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Abstract

ABSTRACT

H,, and H, optimization of the traditional dynamic vibration absorber (DVA) in single
degree-of-freedom (SDOF) system are classical optimization problems and have been
already solved for a long time. However, the H,, and H, optimization of the dynamic
vibration absorbers in multi-degree-of-freedom (MDOF) or continuous systems have
not been solved. Some researchers found out the optimum tuning conditions of
MDOF or continuous systems but all the methods found in the literature are numerical
optimizations and the results cannot provide physics insight on the effect of each
tuning parameter to the performance of vibration suppression of the primary vibrating
system. Optimization theories of the traditional DVA for suppressing vibration in
beam and plate structures have been established and reported in this thesis, and better
tuning conditions of the DVA have been found in comparison to those reported by
other researchers.

Non-traditional designs of the DVA are some recent research topics. One of these
designs has been proved to perform better than the traditional design in some
applications and it is studied and reported in this thesis. Researchers in this area tend
to use the fixed-points theory of Den Hartog (1985) in searching the optimum tuning
conditions of DVAs. However, it has been shown in this thesis that the fixed-points
theory may not applicable in some tuning conditions of a non-traditional DVA. A
new theory is established for finding the optimum tuning condition of the

non-traditional DVA.
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Notations and abbreviations

NOTATIONS AND ABBREVIATIONS
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Notations and abbreviations
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1. Introduction

1. INTRODUCTION

1.1 Literature review

The traditional dynamic vibration absorber (DVA) is an auxiliary mass-spring
system which, when correctly tuned and attached to a vibrating system subject to
harmonic excitation, causes to cease the steady-state motion at the point to
which it is attached (e.g. Korenev and Reznikov 1993, Den Hartog 1985, Hunt
1979). It has the advantage of providing a cheap and easy-to-maintain solution
for suppressing vibration in vibrating systems with harmonic excitation. The first
research conduced at the beginning of the twentieth century considered an
undamped DVA tuned to the frequency of the disturbing force by Frahm (1911).
Such an absorber is a narrow-band type as it is unable to eliminate structural
vibration after a change in the disturbing frequency. Application of damping

substantially widened the frequency band of the DVA’s efficient operation.

Finding the optimum parameters of a viscous friction DVA in SDOF system
drew the attention of many scholars. One of the optimization methods is Hy
optimization. Ormondroyd and Den Hartog (1928) proposed the optimization
principle of the damped DVA in terms of minimizing the maximum amplitude
response of the primary system, which called H, optimization of dynamic
vibration absorber. Following this principle, Hahnkamm (1932) deduced the
relationship for the optimum tuning of DVA using in the SDOF system. Brock
(1946) developed the approximated optimum damping. This optimum design
method of the dynamic vibration absorber is called the “fixed-points theory”,

which was well documented in the textbook by Den Hartog (1985). The exact
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solution of the H, optimization for the DVA attached to undamped primary
system was derived by Nishihara and Asami (1997). And the other important
optimization method is H, optimization. Crandall and Mark (1963) proposed
another optimization principle of the damped DVA in terms of minimizing the
total vibration energy of the primary structure under white noise excitation,
which called H, optimization of dynamic vibration absorber. The exact solution
of the H, optimization for the DVA attached to undamped primary system was
derived by Warburton (1980, 1981, 1982). Asami and Nishihara (2002) proposed
the exact solution of the H, optimization for the DVA attached to damped

primary system.

However, when applying dynamic vibration absorber to a continuous structure
such as a beam, vibration can be eliminated only at the attachment point of the
vibrating beam while amplification of vibration may occur in other parts of the
beam. Research results on suppressing vibration in a region or the whole span
of a beam structure by using the dynamic vibration absorber have been reported

recently.

Many investigators discussed the optimum parameters of a viscous friction DVA
in MDOF system. Rice (1993) reported the use of SIMPLEX nonlinear
optimization method to determine the H,, optimum tuning of a DVA applied for
suppressing the vibration of beam. Hadi and Arfiadi (1998) used a genetic
algorithm to solve numerically the H, optimum tuning for a MDOF system.
Jacquot (1976, 2000, 2001, 2003, 2004) provided the method to handle the
problem when the system is with an additional sub-system and determined the

H, optimum damping based on the transfer functions of a beam and a plate.
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Brennan and Dayou (2000), Dayou and Kim (2005), and Dayou (2006) applied
the fix-points theory and proposed a set of optimum tuning for global control of
the kinetic energy of a continuous structure using DVA. Cha (2001, 2002, 2004,
2005, 2007), Cha and Ren (2006), and Cha and Zhou (2006) used multiple

absorbers to isolate the vibration in a region of a vibrating structure.

Some investigators discussed the non-traditional DVAs. Ren (2001) and Liu and
Liu (2005) proposed a new design of the DVA, which they connected the damper
of the DVA to the ground rather than the primary structure, and derived the new
optimum tuning which is better than the traditional one. Tang (2005) designed a
rotational dynamic absorber (RVA) for absorber for absorbing rotational motion
of a vibration structure. His simulation result showed that the vibration of the
structure can be isolated in the forced region of a beam structure if both a

translational DVA and a RVA are attached at a proper location on the beam.

Recent advances of the absorber designs with active controlled elements (Takita
and Seto 1989, Moyka 1996, Tentor 2001, Jalili and Knowles, 2004, Chen, Fuh
and Tung, 2005, Lin, 2005, Wu et al. 2007a, 2007b, 2007c) may be more flexible
and powerful than the traditional spring mass absorber. One of the concepts of
the absorber with active controlled elements is called Semi-Active dynamic
vibration absorber. Semi-active DVAs allow the system parameters to be varied
after implementation. The semi-active DVA may have variable inertia, variable
damping, variable stiftness or variable initial conditions. A major advantage of
semi-active system is the small energy expenditure needed to reduce vibration.
Another important advance of the absorber is called active or hybrid dynamic

vibration absorber. Active or hybrid DVAs have an arbitrary force actuator and
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controller in parallel with the spring and damper. This adds flexibility to
incorporate control theory to provide counteracting force to the primary structure.
This force has frequently been implemented with a voice coil actuator design.
The majority of literature on this topic focuses on control methodology. However,
these advanced absorbers require special knowledge in the design and operation,
and their applications may be justified when more sophisticated vibration control
solutions are required. On the other hand, the passive dynamic vibration
absorber provides a cheaper and convenient solution for vibration suppression

and isolation of vibrating systems with harmonic excitation.

The application of the DVA is also a research area for the researchers. One
important application is the structural-borne noise attenuation using dynamic
vibration absorbers. Fuller (1982, 1984) presented a technique for tuning
absorbers applied to cylindrical shell to minimize radiated sound. Nagaya and Li
(1997) presented a method using neural network procedure in solving non-linear
equations in predicting tuning parameters of the absorber for higher mode noise
absorber. Since absorbers can be made small and light and they can be installed

conveniently, it finds widely application of DVA on attenuating the noise.
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1.2 Motivation of the present study

The present study is concerned with the optimum tuning of DVA in SDOF,
MDOF and continuous systems for vibration suppression. Research results may
be applied in engineering applications such as bridge, building, naval structures

and pressure vessel.

The optimum tuning conditions of the traditional DVA in SDOF system is well
introduced in literature. However, most of the relevant methods found in
literature about the optimum tunings of the traditional DVA in MDOF system are
numerical ones such as those reported by Rice (1993), Hadi and Arfiadi (1998),
and Jacquot (1976, 2000, 2001, 2003, 2004) etc. These numerical methods can
only provide case by case solution to the problems and the effects of different
parameters of the DVA such as its mass, damping, stiffness and its attachment
point on the primary structure to the vibration suppression performance remain
unclear. It has been shown by Wong et al (2007) that an improper location of the
attachment point of a DVA on a beam can amplify the vibration in some region
of the structure. Dayou (2006) proposed using the fixed-points theory to find
the optimum tuning in MDOF system. However, his optimum tuning is not the
same as those reported by Asami and Nishihara (2003), and Korenev and
Reznikov (1993). In the present studies, the optimum tunings in beam and plate

structures and a structure are presented and some new results are reported.

Another study is on a non-traditional design of DVA proposed by Ren (2001),
and Liu and Liu (2005). They applied the fixed-points theory to find out the
optimum tuning condition of the DVA. However, the fixed-point theory is

suitable for the traditional DVA but it is no always correct for other DVA designs.

5
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In the present studies, it has been the fixed-points theory cannot be used in some
tuning conditions of this non-traditional DVA and a new method is proposed for
finding the optimum tuning condition of this DVA and the performance of

vibration suppression of the optimized DVA is tested.
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1.3 Thesis contents and new results

The text is organized into six chapters and an appendix. This chapter has
presented the literature review of the DVA. The second chapter outlines the DVA

fundamentals.

Chapter 3 derives the vibration and optimization theories of using the traditional
DVA for vibration suppression in SDOF system. H, optimization and H>
optimization theories have been derived. In H, optimization, the fixed-points
theory is introduced and the discussion in the fixed-points theory is presented in

this chapter.

Chapter 4 establishes the optimization theories of the traditional DVA in beam
structures. H,, optimization and the H, optimization theories are established for
Euler-Bernoulli beams and an approximated optimum tuning condition of the

DVA for suppressing vibrations in beam structures are presented in this chapter.

Chapter 5 establishes the optimization theories of the traditional DVA in plate
structures. Plate structures can be commonly found in different types of
engineering application. H,, optimization and the H, optimization theories are
established for Kirchhoff plates and an approximated optimum tuning condition
of the DVA for suppressing vibrations in plate structures are presented in this

chapter.

Chapter 6 establishes the optimization theories of a non-traditional DVA. H.,
optimization and the H, optimization theories are established and the optimum
tuning conditions of this DVA for suppressing vibrations in SDOF systems are

presented in this chapter.
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Findings from the present research work are summed up in Chapter 7. Future
work is also recommended and proposed, which of importance and needs to be

conducted further.




2. DVA Fundamentals

2. DVA FUNDAMENTALS

Vibration theories of a single degree of freedom system (SDOF) with and
without a DVA excited by an external force or ground motions are presented in

this chapter,.

2.1 Vibration of a SDOF system excited by an external force

A SDOF, mass-spring-damper system excited by an external force f'is illustrated

in Figure 2.1.

r

M ‘Jx

G H

Figure 2.1 A SDOF vibrating system under an external force.
The equation of dynamic motions of mass M can be written as
Mi+Cx+Kx=f (2.1)

The frequency response function of mass M can be written as




2. DVA Fundamentals

X K
T F/  rk_ 2 . > (2.2)
%{ K -Mo* + jCao

H (a))

The amplitude and the phase of the of mass M are

H( =| X |=\/ Kz : 2.3
() |%| (k - Mo*Y +(Co) @3
and tan¢:K—C—Aa4)a)2 (2.4)

where X is the amplitude of oscillation of the primary system, ¢ is the phase of

the displacement with respect to the exciting force, F is the amplitude of the
excitation, @ is the exciting frequency and j =+/—1. Using equations 2.2, 2.3

and 2.4, the frequency response function may be written in dimensionless form

as

X 1
H(A)= -7 =———— (2.5)
f%{ 1-22+2jCA

where A is the frequency ratio or dimensionless frequency % , ¢ is the
damping factor of the primary system, ie. ¢ =C and @ 1is the
ping p y sy ¢ A MK n

natural frequency of the primary system, i.e. @, =,/ K/

The amplitude and the phase of the primary system are,

X | i
H(A) = = \/ - - (2.6)
#2) el Vi-2F +2)

and 1:an¢:12_§j2 2.7

10




2. DVA Fundamentals

The frequency response graph is shown in figure 2.2. It is seen that there is one

resonance and the response is highest at the resonant frequency,

2
0w, =0,1-¢".

Frequency response function of primary system

10° .
Damping ratio 0.01
& — — Damping ratio 0.05
= P 5 k
= — - — - Damping ratio 0.1
= 10 5
o
1]
=
1[]'2 e 1 1 1 LS L I |" 1 1 1 T 0
10 10° 10

dimensionless frequency
Figure 2.2 Frequency response function of a SDOF system under an external

harmonic force.

11



2. DVA Fundamentals

2.2 The vibration in a SDOF system with a DVA excited by an

external force

Figure 2.3 Primary system with DVA under an external force.

One of the reasons in using DVA is to eliminate the vibration of the primary
system in a particular frequency such as the resonant frequency. The primary

system with DVA excited by an external force f'is shown in figure 2.3.

Assuming C =0, the differential equations for the vibrations are

e e Y ) A

and the frequency response function can be written as

H(a))—z— k—-mo’ + jew , 9
“F K- Mo Je—mo - mok|+ jeolk ~Mo? —ma®) D)

Equation 2.9 can be rewritten in form of the dimensionless parameters as

12




2. DVA Fundamentals

H(A) =X - y = A +2jC, 7
Ero =2)p* =2 )-uzy [+ 2)¢ 2= 2 = 2’ (2.10)

where y is the natural frequency ratio between the primary system and the DVA,

ie. y= co%) , @, is the response frequency of the DVA, ie. o, :1/% ,

is the damping factor of the DVA, i.e. =G and u is the mass
é’a pl g 1 é’a Am lu

ratio, i.e. y:’%/[. Let y=1 and ¢ =0 that the DVA can eliminate the

highest response at the resonant frequency. As shown in figure 2.4, the frequency

response of the primary system at the resonant frequency can be reduced to zero.

