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ABSTRACT 

H∞ and H2 optimization of the traditional dynamic vibration absorber (DVA) in single 

degree-of-freedom (SDOF) system are classical optimization problems and have been 

already solved for a long time. However, the H∞ and H2 optimization of the dynamic 

vibration absorbers in multi-degree-of-freedom (MDOF) or continuous systems have 

not been solved. Some researchers found out the optimum tuning conditions of 

MDOF or continuous systems but all the methods found in the literature are numerical 

optimizations and the results cannot provide physics insight on the effect of each 

tuning parameter to the performance of vibration suppression of the primary vibrating 

system.  Optimization theories of the traditional DVA for suppressing vibration in 

beam and plate structures have been established and reported in this thesis, and better 

tuning conditions of the DVA have been found in comparison to those reported by 

other researchers. 

Non-traditional designs of the DVA are some recent research topics. One of these 

designs has been proved to perform better than the traditional design in some 

applications and it is studied and reported in this thesis.  Researchers in this area tend 

to use the fixed-points theory of Den Hartog (1985) in searching the optimum tuning 

conditions of DVAs.  However, it has been shown in this thesis that the fixed-points 

theory may not applicable in some tuning conditions of a non-traditional DVA.  A 

new theory is established for finding the optimum tuning condition of the 

non-traditional DVA.
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1. INTRODUCTION 

1.1 Literature review 

The traditional dynamic vibration absorber (DVA) is an auxiliary mass-spring 

system which, when correctly tuned and attached to a vibrating system subject to 

harmonic excitation, causes to cease the steady-state motion at the point to 

which it is attached (e.g. Korenev and Reznikov 1993, Den Hartog 1985, Hunt 

1979).    It has the advantage of providing a cheap and easy-to-maintain solution 

for suppressing vibration in vibrating systems with harmonic excitation. The first 

research conduced at the beginning of the twentieth century considered an 

undamped DVA tuned to the frequency of the disturbing force by Frahm (1911). 

Such an absorber is a narrow-band type as it is unable to eliminate structural 

vibration after a change in the disturbing frequency. Application of damping 

substantially widened the frequency band of the DVA’s efficient operation. 

Finding the optimum parameters of a viscous friction DVA in SDOF system 

drew the attention of many scholars. One of the optimization methods is H∞ 

optimization. Ormondroyd and Den Hartog (1928) proposed the optimization 

principle of the damped DVA in terms of minimizing the maximum amplitude 

response of the primary system, which called H∞ optimization of dynamic 

vibration absorber. Following this principle, Hahnkamm (1932) deduced the 

relationship for the optimum tuning of DVA using in the SDOF system. Brock 

(1946) developed the approximated optimum damping. This optimum design 

method of the dynamic vibration absorber is called the “fixed-points theory”, 

which was well documented in the textbook by Den Hartog (1985). The exact 
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solution of the H∞ optimization for the DVA attached to undamped primary 

system was derived by Nishihara and Asami (1997). And the other important 

optimization method is H2 optimization. Crandall and Mark (1963) proposed 

another optimization principle of the damped DVA in terms of minimizing the 

total vibration energy of the primary structure under white noise excitation, 

which called H2 optimization of dynamic vibration absorber. The exact solution 

of the H2 optimization for the DVA attached to undamped primary system was 

derived by Warburton (1980, 1981, 1982). Asami and Nishihara (2002) proposed 

the exact solution of the H2 optimization for the DVA attached to damped 

primary system. 

However, when applying dynamic vibration absorber to a continuous structure 

such as a beam, vibration can be eliminated only at the attachment point of the 

vibrating beam while amplification of vibration may occur in other parts of the 

beam.  Research results on suppressing vibration in a region or the whole span 

of a beam structure by using the dynamic vibration absorber have been reported 

recently. 

Many investigators discussed the optimum parameters of a viscous friction DVA 

in MDOF system. Rice (1993) reported the use of SIMPLEX nonlinear 

optimization method to determine the H∞ optimum tuning of a DVA applied for 

suppressing the vibration of beam. Hadi and Arfiadi (1998) used a genetic 

algorithm to solve numerically the H2 optimum tuning for a MDOF system. 

Jacquot (1976, 2000, 2001, 2003, 2004) provided the method to handle the 

problem when the system is with an additional sub-system and determined the 

H2 optimum damping based on the transfer functions of a beam and a plate. 
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Brennan and Dayou (2000), Dayou and Kim (2005), and Dayou (2006) applied 

the fix-points theory and proposed a set of optimum tuning for global control of 

the kinetic energy of a continuous structure using DVA. Cha (2001, 2002, 2004, 

2005, 2007), Cha and Ren (2006), and Cha and Zhou (2006) used multiple 

absorbers to isolate the vibration in a region of a vibrating structure. 

Some investigators discussed the non-traditional DVAs. Ren (2001) and Liu and 

Liu (2005) proposed a new design of the DVA, which they connected the damper 

of the DVA to the ground rather than the primary structure, and derived the new 

optimum tuning which is better than the traditional one. Tang (2005) designed a 

rotational dynamic absorber (RVA) for absorber for absorbing rotational motion 

of a vibration structure. His simulation result showed that the vibration of the 

structure can be isolated in the forced region of a beam structure if both a 

translational DVA and a RVA are attached at a proper location on the beam. 

Recent advances of the absorber designs with active controlled elements (Takita 

and Seto 1989, Moyka 1996, Tentor 2001, Jalili and Knowles, 2004, Chen, Fuh 

and Tung, 2005, Lin, 2005, Wu et al. 2007a, 2007b, 2007c) may be more flexible 

and powerful than the traditional spring mass absorber. One of the concepts of 

the absorber with active controlled elements is called Semi-Active dynamic 

vibration absorber. Semi-active DVAs allow the system parameters to be varied 

after implementation. The semi-active DVA may have variable inertia, variable 

damping, variable stiffness or variable initial conditions. A major advantage of 

semi-active system is the small energy expenditure needed to reduce vibration. 

Another important advance of the absorber is called active or hybrid dynamic 

vibration absorber. Active or hybrid DVAs have an arbitrary force actuator and 
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controller in parallel with the spring and damper. This adds flexibility to 

incorporate control theory to provide counteracting force to the primary structure. 

This force has frequently been implemented with a voice coil actuator design. 

The majority of literature on this topic focuses on control methodology. However, 

these advanced absorbers require special knowledge in the design and operation, 

and their applications may be justified when more sophisticated vibration control 

solutions are required. On the other hand, the passive dynamic vibration 

absorber provides a cheaper and convenient solution for vibration suppression 

and isolation of vibrating systems with harmonic excitation.  

The application of the DVA is also a research area for the researchers. One 

important application is the structural-borne noise attenuation using dynamic 

vibration absorbers. Fuller (1982, 1984) presented a technique for tuning 

absorbers applied to cylindrical shell to minimize radiated sound. Nagaya and Li 

(1997) presented a method using neural network procedure in solving non-linear 

equations in predicting tuning parameters of the absorber for higher mode noise 

absorber. Since absorbers can be made small and light and they can be installed 

conveniently, it finds widely application of DVA on attenuating the noise. 
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1.2 Motivation of the present study 

The present study is concerned with the optimum tuning of DVA in SDOF, 

MDOF and continuous systems for vibration suppression. Research results may 

be applied in engineering applications such as bridge, building, naval structures 

and pressure vessel. 

The optimum tuning conditions of the traditional DVA in SDOF system is well 

introduced in literature. However, most of the relevant methods found in 

literature about the optimum tunings of the traditional DVA in MDOF system are 

numerical ones such as those reported by Rice (1993), Hadi and Arfiadi (1998), 

and Jacquot (1976, 2000, 2001, 2003, 2004) etc. These numerical methods can 

only provide case by case solution to the problems and the effects of different 

parameters of the DVA such as its mass, damping, stiffness and its attachment 

point on the primary structure to the vibration suppression performance remain 

unclear. It has been shown by Wong et al (2007) that an improper location of the 

attachment point of a DVA on a beam can amplify the vibration in some region 

of the structure.  Dayou (2006) proposed using the fixed-points theory to find 

the optimum tuning in MDOF system. However, his optimum tuning is not the 

same as those reported by Asami and Nishihara (2003), and Korenev and 

Reznikov (1993). In the present studies, the optimum tunings in beam and plate 

structures and a structure are presented and some new results are reported. 

Another study is on a non-traditional design of DVA proposed by Ren (2001), 

and Liu and Liu (2005). They applied the fixed-points theory to find out the 

optimum tuning condition of the DVA. However, the fixed-point theory is 

suitable for the traditional DVA but it is no always correct for other DVA designs. 
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In the present studies, it has been the fixed-points theory cannot be used in some 

tuning conditions of this non-traditional DVA and a new method is proposed for 

finding the optimum tuning condition of this DVA and the performance of 

vibration suppression of the optimized DVA is tested. 
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1.3 Thesis contents and new results 

The text is organized into six chapters and an appendix. This chapter has 

presented the literature review of the DVA. The second chapter outlines the DVA 

fundamentals. 

Chapter 3 derives the vibration and optimization theories of using the traditional 

DVA for vibration suppression in SDOF system. H∞ optimization and H2 

optimization theories have been derived. In H∞ optimization, the fixed-points 

theory is introduced and the discussion in the fixed-points theory is presented in 

this chapter. 

Chapter 4 establishes the optimization theories of the traditional DVA in beam 

structures. H∞ optimization and the H2 optimization theories are established for 

Euler-Bernoulli beams and an approximated optimum tuning condition of the 

DVA for suppressing vibrations in beam structures are presented in this chapter.  

Chapter 5 establishes the optimization theories of the traditional DVA in plate 

structures. Plate structures can be commonly found in different types of 

engineering application. H∞ optimization and the H2 optimization theories are 

established for Kirchhoff plates and an approximated optimum tuning condition 

of the DVA for suppressing vibrations in plate structures are presented in this 

chapter. 

Chapter 6 establishes the optimization theories of a non-traditional DVA. H∞ 

optimization and the H2 optimization theories are established and the optimum 

tuning conditions of this DVA for suppressing vibrations in SDOF systems are 

presented in this chapter. 
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Findings from the present research work are summed up in Chapter 7.  Future 

work is also recommended and proposed, which of importance and needs to be 

conducted further.
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2. DVA FUNDAMENTALS 

Vibration theories of a single degree of freedom system (SDOF) with and 

without a DVA excited by an external force or ground motions are presented in 

this chapter,.  

2.1 Vibration of a SDOF system excited by an external force 

A SDOF, mass-spring-damper system excited by an external force f is illustrated 

in Figure 2.1. 

 

Figure 2.1 A SDOF vibrating system under an external force. 

The equation of dynamic motions of mass M can be written as 

fKxxCxM =++ &&&  (2.1) 

The frequency response function of mass M can be written as  
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( )
ωω

ω
jCMK

K

K
F

X
H

+−
==

2
,  (2.2) 

The amplitude and the phase of the of mass M are  

( )
( ) ( )222

2

ωω
ω

CMK

K

K
F

X
H

+−
== ,  (2.3) 

and 
2

tan
ω

ω
φ

MK

C

−
=  (2.4) 

where X is the amplitude of oscillation of the primary system, φ is the phase of 

the displacement with respect to the exciting force, F is the amplitude of the 

excitation, ω is the exciting frequency and 1−=j . Using equations 2.2, 2.3 

and 2.4, the frequency response function may be written in dimensionless form 

as 

( )
ζλλ

λ
j

K
F

X
H

21

1
2 +−

==  (2.5) 

where λ is the frequency ratio or dimensionless frequency 
nω

ω , ζ is the 

damping factor of the primary system, i.e. 
MK

C
2

=ζ  and nω  is the 

natural frequency of the primary system, i.e. 
M

K
n =ω .  

