium, that makes the discretization of yarn possible, is dubious 

because of the non-uniformity, discontinuity and high porosity of the fibrous 

assemblies. The energy method was first proposed by Treloar and Riding to study 

the tensile properties of singles yarn (Treloar and Riding, 1963). The popularity 

of the energy method in recent years is possibly due to the fact that the energy is a 

scalar and the calculation of the energy is quite simple. Besides, the energy 

method is logically self-consistent, and therefore the effect of any stresses needed 

to maintain a specified state of strain can be included. 

The most important phenomenon in fabric wicking is the motion of liquid in void 

spaces between fibers in a yarn (Hollies et al., 1956). The larger pores between 

yarns are not as important in long-range motion of liquid. Thus, a study of 

wicking in yarns should provide a way to understand the role of geometric and 

material parameters in fabric wicking. One of the aims of this study was to 

construct a basic understanding of the mechanism of liquid flow through fiber 

bundles and textile yarns. 

Extensive publications on liquid flow through porous medium as well as fibrous 

materials have been reported. The models of wicking through fibrous assemblies 
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can always be grouped into two categories. The first one is to model the fibrous 

assembly as a bundle of parallel capillary tubes through which the fluid flow 

follows the Lucas-Washburn equation (Lucas, 1918; Washburn, 1921). The 

second one is to treat the fibrous assembly as porous media through which the 

liquid flow is characterized by Darcy’s law (Chatterjee, 1985; Kissa, 1996; Rahli 

et al., 1997). However, the equivalent capillary radius and the equivalent contact 

angle needed in the LW equation are difficult to quantify. If the fibrous 

assemblies are considered as porous media, then the characteristic parameters 

such as permeability, porosity, must also be obtained from experiments. When 

compared with typical porous media, fibrous assemblies, for example continuous 

filament yarns, have a regular and ordered structure. Therefore, a mathematical 

wicking model based on the geometric parameters of yarns as well as the fluid 

properties with less fitting parameters is possible. 

Due to complex structures and molecular compositions, the mechanical and 

transport behavior of textile assemblies are very complicated and traditionally 

studied separately. In practice, however, they are highly coupled, especially with 

the presence of diffusion of liquid into fibers. The changes in fiber geometric 

dimensions and mechanical properties after a fiber has absorbed the wicking 

liquid will significantly change the structural features of the textile yarns such as 

pore distributions and capillary pathways, which will in turn influence the liquid 

transport processes in the yarns. Therefore, it was necessary to study the liquid 

transport processes together with the mechanical deformation of the yarn and 
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fibers simultaneously. Neglect of either effect of one process on the other would 

have led to inaccurate simulation of the entire coupled system. However, such a 

model to investigate the coupled mechanism is still not available in the literatures. 

1.3 Research objectives 

Extensive research has been reported on yarn mechanics as well as experimental 

investigation of capillary flow through textile assemblies. However, there are still 

several gaps in the research: 

 Although much work has been carried out on yarn modeling using the energy 

method, results of the prediction from those models are far from satisfactory. 

A comprehensive yarn model which can give quite accurate predictions of 

mechanical responses of yarn to external forces is still lacking. When a yarn 

is subject to external forces, how fibers move, how the jammed region 

develop, and to what extent fiber tension, fiber bending and fiber torsion 

contribute to external force are unclear. 

 Most previous investigations on the wicking process in textile assemblies 

were based on a capillary tube model or Darcy’s law. For either method, at 

least two parameters were unknown, and they were always determined by 

fitting the experimental data. A model to predict the final capillary rise of a 

liquid in a yarn is not available. 

 To date, the mechanical and wicking behaviors of textile yarns have always 

been examined separately. However, in practice they are closely coupled. 
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Publications on the analysis of the coupled system are quite limited. 

Interaction between fibers and the wicking fluid; influences of twist, 

movement of fibers and swelling of fibers on the coupled system are still not 

clear. 

In order to fill these gaps, this study aimed: 

 To establish a mathematical model to accurately predict the mechanical 

responses, i.e., tensile as well as torsional behavior of yarns, and validate the 

mathematical model by conducting a series of experiments. The whole 

stress-strain curve of the fiber material was taken into account in the 

calculation. Nonlinearities of tensile, bending and torsional behavior of fiber 

material, which were always treated using linear approximation by other 

researchers, were considered in the model. The contributions of fiber tension, 

fiber torsion as well as fiber bending to the external force were calculated and 

compared. The torsional buckling was investigated and the buckling area was 

identified. 

 To develop a sound scientific understanding of the mechanism of liquid 

transport through parallel cylinders as well as twisted yarns. As fibers inside 

a yarn are more or less parallel to each other, it is desirable to study wicking 

in the gap between cylinders. This may provide a better understanding of the 

mechanism of the interaction between fibers and liquid. On the basis of the 

investigation on capillary rise between cylinders, the wicking flow of a liquid 
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through fiber bundles and twist yarns was numerically simulated. The model 

was based on a macroscopic force balance analysis. 

 To develop a basic mathematical model to describe the coupled mechanism 

between mechanical properties and wicking behavior of yarns. The 

mechanical model of the yarn and the wicking model were incorporated to 

study the coupled mechanism. The final capillary rise was predicted using the 

model, and a series of experiments was conducted to verify the model. 

Factors influencing the coupled system, such as twist level of yarn, were 

examined.  

1.4 Significance of research 

Mechanical properties of yarns greatly affect the processing behavior and 

performance characteristics of yarns and fabrics. They directly influence the 

performance of yarns in spinning, knitting, weaving, etc. The flexibility, wearing 

durability and comfort of fabrics also rely to some extent on the mechanical 

behavior of constituent yarns. Mechanical analysis of yarns provides a better 

understanding of yarn deformation and failure mechanism. 

Many researchers have revealed that it is the wicking flow inside yarns rather than 

between yarns, which contributes most to the wicking flow of a liquid through 

fabrics. A better understanding of wicking behavior of a fluid through yarns can 

provide a first approximation of the wicking properties of the fluid through 

resultant fabrics. 
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Most textile fibers used in clothing are hygroscopic and absorb liquid/moisture 

water during wear. The absorption keeps the skin dry and sustains a comfortable 

microclimate between the skin and the clothing layer. Therefore, research on how 

fabric/yarn behaves after absorbing water, and how the changes of mechanical 

properties affect the liquid flow through textile materials has both theoretical and 

practical value. Such a study will enrich the knowledge of textile mechanics, 

liquid flow through textile materials and the coupled system. 
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Chapter 2. Literature review 

2.1 Introduction 

As stated in Chapter 1, this research focused mainly on three topics: mechanical 

properties of textile yarns, liquid flow through yarns and the coupled mechanism. 

Therefore, literature on the structural mechanics of textile yarns and liquid flow 

through fibrous assemblies were surveyed respectively. The three commonly used 

methods to investigate yarn mechanics, i.e., the force method, the finite element 

method (FEM) as well as the energy method were discussed. Then the research on 

capillary flow through tube, porous media and fibrous assemblies were reviewed. 

2.2 Structural mechanics of textile yarns 

2.2.1 Introduction 

There are many publications on the subject of yarn mechanics. Generally, the 

method used in the study of yarn mechanics can be classified into three categories: 

force method, finite element method (FEM) and energy method. They are 

discussed respectively. 

2.2.2 Force method 

Yarns may be made directly from man-made continuous filaments or they may be 

spun from short staple fibers. This leads to two categories of singles yarn, namely, 

continuous-filament yarn and staple fiber yarn. Continuous filament yarns are the 
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simplest in structure, but they are now subjected to many modifying processes 

designed to change their bulk, texture, extensibility and other properties. Spun 

yarns have an additional complexity of discontinuities at fiber ends which may 

induce partial slippage of fibers. If two or more singles yarns are twisted together, 

we can get ply yarns which have a much more complicated structure. Ply yarns 

are more commonly used because of their twist stability. As the top textile 

structure in terms of complexity, fabric can be made from textile yarns by many 

methods, including weaving, knitting, etc. Studies on these fibrous structures 

using force method have been critically reviewed (Pan and Brookstein, 2002; 

Treloar, 1977), and they are introduced in a hierarchical order. 

2.2.2.1 Continuous filament yarns 

Extensive work has been conducted to study continuous filament yarns using the 

force method. Research on mechanical properties of textile yarns can be dated 

back to 100 years ago. In 1907, Gegauff (Gegauff, 1907) set down the basic 

mathematics of a yarn model. In his model, yarn was assumed to be composed of 

a series of coaxial helices, and all such helices had a pitch equal to the reciprocal 

of the twist of the yarn. Only forces acting parallel to the fiber axes were 

considered, and any change in yarn diameter during extension was neglected. 

These assumptions can be applied to continuous filament yarns directly. 

Gegauff’s model was elaborated by Gurney (Gurney, 1925) in a study of the 
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distribution of stresses in cotton yarns in which inter-fiber friction was very high 

and single fiber was considered to exhibit linear stress-strain behavior. 

In order to relate yarn strength to the geometrical parameters of yarn as well as 

constituent fibers, many efforts were made in Gregory’s series of papers on cotton 

yarn (Gregory, 1950a, 1950b, 1950c, 1953a, 1953b). Unfortunately, no detailed 

yarn structure modeling is given. The theory is inadequate in that it cannot predict 

the whole stress-strain curve of yarn. 

To fill this gap Platt conducted a pioneering work on yarn mechanics in his series 

of papers (Platt, 1950a, 1950b; Platt et al., 1958, 1959). His definition of yarn 

geometry was the foundation of the following research on yarn mechanics. In his 

yarn model, the following assumptions were made: 

1. The yarn is uniform along its length, and its cross-sectional outline is circular. 

2. All fibers within a yarn possess the same properties and are circular in cross 

section. 

3. The centerline of each fiber lies in a perfect helix, with the center of the helix 

located at the center of the yarn cross section. 

4. The fibers fall into a rotationally symmetric array in cross-sectional view. 

5. The diameter of the yarn is large compared with the diameter of the fiber. 

On the basis of Platt’s work, the mechanics of twisted continuous-filament yarns 

was systematically analyzed in the middle of the twentieth century (Hearle, 1958, 
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1959, 1960; Hearle et al., 1961; Hearle et al., 1969; Riding, 1959; Sullivan, 1942). 

Among those studies Hearle’s work (Hearle et al., 1969) is significant. He 

obtained stresses applied on a yarn using a unit element analysis with 

consideration of yarn contraction in diameter and contribution of transverse stress. 

Considering the yarn as a continuum solid, yarn stress was obtained using 

structural mechanics analysis. Recently, a model based on composite theory was 

developed to study the mechanical properties of high-performance fiber yarns 

(Rao and Farris, 2000).  

In addition to the tensile behavior of yarn, bending and torsional properties of 

yarn are also important. They greatly influence the hand feel and appearance of 

fabric. As a consequence, research on the bending and torsional behavior of yarn 

has elicited much interests. Yarn bending and torsional properties have been 

studied and characterized according to flexural rigidity and torsional rigidity 

(Leaf, 1995). The hysteresis loops for multifilament yarn showed somewhat 

different shape from the corresponding loops for the monofilament yarn, which 

indicated the importance of friction in the former case. 

Torque in a twisted yarn consists of three components due to fiber tension, fiber 

bending and fiber torsion. Expressions for yarn torque due to fiber torsion and 

fiber bending were derived by Platt et al (Platt et al., 1958) where helical yarn 

geometry and linear elasticity were assumed. Based on Platt’s theory, Postle et al. 

(Postle et al., 1964) and Dhingra et al. (Dhingra and Postle, 1974a, 1974b) 
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derived a general equation of yarn torque arising from fiber tension. The yarn was 

considered as a solid continuous homogeneous medium rather than a group of 

discrete fibers. However, Postle’s theory is limited in the sense that it does not 

consider lateral compression between fibers, and the radial contraction of fibers is 

neglected. 

2.2.2.2 Staple fiber yarns 

It is more difficult to model staple fiber yarns due to discontinuities at fiber ends 

and the fact that fibers will partly slip. Twist and fiber migration in spun yarns are 

not merely secondary factors as they are in continuous filament yarns. They are 

the only reason why an assembly of short fibers holds together as a yarn. Taking 

into account fiber migration and friction between fibers, the tensile behavior of 

staple fiber yarns has been investigated (Cybulska and Goswami, 2001; Hearle, 

1965; Hearle and Bose, 1965; Hearle et al., 1969; Hearle and Gupta, 1965; Hearle 

et al., 1965; Hearle et al., 1972) and reviewed by Ghosh et al (Ghosh et al., 2005). 

Most of the work was based on a discrete fiber principle in which the yarn was 

treated as an assembly of a large quantity of discrete fibers. Fiber material was 

assumed to obey the Hooke’s law. Nonlinearity of fiber material was not 

considered. 

An attempt to develop a general constitutive theory governing the mechanical 

behavior of twisted short fiber structures has been reported by Pan et al (Pan, 

1992, 1993; Pan and Brookstein, 2002). The yarn was treated as a transversely 
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isotropic material. Based on the similarity of the stress transfer mechanism 

between two structures, a staple yarn was considered analogous to a short fiber 

composite; a fiber was viewed as embedded in a matrix made of neighboring 

fibers. Hence the composite material theory (Christensen, 1979) was adopted to 

derive the tensile stress distribution as well as the transverse stress distribution of 

individual filaments. The author concluded that the tensile and transverse stresses 

on each individual fiber were by no means constant along its length which were 

also qualitatively described by Hearle et al (Hearle et al., 1969). Unfortunately, 

the fiber matrix theory based on composite material knowledge which is valid for 

a straight fiber bundle is questionable for twisted yarn. Furthermore, inter-fiber 

slippage which may occur in low twist yarn was neglected  

Taking account of inter-fiber slippage a theoretical model to predict the entire 

load-extension response of low twist staple yarns has been proposed (Shao, 2002; 

Shao et al., 2005a, 2005b). The model was also used to study the response of such 

yarns subjected to cyclic tensile loading. A stress analysis was performed on a 

fiber in a staple yarn subjected to tensile loading based on short-fiber composite 

theory. The model gave a reasonably accurate prediction of the stress-strain curve 

of the yarn. In the model, the author indirectly presumed that the deformation of 

the fiber obeyed Hooke’s law. However, this may not be true when the yarn is 

subject to high extension. In such a case, tensile stress in a typical fiber may 

exceed the proportional limit, and fiber may deform nonlinearly. 
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Besides tensile properties, bending and torsional characteristics of yarn are also 

important, and study on bending and torsional behaviors of yarn have both 

theoretical and practical value. The bending rigidity of wool worsted yarn has 

been estimated by Ly and Denby (Ly and Denby, 1984). The first approximation 

to yarn bending rigidity was based on the bending rigidity of a single fiber in yarn. 

The approximation was then corrected by four factors due to fiber diameter 

distribution, yarn twist, fiber ellipticity and mean fiber length. 

The torsional and recovery properties of single worsted yarn were studied using a 

torsion-balance apparatus designed to obtain the torsional hysteresis curve of the 

yarn under conditions of constant tension (Dhingra and Postle, 1975). A 

stress-analysis method was employed to derive an expression for the yarn torque 

resulting from the fiber tensile stress in the yarn. A hexagonal packing of fibers 

was assumed in the yarn cross-section. For staple fiber yarns, however, the 

packing of fiber is far from uniform. Fibers at different radial positions take 

different displacement modes which makes the equation developed above invalid. 

2.2.2.3 Ply yarns 

The geometry of multi-ply yarns was first examined by Treloar (Treloar, 1956, 

1977). Filament path was defined through a principal plane and an osculating 

plane. It was assumed that the path of a filament in the ply was generated by 

means of a rotating vector of length r advancing at constant rate along the helical 

ply axis (Figure 2.1). 
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Figure 2.1 Path of a fiber in multi-ply yarn (Treloar, 1977) 

 

The cording process was then investigated and cord retraction was modeled. A 

general agreement in form between the calculated and observed quantities 

justified the provisional acceptance of the theory as a working model for further 

investigation of cord properties. 

Stansfield (Stansfield, 1958) proposed a self-consistent geometry of cords made 

from multi-filament yarns. The path of a single filament was assumed to follow 

an epi-helix. The vector used for defining ply twist is perpendicular to the cord 

axis rather than to the ply axis. On basis of the epihelical path of filament, the 
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cord was modeled and the cord retraction formulae were derived. The formulae 

developed were a good fit to the experimental data of yarn retraction and the cord 

retraction for both simple and compound twisting. 

Tao (Tao, 1994) investigated the effect of multi-ply structure on yarn bending 

properties. The discrete fiber approach was adopted and the geometry of fiber in 

the yarn followed the doubly wound helix developed by Treloar (Treloar, 1956). 

The first approximation of bending rigidity of multi-ply yarn was assumed to be 

the summation of the bending rigidity of all the constituent coaxial doubly wound 

helices. The interaction of fibers was ignored. However, for wool worsted yarn, 

four corrections were required to assure more accurate approximation. They are 

fiber diameter distribution, fiber length distribution, fiber cross-sectional shape 

and fiber path. The curvature components in the principal directions of the cross 

section of fiber were calculated based on Love’s deviation (Love, 1944). 

Although the theory proposed by the author was easy to follow, it involves quite a 

lot of tedious formulae which make it very complicated to solve. Furthermore, the 

inter-fiber friction was not taken into account. Thus, the model may be used to 

predict the minimum bending rigidity of yarn. 

2.2.2.4 Conclusion 

The force method is a traditional and commonly used method to analyze yarn 

mechanics. By the force method we can easily obtain a whole force-deformation 

relationship of yarn, stress distribution within the yarn or fiber, interaction 
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between fibers, and so on, from the characteristics of fibers. Inter-fiber slippage 

can be conveniently taken into account by means of force method. However, 

because stress is a tensor, it is very complex to implement the stress analysis 

when all stress components are considered. Furthermore, if large deformation and 

deviation of fiber material from Hooke’s law are considered, the analysis 

becomes more complicated. 

2.2.3 Finite element method (FEM) 

2.2.3.1 Introduction 

The finite element method (FEM) is a prevailing numerical method in structural 

analysis due to its robusticity in dealing with complex structures and irregular 

boundary conditions. The behavior of textile yarns under tensile loading has been 

analyzed with the aid of finite element method (FEM), with particular emphasis 

on wool yarns (Djaja, 1989; Postle et al., 1988; Van Luijk, 1981; Van Luijk et al., 

1984, 1985). The yarn was treated as an axisymmetric cylindrical continuous 

element and homogeneous in length. The physical region occupied by the 

undeformed yarn was divided into concentric annular zones or finite elements. 

Only tensile stress and transverse stress were considered when the yarn was 

stretched. All other continuum stresses due to shear were ignored although this 

might limit the accuracy of the model at high strain. The migrating helical paths, a 

V-shaped migration envelope of individual fibers were accommodated within the 

finite element. Both ends of fiber lay at the surface and the envelope surrounding 
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the migrating helix decreased monotonically from the outside to the center and 

then increased again, finishing back at the surface of the yarn. An incremental 

method with Newton-Raphson iteration was used to solve the equilibrium 

equations (Van Luijk, 1981).  

A finite element model to predict stress-strain and torque-tensile strain curves of a 

yarn was presented by Van Langenhove (VanLangenhove, 1997a, 1997b, 1997c). 

The ideal yarn was considered as an axisymmetric cylindrical continuous element 

and homogeneous in length, but anisotropic. The yarn was divided into concentric 

elements along the yarn radius direction. The displacement field was obtained as 

the sum of a global field and a disturbance field that arose from anisotropy and 

nonlinear material behavior. In order to reach a continuous function for the global 

displacement field, displacements in cylindrical coordinates were linearly 

interpolated between nodal values using the linear interpolation shape functions. 

The Green-Lagrange deformation tensor was then calculated from the 

displacement field and the constitutive equations were deduced. The nonlinear 

element problem was iteratively solved using the method of dynamic relaxation 

(Underwood, 1983).  

A two-dimensional element model as well as a three-dimensional element model 

were developed (Munro et al., 1997a, 1997b) to model aligned fiber assemblies. 

Difficulties with nonlinear material properties and large-scale deformations were 

overcome by defining the element stiffness matrix in a co-ordinate system based 
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on the energy modes of the element deformation. The same modal decomposition 

approach can be applied to the three-dimensional aligned fiber assemblies. 

2.2.3.2 Conclusion 

It is novel to investigate yarn mechanics by FEM which has been confirmed to be 

successful in solving engineering problems. The systematically theory of FEM 

can be readily adopted with modifications. Moreover, there are many FEM 

software packages available which facilitate the process of analysis. However, the 

derivation of final FE equations of fibrous elements is very complicated due to the 

complexity of the deformation modes of fibrous elements. On the other hand, the 

assumption that the yarn is a continuum medium, that makes the discretization of 

yarn possible, is dubious because of the non-uniformity, discontinuity and high 

porosity of the fibrous assemblies. 

2.2.4 Energy method 

2.2.4.1 Introduction 

The energy method in yarn mechanics was first proposed by Treloar and Riding 

(Treloar and Riding, 1963) to predict the whole load-extension curve of 

continuous-filament yarns. The theory was re-examined by Hearle (Hearle, 1969) 

and further developed to study tensile properties of staple-fiber yarns (Carnaby 

and Grosberg, 1976) and rotor spun yarn (Jiang et al., 2002), bending of singles 

yarn (Choi and Tandon, 2005), torsional behavior of staple-fiber yarns (Tandon et 
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al., 1995a; Tandon et al., 1995b), ply yarns (Choi et al., 1998; Choi and Wong, 

1999; Riding, 1965; Treloar, 1965) and fabric mechanics (Choi and Lo, 2003; 

Griesser and Taylor, 1996; Hearle et al., 2001; Hearle and Shanahan, 1978; 

Komori and Itoh, 1991; Sagar and Potluri, 2004; Shanahan and Hearle, 1978). 

The main idea of the energy method is that analysis of the mechanics of the 

system is carried out by making use of the principle of energy. External forces 

applied on the textile structure are obtained by partially differentiating the total 

energy of the system with respect to corresponding equivalent strain. 

Analysis by the energy method is much simpler than that of the direct stress 

analysis in that energy is a scalar quantity, permitting numerical summation, 

whereas stress is a tensor, which must be summed vectorially. The energy method, 

however, gives less information than the stress method, yielding only the total 

yarn tension but not the distribution of stresses through the yarn. Furthermore, the 

energy method is only applicable to the case of an incompressible material. 

In staple fiber yarns, the packing density is not only low, but also variable. 

Therefore, the large and non-uniform lateral movements of fibers must be 

considered when the strain distribution in the yarn is estimated. The tensile 

behavior of staple-fiber yarns at small strain was studied using a discrete-fiber 

modeling principle with the consideration of lateral movement of fibers Carnaby 

and Grosberg (Carnaby and Grosberg, 1976). The energy method was adopted to 

deduce the applied tension on the yarn in which yarn extension was increased in 
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small steps, and the force on the yarn was found from the corresponding increase 

in stored energy. The yarn cross section was divided into 25 zones of equal 

thickness and the total energy of yarn was derived from the summation of energy 

of fibers in each zone. 

The same fundamental approach to predict the tensile behavior of singles yarn 

was used and extended to model yarn torsion (Tandon et al., 1995a; Tandon et al., 

1995b). The theoretical analysis was based on a discrete-fiber-modeling principle, 

an energy method and a shortest-path hypothesis. The yarn torque with different 

pre-tension level was predicted by taking partial derivative of the total yarn 

energy with respect to yarn twist. However, the accuracy of the prediction was far 

from satisfactory. If a more accurate fiber packing density function is obtained 

and the full stress-strain constitution of fiber is used in the yarn energy calculation, 

a more accurate prediction can be expected. 