Freguency response function of primary system with DVA

1[] T -|
8l Primary system with DVA |I I. .
L = Primary system without DVA
2} X :

10°
Dimensionless frequency

However, two resonant peaks appeared in the frequency spectrum of the mass M.

Figure 2.4 Frequency response function of a SDOF system with a DVA
excited by an external force.

13




2. DVA Fundamentals

2.3 Vibration of a SDOF system excited by support motions

This is the case that the primary system is excited by support motions as

illustrated in figure 2.5.

Figure 2.5 A SDOF system excited by support motion.

The differential equation for the vibrations of the main mass is

Mi+Ci + Kx = Cy + Ky 2.11)

And the frequency response function can be written as

X K+ jCw
Hw)=—-=
( ) Y K-Mo’+jCo (2.12)
The amplitude and the phase of the primary system are,
Ca))2
H(w) = H (2.13)
\/ (k - Mo*Y +(Co)
3
and tan¢g = MCo (2.14)

K(K - Mo )+(oC)

14




2. DVA Fundamentals

Y is the amplitude of the excitation. Using the dimensionless parameters into

equations 2.13 and 2.14, the equations become,

_X_ 142/
HA)=3=1"z 2 2.15)

X 1+(2¢2)
w2 =X = 2.16
#0) ‘Y‘ J(1—,12)2+(2g/1)2 (2.16)

The frequency response graph is shown in figure 2.6. It is the same as the
previous case that there is one resonance and the highest response appears at the

resonant frequency. Magnitude of frequency response with any damping has the

same value of H(1)=1 at frequency A = V2.

i Frequency response function of primary system

107 .
Damping ratio 0.01
P ) oy Dampfng ratfn 0.05
= — — - — - Damping ratio 0.1
= 5
n
]
=
o
2 =
1[] -3 ! ' ! ' ' ' I ! I."l ' ' ! I ! ' ! 1
10 107 10

dimensionless frequency

Figure 2.6 Frequency response function of a SDOF system excited by support

motions.
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2.4 Vibration of a SDOF system with a DVA under ground

motions

Similarly to the previous case, the primary system with a DVA excited by ground

motions is shown in Figure 2.7.

. |

g

Figure 2.7 Primary system with DVA under a ground excitation

Assume C = 0, the differential equations for the vibrations are

M 0| X c —c| x K+k —-k| x Ky
.|t |t = (2.17)
0 mj X -c ¢ | x -k k| x 0
and the frequency response function is found as

16




2. DVA Fundamentals

K(k -mo® + jca))

H(w)= X (2.18)
Y [(K—Ma)ZXk—ma)z)—ma)sz+ jca)(K—Ma)2 —ma)z)
Equation 2.18 can be rewritten using the dimensionless parameters as
X v = +2j¢ 9
H(A)=—= :
( ) Y I-(l_/lzxyz_//112)_//12/272J+2jé/a}/1(1_/12_Iu/12) (219)

Since equation 2.19 is identical to equation 2.10, the frequency response in this

case is the same as the previous case.
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2. DVA Fundamentals

2.5 Summary

In this chapter, the vibrations of a SDOF primary system exited by an external
force or ground motions are presented. Different source of the excitation such as
an external force at the primary system or a ground excitation can produce
different frequency responses of the primary system. It means that the strategy of
eliminating the vibration in the primary system should be different for different

kinds of excitation even if the primary system is same.

One of the most common ideas to use the DVA is to set the natural frequency of
the DVA to be the same as that of the primary system, i.e.y =1, so that the
vibration at the resonant frequency becomes zero. However, some researchers
such as Den Hartog (1985), Korenev and Reznikov (1993) pointed out the
problems in adopting this idea. One of the problems is that the effective
frequency range is very limited. Two new resonant frequencies appear after the
DVA is attached and these two resonant frequencies are closed to the original
resonant frequency. So the primary system becomes sensitive when the external
force frequency is changed slightly. So, some researchers proposed other ideas to

use the DVA in better ways which will be discussed in the following chapters.

18
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3. OPTIMIZATIONS OF THE TRADITIONAL DVA FOR

SUPPRESSION VIBRATIONS IN SDOF SYSTEM

The derivation of the optimization theories of the traditional DVA for suppressing
vibrations in a SDOF system is presented in this chapter. Two different types of
excitations, harmonic excitation with a varying frequency and stationary random
excitation, are considered. Different optimization methods, H,, optimization and H,

optimization, are introduced for different types of excitation.

3.1 H, optimization of the traditional DVA for SDOF system

One of the disadvantages of using the undamped DVA is that the frequency range is
very limited. The vibration of the primary system becomes large when the frequency
of the excitation is changed. So, some researchers proposed other optimization

schemes which can be more effective in using the DVA for vibration absorption.

In the previous chapter, the frequency response functions of the SDOF with a DVA
are discussed. The frequency response functions of the system excited by an external

force or due to ground motions are stated below for the ease of discussions.

H(4)= X y = +2j8, 7 (2.16)
= % B l(l—}fxyz_}Lz)_ﬂlzyzj_i_zjga}//l(l_;tz —N/Iz)

2 2 .
()= - A [V (2.19)

Y |1=-2)p? -2 )- w22y |+ 28 a0 - 22 - w2

Ormondroyd and Den Hartog (1928) pointed out the damping of the DVA has an
optimum value so as to minimize amplitude response of the SDOF system. Such
optimization criterion is now known as H,, optimization. The objective is to minimize

the maximum amplitude ratio of the response of the primary system to the excitation
19




3. Optimizations of the traditional DVA for suppression vibrations in SDOF system

force or motion, i.e.
max(]H(/l, ViresS ire ]) = min(m?x|H(/1U (3.1
V%4

The advantage of this optimization criterion is that the vibration of the system under a
harmonic excitation with an unstable frequency. And all frequency responses obeyed

the inequality,
|H(/1,7/Hw,§’Hool < min(m?x|H(/1U ,where 1e®R” (3.2)
Vs5a

The procedure to find the optimum tuning frequency of the absorber according to this
H,, optimization criterion is shown in the following paragraphs. Using equation 2.10,

the amplitude of the frequency response may be written as

X - \/ (2 -2) +s.A) (3.3)
Bl V=202 - 2)- w2 f + gl -2 - w2 )f

|Hu1|

Rewriting the equation into the form

X A+B¢; (3.4)
#2) I%I B \/cing

where A:(yz—/iz)z, B=(2yA), CZ[(I—JZXJ/Z—EZ)—N/??/F’

and D= [27//1(1 -1 =k )]2

If the frequency responses, as shown in figure 3.1, are independent of damping, we

may write
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10

10’

Magnitude
_D:.'F

107

10 107 10
Dimensionless frequency

Figure 3.1 The frequency response of the primary system with DVAat y =1

A_B (3.52)
C D
N y: 2 2 B 1 2 (3.5b)
(l—/12X72—/12)—ﬂﬂ,2y2 1_/12_#/12
Taking square root on both sides of equation 3.5b, we have
2 2
A I (3.6)

It can be shown that A = 0 when the positive sign is taken for the expression on the
right hand side of equation 3.6. This result shows that all curves in Figure 3.1 meet at
A = 0. Now taking the negative sign of the expression on the right hand side of

equation 3.6, we have
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3. Optimizations of the traditional DVA for suppression vibrations in SDOF system

y =X 1 (3.7)

Rewriting equation 3.7 as

242y +2uy* 1, 277 (3.8)
24+ u 24+ u

A -

Equation 3.8 is a quadratic equation in A*. Let the two roots of equation 3.8 be A

and A, where 0< A, <A,. The sum and the product of the roots are respectively

written as

1+ +uy’
Ry =1 TH (3.9a)
24+ u
2
and 222 =2 (3.9b)
24+ u

The amplitudes of the frequency response at these two roots are independent of the

damping ratio {,, where these two points, P and Q, are called ‘fixed points’. The

amplitudes of the frequency response at 1> and A, are

(3.10a)

ﬂ/ —
@)= ‘ ‘ ‘1—/12 pa,
: (3.10b)

B
O e
b b

At any damping ratio, the frequency response must pass through these two fixed

points P and Q. So the optimum condition should obey the following equation:

max(]H(/la NN )) = min(max(] ]

b])j (3.11)

The relation between the fixed points and tuning ratio is shown in figures 3.2 and 3.3.
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1[] T T T T T T T T T

The height of the fixed point

1[]' 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 B 7 3 9 10
Tuning ratio
Figure 3.2 The height of fixed points in the frequency response spectrum of mass

M versus tuning ratio y at ©=0.2

1 U T T T T T T T T T

The largest height of the fixed point

1 0 1 | 1 | | |
0

1 2 3 4 5 6 T 3 9 10
Tuning ratio

H (/11, ]) versus tuning ratio y at u=0.2

Figure 3.3 n}%X(IH (4,
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3. Optimizations of the traditional DVA for suppression vibrations in SDOF system

From figure 3.2 and figure 3.3, the minimum height of the fixed points is found when
the height of the fixed point P is equal to the fixed point Q, i.e. |H (xla) = |H (4, 1 . So

the fixed points of the frequency response are adjusted to the same, i.e.

b1 (3.12)
I=Ae =y 1=2y—uy

Using equations 3.9 and 3.10, the tuning ratio which let the amplitude of the fixed

points be the same is

1 (3.13)

The frequency response using y = . is shown in figure 3.4.

10

10’

[=]

Magnitude
=

10"

10° = ' e L : S ol
10 107 10
Dimensionless frequency

Figure 3.4 The frequency response of the primary mass M with DVA tuned at y,,,
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Substitute equation 3.13 into equation 3.8, we may write

2 2
At - A+ =0 (3.14)
Trp @+ u)i+ uf

The roots of equation 3.14 can be written as

(3.15a)
zsz(p/ £ J
1+ u 24+ u
(3.15b)
and A, = ! (1+/ a J
1+u 2+ u

Substitute equation 3.15 into equation 3.12, the response amplitude at the fixed points

is

T (3.16)

G- i) - (a,) - [

In the above, the optimum tuning condition was deduced. The next step is to
determine the optimum damping in order to make the fixed points to become the

peaks on the response curve. We may write

0 ) d ) (3.17)
—|H(A =—H( =0
82/2| ( 1 .y 8242| ( l i,
Let
H() =L (3.18)
q
(3.19)
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g=l1-2)p> = 2)- w2y + 22, 7all- 2 - w2 (3.20)

Substitute (3.18) into (3.17), we may write

2y zﬁ(ﬁj: 0 (3.21)
q
9% 99 (3.22)
249 7P ’
o’ o’
q
o _Oq 3.23
P o

Using equations 3.19 and 3.20, we may write

Do)+ g (.24
04 = 2[(1 -1 X}/Z -1 )— LAY’ K— 142 -y - y}/Z) (3.25)

or
+ (28,7 (1= 27 = 22 J1=327 =3u2)

Under the optimum tuning condition, we have

GroP _2tu (3.26)
qg U
Therefore,
%_%Gz _0 (327)

Solving equation 3.27 for ¢ *, we have

oo oli-2)2 -2 )- ity 14222 -2 — )G —2(2 - ) (3.28)
‘o 2p) -2y (-2 - w2 N1-22 —2u2 )G?

Substituting equations 3.13, 3.15 and 3.16 into the equation above, we find the
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optimum damping written as

(3.29)
/ y7;
ﬂ[3i 2+ﬂj

O ()

Taking an average of &, and the optimum tuning becomes

1 Gedl [ (30
}/Hoo = and é’Hoo = =
1+ u 2 8(1+ u)

From equation 3.16, the resonant amplitude ratio is approximately

) \/m (3.31)
max Il’l

The frequency response of the primary mass M at g =0.2 with different damping

X
Y

ratios is shown in figure 3.5.
10° :

— Optimum tuning

Magnitude
=

107 : : """'_D : bttt
10 10 10
Dimensionless frequency

Figure 3.5 The frequency response of the primary system with DVA using the H.,
optimum tuning
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In figure 3.5, the fixed points P and Q are close to the resonant response of the
primary system. Equation 3.2 can be satisfied and the primary system obey the

optimization requirement expressed as

(3.32)

|H(/1,7Hma§Hw)|Smin(m?xw(“)z,/2+’u,where AeR’
7+6a H

This optimization is called H, optimization. With the same procedure, the optimum
tuning for the velocity and acceleration responses of the primary system can also be

found and they are tabulated in the following.

Table 3.1 The H,, optimum tuning in a SDOF system

Transfer

function

Tuning ratio

Damping ratio

The height of

the fixed point

1+u

3u
8(1+ )

1 [2+u 1 (ul24+24u+5u7) \/
1+u\ 2 42+ u) 1+ u u(l+ p)

1 1| 3u 2
1+ p 2\ 2+ u ,u(1+,u)

In fact, these optimum tunings based on the fixed point are not the exact solutions.
The exact H, optimum tunings were found by Nishihara and Asami [2] at 1997.
Nishihara and Asami provided different method to solve the H, optimum tunings.
However, based on their results [36], the error compared with the exact optimum
tunings and the approximated optimum tunings is under 1% when u <1. So these

results still have the significance of the people using the damped DVA.
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3.2 H, optimization of the traditional DVA for SDOF system

The dynamic absorber used to mitigate random excitation has very important practical
application particularly for tower structures, whose vibrations are caused by wind and
seismic loads. In this case, the single frequency excitation is not the case in these real

situations. A different optimization scheme should be considered.

Crandall and Mark (1963) proposed another optimization principle of the damped
DVA with the objective function on minimizing the total vibration energy of the
primary structure under white noise excitation, i.e.

gl}n(E[xz]) (3.33)

which called H, optimization of dynamic vibration absorber. The exact solution of the
H, optimization for the DVA attached to undamped primary system was derived by

Warburton (1980).