The amplitude and the phase of the primary system are, 

( )
( ) ( )222

21

1

ζλλ
λ

+−
==

K
F

X
H  (2.6) 

and 
21

2
tan

λ
ζλ

φ
−

=  (2.7) 
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The frequency response graph is shown in figure 2.2. It is seen that there is one 

resonance and the response is highest at the resonant frequency, 

21 ζωω −= nd .  

 Figure 2.2 Frequency response function of a SDOF system under an external 

harmonic force. 
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2.2 The vibration in a SDOF system with a DVA excited by an 

external force 

 

Figure 2.3 Primary system with DVA under an external force. 

One of the reasons in using DVA is to eliminate the vibration of the primary 

system in a particular frequency such as the resonant frequency. The primary 

system with DVA excited by an external force f is shown in figure 2.3. 

Assuming 0=C , the differential equations for the vibrations are 
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and the frequency response function can be written as 

( ) ( )( )[ ] ( )22222

2

ωωωωωω
ωω

ω
mMKjckmmkMK

jcmk

F

X
H

−−+−−−

+−
==  (2.9) 

Equation 2.9 can be rewritten in form of the dimensionless parameters as 
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( ) ( )( )[ ] ( )2222222

22

121

2

µλλγλζγµλλγλ
γλζλγ

λ
−−+−−−

+−
==

a

a

j

j

K
F

X
H  (2.10) 

where γ is the natural frequency ratio between the primary system and the DVA, 

i.e. 
n

a

ω
ωγ = ,  aω  is the response frequency of the DVA, i.e. 

m
k

a =ω , 

aζ  is the damping factor of the DVA, i.e. 
mk

c
a

2
=ζ  and µ is the mass 

ratio, i.e. 
M

m=µ . Let 1=γ  and 0=ζ  that the DVA can eliminate the 

highest response at the resonant frequency. As shown in figure 2.4, the frequency 

response of the primary system at the resonant frequency can be reduced to zero. 

However, two resonant peaks appeared in the frequency spectrum of the mass M. 

Figure 2.4  Frequency response function of a SDOF system with a DVA 

excited by an external force. 
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2.3 Vibration of a SDOF system excited by support motions 

This is the case that the primary system is excited by support motions as 

illustrated in figure 2.5. 

 

Figure 2.5 A SDOF system excited by support motion.  

The differential equation for the vibrations of the main mass is 

KyyCKxxCxM +=++ &&&&  (2.11) 

And the frequency response function can be written as  

( )
ωω

ω
ω

jCMK

jCK

Y

X
H

+−
+

==
2

 (2.12) 

The amplitude and the phase of the primary system are, 

( ) ( )
( ) ( )222
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ω
ω
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Y

X
H

+−

+
==  (2.13) 

and ( ) ( )22

3

tan
CMKK

MC

ωω

ω
φ

+−
=  (2.14) 
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Y is the amplitude of the excitation. Using the dimensionless parameters into 

equations 2.13 and 2.14, the equations become, 

( )
ζλλ

ζλ
λ

j

j

Y

X
H

21

21
2 +−
+

==  (2.15) 

( ) ( )
( ) ( )222

2

21

21

ζλλ

ζλ
λ

+−

+
==

Y

X
H  (2.16) 

The frequency response graph is shown in figure 2.6. It is the same as the 

previous case that there is one resonance and the highest response appears at the 

resonant frequency. Magnitude of frequency response with any damping has the 

same value of ( ) 1=λH  at frequency 2=λ . 

 

Figure 2.6 Frequency response function of a SDOF system excited by support 

motions. 
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2.4 Vibration of a SDOF system with a DVA under ground 

motions 

Similarly to the previous case, the primary system with a DVA excited by ground 

motions is shown in Figure 2.7. 

 

Figure 2.7 Primary system with DVA under a ground excitation 

Assume 0=C , the differential equations for the vibrations are 
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and the frequency response function is found as 
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( ) ( )
( )( )[ ] ( )22222

2

ωωωωωω
ωω

ω
mMKjckmmkMK

jcmkK

Y

X
H

−−+−−−

+−
==  (2.18) 

Equation 2.18 can be rewritten using the dimensionless parameters as 

( ) ( )( )[ ] ( )2222222

22

121

2

µλλγλζγµλλγλ
γλζλγ

λ
−−+−−−

+−
==

a

a

j

j

Y

X
H  (2.19) 

Since equation 2.19 is identical to equation 2.10, the frequency response in this 

case is the same as the previous case.  
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2.5 Summary 

In this chapter, the vibrations of a SDOF primary system exited by an external 

force or ground motions are presented. Different source of the excitation such as 

an external force at the primary system or a ground excitation can produce 

different frequency responses of the primary system. It means that the strategy of 

eliminating the vibration in the primary system should be different for different 

kinds of excitation even if the primary system is same. 

One of the most common ideas to use the DVA is to set the natural frequency of 

the DVA to be the same as that of the primary system, i.e. 1=γ , so that the 

vibration at the resonant frequency becomes zero. However, some researchers 

such as Den Hartog (1985), Korenev and Reznikov (1993) pointed out the 

problems in adopting this idea. One of the problems is that the effective 

frequency range is very limited. Two new resonant frequencies appear after the 

DVA is attached and these two resonant frequencies are closed to the original 

resonant frequency. So the primary system becomes sensitive when the external 

force frequency is changed slightly. So, some researchers proposed other ideas to 

use the DVA in better ways which will be discussed in the following chapters.
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3. OPTIMIZATIONS OF THE TRADITIONAL DVA FOR 

SUPPRESSION VIBRATIONS IN SDOF SYSTEM 

The derivation of the optimization theories of the traditional DVA for suppressing 

vibrations in a SDOF system is presented in this chapter. Two different types of 

excitations, harmonic excitation with a varying frequency and stationary random 

excitation, are considered. Different optimization methods, H∞ optimization and H2 

optimization, are introduced for different types of excitation. 

3.1  H∞∞∞∞ optimization of the traditional DVA for SDOF system 

One of the disadvantages of using the undamped DVA is that the frequency range is 

very limited. The vibration of the primary system becomes large when the frequency 

of the excitation is changed. So, some researchers proposed other optimization 

schemes which can be more effective in using the DVA for vibration absorption.  

In the previous chapter, the frequency response functions of the SDOF with a DVA 

are discussed. The frequency response functions of the system excited by an external 

force or due to ground motions are stated below for the ease of discussions. 

( ) ( )( )[ ] ( )2222222

22

121

2

µλλγλζγµλλγλ
γλζλγ

λ
−−+−−−

+−
==

a

a

j

j

K
F

X
H  

(2.16) 

( ) ( )( )[ ] ( )2222222

22

121

2

µλλγλζγµλλγλ
γλζλγ

λ
−−+−−−

+−
==

a

a

j

j

Y

X
H  (2.19) 

Ormondroyd and Den Hartog (1928) pointed out the damping of the DVA has an 

optimum value so as to minimize amplitude response of the SDOF system. Such 

optimization criterion is now known as H∞ optimization. The objective is to minimize 

the maximum amplitude ratio of the response of the primary system to the excitation 
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force or motion, i.e. 

( )( ) ( ) 




=∞∞ λζγλ

ζγ
HH

a

HH
,

maxmin,,max  (3.1) 

The advantage of this optimization criterion is that the vibration of the system under a 

harmonic excitation with an unstable frequency. And all frequency responses obeyed 

the inequality,  

( ) ( ) 




≤∞∞ λζγλ

ζγ
HH

a

HH
,

maxmin,, , where +ℜ∈λ  (3.2) 

The procedure to find the optimum tuning frequency of the absorber according to this 

H∞ optimization criterion is shown in the following paragraphs. Using equation 2.10, 

the amplitude of the frequency response may be written as 

( ) ( ) ( )
( )( )[ ] ( )[ ]222222222

2222

121

2

µλλγλζγµλλγλ

γλζλγ
λ

−−+−−−

+−
==

a

a

K
F

X
H  

(3.3) 

Rewriting the equation into the form 

( )
2

2

a

a

DC

BA

K
F

X
H

ζ
ζ

λ
+

+
==  

(3.4) 

where ( )222 λγ −=A , ( )2
2γλ=B , ( )( )[ ]2222221 γµλλγλ −−−=C , 

and ( )[ ]22212 µλλγλ −−=D  

 

If the frequency responses, as shown in figure 3.1, are independent of damping, we 

may write  
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Figure 3.1 The frequency response of the primary system with DVA at 1=γ  

D

B

C

A
=  (3.5a) 

or ( )( )
2

22

2

22222

22

1

1

1 








−−
=









−−−
−

µλλγµλλγλ
λγ

 
(3.5b) 

Taking square root on both sides of equation 3.5b, we have 

( )( ) 2222222

22

1

1

1 µλλγµλλγλ
λγ

−−
±=

−−−

−
 (3.6) 

It can be shown that λ = 0 when the positive sign is taken for the expression on the 

right hand side of equation 3.6. This result shows that all curves in Figure 3.1 meet at 

λ = 0. Now taking the negative sign of the expression on the right hand side of 

equation 3.6, we have  
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( )( ) 2222222

22

1

1

1 µλλγµλλγλ
λγ

−−
−=

−−−

−
 (3.7) 

Rewriting equation 3.7 as 

0
2

2

2

222 2
2

22
4 =

+
+

+
++

−
µ

γ
λ

µ
µγγ

λ  (3.8) 

Equation 3.8 is a quadratic equation in 2λ . Let the two roots of equation 3.8 be 2

aλ  

and 2

bλ  where ba λλ <<0 . The sum and the product of the roots are respectively 

written as 

µ
µγγ

λλ
+
++

=+
2

1
22

22

ba
 (3.9a) 

and 
µ

γ
λλ

+
=

2

2 2
22

ba  (3.9b) 

The amplitudes of the frequency response at these two roots are independent of the 

damping ratio ζa, where these two points, P and Q, are called ‘fixed points’. The 

amplitudes of the frequency response at 2

aλ  and 2

bλ  are 

( )
221

1

aa

a
D

B
H

µλλ
λ

−−
==  

(3.10a) 

and ( )
221

1

bb

b
D

B
H

µλλ
λ

−−
==  

(3.10b) 

At any damping ratio, the frequency response must pass through these two fixed 

points P and Q. So the optimum condition should obey the following equation: 

( )( ) ( ) ( )( )




=∞∞ baHHa HHH

a

λλζγλ
ζγ

,maxmin,,max
,

 (3.11) 

The relation between the fixed points and tuning ratio is shown in figures 3.2 and 3.3. 
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Figure 3.2  The height of fixed points in the frequency response spectrum of mass 

M versus tuning ratio γ  at 2.0=µ  

 

Figure 3.3 ( ) ( )( )ba HH λλ
ζγ

,max
,

 versus tuning ratio γ  at 2.0=µ  
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From figure 3.2 and figure 3.3, the minimum height of the fixed points is found when 

the height of the fixed point P is equal to the fixed point Q, i.e. ( ) ( )ba HH λλ = . So 

the fixed points of the frequency response are adjusted to the same, i.e. 

2222 1

1

1

1

bbaa µλλµλλ −−
−=

−−
 (3.12) 

Using equations 3.9 and 3.10, the tuning ratio which let the amplitude of the fixed 

points be the same is 

µ
γ

+
=∞

1

1
H  (3.13) 

The frequency response using 
µ

γ
+

=
1

1
 is shown in figure 3.4. 

