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Improved Queuing Algorithms in QoS Enabled Internet Node

ABSTRACT

This project is supported by the Hong Kong Polytechnics University research grant no. G-
V989. In this project, traditional quening algorithms were studied and analyzed. Two new
algorithms are proposed. Weighted Deficit Probability Drop (WDPD) further enhances the

throughput faimess among groups of different weighted flows. Weighted Deficit Round

Robin (WDRR) enables low complexity QoS.

There are many existing queuing algorithms and some of them are implemented and
introduced in the commercial market. Weighted Fair Queuing (WFQ), which was
introduced in 1993 and is being implemented in most of the Cisco Routers, which use to
aggregate traffics less than 2 Mbps. Although the WFQ and Worst-case Fair Weighted Fair
Queuing Plus (WF2Q+) are relatively fair among the same weighted flow, their algorithm
needs high computational cost to calculate the virtual finish time and the eligible virtual
finish time respectively. They are used to approximate the General Processor Sharing
(GPS) system. The high computational requirement of the algorithm makes it impractical

to be implemented on high-speed link to support similar Quality of Service (QoS).

In this thesis, a number of queuing algorithms are introduced and analyzed. Network
simulations are used to validate the .network properties of the algorithms. Fairness is hard
to define aJ_ld quantify, a different point of view on the ambiguous term “fairness” will be
discussed. At last, two new algorithms: the Weighted Deficit Probability Drop (WDPD)
and the Weighted Deficit Round Robin.(WDRR) are developed and discussed. WDPD

enables a higher fairness between different weighted flows and WDRR enables a low

complexity QoS support in Internet node.
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CHAPTER 1 INTRODUCTION TO

NETWORK QUEUING ALGORITHMS

Stepping into the Information Era, information technology industry grows rapidly with
Internet transforming human’s living style and the way they access information. In the
past, people mainly receive information from newspapers, magazines and .mail. Nowadays
more options are open to them such as electronic handheld devices, computer terminal and
electronic mailing system. The media for the information storage is improving. Since most
of the data need to be accessed remotely, the way of transmitting information needs to be
improved as well. Networking is the key. In order to get all the devices to communicate in
the same network, protocol standard is very important. Mahy consortiums are formed in

recent year in order to develop and standardize common protocols over different media.

Number of devices that need network access have been boosted up recently, the network
quality also needs to be improved. The quality of a network can be defined in terms of
latency, throughput, packet drop and delay jitter. Different types of traffic require different
network quality parameters. For example, the real time interactive application such as
Internet Phone requires low latency, the online video show requires high throughput and
low delay jitter, banking information with high data integrity requires low packet drop. The
Quality of Service (QoS) requirements for different application types are shown in Table
1-1. The key to control these network parameters is the packet schedule algorithm in the

QoS enabled network node.
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Traditional Network does not have any control over the traffic and the packets are sent
without any manipulation and scheduling mechanism. Best Effort is the simplest service
model for the traditional network and the existing Internet. The “best-effort” means that the
network providing the best service according to the existing resources. Packet can get lost,
corrupted, mis-delivered or fail to reach its intended destination in any way. The network
did nothing to handle these problems. It tries the best effort to provide the services. Best
Effort does not offer “quality control”, this has to be done by the protocol stack at the end
host. For example, TCP acknowledges packets to confirm that they have been received
correctly. If the source of a flow does not receive an acknowledgement, it simply tries
agam. For real-tirﬁe services such as VolP, the receiver does not have time to wait for

retransmission of lost packets. Since, even small losses in packets will result in decreased

quality.
.. QoS requirements
Application Types Bandwidth Latency Jitter Packet Loss

E-Mail Low to Moderate - - -

File Transfer High Burst - - -

Telnet Low Burst Moderate - -

Streaming Media Sustained Moderate to .\ Sensitiv .\
: Sensitive Sensitive
High €

Videoconferencing Sustained High Critical Critical Sensitive
Voice over [P Sustained Moderate Critical Critical Sensitive

Table 1-1 QoS requirements for common application types.

In

—

—

¢¢¢ Input Buffer of the Out
Tail Drop FIFO queue

Figure 1-1 FIFO queuing for Best Effort Service
The network aggregation node m the best effort service model puts all packets from

different flows into one incoming First-In-First-Out (FIFO) queue. Packets drop from the
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tail if the buffer is full. The packet from different flows compete for the bandwidth of the
output link in the aggregation node. This is similar to Ethernet, the hosts in the network
segment compete for the bandwidth in a random manner resulting a non-efficient network.
The network cannot categorize the packet according to their needs and provide the required
service level. How can we solve this problem? A suggested improvement for Best Effort is
the use of the 3-bit IP precedence field. By using this field, a packet with higher
precedence arrives before than a packet with lower precedence if both packets are passed
into the network at the same time with the same destination and IP options. In addition, the
IP precedence field is related to discard probability, meaning that if a sequence of marked
packets is passed along a path, the packet sequence with the elevated precedence should
experience a lower discard probability. However, network hardware and software have
traditionally not been configured to use this field. The other option is to handle traffic in a
way that always has enough capacity available in the network. However at the speed that
the Internet is evolving today, this would require an over-dimensioning in capacity to

handle the ever-increasing traffic. This resulting high costs and therefore impractical.

In concern to faimess, Best Effort has two primary user groups: Ordinary users and skillful
users with considerable ability to tune their computer system. The harmful part of the
skillful user group always tries to exploit the network in order to receive the best
throughput possible, and this will degrade the service delivered to the other users. If this
happens in a large scale, it does not only deteriorate overall fairness but also the service for
all users. The Best Effort cannot deliver the Quality of Service that is necessary to be able
to transfer real-time streaming at the required quality. In order to separate the time-
dependent flows froﬁ the rest, the network has to promise service guarantees. This can be

achieved by more sophisticated queuing algorithms that support QoS.



Improved Queuing Algorithms in QoS Enabled Internet Node

Queuing algorithm is working in a way that schedules how the packets in different flows
passing to the output queue of a node. Some queuing algorithms are claimed to be fair. so
that a misbehaving application (one that continues to send during times of congestion) will
not be destructive to other better-behaved applications. Queuing algorithm also determines
how packets are dropped when congestion occurs in a router. A scheduler can providés rate
shaping by enforcing a packet stream to be conformant to a traffic profile. A bursty
interactive flow could be shaped to a constant bit rate in a scheduler. Shaping is often
based on the leaky bucket mechanism, since packets leak out of the queue at a fixed rate.

Thus, the bursts of a stream will be smoothed and non-conforming packets will be delayed.

In this thesis, firstly different queuing algorithm simulations and testing for their network
performance will be introduced. Secondly the simulation models are validated by
analyzing the simulation results. Thirdly, the characteristics of the algorithm are
summarized and analyzed. Finally, two algorithms — Weighted Deficit Probability Drop

(WDPD) and Weighted Deficit Round Robin (WDRR) are developed and further analyzed.
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CHAPTER 2 SURVEY OF EXISTING

ALGORITHMS

In this chapter the current approach of the queuing algorithms will be introduced. The
queuing / packet scheduling algorithms are divided into two categories, they are Non-
Work-Conserving disciplines and Work-Conserving disciplines. In non-work-conserving
discipline, each packet is assigned either explicitly or implicitly an eligibility time. Even
when the server is idle, if no packets are eligible, no packet will be transmitted. The non-
work conserving server may be idle even when there are packets backlogged. The
discipline emphasizes on reshaping traffic inside the network. Work-conserving server is
never idle when there are packets backlogged. Outgoing link is always fully utilized if any
packet present. It emphasizes on fair queuing. The queuing algorithms can also be divided
into rate allocating service discipline and rate controlled server discipline. In rate allocating
service discipline, the server will serve packets at the higher rate as long as it will not
affect the performance guarantees made to other flows. Rate controlled service disciplines
will not serve packets at a higher rate under any circumstances. All non-work-conserving
disciplines are in the rate controlled services category. This is because only non-work-

conserving disciplines get an upper bound on service rate of a flow.

In the work-conserving disciplines, there are many kinds of queuing algorithms such as
Generalized Processor Sharing (GPS) ideal model. Other algorithms are evolved from the
ideal model and implement to work in practical environment. The ideal model also
simplified to lower the computational requirement. Other evolved queuing algorithms in

this discipline are called as Packetized Generalized Processor Sharing or Packet Fair

5
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Queuing'. They are Worst-case Fair Weighted Fair Queuing Plus (WF*Q+), Worst-case
Fair Weighted Fair Queuing (WF’Q), Weighted Fair Queuing (WFQ), Fair Queuing (FQ),
Self Clocked Fair Queuing (SCFQ), Virtual Clock (VC), Stochastic Fair Queuing (SFQ)
and Delay-Earliest-Due-Date (Delay-EDD). In the non-work-conserving disciplines, there
are Jitter-Earliest-Due-Date (Jitter-EDD), Stop and Go (S&G), Round Robin (RR), Deficit -
Round Robin (DRR), Hierarchical Round Robin (HRR), Random Early Drop (RED),
Random Early Drop with In and Out (RIO) and Flow Random Early Drop (FRED). Each

queuing algorithm will be introduced in this chapter.

Queueing
Algorithms

Work-
conserving
discipline

Non-work-
conserving
disciplines

Jitter-EDD .
S&G PEQ (PGPS)
RR WF2Q+
DRR WF?Q
HRR WFQ
RED FQ
RIO SCFQ
FRED vC
SFQ
Delay-EDD

Figure 2-1 Overview of Queuing Disciplines
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2.1 WORK-CONSERVING DISCIPLINE

2.1.1 General Processor Sharing

GPS [25, 26], proposed by Parekh and Gallager, it is the traditional idea of work-
conserving queuing algorithms. GPS is an ideal fluid system in which the traffic is
infinitely divisible and multiple traffic streams can receive service simultaneously. At any
given time, the head-of—queue cells from multiple FIFO queues can simultaneously be in
the process of transmission from the fluid GPS. It distributes the idle bandwidth among
non-idle buffers in proportion to their bandwidth allotments. The minimum service unit is a
bit. This is the most fairness queuing algorithm that never implement in the real
networking environment. It involves high computational complexity. In the real life
environment the packet in networks cannot transmit bit by bit. The packet header and the
payload need to be transmitted together to ensure the data integrity and correct routing
path. Packet Fair Queuing (PFQ), a packet system, which a traffic stream can, receives
service at a time and the minimum service unit is a packet. It enables the implementation

of an approximated GPS system in the real life. It also called Packetized General Processor

Sharing.
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Figure 2-2 The Packet Arrival Pattern
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Figure 2-2 shows the input packet pattern of the flows. There are 11 flows sharing a one
packet per second link in a node. The first flow sends 11 packets and the rest of the flows
send 1 packet. All the 11 flows send packets at the zero second and all packets with the
same packet length 1. In the GPS system, the flows go through the packet policy and the
first flow receives service at 0.5 packet/sec, the rest of the flows receive service at 0.05
packet/sec. After processed in the GPS system, the packet output pattern is shown in figure
2-3. The figure shows GPS is a fluid system and all the packets in the 11 flows can process

simultaneously.

gg%ﬁ; 1101010103030 0030 10 1]
| T T
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s05 ([

507 | [ ]

S08| [ ]

S09 | [

s10|[
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Figure 2-3 The packet output pattern of the GPS system
In figure 2-3, the packets in flow 1 received 0.5 packet/sec and it sends packet at 2 seconds
interval. The last packet totally sent at 22 second. All the other flows received 0.05

packet/sec and their packet totally sent at 20 second.

2.1.2 Weighted Fair Queuing

WFQ, the most commercially acceptable fair queuing algorithm which implemented by
Cisco in the low line speed router with less than 2Mbps serial interface. In WFQ, every
session gets minimum amount of guaranteed bandwidth and guaranteed upper bound on
delay. Active session proportionally share the total link bandwidth. The link can be fully

utilized. It simplified the end-to-end congestion control mechanism. It separates handling

8
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of different sessions in different queues so the misbehaving or greedy session only
punishes itself. This algorithm can protect well-behaved sources from the ill-behaved
source. Because the WFQ approximates the GPS in the packetized system, it is called
Packetized Generalized Processor Sharing (PGPS). It extends the idea of A. Demers, S.
Keshav and S. Shenkar in Fair Queuing (FQ) [1]. The virtual time concept is developed to
approximate the GPS system time. The virtual time depends on how many other
connections are active in the system. The server chooses the next packet for transmission
among all the packets that are backlogged at all active flows, the first packet that would
complete service in the corresponding GPS system will be transmitted first (that means the
backlogged packet with the smallest virtual finish time will be transmitted first). Because
the system selects packet depending on the real-time information, it is called a Fiuid

Queuing System (FQS). The FQS always requires high computational cost. The following
are the equations of WFQ to calculate the virtual start time (VST) S} and the virtual finish
time (VFT) FF.

8! =max{F'",V(a})} 2.1)
Rresivh
2 2.2)

where K" session with packet i arrives at time af with the packet size L' . ¢, is the
weighted share of the flow. ¥ (a; ) is the system virtual time function, which approximates
the GPS clock. The Virtual function is illustrated below:

A GPS server serving N sessions is characterized by N positive real numbers, ¢,, 4,,

@5, ...- ¢, - The server operates at fixed rate r and the server rate for flow i is r;:

—— (23)
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The virtual function is given by:

V(0)=0
V(tyy+7) =V () +—g— (2.4)

rStj—tj_,,j=2,3, .......

j is the session of a specific flow.
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Figure 2-4 The packet 6utput pattern of the WFQ system
WFQ de-queue the flow, which gets the smallest virtual finish time among all the active
flows, which backlogged, with packets. The WFQ FQS needs large computational effort
and suffers from scalability problem. Figure 2-4 is the packet outpﬁt pattern of WFQ with
the packet arrival pattern shows in figure 2-2. This figure shows that the packets cannot

process simultaneously in the real practical environment. The VFT of the first session

packet B'is2, P* is4, B’ is6,....R" is20 and A" is 21 (p, - i" packet at K" session).

1
The VFT of the first packet in the other ten sessions B, B, F,, ..... B are 20. All the

packets with the smallest VFT will transmit first, so the first ten packets in flow 1 transmit
first and then the packets of the other tenth flows transmit next. The last packet of the first
flow with the largest VFT transmits last. This WFQ becomes unfair when the number of

sharing sessions increasing dramatically.

10
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2.1.3 Worst-case Fair Weighted Fair Queuing

In 1996, the Worst-case Fair Weighted Fair Queuing (WF’Q) was proposed by Jon C.R.
Bennett and Hui Zhang [2]. In WF?Q, the virtual time function, the virtual start and finish
time calculation is exactly the same as the WFQ. Only the packet selection policy is
changed. This is the most accurate discipline that approximating the fluid GPS. WEF>Q uses
both the start times and the finish times to select the priority of the packet. In WF*Q
systermn, the next transmitting packet is NOT chosen among all backlogged packet in all
active flow. The system only considers the packets that are started or finished receiving

service in the corresponding GPS system.

A
so1|(1 1 €1 C1 C1 C) €1 [1 ) ) I

]
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203 L [] P 4 b
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Figure 2-5 The packet output pattern of the WF>Q system
Figure 2-5 is the packet output pattern of the WF>Q system with the packet arrival pattern

shown in figure 2-2. The Virtual Start Times (VST) of the first packet in the 11
sessions B', B}, P;; ..... B\ are zero. The VST of P? is2, B’ is 4, .....P" is 20. The VFT
of Flis 2, P’ is 4, B’ is 6, ..... A" is 20 and B" is 21. The VFT of P, P, P!, ... P\
are 20. Consider at time 0s, only pacl.(et with VST < 0" will be compared, that mean only
all the P, ’s will be compared. Among the P, packets, the £' with the smallest VFT which

is 2, it will be transmitted first. At time 1s, the next packet needs to be selected among the

11
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packet with VST < 1*. Only the B/, P, ..... P} are eligible for the selection, all the 2!, P},

P, ..... B, are with the VFT 20, the first flow (S2) with packet P, is being transmitted. At
time 2s, the next packet needs to be selected among the packet with VST < 2*. Only,
PB’,P/, P, ..... B, are in the selection pool, the P? with the smallest VFT and it is being
transmitted. The WF?Q is the most accurate algorithm in approximating the GPS system
and it can provide the tightest delay bound.

2.1.4 Worst-case Fair Weighted Fair Queuning Plus

WF?Q+ [6] further modifies the packet selection policy and enhances the idea of the VFT,
the smallest eligible virtual finish time first (SEFF) was introduced. The packet is said to
be eligible at time ¢ if the virtual start time is no greater than the current system virtual time.

Furthermore a new system virtual time function VWFZQ+(t) is used. The enhancement

reduces the computational complexity significantly and allows supporting the higher speed

network. The virtual time function equation is shown below:

Vpg, (E+ Ay =max{¥, . () +W(t,t+7),min,_, {S/"}} (2.5)

In the equation 2.5, W (t,t + r) is the total amount of service provided by the server during

the period £ to £ +7, B(¢) is the set of sessions backlogged at time ¢, S)"“is the VST of the

packet at the head of the session i. To simplify the implementation of the algorithm, the

definitions of the VST and VFT are modified. The old definitions need to maintain the

VST and VFT on a per packet basis. Each packet on the queue maintains a set of F,." and
S} . This will cost a lot of memory usage on the small packet system. In the new definition,

each session 7 only keeps a set of F, and S,. The equation of VST and VFT in WF’Q+

12
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are shown below:

S, =F, when Qi(a; ) # 0
S, =max{F, ,V(af)} when Qi(af-)=0

3
F =8+
¢, (2.6)

Where Q,(af -)is the queue size of session # just before time a’. By using this approach,
the worse case complexity is claim to be O(log N) which improved from WF2Q with O(N)

where N is the maximum number of connections that can share an output link.

2.1.5 Self-Clocked Fair Queuing

Most of the work-conserving disciplines emulate a reference FFQ server that requires high
computational cost. SCFQ [11] is simplified in implementing the reference server. It is a
simplified version of WFQ and WF’Q. The author observed- the virtual time function v(t}
and summarized two properties. First, FFQ system is a piecewise linear function with the
siope at any point of time ¢ inversely proportional to the sum of the service shares of active
s_essions. Second, when some sessions become backlogged or cease to be backlogged in the
FFQ system, the slope of v(#) changes. This will forms the breakpoint of the piecewise
linear form of the slope. SCFQ tracks the active session and finds the breakpoint of the
piecewise linear line v(t), the algorithm uses this concept to evaluate the virtual time
function and hence simplifies the implementation. This algorithm is simple but the
breakpoint in v(t) changes infrequently and it can happen many times in a short period of
time (during a single packet transmission time) so it is not very accurate in approximating
the GPS system. Because it uses a self-defined approximate virtual time clock, it is called a

self-clocked fair queuing. The SCFQ is based on the following steps:

13
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Each arrival packet p| is tagged with a service tag ﬁ‘,“' before it places in the queue. The
packets in the queue are picked up service in increasing order of the associated service tags.

For each session %, the service tags of the arriving packets are iteratively computed for the

VST:

Al i ad=l A
Fi= Ly max(F« ,v(a)))
T 2.7

of flow k and ¥(¢) is the approximated virtual time function.

(¢) is the virtual time of the system at time ¢, it is defined equal to the service tag of the
packet receiving service at that time. More specifically,

aJ

si<t<d/

A n

where s/ is the start service time and d; is the finish service time of packet p! .

Once a busy period is over, when the server is free and no more packets are found in the

queue, the algonthm reinitializes the v(¢} and the packet counts i to zero for each session 4.

Actually 1t has shown that the difference between ¥(¢) and v(#) is not necessarily bounded
and may approach infinity. Because v(¢) is an approximated virtual time function, it is

equal to the service tag of the most recent packet transmitted prior to ¢, instead of the
service tag of the packet receiving service at time 7. Although SCFQ is a good choice for
lowering the computational requirement of the algorithm, it is not fair compare to the

original GPS system.
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Figure 2-6 is the packet output pattern of the SCFQ system with the packet arrival pattern

shown in figure 2-2. Since SCFQ uses the finish time of the packet in service as the current

virtual time value, v(1) = v(2) = F, . At =2, the P? arrives with VFT

Al

Fiy= 01—5 +max(2,20) = 22 (substitute packet size L =1 , service rate r, = 0.5, Virtual

Al

Time v(2) =20and F\ =2). Among all head packet in different flows, P’ gets the largest
finish number so it starts the service when P',i=2,3,.....11 finished servicing. P,z leaves

atr=12.
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Figure 2-6 The packet output pattern of the SCFQ system

2.1.6 Fair Queuing

In Fair Queuing [1], if there are & flows sharing a link with bandwidth BW, then each flow
can get BW / N. If one of the flow uses less than the allotted share, the surplus will equally
distributed among the rest of the flows. Fair Queuing emulates the bit-by-bit round robin

(BR). Each packet gets into the queue given a finish number. The service round of BR is

OR__H
8 N, (2.9)
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where R(?) is the number of round made, u is the line speed of the link and N_,(¢)is the
number of active conversations. So a packet of size P whose first bit gets serviced at time

¢, will have its last bit serviced P rounds later at time ¢ such that T(¢) = R(¢,) + P.

The finish time of BR is

Ff=St+p (2.10)

where S} is the start service time and F*is the finish service time of packet i” of session

¥". The start time of BR is

S} =max(F, R(t})) (2.11)

R(¢}) is a continuous monotonically increasing function whenever there are bits at the

gateway. In order to emulate the bit-by-bit round-robin algorithm, the quantity F;*defines
the sending order of the packets. Whenever a packet finishes transmission, the packet with
the smallest value of F;* will be sent next. The fair quening allocates less delay to a user
who utilizes less than their fair share of bandwidth. It allocates delay independents of the

bandwidth allocation by introducing two parameters § and bid B . The formula to

calculate the bid in fair queuing become:

Bf = P! +max(F},R(t}) - 6) (2.12)

If & is small, then B/ is likely independent of the previous history of flow k. If & is large,

then B/ is likely to depend on the previous finish time of the packet. The Fair Quening

provides a mechanism on the delay manipulation of a specific flow.
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2.1.7 Virtual Clock

Virtual Clock (VC) [19] emulates the static Time Division Multiplexing (TDM) system.
Each packet gets into the queue given a virtual transmission time based on the arrival
pattern and the reservation of the connection. The packet should be transmitted if the
virtual transmission time is passed. The virtual transmission time is independent 'of the

behaviors of other connections. The delay of a packet depends on the entire arrival history

of the connection itself.
In VC, the state variable is auxiliary VC (auxVC, virtual transmission time) and it is

computed by:
k k-1 k-1 .
auxVC; . « max{a,; ,auxVC;;'} + Viick, ; (2.13)
The i, j and & are the server number, connection number and packet number respectively.

Vtick, ;is the average packet inter-arrival time for connection /. alf ;1s the real time for the

packet k of connection j leaving server i. If the virtual clock is larger than the real time, that

means the flow has been sending faster than the specified rate. If ¥C >>a; ; then it slows
down the specific flow. If the aux virtual clock < real time then the VC =af ,» that’s why

max {a!;,auxVC},} is in the equation.

The Vtick is calculated by:

Viick, =.—-1—
AR; (2.14)

AR, 1s the average transmission rate 1n packet per second.

This algorithm uses simple multiplexing and it can provide weighted sharing of the node

by using different AR, for different flows. The control mechanism is limited and it does not
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use GPS as reference system. It is known to be not fair but it builds a simple statistical

multiplexing concept for node sharing.
2.1.8 Stochastic Fairness Queuing

Stochastic Faimess Queuing (SFQ) [22] is proposed by Paul E. McKenney in 1990. It is
relatively simple by comparing to strict fairness queuing algorithms. The queues are
serviced in strict round-robin order and a simple hash function is used to map source-
destination address pair into a fixed set of queues. If the number of queues is large
compared to the number of conversations, each conversation will be assigned to its own
queue with high probability. If two conversations collide, they will continue to receive less
than its share of bandwidth. This situation is alleviated by periodically perturbing the hash
function so the conversations that collide during one time period are very unlikely to
collide during the next. The author aimed to use the algorithm in the high-speed network
and he supposes the traditional per-flow first come first serve queuing mechanism needs to
consume much higher computational power to distribute incoming packets to the
corresponding queunes. The traditional approach needs to use numerous memory references

to map the packet to the incoming and the outgoing address pair.

In figure 2-7, the operating mechanism of the Stochastic Fairness Queuing is almost the
same as the traditional per-flow first come first serve queuing. Only the packet distribution
method is modified. The packets are distributed by the hash function below:

hash = ROL(src,seq) + dst (2.15)
where “ROL” is the circular rotate-left function implemented as a single instruction on
many com'puters, “src” is the Internet Protocol source address, “seq” is a sequence number
in the range from O to 31 and it is used to perturb the hash function. “dst” 1s the IP

destination address.
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Figure 2-7 Operating mechanism of the Stochastic Fairness Queuing
Although SFQ is less fairer than the other fair queuing algorithm such as VC and FQ. The
computation requirement is much lowered. The fairness of SFQ can be improved by
increasing the number of queues or increasing the size of buffers. The faimess can also be

increased by shorten the hash switch interval. It is an alternative choice from the other fair

queuing algorithms.
2.1.9 Delay Earliest-Due-Date

Delay Earliest-Due-Date (Delay-EDD) [13], an improved version. of Earliest-Due-Date-

First (EDD or EDF). Each packet in the EDD from a periodic traffic stream is assigned an

Expected Deadline (ExD,.'f ;) and the packets are sent in order of the increasing deadlines.