The frequency response functions of the SDOF system with a DVA are restated below
for the ease of discussion. The frequency response functions of the system excited by

an external force and the system excited by ground motions are written respectively as

H(1) =X _ y =X +2j¢, 7 (2.16)
_%_ l(l_/%zX}/z_/12)_/1/1272J+2j§'a71(1—/12—ﬂf)

R 12iC yA
and H(A):%: Y oA A2)C.r (2.19)

=222 =22 )- w2y |+ 2i¢, 721 22 — u2?)

The mean square motion E[xz] of the stationary response process x(t) can be
obtained when either the autocorrelation function R, (z’) or the spectral density

S, (aJ) of the response is known according to the following formulae:
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R,(0)= £’ (.34

E[x2]= f S (o)do (3.35)
The autocorrelation function of the response and the spectral density are written as

R(@)=["[ R (c+6,-0,)n(6, (6, )a6,d6, (3.36)

S, (@)=|H(o)’S, (o) (3.37)
Thus the mean square motion can be written as
E? =R, 0)=[" [" R, (6, - 6,)1(6,)1(6, a6,d0, (3.38)

The mean square motion can be written in terms of the input mean square spectral

density S, (@) as
Ep]=[" s (@M =" |H(0)'s, (0)o (3.39)

If the input spectrum is assumed to be ideally white, i.e. S, (w)=S,, a constant for

all frequencies, the integral of equation 3.39 can then be reduced to
B ]=s,[" |H(o) do (3.40)
Using equation 3.40, the non-dimensional mean square motion can be defined as
E[xz]:“’g_j [y ar (3.41)

Substituting equation 2.19 into equation 3.41, the equation can be written as,
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. 2 3.42
]a)S VoA 42jC A |d/1 (3.42)

ST | ey sy vy )

E[x

Two useful formulae as shown below from Gradshteyn and Ryzhik (1994) are used to

solve equation 3.41.

—ja)3B3 —COZB2 +jCOBl +BO (3438.)
04, — jo' A, -0 A, + jod, + A,

If H(w)=

: 3.43b
Bo (4,4, 4,4,)+ 4,(B> ~2B,8B,) 450

0
2

+4,(B2 -2B,B,)+ lj;(AlAz — A, 4,)

then [ |H(o) do= 4
en [ (o) do=r A, (4,4, — 4, 4,)— 4, A2

Comparing equation 3.42 and equation 3.43, the equation can be written as

A=y’ A=20y, A =1+ +vpy’, A =20(+u) 4,=1 (44
B,=y, B =2(y, B,=1, B,=0

Using equations 3.43 and 3.44, the mean square motion in equation 3.42 can be

written as
S
E|x’ = Dnd0 1+ u)y* + 4520+ p)-2—up? +1 (3.45)
[l= oy s )2l 4]
If —E [ ]— E [x ] 0 exists, the system will have an optimum tuning condition.

¢,

The derivatives of equation 3.45 may be written as

%E[xz —%[3(1”1) y (42 (4 p)-2- -1 (3.46a)
and 6_E[ ]—4 Wy 2[ (1+,u) % +(4§ (1+,u +2+,u)7 —1] (3.46b)
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Using equations 3.46a and 3.46b, the optimum tuning can be found as

u+2 1 u3u+4
= |—2~T%  and S e GV A
R ETP S 2\ 2(u+2)u+1)

(3.47)

This optimization is called H, optimization. The optimum tuning of the velocity

response can also be found using a similar procedure and the tuning frequency and

damping ratios are shown in the following table.

Table 3.2 The H, optimum tuning in a SDOF system

Transfer Tuning Optimized value of
Damping ratio

function frequency ratio performance index
£l ] LH+2 1 [ uBu+4) 1 [4+3u
2u+1) 2\ 2(u+2)u+1) 2\ u(1+ 1)

1 1
E|x’ — \/Z

) 1+ u 2 w1+ )

This H, optimum tuning can minimize the mean square motion of the undamped

primary system under a white noise excitation and this result is an exact solution of

the H> optimization problem.
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3.3 Summary

H,, optimization and H, optimization are introduced and the analytical solutions
including the tuning frequency and damping ratios of the DVA for these optimization

problems in SDOF system are derived.

From table 3.1 and table 3.2, the tuning ratios and the damping ratios of the motion

arc

(3.30)

Y LS ER W I 7R (3.47)
72 T\ 2y o 2Au+2)u+1)

The graphs of both tuning ratio and damping ratio versus mass ratio of the DVA are

plotted in figures 3.6 and 3.7, respectively.

\ Hw optimization
— _ H_ optimization
0.9f N 2 |
~
\
o 0.8+ .
g o~
o ™~
£ -
[
> 0.7} ™~ ~_ |
T~
\
\
0.6+ .
05 L L L L
0 0.2 0.4 0.6 0.8 1
Mass ratio

Figure 3.6 Mass ratio vs. tuning ratio in different optimization methods
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0.5

0.4+
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(o))
£
Q.
£ 02t
a

0.1 Hw optimization | -

- - H2 optimization
0 L L L L
0 0.2 0.4 0.6 0.8 1
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Figure 3.7 Mass ratio vs. damping ratio in different optimization methods

From studying these graphs, the following conclusions can be drawn.

1. In both optimization methods, the tuning ratios decrease when the mass ratio
increases.

2. In both optimization methods, the damping ratios increase when the mass ratio
increases.

3. Comparing the two optimization methods, the tuning ratio and the damping ratio
of the H,, optimization are lower than those of the H, optimization. Moreover, the
difference between these two tuning ratios increases when the mass ratio

increases.

However, this is not the end of the story of the optimum tuning. In the previous
sections, the optimum tunings of using DVA in an undamped SDOF are introduced.
The optimum tuning of DVA for a MDOF or a continuous system has not been found
in the literature. Solutions of these optimization problems will be presented in the

following chapters.
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4. OPTIMIZATIONS OF THE TRADITIONAL DVA FOR

SUPPRESSION VIBRATIONS IN BEAM STRUCTURES

Optimization theory of the traditional DVA for suppressing vibrations in beam
structures is presented in this chapter. Beam structure is a very common structure

in engineering application such as building and bridge.

The beam structure is considered as a MDOF or continuous vibrating system.
The beam has more than one resonant frequency. Another different consideration
in applying a DVA between the SDOF and the beam vibrating systems is that the
DVA can be attached at different location on the beam and the effect of vibration
suppression can be very different. So new problems in this case are what is the
good position of attaching DVA and what is the difference of the optimum tuning
frequency and damping ratios when the attaching position is changed? In this
part, the research of DVA optimizations includes the reduction of vibration at a

particular point on the beam and the total kinetic energy of the beam structure.

All discussions are based on the assumptions listed below.

1. The beam is assumed to be an Euler-Bernoulli beam.

2. The dynamic response of the beam is due to the dominant mode only,
i.e. single mode response only, and the responses of other modes may
be ignored.

3. The modes can be well separated.

The reason of using the Euler-Bernoulli beam is that the dominant modes of the

structure are always in the lower modes. In these modes, the effects of shear
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deformation and rotational inertia are not large. According to these reasons, the

advance beam model, such as Timoshenko beam, is not used in my calculation.

An approximated H, optimum tuning and A, optimum tuning conditions are
derived analytically and compared to the results reported by another researcher

(Dayou 2006) who has applied a different approach to the problem.

The error of the approximated optimum tunings are shown in section 4.4 and the

effect of the non-tuned mode is discussed in section 4.5.
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4.1 The frequency response function of the beam structure with

the traditional DVA

Referring to figure 4.1, consider the motion of a cantilever beam due to the
distributed force applying between x = 0 and x=x,. A DVA is attached at
x=x,. The length of the beam is L, mass per unit length p4, with bending
stiffness E£/. The boundary conditions are any combination of pinned, clamped or
free supports. The Euler-Bernoulli equation can be written in equation 4.1 and

the detail of derivation of this equation is shown in Appendix A.

pA 82?/+E[ 64?} =pt)g(x)+ F(t)o(x—x,) (4.1)
ot Ox
x=0
ptig(x) it
/ Elp.A
P i ] L ¥ ' , ¥
2 1
é - -
£ k
el
wixt)

Figure 4.1 The cantilever beam with a DVA under a external force

Here it has been assumed that the externally applied forcing function can be

expressed as p(¢)g(x), where p(t) is a function of time and g(x) is a
deterministic function of x. The solution to equation 4.1 can be expanded in a

Fourier series written as
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W(x.1) = Zq (O, (x) 4.2)

where IOL (o, (x))2 dx =

where @,(x) is the eigenfunction of the beam without the DVA. Similarly, the

spatial part of the forcing function can be expanded as
8= ap,() (43)
The Dirac delta functions can also be expanded as
o(x—x,)= ii:big. (x) 4.4)

where the Fourier coefficients @, and b, are respectively

.:—J. g(x)p,(x)dx and b, = (ol(x) (4.5)

Here a, depends only on the spatial distribution of the forcing function g(x). If

the equations 4.2, 4.3 and 4.4 are substituted into equation 4.1 and Laplace
transformation is taken on the resulting equation with respect to time, the

transformed result is a set of algebraic equations written as

pAs*Q,(s)+ EIB'Q,(s)=a,P(s)+b,F(s) ieN (4.6)

W AAOTAE (4.7)

If this is solved for the generalized co-ordinates O, (s), the result may be written

as
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a,P(s)+b,F(s)

0,(s)= pds® + EIB°

(4.8)

Then if P(s) and F(s) were known then the s-domain motion of any point on the
beam could be given as

= a4 P(s)+b,F(s)
Z pAS EI o,(x) (4.9)

where W(x,s) is the Laplace transform of w(x,s) with respect to time. For a

damped DVA, the transfer function between the motion at the attachment point

with the DVA, W(xo,s), and the force transmitted to the beam, F (s), is written

as equation 4.10 below and the proof is shown in Appendix B.

F(s) __msz(cs+k) 4.10
W(x,,s) ms’+es+k (4.10)

Substitute equation 4.10 into 4.9, we have

2
a,P(s)~ bV (x,,5) "5 (S HR)

* 2
W (x,s) = ms”+cs+k (x (4.11)
(9=3 B 0,(x)

When x=x,, equation 4.11 becomes,

s =S OGIEE) i, D6 bot)

X,
= pAs® + EIB! ms *toes+k S pAs® + EIB!
i a,;(x,)P(s)
i=1 pASZ +EIﬂi4
14 (cs+k)z b.p.(x,)
ms® +cs+k = pAs® + EIB!

= W(x,,s)= (4.13)

Substitute (4.13) into (4.11), we have the following transfer function:
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i al-(Dl- ('x())
b T pAs® + EIS;
a. —b.
L msttes+k +i b, (x,) (4.14)
W(x,s) _ i ms*(cs+k) S pAs® +EIB} .(%)
P(s) S pAs® + EIB; ’

Replacing s=jo where j=+/-1 in equation 4.14 for the steady-state

response of the beam and rewrite the resulting equation in a non-dimensional

form as
~ ai¢z (xo)
IULZ 2 /12
i=1 i
2 Ay X = b, (x,) (4.15)
w T 2, E Z 2 2
wxa)_ 1 R A S =0
= 2 Z 2 2 @, (x)
P(2)  pdo; S R

Similarly, the transfer functions of the velocity and the acceleration response at

the point x on the beam structure can be rewritten, respectively, as

L{w(x, )} . W(x,/I)
a)nL{p(tt)} = P(2) (4.16)
and L{ng’t)} =_ W(x,i)

o Lip) " P @17
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4.2 Optimization for minimizing the vibration at a point on the

beam structure

For a beam structure with well-separated natural frequencies, the modal

displacement response in the vicinity of the n™ natural frequency may be

approximated by considering i = n and ignoring other modes in the equation

4.15. Consider i = n and ignoring other modes, equation 4.15 may be rewritten

as
a,9,(x,)
4 —b M 1-2
C 26y =R b, ()
wx,A) 1 P A+7) 1-2 )
P(1)  pAe? 1-2 On

Equation 4.18 can be simplified as

w(x,A)_a,0,(x) 7 A +2j¢, 7

P(A)  pdw? [1-22 )2 -22)-e?y? |+ 28, 20— 22 - e2?)
where &= up?(x,)

Equation 4.19 can be rewritten in a form as

W5.) a0,
) o )

where

B y =A+2jC 7
H(2)= =222 =22 )-e22p? |+ 2)¢ 20 - 22 - 62?)