 

Figure 3.4 The frequency response of the primary mass M with DVA tuned at ∞Hγ  
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Substitute equation 3.13 into equation 3.8, we may write 

( )( )
0

12

2

1

2
2

24 =
++

+
+

−
µµ

λ
µ

λ  (3.14) 

The roots of equation 3.14 can be written as 












+
−

+
=

µ
µ

µ
λ

2
1

1

12

a  
(3.15a) 

and 










+
+

+
=

µ
µ

µ
λ

2
1

1

12

b  
(3.15b) 

Substitute equation 3.15 into equation 3.12, the response amplitude at the fixed points 

is 

( ) ( )
µ
µ

λλ
+

===
2

ba HHG  
(3.16) 

In the above, the optimum tuning condition was deduced. The next step is to 

determine the optimum damping in order to make the fixed points to become the 

peaks on the response curve. We may write 

( ) ( ) 0
2

2

2

2
=

∂
∂

=
∂
∂

== ba

HH
λλλλ

λ
λ

λ
λ

 
(3.17) 

Let 

( )
q

p
H =

2
λ  (3.18) 

Where ( ) ( )2222 2 γλζλγ ap +−=  (3.19) 
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( )( )[ ] ( )[ ]222222222 121 µλλγλζγµλλγλ −−+−−−= aq  (3.20) 

Substitute (3.18) into (3.17), we may write 

( ) 0
2

2

2
=









∂

∂
=

∂

∂
q

p
H

λ
λ

λ
 (3.21) 

0
2

22

=∂
∂

−
∂
∂

q

p
q

q
p

λλ  

(3.22) 

0
22

=
∂
∂

−
∂
∂

p
q

q
p

λλ
 (3.23) 

Using equations 3.19 and 3.20, we may write 

( ) ( )222

2
22 γζγλ

λ a

p
+−=

∂
∂

 (3.24) 

( )( )[ ]( )
( ) ( )( )22222

22222222

2

33112

2112

µλλµλλγζ

µγγλγµλλγλ
λ

−−−−+

−−+−−−−=
∂
∂

a

q

 
(3.25) 

Under the optimum tuning condition, we have 

µ
µ+

==
22

q

p
G  (3.26) 

Therefore, 

02

22
=

∂
∂

−
∂
∂

G
qp

λλ
 (3.27) 

Solving equation 3.27 for 2ζ , we have 

( )( )[ ]( ) ( )
( ) ( ) ( )( ) 2222222

22222222222
2

221122

22112

G

G
a

µλλµλλγγ
γλµγγλγµλλγλ

ζ
−−−−−

−−−−+−−−−
=  (3.28) 

Substituting equations 3.13, 3.15 and 3.16 into the equation above, we find the 
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optimum damping written as 

( )µ

µ
µ

µ

ζ
+












+
±

=
18

2
3

a  

(3.29) 

Taking an average of 
aζ  and the optimum tuning becomes 

µ
γ

+
=∞

1

1
H

 and 
( )µ

µζζ
ζ

+
=

+
=∞

18

3

2

22

ba
H  

(3.30) 

From equation 3.16, the resonant amplitude ratio is approximately  

µ
µ+

=
2

maxY

X
 

(3.31) 

The frequency response of the primary mass M at 2.0=µ  with different damping 

ratios is shown in figure 3.5. 

 

 

 

 

 

 

 

 

 

Figure 3.5 The frequency response of the primary system with DVA using the H∞ 

optimum tuning 
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In figure 3.5, the fixed points P and Q are close to the resonant response of the 

primary system. Equation 3.2 can be satisfied and the primary system obey the 

optimization requirement expressed as 

( ) ( )
µ
µ

λζγλ
ζγ

+
≈





≤∞∞

2
maxmin,,

,
HH

a

HH , where +ℜ∈λ  
(3.32) 

This optimization is called H∞ optimization. With the same procedure, the optimum 

tuning for the velocity and acceleration responses of the primary system can also be 

found and they are tabulated in the following. 

Table 3.1 The H∞ optimum tuning in a SDOF system 

Transfer 

function 
Tuning ratio Damping ratio 

The height of 

the fixed point 

( ){ }
( ){ }tyL

txL
 

µ+1

1
 

( )µ
µ
+18
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µ
µ+2

 

( ){ }
( ){ }tyL
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nω
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2

2

1

1 µ
µ

+
+

 
( )

( )
µ

µµµ
µ +

++
+ 1

52424

24

1 2

 ( )µµ
µ

+
+

1

2
 

( ){ }
( ){ }tyL

txL

n

2ω
&&

 
µ+1

1
 

µ
µ
+2

3

2

1
 

( )µµ +1

2
 

In fact, these optimum tunings based on the fixed point are not the exact solutions. 

The exact H∞ optimum tunings were found by Nishihara and Asami [2] at 1997. 

Nishihara and Asami provided different method to solve the H∞ optimum tunings. 

However, based on their results [36], the error compared with the exact optimum 

tunings and the approximated optimum tunings is under 1% when 1<µ . So these 

results still have the significance of the people using the damped DVA. 
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3.2 H2 optimization of the traditional DVA for SDOF system 

The dynamic absorber used to mitigate random excitation has very important practical 

application particularly for tower structures, whose vibrations are caused by wind and 

seismic loads. In this case, the single frequency excitation is not the case in these real 

situations. A different optimization scheme should be considered. 

Crandall and Mark (1963) proposed another optimization principle of the damped 

DVA with the objective function on minimizing the total vibration energy of the 

primary structure under white noise excitation, i.e.  

[ ]( )2

,
min xE

aζγ
 (3.33) 

which called H2 optimization of dynamic vibration absorber. The exact solution of the 

H2 optimization for the DVA attached to undamped primary system was derived by 

Warburton (1980). 

The frequency response functions of the SDOF system with a DVA are restated below 

for the ease of discussion. The frequency response functions of the system excited by 

an external force and the system excited by ground motions are written respectively as 

( ) ( )( )[ ] ( )2222222

22

121

2

µλλγλζγµλλγλ
γλζλγ

λ
−−+−−−

+−
==

a

a

j

j

K
F

X
H  

(2.16) 

and ( ) ( )( )[ ] ( )2222222

22

121

2

µλλγλζγµλλγλ
γλζλγ

λ
−−+−−−

+−
==

a

a

j

j

Y

X
H  (2.19) 

The mean square motion [ ]2xE  of the stationary response process ( )tx  can be 

obtained when either the autocorrelation function ( )τxR  or the spectral density 

( )ωxS  of the response is known according to the following formulae: 
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( ) [ ]20 xERx =  (3.34) 

[ ] ( )∫
∞

∞−
= ωω dSxE x

2  (3.35) 

The autocorrelation function of the response and the spectral density are written as 

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
−+= 212121 θθθθθθττ ddhhRR yx  (3.36) 

( ) ( ) ( )ωωω yx SHS
2

=  (3.37) 

Thus the mean square motion can be written as 

[ ] ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
−== 212121

2 0 θθθθθθ ddhhRRxE yx  (3.38) 

The mean square motion can be written in terms of the input mean square spectral 

density ( )ωyS  as 

[ ] ( ) ( ) ( )∫∫
∞

∞−

∞

∞−
== ωωωωω dSHdSxE yx

22  (3.39) 

If the input spectrum is assumed to be ideally white, i.e. ( ) 0SS y =ω , a constant for 

all frequencies, the integral of equation 3.39 can then be reduced to 

[ ] ( )∫
∞

∞−
= ωω dHSxE

2

0

2  (3.40) 

Using equation 3.40, the non-dimensional mean square motion can be defined as 

[ ] ( )∫
∞

∞−
= λλ

π
ω

dH
S

xE n 202

2
 (3.41) 

Substituting equation 2.19 into equation 3.41, the equation can be written as, 
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[ ] ( )( )[ ] ( )∫
∞
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2222222
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02

121

2

2
 

(3.42) 

Two useful formulae as shown below from Gradshteyn and Ryzhik (1994) are used to 

solve equation 3.41. 
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Comparing equation 3.42 and equation 3.43, the equation can be written as 

( )
0,1,2,

1,12,1,2,
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2
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====

=+=++===
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(3.44) 

Using equations 3.43 and 3.44, the mean square motion in equation 3.42 can be 

written as  

[ ] ( ) ( )( )[ ]12141
4

224202 +−−+++= γµµζγµ
γµζ

ω
a

a

n S
xE  (3.45) 

If [ ] [ ] 022 =
∂
∂

=
∂
∂

xExE
aζγ

exists, the system will have an optimum tuning condition. 

The derivatives of equation 3.45 may be written as 

[ ] ( ) ( )( )[ ]121413
4

2242

2

02 −−−+++=
∂
∂

γµµζγµ
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and [ ] ( ) ( )( )[ ]12141
4

2242

22

02 −+++++−=
∂
∂

γµµζγµ
γµζ

ω
ζ a

a

n S
xE  (3.46b) 
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Using equations 3.46a and 3.46b, the optimum tuning can be found as  

( )22
12

2

+

+
=

µ
µ

γ H  and 
( )

( )( )122

43

2

1
2 ++

+
=

µµ
µµ

ζ H  
(3.47) 

This optimization is called H2 optimization. The optimum tuning of the velocity 

response can also be found using a similar procedure and the tuning frequency and 

damping ratios are shown in the following table. 

Table 3.2 The H2 optimum tuning in a SDOF system 

Transfer 

function 

Tuning 

frequency ratio 
Damping ratio 

Optimized value of 

performance index 

[ ]2xE  
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+

+
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µ
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( )µµ
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+
+
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34
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1
 

[ ]2xE &  
µ+1

1
 

2

µ
 ( )µµ +1

1
 

This H2 optimum tuning can minimize the mean square motion of the undamped 

primary system under a white noise excitation and this result is an exact solution of 

the H2 optimization problem.  
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3.3 Summary 

H∞ optimization and H2 optimization are introduced and the analytical solutions 

including the tuning frequency and damping ratios of the DVA for these optimization 

problems in SDOF system are derived.  

From table 3.1 and table 3.2, the tuning ratios and the damping ratios of the motion 

are  

µ
γ

+
=∞

1

1
H  and 

( )µ
µ

ζ
+

=∞
18

3
H  

(3.30) 

( )22
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2
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+
=

µ
µ

γ H  and 
( )

( )( )122

43

2

1
2 ++

+
=

µµ
µµ

ζ H  
(3.47) 

The graphs of both tuning ratio and damping ratio versus mass ratio of the DVA are 

plotted in figures 3.6 and 3.7, respectively.  

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Mass ratio

T
u
n
in
g
 r
a
ti
o

H
∞
 optimization

H
2
 optimization

 

Figure 3.6 Mass ratio vs. tuning ratio in different optimization methods 
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Figure 3.7 Mass ratio vs. damping ratio in different optimization methods 

From studying these graphs, the following conclusions can be drawn. 

1. In both optimization methods, the tuning ratios decrease when the mass ratio 

increases. 

2. In both optimization methods, the damping ratios increase when the mass ratio 

increases. 

3. Comparing the two optimization methods, the tuning ratio and the damping ratio 

of the H∞ optimization are lower than those of the H2 optimization. Moreover, the 

difference between these two tuning ratios increases when the mass ratio 

increases. 

However, this is not the end of the story of the optimum tuning. In the previous 

sections, the optimum tunings of using DVA in an undamped SDOF are introduced. 

The optimum tuning of DVA for a MDOF or a continuous system has not been found 

in the literature. Solutions of these optimization problems will be presented in the 

following chapters.
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4. OPTIMIZATIONS OF THE TRADITIONAL DVA FOR 

SUPPRESSION VIBRATIONS IN BEAM STRUCTURES 

Optimization theory of the traditional DVA for suppressing vibrations in beam 

structures is presented in this chapter. Beam structure is a very common structure 

in engineering application such as building and bridge.  

The beam structure is considered as a MDOF or continuous vibrating system. 

