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Yuk Ha for the degree of Master of Philosophy at the Hong Kong Polytechnic University in July

2000.

One of the factors that limits the maximum transmission rate of an optical fiber commu-
nication system is chromatic dispersion. Methods to curtail the pulse broadening effects
of dispersion includes propagation at the zero dispersion wavelength, dispersion m.anage-
ment, NRZ transmission format, and soliton transmission format. In 1999, a combination
of dispersion management, NRZ format, specially made fibers, and wavelength division
multiplexing pushed the aggregate bit rate past the 1 tera bits per second mark for error
free transmission of 7,300 km [1]. Dispersion management is carried out by concatenation
of fiber segments with different dispersion coeflicients alternately. The local dispersion
is chosen to be large to prevent coupling between the optical signals and the amplifier
noises. The average dispersion is kept low to minimize the dispersion effects. The sim-
plest configuration of a dispersion managed system is made of two types of fibers; one with
constant anomalous dispersion coefficient and the other with constant normal dispersion

coefficient.

Soliton transmission format makes use of the intrinsic Kerr effect of an optical fiber .
to counter the dispersion effect. Distortionless propagation is possible for some specially
shaped pulses if effects such as dissipation and higher order dispersion are neglected.
Conventional wisdom has it that soliton transmission systems require fibers with constant

anomalous dispersion. However, it was recently discovered that soliton propagation is



possible even in dispersion managed systems. These so-called dispersion managed (DM)
solitons have a number of advantages over the solitons of constant anomalous dispersion
systems. One of the which is energy enhancement, ¢.e., the energy of a DM soliton is higher
than that of a conventional soliton with the same average dispersion and pulse width.
Energy enhancement depends on the pulsé width as well as the fiber segment lengths
and dispersion coefficients of the dispersion map. An empirical formula was obtained for
two-step dispersion maps with equal length fibers. In this thesis, we study the effect of
the proportion of normal dispersion fiber on energy enhancement in a two-step dispersion
map. We find that if the average dispersion is anomalous and the map strength is less than
3, energy enhancement is not affected by the length of the normal dispersion segment. If
the map strength is larger than 3, we find that a dispersion map that is made of normal
dispersion fibers and a fiber Bragg grating has the maximum energy enhancement. On
the other hand, a dispersion map that is made of anomalous dispersion fibers and a
FBG has the minimum energy enhancement. The ratio of maximum to minimum energy
enhancement can be as large as 2 as the map strength increases. Qualitatively similar

results are obtained for zero average dispersion and normal average dispersion systems.
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Chapter 1

Dispersion and Nonlinearity

1.1 Introduction

Nowadays, it is a cliché to describe the world as a global village. Advances in telecommu-
nication technology have indeed brought the world closer together, both for individuals
and businesses. The author personally has benefited greatly from instant access to the
electronic databases on publications in optical communication areas during this thesis
work. International corporations rely on telephones, faxes, and e-mails, to ensure that
their manufacturing plants and sale offices located thousands miles apart can operate as
one. Transoceanic communication systems play an important role in the global networks.
In the past, submarine communication systems are slow to adopt new technologies because
of the stringent reliability requirements. The mean time to failure is twenty five years for
all the components that go into such systems. However, the ever increasing demand for
higher transmission capacity and the independence of new systems from installed systems

have turned submarine systems into one of the most aggressive in the development and



Dispersion & Nonlinearity 2

adoption of new technologies.

In 1999, the aggregate bit rate in transoceanic optical communication systems has
reached the 1 tera bits per second mark [1]. The achievement is the cumulation of research
and development efforts in optical fiber technologies in the last three decades. The main
factors limiting the maximum transmission capacity of an optical fiber are the optical gain
bandwidth, dispersions, and nonlinear effects. The available gain bandwidth limits the
maximum signal bandwidth. Dispersion spreads the optical signals in the time domain [2]
and limits the per chanr_lel bit rate. Nonlinearity spreads the optical signals in the spectral
domain [2] resulting in a decrease in the signal-to-noise ratio. To maintain gain flatness
and increase the gain bandwidth is the work of material engineering. The impact of various
nonlinearity effects can be alleviated by simply reducing the signal energy. Dispersion
effects include polarization mode dispersion [3] and chromatic dispersion {2]. Polarization
mode dispersion is the result of the random coupling between the two polarization states
of an optical signal [3]. Intensive work are being carried out in this area [4, 5, 6, 7).
There are many methods to control the deleterious effect of chromatic dispersion. The
most successful one is dispersion management [3] which consists of concatenating fiber
segments with large dispersion coefficients of the opposite signs such that the average
dispersion is small to reduce the dispersion effects and the local dispersion is large to
reduce the four waves mixing effects [3]. Another ingenious way to control the effect of
chromatic dispersion is to use solitons [2]; specially shaped pulses in which the intrinsic
Kerr nonlinearity of the optical fibers balances thé second order chromatic dispersion.
Much work have been carried out since the inception of the idea in 1973 [8]. Recently,

it was discovered that solitons can also propagate in dispersion managed systems [9,
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10, 11, 12]. These so called dispersion managed solitons have a number of advantages
over conventional solitons in which the dispersion coefficient is constant. One of the
advantages is called energy enhancement [9], i.e., the energy required to launch a soliton
in a dispersion managed (DM) system is higher than that of a conventional soliton system
with the same average dispersion and pulse width. The characteristics of dispersion
managed solitons depend on the details of the dispersion map used. In this thesis, we
study how the energy enhancement [11, 13, 14, 15] varies with the ratio of the length of
the normal fiber segment to that of the anomalous fiber segment in a two-step dispersion
map. We find that for the same average dispersion and the map strength [11], the energy
enhancement is maximum when the length of the anomalous fiber segment is zero and
minimum when the length of the normal fiber segment is zero. In the cases of zero length
segment, dispersion compensations are carried out by chirped fiber gratings [16, 17, 18,
19]. We then show that similar to the DM systems using dispersion compensating fibers
[20, 21], DM systems using fiber Bragg gratings have solitons for zero and normal average
dispersion.

In Chapter 1, we study the effect of dispersion on signal propagation and some of the
methods proposed to minimize the dispersion effects.. In Chapter 2, we discuss dispersion
management systems. We use the numerical averaging technique [22] proposed by J.
H. B. Nijhof et al. to find the soliton solu.tions of DM systems numerically. Chapter 3
gives the background of fiber Bragg gratings. We verify that soliton can propagate in
DM systems using chirped fiber gratings for dispersion compensation. In Chapter 4, we
show the variation of the energy enhancement as a function of the length of the normal

dispersion segment in a two-step dispersion map. We also give the energy enhancement
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for grating compensated DM systems having zero and normal average dispersion. We

conclude the thesis in Chapter 5.

1.2 Chromatic Dispersion

Glass is a dispersive medium. Different spectral compoﬁents of an input pulse will
accumulate different phasé values as the pulse propagates along the fiber. As a result, the
pulse will in general be broadened. An initial pulse can be chirped in a such way that it
will contract first, but the pulse eventually will be broadened [23]. Figure 1.1 shows the
broadening of a Gaussian pulse as it propagates in a dispersive medium. The pulse shapes
in the time domain are obtained by measuring the signal intensity at different point along
a fiber. Negative values of time represent the past and positive values represent the future.

Chromatic dispersions, also known as group velocity dispersion (GVD), is caused by
the variation of the time delay per unit length 74(w) = 1/v,(w) with respect to the angular
frequency w, where v, is the group velocity of the pulse. If the group vélocity v, does not
depend on frequency, the medium is non-dispersive. Since the group velocity v, = dw/d8,
the GVD coefficient 8 = d28/ dw? measures the rate of change of the time delay per unit
length. The propagation constant 8 equals 2mn(w)/A where X is the wavelength of pulse
and n is the refractive index of fiber. The unit of GVD coefficient is ps?/km [23].