(4.18)

(4.19)

4.21)

(4.20)
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

In considering H, optimization, the objective is to minimize the maximum
amplitude ratio of the response of the primary system to the excitation force or

motion, i.e.

| P(ﬂ,) | 74

It is noted that only the function H(A) is required to be considered in the

a,p,(x)

2

optimization because
pAw,

is a constant term. The objective function of

the optimization may be written as

maXUW(‘x’ ﬂ“’ }/Hooﬁé’Hoo |J an¢n

| 0 = max(|H(,1, VoG )) (4.23)

The equation 4.20 is equivalent to the equation 2.19 in the SDOF system
attached with a DVA if the term & in equation 4.20 is replaced by the mass ratio p.
Therefore, applying the fixed-points theory, the optimum tuning can be found in

the same way as the case of SDOF system and the result are listed in Table 4.1

Table 4.1 The H,, optimum tuning at a point x in the beam structure

Transfer ) ) ) . The height of the
. Tuning ratio Damping ratio .
function fixed point
L{w()} 1 3¢ a,0,(x) [2+¢
L{p(t)} l+¢ 8(1+¢) pA®; &

1 3 a,0,(x) [_ 2
2V2+¢ pAdw? \e(l+e)

L)} 2+¢ 1 [ela+24e+56%) | ap0,(x) [ 2+¢
,L{p(t)} 1+8F 4(2+g)\/( l+¢ ) pja)j e(l+e)
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

Similarly, for the H, optimization of searching the DVA parameters for
suppressing vibration of a beam structure, the objective is to minimize the total
vibration energy of the beam structure at the point x at all frequencies. The
performance index can be defined as

min(E[w? (¢)) (4.24)

7Ca

The mean square motion can be written in terms of the input mean square

spectral density S, (w) as

W (o)

) S, (o)do (4.25)

E[w2 (z)] = fw S, (0)do = I

0
—00

If the input spectrum is assumed to be ideally white, i.e. §, (w)=S,, a constant

for all frequencies, the integral of equation 4.25 can then be reduced to

W (@)

P()

Ew]=s,[" de (4.26)

Using equation 4.26, the non-dimensional mean square motion can be defined as

2 2
S L S 0
Efx?]= Zr2e | LA g (f) [ |H(2) az (4.27)
| 2r \ pAow, -

Similarly, equation 4.20 is equivalent to the equation 2.19 in the SDOF system
attached with a DVA if the term & in equation 4.20 is replaced by the mass ratio p.
Therefore the optimum DVA parameters can be found in the same way as in the

case of the SDOF system and the result are listed in Table 4.2.
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

Table 4.2 The H, optimum tuning at a point x in a beam structure

Transfer Optimized value of
Tuning ratio Damping ratio
function performance index
£+2 1| &(Be+4 la,p,(x) [4+3¢
E 2 = ~ n"n
) 2(e +1) 2V 2(e+2)e+1) 2 pAdow? \e(l+e)

& a,p,(x) |1
pdw? \e(l+¢)

=
g’\)
~
—
=
+‘~
M
Ny

44




4. Optimizations of the traditional DVA for suppression vibrations in beam structures

4.3 Optimization for minimizing the root mean square motion

over the whole domain of the beam structure

Equation 4.15 is restated below for the ease of discussion.

,ULZ ‘;(ﬂl(x 5)
LA b (4.15)
) 1 s f(zjamﬁ) =R A
P(/I) j i 7’,—2—/12 :

The root mean square motion over the whole domain of the beam structure may

be written as

a. X
Mz §0l( )
a. —b- i=1 7/1
i _2£§a7f+7 S Zbif)i(xoz) (4.28)
[t 1 X AQ2jCA+7y7) o Vi —A d
_J.o A > z 1_ 2 @;(x) | dx
p a)n i=1 }/i

Consider the orthogonality relations of the eigenfunctions, we may write

[ 0, (o, (xhdx =0 it mn (4.292)

and J.OL @, (), (x)dx=L if m=n (4.29b)
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

Equation 4.28 can be simplified with the above orthogonality relations of the

eigenfunctions as

a, ,(X)
Ly, GO
a —b i=1 7/1
_2£§a7f+7 —2 + Zb(D,(XZ) (4.30)
|z 5 PR Ay TGy A
pAa)j i=1 7/1'2_/12

For a beam structure with well-separated natural frequencies, the modal
displacement response in the vicinity of the n™ natural frequency may be
approximated by considering i = n and ignoring other modes in equation 4.30

and written as

an¢r1(xo)
4 - S
2 C 2+ =R be,(x,)
t(W(x,2) VL P A+7?) 1- 27
[ dx = . Tk (4.31)
ol P(2) PA@] 1-4

Equation 4.31 can be simplified as

46




4. Optimizations of the traditional DVA for suppression vibrations in beam structures

(2

Ca AL y =22 +2j¢ 72
- pAw’ [(I—AZXyZ —/12)— 8/12y2J+ 2j§a7/1(1—/12 —5/12)

(4.32)

where &= up?(x,)

Equation 4.32 can be rewritten in a form as

\/ [ L(W(x’l)jzdx _anL H(2) (4.34)

pAw;

where

~ y - +2jC A
) = —F ot T 2g Al —F —oF)

(4.33)

In solving the H., optimization problem, the objective function is to minimize the
maximum amplitude ratio between the response of the primary system relative

and the excitation force or motion, i.e.

= min| max
7:Ca

It is noted that only the function H(A) is required to be considered in the

(4.35)

i Jr(mx,z,m,@w)j “

’ P(2)

n

optimization because is a constant term. The objective function may

2

pAw,
be rewritten as
L W(x’i’}/Hoo’é’Hoo) ’ _an\/z . ( )
max \/L ( Z0) dx _—pAa)f min r??X|H(/11 (4.36)
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

Equation 4.33 is equivalent to equation 2.19 in the SDOF system attached with a
DVA if the term ¢ in equation 4.33 is replaced by the mass ratio x. Therefore, by
applying the fixed-points theory, the optimum parameters of the DVA can be
found in the same way as in the case of the SDOF system and the result are

listed in Table 4.3.

Table 4.3 The H, optimum tuning of the root mean square motion of the beam

structure
. . . ) ) The height of the
Transfer function Tuning ratio Damping ratio .
fixed point
o L{w(e)} ’ i R 3¢ aNL [2+¢
.[0 Lip(t)! o l+¢ 8(1+¢) pAo’ \ &
o L) Y 1 [2ve 1 \/g(z4+24g+552) a L [2+e
[T 2
o w,L{p(t)} 1+eV 2 | 42+¢) l+e pAw? \ e(l+¢)
i L) ) 1 1 [ 3¢ a L [ 2
o w?L{p(r)} l+¢ 2V2+¢ pAa? \ e(l+¢)

Similarly, in searching the H> optimization solution of the DVA for suppressing

vibration in a beam structure, the performance index can be defined as

4.37)

Following equations 4.25, 4.26 and 4.27, the optimum DVA parameters can be
found in the same way as in the case of the SDOF system and the result are

listed in Table 4.4
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

Table 4.4 The H, optimum tuning of the root mean square motion of the beam

structure

Transfer function

Tuning ratio

Damping ratio

Optimized value of

performance index

laNL [4+3¢

1| &(Be+4)
E\/2(g+2)(g+1)

2 pda? \ e(l+¢)

l+¢

2

anJZ 1

pAw; 6‘(1 + é‘)
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

4.4 Numerical Simulation

A simply supported Euler beam attached with a DVA as illustrated in Figure 4.2

is considered in the following numerical study. The eigenfunctions and the

eigenvalues can be written as

o(x) = %sin(ﬂ,-x)

7T
where f, =2 jeN
L
The reciprocal of the denominator integral is

1

L L
K = jo sin’(B.x)dx = 5

a = 2sin(™) and b, = 2sin(
L L L

1

inx,

)

X0

(4.38)

(4.39)

(4.40)

Y Divnarmic Vibration

absorber

[\

Figure 4.2 The simply supported beam with DVA under a concentrated force

The material of beam is assumed to be aluminum of density and Young’s

50




4. Optimizations of the traditional DVA for suppression vibrations in beam structures

modulus 2710 kg/m® and 6.9GPa, respectively. The mass ratio p is 0.2. The
dimensions of the beam are 1m (length) X 0.025m (Width) X 0.0025m (height).

xp1s 0.3m and x; is 0.2m.

As shown in figure 4.3, the maximum response of the beam at x, without
damping is much higher than the maximum response of the beam using the
optimum tuning frequency and damping of the DVA. Moreover, the second

resonance of the beam at x can also be suppressed.

As shown in figure 4.4, the optimum tuning parameters presented in the previous
section are applied and the resulting frequency response of the beam is compared
to the one using the optimum DVA parameters suggested by Den Hartog (1985).
The maximum response of the system can be reduced by more than 20% in this

casc.

Frequency response in the simply support beam in optimum tuning
10 T T T T T T T T T

Using new optimum tuning (3.31) | 1
10 l — - Light damping E

an

o |

107} \
)

10+

Frequency response
w

1071 \f f

107} U f
| ]

10 ‘
0 1 2 3 4 5 6 7 8 9 10
Non - dimensional frequency

Figure 4.3 Frequency responses of the beam at x = x with very light damping and
optimum tuning frequency and damping in the DVA
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Frequency response in the simply support beam in optimum tuning
10 ‘ ‘ ‘ ‘

Using new optimum tuning (3.31)
4 —— - Optimum damping of Den Hartog (2.1.2)

Frequency response

10 I I

0 1 2 3 4 5 6 7 8 9 10
Non - dimensional frequency

Figure 4.4 Frequency responses of the beam at x = x, with the proposed optimum

parameters of the DVA and the ones made by Den Hartog.

To test the usefulness of the derived H, optimization solution for suppressing
vibrations a continuous vibrating system, the numerical testing case for the
minimization of the maximum kinetic energy of a vibrating beam reported by
Dayou (2006) was studied by applying the present theory and the result was
compared to those obtained by Dayou. The vibrating beam considered by Dayou
was a simply supported aluminum beam excited by a point force of unit
amplitude at 0.1L as shown in figure 4.5. The eigenfunctions and eigenvalues

of the beam could be written respectively as (Srinivasan 1982)

(pp(x)zsin(%),p ~1,2,3...,and (4.41)
2\ EI

a)pzz(p—j (—J,p=1,2,3... (4.42)
L pA

where L = 1 m, E = 207 GPa, I = 8.1295x10m*, p = 7870 kg/m’ and 4 =
2.42 x 10" m®. A dynamic vibration absorber was attached at x, =0.5L and
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

mass ratio, g was 0.05.

Fandom
Excitation

a % Dvnamic vibration
0.1 I absorber

’ 0.5L J
= l

Figure 4.5 Schematics of a simply supported beam with a vibration absorber

excited by a random force at x=0.1L.

From equations (4.2) and (4.5), we have

| ()Lé'(x—xl)sin(pzmjdx , _
a,= . :zsm(—pL lj
J sinz(pﬂx)dx
0 L

b

. [ pmx,
sm( - j Lo
——sin(pL"j,p—l 2,3...

p: — Ly 4
ILsin2(Wjdx L
0 L

The optimization problem could be expressed as

Hooibeamfvel

=inf| sup IL(M] dx| | | = inf] sup IL(MJ dx
el P Lo () I oar| U oW (f)

where

U(x,f):( a,L J[ T* -/ +2j¢,Tf

Wiy \pha! ) 2SI +T° =)A= f2)—¢f > 2j¢,If +T7)

(4.43a)

(4.43b)

(4.44)

} (4.45)

53




4. Optimizations of the traditional DVA for suppression vibrations in beam structures

and ¢= y(pf (x,) which was the one-dimensional version of the sused in the

theory section.

According to Dayou (2006), the optimum frequency and damping ratios were

L 08333 and |

1+¢ 8(1+¢)

= 0.25 respectively. Based on the present

theory and the derived expressions of the optimum frequency and damping ratios
for H., optimization with different types of transfer functions as shown in Table

4.3, the frequency and damping ratios for minimum kinetic energy amplitude of

1 2+¢

the plate were T =
l+¢ 2

= 08740, and ¢, =

1 \/ £(24+ 245 + 5
)

) = (.2498 respectively. Kinetic energy amplitudes
42+¢ l+e

of the whole beam at steady state were calculated at different excitation

frequencies according to equation:

pha? J{U(x,f)T "
2 W W
s a,0,(x,) 2
b prp\to
2T (4.46)

a —

' [fz—Zféan-h Z’MJ
_pr%(LfT [T+ T E S
2 vi-rf

p=l

ph o

A Matlab program is written to calculate these kinetic energy amplitudes and the
results were plotted in figure 4.6(a). Ten vibration modes (Pmax = 10) of the beam
were used in the calculation. The kinetic energies of the beam calculated based
on the present theory and that by Dayou were plotted in Figure 4.6(a) for

comparison.
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

The amplitude of the kinetic energy at the first resonance of the beam was
suppressed after adding the vibration absorber. However, it could be observed
in Figure 4.6(b), a close-up of the spectrum around the first natural frequency of
the beam, the heights of the two peaks of the curve of Dayou had a big
difference indicating that the damping and frequency ratios of the absorber were
not optimal based on the fixed-points theory. The maximum amplitude of the
kinetic energy of the whole beam around the first natural frequency of the beam
calculated with the proposed frequency and damping ratios was found to be
about 32% smaller than that of the beam with the frequency ratio (7 = 0.8333)

and damping ratio (£'= 0.25) used by Dayou.

il
]

e L Tix )
22 (2D Fay

10 L L T L L L -
0 20 40 B0 B0 100 120 140

Frequency (Hz
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i 1-" -II 25

®) Freq;.lv;:ncy (Hz)

Figure 4.6 Kinetic energy (in J/N?) of a simply supported with optimum
vibration absorber fitted at x, = 0.5L with the first natural frequency as the
control target: (a) figure showing all three modes; (b) in the vicinity of the first
mode. --------- T=0.8333, {=0.25 (Dayou 2006), —— T = 0.8775, =
0.2556 (present theory)

The exact values of tuning frequency and damping ratios to minimize the
maximum amplitude of the kinetic energy of the whole beam around the first
natural frequency of the beam were determined numerically with equation 4.15
as T = 0.8775 and ¢ = 0.2556. The difference of this maximum amplitude of

kinetic energy in using the proposed and the exact sets of 7 and { was found to

be about 3%.
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

4.5 Effect of the tuned DVA in other modes

The approximated optimum tunings are derived for the dominant mode only.