The beam has more than one resonant frequency. Another different consideration 

in applying a DVA between the SDOF and the beam vibrating systems is that the 

DVA can be attached at different location on the beam and the effect of vibration 

suppression can be very different. So new problems in this case are what is the 

good position of attaching DVA and what is the difference of the optimum tuning 

frequency and damping ratios when the attaching position is changed? In this 

part, the research of DVA optimizations includes the reduction of vibration at a 

particular point on the beam and the total kinetic energy of the beam structure.  

All discussions are based on the assumptions listed below. 

1. The beam is assumed to be an Euler-Bernoulli beam. 

2. The dynamic response of the beam is due to the dominant mode only, 

i.e. single mode response only, and the responses of other modes may 

be ignored. 

3. The modes can be well separated. 

The reason of using the Euler-Bernoulli beam is that the dominant modes of the 

structure are always in the lower modes. In these modes, the effects of shear 
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deformation and rotational inertia are not large. According to these reasons, the 

advance beam model, such as Timoshenko beam, is not used in my calculation. 

An approximated H∞ optimum tuning and H2 optimum tuning conditions are 

derived analytically and compared to the results reported by another researcher 

(Dayou 2006) who has applied a different approach to the problem. 

The error of the approximated optimum tunings are shown in section 4.4 and the 

effect of the non-tuned mode is discussed in section 4.5. 
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4.1 The frequency response function of the beam structure with 

the traditional DVA 

Referring to figure 4.1, consider the motion of a cantilever beam due to the 

distributed force applying between x = 0 and 
oxx = . A DVA is attached at 

oxx = . The length of the beam is L, mass per unit length ρA, with bending 

stiffness EI. The boundary conditions are any combination of pinned, clamped or 

free supports. The Euler-Bernoulli equation can be written in equation 4.1 and 

the detail of derivation of this equation is shown in Appendix A. 

)()()()(
4

4

2

2

oxxtFxgtp
x

w
EI

t

w
A −+=

∂
∂

+
∂
∂

δρ  (4.1) 

 

Figure 4.1 The cantilever beam with a DVA under a external force 

Here it has been assumed that the externally applied forcing function can be 

expressed as )()( xgtp , where p(t) is a function of time and g(x) is a 

deterministic function of x. The solution to equation 4.1 can be expanded in a 

Fourier series written as 
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where ( ) Ldxx
L

i =∫0
2

)(ϕ   

where )(xiϕ  is the eigenfunction of the beam without the DVA. Similarly, the 

spatial part of the forcing function can be expanded as 
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The Dirac delta functions can also be expanded as 
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where the Fourier coefficients 
ia  and 

ib  are respectively 
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=  (4.5) 

Here ia  depends only on the spatial distribution of the forcing function g(x). If 

the equations 4.2, 4.3 and 4.4 are substituted into equation 4.1 and Laplace 

transformation is taken on the resulting equation with respect to time, the 

transformed result is a set of algebraic equations written as 

( ) ( ) ( ) ( ) NisFbsPasQEIsQAs iiiii ∈+=+ 42 βρ  (4.6) 
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=
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iii xtq
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w
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If this is solved for the generalized co-ordinates ( )sQi , the result may be written 

as  
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Then if P(s) and F(s) were known then the s-domain motion of any point on the 

beam could be given as 
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where ( )sxW ,  is the Laplace transform of ( )sxw ,  with respect to time. For a 

damped DVA, the transfer function between the motion at the attachment point 

with the DVA, ( )sxW o , , and the force transmitted to the beam, ( )sF , is written 

as equation 4.10 below and the proof is shown in Appendix B. 
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Substitute equation 4.10 into 4.9, we have  
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When oxx = , equation 4.11 becomes, 
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Substitute (4.13) into (4.11), we have the following transfer function: 



4. Optimizations of the traditional DVA for suppression vibrations in beam structures 

 

 

 

40 

∑
∑

∑

∞

=

∞

=

∞

=

+

+
+

+
++

+
−

=
1

42

1
422

2

1
42

)(

)(

)(

)(

)(

),(

i

i

i

i i

oii

i i

oii

ii

x
EIAs

EIAs

xb

kcsms

kcsms

EIAs

xa

ba

sP

sxW
ϕ

βρ
βρ

ϕ
βρ

ϕ

 

(4.14) 

Replacing ωjs =  where 1−=j in equation 4.14 for the steady-state 

response of the beam and rewrite the resulting equation in a non-dimensional 

form as 
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(4.15) 

Similarly, the transfer functions of the velocity and the acceleration response at 

the point x on the beam structure can be rewritten, respectively, as  
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4.2 Optimization for minimizing the vibration at a point on the 

beam structure 

For a beam structure with well-separated natural frequencies, the modal 

displacement response in the vicinity of the n
th

 natural frequency may be 

approximated by considering i = n and ignoring other modes in the equation 

4.15. Consider i = n and ignoring other modes, equation 4.15 may be rewritten 

as 
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Equation 4.18 can be simplified as 

( )
( )

( )
( )( )[ ] ( )2222222

22

2 121

2,

ελλγλζγελλγλ
γλζλγ

ωρ
ϕ

λ
λ

−−+−−−

+−
=

a

a

n

nn

j

j

A

xa

P

xW
 (4.19) 

where ( )0

2 xnµϕε =   

Equation 4.19 can be rewritten in a form as 
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In considering H∞ optimization, the objective is to minimize the maximum 

amplitude ratio of the response of the primary system to the excitation force or 

motion, i.e. 
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It is noted that only the function ( )λH  is required to be considered in the 

optimization because 
( )

2

n
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ϕ

 is a constant term.  The objective function of 

the optimization may be written as 
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The equation 4.20 is equivalent to the equation 2.19 in the SDOF system 

attached with a DVA if the term ε in equation 4.20 is replaced by the mass ratio µ. 

Therefore, applying the fixed-points theory, the optimum tuning can be found in 

the same way as the case of SDOF system and the result are listed in Table 4.1 

Table 4.1 The H∞ optimum tuning at a point x in the beam structure 

Transfer 

function 
Tuning ratio Damping ratio 
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Similarly, for the H2 optimization of searching the DVA parameters for 

suppressing vibration of a beam structure, the objective is to minimize the total 

vibration energy of the beam structure at the point x at all frequencies. The 

performance index can be defined as 

( )[ ]( )twE
a

2

,
min

ζγ
 (4.24) 

The mean square motion can be written in terms of the input mean square 

spectral density ( )ωpS  as 
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If the input spectrum is assumed to be ideally white, i.e. ( ) 0SS p =ω , a constant 

for all frequencies, the integral of equation 4.25 can then be reduced to 
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Using equation 4.26, the non-dimensional mean square motion can be defined as 
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Similarly, equation 4.20 is equivalent to the equation 2.19 in the SDOF system 

attached with a DVA if the term ε in equation 4.20 is replaced by the mass ratio µ. 

Therefore the optimum DVA parameters can be found in the same way as in the 

case of the SDOF system and the result are listed in Table 4.2. 
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Table 4.2 The H2 optimum tuning at a point x in a beam structure 

Transfer 

function 
Tuning ratio Damping ratio 

Optimized value of 

performance index 
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4.3 Optimization for minimizing the root mean square motion 

over the whole domain of the beam structure 

Equation 4.15 is restated below for the ease of discussion.  
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The root mean square motion over the whole domain of the beam structure may 

be written as 
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Consider the orthogonality relations of the eigenfunctions, we may write 
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Equation 4.28 can be simplified with the above orthogonality relations of the 

eigenfunctions as 
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For a beam structure with well-separated natural frequencies, the modal 

displacement response in the vicinity of the n
th

 natural frequency may be 

approximated by considering i = n and ignoring other modes in equation 4.30 

and written as 
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Equation 4.31 can be simplified as 
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where ( )
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2 xnµϕε =   

Equation 4.32 can be rewritten in a form as 
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In solving the H∞ optimization problem, the objective function is to minimize the 

maximum amplitude ratio between the response of the primary system relative 

and the excitation force or motion, i.e. 
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It is noted that only the function ( )λH  is required to be considered in the 

optimization because 
2

n
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 is a constant term.  The objective function may 

be rewritten as  
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Equation 4.33 is equivalent to equation 2.19 in the SDOF system attached with a 

DVA if the term ε in equation 4.33 is replaced by the mass ratio µ. Therefore, by 

applying the fixed-points theory, the optimum parameters of the DVA can be 

found in the same way as in the case of the SDOF system and the result are 

listed in Table 4.3. 

Table 4.3 The H∞ optimum tuning of the root mean square motion of the beam 

structure 

Transfer function Tuning ratio Damping ratio 
The height of the 

fixed point 
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Similarly, in searching the H2 optimization solution of the DVA for suppressing 

vibration in a beam structure, the performance index can be defined as 
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 (4.37) 

Following equations 4.25, 4.26 and 4.27, the optimum DVA parameters can be 

found in the same way as in the case of the SDOF system and the result are 

listed in Table 4.4 
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Table 4.4 The H2 optimum tuning of the root mean square motion of the beam 

structure 

Transfer function Tuning ratio Damping ratio 
Optimized value of 

performance index 
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4.4 Numerical Simulation 

A simply supported Euler beam attached with a DVA as illustrated in Figure 4.2 

is considered in the following numerical study. The eigenfunctions and the 

eigenvalues can be written as 

)sin(
2

)( x
L

x iβϕ =  (4.38) 

where Ni
L

i
i ∈=

π
β   

The reciprocal of the denominator integral is 
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2
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Figure 4.2  The simply supported beam with DVA under a concentrated force 

The material of beam is assumed to be aluminum of density and Young’s 
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modulus 2710 kg/m
3
 and 6.9GPa, respectively. The mass ratio µ is 0.2. The 

dimensions of the beam are 1m (length) X 0.025m (Width) X 0.0025m (height). 

x0 is 0.3m and x1 is 0.2m. 

As shown in figure 4.3, the maximum response of the beam at x0 without 

damping is much higher than the maximum response of the beam using the 

optimum tuning frequency and damping of the DVA. Moreover, the second 

resonance of the beam at x0 can also be suppressed.  

As shown in figure 4.4, the optimum tuning parameters presented in the previous 

section are applied and the resulting frequency response of the beam is compared 

to the one using the optimum DVA parameters suggested by Den Hartog (1985). 

The maximum response of the system can be reduced by more than 20% in this 

case. 
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Figure 4.3 Frequency responses of the beam at x = x0 with very light damping and 

optimum tuning frequency and damping in the DVA 
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Figure 4.4 Frequency responses of the beam at x = x0 with the proposed optimum 

parameters of the DVA and the ones made by Den Hartog. 

To test the usefulness of the derived H∞ optimization solution for suppressing 

vibrations a continuous vibrating system, the numerical testing case for the 

minimization of the maximum kinetic energy of a vibrating beam reported by 

Dayou (2006) was studied by applying the present theory and the result was 

compared to those obtained by Dayou. The vibrating beam considered by Dayou 

was a simply supported aluminum beam excited by a point force of unit 

amplitude at L1.0  as shown in figure 4.5. The eigenfunctions and eigenvalues 

of the beam could be written respectively as (Srinivasan 1982) 
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where L = 1 m, E = 207 GPa, I = 10101295.8 −× m
4
, ρ = 7870 kg/m

3
 and A = 

2.42 x 10
-4

 m
2
. A dynamic vibration absorber was attached at Lxo 5.0=  and 
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mass ratio, µ was 0.05.   

 

Figure 4.5 Schematics of a simply supported beam with a vibration absorber 

excited by a random force at x= 0.1L. 

From equations (4.2) and (4.5), we have 
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The optimization problem could be expressed as  
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and )(2
1 oxµϕε =  which was the one-dimensional version of the ε used in the 

theory section.    