There is an alternate definition of the GVD coefficient D = d(1 /vg-) / d) which mea-
sures the variation of the propagation delay per unit length-with respect to the wavelength
instead of the angular frequency. The unit of D is ps/(km-nm) [23]. The relation be-
tween the two definitions of GVD coefficients is D = —(2r¢/A2)3. The difference in

signs between them can lead to confusion because both are called GVD coefficients in the
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literature.

Positive values of 3, i.e., negative values of D, are called normal dispersion while
negative values of 8 or positive values of D are called anomalous dispersion. For standard
communication grade fibers, D = 17 ps/(km-nm) at 1.55 pm, the wavelength of minimum
loss. For dispersion-shifted fibers, D = 0.1 ps/(km-nm) at the same wavelength. The loss
coefficient in communication fibers is about 0.2 dB/km [3].

The equation governing the evolution of the optical signal in the presence of chromatic

dispersion is given by

g  [B(2)] %q _
’l.-'a—z - [-—2—] ﬁ = 0, (11)

where g(z,t) is the slowly varying envelope of the electric field, z is the normalized dis-
tance, ¢ is the normalized time, and ﬁ(z) is the GVD profile along the fiber. The second
term on the left hand side of Eq. (1.1} represents the effect of chromatic dispersion [2].
Eq. (1.1) is a linear partial differential equation and can be solved using the Fourier

transform method. The solution of Eq. (1.1) at distance L is [Appendix A.1],
1 a2 [P
o(L,t) = F{Flq(0, 1)) expliv? [ () dz/2]}, (1.2)

where F{g] is the Fourier transform of a function ¢ defined as
1 goo :
Flal®) = 5 /_ ~ g(t) exp(iwt) dt. (1.3)

1.2.1 The Effect of Dispersion

In this Section, we will study the effect of dispersion analytically using an initial Gaussian
pulse as an example. Let the initial pulse ¢(z = 0,t) be given by Aexp(—t2/2T2) where

A is the peak amplitude and 27} is the pulse width. For convenience, the pulse width for
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a Gaussian pulse is defined as the width between the two time points at which the pulse
intensity drops to exp(—1) of its peak value [2]. We assume that the GVD coefficient

ﬁ(z), does not vary along the fiber.

At a distance z = L, the pulse width becomes [Appendix A.2]

m(z = L) = 2Tyy/1 + (BL/T2)2. (1.4)

From Eq. (1.4), the pulse width increases as the propagation distance increases [Ap-
pendix A.2]. For the same distance and initial pulse width, the pulse broadens faster as
the GVD coefficient increases. Also a narrow initial pulse will broaden faster. Thus the
straightforward way to increase the transmission rate by decreasing the pulse width has
its limits.

At transmission distance L = T2/|8|, the pulse width is broadened by a factor of v/2.
In general, the dispersion length Lp is defined as Lp = 72/ lﬁ |, where 7 is the initial width
of the pulse and f is the GVD coefficient of the fiber [2, 3]. Figure 1.1 shows the evolution
of an initial Gaussian pulse at z =0, z = Lp and z = 2Ly in time domain. The initial
shape of the pulse is exp(—t2/2T}) and Ty = 10 ps. From Eq. (1.2), the magnitude: of
the pulse spectrum is unchanged under the dispersion effect, only the phase of the pulse
varies. This change in phase of the spectral components of the pulse is the cause of pulse

broadening in time domain.
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Figure 1.1: The effect of dispersion. The initial pulse shape is exp(—t2/27%). The pulse

shape at 2 =0, 2 = Lp and z = 2Lp are represented by the solid line, dashed line, and

dash-dotted line, respectively. The initial pulse width 27, = 20 ps.
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1.3 Tackling Chromatic Dispersion

1.3.1 The linear way

From Eq. (1.4}, the natural ways to alleviate the impact of dispersion are to either increase
the initial pulse width Tj or decrease the dispersion coefficient ,3 In the former approach,
the largest available pulse width for a given bit period is the bit period itself. Therefore,
in the non-return—to—zerov(NRZ) transmission format, the whole bit period is filled in
the case of a one. For consecutive ones, the pulse intensity will not return to zero at
the boundaries of the bit period in order to diminish the dispersive effects of the rising
and falling edges of the pulses. The latter approach is to propagate at the so called zero
dispersion wavelength (ZDW). In pure silica, 8 =0at A\ = 1.27 um which is the ZDW
[2). The name is a misnomer because it is only the GVD coeflicient which is zero at
Ao, higher order dispersion coefficients such as 3%3/8w® # 0. Nevertheless, the overall
- dispersion effect is much smaller at Ag. The zero dispersion wavelength depends on the
oxide concentration of optical fibers [2] which may vary during the manufacturing process.
Also, propagation at the zero dispersion wavelength is not compatible with wavelength
division multiplexing systems because only one channel can be at the zero dispersion
wavelength.

A combination of the two approaches, i.e., propagation at the zero dispersion wave-
length using NRZ format, promises a even higher transmission rate than either approach
alone. However, due to pseudo-phase-matching between the signals and the amplified
spontaneous emission (ASE) noises introduced by the erbium doped fiber amplifiers at

the zero dispersion wavelength, the four-wave mixing effect introduces a large degree of
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Figure 1.2: An example of dispersion map configuration. The average dispersion is 0.2

ps/(km-nm) and the length of the dispersion map is 40 km.

noise figure in such systems and limits its transmission rate [2, 3].

Another method to increase transmission distance comes from Eq. (1.2). Note that
the pulse will not spread if f* 8(z) dz = 0. In other words, only the cumulated dispersion
at z = L is important, not the detailed variétion of the dispersion coefficient between
z =0 and L. One can therefore minimize the dispersion effect by splicing fiber segments
with dispersion coefficient of opposite signs together alternately. This technique is called
dispersion management [3]. The basic period of the periodically varying dispersion profile
is called a dispersion map. Figure 1.2 shows a configuration of dispersion map and the
map length is 40 km. The length of the two fiber segments in the map is equal, i.e., 20
km. The dispersion coefficient of the first segment of fiber is 3.4 ps/(km-nm) and that of

the second segment is —3 ps/(km-nm). The average dispersion coefficient of the map is

0.2 ps/(km-nm).
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The large local dispersion at the fiber segments results in a large phase difference
between the signals and the noises. Note that the propagation of noises is similar to
that of the signals. The phase differences between the signals and noises are given by
[ﬁz(wg —w?)]/2, where w, is the angular frequency of signal and wy, is the angular frequency
of the noises. By superposition, if the signals and noises has large phase difference, the
coupling between the signals and noises is weak. Thus, large local dispersion avoids the
phase matching condition between the signals and noises. We shall discuss dispersion

managed systems in details in Chapter 2.

1.3.2 The nonlinear way

Soliton format is another method to control the effect of dispersion. A soliton is a special
kind of return-to-zero (RZ). The pulse intensity of an RZ pulse rises from and returns to
zero within the bit window in the case of a one. Soliton pulses make use of an intrinsic
nonlinearity of fibers, the Kerr effect, to counter the pulse broadening effect of dispersion.
For some special pulse shapes, the interaction of the Kerr nonlinearity and anomalous
dispersion will result in distortionless propagation if other effects such as loss, higher
order dispersion, etc, are ignored. Soliton propagation in optical fibers was first proposed
by A. Hasegawa and F. D. Tapper in 1973 [8] and was observed experimentally by L. F.
Mollenauer, R. H. Stolen, and J. P. Gordon in 1980 {24].