However, the DVA under the approximated optimum tunings also affects other

modes. In this part, the effect of the attached DVA on other modes of the

structure is discussed.

Consider the transfer function of the DVA represented by equation (4.10) and

substituting s = jo in equation (4.10), the steady state frequency response

function of the beam at the attachment point can be written as

Flo)  mko® + jmca’

W(x,, o) Ck-mo’ + jew
Equation (4.47) may be rewritten as

2 . 3
PEO LI} (0)- jox, (o)
-—mo” + jew

2
R

“ (a)) ) (k -mo’ )2 + (ca))2

or rewriting in non-dimensional form as

F(a)  2Qjca+r?)

= =r3(A)+2/C.(2 A4
ma)jW(xo,ﬂ,) 72_/124_2]4,617/2’ }/e( )+ ‘]é’e( )7/(3( )

where k (w) and c (@) are equivalent spring stiffness and

(4.47)

(4.48)

(4.49)

equivalent
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

damping coefficient at the exciting frequency @ respectively. The physical
meanings of these values are that the effect of the DVA attached to the structure
at the exciting frequency @ is same as the structure with the spring and the
damper, with the spring stiffness equals to &, and the damping coefficient equals
to c., at the same position of the DVA attached and under the same exciting

frequency o as illustrated in figure 4.7.

Consider the example in the previous section. The mass of the DVA is 0.3388%g,
the damping coefficient is 18.1429Nm™'s and the spring stiffness is

1.885kNm™"' . The equivalent stiffness and damping at different excitation

frequency are calculated according to equation (4.48) and plotted in figure 4.8.

x=HN p(t)g)

]
e~

E.lp. A

| i | | |

Xy

Figure 4.7 The cantilever beam with an equivalent spring and an equivalent

damper under a external force

58




4. Optimizations of the traditional DVA for suppression vibrations in beam structures

1000
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401

20+

Equivalent damping coefficient

l | l l l | l l |
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Frequency

Figure 4.8 The equivalent stiffness and the equivalent damping coefficient of the

DVA

In the example of the previous section, the natural frequencies of the beam
without DVA are 113.7Hz, 454.6Hz, 1022.9Hz and 1818.5Hz. And the
equivalent stiffness and the damping coefficient at these resonant frequencies are

listed below.

Table 4.5 The equivalent stiffness and damping coefficient in the resonant

frequencies
Mode Natural Equivalent Equivalent damping
frequency stiffness (Nm™) coefficient (Nm's)
(Hz)
1 113.7 186.56 33.21
2 454.6 897.77 18.88
3 1022.9 910.43 18.28
4 1818.5 912.40 18.19
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

The frequency response function of the beam at the attachment point using the
equivalent stiffness and equivalent damping coefficient are plotted in figure 4.9.
Two cases are compared in the followings: one is the cantilever connected with a
DVA at the free end while the other is the equivalent system as illustrated in
figure 4.7. The frequency response function at the attachment point are

calculated and plotted in figure 4.9 for comparison.

10 £ T T T

— With DVA under Hinf optimum tuning
/H —— — With ke and ce at the second mode

Frequecny response of displacement

10—12

L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency

Figure 4.9 The primary system with the equivalent spring and damper

In figure 4.9, it can be seen that the response of the two curves are almost
overlapped together at all modes except the first mode. This shows that the

equivalent system in figure 4.7 can be used to represent the cantilever beam
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4. Optimizations of the traditional DVA for suppression vibrations in beam structures

attached with the DVA for the frequency response at vibration modes other than
the tuned mode of the DVA. In figure 4.8, it is observed that the equivalent
damping coefficient is larger than the original damping coefficient in the DVA,
i.e. ¢=18.1429Nm™'s when the natural frequency is higher than the natural
frequency of the first mode and it approach to ¢ as excitation frequency
approaching infinity. That means the tuned DVA does not only have an effect in
the dominant mode but it also has a damper effect in other higher order modes.
The proposed equivalent vibrating system may be used to represent the effect of
the DVA to the response of the higher order modes of the vibrating beam which

is neglected in the analysis of the previous sections of this chapter.
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4.6 Conclusion in the optimization of DVA for suppressing

vibrations in beam structures

Based on the research as presented in the previous sections, the following

conclusions are drawn.

i.  The optimum tuning parameters of DVA for the minimization of root
mean square motion of the beam are the same as those for the
minimization of vibration at a point on the beam.

ii.  The optimum tuning frequency and damping ratios of the DVA on the

beam structure do not only depend on the mass ratio as the case of SDOF

system in Chapter 3. It depends on the value of &= u@’(x,) which in

this case that means it depends on both the mass ratio and the modal
response of the beam at the attachment point of the DVA.

iii. ~ The optimized DVA can in general suppress only the modal response of
the beam structure at the mode which the DVA is tuned on. The DVA has
little effect on the response of the beam at other modes.

iv.  The maximum response amplitude of the beam with the optimized DVA
depends on the density of the beam, cross section area of the beam, the
length of the beam, the tuning frequency of the DVA, the mode shape of

the beam and the location of the excitation.
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5. Optimizations of the traditional DVA for suppressing vibrations in plate structures

S. OPTIMZATIONS OF THE TRADITIONAL DVA FOR SUPPRESSING

VIBRATIONS IN PLATE STRUCTURES

Jacquot (2001) proposed a transfer function of the plate attached with a dynamic vibration
absorber. He set the frequency ratio to one and determined the optimum damping ratio of the
absorber based on the transfer function. However, it is shown in the latter sections of this
chapter that the optimum frequency ratio of the absorber is in general not equal to one and
another set of optimum frequency and damping ratios have been derived based on the

proposed analytical model.

In this chapter, a theory is established for describing the excitation-response relation leading
to the H, and H, optimum tuning of the dynamic vibration absorber attached onto a plate
structure. The present case is much more complicated than a SDOF structure because an
improper selection of attachment point for the absorber may lead to an amplification of
vibration in other parts of the structure (Wong et al. 2007). The established theory improves
our understanding of the effects of different parameters including the mass, damping and
tuning ratios and also the point of attachment of the absorber on the vibration absorption by
the absorber. The optimum tuning as derived in this article based on the fixed-points theory
(Den Hartog 1985) includes tuning frequency and damping ratios of the absorber and also the
position of the absorber on the vibrating structure. The objective of the optimum tuning is to
minimize vibrational displacement, velocity and acceleration of a point on the plate as well as
the minimization of root mean square motion over the whole domain of the plate. The
numerical simulations are used to show the usefulness of the optimization solutions leading
to better vibration control in continuous systems than those suggested by Jacquot (2001)

based on another approach to the problem.
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5.1 Theory
‘A w(r)g(sy)
RN RN RN R RREn

FAN

Figure 5.1 A simply-supported rectangular plate under external distributed force w(#)g(x,y)

and carrying a dynamic vibration absorber at point (x,, y,).

Consider a thin rectangular plate on the rectangular domain 0 < x < L, and 0 <y < L, which

carries a dynamic vibration absorber at point (x,,y,) as shown in Figure 5.1. The plate is
under external distributed force w(z)g(x,y) and the point force r(¢) is transmitted to the
plate by the attached dynamic absorber. The equation of motion for the plate may be written

as
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Vs 2120 MOBD) 1O oy, GD

where the flexural rigidity of the plate D is defined as

7% (5.2)

D=—"
12(1-v?%)

and where F is the modulus of elasticity, v is the Poisson ratio, % is the thickness of the plate

and p is the material density.

It is assumed that the externally applied forcing function is w(#)g(x,y), where g(x,y) is a
deterministic function of x and y, and w(¢) is a stationary random function of time. The

equation of motion of the free vibration of the plate without the absorber may be written as

ph

V4¢pq (x’y):?a)‘zzzqgopq(x’y) (53)

where @, and ¢, (x, y) are the pg” natural frequency and eigenfunction of the plate

without absorber respectively. The solution to equation 5.1 can be expanded in a Fourier

series written as

u(x,y,t)= i N, (P, (x,y). (5:4)

p=lg=1

Similarly, the spatial part of the forcing function can be expanded as

glx,y)= iapq(ppq (x,¥). (5.5)

p=lg=1

The Dirac delta functions can also be expanded as

S(x=x,)8(r =)= 2Dy (x,7) (5.6)
p=l,g=1
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where the Fourier coefficients a,, and b, are respectively

Apg = (ﬁ),{: J(fg(xay)(%q (x,y)dydx , and (5.7)

by =) (5,0,). (5.8)

Substituting equations 5.4, 5.5 and 5.6 into equation 5.1 and performing Laplace

transformation on the resulting equation with respect to time, the result may be written as

& h h a b
3 %a)f,qzqu(s)+%S2Npq(s)—%W(s)—%R(s)}coy(x,yk0, p.q=123...
p=l,g=1

(5.9)

where N, (s), R(s)and W(s) are the Laplace transform of n,(7), r(#), and w(?)

respectively.

Since the eigenvectors ¢, (x) are linearly independent, we may write

h h a b
%a)lz,quq(s)+%S2Npq(s)—%W(s)—%R(s) 0, pg=1.2.3.. (5.10)

From equation (10) above, the generalized co-ordinates N, (s) may be written as

N (S):[LJ{ aqu(S)+bqu(s):|‘ (5.11)
Pq oh

2 2
W,y +S

Performing Laplace transformation on equation 5.4 and eliminating N, (s) in the resulting

equation with equation 5.11, the s-domain motion of any point on the plate could be written

as
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U(x,y,s)=

1& | 4V () by R(s) (5.12)
ph pz { a)f,qus2 ¢pq(x,y)

=1,q=1
where U(x,y,s) isthe Laplace transform of u(x,y,f) with respect to time.

The force transmitted to the beam at the point of attachment may be written as

5.13
R(s) =—U(xo,yo,s>{m} e

ms® +cs+k

The functions R(s) in equation 5.12 can be eliminated using equation 5.13 to give

2
anW(S)_bpq = (CS+k) U(xo’yoas) (514)

ms’ +cs+k
2 2
Wy TS

1 s
U(X,y,S)Z—h z (opq(x’y)'

This expresses the motion of an arbitrary point (x, y) on the vibrating plate in terms of the
forcing function W(s) and the motion at the point of attachment (xo, Vv, ) This relation would

definitely be valid at the attachment point (xo , yo) leading to

2
ms*(cs+k) (5.15)
0 aqu(S)_bpq ms2+CS+kU(xo’y0’S)
U(XysYpo8)=— 2, e MERDE
h p=lg=1 a)pq +

This can be rearranged to arrive at a transfer function between W(s) and U(x,,y,,s) written

as

1& a4y 0p(%55,) (3.16)
U(xy,Y558) _ ph g oy s
W(s) _1+1[’"32(0S+k)} 2 by (x,.5,)
ph| ms* +es+k | poma a)f,qus2
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The following non—dimensional parameters are used in the following derivations.

y7, is the mass ratio between the masses of the absorber and the plate;

. om
PhL L,

¢, = ¢ is the damping ratio of the absorber;

O 2mk

@, =, fi is the undamped natural frequency of the absorber;
m

o, . .
T =—* is the ratio between the absorber frequency and a reference natural frequency
Opp

@, of the plate;

1)
=24 is the non-dimensional natural frequency of the plate referred to Opp s

A =w/®,, isthe normalized frequency.

The frequency response function of the plate can be obtained by substituting equation 5.16

into equation 5.14 and replacing s by jw in the resulting equation written in

non-dimensional form as

pab Y W
a —b p=lag=tl Vg T
TN SRR S P (i)
Ux,p, ) 1 i - X6, TA+T?) =1, j=1 7/;q -1 o (i)
W(ﬂ’) pha)jﬂ p=l,g=1 7;q - /12 e ’
(5.17)

where j=4/—1. The transfer functions of the velocity and the acceleration responses at
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point (x,y) on the plate surface may be written respectively as

Ux,p.2) _ Y. 4) (5.18)
o, T Tway

and M:_]pzw (5.19)
Oy W(A) W)
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5.2 Optimization for minimizing the vibration at a point (x.y) on the plate

For a structure with well separated natural frequencies, the modal displacement response in
the vicinity of the uv'™ natural frequency may be approximated by considering p = o and ¢ =

f and ignoring other modes in equation 5.17. Equation 5.17 may then be written as

I wa (xo’ya) ]
1-b,, —
A +2j¢,TA+T? CdL L by Pus(x,,7,)
U(x, y,2) _(aaﬂwaﬂ(x, ) P(2j¢C TA+T?) SR P
W(A) ph a)iﬂ 1-2
— aaﬂwaﬂ(xﬂy) Tz_//112+2]é’aT/1 — aaﬂwaﬂ(xﬂy) Z(/l)
pha)jﬂ QJCTA+T?> = 2)1- ) - el (2j¢, TA+T?) pha)iﬂ
(5.20)
222405 h o, Ux,y, A
where Z(4)=— 2T2 A +§]§aT/} ' - ph o, U(x,y,A)
Q2jETA+T" = 2)A=-A) =X (2jC,TA+T7) | aypPup(x,y) W(A)
(5.21a)
is the non-dimensional frequency response of the plate, and
(5.21b)

gz;uwiﬂ(xoﬁyo)'

The error of ignoring other modes is discussed in section 5.4. The objective of H,
optimization is to minimize the maximum vibration amplitude response at the point (x,y) and

the performance index may be defined as
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U(x, y,/ﬂt) jJ (5223)

H . =I1nf| su
o _pt_disp 1 ({,IP( W(//L)

Similarly, the performance indices of H, optimization for minimizing the maximum velocity

and acceleration amplitude responses at the point (x,y) may be defined respectively as

D (5.22b)
D (5.22¢)

The expression Z( A ) in equation 5.20 is equivalent to the amplitude ratio as derived by Den

U(x,y,4)
0., W(A)

Hoofptfvel = u/llfisup[
¢, T

U(x,y,4)
Wy W(A)

and H, , .. = inf{sup[

Aloer

Hartog (1985) in the SDOF system attached with a dynamic vibration absorber if the term &
in Equation 5.21a is replaced by the mass ratio . & may therefore be considered as the
equivalent mass ratio for applying vibration absorber to control vibrations in plate structures.
The optimum frequency and damping ratios, and the height of the fixed points in the
frequency spectrum of the primary system in equations (5.22a), (5.22b) and (5.22¢) for H.,
optimization can be derived based on the fixed-points theory in the same way as in the case
of SDOF system (Asami et al. 2002; Asami and Nishihara 2003) and the results are listed in

Table 5.1.