According to Dayou (2006), the optimum frequency and damping ratios were 

ε+1

1
 = 0.8333 and 

)1(8

3

ε
ε
+

= 0.25 respectively.  Based on the present 

theory and the derived expressions of the optimum frequency and damping ratios 

for H∞ optimization with different types of transfer functions as shown in Table 

4.3, the frequency and damping ratios for minimum kinetic energy amplitude of 

the plate were T = 
2

2
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1 ε
ε
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+

 = 0.8740, and 
aζ  = 
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 = 0.2498 respectively.  Kinetic energy amplitudes 

of the whole beam at steady state were calculated at different excitation 

frequencies according to equation: 

( )∑
∑

∑

∫

=

=

=

−
































−
+

+

−−

−
−









=










max

max

max

1
222

2

1
2222

2

1
22

2

2

1

2

1

0

22

1

),(

)2(

2

)(

2

)(

),(

2

p

p
p

p

p p

oopp

a

a

p

p p

opp

p

p

L

f

f

yxb
L

TTfjf

TTfjf

f

xa
Lb

a

h

Lfh

dx
fW

fxUh

γ

γ

ϕ
µ

ζ
ζ

γ

ϕ
µ

ωρ
ωρ

ωρ

 (4.46) 

A Matlab program is written to calculate these kinetic energy amplitudes and the 

results were plotted in figure 4.6(a). Ten vibration modes (pmax = 10) of the beam 

were used in the calculation.  The kinetic energies of the beam calculated based 

on the present theory and that by Dayou were plotted in Figure 4.6(a) for 

comparison.   
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The amplitude of the kinetic energy at the first resonance of the beam was 

suppressed after adding the vibration absorber.  However, it could be observed 

in Figure 4.6(b), a close-up of the spectrum around the first natural frequency of 

the beam, the heights of the two peaks of the curve of Dayou had a big 

difference indicating that the damping and frequency ratios of the absorber were 

not optimal based on the fixed-points theory. The maximum amplitude of the 

kinetic energy of the whole beam around the first natural frequency of the beam 

calculated with the proposed frequency and damping ratios was found to be 

about 32% smaller than that of the beam with the frequency ratio (T = 0.8333) 

and damping ratio (ζ = 0.25) used by Dayou.  
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Figure 4.6 Kinetic energy (in J/N
2
) of a simply supported with optimum 

vibration absorber fitted at xo = 0.5L with the first natural frequency as the 

control target: (a) figure showing all three modes; (b) in the vicinity of the first 

mode. ---------  T = 0.8333, ζ = 0.25 (Dayou 2006), ———— T = 0.8775, ζ = 

0.2556 (present theory) 

The exact values of tuning frequency and damping ratios to minimize the 

maximum amplitude of the kinetic energy of the whole beam around the first 

natural frequency of the beam were determined numerically with equation 4.15 

as T = 0.8775 and ζ = 0.2556. The difference of this maximum amplitude of 

kinetic energy in using the proposed and the exact sets of T and ζ was found to 

be about 3%. 
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4.5 Effect of the tuned DVA in other modes 

The approximated optimum tunings are derived for the dominant mode only. 

However, the DVA under the approximated optimum tunings also affects other 

modes. In this part, the effect of the attached DVA on other modes of the 

structure is discussed. 

Consider the transfer function of the DVA represented by equation (4.10) and 

substituting ωjs =  in equation (4.10), the steady state frequency response 

function of the beam at the attachment point can be written as 
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where ( )ωek  and ( )ωec  are equivalent spring stiffness and equivalent 
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damping coefficient at the exciting frequency ω  respectively. The physical 

meanings of these values are that the effect of the DVA attached to the structure 

at the exciting frequency ω  is same as the structure with the spring and the 

damper, with the spring stiffness equals to ke and the damping coefficient equals 

to ce, at the same position of the DVA attached and under the same exciting 

frequency ω  as illustrated in figure 4.7. 

Consider the example in the previous section. The mass of the DVA is 0.3388kg, 

the damping coefficient is sNm 11429.18 −  and the spring stiffness is 

1885.1 −kNm . The equivalent stiffness and damping at different excitation 

frequency are calculated according to equation (4.48) and plotted in figure 4.8.  

 

Figure 4.7 The cantilever beam with an equivalent spring and an equivalent 

damper under a external force 
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Figure 4.8 The equivalent stiffness and the equivalent damping coefficient of the 

DVA 

In the example of the previous section, the natural frequencies of the beam 

without DVA are 113.7Hz, 454.6Hz, 1022.9Hz and 1818.5Hz. And the 

equivalent stiffness and the damping coefficient at these resonant frequencies are 

listed below. 

Table 4.5 The equivalent stiffness and damping coefficient in the resonant 

frequencies 

Mode Natural 

frequency 

(Hz) 

Equivalent 

stiffness (Nm
-1

) 

Equivalent damping 

coefficient (Nm
-1

s) 

1 113.7 186.56 33.21 

2 454.6 897.77 18.88 

3 1022.9 910.43 18.28 

4 1818.5 912.40 18.19 
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The frequency response function of the beam at the attachment point using the 

equivalent stiffness and equivalent damping coefficient are plotted in figure 4.9.  

Two cases are compared in the followings: one is the cantilever connected with a 

DVA at the free end while the other is the equivalent system as illustrated in 

figure 4.7.  The frequency response function at the attachment point are 

calculated and plotted in figure 4.9 for comparison. 
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Figure 4.9 The primary system with the equivalent spring and damper 

In figure 4.9, it can be seen that the response of the two curves are almost 

overlapped together at all modes except the first mode.  This shows that the 

equivalent system in figure 4.7 can be used to represent the cantilever beam 
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attached with the DVA for the frequency response at vibration modes other than 

the tuned mode of the DVA. In figure 4.8, it is observed that the equivalent 

damping coefficient is larger than the original damping coefficient in the DVA, 

i.e. sNmc 11429.18 −=  when the natural frequency is higher than the natural 

frequency of the first mode and it approach to c as excitation frequency 

approaching infinity. That means the tuned DVA does not only have an effect in 

the dominant mode but it also has a damper effect in other higher order modes. 

The proposed equivalent vibrating system may be used to represent the effect of 

the DVA to the response of the higher order modes of the vibrating beam which 

is neglected in the analysis of the previous sections of this chapter. 
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4.6 Conclusion in the optimization of DVA for suppressing 

vibrations in beam structures 

Based on the research as presented in the previous sections, the following 

conclusions are drawn.  

i. The optimum tuning parameters of DVA for the minimization of root 

mean square motion of the beam are the same as those for the 

minimization of vibration at a point on the beam. 

ii. The optimum tuning frequency and damping ratios of the DVA on the 

beam structure do not only depend on the mass ratio as the case of SDOF 

system in Chapter 3. It depends on the value of )(2

on xµϕε =  which in 

this case that means it depends on both the mass ratio and the modal 

response of the beam at the attachment point of the DVA. 

iii. The optimized DVA can in general suppress only the modal response of 

the beam structure at the mode which the DVA is tuned on. The DVA has 

little effect on the response of the beam at other modes. 

iv. The maximum response amplitude of the beam with the optimized DVA 

depends on the density of the beam, cross section area of the beam, the 

length of the beam, the tuning frequency of the DVA, the mode shape of 

the beam and the location of the excitation.
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5. OPTIMZATIONS OF THE TRADITIONAL DVA FOR SUPPRESSING 

VIBRATIONS IN PLATE STRUCTURES 

Jacquot (2001) proposed a transfer function of the plate attached with a dynamic vibration 

absorber. He set the frequency ratio to one and determined the optimum damping ratio of the 

absorber based on the transfer function. However, it is shown in the latter sections of this 

chapter that the optimum frequency ratio of the absorber is in general not equal to one and 

another set of optimum frequency and damping ratios have been derived based on the 

proposed analytical model.  

In this chapter, a theory is established for describing the excitation-response relation leading 

to the H∞ and H2 optimum tuning of the dynamic vibration absorber attached onto a plate 

structure. The present case is much more complicated than a SDOF structure because an 

improper selection of attachment point for the absorber may lead to an amplification of 

vibration in other parts of the structure (Wong et al. 2007). The established theory improves 

our understanding of the effects of different parameters including the mass, damping and 

tuning ratios and also the point of attachment of the absorber on the vibration absorption by 

the absorber. The optimum tuning as derived in this article based on the fixed-points theory 

(Den Hartog 1985) includes tuning frequency and damping ratios of the absorber and also the 

position of the absorber on the vibrating structure. The objective of the optimum tuning is to 

minimize vibrational displacement, velocity and acceleration of a point on the plate as well as 

the minimization of root mean square motion over the whole domain of the plate. The 

numerical simulations are used to show the usefulness of the optimization solutions leading 

to better vibration control in continuous systems than those suggested by Jacquot (2001) 

based on another approach to the problem. 
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5.1 Theory 

 

Figure 5.1 A simply-supported rectangular plate under external distributed force w(t)g(x,y) 

and carrying a dynamic vibration absorber at point (xo, yo). 

Consider a thin rectangular plate on the rectangular domain 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly which 

carries a dynamic vibration absorber at point ),( oo yx  as shown in Figure 5.1. The plate is 

under external distributed force ),()( yxgtw  and the point force r(t) is transmitted to the 

plate by the attached dynamic absorber. The equation of motion for the plate may be written 

as 
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where the flexural rigidity of the plate D is defined as 
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(5.2) 

and where E is the modulus of elasticity, ν is the Poisson ratio, h is the thickness of the plate 

and ρ is the material density.  

It is assumed that the externally applied forcing function is ),()( yxgtw , where g(x,y) is a 

deterministic function of x and y, and w(t) is a stationary random function of time. The 

equation of motion of the free vibration of the plate without the absorber may be written as 

( ) ( )yx
D

h
yx pqpqpq ,, 24 ϕω

ρ
ϕ =∇  (5.3) 

where pqω  and ( )yxpq ,ϕ  are the pq
th

 natural frequency and eigenfunction of the plate 

without absorber respectively.  The solution to equation 5.1 can be expanded in a Fourier 

series written as 
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Similarly, the spatial part of the forcing function can be expanded as 
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The Dirac delta functions can also be expanded as 
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where the Fourier coefficients pqa  and pqb  are respectively 
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Substituting equations 5.4, 5.5 and 5.6 into equation 5.1 and performing Laplace 

transformation on the resulting equation with respect to time, the result may be written as 
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(5.9) 

where )(sN pq , )(sR and )(sW  are the Laplace transform of npq(t), r(t), and w(t) 

respectively.  

Since the eigenvectors )(xpqϕ  are linearly independent, we may write 
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 = 0, =qp, 1, 2, 3… (5.10) 

From equation (10) above, the generalized co-ordinates )(sN pq  may be written as 
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  (5.11) 

Performing Laplace transformation on equation 5.4 and eliminating )(sN pq  in the resulting 

equation with equation 5.11, the s-domain motion of any point on the plate could be written 

as 



5. Optimizations of the traditional DVA for suppressing vibrations in plate structures 

 

 

 

67 

( )∑
∞

== 











+

+
=

1,1
22

,
)()(1

),,(
qp

pq

pq

pqpq
yx

s

sRbsWa

h
syxU ϕ

ωρ
 

 (5.12) 

where ),,( syxU  is the Laplace transform of ),,( tyxu  with respect to time.  

The force transmitted to the beam at the point of attachment may be written as 
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The functions R(s) in equation 5.12 can be eliminated using equation 5.13 to give  
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 (5.14) 

This expresses the motion of an arbitrary point ( )yx,  on the vibrating plate in terms of the 

forcing function W(s) and the motion at the point of attachment ( )oo yx , . This relation would 

definitely be valid at the attachment point ( )oo yx ,  leading to 
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(5.15) 

This can be rearranged to arrive at a transfer function between W(s) and ),,( syxU oo  written 

as 
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(5.16) 
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The following non–dimensional parameters are used in the following derivations. 

yx LhL

m

ρ
µ = is the mass ratio between the masses of the absorber and the plate; 

mk

c
a

2
=ζ is the damping ratio of the absorber; 

m

k
a =ω is the undamped natural frequency of the absorber; 

αβω
ωaT =  is the ratio between the absorber frequency and a reference natural frequency 

αβω of the plate;  

αβω

ω
γ pq

pq =  is the non-dimensional natural frequency of the plate referred to αβω ; 

αβωωλ /=  is the normalized frequency.   