The Kerr effect describes the dependence of the refractive index n(w,I) on the light
intensity, that is,

n(w, I} = np(w) + nal, (1.5)

where np(w) is the frequency dependent component of the fiber refractive index, w is the
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angular frequency of light, I is the intensity of the signal, and n, is Kerr coefficient which
is about 2.6 x 10~2° m2/W for silica fibers [3]. The nonlinear contribution to the index of
refraction results in an additional phase change in the optical signals. The phase change
due to the Kerr effect is called self-phase mod.ula,tion (SPM) [2]. The equation describing

light propagation under the influence of SPM alone is given by

.0q 2

where g is the normalized electric field of the signal and z is the normalized transmission

distance. The second term on left hand side represents the effect of SPM. The solution of

Eq. (1.6) after traveling distance L is [Appendix A.4],
¢(L,t) = (0, ) exp(ilg(0,t)|*L). (1.7)

The effect of SPM is therefore an intensity dependent phase change. In the following,
we will describe how the combination of this nonlinear phase change with the “right” type
of dispersion will result in distortionless transmission. The additional phase change due
to Kerr effect is A¢ = 2mnyzI /), where X is the wavelength of the light [2]. Therefore, the
instantaneous angular frequency Aw = —3(A¢)/0t is proportional to — dI/ dt. This shift
of angular frequency will lead to a change in the group velocities of different frequency
components of the signal [2]. The change in group velocity will depend on the sign of
the dispersion coefficient of the optical fiber. From Section 1.2, § = —(l/vg)(dvg/ duw)
[Appendix A.3]. If [3 < 0, the group velocity will increase as the angular frequency
increases. The effect of SPM in an anomalous dispersion system on the pulse shape is
shown in Figure 1.3. The top diagram gives the pulse intensity in time domain. The

middle diagram gives the change in the instantenous frequency of the pulse due to the
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Kerr nonlinearity. The bottom diagram is the resulting pulse under the combined effects
of nonlinearity and anomalous dispersion. In the middle diagram of Figure 1.3, the
instantenous frequency in the front part of the pulse decreases while that at the rear
part of the pulse increases. As a result, the front part of the pulse slows down while the
rear part speeds up, so that the pulse is compressed. For some special pulse shapes, the
pulse broadening effects of anomalous dispersion and the compression effect of anomalous

dispersion plus Kerr nonlinearity can be balanced resulting in solitons.

1.4 The Nonlinear Schrodinger Equation

The equation governing the evolution of the slowly varying envelope of an optical pulse

including the effect of dispersion and Kerr effect is given by

Q0[] P e,

where q(z,t) is the slowly varying envelope of the electric field, z is the normalized dis-
tance, ¢t is the normalized time, and ﬂ(z) is the normalized group velocity dispersion
coefficient. The second term on the left hand side of Eq. (1.8) represents the effect of
chromatic dispersion while the third term on the left hand side represents the effect of
self-phase modulation (SPM) [2]. In general, the dispersion coefficient is a function of
transmission distance. Effects such as loss and higher order dispersion are not included
in Eq (1.8). We solve Eq. {1.8) as an initial value problem, i.e., given the initial pulse
shape ¢(z = 0,t) = ¢(t}, we want to find the pulse shape at z = L, i.e., q(z = L, t).

If the dispersion coeflicient is constant, Eq. (1.8) is known as the nonlinear Schrodinger

(NLS) equation which is shown to be completely integrabled by the inverse scattering
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transform (IST) in 1971 [25]. From IST, soliton solutions exist when f is a negative
constant corresponding to the anomalous dispersion regime. For 8 = —1, the single

soliton solution is given by

g(z,t) = Asech[A (t + vz — tp)] exp [-—iut + % (A2 _ V2) z+ ig&o] ) (1.9)

where A is the amplitude, v is the velocity, y is the initial temporal position, and ¢ is
the initial phase of the soliton [26]. From Eq. (1.9), the width of the soliton is inversely
proportional to the amplitude of the soliton. That is, if the amplitude of the soliton
increases, its width must be decreased in order to retain the soliton shape. This is a
manifestation of the nonlinear nature of Eq. (1.8). For comparison, the amplitude and
width of a pulse in a linear system are independent parameters. From Eq. (1.9), the
soliton does not change its shape as it propagates. Besides distortionless propagation,
solitons also emerge from collisions unscathed save for shifts in their initial positions and
initial phases [27]. The amplitudes and velocities of the solitons remain unchanged by
the collision. This is rather surprising giving the nonlinear nature of the equation. It is
the ability of solitons to retain their identities during collisions that give them the name
solitons.

Even though the inverse scattering transform solves the NLS equation exactly, it is
seldom used in the study of soliton propagation in optical fibers partly because IST is a
rather complex method. It is also because of the difficulty in incorporating perturbative
effects in the IST formulation. The most important reason, perhaps, is that numerical
solutions of Eq. (1.8) can be readily obtained. Instead of the complex analytical method of
IST, numerical algorithms are straightforward to implement and perturbative effects can

be included readily in the equations. Numerical simulations thus become the tool of choice
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i the investigations of NLS equation and its various modified versions. Nonetheless,
results from the inverse scattering transform are very useful in providing benchmarks for
the studies. Two types of numerical methods are commonly used in solving NLS-type
equations; they are finite-difference methods and pseudo-spectral methods [2]. Among
the different numerical methods, split-step Fourier method, a type of pseudo-spectral
method, is the most widely used. In the split-step Fourier method, the equation is split
into multiple partial equations each of which contains some of the operators in the original
equatio.n [2]. At each propagation step, the partial equations are solved in some chosen

order. For example, the NLS equation can be split into the following system of equations,

.Oq 1\ &%
.Oq 2
. +lg|°’e = O. (1.11)

Equation (1.10} contains the effect of chromatic dispersion only while Eq. (1.11) contains
the effect of nonlinearity only. The algorithm consists of solving Eqs. (1.10) and (1.11)
alternately at each propagation step size Az. The output of one equation, Eq. (1.10) say,
will become the input of the second equation, Eq. (1.11) in this case. For sufficiently small
Az, the iterative solutions of Egs. (1.10) and (1.11) approximate that of the NLS equatibn.
Note that both Eqs. (1.10) and (1.11) can be solved exactly for an given initial pulse. Since
Fourier transform is used to solve Eq. (1.10), the split-step method is sometimes called the
split-step Fourier method. The split-step Fourier method for solving the NLS equation is

summarized in the following.

I Transform the pulse ¢(z,t) into the frequency domain §(z,w) using a fast
Fourier transform (FEFT) algorithm, where g(z, t) is the envelope of the electric

field and §(z,w) is the amplitude of spectrum.
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II Propagate the spectral components by, §(z’,w) = §(z,w)exp(—iw?Az/2).

This is the dispersion step.

III Transform the spectrum §(z’,w) back to the time domain g(z', t) by the inverse

FFT.

IV Propagate the solution by, q(z + Az, t) = ¢(2',t) exp(i|g(2’, t}|?Az). This is

the nonlinear step.

V Repeat from Step I to IV. Substitute g(z,¢) with g(z + Az, t) and iterate
until the accumulated normalized distance step size is equal to the required

normalized transmission distance of the optical signal.

Apart from its simplicity, the split-step method given above is unconditionally stable.
Stability is an important property of a numerical algorithm. If a numerical method is
unstable, the error between successive numerical steps will grow uncontrollably rendering
a solution impossible. Since the total energy I} = [ |g(z,t)|? dt is conserved by both
Egs. (1.10) and (1.11), the total energy is conserved by the split-step procedure. That is,

the numerical solution will not grow out of control due to error accumulation.

Order of Accuracy of the Split-Step Fourier Method

The order of accuracy of a numerical algorithm gives the error in the numerical solutions as
a function of the numerical parameters; Az in the NLS equation example. In an n-th order
accurate method, the numerical error of the solution made at each step is proportional
to the (n + 1)-th power of the step size. In general, a numerical algorithm should be at

least second order accurate. The rate of convergence towards the true solution is too slow
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in a first order algorithm. Algorithms with order of accuracy higher than two are not
necessary better because the computational effort in each step is typically proportional
to the order of the algorithm.