The deadline of a packet is the sum of its arrival time and the period of traffic stream. In
Delay-EDD, the server negotiates a service contract with each source. The contract states
that if a source obeys the promised traffic specification (peak and average sending rate),

then the server will provide a delay bound. The expected deadline is calculated by the

formula below:

k k
ExD}, - max{a!, +d, ,, (2.16)

ExDf; + X

min § }
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X 15 the minimum packet inter-arrival time for connection j. d;; is the local delay

bound assigned to connection j of server i at the connection establishment time. This

algorithm can provide a rough controlling mechanism for packet sending order.
2.2 NON-WORK-CONSERVING DISCIPLINES

2.2.1 Round Robin and Deficit Round Robin

Round Robin is one of the old fashioned scheduling algorithm to share resource. It is a
frame based algorithm which the computational complexity is O(1) without any timestamp
calculation. These algorithms yield delay bounds may grow linearly with the Inumber of
sessions sharing the outgoing link. In a real computer netwprk, many data link layers
support variable packet size and the old fashioned round robin become unfair in the
vaniable packet size environment. DRR [32] was proposed by M. Shreedhar and George
Varghese to solve this problem, they introduced the quaﬁtum concept. In DRR, each flow
keeps a deficit counter. The deficit counter increment ¥ at each round. ¥ was calle& the
quantum, which is a credit to de-queue the packet. At the de-queuing moment, each flow
can de-queue the packet in the queue until all the deficit counter credit has been used up.
Large packet consumes more credit and small packet consumes less credit. This algorithm

claims to be fair in the variable packet size environment. The number of bytes send in

DRR is calculated by:

bytes, , = Quantum, + DeficitCounter, ,_, — DeficitCounter, 2.17)
The total number of bytes sent up to round K is calculated by:

sent,, = K xQuantum, — DeficitCounter, (2.18)
i 1s the flow number, K is the number of Round in the DRR, byfes, , is the number of bytes

send in flow i at K™ round. sent; . is the total number of byte sent up to round K.
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2.2.2 Hierarchical Round Robin

Hierarchical Round Robin (HRR) [5] extends the traditional round robin. It was proposed
to provide the flows that sharing a node to get several service levels, each level provides
round-robin service to a fixed number of slots. A channel is allocated some number of
service slots at a selected level and the server cycles through the slots at each level. The
topmost level gets the shortest frame length and it is used to serve connections that are
allocated the highest service rate. Since a server always completes one round through its

slots once every frame time, it can provide a maximum delay bound to the flows allocated

to a specific level.

Level 1 Frame i )
Round Robin Service

Slot )
Level 2 Frame

Figure 2-8 Frames of Hierarchical Round Robin

Level 3 Frame

2.2.3 Stop and Go

Stop-and-go [33] service aims to preserve the “smoothness” of traffic as it traverses the
network. It composed by two parts, a packet admission policy and a framing strategy. Time
is divided into frames and each frame is 7 second long, only packet that arrived in the
previous frame time is eligible to send. Because of this delay, there may be packet in the
queue when the output link 1s 1dle. Stop-and-go 1s a non-work-conserving policy. It defines .

departing and armmving frame for each flow. At each hop, the arriving frame of each
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incoming link is mapped to the departing frame of the output link by introducing a constant
delay 6 , where 0 <8 <T. In the packet admission policy, the algorithm claims to provide

(r,, T) smoothness where 7, is the bandwidth allocated to connection & and T is the frame
length. In each frame length the connection k& cannot re_ceive more than r, x T bits services.
This service discipline can provide minimuim and maximum delay from the source to the
destination. The length of the frame time affects the delay and delay-jitter bound, stop-and-

go uses multiple frame size.
2.2.4 Random Early Drop And Flow Random Early Drop

RED [3, 30] was proposed by Sally Floyd and Van Jacobson, it is used to replace the
simple tail drop. RED monitors the average queue size by using the previous history of the
queue and probabilistically drops packets when the queue exceeds certain thresholds. By
dropping packets before the buffer is full, RED provides an early signal to the end systems
to back off. However, RED cannot ensure fairness among competing flows. Flow Random
Early Drop (FRED) [38] improves the fairness of bandwidth allocation in RED by
maintaining state for all backlogged flows. FRED drops packets from flows that have had

many packets dropped in the past. The packets are dropped if the flows that have queues

larger than the average queue lengths.
The Equation, 2-19, 2-20 and 2-21 are governing the dropping probability of RED.
When the RED scheduler receives a packet, it will perform the following task:

" The intermediate dropping probability of RED is calculated by

_ max ,(avg —min,, )

max, —min,, (2.19)

b
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P, is the intermediate dropping probability, avg is the estimate queue size, max,, is the

maximum threshold for queue, min,, is the minimum threshold for the queue and max , is

the maximum value for P, .
The avg varies from min, to max, thatimply the ;s varies from 0 to max , .

The dropping probability of RED is calculated by:

p=— B
“ l—countx p, (2.20)

P, is the final dropping probability and count is used to cater for the past performance of
the queue. The count will be minus one if the estimate queue size is less than the min , and
the count will be reset if the estimate queue size is greater than max, . This mechanism

ensures the past performance of the queue will affect the dropping probability. If the flows
always en-queue packet, the dropping probabihity will be low. If the flows always drop
packet, the probability will be high. The following are the decision making section of the

RED algorithm:

If the queue is nonempty then the estimated queue size is computed below:
avg =(1-w )xavg+w,xq (2.21)

avg is the estimate queue size, w, is the queue weight, q is the actual queue size at the

packet en-queuing moment. The estimate queue size is based on both the past estimate

queue size and the current queue size. If w, is large, the estimate queue size will depend

more on the current queue size and vice versa.
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The following are the three cases that will happen depending on the estimate queue size:

(i) If the estimate queue size (avg) is smaller than the min, then the packet is en-
queue and count = count — 1.
(i) If the estimated queue size (avg) is between max, and min, then the packet is

dropping with probability P, .

(iii)If the estimate queue size (avg) is greater than the max, then the packet is
definitely drop and the count is reset to zero.

Combine the equation 2.19 and the above three conditions. The RED can from a

discontinuous dropping probability function which shown below.

FRED improves RED in the fairness among different flows by modifying the dropping

probability equation.

PP —
* l-count' x p, (222)

P/, P and count'is introduced. Each flow/queue gets their dropping probabilities and
past performance counter. This ensures the control mechanism operating independently for

each flow.

Iy
-3

max , [— /
1 1

Tum e Lz max 1 avg

Y

Figure 2-9 Dropping probability function for RED
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The performance and behavior of RED are extremely sensitive to the

parameters max ,,max, , min, and w, . A mis-parameterized RED queue can fail to

control the transmission rates of low priority sources, allowing them to fill the queue with
packets and cause high priority packets to drop. Another problem is that RED's congestion
detection mechanism is based on the calculation of an average queue length. Since the
instantaneous queue length can change quite dramatically over short time intervals, queue
overflow and loss of priority packets can occur before increasing in avérage queue length
can trigger RED congestion control mechanisms. In order to address the shortcomings of
RED active queue management algorithm, recently improvement labeled BLUE [37] has
been proposed. These improvements can potentially reduce the amount of packet loss.
RED and FRED keeps the overall throughput high while maintaining a small average
queue length and tolerate transient congestion without causing global synchronization.
They require lower computational power than the queuing algorithms, which need to
maintain the virtual clock and emuiate the fluid queuing system. They drop the pa;:ket
early and good for notifying the end host in the transport layer to reduce the sending rate
and the window size of the TCP protocol. It provides the congestion control and further

lowers the computational requirement of the hardware in the queuing node.

2.2.5 RED with In and Out (RIO)

RIO [18] combines the capabilities of the RED algorithm with drop precedence and this
algorithm is using in Differentiated Services (Diffserv) Internet resources reservation
Model. This combination provides preferential traffic handling for higher priority packets.
It can selectively discard lower priority traffic when the interface begins to get congested.
It can also provide differentiated performance characteristics for different services. In

addition, RIO operates in both the input and the output queues. Tt uses twin RED
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algorithms for dropping packets, one for “IN” and one for “Out”. By tuning two sets of

parameters ( max, ,,max, ,,min, ,,max, ,,max, ,,.min, ., and w, ), RIO can

p_in?
discriminate against “Out” packets in times of congestion. It differs from other congestion
management techniques such as queuning strategies because it attempts to anticipate and

avoid congestion rather than controlling congestion once it occurs.

The algorithm of RIO is same as the RED but it keeps two sets of parameters. In equation
2.19, the input queue uses the average queue size for the In packet to compute the dropping
probability and the output queue uses the average queue size for all (In and Out) arriving
packets to compute the probability. Figure 2-10 shows how RIO works, the drop
probability on the y-axis increases as average queue length increases along the x-axis. RIO

“has one curve for traffic that is conformant with the boundaries for packet in and the other

is for packet out.

5

&

1 - - =

avg

Figure 2-10 RED with In and Out drop probabilities
Same as RED, during the normal operation phase (avg < ming, and avg < min;,), there is
no packet drop. When the average queue size is between the two thresholds, it goes into the
congestion phase and the packets start to drop. When the average queue size is above

maxy, the node sustains large sized queue and it drops every arriving packet hoping to
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maintain a short queue size. RIO uses the Type of Service (ToS) field marked by the edge
routers to determine how it treats different types of traffic. It provides separate thresholds
and weights for different packet classes; allow providing different QoS for different traffic.
Standard traffic dropped more frequently than premium traffic during periods of

congestion.

Just like RED, the efficiency of RIO depends on some extent of correct parameter choices.
One interesting property of RIO is that it does not change the order of “in” and “out”
packets. If a TCP connection is sending packets through a profile meter, and some packets
are being marked “in” while others are marked “out,” those packets will receive different
drop probabilities in the router queues, but they will be delivered to the receiver in the

same order as they were sent.
2.2.6 Jitter Earliest-Due-Date

Jitter Earliest-Due-Date (Jitter-EDD) [13] extends Delay-EDD, which described previously
in this chapter. Jitter-EDD provides delay-jitter bound which is a bound on minimum and
maximum delay. The expected deadline calculation, which ensures the maximum delay
bound, is exactly the same as Delay-EDD. In figure 2-11, the Predhead time stamp
labeling concept is added to provide the minimum delay bound. Each packet leaves the
server will label a Predhead timestamp. It is the difference between packet deadline and
actual finishing time. If the packet is transmitting too fast, the regulator at the entrance of
the next hop will hold the packet for PreAhead seconds that specified in the time stamp

before it is eligible to be scheduled. This mechanism provides the minimum delay bound

for the Jitter-EDD.
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Figure 2-11 Packet Service in Jitter-EDD

2.3 CONCLUSION AND COMPARISON

Different packet scheduling algorithms provide different desired properties. The general

properties of the algorithms are summarized in table 2-1.

WFQ+ | WF’Q { WFQ | FQ | SCFQ | VvC | SFQ | D-EDD
Work Conserving Yes Yes Yes | Yes Yes Yes | Yes |©  Yes
Throughput Guarantee Yes Yes Yes | Yes| Yes | Yes| Yes Yes
Delay Guarantee Yes Yes Yes | No Yes No | Yes Yes
Jitter Guarantee No No No No No No | No No
Constant Buffer No No No No No No | No No
Protection Yes Yes Yes | Yes Yes Yes | Yes Yes

Table 2-1a Network properties comparison among different queuning algorithms

JEDD | S&G | RR | DRR | HRR | RED | FRED | RIO

Work Conserving No No No No No '| No No No
Throughput Guarantee Yes Yes | Yes [ Yes Yes Yes Yes Yes
Delay Guarantee Yes Yes | Yes | Yes Yes No No No
Jitter Guarantee Yes Yes No No No No No No
Constant Buffer Yes Yes | Yes | Yes Yes Yes Yes Yes
Protection Yes No | Yes | Yes Yes No Yes No

Table 2-2b Network properties comparison among different queuing algorithms

From the table 2-1, it can be seen that most of the algorithms support delay guarantee, but
only two of the algorithms (J-EDD and S&G) support the jitter guarantee. The jitter
guarantee provides the limit for the maximum delay bound and the minimum delay bound,

but the delay guarantee only provides the limit for the maximum delay bound. The
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faimess among the work-conserving discipline can be generally summarized as follow:

GPS > WF*Q+ = WF’Q > WFQ > FQ > SCFQ > VC > SFQ

The fluid system GPS is the ideal system and it is the fairest algorithm. Most of the other
algorithms are approximating the GPS by virtual clock. WF?Q+ and WF?Q are same in the
faimess. They are the most accurate algorithms that approximate the GPS system. The

complexity of the algorithms can be summarized as follow:

WFQ + WFQ WEFQ FQ SCFQ VC DRR RR SFQ
O(logN) o) O(N) O(logN) | O(logN) | O(logN) | O(1) | - O(1) O(1)
Table 2-3 Complexity among different Algorithm

In table 2-2, N is the maximum number of connections that can share an output link.
Although WF?Q+ and WF’Q get the same fairness, they have different complexities.
WF2Q+ is the improved version of WF°Q. The computational complexity is much lowered.
The complexity for packet selection in RR, DRR and SFQ are O(1). The Round Robin

Pointer already determines which packet is going to leave in the coming round.

Different algorithms get different desired network properties, different faimess and
different computation complexities. The choice of scheduling algorithm in the sharing

node depends on the application and the traffic model that will be used in that specific

network.
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CHAPTER 3 NETWORK PERFORMANCE
EVALUATION AND FAIRNESS

MODELLING

In Queuing Algorithms, delay, delay jitter, queue size, throughput and packet drops are
used as the parameters to compare the performance. Although these parameters are closely
related to each other, they reflect different network properties for different network
application requirements. Up to now, there is no public accepted index to measure the
fairess among different flows. The max-min faimess criterion [8, 9, 17] states that an
allocation is fair if the following conditions are matched: (1) no user réceives more than its
request, (2) no other allocatior_l scheme satisfying condi‘tion 1 has a higher minimum
allocation, and (3) condition 2 remains recursively true as we remove the minimal user and
reduce the total resource accordingly. These rules give an idea in theoretical concept on
fairness but it cannot quantify faimess numerically and compare them easily. Another
fairness definition was introduced by S. Golestani [11]. It measures the fairness by the
services offered to connections. If the difference in services offered to any two connections
that are continuously backlogged in the system is zero, then the scheduler is perfectly fair.
Up to now, it is the mostly accepted fairness definition but it is not easy to measure the
services received in the real networking environment without changing the firmware in the
equipment. It is hard to measure the received service and quantify the faimess. In this

chapter we discuss the network evaluation techniques for quening algorithms comparison.
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3.1 BASIC STATISTICAL EVALUATION METHOD

This is the traditional mathematical method that uses to analyze data. Large pool of
samples is required. Mean (equation 3. 1), standard deviation (equation 3.2) and correlation

(equation 3.3) can be used as the analyzing tools.

Equation of Sample Mean:

o= (3.1)

(3.2)
Equation of Correlation:
Z[(xi —x)e (¥, -]
Fo= i=1
-5 30:-57
i=1 i=1
-1<r<1l
where 3.3)
0<ri<l

Central Limit Theorem states that no matter the distribution is, if the sample size is
reasonably large then it is confident to say that the distribution of the sample mean will be

approximately normal. In statistic N > 30 is generally considered as large sample size. It is

a tool to measure the accuracy of the estimated sample mean x . In Central Limit Theorem,

E(x)= E(x) = u and SD(x) ==

Nk
Statistical method is dimensionless (not depends on units) and independent of scale. It can
be applied to a continuous function; slightly changes of x; will affect the whole result
(robust). These properties allow the method to apply in all mathematics models. The only
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deficiency is population size dependent. Little sample size cannot achieve high accuracy.

Central Limit Theorem can be used so the sample size requirement can be lowered.
3.2 NETWORK POWER

The network power [4, 10] is defined by one of the renowned Internet researcher, Leonard
Kleinrock. It uses throughput and delay to find the efficiency of the networking system.

The network power can be calculated by the following equation 3.4.

P(4) = % 3.4)

The network power P(A) is expressed as a ratio of throughput y(1) to delay 7(4). It
gives a good indication of network efficiency and the optimal throughput of a network
system. In a communications system, packet processing is divided into three stages:
packets arrive, receive service and depart. Let the input load applied to the system be A (0

< A £1). The following fundamental system performance characteristics are defined:

e Throughput, v = y(A). The rate at which packets arrive at the receiving host.

e Mean delay, 7= 7T(A). The average time spent by a packet while it resides in the system.
It is often the case that a system cannot reach its highest capacity, thus not yielding a 100%
throughput. This means that the system reaches its maximum throughput at input loads

where A < 1. Exceeding that point of input load drives the system to overloaded situations,

delay and queue length will grow to infinity.

y=y(A)when A <A,

Y = Vo When A2 A4 (3.5)
Equation 3-5 shows a throughput-input load function where A, represents the maximum

input load of the stable system, and .. the maximum throughput achieved. Thus, in order
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for a system to be stable we require that A < A;. The network system model shown in figure

3-1 refers to an ideal no-loss system.

In a non-ideal system, throughput normally degrades when A > A, unless some types of
flow control are implemented. As A approaches A;, the system becomes saturated. It is then
apparent that A, is a critical value. It is a key point in a throughput analysis. Figure 3-2
shows a mean delay profile of a network system. The minimum mean delay T;,, measured

in a system is found when A — 0", As 4 = A,.q the delay goes to infinity.
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Figure 3-3 The network power of a system
By combining figure 3-1 and figure 3-2, figure 3-3 is formed. The maximum power P,

identifies the operating point where a network delivers its best performance when the input
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load is at A,p. In figure 3-2, the load at which power is maximized namely A;. It can be
found by taking the tangent to 7{1) from the origin. This tangency point is referred to the
“knee” of the curve. Increasing input load affect the throughput to increase but delay
becomes higher as the system tends to saturate. Tradeoff has to be made between high
throughput and low delay. The notion of power proves to be useful in addressing this issue.

It combines the two network parameters and enables an easy measure for network system

performance comparison.
3.3 JAIN’S FAIRNESS EVALUATION

Raj Jain [29] proposes a function to quantitative measure the fairness of a system.
Assuming a system which allocates resources to » contending users such that the n™ user
receives allocation X, where n2> 0. Applying this idea to the networking system, given a

set of flow throughputs (x;, xz, X3 ..., x,). The fairness index to the network system is:

(i xi)2

= (3.6)
nx ) x;

J(Xp Xy, X500, X))

The index gets the following properties:

(i) Population Size Independence: This index can apply to any number of users, finite

or infinite. It can apply to two users sharing a resource,

(i) Dimensionless: It does not depend on the dimension of X, (bytes, meters, delay,..),

it can apply to any resource sharing or allocating system,

(iii)Independent of scale (kilo-, nano-, tera-, pico-,...) and bounded between ¢ and 1:

the quantified value is easy to understand, interpret and compare. The closer to one
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the fairer of the system, which can easily compare fairness between different

network systems and

(iv)Continuous: The slight changes of X, will affect the fairness index.

The quantitative measure of fairness index f(x,) measures the equality of the system
resources allocation x. If all users get the same amount of resources (X; = X;= X;...= X))
then f(x,)=1 and the sjstem is 100% fair. As the difference between the shared
resources amo.unt the user increases, the fairness will decrease. A user’s perception of

fairness can be found by rewniting the proposed fairness index to:

F)=— xix,. (3.7)

HXX, o

xyis the fair allocation mark which computed as follows:

X, =4 (3.8)

The fairness index of individual user is —-. It can be described that the i user received
X
f

X, L. . . e |
—% faimess. By summing the fairness of all individual users — E —, 1t will become
X nigx

f =l 2 f

equation 3.6, the overall faimess index of the system. If x; < x,then the system is unfair to
user { and 1s a discriminated user. If x; > x, then the system is favored to user / and is a
favored user.

Consider an example with 10Mbps shared among 30 flows where 3 flows receive 10 times

bandwidth of the other 27 flows. That means the 3 higher bandwidth flows get 1.754Mbps
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and the other 27 flows get 0.1754Mbps. The fairness allocation mark is calculated to be
1.0065Mbps. The 3 higher bandwidth flows received 1.754Mbps > 1.0065Mbps and they
are the favor flows and the 27 lower bandwidth flows are the discriminated flows which

received 0.1754Mbps < 1.0065Mbps. The overall fairness index is 0.09872.
3.4 WORST CASE FAIR INDEX (WFI)

To quantify the discrepancy between the services provided by packet schedule discipline
and the fluid GPS discipline, the WFI is proposed by the renowned packet queuing
researcher Hui Zhang [2]. The definition of WFI is shown below:

A service discipline s is called worst-case fair for session 7 if for any time t, the delay of a

packet arriving at T is bounded by

k
df —a} S———Qi(ai)+A

{5

hi (3.9)

Where r; is the rate guaranteed to session #, Qi(t) is the number of bits in the session queue

at time t(including the packet that arrives at time 1). a) and d/ are the arrival and

departure times of the k™ packet of session i respectively. The arrival time defined here is
the time that the first bit of the arrival packet comes to the server and the departure time
defined here is the time that the last bit of the departure packet leaves the server. A;;is the
maximum time for. a packet coming to an empty queue needs to wait before receiving its
guaranteed service rate. It is also called the Worst-case Fair Index (WFI) for session / at
server s. The dimension of the WFI is time and the unit is mini-second. WFI is a constant
which independent of queues at the other sessions sharing the multiplexer. A service
discipline can only be called worst-case fair if it is worst-case fair for all the sessions. In

order to compare and interpret the fair index, it defines the ideal GPS fluid system with A,
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=0). The algorithm with the faimess index closer to 0 will be fairer and considered more
accurate in approximating the GPS system. WFI is measured in absolufe time and not

suitable for comparing different fair index of sessions with different guaranteed rates.

In order to compare the index with different guaranteed rate the normalized worst-case fair

index is introduced:

s T (3.10)

Where 1 is the total guaranteed bandwidth to all of the flows.

For a server that is worst-case fair, the normalized worst-case fair index is:

a, =max{a, } (3.11)

3.5 LATENCY RATE (L-R) SERVER MODEL

The Latency Rate Server Model was introduced by Dimitrios Stiliadis and Anujan Varma
[36] to analyze traffic scheduling algorithms. The behavior of an LR scﬁeduler is
determined by two parameters, the latency and the allocated rate. This model only studies
the class of scheduling algorithms that capable of providing bandwidth guarantees to
individual session. The model can be used to derive the deterministic end-to-end delay
guarantees that are independent of the behavior of other-sessions. In Cruz’s work [27]
individual schedulers are studied in isolation and the session delay is analyzed by
accumulation method. In this model the behavior of the chain of schedulers on the end-to-
end path is studied on a whole. This'model estimates the latency parameters for individual
schedulers considering the internal structure. This model also derives the internal

burstiness and buffer requirements of individual sessions.
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In the implementation complexity estimation, this model considering three factors:

(i) Timestamp calculation,
(i)  Packet insertion in the queue and

(iii)  Selection of the packet for forwarding

The maximum backlog bit Q**(¢) in the ¥ node of session i is bounded by

k

0 Wy<o,+p,),0;”
j= (3.12)

The maximum delay D, of session i in a network 1s

D.<%i1% @
, S —+ Z i
b = (3.13)

o, is the burstiness in bit and p; is the average arrival rate of session { in bit/second.
@53’ )is the worst case delay of the f” scheduler on the path of the session. Worst case delay
is defined as the delay by the first packet of a busy period in a session.

For the fairness of the LR-Server, this model uses the method proposed by Golestani [11]

to compare the faimess:

s
|W'.S(rl Ma) _ Wy (!],Q)I(F,

i oi | (3.14)

WS (t,,t,) and WjS (1,,t,) are the service offered to connection { and j in the interval

between t, and t; by server S, Pi s the service rate of session i and p ,is the service rate of

session j. F*is a constant which is the fairness of server S. This fairness comparison

method depends on the services received and it is hard to obtain in the real practical

environment.