The objective of H, optimization of the absorber is to minimize the total vibration energy of
the mass at point (x,)) of the plate of all frequencies in the system and the performance index

may be defined as (Crandall and Mark 1963)

5.23
H, , :inf[—E[U—Z]—J. 629

1\ 278w, D
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Table 5.1 The approximated H,, tuning of the plate for control of vibration at point (x,y) and

the height of the fixed points in the response spectrum.

Transfer Height of the fixed points
Tuning ratio Damping ratio
function in the response spectrum
U(xayaﬂ’) 1 3¢ aaﬂwaﬂ(xay) £+1
W(A) l+¢ 8(1+¢) phay &

Uy, 4) 1 [2+¢ 1 \/5(24+24g+552) QapPap(X-¥) |2 1
W, W(A) l+e\ 2 42+¢) l+& phar, e l+¢
U(X,y,ﬂ) 1 1 3¢ aaﬁwaﬂ(xay) g_ 2
Wy W(A) l+¢ 2V 2+¢ pha)iﬁ Ve l1+¢

where E[U?] is the ensemble mean of U? and Sr is the spectral density of the excitation.
The optimum tuning frequency ratio and damping ratio for H, optimization of the system can

be derived based on the fixed-points theory as (Asami et al. 2002)

T=—— 14238 (5.24a)
(1+¢) £
1 [ e@+39) (5.24b)
and ¢, =7 20+5)2+¢)

If the forcing function w(f) has power spectral density Sk(f), the spectral density of the

vibration response of the point (x,y) on the plate may be written as

U(x, v, 1) 2 (5.25)

W) Sr(f)

Su(xayaf):‘

With optimum frequency and damping ratios as expressed in equations 5.24a and 5.24b, the

mean square motion at point (x,y) can be derived as
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UGy, )| (5.26)

) |

2
W, o B N
ol (x,y) = aﬂj apPap J’)j 3c+4
27 v

S, (f)df =22
' 2 pha, gle+1)
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5.3 Optimization for minimizing the root mean square motion over the

whole domain of the plate

Using equation 5.17 and integrating the square of amplitude response over the whole domain

of the plate, we may write
o(Ux, v, A) )

j J' A CIP 140 dydx

ol W)

q) (xo’y())
bpqzuLxL Z pq pq

2
p=l,g=1 _/1

apq .
{12—2‘]4’,17%_]—1 ,Lle , Z pq(/’pq( oayo)J

PQj¢TA+T?) et i

7 Py (X, ) | dydx

p=lg=1 ypq

(5.27)

Consider the orthogonality relations of the eigenfunctions, we may write

L, oL, .
'[()L J()L) @y (X, V)P5(x,y)dydx =0, if p#aorq# f,and (5.28)
.[o ! Jo "0, (X, )P (x,y)dydx =L, L, if p=aandq=p.

Equation 5.28 can be simplified with the above orthogonality relations of the eigenfunctions

as
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2
| (5.29)
J‘L-‘J.L! U(x’yaﬂ’) dydx
0 Jo W(A)
2
S A0, (X,,0,)
bl"[‘lleLJ’ z = ;q 2

a _ p=lg=1 ypq _ﬁ’

. /12—2j§aT/I—T+ﬂLL i b @, (x,,7,)
~ Zw: L.L, A2j¢,TA+TY) " 5Ly, A
pora=1| Ph a)j:ﬁ 7127q -2

For a structure with well separated natural frequencies, the mean square modal displacement
response in the vicinity of the aﬁ‘h natural frequency may be approximated by considering p

= g and g = f and ignoring other modes. Equation 5.29 may be written as

Lo ( U(x, y, A 5.30
J‘O J‘O[ (x,»,4) (5.30)

W) j dydx

aaﬁ¢aﬁ ('xo ’yo)

L
a,,—>b s =4
T B2 AT b ()
LxL}" 2’2(2'.141417“/7’—i_]—,z) o 1_2/2
B pha)jﬁ 1-A

The root mean square amplitude response of the vibrating plate with an absorber may be

written as
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i

Pop (X,,¥,)
] =/ -7
S
“ ﬂz—Zjé’aT;t—T +ul L M
a,L.L, RQETA+TY 757 1=2
RVZ wiﬂ -2
(aglL, T? - 2 +2j¢,TA
phal, )| (i TA+T> = 2)1-2)—¢*(2jS,TA+T?)
a,L.L, (5.31)
= ol Z(4)
p a)aﬂ

The magnitude of the root-mean-square amplitude response of the plate may be written as

Ij U(xy,ﬂ) dydx| = A,
w(a) Phwiﬁ

The H, optimizations for minimizing root mean square motion, velocity and acceleration

(5.32)

2.

responses of the whole plate are written respectively as

(5.33a)

5 .
3 Le Ly U(x’ ya /I)
H o plate disp H}f S;?]P \/ J.O J.O {W dydx

n}f sup \/I I (]/H[]/IE)(C;)}’/DJ dydx
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L, L,
H — inf ["]
o _plate _acc 2 Sé’uZP o Jo

. 2 .
U@%@j@ﬂ

W(L)

- inf| s J; I [

w(A)

fUu%mjdﬁ

(5.33b)

The optimum tuning frequency and damping ratios and the height of the fixed points in the

frequency spectrum of the primary system in equations (33a), (33b) and (33c) for H,

optimization can be derived based on the fixed-points theory as in the case of SDOF system

(Asami et al. 2002; Asami and Nishihara 2003) and the results are listed in Table 5.2.

Table 5.2 The approximated H, tuning of the plate for control of vibration of the whole

plate and the height of the fixed points in the response spectrum.

Height of the fixed
Tuning
Transfer function Damping ratio points in the response
ratio
spectrum
Ux,3,4)) ’
a b
J. J (xaya ) dydx 1 3¢ aaﬂ E_'_l
o b | T l+e 8(1+¢) pha? &
aff
. ; 1 [2+2 | 1 \/5(24+24g+552) 2
Iajh U(X,y,/I) dydx l+& 2 4(2+g) 1+ ¢ Aop (E_ 1 j
0 a)aﬂW(/I) pha)éﬂ g l+e¢
U(x, y. 2 ’
II (xy,) dyd 1 1 [ 3 dop 2 2
o’ (1) l+¢& 2V 2+¢ Phwiﬂ e l+e¢

The objective of H, optimization in this case is to minimize the vibration energy of the whole

plate of all frequencies of the system. The performance index in this case may be defined as

77




5. Optimizations of the traditional DVA for suppressing vibrations in plate structures

J' J~ U(x,y,4) /1) dydx (5.34)
W)
=inf .

2 plate T 2
‘. 278 @,/ D

H

Warburton (1980) had derived the frequency and damping rations for H, optimization of

[ u+2 1 [ p(4+3u) .
SDOF t T = |4 d == |7 - U
system as Ly, spor ,u(l N N)Z and &y, gpor 5 2(1 N ,u)(2 N /u) sig a

similar approach, the frequency and damping ratios for H, optimization of the plate structure

can be derived as

" (5.352)

g(4+ 35) (5.35b)

1
nd S =20 o) se)

The H, optimization is the minimization of the root mean square motion response over the

whole domain of the plate under wide-band random excitation. Warburton (1980) had derived

X 3u+4

the mean square motion of a H, optimized SDOF system to be — = ( 1). Using a
H\H+

similar approach, the optimum frequency and damping ratios as expressed in equations 5.35a

and 5.35b, the total mean square motion of the whole plate can be derived as

12

(5.36)
\/I I (U(V;y,/t)j dydx| S, (1)da =22 aopliL, /3g+4
(4) 2 |\ ph a)aﬂ gle+1)
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5.4 Simulation results and discussion

To test the usefulness of the derived H, optimization solution for suppressing vibrations in
plates, the numerical case studied by Jacquot (2001) was analysed with the optimum tuning
derived in the previous section and the results were compared to those obtained by Jacquot.
The vibration of a square plate with four sides simply supported was considered. The

eigenfunctions may be written as

9, = 2sin(pax)sin(g ) (5.37)

The excitation was stationary and random in time, i.e. g(x,y)=1, and it was uniformly

applied on the plate. In this case,

8
a, = , p,q=2n-1 neN (5.38)
M gt

else a g = 0.

b,y =9,,(x,,¥,)=2sinprx,singny,, p,qeN (5.39)

The dimensions of the plate were @ = 1m, » = Im and 4 = 0.0lm. The material of the plate

3

was aluminum of p=2.71x10%kgm™, E=6.9x10°Pa and v=0.33. In the analysis made by

Jacquot (2001), the frequency ratio was chosen as 1. The vibration mode required to be
suppressed was a=f=1. The attachment position of the absorber on the plate
was x, =y, =0.5. The mass ratio and damping ratio for minimum mean square motion at the
attachment point were found to be 0.275 and 0.45 respectively by Jacquot. In the current
analysis, the same mass ratio was used so that the result of vibration suppression could be
compared to that of Jacquot. The modal response amplitude at the point of attachment
@1(x,,v,) was 2 and therefore ¢ was 1.1 according to equation 5.21b. The optimum
frequency and damping ratios in this case were calculated to be 0.5929 and 0.3927
respectively in applying equations 5.24a and 5.24b. The vibration amplitude response at
point (x,,y,) of the plate was calculated according to equation 5.17. The spectral density of

the vibration amplitude response at point (x,,y,) was calculated according to equation 5.25
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and it was plotted in Figure 5.2 and compared to the corresponding curve by Jacquot

(equations 25 and 28 of Jacquot 2001).

Dimensionless I
power spectral <|\
dE 'JE-[L""' 1r.|‘- E I!
= E Iy |
II| |
el i I
E ) oy i
- |
oy 'i |
o -
. e, S T, ' |
10" : S R T [ |
e | |
L =G ) I.
-1 R-—e_:h—__ﬂ—_ | ’
10 E E i
: \ d
i \jﬂ
10 3
10°
Dimensionless frequency, /= a'an
Figure 5.2 Dimensionless motion power spectral density of a square plate with g(x,y) =1,
1=0275x,=y,=al2. ---—---- Jacquot’s result (2001); Present theory, Equation (26);
——————— No absorber added.

The spectral density of the vibration amplitude response at point (x,,y,) for the case of no
absorber added was also plotted for comparison. It could be observed in Figure 5.2 that
both Jacquot’s result and the present result provided vibration control at point (x,,),) of the
plate. However, the mean square motion at point (x,,),) of the plate with the proposed
frequency and damping ratios was found to be 55.8% smaller than that obtained by Jacquot.
Jacquot also reported that there was an optimum mass ratio leading to minimum mean square

motion of the plate but no particular optimum mass ratio could be found in applying the
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present theory. Based on equations 5.21b and 5.26, it was observed that mass ratio should

be as high as possible in order to reduce the mean square motion of the plate.

Mean square motions at the attachment point of the plate based on the response of 20
vibration modes were calculated numerically using equation (5.17) with different values of
tuning frequency and damping ratios and the result is plotted in Figure 5.3 below. The values
of tuning frequency and damping ratios for minimum mean square motions are found to be T
=0.595 and ¢, = 0.459. The difference of mean square motion of the plate at point (x,,,)
using the exact and the proposed sets of 7' and ¢ was found to be about 1%. This shows that
the proposed optimum tuning frequency and damping ratios are quite accurate even though

they are determined based on the vibration response of only one mode of the plate.

+ Approximated tuning 3
+ Exact result

Tuning ratio

0.3 0.4 05 0.6 o7 0.8 09 1
Dampng ratio

Figure 5.3 Contour plot of the mean square motion of the plate at the attachment point of

DVA at different tuning and damping ratios

H,, optimization of motion control is also checked in this case. The exact tuning ratio and

damping ratio are calculated numerically using equation 5.17 as 7 = 0.468 and ¢, = 0.494
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respectively and the approximated tuning ratio and damping ratio are calculated according to
the formulae in Table 5.2 as 7 = 0.4762 and ¢, = 0.4432 respectively. The global maximum
response of the exact tuning and the approximated tuning are calculated to be 2.7322 and
2.8322, respectively. In this case, the global maximum using the approximated tuning is

about 3% higher than the exact value.
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5.5 Summary

In this chapter, analytical solutions to the H, and H, optimization problems of dynamic
vibration absorber attached to a vibrating plate under random excitation have been derived.
Expressions of the optimum tuning frequency and damping ratios are derived for the absorber
assuming single mode vibration of the plate. The error due to this assumption is discussed in

section 5.4. The effects of the DVA on other higher order modes are discussed in section 4.5.