The tensile properties of rotor spun yarns were modeled by Jiang et al. (Jiang et 

al., 2002). The study was based on a coaxial-helix structure, taking account of the 

non-uniform fiber packing density. A changing-pitch system was introduced to 

replace the constant-pitch system treatment which turned out to be an oversight 

used to model rotor spun yarn, whose twist insertion was operated layer by layer. 

The pitch function was determined with the aid of a nonlinear regression method 

and a curve-fitting approach using images obtained from a tracer fiber technique. 
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The model was found to be successful in explaining the experimental 

observations. 

The tensile behavior of multi-ply cords was investigated by Riding and Treloar 

(Riding, 1965; Treloar, 1965) based on a doubly wound helix geometry of fiber 

path developed by Treloar (Treloar, 1956, 1977). The theory enabled the whole 

stress-strain curve of the twisted yarn to be predicted from knowledge of the 

stress-strain curve of the filament material. The applied force were obtained in 

terms of the strain energy of the filaments, and of the whole assembly, with a 

consequent simplification of the mathematical treatment compared with theories 

involving the analysis of the system of internal stresses. The corresponding 

equations of two-ply, three-ply and seven-ply cords were obtained with 

experimental data to verify the theory. The results showed that the theory gave 

quite a good prediction. However, for high cord twists and low strains, the 

experimental values of cord stresses were lower than the calculated values. This 

may partly be attributed to the initial crimp of the singles yarn as well as the 

filament. A uniform fiber packing density was assumed which was invalid for 

bulky yarns. A non-uniform fiber packing density is more realistic in practice. 

The mechanism of bending of ply yarns was discussed by Park et al. (Park and 

Oh, 2003). During bending, a coercive couple was defined as the bending 

hysteresis, which was the non-recovery moment that overcame friction. After 

geometrical development, the energy method was adopted to derive the coercive 
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couple. The coercive couple could be estimated from structural factors such as 

twist angle, characteristics of constituent fibers. Good agreement was found 

between the theoretical and experimental data. 

Recently a computer model was constructed to predict the properties of flat yarns, 

twisted yarns and ply-cords from single-filament data (Zimliki et al., 2000a, 

2000b). The modulus of the fiber assembly was obtained by taking the derivative 

of the average stress-strain curve from single-filament tensile tests. The 

distribution of elongation to break was fitted to a Gaussian curve and a 

relationship was derived between the filament elongation and elongation of 

twisted structures. 

2.2.4.2 Conclusion 

Analysis of yarn mechanics using the energy method is simple because energy is 

scalar quantity which can be summed numerically, whereas in the force method 

stress is a tensor, which must be summed vectorially. Besides, the energy method 

is logically self-consistent, and therefore the effect of any stresses needed to 

maintain a specified state of strain can be included. The energy method, however, 

gives less information than the force method, yielding only total yarn force and 

not the distribution of stresses through the yarn. Although the energy method 

cannot calculate the energy loss due to inter-fiber slippage which may lead to 

inaccuracy at large deformation, it was found to be successful in predicting the 
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mechanical response of yarn at small deformation. With these considerations, the 

energy method was adopted in this research to analyze yarn mechanics. 

2.2.5 Summary of literature survey on yarn mechanics 

Extensive research has been carried out on yarn mechanics using the force 

method, the FEM and energy method. The traditional stress analysis method has 

been developed for more than one century and was proved to be successful in 

studying mechanics of simple structures, for example continuous filament yarns. 

However, analysis of complex structures using the force method becomes too 

complicated due to the tensor analysis of stress when all constitutive stresses must 

be considered if a high accuracy is required. 

The FEM has been applied to examine yarn mechanics by some researchers. The 

existence of a great deal of FEM software makes the analysis of yarn mechanics 

by the FEM easy to carry out. However, the complexity of the deformation modes 

of fibrous elements limits the popularity of the FEM. If a 3-D structure is 

considered, freedom of the system will be huge and calculation of solving the FE 

equation will be very time-consuming. 

The energy method has a much simpler form compared with the force method and 

the FEM. It derives the external forces acting on the yarn by the energy variation 

of the whole yarn, which is obtained by summation of contributions of all 

individual fibers. The energy method has been employed by many researchers to 
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analyze continuous-filament yarns as well as staple-fiber yarns. However, most of 

the predictions, within the author’s knowledge, are unsatisfactory. A 

comprehensive mechanical model of yarns which can give a reasonably accurate 

prediction of mechanical response of yarns is still unavailable. 

2.3 Liquid flow through fibrous assemblies 

2.3.1 Introduction 

Liquid flow is one of the most frequently observed phenomena in the processing 

and use of fibrous materials. Among the liquid flow modes driven by different 

forces, capillary flow which is driven only by capillary force has drawn much 

attention. Owing to its simple form, the capillary tube flow model has been 

broadly used to simulate capillary flow through fibrous assemblies. As an 

alternative, fibrous structures are also always treated as porous media due to their 

high porosity. Therefore, research on capillary flow through a capillary tube and 

porous media were surveyed first. This is followed by a literature survey on 

capillary flow through fibrous assemblies. 

2.3.2 Capillary flow through capillary tube and porous media 

A liquid moves into a capillary tube when it is subject to capillary pressure, i.e., 

the differential pressure across the liquid-air interface due to curvature of 

meniscus in the narrow confines of the capillary. The magnitude of the capillary 
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pressure is commonly given by the Laplace equation (Adamson, 

1967):Equation Chapter 2 Section 1 

 2 cos

c

p
r

γ θ
=  (2.1) 

where cr  is capillary radius, γ  is surface tension of the advancing liquid and 

θ  is the contact angle at the liquid-solid-air interface. The dynamics of capillary 

flow originated from the pioneering work of Washburn (Washburn, 1921) and 

Lucas (Lucas, 1918). The distance penetrated by a liquid flowing under capillary 

pressure alone into a horizontal capillary or one with small internal surface was 

found to be proportional to the square root of time. If a porous body behaved as 

an assembly of very small cylindrical capillaries, the volume which penetrated 

into the porous media was also found proportional to the square root of time. 

Experiments with mercury, water and other liquids verified the theoretical 

deduction. Washburn’s work has laid a foundation for the investigation of liquid 

transport in textile assemblies driven by capillary pressure only. However, the 

LW equation has many limitations. Firstly, it only investigates wicking flow in 

horizontal tubes or the case where gravity of penetrating liquid is negligible. This 

is apparently limited in practice. Secondly, inertia of the liquid, which may be 

important at the beginning of the flow, is not considered. Thirdly, the contact 

angle used in LW equation is a static advancing contact angle, while the dynamic 

advancing contact angle may change during the kinetic process. Finally, it is 

difficult to separately estimate the influences of capillary radius and contact angle 
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on the liquid flow. These discrepancies were partly overcome by many 

researchers (Hamraoui and Nylander, 2002; Ichikawa and Satoda, 1994; Joos et 

al., 1990; Levine et al., 1980; Reed and Wilson, 1993; Siebold et al., 2000; 

Stange et al., 2003; van Mourik et al., 2005; Zhmud et al., 2000). 

In practice, intercapillaries in pore structure are neither round nor uniform along 

the fiber length. Therefore, capillary flow in irregular channels has attracted 

considerable interest, and extensive research has been carried out to study the 

wicking in a generalized channel (Xiao et al., 2006), nesting cylinders (Brady et 

al., 2003), capillaries with curved sides (Lago and Araujo, 2003), interior corner 

(Weislogel and Lichter, 1998), cylindrical containers of arbitrary cross-section 

(deLazzer et al., 1996), non-uniform cross-sectional capillaries (Erickson et al., 

2002; Staples and Shaffer, 2002; Young, 2004a), angular capillary tubes (Bico 

and Quere, 2002), square capillary tubes (Dong and Chatzis, 1995; Ichikawa et al., 

2004; Kim and Whitesides, 1997), triangular tubes (Mason and Morrow, 1991) 

and some other noncircular tubes (Patzek and Silin, 2001; Turian and Kessler, 

2000). 

Understanding the kinetics of capillary penetration of liquids into porous media is 

essential for their characterization as well as for the development of imibibition 

processes. However, the structure of most real porous media is extremely 

complex; therefore detailed modeling of capillary penetration into them is yet 

unrealistic. The simplest possible approach to model penetration into porous 
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medium is to consider it in terms of an equivalent, cylindrical capillary or an 

assembly of parallel capillary tubes. With such an idealized tube structure, the 

Hagen Poiseuille law for laminar flow through pipes can be employed. The law 

states that the volumetric flow rate is proportional to the pressure drop gradient 

along the tube (Hagen, 1839; Poiseuille, 1840): 
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where q is volume flux, cr  is equivalent capillary radius, η  is fluid viscosity, 

L  is wicking length, and PΔ  is net driving pressure. At the early stage of 

wicking where L is small compared to eqL , the gravity of wicking fluid is 

negligible and the following approximation can be used which is commonly 

known as the Washburn equation (Washburn, 1921): 
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where θ  is contact angle, t time and 0k  constant. This proportionality has been 

confirmed experimentally in the movement of liquid front during liquid 

imbibition into wood pulp fibers (Aberson, 1970), building materials (Karoglou et 

al., 2005), filter paper (Hyvaluoma et al., 2006; Marmur and Cohen, 1997), carton 

liquid packaging (Lin and Jorge, 2005) and paper chromatography (Ackerman 

and Cassidy, 1954). 
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Another popular approach to model wicking in porous media is to employ 

Darcy’s law (Chatterjee, 1985; Kissa, 1996; Rahli et al., 1997) which is 

applicable to a homogeneous porous medium. The one-dimensional Darcy’s law 

equation can be expressed as: 

 dPu
dx

κ
μ

= −  (2.4) 

where u is superficial velocity, κ  is permeability, μ  is viscosity , /dP dx  is 

fluid pressure gradient and x is length in the streamwise direction. The empirical 

Carman-Kozeny equation (Carman, 1937; Kozeny, 1927) is often employed to 

predict permeability, although it is used only for uniform packing of fibers 

(Griffin et al., 1995). The Carman-Kozeny equation is given by: 
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where fD  is average fiber diameter, 0K  is the Kozeny constant and ε  is 

porosity. Although the Carman-Kozeny equation is usually applied to predict 

permeability, discrepancies are often reported. The Kozeny constant for a specific 

fibrous structure, which has to be determined experimentally, is always 

inconsistent for different authors. 

Besides the two approaches discussed above, there are also many other pore space 

models for transport phenomena in porous media, such as discrete particle models 

(Bear, 1972; Gauvin and Katta, 1973; Masliyah and Epstein, 1970), continuum 
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models (Bear, 1972; Scheidegger, 1974), statistical dynamics (Liao and 

Scheideg.Ae, 1970). 

2.3.3 Capillary flow through fibrous assemblies 

Capillary phenomena in fibrous media are of great importance in wetting and 

wicking in textiles. In textiles, especially woven textiles, the fibers are more or 

less parallel inside a yarn, and most synthetic fibers are close to cylindrical in 

shape. Therefore, a study on capillary rise between cylinders may lead to a better 

understanding of the behavior of liquids in textile materials. Although extensive 

research has been reported in this area (Lukas and Chaloupek, 2003; Lukas et al., 

2006; Princen, 1968; Princen, 1969, 1970), most of those studies only considered 

cylinders of equal size, and the packing of cylinders was assumed to be uniform 

and regular. Few experimental data were reported. 

As discussed by Hollies et al. (Hollies et al., 1956; Hollies et al., 1957), during 

wicking of a liquid in fabrics the constitute yarns are responsible for the main 

portion of the wicking action. Therefore, considerable research has been 

conducted to study the wicking behavior in textile yarns. Similar to liquid 

transport in porous media, most models to simulate the capillary flow in yarns can 

be classified into two main categories: one is to treat the yarn as an equivalent 

capillary tube in which the flow can be characterized by the LW equation, and the 

other is to consider the yarn as a homogenous porous media in which the flow can 

be described by Darcy’s law. With modifications to the LW equation, models of 
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the first category were successfully applied to study Nylon yarns (Hollies et al., 

1956; Hollies et al., 1957; Minor et al., 1959; Nyoni and Brook, 2006), cotton and 

viscose yarns (Hamdaoui et al., 2007), PET yarns (Perwuelz et al., 2001; 

Perwuelz et al., 2000) and carbon fiber bundles (Bayramli and Powell, 1991). 

However, the equivalent capillary radius and the equivalent contact angle in the 

LW equation are difficult to quantify, and they are always derived experimentally. 

Although most models of the second category are used to study axial 

impregnation (Amico and Lekakou, 2000, 2002a, 2002b; Deng et al., 2003), they 

can be easily extended to investigate transverse flow normal to the axis of yarn 

(Bayramli and Powell, 1990; Pillai and Advani, 1996; Young, 2004b). However, 

characteristic parameters of pore structure, such as permeability, porosity, are also 

difficult to quantify, and they are always obtained by experiments. Besides these 

two categories, there are also some other available models to analyze liquid 

wetting in fibrous assemblies, such as the Ising model (Lukas and Pan, 2003; 

Lukas et al., 2004; Zhong et al., 2001, 2002; Zhong and Xing, 2004). 

There are several methods to measure wicking in yarn. The first was based on 

visual observations of dye-liquid penetration (Ansari and Haghighat, 1995; 

Hollies et al., 1956; Minor et al., 1959). The second technique is to set liquid 

sensitive sensors along yarn and measure the electrical capacitance/resistance 

(Hollies et al., 1957; Kamath et al., 1994). The third method is to measure weight 

variation with a Wilhemy balance (Hsieh and Yu, 1992; Hsieh et al., 1992; 

Pezron et al., 1995). 
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The research on wetting and wicking behaviors in fabric were reviewed by Kissa 

and Patnaik et al. (Kissa, 1996; Patnaik et al., 2006). On the basis of different 

wicking processes, the wicking of a liquid into fabric could be divided into four 

categories: 

 Immersion. When the fabric was completely immersed into a liquid, this kind 

of wicking occurred. The liquid entered the fabric from all directions. 

 Transplanar wicking. The transport of a liquid in a fabric perpendicular to the 

plane of the fabric. 

 Longitudinal wicking. The transport of a liquid in a fabric plane was termed 

“longitudinal wicking”. 

 Wicking from a limited reservoir. This kind of wicking was epitomized by 

the spreading of a liquid droplet into a fabric. 

Of all the research on these four wicking patterns, longitudinal wicking has been 

the subject of numerous studies (Amico and Lekakou, 2000; Hamdaoui et al., 

2006; Hsieh, 1995; Pezron et al., 1995). The distance covered by a liquid flowing 

under capillary pressure is described either by a modified LW equation 

(Hamdaoui et al., 2006; Hsieh, 1995; Pezron et al., 1995) or by Darcy’s law 

(Amico and Lekakou, 2000). If Darcy’s law is used to describe liquid transport in 

fibrous assemblies for the wide range of conditions associated with what is 

traditionally referred to as wetting and wicking, then capillary pressure and 

permeability values must be known for conditions ranging from a textile structure 
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with no liquid in it to a textile structure where all void spaces are filled with liquid. 

Although many attempts have been made to characterize the pore spaces in fabric 

(Gooijer et al., 2003a, 2003b; Neckar and Ibrahim, 2003; Rebenfeld and Miller, 

1995), it is still unrealistic to model the detailed pore structure due to its extreme 

complexity. Therefore examining the parameters experimentally seems to be a 

more practical method. The capillary pressure and permeability were examined 

experimentally by Ghali et al. (Ghali et al., 1994). Capillary pressure head was 

measured as a function of saturation, which is commonly used to define the liquid 

content of a porous medium, using the column test (Ghali, 1992). Permeability 

was measured as a function of saturation using the siphon test (Nguyen and Durso, 

1983). Cotton and polypropylene fabrics were the test materials. The former was 

considered to be hydrophilic material (small contact angle), whereas the latter was 

always considered hydrophobic (large contact angle). The results showed that the 

capillary pressure decreased while the permeability increased with the increasing 

of saturation for both fabrics. At the same time, the cotton fabric had a higher 

capillary pressure than the polypropylene at a given saturation. 

When a droplet of wetting liquid is deposited on a yarn, it spontaneously wicks 

into the yarn due to the capillary forces associated with the given structures and 

geometry of the void spaces between the filaments. The kinetics of wicking of 

liquid droplets into yarns was studied using a computer imaging system by Dr. 

Neimark’s group (Chen et al., 2001). 
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2.3.4 Summary 

Extensive publications on liquid flow through porous medium as well as fibrous 

materials are available. The fibrous assemblies are always treated either as a 

bundle of parallel capillary tubes through which the fluid flow follows the 

Lucas-Washburn equation (Lucas, 1918; Washburn, 1921), or as porous media 

through which the liquid flow is characterized by Darcy’s law (Chatterjee, 1985; 

Kissa, 1996; Rahli et al., 1997). However, the effective capillary radius and the 

effective contact angle needed in the LW equation are difficult to quantify. They 

are always approximated by experimental values, namely empirical. If the fibrous 

assemblies are considered as porous media, then the characteristic parameters 

such as permeability, porosity, must also be obtained from experiments. When 

compared with typical porous media, fibrous assemblies, for example continuous 

filament yarns, have a regular and ordered structure. Therefore, a mathematical 

wicking model based on the geometric parameters of yarns as well as the fluid 

properties is expected to give a more accurate predictive result of the wicking 

process of yarns. 

This extensive literature review shows that although broad research has been 

carried out on wicking in fibrous structures, most studies focused mainly on the 

wicking mechanism without considering influence of the mechanical properties of 

yarn. However, during wear fabric/yarn always undergoes deformation. Such 

deformation, which is determined by mechanical properties of fibers and yarn, 
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will greatly alter the radial positions of fibers and the porous structure of the yarn, 

and hence affect the wicking mechanism. Furthermore, many natural fibers, such 

as wool, take up water during wicking. Absorption of water will greatly change 

the mechanical properties of fiber (Abbott et al., 1968; Ahumada et al., 2004) and 

cause fibers to swell (Jenkins and Donald, 2000; Pierlot, 1999), hence it 

significantly affects the wicking process. Therefore, a comprehensive model to 

investigate the coupled mechanism is needed. However, such a model is still 

lacking in this research area.
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Chapter 3. Mechanical modeling of singles yarn 

3.1 Introduction 

This chapter presents the mechanical modeling of singles yarn. A comprehensive 

model to predict the tensile behavior as well as torsional behavior of singles yarn 

was developed. The model was based on a discrete fiber modeling principle. An 

energy method was adopted to calculate the applied force on the yarn. 

Contributions to the applied force arising from fiber tension, fiber bending and 

fiber torsion were computed and compared. Taking into account the nonlinear 

behavior of fiber material, the entire force-deformation curve of singles yarn can 

be predicted. Bulky wool singles yarns were used to evaluate the model. The 

prediction agreed very well with the experimental data. 

3.2 Model development 

3.2.1 Assumptions 

To predict the mechanical response of singles yarn, the following assumptions 

were made: 

1. The yarn is cylindrical in shape and has a well-defined surface. According to 

the discrete-fiber-modeling principle (Postle et al., 1988), the yarn is made up 

of a large number of discrete fibers. Each fiber is a discrete component of the 
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yarn structure and the aggregate response of the assembly is obtained simply 

by adding the separate contributions of individual fibers. 

2. All fibers have an ideal geometry of coaxial helices which are identical and 

uniform along their lengths. All such helices have the same pitch with the 

helix angle being zero at the yarn center and a maximum at the yarn surface. 

Under tension/twist, all the helices undergo the same amount of 

extension/rotation. 

3. The fibers are assumed to deform without changing their volume, that is, they 

are postulated to be incompressible under hydrostatic pressure with a 

Poisson’s ratio equal to 0.5. Under this circumstance, tensile energy is only a 

function of axial strain. However, the yarn as a whole is unnecessary to 

deform without change of volume, i.e. the density of packing may be variant. 

4. Stress-strain properties of fibers in the yarn are assumed to be the same as 

they are tested individually. Time effect is ignored. 

5. Test gauge length is short so that fiber migration and inter-fiber slippage are 

negligible, and the system is postulated to be conservative thus all the work 

done on the yarn is converted into stored internal energy of fibers.  
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3.2.2 Notation 

The following notations are used in this chapter. Subscripts 0 and 1 denote initial 

state and deformed state, and subscripts f and y refer to fiber and yarn 

respectively. 

fρ  fiber density 

A fiber cross-sectional area 

Lf fiber length 

H pitch length of fiber helix 

κ ,τ  curvature and torsion of fiber helix 

fσ  fiber tensile stress 

, bf tfσ σ  fiber shear stress due to bending and torsion 

fξ  fiber tensile strain 

, bf tfγ γ  fiber bending and torsional strain 

r radial position of an arbitrary fiber 

rA initial radial position of fibers that will be the outer 

boundary of a jammed region in the strained state 

rAjam radius of the outer boundary of the jammed region in the 

strained state 

( )0rφ  initial fiber packing density 

jamφ  fiber packing density in a jammed region 

ry yarn radius 
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ξy, ξθ, ξymax, ξθmax yarn tensile and torsional strain, and the prescribed 

maximum 

Tten, Ttor tension and torque act on the yarn 

Ty pre-tension acting on the yarn when the yarn is twisted 

,  ,  ften fben ftorU U U  fiber tensile, bending and torsional energy 

,  ,  ,  ten ben tor totU U U U  yarn tensile, bending, torsional and total energy 

ε error tolerance 

3.2.3 Tensile model 

In their natural state, the fibers in a yarn are loose and unstrained. When the yarn 

is under a tension, according to the shortest-path hypothesis (Postle et al., 1988), 

the fibers will move freely in the lateral direction to avoid being extended until 

they are prevented from doing so by preoccupied fibers. Those fibers that cannot 

move further laterally are referred to being jammed. If the yarn is not wholly 

jammed, the deformed yarn can be divided into two parts, a jammed region which 

is located at the center and an unstrained region which is out of the jammed 

region (Figure 3.1).  
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Figure 3.1 Yarn cross section before and after deformation 

 

Without losing generality, only one pitch of the yarn is considered. According to 

the theory developed by Choi (Choi, 1998), Ajamr  can be given 

by:Equation Chapter 3 Section 1 

 ( )
 

0 0 0 0

2 Ar

Ajam
jam y

r r r drφ
φ λ

= ∫  (3.1) 

Ar  can be obtained by solving Equation (3.2): 

 ( )
( )( )( )22 2 2 2

0 0 

0 0 0 2 0

4 1 1

8
A A y y jamr r H H
r r dr

π ξ ξ φ
φ

π

+ − + +
=∫  (3.2) 

The internal energy of yarn, which is made up of tensile energy, bending energy 

and torsional energy, can be obtained by adding up the energy of individual fibers 

which is composed of the three kinds of energy as well. With a given initial fiber 

packing density the energy of yarn was calculated based on the initial state, and 

calculations of the three-component energy are discussed successively. 
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3.2.3.1 Tensile energy 

Since unstrained fibers do not develop tensile strain, only those fibers in the 

jammed region were considered in the calculation of yarn tensile energy. For an 

arbitrary fiber the tensile energy is given by: 

 ( ) 0ften ften f fU W ALξ= ⋅  (3.3) 

where ftenW  is the tensile energy stored in unit volume of fiber. It can be 

calculated by: 

 ( ) ( )
 

  0

f

ften f fW d
ξ

ξ σ ξ ξ ξ= ⋅∫  (3.4) 

where 

 1

0

1ξ = −f
f

f

L
L

 (3.5) 

 ( )22
0 0 02π= +fL H r  (3.6) 

 ( ) ( )2 22
1 0 11 2f yL H rξ π= + +  (3.7) 

r1 can be calculated in the same way as rA (Equation (3.1)): 

 ( )0 

1  0

2 fr

jam y

r r r drφ
φ λ

= ∫  (3.8) 

For most metal materials, during a stretch test they obey the Hooke’s law until 

proportional limit. The whole deformation will recover upon unloading. If the 
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strain exceeds the yield point, the stress does not change significantly with 

increase of the strain, and the strain will partly recover upon unloading. The 

residual strain is called plastic strain. After the yield region increase of strain will 

lead to a remarkable increase of stress again, and this is called strain-hardening. A 

typical stress-strain curve of metal material (steel) is shown in Figure 3.2. 