In the split-step Fourier metﬂod given by Eqs. (1.10} and (1.11). We approximate the
true solution g(z+Az, t) by D(Az)N(Az)q(z, ) where D(Az)q = exp[(iAz/2)8%/8t%)¢(z, t)
and N(Az)q = exp(iAz|g(z,t)|?)q(z,t). The algorithm is only first order accurate, a sec-
ond order accurate result can be obtained by symmetrizing the algorithm such as using
D(Az/2)N(Az)D(Az/2) instead of D(Az)N(Az). In the following, we show that the
symmetrized algorithm is indeed second order accurate. -

The exact solution g(z + Az,t) of Eq. (1.8), can be obtained by using Taylor series

expansion of ¢(z,t) at z,

:’QZ22+"':

El] 0[S

g(z+ Az, t) =g+ Azg, + [

where g, represents dg/0z at z, q,, represents 8%q/82% at z, and so on. Using Eq (1.8)

and set (z) = —1, we have

/1
g: = 1t (_qtt + IQIZQ‘) 3

2
1 x
Gzz = — (qut + 2lglPqu + 2lg:l’e + g7 + IQ|4q) ;
. _:_l_ 3 ., 2 . 7la. |2 § 2% 492 2 Y iy
Qezz = 1| g + 59 u + 36 q1Gus + 7| "gue + 5%t dn + 29lqul” + 3¢ que + g0z

L, 11 3 . \
+lg°q + 5lq)*q* ¢} + 7!@|"qu + §|Q|2‘Ittu + 12{g%qlq.)® + 2¢° (¢})* + 9|’ d*q};

1 2 %
+Zq qtttt} :

‘where g, represents d¢/dt at z, qy, represents 3°q/9t?, etc, and ¢* is the complex conjugate

of q(z,t). The derivation of g,, and q,,, is shown in Appendix A.5.
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Evaluation of the numerical algorithm D(Az/2)N(Az)D(Az/2), up to (Az)? gives

b(%)q = exp [@(%) g—;}q,
e 2 o,

4 o 32 on|?
1

] . | , 1
N{(Az)D (—2—) g = g+iAz (Iqlzq + an) - (Z.‘;z)2 (3_2Qtttt

1 2 1,5 1 4)
+2fIttIQI 4%:‘1 + 2[‘1' ql+--,
. fAZY - ~ Az . 1 1
D (_) N(Az)D ("‘*‘) g = g+ilz (IQIQ‘I + 5%) - (‘53)2 (gfhttt
2 2 1 2 x 1 4
+lgl“ge + || “q + 509"+ §|q| q)

) 1 1 1
—i(Az)® [E%xm + ZQI%V + ZIQIZth

3., 3 1 1, .
+34 g + th}l“@u + glqlsq + 4‘?:,29;:

2 1 * 1 *
+|al g + 57 9equ + qut Gttt

3 .., 3 1., .,
+5qu2¢1 Qt2+"2_’(IIQQ|Qt|2+Zq3(Qt)2 + -0 (112)

The derivation is shown in Appendix A.6.
From Eq. (1.12), the coefficients of the Az and (Az)? terms are the same as that of the
true solution, the deviation is proportional to (Az)®. Therefore, the accuracy of split-step

Fourier method is second-order accurate. The difference between the exact solution and
numerical solution at (Az)? is

_ . 1 * 2 1 2 1 2 * 1 2 1 ® 1 2 x 2
Joxact — Gapp = —1 iq Gy + g|qt| Qe + gqt Qy + EQIQHI + EQthm + EIQl q 4,

1 1 1 4, v, 1 Lo1,., 1
+E|Ql49tt + §|ql2qm2 + ﬁq:’(q;)2 + 6'@"2(]2% + ﬁqukttt + glfﬂﬁq

_é|q|8q} . (1.13)

In Figure 1.4, we plot the magnitude of Eq. (1.13) for a fundamental soliton solution

of Eq. (1.8); ¢(z,t) = sech(t) exp(iz/2). The maximum difference is about 0.100423 at
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Figure 1.4: The coefficient leading order (Az®) error term in a symmetrized split-step

Fourier algorithm. The simple soliton solution ¢(z, ) = sech(t) exp(iz/2) is used.

t = £0.52 with At = 0.01. Figure 1.4 is obtained by using Maple. The procedures are

shown in Appendix A.7. The FFT and inverse FFT are the most computational intensive

parts of the split-step Fourier algorithm. For each step in the second order algorithm

q(Az,t) = D(Az/2)N(Az)D(Az/2)q(0,t), four FFTs are required; two for the forward

transform and two for the backward transform. It therefore appears that 4n FFTs are

required for a distance z = nAz. Actually, because

g(z = nAz,t)

[D(Az/2)N(22)D(A2/2)]"4(0, 1), (1.14)

DY Az/2)[D(AZ)N(A2)]" D(Az/2)4(0,8), (1.15)

the number of FFTs required is only 2n 4+ 4.

Comparison of Eqs. (1.14) and (1.15) shows that with simple pre-processing and post-

processing, the results from the first order algorithm can be second order accurate.



Chapter 2

Dispersion Managed Systems

Dispersion managed (DM) systems are optical fiber transmission systems in which the
dispersion coefficients vary periodically as a function of the propagation distance. Dis-
persion management allows one to minimize the effect of dispersion by maintaining a low
average dispersion and at the same time reduce the coupling between the optical signals
and the amplifier noises by maintaining a large local dispersion. A common dispersion
map consists of two segments of fibers with large constant dispersion coefficients of op-
posite signs such that the average dispersion is close to zero. Dispersion management
technique has been widely used in NRZ transmission format ~for several years.

For soliton systems, dispersion management is first proposed by K. Tajima in 1987
[28]). He suggested to tailor the dispersion profile in the fiber between two amplifiers to
match the exponentially decreasing nonlinear effect. In a real system, the soliton power
decreases exponentially as it propagates because of loss. Since the puise width of a soliton
is inversely proportional to the amplitude of the soliton, the power loss will lead to an

exponential increase in the pulse width if the fiber dispersion is kept constant. If the

20
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fiber dispersion also decreases exponentially matching the decrease in power, the balance
between the dispersion and nonlinearity is restored. The pulse width will then remain
unchanged. However, a fiber with exponentially decreasing dispersion profile is difficult to
manufacture especially when the length of the fiber segment becomes long. An alternative
is to approximate the exponentially décreasing function by step functions [10, 29].
Conventional wisdom has it that solitons require constant anomalous dispersion [2],
but it is discovered that solitons can propagate even in DM systems [30] if the length of
dispersion map is much shorter than the soliton period of conventional soliton systems
having the same average dispersion coefficient and pulse width of the DM systems. The
periodic dispersion fluctuation over long transmission distance can then be averaged out.
The long term evolution of the optical signal is again described by the NLS equation. The
resulting DM solitons vary periodically along the fiber instead of remaining unchange as
in the case of conventional solitons. It is shown that a two-step dispersion map in which
the two fiber segments have the same length is characterized by two parameters; the map
strength and the map depth [11]. The map strength S = IAf /7% measures the cumulated
absolute dispersion in one dispersion map with segment length /. The parameter 7 is the
minimum full width at half maximum intensity (FWHM) of the DM solitons and Af is
the sum of the absolute dispersion coefficients between the two fiber segments. The map
depth is given by d = AB / Ba, where Bav is the average dispersion coefficient. DM soliton
systems have many advantages over conventional soliton systems. We shall discuss them

in the next Section.
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2.1 Advantages of Dispersion Managed Systems

2.1.1 Reduction of Collision-induced Timing Jitter

Dispersion managed soliton systems can reduce the collision-induced frequency shift in
Wavelength Division Multiplexing (WDM) systems [10, 31, 32, 33]. In soliton WDM
systems, one of the major concerns is collision-induced timing jitters. Even for ideal
conventional solitons, collisions between solitons at different wavelength channels will
result in timing jitters [34]. Although the amplitudes and velocities of the solitons remain
unchange after a collision between conventional solitons, both the phases and the positions
of the solitons will be shifted. The pulses arrive at the receivers either earlier or later than
expected without the collision. After several collisions, the pulse may be shifted beyond
the bit slot assigned for each pulse, thus leading to errors in detection.

