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Abstract

The problem of discovering association rules was first introduced in 1994 by R. Agrawal
and R. Srikant. In the past several years, there has been much active work in developing
algorithms for mining association rules. However, in discovering the patterns, it has been
realized that not all associations are of interest. It is more desirable if a user can limit the
target associations by specifying different constraints. For example, a marketing personnel
may only want to know which items are often sold together with a total price more than
200. That is, he is interested in association rules which satisfy a given inequality constraint
for a set of quantitative items. The aim of our work is to research for new methods and
algorithms to extract subtle and embedded knowledge in the database satisfying inequality
constraints.

Three types of constraints are considered in our work for different data item relationships.
The first type of constraints are the ineguality consireints which consider the quantitative
relationships between items. The second type of constraints are the temporal constraints
which consider the temporal and quantitative relationships between items. The last type

of constraints are the taronomy constrainis which consider the multi-layer relationships



between items. In our work, we consider arithmetic inequality constraints which are
composed of common operators such as (+,-,+). We believe they are the most common

constraints and can be easily extended to other queries such as the maz(), min() and

avg().

Finding the interesting associations is not the only objective of our work, we also attempt
to simplify and speed up the whole mining process by making use of the arithmetic prop-
erties of the input constraints. Finally, preliminary experimental results of the proposed

algorithms are also reported and discussed.
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Chapter 1

Introduction

1.1 Owverview of Association Rules

Discovering association rules is to find the p(.)ssib]e associations between items when a
user specifies a minimum support (s} and a minimum confidence (c¢). For example, one
possible association rule can be “there are 10% of customers who made long distance calls
to England last month and 80% of these customers also called USA.” In this example,
the support is 10% and the confidence is 80%. The items in the above rule are binary
attributes and does not posses any quantitative values. Different extensions on the binary
association rules have been appeared in the past several years [1, 3, 8, 14, 12]. However, all
.of them merely reveal the existence of different items in transactions but not the possible

quantitative relationships between them.

In mining the association rules, users often find that they are not only interested in the
general associations. Rather, they always have a set of conditions for the possible rules

to satisfy. Recently, Srikant et. al. [26] have proposed the MullipleJoin algorithm and
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the Direct algorithm to discover association rules which satisfy a given boolean expression
over the items of a database. The expression is used to indicate the existence or non-
existence of the items. Only association rules satisfying the expression are output. In

our work, we are proposing to consider another kind of constraints as illustrated in the

following examples.

Example 1.1 In a medical ward, doctors keep all clinical diagnosis treatment costs of
their patients in a transaction. Tt is important if they can reveal the cost relationship
between the different treatments and clinical diagonsis. Some typical transactions for

treatments and their associated costs are listed below.

e nursing:100, clinical test:30, pharmacies:165, ...
e nursing:120, injection:130, pharmacies:100, . ..

e operation:220, injection:542, clinical test:60, ...

One [requent question is to find out any two treatment costs with their total sum more

than a thousand units.

Example 1.2 Consider a phone company with a large collection of items, and each item
represents the country and the monthly long distance charge that a client spends in calling.

Some typical transactions are listed below.

¢ England:300, China:200, USA:200, ...

e England:200, China:100, HK:200, ...

11



e Japan:200, England:100, France:200, . ..

A frequent question that the company would like to ask is which countries with their total
amount of long distance fees accurnulated are less than a given amount. This would allow

a business analyst to focus on those countries with low calling activities.

Example 1.3 Consider a mobile operator with a large collection of WAP access logs.
Each transaction in the log represents the browsing pattern of a mobile subscriber with
the air-time the person consumed. The browsing patterns are formed by sequence of URL.

A typical URL is shown below.

www.mportal.com/entertainment /singer/female/Madonna/music.wml

Some WAP access log transactions are listed below.

e url1:40, url2:90, url3:12, ...
e url2:23, url3:19, url4d:8, ...

o url5:12, urld:22, url4:13, ...

In order to provide the best wireless portal service, the operator has to know the favourite
URLs of their subscribers. Those information can be found from their access patterns
and the total amount of air-time they spent on browsing.

In owr work, three types of constraints regarding to item relationship are considered. The
first type of constraints are the Inequality Constraints which consider the quantitative re-

lationships between items. The second type of constraints are the Temporal Constraints



which consider the temporal and quantitative relationships between items. The last type
of constraints are the Tazonomy Constraints which consider the multi-layer and quanti-

tative relationships between items.

1.2 Inequality Constraints for quantitative relationships

In practice, most databases contain quantitative attributes instead of binary attributes.
A user may want to find association rules which satisfy a given inequality for a set of
quantitative items. The CAP algorithm, which is proposed by Raymond Ng in 1997 [20],
is developed to deal with constrained association queries, such as min(S) > C where S is
a set of items and C is a constant. It shows how to optimize the mining process when the
input constraints are either satisfying the anti-monotone or the succinet properties. The
CAP algorithm is designed specially for queries with these properties and does not deal
with inequality constraints that involved a mix of basic arithmetic operators (+, —, %, +).
In most of the applications, it is often desirable to find patterns that satisfy a given
inequality. For example, a doctor would like to find patterns of patients that the difference
of the accumulated survival scores between treatments and clinical diagnosis are greater
than a threshold. In addition, the work has been done mainly on those constraints which
are either anti-monotone or succinct. For constraints which are not, such as min(S) < C,
the effect may not be significant. We will describe more details about Raymond’s work
and other related research work in next chapter.

In our work, the input constraints are not necessary belong to specified category. They can

be any inequality constraints that involved a mix of basic arithmetic operators (+, —, *, +).
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The comparison can be any one in {<, >, =, > <}, such as

o Q1+ Qa2+ Q3 + Q4 < 500

For this type of constraints, we have developed the Quantitative Mining on Inequality
Constraint algorithm (QMIC) to find associations (patterns) that satisly a given inequality
from the quantitative da.taba;se.' It will be less contributing if we only involve a constraint
but not improve the mining process. In our work, regarding to QMIC, we propose two
techniques to improve mining efficiency. The first technique, Generating Sequence, is to
skip the unnecessary database scanning by exploiting the size information of an inequality
constraint. For some aggregate operators and arithmetic expressions, the size of the
inequality can be estimated. The second technique, Maz_Min pruning, is to reduce the
number of candidate itemsets in each iteration by exploiting the maximum and minimum
values of the sub-expressions in the inequality. Details of them will be discussed in chapter

3.

1.3 Temporal Constraints for sequential relationships

The previous constraint type does not include the temporal aspect of the data. That is,
instead of a quantitative value, we can have the value plus the timestamp for each item -
in a given transaction. Similar work has been done by Heikki in 1995 [18]. Tt is about a
framework for discovering frequent episodes in sequential data. The framework consists
of defining episodes as partial orders; and finds all episodes from a given class of episodes
that are frequent enough. However, it only deals with binary attributes and does not

involve any user constraints and improvement on mining efficiency.
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Suppose t;; is the timestamp of item [;; in transaction T;, and ¢, and ¢, are the starting
and ending times of an interval, respectively. With the new information, we extend the

work in the previous problem to handle the temporal aspect. There are two sub-problems

need to be solved:

e For a given time interval IN, say [Ls,.], find all associations such that the timestamps

of all items in each association are within TN. Also, the itemsets in each association

are satisfying an inequality.

e For a given time duration d, find all associations such that the difference between the
earliest and the latest timestamps of the items in each association are less than, greater
than or equal to d. Also, the itemsets in each associations are satisfying an inequality

constraint.