The frequency response function of the plate can be obtained by substituting equation 5.16 

into equation 5.14 and replacing s by ωj  in the resulting equation written in 

non-dimensional form as 
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 (5.17) 

where 1−=j .  The transfer functions of the velocity and the acceleration responses at 
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point (x,y) on the plate surface may be written respectively as 
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5.2 Optimization for minimizing the vibration at a point (x,y) on the plate 

For a structure with well separated natural frequencies, the modal displacement response in 

the vicinity of the uv
th

 natural frequency may be approximated by considering p = α and q = 

β and ignoring other modes in equation 5.17.  Equation 5.17 may then be written as 
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where 
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 (5.21a) 

is the non-dimensional frequency response of the plate, and 

),(2
oo yxαβµϕε = . (5.21b) 

The error of ignoring other modes is discussed in section 5.4. The objective of H∞ 

optimization is to minimize the maximum vibration amplitude response at the point (x,y) and 

the performance index may be defined as 



5. Optimizations of the traditional DVA for suppressing vibrations in plate structures 

 

 

 

71 



















=∞

)(

),,(
supinf

,
__ λ

λ
ζλ W

yxU
H

T
disppt . 

(5.22a) 

Similarly, the performance indices of H∞ optimization for minimizing the maximum velocity 

and acceleration amplitude responses at the point (x,y) may be defined respectively as 
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and 
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(5.22c) 

The expression Z(λ ) in equation 5.20 is equivalent to the amplitude ratio as derived by Den 

Hartog (1985) in the SDOF system attached with a dynamic vibration absorber if the term ε 

in Equation 5.21a is replaced by the mass ratio µ.  ε may therefore be considered as the 

equivalent mass ratio for applying vibration absorber to control vibrations in plate structures.   

The optimum frequency and damping ratios, and the height of the fixed points in the 

frequency spectrum of the primary system in equations (5.22a), (5.22b) and (5.22c) for H∞ 

optimization can be derived based on the fixed-points theory in the same way as in the case 

of SDOF system (Asami et al. 2002; Asami and Nishihara 2003) and the results are listed in 

Table 5.1. 

The objective of H2 optimization of the absorber is to minimize the total vibration energy of 

the mass at point (x,y) of the plate of all frequencies in the system and the performance index 

may be defined as (Crandall and Mark 1963) 
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Table 5.1 The approximated H∞ tuning of the plate for control of vibration at point (x,y) and 

the height of the fixed points in the response spectrum. 

Transfer 

function 
Tuning ratio Damping ratio 

Height of the fixed points 

in the response spectrum 
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where ][ 2UE  is the ensemble mean of 2U  and SF is the spectral density of the excitation.  

The optimum tuning frequency ratio and damping ratio for H2 optimization of the system can 

be derived based on the fixed-points theory as (Asami et al. 2002) 
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(5.24b) 

If the forcing function w(t) has power spectral density SF(f), the spectral density of the 

vibration response of the point (x,y) on the plate may be written as 
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λ
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(5.25) 

With optimum frequency and damping ratios as expressed in equations 5.24a and 5.24b, the 

mean square motion at point (x,y) can be derived as 
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5.3 Optimization for minimizing the root mean square motion over the 

whole domain of the plate 

Using equation 5.17 and integrating the square of amplitude response over the whole domain 

of the plate, we may write 
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 (5.27) 

Consider the orthogonality relations of the eigenfunctions, we may write 
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(5.28) 

Equation 5.28 can be simplified with the above orthogonality relations of the eigenfunctions 

as 
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(5.29) 

For a structure with well separated natural frequencies, the mean square modal displacement 

response in the vicinity of the αβth
 natural frequency may be approximated by considering p 

= α and q = β and ignoring other modes.  Equation 5.29 may be written as 
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(5.30) 

 The root mean square amplitude response of the vibrating plate with an absorber may be 

written as 
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The magnitude of the root-mean-square amplitude response of the plate may be written as 
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The H∞ optimizations for minimizing root mean square motion, velocity and acceleration 

responses of the whole plate are written respectively as  
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(5.33a) 
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(5.33b) 

The optimum tuning frequency and damping ratios and the height of the fixed points in the 

frequency spectrum of the primary system in equations (33a), (33b) and (33c) for H∞ 

optimization can be derived based on the fixed-points theory as in the case of SDOF system 

(Asami et al. 2002; Asami and Nishihara 2003) and the results are listed in Table 5.2. 

Table 5.2  The approximated H∞ tuning of the plate for control of vibration of the whole 

plate and the height of the fixed points in the response spectrum. 

Transfer function 
Tuning 

ratio 
Damping ratio 

Height of the fixed 

points in the response 
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The objective of H2 optimization in this case is to minimize the vibration energy of the whole 

plate of all frequencies of the system.  The performance index in this case may be defined as  
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Warburton (1980) had derived the frequency and damping rations for H2 optimization of 

SDOF system as 
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_2 SDOFH . Using a 

similar approach, the frequency and damping ratios for H2 optimization of the plate structure 

can be derived as 
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The H2 optimization is the minimization of the root mean square motion response over the 

whole domain of the plate under wide-band random excitation. Warburton (1980) had derived 

the mean square motion of a H2 optimized SDOF system to be 
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. Using a 

similar approach, the optimum frequency and damping ratios as expressed in equations 5.35a 

and 5.35b, the total mean square motion of the whole plate can be derived as  
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5.4 Simulation results and discussion 

To test the usefulness of the derived H2 optimization solution for suppressing vibrations in 

plates, the numerical case studied by Jacquot (2001) was analysed with the optimum tuning 

derived in the previous section and the results were compared to those obtained by Jacquot.  

The vibration of a square plate with four sides simply supported was considered.  The 

eigenfunctions may be written as 

( ) ( )yqxppq ππϕ sinsin2=   (5.37) 

The excitation was stationary and random in time, i.e. 1),( =yxg , and it was uniformly 

applied on the plate.  In this case,  

.0else

12,,
8

2

=

∈−==

pq

pq

a

Nnnqp
pq

a
π  

(5.38) 

Nqpyqxpyxb oooopqpq ∈== ,,sinsin2),( ππϕ  (5.39) 

The dimensions of the plate were a = 1m, b = 1m and h = 0.01m. The material of the plate 

was aluminum of 331071.2 −×= kgmρ , PaE 9109.6 ×=  and 33.0=v . In the analysis made by 

Jacquot (2001), the frequency ratio was chosen as 1.  The vibration mode required to be 

suppressed was 1== βα . The attachment position of the absorber on the plate 

was 5.0== oo yx . The mass ratio and damping ratio for minimum mean square motion at the 

attachment point were found to be 0.275 and 0.45 respectively by Jacquot. In the current 

analysis, the same mass ratio was used so that the result of vibration suppression could be 

compared to that of Jacquot. The modal response amplitude at the point of attachment 

),(11 oo yxϕ  was 2 and therefore ε was 1.1 according to equation 5.21b.  The optimum 

frequency and damping ratios in this case were calculated to be 0.5929 and 0.3927 

respectively in applying equations 5.24a and 5.24b.  The vibration amplitude response at 

point (xo,yo) of the plate was calculated according to equation 5.17. The spectral density of 

the vibration amplitude response at point (xo,yo) was calculated according to equation 5.25 
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and it was plotted in Figure 5.2 and compared to the corresponding curve by Jacquot 

(equations 25 and 28 of Jacquot 2001). 

 

Figure 5.2  Dimensionless motion power spectral density of a square plate with g(x,y) =1, 

µ = 0.275, xo = yo = a/2. ------- Jacquot’s result (2001); ——— Present theory, Equation (26); 

—‧—‧—‧— No absorber added. 

The spectral density of the vibration amplitude response at point (xo,yo) for the case of no 

absorber added was also plotted for comparison.  It could be observed in Figure 5.2 that 

both Jacquot’s result and the present result provided vibration control at point (xo,yo) of the 

plate.  However, the mean square motion at point (xo,yo) of the plate with the proposed 

frequency and damping ratios was found to be 55.8% smaller than that obtained by Jacquot.  

Jacquot also reported that there was an optimum mass ratio leading to minimum mean square 

motion of the plate but no particular optimum mass ratio could be found in applying the 
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present theory.  Based on equations 5.21b and 5.26, it was observed that mass ratio should 

be as high as possible in order to reduce the mean square motion of the plate.  

Mean square motions at the attachment point of the plate based on the response of 20 

vibration modes were calculated numerically using equation (5.17) with different values of 

tuning frequency and damping ratios and the result is plotted in Figure 5.3 below. The values 

of tuning frequency and damping ratios for minimum mean square motions are found to be T 

= 0.595 and ζ a = 0.459.  The difference of mean square motion of the plate at point (xo,yo) 

using the exact and the proposed sets of T and ζ was found to be about 1%.  This shows that 

the proposed optimum tuning frequency and damping ratios are quite accurate even though 

they are determined based on the vibration response of only one mode of the plate.  

 

Figure 5.3  Contour plot of the mean square motion of the plate at the attachment point of 

DVA at different tuning and damping ratios 

H∞ optimization of motion control is also checked in this case. The exact tuning ratio and 

damping ratio are calculated numerically using equation 5.17 as T = 0.468 and ζa = 0.494 
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respectively and the approximated tuning ratio and damping ratio are calculated according to 

the formulae in Table 5.2 as T = 0.4762 and ζa = 0.4432 respectively. The global maximum 

response of the exact tuning and the approximated tuning are calculated to be 2.7322 and 

2.8322, respectively. In this case, the global maximum using the approximated tuning is 

about 3% higher than the exact value.  
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5.5 Summary 

In this chapter, analytical solutions to the H∞ and H2 optimization problems of dynamic 

vibration absorber attached to a vibrating plate under random excitation have been derived. 

Expressions of the optimum tuning frequency and damping ratios are derived for the absorber 

assuming single mode vibration of the plate. The error due to this assumption is discussed in 

section 5.4. The effects of the DVA on other higher order modes are discussed in section 4.5.   

The optimum tuning frequency and damping ratios of the absorber derived in the present 

theory for solving the H∞ and H2 optimization problems applied to vibrating plate structures 

have similar forms to those of the SDOF system. However, the tuning equations are based on 

the equivalent mass ratio ε which is a function of both the mass ratio and the position of the 

absorber on the plate structure. Moreover, it is derived that both the optimum tuning 

frequency and the damping ratios for minimum vibration at a certain point are the same as 

those in the case of the minimum mean square motion for the whole plate. That means the 

mean square motion would be minimum when the vibration at a single point of the surface is 

minimum.  

Secondly, the vibration response in H∞ optimization and the mean square motion in H2 

optimization would be reduced when the equivalent mass ratio ε is increased under the 

optimum tuning condition. That means a higher mass ratio and an attachment point of the 

absorber having higher modal response should be chosen for the suppression of vibration for 

the whole plate or at one point of the plate. This finding is different from that of Jacquot 

(2001) who showed that there would be an optimum mass ratio for minimum mean square 

motion of a vibrating plate under random excitation. There is no optimum mass ratio found in 

the present analysis. Jacquot found an optimum mass ratio because he fixed the tuning ratio, 

1=T . It is found in the present analysis that the mass ratio should be as high as possible. 
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Based on the example in section 5.4, the approximated optimum tunings are better than the 

Jacquot derived one. 