In real systems with fiber loss and amplifiers, the situation worsens because even the
central frequencies of the pulses could be shifted after a collision. The fluctuation of
the pulse intensity during a gain/loss cycle could lead to serious asymmetric frequency
shifts during collisions [27]. The dissipation of the soliton energy during the first half of
the collision may be larger than that during the second half of the collision. Note that
first half of collision starts when the solitons overlap at the half-power point to when the
solitons completely overlap. The second half of the collision starts at the point of complete
overlap to where the solitons overlaps at the next half-power points. Since the frequency
shift during a collision is a nonlinear phenomenon, it depends on the energy of the pulse.
The frequency shift in the first half of the collision therefore cannot compensate that of

the second half of the collision {27]. The resulting frequency shift will lead to a change in



Dispersion Managed Systems 23

Angular Frequency

B il L S PSPPI

Angular Frequency

o
g

o,

Figure 2.1: Frequency shift during a soliton collision. Dashed line represents a collision

in a lossless system. Solid line represents a collision in a system with loss.

the group velocity of the pulse and thus a change in the transmission delay of the channel.
Figure 2.1 shows the frequency shifts of two solitons during a collision. The dashed line
is the evolution of the carrier frequencies of the solitons during a collision in a lossless
system. The carrier frequencies return to their initial values after the collision. The solid
line gives the evolution of the carrier frequencies of the solitons in a systemn with loss. The
carrier frequencies do not return to its initial values after the collision.

In a DM system, the large local dispersion within a dispersion map results in a shorter
collision length. The collision length is given by 27/DAM [27] which is the distance in
which the pulses overlap at their half power points, where 7 is the pulse width, D is
the dispersion coefficient, and AJ is the wavelength difference between the two colliding

pulses. The reduction in the collision length also reduces the degree of asymmetry in the
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frequency shift when compared to that in uniform anomalous dispersion systems [11]. For
the same tolerance in timing jitter, the maximum transmission distance of DM soliton
system is then longer than that of conventional soli.ton system. It is shown that the larger
the map strength and the map depth, the larger the reduction in the collision-induced
timing jitter [31]. By using dispersion management technique, G. Vareille et al. achieved
34 x 10 Gb/s straight-line transmission over transatlantic distance, 6,380 km [35]. Y.
Yamada et al. also succeed to have 100 x 10 Gb/s transmission over 7,300 km in a loop

experiment {1]. Both experiments used RZ transmission format.

2.1.2 Increase in the Signal-to-Noise Ratio

Dispersion managed solitons have higher signal-to-noise ratio than the conventional soli-
tons because of the energy enhancement effect in DM solitons [9, 11]. Energy enhance-
ment is the increase in the energy of DM solitons when compared to the soliton energy
in conventional systems having the same average dispersion and pulse width. In conven-
tional systems, the solution of Eq. (1.8) is A sech(At/ M) exp(—iA?z/2) assuming that
B(z) = S, is a negative constant, where A is pulse amplitude. The total energy of the
fundamental soliton is given by 2(1.763)|3.,|/7, where 7 is the FWHM of the pulse. In
determining the energy enhancement, the minimum width in a DM soliton period is used
for the pulse width of the conventional solitons. The energy enhancement of a two-step
dispersion map with equal fiber length segments is proportional to the map strength and
map depth [11].

Since noise power is nearly constant, an increase in signal strength will improve the

signal-to-noise ratio which in turn will increase the maximum transmission distance for
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the same average dispersion and transmission bit rate.

2.1.3 Reduction of Gordon-Haus Timing Jitter

Gordon-Haus timing jitter is the result of the coupling between solitons and amplification
spontaneous emission (ASE) noises of the Erbium-Doped fiber amplifiers [36]. The central
frequency of the soliton varies randomly and leads to random variation of the transmission
delay. The Gordon-Haus timing jitter is inversely proportional to the total energy of the
soliton. Because DM solitons have higher energy than conventional solitons with the same
average dispersion and pulse width, Gordon-Haus timing jitter is reduced in DM soliton
systems [12, 37, 38). Strong dispersion maps have larger energy enhancement, thus a

larger reduction of the Gordon-Haus timing jitter.

2.1.4 Reduction of Third-order Dispersion in WDM systems

Another advantage of DM systems is the reduction of the third-order dispersion effect
in WDM systems [11]. In communication grade fibers, the group velocity dispersion
coefficients increase as the wavelength increases. Therefore, in a WDM system using con-
ventional solitons, the channel power increases as the wavelength of the channel increases
because of the increase in dispersion effects. The transmission distance is then limited by
the detection of the channel which has the lowest power.

In DM soliton systems, the energy enhancement is proportional to the map depth,
AB /| Bav|, of the dispersion map where f,, is the average dispersion coefficient and AS is
the absolute sum of the dispersion coefficients in the two fiber segments of the dispersion

map. As the channel wavelength increases, the average dispersion in the DM system
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increases. The depth of the dispersion map thus reduces. The energy enhancement then
decreases. The variation of channel power due to third order dispersion will then be

reduced [11].

2.2 Solutions of Dispersion Managed solitons

The equation governing pulse evolution in a dispersion managed system is given by

N )
z% - [%z)} % +lgl*g =0, (2.1)

where ¢(z,t) is the slowly varying envelope of the electric field, z is the normalized dis-
tance, t is the normalized time, and ﬁ(z) is the dispersion map configuration. For a simple

two-step dispersion map, 5(z) is given by

B 0<z—-Ll|z/L] < /2
B(z) =1 4 h/2<z—Llz/L] < 11/2+ b, (2.2)
| A W/2+ 1l <z-L|z/L| <L,

where L = {; + {» is the map length, {; and ﬁ,-, t = 1,2, are the lengths and dispersion
coefficients of the fiber segments. Eq. (2.2) is an example of a symmetric map. At the
beginning and the end of each map, the soliton solution is chirp free [20).

In principle, Eqgs. (2.1) and (2.2) can be solved exactly, i.e., for any input pulse profile
- to the DM system the pulse evolution can be solved analytically. The reason is that ﬁ(z)
is a piecewise constant function, the pulse evolution in each fiber segment can be solved
using the inverse scattering transform. The output waveform from one fiber segment
will become the initial waveform for the next fiber segment. This procedure however

cannot determine the steady state or periodic solutions of DM systems. J. H. B. Nijhof
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et al. [22] propose a numerical procedure that can find periodic solutions of DM systems.
A numerical solution is of course not a mathematical proof that an analytical solution
actually exists. Numerical solutions at best can only be the exact solutions of the discrete
map which constitutes the numerical algorithm utilized to solve Egs. (2.1) and (2.2). The
truncation errors of the computers make even this claim questionable. Whether exact
analytic solutions exist for Egs. (2.1) and (2.2) is not critical for communication systems,
however. Given all the perturbations in a fiber that are ignored in the derivation of
Egs. (2.1) and (2.2), the real pulse will not be an exact soliton even if soliton solutions
actually exist for the equations. We shall therefore interpret the existence of numerical
periodic solutions as a strong indication that solitary waves may propagate in the DM

systems modeled by Egs. (2.1} and (2.2).

2.2.1 Numerical Averaging Technique

The most successful numerical technique used to find the solutions of DM systems is the
averaging method proposed by J. H. B. Nijhof et al. [22]. The procedure of the averaging

technique in lossless cases is described below.

1. Propagate an initial pulse with an amplitude obtained from the approximate equa-

tion of energy enhancement given in [13, 14}.

2. Record the pulse width at the same point of each dispersion map. Store the pulse
profile if the pulse width fluctuation is at a local maximum or minimum point.
Those points are found by comparing the current pulse width with recorded pulse

widths from previous numerical steps.
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3. When there are two extremas, the two stored pulses will be dechirped and then av-
eraged. The dechirping process is to subtract the phase value at the peak amplitude
from the whole pulse. Then the phases qf both pulses at their peak amplitude will
be zero. If the maximum amplitude of the pulse is at ¢ = {,ay, then the dechirping

procedure is represented by

q"(%, tmax)

gav(2,t} = g(2,1) x [——m-J
ol (=1) |9(2, tmax)|

where g,, is the dechirped pulse. One should ensure that the centers of mass of the

two pulses are aligned when one performs the averaging.