We have developed the Order Pattern Mining (OPM) algorithm to work on this type of
constraints that consider the temporal and quantitative relationships between items. The.
OPM algorithm extends the QMIC algorithm by embedding the temporal calculations in
it. In OPM, itemsets with different temporal orders are treated as two distinct itemsets
even though they contain the same items. We have been successtully applied the algorithm
in mining the browsing patterns among WWW logs. The details will be provided in

chapter 4.
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1.4 Taxonomy Constraints for multi-layer relationships

It is natural to have a taxonomy in the database. One good example is the clinical
database. There are surgical data, therapeutic data, diagnostic data, ward resource data,
etc. For each data group, there are different levels of sub-categories and sub-groups. Tt
will be mnteresting to find the multi-layer associations amongst the items. Similar work
has been done by Han and Fu in 1995 [10]. In the work of Jonghyun in 1997 [13], the
proposed Count Propagation algorithm (CPA) finds the co-occurrences of the items among
a taxonomy database. With the taxonomy, the CPA algorithm speeds up the mining
process by propagating the counts of itemsets to their ancestors in the taxonomy, instead
of counting individual itemsets separately. In our work, we concern both the quantitative
and multi-layer relationships amongst the items. For example, in the QMIC algorithl.n,
we only deal with the quantitative relationships. However, the taxonomy of the data has
not been considered. In the QMIC algorithm, there is no clear type nor category lor each
data item. This may not be accurate in reality. Therefore, we have developed the Multi-
level Mining on Ineguality Constraint algorithm (MMIC) for this new type of constraints.
In our proposed algorithm, we use an acyclic graph to represent item hierarchies. Each -
intermediate node in a graph represent a particular data category. We first find if there
are associations of the intermediate nodes satisfying both the frequency and inequality
constraints. If one of the constraints fails, there is no need to probe further. Tt is because
when the whole category fails a constraint, none of its sub-category do. Therefore, if any

intermediate node fails the constraints, we can prune away the whole subtree roots at that

16



intermediate node. We have also defined the Inequality Expression Tree (IET) structure
which is a new technique to improve the efficiency of the pruning process. The IET will
not only simplify the pruning process but also generate the Enchanced Generating Mining

Sequence (EGMS). The details of those techniques will be in chapter 5.
1.5 Dissertation Organization

The rest of this dissertation will be divided into the following chapters. Chapter 2 reviews
the literature of related work. Chapter 3 describes our basic QMIC algorithm that mines
the quantitative relationships between data items. Chapter 4 and 5 describe the mining
of temporal and muli-level relationships respectively. Chapter 6 discusses the experiments
and their paliameters. It also presents the corresponding results. Chapter 7 concludes the

dissertation and suggests further work.

17



Chapter 2

Related Work

Database mining has recently attracted tremendous amount of attention in database
research because of its applicability in many areas. Many interesting and efficient data
mining algorithms have been proposed. They improve the data mining process by two
ways: finding the more useful association rules or speeding up the mining process of
association rules. In this chapter, we will discuss different previous works since they have

aspired our proposed algorithms.

2.1 Mining Association Rules between Sets of Items in Large Database

Although this paper was written in 1993, it provides the fundamental idea for mining
association rules [3]. The paper proposed the famous Apriori algorithm which can be

divided into two phases.

e Find all itemsets whose supports are greater than the minimum support s and these

itemsets are called large iemsels.

18



o Generate the association rules. If {ABC} and {AB} are both in the large itemsets, we
compute its confidence which is (the support of {ABC}}/(the support of {AB}). If the

ratio is higher than a preset threshold r, the rule is established.

Obviously, the first phase is the core of the algorithm. To generate the large itemsets
Ly, we need to have the candidate set Cy first. The idea is as followed: given L; we
can generate a superset of L., which we call the candidate set Cy,,. Cp,; is formed by

merging the itemsets in L, as illustrated below.
Suppose
X=X Xo... Xyand Y =VY;... ¥,

where X is one of the itemsets in Ly and Y is another one. One of the itemsets C in Cyy,

will be
C = 1Y1X2 . f\’k}/k,

iff Xo =V, X, =Y5,..., X1 = Yioy. The proof of it is given in [2].

After Cyy is generated, we have to prune those itemsets whose supports are less than the
minimum requirement. So, we have to scan the database to count the number of supports
of each itemset in Cy,. After counting, we get the desived Ly,,.

Apriori gives the fundamental idea to find all the large itemsets effectively among thou-
sands of transactions. However, the algorithm is only dealing with binary attributes. In
practice, we deal with transactions containing items with positive values instead of 0 or 1.

Also, Apriori only focuses on the existence of items without performing any manipulation

19



on the input.
2.2 Discovering frequent episodes in sequences

The paper considers the problem of recognizing frequent episodes in sequences of
events {18]. An episode is defined to be a collection of events that occur within time
intervals of a given sizé in a given partial order. Once such episodes are known, one can
produce rules for describing or predicting the behavior of the sequence. The proposed
algorithm has two alternating phases: 1) building new candidate episodes; 2) evaluating
how often these occur in the sequence. The efficiency of the algorithm is based on three

observations.

1. If a serial episode ABC is frequent, with the same window width the serial
subepisodes AB, BC, AC are also {requent. This holds in general: all subepisodes
are at least as frequent as the superepisode. The algorithm utilizes this observation
in the opposite direction. It is only necessary to test the occurrences of episodes
whose subepisodes are all frequent.

2. Episodes can be recognized efficiently by “sliding” a window on the input sequence.
Typically, when two adjacent windows have a lot of overlap, they are very similar
to each other. The algorithm takes advantage of this similarity: after recognizing
episodes in a window, it makes incremental updates in the data structures to
recognize the episodes that occur in the next window.

3. Recognition of a complex episode can be reduced to the recognition of simple ones:

every episode can be seen as a recursive combination of parallel and serial episodes.



The methods have been applied to a telecommunication network fault management
database and the preliminary results are quite encouraging. However, observation (1)
uses the frequency constraint of Apriori for the pruning process only. It can be further
improved by introducing new pruning techniques. In our proposed alogorithms, the new

pruning techniques will be introduced to speed up the process.

2.3 Mining Optimized Association Rules with Categorical and Numeric At-

tributes

The idea in [23] is to generalize the optimized association rules problem in three ways: 1)
association rules are allowed to contain disjunctions over uninstantiated attributes, 2) as-
sociation rules are permitted to contain an arbitrary number of uninstantiated attributes,
and 3) uninstantiated attributes can be either categorical or numeric. The generalized
association rules enable users to extract more useful information about seasonal and local

patterns involving multiple attributes.

Since the problem of computing optimized rules is intractable, effective mechanisms are
developed for both, exploring as well as pruning the search space. A weight is assigned to
each instantiation, and the Native algorithm considered instantiations in the decreasing
‘order of their weights. Thus, based on input parameters such as minimum support and
number of disjunctions, by appropriately assigning weights to instantiations, the explo-
ration of the search space can be guided efficiently. In addition, the paper also proposed a
general depth first algorithm that keeps track of the current optimized rule and uses it to

prune the search space. For categorical attributes, it proposed a graph search algorithm



that uses intermediate results to eliminate paths that cannot result in the optimized rule.
For numeric attributes, it developed an algorithm for pruning instantiated rules prior to

performing the search for the optimized confidence rule.
2.4 Mining Association Rules with Item Constraints

In [26], it considers the problem of integrating constraints that are boolean expressions
over the presence or absence of items into the association discovery algorithm. Tt also
revealed that tazonomies (is-a hierarchies) over items are often available. Examples are
like says “Jacket is-a Outerwear”, “Ski Pants is-a Outwear”, “Outerwear is-a Clothes”,
etc.When taxonomies are present, users are usually interested in generating rules that
span different levels of the taxonomy. It allows the elements of a boolean expression to

include ancestor(item) or descendant(item} rather than just a single item. For example,
(Jacket A Shoes) V (descendants(Clothes) A ~ancestors( HikingBoots))

expresses a constraint that looks for any rules that either contain both “Jackets” and
“Shoes”, or contain “Clothes” or any descendants of clothes and do not contain “Hiking

Boots” or “Footwear”.

Algorithm Curmulate is developed for mining association rules with taxonomies. This
‘algorithm adds all ancestors of each item in the transaction to a new transaction, and
then runs the Apriori algorithm over these “extended transactions”. Tt also performs two
optimizations. First, including the addition of only ancestors which are present in one
or more candidates to the extended transaction. Second, not counting any itemset which

includes both an item and its ancestor. The basic structure and operation of Cumulate are

]
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similar to those of Apriori, the performance was not affected much because of the present
taxonomies. In this paper, the boolean expression only reveals the existence of items but
it may not be interested enough for most of the users. In addition, the algorithms only
deal with the binary attributes which limit the range of its usage.

2.5 Exploratory Mining and Pruning Optimizations of Constrained Associ-

ation Rules

The Apriori algorithm suffers from the shortcomings such as the lack of user interaction
and focus. As we mention before, users may only want to focus the generation of rules
for a small subset of candidates. Tt seems that the traditional algorithm gives too much
information. In [20], the CAP algorithm is developed to deal with the constrainted asso-
ciation queries. The algorithm shows how to optimize the mining process when the input.

constraints are either enti-monotone or succinet or both.

In the CAP algorithm, the anti-monotone constraints (see Table 2.1) share a similar
property.that can be incorporated in the pruning process just like the frequency constraint.

The anti-monotone property is defined as the below.