38



Improved Queuing Algorithms in QoS Enabled Internet Node

3.6 CONCLUSION

In this chapter, four networking evaluation methods are introduced. They are Network
Power by Leonard Kleinrock, Fairness Model by Raj Jain, Worst-Case Fairness Index by
Hui Zhang and Latency Rate Server by Dimitrios Stiliadis and Anujan Varma. Network
Power and Faimess Model are developed for years and they are mostly accepted by the
industry and the academic research arena due to easy implementation, understand and
interpretation. Both of the derived network parameters are based on tile raw networking
parameter such as delay and throughput which are easy to measure and obtain statistically
in the real operating network, The latest derived network evaluation techniques, WFI and
LR-Server are based on operating network parameters such as packet arrival timestamp,
packet depart timestamp, current queue size and service rate which is hard to obtain in a
real practical networking environment. They can give a good theoretical meaning on the
term “fairness” in the general sense. Due to the above reasons, thel two traditional network

evaluation techniques, Network Power and Fairness Mode! will be used for our research

analysis.
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CHAPTER 4 SIMULATION SETUP AND

QUEUING DISCIPLINE COMPARISON

The whole research is based on the simulation result on the Network Simulator 2 (discuss
in appendix A and B). The simulations focus on the faimess among the same weighted
flows and the fairness among different weighted flows. The first simulation bases on this
simulation topology below, thirty sources and thirty sinks are used to pump the traffic into
and out of a central node. The total available bandwidth 10Mb/s is shared among the thirty
flows and the link delay is 10ms from the central node to the destination. All thirty source
links get 10Mb/s bandwidth and 10ms link delay. The buffer of the central node gets 1500
packets space and the packet size is 500 bit each. This is the simulation topology setup to

test the fairness among all same weighted flows.

Figure 4-1 Simulation Network Topology

In the second simulation, the same network topology is used but the network parameters in
the topology are changed. In the simulation, faimess among different weighted flows is
researched. Thirty flows share the central node with total available bandwidth of 10Mb/s,

flows numbered 10, 20, 30 set ten times weighted over all the other 27 flows. This implies.
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the 3 higher weighted flows will get 1.754Mbps individually and the other 27 flows will

get 0.1754Mbps bandwidth per individual flow.

In the third simulation, the same network topology is used but with sixty flows sharing the
central node with 10Mb/s, all the even numbered flows set ten times weighted over all the
odd flows. Each higher weighted even numbered flow would get 0.303Mb/s and each
lower weighted odd numbered flow would get 0.0303 Mb/s. This simulation tests how the
weighted sharing pattern and the number of sharing node affect the performance of the
queuing algorithms.

The loading condition and traffic arrival models will heavily affect the faimess factor,
delay jitter and other network parameters such as throughput and delay. Four different
loading conditions with four traffic arrival models are used in the first simulation and six

different loading conditions with four traffic arrival models are used in the other two

simulations.

The traffic arrival models are
(i) Poisson traffic of 4ms idle time and 4ms burst time,
(ii) Heavy burst Poisson traffic of 4ms idle time and 100ms burst time,
(iif) Constant bit rate IP phone model and

(iv) Constant bit rate with TCP model.

The simulation codes of the four traffic generation procedures can be found in appendix C.
The Poisson traffic is modeled in NS2 as the exponential User Datagram Protocol (UDP)
traffic which the packet inter-arrival time is exponentially distributed. The IP phone model

is modeled as UDP traffic with constant bit rate source. The TCP sources are using the
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sliding windows by Tahoe with Constant Bit Rate. The sliding windows by Tahoe (1998)
enhanced the early implementation of TCP/IP by using slow-start algorithm and
multiplicative decrease to deal with congestion control and congestion avoidance

respectively. Furthermore fast retransmit is used to enable high efficiency.

4.1 SIMULATION MODEL VALIDATION AND GENERAL FINDINGS

In figure 4-2, it shows the queues accumulate dramatically fast when the traffic loading is
increasing. If the queue size increases, the packet waiting time (delay) in the FIFO queues
will increase too. This property agrees with figure 4-2 which the delay rising dramatically
fast wﬁen the traffic loading is increasing. In figure 4-2, when the arrival traffic is just
saturated (WFQ with 0.35Mbps), the queue size is relatively small, but when the traffic is
doubled (WFQ with 0.7Mbps), the queue size is boost up. When the traffic is keeping
double up, the two lines with the highest loading (WFQ with 1.4Mbps and 2.8Mbps) show
the queue saturated very quickly. They saturated at less than 0.5 second after the traffic is
generated and occupied the whole queue size with 750000 bits which causing packet to
drop. In figure 4-3 the Tahoe TCP sliding window is used for congestion control and the
queue size starts to be controlled when the traffic is just saturated (WFQ with 0.35Mbps).
When the traffic loading is boosting up, the queue size is controlled around 250000 bits.
This two graphs show that the Tahoe TCP Algorithm provides an effective congestion
control mechanism which lower the packet drop and keep the required queue size small.
Figure 4-4 shows the queue size accumulating slowly for the saturated loading (0.35Mbps)
at heavily burst Poisson traffic with 100ms burst time for 30 incoming flows. In figure 4-5,
the queue size accumulating faster because more traffic is generated for the UDP/CBR IP
Phone model. The queue size situation time is almost the same as the Poisson traffic but

slower than the TCP traffic flows with congestion control. These four simulated graphs
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validate the traffic simulation models. They are same as the expected result. RED
algorithm uses the previous record of the queue size to predict the future queue size. It
drops the packet with a real time dropping probability. It can control the queue size
effectively even using UDP traffic flow and without the TCP congestion control. Figures
4-4 shows that the RED controls the queue size less than 250000 bits and saturated within
2 seconds after the traffics are generated. The queue sizes fluctuate greatly before
saturation. Figures 4-5 shows that the FRED controls the queue size at about 200000 bits
and saturated within 0.5 seconds for the overloaded and the heavily overloaded flows
(1.4Mbps and 2.8Mbps). The congestion control response time for the lightly overloaded
flow is slow in this case but still reasonable compare to the RED. It takes 2 seconds to
saturate the queue size. In the lightly overloading condition (FRED with 0.7Mbps), the
queue size is kept at below 170000 bits, this means more packets drop then required. The
FRED using individual variables to estimate queue size of a specific flow and calculate the
real time dropping probability for each flow. It claims to be fairer than the RED and it is

more robust to the traffic pattern change.
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In table 4-1, the standard deviation of throughput and the Jain’s fairness index of
throughput can test the fairness among same weight. The standard deviation which
approach to ( and the Jain’s fairess index which approach to 1 will be the fairer algorithm.
The results from the table validate that the FRED is fairer than RED in almost all the
loading situations and traffic arri;val patterns. The faimess different between the FRED and

RED becomes larger when the loading increased. From the table 4-1, when the incoming
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Average Standard .
Drop Per| Total Drop A[\;e:-age FQelay %\:eragi Deviation of F.?,:ness ':f
Flow elay airness rupu Thruput rupu
Poisson
FRED
0.35 0 0 0.000472709] 99.6339 | 0.26033778 |0.002520046(0.999909431
0.7 184 5523 0.132971367| 99.9992 | 0.33854222 {0.002052173]0.999964481
1.4 794 23832 [0.159024833} 99.9983 0.34032  [0.0026880980.999939693
2.8 2051 61540 0.1619232 99.997 0.34058667 |0.003348581(0.999906567
RED
0.35 0 0 0.000472709| 99.6339 | 0.26033778 |0.002520046]0.999909431
0.7 178 5357 0.171025633] 99.9988 | 0.34108444 |0.009205411(0.999296387
14 789 23675  [0.177125433] 99.9982 | 0.34115556 (0.009993796|0.999171156
2.8 2049 61491 0.178633667| 99.9974 | 0.34119111 [0.010104674[0.999152855
Heavy Burst
Poisson
FRED
0.35 0 7 0.034570187] 99.9986 | 0.33580444 10.001973226]0.999966623
0.7 620 18622 0.1605645 | 99.9997 | 0.34035556 {0.001321944/0.999985418
14 1886 56600 ]0.164110233f 99.9992 | 0.34055111 |0.001487102(0.999981567
2.8 4404 132128 0.1655446 | 99.998] 0.34060444 0.002383014)0.999952684
RED -
0.35 0 g 0.034869247| 99.9981 0.33605333 10.001932374|0.999968038
0.7 623 18694 0.1765259 | 99.99%6 034112  [0.013251501(0.998543336
1.4 1887 56625  |0.178465433| 99.999 0.34117333 |0.009479861|0.999254227
2.8 4408 132264 0.1790687 99.998 0.34122667 |0.011141082|0.958970567
Average Standard .
Drop Per| Total Drop A[v)e:'age Fl)_elay %\Irerag«: Deviation of F;ll:ness :f
Flow elay airness rupu Thruput rupu
CBR
FRED
0.35 20 611 0.115746467 5$9.9988 0.33978667 |0.003805799(0.999878744|
0.7 674 20224 0.160896 99.9998 0.34060444 |0.000965129/0.999992239
1.4 1988 59646 0.1643838 | 99.99%8 0.34067556 |0.001006908|0.999991556
28 4612 138387 |0.165826867| 99.9998 0.34071111 | 0.00087561 {0.999993616
RED
0.35 19 597 0.1118772 | 99.99986 | 0.33973333 |0.004572917)|0.99982489
0.7 672 20169  0.176998733F 99.9997 0.34135111 [0.008084135(0.999458117
1.4 1984 59520 0.178662667 99.9998 0.34129778 |0.011852216/0.998835598
2.8 4611 138333 0.179193 99.9999 0.34133333 10.012953107(0.998609845
CBR/TCP
FRED
0.35 4 122 0.068971587 99.8046 0.35047111 |0.003492342(0.995904024|
0.7 7 226 0.081566327] 99.9781 0.41523556 |0.048840394(0.986802963
14 7 226 0.08163108( 99.9823 041536 (0.041114383{0.990617449
2.8 7 218 0.080584053] 99.9583 0.41591111 {0.042562881(0.989977797
RED
0.35 4 120 0.067497593| 99.7185 0.34967111 |0.003318816/0.999912927
0.7 7 237 0.07831527 99.9699 0.41610667 |0.076502156(0.968358934]
1.4 7 237 0.07793901 | 99.9835 0.41585778 |0.064752955|0.977099495
2.8 7 233 0.077441713]  99.978 0.41633778 |0.068796148|0.974284259

Table 4-1 RED and FRED comparison
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traffic loading becomes higher, the fainess of the algorithm becomes lower in both of the
algorithms. It is the properties of almost all the queuing algorithms. It is because the
scheduler needs to process more packets in relatively shorter time. The congestion control
or scheduling ability will be lowered. In the average drop and the total drop columns, RED
drops less packet than FRED in Poisson, CBR and CBR/TCP but not the heavy burst
Poisson case, this explains the lowered 0.7Mbps loading line in figure 4-7. Because the
packet drop of FRED is more, the latency of the algorithm is also smaller. In the table, the
number of packet drop and delay faimess of FRED are generally higher than RED but the

throughput of FRED is lower than RED.
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Figure 4-8 Traffic Troughput Pattern with  Figure 4-9 Traffic Troughput Pattern with

traditional tail drop WFQ+

In figure 4-8 and 4-9, both are the throughput graphs of the 30 flows sharing the link. Y-
axis is the traffic rate (Mb/s in figure 4-8 and Kb/s in figure 4-9). X-axis is the time in
second. It can be seen that in figure 4-8, the individual flow heavily and randomly
competes for the shared bandwidth. The throughputs of all flows fluctuate heavily. The
central line of the data chunk is about 0.35 Mbps. In figure 4-9, the traffic sharing is being

controlled. The fluctuation is greatly reduced and it only happens around the saturated
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throughput. The central line of the fluctuated data chuck is also about 0.35 Mbps. From the
two figures, a]th(;ugh the saturated bandwidth is at about 0.35 Mbps in both of the cases,
the Traditional Tail Drop cannot control the traffic of the individual flow, they compete for
the required bandwidth. In WF?Q+ the traffic of individual flow can be controlled and the

traffic throughput pattern shows a much higher regulated form.
4.2 SIMULATION STUDY ON FAIRNESS AMONG THE SAME WEIGHTED

FLOWS

The four loading conditions for the first simulations are:
(i) Saturated at 0.35Mb/s sharing among all 30 flows,
(i) Lightly Overloaded at 0.7Mb/s sharing among all ﬂéws,
(iii) Overload at 1.4Mb/s sharing among all flows and

(iv) Heavily Overloaded at 2.8 Mb/s sharing among all flows.

The compared queuing algorithms are Deficit Round Robin (DRR), Fair Queuing (FQ),
Flow Random Early Drop (FRED), Random Early Drop (RED), Stochastic Fair Queuing
(SFQ), Traditional Tail Drop (Tail), Virtual Clock (VC), Weighted Fair Queuing (WFQ)

and Worst Case Fair Weighted Fair Queuing Plus (WF’Q+).

When talking about fairness in queuing, it always means the throughput faimess. But
different applications and users require different network parameters. Can the throughput
faimess conclude about the network performance? There is no general public accepted
terminology about the term ‘.‘faimess”. In the simuiation, the drop fairness, delay fairness
and the throughput fairness are all studied to give the reader a comprehensive view oﬁ the
ambiguous term “fairness”.
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4.3 THROUGHPUT FAIRNESS

Table 4-2, it is easy to discover that WF2Q+ is the fairest algorithm among the same
weighted flows. The second fair algorithm is WFQ and the third fair algorithm is FQ,
follow by VC and then FRED. The sixth fair algorithm is RED and seventh fair algorithm
is the traditional tail drop. The DRR is just worse than the traditional tail drop. SFQ is the
worst. It can be noticed that, the higher computational required algorithms always have
better fairness. Is it cost effective to implement such fairness with the high expenses? Is the

faimess level required to be high standard? Are the customers really interested on high

vec | wrQ | wFQ+| FQ SFQ [ DRR | Tail | FRED [ RED

MB/s
Little 035 ]| 99.99 | 99.99] 99991 99991 |99.991 | 99.991 | 99.991 | 99.9909 | 99.991

Burst 0.70 | 99.95 | 100.000 | 100.000 | 100.000 | 98.429 | 98.933 { 99.950 | 99.9964 | 99.930
Poisson | 1.40 | 99.93 | 100.000 | 100.000 | 100.000 | 91.418 | 97.467 | 99.854 | 99.994 | 99.917
2.80 | 99.92 | 100.000 | 100.000 | 100.000 [ 91.381 | 97.449 | 99.839 | 99.9907 | 99.915
Heavy | 0.35]99.997 | 99.997 | 100.000 | 99.997 | 99.997 | 99.997 | 99.997 | 99.997 | 99.997

Burst 0.70 | 99.417 | 100.000 | 100.000 | 100.000 | 91.082 | 97.451 | 99.417 | 99.999 [ 99.854
Poisson | 1.40 | 99.654 | 100.000 | 100.000 | 100.000 | 91.196 | 97.296 | 99.288 [ 99.998 | 99.925
2.80 | 99.409 | 100.000 | 100.000 | 100.000 [ 91.290 | 97.272 | 98.771 | 99.995 | 99.897
Constant | 0.35 | 99.984 [ 95.984 | 99.999 | 99.984 | 99.81199.984 | 99.984 1 995.988 | 59.982
Bit Rate | 0.70 | 99.942 | 100.000 | 100.000 | 100.000 | 91.436 | 97.511 { 99.918 | 99.999 | 99.946
IP Phone | 1.40 | 99.955 | 100.000 | 100.000 | 100.000 | 91.409 | 97.494 [ 99.877 | 99.999 | 99.884
2.80 | 99.961 | 100.000 | 100.000 | 100.000 | 91.411 [ 97.503 | 99.892 | 99.999 | 99.861

Constant | 0.35 | 99.982 | 99.982 99982 | 99.982 | 99.982 | 99.982 | 99.9904 | 99.991
Bit Rate | 0.70 | 99.994 | 100.000 100.000 | 94.395 | 97.590 [ 99.985 | 98.6803 | 96.836
TCP 1.40 | 99.994 | 100.000 100.000 | 91.600 | 97.731 | 99.985 | 99.0617 | 97.710
2.80 | 99.994 | 100.000 100.000 | 91.600 | 97.731 | 99.985 | 98.9978 | 97.428

Average 99.879 | 99.997 | 99.999 | 99.997 | 94.152 | 98.211 | 99.795 | 99.792 | 99.442

Table 4-2 Jain’s Fairness of throughput among the same weighted flows simulation
fairness? It is believed that the customers are more interested on the weighted faimess
which is the fairness among the different weighted flows rather then the traditional faimess
which is the faimess among all same weighted flows. It 1s because the customers want to

ensure the different performances between the low paid users and the high paid users when

they pay more money.
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Figure 4-10 is simulated in overloading (2.8Mbps) situation with Poisson Traffic Amival
Model. The SFQ is the most fluctuated one with the lowest faimess. The DRR is the
second most fluctuated algorithm. Even .the traditional best effort service is relatively
stable than these two algorithms. WF*Q+, WFQ and FQ provide general higher and stable
throughput among the other algorithms. These three algorithms show almost straight lines
across different flows. The fairness of FRED and RED are in Bctween the two sets of
algorithms. They are compared to be less fluctuation and stable when comparing to the
traditional best effort service. These properties also occur in the lower input traffic loading
condition with constant bit rate traffic over UDP & TCP and the heavy Poisson traffic
model. The throughput fairness can be concluded by WEQ+ > WFQ > FQ > VC > FRED

>RED > TAIL > DRR > SFQ.

Poisson Traffic Arrival Model at 2.8 Mbps
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Figure 4-10 The throughput of the 30 flows with the 8 algorihtms
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4.4 PACKET DROP FAIRNESS

(1\:;:]1;:;(1 vC | WFQ |WF2Q+] FQ | SFQ | DRR | TAIL | FRED | RED
Poisson 0.35 0 0 0 0 0 0 0 0 0
0.7  [10.17604]10.23348]10.28558{10.25536{86.03748172.60474]10.17604]3.413864{11.41838
L4 [27.9050134.12401(34.0218 [34.02332}210.1134[108.6565122.86844[31.95903(18.51281
28 [51.08613[58.45364]58.39107/58.41321]218.1401[120.5512]53.64635[52.95737}44.23721
Heavy | 035 0 0 0 0 0 0 0 [0.55708600.525226
Burst | 07 [52.27118]5.965418]5.985615[5.965418211.7529]113.3711[52.27118]7.90896526.12305
Poisson | 14  [36.2015418.64551[18.81947(18.61405[209.5252(117.6595/56.50938 14.60043118.85608
28 |61.69949136.33702136.30569036.33702{224.3999]120.5803[88 26645128 5669203 1.22223
CBR | 035 0 0 0 0 |5.391564 o 0 [3.4290855.391564
07 |13.5201[8.913376[8.924975/9.005745(12.83449[109.1715]14.27682{10.8913 1[12.83449
14 P0.63977]16.78464]16.9064416.90644] 23.4844 [108.7095[25.7293¢[13.73895] 23.4844
28 |27.33887022.79141122.82467122.8246731.56657(110.4258]33.92842] 16.937 [31.56657

TCP/CBR] 0.35 0 0 0 0 0 0 0 1.618854]1.414214
0.7 0 0 0 0 0 0 .0 1.203443]1.938716
1.4 0 0 0 0 0 0 0 1.11417211.790781
2.8 0 0 0 0 0 0 0 [0.870988]1.564697

Table 4-3 Standard Deviation of the packet drop in four loading condition with four

different input loading traffic models.
In the packet drop fairness, the standard deviation is used to compare the fairness instead
of using the Jain’s Faimess Index that used in the throughput and delay fairness
comparison. It is because if the flow is without any pﬁcket drop, the statistics samples in
the packet drop can be zero. This situation always happens especially in the low loading
condition. In the throughput and delay fairness, the statistics samples always get some
quantify values and Jain’s Faimess Index can be used. The Jain’s Faimess Index will
become undefined (zero divided by zero) if all the flows get no packet drop in the
simulation. This cause troubles in numerical comparison and further manipulation of the

quantified values. Because of this reason, standard deviation instead of the Jain’s Fairness

Index wiil be used in all faimess comparison of the packet drop.

In the table 4-3, it can be noticed that the standard deviation in some of the conditions are
zero. It is because there is no packet drop in the specific conditions and it does not mean

that the algorithm is extreme fair in packet dropping. It can be noticed that the TCP can
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control the input loading traffic effectively, so the packet drop is zero in most of the cases.
FRED and RED are the active dropping algorithms which drop packet even the queue is
not overflow. They intended to drop packet to keep the throughput faimess among
different flows and prevent the anticipated congestion, so it will drop packet in TCP and in
some low loading situations. The packet drop fairness decreases with the input traffic
loading increasing for almost ail the algorithms. The packet drop fairness of FRED and
RED are better than WF’Q+ and WFQ in most of the case. It i1s because FRED and RED
control the packet throughput by dropping the packet accordingly. All algorithms get
higher packet drop faimess (or lower standard deviation) in the Constant Bit Rate loading
condition. It is because constant bit rate is easier and more accurate in the queue size
prediction. The packet drop faimess of DRR and SFQ are low and they are even worst than

the best effort service (traditional tail drop).

Figure 4-11 is simulated in the overloading situation at 2.8Mbps with Poisson traffic
arrival model. The packet drop numbers among the flows of DRR and SFQ compare to be
fluctuated. They are worse than the best effort service. It is hard to determine the stability
among all the other algorithms. The numerical data in table 4-3 is \r"é'quired to determine the
little different between the stability among all the other algorithms. By summanzing the
table and the figure, the packet drop fairness can be concluded as follow: FRED > RED >

WFQ > FQ > WF?Q+ > VC > TAIL > DRR > SFQ.
4.5 DELAY FAIRNESS

From the table 4-4, the difference of fairness between the queuing algorithms are very
small. The fairness increases with the incoming traffic loading. Actually it is hard to rank
the fairness among the algorithms. It is because they get different faimess performance in

different traffic models and with different loading. However it can be generally
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summarized and the delay fair of SFQ is the worst, FQ is the best. It can be concluded VC

> TAIL > FRED > RED > FQ > WFQ > WF*Q+ > DRR > SFQ.

Poisson Traffic Arrival Model at 2.8 Mbps
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Figure 4-11 The packet drop pattern among 30 flows with the 8 algorithms

VC WEQ WF2Q+ FQ
MB/s

Little 0.35 99.634 99.634 97.956 99.634
Burst 0.70 99.998 99.953 99.954 99.954
Poisson 1.40 99.996 09.997 99.997 99.997
2.80 99.999 99.999 99.999 99.999

Heavy 0.35 99.999 89.130 86.826 92327
Burst 0.70 99.995 100.000 100.000 100.000
Poisson 1.40 99.999 100.000 100.000 160.000
2.80 99.993 100.000 100.000 100.000

Constant 0.35 99.998 93.544 94.344 93.647
Bit Rate 0.70 99.999 100.000 99.999 99.999
IP Phone 1.40 100.000 100.000 100.000 100.000
2.80 100.000 100.000 100.000 100.000

Constant 0.35 99.997 98.819 98.739
Bit Rate 0.70 99.998 100.000 100.000
TCP 1.40 99.998 100.000 100.000
2.80 99.998 100.000 100.000

Average 99.975 98.817 98.256 99.018

Table 4-4a Jain’s Fairness of delay among the same weighted flows simulation
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SFQ DRR Tail FRED RED

Little 99.682 99.690 99.634 99.634 99.634
Burst 89.893 93.433 99.998 99.999 99.999
Poisson 99.649 98.461 99.994 99.998 99.998
99.986 98.293 99.993 99.997 99.997

Heavy 13.235 16.269 99.999 99.999 99.998
Burst 97.958 98.587 99.995 100.000 100.000
Poisson 99.989 98.251 99.997 99.999 99.999
99.9%4 98.582 99.995 99.998 99.998

Constant 19.809 24.332 99.998 99.999 99.999
Bit Rate 99.156 98.531 99.999 100.000 100.000
IP Phone 99.991 98.319 99.999 100.000 100.000
99.998 98.633 100.000 100.000 100.000

Constant 81.095 87.213 99.997 99.805 99.719
Bit Rate 93.735 97.222 99.997 99.978 99.970
TCP 93.666 97.262 99.997 99.982 99.983
93.666 97.262 99.997 99.958 99.978

Average 86.344 87.521 39.974 99.959 99.954

Table 4-5b Jain’s Fairness of delay among the same weighted flows simulation

Poisson Traffic Arrival Model at 2.8 Mbps
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Figure 4-12 The packet delay pattern among 30 flows with the 8 algorithms

In figure 4-12, it can be noticed that the DRR and the SFQ are quite fluctuated. All the

other algorithms seem to be the same. The delay timings of VC, WFQ, WF2Q+, FQ and
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Traditional Tail Drop are very close. They seem to form a-straight line at the upper part of
the graph. The delay timing of DRR is the lowest one followed by FRED and RED. FRED
and RED are algorithms which drop packet actively to keep the congestion and the queue

size low. That is why the delay time is low as well. FRED drops more packets so the delay

time is lower than RED.

4.6 CONCLUSION ON THE FAIRNESS AMONG THE SAME WEIGHTED FLOWS

After the research on throughput faimess, packet drop fairness and delay fairness, it is hard
to rank which algorithm is the fairest. Different algorithms get their own characteristic and
they get their own advantage in the specific network parameter. Even in the specific
network parameter simulation, the difference between the specific fairness is very small.
For the network performance improvement, it depends on what applications or services are
required on the link and which network parameter is more important rather than choosing a
specific algorithm. It is because there is no all around algoﬁthm in the fairness simulation.
The simulation also concludes that it is not worth to spend huge computational cost to keep

little improvement on the fairness among the same weighted flows, which the customers in

the commercial market are not interested in.