 

 

Figure 3.2 Stress-strain curve for low-carbon steel 

1. Ultimate strength. 

2. Yield strength-corresponds to yield point. 

3. Rupture. 

4. Strain hardening region. 

5. Necking region. 
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Wool fibers under tension behave differently with metal materials due to their 

molecular structures and morphologies. A schematic diagram of a typical 

stress-strain curve of wool fiber is shown in Figure 3.3. 
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Figure 3.3 Stress-strain curve of a wool fiber 

 

It is observed from Figure 3.3 that there exists a small nearly linear-elastic region 

just before the Hookean region. In this region, the elastic rigidity is very small. 

This may be attributed to the natural crimp of wool fiber. Figure 3.3 also shows 

that there is no obvious yield region. In this regard it is desirable to simplify the 

real stress-strain curve by piecewise straight lines in calculation, and ftenW  in 

Equation (3.4) is just the area of the shade in Figure 3.4. 
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Figure 3.4 Simplified stress-strain curve of wool fiber 

 

Since only fibers in jammed region develop tensile strain, the total tensile energy 

of yarn can be obtained by: 

 ( ) ( ) 0
0 0 0 0

2 Ar

ten ften f
f

HU r r W drπ φ ξ
ρ

= ⋅∫  (3.9) 

3.2.3.2 Bending energy 

When strained, the bending energy of yarn is stored in the jammed region as well 

as the unstrained region. Therefore, all fibers within the initial yarn 

cross-sectional area should be considered. The bending energy of one individual 

fiber is given by: 

 ( ) 0fben fben bf fU W Lγ= ⋅  (3.10) 

where fbenW  is the bending energy stored in unit length of fiber. It can be 

calculated by: 
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 ( ) ( )
 

 0

bf

fben bf bfW d
γ

γ σ γ γ γ= ⋅∫  (3.11) 

where 

 1 0

0
bf

κ κγ
κ
−

=  (3.12) 

Referring to differential geometry theory, curvatures of fiber simple helix before 

( 0κ ) and after deformation ( 1κ ) can be calculated by: 

 
2 2

0 1
0 1

0 1

sin sin,    α ακ κ= =
r r

 (3.13) 

where 

 ( ) 1
0 0 0 1

1

2arctan 2 / ,    arctan πα π α
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

rr H
H

 (3.14) 

 ( )1 0 1 ξ= + yH H  (3.15) 

r1 can be obtained in the same way as Equation (3.8): 
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1 22 2 2
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r r dr r r

r
r H
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φ ξ

π ξ

π

⎧
≤⎪

+⎪⎪= ⎨
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⎪ >
⎪⎩

∫
 (3.16) 

The total bending energy of yarn is obtained in a similar way to Uten: 

 ( ) ( ) 0
0 0 0 0

2 yr

ben fben bf
f

HU r r W dr
A

π φ γ
ρ

= ⋅∫  (3.17) 



Chapter 3 Mechanical modeling of singles yarn 

 49

3.2.3.3 Torsional energy 

In the same way as the calculation of bending energy, total torsional energy of 

yarn can be obtained by: 

 ( ) ( ) 0
0 0 0 0

2 yr

tor ftor tf
f

HU r r W dr
A

π φ γ
ρ

= ⋅∫  (3.18) 

where ftorW  is torsional energy stored in unit length of fiber which can be given 

by: 

 ( ) ( )
 

 0

tf

ftor tf tfW d
γ

γ σ γ γ γ= ⋅∫  (3.19) 

where 

 1 0

0
tf

τ τγ
τ
−

=  (3.20) 

The torsions of one fiber helix before ( 0τ ) and after deformation ( 1τ ) are given 

by: 

 0 0 1 1
0 1

0 1

sin cos sin cos,   α α α ατ τ= =
r r

 (3.21) 

3.2.3.4 Energy method 

According to the energy method (Treloar and Riding, 1963), the generalized 

resultant forces applied on the yarn can be derived by partial derivative of total 

energy with respect to corresponding generalized strains: 
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 0/
ξ

∂
=

∂
tot

ten
y

UT H  (3.22) 

where 

 = + +tot ten ben torU U U U  (3.23) 

3.2.4 Torsional model 

When the yarn is twisted, tension must be applied on the yarn before further twist 

in order to avoid torsional buckling (Hearle et al., 1969). Therefore, the degrees 

of freedom of the yarn are two, these being elongation freedom and rotational 

freedom, while there is only elongate freedom when the yarn is stretched. 

Therefore, the torsional model can be considered as a generalization of the tensile 

model. In the calculation of structural parameters, Equation (3.2) becomes: 

 ( )
( )( )( )

( )

22 2 2 2
0 0 

0 0 0 22 0

4 1 1

8 1
A A y y jamr r H H
r r dr

θ

π ξ ξ φ
φ

π ξ

+ − + +
=

+∫  (3.24) 

In the calculation of energy, equations derived in the tensile model still apply 

except that Equation (3.16) becomes: 
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∫
 (3.25) 
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According to the energy method, the pre-tension and the torque applied on the 

yarn can be obtained by: 

 0/
ξ

∂
=

∂
tot

ten
y

UT H  (3.26) 

 / 2
θ

π
ξ

∂
=

∂
tot

tor
UT  (3.27) 

The flow chart for the computer program in Matlab language is shown in Figure 

3.5: 
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Figure 3.5 Flow chart for computer program for mechanical model of singles yarn 
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As an example, the parameters needed in the input file are listed in the following 

and the output from the program is given. 

Input file: 

2.278;   //phia,phia-phid: yarn packing density 
distribution parameters in cubic curve 
-4.069;  //phib 
1.372;   //phic 
0.4436;  //phid 
1.0;     //phijam, maximum yarn density,g/cm^3 
0.0018;  //rf, fiber radius, cm 
0.0000035279; //rfsq, mean fiber radius square, cm^2 
191;     //twist, ture per meter 
0.06;    //ry, yarn radius, cm 
4500000; //E1, E1-E4: modulus of four straight lines 
45100000;//E2 
24000000;//E3 
1530000; //E4 
0.006;   //e1, e1-e4: end strain of the four straight lines 
0.022;   //e2 
0.037;   //e3 
0.084;   //e4 
39700000;//Ef, mean initial modulus 
13910000;//Gf, flexible modulus 
1.31;    //RHOf, fiber density, g/cm^3 
0;       //ethmin, lower limit of rotational strain 
7.2;     //ethmax, upper limit of rotational strain 
5.59;   //load, applied tension under torsion to avoid 
buckling 
0.1;     //eymax, upper limit of yarn axial strain 
 
Output from the tensile model: 
 
     strain(%)         tension(N) 
       0.030000          0.000445 
       1.030000          0.068444 
       2.030000          0.382163 
       3.030000          1.129584 
       4.030000          2.261751 
       5.030000          3.564647 
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       6.030000          4.869215 
       7.030000          6.119183 
       8.030000          7.300577 
       9.030000          8.414025 
 
Output from the torsional model: 
 
rotation(ram/cm)   torque(mgf.cm) 
0.000000                 0        
0.600000         28.020579        
1.200000         55.781614        
1.800000         83.636460        
2.400000        111.662727        
3.000000        140.096569        
3.600000        170.294103        
4.200000        212.945290        
4.800000        256.356081        
5.400000        300.420732        
6.000000        346.721780        
6.600000        395.985521        
7.200000        448.875236        

3.3 Experiments 

Experimental evaluation of the theory was conducted on a series of wool fibers 

and woolen spun carpet yarns. Radii of fiber and yarn were measured with a 

projection microscope. The yarn twist level was tested using a twist tester. In 

order to get an average load-strain curve of fiber under tension, 50 fiber 

specimens were tested on an Instron Tensile Tester. The crosshead speed was 

20mm/min and the sampling rate was five pts/sec.  

The yarns were boil-set before testing to ensure almost zero residual torque. 

Average fiber length was 6.2 cm. In order to guarantee the maximum number of 

fiber ends were clamped by the test heads and taking equipment limitation into 
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account, the gauge lengths of the yarn were selected to be 5 cm for the tensile test 

and 3 cm for the torsional test. Yarn tensile and torsional tests were conducted 

using an Instron Tensile Tester and a KES-YN1 tester (Kawabata Evaluation 

System for Yarns) respectively. In order to eliminate the time effect of fibrous 

material in tensile behavior the crosshead speed in the yarn tensile test was set to 

be the same as for the fiber tensile test. 

As stated by Carnaby et al. (Carnaby and Grosberg, 1976), initial fiber packing 

density varies along yarn radius. This directly affects fiber movement during 

deformation and the final strain distributions of fibers. The method described by 

Choi (Choi, 1998) was employed to estimate the initial fiber packing density. Ten 

yarn cross-sections were selected randomly along the length of the yarn. Then ten 

yarn density distributions were obtained and the mean value was used as the final 

packing density.  

3.4 Results and discussion 

The experimental data and theoretical calculations are presented and compared in 

this section for both tensile and torsional behavior of singles yarn. All 

experimental results on yarn were mean values of 20 repeated tests. jamφ  was 

1g/cm3. The physical parameters of yarn and fiber are listed in Table 3.1: 
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Table 3.1 Characteristics of yarn and fiber 

Yarn Fiber 

Mean SD Mean SD Linear density 

(tex) 
245.91 35.9 

Fiber radius, fr  

(mm) 
0.01878 0.0049

Mean SD Twist level 

(tpm/Z) 
191.24 32.3 

Fiber density, fρ  

(kg/m3) 
1.31×103 

Mean SD Yarn radius, ry 

(mm) 
0.601 0.077 

  

 

The mean load-strain curve of fiber is shown in Figure 3.6. Four piecewise linear 

straight lines, as shown in Figure 3.7, were fitted to the mean curve profile in 

order to simplify the calculation. 
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Figure 3.6 Load-strain curve of wool fiber 
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Figure 3.7 Simplified load-strain curve of wool fiber 

 

The moduli of the four strain intervals are shown in Table 3.2. With reference to 

material mechanics theory, we can derive fiber bending and torsional rigidity 
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from the corresponding tensile modulus at different stages with the assumption 

that the Poisson’s ratio of the fiber is equal to 0.5. 

 

Table 3.2 Moduli of the four stages in tensile test of fiber 

ξ (%) E(gf⋅cm-2) 

0 0.6ξ≤ <  E1 4.50×106 

0.6 2.2ξ≤ <  E2 4.51×107 

2.2 3.7ξ≤ <  E3 2.40×107 

3.7ξ ≥  E4 1.53×106 

 

A cubic function was adopted to fit the mean yarn packing density: 

 ( ) 3 2
0 0 0 02.278 4.069 1.372 0.4436φ = − + +r r r r  (3.28) 

Figure 3.8 gives a comparison of the tensile response deriving from theoretical 

calculation with experimental data, with a strain of up to nine percent. 
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Figure 3.8 Load-strain curve of singles yarn 

 

Figure 3.8 suggests that there is considerable agreement between the prediction 

and the experimental data with a strain up to around eight percent. At the 

beginning of the deformation, both theoretical and experimental load data 

increase steadily with strain up to about two percent. The comparatively small 

modulus of yarn may be due to the initial crimp of fiber and yarn. Then an almost 

linear rise from two percent strain to seven percent strain follows for both 

theoretical and experimental cases. After around seven percent strain the 

experimental data shows a very slow upward trend with a small slope and comes 

to a comparatively stable stage, whereas the theoretical prediction continues to 

increase dramatically. This leads to a significant difference between the 

experimental data and theoretical prediction from seven percent strain to nine 

percent strain. This may be due to the fact that some fibers are subject to slippage 
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when subjected to a high degree of yarn extension. Although the test gauge length 

is short, not all the fiber ends are clamped. The slippage reduces the strength of 

the yarn.  

Three kinds of energy of fibers are calculated in the energy method to get the 

tension applied on the yarn. They are tensile energy, bending energy and torsional 

energy. Figure 3.9 shows relative contributions to the calculated yarn tension due 

to fiber tension Tten, fiber bending Tben , fiber torsion Ttor and the total Ttot. 
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Figure 3.9 Comparison of contributions to the total yarn tension 

 

From Figure 3.9 we can see that the calculated yarn tension due to fiber tension 

dominates the other two. When compared with fiber tension, contributions to yarn 

tension due to fiber bending and fiber torsion are negligible. Hence, we can 
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conclude that in the tensile model of singles yarn, use of yarn tension due to fiber 

tension as the total yarn tension can give a quite accurate approximation. 

Figure 3.10 presents a comparison of theoretical calculation of torsional response 

of a singles yarn with experimental results. 
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Figure 3.10 Torque-rotation curve of singles yarn (Pre-tension=5gf) 

 

Figure 3.10 shows that the prediction agrees well with the experimental data, and 

yarn torque is an approximately linear function of yarn rotation at small twist. 

However, the model output differs significantly from the experimental data after 

around rotation 6rad/cm. To examine possible reasons of this discrepancy, fiber 
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tensile distribution of the jammed region in the strained yarn was calculated and 

the results are shown in Figure 3.11. 
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Figure 3.11 Fiber tensile strain distribution in the yarn 

 

Figure 3.11 indicates that when twist is small, all fibers within the jammed region 

undergo tension. Actually this occurs when the yarn is under tension as well 

(Jiang et al., 2002). However, when the yarn is further twisted the fibers near the 

yarn axis begin to undergo compression. The larger the twist of the yarn, the 

larger is the region under compression. However, fiber cannot sustain significant 

compression unless there is sufficient lateral pressure. Therefore, under large 

twist, some fibers in the central area of the yarn appear to buckle to release the 

compressional energy. This may be one of the reasons why the model prediction 
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is higher than the experimental result at high twist level. If buckling of fibers is 

considered, and the buckled fibers are allowed to release their compressional 

energy while still maintaining their helical profiles, the computational results are 

presented and compared with experimental data in Figure 3.12. 
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Figure 3.12 Torque-rotation curve of singles yarn (Pre-tension=5gf) (buckling of 

fibers is considered in the theory) 

 

It may be seen from Figure 3.12 that the calculation agrees well with 

experimental results even at large rotation. 

Identical to the tensile model, total yarn torque is also composed of components 

due to fiber tension, fiber bending and fiber torsion. A comparison of 
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contributions to the calculated yarn torque attributed to each of them is shown in 

Figure 3.13. 

 

0

100

200

300

400

500

600

0 2 4 6 8

rotation (rad/cm)

To
rq

ue
 (m

gf
.c

m
)

Ttot
Tten
Tben
Ttor

 

Figure 3.13 Comparison of contributions to total yarn torque (Pre-tension =5gf) 

 

Figure 3.13 illustrates that for a comparatively small given pre-tension fiber 

torsion contributes the most to the total yarn torque, and fiber bending plays an 

important role as well. This observation is different from that of Tondon et al. 

(Tandon et al., 1995b) who stated that the contributions to yarn torque due to 

fiber bending and torsion are negligible. With the increase of yarn twist, the 

contributions to yarn torque due to fiber bending and fiber tension become more 

important. Neglect of any contribution of the three components will lead to 

inaccurate results. 
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For different pre-tension levels, Figure 3.14 to Figure 3.17 present comparisons of 

the theoretical predictions of yarn torque with the experimental data, with and 

without consideration of the buckling of fibers. 
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Figure 3.14 Torque-rotation curve of singles yarn (Pre-tension =10gf) 

0

100

200

300

400

500

600

700

800

0 2 4 6 8

rotation(rad/cm)

to
rq

ue
(m

gf
.c

m
)

theory
exp.

 

Figure 3.15 Torque-rotation curve of singles yarn (Pre-tension=10gf) (buckling of 

fibers is considered in the theory) 
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Figure 3.16 Torque-rotation curve of singles yarn (Pre-tension =15gf) 
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Figure 3.17 Torque-rotation curve of singles yarn (Pre-tension=15gf) (buckling of 

fibers is considered in the theory) 
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For both cases the predictions from the model without consideration of fiber 

buckling show good agreement with experimental results at small twist, whereas 

they are higher than the experimental values under large twist which can be 

explained in the same way as the case of 5gf pre-tension. However, if buckling of 

fibers is incorporated into the model, the prediction agrees well with the 

experimental data at all rotation levels up to around 8 rad/cm. 

3.5 Conclusions 

The tensile and torsional behaviors of singles yarn were theoretically modeled 

using an energy method. Generally both tensile and torsional predictions at small 

strain were found to agree very well with experimental data obtained from bulky 

wool yarns whose initial fiber packing density was non-uniform. The whole 

stress-strain curve of constituent fiber was used in the calculation of energy of 

fiber. The nonlinearities of tensile, bending and torsional behaviors of fiber 

material were all considered, for the first time, in the analysis of yarn mechanics. 

These considerations led to accurate predictive outputs of the model. In the tensile 

model, contribution to yarn tension of fiber tension was proved to be much 

greater than even the sum of the contributions of fiber bending and fiber torsion. 

In contrast, all the three contributions were significant in the torsional model 

when the degree of pre-tension was comparatively small. This finding is different 

from that of Tandon et al. (Tandon et al., 1995b) who concluded that both 

contributions to yarn torque of fiber bending and torsion were negligible.
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Chapter 4. Capillary rise between cylinders 

4.1 Introduction 

Capillary rise in fibrous structures is a frequently observed phenomenon in 

wetting and wicking in textiles. In textile structures, fibers are more or less 

parallel to each other inside a fiber bundle; also, most synthetic textile fibers are 

very close to cylinders in shape. Therefore, a study of wicking behavior between 

cylinders is fundamental, and may provide a better understanding of the capillary 

penetration of liquid into more complicated structures such as fiber bundles, 

twisted yarns. 

This chapter discusses the theoretical and experimental work on wicking between 

two cylinders of different sizes. Two special cases, i.e., wicking between two 

identical cylinders as well as wicking between a cylinder and a plate, were firstly 

discussed. Wicking height of the liquid at equilibrium in the gap was derived 

from an interfacial analysis. On the basis of the results, a more general case, 

which was wicking between two cylinders of unequal sizes, was analyzed. A 

series of experiments was carried out to validate the theoretical analysis. The 

predictions agreed very well with the experimental data. 
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4.2 Model development 

4.2.1 Notation 

The following notations are used in this chapter. 

R circumferential radius of the solid-vapor contact line in the 

horizontal cross-section just below the meniscus 

RL circumferential radius of the solid-vapor contact line in the 

horizontal cross-section at a height of L above the bulk 

surface 

r, r1, r2 radii of the solid cylinders 

rh hydraulic radius 

rc radius of circular capillary 

2d distance of separation between the two cylinders 

p p p p,  ,  ,  AB CD AC BD  arc length 

α, α1, α2 angles between the line connecting the two cross-sectional 

centers of cylinders and the line connecting the cross 

sectional center of cylinder and the corresponding contact 

point 

θ contact angle between the liquid and the solid cylinder 

A cross-sectional area of the liquid column 

P perimeter wetted by the liquid 

c constant 
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p capillary pressure 

γ, γLV liquid-vapor interfacial tension 

γSL, γSV solid-liquid and solid-vapor interfacial tensions 

ASL, ASV, ALV solid-liquid, solid-vapor and liquid-vapor interfacial areas 

F driving force 

lρ  density of the liquid 

U total energy of the system 

L capillary rise of the liquid above the horizontal surface 

Lequ capillary rise at equilibrium 

4.2.2 Wicking between two identical cylinders 

When two identical cylinders are closely placed in a liquid, the liquid will 

penetrate into the space between the two rods provided the contact angle, 

measured through the liquid, is smaller than 90º (Figure 4.1). 
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Figure 4.1 (a) Capillary rise of liquid between two vertical cylinders with equal 

radii (b) Horizontal cross-section just below the meniscus 

 

The meniscus is saddle-shaped (Figure 4.2), and will reach an equilibrium height 

above the horizontal surface with a given distance of separation of the two 

cylinders. 

 

Figure 4.2 The meniscus of the liquid front 
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To find the cross-sectional shape of the liquid column between the two cylinders 

we start with analysis of the geometry of the cross-section just below the 

meniscus (Figure 4.1). We assume that the arcs AB and CD constitute portions of 

circumferences with radii R, and the contact angle between the cylinder and the 

liquid is the same all along the contact line. From a simple geometrical analysis, 

we have:Equation Chapter 4 Section 1 

 
( )

cos
cos

r d rR α
θ α

+ −
=

+
 (4.1) 

The cross-sectional area of the liquid column is: 

 
( )

( ) ( ) ( )

2

2

2 2 sin cos sin cos

       2 sin cos
2

RA r
r

R

α θ α α α α

π θ α θ α θ α

⎡ ⎤= + − +⎢ ⎥⎣ ⎦
⎡ ⎤− − + − + +⎢ ⎥⎣ ⎦

 (4.2) 

The meniscus has a complicated saddle shape. However, when Lequ is very large 

( equL d� ) the dimension of the meniscus is negligible. The wicking liquid 

column thus is from the bulk surface to just below the meniscus. The capillary 

pressure p due to the cylindrical liquid surface in the region just below the 

meniscus therefore can be given by the Laplace equation (Adamson, 1990) (one 

principal radius is zero): 

 cosγ θ
=p

R
 (4.3) 

On the other hand the capillary pressure at height L across the interface must 

equal the hydrostatic pressure. That means: 



Chapter 4. Capillary rise between cylinders 

 73

 cos
l

L

gL
R

γ θρ =  (4.4) 

Equation (4.4) shows that RL is inversely proportional to L. The capillary pressure 

across the interface thus varies along the liquid column and reaches the maximum 

at the liquid front where 

 cos
l equgL

R
γ θρ =  (4.5) 

In order to obtain the wicking height at equilibrium Lequ, two approaches are 

adopted, they are, force approach and free energy approach. 

4.2.2.1 Force approach 

The weight of the liquid column 1F  is:  

 1 l equF gALρ=  (4.6) 

The force due to surface tension 2F  consists of two parts: 

(1) An upward force 21F  resulting from the contact of the liquid and cylinders 

along AC and BD. This force is given by: 

 p p( )21 cosγ θ= +F AC BD  (4.7) 

where 

 p p 2AC BD rα= =  (4.8) 
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(2) A downward force 22F  due to the free vertical liquid surface along AB and 

CD which tend to pull down the liquid column. This component force can be 

expressed by: 

 p p( )22 γ= +F AB CD  (4.9) 

where 

 p p 2
2

AB CD R π θ α⎛ ⎞= = − −⎜ ⎟
⎝ ⎠

 (4.10) 

When equilibrium is established, we have: 

 1 21 22F F F= −  (4.11) 

This leads to: 

 p p( ) p p( )cos l equAC BD AB CD gALγ θ ρ⎡ ⎤+ − + =
⎣ ⎦

 (4.12) 

From the system of Equations (4.1), (4.2), (4.5), (4.8), (4.10) and (4.12), we can 

solve Lequ numerically with different d. 