Definition 1 Anti-rnonotonicity

A I-var constraint C is anti-monotone iff for all sets S, S’
(S 2 5') and (S salisfies C) = S’ satisfies C

For any given anti-monotone constraints (Cy,,}, an optimization can exploit the following

property for better pruning of candidate itemsets.
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min{S) > constant

max(S) < constant

count(S) < constant

Table 2.1: Anti-Monotone 1-var constraints.
For a set S where |S| = k which satisfies Cyp, =
VS' C S where |S'| = k£ — 1 and 5’ satisfies Cypp,

Besides the anti-monotone constraints, there is the succinct constraints that allows prun-
ing to be done once-and-for-all before any iteration takes place. To explain how it works,

we have to understand the next definition:

Definition 2 Succinct

1. SAT (Item) is the set of itemsets that satisfy C. It represents the pruned space consist-
ing of those item sets satisfying C.

2. SAT,.(Item) is a succinct powerset if Itemy, ..., Itemy, C Ttem such that SAT,(Ttem)
can be expressed in terms of the strict powersets of Item, ..., Item, using union and

MINAS.

3. 1-var constraint C is succinet provided SAT,(llem) is a succinet powerset.

It has been shown that succinctness is a sufficient condition for pre-counting prunability.
A succinct constraint can he simply operated in a generate-only environment instead of

in a generate-and-test environment. In fact, the algorithm CAP achieves a remarkable



speedup of the mining process by using the two constraint properties in the pruning

process. However, some questions, as those listed below, are remained opened.

1. CAP is dealing with 1l-var constraint. It must be modified for other types of
constraints, such as inequality constraints involving sums and differences.

2. For constraints that are not succinct nor anti-monotone, the effect brought by the
algorithm may not be significant.

3. Most of the constraints containing the operators (4, —,*,--) are neither anti-

monotone nor succinct.

2.6 Can we Push More Contraints into Frequent Pattern Mining?

In this paper [22], the authors extend their scope to integrate two mining methods, con-
strained mining and highly efficient frequent pattern mining and develop a constraint
frequent pattern mining method. A new class of constraint, called convertible constraint
is identified and handled. The paper also categorizes all the constaints into five classes,
succinct, anti-monotone, monotone, convertible and inconvertible. It shows that the first
four types can be pushed deep into the frequent pattern mining process. This covers most
of the constraints popularly encountered and composed by SQL primitives.

Constrained Frequent Pattern Growth, CFG, an integrate new constraint-based frequent,
pattern mining method, is proposed for integration of multiple classes of constraint in
frequent pattern mining. The performance study shows that CFG achieves significant,

performance improvement over previously proposed constraint based mining algorithm.

The paper integrates constraint pushing and frequent pattern growth mining into one



unified framework. It leads to further improvement of mining efficiency. However, the
framework still does not cover all constaints types. As the authors mentioned, the incon-
vertible constraints can be pushed into the mining process. In our approach, we focus to
cover all the common of constraint that containing the operators (+, —, %, +). All those

constraint can be pushed to the pruning process and speed up the whole mining process.

2.7 Mining Frequent Patterns without Candidate Generation

In [11], the authors suggests that the bottleneck of the Apriori method is at the candidate
set generation and test. If one can avoid generating a huge set of candidate patterns, the
performance of frequency pattern mining can be substantially improved. This problem is
attacked in three aspects in [11].

First, a new data structure, called frequent pattern tree, is used to store quantitative
information about the frequent patterns. Only frequent length-1 items will have nodes
in the tree in order to ensure the tree is compact and informative. The tree nodes are
specially arranged such that the more frequently occurring nodes will have better chance
of sharing nodes than less frequently occurring ones. The frequent pattern tree offers
the mining method a much smaller data set to work on. Then, the FP-{ree-based pattern
fragment growth mining method, FP-growth in short, is developed. It examines only
its conditional pattern base, constructs its frequent pattern tree and performs mining
recursively with such a tree. Since the frequent itemset in any transaction is alwavs
encoded in the corresponding path of the frequent pattern tree, pattern growth ensures the

completeness of the result. The proposed method is not restricted generation-and-test but



restricted test only. It is much less costly than candidate generation and pattern matching
operation in most of mining algorithms. Third, it employs a partitioning-based, divide-
and-conquer search technique. This drama.tica.lly reduces the size of conditional pattern
base generated at the subsequent level of search as well as the size of its corresponding
conditional frequent pattern tree. Moreover, it transforms the problem of finding long

frequent patterns to look for shorter ones then concatenating the suffix.

This paper proposes a fast and effective mining method to avoid candidate itemset gener-
ation. Its idea speeds up the mining process but the generated result may not be of user
interest. In our approach, we look for associations that are of users’ interest and simplify

the candidate generation at the same time as well.

2.8 Discovery of Multiple-Level association Rules from Large Databases

In this paper, a top-down progressive deepening method is developed for mining multiple
level association rules [10]. The method uses a hierarchy information encoded transaction
table, instead of the original transaction table, in iterative data mining. Tt has several
ideas. (1) Tt reveals that most data mining queries are relevant to only the subsets of
database transactions such as people are interested in can food items in the supermarket,
database. Tt is more effective to first collect the relevant set of data then query repeatedly
on the relevant set. (2) Encoding can be performed during the collection of relevant data
and there is no extra “encoding pass” required. (3) The encoded string which represents
a specific node in a hierarchy requires less bits than the corresponding object-identifier.

Encoding makes more items to be removed, which further reduces the size of the encoded



TID | Items

T, | {111,121,211,221}

T, |{111,211,222,323}

Ty | {112,122,221,411}

T, | {111,121}

Ts | {111,122,211,221,413)}

T, | {211,323,524}

17 {323,411,524,713}

Table 2.2: Encoding Table

transaction table. A sample encoding table is shown in Table 2.2. The paper showed that
it is often beneficial to use an encoded table. Also based on different sharing techniques,
a group of algorithms, notably, ML_T2L1, ML_TI1LA, ML_.TML1 and ML_T2LA, have

been developed.

The paper provides a fundamental idea in mining association rules with the multiple
level concept. The encoding scheme mentioned simplies the mining process. However, in
practice, users may require more specific knowledge of the database. In our preliminary
_work, we have developed the MMIC algorithm to handle constraints that contain the

operators {+, —, x, =) for multi-level items.



Chapter 3

Inequality Constraints for

Quantitative Relationships

In the past several years, many research works for association rule mining have been pro-
posed. We found out that there are still one area which is less of concerned, the mining of
associations which satisfy an user specified constraint over the quantitative database. We
are interested in the inequality constraints which consider the quantitative relationships
between items [16, 17]. The mining method we introduce will be the fundamental block

for the mining of temporal and multi-level associations in later chapters.

3.1 Problem Statement

We now formally define our first problem. Let V =1, 15, ..., I3 be a set of quantitative
items, and T be the transactions of a database D. For each transaction £, t|k] > 0 means
that ¢ contains item [ with the value t[k], and t{k]=0 means that 7 does not exist in ¢.

In our work, we are interested in finding all quantitative association patterns that satisfy



the following inequality S:
(Iﬂ@f;‘z@...@[im) o (Iﬂ@IﬂEB...EBIjn) vVC
where @ is + (%) and © is — (=) correspondingly, V € {<,>,=,<,>}, C is a scalar

value, i1, Iip, ..., Iy are the m items in X, and Ij1, Ijo, ... I}, are the n items in Y L. In

summary, we have the following six parameters for the inequality constraint:

1. stze m

2. size n

3. operator @: +, *

4. operator ©: —, =

5. relation V (<, >, =, <, >)

6. constant C
The followings are the parameters representing 5 differet queries,

1. (2,0,4, —, <,100): find the association of any two items where there total sum is
less than a hundred.

2. (3,2,+,—,>,400): find the association of any five items where the difference be-
tween the sum of first three items and the sum of the last two is greater four
hundred.

3. (1,1,nil, /,=,2): find the combination of any two items where the first item is two

times of the second one.

'ltems in X and Y are disjoint and they are not fixed during the mining process
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3.2 The QMIC Approach

With a given inequality constraint, two properties are observed. That is

e integers m and n provide the minimal size of the desired itemsets

e the parameters V and C together imply the possible range of values after operating on

the desired itemsets

In developing our QMIC algorithm, we have exploited these two properties to improve
and simplify the mining process. Before our discussion on the QMIC algorithm, we first

introduce several terminologies below.

1. Pre-mining process: the process have been done before the generation of any can-
didate itemsets.

2. Generation step: the process including the generation of candidate itemsets C;
from L;_; and its pruning process in iteration ¢ where 1 = 2,3, .. ..

3. Counting step: the support counting process of candidate itemsets C; to form the
large itemsets L; in iteration ¢ where i = 1,2, .. ..

4. Mazimum value itemset list (maxlst;): A sorted list of all itemsets in L; in a
descending order according to the maximum value of the sum (or product) of the
iterns within each itemset in ;.