Thirdly, based on the expressions as shown in tables 5.1 and 5.2 for the heights of the fixed 

points in the response spectrum for H∞ optimization, it is found that the heights of the fixed 

points in the (dimensionless) displacement response spectrum are higher those of the 

(dimensionless) velocity response spectrum and in turn higher than those of the 

(dimensionless) acceleration response spectrum.
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6. OPTIMIZATION OF A NON-TRADITIONAL DYNAMIC 

VIBRATION ABSORBER 

A non-traditional dynamic vibration absorber is proposed for the minimization of   

maximum vibration response of a vibrating structure. Unlike the traditional damped 

absorber configuration, the proposed absorber has a linear viscous damper connecting 

the absorber mass directly to the ground instead of the main mass.  Optimum 

parameters (for H∞ optimization) of the proposed absorber are derived based on the 

fixed-points theory for minimizing the maximum vibration response of a 

single-degree-of-freedom system under harmonic excitation. The extent of reduction 

of maximum vibration response of the primary system when using the traditional 

dynamic absorber is compared with that using the proposed one. Under the optimum 

tuning condition of the absorbers, it is proved analytically that the proposed absorber 

provides both a greater reduction of maximum vibration and velocity responses of the 

primary system than the traditional absorber. 

 

 

 

 

 

 

 



6. Optimizations of a non-traditional dynamic vibration absorber 

 

 

 

86 

6.1 H∞∞∞∞ optimization of the non-traditional DVA  

The design of the non-traditional DVA is shown as Figure 6.1. The elements of the 

non-traditional DVA are totally the same as the traditional DVA. It also has a mass, a 

damper and a spring. The difference between the new one and the traditional one is 

that the damper is connecting to the ground instead of the primary system.  

The motion of the primary system and the DVA are governed by the following matrix 

equation. 
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(6.1) 

Taking Laplace transformation and replacing s by jω, the frequency response function 

may be written as 
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Rewriting equation 6.2 in dimensionless form, we have 
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(6.3) 

In the H∞ optimization, the objective function is to minimize the maximum amplitude 

ratio of the response of the primary system to the excitation force or motion, i.e. 
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Figure 6.1  A SDOF system (M-K) mounted with the new DVA (m-k-c) excited by 

an external force 

Using equation (6.3), the amplitude of the frequency response function is  

( ) ( ) ( )
( )( )[ ] ( ) ( )2222222222

2222

121

2

µγλγλζγµλλγλ

γλζλγ
λ

+−+−−−

+−
==

a

a

K
F

X
H  

(6.5) 

Equation 6.5 may be rewritten into the form as 
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(6.6) 

where ( )222 λγ −=A , ( )2
2γλ=B , ( )( )[ ]2222221 γµλλγλ −−−=C , 

and ( )( )22212 µγλγλ +−=D  

 

Frequency responses of the primary mass M are calculated according to equation 6.6 
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with three damping ratios and the results are shown as figure 6.2.  It can be observed 

that there are intersecting points O, P and Q which are independent of damping of the 

absorber. At those fixed points, we may write 

D

B

C

A
=  (6.7a) 

or ( )( )
2
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22222
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(6.7b) 

Taking square root of equation 6.7b, we have 

( )( ) 2222222

22

1

1

1 µγλγµλλγλ
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±=

−−−

−
 (6.8) 

 

Figure 6.2 The frequency response of the primary system with the new DVA at 1=γ  

It is found that 0=λ and ( ) 10 =H  which corresponds to the fixed point O if we take 
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the positive sign on the right hand side of equation 6.8. Taking the negative sign on 

the right hand side of equation 6.8, we have  

( )( ) 2222222
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−=
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−
 (6.9) 

Equation (6.9) may be rewritten as 

( ) 02122 422224 =++++− µγγλµγγλ  (6.10) 

The sum and product of the roots of equation 6.10 can be written respectively as 

2222 1 µγγλλ ++=+ ba  (6.11a) 

and 
2

2 42
22 µγγ

λλ
+

=ba  (6.11b) 

Equation (6.10) is a quadratic equation in 2λ . Let 2

aλ  and 2

bλ  be the two roots of 

equation (6.10) and assume ba λλ <<0 . The amplitudes of the frequency response at 

these two roots are independent of the damping ratio ζa, where these two points, P and 

Q, are called ‘fixed points’. The amplitudes of the frequency response at 2

aλ  and 2

bλ  

are 
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(6.12b) 

At any damping ratio, the frequency response must include these three fixed points O, 

P and Q. So the H∞ optimum condition of the DVA may be expressed as 
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( )( ) ( ) ( ) ( )( )
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 (6.13) 

( )
aH λ  and ( )

bH λ  are calculated according to equations 6.12a and 6.12b at 

different values of γ and they are plotted together with ( )0H  in figure 6.3.  The 

response amplitudes at these three fixed points are compared and the maximum of 

these three responses at each value of γ, ( ) ( ) ( )( )0
,

,,max λλλ
ζγ

HHH ba , is plotted in 

figure 6.4.  Point A in figure 6.3 is the intersecting point of the curves of ( )
aH λ  

and ( )
bH λ .  This is the case that the response amplitudes at the two fixed points P 

and Q to be the same and this condition is used in applying the fixed-points theory for 

searching the optimum tuning frequency of the traditional DVA. Optimum damping 

will then be found such that the response amplitude at the fixed points becomes local 

maxima of the response spectrum of mass M.   

 

Figure 6.3 Response at the (height of) fixed points versus tuning ratio at 2.0=µ  
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Figure 6.4 ( ) ( ) ( )( )0
,

,,max λλλ
ζγ

HHH ba  versus tuning ratio at 2.0=µ  

In figure 6.3, there are two ranges of frequency ratio γ that the two curves ( )
aH λ  

and ( )
bH λ  require different methods for searching the optimized parameters of the 

DVA.  In figure 6.3, the first frequency range of γ starts from zero to the frequency 

of point A while the second range starts from the frequency of point A to infinity.  

( )
aH λ decreases and ( )

bH λ increases when γ increases in the first frequency range 

and therefore it satisfies the assumption of the fixed-points theory.  However, both 

( )
aH λ  and ( )

bH λ decreases for all frequencies on the right hand side of the local 

maximum of ( )
aH λ .  Moreover, there is no intersecting point in the second 

frequency range and therefore the fixed-points theory cannot be used in searching the 

optimized parameters of the DVA.  These two cases will be discussed separately in 

the following sections.  
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In figure 6.4, point A is a local minimum of the curve of ( ) ( ) ( )( )0
,

,,max λλλ
ζγ

HHH ba  

and its corresponding tuning ratio was chosen by other researchers (Liu and Liu 2005; 

Ren 2001) as the optimum tuning frequency ratio.  This is the optimum case only if 

the tuning frequency ratio can be chosen between zero and the tuning ratio of point B 

in figure 6.4. It will be shown in the following section that the damping and the tuning 

ratios are functions of the mass ratio. On the other hand, point C and the curve on the 

right of point C in figure 6.4 show that the response amplitude ratio at the fixed points 

are one or below. It will be shown in the following section that the optimum damping 

becomes a function of mass ratio and tuning ratio.  
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6.1.1 Local optimization of the non-traditional DVA using the 

fixed-points theory 

The local minimum of the response amplitude at the fixed points can be found when 

( ) ( )ba HH λλ = , i.e. 

2222 1
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+− ba

 (6.14) 

Using equations (6.11) and (6.12), the tuning ratio leading to the same response 

amplitude of the fixed points is 

µ
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−
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1
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(6.15) 

The magnitude of frequency response of mass M using equation 6.5 and 

µ
γ

−
=

1

1
_ localopt  is calculated and the result is plotted as figure 6.5. 

Substitute equation 6.15 into equation 6.10.  Equation 6.10 can be rewritten as 
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The roots of the equation 6.16 are found as 
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Figure 6.5 The frequency response of the primary system with a new DVA at localopt _γ . 

Substitute equations 6.17a and 6.17b into equations 6.12a and 6.12b, respectively. The 

response amplitude at the fixed points can be written as 
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The next step is to determine the damping of the local minimum in order to make the 

fixed points to be the maximum points on the response curve. The condition of fixed 

point being the maximum means that the response curve would become local maxima 

at the fixed points, that is 
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Let ( )
q

p
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2
λ  (6.20) 

where ( ) ( )2222 2 γλζλγ ap +−=  (6.21) 
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Substitute equation 6.20 into equation 6.19, we have 
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Using equations 6.21 and 6.22, we may write 
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Substitute 
µ

γ
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=
1

1
_ localopt  into equation 6.20, we have 
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==

µ
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(6.28) 

Using equations 6.25 and 6.28, we may write 

02

22
=

∂
∂

−
∂
∂

G
qp

λλ
 (6.29) 
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Solving 
2

aζ  from equations 6.26, 6.27 and 6.29, we have 

( )( )[ ] ( )
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2222222222
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µγλγλ

λγγµλλγλ
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+−−

−−−−−
=

G

G
a  

(6.30) 

The optimum damping can be found by substituting equations (6.15), (6.17) and (6.18) 

into equation 6.30 and written as 
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
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2
18

3

µ

µ
ζ

m

a  
(6.31) 

Taking a linear approximation of 2

aζ , the optimum damping is chosen as, 
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(6.32) 

From equation 6.18, the resonant amplitude ratio is approximately  

( )
µ
µ

2

12

max_

−
=

localY

X
 (6.33) 

The frequency response of primary mass M with 2.0=µ , γ = localopt _γ  and damping 

ratio aζ = 0.1, 0.2 and localopt _ζ  are calculated respectively using equation 6.5 and 

the results are plotted in figure 6.6. 

To compared the vibration suppression performance of this non-traditional DVA to the 

traditional DVA, frequency response curve of the primary mass M in figure 3.5 with 
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optimum tuning condition is plotted together with the one in figure 6.6 with aζ =  

localopt _ζ   in figure 6.7.  It is found that the maximum frequency response of mass M 

with the traditional DVA under optimum tuning is higher than the maximum 

frequency response of the primary system with the new DVA under a local optimum 

tuning by about 20% at 2.0=µ .  
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Figure 6.6 Frequency response of the primary mass M with the new DVA using the 

local optimum tuning 

The height of the fixed point in the frequency response spectrum of the mass M using 

the optimized traditional DVA and the one using the non-traditional DVA with local 

optimum tuning are calculated at different mass ratio µ and plotted in figure 6.8 for 

comparison. The response amplitude of mass M using the traditional DVA is larger 

than that using the non-traditional DVA at any mass ratio between 0 and 1 and the 

difference increases with the increase of mass ratio µ. 
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Figure 6.7  Frequency response of the primary mass M with the traditional DVA 

using the optimum tuning and with the new DVA using the local optimum tuning 
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Figure 6.8 Mass ratio versus the height of the fixed point using different type of DVA. 
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6.1.2  Global optimization of the non-traditional DVA 

Even if the local optimum tuning of the non-traditional DVA can provide a better 

result than the traditional DVA for vibration suppression of the primary system, it is 

not the best tuning as discussed in section 6.1. When the tuning ratio γ is higher than 

that of point B in figure 6.4, the height of the fixed point can be lower than the local 

optimum one (the height of point A in figure 6.4). There is no intersecting point 

between the curves of ( )
aH λ  and ( )

bH λ  in when the tuning ratio γ is higher than 

that of point A in figure 6.3 and therefore the fixed-points theory cannot be used for 

finding the global optimum tuning of DVA. As shown in figure 6.3, the frequency 

response at aλ  is always higher than the frequency response at bλ , i.e. 

( ) ( )
ba HH λλ > , when the tuning ratio γ is higher than that of point A in figure 6.3. 