4.2.2.2 Free energy approach 

According to the minimum free energy approach (Butt et al., 2006), at 

equilibrium the change of free energy dU upon an infinitesimal disturbance dL of 

the liquid front from the equilibrium position must satisfy the following equation: 

 0=
dU
dL

 (4.13) 
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In the case of the solid-liquid-vapor system described in this chapter, the free 

energy changes upon the penetration of the liquid with the solid-liquid and 

liquid-vapor interfacial areas increasing while the solid-vapor interfacial area 

decreasing. In addition, the total energy U also changes with the rise of the liquid 

in the gravitational field. Therefore, 

 SL SL SV SV LV ldU dA dA dA gALdLγ γ γ ρ= + + +  (4.14) 

It should be noted that any increase of ASL is achieved at the expense of ASV, thus 

 = −SL SVdA dA  (4.15) 

Meanwhile, using the Young equation (Adamson, 1990) for the contact angle, 

 cos γ γθ
γ
−

= SV SL  (4.16) 

By simple geometrical analysis, we can derive: 

 p p( ) p p( )           = + = +SL LVdA AC BD dL dA AB CD dL  (4.17) 

Substituting Equations (4.15), (4.16) and (4.17) into Equation (4.14), we have: 

 p p( ) p p( )cos ldU AC BD dL AB CD dL gALdLγ θ γ ρ= − + + + +  (4.18) 

Therefore, 

 p p( ) p p( )cos l
dUF AC BD AB CD gAL
dL

γ θ γ ρ= − = + − + −  (4.19) 
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At equilibrium, 

 p p( ) p p( )cos l equAC BD AB CD gALγ θ ρ⎡ ⎤+ − + =
⎣ ⎦

 (4.20) 

Equation (4.20) is just the same as Equation (4.12). Using the two different 

approaches, we obtain the same solution. This suggests that the two approaches 

are equivalent in nature in the analysis of the problem in question. 

4.2.3 Wicking between a cylinder and a plate 

In an extreme case where radius r2 tends to infinity and the corresponding 

covering angle α2 to zero, one cylinder will degenerate to a plate (Figure 4.3) 
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Figure 4.3 Horizontal cross-section just below the meniscus for wicking of liquid 

between a cylinder and a plate 
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By geometrical analysis, we can derive: 

 
( )

1 1 1

1

2 cos
cos cos
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θ α θ
+ −

=
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r d rR  (4.21) 
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θ θ θ α π θ α
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(4.22) 

 
p p ( ) p
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1 1 1
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2 2

2 sin sin sin

π θ α α

θ α θ α
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= + − +⎡ ⎤⎣ ⎦

AB CD R AC r

BD R R r
 (4.23) 

The wicking height at equilibrium can be obtained by solving the system of 

Equations (4.5), (4.12), (4.21), (4.22) and (4.23). 

4.2.4 Wicking between two cylinders with different radii 

In a general case where the radii of cylinders are different (Figure 4.4) we can 

obtain the solution of Lequ as a function of d in the same fashion as above. 
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Figure 4.4 Horizontal cross-section of the solid-liquid system when the radii of the 

two cylinders are different 
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Here we also assume that the arcs AB and CD have a cylindrical shape of radius R. 

With this assumption Equations (4.5) and (4.12) still apply while the others for 

calculating the geometrical parameters do not. Furthermore the value of 1α  is 

different from that of 2α which makes it necessary to find one more relationship 

in order to get a closed solution. If we reconsider the case discussed in Section 

4.2.3, when the radius r2 tends to infinity the angle α2 tends to zero. Also, if the 

system of Equations (4.5), (4.12), (4.21), (4.22) and (4.23) is numerically solved 

with different d, and the solution of length BD is linearly fitted with respect to 

that of AC, perfect fit is found and the slope is nearly 1 (Figure 4.5). 
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Figure 4.5 Linear fit of computed BD with respect to AC, normalized by r1 
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This indicates that the arc lengths of AC and BD are equal. Since 

p p
1 1 2 22 , 2AC r BD rα α= =  (Figure 4.4), we thus get: 

 1 2

2 1

α
α

=
r
r

 (4.24) 

Equation (4.24) is valid when equL d�  is satisfied. Once the relationship of 

Equation (4.24) has been obtained, the wicking height at equilibrium Lequ between 

two cylinders of different sizes can be solved numerically in the same fashion as 

in Section 4.2.2 and 4.2.3. The other geometrical parameters are given by: 
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 p p ( ) p p
1 2 1 1 2 22 2 2π θ α α α α= = − − − = =AB CD R AC r BD r  (4.26) 
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 (4.27) 

4.3 Experiments 

To evaluate the theoretical analysis, we conducted a series of experiments on a 

piece of experimental apparatus shown in Figure 4.6. Both identical cylinders and 

cylinders of different radii were considered in the experiments. 
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Figure 4.6 Experimental apparatus 

 

With this apparatus, the capillary rise of liquid through the gap between two 

closely spaced vertical cylinders with different distances of separation can be 

measured. The apparatus is mainly made up of three lab jacks. The small lab jack 

is used to hoist the beaker 9 containing the wicking liquid while the other two to 

support the cylinders 4 which are glued onto the front surfaces of the 90º angle 

brackets 2 and 5 respectively. Bracket 2 is mounted onto the top side of the left 

lab jack and bracket 5 onto sliding plate 6 which can slide along the base 8 fixed 

on the top of the right lab jack. The movement of the sliding plate 6, thereby the 

movement of the right cylinder to the other, is precisely controlled by a 

differential micrometer 7. The micrometer 7 offers a sub-micron that achieves 

long range and fine adjustability, and the graduation of the fine travel is 0.5μm. 

The distance of separation of the two cylinders can be read from the micrometer 7. 
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A CCD camera is horizontally positioned in front of the apparatus to observe the 

liquid front as well as the readout of the wicking height from the steel ruler 3 

glued onto the side face of bracket 2. 

Glass rods were chosen as the cylinders and distilled water as the wicking liquid. 

Firstly, the glass rods were glued onto the brackets with the axes of the cylinders 

perpendicular to the horizontal surfaces of the brackets. The amount of the glue 

was so small that it would not influence the wicking behavior of liquid through 

the gap. Then the rods were immersed for twenty-four hours into the mixture of 

acetone, ethanol and water. Afterwards they were washed with distilled water, 

and finally blown dry with nitrogen. The beaker was treated with the same 

cleaning procedure before use. After mounting the brackets, the four screws 1 

were adjusted to ensure the horizontality of top plates of lab jacks indicated by a 

spirit level with the bubble positioned on the top sides of lab jacks. Then the lab 

jacks were moved and adjusted to position the ends of the glass rods at the same 

vertical level and the axes of the two rods at same level in the direction 

perpendicular to the paper. Afterwards the sliding plate 6 was driven through 

micrometer 7 to move close the rods until they touched. The readout from the 

micrometer 7 was set to be the zero position of distance between the two rods. 

The two rods were then set apart until there was no obvious wicking. 

Subsequently the beaker 9 was hoisted until the ends of glass rods were slightly 

immersed into the distilled water. Again, the rod was moved close until there was 

obvious capillary rise observed from the monitor connected to the CCD camera. 
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The distance of separation and the wicking height were recorded. The procedure 

of moving and recording was repeated until sufficient data were obtained. 

The distilled water was prepared by boiling the water and re-condensing the 

steam into a clean container. The surface tension of the distilled water was 

measured using a KRUSS digital tensionmeter. The capillary rise method was 

employed to determine the contact angle between glass and distilled water. A 

glass capillary tube with inner diameter 0.75mm was used. After being cleaned 

using the same procedure as for the glass rods, the glass tube was dipped into the 

distilled water and the capillary rise was measured. With given surface tension of 

distilled water, diameter of the glass tube and measured capillary rise, the contact 

angle was calculated. 

Errors in the experimental results may arise from several aspects: 

1. Error due to manufacture. Such as error from the micrometer, or a deviation 

of the glass rods from a pure cylinder. 

2. Error introduced through the operations and adjustments. 

3. Chemical contamination affecting the wicking behavior of liquid, despite the 

fact that the glass rods had been washed using acetone and distilled water. 

4. Finally, when the two glass rods became very close, the liquid column turned 

out to be sensitive to the change of separation. Therefore, the error due to 

distance measurement was magnified. 
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In order to minimize the error due to 2 and 4, each experiment was repeated 10 

times. All the experimental results are mean values of data from 10 experiments. 

Furthermore, we measured the radius of the rod at 10 different positions along the 

length and used the mean value as the final value to average the deviation of the 

glass rods from a pure cylinder. 

4.4 Results and discussion 

The theoretical prediction and experimental dada are presented and compared in 

this section. Theoretically speaking, there are no two entirely identical glass rods. 

However, without losing the generality two rods with radii of 6.2752mm and 

6.4738mm were considered as identical and the average value of 6.3745mm was 

used in the theoretical calculation. For wicking between two cylinders with 

different radii, the radii r1 were 6.2752mm and r2 4.1015mm. The characteristics 

of cylinders used in the experiments are listed in Table 4.1.  

 

Table 4.1 Characteristics of the two rods 

 Mean value Standard deviation along rod surface

Radius of rod 1, r1 6.2752 0.04297 

Radius of rod 2, r2 4.1015 0.03979 
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All the rods have a length of 200mm. The density of deionized water lρ  is 

1000kg/m3, and surface tension γ is 72 mN/m at 25ºC. The gravitational 

acceleration is 9.81 m/s2. The calculated contact angle between the distilled water 

and glass was very small and therefore assumed to be zero. All cylinders are 

assumed to have the same surface properties and the same contact angle with 

water. 

Figure 4.7 shows a comparison of the normalized wicking heights at equilibrium 

/equL r , derived from theory presented in this chapter and experiments, as a 

function of the normalized half distance of separation of the two rods /d r . 
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Figure 4.7 Comparison of Lequ as a function of d, normalized with respect to r (two 

identical rods) 
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Figure 4.7 suggests that there is considerable agreement between the theoretical 

prediction and experimental data within experimental error, except for small d. 

The deviation of the theoretical result from experimental data for small d may be 

attributed to the error due to reason number 1 and 4 discussed in Section 4.3. In 

accordance with the theoretical prediction, the wicking height will tend to infinity 

when d tends to zero. This was partially proved to a certain extent by placing a 

piece of blotting paper at the top of the cylinders. When the two cylinders touched, 

the paper became wet. This indicates that the wicking height is very large (Lequ/r 

is larger than 47.8=300/6.2752). As may be observed from Figure 4.7, Lequ 

decreases gradually with increase of d. This suggests that there may be an inverse 

proportional relationship between them. When Lequ is plotted with respect to 1/d, 

the result is as presented in Figure 4.8. 
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Figure 4.8 Comparison of Lequ as a function of 1/d, normalized with respect to r 

(two identical rods) 

 

By linearly fitting the experimental 1/equL r  with respect to 1/d, a good fit result is 

found and the fitting straight line almost passes the origin. This indicates that Lequ 

is nearly inversely proportional to 1/d. 

Traditionally a hydraulic radius is always employed to treat noncircular 

capillaries as well as porous structures as round capillary tubes (Scheidegger, 

1974). A hydraulic radius rh is defined by: 

 =h
Ar
P

 (4.28) 
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where A is the cross-sectional area of the liquid and P the perimeter wetted by the 

liquid. For a circular tube with a radius rc the hydraulic radius is rc/2. If a 

hydraulic radius is adopted to model the wicking between two cylinders, the 

capillary rise at equilibrium should be proportional to inverse hydraulic radius: 

 1∼equ
h

L
r

 (4.29) 

In order to investigate the dependency of Lequ to 1/rh, the experimental data of Lequ 

was fitted with respect to 1/rh by a linear as well as a nonlinear scheme. The result 

is shown in Figure 4.9. 
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Figure 4.9 Fit of experimental Lequ with respect to 1/rh, normalized by r1 
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From Figure 4.9, we can see that the result of linear fit is very poor while the 

nonlinear (three-parameter logarithmic) scheme gives a more accurate fit. This 

suggests that a log-linear relationship seems to be more appropriate to describe 

the capillary rise between cylinders in terms of inverse hydraulic radius.  

Figure 4.10 to Figure 4.12 present results for two rods with different radii. 
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Figure 4.10 Comparison of Lequ as a function of d, normalized with respect to r (two 

different rods) 
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Figure 4.11 Comparison of Lequ as a function of 1/d, normalized with respect to r 

(two different rods) 
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Figure 4.12 Fit of experimental Lequ with respect to 1/ rh, normalized by r1 
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Similar to the case of two identical rods, a nearly linear relationship is also 

observed between Lequ and 1/d. A nonlinear fit using a three-parameter 

logarithmic scheme gives quite an accurate fit. As previously discussed, the 

variation of the local cylinder radius along its surface is a source of experimental 

error. In order to quantify this effect the sensitivity of Lequ with respect to r1 and r2 

was calculated using the central difference method: 

 
( ) ( ), ,

           1, 2
2

∂ + Δ − −Δ
≈ =

∂ Δ
equ equ i i equ i i

i i

L L d r r L d r r
i

r r
 (4.30) 

where irΔ  is a small increment (e.g. 0.01% of ri). The result is shown in Figure 

4.13. 
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Figure 4.13 Sensitivities of capillary rise at equilibrium Lequ with respect to the 

radii of the rods 
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Figure 4.13 implies that for both radii Lequ is more sensitive to the variation of rod 

radius at smaller 1d r  than larger 1d r . While at a specific 1d r  the influence of 

variation of r2 on Lequ is more significant than that of r1. 

4.5 Conclusions 

The wicking of a liquid in the gap between two vertically positioned parallel 

cylinders was discussed in this chapter. On the basis of an interfacial analysis, the 

wicking height of liquid at equilibrium was obtained as a function of the distance 

of separation of the two cylinders. The relation between the wicking height at 

equilibrium and the distance of separation was found to be nearly inversely 

proportional. Experimental verification showed that our theory can predict the 

wicking behavior of the liquid with reasonable accuracy. Due to the ease of 

manipulation, glass rods with quite large diameters were used in our experiments. 

In the case of textile materials, fibers may be very thin, and the principal radius of 

the meniscus may be of the same order for magnitude as the fibers. This problem 

has been discussed by Bouaidat and Zhao et al. (Bouaidat et al., 2005; Zhao et al., 

2001). However, as long as the assumption equL d�  is satisfied the dimension of 

the meniscus is still negligible. Therefore, the theory presented in this chapter 

applies to the case of textile fibers as well since the terms that enter the theoretical 

calculation are normalized dimensionless quantities. We have also illustrated that 

a three-parameter logarithmic model seems to be more appropriate to describe the 

wicking between cylinders in terms of the inverse hydraulic radius. With minor 
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modifications, the theory can be easily extended to model the wicking behavior of 

a liquid in a regularly packed fiber bundle with a small amount of fibers. However, 

textile structures, such as textile yarns, always consist of a large number of fibers. 

When the number of constituent fibers becomes very large, the analysis of the 

wicking mechanism may turn out to be very complicated due to the complex 

structure of liquid-gas and liquid-solid interfaces. Therefore, for wicking through 

a more complicated structure, like twisted yarns, more investigation is needed.
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Chapter 5. Wicking in twisted yarns 

5.1 Introduction 

In this chapter, capillary flow through twisted yarns is discussed. Firstly, the 

wicking mechanism in a fiber bundle was analyzed. A theoretical model was 

developed based on a macroscopic force balance analysis of the liquid. Secondly, 

capillary flow of the liquid in a twisted yarn was investigated. A twist coefficient 

was introduced to consider the influence of the twist of the yarn on the wicking 

mechanism. A series of experiments on polyester yarns was conducted to validate 

the model. As a first stage, packing of fibers in the yarn was assumed to be 

uniform. 

5.2 Model development 

5.2.1 Notation 

The following notations are used in this chapter. 

cF  capillary force 

, cu cdF F  upward capillary force, downward capillary force 

,  ,  g v iF F F  forces due to gravity, viscous drag and inertia 

lρ  density of liquid 

ρ f  density of fiber 

A area available for liquid flow in the yarn cross section 

L axial wicking height of the liquid 
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k frictional coefficient (for the initial yarn without further twist) 

λ  twist coefficient 

β  factor 

P perimeter wetted by the liquid 

Pl cross-sectional perimeter of the liquid column 

aθ  advancing contact angle between the liquid and the fiber 

γ  surface tension of the liquid 

yA  cross-sectional area of the yarn 

yr  radius of the yarn 

φ  packing density of fibers in the yarn 

fir  radius of individual fiber 

fr  average radius of fiber 

n number of fibers 

H pitch length of the helix of the fiber path 

T twist level 

r radius of the fiber helical path 

fL  fiber length 

α  helix angle 

g gravitational acceleration 

t time 

M, N parameters in expression describing the wicking mechanism 

Uequ total potential energy of the liquid 
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5.2.2 Wicking in a fiber bundle 

Let us first consider the wicking of a liquid in a vertical positioned fiber bundle 

with slight twist. Supposing the fiber cross section is circular, the fiber bundle can 

therefore be treated as an assembly of parallel cylinders. The schematic 

illustration of the cross-section of the fiber bundle is shown in Figure 5.1. 

 

 

Figure 5.1 Cross section of the liquid-solid-gas system 

 

When the wicking height L is large enough ( yL r� ), the dimension of the 

meniscus of the liquid front is negligible and the following forces determine the 

movement of the liquid: 

capillary force: cF  

gravity: g lF gALρ=  
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viscous drag: v
dLF kL
dt

=  

inertia: i l
d dLF AL
dt dt

ρ⎡ ⎤= ⎢ ⎥⎣ ⎦
 

Capillary force cF  consists of a upward force cuF  arising from the interaction 

between the liquid and the fibers, and a downward force cdF  due to the concave 

liquid-gas interface (Princen, 1968; Princen, 1969, 1970). Therefore, similar to 

Equation (4.19) we have: Equation Chapter 5 Section 1 

 cosγ θ γ= − = −c cu cd lF F F P P  (5.1) 

The inertia term arises from Newton’s second law of motion. However, except for 

the early stage of wicking, the inertia term is negligible when the acceleration of 

the liquid flow is slow (Reed and Wilson, 1993). The balance of forces hence is: 

 0c l
dLF gAL kL
dt

ρ− − =  (5.2) 

Rearranging Equation (5.2), we have: 

 1 c
l

FdL gA
dt k L

ρ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (5.3) 

Let 

 ,   c

l l

F kM N
gA gAρ ρ

= =  (5.4) 
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In Equation (5.4), M is the driving capillary force term, and N is the wicking 

resistance term. By integrating and applying the initial condition 0,  0t L= = , we 

can obtain the solution: 

 ln Mt N M L
M L

⎛ ⎞= −⎜ ⎟−⎝ ⎠
 (5.5) 

When the equilibrium is established, the capillary force should be balanced by the 

gravity of the liquid penetrating into the yarn. That means: 

 c
equ

l

FL M
gAρ

= =  (5.6) 

Therefore, Equation (5.5) becomes: 

 ln equ
equ

equ

L
t N L L

L L
⎛ ⎞

= −⎜ ⎟⎜ ⎟−⎝ ⎠
 (5.7) 

In the calculation of capillary force cF , the perimeter wetted by the liquid P is 

given by: 

 
1

2
n

fi
i

P rπ
=

= ∑  (5.8) 

In textile research, packing density is always used which is defined by: 

 Mass of yarn
Volume of yarn

φ =  (5.9) 

When variation of the radii of the fibers is insignificant, P can therefore be 

obtained by: 
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 2

2
2y y

f
f ff f

A H A
P r

rr H

φ φ
π

ρρ π

⋅
= ⋅ =  (5.10) 

lP  is composed of many parts formed between adjacent fibers in the yarn surface 

(Figure 5.1). In an individual curve, assuming it constitutes part of a 

circumference, the arc length can be obtained by the theory developed in Chapter 

4. When the number of the constituent fibers is large, the calculation of all the arc 

lengths is extremely complicated and time-consuming. It is observed from Figure 

5.1 that lP  should be less than the perimeter of the yarn cross-section. Therefore, 

it is reasonable to assume that: 

 2     where 0< 1l yP rβ π β= ⋅ ≤  (5.11) 

If the cross-section covered by the liquid is treated as an equivalent circumference, 

then the cross-sectional area of the liquid column A can be calculated by: 

 

2 2

2

2

y f

y y
f f

ff f

A r A

A H A
A r

r H

β π

φ φ
π

ρρ π

= −

⋅
= ⋅ =

 (5.12) 

Then the capillary rise at equilibrium equL  is given by: 

 2 2

cos 2cos yc l
equ

l l l y f

P rF P PL
gA gA g r A

θ π βγ θ γ γ
ρ ρ ρ π β

−−
= = =

−
 (5.13) 

Recalling Equation (4.19) and upon integration, and then we can obtain the total 

potential energy of the liquid at equilibrium Uequ: 



Chapter 5. Wicking in twisted yarns 

 99

 2cos
2
l

equ equ l equ equ
gAU P L P L Lργ θ γ= − + +  (5.14) 

In Equation (5.14), the first two terms are internal free energy. The last term is the 

potential energy of the external force. According to the minimum total potential 

energy principle (Richards, 1977), the liquid shall deform or displace to a position 

that minimizes the total potential energy. Therefore, among those possible values 

of β , the true β  should satisfy: 

 0equU
β

∂
=

∂
 (5.15) 

Substitute Equations (5.11), (5.12) and (5.13) into Equation (5.15) and solve the 

resultant equation, and then we obtain the solution: 

 
2
cos

f

y

A
P r

β
θ

=  (5.16) 

It has been verified that 2 2 0equU β∂ ∂ > . Therefore 2 cosf yA P rθ  is the root. 

The schematic diagram of the flow of the modeling is shown in Figure 5.2. 
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Read input data
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Figure 5.2 Flow chart of calculation of Lequ 
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5.2.3 Wicking in a twisted yarn 

If a twist is applied to the fibre bundle, individual fibers will not be parallel to 

each other any more and will form different inclinations to the horizontal from 

yarn center to yarn surface. An idealized yarn model presented in Chapter 3 is 

adopted in which the yarn is assumed to be circular in cross section, and 

composed of a series of concentric cylinders of differing radii. Each fiber follows 

a uniform helical path around one of the concentric cylinders, so that its distance 

from the yarn axis remains constant. A typical constitute fiber is shown in Figure 

5.3. 
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 Figure 5.3 (a) Idealized fiber path    (b) “open-out” diagram of the cylinder 

 

When a twist is inserted into the yarn, fibers in the outer layers tend to move 

inward and reduce their helical radii. In order to examine the influence of twist on 

the wicking mechanism while excluding the effect of transverse movement of 
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fibers, it is assumed that packing of fibers in the fiber bundle is uniform, and the 

fiber bundle is circularly close-packed (this will be discussed in Section 5.3). This 

prevents fibers from moving inward when a twist is introduced into the yarn, and 

consequently transverse deformations of fibers occur. Therefore, cross section of 

constituent fiber may no longer be circular in shape any more. This may change 

the structures of pores between fibers, and subsequently influence the wicking 

behavior of the liquid in the yarn. However, when the twist level applied on the 

yarn is not too high this effect should not be very significant. Thus diameters of 

the twisted yarn and the constituent fibers are assumed to be the same as the case 

of fiber bundle in the model. Since fibers within the yarn are not parallel to each 

other any more, inclinations of fibers to the vertical line (α in Figure 5.3) should 

be taken into account. Consider an element of area of cross section of the yarn 

between radii r and r+dr. The number of composed fibers inside this area can be 

obtained by: 

 2 2 2 2 2

2 2

4f f f f f

rdr H H rdrdn
r L r H r

φ π φ

ρ π ρ π

⋅ ⋅
= =

⋅ ⋅ +
 (5.17) 

Therefore, the upward capillary force contributed by this element area is given by: 

 ( ) ( )
2 2 2

cos42 cos
4

cu f
f f

rHdF r dn dr
r H r

θ απφ γπ γ θ α
ρ π

+
= ⋅ ⋅ + =

+
 (5.18) 

where 

 
2 2

arccos
4

α
π

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠

H
r H

 (5.19) 
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By integrating Equation (5.18), we have: 

 ( ) 

2 2 2 0

cos4
4

yr

cu
f f

rHF dr
r H r

θ απφ γ
ρ π

+
=

+
∫  (5.20) 

The downward capillary force cdF  can be obtained in the same fashion as in the 

case of wicking in a fiber bundle. In order to take the twist of the yarn into 

account, a twist coefficient λ  is introduced into the viscous drag term. Therefore, 

the viscous drag term becomes: 

 v
dLF kL
dt

λ=  (5.21) 

In the same fashion as in Equation (5.7), the solution of wicking time can be 

derived in terms of wicking height with 

 
l

kN
gA
λ
ρ

=  (5.22) 

5.3 Experiments 

In order to validate the theoretical model, a series of experiments was conducted 

on polyester yarn with distilled water as the wicking liquid. The fiber bundle was 

assumed to be circularly close-packed to establish a roughly uniform packing of 

fibers, and to simplify the analysis of influence of twist on the wicking behavior 

of the yarn. The radii of the fibers were assumed identical. The experimental 

apparatus is shown in Figure 5.4: 

 



Chapter 5. Wicking in twisted yarns 

 104

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Pulley

Small weight

Steel ruler

Liquid reservoir
Big weight

Lab jack

Stand

Yarn

 

Figure 5.4 Experimental apparatus 

 

In the apparatus, the lab jack was used to hoist the liquid reservoir containing the 

wicking liquid, and the steel ruler to measure the wicking height. In order to apply 

different tensions on the yarn, a pulley was employed with one big weight (e.g., 

50g) attached to one end of the yarn, and an appropriate small weight to the other 

end. 