5. Minimum velue itemset list (minist;): A sorted list of all itemsets in L; in an
ascending order according to the minimum value of the sum {or product) of the

items within each itemset in L;.
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3.2.1 Generating Mining Sequence

Comparing with other processes, the counting step is straight forward but also most time-
consuming. However, it is hard to simplify since the database scanning is an avoidable
step. Therefore, most algorithms, including the Aprior: algorithm, are designed to reduce
the number of candidate itemsets. However, its effect on pruning decreases gradually
when the itemset size gets larger. The pre-mining process is placed in our algorithm
with the purpose to optimize not only the generation step but also the counting step. In

general, we can speed up the mining process by achieving the following two objectives.

1. Reduce the number of candidate itemsets (by generation step).

2. Reduce the number of scannings of the entire database (by pre-mining process

instead of counting step).

After observing the first property in Section 3.1, we notice that it is not necessary to
generate all itemsets with different sizes. Only itemsets of sizes m and n are important as
they will form the minimal itemsets. Hence, the idea is to generate Cy from Ly if ever
possible. With this approach, we can skip the generation steps of Lija41s Lijags, . ., and
Li—1. There would only be log, k steps in finding L instead of k steps. When % is not
a multiple of 2, we first find out the L’s up to L,, where 2% < k < 2%+, We then find
Ly by utilizing Ly, Ly, Luya, - - ., ete. For example, if & is 24, we find out Ly, Ly, Ly, Lg
and Lig. We can then use the found L’s to find Lyg in an iterative fashion. As a result,

instead of taking 24 steps to find out Loy, we will only take 6 steps as illustrated below,



Ly — Ly — Ly— Lg — Llﬁ 5 steps

Lig+Lg — Loy 1 step

This method also saves many computational effort when compared with the Apriori algo-
rithm. However, we would need to store many previously calculated L’s. For example, in
finding L3;, we need L, Ly, Ly, Lg and Ly5. If the size of the inequality is large, there is a
big demand on memory requirement. To alleviate the issue, we want to store only a few
L’s while skipping the unnecessary steps. Suppose Ly is a result of combining L,, and L,
where m and n are as specified in S. Two integer sequences, S, and S, are calculated
for m and n respectively. For a given integer value 7n, the sequence Syt (Smy; Smys - 1)

is obtained by the following formula

Smy/2 i 5y, is even
(3-1)

Sm,-+] -
Sm. — 1 otherwise
1

where s,,, equals to m initially. After finding the sequences S,, and §,, we find out
sequence Sy which equals to S,; U S,. The reverse of the resultant sequence is then used
to guide the generation of the candidate itemsets. For example, if n = 16 and m = 15,
the corresponding S,, will be a sequence of integers as 15 -+ 14 7256 >3 = 2 — 1.
The corresponding S, will be 16 =+ 8 5 4 —» 2 — 1. We merge the two sequences to
form S, which is 31 — 16 - 15 =214 5 7 =5 6 =5 3 — 2 > 1. We only take the
integer 16 from the sequence S, since Lig can be generated from Ly5. Therefore, Ly and
L4 are not needed in the merged sequence. Figure 3.1 shows the procedure of merging

the subsequences.
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' ! ) ! !
1. Let Spp = { SmsSmmty---281 } Sp ={ 8, 8h_1,---,81 }, and s, > s,

2. if s}, exists in .S, then

® S = Snm

e return merged sequence: Sy
3. for i = s, downto s] do

¢ Include ¢ in 5,,
o if (i — 1) or (¢/2) exists in S, then
- Sk = Sm

— return merged sequence: Sy

Figure 3.1: Sequence merging.
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When the merged sequence is used as the generation sequence, it can be shown that no

more than 3 previous L’s are required in the memory. We first introduce the Lemma 1.

Lemma 1 Given any two subsequences Sy, : 81, S2,-..,5m and S, : s1,85,...,s, which
are generated by using Formula (3.1). If we merge these two subsequences by using the
sequence merging procedure, no more than two consecutive sequence items in the final

sequence will be come from the same subseguence.

Proof. We prove the lemma by contradiction. Assume that there are more than two
consecutive sequence items in the merged sequence come from the same subsequence.

Without loss of generality, suppose there are 3 of them.

o Assumption: Three consecutive integer items S;, Siy1, Siye come from the same subse-
quence which 1s generated after using Formula (3.1).

1 . ! J
L€, Sk : 112: ceey 55y 8y i1y Si42y Siq g,y - - ':'k

Since S, is generated after using formula (1), s;+1 is equal to either s; 2 or 5; + 1. If
siy1 takes the larger value, s;,o will be either s; %4 or s; 2+ 1. Since S, is generated by

the same formula, we conclude that the followings are true,

1. The minimum value of s;,, is equal to s; ¥ 2 4+ 1

2. The maximum value of s;,, is equal to s} * 2

For the above, we can see if s/ is smaller than s;, si,, must be smaller than s;,2. However
f i 1y Y441 + )

this contradicts to what we have assumed before. Hence, the lemma is proven. O
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Theorem 1 /n mazimum, only three previous L’s, large itemsets, are needed in order to

generate the next level of large itemsels in the merged sequence.

Proof: Let I be one of the elements in the generation sequence. From Lemma 1, either
I —1 or I/2 will be one of the three elements ahead of I. Therefore, if we keep any three

consecutive L’s in the generation sequence, we will be able to generate the next set of
candidate itemsets. O

After we have generated the sequence, we can start the generation step and the counting
step to generate the itemsets which are specified in the sequence. Unlike Apriori, the
candidate itemsets in Cj, are not necessarily formed by the large itemsets in Lg_; now.
It can be also formed by the itemsets in L. The algorithm of generating candidate

itemsets at the s,,,*-iteration is shown in Figure 3.2.

3.2.2 Max_Min Pruning

The performance of the Apriori algorithm is mainly depended on two integers X' and
Y, where X is the number of the database scannings and Y is the number of candidate
itemsets in each iteration. In the previous section, we have discussed how to reduce the
value of X rapidly. Here, we will discuss how to reduce the value of Y.

There are two pruning possibilities in reducing the size of the candidate itemsets. The
first case is when C} is generated from Ly_,. In this case, for any candidate itemset ¢
that its (k — 1)-subset is not in Lg_y, ¢ should be removed from Cy. The other situation is
when Cy is generated from Ly s,. Similarly, for any itemsets that some of its k/2-subset is

not in Ly, ¢ should be removed also. There is a trade off when Cj is generated by Ly».
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Given the generating sequence sy, Sz, . .., S, and let Ly, be the current large itemsets and

the previous two L's itemsets, L,. ., and L;,_., are currently saved.
? =2 i—17

1. Let sprev = s; and curr = ¢

2. if ({8i41 — sprev) = 1) then

e For any two itemsets =, ¥ € Lyyrey where X = XiX,.. X1 Xjand ¥V =
YiYa ... YinY;
—if (Xl = }"1 and Xg = }fg and ... X,-_le;-_l) then
{ ¢ =z Uy; Insert cinto C;,,,; }
else if {(s;y, — sprev) = sprev) then

e For any two itemsets z,y € Lgyrey
—if {(x N y) = ¢) then

{ c =z Uy; Insert ¢ into Cy,,,; }
3. Let curr = curr - 1

4. Let sprev = Scurr

T

. Repeat from step (2) above.

Figure 3.2: Candidate Ttemset Generation: C,, .
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Tt is possible that the number of candidate itemsets is larger when compare to the Cy
which is generated by L;_;. To remedy the proble.m, we exploit the inequality constraint
again and developm the Max_Min pruning method for candidate itemset pruning. The
Max_Min pruning method is designed to reduce the number of candidate itemsets in

each iteration. Note that the general form of an input inequality E is
E:AgBVC

where Ais I, ®1,®..01,,,BisI;, L, ®...®I;,, m and n are the sizes of set A and
B respectively. The method reduces the number of candidate itemsets by considering the
upper and lower bounds of A and B in the pruning process. It prunes away the undesired

itemsets based on the following two scenarios.

1. If V € {>,>} ,the lower bound of A4 is C since B is a non-negative integer. The
upper bound of B is the difference between the upper bound of 4 and C. We use
the m;a:clsii of A and the minlst; of B in the rnaz_min pruning.

2. If V € {<, <}, this scenario is symmetric to the first one and the strategy is similar

only that we are using the minist; of A and the maxlst; of B.

Max_Pruning for scenario 1

As the values of the itemsets in B are non-negative, the minimum total value of the
itemsets in A is C. We apply this idea in the pruning process by using the max!st;. The

procedure in Figure 3.3 shows how L, is pruned.