4. After averaging, the total energy of the averaged pulse must be rescaled to the initial
value to maintain conservation of energy, i.e., Qrescale(2,t) = gav(2,%) X \/M,
where Grescale(2, ) 18 the rescaled pulse, g,, is the averaged pulse in Step 3, Ej is the
total energy of the initial pulse, and E,, = [*°_|qgas(2,1)|? d¢ is the total energy of
the averaged pulse. The rescaled pulse is then launched into the next space step of

the system.

5. Repeat from Step 2 to 4 until the accumulated distance is equal to the required

transmission distance.

A key to successful implementation of the averaging method is that periodic boundary
conditions should be used for the time variable. If absorbing boundary condition is used
at the edges of the timing window to simulate infinite time axe, standing waves pattern
will be formed from the outgoing dispersion waves shed by the input pulses and their
reflection at the absorbers. The error floor of the intensity-time plot will then appear at

1012 or 1071 at best, instead of at 10722 or 10~2* as reported by J. H. B. Nijhof-et al..
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Normally periodic boundary condition should not be used for the time variable because of
the aliasing effect. The dispersion waves leaving from one side of the computation window
will appear at the opposite side of the window and eventually affect the region of interest
at the center. However, in numerical averaging method, it is this aliasing effect together
with the rescaling of the energy that are important in reshaping pulse.

To understand how the procedure works, we assume that the initial pulse contains a
DM soliton and linear dispersive waves. We also assume that the phase of a DM soliton
at any point in a dispersion map is given by ¢(z,t) = g(z,t) + f(z2), where g(z,t) is a
periodic function of z. The period equals a map length and f(z) is a function of z only. For
conventional solitons, ¢(z,t) = 0. The waxing and waning of the signal is due to linear
superposition of the DM soliton and the dispersive waves. The dechirping procedure
aligns the phases of the DM solitons at two different locations such that they will be
added constructively in the averaging process. As for the linear dispersive waves at the
two z-locations, in general they are out of phase only at the peak amplitude position. But
since the dispersive waves at the two z-locations are not coherent, the averaging process
will reduce the strength of the dispersive waves. As an illustration of how the averaging
process works, let the DM soliton at a chosen point of a dispersion map be given by
lgs(z, t)| exp [ig(z,t) + 1f(2)]. Without loss of generality, we assume that the maximum of
lg(z,1)| at a given z occurs at ¢t = 0. Also, we assume g(z,0) = ¢(z). If the DM soliton
is mixed with a sinusoidal wave given by eexp [i(8z — wt)], where § is the propagation

constant and w is the é,ngular frequency, the total electric field is

gr(2,t) = lgs(z, )| exp [ig(z, 1) + 1 f(2)] + eexp [1(fz — wi)]. (2.3)
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At =0, ar(2,0) = {la(z,0) +cexp [iBz— i ()]} exp [if(2)], where F(2) = £(2) +
#(z). The pulse intensity reaches the maximum when 8z — f(z) = 2nm, where n is an

integer. The pulse intensity reaches the minimum when 8z — f(z) = (2n+1)7. Averaging

the two dechirped pulse shapes at the maximum and the minimum amplitudes z-locations

removes the sinusoidal wave completely.

2.2.2 Simulation Results

We apply the numerical averaging technique described in the previous Section to solve
Eqgs. (2.1) and (2.2} using different input pulse energies. The initial pulse profile does
not affect the outcome of the averaging procedure. We find that periodic solutions exist
for different input pulse energies and dispersion map configurations. As an example, we
choose a dispersion map with dispersion coefficients of the two fiber segments given by
4.9 ps?/km and —5.1 ps?/km. The length of both fiber segments are 100 km. The initial
pulse shape is 4.15 exp(—t2/27¢). The full width at half intensity (FWHM) of the initial
pulse is 20 ps. The corﬁputation window in the time domain is 850 ps, the number of
time steps is 2,048, and the normalized distance step size is 2.5 x 1074

The variation in the pulse width and amplitude for 200, 000 km, i.e., 1,000 dispersion
maps is shown in Figures 2.2 and 2.3, respectively. We observe that the pulse width
and pulse amplitude reach constant values after about 25,000 km which is 125 dispersion
maps. At the end of 200,000 km, the variation of the pulse width and pulse amplitude
within a dispersion map are shown in Figures 2.4 and 2.5, respectively. Similar to
conventional solitons, the peak amplitudes of DM solitons are inversely proportional to

their widths. The pulse width varies periodically within a dispersion map and it reaches a
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Figure 2.2: FWHM at the end of each map as a function of distance. The initial pulse
is 4.15exp(—t?/2T2). The initial pulse width is 20 ps. The dispersion map consists of
two fiber segments of 100 km each. The map begins at the mid-point of the anomalous

dispersion fiber. The GVD coefficients are 4.9 ps?/km and —5.1 ps®/km. The averaging

distance is 1,000 dispersion maps.
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Figure 2.3: Normalized amplitude at the end of each map as a function of distance. The

parameters are the same as that in Figure 2.2.
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Figure 2.4: Evolution of the FWHM of a DM soliton in 5 dispersion maps. The parameters

are the same as that in Figure 2.2.
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Figure 2.5: Evolution of the normalized amplitude of a DM soliton in 5 dispersion maps.

The parameters are the same as that in Figure 2.2.

local minimum at the mid-point of each fiber segment. The pulse width at the mid-point
of the anomalous dispersion fiber is smaller than that of the normal dispersion fiber. The
maximum pulse width occurs where different fiber segments are concatenated together.
Figure 2.6 gives the intensity-time plot of the DM soliton at the mid-point of the
anomalous dispersion fiber (solid line) and segment' boundary (dotted line). At the mid-
point of the anomalous dispersion fiber, the pulse consists of a main central peak and many
sidelobes at successively lower amplitudes. The main peak is Gaussian in shape while the
amplitudes of the sidelobes decrease exponentially with time. At the segment boundary,
the pulse broadens and resembles a hyperbolic secant pulse. Figure 2.7 shows the spectra
of the DM soliton at the mid-point of the anomalous dispersion fiber (solid line) and the
segment boundary (dotted line). At the mid-point of the anomalous dispersion fiber, the

central peak is Gaussian. There is no sidelobe and the spectrum decays exponentially. At
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Figure 2.6: Intensity-time plots of a DM soliton at the mid-point of the anomalous disper-

sion fiber segment (solid line) and the segment boundary (dotted line). The parameters

are the same as that in Figure 2.2.
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Figure 2.7: DM soliton spectra at the mid-point of the anomalous dispersion segment

(solid line) and the segment boundary {dotted line). The parameters are the same as that

in Figure 2.2.



Dispersion Managed Systems 35

mid-point of normal dispersion segment

Pulse intensity (log,,)

24 i i i i
-200 -150 -100 -50 0 50 100 150 200
Time (ps)

Figure 2.8: Intensity-time plots at the mid-point of the anomalous dispersion fiber (solid

line) and the normal dispersion fiber (dashed line). The parameters are the same as that

in Figure 2.2.

the segment boundary, the spectrum has a central peak that resembles a Gaussian shape
and sidelobes. The spikes in Figure 2.7 are due to numerical error [39]. Decreasing the step
size Az will decrease the amplitudes of the spikes. Figure 2.8 shows the intensity-time plot
of the DM soliton at the mid-point of the anomalous dispersion fiber (solid line) and the
mid-point of the normal dispersion fiber (dashed line). The pulse shapes resembles each
other, i.e., a central Gaussian peak and sidelobes of exponentially decreasing amplitudes.
Figure 2.9 gives the spectra of the DM soliton at the mid-point of the anomalous dispersion
fiber (solid line) and the normal dispersion fiber (dashed line). We observe that the
spectrum of the soliton at the mid-point of the normal dispersion fiber also contains
sidelobes.

The error floor of the results has an normalized intensity of 10722 in the time domain.