The yarn wicking experiments were conducted in a standard atmosphere of 

20± 2ºC and 65± 2% relative humidity, and the yarn packages were conditioned 

for 24 hours before testing. The height of the liquid rise in the yarn was observed 

by means of a traveling microscope. The image was captured by a CCD camera 

and displayed on a monitor. To enhance the observation of the liquid front 

advancement, indicating ink was added to the distilled water and the effect of the 
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ink on the viscosity and surface tension of the distilled water was neglected. A 

stopwatch was used to record the time. 

Firstly, the steel ruler and the clean beaker were adjusted to an appropriate 

position. Then the yarn was positioned with two weights attached to the two ends 

of the yarn. Attention was paid to prevent the twisted yarn from detwisting. 

Afterwards, the distilled water was poured into the beaker slowly until the yarn 

was slightly immersed in the water. At the same time the stopwatch was started. 

The capillary rise at different times was observed and measured by taking 

snapshots periodically with the CCD camera. The time and the corresponding 

capillary rise were continuously recorded until equilibrium was established. 

As stated earlier, circularly close-packed yarns were tested in the experiments. A 

loosely packed polyester fiber bundle (37 fibers) with a slight twist was produced 

in the laboratory first. In order to prepare a circularly close-packed fiber bundle 

(Figure 5.5), a slight twist was first introduced into the original fiber bundle to 

allow the fibers to move inward freely and to rearrange their positions to establish 

a roughly circular close-packing. 
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Figure 5.5 Circularly close-packed yarn with four layers 

 

Then the wicking height at equilibrium of the liquid along the fiber bundle was 

tested subject to different tensions. When the tension increased gradually, the 

fibers of outer surface of the loose fiber bundle moved inward and the yarn 

became more compact. The wicking height at equilibrium therefore increased 

with increasing tension. When the wicking height at equilibrium did not vary 

significantly, as a rough approximation, the fiber bundle was assumed to be 

circularly close-packed and the corresponding tension was considered as the 

critical tension. The fiber bundle prepared by this procedure was treated as a 

circularly close-packed fiber bundle without twist. As twist was applied to the 

bundle, the twisted yarn became more compact. Thus the same tension obtained 

in the fiber bundle was sufficient to ensure a circular close-packing of fibers in 

the yarn, and therefore it was used in the subsequent tests of twisted yarns. Due to 

the applied tension, the shift of positions and self-assembling of fibers could be 



Chapter 5. Wicking in twisted yarns 

 107

neglected. Various levels of static Z twists ranging from 100 to 500 turns per 

meter (tpm) were inserted into the fiber bundle using a laboratory twist tester. 

Due to the yarn heterogeneity, 30 measurements were needed to give a statistical 

representation of the yarn (Perwuelz et al., 2000). Therefore, for each yarn with a 

specific twist level, 30 specimens were tested and the final result was the average 

value of the 30 measurements. Since the test time was short, evaporation of the 

liquid was negligible. Diffusion of the liquid into the fibers was also neglected. 

A KRUSS digital tensionmeter was used to measure the surface tension of the 

liquid. The advancing contact angle between the fiber and the liquid was 

determined by the single fiber pulling-out test based on the Wihelmy principle 

(Batch et al., 1996; Hsieh, 1995) using a dynamic contact angle analyzer. 

5.4 Results and discussion 

The experimental data is presented and discussed in this section. The radius of the 

fiber fr  was 8.4 μm and the density of the polyester fiber fρ  was 1.38 g/cm3. 

The yarn was composed of 37 fibers. All yarns had a length of 400mm. The 

properties of the liquid are listed in Table 5.1: 

Table 5.1 Properties of the liquid 

Liquid lρ  (kg/m3) γ  (mN/m) aθ  (º) 

Distilled water 1000 72 75.75 
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In the fiber bundle test, the capillary rise of the liquid at equilibrium with different 

tensions is shown in Figure 5.6. 
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Figure 5.6 Wicking height at equilibrium in the fiber bundle (T=0 tpm) 

 

Figure 5.6 shows that when the tension is larger than 15gf, Lequ does not change 

remarkably. Hence the tension of 15gf is considered as the critical tension, and 

the fiber bundle with 15gf applied tension is assumed to be circularly 

close-packed. This tension is then used in the subsequent tests of twisted yarns.  

The experimental data and the fit of the experimental result achieved using 

Equation (5.7) are presented in Figure 5.7. 
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Figure 5.7 Wicking time as a function of capillary rise (T=0 tpm) 

 

Figure 5.7 indicates that the fit result is good. Not surprisingly, the penetrating 

velocity of the liquid in the early stage is much higher than in the subsequent 

stage. With the pass of time, the advancement of the liquid becomes slower and 

slower until equilibrium is established. Figure 5.7 indicates that after around 200s 

there is no obvious change in the capillary rise, and thus the equilibrium is 

reached. 

Figure 5.8 to Figure 5.12 show the results for twisted yarns with different twist 

levels. In these figures, good fit results are also found. 
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Figure 5.8 Wicking time as a function of capillary rise (T=100 tpm) 
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Figure 5.9 Wicking time as a function of capillary rise (T=200 tpm) 
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Figure 5.10 Wicking time as a function of capillary rise (T=300 tpm) 
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Figure 5.11 Wicking time as a function of capillary rise (T=400 tpm) 
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Figure 5.12 Wicking time as a function of capillary rise (T=500 tpm) 

 

As shown in Equation (5.6), M is equivalent to Lequ. Figure 5.13 presents a 

comparison of Lequ derived from the calculation in this chapter and experimental 

results. 
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Figure 5.13 Comparison of Lequ derived from experimental data and theoretical 

prediction 

 

Table 5.2 Relative error for different twist levels 

Twist (tpm) 0 100 200 300 400 500 

Error (%) 9.07 7.54 5.95 4.47 3.61 1.98 

 

Figure 5.13 indicates that the theoretical results deviate significantly from the 

experimental data. This discrepancy may be attributed to the deviation of packing 

of the fibers from an idealized circular close-packing. When the number of 

constituent fibers is large, it is very difficult to accomplish a circular 

close-packing. Although a tension was applied to the yarn in the experiment and 
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the yarn may have been closely packed, the packing of fibers may have been far 

from the idealized circular close-packing. This may partly explain why the 

experimental data is smaller than the theoretical results at all twist levels. 

However, when more twist is inserted into the yarn, as fibers move inward and 

rearrange their positions, the fibers in the yarn may become more compact and 

close to a circular close-packing. Therefore the discrepancy between the 

experimental data and the theoretical results should decrease with the increase of 

twist level. This conclusion is in accordance with what is shown in Table 5.2. 

In order to investigate the influence of twist on the wicking behavior of the yarn, 

the fitted values of N (the wicking resistance term) were plotted as a function of 

twist level and the result was fitted by means of a linear scheme (Figure 5.14). 
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Figure 5.14 Linear fit of experimental value of N 
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A good linear fit is depicted in Figure 5.14. This suggests that λ  grows linearly 

with the increase of the twist level since lk gAρ  is constant in Equation (5.22). 

It is also concluded that the twist influences the viscous drag by introducing a 

constant λ , so-called twist coefficient, and λ  linearly increases with the 

increase of twist. 

5.5 Conclusion 

The wicking behavior of a liquid in a fiber bundle as well as a twisted yarn was 

discussed. Using a macroscopic force balance method, the wicking time was 

obtained as a function of the capillary rise. In order to analyze the effect of twist 

on the wicking of the liquid, a twist coefficient was introduced into the viscous 

drag term. Experimental apparatus was designed, and a series of experiments was 

conducted using this apparatus. Data analysis showed that the wicking flow can 

be accurately described by the equation developed in this chapter. Considering the 

experimental error, the prediction of the capillary rise at equilibrium agreed well 

with the experimental data with a reasonable accuracy. By curve fitting of the 

experimental results, the twist coefficient was found to be constant for a specific 

twist, while it increases linearly with twist. As previously stated, packing of fibers 

in the yarn is assumed to be circularly close-packed, and packing fraction is 

assumed to be uniform in the model. However, packing of fibers in twisted yarn is 

always non-uniform, and packing density may vary from yarn center to yarn 
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surface. This always occurs in staple fiber yarn. In this case variation of packing 

density of fibers along the radial direction should be considered.
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Chapter 6. Coupled mechanical and liquid transfer 

behavior of textile yarns 

6.1 Introduction 

This chapter investigated vertical wicking through textile yarns subject to tension 

and torque. Packing of fibers in the yarn was non-uniform. A mathematical model 

to simulate the wicking process was developed based on a capillary penetration 

mechanism. Using a macroscopic force balance approach, the wicking time was 

derived as a function of the capillary rise of the liquid. Swelling of fibers and 

change of mechanical properties of fibers after absorption were considered in the 

model. The wicking mechanism was coupled with the mechanical properties of 

the yarn in a way that movement of constituent fibers of the yarn under 

deformation changed the pore structure of the yarn, and thus influenced the liquid 

transport behavior in the yarn; on the other hand, adsorption caused the fibers to 

swell and change their mechanical characteristics. In order to validate our model, 

a series of experiments was conducted on woolen yarns. Ethyl alcohol and water 

were used as non-swelling and swelling liquid. The influence of twist level of the 

yarn on the capillary flow was also investigated. 
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6.2 Model development 

6.2.1 Notation 

The following notations are used in this chapter. Subscripts 0 and 1 denote initial 

state and deformed state. “ '” stands for saturated state. 

cF  capillary force 

, cu cdF F  upward capillary force, downward capillary force 

,  cuj cuuF F  upward capillary forces due to jammed region and unstrained region 

,  ,  g v iF F F  forces due to gravity, viscous drag and inertia 

lρ  density of liquid 

ρ f  density of fiber 

A area available for liquid flow in the yarn cross section 

yA  cross-sectional area of the yarn 

,  fj fuA A  total areas of fibers in jammed region and unstrained region 

L axial wicking height of the liquid 

k frictional coefficient (for the initial yarn without further twist) 

λ  twist coefficient 

β  factor 

Pj perimeter wetted by the liquid in the jammed region 
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Pl cross-sectional perimeter of the liquid column 

aθ  advancing contact angle between the liquid and the fiber 

γ  surface tension of the liquid 

yr  radius of the yarn 

jamφ  fiber packing density in a jammed region 

( )rφ  packing density of fibers in the yarn 

fir  radius of individual fiber 

fr  average radius of fiber 

n number of fibers 

H pitch length of the helix of the fiber path 

T twist level 

r radius of the fiber helical path 

fL  fiber length 

α  helix angle 

g gravitational acceleration 

t time 

,  θξ ξy  yarn tensile and torsional strain 
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Ar  initial radial position of fibers that will be the outer boundary of a 

jammed region 

Ajamr  radius of the outer boundary of the jammed region after deformation 

tenT  applied tension on the yarn 

totU  total energy of yarn 

M, N parameters in expression describing the wicking mechanism 

6.2.2 Without considering swelling of fibers 

When a yarn is dipped in a liquid, the liquid will penetrate into the yarn due to the 

drag of capillary force arising from the liquid-solid interfaces. As an elementary 

model, permeation of liquid into fibers and swelling of fibers are not considered 

in this section. Mechanical properties of fibers are assumed to remain constant 

during the wicking process. Supposing radii of constituent fibers are circular, the 

schematic illustration of the cross-section of the solid-liquid-gas system is shown 

in Figure 5.1. If wicking height L is sufficiently large ( yL r� ), dimension of the 

meniscus of liquid front is negligible. Similar to the analysis in Chapter 5, the 

following forces determine the movement of the liquid: 

capillary force: cF  

gravity: ρ=g lF gAL  

viscous drag: v
dLF kL
dt

λ=  
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inertia: ρ⎡ ⎤= ⎢ ⎥⎣ ⎦
i l

d dLF AL
dt dt

 

Capillary force cF  consists of an upward force cuF  arising from interaction 

between the liquid and the fibers, and a downward force cdF  due to the concave 

liquid-gas interface (Liu et al., 2007a; Princen, 1968; Princen, 1969, 1970). 

Therefore,Equation Chapter 6 Section 1 

 = −c cu cdF F F  (6.1) 

The inertia term arises from Newton’s second law of motion. However, except for 

the early stage of wicking, the inertia term is negligible when acceleration of the 

liquid is slow. The balance of forces hence is: 

 0ρ− − =c l
dLF gAL kL
dt

 (6.2) 

Rearranging Equation (6.2), we have: 

 1 ρ⎛ ⎞= −⎜ ⎟
⎝ ⎠

c
l

FdL gA
dt k L

 (6.3) 

Let 

 ,   c

l l

F kM N
gA gA

λ
ρ ρ

= =  (6.4) 

where λ  is a twist coefficient. For the initial yarn without any further twist, λ  

is 1. By integrating and applying the initial condition 0,  0t L= = , we can obtain 

the solution: 
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 ln Mt N M L
M L

⎛ ⎞= −⎜ ⎟−⎝ ⎠
 (6.5) 

When equilibrium is established, the capillary force should be balanced by the 

gravity of the liquid penetrating into the yarn. That means:  

 c
equ

l

FL M
gAρ

= =  (6.6) 

Therefore, Equation (6.5) becomes: 

 ln equ
equ

equ

L
t N L L

L L
⎛ ⎞

= −⎜ ⎟⎜ ⎟−⎝ ⎠
 (6.7) 

In this chapter the model of yarn structure developed in Chapter 3 was employed. 

Fiber migration in the transverse direction was neglected. A typical constitute 

fiber is shown in Figure 5.3. When a loose staple-fiber yarn is subject to tension 

and torque, a jammed region will appear in the central area of the yarn, and those 

fibers which are located in the outer layer are unstrained (Liu et al., 2007b) 

(Figure 3.1). According to the theory discussed in Chapter 3, the helical radius of 

one typical fiber r1 in the strained state can be obtained by: 

 
( ) ( )

( )( )
( )

0 

0 0 0 0 0 0

1 22 2 2
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022

2
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4 1 1

4 1
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r r dr r r

r
r H

r r
θ

φ
φ ξ

π ξ

π ξ

⎧
≤⎪

+⎪
⎪= ⎨

+ − +⎪
⎪ >

+⎪⎩

∫
 (6.8) 
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An energy method (Treloar and Riding, 1963) was employed to determine yarn 

tensile strain ξ y  in which 

 0/
ξ

∂
=

∂
tot

ten
y

UT H  (6.9) 

Calculation of total energy of yarn is discussed in detail in Chapter 3. Given tenT  

and θξ , an iteration method was adopted to obtain ξ y  using Equation (6.9). 

,  A Ajamr r  can be obtained by solving the system of Equations (6.10) and (6.11): 

 ( )
( )( )( )

( )

22 2 2 2
0 0 

0 0 0 22 0

4 1 1

8 1
A A y y jamr r H H
r r dr

θ

π ξ ξ φ
φ

π ξ

+ − + +
=

+∫  (6.10) 

 ( ) ( ) ( ) ( )2 22 22 2
0 02 2 1 1θπ π ξ ξ+ = + + +A Ajam yr H r H  (6.11) 

Due to different pore structures, capillary forces arising from interactions between 

fiber-liquid interfaces are different in the jammed region and the unstrained 

region, and therefore they should be considered separately. This means: 

 = +cu cuj cuuF F F  (6.12) 

Consider an element area of cross section of the jammed region between radii r 

and r+dr. Supposing that the radii of fibers are circular, the total perimeter of 

fibers in the jammed region wetted by the liquid can be obtained by: 

 
1

2π
=

= ∑
n

j fi
i

P r  (6.13) 
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If a packing density function is introduced, and variation of radii of fibers and 

change of radii of fibers during deformation is insignificant, then the number of 

fibers inside the element area can be given by: 

 
( )0 1 1

2

1

1 2
    y jam

f f f

H r dr
dn

r L

ξ π φ

ρ π

+ ⋅ ⋅
=

⋅ ⋅
 (6.14) 

Therefore, 
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( ) ( )
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1222 2 2

1 0

2 cos

1 2
        =2 cos

4 1 cos
        =

4 1 1
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f f
y
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r

r L
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r r Hθ
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ρ π

πφ γ ξ α θ
ρ π ξ ξ

= ⋅ + ⋅

+ ⋅ ⋅
⋅ + ⋅

⋅ ⋅
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⋅
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 (6.15) 

where 

 
( )

( ) ( )
0

222 2 2
1 0

1
arccos

4 1 1θ

ξ
α

π ξ ξ

⎛ ⎞
+⎜ ⎟= ⎜ ⎟

⎜ ⎟+ + +⎝ ⎠

y

y

H

r H
 (6.16) 

Integrating Equation (6.15), we have: 

 
( ) ( )

( ) ( )
 0 1

12 0 22 2 2
1 0

4 1 cos

4 1 1

Ajamrjam y a
cuj

f f
y

H r
F dr

r r Hθ

πφ γ ξ α θ
ρ π ξ ξ

+ +
=

+ + +
∫  (6.17) 

In a similar fashion, we can obtain: 
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 (6.18) 

Thus, 

 
( ) ( ) ( )

( ) ( )
1 0 1 1 1

12 22 2 2
1 0
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ry a
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f f
y

H r r
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∫  (6.19) 

In the unstrained region where 1 Ajamr r> , supposing the fiber helices in the yarn 

can not pass one another in the radial direction during deformation, then the mass 

of fibers inside a specific area remains constant before and after deformation, thus 

we have: 

 ( ) ( ) ( )0 1  

0 0 0 1  
2 2 1

A Ajam

r r

yr r
rH r dr rH r drπ φ π ξ φ= +∫ ∫  (6.20) 

By cancelling the same term, we obtain: 

 ( ) ( ) ( )0 1  

0 1  
1

A Ajam

r r

yr r
r r dr r r drφ ξ φ= +∫ ∫  (6.21) 

Taking the derivative at both sides with respect to 0r  we get: 

 ( ) ( )( ) ( )( ) ( )

2
0

22

0 0 0 0 1 1 1 1 1 1 1 0
1

8
4 1

1 1
2

θ

π
π ξ

φ φ ξ φ ξ
+
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r

r r dr r r dr r r dr
r

 (6.22) 

Therefore, 
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 ( ) ( ) ( )
2

1 1 0 0

1
1

θξφ φ
ξ

+
=

+ y

r r  (6.23) 

Substituting Equations (6.8) and (6.23) into Equation (6.19), we have: 
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φ α θπγ
ρ π

+
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+
∫  (6.24) 

Similarly, the total area of fibers Af also consists of two parts,  and fj fuA A . 

According to Equation (5.12), the area available for liquid flow is therefore 

obtained by: 

 2
1y f y fj fuA A A r A Aβπ= − = − −  (6.25) 

In the jammed region where 1 Ajamr r≤ , 
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 (6.26) 

Hence, 
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∫  (6.27) 

In the unstrained region where 1 Ajamr r> , 
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 (6.28) 

Therefore Afu is obtained by integrating Equation (6.28): 
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Substituting Equations (6.8) and (6.23) into Equation (6.29), we obtain: 

 ( )0 0 0 00
02 2 2 

0 0
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y
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r

fu r
f

r rHA dr
r H

φπ
ρ π

=
+

∫  (6.30) 

The downward capillary force is given by: 

 γ=cd lF P  (6.31) 

lP  can be obtained in the same fashion as in Chapter 5, and β  is given by: 

 
1

2 f

cu y

A
F r

γ
β =  (6.32) 

6.2.3 Considering swelling of fibers 

When a yarn is dipped in a swelling liquid, the liquid will not only penetrate into 

the yarn, but also permeate into the fibers. Absorption of the liquid will cause the 

fibers to swell and change the mechanical properties of the fibers. On the other 
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hand, swelling of fibers will change the pore structures between fibers and the 

pathway of the liquid flow, thus affecting the whole wicking process. Since the 

mechanical properties and swelling of fibers vary with time, information on fibers 

at all time levels should be obtained if the whole wicking process is to be modeled. 

This seems to by unrealistic. Thus it may be more realistic to consider two 

extreme cases: dry state and saturated state. In the first case, wool fibers are 

assumed not to take up any liquid. Hence the wicking can be modeled by means 

of the theory discussed in Section 6.2.2. In the second case, wool fibers are 

supposed to become saturated instantly, and change of mechanical properties and 

swelling of fibers take place immediately once the yarn contacts the liquid. The 

wicking process is determined by the saturated structures of fibers. These two 

extreme cases are expected to provide an insight into the dynamic interactions 

between the fibers and the liquid, and the real wicking is anticipated to lie 

between these two extreme cases. 

In the saturated case, it was found that the longitudinal swelling of fiber was very 

small (Earland, 1963), therefore only transverse swelling is considered. In the 

saturated state, the mechanical properties of fiber ( ' ' ' '
1 2 3 4,  , ,  E E E E ), fiber density 

'
fρ  and fiber radius '

fr  can be obtained experimentally. Due to the different 

structures of jammed and unstrained areas (Figure 3.1), packing density of fibers 

in these two regions should be calculated separately. Suppose ratio of transverse 

swelling of fiber is a, then: 
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 ( )'
1f fr a r= +  (6.33) 

Since fibers in the jammed region cannot move transversely, then swelling of 

fibers will cause expansion of the whole jammed region. Therefore: 

 ( )' 1Ajam Ajamr a r= +  (6.34) 

The packing density of the jammed region in the saturated state '
jamφ  is given by: 
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⋅ ⋅
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= =

⋅
 (6.35) 

In the unstrained region fibers are comparatively loose and spaces between fibers 

are large. Therefore, it is reasonable to assume that the swelling of fiber will only 

fill the pores between fibers while not contacting any other surrounding fibers 

during swelling. With this assumption, the transverse positions of fibers and 

boundary of the unstrained region remain the same after swelling. Then packing 

density of the unstrained region can be obtained by: 

 
'

'
1 1

f

f

ρ
φ φ

ρ
=  (6.36) 

Substitute Equations (6.33), (6.34), (6.35)and (6.36) into Equations (6.17), (6.24), 

(6.27) and (6.30), we get: 
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∫  (6.40) 

Once capillary force cF  and area available for liquid flow A  are obtained, 

capillary rise at equilibrium equL  can be calculated using Equation (6.6). The 

flow of the model development is shown in Figure 6.1. 

Read input data

Fiber swelles .

Structural and mechanical 
parameters of fiber change .

Mechanical model of yarn .

Output rA, rAjam, ?y.

Wicking model .

Output the final capillary rise 
Lequ.

Stop.