38



Given maﬂ:lstl as {11111121‘ -':Ilk-} where Il] > Ilz > ... > Ilk

1. Find the sum of the I}, + ...+ I, is greater than C then

e set mazsum, equal to the sum of I, + ...+ T1,,_, items

m—1
e set counterc=m — 1
s repeat

— increase ¢ by 1;

until /,, ®mazsumy < C

e Remove all the items whose index is larger than ¢ from L,
else

e No itemset in the database satisfies the input constraint

Figure 3.3: Max_Pruning for L.
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Given maxlst; as { I, Iy, ..., I;, },where I;, > I, > ... > I
1. if the sum of the [;, + ... + I;  is greater than C then

(a) set c= ([(m —1)/2]) + 1

(b) set mazsum, equal to the sum of I, +... + I,__, items

(c) repeat
e increase ¢ by 1;

until I;, @mazsum; < C

o remove all the items whose index is larger than ¢ from L; and form L;’

Figure 3.4: Max_Pruning at iteration 1.

After the pruning process, we have a new L,’ which contains a smaller number of itemsets

than L,. Since the size of L)’ is smaller, the number of candidate itemsets in C, will be

reduced as well.

In the general case, after the database scanning for supp.ort count of C;, we can find the
maximum values of each itemset in L; to form the maxist; for better pruning. However,
we observe two new complications though. First, in the max_pruning for L, we evaluate
an item by adding it to the other m — 1 items in mnaxist;. This may not be always feasible
since the combination formed by the itemsets in L; may not have its size equal to m. To
avoid the over-pruning situation, the maxsum; will use the value of the combination with

size & where k — m < 1. The itemsets may be under-pruned but it can guarantee the
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completeness of the generation. The procedure is shown in Figure 3.4.

The second complication is the possibility of the maz!st; containing non-disjoint itemsets.
For example, when ¢ = 2, mazlist, can be {AB, AC, AE, BC, EF ...}. One may suggest to
skip the overlapped itemsets. However, this may loose some qualified candidate itemsets

later. The situation is illustrated in the following example.

Example 3.1 Given that m is 6 and C is 17, and
mazlsty : {AB(10), AC(9), BE(8), EF(4), XY (2}}

If we skip the overlapping itemsets, maxsum, will be 14, itemset XY will be removed from
Ly since 2 + maxzsumy is equal to 16 which is smaller than C. As a result, ABCEXY), a

qualified candidate itemset is missed because of the elimination of XY.

Min-Pruning for scenario 1

When compared to the maz_pruning, the min_pruning takes more steps to implement
although the idea behind is similar. Given that the upper bound of A and the constant
C are 120 and 100 respectively, the upper bound value of B should be 20. Based on the
similar argument discussed before, we can prune away the large itemsets in each iteration.
During the process, the upper bound of A is a constant obtained from the sum of the first
m items in mazsurm,. It is the largest possible maximum value that any group of m items

can have. The pruning procedure of the min_pruning method is shown in Figure 3.5.
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Given minist; as I;,, Ii,,, ..., I;, ,where I;, <1, <...<I;
1. initialise ¢ = ({(m —1)/¢]) +1
2. set minsum; equal to the sum of I;, + I, + ...+ [; _, items

e repeat
increase ¢ by 1;

until I;, &minsum; > C — mazsumy

e remove all the items whose index is larger than ¢ from L; and form L;’

Figure 3.5: Algorithm: General Min_pruning

In the QMIC algorithm, at each iteration, the min_pruning is invoked after max_pruning

until the the itemsets of either size m or n are obtained. The detail is shown in Figure 3.6.

3.3 Summary

QMIC is the fundamental algorithm in this dissertation. It contributes our work in two
areas, 1)handle the inequality constraint and, 2) mining over the quantitative database.
The work in following chapters is more or less the extension of QMIC. The technique in

QMIC will be further developed to handle more complicated problems.

In next chapter, after exploring the quantitative relationship between items, we enchance
our existing methods to explore a more interested relationship in practice, the temporal

relationship between items.
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1. L, := frequent 1-pattern;
2. GMS := Sequence Merging (shown in Figure 3.1)

3. for k € sequence presented by GMS do

e C; = Candidate Itemset Generation (shown in Figure 3.2)
e C; := General Max_pruning (shown in Figure 3.4)
o () := General Min_pruning (shown in Figure 3.5)

e forall transaction ¢t € D do

~ Increment the count of all candidates in Cj that are contained in ¢

e L, := All candidates in C; with minimum support

4. result = {J; Ly;

Figure 3.6: The QMIC Algorithm

43



Chapter 4

Temporal Constraint for Sequential

Relationship

The previous problem in the last chapter does not include the temporal aspect of the
data. That is, in addition to a quantitative value, we can have a timestamp for each item
in a given transaction. In this chapter, we consider both the quantitative and temporal
relationships between items [15]. We will explain our work through its application in

mining the web access patterns.

4.1 Mining Access Patterns

The use of World-Wide-Web(WWW) has grown exponentially in past several years and
companies are interested to analyze access patterns of their users for better profit and
services. One common query is the access patterns of the different Web pages. In a
company, for example, it is important to know what product information that a user has

browsed in its WWW server. However, only knowing the associations is no sufficient, it is
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helpful to find out the access order of the Web pages as well. The access order represents
the traversal patterns of a user and how pages are effectively linked. In a proxy server,
the access order can also help to predict user behavior for better caching and prefetching
of WWW pages. With the massive amount of access logs on WWW pages, it is natural

to consider how current data mining techniques can assist in solving the query.

Recently, different researches of association rule have been done in the area of WWW
because of its rapid growth. Some of the work [7, 6] explores the new data mining
capability which involves mining path patterns in WWW. Different hashing and pruning
techniques have been introduced to optimize the mining of traversal patterns. To measure
a user’s interest in the web pages, the viewing time has also been considered [24]. Most
of the work was done for the better organization of web pages but not focused on the
improvement of mining efﬁcieﬁcy. Note that although some effort have been elaborated
upon the traversal behavior, not all results are really interesting. Instead of generating all
the frequent patterns, we decide to let a user defining his own interest patterns. This will
not only provide the flexibility but also improve the mining efficiency significantly. Similar
problem has been addressed in [5] which proposed an algorithm for efficiently extracting
only the maximal frequent itemsets, where an itemset is maximally frequent if it has no
superset that is frequent. In other words, it generates only the largest size of frequent
itemsets which are considered as interesting in their case. However it will be more flexible
and effective for the users if they can get the frequent itemsets with specified itemset

size. We proposes the Order Pattern Mining OPM algorithm for directly mining the



access patterns of a number of web pages while considering constraint with respect to

size, orders and simple arithmetic inequalities.

158.132.24.196 - - [07/0ct:12:37:34) GET /icons/blank.gif HTTP/1.0” 200 148
168.132.24.196 - - [07/0ct:12:37:34]) GET /icons/back.gif HTTP/1.0" 200 216
158.132.24.196 - - [07/0ct:12:37:34] GET /icoms/folder.gif HTTP/1.0" 200 225
158.132.24.196 - - [07/0ct:12:37:34] GET /icons/image2.gif HTTP/1.0" 200 309
158.132.24.196 - - [07/0ct:12:37:34] GET /icons/text.gif HTTP/1.0” 200 229
158.132.24.196 - - [07/0ct:12:42:43) GET /yuen.htm HITP/1.0" 403 288
158.132.24.196 - - [07/0ct:12:42:57] GET /index.html HTTP/1.0" 403 290
158.132.24.196 - - [07/0ct:12:45:12] GET /index.html HTTP/1.0~ 403 290
158.132.24.196 - - [07/0ct:12:45:15) GET /yuen.htm HTTP/1.0" 403 288
158.132.24.187 - - [07/0ct:14:12:59] GET /.vti.in.html ETTP/1.0" 403 293
158.132.24.187 - - [07/0ct:14:13:00] GET /_vti_in.html HTTP/1.0" 403 293
158.132.24.187 - - [07/0ct:14:13:00} GET / HTTP/1.0" 403 280

168.132.24.196 - - [07/0ct:14:28:38] {ET / HTTP/1.0" 403 7122

158.132.24.196 - - [07/0ct:14:28:39] GET /Images/news.jpg HTTP/1.0" 200 3507

Figure 4.1: WWW access log

There are different types of user paramters when we are mining the associations from the
access logs on WWW pages, which is a collection of quantitative transactions. Obviously,
the viewing times of the pages can be employed to measure a user’s interest in the web
pages. The pruning and hashing technique of OPM for the handling of these kind value
constraints will be presented in later sections. Different papers on mining the quantitative
association [1, 3, 8, 14, 12] have been proposed in the past several years. In our work, we
focus on the mining of user access pattern in WWW pages. An example of access pattern
is shown in Figure 4.1.