The simulations are carried in a PIII 500 MHz personal computer using 32 bits to represent
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Figure 2.9: DM soliton spectra at the mid-point of the anomalous dispersion (solid line)

and the normal dispersion (dashed line) segment. The parameters are the same as that

in Figure 2.2.

a floating point number. Long double precision is used. The truncation error for the
calculation of the field amplitude is about 16 decimal point. The normalized z step size is
2.5 x 10~%. The algorithmic error in the calculation of the field amplitude in a single step
is on the order of 10~!!. The solution given in Figure 2.6 is therefore at the accuracy limit
of the algorithm used to solve Eq. (2.1). From Figure 2.6, the tails of the pulse at large
t in both pt.)sition of the map is approximately a straight line indicating an exponential
decay.

The dynamics on the chirp-width plane is a good way to study the evolution of DM
solitons. The chirp of a pulse is the variation of the instantaneous frequency across the

pulse. Here we assume that the chirp is linear or equivalently the phase of the soliton
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Figure 2.10: Chirp as a function of normalized pulse width at the end of each dispersion
map during the averaging process. The variation starts at the point (1,0). The parameters

are the same as that in Figure 2.2.

varies quadratically in time. The weighted chirp coefficient [22] is defined as

I {J%, (e 1)lgi (2 ) i)
= Slalzt)ltdt

where ¢(z,t) is the envelope of the pulse, and g} (z,t) is the complex conjugate of dq/0t.

One can use the evolution in the chirp-width plane to monitor the progress of the
averaging process. If a periodic solution exists, the curve will converge to a fixed point.
Figure 2.10 shows such a evolution. Initially, the chirp parameter is zero and the nor-
malized pulse width is one. After some wandering, the curve converges back to a point
with zero chirp and a normalized pulse width of 1.0015593. This shows that the energy

enhancement chosen for the initial pulse is approximately correct. The kinks in the chirp-
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Figure 2.11: Chirp versus normalized pulse width within a dispersion map. The inset
diagram shows the pulse width variation along the dispersion map. Region 1, 2, and 3

represent the three fiber segments in the dispersion map. The parameters are the same

as that in Figure 2.2.

width curves are due to the numerical averaging processes. In Figure 2.11, we plot the
the chirp-width dynamics of a DM soliton within a dispersion map. We start from the
mid-point, of the anomalous dispersion fiber segment. The DM soliton is chirp free there.
As the soliton propagates, both the chirp and the pulse width increases until the soliton
enters the normal dispersion fiber. Then, both the chirp and the pulse width decreases
but they do not retrace the previous trajectory. The pulse width reaches the minimum at
the mid-point of the normal dispersion fiber segment at which the soliton becomes chirp
free again. Then as the soliton continues to propagate along the normal dispersion fiber,
its width begin to increase and the chirp becomes more negative. Eventually, when the

soliton emerges from the normal dispersion fiber, its pulse width is at its maximum which
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is the same as that when it enters the normal dispersion fiber. The magnitude of the chirp
is also the same but the sign is reversed. When the soliton enters the anomalous dispersion
fiber, the pulse width decreases while the chirp increases such that the soliton returns to
the initial chirp free point when it reaches the mid-point of the anomalous dispersion fiber.
For convention soliton systems, bright solitons are possible only for anomalous dispersion
fibers. However, it has been shown that DM solitons also exist in zero and normal average

dispersion [20].



Chapter 3

Fiber Bragg Gratings

Fiber Bragg gratings have emerged as important components in a variety of lightwave ap-
plications [40]. Their unique filtering properties and versatility as in-fiber devices are illus-
trated by their use in wavelength-stabilized lasers, fiber lasers, remotely pump amplifiers,
Raman amplifiers, phase conjugators, wavelength converters, passive optical networks,
wavelength division multiplexers/demultiplexers, add/drop multiplexers, dispersion com-
pensators, and gain equalizers. Some applications of fiber grating technology are vital
to the current success of long haul dense wavelength division multiplexing (DWDM) sys-
tems. For example, without gain equalization filters, the usable bandwidth of EDFA
available for transmission will be si,g;niﬁcantly less than the generally accepted range of 35
nm (1530 to 1565 nm). In gain equalization, long period fiber grating filters are designed
to approximate the inverse characteristics of the combination of EDFA and a fiber span
[41]).

Chirped fiber gratings are effective solutions for dispersion compensation in dense, High

bit-rate WDM systems because of the high bandwidth dispersion product, figure of merit

40
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[16], the capability to compensate high order dispersion, low insertion loss, and the absence
of nonlinear effects [42]. Recent improvements in broadband grating fabrication technique
have led to a number of DWDM demonstrations for 1.5 ym systems using conventional
single mode fibers. Examples include an 8x10 Gb/s, 100 km system with a single 10
nm bandwidth grating, a 16 x10 Gb/s, 840 km system using eleven 6.5 nm gratings, and
an 8x20 Gb/s, 315 km system using four 6.5 nm gratings [43]. The use of chirped fiber
Bragg gratings for dispersion compensation in high bit-rate, single-wavelength fiber-optic
communication systems has been proved to be very effective.

In this Chapter, we will discuss the characteristics of fiber Bragg gratings (FBG). In
Section 3.1, we give a brief background of FBGs and the couple mode equations that are
used to study the properties of FBGs. In Section 3.2, we study the basic properties of
uniform and non-uniform FBGs. In Section 3.3, we give the numerical solutions of a DM

system using an ideal grating for dispersion compensation.

3.1 Modeling Fiber Bragg Gratings

3.1.1 Background

A fiber Bragg grating is a piece of fiber in which the refractive index of the fiber core varies.
The fluctuation is induced by the interference of two diffracted ultraviolet (UV) beams
from a phase mask. A phase mask is a lens with grooves on the surface. The fabrication of
fiber gratings is shown in Figure 3.1. The UV beam, usually with wavelength afound 248
nm or 193 nm, is perpendicularly incidented into the phase mask, which has a period of a

range between half to one wavelength of the incident UV beam. The interference between
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Figure 3.1: Fabrication of fiber Bragg gratings by scanning UV beam along an optical

fiber.
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Figure 3.2: The refractive index variation of fiber Bragg gratings. The parameters A is

the period, An is the amplitude, and An is the mean of the variation while neg is the

effective refractive index.

the diffracted beams will result in an uneven distribution of temperature in the fiber. An
increase in temperature increases the refractive index of the fiber because of interference
effect. The variation of the refractive index is a periodic function (16]. Figure 3.2 shows
a typical variation of the refractive index, where A is the period of the variation, An is
the average value of the refractive index, An is the maximum amplitude of variation, and
nesr i the effective refractive index of the fiber. The variation of the refractive index can

be modeled by a periodic function én{z) given by [16],

dn(z) = E{l + v cos [(E%E) z+ d)(z)]} :
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where vAn = An, v is the visibility of the fringes on the grating, N is the order of the
diffracted UV beam, ¢(z) is the phase change of grating, and z is the position on the
grating.

There are two types of fiber gratings: transmission gratings and reflection gratings.
Chirped reflection gratings can induce different time delay to different spectral components
of a pulse for dispersion-compensating purpose. In the following, we limit our studies to

reflection gratings only.

3.1.2 Couple Mode Equations

Wave propagation in optical fibers can be analyzed by solving the Maxwell’s equation with
appropriate boundary conditions. The weak guidance of fibers allows the decomposition of
the propagation modes into an orthogonal set of polarized modes. If the fiber is free of any
perturbations, these guided modes propagate along the fiber independently. If the fibers
have imperfectiohs, such as a periodic variation in the refractive index, the perturbations
couple the guided modes of the fiber among each other. Power will be transferred from
one propagation mode into another. When the perturbation is weak, one can assume that
the mode fields of the guided modes are unchanged [16]. A set of first-order differential
equations results which give the change of the amplitude of the mode fields along the
fiber. This technique is called the coupled-mode theory. It is commonly used to study
the behavior of fiber Bragg gratings because of its simplicity and its accuracy in modeling

the properties of most fiber gratings.