Yes

No

 

Figure 6.1 Flow chart of the development of the coupled model  
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6.3 Experiments 

In order to validate our theoretical model, a series of experiments was conducted 

on woolen spun carpet yarns. Two kinds of liquid were used as wicking liquid: 

ethyl alcohol and water. 

Ethyl alcohol was used due to its good wettability. It was found that it took 

several minutes for capillary rise of ethyl alcohol to reach equilibrium during a 

vertical wicking test. However, it was established in separate experiments that 

diffusion of ethyl alcohol into wool fiber was very slow, and it took hours to 

establish equilibrium. Therefore, ethyl alcohol was considered as a non-swelling 

liquid, and absorption of ethyl alcohol was negligible during the series of tests. 

Change of the mechanical properties from dry to wet and swelling of fiber were 

also neglected. 

The considerable affinity of wool fibers for water is a well-known property. 

However, it was found that wicking of pure water in a wool yarn was very poor. 

This may be attributed to the nature of the surface of wool fiber and large contact 

angle between wool fiber and water, whereas the absorption of water proceeds 

mainly internally. In order to enhance the wicking of water in wool yarns, a small 

amount of detergent was added to the water. It was found that the wicking was 

significantly improved, and swelling of fibers occurred simultaneously with 

wicking. Radial swelling of wool fiber from dry to saturated was measured with a 

microscope. In order to obtain a saturated fiber, the fiber was immersed into the 
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water mixture for 24 hours allowing the fiber to be fully saturated. Then the fiber 

was taken out and measured immediately. Fifty fiber specimens were measured 

and the mean value was used as the final swelling ratio. In order to get the whole 

load-strain curve of saturated wool fiber, the fiber was firstly immersed to the 

water mixture to establish a saturated state. Then the fiber was taken out and 

immediately tested on an Instron Tensile Tester. Fifty fiber specimens were tested 

to obtain a mean. Four piecewise linear straight lines were fitted to the mean 

curve profile in order to simplify the calculation. 

The experimental apparatus used to test yarn vertical wicking is shown in Figure 

5.4. The experiments were conducted in a standard atmosphere of 20± 2ºC and 

65± 2% relative humidity, and the yarn packages were conditioned for 24 hours 

before testing. The height of the liquid rise in the yarn was observed by means of 

a traveling microscope. The image was captured by a CCD camera and displayed 

on a monitor. To enhance the observation of the liquid front advancement, a small 

amount of basic dye (Ciba Geigy Maxilon Red GRL Pearls) was added to the 

liquid and the effect of the dye on the viscosity and surface tension of the liquid 

was neglected. During the experiments, the specimens of yarn were enclosed in a 

bore glass tube to reduce evaporation. A stopwatch was used to record the time. A 

laboratory twist tester was employed to introduce various twist levels into the 

yarn.  
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The experimental procedure was similar to what had been described in Chapter 5. 

Due to the yarn heterogeneity, 30 measurements were needed to supply a 

statistical representation of the yarn (Perwuelz et al., 2000). Therefore, for each 

yarn with a specific twist level, 30 specimens were tested and the final result was 

the average value of the 30 measurements. 

A KRUSS digital tensionmeter was used to measure the surface tension of the 

liquid. The advancing contact angle between the fiber and the liquid was 

determined by the single fiber pulling-out test based on the Wihelmy principle 

(Batch et al., 1996; Hsieh, 1995) using a dynamic contact angle analyzer. 

6.4 Results and discussion 

The experimental data and theoretical result are presented and discussed in this 

section. jamφ  was 1g/cm3. The physical parameters of initial yarn and fiber are 

listed in Table 3.1. The mean load-strain curve of dry fiber is shown in Figure 3.6. 

Four piecewise linear straight lines as shown in Figure 3.7 are fitted to the mean 

curve profile in order to simplify the calculation. The moduli of the four strain 

intervals are shown in Table 3.2. With reference to material mechanics theory, we 

can derive fiber bending and torsional rigidity from the tensile modulus at 

different stages with the assumption that the Poisson’s ratio of the fiber is equal to 

0.5. A cubic function was adopted to fit the experimental data (Equation (3.28)).  
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6.4.1 Ethyl alcohol 

The characteristics of the liquid are shown in Table 6.1. 

 

Table 6.1 Properties of the liquid 

Liquid lρ  (kg/m3) γ  (mN/m) aθ  (º) 

Ethyl alcohol 789 22.3 53 

 

The experimental data and the fit of the experimental result by Equation (6.7) for 

the initial yarn are presented in Figure 6.2. 
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Figure 6.2 Wicking time as a function of capillary rise (T=191 tpm, tenT =10gf) 
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Figure 6.2 indicates that there is a slight discrepancy between the experimental 

data and the fitting result with either theoretical equL  or experimental equL . 

Although fitting with theoretical equL  deviates slightly with experimental data, 

this is justifiable since equL  is overestimated using the calculations presented in 

this Chapter (this will be discussed later). Not surprisingly, the penetrating 

velocity (gradient of tangent with respect to Y axis) of the liquid in early stage is 

much higher than in subsequent stages. As time passes, the advancement of the 

liquid becomes slower and slower until equilibrium is established. Figure 6.2 also 

suggests that after around 100s there is no obvious change in the capillary rise, 

and thus equilibrium is reached. 

Figure 6.3 to Figure 6.6 show the results for yarns with different additional twist 

levels. In these figures, similar findings are observed. 
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Figure 6.3 Wicking time as a function of capillary rise (T=216 tpm, tenT =10gf) 
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Figure 6.4 Wicking time as a function of capillary rise (T=241 tpm, tenT =10gf) 
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Figure 6.5 Wicking time as a function of capillary rise (T=266 tpm, tenT =10gf) 
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Figure 6.6 Wicking time as a function of capillary rise (T=291 tpm, tenT =10gf) 
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As shown in Equation (6.6), M is equivalent to Lequ. Figure 6.7 presents a 

comparison of Lequ derived from Equation (6.6) and experimental results. 
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Figure 6.7 Comparison of Lequ derived from experimental data and theoretical 

calculation 

 

Table 6.2 Relative error for different twist levels 

Twist (tpm) 191 216 241 266 291 

Error (%) 8.12 16.41 19.21 35.85 9.72 

 

Figure 6.7 suggests that the theoretical results deviate significantly from the 

experimental data, and the relative error is shown in Table 6.2. This discrepancy 

may be attributed to the deviation of the structure of wool yarn from the idealized 
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yarn model. To simplify the model, a continuous filament yarn structure was 

adopted to simulate the wool yarn. However, constituent fibers in wool yarns are 

discontinuous, and they may migrate inward or outward in the radial direction. 

The irregularity of fiber path and discontinuity at fiber ends may lead to 

discontinuity of capillaries between fibers. This apparently reduces the wicking of 

the liquid in the yarn. Hairiness and evenness of yarn also have impact on the 

wicking. These factors partly explain why the experimental data is lower than the 

theoretical result at all twist levels. 

From Figure 6.7 it can also be observed that equL  increases with the increase of 

twist levers at comparatively low twist levers and reaches the maximum at a 

certain twist level. After that equL  decreases with the advancement of twist level. 

At lower twist level, the yarn is loosely packed. When additional twist is inserted 

into the yarn, constituent fibers tend to move inward and the yarn becomes more 

compact. This appears to reduce the effective radii of interfiber capillaries, and 

hence enhance the wicking. The wicking reaches the maximum when the yarn is 

nearly closely packed. After that with the introduction of additional twist into the 

yarn effective radii of interfiber capillaries do not change a lot, while increase of 

inclination of fiber may lead to lower upward capillary force (Equations (6.17) 

and (6.19)). Furthermore, increase of tortuosity may cause longer flow path of the 

liquid. This may also contribute the reduction of wicking. 
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As shown in Figure 6.7, the twist level at which the wicking reaches the 

maximum in experimental data (around 240 tpm) deviates slightly from that of 

the theoretical prediction (around 250 tpm). This may be partly due to the error 

introduced in the estimation of packing density of fibers. 

In order to investigate the influence of twist on the wicking behavior of the yarn, 

the values of λ  at different twists are calculated by Equation (6.4) where N is 

obtained by fitting the experimental data using the two-parameter scheme. The 

result is listed in Table 6.3 and plotted as a function of twist level in Figure 6.8, 

and the result was fitted by a linear scheme. Calculated value of k is 6.599×10-3. 

 

Table 6.3 Values of λ  

Twist (tpm) 191 216 241 266 291 

λ 1.000 0.846 0.625 0.503 0.394 
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Figure 6.8 Linear fit of calculated values of λ 

 

It may be observed from Figure 6.8 that the result of linear fit is good. It was 

shown in Chapter 5 that λ  grows linearly with the increase of twist (Figure 

5.14), whereas in Figure 6.8 λ  decreases linearly with the increase of twist. If 

we rewrite Equation (6.4), and then we have: 

 lN gA
k
ρλ =  (6.41) 

In Chapter 5, the yarn is circularly close-packed and packing of fibers is assumed 

to be uniform. Therefore, /l gA kρ  is constant and the only influencing factor on 

λ  is the wicking resistance term N. When an additional twist is inserted into the 

yarn, with the increase of the tortuosity of the yarn N tends to increase. This 

results in an increase of λ  during twisting. As discussed this Chapter, however, 
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packing of fibers in the yarn is not only loose but also non-uniform. When the 

yarn is subject to external forces, the fibers in the outer layer tend to move inward 

and change their transverse positions. This reduces the area available for the 

liquid flow A. Figure 6.8 also implies that the effect of the reduction of A greatly 

exceeds that of the increase of N, and the combination of the movement of fibers 

and change of the tortuosity of the yarn probably lead to such a linear relationship 

as shown in Figure 6.8. 

6.4.2 Water 

Water was mixed with a small quantity of detergent. The density of the mixture 

was 1053 kg/m3. Surface tension of the mixture was 73.3mN/m. The advancing 

contact angle between the wool fiber and the mixture was 47º. The radial 

swelling ratio of wool fiber from dry to saturated state was 15.2%. The density of 

saturated fiber was 1330 kg/m3. The mean and simplified load-strain curves of the 

saturated wool fiber are shown in Figure 6.9 and Figure 6.10 respectively. 
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Figure 6.9 Load-strain curve of saturated wool fiber 
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Figure 6.10 Simplified load-strain curve of saturated wool fiber 

 

In order to investigate the impact of water on the tensile properties of wool fiber, 

the tensile behavior of wet wool fiber was compared with that of dry fiber in 
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Figure 6.11. It is shown that the modulus of fiber is greatly reduced from dry to 

wet. Actually this happens to yarn as well (Figure 6.12) 

. 

 

Figure 6.11 Tensile behaviors of wet and dry fibers 
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Figure 6.12 Tensile behaviors of wet and dry yarns 
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The moduli of the four strain intervals in simplified tensile behavior of fiber are 

shown in Table 6.4 Referring to material mechanics theory we can derive fiber 

bending and torsional rigidity from its tensile modulus at different stages with the 

assumption that the Poisson’s ratio of the fiber is equal to 0.5. 

 

Table 6.4 Moduli of the four stages in tensile test of fiber 

ξ (%) E(gf⋅cm-2) 

0 1ξ≤ <  E1 1.02×107 

1 2.6ξ≤ <  E2 1.66×107 

2.6 4ξ≤ <  E3 6.82107 

4ξ ≥  E4 2.05×106 

 

The experimental data of the wicking test and theoretical calculations for the 

initial yarn are presented in Figure 6.13. 
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Figure 6.13 Wicking time as a function of capillary rise (T=191 tpm, tenT =10gf) 

 

In Figure 6.13, the solid line and dash line represent calculations without and with 

considering swelling of fibers respectively, using Equation (6.7). equL  is 

computed by Equation (6.6) and N is obtained by Equation (6.4). λ  is given in 

Table 6.3. Figure 6.13 shows that the experimental results fall between the 

theoretical calculations of the two cases. At the beginning of the wicking, as 

swelling of fibers is insignificant, the experimental data agrees well with the 

calculation in the dry state. As the swelling of fibers becomes appreciable, the 

experimental results deviate significantly from the calculation in the dry state, and 

tend to be close to the calculation in the saturated state. This may be due to the 

fact that swelling of fibers reduces capillaries between fibers, and thus enhances 

the wicking. 



Chapter 6. Coupled mechanical and liquid transfer behavior of textile yarns 

 147

Figure 6.14 to Figure 6.17 present the results of yarn with different twists. All 

figures show the same trend as Figure 6.13. 
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Figure 6.14 Wicking time as a function of capillary rise (T=216 tpm, tenT =10gf) 
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Figure 6.15 Wicking time as a function of capillary rise (T=241 tpm, tenT =10gf) 
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Figure 6.16 Wicking time as a function of capillary rise (T=266 tpm, tenT =10gf) 
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Figure 6.17 Wicking time as a function of capillary rise (T=291 tpm, tenT =10gf) 
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In order to examine the influence of twist on the wicking, the final capillary rise 

was calculated in saturated state and compared with experimental data in Figure 

6.18, and the error was shown in Table 6.5. 
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Figure 6.18 Comparison of Lequ derived from experimental data and theoretical 

calculation 

 

Table 6.5 Relative error for different twist levels 

Twist (tpm) 191 216 241 266 291 

Error (%) 10.66 11.86 9.79 7.15 6.59 

 

Figure 6.18 shows the same trend as Figure 6.7, and the deviation between 

experiment and calculation can also be explained similarly. 
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6.5 Conclusion 

The investigation of the wicking behavior of a liquid (swelling or non-swelling) 

in a staple-fiber yarn was discussed in this chapter. Using a macroscopic force 

balance method, wicking time was obtained as a function of capillary rise. In 

order to analyze the influence of fiber movement during deformation of yarn and 

swelling of fibers on the wicking mechanism, a coupled model was developed. 

For the swelling liquid, two extreme cases, dry state and saturated state, were 

investigated. Experimental apparatus was designed, and a series of experiments 

was conducted on it. Data analysis showed that for non-swelling liquid the 

wicking flow can be accurately described by the model developed in this chapter. 

Considering the experimental error and heterogeneity of the yarn, the prediction 

of the capillary rise at equilibrium agreed reasonably well with the experimental 

data. Using a curve fitting technique it was found that there was an approximate 

linear relationship between twist level and the viscous drag. For the swelling 

liquid, the wicking process was shown to fall between the calculations of the two 

extreme cases. However, spun yarn is much more complex than an idealized 

continuous filament yarn model. Furthermore, when a high twist is introduced 

into the yarn, fibers near the yarn center may buckle due to twist retraction. This 

may damage the pore structures between fibers and affect the wicking behavior of 

the liquid. Therefore wicking in textile yarns is very complicated, and the 

mechanism has not been fully understood. Nevertheless, this research attempts to 

gain an insight into this area and to construct a framework for further study. 
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Modeling of wicking in structures that are more complicated will form the subject 

of subsequent research.
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Chapter 7. Conclusions and suggestions for future work 

7.1 Introduction 

This project was undertaken in order to study the coupled mechanical and liquid 

transfer behavior of textile materials. As yarn was the most important 

intermediate stage in textile production, this research focused mainly on yarn 

structures and liquid flow through those structures. Since the mechanical 

properties of yarn and liquid flow behavior through yarn were fundamental to 

examine the coupled mechanism, the mechanical behavior of yarn and the 

wicking through yarn were separately modeled first. Then the two models were 

combined to analyze the coupled mechanism. In this chapter, the conclusions 

drawn from this study were summarized, and the future work was suggested. 

7.2 Conclusions 

7.2.1 Literature survey 

In order to identify the research gaps and the research objectives, publications on 

yarn mechanics and liquid flow through fibrous assemblies were critically 

reviewed in Chapter 2. On basis of the literature survey, the research gaps were 

identified, and methodology and theories employed in this study were established. 

The three commonly used methods to study yarn mechanics, namely, the force 

method, the finite element method (FEM) and the energy method were 
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investigated respectively. The force method has been developed for many years, 

and has been proved to be successful to study simple structures like continuous 

filament yarns. The FEM also has been employed by some researchers. Compared 

to the force method and the FEM, the energy method has a much simpler form in 

terms of the calculation of the total energy since energy is a scalar. With this 

consideration, the energy method was adopted to model the mechanical behaviors 

of the yarn in this study.  

The research literatures on capillary flow through tube, porous media as well as 

textile assemblies were also reviewed. The survey revealed that the textile 

assembly was always considered either as a bundle of capillary tubes or as porous 

media. In the first case, the wicking process could be described by 

Lucas-Washburn equation. In the second case, the liquid flow could be 

characterized by the Darcy’s law. However, in the first case, the effective 

capillary force and the effective contact angle were difficult to quantify, and they 

were always obtained by fitting the experimental data. In the second case, 

similarly, the structural features, such as porosity, were also obtained 

experimentally. As we know, however, textile assemblies like continuous 

filament yarns have comparatively regular structures. Therefore, a more 

comprehensive model based on the structural characteristics with less fitting 

parameters is possible. 
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7.2.2 Yarn mechanics 

A comprehensive mechanical model to predict the tensile as well as torsional 

behaviors of singles yarn was developed as discussed in Chapter 3. The model 

was based on three basic theories, namely discrete fiber modeling principle, 

shortest path hypothesis and energy method. In the model, the yarn was assumed 

to be made up of a large number of discrete fibers. Each fiber was a discrete 

component of the yarn structure and the aggregate response of the assembly was 

obtained simply by adding the separate contributions of individual fibers. It was 

also assumed that the work done by the external force could totally be transferred 

and stored as the elastic energy of the yarn. The applied external force was 

obtained by taking derivative of the total energy with respect to the corresponding 

strain. The whole load-strain curve of fiber material was considered, and 

nonlinearities of tensile, bending and torsional behaviors of fiber material were 

taken into account, for the first time, in the calculation of the total energy. The 

gauge length of the yarn examined was small, and fiber migration and inter-fiber 

slippage were neglected.  

Experimental validation showed that both tensile and torsional behaviors of 

singles yarn at low strain could be accurately predicted using the model. 

Contributions of fiber tension, fiber bending and fiber torsion to applied external 

force were calculated and compared using the energy method. It was found that in 

the tensile model the contribution to yarn tension due to fiber tension played the 
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most important role, while in the torsional model all three contributions were 

significant. This finding was different from previous research (Tandon et al., 

1995a; Tandon et al., 1995b) in which the authors stated that the contributions of 

fiber bending and torsion were negligible. By examining the tensile strain 

distribution of fibers, a buckling area was identified in torsional model, and 

buckling of fibers was investigated for the first time. If the fibers in the buckling 

area were allowed to release their tensile strains while still keep their helical 

profiles, more accurate results were found at large yarn strain. This model may 

enrich the knowledge of yarn mechanics and provide a better understanding of the 

mechanism of yarn fracture and twist stability. 

7.2.3 Capillary rise between cylinders 

In Chapter 4, the method by which wicking between two cylinders could be 

theoretically modeled was discussed. Firstly, the capillary rise in the gap between 

two identical cylinders was examined. Two approaches, a force approach and a 

minimum free energy approach, were used to derive the final capillary rise in 

terms of the distance of the separation of the two rods, and the two approaches 

were found to be equivalent. The final capillary rise was obtained by solving a 

series of equations. In the force analysis approach, the upward capillary force, the 

downward capillary force and the gravity of the liquid were considered. The free 

energy approach was based on an interfacial analysis.  
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Secondly, wicking between a cylinder and a plate were also examined. On the 

basis of the two special cases, a more general case which was wicking between 

two cylinders of different sizes was analyzed. Experimental verification showed 

that the theory can predict the final capillary rise of the liquid with reasonable 

accuracy. The relation between the wicking height at equilibrium and the distance 

of separation was found to be nearly inversely proportional. It was also illustrated 

that modeling the wicking between cylinders using a capillary tube was 

inadequate. This model can be easily applied to regularly packed cylinders, which 

are more or less similar to a fiber bundle. 

Due to the ease of manipulation, glass rods with quite large diameters were used 

in the experiments. In the case of textile materials, fibers may be very thin, and 

the principal radius of the meniscus may be of the same order for magnitude as 

the fibers. However, as long as the assumption equL d�  is satisfied the 

dimension of the meniscus is still negligible. Therefore the theory presented in 

Chapter 4 applies to the case of textile fibers as well since the terms that enter the 

theoretical calculation are normalized dimensionless quantities. It has also been 

illustrated that a three-parameter logarithmic model seems to be more appropriate 

to describe the wicking between cylinders in terms of the inverse hydraulic radius. 

With minor modifications, the theory can be easily extended to model the wicking 

behavior of a liquid in a regularly packed fiber bundle with a small amount of 

fibers. 
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7.2.4 Liquid transfer through textile yarns 

The investigation of the wicking behavior of a liquid in a fiber bundle as well as a 

twisted yarn was discussed in Chapter 5. Firstly, the wicking in a fiber bundle was 

analyzed. Using a macroscopic force balance method, the wicking time was 

obtained as a function of the capillary rise. In the macroscopic force balance 

analysis, capillary force, gravity of the liquid and viscous drag was considered. 

The inertia of the liquid was neglected. In the calculation of the perimeter of the 

liquid column, a minimum potential energy principle was employed. 

Secondly, the same approach in the analysis of the wicking in a fiber bundle was 

used to examine the wicking process in a twisted yarn. The packing of fibers in 

the yarn was assumed to be uniform. In order to analyze the effect of twist on the 

wicking of the liquid, a twist coefficient was introduced into the viscous drag 

term. A simple helical yarn structure was employed. Experimental apparatus was 

designed, and a series of experiments was conducted using this apparatus. A 

circularly close-packed yarn was obtained using this apparatus, and the packing of 

fibers in the yarn was assumed to be uniform. Data analysis showed that the 

wicking flow can be accurately described using the equation developed in this 

research. Considering the experimental error, the prediction of the capillary rise at 

equilibrium agreed well with the experimental data with reasonable accuracy. The 

twist coefficient was found to be constant for a specific twist and increase linearly 

with twist level. Although N in Equation (5.5) still needs to be obtained by fitting 
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the experimental data, only one parameter is required in the fitting. As stated in 

Section 2.3.4 of Chapter 2, when the textile yarn is modeled either as a capillary 

tube or as porous media, at least two parameters are unknown, and they are 

always obtained using curve fitting technique. 

7.2.5 Coupled mechanical and liquid transfer behavior of textile 

yarns 

A basic coupled model to investigate the coupled mechanism between mechanical 

and liquid transfer behavior of yarn was presented in Chapter 6. Firstly, a simple 

case which was the wicking of non-swelling liquid in the yarn was investigated. 

In contrast to the uniformly packed yarn discussed in Chapter 5, the packing of 

fibers in the yarn considered in Chapter 6 was not only loose, but also variable 

along radial direction. When the yarn was subject to external forces, the fibers 

moved inward and a jammed region occurred. The change of radial positions of 

fibers greatly altered the shape and size of the pore between fibers. Therefore, the 

movement of fibers should be considered. The system was coupled in a fashion 

that the movement of fibers changed the pore structures, hence influencing the 

wicking process. The mechanical model of yarn discussed in Chapter 3 was 

employed to analyze the change of radial positions of fibers, and the same 

macroscopic balance analysis of the liquid as discussed in Chapter 5 was 

combined into the model to study the wicking process. 
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Secondly, the wicking of a swelling liquid in the yarn was examined. The 

mechanical properties of the yarn were coupled with the liquid transfer behavior 

through the yarn in a way that absorption of the liquid caused the fibers to swell 

and changed the mechanical properties of the fibers. On the other hand, swelling 

of fibers changed the pore structures between fibers and the pathway of the liquid 

flow, thus affecting the entire wicking process. Two extreme cases were 

considered to study the coupled mechanism. They were dry state and wet state. In 

the first case, the fibers were assumed not to take up any liquid. In the second 

case, the fibers were supposed to become saturated instantly, and change of 

mechanical properties and swelling of fibers took place immediately once the 

yarn contacted the liquid. 