In the OPM algorithm, we embedded the handling of the item ordering so thatl unnecessary
candidate itemsets can be pruned by exploiting the ordering property. Also, specific

itemset size is a user constraint that OPM want to satisfy. The purpose is to reduce the
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Step 3

Step 1 Step 2
P, ! P, o P,
7 & 3
Step 4
Step 5
P, y P,
2 v

Database Transaction
2,7, (4,5), (6,5}, (4,5), (5,2), (7,9)

Figure 4.2: An Access Pattern

number of database scannings by adopting the idea of GMS which we discussed in last

chapter.

4.2 Problem Statement

Before defining our second problem, we would like to introduce the concept of equivalent

patterns and frequent patterns. The notations are shown in Table 4.1.

Definition 1 S} and Si are both access patterns of k pages, they are equivalent iff P{i, a)

= P{l,e)wherea =0,1,2,... k- 1.
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Notation | Meaning

4, 3) duration of viewing 7** page in transaction i

dm duration of viewing page m

P, page m

S access pattern 4 with k pages

P(i, §) 4% page in the transaction ¢

1S5 number of equivalent access patterns of S}, in all transactions

Table 4.1: Notations for the OPM algorithm

Definition 2 Si is frequent if

53]
Total number of transactions

> mingmum support

When the number of equivalent patterns of an access pattern exceeds the minimum sup-
port, it is refered as the frequent pattern.

Tt is known that not all the access patterns are of interest. There can be two constraints
specified by a user. They are i) the size of the patterns, and ii) the minimum/maximum
total viewing time of each pattern. Specifing the size of patterns avoids the generation of
non-interesting itemsets, while the viewing time reveals the interest of users in different
pages. A pattern may be considered as non-interesting if its total viewing time is less

than (or more than) the threshold. We define our second problem as followed.

Consider a transactions T,

T, = Wi, Wi,..., Wy

VVij = (P(L:J):d(zuf))
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We would like to extract all the frequent patterns Sy : W, ;, Wiy, ..., Wijek—1 with the

specified size k under the viewing time constraints such that 3 d,j) > threshold or

(X di, j) < threshold)

4.3 Order Pattern Approach

We have developed the OPM algorithm for finding all frequent access patterns. The

algorithm is divided into two phases.

1. Find all access patterns whose support are greater than the minimum support.
These patterns are called frequent patterns.

2. Generate the association patterns, In this phase, ABC and CAB are treated as
two different patterns. We evaluate the total viewing time of the mined patterns

if they exceed (or less than) the threshold.

Obviously, the first phase is the core of the algorithm. To obtain the large pattern Ly, we
need to generate the candidate set Cj with the consideration of the access orders of the
pages. In the Apriori algorithm, the order of the items within the itemsets are ignored
during the candidate itemset generation. However in OPM, it ensures that Cy is the
superset of L, with the consideration of the item orderings. The procedure is shown in
Figure 4.3, in which Cy4, is formed by merging the itemsets in L.

After Ci4, is generated, we have to prune away those patterns whose support are less than
the minimum requirement. This counting process is very similar to the one in QMIC since

it is also guided by GMS. The detail is shown in Figure 4.4. The rest of the work is simply
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Suppose Si = W, W, ... Wy and

S.i; = I’V[}Mg. . VVH{: where S}c! Sllc € Lk
Two candidate patterns will be formed in Ci

C};.H = WuWi .. WyWy and Cllc-f-l = WuWe .. Wy Wy iff

P(i,1) = P(I,1), P(3,2) = P{l,2),..., P(i, k) = P(l, k).

Figure 4.3: Candidate pattern generation

by checking the 3" d; ; of each pattern Sy in Ly, against the viewing time constraint.
1. L, := frequent 1-pattern;
2. for i € sequence presented by GMS do

e C; := New candidates of size £ generated from L _,
» forall log transaction ¢ € D do
— Increment the count of all itemsets in Cy that can be found in ¢

o L, := All candidates in C;, with minimum support

3. Interest access pattern = [J, Ly;

Figure 4.4: OPM: frequent pattern generation



Chapter 5

Taxonomy Constraint for

Multi-Layer Relationship

In the last two chapters, we consider the associations in single level databases. However,
very often, we have to deal with the multiple levels data relationships. In order to handle
this kind of data, we work on the MMIC algorithm which considers the multi-level
and quantitative relationship between items. Here, we also present how to integrate the
inequality constraints into the mining process over the multiple levels database in order

to improve the mining efficiency by two new techniques: TET and EGMS [17].

5.1 Taxonomy Relationship

The mining at a multi-level database is widely needed. For example, users may interest
in association rules such as “there are 10% of customers who made long distance calls to
London {England) last month and 70% of those customers also called New York (USA).”

This type of mining has to deal with the taxonomy relationship among the data. An-
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Soft-drink

Figure 5.1: A hierarchy of supermarket.

other typical example is the multiple level database in a supermarket. A hierarchy of a

supermarket’s products is shown in Figure 5.1.

5.2 Problems Statement

Given the quantitative database with a taxonomy, we are interested in finding all the
associations which satisfy a given inequality constraint. Unlike our first problem state-
ment, we can now handle the constraints of arithmetic inequalities with any combination
of (+,—, %, =)

Let V =1,,1,..., Iy be a set of quantitative items, TR be their taxonomy relationship



and T be the transactions of database D. For each transaction ¢, t[k] > 0 means that
t contains item [, with the value t[k], and t[k]=0 means that J; does not exist in ¢. In
our work, we are interested in finding all quantitative association rules that satisfy the
user specified constraint S which consist of an arithmetic expression(E), an inequality

operator(V) and a constant(C}. Therefore, a given constraint can be specified as £ V

C, where

e F is any arithmetic expression composing of a number of unknown quantitative
items and the operators (+, —, %, <) with or without brackets,
e Ve{<,> =52}

e C is a scalar value.
Some examples of the inequality constraints are given below.

1. A+ B+ C > 500 - Find any three items in the database where their sum of values
is larger than 500.

2. A =2x B - Find any pair of items where one’s value is the double of the other.
O,

3. A+ (B —-C)* D < 100 - Some ambiguous users input constraint.

5.3 The MMIC Approach

In this section, we present our MMIC algorithm into two parts. First, we explain the ideas
of Enhanced Generating Mining Sequence (EGMS) and Inequality Expression Tree (IET)

which simplify the mining process as well as reduce the number of database scannings.
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Figure 5.2: Exampe of an expression tree

Second, we integrate these ideas with the taxonomy relationship, TR, among the data

and show the details of the MMIC algorithm.

5.3.1 Inequality Expression Tree (IET)

Frequency constraint, which considers the support count of an itemset is a common cri-
terion widely used in today’s Apriori-like mining algorithm. In our MMIC, we like to
consider the value constraint of the quantitative itemsets as the criterion in the pruning
process. The idea is to divide the pruning process into two stages. Stage 1 defines the

acceptance range (AR) for the candidate itemsets in each iteration. Whenever the value



*{C-Di+E*F
16 H)- i1 d}

(A+B)*{C-D}+E*F {G " Hy- (1" )

{A +B)*(C-D}

{10,20)

A B € )
Bottom Up Process
(5, 10} {5, 10)

(a) bottom-up assignment of min-max range

{G*H)-(1" N

(A+B)" (C-DI+E*F (G Hy L )

(A+BY*(C-

Top Down Process

(b} top-down assignment of AR assumed min-max ranges of childs are (0,100) and (2,30)
respectively

Figure 5.3: Building an TET.
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range (VR) ! of a candidate itemset overlaps with any AR, it can be passed to stage 2.
Otherwise, it will be pruned away without the support counting. Stage 2 is simply the
original support counting which makes use of the frequency constraint. We implement

stage 1 by constructing an IET.

Fxpression Tree

There are three steps in constructing an IET. The first step is to convert an expression F of
the user specified constraint into the expression tree structure. There are two interesting

properties about the built expression tree in MMIC.

e A leaf node represents any possible item in the database.
e Fach internal node represents a sub-expression rooted at itself. The itemset size

of the node represents the number of items that this sub-expression has.

For example, an internal node rooted with the expression £ + y — z has node size equal
to three. A more detail example is shown in Figure 5.2 which shows the expression tree

with size equals to 10.

Minimum and Mazirmnum Range

The second step is to assign each node a min-maz range (Eigym, Elpes) vepresents the
minimum and maximum values of the associated expression of node 7. The calculation
of the min-max ranges is a bottom-up process. That is, it starts at the leaf level and

processes up until the root. The min-max ranges of the leafl nodes which represent the

"The VR represents the possible values after evaluating the itemset with the sub-expression associated with the node.
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single can be simply obtained by scanriing the database once. Based on the operators
in the intermediate nodes, all the min-max ranges of the intermediate nodes can be
calculated. In Figure 5.4 and 5.5, we show the four general formulae to caiculate the
ranges under the bottom-up process. All min-max ranges of the leaf nodes, which are size
of 1, are the same at the beginning. The example of an expression tree with min-max

ranges is shown in Figure 5.3.