4.7 WFQ SIMULATION STUDY ON DIFFERENT WEIGHTED FLOWS

The figure 4-13 is based on the simulation 2 that described in the beginning of this chapter.
Flows 0 to 30 use the Poisson arrival model, flows 31 to 60 use the heavy burst Poisson
arrival model, flows 61 to 90 use the Constant Bit Rate UDP IP phone model and flows 91
to 120 use the Constant Bit Rate TCP model. It can be seen that the network throughput is
not conformed to the assigned weight when the shared link 1s just saturated. While the
traffic loading is increasing and the shared link becomes overloaded, the network

throughput 1s conformed to the assigned weight gradually. It is because at the saturated
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loading condition, there are bandwidths left after the 3 higher weighted flows used the
bandwidth on the trunk. All the remained bandwidth is equally shared by all the other
flows with lower weighted settings. In Fhe Poisson model, the point of the three higher
weighted flows 11.2Mbps (the square) and 5.6Mbps (the pointed down triangle) are
overlapping. This means something happened in between 2.8Mbps and 5.6Mbps input
loading. When the input loading is increasing, it will reach a point where the 3 higher
weighted flows are sharing all the weighted bandwidth and no extra bandwidth for the
other lower weighted flows to share, that point is called the faimess situation point. In the
Poisson Model, the fairness saturation point is between 2.8Mbps and 5.6Mbps. Three
points (square, pointed up triangle and pointed down triangle) of higher weighted flows are

overlapped in all the other three models. The faimess saturation point is between 1.4Mbps

and 2.8Mbps.

Four Traffic Arrival Models at 6 loading condition with WFQ
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Figure 4-13 Weighted throughput simulation on four traffic arrival models with six

input traffic loading conditions.
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. 10'Four Traffic Arrival Models at 6 loading condition with WFQ
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Figure 4-14 Weighted packet drop simulation on four traffic arrival models with six

input traffic loading conditions.
As same as figure 4-13, figure 4-14 is based on the simulation‘ 2 that described i the
beginning of this chapter. Flows 0 to 30 use the Poisson arrival model, flows 31 to 60 use
the heavy burst Poisson arrival model, flows 61 to 90 use the Constant Bit Rate UDP IP
phone model and flows 91 to 120 use the Constant Bit Rate TCP model. It can be noticed
that in the CBR/TCP model, there is no packet drop. It is because TCP control the queue
size effectively and it mmvolves packet acknowledgement and retransmission mechanism.
There are 3 points, which are specifically lowered in each set of data. They are the 3 higher
weighted flows, which have higher throughput and lower packet drops. It can be noticed
that when the input loading becomes higher, the link cannot accommodate the loading and
drop more packets. Out of the four models, the CBR/UDP models get the highest packet
drops, heavy burst Poisson with the middle packet drops and the Poisson model gets the
lowest packet drops. This is because the CBR/UDP generate much more incoming packets

in the simulation. It can be noticed that the difference between the higher weighted drop
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and the lower weighted drop is almost constant among all the loading conditions across the

three input loading models.

Four Traffic Arrival Models at 6 loading condition with WFQ
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Figure 4-15 Weighted packet delay simulation on four traffic arrival models with six

input traffic loading conditions.
In figure 4-15, it can be seen that the delay timing is quite fluctuated in the burst Poisson
Model, TCP IP Phone Model and CBR UDP Model. It can be noticed that when the
loading is increasing, the delay time of the lower weighted flows are increasing
dramatically but the delay time of the higher weighted flows almost the same. In the
Poisson Model, the lower weighted flow of WFQ 5.6Mbps and WFQ 11.2Mbps lines
overlap. This indicates that the queue is saturated so the delay doesn’t increase with the
input traffic loading. In all the other three models, the traffic is saturated beyond 2.8Mbps.
Iﬁ the TCP model, the delay times are extremely low even in the extremely overloading

traffic condition. This shows that the TCP siliding window algorithm controls the
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congestion very well. It can alleviate the queue size requirement and lower the delay

dramatically.

4.8 SIMULATION COMPARISON ON WFQ AND WF2Q+

Actually the difference between WFQ and WF?Q+ is just the packet selection policy.
WF2Q+ is improved from WFQ and it uses the smallest eligible virtual finish time first
(SEFF) which increases the faimess and lower the computational complexity. Because the

performance difference between WFQ and WF?Q+ is small, quantified numerical values

are used for comparison instead of the figures.

Average Delay ‘%]‘:l,:l:;ift: Total Drop Average Network Power Power Fairness
Poisson .

WF2Q+ | 0.35 | 0.000505588 | 0.260337778 0 526.1419919 97.80687765
0.7 | 0.499798567 | 0.359253333 4272 0.719130716 99.9526637
1.4 | 0.555571567 | 0.359324444 22499 0.646784906 99.99700244
2.8 0.5676572 0.359857778 60356 0.633938925 99.99930038

WFQ
0.351 0.000472709 | 0.260337778 0 552.6196706 99.66981924
0.7 | 0.499786467 | 0.359413333 4275 0.719474937 99 95167626
1.4 0.5556523 0.359662222 22499 0.64729925 99.99674387
2.8 | 0.567658967 | 0.359857778 60356 0.633937815 99.99904647

Heavy Burst Poisson

WF2Q+ | 035 0.052353677 | 0.333742222 0 7.846003681 75.34053726
0.7 0.5530405 0.359608889 17599 0.650242649 99.9994104
14 0.5685875 0.35984 55427 0.632866984 99.99985332
2.8 [ 0.573424967 | 0.359893333 131101 0.627620751 99.99994529

WFQ
0.35] 0.034827047 | 0.336177778 0 11.01576627 86.9241968
0.7 0.5529668 0.359555556 17602 0.650233892 99.99916658
1.4 | 0.568589933 | 0.359822222 55428 0.632833226 99.99973523
2.8 | 0.573423133 | 0.359875556 131103 0.627592103 09.99977243

UDP CBR 1P Phone

WF2Q+ | 035 0.14697424]1 | 0.344711111 0 1.873782234 88.45806804
0.7 | 0.198778299 | 0.359893333 19174 0.648074655 99.99928113
1.4 | 021321716 | 0.359928889 58481 0.631940112 99.99986849
2.8 | 0.217816065 | 0.359964444 137252 0.626985552 99.99993955

WFQ
0.35}) 0.160776214 | 0.350453333 0 1.994385545 88.63397318
0.7 | 0.198697101 | 0.359893333 19174 0.648165693 99.99966178
1.4 | 0.213238343 | 0.359911111 58482 0.631904987 99.99996744
2.8 | 0.217780029 0.36 137250 0.627047061 99,99999786

Table 4-6 WFQ and WF>Q+ comparison
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Refer to the faimess study in this chapter (Table 4-2, 4-3 and 4-4). It can be noticed that
WEF?Q+ is fairer in the throughput faimess but it is less fair in the delay faimess. In the

packet drop fairness, the performances of the two algorithms are about the same.

In the table 4-5, it can be noticed that the average delay of WEF?Q+ is generally a bit higher
than WFQ. This is because the total packet drop of the WFQ is generally higher. More
packet drop means decreasing in queue size and packet waiting time in the queue. The
average throughput of WFQ is generally high. WFQ with low delay and high throughput,
the network power is also higher. For comprehensive faimess comparison, the network

power fairness is calculated and WF?Q+ is found to be with higher faimess.

MB/s [Normalized Thruputhormalized Drop/Normalized Delay|Normalized Thruput[Normalized Dropl
Poisson Heavy Burst Poisson
WF2Q+ 0.35 0.996662621 4.861446241 0.999056771
0.7 1.259805317 0 2431.576046 2077220314 0
1.4 2.476329665 0 2813.286405 5.42414564 0
238 6.703751498 0 180.1824949 8.802033434 0.366345123
5.6 9.962502773 0.408225905 9.839640127 8.808192394 0.692988778
11.2 8.802033434 0.714271576 9.354822064 8.809556314 0.843343091
WFQ
0.35 0.996662621 3.243670803 0.99530158
0.7 1.256443738 0 2378.927137 2075947039 0
1.4 2.473500476 0 2828.246643 5.415065763 0
28 6.053687365 0 533.1321828 8.802149487 0.365916399
5.6 8.787325456 0.406793534 9.678279713 8.80826737 0.692885823
11.2 8.79783182 0.714172605 9.359171133 8.811311555 0.843250063
Table 4-7a Weighted Fairness Comparison between WFQ and WFQ+
MB/s Normalized Delay | Normalized Thruput ] Normalized Drop | Normalized Delay
UDP CBR IP Phone
WF2Q+ 0.35 296.1783258 1.033581662 1045.0029
0.7 2817.561323 2.224272931 0 2769.495743
1.4 3057.875703 6.226162333 0 1711.053567
28 9.303515438 8.833333333 0.39535839 9.259767405
5.6 9.187945648 8.834215168 0.709301176 9.174681048
11.2 0151233197 8.833773087 (1857766355 9.156241849
WFQ
0.35 185.0235048 1.018580223 993.6737494
0.7 2814.231531 2.220409429 0 2315432076
14 3055.227404 5.83099631 0 2547.933723
28 9.317261738 8.810887412 0.39535839 9.364528969
5.6 9.191763685 8.810026385 0.70940002 9.174303997
11.2 9.156497665 8.820035115 0.85771786 9.157417296

Table 4-8b Weighted Fairness Comparison between WFQ and WF*Q+
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Because WFQ and WF2Q+ are the weighted queuing algorithms, the weighted faimess is
also interested. The weighted faimess is to measure how fair the algorithm assigns network
resources according to the preset weighted value. The algorithm with higher weighted

faimess means that it treats the higher paid user and the low paid user fairly.

In table 4-6, the normalized value is used for weighted fairmess comparison. The

normalized value is calculated by the formula below:

) @1
Hy

4. is the normalized value, the value can represent throughput, drop or delay. ;T,: 1s the

average of all higher weighted flow values and ;—1: is the average of all lower weighted

flow values. In table 4-6, the weighted fairness is studied by using the normalized value in
three traffic arrival models and six loading conditions. In the Poisson Model, the weighted
faimess of WF>Q+ in throughput, packet drop _and delay are higher than WFQ). In the CBR
UDP IP Phone Model, the fairness of WF2Q+ in throughput and packet drop is higher than
WFQ. The delay-weighted faimess in the [P Phone models are equally fair for the two
algorithms. In the Heavy Burst Poisson Model, the weighted fairness of delay and
throughput are equally fair but WF?Q+ is fairer in the drop-weighted faimess. In the
throughput and delay weighted fairness of the Heavy Burst Poisson model, 1t 1s noticed
that the WF>Q+ algorithm is fairer in the low loading condition (0.35 to 1.4Mbps). In the

high loading condition (2.8 to 11.2Mbps), the WFQ algorithm 1s fairer.

After the weighted faimess study, there is no best solution. The weighted performance of
queuing algorithm depends on the traffic arrival model, loading condition and the specific

interested network parameter. For the general sense, WFQ+ algorithm is fairer in the

weighted simulation.

60



Improved Queuing Algorithms in QoS Enabled Internet Node

CHAPTER 5 WEIGHTED DEFICIT

PROBABILITY DROP

The simulations in chapter 4 show WF?Q and WF?Q+ are extremely fair on the same
weighted flows. They require high computation power to compute the flow state variables.
Recent research on queuing algorithm focuses on fairness with different traffic conditions
and reduction of the computation requirement. Is the faimess among the same weighted
flows the highest important factor in designing the algorithm? Are the users of the
network really concern about this fairness? Is it cost-effective to allocate computer power
in the same weighted flow fairness? In the commercial arena, the users paid the same
monthly fees, they do not concern too much on the faimess on the network quality among
the other users who paid the same money. They concern more on how large the quality
different if they paid more and ensure the difference between the high paid and low paid
user. That means the network resources need to be fairly proportionate according to the

preset weight. This is the faimess among different weighted flows. The queuing algorithm

design has to be based on the “quality fairness” in this sense.

In order to lower the computation réquirement on the algorithm, the algorithm-design has
to be based on dropping algorithms such as RED and FRED. They share the congestion
control responsibility between the network layer and the transportation layer. The TCP
mechanism in the transportation layer uses sliding window and the shrink of the window
size is activated by packet drops. It is a widely deployed protocol using in the Internet
nowadays. It can distribute the computational power from the network process node itself

to the user’s computer that using the network.
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Stiliadis and Varma [36] proposed the following in order to minimize the end-to-end delay

in the network server. The ideal algorithm needs to include the following attributes:

Insensitivity to traffic patterns of other sessions: Ideally, the end-to-end delay guarantees
for a session should not depend on the behaviour of other sessions. Delay bounds that are
independent of the number of sessions sharing the outgoing link. Ability to control the

delay bound of a session by controlling only its bandwidth reservation.

The algorithm design will be based on the above properties. It is called Weighted Deficit
Probability Drop {WDPD) algorithm that can provide a fair proportion of a specified
shared bandwidth. It keeps the quantum values in the en-queuing module with the packet
being dropped according to the corresponding value of a specific flow. The flow with a
quantum size larger than the corresponding tail packet size will force the incoming packet
to be dropped. This algorithm extends the idea of the deficit round robin but the definition
of quantum is changed. The meaning of quantum in the deficit round robin is used to de-
queue the packet and the flow. The flow with larger quantum can de-queue a larger packet
or few smaller packets. In the proposed algorithm, the quantum is used to drop the tailing
packet at the end of the queue. The flow that has a larger quantum will be dropped earlier.
Hence, the corresponding flow throughput can be reduced. This quantum mechanism is
used to ensure the algorithm worked berfectly in the vanable packet network such as the
Ethernet. In the constant cell size environment, like the ATM, the quantum calculation

algorithm can be eliminated to further reduce the required computation.

The packet in each flow is dropped according to the pre-calculated probability. This
dropping probability is calculated at the flow setup stage. When the specified flow is

random dropping, it utilizes the pre-calculated probability which increasing the dropping
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deficit counter with the pre-defined quantum value. The detail of the algorithm flow is

shown below.
Initialization:

remain bandwidth=total throughput,
remain weight= total weight;
Jor (i = 0; i <=total node, i++)

Slagfij=1;

Consumed Bandwidth=0;
Consumed Weight=0,
flagi=1;
Jor (i = 1, i <=total node; i++) {

if flowfi] weight/(remain weight) *(remain bandwidth)>=fs{i] (request bandwidih)

*(traffic arrival factor) && (flagfi]==1)) {

fs_[i].dropprob=0;
Slag{i]=0;

flagi=0;
(consume bandwidth)+=f5{i] (request bandwidth) *(traffic arrival factor)

(consumed weight)+=fs{i] weight,

do{

/
}

(remain bandwidth)-=(consumed bandwidth)
(remain weight)-=(consumed weight),
} while (flagi==0)
Sor (i = 1, i <=totalnode; i++) {
if f3[i] . weight/(remain weight) *(remain bandwidth < f5[i] (request bandwidth)* (traffic
arrival factor) && (flagfi]==1)}) {
f3{i].dropprob=1-f3[i] weight/(remain weight) * (remain bandwidth)/(fs i].(request
bandwidth) *(traffic arrival factor));
}
/
Sfor (i = 1 i <=totalnode; i++)
{DeficitCounter[i]=0;}
En-queuing:
Sflowld=ExtractFlow(pkt),
u = Random Number generated between (0 to 1)
if (u <= fs[flowld] prob) {

fs[flowld] (deficit counter)+=Quantum
droptype = DTYPE UNFORCED

/

if (5[flowld].(flow length)>=fs[flowld].(flow length limit)) {
droptype = DTYPE FORCED

/

FreeBuffer(),

Enqueue(flowld pkt),
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De-queuing:
if (droptype == DTYPE_FORCED}
{drop(pkt);}

else if (droptype == DTYPE_UNFORCED) {
while (fs{flowld].(deficit counter)>(the size of tail packet at flowld)) {

drop(pkt);
deficit counter=deficit counter - (the size of dropped packet)}

/
}

By using the above algorithm, the weighted random dropping probability can be computed.
Figure 5-1 and 5-2 show the details operation of the weighted deficit probability drop.

In a Markov M/M/1/K queue the dropping probability, P can be calculated by:

(1-p)p"
= G-

where p is the traffic intensity and is given by A /x4, A4 is the traffic arrival rate, u is the
traffic departure rate and K is the buffer size in packet. | Dividing from both the

denominator and the nominator of equation 5.1 by p**!, the equation can be simplified as:

J7i

A
p=—t (5.2)
1_(£)K+l
A

The traffic arrival rate must be greater than the traffic departure rate, that is #/A <1, and K

is being a large number, then equation 5.2 becomes:
p=1-£ (5.3)

The initialisation part of the algorithm employs the above equation to compute the
dropping probability for each flow, which will also assign bandwidth to the flow with
higher weight first, followed by those with lower weight. If the computed weighted-
bandwidth is larger than the requested bandwidth in the higher weighted flows, then the

algorithm will provide more bandwidth to the lower weighted flow.
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Set remain bandwidth to total
bangwidth of the link and set remain
weight to the total waight of all fiows

Set the consumed weighted and the
consumed bandwidth to zero

’ Set flagfi)=1 for all ﬂowsI

(] ﬂuwji].wei_%htl(remaln waeight)*(rema
bandwidth)>= s}i}.(fequesi bandwidth)
r{traffic amival {actor)?

Set fs[ij.dropprob to 0

Set flagli) to ©
Increment (consume bandwidth) by fs[i].{request bandwidth)x{traffic amival factor)
Increment {consumed weight) by fs[i].weight

'

:-'r Increment i by 1 _I

Decrement (remaln bandwidth) by {consumed bandwidth)
Decrement (remain welght) by (consumed weight)

-

g Is[i). weightx{remaln bandwidth)/(remain weighl
fs(i). (request bandwidth) x (traffic arrival factor} and
lag(i} equal 12

is[i].dropprob=1-{fs[i].weight/{remain weight)x[{remain
bandwidth)x(traffic amrival factor)}/fs[i].(request bandwidth

4—( Increment Eby 1 ]

Set 1s{i].{DeficitCounter) for all flow {0 Zero

Figure 5-1 The flow chart represents the initalization module of the weighted deficit
probability drop {(WDPD)
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'

When a Packet come to a
specific flow

Set U to a random number
nenerated between 0 to 1

L) less or equal than
fs[i].dropprob calculated in
he initialization part

4
Enqueus the tncrement fs[i].(DeficitCounter) by a specific
packet Quantum

If fs[i].(DeficitCounter) > {The size of tail packet at the specific ﬂo‘L')

Y
Drop the tail packet I

4
Decrement the fs[i].(DeficitCounter
by the size of the dropped packet

Figure 5-2 The flow cheat represents the en-queue and de-queue modules of the
weighted deficit probability drop (WDPD)

For example, consider that there are thirty demand flows sharing a fixed 10Mb/s channel
with all the requests at a same 1.4Mb/s, where three of the flows are with a weighting of
ten times higher than that of the remaining twenty-seven ﬂows. Using the proposed
algorithm, the three flows of higher weighting were given a bandwidth of 1.4Mb/s each
while the remaining twenty-seven can only have a limited bandwidth of 0.2148Mb/s each.
The dropping probability for the higher and lower weighted flows are 0 and 0.8466
respectively. The probability-dropping algorithm can avoid congestion in the node and
competing for bandwidth. Most of the calculations are done in the initialization stage so

the computation power needed to en-queue and de-queue 1s relatively low.

When a new packet comes to a specific flow, it is marked to drop with a probability. The

following is an example to illustrate the operation of WDPD.
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Packet Queurs Deficit Counter
#1 Empty 750 200 0
Weight 1.
Dropypring Probaby = O
#2 Enmpry 500 1]
Weight 0.1
Dropping Probabifty = { BASG
#3 Enpty | 100 200 500 100 0
Weight 0.1
Dropping Probabifty =0_E466
f4 Empty 700 180 i}
Weight 0.)
Oropping Probabiity =0.8466 '
Quanfum = 250
Increment the Deficit Counter by
Quantum with probability O

Figure 5-3 Weighted Deficit Probability Drop: Stage 1

In figure 5-3, the packet with size 750 just armive flow 1, dropping probability is zero so the

deficit counter remains the same.

Packet Queues Deficit Counter

#1 Empty 750 200 1]

Weight 1.0

Drvopping Probahilty = ¢

#2 Enpry 500 0

Weight 0.1

Drupping Probabsiicy = 0. B466

#3 Errpy | 100 200 500 100 0

Weight 0.1

Dropping Probability =0.8466

#4 50 700 180 0

Weight 0.1

Druppring Probability =0.8466

bl Quantum = 250

Increment the Deficit Counter by
Quantum with probability 0.8466

Figure 5-4 Weighted Deficit Probability Drop: Stage 2

In figure 5-4, the packet with size 50 just arrive flow 4, the dropping probability is 0.8466.

The new come packet luckily within the other 15.34% is not marked to drop. The deficit
counter remains the same.

In figure 5-5, the packet with size 50 just arrive flow 3, the dropping probability is 0.8466.
It is unlucky, the packets are marked to drop. The deficit counter increases 250, deficit

counter > 50+100 so the last 2 packets in flow 3 are marked to drop.

In the WDPD, the specific quantum number of each flow is chosen to be the mean packet

size of that particular flow. This information is needed before the flow set-up, in order that
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Packet Queues Deficit Counter
#1 Enpty 750 200 0
Weight 1.0)
Dropging Probabitty = 0
#2 Empty 500 0
Weight 0.1
Dyoppittg Probubilty = 0, 8466
H#3 50 100 200 500 100 250 e
Weight 0.1
Dropping Probability =0.8466
#4 50 700 180 ]
Weight 0.1
Dropping Probability =0.8466
Quzrtum = 250
inerement the Deficit Coumter by
Quanmum with probability 0.8466

Figure 5-5 Weighted Deficit Probability Drop: Stage 3
the algorithm need can be operated without an added burden to calculate the mean packet

size of each flow from the previous queuing record. The traffic arrival factor depends on
how the packet is arrived.

The traffic arrival factors (a) are found by:

_H
Hoo (5.4)

H is the expected throughput and ;T, is the statistical average of the flow throughput in

a

the arrival model of the tail drop queuing simulation.

The average throughput Z can be found by:

P-P-P

p
T, -1, (5.5)

T, is the start time of the considered period, 7 is the finish time of the considered period.
P, is the number of packet arrtval to the flow in the considered period, P, is the number of
j)acket drop in the flow and P, is the number of packet servicing in the queue. WDPD uses

the traffic arrival factor (a) to estimate P,, P,can be measured in the queue. It uses the

dropping probability to control P,and hence controls the average throughput of a specific
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flow. Because the dropping probabilities of different weighted flows are different, it can

control the fairness among different paid users accurately.

The implementations of packet scheduling algorithms are different, so the complexity is
different as well. The complexity directly influences the cost of the hardware
implementation especially in the high-speed networking environment. In the queuing
algorithm, the complexity can be divided into three scopes: Timestamp Calculation

Complexity, En-queuing Complexity and De-queuing Complexity.

The proposed algorithm is different from the other weighted queuing algorithm such as
WFQ and WF’Q+, it needs not to maintain the timestamp and the flow state variables,
hence lower the computational requirement significantly. There is no special mechanism
for WDPD to de-queue, all the outgoing flows compete for bandwidth. It is because the
traffic is already shaped at the incoming queue. When the packet comes to a specific flow,
the pointer will point to that flow. In the de-queue complexity, it is totally dependant from

number of flows. That is why WDPD get the order of 1 in complexity.

The complexities of different queuing algorithms are compared below:

PGPS [WFXQ+  |[LFVC[34] WFQ |[FBFQ [7] SCFQ |[DRR [VC WDPD
O(N) {O(logN) __ |O(loglogN) O(N) _|O(logN) O(logN) _|0(1) _|O(logN) __jO(1)
Table 5-1 Complexity Comparison

In the table 5-1, N is the maximum number of connections that can share an output link.

The WDPD and DRR with the same complexity are the low complexity algorithms.

The actual computational complexity in the hardware depends on the design
implementation. In router, the firmware stores‘in flash memory. After it is booted up, the
required part of the kernel will load into the DRAM. The firmware program is executed by
a CPU in the router. For this kind of implementation, the computational complexity can be

calculated by how many instructions that involved in en-queue and de-queue routines and
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how many CPU cycle will consumed for each specific instruction. For our proposed
algorithm WDPD, the main workload is on the initialization part. The instruction in the

routine en-queue and de-queue modules are even less than the basic RED algorithms.