The optimum tuning frequency and damping ratios of the absorber derived in the present
theory for solving the H, and H, optimization problems applied to vibrating plate structures
have similar forms to those of the SDOF system. However, the tuning equations are based on
the equivalent mass ratio ¢ which is a function of both the mass ratio and the position of the
absorber on the plate structure. Moreover, it is derived that both the optimum tuning
frequency and the damping ratios for minimum vibration at a certain point are the same as
those in the case of the minimum mean square motion for the whole plate. That means the
mean square motion would be minimum when the vibration at a single point of the surface is

minimum.

Secondly, the vibration response in H, optimization and the mean square motion in H>
optimization would be reduced when the equivalent mass ratio ¢ is increased under the
optimum tuning condition. That means a higher mass ratio and an attachment point of the
absorber having higher modal response should be chosen for the suppression of vibration for
the whole plate or at one point of the plate. This finding is different from that of Jacquot
(2001) who showed that there would be an optimum mass ratio for minimum mean square
motion of a vibrating plate under random excitation. There is no optimum mass ratio found in
the present analysis. Jacquot found an optimum mass ratio because he fixed the tuning ratio,

T =1. It is found in the present analysis that the mass ratio should be as high as possible.
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Based on the example in section 5.4, the approximated optimum tunings are better than the

Jacquot derived one.

Thirdly, based on the expressions as shown in tables 5.1 and 5.2 for the heights of the fixed
points in the response spectrum for H,, optimization, it is found that the heights of the fixed
points in the (dimensionless) displacement response spectrum are higher those of the
(dimensionless) velocity response spectrum and in turn higher than those of the

(dimensionless) acceleration response spectrum.
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6. OPTIMIZATION OF A NON-TRADITIONAL DYNAMIC

VIBRATION ABSORBER

A non-traditional dynamic vibration absorber is proposed for the minimization of
maximum vibration response of a vibrating structure. Unlike the traditional damped
absorber configuration, the proposed absorber has a linear viscous damper connecting
the absorber mass directly to the ground instead of the main mass. Optimum
parameters (for H, optimization) of the proposed absorber are derived based on the
fixed-points theory for minimizing the maximum vibration response of a
single-degree-of-freedom system under harmonic excitation. The extent of reduction
of maximum vibration response of the primary system when using the traditional
dynamic absorber is compared with that using the proposed one. Under the optimum
tuning condition of the absorbers, it is proved analytically that the proposed absorber
provides both a greater reduction of maximum vibration and velocity responses of the

primary system than the traditional absorber.
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6.1 H,, optimization of the non-traditional DVA

The design of the non-traditional DVA is shown as Figure 6.1. The elements of the
non-traditional DVA are totally the same as the traditional DVA. It also has a mass, a
damper and a spring. The difference between the new one and the traditional one is

that the damper is connecting to the ground instead of the primary system.

The motion of the primary system and the DVA are governed by the following matrix

equation.

g e A

Taking Laplace transformation and replacing s by jm, the frequency response function

may be written as

H(a))z

{ _ k—mao?® + jecw (6.2)
F K +k-Mo* fk—mo?)-k* |+ jealK + k - Mo?)

Rewriting equation 6.2 in dimensionless form, we have

H(4)= X y =X 42,7 (6.3)
_1%{ B [(1—/12xyz_,12)_”/127/2]_’_2].@7//1(1_/12+M/z)

In the H,, optimization, the objective function is to minimize the maximum amplitude

ratio of the response of the primary system to the excitation force or motion, i.e.

max(IH(/l, ViresS ire ]) = min(m?x|H(/1]j (6.4)
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m

2 )

i |
M g

K

VA S A T S O

Figure 6.1 A SDOF system (M-K) mounted with the new DVA (m-k-c) excited by

an external force

Using equation (6.3), the amplitude of the frequency response function is

\/ (2 -2) +@¢,nY (6.5)
[(1 -2 Xyz —/12)— ,u/tzyz]z + (2§a7//1)2 (1 -1+ ,u72)2

Equation 6.5 may be rewritten into the form as

x| [a782 (6.6)
[#(2) I%I - \/cing

where A:(}/z—iz)z, B=(27A), CZ[(I—JZXVZ—/%Z)—#/#?/Z]Za

and D= (2701(1 -1+ ,uyz))z

Frequency responses of the primary mass M are calculated according to equation 6.6
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with three damping ratios and the results are shown as figure 6.2. It can be observed
that there are intersecting points O, P and Q which are independent of damping of the

absorber. At those fixed points, we may write

4_B (6.72)
cC D
yi oA 2 1 2 (6.7b)
or =| ——
[(1—/12)(%—12)—#%2} (l—fﬂwzj
Taking square root of equation 6.7b, we have
2 2
y =4 1 (6.8)
(1 ﬂzx}/z /12)_#/127/2 1_/12_'_#}/2
10°
10 |
‘gj 10°
=
107 |
10° 10° 10

Dimensionless frequency

Figure 6.2 The frequency response of the primary system with the new DVA at y =1

It is found that A = 0and H (O) =1 which corresponds to the fixed point O if we take
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the positive sign on the right hand side of equation 6.8. Taking the negative sign on

the right hand side of equation 6.8, we have

y -2 1 (6.9)

Equation (6.9) may be rewritten as
224 =21+ + W+ 277 + iyt =0 (6.10)
The sum and product of the roots of equation 6.10 can be written respectively as

ond 22 Tm (6.11b)
a’"b
2

Equation (6.10) is a quadratic equation in 4. Let A’ and A; be the two roots of

equation (6.10) and assume0 < A, < 4,. The amplitudes of the frequency response at

these two roots are independent of the damping ratio {,, where these two points, P and

0, are called ‘fixed points’. The amplitudes of the frequency response at A° and A’
p P q y 165p a b

arc

S 7 e
o THY
3 . (6.12b)
d |H(A) =2 =|——
and [H(%) ‘D‘ ‘l—ﬂiﬂwz

At any damping ratio, the frequency response must include these three fixed points O,

P and Q. So the H., optimum condition of the DVA may be expressed as
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max((H (2,7 .. )) = min(rg?f(lH (A, ) (3, | (2, 1)) (6.13)

\H (/10)| and |H (/1,,)| are calculated according to equations 6.12a and 6.12b at

different values of y and they are plotted together with H (0) in figure 6.3. The
response amplitudes at these three fixed points are compared and the maximum of

H(2, ]), is plotted in

these three responses at each value of y, me}x(IH (4, ),|H (4, ],
Vs

figure 6.4. Point 4 in figure 6.3 is the intersecting point of the curves of |H (/10)|

and |H (/lb)| . This is the case that the response amplitudes at the two fixed points P

and Q to be the same and this condition is used in applying the fixed-points theory for
searching the optimum tuning frequency of the traditional DVA. Optimum damping
will then be found such that the response amplitude at the fixed points becomes local

maxima of the response spectrum of mass M.

5 T T T T T T T T
| 3
450 | NE
| TR
4 | = _._,':D 7
35} | -

The height of the fixed point

U 1 1 | r— — e —y L
0 1 2 3 4 5 6 T 8 9 10
Tuning ratio

Figure 6.3 Response at the (height of) fixed points versus tuning ratio at ¢z = 0.2
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45¢F .

351 .

The largest height of the fixed paint
Ma
L
1

=
tn
T
1

U 1 1 1 | | 1 | | 1
0 1 2 3 4 5 B 7 8 g 10

Tuning ratio

H(4, 1, H(4, )) versus tuning ratio at £ = 0.2

Figure 6.4 m%x(]H(/L, ).
Vs

In figure 6.3, there are two ranges of frequency ratio y that the two curves |H (/Iu)|

and |H (xlb)| require different methods for searching the optimized parameters of the

DVA. In figure 6.3, the first frequency range of y starts from zero to the frequency

of point 4 while the second range starts from the frequency of point 4 to infinity.

\H (/10)| decreases and |H (/1,7] increases when y increases in the first frequency range
and therefore it satisfies the assumption of the fixed-points theory. However, both
|H (/10)| and |H (/1,,)| decreases for all frequencies on the right hand side of the local
maximum of |H (/la] . Moreover, there is no intersecting point in the second

frequency range and therefore the fixed-points theory cannot be used in searching the
optimized parameters of the DVA. These two cases will be discussed separately in

the following sections.
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H(2,),

H(2,))

In figure 6.4, point 4 is a local minimum of the curve of m%x(]H (/Ia 1,
Vs

and its corresponding tuning ratio was chosen by other researchers (Liu and Liu 2005;
Ren 2001) as the optimum tuning frequency ratio. This is the optimum case only if
the tuning frequency ratio can be chosen between zero and the tuning ratio of point B
in figure 6.4. It will be shown in the following section that the damping and the tuning
ratios are functions of the mass ratio. On the other hand, point C and the curve on the
right of point C in figure 6.4 show that the response amplitude ratio at the fixed points
are one or below. It will be shown in the following section that the optimum damping

becomes a function of mass ratio and tuning ratio.
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6.1.1 Local optimization of the non-traditional DVA using the

fixed-points theory

The local minimum of the response amplitude at the fixed points can be found when

\H(2,)=|H(4,), ie.

N (6.14)
1- 22+ uy’ 1-4, + uy

Using equations (6.11) and (6.12), the tuning ratio leading to the same response

amplitude of the fixed points is

] (6.15)

7/0pt7 local —

l—p

The magnitude of frequency response of mass M using equation 6.5 and

Y opt_local = is calculated and the result is plotted as figure 6.5.

l1—p

Substitute equation 6.15 into equation 6.10. Equation 6.10 can be rewritten as

B2 op 2TH (6.16)

(6.17a)
A :L(l_\/Zj
1—u 2
(6.17b)
and A :L(1+ ﬁJ
1-u 2
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2z

10

10

Magnitude
=

10"

1071 — e M,
10 10° 10

Dimensionless frequency

Figure 6.5 The frequency response of the primary system with a new DVAaty,, .-

Substitute equations 6.17a and 6.17b into equations 6.12a and 6.12b, respectively. The

response amplitude at the fixed points can be written as

G=|H(,)=|H(4,)= 21—z (6.18)

ou

The next step is to determine the damping of the local minimum in order to make the
fixed points to be the maximum points on the response curve. The condition of fixed
point being the maximum means that the response curve would become local maxima

at the fixed points, that is

(6.19)
=0

A=hy

0
287|H(71]2

0
a7|H(7L)|2

A=A,
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Let |H(/1)2 =2
q
where p = (72 -1 )2 + (2§a7//1)2

g=[1-2)p> - 2)- w2 + ¢, 2P (1= 22+ wy* ]

Substitute equation 6.20 into equation 6.19, we have

0 > 0 (p
—|H(A) =—|=|=0
o’ (1 8/12((1)

op oq
a2l o ?
q—2:0
op oq
a7

Using equations 6.21 and 6.22, we may write
P oz —y)e(28,)
o012 ¢
86% = 2[(1—/12X}/2 —/12)—/1/12}/21—1+2/12 —72 —yyz)
+(2§a}/)2(1—/12 + y}/ZXI—S/IZ +,uy/2)

Substitute 7,,, jpea = /1 1 into equation 6.20, we have
) —H

Using equations 6.25 and 6.28, we may write

P %Gy
or  oa

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)
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Solving ¢ az from equations 6.26, 6.27 and 6.29, we have

oo Gz[(l—/IZX]/Z _/12)_#/12}/2]2 —(72 _/12)2 (6.30)
‘ PG (-2 + )

The optimum damping can be found by substituting equations (6.15), (6.17) and (6.18)

into equation 6.30 and written as

3 (6.31)
So= [ F
8(1 T ”j
2
Taking a linear approximation of ¢, the optimum damping is chosen as,
(6.32)
1 3u 3u 1 | 3u
goptilocal = E + = E E
(o] )
2 2
From equation 6.18, the resonant amplitude ratio is approximately
‘ﬁ _21-p) (6.33)
Y local _max \ 2/”

The frequency response of primary mass M with =02, y= y, ., and damping

ratio ¢,= 0.1, 0.2 and ¢, ,,,, are calculated respectively using equation 6.5 and

t_loca

the results are plotted in figure 6.6.

To compared the vibration suppression performance of this non-traditional DVA to the

traditional DVA, frequency response curve of the primary mass M in figure 3.5 with
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optimum tuning condition is plotted together with the one in figure 6.6 with &, =
Copt oca 1 figure 6.7. It is found that the maximum frequency response of mass M
with the traditional DVA under optimum tuning is higher than the maximum

frequency response of the primary system with the new DVA under a local optimum

tuning by about 20% at £ =0.2.