Experimental verification showed that for non-swelling liquid the wicking flow 

could be accurately described by the model developed in this research. 

Considering the experimental error and heterogeneity of the yarn, the prediction 

of the capillary rise at equilibrium agreed reasonably well with the experimental 

data. For the swelling liquid, the wicking process was shown to fall between the 

calculations of the two extreme cases. 

During active sport, it is likely that liquid sweat occurs on the skin. Therefore, the 

fabrics for active wear and sportswear are always specially constructed both in 

terms of the geometry, packing density and structure of the constituent fibers in 

yarns and in terms of the construction of the fabric in order to achieve the 
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necessary dissipation of liquid sweat at high metabolic rates. An example is the 

development of ‘Sportwool’ technology. ‘Sportwool’ is a double knit fabric in 

which wool and polyester are bound back-to-back to form a single fabric. When 

the liquid sweat forms on the skin, the soft, comfortable inner wool, which is next 

to the skin, ‘pump’ the liquid sweat to the outer synthetic fiber layer, where it 

spreads out and evaporates, creating a cooling effect. As wool may take up liquid 

sweat and swell and the mechanical properties of wool changes significantly after 

absorption, the wicking through wool layer is coupled with the mechanical 

behaviors of wool. It has been revealed by many researchers that wicking through 

yarns take up the main portion of wicking through fabric. Therefore, the coupled 

model of yarn in this study may provide a understanding of the mechanism of 

wicking through this fabric. The coupled model implies that there is an optimal 

twist for the yarn to obtain the best wicking, and actually the optimal twist can be 

predicted from the model. This may be helpful to yarn production and garment 

design. 

7.3 Suggestions for future work 

Despite the achievements of this project, there are still several limitations, and 

some of them deserve further investigation: 

1. The yarn structure used in this study was based on a helical geometry of fiber, 

and fiber migration and slippage were neglected. This model has been 

proved to be successful to study continuous filament yarns as well as staple 
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fiber yarns with short gauge length. However, the structure of staple fiber 

yarn is much more complicated than an assembly of helices, and fiber 

migration is one of the main reasons why an assembly of short fibers holds 

as a yarn. Therefore, fiber migration should be considered in future work. 

When a yarn is subject to considerable tension, fibers may partly slip. If 

inter-slippage is considered, a more robust model that can predict tensile 

behavior of yarn up to failure point is possible. 

2. Due to time limit, only tensile and torsional behaviors of singles yarn were 

examined in this study. The bending behavior of singles yarn was not 

studied in this research partly due to the fact that it involves much more 

complicated movement and deformation of fibers. However, bending 

properties are also important characteristics of yarn. Therefore, it is 

desirable to study the bending behavior, even more complicated combined 

deformation modes of singles yarn in the future.  

3. In the wicking model proposed in this research the frictional coefficient in 

viscous drag is obtained by fitting the experimental data. If it can be 

modeled based on properties of the liquid and structural features of the yarn, 

a totally predictive model can be obtained, and this will constitute a whole 

theory and enrich the knowledge of wicking in fibrous structures. 

4. Two extreme cases were investigated attempting to examine the coupled 

mechanism and provide boundaries of the wicking dynamics in this study. It 
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is valuable to deepen the research by considering the change of swelling and 

mechanical properties of fiber with adsorption/time. If the influence of 

adsorption/time on swelling and mechanical properties of fiber can be 

modeled or fitted with a specific function, it is possible to simulate the 

entire wicking dynamics. 

5. Only polyester yarn and wool yarn were used to validate the model. In order 

to verify the robusticity of the model, more experiments on other fiber 

materials need to be tested in the future. Impact of structural features of 

yarn such as hairiness, evenness, on the wicking mechanism should also be 

examined. 

6. Only singles yarn was studied in this research. In textile production, however, 

ply yarn is more commonly used due to its good twist stability. Therefore 

research on mechanical properties as well as behavior of ply yarn, or even 

more complicated structures like fabric, may form the subject of future 

research. 
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Appendix I: Computer program in Matlab language for 

mechanical model of singles yarn 

 

% head.m, defined parameters 
  
% tensile moduli of fiber at four stages, unit: gf.cm-2 
E1=4.5E6; 
E2=45.1E6; 
E3=24.3E6; 
E4=1.53E6; 
Gfiber=13.91E6; % shear modulus 
RF=0.0018; % mean fiber radius, unit: cm 
RFSQ=3.5279E-6; % mean squared fiber radius 
H0=1/1.91; % pitch, unit: cm 
ry=0.06;   % yarn radius, unit: cm 
H0=H0/ry;  % normalization 
Rfiber=RF/ry; 
RHOf=1.31; % fiber density, unit: g.cm3 
  
JAM=1; % density in jammed region 
  
% parameters for fitting function of packing density 
phia=2.278; 
phib=-4.069; 
phic=1.372; 
phid=0.4436; 

 

 

% main.m, main function 
  
function main 
  
head; 
  
eth0=-7.2*ry*H0/2/pi; % minimum rotational strain 
eth1=12*ry*H0/2/pi; % maximum rotational strain 
stepth=4*ry*H0/2/pi; % step 
force=10.59; % applied pre-tension for torsional model 
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tor=fopen('torque.dat','w+'); 
fprintf(tor,'rotation   torque  ey  rA\n'); 
  
ten=fopen('tension.dat','w+'); 
fprintf(ten,'       strain          tension\n'); 
  
tendis=fopen('tendis.dat','w'); 
fclose(tendis); 
  
% tensile model 
for ey=0.0003:0.01:0.1 % increment of tensile strain 
%     load=tension(ey); % calculate applied tension by 
force method 
    load=tensile(ey); % calculate applied tension by energy 
method 
    fprintf(ten,'%15f   %15f\n',ey*100,load*9.8/1000); % 
tension: N 
end 
  
fclose(ten); 
  
% torsional model 
for eth=0:stepth:eth1 % increment of torsional strain   
    [torque,ey,rA]=torsional(eth,force); % torque: 
applied torque 
    fprintf(tor,'%15f   %15f    %15f    
%15f\n',eth*2*pi/ry/H0,torque*1000,ey*100,rA); 
end 
  
fclose(tor); 

 

 

%CalEf.m, calculate fiber tensile strain 
%ey,eth: tensile strain and rotational strain of yarn 
%rf0: fiber helix radius before deformation 
%rstrain0: within rstrain0, fibers buckle 
function strainf=CalEf(ey,eth,rh,rf0,rstrain0) 
  
head; 
  
lamday=1+ey; 
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lamdath=1+eth; 
     
rf1sq=phia*rf0^5/5+phib*rf0^4/4+phic*rf0^3/3+phid*rf0^
2/2; 
rf1sq=rf1sq*2/lamday/JAM+rh*rh; 
Lf0=sqrt(H0*H0+(2*pi*rf0)^2); 
  
if rf0<rstrain0||rf0==rstrain0 
    
lamdath=(4*pi*pi*rf0.^2+H0*H0*(1-lamday*lamday))/pi/pi
/rf1sq/4; 
    lamdath=sqrt(lamdath); 
    
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
else 
    
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
end 
  
 
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
  
lamdaf=Lf1/Lf0; 
strainf=lamdaf-1; 
  
  
% finding a root lies in the interval [lower,upper] by 
bisection method 
function root=bisection(ey,eth,rh,lower,upper) 
  
head; 
  
small=lower; 
big=upper-0.000001; 
center=(small+big)/2; 
  
strain=CalEf(ey,eth,rh,center); 
  
while abs(strain)>1e-6 
    strainl=CalEf(ey,eth,rh,small); 
    strainu=CalEf(ey,eth,rh,big); 
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    product1=strainl*strain; 
    product2=strainu*strain; 
         
    if (product2)<0 
        small=center; 
    end 
     
    if (product1)<0 
        big=center; 
    end      
     
    center=(small+big)/2; 
    strain=CalEf(ey,eth,rh,center); 
end 
  
root=center; 

 

 

% CalRh.m, calculate the radius of hollow region 
  
function rh=CalRh(ey,eth) 
  
rh=0.001; 
dh=1e-6; 
steph=0; 
  
rA=rootrA(ey,eth,rh); 
Utotu=CalTot(ey,eth,rh+dh,rA); 
Utotm=CalTot(ey,eth,rh,rA); 
Utotl=CalTot(ey,eth,rh-dh,rA); 
  
diffh1=(Utotu-Utotl)/dh/2; 
diffh2=(Utotu-2*Utotm+Utotl)/dh/dh; 
  
steph=diffh1/diffh2;   
  
while abs(steph)>1e-8 
    rh=rh-steph; 
     
    rA=rootrA(ey,eth,rh); 
    Utotu=CalTot(ey,eth,rh+dh,rA); 
    Utotm=CalTot(ey,eth,rh,rA); 
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    Utotl=CalTot(ey,eth,rh-dh,rA); 
     
    diffh1=(Utotu-Utotl)/dh/2; 
    diffh2=(Utotu-2*Utotm+Utotl)/dh/dh; 
     
    steph=diffh1/diffh2;   
end 

 

 

% CalTot.m, calculate the total energy of single yarn 
  
function Utot=CalTot(ey,eth,rh,rA,rstrain0) 
  
head; 
  
% tensile energy 
% if the integration interval is [0,rA], there is no 
buckling 
% if the integration interval is [rstrain0,rA], there is 
buckling 
% the buckling means the fibers in buckled region don't 
have tensile 
% energy, but still have bending and torsional energy with 
the same shape 
% as unbuckled 
Uten=quadl(@CalTen,rstrain0,rA,{},{},ey,eth,rh); 
  
  
% bending and torsional energy of jammed region 
Ubt1=quadl(@CalBT,1e-6,rA,{},{},ey,eth,rh,0,1); 
  
% bending  and torsional energy of unstrained region 
Ubt2=quadl(@CalBT,rA,1,{},{},ey,eth,rh,1,1); 
  
Utot=Uten+Ubt1+Ubt2; 
  
% calculate the integrand of tensile energy 
function y=CalTen(rf0,ey,eth,rh) 
  
head; 
  
lamday=1+ey; 



Appendix I: Computer program in Matlab language for mechanical model of singles yarn 

 168

lamdath=1+eth; 
     
rf1sq=phia*rf0.^5/5+phib*rf0.^4/4+phic*rf0.^3/3+phid*r
f0.^2/2; 
rf1sq=rf1sq*2/lamday/JAM+rh*rh; 
Lf0=sqrt(H0*H0+(2*pi*rf0).^2); 
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
lamdaf=Lf1./Lf0; 
ef=lamdaf-1; 
  
phi=phia*rf0.^3+phib*rf0.^2+phic*rf0+phid; 
  
  
n=length(lamdaf); 
for i=1:n 
    if (ef(i)<0.008)||(ef(i)==0.008) 
        y(i)=E1*ef(i)^2*phi(i)*rf0(i)*lamdaf(i)/2; 
        y(i)=y(i)*2*pi*H0*ry^3/RHOf; 
    else if (ef(i)>0.008&&ef(i)<0.022)||(ef(i)==0.022) 
            
y(i)=(E1*0.008^2/2+E1*0.008*(ef(i)-0.008)+E2*(ef(i)-0.
008)^2/2)*phi(i)*rf0(i)*lamdaf(i); 
            y(i)=y(i)*2*pi*H0*ry^3/RHOf; 
        else if 
(ef(i)>0.022&&ef(i)<0.037)||(ef(i)==0.037) 
                
y(i)=E1*0.008^2/2+E1*0.008*(ef(i)-0.008)+E2*0.014^2/2+
E2*0.014*(ef(i)-0.022)+E3*(ef(i)-0.037)^2; 
                y(i)=y(i)*rf0(i)*phi(i)*lamdaf(i); 
                y(i)=y(i)*2*pi*H0*ry^3/RHOf; 
            else 
                
y(i)=E1*0.008^2/2+E1*0.008*(ef(i)-0.008)+E2*0.014^2/2+
E2*0.014*(ef(i)-0.022)+E3*0.015^2+E3*0.015*(ef(i)-0.03
7)+E4*(ef(i)-0.037)^2/2; 
                y(i)=y(i)*rf0(i)*phi(i)*lamdaf(i); 
                y(i)=y(i)*2*pi*H0*ry^3/RHOf; 
            end 
        end 
    end 
end  
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% calculate the integrand of bending energy and torsional 
energy 
% flag=0, jammed region 
% flag=1, unstrained region 
% banner=0, buckling region in jammed region 
% banner=1, non-buckling region in jammed region 
function y=CalBT(rf0,ey,eth,rh,flag,banner) 
  
head; 
  
lamday=1+ey; 
lamdath=1+eth; 
  
if flag==0 
    
rf1sq=phia*rf0.^5/5+phib*rf0.^4/4+phic*rf0.^3/3+phid*r
f0.^2/2; 
    rf1sq=rf1sq*2/lamday/JAM+rh*rh; 
    rf1=sqrt(rf1sq); 
end 
  
if flag==1 
    
rf1sq=(4*pi*pi*rf0.^2+H0*H0*(1-lamday*lamday))/pi/pi/l
amdath/lamdath/4; 
    rf1=sqrt(rf1sq); 
end 
  
alpha0=atan(2*pi*rf0/H0); 
  
if banner==0 
    
lamdath=(4*pi*pi*rf0.^2+H0*H0*(1-lamday*lamday))/pi/pi
/rf1sq/4; 
    lamdath=sqrt(lamdath); 
    alpha1=atan(2*pi*rf1*lamdath/H0/lamday); 
else 
    alpha1=atan(2*pi*rf1*lamdath/H0/lamday); 
end 
  
kappa0=sin(alpha0).*sin(alpha0)./rf0; 
kappa1=sin(alpha1).*sin(alpha1)./rf1; 
tau0=sin(alpha0).*cos(alpha0)./rf0; 
tau1=sin(alpha1).*cos(alpha1)./rf1; 
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phi=phia*rf0.^3+phib*rf0.^2+phic*rf0+phid; 
  
Uben=0; 
Utor=0; 
  
Uben=(kappa1-kappa0).^2.*phi.*rf0; 
Uben=Uben*pi*H0*Ef*RFSQ*ry/RHOf/4; 
  
Utor=(tau1-tau0).^2.*phi.*rf0; 
Utor=Utor*pi*H0*Gfiber*RFSQ*ry/RHOf/2; 
  
y=Uben+Utor; 

 

 

% rootrA.m, calculate jammed radius rA 
% phia-phid: parameters defining the packing density 
% ey,eth: strain 
% H0: pitch 
% rh: hollow radius 
  
function y=rootrA(ey, eth, rh); 
  
head; 
  
lamday=1+ey; 
lamdath=1+eth; 
     
a0=(H0*H0*lamday*lamday-H0*H0)*lamday*JAM/pi/pi/8/lamd
ath/lamdath+rh*rh*lamday*JAM/2; 
a1=0; 
a2=(phid-lamday*JAM/lamdath/lamdath)/2; 
a3=phic/3; 
a4=phib/4; 
a5=phia/5; 
  
a=[a5 a4 a3 a2 a1 a0]; 
  
r=roots(a); 
  
flag=0; 
for i=1:5 
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    if imag(r(i))==0&&real(r(i))>0 && real(r(i))<1 
        y=r(i); 
        flag=1; 
    end 
     
    if flag==1 
        break; 
    end 
end 
  
if flag 
else y=0; 
end 

 

 

% TenDistri.m, fiber tensile distribution 
% rstrain0: radius where fiber tensile strain is zero 
% fibers within this radius are under compression, ouside 
under tension 
  
function rstrain0=TenDistri(ey,eth,rh,rA) 
  
head; 
  
rf0=0; 
strainf=CalEf(ey,eth,rh,rf0); 
  
if strainf<0 
    rstrain0=bisection(ey,eth,rh,rh,rA); 
else rstrain0=0; 
end 
  
  
% finding a root lies in the interval [lower,upper] by 
bisection method 
function root=bisection(ey,eth,rh,lower,upper) 
  
head; 
  
small=lower; 
big=upper-0.01; 
center=(small+big)/2; 
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strain=CalEf(ey,eth,rh,center); 
  
while abs(strain)>1e-6 
    strainl=CalEf(ey,eth,rh,small); 
    strainu=CalEf(ey,eth,rh,big); 
    product1=strainl*strain; 
    product2=strainu*strain; 
         
    if (product2)<0 
        small=center; 
    end 
     
    if (product1)<0 
        big=center; 
    end      
     
    center=(small+big)/2; 
    strain=CalEf(ey,eth,rh,center); 
end 
  
root=center; 
 

 

% tensile.m, tensile property 
  
function tension=tensile(ey) 
  
head; 
  
dy=1E-6; 
  
rh=0; 
eth=0; 
  
rA=rootrA(ey,eth,rh); 
Utotu=CalTot(ey+dy,eth,rh,rA,0); 
Utotm=CalTot(ey,eth,rh,rA,0); 
Utotl=CalTot(ey-dy,eth,rh,rA,0); 
  
  
tension=Utotm/ey/H0/ry; 
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% tension.m, calculate yarn tension with given yarn strain 
function tension=CalTension(ey) 
  
head; 
  
eth=0; 
rh=0; 
rA=rootrA(ey,eth,rh); 
tension=quadl(@CalInten,0,rA,{},{},ey,eth,rh); 
  
% calculate the integrand of tension 
function y=CalInten(rf0,ey,eth,rh) 
head; 
  
lamday=1+ey; 
lamdath=1+eth; 
     
rf1sq=phia*rf0.^5/5+phib*rf0.^4/4+phic*rf0.^3/3+phid*r
f0.^2/2; 
rf1sq=rf1sq*2/lamday/JAM+rh*rh; 
Lf0=sqrt(H0*H0+(2*pi*rf0).^2); 
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
lamdaf=Lf1./Lf0; 
  
phi=phia*rf0.^3+phib*rf0.^2+phic*rf0+phid; 
  
n=length(lamdaf); 
 for i=1:n 
     if (lamdaf(i)<1.0092)||(lamdaf(i)==1.0092) 
         
y(i)=Efi*(lamdaf(i)-1)^2*phi(i)*rf0(i)*lamdaf(i)/2; 
         y(i)=y(i)*2*pi*H0*ry^3/RHOf; 
     else if 
(lamdaf(i)>1.0092&&lamdaf(i)<1.0337)||(lamdaf(i)==1.00
37) 
             
y(i)=(Efi*0.0092^2/2+Efi*0.0092*(lamdaf(i)-1.0092)+Ef*
(lamdaf(i)-1.0092)^2/2)*phi(i)*rf0(i)*lamdaf(i); 
             y(i)=y(i)*2*pi*H0*ry^3/RHOf; 
         else 
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y(i)=Efi*0.0092^2/2+Efi*0.0092*(lamdaf(i)-1.0092)+Ef*0
.0245^2/2+Ef*0.0245*(lamdaf(i)-1.0337)+Efy*(lamdaf(i)-
1.0337)^2; 
             y(i)=y(i)*rf0(i)*phi(i)*lamdaf(i); 
             y(i)=y(i)*2*pi*H0*ry^3/RHOf; 
         end 
     end 
 end  
 

 

% torsional.m, torsional property 
  
function [torque,ey,rA]=torsional(eth,force) 
  
head; 
  
ey=0.01; 
rh=0; 
dy=1E-6; 
dt=1E-6; 
  
stepy=0; 
  
ey=ey-stepy; 
rA=rootrA(ey,eth,rh); 
rstrain0=TenDistri(ey,eth,rh,rA); 
Utotu=CalTot(ey+dy,eth,rh,rA,rstrain0); 
Utotm=CalTot(ey,eth,rh,rA,rstrain0); 
Utotl=CalTot(ey-dy,eth,rh,rA,rstrain0); 
  
diffy1=(Utotu-Utotl)/dy/2/H0/ry-force; 
diffy2=(Utotu-2*Utotm+Utotl)/dy/dy/H0/ry; 
  
stepy=diffy1/diffy2; 
  
while abs(stepy)>1E-8 
    ey=ey-stepy; 
    rA=rootrA(ey,eth,rh); 
    rstrain0=TenDistri(ey,eth,rh,rA); 
    Utotu=CalTot(ey+dy,eth,rh,rA,rstrain0); 
    Utotm=CalTot(ey,eth,rh,rA,rstrain0); 
    Utotl=CalTot(ey-dy,eth,rh,rA,rstrain0); 
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    diffy1=(Utotu-Utotl)/dy/2/H0/ry-force; 
    diffy2=(Utotu-2*Utotm+Utotl)/dy/dy/H0/ry; 
     
    stepy=diffy1/diffy2;     
end 
  
rstrain0=TenDistri(ey,eth,rh,rA); 
  
tendis=fopen('tendis.dat','a+'); 
fprintf(tendis,'rotation=%f\n',eth*2*pi/ry/H0); 
fprintf(tendis,'        rf0             strain\n'); 
  
for rf0=0:rA/50:rA 
    strain=CalEf(ey,eth,rh,rf0); 
    fprintf(tendis,'%15f    %15f\n',rf0,strain*100); 
end 
fclose(tendis); 
     
  
Utotu=CalTot(ey,eth+dt,rh,rA,rstrain0); 
Utotm=CalTot(ey,eth,rh,rA,rstrain0); 
Utotl=CalTot(ey,eth-dt,rh,rA,rstrain0); 
  
torque=(Utotu-Utotl)/dt/pi/4;
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Appendix II: Computer program in Matlab language for 

model of wicking in twisted yarn 

 

% head.m, defined parameters 
banner=3; % banner=1, polyester yarn, 37 fibers, open 
packing; banner=2, wool yarn (no swelling) 
          % banner=3, wool yarn (swelling) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
% polyester yarn 
if banner==1 
    rf=8.4e-6; % fiber radius, unit: m 
    theta=75.75; % contact angle between water and 
polyester, unit: degree 
    gammaa=72e-3; % surface tension of water, unit: N/m 
    rho=1000; % density of water 
    rhof=1380; % density of fiber 
    eta=1e-3; % viscosity of water, unit: Pa.s 
    g=9.8; % gravitational acceleration 
    n=37; % number of fibers 
    P=n*2*pi*rf; % perimeter to be wetted by the liquid 
    Pl=6*(6+(2*3^0.5))*rf; % cross-sectional perimeter of 
the liquid colum 
    A=(30*3^0.5-15*pi)*rf^2; % area avaliable for liquid 
flow 
    ry=(6+2*3^0.5)*rf; % yarn radius 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
% wool yarn (no swelling) 
else if banner==2 
    E1=4.5E6; % modulus at different stages, unit: gf.cm-2  
    E2=45.1E6; 
    E3=24.3E6; 
    E4=1.53E6; 
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    Gfiber=13.91E6; % shear modulus 1.391E7 tensile: 6.1E6 
    a=0; % ratio of swelling of fiber diameter after 
absorbing water 
    rf=1.8e-3*(1+a); % mean fiber radius, cm 
    ry=6e-2;   % yarn radius, cm 
    rho=0.789; % density of water: 1, 0.789 for ethyl 
alcohol  
    rhof=1.310/(1+a)^2; % fiber density 
    theta=53*pi/180; % contact angle between water and wool, 
unit: radian 
    gammaa=22.3e-2/9.8; % surface tension of 
water:72.8,22.3 for ethyl alcohol , unit: gf/cm 
    g=1;%e2; % gravitational acceleration 
    tension=10;%*9.8e-3; % applied tension, gf 
    T0=1.91; % initial twist, turn per cm 
    JAM=1.000; % density of jammed region 
    phia=2.278; % parameters describing packing density of 
fibers 
    phib=-4.069; 
    phic=1.372; 
    phid=0.4436; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
% wool yarn (swelling) 
    else 
        E1=10.2E6; % modulus at different stages, unit: 
gf.cm-2 
        E2=16.6E6; 
        E3=6.82E6; 
        E4=2.05E6; 
  