In level 3 switch implementation, the packet forwarding decision is made by the hardware
gate logic in the Application Specific Integrated Circuit (ASIC) instead of made by the
" CPU. The actual computational complexity is really depends on the FPGA designs in the
specific ASIC.. Although the actual computational complexity is high tb predict, it really
depends on the complexity of the routine parts in the algorithm itself. Our proposed
algorithm is expected to have the actual computational complexity that higher than per

flow tail drop queuing and basic round robin but less than the RED and VC. The

computational complexity will be similar to DRR.
5.1 SIMULATION ON WDPD

Three different simulations are performed for WDPD performance study. All the
simulations are based on the topology that introduced in the beginning of chapter 4 and
figure 4-1. On the first simulation of this chapter which studies on the fairness among the
same weighted flows. 30 flows with equal weight share a 10Mb/s link with 1500 packet
buffer space and 10ms delay for all the links. Four different incoming traffic loadings -
0.35Mbps, 0.7Mbps, 1.4Mbps and 2.8Mbps are studied. The second and third simulation
of this chapter study on the fairness among different weighted flows. In second simulation,
30 flows share a 10Mb/s link with 3 tenth flows (flow number 10, 20 and 30), which
weighted 10 times more than the other 27 flows. Six different incoming traffic loadings -
0.35Mbps, 0.7Mbps, 1.4Mbps, 2.8Mbps, 5.6Mbps and 11.2Mbps are studied. On the third
simulation, different weighted pattern are used. 60 flows share a 10Mb/s link with 30 even

numbered flows, which weighted 10 times more than the other 30 odd numbered flows. Six
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different incoming traffic loading — 0.175Mbps, 0.35Mbps, 0.7Mbps, 1.4Mbps, 2.8Mbps
and 5.6Mbps are studied. WDPD is studied with 3 different traffic arrival factors, 1, 0.5
and the specific traffic arrival factor. In all these simulations, all algorithms are studied
‘with four traffic arrival models and the specific traffic arrival factor are found below: (1)
Poisson traffic of 4ms idle time and 4ms burst time with a traffic arrival factor of 0.7552,
(ii) Heavy burst Poisson traffic of 4ms idle time and 100ms burst time with a traffic armval
factor of 0.9605, (iii) Constant bit rate [P phone model with a traffic arrival factor of

1.0013 and (iv) Constant bit rate with TCP model with a traffic armival factor of 1.00114.
5.2 SIMULATION RESULTS ON WDPD AND FAIRNESS COMPARISON

AMONG SAME WEIGHTED FLOWS

Delay Fairness, Drop Fairness and Throughput Fairness of ten queuing algorithms are
compared. The proposed WDPD is simulated with three traffic arrival factors which are

0.5, 1 and the specific traffic arrival factor for the corresponding traffic type. All the flows

in this simulation are using the same weight.

Table 5-2 indicates that WDPD with traffic arrival factor 0.5 is faifer than WDPD with the
specific traffic arrival factor and with the factor 1.0. It out-performs VC, traditional tail
drop, SFQ, DRR. It is fairer then RED and FRED in most of the case. The WFQ and
WEF2Q+ are s.pecially designed to provide fairness among the same weighted flows with
high computational complexity. The WDPD is specially designed to provide a fair
weighted proportion of a given bandwidth among different weighted flows with low
computation complexity. The WDPD is less fair than the FQ, WFQ and WEF2Q+ among the
same weighted flows but it out-performs many other low computation complexity
algorithms in faimess. In table 5-3, the common statistical tools - standard deviation is
used in the further analysis of the fairness among the same weighted flows. Even different
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evaluation tools are used, the results are much or less the same as table 5-2. WDPD with
traffic arrival factor 0.5 is the fairest among the other traffic arrival factor. it is out-perform
VC, tail drop, SFQ, DRR and comparable to FRED, RED. It is still less fair then WFQ and

WF2Q+ in the faimess among the same weighted flows.

In table 5-4, the Jain’s Fairness of Delay can be studied. The difference of faimess Between
all ten algontthms is very small. In general FQ is the fairest algorithm and SFQ is the worst.
It can be concluded as follow: VC > Tail > WDPD 0.5 > FRED > RED > WDPD § >
WDPD 1 > FQ > WFQ > WF2Q+ > DRR > SFQ. In this simulation, VC is the most fair on

delay, the packet dropping algorithms are out-performed the WFQ and WF2Q+.

In the table 5-5, the packet drop faimess is studied. In the dropping fairness, the ranking of
algorithms can be generally summarized as follow: FRED > RED > WDPD 0.5 > WF*Q+

>FQ>WFQ>WDPD S>WDPD 1 >VC>TAIL > DRR > SFQ.

VC WFQ WF2Q+ FQ SFQ DRR

Mb/s
Little 0.35 99.99 99.991 99.991 99.991 99.991 | 99.991
Burst 0.70 99.95 100.000 100.000 100.000 | 98.429 | 98.933
Poisson 1.40 99.93 100.000 100.000 100.000 | 91.418 | 97.467
2.80 99.92 100.000 100.000 100.000 | 91.381 | 97.449
Heavy 0.35 | 99.997 99.997 100.000 99.997 99.997 | 99.997
Burst 0.70 | 99.417 100.000 100.000 100.000 | 91.082 | 97.451
Poisson 1.40 | 99.654 | 100.000 100.000 100.000 | 91.196 | 97.296
2.80 | 99.409 | 100.000 100.000 100.000 | 91.290 | 97.272
Constant | 0.35 | 99.984 99,984 99.999 99.984 99.811 | 99.984
Bit Rate 0.70 | 99.942 100.000 100.000 100.000 | 91.436 | 97.511
IP Phone 1.40 | 99.955 100.000 100.000 100.000 | 91.409 | 97.494
2.80 | 99.961 100.000 100.000 100.000 | 91.411 | 97.503
Constant | 0.35 | 99.982 99.982 99.982 99.982 | 99.982
Bit Rate 0.70 | 99.994 | 100.000 100.000 | 94.395 | 97.590
TCP 1.40 | 99.994 | 100.000 100.000 | 91.600 | 97.731
2.80 | 99.994 100.000 100.000 | 91.600 | 97.731
Average 99.879 99.997 99.999 99.997 94,152 | 98.211

Table 5-2a Jain’s Fairness of Throughputs among ten queuing algorithms
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[ Tail | FRED | RED | WDPD_1 | WDPD 0.5 | WDPD_S
Mb/s
Little | 0.35 99.991 | 99.9909 | 99.991 | 99.975 99.988 99.98834
Burst | 0.70 99.950 | 99.9964 [ 99.930 | 99.836 99.989 99.93423
Poisson | 1.40 99.854 | 99.994 | 99.917 | 99.605 99.853 99.74676
2.80 99.839 | 99.9907 | 99.915 | 99.688 99.839 99.72807
Heavy | 035 99.997 [ 99.997 |99.997 | 99.987 99.996 99.99375
Burst | 0.70 99.417 | 99.999 | 99.854 | 99.914 99.998 99.93041
Poisson | 1.40 99.288 | 99.998 [99.925 | 99.890 99.991 99.90944
2.80 98.771| 99995 [99.897 | 99.857 99.988 99.87094
Constant | 0.35 99.984 | 99.988 | 99.982 | 99.980 99.985 99.979
BitRate | 0.70 99.918 | 99.999 | 99.946 [ 99.913 99.999 99.913
IP Phone | 1.40 99.877 | 99.999 | 99.884 | 99.928 99.988 99.928
2.80 99.892 | 99.999 | 99.861 | 99.848 99.983 99.848
Constant | 0.35 99.982 | 99.9904 { 99.991
Bit Rate | 0.70 99.985 | 98.6803 | 96.836
TCP | 1.40 99.985 | 99.0617 | 97.710
2.80 99.985 | 98.9978 | 97.428
Average 99.795 | 99.792 | 99.442 [ 99.868 99.966 99.898

Table 5-3b Jain’s Fairness of Throughputs among ten queuing algorithms

VC WFQ | wWF2Q+ | FQ SFQ DRR

Mb/is | x10° | x10” x107 x10” x107 x10°

Little 035 | 2.52 2.52 2.52 2.52 2.52 2.52
Burst 0.70 | 8.16 0.51 0.30 0.55 45.76 38
Poisson 1.40 | 10.02 | 045 0.24 0.45 111.22 59

2.80 | 1063 | 0.39 0.28 0.42 111.49 59.23

Heavy 0.35 1.97 1.97 0.75 1.97 1.97 1.968

Burst 0.70 | 28.02 | 037 0.31 0.37 113.55 59.18

Poisson 1.40 21.57 0.40 0.29 (.43 112.79 61.02

280 | 2823 | 039 0.22 0.42 | 112.15 61.31

Constant 035 | 4.58 4.58 1.22 4.58 15.30 4.578
Bit Rate 070 | 8.82 0.22 0.22 024 | 111.13 58.5

IP Phone 1.40 | 7.79 0.20 0.18 0.18 111.33 58.7

280 | 7.20 0.00 0.14 0.14 111.31 58.6

Constant 0.35 4.78 4.78 4.78 4.78 4.776

Bit Rate 0.70 | 3.32 0.43 0.53 103.36 66.66

TCP 1.40 | 332 0.43 0.53 128.45 52.72

2.80 | 3.32 0.43 0.53 128.45 52.72

Table 5-4a Standard Deviation of Throughputs among ten queuning algorithms
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[ Taill | FRED | RED | WDPD 1 WDPD 0.5 | WDPD S
Mbss x10° | x107 | x107 x10” x107 x107
Little 035 252 | 252 2.52 4.04 2.86 2.86
Burst 0.70 8.16 | 2.05 9.21 8.56 3.90 7.19
Poisson 1.40 14.00| 2.69 9.99 11.56 13.89 12.22
2.80 14.71 | 3.35 | 10.10 9.62 13.96 11.99
Heavy 035 1.97 1.97 1.93 3.75 2.17 2.68
Burst 0.70 28.02 | 1.32 | 13.25 9.56 1.55 8.98
Poisson 1.40 3099 | 149 9.48 10.80 3.41 10.19
2.80 4083 ) 238 | 11.14 12.29 4.09 12.12
Constant | 0.35 4.58 | 3.81 4.57 4.87 4.42 4.89
Bit Rate 0.70 10.51 0.97 8.08 10.07 1.41 10.06
IP Phone | 1.40 1285 ] 1.01 | 11.85 9.08 4.02 9.06
280 1207 ] 0.88 | 12.95 13.07 4.80 13.06
Constant 0.35 4.78 3.49 332
BitRate | 0.70 5.22 | 48.84 | 76.50
TCP 140 522 | 41.11 | 64.75
2.80 522 | 42.56 | 68.80

Table 5-5b Standard Deviation of Throughputs among ten queuing algorithms

VC WFQ | WF2Q+ FQ .| SFQ | DRR

Mb/s

Little 035 | 99.634 99.634 97.956 99.634 | 99.682 | 99.690
Burst 0.70 | 99.998 99.953 99.954 99.954 89.893 | 93.433
Poisson 1.40 | 99.996 99.997 99.997 99.997 99.649 | 98.461
2.80 | 99.999 99.999 99.999 99.999 | 99.986 | 98.293

Heavy 035 | 99.999 89.130 86.826 92.327 13.235 | 16.269
Burst 0.70 | 99.995 100.000 | 100.000 | 100.000 | 97.958 | 98.587
Poisson 1.40 | 99.999 100.000 | 100.000 [ 100.000 | 99.989 | 98.251
2.80 [ 99.998 100.000 | 100.000 | 100.000 | 99.994 | 98.582

Constant | 0.35 | 99.998 93.544 94.344 93.647 19.809 | 24.332
BitRate | 0.70 [ 99.999 100.000 99.999 99.999 99.156 | 98.531
IP Phone | 1.40 ( 100.000 | 100.000 | 100.000 | 100.000 | 99.991 | 98.319
2.80 [ 100.000 | 100.000 [ 100.000 [ 100.000 | 99.998 | 98.633

Constant | 0.35 | 99.997 98.819 98.739 | 81.095 | 87.213
Bit Rate 0.70 99.998 100.000 100.000 | 93.735 | 97.222
TCP 1.40 90,998 100.000 100.000 | 93.666 | 97.262
2.80 99.998 100.000 100.000 | 93.666 | 97.262

Average 99.975 98.817 98.256 09.018 86.344 | 87.521

Table 5-6a Jain’s Fairness of Delay among ten queuing algerithms
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[ Tail | FRED | RED | WDPD 1 | WDPD 0.5 | WDPD S
Mb/s
Little | 0.35 99.634 | 99.634 | 99.634 | 99.802 99.790 99.790
Burst | 070 99998 | 99.999 | 99.999 | 99.669 99.997 99.819
Poisson | 1.40 99.994 | 99.998 | 99.998 | 99.347 99.971 99.711
2.80 99.993 | 99.997 | 99.997 | 99.259 99.926 99.648
Heavy | 035 99.999 | 99.999 [ 99.998 | 99.664 99.999 99.996
Burst | 0.70 99.995 | 100.000 | 100.000 | 99.928 99.999 99.989
Poisson | 1.40 99.997 | 99.999 | 99.999 [ 99.905 99.995 99.973
2.80 99.995 | 99.998 | 99.998 | 99.922 99.995 99.922
Constant | 0.35 99.998 | 99.999 | 99.999 | 99.996 99.997 99.996
BitRate | 0.70 99.999 | 100.000 | 100.000 | 99.970 99.999 99.965
IP Phone | 1.40  99.999 | 100.000 | 100.000 [ 99.917 99.995 99.921
2.80 100.000 | 100.000 | 100.000 | 99.919 99.993 99.915
Constant | 0.35 99.997 | 99.805 | 99.719
Bit Rate | 0.70 99.997 | 99.978 | 99.970
TCP | 1.40 99.997 | 99.982 | 99.983
2.80 99.997 | 99.958 | 99.978 -
Average 99.974 | 99.959 | 99.954 | 99.775 99.971 99.887

Table 5-7b Jain’s Fairness of Delay among ten queuning algorithms

vVC WFQ WF2Q+ FQ SFQ DRR

Mb/s '
Little 0.35 0.000 0.000 0.000 0.000 0.000 0.000

Burst 0.70 | 10.176 | 10.233 10.286 10.255 86.037 72.605
Poisson 1.40 | 27.905 | 34.124 34.022 34.023 | 210.113 108.657
2.80 [ 51.086 | 58.454 58.391 58.413 | 218.140 | 120.551
Heavy 0.35 | 0.000 0.000 0.000 0.000 0.000 0.000

Burst 0.70 | 52.271 5.965 5.986 5.965 211.753 113.371
Poisson 1.40 | 36.202 | 18.646 18.819 18.614 | 209.525 117.660
2.80 | 61.699 | 36.337 36.306 36.337 | 224.400 120.580
Constant | 0.35 [ 0.000 0.000 0.000 0.000 28.008 0.000
Bit Rate 0.70 | 13.520 [ 8.913 8.925 9.006 209.554 109.171
[P Phone | 1.40 | 20.640 | 16.785 16.906 16.906 | 210.968 108.710
2.80 | 27.339 | 22.791 22.825 22.825 | 212.340 110.426

Constant | 0.35 0.000 0.000 0.000 0.000 0.000
Bit Rate 0.70 | 0.000 0.000 0.000 0.000 0.000
TCP 1.40 | 0.000 0.000 0.000 0.600 0.000
2.80 | 0.000 0.000 0.000 0.000 0.000

Table 5-8a Standard Deviation of packet drop among ten queuning algorithms
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| Tail | FRED | RED | WDPD 1 | WDPD 0.5 | WDPD §
Mb/s
Little 0.35 0.000 | 0.000 | 0.000 4.738 0.000 0.000
Burst 0.70 10.176 | 8.414 | 11.418 13.358 11.305 10.778
Poisson | 1.40 22.868 | 31.959 | 18.513 28.775 24.670 26.023
2.80 53.646 | 52.957 | 44.237 56.373 54.420 52.849
Heavy | 0.35 0.000 | 0.557 | 0.525 5.574 0.000 2.393
Burst 0.70 52271 ) 7.909 | 26.123 16.940 6.636 15.573
Poisson | 1.40 56.509 | 14.600 | 18.856 27.120 17.669 26.420
2.80 88.266 | 28.567 | 31.222 32.366 32.821 35.586
Constant | 0.35 0.000 | 3.429 | 5.392 4,920 0.000 4.945
Bit Rate | 0.70 14.277 | 10.891 | 12.834 17.196 10.281 17.182
IP Phone | 1.40 25.729 | 13.739 | 23.484 19.028 15.422 18.808
2.80 33928 16.937 | 31.567 23.173 18.377 23.011
Constant | 0.35 0.000 | 1.619 | 1.414
BitRate | 0.70 0.000 | 1.203 | 1.939
TCP 140 0.000 | 1.114 | 1.791
2.80 0.000 | 0.871 | 1.565

Table 5-9b Standard Deviation of packet drop among ten queuning algorithms

5.3 FAIRNESS AMONG THE SAME WEIGHTED FLOWS IN THE WEIGHTED
LOADING SITUATION

In this simulation, the fairmess among the same weighted flow are compared in the
weighted loading situation. Two different flow weighted patterns described in the section

of “simulation on WDPD” are used.

In figure 5-6, 0 to 30 flows use the Poisson arrival model, 31 to 60 flows use the heavy
Poisson arrival model and 61 to 90 flows use the Constant Bit Rate. The 9 tenth flows (the
points that distribute at the upper part of the graph) are the flows which weighted 10 times
more than the rest 81 lower weighted flows (the points that concentrate at the bottom part
of the graph). WFQ and WF*Q+ demonstrated a better fairness among the flows but with a
much higher computation cost. The lower weighted flows of WFQ and WF?Q+ show two
completely flatness lines (the circle point and the cross point), that means they are very fair

among the same weighted flows. WDPD with traffic arrival factor 0.5 is the most
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fluctuated one. The WDPD with traffic arrival factor 1 and with the specific traffic arrival
factor are in between the two groups. For the fairness between the higher weighted flows,

it is hard to compare by using figure 5-6 with only nine reference points.

In figure 5-7, three traffic models are used in this simulation. Flows 0 to 60 uses the
Poisson model, flows 61 to 120 uses the heavy burst Poisson model and flows 121 to 180
uses the UDP/CBR IP phone model. WF2Q+ and WFQ show two straight lines which
imply they are very fair. WDPD is relatively more fluctuated. It is hard to tell which traffic

arrival factor is the fairest among the WDPD algorithms. The numerical values need to be

used for quantified comparison.

In Table 5-6, the average row is calculated by averaging the Jain’s Fairness Indexes of all
high weighted flows and all low weighted flows in the specific weighted pattern. The

Jain’s Throughput Faimess Index is almost the same with the two different weighted

patterns. The fairness order of the algorithm is the same in both patterns. WF2Q+ is the
algorithm with the best faimess index followed by WFQ. In WDPD fairness, traffic arrival
factor 0.5 is the best followed by the specific traffic arrival factor and then traffic arrival

factor 1.

Actually it is hard to rank the delay faimess order in table 5-7, the difference in faimess is
very small. It can be summarized that WDPD 0.5 > WDPD S > WDPD 1 > WFQ >
WEF?Q+ in simulation 2 and WDPD 0.5 > WFQ > WDPD S > WF’Q+ > WDPD 1 in
simulation 3. This fairness order shows that WDPD 0.5 is out perform WFQ and WF 2Q+
in the delay fairness. WDPD with other traffic arrival factors are comparable to WFQ and

WF2Q+ in delay fairness. This simulation shows that the weighted pattern will affect the

delay fairness.

77



Thruput (Mb/s)

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0

Improved Queuing Algorithms in QoS Enabled Internet Node

Three Traffic Arrival Models for 5.6Mb/s flows
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Simulation 2
WFQ WF2Q+ WDPD 1
High weighted flow Low weighted flow|High weighted flow Low weighted flowjHigh weighted flow]

Mb/s x10° x10° x10° x10° x10°
Little |0.35 99.9996247 99.99009636 99.9996247 99.99009636 99.98634107
Burst | 0.7 99.9834978 09.99984078 99.9834978 99.99990992 99.99128586
Poisson| 1.4 99.99983966 99.99009636 99.99506129 99.99996285 99.94546347
28 99.98774165 99.99979492 99.98774165 99.99990654 99.9419396
5.6 99.99976595 99.99959763 99.99994576 99.99988677 99.84712733
11.2] 99.99996207 99.99957076 99.99998601 99.99991207 99.99240442
Heavy |0.35] 99.99977437 99.99657019 99.99977437 99.99927575 99.99894182
Burst | 0.7 99.99960453 09.9998715 99.99960453 99.99996539 99.99724202
Poisson| 1.4 99.99958928 99.99982335 99.99958628 99,99994135 9999556901
28 09.99996208 99.99969453 99.99996203 99.99991207 09.99747299
5.6 99.9999681 09.99974216 99.99995809 99.99991207 99.99773738
11.2 99.9999504 99.99974136 99.99995832 99.9998954 99.9886415
Constant| 0.35 99.9989542 99.98562039 09.9989542 99.99865553 99.99423327
Bit Rate| 0.7 99.99566295 199.99996921 99.99566295 100 99.99339785
TP Phone] 1.4 99.99634459 99.99989107 99.99634459 100 99.99855809
2.8 100 99.99997517 100 100 9999015091
5.6 100 100 99.99999801 100 09.99674921
11.2 100 99.99985538 100 100 99.99367394

Average 99.9977776 99.99841377
Simulation 3
WFQ - WF2Q+ WDPD _1
High weighted flow Low weighted flow]High weighted flow Low weighted flow|High weighted flow

Mb/s x10° x10° X10° x10° x10°
Little [0.175(  99.9950307 99.99490705 99.9950307 9999725847 99.99584363
Burst [0.35( 99.98897148 99.99990689 99.98897148 99.99882719 99.96830482
Poisson| 0.7 99.99979165 99.99920052 99.99986555 99.99857064 99.78044137
1.4 99.99991722 99.99920052 99.99994875 99.99857064 99.71845102
2.8 99.99993728 00.99897415 99.9999837 99.9991975 99.69205204
5.6 99.9999071 99.99897415 99.99995666 99.99896898 09.69402567
Heavy [0.175] 99.99511761 99.99625873 99.99511761 99.99972667 99.99594798
Burst |0.35] 99.99987491 99.99897415 99.99993545 100 99.96642107
Poisson| 0.7 99.9999058 99.99944692 99.99993708 99.99857064 09.8613576
1.4 99.99993465 99.99897415 09.9999837 99.99857064 99.78899463
28 99.99992772 99.99920052 99.99992156 99.998968938 99.83010273
5.6 99.9999315 09.99858138 99.99998371 99.9991975 99.89902844
Constant)(.175]  99.96906931 99.97066749 99.96906931 99.9999396 09.97674247
Bit Rate|0.35] 99.99992325 100 09.99995313 100 99.95831048
[P Phone| 0.7 99.99995822 100 99.9999837 100 99.91999253
14 09.9999765 100 99.99998254 100 99.84147021
28 99.99998376 100 99.99998371 100 99.77823533
5.6 100 100 99.99997644 100 09.88070373

Average 99.99723404 99.99816728

Table 5-10a Jain’s Throughput Fairness Index comparison of the same weighted flow

in the flow weighted situation

79




Improved Queuing Algorithms in QoS Enabled Internet Node

WDPD 0.5 WDPD_S
Low weighted flow|High weighted flow Low weighted flow{High weighted flow Low weighted flow]

Mb/s x10° x10° x10° x10° x10°
Little |0.35[ 99.97402693 99.98634107 99.98878487 99.68634107 0998878487
Burst | 0.7 [ 99.77667107 99.99479767 99.98874346 99.99128586 59.91663814
Poisson| 1.4 [ 99.20781167 99.97918117 99.84150924 99.94546347 99.59957892
281 99.52180542 99.98833995 99.75904846 99.99093338 99.62383949
5.6 | 99.55058478 99.79567937 99.76172395 99.86630678 99.58256857
11.2] 9946261998 99.9966672 99.78739097 99.9988358 99.68262313
Heavy {0.35| 99.98574489 99.99894182 99.99565031 99.99894182 99.99351495
Burst | 0.7 | 99.85579886 99.99907969 99.99821042 99.99724202 99.89662492
Poisson| 1.4 | 99.79905699 99.99852784 099.99280637 99.99556901 9982390127
28 99.6750008 99.99942957 99.95741167 99.99606493 99.65979813
5.6 | 99.74228235 99.9993%111 99.88916837 99.99547989 99.75862349
11.2] 99.83462805 09.99725473 99.87797818 99.99140477 99,84744962
Constant}0.35| 99.97879165 99.99423327 99.98403856 99.99423327 99.9783828
Bit Rate| 0.7 | 99.84455951 99.99956748 99.9984512 99.99339785 09.84020237
P Phong] 1.4 | 99.81528104 99.99987891 99.98355762 99.99855809 99.80860453
28| 99.73303109 99.9988503 99.95651274 99.98965807 99.72815693
5.6 | 99.82259612 99.99793338 99.9451339 99.99705107 99.81868421
11.2]  99.58421621 99.99902135 99.87231588 99.99331943 99.57314545
Average 99.85587325 99.95282089 99.88447801

WDPD_0.5 WDPD_S
Low weighted flowjHigh weighted flow Low weighted flow{High weighted flow Low weighted flow