Acceptance Range

The third step is the assignments of the acceptance range (AR}, (Fiow, £up) to the nodes.
The AR of a node is the valid range of values that an itemset can be accepted after
evaluating with the sub-expression at the node. Unlike the min-max range, the AR
assignment is a top-down process which starts from the root. The AR of the root can be
found easily since it represents the whole left-hand-side expression of the input constraint.
In our continuing example, it is (10,c00). Once the root’s AR is defined, other AR’s can
be calculated. We show the four general formulae for the (>) condition in Figure 5.7.

The other four formulae for the (<) are shown in Figure 5.9.

After the calculation of the ARs, the initial IET for the expression is completed as in

Figure 5.3. It has a number of properties,

1. If the value range of a candidate itemset overlaps with any AR’s of the leaf node,

it is passed to stage 2 for support counting.

2. If the value range of a candidate itemset does not overlap any AR’s, it is pruned.

o7



3. During mining, each leaf node is associated with a set of large itemsets whose size
is the same length as of the sub-expression.
4. The structure, especially the depth information, of the IET determines the En-

chanced Generating Mining Sequence, EGMS, which will be discussed next.

The first two properties are guaranteed by the general formulae. The rest will be useful
in defining the EGMS of the mining process.

5.3.2 Enhanced Generating Mining Sequence

Just like the GMS in QMIC, EGMS is to determine the sizes of the iterations during
the mining process of MMIC. In MMIC, we further shorten the generating sequence of
mining. The depth of the IET determines the EGMS. Because the generation of large
itemsets is done by traversing from the leaf nodes of IET to its root. For the example in
Figure 5.2, the sequence from EGMS is {1,2,4,6,10} and it is only half the length of the

one in Apriori {1,2,3,...,10}.
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Figure 5.4: The general formulae for (4, %) in the bottom-up process
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Figure 5.5: The general formulae for {—, <) in the bottom-up process
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Figure 5.6: The (4, %) AR calculations for the > condition
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Figure 5.7: The {—,+) AR calculations for the > condition.
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Figure 5.8: The (4, *) AR calculations for the < condition.
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The AR range of E1 and E2 are (E1
Eup+E2mu) and
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The AR range of E1 and E2 are (E1_,_,
Eup*E2mnx) and
(El n/E,, » E2,,.) respectively.

Figure 5.9: The (—, +) AR calculations for the < condition.
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AR Pruning

In MMIC algorithm, we start from the leaf nodes of IET and use the sequence from EGMS
to guide the candidate itemset generation steps. At each iteration, once the candidate
itemsets with Cy are generated, their itemsets’ VRs are verified with AR’s in each leaf
node. If the VRs of the itemsets in C), does not overlap with any ARs, it is pruned away
because it fails to satisfy the inequality constraint. By finding the support counts of the
rest, we can determine L;. Unlike Apriori, the next iteration of QMIC is not necessary
Lis1. Tt will be Ly where [ is the size of the siblings of the current node. In other words,
if both large itemsets associated with child nodes are available, the next iteration is to

generate the large itemsets to be associated with their parent. That is why the depth of

the IET defines the EGMS.
5.3.3 Multiple level pruning

In order to further improve the mining process, we consider the taxonomy relationship
among the data in multiple levels database. As we mentioned before, iwo factors are
affecting the performance of the mining process. They are the number of database scan-
nings and candidate itemsets. The former is reduced by introducing the idea of EGMS.
The latter can be also achieved implementing of IET. However, a more effective strategy
is to remove the uninterested items before the real mining process takes place. The idea

is based on the taxonomy relationship among the data and two simple facts.

1. Tn the taxonomy structure, a category item satisfies the frequency constraint if and

only if all its sub-category items satisly the same frequency constraint.
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Figure 5.10: A Sample TR’

2. A category item satisfies the value constraint if and only if all its sub-category items
satisfy the same value constraint. For example in above figure, If the category item
Soft-drink doesn’t satisfied either the value or frequency constraint, both Coke and

Pepsi are uninterested and should be pruned away before the mining process.

Base on these facts, the item pruning process of the unintested itemsets can be started
even before the real mining process take place. First, we start from the bottom of the
taxonomy relationship which represents the single items. Their min-max ranges and the
support counts can be found from the first database scanning. These information can be
propagated up to its parent categories until it reaches the top level. One result TR’ is

show in Figure 5.10.
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Notation | Meaning

LN leaf nodes with node size equal to m

LNpn specify nth leaf node in LN,

AR, acceptance range set of the leaf nodes LN,
ARun acceptance range of the specified leaf node LNy,
VR; value range set of all the itemsets with size i

V Ry; value range of a specify jth itemset in VR;

Li large itemsets with size i

Ci candidate itemsets with size i

Cij jth candidate itemset in C;

4 candidate itemsets which satisfy the user constraint
Ny tree node which represent the large itemsets

‘Table 5.1: Notations for the MMIC Algorithm.
The MMIC Algorithm

In this section, we show the complete MMIC algorithm which makes use the idea of EGMS,
TET and TR’ in Figure 5.11. Note that the notations used are shown in Table 5.1. The
details of candidate itemset generation and its support counting is omitted because their

functions are similar to those in Apriori and QMIC.



. Given the database D, its TD' and the completed IET, scan the database for L, and V R;.

. Find the size of input constraint, m

. Define the target level from T, with the size > m and let all the category items in that level be L,
. Repeat {

. Ttemset generation of Cy from L,

L ii=2

. Repeat {

» delete the LN; from the IET
o [temset generation for C;
e for x = 1 to sizeof(C;)
for y= 1 to sizeof{ LNV;)
— if ((VRiz N 4Ri,) # ¢) append Ci; into C}
— else remove Gy and all its sub-categories item from T 0’
+ Support counting of the C} to obtain the large itemsets L,
s /*adjust the AR of the parent node of LN;*/
— for any node associated with the L;
+ update the min-max range of their parent node
* update 4 £ of parent since their min-max range has been updated
e /*update the IET and its parameter*/
— for any pair of leaf nodes (LNV;, LN;) which are siblings
+ 1= min (suin of the node size of each pair)

¢ [temset generation of C; from the large iterusets which are represented by LN; and LN;

} while depth of the IET > 1

. Let Ly = the category items in the next level of TD’ } while L # empty

Figure 5.11: The MMIC Algorithm.
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Chapter 6

Experiments

6.1 Background

In our work, we have developed three algorithms for mining different kinds of item rela-
tionships. In this chapter, we test their performance and discuss the results. We have
implemented the Apriori, QMIC, OPM and MMIC algorithm in C++4. We ran our pre-
liminary experiments on a SUN workstation with 32 Mbytes of main memory. There
are three sets of experiments. The first set focuses on the comparsion of Apriori and
QMIC. The second set investigates the performance of OPM. The third set reveals the
performances of MMIC regarding different parameters such as the change of taxonomy

structure, confidence level, etc.

6.2 QMIC Performance

To evaluate the accuracy and performace of QMIC, we compare it to the Apriort algorithm.
We found out that the candidate itemsets in QMIC are the superset of those in Aprioir.

That prove the accuracy of the algorithm. For the performance, we notice that it is not,
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sufficient to determine the efficiency of the algorithms by only counting the number of
steps in generating the candidate itemsets. For the QMIC algorithm, it takes fewer steps
to find Ly, but at the same time, it takes extra effort for Max_Min pruning process of the
large itemsets at each iteration. For example, in pruning L;, we need to verify if all of
the (k/2)-subsets for an element in Cj are in L. If items are totally associated with
each other, the number of comparisons will be xCg /s x5, Ckj2 at each mining step. On the
other hand, with Apriori algorithm, there will only be Cy_, x, Ci_; comparisons at each
iteration.

There are three groups of experiments in this set. The first set is based on a fixed number
of transactions (10,000) generated by a program modified from the pseudo-data generation
program in [3]). The parameters for the inequality I is (4,4,4,-,>,1000) and the support is
set to 57%. We are interested in measuring the time to discover the constrained association
rules under different numbers of items among the transactions. The results are shown in
Figure 6.1. The second group ol experiments is similar to the first group, except that we
have fixed the number of items in the datz;base as 1000 and experimented with different
database sizes. The corresponding results is shown in Figure 6.2. We have also compare
the number of candidate itemset in those two algorithms and the result is showed in
Figure 6.3. Although QMIC generates more candidate itemsets, the results show us that
the number of transactions has a larger impact than the number of items of the database.
This is reasonable since we have to scan the whole database once for each size-k of the large

itemset L. The QMIC algorithm skips the generation of many unnecessary candidate

70



45

35F

M
5y
T

N
(=
T

Time {seconds)

"QMIC" ——0——

5r “Apriori® .*..