  
        Gfiber=13.91E6; % shear modulus 1.391E7 tensile: 
6.1E6 
        a=0; % ratio of swelling of fiber diameter after 
absorbing water 
        rf=1.8e-3*(1+a); % mean fiber radius, cm 
        ry=6e-2;   % yarn radius, cm 
        rho=1.053; % density of water: 1, 0.789 for ethyl 
alcohol 
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        rhof=1.33; % fiber density 
        theta=47*pi/180; % contact angle between water and 
wool, unit: radian 
        gammaa=73.3e-2/9.8; % surface tension of 
water:72.8,22.3 for ethyl alcohol , unit: gf/cm 
        g=1;%e2; % gravitational acceleration 
        tension=10;%*9.8e-3; % applied tension, gf 
        T0=1.91; % initial twist, turn per cm 
        JAM=1.000; % density of jammed region 
        phia=2.278; % parameters describing packing density 
of fibers 
        phib=-4.069; 
        phic=1.372; 
        phid=0.4436; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 

 

 

% mian function 
  
function main 
  
head; 
  
result=fopen('result.dat','w'); 
  
if banner==1 % polyester yarn, SI unit system is used 
    fprintf(result,'twist(tpm)             Lequ(mm)\n'); 
    for T=0:100:500 % twist level 
        Lequ=CalLequ(T); % calculate Lequ 
        fprintf(result,'%4d                 
%10.6f\n',T,Lequ*1000); 
    end 
else % wool yarn, gf, cm unit system is used 
    fprintf(result,'twist(tpm)             Lequ(mm)\n'); 
    for T=1.91:0.5:3.91 % twist level  
        Lequ=CalLequW(T,tension,a); % capillary rise at 
equilibrium 
        fprintf(result,'%4d                 
%10.6f\n',T*100,Lequ*10); 
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    end 
end 
  
fclose(result); 

 

 

% CalLequ.m, calculate capillary rise at equilibrium Lequ 
for polyester 
% yarn 
% T: twist level, tpm 
function Lequ=CalLequ(T) 
  
head; 
  
beta=2*Af/P/cos(theta)/ry; 
if T==0 % fiber bundle, no twist 
    P=n*2*pi*rf; % perimeter to be wetted by the liquid 
    Pl=beta*2*pi*ry; % cross-sectional perimeter of the 
liquid colum 
    A=beta^2*pi*ry^2-n*pi*rf^2; % area avaliable for 
liquid flow 
    Fcu=P*gammaa*cos(theta); % upward capillary force 
    Fcd=Pl*gammaa; % downward capillary force 
    Fc=Fcu-Fcd; % capillary force 
    Lequ=Fc/rho/g/A; % capillary rise at equiliabrium 
else % twist yarn 
    Pl=beta*2*pi*ry; % cross-sectional perimeter of the 
liquid colum 
    A=beta^2*pi*ry^2-n*pi*rf^2; % area avaliable for 
liquid flow 
    Fcu=CalFcu1(T); % upward capillary force 
    Fcd=Pl*gammaa; % downward capillary force 
    Fc=Fcu-Fcd; % capillary force 
    Lequ=Fc/rho/g/A; % capillary rise at equiliabrium 
end 

 

%CalEf.m, calculate fiber tensile strain 
%ey,eth: tensile strain and rotational strain of yarn 
%rf0: fiber helix radius before deformation 
%rstrain0: within rstrain0, fibers buckle 
function strainf=CalEf(ey,eth,rh,rf0)%,rstrain0) 
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head; 
  
H0=1/T0; 
lamday=1+ey; 
lamdath=1+eth; 
     
rf1sq=phia*rf0^5/5/ry^3+phib*rf0^4/4/ry^2+phic*rf0^3/3
/ry+phid*rf0^2/2; 
rf1sq=rf1sq*2/lamday/JAM+rh*rh; 
Lf0=sqrt(H0*H0+(2*pi*rf0)^2); 
  
% if rf0<rstrain0||rf0==rstrain0 
%     
lamdath=(4*pi*pi*rf0.^2+H0*H0*(1-lamday*lamday))/pi/pi
/rf1sq/4; 
%     lamdath=sqrt(lamdath); 
%     
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
% else 
%     
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
% end 
  
 
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
  
lamdaf=Lf1/Lf0; 
strainf=lamdaf-1; 
  
  
% finding a root lies in the interval [lower,upper] by 
bisection method 
function root=bisection(ey,eth,rh,lower,upper) 
  
head; 
  
small=lower; 
big=upper-0.000001; 
center=(small+big)/2; 
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strain=CalEf(ey,eth,rh,center); 
  
while abs(strain)>1e-6 
    strainl=CalEf(ey,eth,rh,small); 
    strainu=CalEf(ey,eth,rh,big); 
    product1=strainl*strain; 
    product2=strainu*strain; 
         
    if (product2)<0 
        small=center; 
    end 
     
    if (product1)<0 
        big=center; 
    end      
     
    center=(small+big)/2; 
    strain=CalEf(ey,eth,rh,center); 
end 
  
root=center; 

 

 

% CalEy.m, calculate ey 
% ey: tensile strain of yarn 
% rA: radius which will be the boundary of the jammed region 
% rAjam: radius of the jammed region 
% T: twist of the yarn 
% tension: applied tension on the yarn 
function [ey,rA,rAjam]=CalEy(T,tension) 
  
head; 
  
% eth=(T-T0)/T0; 
% ey=0; 
% rh=0; 
% dy=1E-6; 
% dt=1E-6; 
% H0=1/T0; 
% ey0=-0.01; 
% ey=fsolve(@CalDiffy1,ey0,{},T,tension); 
% rA=rootrA(ey,eth,rh,H0); 
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eth=(T-T0)/T0; 
  
ey=0.01; 
rh=0; 
dy=1E-7; 
H0=1/T0; 
  
stepy=0; 
  
ey=ey-stepy; 
rA=rootrA(ey,eth,rh,H0); 
rstrain0=0; 
rstrain0=TenDistri(ey,eth,rh,rA); 
Utotu=CalTot(ey+dy,eth,rh,rA,rstrain0,H0); 
Utotm=CalTot(ey,eth,rh,rA,rstrain0,H0); 
Utotl=CalTot(ey-dy,eth,rh,rA,rstrain0,H0); 
  
diffy1=(Utotu-Utotl)/dy/2/H0-tension; 
diffy2=(Utotu-2*Utotm+Utotl)/dy/dy/H0; 
  
stepy=diffy1/diffy2; 
  
while abs(stepy)>1E-10 
    ey=ey-stepy; 
    rA=rootrA(ey,eth,rh,H0); 
    rstrain0=0; 
    rstrain0=TenDistri(ey,eth,rh,rA); 
    Utotu=CalTot(ey+dy,eth,rh,rA,rstrain0,H0); 
    Utotm=CalTot(ey,eth,rh,rA,rstrain0,H0); 
    Utotl=CalTot(ey-dy,eth,rh,rA,rstrain0,H0); 
     
    diffy1=(Utotu-Utotl)/dy/2/H0-tension; 
    diffy2=(Utotu-2*Utotm+Utotl)/dy/dy/H0; 
     
    stepy=diffy1/diffy2;     
end 
  
  
rstrain0=TenDistri(ey,eth,rh,rA); 
  
tendis=fopen('tendis.dat','w+'); 
fprintf(tendis,'rotation=%f\n',eth); 
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fprintf(tendis,'        rf0             strain\n'); 
  
for rf0=0:rA/50:rA 
    strain=CalEf(ey,eth,rh,rf0); 
    fprintf(tendis,'%15f    %15f\n',rf0,strain*100); 
end 
fclose(tendis); 
  
rAjam=CalrAjam(rA,ey); 
  
% rAjam=(2*pi*rA)^2+H0^2-H0^2*(1+ey)^2; 
% rAjam=rAjam/(1+eth)^2; 
% rAjam=rAjam^0.5/pi/2; 

 

 

% CalLequW.m: calculate the capillary rise at equilibrium 
for wool yarn 
% T: twist 
% tension: applied tension 
  
function Lequ=CalLequW(T,tension,a); 
  
head; 
if T==0 % no jammed region 
    Fcu=quadl(@InterFcu,0,ry); 
    Af=quadl(@InterAf,0,ry,{},{},T); 
    A=pi*ry^2-Af; 
else % jammed region appears in the central area of yarn 
    [ey,rA,rAjam]=CalEy(T,tension); 
     
    % upward capillary force 
    Fcuj=quadl(@InterFcuj,0,rAjam,{},{},T,ey,a); 
    Fcuu=quadl(@InterFcuu,rA,ry,{},{},T,ey,a); 
    Fcu=Fcuj+Fcuu; 
     
    % Af 
    Afj=quadl(@InterAfj,0,rAjam,{},{},T,ey,a); 
    Afu=quadl(@InterAfu,rA,ry,{},{},T,ey,a); 
    Af=Afj+Afu; 
     
    if rA<ry 
        H0=1/T0; 
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        eth=(T-T0)/T0; 
        ry1=4*pi^2*ry^2+H0^2*(1-(1+ey)^2); 
        ry1=ry1/pi^2/(1+eth)^2/4; 
        ry1=ry1^0.5; 
    else 
        ry1=CalrAjam(ry,ey); 
    end 
     
    beta=2*Af*gammaa/Fcu/ry1; 
     
    % area available for liquid flow 
    A=beta^2*pi*ry1^2-Af; 
     
    %calculate cross-sectional perimeter of the liquid 
colum, Pl 
    Pl=2*pi*ry1*beta; 
     
    %downward capillary force 
    Fcd=Pl*gammaa; 
     
    % capillary force 
    Fc=Fcu-Fcd; 
     
    Lequ=Fc/rho/g/A; % capillary rise at equilibrium 
end 
  
% calculate the intergrand of Fcu 
function Intergrand=InterFcu(r); 
  
head; 
  
phi=phia*r.^3/ry^3+phib*r.^2/ry^2+phic*r/ry+phid; 
Intergrand=4*pi*gammaa*cos(theta)*phi.*r/rhof/rf; 
  
% calculate the upward capillary due to jammed region 
function Intergrand=InterFcuj(r,T,ey,a) 
  
head; 
H0=1/T0; 
eth=(T-T0)/T0; 
  
Lf1=4*pi^2*(1+eth)^2*r.^2+H0^2*(1+ey)^2; 
Lf1=Lf1.^0.5; 
alpha=acos(H0*(1+ey)./Lf1); 
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C=4*pi*H0*(1+ey)*JAM*gammaa/rhof/rf/(1+a); 
Intergrand=C*r.*cos(alpha+theta)./Lf1; 
  
% calculate the upward capillary due to unstrained region 
function Intergrand=InterFcuu(r,T,ey,a) 
  
head; 
H0=1/T0; 
phi=phia*r.^3/ry^3+phib*r.^2/ry^2+phic*r/ry+phid; 
  
Lf1=4*pi^2*r.^2+H0^2; 
Lf1=Lf1.^0.5; 
alpha=acos(H0*(1+ey)./Lf1); 
  
C=4*pi*H0*gammaa/rhof/rf/(1+a); 
Intergrand=C*phi.*r.*cos(alpha+theta)./Lf1; 
  
% calculate the intergrand of Af 
function Intergrand=InterAf(r,T) 
  
head; 
phi=phia*r.^3/ry^3+phib*r.^2/ry^2+phic*r/ry+phid; 
Intergrand=2*pi*phi.*r/rhof; 
  
% calculate the intergrand of Afj 
function Intergrand=InterAfj(r,T,ey,a) 
  
head; 
H0=1/T0; 
eth=(T-T0)/T0; 
C=2*pi*JAM*H0*(1+ey)/rhof; 
Intergrand=C*r./(H0^2*(1+ey)^2+4*pi^2*r.^2*(1+eth)^2).
^0.5; 
  
% calculate the intergrand of Afu 
function Intergrand=InterAfu(r,T,ey,a) 
  
head; 
H0=1/T0; 
phi=phia*r.^3/ry^3+phib*r.^2/ry^2+phic*r/ry+phid; 
C=2*pi*H0/rhof; 
Intergrand=C*phi.*r./(H0^2+4*pi^2*r.^2).^0.5; 
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% CalrAjam.m, calculate rAjam 
function rAjam=CalrAjam(rA,ey) 
  
head; 
  
rAjam=quadl(@InterrAjam,0,rA); 
rAjam=rAjam*2/JAM/(1+ey); 
rAjam=rAjam^0.5; 
  
function Intergrand=InterrAjam(r) 
  
head; 
  
phi=phia*r.^3/ry^3+phib*r.^2/ry^2+phic*r/ry+phid; 
Intergrand=r.*phi; 

 

 

% CalTot.m, calculate the total energy of single yarn 
  
function Utot=CalTot(ey,eth,rh,rA,rstrain0,H0) 
  
head; 
  
rh=0; 
rstrain0=0; 
  
% tensile energy 
% if the integration interval is [0,rA], there is no 
buckling 
% if the integration interval is [rstrain0,rA], there is 
buckling 
% the buckling means the fibers in buckled region don't 
have tensile 
% energy, but still have bending and torsional energy with 
the same shape 
% as unbuckled 
Uten=quadl(@CalTen,rstrain0,rA,{},{},ey,eth,rh,H0); 
  
  
% bending and torsional energy of jammed region 
Ubt1=quadl(@CalBT,1e-10,rA,{},{},ey,eth,rh,0,1,H0); 
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% bending  and torsional energy of unstrained region 
%6-6-2007 
if abs(rA-ry)<1e-10 
    Ubt2=0; 
else 
    Ubt2=quadl(@CalBT,rA,ry,{},{},ey,eth,rh,1,1,H0); 
end 
% Ubt2=quadl(@CalBT,rA,1,{},{},ey,eth,rh,1,1); 
  
Utot=Uten+Ubt1+Ubt2; 
  
% calculate the integrand of tensile energy 
function y=CalTen(rf0,ey,eth,rh,H0) 
  
head; 
  
lamday=1+ey; 
lamdath=1+eth; 
     
rf1sq=phia*rf0.^5/5/ry^3+phib*rf0.^4/4/ry^2+phic*rf0.^
3/3/ry+phid*rf0.^2/2; 
rf1sq=rf1sq*2/lamday/JAM+rh*rh; 
Lf0=sqrt(H0*H0+(2*pi*rf0).^2); 
Lf1=sqrt(H0*H0*lamday*lamday+4*pi*pi*rf1sq*lamdath*lam
dath); 
lamdaf=Lf1./Lf0; 
ef=lamdaf-1; 
  
phi=phia*rf0.^3/ry^3+phib*rf0.^2/ry^2+phic*rf0/ry+phid
; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  y=(lamdaf-1).^2.*phi.*rf0; 
%  y=y*pi*H0*Ef*ry*ry*ry/RHOf; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% n=length(lamdaf); 
% for i=1:n 
%     if (ef(i)<0.008)||(ef(i)==0.008) 
%         y(i)=E1*ef(i)^2*phi(i)*rf0(i)*lamdaf(i)/2; 
%         y(i)=y(i)*2*pi*H0/rhof; 
%     else if (ef(i)>0.008&&ef(i)<0.022)||(ef(i)==0.022) 
%             
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y(i)=(E1*0.008^2/2+E1*0.008*(ef(i)-0.008)+E2*(ef(i)-0.
008)^2/2)*phi(i)*rf0(i)*lamdaf(i); 
%             y(i)=y(i)*2*pi*H0/rhof; 
%         else if 
(ef(i)>0.022&&ef(i)<0.037)||(ef(i)==0.037) 
%                 
y(i)=E1*0.008^2/2+E1*0.008*(ef(i)-0.008)+E2*0.014^2/2+
E2*0.014*(ef(i)-0.022)+E3*(ef(i)-0.037)^2; 
%                 y(i)=y(i)*rf0(i)*phi(i)*lamdaf(i); 
%                 y(i)=y(i)*2*pi*H0/rhof; 
%             else 
%                 
y(i)=E1*0.008^2/2+E1*0.008*(ef(i)-0.008)+E2*0.014^2/2+
E2*0.014*(ef(i)-0.022)+E3*0.015^2+E3*0.015*(ef(i)-0.03
7)+E4*(ef(i)-0.037)^2/2; 
%                 y(i)=y(i)*rf0(i)*phi(i)*lamdaf(i); 
%                 y(i)=y(i)*2*pi*H0/rhof; 
%             end 
%         end 
%     end 
% end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n=length(lamdaf); 
 for i=1:n 
     if (lamdaf(i)<1.0092)||(lamdaf(i)==1.0092) 
         
y(i)=Efi*(lamdaf(i)-1)^2*phi(i)*rf0(i)*lamdaf(i)/2; 
         y(i)=y(i)*2*pi*H0/rhof; 
     else if 
(lamdaf(i)>1.0092&&lamdaf(i)<1.0337)||(lamdaf(i)==1.00
37) 
             
y(i)=(Efi*0.0092^2/2+Efi*0.0092*(lamdaf(i)-1.0092)+Ef*
(lamdaf(i)-1.0092)^2/2)*phi(i)*rf0(i)*lamdaf(i); 
             y(i)=y(i)*2*pi*H0/rhof; 
         else 
             
y(i)=Efi*0.0092^2/2+Efi*0.0092*(lamdaf(i)-1.0092)+Ef*0
.0245^2/2+Ef*0.0245*(lamdaf(i)-1.0337)+Efy*(lamdaf(i)-
1.0337)^2; 
             y(i)=y(i)*rf0(i)*phi(i)*lamdaf(i); 
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             y(i)=y(i)*2*pi*H0/rhof; 
         end 
     end 
 end  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
% calculate the integrand of bending energy and torsional 
energy 
% flag=0, jammed region 
% flag=1, unstrained region 
% banner=0, buckling region in jammed region 
% banner=1, non-buckling region in jammed region 
function y=CalBT(rf0,ey,eth,rh,flag,banner,H0) 
  
head; 
  
lamday=1+ey; 
lamdath=1+eth; 
  
if flag==0 
    
rf1sq=phia*rf0.^5/5/ry^3+phib*rf0.^4/4/ry^2+phic*rf0.^
3/3/ry+phid*rf0.^2/2; 
    rf1sq=rf1sq*2/lamday/JAM+rh*rh; 
    rf1=sqrt(rf1sq); 
end 
  
if flag==1 
    
rf1sq=(4*pi*pi*rf0.^2+H0*H0*(1-lamday*lamday))/pi/pi/l
amdath/lamdath/4; 
    rf1=sqrt(rf1sq); 
end 
  
alpha0=atan(2*pi*rf0/H0); 
  
if banner==0 
    
lamdath=(4*pi*pi*rf0.^2+H0*H0*(1-lamday*lamday))/pi/pi
/rf1sq/4; 
    lamdath=sqrt(lamdath); 
    alpha1=atan(2*pi*rf1*lamdath/H0/lamday); 
else 
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    alpha1=atan(2*pi*rf1*lamdath/H0/lamday); 
end 
  
kappa0=sin(alpha0).*sin(alpha0)./rf0; 
kappa1=sin(alpha1).*sin(alpha1)./rf1; 
tau0=sin(alpha0).*cos(alpha0)./rf0; 
tau1=sin(alpha1).*cos(alpha1)./rf1; 
  
phi=phia*rf0.^3/ry^3+phib*rf0.^2/ry^2+phic*rf0/ry+phid
; 
  
Uben=0; 
Utor=0; 
  
Uben=(kappa1-kappa0).^2.*phi.*rf0; 
Uben=Uben*pi*H0*Ef*rf^2/rhof/4; 
  
Utor=(tau1-tau0).^2.*phi.*rf0; 
Utor=Utor*pi*H0*Gfiber*rf^2/rhof/2; 
  
y=Uben+Utor; 

 

 

%rootrA.m, calculate jammed radius rA 
% phia-phid: parameters defining the packing density 
% ey,eth: strain 
% H0: pitch 
% rh: hollow radius 
  
function y=rootrA(ey, eth, rh,H0); 
  
head; 
  
lamday=1+ey; 
lamdath=1+eth; 
     
a0=(H0*H0*lamday*lamday-H0*H0)*lamday*JAM/pi/pi/8/lamd
ath/lamdath+rh*rh*lamday*JAM/2; 
a1=0; 
a2=(phid-lamday*JAM/lamdath/lamdath)/2; 
  
%6-6-2007 
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a3=phic/ry/3; 
a4=phib/ry^2/4; 
a5=phia/ry^3/5; 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
% a3=phic/3; 
% a4=phib/4; 
% a5=phia/5; 
%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
a=[a5 a4 a3 a2 a1 a0]; 
  
r=roots(a); 
  
flag=0; 
for i=1:5 
    if imag(r(i))==0&&real(r(i))>0 && real(r(i))<ry 
        y=r(i); 
        flag=1; 
    end 
     
    if flag==1 
        break; 
    end 
end 
  
if flag 
else y=ry; 
end 

 

 

% TenDistri.m, fiber tensile distribution 
% rstrain0: radius where fiber tensile strain is zero 
% fibers within this radius are under compression, ouside 
under tension 
  
function rstrain0=TenDistri(ey,eth,rh,rA) 
  
head; 
  
rf0=0; 
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strainf0=CalEf(ey,eth,rh,rf0); % tensile strain of fiber 
at the center 
  
strainf1=CalEf(ey,eth,rh,rA-0.000001); % tensile strain 
of fiber at the surface 
  
if (strainf0*strainf1)<0 
    rstrain0=bisection(ey,eth,rh,rh,rA); 
else rstrain0=0; 
end 
  
  
% finding a root lies in the interval [lower,upper] by 
bisection method 
function root=bisection(ey,eth,rh,lower,upper) 
  
head; 
  
small=lower; 
big=upper-0.01; 
center=(small+big)/2; 
  
strain=CalEf(ey,eth,rh,center); 
  
while abs(strain)>1e-6 
    strainl=CalEf(ey,eth,rh,small); 
    strainu=CalEf(ey,eth,rh,big); 
    product1=strainl*strain; 
    product2=strainu*strain; 
         
    if (product2)<0 
        small=center; 
    end 
     
    if (product1)<0 
        big=center; 
    end      
     
    center=(small+big)/2; 
    strain=CalEf(ey,eth,rh,center); 
end 
  
root=center; 
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% torsional.m, torsional property 
  
function [ey,rA,rAjam]=CalEy(force) 
  
head; 
  
ey=0.01; 
rh=0; 
dy=1E-6; 
dt=1E-6; 
  
stepy=0; 
  
ey=ey-stepy; 
rA=rootrA(ey,eth,rh); 
rstrain0=TenDistri(ey,eth,rh,rA); 
rstrain=0; 
Utotu=CalTot(ey+dy,eth,rh,rA,rstrain0); 
Utotm=CalTot(ey,eth,rh,rA,rstrain0); 
Utotl=CalTot(ey-dy,eth,rh,rA,rstrain0); 
  
diffy1=(Utotu-Utotl)/dy/2/H0-force; 
diffy2=(Utotu-2*Utotm+Utotl)/dy/dy/H0; 
  
stepy=diffy1/diffy2; 
  
while abs(stepy)>1E-8 
    ey=ey-stepy; 
    rA=rootrA(ey,eth,rh); 
    Utotu=CalTot(ey+dy,eth,rh,rA,rstrain0); 
    Utotm=CalTot(ey,eth,rh,rA,rstrain0); 
    Utotl=CalTot(ey-dy,eth,rh,rA,rstrain0); 
     
    diffy1=(Utotu-Utotl)/dy/2/H0-force; 
    diffy2=(Utotu-2*Utotm+Utotl)/dy/dy/H0; 
     
    stepy=diffy1/diffy2;     
end 
  
rAjam=(2*pi*rA)^2+H0^2-H0^2*(1+ey)^2; 
rAjam=rAjam^0.5/pi/2;
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