Mb/s x10° x10° x10’ x10° x10*
Little [0.175] 99.96748816 99.99584363 09.99212541 99.99584363 09.99212541
Burst |0.35| 97.75781274 9999347734 99.99113541 99.98892676 99.45063145
Poisson| 0.7 | 98.19811031 99.9800574 98.95402697 99.90020572 98.67577332
1.4 | 97.32477212 09.39330182 98.31687419 99.77429444 97.63106232
28| 97.23645378 99.8216255 97.98457468 99.78908777 97.62538196
5.6 | 96.88363237 99.89504683 98.49457947 95.80332938 97.36217376
Heavy [0.175 99.96347405 99.99594798 99.99556493 99.99594798 99.98276885
Burst [0.35( 98.50855577 99.99875188 99.99705669 09.97537587 98.29448601
Poisson| 0.7 | 97.01929858 99.99795091 98.90092542 99.85513108 97.30300314
1.4 | 97.93086035 99.98922238 99.13913423 99.80246138 97.88740601
2.8 98.20981641 99.98485272 99.04966106 99.85380172 98.34125958
5.6 | 96.86429316 99.98170375 98.92871954 99.91212048 97.02459397
Constant[0.175| 99.92555729 99.97674247 99.97453289 99.97674247 99.92377832
BitRate|0.35| 98.89206093 99.99444092 99.99126388 99.95816868 98.89603726
[P Phone| 0.7 | 98.61540143 99.99683095 99.02053498 99.9217873 98.59962132
14 | 97.53582001 99.9910634 99.03164523 99.84138082 97.5095255
28| 98.33249857 99.98015105 99.09581918 99.77961441 98.32332305
5.6 | 98.44567049 99.97941521 99.22015853 09.88091356 98.43415123
Average 99.03216673 99.59790997 99.14617322

Table 5-11b Jain’s Throughput Fairness Index comparison of the same weighted flow

in the flow weighted situation
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Sirmulation 2
WFQ WF2Q+ WDPD_1
Low High Low High
Mb/s [High weighted flow  weighted weighted weighted weighted
flow flow flow flow
Little 0.35 99 80608297 99.63841905 994123208 98.55886375 99.97845494
Burst 0.7 99.92889234 99.9659645 99.68902994 9996648152 99.88936066
Poisson | 1.4 9999281168 99.99794775 98.90844275 99.99796216 99.99602414
2.8 954961125 99.9993463 99.58839842 99.99954888 9997181477
5.6 9999730918 00.99965428 | 99.99681038 9999964496 | 99.81571346
: 11.2 99.99876724 9999972773 9999888476  99.99989838 99.52311576
Heavy | 0.35 09.98939402 89.71726845 99.81455361 80.0024121 99.92956511
Burst 0.7 99,89784523 99,99956781 99.52066946  99.99968212 99.99399073
Poisson | 1.4 99.98783578 99 99989599 | 9594936196  99.99994556 99.99387918
2.8 99 99991925 9999985601 99.99993928 99.99997566 99.99980544
5.6 99.99995339 99.99988522 99.99995775 99.9999877 99.97394268
11.2 99,99983244 9999988578 | 99.99987778 99,99998633 9995858717
Constant | 0.35 999711306 9509547177 | 99.67070629 9592187279 99.99813694
Bit Rate | 0.7 99.95845053 99.9998123 99.09100612 99.99962956 | 99.99876619
IPPhone | 1.4 99.97790852 99.9999859 99.93553706  99.99994431 99.99718583
2.8 99.99992652 99.99999249 | 99.99986012 99.99996719 | 99.99645946
56 99,99999556 9999999517 | 9999999087  99.99997477 99.99536111
11.2 99,99981848 99.99992025 99.99981638 99.99997526 99.93335324
Average 99.42818286 99.30613658
Simulation 3 -
WFQ WF2Q+ WDPD_|
Mbs [High weighted flow Low f\iveighted High weighted we%g}::e d High weighted
ow flow Tow flow
Littte ]0.175 99.7552816 99.53209697 | 97.72835093 86.36257345 99.388818
Burst 0.35 99.8652097 9999801575 99.41344802 99.99855635 99.653421353
Poisson | 0.7 99,98270489 99.99920015 0998207244 9999871975 99.64303628
1.4 99.9988338 99.9989659 99.99881086  99.99904144 99.63629712
2.8 99,9994562 99.99901021 99.99942345 99.99944691 99.51010114
5.6 99.99969(029 99.99944113 99.99970296 9999958011 98.94966079
Heavy [0.175 99.41858876 93.20642449 | 97.31420338 94.65107677 99.4651632
Burst 0.35 99.77487555 99.9992479 099,78448459 9999304139 | 99.81297854
Poisson | 0.7 99.99970279 99.99957849 | 99.99970903 99.9992418 99.89787643
1.4 99.99992358 99.99941038 | 99.99991853 99,99929744 99.91255463
2.8 99.99996298 99.99953484 | 99.99997882 99.99943884 | 99.84846954
5.6 99.99997054 9999922857 [ 99.99998613 99.99958358 99.87192197
Constant |0.175 09.81811884 9737920094 | 97.61677812 9997678971 99.99742092
BitRate | 0.35 99 77061348 99,99974433 99.76567107 99.99950053 99 98748366
[P Phone | 0.7 99.9996788 99.99997013 9999946084 09.99980945 99.97264323
1.4 99,99999069 99.99999852 99.9999242 99.99988634 99.95501344
2.8 99.9999985 99.99999796 | 99.99996523 99.99990598 09.91380554
5.6 99.99999429 99.9999945 99,99997658 99.99991524 99.8959534
Average 99.68032379 9923825751

Table 5-12a Jain’s Delay Fairness Index comparison of the same weighted flow in the

flow weighted situation
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WDPD_0.5 WDPD_S

Low High Low High Low

Mb/s weighted weighted weighted weighted weighted

flow flow flow flow flow
Little 0.35 | 99.78372373 | 99.99190757 99.79291717 09.99190757  99.79291717
Burst 0.7 99.76641768 | 99.99967966 99.99632974 99.98445822 99.85553598
Poisson 1.4 99.08321559 | 99.99424378 99.96961374 99.89701357 99.60360342
2.8 | 99.32963727 | 99.99936772  99.94999082 99.99130213 99.56652128
5.6 | 98.55280452 | 99.99198317  99.83078844 99.95581033 09.25137967
11.2 | 98.15144694 | 99.99475681 09.89283051 99.93460936 98.39350565
Heavy 0.35 | 99.69236719 | 99.99882141 99.99867619 99.99884174 99.99606361
Burst 0.7 99.89116971 99.99995637 99.99931324 99.59988907 99.97145973
Poisson 1.4 99.56548783 99.9995394 99.99629307 99.99911198 99.97149951
28 99.69981283 | 99.99998699  99.99275603 99.99910871 99.9231996
5.6 99.7960895 99.99919156  99.99341769 99.99621662 99.96212215
11.2 | 99.62763326 | 99.99762184 99.98841283 99.97170147  99.60695942
Constant | 0.35 | 99.99434768 | 99.99723491 99.99714594 99.99813441 99.99489312
BitRate | 0.7 99.94473193 9999962657  99.99936046 | 99.99888016 99.94824385
IP Phone | 1.4 99.86693145 | 99.99989162 99.99512799 99.99749794 09.85939325
2.8 99.86757198 99.9994671 99.99139634 99.99716159 99.86263438
5.6 | 99.89390326 | 99.99900234 99.99526505 99.99623596  99.89216757
11.2 | 99.51814996 | 99.99932204 99.9939456 99.93229054 99.51268191
Average 99.74913775 99.98154671 99.85013771

WDPD_0.5 WDPD_S

Low High Low High Low

Mb/s weighted weighted weighted weighted weighted

flow flow flow flow flow
Little 0.175 | 98.95146473 99.45364846  99.18439781 99.45364846 99.18439781
Burst 0.35 | 97.73565152 | 99.99694118 99.9962453 99.98560866  99.62792443
Poisson 0.7 96.0188656 99.99476935 99.83110037 | 99.90403266 98.50736578
1.4 93.56094461 99.9630419 99.61250595 99.83135732 97.50315106
2.8 93.15792564 | 99.92899056 99.3625609 09.43122244 97.27368787
5.6 01.52964272 99.93240327 99.5575157 99.33162103 96.65419171
Heavy |0.175| 99.48033505 | 99.99795659  99.99826292 99.99259643 99.99363009
Burst 0.35 | 99.38243951 99.99950017 99,9984 1442 99.9850302 39.61659945
Poisson 0.7 97.77444065 99.99875701 99.97647218 99.94692414 99.15241215
1.4 | 98.75861312 99.99424762  99.97236307 99.96645146 99.60880346
2.8 98.30752742 99.99284271 99.96423773 99.91187978 99.30612872
5.6 98.79678655 | 99.99250023 99.97450503 99.9258217 99.1519647
Constant { 0.175 1 99.99197931 99.99056833 99.99335798 99.99796575 99.99240409
Bit Rate | 0.35 99.62047 99.9978536 99.99688142 99.98714268 99.53400656
IP Phone | 0.7 09.33846262 99.99861196 09.9795447 99.96331919 99.16930808
14 98.39641344 99.9953662 99.97360145 99.95712702 98.34885299
28 98.72863013 | 9999174455 99.96265083 99.90825449  98.64322024
5.6 08.91445724 | 99.98835564 99.97133168 99.89702145 98.96302217
Average 98.71549081 99.90316802 99.37800267

Table 5-13b Jain’s Delay Fairness Index comparison of the same weighted flow in the

flow weighted situation

82




Improved Queuing Algorithms in QoS Enabled Internet Node

The complexities of WF?Q+, WFQ and WDPD are O(logN), O(N) and O(1) respectively.
N is the maximum number of connections that can share an output link. The WDPD is a

more acceptable alternative in terms of faimess among different flows and the required

computational cost.

5.4 SIMULATION RESULTS ON WDPD AND FAIRNESS COMPARISON

AMONG DIFFERENT WEIGHTED FLOWS

In the commercial environment, a fair weighting among different weighted flows are the
major interest. The weighted faimess on WFQ, WF2Q+ and the proposed WDPD will be
compared in this section. In the fair weighted simulations, two different weighted patterns
are considered. The same topology in figure 4-1 is used but with different weighted
parameters. The results shown in this section base on the second and third simulation that
described in the section “simulation on WDPD” in this chapter. In simulation 2, the higher

weighted flow traffic will be saturated by the weight constrict when the traffic loading is

10

up to 27x1+3x10 x10Mbps =1.7544Mbps 1) imulation 3, the situation point for the

10
higher weighted traffic will be 30x1+30x10

x 10Mbps = 0_30303Mbps‘ That means the

bandwidth usage will be saturated much faster in the simulation 3. The normalized weight

is the reference for the weight companson. It can be calculated by the formula:

1S
1]
T %

(5.6)

s the normalized weight, u is the average throughput of the higher weighted flows

during the simulation period and gz is the average throughput of the lower weighted flows

during the simulation period. The normalized weights of the four algorithms will be

83



Improved Queuing Algorithms in QoS Enabled Internet Node

compared with the three traffic arrival models {(without the TCP model) in four loading
conditions.

Simulations are performed to find out the normalized weight of the flows in the two
different weighted patterns. In simulation 2, when all 30 flows request 0.35Mb/s
bandwidth, the 3 higher weighted flows can get 0.35Mb/s and the 27 lower flows share the
remaining bandwidth and get 0.3315Mb/s each, the normalized weight is 1.0558. When all
flows request 0.7 Mb/s bandwidth, then the 3 higher weighted flows can get 0.7Mb/s and
the 27 lower weighted flows can get 0.2926Mb/s. The normalized weight is 2.3923. When
all flows request 1.4Mb/s, the normalized weight 1s 6.5172. When all flows request
2.8Mb/s, the 3 higher weighted flows cannot get the whole 2.8Mb/s, this is because the
request bandwidth is larger than the calculated weighted bandwidth 1.754Mb/s, it can only
get 1.754Mb/s and the 27 flows can get 0.1754Mb/s, the normalized weight is 10. All
flows request larger than 1.754Mb/s will still get 1.754Mb/s bandwidth. It is restricted by
the weighted bandwidth setting which sharing the insufficient link. Beyond this point, the
nominal weight is 10. This point is called the faimess saturation point. The normalized
weights are 1.0558, 2.3923, 6.5172, 10, 10 and 10 with bandwidth request at 0.35Mb/s,
0.7Mb/s, 1.4Mb/s, 2.8Mb/s, 5.6Mb/s and 10.2Mb/s respectively. In simulation 3, the
normalized weights are 1.10526, 10, 10, 10, 10 and 10 with bandwidth request at
0.175Mb/s, 0.35Mb/s, 0.7Mb/s, 1.4Mb/s, 2.8Mb/s and 5.6Mb/s respectively. These two set
of values form the nominal models for the two simulations. Two different weighted
patterns are researched in order to find out how the normalized weights are affected by the
sharing patterns of the incoming flows. By comparing the nominal model with the other
four algorithms the weighted faimess among different weighted flows can be compared. In

the figures 5-8 to 5-13, the traffic amival factor of the WDPD can be adjusted to get the

similar weighted performance as WFQ and WF2Q+.
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In figures 5-8 to 5-13, the faimess between different weighted flows are shown. The

WDPD with traffic arrival factor 1 and WDPD with the specific traffic arrival factor are

more likely conforming to the nominal model in both of the weighted patterns. In contrast

to WFQ and WF?Q+, WDPD 1 and WDPD § immune to the change of the weighted

pattern and the traffic loading. The fairness saturation points remain the same and keep

tracking to the nominal model closely. The WDPD 1 and WDPD S get faster response to
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the congestion in the sense of the fairmess between different weighted flows. WFQ and
WF:Q+ have difficulty in keep tracking of the nominal line. The expected fairness
saturation point 1s never reached even in the extreme overloading condition. The
congestion responses of WF(Q and WF2Q+ are faster on thé Heavy Burst Poisson model,
they reach the fairness saturation point more quickly at lower loading condition. WDPD
with traffic arrival factor 0.5 is tried hard to conform to the nominal model in most of the
cases but it is quite good in tracking the nominal lines in the Poisson traffic model which
most applications fall n this category. It can be noticed that the weighted fairness of WFQ,

WFQ+ and WDPD with traffic arrival factor 0.5 are heavily affected by the traffic loading

and the weighted pattern of the incoming flows.

In the two weighted patterns of the three algorithms with three traffic arrival models and
six different loading conditions, the WDPD with traffic arrival factor 1.0 is the best

performer in the faimess among different weighted flows. It is strictly conformed to the

nominal model.
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5.5 NETWORK POWER AND QUEUE SIZE SIMULATION STUDY

The network power [4, 10] is explained in chapter 4. It is the ratio of throughput to delay.
It gives a good indication of network efficiency and the optimal throughput of a network
system. The network power simulation study is divided into 3 parts. The first and the
second parts are using the topology and network parameters of the simulation 2 and 3. The
last part of the study is based on the topology and network parameters that used in the

fairness comparison on the same weighted flows in simulation 1.

In table 5-8, the averaged powers are the averaging network power that across all the
simulated flows in the whole simulation period. It is easy to notice that, the network power
trends to lower when the incoming traffic loading is increasing. Actually when the loading
becomes higher, the occupied queue size will be increased and then the delay time will be
increased as well. The network power is in terms of the delay so.it will be decreased. In the
figure 3-3 of chapter 3, it can be noticed that when the input loading increases, the network
power is also increasing in the first phrase. After the maximum power Py, is reached and
input loading is greater than A,p, the network power is beginning to drop. This forms the
second phrase of the graph. In simulation 3, most of the data in the table fall mto the
second phrase except the network power of the WDPD algonthm. It can be observed that
the WFQ and WF?Q+ reach the optimal input loading before 0.175Mbps and the network
power lowers dramatically after the maximum power has been reached. In sir;lulation 2,
the WFQ and WF’Q+ reach the optimal input loading at about 1.4Mbps. By using the
_active dropping of the predicted overloading queues, the WDPD algorithm can effectively
delay thé optimal input loading point at about 2.8Mbps and increase the network power at
least ten times then the WF?Q+. The network powers decrease gradually after passed the

optimal input loading point. That means more overloaded incoming traffic loading can be
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handled by WDPD and with a higher network performance. WDPD with traffic arrival
factor of 1 is the best performer in the network power comparison. At the last part of the
network power simulation, more algorithms are compared with the proposed WDPD.

Some similar active dropping algorithms such as FRED and RED are also compared.

In table 5-9, it can be seen that WDPD obviously out-perform all the other algorithms in
the network power comparison. It also out performs the FRED and RED which sharing the
same idea on the active dropping of the predicted overloading sessions. Because WDPD
drops significant amount of predicted overloading packets. The network power is
significantly increased and the required qﬁeue sizes are significantly reduced. This can
save the hardware construction cost on high bandwidth link which consumes a lot of
buffers. In the cross-bar switch core design, the buffer is needed at each intersection
between every input port and output port. Ten input and ten output ports will need
hundred of buffer spacing. So the scalability is a concern fér the traditional queuing

implementation in the cross-bar switch core. The proposed algorithm will solves this
problem.

In the table 5-10, it can be noticed that the queue size is gcneraliy required more in the
Constant Bit Rate IP phone model and require more in the Burst Poisson Traffic model but
require less in the Poisson model. In TCP, the sliding window congestion control is used,
the queue size is also controlled and kept in low usage level. It can be noticed that WDPD
with traffic arrival factor 1 requires the lowest queue size, WDPD with the specific traffic
arrival factor requires the second lowest queue size. WDPD with traffic arrival factor 0.5
r;aquires almost the same queue size as the traditional tail drop. It can be noticed that, the

required queue size of WDPD is heavily affected by the traffic arrival factor.
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Average Power MB/S* Simulation 2
Traffic Loading MB/S 0.35 0.7 1.4 2.8 5.6 11.2
Poisson WFQ 629.3211 | 199.9735 | 339.2421 | 93.072626 | 1.858933 | 1.798581
W2FQ+ 478.3411 | 203.9016 | 340.8483 | 27.472378 | 1.821552 | 1.796574
WDPD 1 | 584.0947 | 759.9898 | 998.7238 | 1039.6021 | 837.487 | 732.7807
WDPD 0.5 | 542.0203 | 0.749242 | 1.428307 | 3.6855159 | 11.06521 | 12.63579
WDPD S | 542.0203 | 458.2892 | 606.6238 | 682.07269 | 513.3897 | 425.971
Heavy WFQ 169.2155 | 305.7283 | 497.6696 | 1.7942108 | 1.767347 | 1.762604
Burst W2FQ+ 161.4266 | 307.0242 | 519.6871 | 1.7909256 | 1.766111 | 1.761616
Poisson WDPD 1 | 288.3182 | 148.7495 | 96.8947 | 120.86969 | 68.68897 | 198.0431
WDPD 0.5 | 7.311483 | 0.653854 | 0.664694 | 0.7070752 | 0.869064 | 1.135142
WDPD S | 24.61936 | 17.16976 | 11.06846 | 12.858016 | 9.89322 | 125.9893
CBR WFQ 166.8532 | 261.2825 | 421.6191 | 1.8006485 | 1.762871 | 1.761923
W2FQ+ 163.8325 | 314.9795 | 265.5712 | 1.7803613 | 1.760774 | 1.759942
WDPD _1 12.97147 | 26.76775 | 47.50649 | 45.987506 | 24.26222 | 217.2898
WDPD 0.5 | 1.738085 | 0.651465 | 0.659868 | 0.6999489 | 0.807101 | 1.103965
WDPD_S | 14.70986 | 28.60433 | 52.82144 | 49.875668 | 26.50613 | 217.8931
Table 5-14a Network Power Comparison in two weighted patterns.
Average Power MB/S§* Simulation 3
Traffic Loading MB/S 0.175 0.35 0.7 1.4 28 5.6
Poisson WFQ 287.2625 | 189.7432 | 0.29895 | 0.277003 | 0.272368 | 0.270468
W2FQ+ 252.1259 | 142236 | 0.297921 | 0.276386 [ 0.271864 | 0.269986
WDPD_1 164.2021 | 283.1239 | 378.3162 | 443.1524 | 445.9445 | 407.0559
WDPD 0.5 | 142.946 | 0.205434 | 0.345514 | 0.533711 | 1.782983 | 2.612005
WDPD_S 142,946 | 44.56195 | 197.3945 | 286.2283 | 277.7116 | 258.2814
Heavy WFQ 214.0565 | 0.435491 | 0.278508 | 0.271862 | 0.269774 | 0.268905
Burst W2FQ+ 219.3215 | 0.428443 | 0.277898 | 0.271372 | 0.269268 | 0.268427
Poisson WDPD_I 105.9602 | 103.4742 | 49.79088 | 47.09259 | 38.43021 | 50.26276
WDPD 0.5 | 3.593681 | 0.18849 | 0.282004 | 0.281347 | 0.281661 | 0.284399
WDPD_S 10.66032 | 18.89356 | 13.8384 | 7.66109 | 7.763743 | 16.57837
CBR WEFQ 197.0175 | 0.371413 | 0.277775 | 0.271595 | 0.269572 | 0.268735
W2FQ+ 223.8541 | 0.368422 | 0.277129 | 0.271034 | 0.269055 | 0.268215
WDPD_1 5.175163 | 1538787 | 16.07135 | 3.368188 | 17.35089 | 7.425901
WDPD_0.5 | 0.852759 | 0.187672 | 0.277167 { 0.277767 | 0.28198 | 0.280364
WDPD_S | 6.332234 | 16.84129 | 18.04003 | 3.651393 | 17.97158 | 8.03211

Table 5-15b Network Power Comparison in two weighted patterns.
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Average Power Mb/S?
Traffic Loading Mb/S 0.35 0.7 14 2.8

Poisson DRR 552.3103 5.962071 1.340313 2.3150969
FQ 552.6197 0.719302 0.647316 0.6339029
FRED 552.6197 2.546015 2.14011 2.1034719

RED 552.6197 1.994362 1.926124 1.9101283
SFQ 552.41 7.818174 0.719539 0.7002709
Tail 552.6197 0.712167 0.643493 0.6310868

vC 552.6197 0.712167 0.643541 0.6312001
WDPD_1 587.1285 770.7617 864.787 912.19882

WDPD _0.5 | 542.0203 0.750484 1.204997 3.357861

WDFPD_S 542.0203 454.9368 567.527 610.33421
WF2Q+ 526.142 0.719131 0.646785 0.6339389
WEFQ 552.6197 0.719475 0.647299 0.6339378
Heavy DRR 76.1845 1.206765 2.2021 3.8500369
Burst FQ 10.4708 0.650241 0.632834 0.6276564
Poisson FRED 9.713874 2.119756 2.07517 2.0575583
RED 9.637743 1.932347 1.911715 1.9056135
SFQ 59.76319 0.765811 0.700988 0.6962415

Tail 9.637722 0.647943 0.63174 0.627241

vC 9.637722 0.647943 0.631779 0.6272501
WDPD _1 286.8539 122.1735 86.9166 95.882448
WDPD_0.5 | 7.311483 0.65391 0.659152 0.6609482
WDPD _S 26.64592 10.17235 15.01074 28.428186
WF2Q+ 7.846004 0.650243 0.632867 0.6276208

WFQ 11.01577 0.650234 0.632833 0.6275921

CBR/UDP DRR 11.31904 1.248467 2.274263 3.9651193
FQ 1.984931 0.64799 0.631937 0.6269856
FRED 2.935659 2.116931 2.072445 2.0546246
RED 3.036623 1.928551 1910287 1.9048323

SFQ 11.38174 0.732202 0.700166 0.6957101

Tail 1.815469 0.645702 0.630956 0.6266875
VC 1.815469 0.645714 0.630984 0.6267068

WDPD 1 16.26796 16.2175 28.86685 31.603335
WDPD 0.5 | 1.738085 0.651234 0.656066 0.6573888

WDPD_S 19.27504 18.76587 30.67185 33.75081
WF2Q+ 1.873782 0.648075 0.63194 0.6269856

WFQ 1.994386 0.648166 0.631905 0.6270471
CBR/TCP DRR 8.006976 2.238358 1.837078 1.8370779
FQ 2.185343 2.154983 2.154983 2.1549832
FRED 5.092463 5.094315 5.09163 5.1674679
RED 5.19682 5.323805 5.335601 5.3787754
SFQ 8.829502 2477279 2.488605 2.4886048
Tail 2077374 2.158706 2.158695 2.1586949

vC 2.076008 2.156211 2.156211 2.1562113
WFQ 2.181365 2.15495 2.15495 2.1549499

Table 5-16 Network Power Comparison between the queuing algorithm,
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Maximum used Queue Size (packets)
Traffic Loading Mb/s 0.35 0.7 1.4 2.8
Poisson DRR 7 1500 1500 1500
FRED 7 481 576 694
RED 7 528 667 709
SFQ 7 1301 1334 1335
Tail 7 1499 1499 1499
vC 7 1499 1499 1499
WDPD_1 6 4 4 3
(WDPD 0.5 6 1476 1334 529
WDPD_S 6 6 11 5
WF2Q+ 7 1492 1495 1496
WFQ 7 1491 1496 1496
Heavy DRR 189 1500 1500 1500
Burst FRED 173 562 632 689
Poisson RED 182 653 695 718
SFQ 189 1334 1335 1339
Tail 189 1499 1499 1499
vC 189 1499 1469 1499
WDPD | 9 21 35 34
WDPD_0.5| 209 1496 1491 | 1486
WDPD_S 58 127 131 109
WF2Q+ 239 1495 1499 1499
WFQ 189 1497 1499 1500
CBR/UDP DRR 961 1499 1499 1499
FRED 390 575 724 740
RED 367 663 725 741
SFQ 689 1334 1334 1336
Tail 961 1498 1498 1498
vC 961 1498 1498 1498
WDPD 1 91 165 88 89
WDPD_0.5| 990 1495 1490 1485
WDPD _S 71 152 84 87
WF2Q+ 989 1496 1499 1499
WFQ 961 1496 1498 1499
CBP/TCP DRR 417 498 498 498
FQ 251 498 465 468
FRED 251 468 465 + 468
RED 269 474 473 472
SFQ 373 498 498 498
Tail 498 498 498 498
VC 498 498 498 498
WFQ 498 498 498 498

Table 5-17 The maximum used queue size comparison between the queuing

algorithm,
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5.6 CONCLUSION

The simulations show WDPD can provide an acceptable faimess on the same weighted
flows. It is fairer than the other low computation algorithm. It out performs the WFQ and
WF2Q+ on the fairness among different flows. This is very important in the commercial
issues. Users want to ensure the paid bandwidth. Other samé weighted users fair share the
rest of the remaining bandwidth. Furthermore the network power of WDPD 1is generally
higher than all the other algorithms in the simulation. It predicts the overloading flows and

drops packet actively. It requires comparable less queue size so the hardware construction

cost is relatively low.