10° .
Local minimum tuning | 1
— - g=01
— - =2
1 [ a
10 C H E

Magnitude

10° -1 ‘ ‘ A ‘o ‘ ‘ '
10 10 10
Dimensionless frequency

Figure 6.6 Frequency response of the primary mass M with the new DVA using the

local optimum tuning

The height of the fixed point in the frequency response spectrum of the mass M using
the optimized traditional DVA and the one using the non-traditional DVA with local
optimum tuning are calculated at different mass ratio x and plotted in figure 6.8 for
comparison. The response amplitude of mass M using the traditional DVA is larger
than that using the non-traditional DVA at any mass ratio between 0 and 1 and the

difference increases with the increase of mass ratio .
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10 ‘
The traditional DVA with the optimum tuning
—— - The new DVA with the local minimum tuning | |

Magnitude

10-21 ‘ ‘ “““‘0 ‘ ‘ “““1
10 10 10

Dimensionless frequency

Figure 6.7 Frequency response of the primary mass M with the traditional DVA

using the optimum tuning and with the new DVA using the local optimum tuning

15 T T T
Using the traditional DVA
—— — Using the new DVA

The height of the fixed point

[
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mass ratio

Figure 6.8 Mass ratio versus the height of the fixed point using different type of DVA.
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6.1.2 Global optimization of the non-traditional DVA

Even if the local optimum tuning of the non-traditional DVA can provide a better
result than the traditional DVA for vibration suppression of the primary system, it is
not the best tuning as discussed in section 6.1. When the tuning ratio y is higher than
that of point B in figure 6.4, the height of the fixed point can be lower than the local

optimum one (the height of point 4 in figure 6.4). There is no intersecting point

between the curves of |H (/10)| and |H (/lb] in when the tuning ratio yis higher than

that of point 4 in figure 6.3 and therefore the fixed-points theory cannot be used for
finding the global optimum tuning of DVA. As shown in figure 6.3, the frequency

response at A, is always higher than the frequency response at 4, , i.e.
H(A,)> H(4,), when the tuning ratio y is higher than that of point 4 in figure 6.3.

According to the objective function of the optimization as stated by equation 6.13,

|H (/lal is used in searching the global optimum tuning of DVA. Derivation of the

global optimum tuning parameters of the DVA is shown in the following.

Equation 6.3 is restated below for the ease of discussion.

H(2)= 2 - y -2 +2j¢, 7 (6.3)
= I%{ B [(1—,12X}/2 _’12)_ﬂ/1272j+2j§a7/1(1—/12 +/l7/2)

Rewriting the equation into the form as

| X| A+ BL (6.34)
MV

where A=(?-2). B=(n), C=[1-2)r*-2)-u2y?].
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and D= (2}//1(1 -1+ ,u}/z))2

If the frequency responses are independent of the damping, we may write

A B 2 _/12 2 1 2 (635)
Cc D ((I—AZXyZ—/Iz)—,wIz;/ZJ (1—/12+,u}/2j

y =X ! (6.36)

yi =X 1 (6.37)

Equation 6.37 can be rewritten as
224 =21+ + W+ 277 + iyt =0 (6.38)

Solutions of equation 6.38 can be found as

o Lt T 21 4 (e (6.39)
ab — 2

As shown in figures 6.3 and 6.4, |H (xla] > |H (/11)] if the tuning frequency ratio yis

larger than that of point B or C in figure 6.4.  Global optimum damping may be

found by considering |H (/Ia)| to be a maximum of the frequency response curve of

mass M. We may write

100




6. Optimizations of a non-traditional dynamic vibration absorber

(6.40)
Gy =0
oA vy
Using equations 6.3 and 6.40, it can be derived that
. =42 -342 )+ a+2u)p? (6.41)
opt _global (2}//1u )2

To find the tuning ratio of point C in figure 6.4, we use equation 6.12a and let|H(i")|

=1. We can therefore write

3 : (6.42)
e
— A, T HY

Solving equation 6.40 for », we have the tuning frequency ratio at point C in figure

6.4 to be

a (6.43)

Referring to figure 6.4, the height of the fixed point become minimum if tuning ratio

y>y.. We may therefore state that H. optimization of the non-traditional DVA is

achieved if we select a tuning ratio y >y, and select the damping ratio of DVA

according to equation 6.41.

The response amplitude of mass M are calculated according to equation 6.3 using the

global optimum damping ¢, ., With mass ratio = 0.2 and tuning ratio = 2 and 3

and plotted in figures 6.9 and 6.10. The fixed points P and Q are marked in the

figures for checking. The maximum response amplitude of mass M in these two
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figures are smaller than the maximum response amplitude of mass M in figure 6.7

which use the local optimum tuning and damping ratios.

[E(2)

0 2 4 6 8 10
Dimensionless frequency A

Figure 6.9 The frequency response of the primary system with the new DVA using

optimum damping ratio &, o

4= 0.2 and tuning ratio y =2.

|H(2)

Dimensionless frequency A4

Figure 6.10 The frequency response of the primary system with the new DVA using

optimum damping ratio ¢, > 4= 0.2 and tuning ratio y = 3.
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6.2 H, optimization of the non-traditional DVA

The optimum tuning of the non-traditional DVA in H, optimization is derived in this
section. The objective function of the H, optimization is the minimization of the total
vibration energy of the primary structure under white noise excitation, i.e.

r%n(E [xz ]) (6.44)

The frequency response functions of a SDOF system attached with the non-traditional

DVA as shown in figure 6.1 is restated below for the ease of discussion.

H(1)= X y =X +2jC, 1A (6.3)
_% - [(1—12X7/2 _/12)_/1/127/2J+2J-éfa7/1(1_/12 +,U72)

Following the procedure from equations (3.34) to (3.41), the mean square motion in

this case can be found as

2 (6.45)
i
)

el T
2w 1= N - 2)- w2y [+ 2jS A 1= 2+

A useful formula of Gradshteyn and Ryzhik (1994) written as equation 6.46 below is

used for solving equation 6.45.

—jo’B, —@’B, + jwB, + B, (6.462)
04, - jo' 4, -0’ A, + jod, + 4,

If H(w)=

) (6.46b)
i"(AzA3 — A4,4,)+ 4,(B? -2B,B,)
0

2

+4,(B2 -2B,B,)+ f;(AlAz —A,4,)

then [ |H(w) do = 4
en J._w| (a)] W=7 AI(A2A3_A1A4)_AOA32

103




6. Optimizations of a non-traditional dynamic vibration absorber

Comparing equations (6.45) and (6.46), we may write

Ay =7 A =20+ m?) A =14y’ A =20,y A, =1 (647)
30:7/2’ Blzzé,ayﬂ BZZL B3:0

Using equations 6.46 and 6.47, the mean square motion in equation 6.45 can be

written as
E[xz]—4 - [t (urac? —2) +1] (6.48)
If %E[xz]:%E[xz]zo, the system has a optimum tuning condition. The
derivatives of equation 6.48 are
[ ]_ [}/ +(Bu+12¢2 —6)? +5] (6.492)
and _E[ ]_ 25[}/ +(u-ac2—2)* +1] (6.49b)

Using equation 6.49, the maximum/minimum solutions can be found respectively as

:%\/6—3;& (6-3u) -32 (6.50a)

(6.50b)

2 4
and ¢, :\/(_2+ﬂ‘)‘;2+1+7

The mean square motions of the primary mass M with g =0.11 at different tuning

frequency and damping ratios are calculated using equation 6.48 and the contours of

E[xz] versus yand ¢, are plotted in figure 6.11. It can be seen in figure 6.11

that there is a local minimum as well as a local maximum.

After checking figure 6.11 and using equation 6.50, the frequency ratio y of the
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DVA at the local minimum can be written as

}/H270ptilocal =%\/6_3ﬂ_m (655)

and that at the local maximum is written as

;/=%\/6—3,u+ (6-3u) -32 (6.56)

In figure 6.11, the local optimum is found at y =1.1494 and ¢, =0.2168, and the
local maximum is found at y =1.2304 and &, =0.2667. The contours on the top

right corner of figure 6.11 show a decreasing trend of the mean square motion.

05

0.45|
04

0.35

0.3

Damping ratio

0.25

0.2

1 1
1056 114 115 12 128 13 135 14 145 15
Tuning ratio

Figure 6.11 The contour plot of the mean square motion at = 0.11. (*) —local

minimum; (A) — local maximum

Equations 6.55 and 6.56 shows that it requires (6 -3 ,u)2 —322>0 in order to have a
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local minimum or maximum mean square motion to exist. This requirement leads to

1 <0.1144 and therefore no local minimum and maximum mean square motion can
be found if the mass ratio g > 0.1144. The mean square motions of the primary mass

M with g =0.2 at different tuning frequency and damping ratios are calculated
using equation 6.48 and the contours of FE [xz] versus yand ¢, are plotted in

figure 6.12.  The contours along the top right direction show a decreasing trend of
the mean square motion and there is no local minimum or local maximum in figure

6.12.

0.57

0451

0.35F

0.3F

Damping ratio

0251

0.2

0.15p

0.1 ; .
1 105 114 115 1.2 1258 13 135 14 145 15

Tuning ratio

Figure 6.12 The contour plot of the mean square motion at x =0.2

Since there is no global optimum tuning frequency exist in the H2 optimization of the
non-traditional DVA for SDOF system, it is recommended that the local optimum
tuning frequency (equation 6.55) or a much higher value of tuning frequency should
be used. The best or optimum damping ratio after we select the tuning frequency

and the mass ratio can be calculated according to equation 6.53b it is shown as the
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curve cutting across the contours of mean square motion in figure 6.13.
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Damping ratio
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1 1.06. 1.1 1.1 1.2 126 1.3 1.35 1.4 1.45 1.5
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Figure 6.13 The contour plot of the mean square motion at g =0.11. (*) — local

minimum; (A) — local maximum; (-) — optimum damping
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6.3 Summary

In this chapter, a non-traditional DVA is proposed and compared to the traditional
DVA for suppressing vibration of SDOF system. It has been proved analytically that
the performance of the non-traditional DVA is better than the traditional one. H,, and
H, optimizations of the non-traditional DVA are solved and tested for this DVA.
Relevant research reports found in literature are only about the H,, optimization of this
DVA but they have only found the local optimum condition. As derived and proved
in the section 6.1, global optimum conditions of the DVA exist and the vibration
suppression performance of the DVA can be greatly improved if the global optimum
tuning is applied instead of the local optimum tuning. This new finding improves our
understanding of the dynamics of this DVA and it helps us to improve the vibration

suppression performance of this non-traditional DVA.

On the other hand, H> optimization problem of this DVA has been solved analytically.
To the author’s knowledge, there is no research report found in literature on this topic.
As derived in section 6.2, local H, optimum tuning condition of the DVA exists if
mass ratio is 0.1144 or less. No global optimum tuning condition exists if mass ratio
is higher than 0.1144 are found and it is recommended to use a high tuning frequency
ratio if possible. The best value of damping ratio after one select the tuning

frequency ratio is derived and stated in equation 6.53b.
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7. CONCLUSIONS

Optimization theories of the traditional DVA applied suppressing vibrations in beam
and plate structures are established in chapters 4 and 5, respectively. The optimum
tuning conditions of the traditional DVA in beams and plates are proved to be very
similar. It is found that the optimum tunings including the tuning frequency and
damping ratios as well as the attachment location of the DVA in both the beam and
plate structures depend on the mass ratio and modal response at the attachment point
of the DVA. New and better results than those reported by other researchers (Dayou
2006, Jacquot 2001) have been found. These new results have been reported to and

published in an international journal.

In chapter 6, optimization theory of a non-traditional DVA for suppressing vibration
in a SDOF system is established. As shown in figure 6.3, the fixed-point theory is not
suitable to this new DVA because the response amplitudes at both fixed-points
decrease when the tuning ratio increases. Only the local optimum tuning condition of
this DVA can be found if one uses the standard fixed-points theory. On the other hand,
it has been found that global optimum tuning condition of the DVA exists and a new
theory has been established for finding this global optimum tuning condition of the
DVA. 1t is proved that the results reported by Ren (2001), and Liu and Liu (2005) are
based on the local optimum condition of this DVA and there are global optimum
conditions of the DVA that can produce much better vibration suppression of the
primary systems. Moreover, A, optimization theory for this new DVA in reducing the
kinetic energy of the primary mass under white noise excitation is established. This
research provides results which are never found in the relevant literature. Some of the

results have been reported to and published in an international journal and some other
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will be submitted for publication as well.

Future research can be focused on the new DVA applied to suppress vibrations in

MDOF or continuous systems under different types of excitations.
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APPENDIX A. EULER-BERNILLI BEAM WITH A FORCE

Consider figure A.1,

11

M aQ M+ 2y
@ QI lg’&vdz § o

Figure A.1 Free body diagram of the beam element

Consider the free body diagram and applying Newton second law, we may write

2
SF, = pddx Y A1
ot
2
ZMn = p[%dx (A-2)

From equation A.1, we have

2
Q—Q—a—QdX-i-Fdx:pAdxa zv (A3)
Ox ot
2
ad W, 0 p (A.4)
or*  Ox

From equation A.2, we have
M—M—aa—de+de:0 (A.5)
X

M _, (A.6)
Oox
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The bending moment is related to the curvature of the beam element by the flexure

equation written as

2
m=Er 2 (A7)

Using equations A.6 and A.7, we may write

0wy _ (A8)
Oox (E ox? )=0
-2 (A.9)

ox’
Substitute equation A.9 into A.4, we have

2 4
8W+E16 w_ (A.10)
ot’ ox*

pA
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APPENDIX B. THE FORCE DUE TO DVA APPLIED ON THE

BEAM

Consider the figure A.2,

A

Figure A.2 Force due to DVA acting on the primary mass M

Considering force balance, we may write
m% =—k(x;, —x)—c(X, —x)
and F =—k(x—x)—c(x—X,)
Applying the Laplace transform into (A.11) and (A.12), we have
mX,s> =—k(X, - X)—cs(X, - X)
and F=—-k(X-X,)-cs(X-X))

Using equations (A.13) and (A.14), we may write

X, os+k

X ms’+es+k
X, 1
Foms?

Multiplying equations (A.15) and (A.16), we have

ms*(cs +k)

F=-—
ms” +cs+k

X

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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