O 500 1000 1500 2000 2500
Number of items

Figure 6.1: QMIC discovery times for a database of 10,000 transactions but varying
numbers of items.

iternsets. So, the more transactions in the database, the algorithm can save more time.
To further explain the situation, we have calculated the time saving, in percentage, of the
QMIC over Apriori for inequality 7z in Figure 6.4. From the result of those experiments,
we can conclude that with a larger number of transactions, the more effective of the QMIC
algorithm will be. In practice, usually, the number of transactions in the database is large
when compare to the number of items. Therefore, the algorithm can really speed up the

mining process a lot.
6.3 OPM Performance

In this section, we would like to investigate the performance of OPM regarding to the
length of the access pattern and the viewing time of the pages. There are two groups of

experiments in this set. The first group focuses on the relationship between the access

71



600 T T : T T r T :
"QMIC* ——— -

sook Aprior” ... I 4

400

Time (seconds)
[
(o]
[=]

200

100

1 1 L 2 1
1 2 3 4 5 =] 7 8 9 10
Number of Transactions x 1 04

Figure 6.2: QMIC discovery times for different number of transactions for fg.

100 v ¥ T T T T T T T
90 "QMICT L 7
aol Apriori" ———— B

Number of Candidate ltemset

1 L 1 1 1 i

1 2 3 4 5 [=3 7 a =] 10
Number of Iteration % 10°

Figure 6.3: Comparison of the Number of Candidate Itemsets between Apriori and QMIC



o

o

=

@

o

2

h]

e

Sosl .
0.6 -1
(o1 & 1
0.2 1

0 1 i i 1 1 A 1 1 L
1 2 3 4 5 6 7 g8 2 10
Number of Transactions x 10°

Figure 6.4: QMIC performance over Apriori for Ig.

pattern lengths and OPM performance. Suppose the minimum viewing time of each
page in the patterns are 5, 10 and 20 seconds respectively. The other parameters for the

experiment are:

size of the WWW log: 100,000 transaction

number of distinct pages : 342

e minimum viewing time for each page: 5, 10 and 20 seconds

e minimum support: 5%

With these parameters, we are interested in measuring the time to discover the temporal
relationship between items under different length of access pattern items. The results are
shown in Figure 6.5. From the result, we found that, OPM has better performance when

mining the longer access patterns. The effect become more significant when the patterns
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Figure 6.5: OPM discovery times for different access pattern length

have 20 pages or above.

The second group of experiment investigates the OPM performance regatrding to the min-
imum viewing time required for each access pattern. We set the database size be 100,000,

200,000 and 500,000 transactions respectively. The parameters for the experiment are:

e size of the WWW log: 100,000 , 200,000 and 500,000 transactions

number of distinct pages: 342

target access pattern size: 8 pages

e minimum support: 5%

The corresponding results are shown in Figure 6.6. In addition to the frequency constraint,
the minimum viewing time works as the second constiraint for the pattern pruining. Ob-

viously, the shorter viewing time allowed to each page, the more patterns will be pruned.

74



1200 v : ¥ -

No. of WWW transaction N )

100,000 ———

| 200,000 — — ) |
500,000 ... N

1000

B8OOI

600

Time (seconds)

400

200}

0 5 10 15 20 25 30 35 40
Minimum Viewing Time

Figure 6.6: OPM discovery times for different minimum viewing required for each page

6.4 MMIC Performance

The performance of MMIC depends on different parameters such as the size of a database,
number of items, length of the interested itemset, taxonomy structure and the value
distribution of the items. The effect of the former three on the mininig process have
been discussed in the experiments of QMIC and OPM. In this section, we would like to
investigate the performance of MMIC regarding to different taxonomy structures and try
to compare its performance with Apriori. Totally, there are two groubs of experiments in
this set.

The first group of experiments investigate the relationship between the depth of the tax-
onomy, TR, and the performance of MMIC. Regarding to different types of databases,
we have different TRs. For example, in long distance call business, the depth of TR

can be 3 only (ie. continent—country—scity). However, the depth of TR in a su-
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Figure 6.7: MMIC performance on TR with depth = 3, 8 and 13

permarket may not be that simple. It can be 10 or even more (ie. drink— non-
alcoholic—softdrink— ... —pepsi). The experiment investigated the performance of
MMIC on the long distance call data regarding to different sizes of the database. Three
simulating T Rs ha.ve been tested, the depths are 3, 8 and 13 respectively. The experiment

parameters are shown below:

depth of the TR: 3, 8 and 13 respectively

number of distinct items: 500

e user input constraint (I + I I3 — Iy = I5 > 100)

e minimum support: 5%

We found out that, MMIC has a better performance in mining the supermarket-like

database. In other word, the more levels we have in TR, the more efficency will be gained
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from MMIC. Tt is because many non-interested categories are pruned earlier in the process
and all their subsets are eliminated at the same time without examination. This reduces
the number of candidate itemsets and further speeds up the mining process. The result
will be more significant when we compare the TR with depth equal to 3 and the TR with

depth equal to 13. The result of the comparsion is shown in Figure 6.8.

The second group of the experiments compared the performance between MMIC and
Apriori. In mining the taxonomy data, the support count of the category is evaluated in
each iteration of MMIC. We compared MMIC and Apriori regarding to different TRs in
the database. The parameters of the experiment are shown below and the result is given

in Figure 6.9.

e number of transactions in the database: 100,000

e number of distinct item: 500
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Figure 6.9: MMIC performance over Apriori
e user input constraint (I} + I+ I3 — Iy = I; > 100)

e minimum support: 5%

The result showed that MMIC brings more efficency than Apriori in mining taxonomy data
especially when the depth of the T'R is getting larger. The result is expected since MMIC

made use of different techniques such as the EGMS, TET and support count propogation.
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Chapter 7

Conclusion

In this dissertation, we have presented three mining algorithms to extract subtle and em-
bedded knowledge in a database satisfying the inequality constraint. We consider three
types of constraints for different data item relationships. 1) Inequality constraints which
consider the quantitative relationship. 2) Temporal constraints which additionally con-
sider the temporal relationship. 3) Taxonomy constraints which consider the multi-layer
relationship. The arithmetic inequalities constraints we consider are composed of common
operators (+, —, ¥, +) and can be easily extended to other queries such as max(),min()
and avg().

In our work, we improve the mining efficency by achieve the following two objectives.

¢ reduce the number of database scans for support counting.

e reduce the number of candidate itemsets in each iteration.

The techniques GMS and EGMS are developed in QMIC and MMIC respectively to



achieve the first objective. The basic idea is to skip those unnecessary database scanning
and define a new generating sequence. The Max_Min pruning in QMIC, the new candidate
itemset generation in OPM and the IET structure in MMIC are the techniques which
define new criteria for itemset pruning. Those techniques improve the pruning efficiency
by further reducing the number of candidate itemsets. As a conclusion, these proposed
algorithms have been verified by experiments that there are improvements in mining

effeciency and finding different data item relationships.
7.1 Further Work

Here, we propose some possible further work:

1. Dynamic Inequality Expression Tree In MMIC algorithm, candidate itemsets are
pruned away when their value are out of the Acceptance Range(AR). The ARs are
calculated and propagated only once after the first database scanning then keep as
constant in the whole mining process. To further-improve the pruning efficiency, the
AR can be adjusted in each iteration. It is because some of the itemsets, the AR
calculation based on, have been pruned in last iterations. A shorter AR’ will be more
effective pruning criteria. Since ARs are changed in each iteration and also does the
TIET. We call this the dynamic inequality tree.

2. Cross Level Association In our work, we proposed the effective algorithms for mining
the item association in same level. For the taxonomy data, it will be also meaningful
for mining the cross level association. A typical example can be the association of mitk

and Pepsi coke. Tn order to find such an association, the information passing in IET
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should not be only up propagation. Indeed, we need a new structure for the IET. This

can be achieved by further extending the MMIC algorithm.

. Advanced User Constraint As we mentioned in our work, not all the the associations
are interested. Although the current inequality constraint represents the most common

user query, QMIC and MMIC can be further extended to handle more specified input
constraint such as maz(), min(} and avg().
. Further reduce the number of database scanning. The repeated database scans

is the most costly operation in the mining process. The Oproposed GMS and EGMS

technique can be further developed to reduce the number of database scanning as lowest

as possible.
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