In the simulations of this chapter, it can be observed that WDPD with a low traffic armval
factor 0.5 can provide a reasonable fairness among the same weighted flows but it is the
worst to provide faimess among different weighted flows. WDPD with a high traffic
arrival factor 1.0 can provide a downgraded fairness among the same weighted flows and it
is strictly conformed to the nominal model. It can provide a good fairness among different
weighted flows. The simulations conclude that the traffic arrival factor of WDPD can be
adjusted to balance between the performance in the fairness among same weighted flows
and fairness among different weighted flows. WDPD is a flexible algorithm that the

required fairmness parameters can be customized by adjusting the traffic arrival factor.
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CHAPTER 6 WEIGHTED DEFICIT ROUND

ROBIN

The other algorithm — Weighted Deficit Round Robin (WDRR) is also proposed in this
thesis. It is an improved version of Deficit Round Robin (DRR) Which can provides
weighted network throughput in the QoS enabled network node. The Weighted Deficit
Round Robin (WDRR) uses a simple mechanism to provide the weighted control in the
node. The weight sharing ability of the algorithm is comparable to Weighted Fair Queuing
(WFQ) and Worst-case Fair Weighted Fair Queuing (WF2Q+). The computational power
required is much lower than WFQ and WF2Q+. It can be used to provide fair queuning
among different flows in the Constant Bit Rate TCP traffic condition. It is a good choice to

enable QoS with weighted function in the network node.

Round Robin is an old fashioned scheduling algorithm to share resources. It was employed
to schedule the packet in different flows of a network node. In the computer network,
many data link layers support variable packet size, the old fashioned round robin becomes
unfair in the variable packet size environment. Deficit Round Robin was proposed to solve
the variable packet size problem by introducing the quantum concept. In Deficit Round
Robin, each flow keeps a deficit counter. The deficit counter increments ¥ at each round. ¥
was called the quantum, which is a credit to de-queue the backlogged packet. At the de-
queuing moment, each flow can de-queue the packet in the queue until all the deficit
counter credit has been used up. Large packet consumes more credit and small packet
consumes less credit. This algorithm claims to be fair in the variable packet size

environment.
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The Weighted Deficit Round Robin (WDRR) extends the idea of quantum credit and
provides the weighted function with low computational complexity. Different flows get
different weight, the WDRR assigns different quantum \.ralues to different flows at each
round. The quantum value of each flow is positively proportional to the assigned weight.
At each round, the scheduler processes the packet flow by flow. The deficit counter of each
flow is incremented by a quantum value which positive proportion to the weight of the
specific flow. Different flows get different quantum sizes. Because the algorithm extends
the quantum idea from the deficit round robin, it provides weighted throughput in a
varying packet size environment. It inherits the faimess of the Deficit Round Robin
Algorithm and provides the weighted feature in the network node. The proposed algorithm
consists of three major components, namely, the initialization, the en-queuing and the de-

queuing components. They are summarized as the following:
Initialisation:

for (i = 1, i <=totalnode; i++}

{

DeficitCounterfi] =0;

Quantum{i] =DefaultQuantum * weightfi],
/
En-queuing:

flowld=ExtractFlow(pkt);
if (ExistsInActiveList(flowld) == FALSE)
{
InsertActiveList(flowld);
DeficitCounter[flowld] =0;
}
If no free buffers left
FreeBuffer(),
Enqueue(flowld pkt);
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De-queuing:

While (TRUE) do
{
If ActivelList is not empty
{
Remove head of ActiveList{i];
DeficitCounter{i] +=Quantumfi];
While ((DeficitCounter{i]>0) and (Queuefi] not empty)) do

/
PacketSize=Size(Head(Queuefi])),
If (PacketSize<=DeficitCount[if)
{.
Dequeue(Queuefi]),
DeficitCounter[i]-=PacketSizefi];
} Else {
break the loop;
/
}
if (Empty(Queueli]))
DeficitCounter[i] =0;
Else

InsertActivelist[i];

/
/

By using the above algorithm, the weighted features can be provided to network node.
Figures 6-2 to 6-4 show the detail operation of the algorithm.

In figure 6-2, there are four queues with the weight 1.0, 0.5, 0.2 and 0.8. Four queues are
filled up with different sized packets. At the initial stage, all the Deficit Counters are filled
up with zeros. When the Round Robin Pointer is pointing to flow 1, the calculated

Quantum Size which proportional to the weight is added to the Deficit Counter [1].

In figure 6-3, the packet with size 200 in flow 1 is left the queue and the deficit counter is
decreased by 200 and becomes 300. A packet with size 250 from flow 1 is added to the tail
of the queue. The Round Robin Pointer is now pointing to flow 2. The weight of flow 2 is
0.5, the calculated quantum size is 250 and it is édded to the Deficit Counter of the second

flow.
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Figure 6-1 The flow chart represents the operation of the weighted deficit round

robin (WDRR)
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Figure 6-2 Weighted Deficit Round Robin: Stage 1
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Figure 6-3 Weighted Deficit Round Robin: Stage 2
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Figure 6-4 Weighted Deficit Round Robin: Stage 3
In figure 6-4, the packet with size 500 in flow 2 is still in the queue. It is because the deficit
counter is smaller than the head packet in flow 2. Flow 2 does not gain enough credit for
de-queuing the head packet. It needs to wait the second round and gains enough credit to
de-queue the head packet. The Round Robin Pointer is now pointing to flow 3, the weight
of flow 3 is 0.2 and the calculated quantum size is 100. It is added to the deficit counter [3]

and the head packet of flow 3 just gain enough credit for de-queuing.

The Deficit Round Robin is a subset of the Weighted Deficit Round Robin with equal

weights for different flows.
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The complexities of different queuing algorithms are compared below:

pGPS| WFQ+ | LFvc(34] |[wrQ| FBFQ[7] | SCFQ |DRR| VC |WDPD|WDRR
o) | 0@ogN) | O(loglogN) {OM)|  O(logN) | O(logN) | O(1) | OflegN) | O(1) [ o)
Table 6-1 Complexity Comparison

The proposed WDRR get the complexity that equal to WDPD, DRR and RR. It gets O(1)
complexity as there is no calculation required to compute the packet which will be de-
queue next. The queuing pointer will make the straight forward decision. The de-queue

complexity is totally independent from the number of flows.

The actual computational complexity that implement in the hardware is expected to be a
little bit more than DRR and RR. It is because the per-flow weight and per-flow quantum

is introduced.

6.1 SIMULATION OF THE FAIRNESS AMONG SAME WEIGHTED FLOWS

For WDRR, the fairness among the same weighted flows are same as the DRR. It is
because Deficit Round Robin is a subset of the Weighted Deficit Round Robin with equal
weights for different flows. The DRR is not special fairer than the other algorithms so the
WDRR as well. WDRR is modified from DRR and aimed to provide weighted ability
which easy to implement with low computational requirement. The faimess comparison
among the same weighted flows can refer to the DRR column of table 5-2 (Throughput
Fairness), 5-4 (Delay Fairness) and 5-5 (Drop Faimess) in chapter five. It is hard to
compare the faimess by using Jain’s fairness index (table 5-2) because the difference is
small. Standard deviation (table 5-3) is used for the WDRR faimess comparison purpose.
The simulation shows WDRR is not good at the same weighted flow faimess but it is
compared to be good in the TCP CBR traffic model. In this model, it out-performs SFQ,

RED and comparable to FRED. WDRR is favourable to use in the TCP CBR traffic flow.
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6.2 SIMULATION OF THE FAIRNESS AMONG DIFFERENT WEIGHTED FLOWS

The simulation setup in this section is same as the simulation 2 and 3 in chapter 5 which
WDPD is studied.

In figure 6-5, 0 to 30 flows use the Poisson arrival model, 31 to 60 flows use the heavy
Poisson arrival model and 61 to 90 flows use the Constant Bit Rate. The 9 tenth flows (the
points that distribute at the upper part of the graph) are the flows which weighted 10 times
more than the rest 81 lower weighted flows (the points that concentrate at the bottom part
of the graph). The graph shows that WDRR is quite fluctuated among the same weighted
flows. The weighted performance is not as good as WFQ and WF2Q+ but WDRR can
provide limited weighting function and QoS to the congestion node. This is highly

demanded by the network management industry.

In figure 6-6, three traffic models are used in this simulation. Flows 0 to 60 use the Poisson
model, flows 61 to 120 use the heayy burst Poisson model and flows 121 to 180 use the
UDP/CBR IP phone model. There are two sets of points that distribute in the higher and
lower regions of the graph respectively. The points of WFQ and WF2Q+ can join together
and form twp straight lines, that means they are very fair among the same weighted flows.
The WDRR points are more ﬂuctuatéd especially in the higher weighted flows regions.
Thé fluctuation range of the higher weighted flows is much larger. WDRR is less fair
among the same wéi ghted flows. The points of WDRR are distributed up and down around
the WFQ and WF?Q+ lines equally. That means averaging of the point will form a straight
line with the throughput about the séme value as WFQ and WF’Q+ lines. The weighted

performance of the WDRR is similar to WFQ and WF*Q+.
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Three Traffic Arrival Models for 5.6MDb/s flows
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Figure 6-5 Simulation
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In table 6-2, it can be noticed that the standard deviation of the higher weighted flows is

higher than the standard deviation of the lower weighted flows. This property occurs across

all the loading levels and all the simulation models. This agrees with the figure 6-6 where

the fluctuation range of the higher weighted points is larger than the lower weighted points.

WDRR Poisson Burst Poisson CBR

Input Load (Mbps) S.D. Hi. S.D. Low S.D. Hi. S.D. Low S.D. Hi. S.D. Low
0.175 0.001068 0.00108 0.001194 0.001046 0.003136 0.003057

0.35 0.017458 0.04078 0.018998 0.028318 0.021736 0.024575

0.7 0.028252 0.014808 0.039247 0.010662 0.041383 0.008832

14 0.042283 0.008933 0.048544 0.009333 0.047986 0.009481

2.8 0.049845 0.009356 0.050381 0.009513 0.048152 0.010043

5.6 0.047974 0.01123 0.04692 0.009586 0.050816 0.009403

Table 6-2 Standard Deviation comparison on the throughput among the higher

weighted flows and the lower weighted flows in simulation 3.
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The weighted performance of the modified DRR is shown in figure 6-7 to 6-12. In these

figures, the WDRR are studied with 3 incoming traffic arrival models and 6 loading

conditions. In the simulation 3 with 60 weighted flows, all algorithms in the graph cannot

track to the nominal model. That means all algorithms cannot provide good weighted

fairmess. WDRR can keep tracking with the WFQ and WF2Q+ lines. The weighted
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performance can meet the WFQ and WF2Q+ in simulation 3. In simulation 2 which 30

weighted flows share a link, three graphs show that WDRR is inability to keep tracking to

the nominal model. It tries hard to keep with the WFQ and WF2Q+ models but never

success. In simulation 2 of CDP/UDP model, the algorithm seems to corrupt in the

weighting mechanism in the extreme overloading situation (11.2Mbps).
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6.3 CONCLUSION

The proposed WDRR is a low complexity weighted queuing algorithm. It is an algorithm
which modified from the DRR and provides the weighted sharing ability among different
flows. The proposed algorithm also inherits the good properties of DRR. It uses a weighted
quantum to control the weight between the flows and ensures the weighted fairness in the
variable packet size environment. The weighted sharing ability of the algonthm is
comparable to the WFQ and WF2Q+. It is compared to be fair among the same weight
flows in the constant bit rate TCP traffic model with the other low complexity queuing

algorithms such as SFQ, RED and FRED. Because DRR 1s a subset of the WDRR, both
algorithms share the same fairness among the same weighted flows. In the fairness
simulations, WDRR inherits the unfavourable properties of the DRR. It is compared to be
less fair in most of the same weighted fairness simulations. It is designed to be a low

complexity approach to provide an alternative for weighted sharing algorithm which is

highly demanded in the market.
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CHAPTER 7 CONCLUSION AND FURTHER

WORK

The investigation of nine existing queuing algorithms (VC, WFQ, WFQ+, FQ, SFQ,
DRR, Traditional Tail Drop, FRED, RED) and two proposed algorithms (Weighted Deficit
Probability Drop - WDPD and Weighted Deficit Round Robin - WDRR) are analytically
studied in this thesis. The investigation started by introducing the work conserving and
non-work conserving queuing disciplines. The evolution of the queuing strategies are
introduced. The working conserving disciplines basically starts with the ideal fluid model —
GPS, it is a perfect fair algorithm which can share the link between different flows. All
flows can serve by the server simultaneously and the serving unit is infinitely dividﬁ'ble. It
is perfect fair but it cannot be implemented in the real life. Firstly, it is impossible to serve
several queues which go into the same output link simultaneously. Secondly, the smallest
serving unit in network is a packet and it includes the payloaﬁ and the header. It is
impossible to process the packet bit by bit and it is impossible to have the infinitely
dividable payload. Almost all suc-cessors in the queuing research of the working
conserving discipline refer and modify the GPS ideal fluid system. The successors research
focu_ses on implementing the GPS in the real life network, lowers the required
computational complexity in approximating the fluid system and the fairness. From the
academic research point of view, GPS is an ideal and the fairest algorithm. Some lately
developed faimess indexes (such as WFI) rank the fairness by the difference between the
delay of the packet in the testing algorithm and the GPS system. Fairness and

computational complexity become a tradeoff. Many recent researches on queuing try to

104



Improved Queuing Algorithms in QoS Enabled Internet Node

lower the computational complexity and achieve a higher faimess performance at the same
time, the huge research efforts alleviate the situation a bit but they cannot get breakthrough
and gain extremely high faimess to complexity ratio. Actually fairness is quite ambiguous
in the research arena. Many persons tried to explain the term “fairﬁess” theoretically and
few peoples tried to quantify the term “faimess™ and develope on the fairness index. But up
to now, there is no public acceptance and agreement on the term fairmess. Different
researches use their own fairmess benchmark. Most of the fairness refer to the throughput
fairness in the recent reéearch. Actually, different network applications require different
fairness on network parameters. In this research, we tried to generally describe the faimess
term and investigate the fairness in different point of views. In all fairness simulations, the
packet drop fairness, throughput fairness and delay fairness are compared. The traditional
statistic tools and the Jain’s Fairness Index which introduced in 1984 are used in fairness
comparison in order to gain more public acceptance on the simulation results. Different
input traffic loadings and different traffic érrival models are also used in order to gain the
full picture on the “fairness”. After all simulations, we discovered that there is no all
around solution for the queuing algorithm. There are different firos and cons for the
algorithms. Actually, the performances of the algorithms depend on the application and
which network parameters that peoples are interested in. WFQ and WF2Q+ are good at the

throughput faimess. FRED and RED are good at the packet drop fairness and VC is good

at the delay fairness.

Recent researches focused on the fairmess among the same weighted flows and the
computational complexity. But is it the interest of the commercial market? Are the users
interested in the perfect fairness that between all the same paid users? There i1s lack of
research on the weighted faimess and the weighted quening algorithms. In our research,

only WFQ and WF?Q+ support weighted sharing among different flows. Two weighted
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algorithms WDPD and WDRR are proposed in this thesis. The idea of the weighted
faimess is described as the fairness between the high paid users and the low paid users.
The amount of network resources needs to be allocated fairly and proportionate according
to the preset weight. This also measures the ability of the queuing algorithm to assign

resources according to the user paid model. The normalized value that described in chapter

4 is used for weighted fairmess comparison purpose.

The proﬁosed WDPD is a low complexity weighted queuing algorithm, which can provide
an acceptable faimess on the same weighted flows. WFQ with complexity O(N), WFQ+
with complexity O(logN) and the WDPD with complexity O(1) where N is the maximum
number of connections that sharing an output link. It out performs WFQ and WFQ+ on
the computational complexity. It can work on the varying packet size environment. It can

also ensure the fairness among different weighted flows.

Network power is used to measure the network performance for years. It was introduced
by the renowned Internet researcher Leonard Kleinrock in 1981. In order to increase the
network power, either increases the throughput or lowers the delay. Most of queuing
researches focus on the worst case study. As the input traffic load{ng increases, the delay
increases dramatically. In order to increase the network power, the delay is the key. To
keep the delay small, the queue size must keep small in the overloading situation. This
must be achieved by active dropping the packet. The proposed algorithm WDPD predicts
the overloading flows and then drops the packets in the specific flow according to a pre-
calculated probability. The network power simulation in chapter 5 shows that the WDPD
getting the highest network power among the other 9 algorithms in all the loading levels

and all the traffic arrival models. The network power of WDPD with traffic arrtval factor 1
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is at least ten times over the network power of WF2Q+ and WFQ. The required queue size

of WDPD is also greatly reduced.

In the fairess comparison test among the same weighted flows, WDPD with traffic arrival
factor 0.5 is the best performer compared to the other traffic arrival factor. In the
throughput fairness test, the WDPD with traffic arrival factor 0.5 is over the other 7
algorithms such as VC, FRED, RED etc but it is still less fair than WFQ and WF2Q+. In
the delay faimess test, the WDPD with traffic arrival factor 0.5 is over other 7 algorithms
such as WF?Q+ and WFQ. In the packet drop fairness test, the WDPD 0.5 is just behind

RED and FRED but it is still better than WF?Q+ and WFQ.

In the fairness comparison test among different weighted flows, the weighted fairness of
WDPD with traffic arrival factor 1.0 is the best algorithm which tracks closely with the
nominal model. All other algorithms such as WF’Q+ and WFQ show the inability to track

with the model. Two weighted sharing patterns are used in the simulations in order to find

out how they affect the faimess performance.

The other proposed weighted sharing algorithm is called Weighted Deficit Round Robin.
Instead of push the computational power to the limit and gain a bit on faimess, a low
computational weighted queuing algorithm is proposed. WDRR is same as WDPD with the
computational complexity at O(1). It is modified from the Deficit Round Robin and
provides the weighted capability among the flows that sharing a link. It uses different
quantum sizes for different flows. The quantum size is positively proportional to the
weight of the specific flow. The higher weighted flow can gain more credit and the packets

in the flow get the priority to leave first.

In the faimess simulation among the same weighted flow, it is discovered that the

throughput faimess, delay fairness and packet drop faimess of DRR are fairer than SFQ in
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all the traffic arrival models and all the loading levels. DRR is comparable to RED and
FRED in faimess. It is found to favourable in the TCP Constant Bit Rate Model. In this
model, the DRR is even fairer than RED in throughput. It is also discovered that the
standard deviations of the higher weighted flows in WDRR are always larger than the
standard deviations of the lower weighted flows. That means the higher weighted flow is

less fair than the lower weighted flows in WDRR.

In the weighted faimess among different weighted flows, WDRR is comparable to WFQ
and WF2Q+. Although all the algorithms (WFQ, WF?Q+ and WDRR) cannot track the
nominal model in the simulations of chapter 6, they still try their best to perform the
bandwidth allocation according to the preset weight. The simulations also show that
WDRR is quite sensitive and affected by different weighted patterns. In simulations 2
which 30 flows sharing the link, the weighted performance of the algorithm is quite poor
but in simulation 3 which 60 flows sharing the link, the weighted performance is

comparable to WFQ and WFQ+.

All the simulation in this research is based on the topology shown in figure 4-1 which is a
single Internet node. By induction, the multi-node environment is the replication of many
single-node segments if regardless of the routing and traffic pattern changing across the
source-to-sink link. It is expected that the performance of the proposed WDPD and WDRR

will be the same when applied to the multi-node simulation environment.
7.1 FURTHER IMPROVEMENT ON THE PROPOSED ALGORITHMS AND
FURTHER RESEARCH DIRECTION

From the research, it can be noticed that the throughput fairness, delay faimess and packet
drop faimess are affected by input traffic loading level, traffic arrival model and flow

weighted pattern. Further research can be done on the correlation between these factors and
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how they affect the algorithms. From the research, it is noticed that the fairess is generally

lowered then the input traffic loading or the number of flows that sharing the link is raised.

Faimess
A

Traffic Amrival Model

-—

Flow Weighted Pattern

Input Traffic Loading Level

Figure 7-1 Four dimensions diagram on the factors which affect the fairness.
Figure 7-1 shows the three factors that affect the faimess of the queuing algorithm.

Stochastic and chaotic process can be used to further analyze the simulation results.

On the proposed WDPD algorithm, further improvement can focus on the following

points:

(1) Improve the fairness among the same weighted flows and the idea of the FRED can
be added to approximate the real-time average size of the queue. Manipulation with
the dropping probability of WDPD and FRED to form a new dropping probability.

Enable the WDPD with real time capability to due with the fast traffic fluctuating

situation.

(1) The better algorithm can be designed to prevent the unnecessary drop of the
packets, which leads to higher link utilization rate and prevent unnecessary packet

retransmission in the TCP traffic model.
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(iii)In the simulation in chapter five, it can be noticed that the traffic arrival factor 0.5
is good in faimess among same weighted flows and the traffic arrival factor-1 is
good in the fairness among different weighted flows. Improvement can be focused
on auto adjusting the traffic arrival factor due to the traffic loading and the input
traffic arrival model. The traffic arrival factor can be positively proportional to the
traffic loading level so it can provide a good faimess among the same weighted
flows in the low loading condition and it can provide a good fairness among

different weighted flows in the high loading conditions.

Further improvement on the WDRR algorithm can focus on:

(i) Further simulation on WDRR and find whether the weighted faimess can be

improved in the heavily overloaded situation by reducing the queue size of the

flows.

(1) Add mechanism to approximate the overloading flows in real time and drop the
packet accordingly. This can improve the consistence of the queuing performance

across different traffic arrival models.
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APPENDIX A NETWORK SIMULATOR

STUDIES

The Network Simulator 2 (NS2) version 2.1b6 is used to conduct the whole research. This
network simulator was developed by University of California Berkeley and now
developing by the VINT project. This software is renowned in the networking academic
and industrial research. Over hundred of network research projects are performed using the
NS2. The NS2 itself is written by TCL/TK and C++ language. It is highly customizable.
The simulation and customization are performed by TCL scripts, no compilation is
required to construct new simulation. TCL is an interpreted language and there is no
performance degradation in using it, the actually computation and simulation are

performed by the compiled C++ code.