According to the objective function of the optimization as stated by equation 6.13, 

( )
aH λ  is used in searching the global optimum tuning of DVA.  Derivation of the 

global optimum tuning parameters of the DVA is shown in the following. 

Equation 6.3 is restated below for the ease of discussion. 

( ) ( )( )[ ] ( )2222222
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==

a

a

j

j

K
F

X
H  

(6.3) 

Rewriting the equation into the form as 

( )
2

2

a

a

DC

BA

K
F

X
H

ζ
ζ

λ
+

+
==  

(6.34) 

where ( )222 λγ −=A , ( )2
2γλ=B , ( )( )[ ]2222221 γµλλγλ −−−=C , 

 



6. Optimizations of a non-traditional dynamic vibration absorber 

 

 

 

100

and ( )( )22212 µγλγλ +−=D  

If the frequency responses are independent of the damping, we may write 

D

B

C

A
=  or ( )( )

2
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1

1
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







+−
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

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

−−−
−

µγλγµλλγλ
λγ

 
(6.35) 

Equation (6.35) can be rewritten after taking square root as 

( )( ) 2222222

22

1

1

1 µγλγµλλγλ
λγ

+−
±=

−−−

−
 (6.36) 

Taking the negative sign of the right hand side of equation 6.36, we have  

( )( ) 2222222

22

1

1

1 µγλγµλλγλ
λγ

+−
−=

−−−

−
 (6.37) 

Equation 6.37 can be rewritten as 

( ) 02122 422224 =++++− µγγλµγγλ  (6.38) 

Solutions of equation 6.38 can be found as 

( ) ( ) ( )
2

112111 4222

2

,

γµγµγµ
λ

++−+++
=

m

ba  
(6.39) 

As shown in figures 6.3 and 6.4, ( )
aH λ  > ( )

bH λ if the tuning frequency ratio γ is 

larger than that of point B or C in figure 6.4.   Global optimum damping may be 

found by considering ( )
aH λ  to be a maximum of the frequency response curve of 

mass M.  We may write 
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( ) 0
2

2
=

∂
∂

= a

H
λλ

λ
λ

 
(6.40) 

Using equations 6.3 and 6.40, it can be derived that 

( )( )[ ]
( )2

2222

_
2

)21(32

a

aa
globalopt γλ

γµλλγ
ζ

++−−
=  

(6.41) 

To find the tuning ratio of point C in figure 6.4, we use equation 6.12a and let
( )

aH λ
 

= 1.  We can therefore write 

 ( )
22

1

1

µγλ
λ

+−
==

a

a
D

B
H  = 1 

(6.42) 

Solving equation 6.40 for γ, we have the tuning frequency ratio at point C in figure 

6.4 to be 

µ
λ

γ a
c =  (6.43) 

Referring to figure 6.4, the height of the fixed point become minimum if tuning ratio  

γ > cγ .  We may therefore state that H∞ optimization of the non-traditional DVA is 

achieved if we select a tuning ratio γ > cγ  and select the damping ratio of DVA 

according to equation 6.41.  

The response amplitude of mass M are calculated according to equation 6.3 using the 

global optimum damping globalopt _ζ  with mass ratio = 0.2 and tuning ratio = 2 and 3 

and plotted in figures 6.9 and 6.10.  The fixed points P and Q are marked in the 

figures for checking.  The maximum response amplitude of mass M in these two 
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figures are smaller than the maximum response amplitude of mass M in figure 6.7 

which use the local optimum tuning and damping ratios.   

 

Figure 6.9 The frequency response of the primary system with the new DVA using 

optimum damping ratio globalopt _ζ , µ = 0.2 and tuning ratio γ  = 2. 

 

Figure 6.10 The frequency response of the primary system with the new DVA using 

optimum damping ratio globalopt _ζ , µ = 0.2 and tuning ratio γ  = 3. 
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6.2 H2 optimization of the non-traditional DVA  

The optimum tuning of the non-traditional DVA in H2 optimization is derived in this 

section. The objective function of the H2 optimization is the minimization of the total 

vibration energy of the primary structure under white noise excitation, i.e.  

[ ]( )2

,
min xE

aζγ
 (6.44) 

The frequency response functions of a SDOF system attached with the non-traditional 

DVA as shown in figure 6.1 is restated below for the ease of discussion.  
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X
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(6.3) 

Following the procedure from equations (3.34) to (3.41), the mean square motion in 

this case can be found as 

[ ] ( )( )[ ] ( )∫
∞

∞− +−+−−−

+−
= λ

µγλγλζγµλλγλ
γλζλγ

π
ω

d
j

jS
xE

a

an

2

2222222

22

02

121

2

2
 

(6.45) 

A useful formula of Gradshteyn and Ryzhik (1994) written as equation 6.46 below is 

used for solving equation 6.45. 
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Comparing equations (6.45) and (6.46), we may write 
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(6.47) 

Using equations 6.46 and 6.47, the mean square motion in equation 6.45 can be 

written as 
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ω
a

a

n S
xE  (6.48) 

If [ ] [ ] 022 =
∂
∂

=
∂
∂

xExE
aζγ

, the system has a optimum tuning condition. The 

derivatives of equation 6.48 are 
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and [ ] ( )[ ]124
4

224

52

02 +−−+−=
∂
∂

γζµγ
γµζ

ω
ζ a

a

n S
xE  (6.49b) 

Using equation 6.49, the maximum/minimum solutions can be found respectively as 

( ) 323636
2

1 2 −−±−= µµγ  (6.50a) 

and 
( )

2

42

4

12

γ
γγµ

ζ
+++−

=a  
(6.50b) 

The mean square motions of the primary mass M with 11.0=µ  at different tuning 

frequency and damping ratios are calculated using equation 6.48 and the contours of 

[ ]2xE  versus γ and aζ  are plotted in figure 6.11.   It can be seen in figure 6.11 

that there is a local minimum as well as a local maximum.    

After checking figure 6.11 and using equation 6.50, the frequency ratio γ  of the 
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DVA at the local minimum can be written as  

( ) 323636
2

1 2

__2 −−−−= µµγ localoptH  (6.55) 

and that at the local maximum is written as 

( ) 323636
2

1 2 −−+−= µµγ  (6.56) 

In figure 6.11, the local optimum is found at 1494.1=γ  and 2168.0=aζ , and the 

local maximum is found at 2304.1=γ  and 2667.0=aζ . The contours on the top 

right corner of figure 6.11 show a decreasing trend of the mean square motion. 

 

Figure 6.11 The contour plot of the mean square motion at 11.0=µ . (*) – local 

minimum; (∆) – local maximum 

Equations 6.55 and 6.56 shows that it requires ( ) 03236
2 ≥−− µ  in order to have a 
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local minimum or maximum mean square motion to exist. This requirement leads to  

1144.0≤µ  and therefore no local minimum and maximum mean square motion can 

be found if the mass ratio 1144.0>µ . The mean square motions of the primary mass 

M with 2.0=µ  at different tuning frequency and damping ratios are calculated 

using equation 6.48 and the contours of [ ]2xE  versus γ and 
aζ  are plotted in 

figure 6.12.   The contours along the top right direction show a decreasing trend of 

the mean square motion and there is no local minimum or local maximum in figure 

6.12.    

 

Figure 6.12 The contour plot of the mean square motion at 2.0=µ  

Since there is no global optimum tuning frequency exist in the H2 optimization of the 

non-traditional DVA for SDOF system, it is recommended that the local optimum 

tuning frequency (equation 6.55) or a much higher value of tuning frequency should 

be used.  The best or optimum damping ratio after we select the tuning frequency 

and the mass ratio can be calculated according to equation 6.53b it is shown as the 
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curve cutting across the contours of mean square motion in figure 6.13.   

 

Figure 6.13 The contour plot of the mean square motion at 11.0=µ . (*) – local 

minimum; (∆) – local maximum; (-) – optimum damping 
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6.3 Summary 

In this chapter, a non-traditional DVA is proposed and compared to the traditional 

DVA for suppressing vibration of SDOF system. It has been proved analytically that 

the performance of the non-traditional DVA is better than the traditional one. H∞ and 

H2 optimizations of the non-traditional DVA are solved and tested for this DVA.  

Relevant research reports found in literature are only about the H∞ optimization of this 

DVA but they have only found the local optimum condition.  As derived and proved 

in the section 6.1, global optimum conditions of the DVA exist and the vibration 

suppression performance of the DVA can be greatly improved if the global optimum 

tuning is applied instead of the local optimum tuning. This new finding improves our 

understanding of the dynamics of this DVA and it helps us to improve the vibration 

suppression performance of this non-traditional DVA.   

On the other hand, H2 optimization problem of this DVA has been solved analytically.  

To the author’s knowledge, there is no research report found in literature on this topic.  

As derived in section 6.2, local H2 optimum tuning condition of the DVA exists if 

mass ratio is 0.1144 or less.  No global optimum tuning condition exists if mass ratio 

is higher than 0.1144 are found and it is recommended to use a high tuning frequency 

ratio if possible.  The best value of damping ratio after one select the tuning 

frequency ratio is derived and stated in equation 6.53b. 
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7. CONCLUSIONS 

Optimization theories of the traditional DVA applied suppressing vibrations in beam 

and plate structures are established in chapters 4 and 5, respectively. The optimum 

tuning conditions of the traditional DVA in beams and plates are proved to be very 

similar. It is found that the optimum tunings including the tuning frequency and 

damping ratios as well as the attachment location of the DVA in both the beam and 

plate structures depend on the mass ratio and modal response at the attachment point 

of the DVA. New and better results than those reported by other researchers (Dayou 

2006, Jacquot 2001) have been found.  These new results have been reported to and 

published in an international journal.  

In chapter 6, optimization theory of a non-traditional DVA for suppressing vibration 

in a SDOF system is established. As shown in figure 6.3, the fixed-point theory is not 

suitable to this new DVA because the response amplitudes at both fixed-points 

decrease when the tuning ratio increases. Only the local optimum tuning condition of 

this DVA can be found if one uses the standard fixed-points theory. On the other hand, 

it has been found that global optimum tuning condition of the DVA exists and a new 

theory has been established for finding this global optimum tuning condition of the 

DVA. It is proved that the results reported by Ren (2001), and Liu and Liu (2005) are 

based on the local optimum condition of this DVA and there are global optimum 

conditions of the DVA that can produce much better vibration suppression of the 

primary systems. Moreover, H2 optimization theory for this new DVA in reducing the 

kinetic energy of the primary mass under white noise excitation is established. This 

research provides results which are never found in the relevant literature. Some of the 

results have been reported to and published in an international journal and some other 
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will be submitted for publication as well. 

Future research can be focused on the new DVA applied to suppress vibrations in 

MDOF or continuous systems under different types of excitations.
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APPENDIX A. EULER-BERNILLI BEAM WITH A FORCE 

Consider figure A.1, 

 

Figure A.1 Free body diagram of the beam element 

Consider the free body diagram and applying Newton second law, we may write 
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From equation A.1, we have 
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From equation A.2, we have 
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The bending moment is related to the curvature of the beam element by the flexure 

equation written as 
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=  (A.7) 

Using equations A.6 and A.7, we may write 
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Substitute equation A.9 into A.4, we have 
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APPENDIX B. THE FORCE DUE TO DVA APPLIED ON THE 

BEAM 

Consider the figure A.2, 

 

Figure A.2 Force due to DVA acting on the primary mass M 

Considering force balance, we may write 
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∂
∂

 (A.11) 

and )()( 11 xxcxxkF && −−−−=  (A.12) 

Applying the Laplace transform into (A.11) and (A.12), we have 

)()( 11

2

1 XXcsXXksmX −−−−=  (A.13) 

and )()( 11 XXcsXXkF −−−−=  (A.14) 

Using equations (A.13) and (A.14), we may write 
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Multiplying equations (A.15) and (A.16), we have 
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