A.1 NETWORK SIMULATORS CONSIDERED IN THE RESEARCH

Seven different network simulators are considered by using in this research, they are
NETSIM by MIT, CPSIM by Boyan Tech Inc., INSANE by UCB, NEST by Columbia
University, REAL by Cornell University, OPNET by MIL3 Inc and NS by University of

California Berkeley. These simulators will be introduced one by one.
A.2 NETSIM

NETSIM is developed by MIT Advanced Network Architecture group. This ts an event
driven simulator for packet switched networks. The simulator framework provides the

functions to schedule events and to communicate with user. It provides X window graphic
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user interface. This package comprises an event manager, /O routines, various structural
tools such as queues and lists used to build components and a tqolkjt. The toolkit 1s a
library of C functions to ease the manipulation of components. Components such as
Ethemnet link, point-to-pint link, switch, host, Purdue’s implementation of TCP, data
supplier and consumer from TCP, simple Poisson traffic source and packet sinks include in
the package. The simulation engine is simple. It is a single process written in C to schedule
events. 'Logical time is an unsigned 32-bit value, the simulator can runs for almost 12 hours
of simulated time. National Institute of Standards and Technology (NIST) based on
NETSIM and developed an ATM network simulator for studying and evaluating the
performance of ATM network. In order to simulate the queuing algorithms in networks,
new components in C needs to be written. This simulator is lack of support and huge effort
required to develop the traffic generatioﬁ model and queuing modules. It is rejected and
not use for the research simulation. More information about the NETSIM can be found at

fip://allspice.lcs.mit.edu/pub/netsim/.
A.3 CPSIM

CPSIM is a parallel general-purpose simulation tool commercially aQailablé. It was created
by Dr. Bojan Groselj and now the product can be found at Boyan Tech Inc. It uses the
parallel discrete-event simulation (P-DES) to suit the large discrete-event simulations
purpose. It can be used for computer network simulations. The designer focusés on the
performahce and there is no graphical user interface. There is a strict separation between
CPSIM kernel and CPSIM library. The simulation kernel provides synchronization,
scheduling., deadlock prevention and message passing. This kernel can be used for parallel
processing or uni-processor. The simulator is written in C and it is formed by

communicating objects which are partitioned among processors. The underlying
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programming model is an event message passing between objects. User can defines the
granularity of the object in the simulator. The user needs to define the event data structure,
the network object graph and writes code for invoking the events. This simulator is no
longer on the web and 1t 1s not specially design for the network simulation, it is rejected to

and not use in the research.
A.4 INSANE

INSANE (Internet Simulated ATM Networking Environment) is specially designed for
network simulation at University of California Berkeley in 1996. The simulator is created
by Bruce Mah and used to simulate a wide-area ATM backbone (similar to XUNET II). It
is used to test various IP-over-ATM (Asynchronous Transfer Mode) algorithms with

realistic traffic loads derived from empirical traffic measurements. The ATM stack

protocol of the simulator provides real-time guarantees ATM virtual circuits {VC) by using
Rate Controlled Static Priority (RCSP) or First In First Out (FIFO) queuing. ATM
signaling 1s performed using a protocol similar to the Real-Time Channel Administration
Protocol (RCAP). It also supports Internet Protocol (IP), Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP). It is an object-oriented, disérete-event
simulator with library of TCL scripts. Simulation and customization are performed with
TCL scripts. The simulator is not a multi-threading program. It is a single process so it
cannot make the benefit from the multiprocessor CPU. The objects in the simulator are
basically implemented in the fashionlof finite state machine. Objects communicate by
posting events to each other. The evént scheduler delivers events to the relevant object
according to chronological order and based on calendar queue. This simulator is

specifically written for ATM simulation and lack of ready built queuing policy, it is
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rejected to use in the queuing study research. The INSANE can be found at

http://www.employees.org/~bmah/Software/Insane/.
A5 NEST 2.5

NEST (Network Simulation Test-bed) was developed by department of Computer Science
at Columbia University. It is targeted for simulating and prototyping distributed algorithm
and systems. It is well suited to understand the behavior of routing protocol and routing
loops for insténce. It is well used by other studies, such as load-balancing system for
microeconomic principles, ARPANET topology update problem and network architecture
based on flooding protocol. The NEST 2.5 uses a client-server model which display clients
are connected to the simulation server by a socket. The simulation server is responsible for
execution of simulation and clients are independent programs used to create, configure a
simulation model and control its execution. The communication between the server and
client uses GUI that communicates with the simulation throﬁgh the TCP/IP connection. It
allows dynamically to create or modify the network configuration. The client-server model
provides several advantages. It saves CPU resources by running the simulation on a
dedicated super-computer. The GUI control interface sits on the client side. The NEST is
implemented as a C library of functions linked with user’s code. The simulation topology
is created by a set of graphical tools with links and nodes stored internally as a table. New

node function and communication link behaviors created by user that link with the network
model.

The simulation runs within a single Unix process and this architecture involves
least amount of context switching overhead when comparing with multi-tasking

implementations. It facilitates a lightweight process mechanism which used to simulate

complex distributed system. Each node in the system runs as a separated thread of control
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with its own stack for local variable. It is a non-discrete-event based simulator which the
simulation proceeds in a series of synchronization passes. Round-robin scheduling are used
and each simulation node receives equal amount of running time. Because of the inefficient
design of the simulator, it is not appropnate for high-speed network link simulation in
normal home used computer system. The server and client need to be built even for simple

network simulation. It is rejected using in our research. Detail about this simulator can be

found at fip://ftp.cs.columbia.edu/nest.
A.6 REALS.0

REAL (Realistic And Large) is a network simulator written at Comell University by S.
Keshav in 1997. The author also published papers in reference [1, 5, 13]. It is based on a
modified version of NEST 2.5. It is also written in C. A graphical user interface (GUI)
which eases the creation of the simulation topology and written in Java by Hani T.
Jamjoom. The NEST code becomes cleaner and faster, it is specially designed to study the
dynamic behavior of flow and congestion control schemes in TCP/IP packet switched data
network. It provides thirty modules written in C that emulate flow-control protocols such
as TCP and five scheduling disciplines such as FIFO, Fair Queuing, DEC congestion
avoidance and Hierarchical Round-Robin (HRR), however it inherits the slow performance
of NEST and it is not used in our reach for high speed link and high demanding network

simulation. Details of the simulator can be found at the following web site:

http://www.cs.comell.edu/skeshav/real/overview . html.

A.7 OPNET

OPNET (Optimized Network Engineering Tools) 1s a commercial network simulation tool

and has been developed by MIL3 Inc for 15 years. It is used by many universities in
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network research. It includes OPNET Modeler, OPNET Planner, Model Library and
Analysis tools. The simulator features with an event-driven scheduled simulation kemnel
which using hierarchical object based modeling. The OPNET Modeler intended for
modeling, simulating and analyzing the performance of large communication networks,
computer systems and applications. It is used to ass;ess the feasibility of new design,
optimize the developed communication systems and predict performance. The modeling
methodology of OPNET is organized in a hierarchical structure. At the lowest level, the
process models are structured as a finite state machine. State and transitions are specified
graphically using state-transition diagrams whereas conditions that specify what happen
within each state are programmed with Proto-C (a C-like language). The OPNET Planner
is used to evaluate the performance of communication networks and distributed system.
Models are built by using graphical interface. The user can choose pre-defined models
(from the physical layer to the application layer) from the Model Library and sets
attributes. The Model Library contains protocols and analysis environments, such as ATM,
TCP, 1P, Frame Relay, FDDI, Ethernet, link models such as point-to-point and bus,
queuing disciplines such as First-in-First-Out, Last-in-First-Out, priority non-preemptive
queuing, shortest first job, round-robin or preempt and resume. The analysis tool provides
a graphical environment to view and manipulate data collected during simulation runs.

Results can be analyzed for any network element.

Although OPNET is powerful and well developed, it is quite expensive and it does
not allow users to develop new models. All new models must contact MIL3 for the
modeling services. It is rejected and not used for our simulations. More information about

OPNET can be found at http://www.mil3.com/home.html.
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A.8 NETWORK SIMULATOR 2

NS2 (Network Simulator 2) is an object-oriented discrete-event simulator for networking
research based on REAL simulator. The initial NS1 was developed by the Network
Research Group at the Lawrence Berkeley National Laboratory (LBNL). The NS2 is now
part of the VINT project. The VINT project is part of the University of Southern California
and is funded by the Defense Advanced Research Projects Agency (DARPA) in
collaboration with Xerox PARC and LBNL. The aim of the project is to build a network
simulator that offer innovative methods and tools. The work focuses on scaling,
correctness, performance of wide area networks and protocol interaction issues in
integrated services Internet network at all levels, from routing to session protocol. The
project is not to design a new network simulator but to unify the effort of all people
working in the field of network simulation. Most of current network simulators focus only
on single protocol and simulate protocol in isolation. They do not address interactions .with
the other components of the architecture. They also lack of comparability across
simulations. Because the effort on unifying people in the network simulation field, NS2 is
now a successful simulator with many readily build modules and some contribution
modules by network researchers. The researchers and developers involved in the project
have extensive experience with network simulation based on the experience with MIT’s
NETSIM, University of Maryland’s MARS, UC Berkeley’s REAL, University of
Columbia’s NEST and LBNL’s NS. NS2 is extensively used by academic and industnal
research community with simulations well-suited for packets switched network, queuing
algorithms, transport protocol congestion control and multicast network. The VINT project
is built on the NS1 and the NAM (Network Animator), an animation tool for viewing the

simulations results and packet trace data. The NS2 offers a composable simulation network
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in order to model the modularity of the Internet and to support component modules from
many contributors, various abstraction techniques and tools provide the ability to vary the
level of abstraction, an emulation interface to allow the actual nodes to interface with the
simulator, extensible libraries of network topologies and traffic generators. It contains
library for unicast, multicast, routing, bandwidth reservation, queuing algorithms,

transportation and session layer protocols.

The NS is written in C++, TCL (Tool Command Language) and Tk. The pé.ckages provide
compiled class, hierarchy of objects is written in C++ and an interpreted class hierarchy of
objects is written in OTCL (MIT’s object extension to TCL). The user creates new objects
through the OTCL interpreter. New objects are closely mirrored by corresponding objects
in the compiled C++ hierarchy. The TCL procedures are used to provide flexible and
powerful control such as start and stop events, network failure, statistic gathering and
network parameter configuration. The TCL interpreter has been extended with OTCL
command to create network topology of links, nodes, traffic agents and sink. Theée
architectures allow high simulating performance, easy topology creation and highly
customized simulation situation. The other favourable feature of NS2 is the network
emulation. It can introduce the simulator into a live network. There are two modes, in the
first mode the live traffic can pass through the simulator and the endpoints cannot notice
about it. This mode is suitable for implementing a software real-time packet scheduler and
testing the scheduling algorithm in the real network. The second mode is traffic generation
and statistics. The simulator can include traffic sources or sinks communicating with the

real-world networking equipment.

The NS2 provides rich libraries and highly customized environment with source codes, it is

totally free of charge and with satisfactory support by large groups of network simulation
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communities. Researchers can discuss on the problems and find the best solution on the
network simulation by using the well-developed mail archive distribution and search
system which found in the NS website. Because of the hybrid-programming language
architecture of the NS simulation core, the simulating performance is reasonable by
running on a home PC machine. The VINT project is very successful by gathering the
network research communities, different communities now get the same network
performance benchmark on the same network simulation platform. Individual researchers
contribute their self-developed modules for the NS2, when somebody developed an
algorithm, others can test it and prove the performance on the simulator. The contributions
also enrich the functional libraries and the NS2 launches new version every half year.

Because of these advantages, the NS2 is our choice in the queuing simulation study. The

detail about the NS can be found at http://www.isi.edu/nsnam/ns/.

Table A-0-1 summarized the major features of the seven ﬁetwork simulators that
considered in this research. Network Simulator 2 is selected at last. It is a ready built
simulator with good usage record by academic and industrial research. All queuing
function can be modified in the C libraries and it is a highly customizable simulator with
huge support in the network functional libraries. It is a simulator that modified and
improved from REAL, NEST and NETSIM. Although it is free, it gets a huge supporting
community, question and answer can be found in the NS newsletter forum. Problems can
always solves by posting in the NS forum. Because the limited research period, research

budget and computer resources, NS 2 is the best choice for our research purpose.
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A.9 CONCLUSION AND SUMMARIZE ABOUT THE NETWORK SIMULATORS

Simulators NETSIM CPSIM INSANE NEST REAL OPNET NS
Network Research
. MIT Advanced o o oo | University of Degg:::i’;‘r"f Comel Group at LBNL, VINT
evelop Network Initiated by D California Sci - Uni ity by S MIL3 | Project in University
Organization| Architecture ( nitiated by Dr. Berkeley by ¢ience In niversity by S. ne. of Southemn
Bojan Grosel)) Columbia Keshav e
Group Bruce Mah University California, Developer
of NETSIM
A modified
Parallel Object- Use: client- ve2r55|on of I.\"'I':,ST \(I‘Vee‘::alf:aétér?g; Object-oriented
discrete-event | oriented, server model, d e's‘:\?datoy 15 gars discrete -event
Event driven simulation |discrete event| server run as a stud ow and | nier gr chi c;al simulator based on
Simuiator [simulator, runin a[(PDES), general| simulator, |single process, y i t; t based REAL simulator, fast,
Architecture | single process to | purpose, can |single process|strong at routing congestion object base: stable and many
. control, provide | modeling with
schedule events |uses for parallel] implemented | protocol and five schedulin event-driven network modules
processing or | by finite state ro_uting Ipop disciplines in tr?e scheduled already build in the
uni-processor. machine simulation library, faster simulator CIC++ library
performance
Written Cand TCL C, C++, TCL, OTCL,
Language c C script cC C. Java Proto-C T
Running . . Unix based Unix based Unix based Unix based Windows .
Platform Linux X windows system system system systemn NT/2000, Unix Unix based System
Many ready built
network modules, all
Specially Slow . source code
Lack of support . . ; Expensive and | provided, highly
and huge effort is Tr:‘%ts;mma.lﬁr 15 des:gg:;f for Lack of support pg,rforma?ce - not allow to | customizable, huge
Reason of |needed to develop desi pecaly and huge effort ang cannot use develop new | support community,
Reject/ the traffic esigned for . baCk.bone for the queuing f°r. hlgh—speed models. rich
. network simulation and link or high h - "
Acceptance | generation model simulation, no | lack of ready modules to be demandin Modeling scheduling/queuing
and queuing further supi’ao t. | built queuin developed. network 9 |service provides| functions, widely
modules. ; olic 9 simulation by the company.| used in academic
policy- : " and industrial
research, free of
charge
Product Commercial Commercial
status Free Product Free Free Free Product Free

Table A-(-1 Summarization the features of the seven netwdrk simulators
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APPENDIX B ARCHITECTURE AND
QUEUING CAPABILITY OF NETWORK

SIMULATOR 2

In order to develop packet queuing and scheduling modules for NS2, the object-oriented
hierarch of the NS2 with the hybrid-programming language architecture will be introduced

in this appendix chapter.

NS2 is an object oriented simulator written in C++ with OTCL interpreter as the front-end.
The simulator supports a class hierarchy in C++ which is the compiled portion of the
simulator core. This portion includes packet manipulation, packet scheduling, traffic
generation and statistical logs generation modules. The similar class hierarchy is also
within the OTCL interpreter which is the interpreted portion of the core. The two
_ hierarchies are closely related and one-to-one mapping from an interpreted object to one
compiled object. New simulator objects are created by using the interpreted portion
(OTCL), the objects are instantiated within the interpreter and are closely mirrored by a
corresponding object in the compiled hierarchy. The following figure describes the hybrid-
programming language architecture of NS2. The simulation file is a TCL script file which
contains the TCL simulation objects invoke the OTCL (an extend TCL library) interpreter
and create nodes, traffic generators, sinks, links, topologies, packet scheduler. The
simulation objects are interpreted and mapped to the corresponding C++ objects. The C++

objects execute the simulation sequence and actually simulate the network.
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This architecture provides fast network simulation performance. The C++ is fast to run but
slower to change and compile. Because of these properties, C++ is suitable for detailed
protocol implementation. OTcl runs much slower but can be changed very quickly and
interactively. It is ideal for configuration, setup and one-off purpose. It is used for
changing simulation configuration in network topology, traffic generation, statistic
procedure etc. NS uses TCLCL to provide glue to make objects and variables appear on

both languages.

TCL Script with TCL
Objects

l Invoke

TCL interpreter classes

i Invoke

C++ compiled modules

i

Create the topology and
simuiate the network

Figure B-0-1 Architecture of NS2 Simulation Core
The NS2 supports several queuing modules which includes First In First Out (drop-tail,
FIFO), Fair Queuing (FQ), Stochastic Fair Queuing (SFQ), Deficit Round Robin (DRR),
Random Early Drop (RED), Class-Based Queuing (CBQ), Weighted Round Robin (WRR),
Priority Queuing, DiffServ [23] and Differential Service RED. Some contribution modules
such as Worst-case Fair Weighted Fair Queuing Plus (WFQ+) [31], Weighted Fair

Queuing (WFQ) [24], Core Stateless Fair Queuing (CSFQ) [14], Flow Random Early Drop
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(FRED) [15], Virtual Clock (VC) [20] and IntServ [21] are available from the queuing

researchers.

In order to develop the queuing modules, the class structure of the Queue Class must be
known. Figure B-0-2 shows the object hierarchical structure of the Queue Class. The qlim_
is used to limit the queue size in the aggregating node. The umnit of qlim_ is packets.AThe
blocked_ is false by default. It becomes true when the node is unable to send a packet to its
down-steam neighbor. The unblock_on_resume is set to true by default, it indicates that a
queue should unlock itself when the last packet has been transmitted. The queue handler is
used to manage the queue. When a queue receives a packet, the queue handler calls the
queuing discipline-specific version of en-queue function. If the queue is not blocked, it
sends a packet by calling a specific version of de-queue function. The specific de-queue
function determines which packet to send, blocks the queue and sends the packet to the
downstream neighbor of the queue. The handle function in the queue handler is used to
pass information of the queue to the simulator scheduler. The handle function invokes the
resume function, which sends the next-scheduled packet. The receive (recv) function is
used to simulate the link and the processing delay. Figure B-0-2 only shows two queuing
disciplines, DropTail and DRR. Actually there are over 7 disciplines in the NS2. There are
some specific queuing discipline objects for each queuing discipline. In our example, there
are four queuing discipline objects for the DRR discipline. They can be queuing
parameters or queuing processing global variables. Buckets parameter 1s used to indicate
the total number of buckets for hashing each of the flows. Blimit parameter 1s used to
indicate the shared buffer size in bytes. Quantum is used to indicate how many packets
cach flow can send during each round. Mask is used for round-robin processing functions.
By setting the queuing parameters, each queuing discipline can be finely tuned to suit

certain traffic arrival model.
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blocked_ @ @ @ @

Figure B-0-2 Object Hierarchical Diagram of the Queue Class in NS2

Early
Drop(ED)
() ) (G

@ @ enable_drop_ o
bdrops_
enabk:_edrop
pdrops_

Figure B-0-3 Object Hierarchical Diagram of the Queue Monitor Class in NS2

Figure B-0-3 shows the network statistic parameters that supported by NS and use the

Queue Monitor Class to develop the customized statistic parameters for queuing service
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discipline study. The customized statistic parameters are used to form a queuing
benchmark model, which compares the performance of different queuing disciplines. The
derived Early Drop object is capable of differentiating regular packet drops (drops due to
buffer exhaustion) from early drops (random drops in RED queues and FRED queues).
Those drops need to put into statistic too. The Flow Monitor object is used in place of a
conventional Queue Monitor object, collecting per-flow counts and statistics in addition to

the aggregate counts and statistics provided by the basic Queue Monitor. -

In order to develop our own Queue Monitor modules and to setup the comparison

benchmark, the meaning of the parameters are shown in the table below.

Queue Monitor
Objects
Size_ Instantaneous queue size in bytes.
Pkts_ Instantaneous queue size 1n packets.
Parrivals_ Running total of packets that have arrived.
Barrivals_ Running total of bytes contained in packets that have arrived.
Pdepartures Running total of packets that have departed (not dropped).
Bdepartures_ Running total of bytes contained in packets that have departed.
Pdrops_ Total number of packets dropped.
Bdrops_ Total number of bytes dropped.
Integrator object that computes the integral of the queue size in
BytesInt_ bytes. The sum_ variable of this object has the running sum
(integral) of the queue size in bytes.
Integrator object that computes the integral of the queue size in
PktsInt_ packets. The sum_ variable of this object has the running sum
(integral) of the queue size in packets.
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Queue Monitor /
Early Drop Objects
Epdrops_ The number of packets that have been dropped “early”.
The number of bytes comprising packets that have been dropped
Ebdrops_

“early”.

Queue Monitor /

Early Drop / Flow
Monitor Objects
Set to true by default, indicates that per-flow arrival state should
Enable in_ be kept by the flow monitor. If it set to false, only the aggregate
arrival information is kept.
Set to true by default, indicates that per-flow departure state
Enable out_ should be kept by the flow monitor. If it set to false, only the
‘aggregate departure information is kept.
Set to true by default, indicates that per-flow drop state for packet
Enable_drop_ should be kept by the flow monitor. If it set to false only the

aggregate drop information is kept.

Enable edrop_

Set to true by default, indicates that per-flow drop state for bytes
should be kept by the flow monitor. If it set to false only the

aggregate drop information is kept.

Src_ The source address of packets belonging to this flow.
Dst The destination address of packet belonging to this flow
Flowid_ The flow id of packets belonging to this flow.

Table B-0-1 Meaning of the objects in the Queue Monitor Class
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APPENDIX C SOURCE CODE FOR TRAFFIC

GENERATION IN NS2 SIMULATIONS

C.1 TRAFFIC GENERATION FOR LIGHTLY AND HEAVY POISSON TRAFFIC

proc exptraffic { src dest sink size burst idle rate fid start_t stop_t} {
set ng [Simulator instancel
set udp [new Agent/UDP]
$ng attach-agent $src $udp
Sudp set fid_ $fid
get exp [new Application/Traffic/Exponentiall
Sexp set packet_size $size
$exp set burst_time_ $burst
Sexp set idle time Sidle
Sexp set rate_ $rate
S$exp attach-agent $udp
$ns connect Sudp $sink
$ns at $start_t "Sexp start"
$ns at $stop_t "Sexp stop"
return $udp

}

# The code invokes the heavy Poisson traffic generation procedure
exptraffic $n(01) $n(101) $sink0l 500 100ms 4ms 0.35M 12 0.5 8.0

# The code invokes the lightly Poisson traffic generation procedure
exptraffic $n{ol) $n(101) $sink0l 500 4ms 4ms 0.35M 30 0.5“§.0

C.2 TRAFFIC GENERATION FOR IP PHONE TRAFFIC

proc ipphonetraffic { src dest sink size burst idle rate fid start_t stop_t}
{

set ns [Simulator instancel

set udp [new Agent/UDP]

$ns attach-agent $src $udp

set ¢br [new Application/Traffic/CBR]

Sudp set fid_ §fid

Scbr set rate_ S$rate

$cbr set packetSize_ $size

$cbr set random_ 1

Scbhr attach-agent $Sudp

S$ns- connect $Sudp $sink

$ns at S$start_t "$cbr start"

$ns at $stop_t "Schr stop®

return Sudp

}

# The code invokes the IP Phone traffic generation procedure
ipphonetraffic $n{0l) $n(101) $sink01 500 4ms 4ms 0.35M 14 0.5 8.0
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C.3 TRAFFIC GENERATION FOR TCP/FTP TRAFFIC

proc tcp-ftp-tratfic { src dest sink size burst idle rate fid start_t stop_t}
{

set ns (Simulator instance]

set tcp [new Agent/TCP]

$tcp set class_ 1

$tcp set packetSize $gize

Stcp set window_ 20

$tcp set fid_ $fid

$ns attach-agent $src $tep

set cbr [new Application/Traffic/CBR]

Scbr set rate_ $rate

Scbr set packetSize $size

$cbr set random_ 1

$cbr attach-agent $tcp

éns connect Step $sink

$ns at $start_t "$cbr start"

$ns at $stop_t "$cbr stop”

return Step

}

# The code invokes the TCP/FTP traffic generation procedure
tcp-ftp-traffic $n{30) ¢n{101) $sink30 500 4ms 4ms 0.35M 30 0.5 8.0
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APPENDIX D ALGORITHM OF QUEUING

DISCIPLINES

D.1 RED

Initalizatien:
avg=0
count=-1
For each packet arrival
Calculate the new average gueue size avg
If the queue is nonempty
Avg= (1-w} *avg+w*qg
Else
m=f (time-g_time}
avg=(1-w) *avg
If min_ th<=avg<max_th
Increment count
Calculate probability p_a
P b=max_p* (avg-min_th}/ (max_th-min_th)
P_a=p_b/(1l-count*p_b)
With probability p_a drop the arrive packet
Count=0
Else if max_th<avg
Drop the arrive packet
Count=0
Else count=01
When gueue become empty
Q _time=time

Avg: average queue size

Q time: start of the queue idle time

Count : packets since last drop packet
W_g: gqueue weight

Min_th: minimum threshold for queue

Max_th: maximum threshold for queue

Max_p: maximum value for p_b

P a: current packet dropping probability
Time: current time

F(L): linear function of time t
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D.2 RIO

For each packet arrive
If it is an IN packet
caculate the average IN gueue size avg in;
calulate the average queue size avg total;
If it is an IN packet
if min_in<avg_in<max_in
calculate probaility P{in);
with probability P{in}, drop this packet;
else if max_in<avg_in
drop this packet
If it is an OUT packet
: if min_out<avg_total<max_out
calculate probabilty P(CUT);
with probability P(OUT), drop this packet
else if max out<avg_total
drop this packet

avg_in: the dverage queue for the In packets
avg_total: the average total gqueue size for both In and Out packet
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