The couple mode equations have been derived by many authors. Thus the derivation

will not be repeated here. It is suffice to note that for significant transfer of energy between
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two mode fields, the two modes should remain in phase over a significant distance. A
simple way to satisfy this phase-matching condition is the interaction between a forward-
propagating mode and an identical backward-propagating mode [16].

Let the forward propagating mode be R(z, tj = A(z) exp[i(AB)z/2—iwt—¢(z)] and the
backward propagating mode be S(z,t) = B(z) exp{—i(AB)z/2 — iwt + ¢(z)], where A(z)
and B(z) are the amplitude Qf the forward and backward modes, ¢ is the normalized time,
z is the normalized propagating distance, Af is the difference between the propagation
constant of the forward and backward propagating modes, w is the normalized angular

frequency of pulse, and ¢(z) is the phase change within the grating.

The equations coupling the two modes are given by [16]

% —3 [ndc + % (Aﬁ - %ﬂ)} R = k.S, (3.1)
d
d—f +1 ':f‘ﬁdc + % (Aﬁ - dq;_(zz))] S = —in;cRi (32)

where kg4 is the dc coupling constant which is a function of the average refractive index
An of the grating, and &, is the ac coupling constant which is a function of the amplitude

An of the refractive index variation of the grating. The parameters xy4c, Kz, and Af are

defined as

K. = MW /_ °:o /_ :Hﬁﬁt&tdx dy, (3.3)
Kae = TNWEp /:: /;o:o éﬁfﬁt@t dz dy,

= vka/2, ‘ (3.4)
AB = Br+Bs—27N/A, (3.5)

where n is the refractive index of the fiber, g¢ is the dielectric constant, g, and &g, are

the radial transverse field distributions for the forward and backward propagating modes.
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In Bragg gratings, the forward and backward propagating modes in the fiber core are the
same. Therefore, the overlap integral in Eqgs. (3.3) and (3.4) can be approximated by
one [16]. The visibility of the fringes in the grating represents the depth of the refractive
index variation. If the visibility is equal to one, the amplitude of refractive index variation
is maximum. The parameters Sr and [ are the propagating constants of the forward
and backward propagating modes and N is the order of diffracted UV beam in grating
fabrication, which is usually equal to one [16].

In uniform Bragg gratings, the peak amplitude of the refractive index variation An,
the average refractive index An, the period length A, and the phase ¢(z) are unchanged
over the entire length of the fiber grating. Consequently, d¢(z)/dz is zero, and the ac
and dc coupling coefficients are constant. In such cases, the coupled-mode equations can

be solved analytically [Appendix A.8]. The complex reflectivity o for a uniform Bragg

grating is
_ iks. sinh(aL)
p= acosh(aL) — idsinh(aL)’ (3.6)

where a = 1/|K.c|? — 6% and § = Ky + AF/2.

In a non-uniform fiber grating, for example, apodized or chirped fiber grating, the

coefficients in the coupled-mode equations vary over the length of the fiber grating. The

coupled-mode equations in general cannot be solved analytically. One has to resort to

numerical methods.

3.1.3 Numerical Methods

There are many techniques that solve the couple mode equations. Direct numerical in-

tegration of the equations is the most straightforward but it is not necessary the fastest.
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One of the few that offers complete control of the spatial variation of the refractive index
profile is the Rouard’s method [44]. It is commonly used in the design of thin-film coat-
ings, but it has been extended by L. A. Weller-Brophy and D. G. Hall [45] for the analysis
of diffraction gratings in waveguides. In this method, the waveguide is segmented into
subwavelength thin films so that standard thin-film techniques for calculating the trans-
mitted and reflected electric fields can be applied. The Rouard’s method can be applied
to all grating structure types including linearly and quadratically chirped gratings. The
obvious disadvantage of the Rouard’s method is that .the method is computaticnally inten-
sive. The computational time is directly proportional to the number of grating elements.
It can become very large for long gratings [16].

If the reflective index of a grating is a slowly varying function of the grating length, as in
most gratings of interest, a fast and accurate technique called the transfer matrix method
(46, 47] can be applied. In the transfer matrix method, one divides a grating into many
small segments. The length of each segment can be different. Within each segment, the
grating parameters are assumed to be constant but the parameters for different segments
are a function of the grating length. In other words, we approximate the continuous
variation of the grating parameters with grating length by a piecewise constant function.
The approximation for a linearly varying &, is shown in Figure 3.3. For each segment,
the coupled-mode equations, Eqs. (3.1) and (3.2), are solved analytically. The solutions
relate the right going electric fields R(z) to the left going electric fields S{z) through the

transfer matrix [T] as given by
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Figure 3.3: Approximation of the ac coupling coefficient in transfer matrix method. The

length of each segment is 100 pm.

where
( Th T
L) = | . :
T Tp
cosh (L) — 1dsinh(al)/a s Sinh{al)/a
= ) (38)
—ik}, sinh(al)/a cosh(aL) + 4 sinh(aL) /o

R(0) is the input electric field entering the grating from the left, S(0) is the output field
going to the left, R(L) is the output field going to the right, and S(L) is the left going
wave entering the grating. The parameter L is the length of grating, § = xq. +(1/2)[AS—
d¢(z)/dz], @ = m, Kdc 15 dc coupling coefficient, AS is the difference between
the propagating constants of the forward and backward propagating modes and is given

by Eq. (3.5), ¢(2) is the phase change within the grating as a function of the normalized
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distance z, and K, is the ac coupling coefficient. The transfer matrix [T] represents the
grating amplitude and phase response. The derivation of the transfer matrix is given in
Appendix A.8.

Without loss of generality, the input field from the left can be set to unity, i.e., R(0) =
1. Since there is no left going wave entering the grating from tﬁe right, we set S(L) = 0.
The complex reflectivity is therefore given by T3, /T3, and the complex transmissivity is
given by 1/Ty,. For uniform Bragg gratings, the result from the transfer matrix method is
equivalent to the analytical answer for any length of the grating because [T'(L,)][T(L;)] =
[T(Ly + L)), where [T(L,)], [T(L2)], and [T(L, + Ly)] are the transfer matrices of the
same grating but with length L,, L,, and L; + L respectively [Appendix A.9].

For non-uniform fiber gratings, some precautions are necessary in the application of
the transfer matrix method. First, the length of segment 8! should be much larger than
the period A of refractive index variation, i.e., 8! 3> A [48], because the transfer m-a,trix
method is based on the assumption of slow variation of the mode field over the wavelength
of light [16). On the other hand, the number of segments cannot be too small, otherwise
the error due to approximating a continuous function with a piecewise constant function
will be large. The minimum number of segments in modeling chirped fiber gratings is
given by 2n.gAML/m)% [16], where n.g is the effective index of the fiber core, AX is
the reflectivity bandwidth of the chirped fiber grating, L is the length of the grating,
and Ag is the central Bragg wavelength. Finally, the number of the period of refractive
index variation within a segment is required to be an integer to maintain the continuity

of the refractive index variation over the fiber grating. The transfer matrix [T(L)] in a
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non-uniform fiber grating is given by

R(0) R(L)
=T} ) (3.9)
5(0) S(L)
where [T] = [Tp][Tar-1] - - - [T1], [Tnm] is the transfer matrix of the Mth segment counting

from the end of grating, and L is the length of the grating.

3.2 Properties of Fiber Bragg Gratings

We focus our study on reflection gratings. The quantity that characterizes a reflection
grating is its reflectivity spectrum which determines the reflected power of different spec-
tral components of an input pulse. The wavelength of maximum reflectivity is called the
Bragg wavelength at which the forward propagating mode and the backward propagating
mode are phase matched [16]. The reflectivity bandwidth is defined as the bandwidth
between the first zeroes of the reflectivity spectrum. The phase ¢ of the reflectivity spec-
trum determines the time delay and the dispersion induced by the reflection grating. Time
delay 7 for the reflected wave is defined as d¢/dw [48], where w is the angular frequency.
This is analogous to the time delay definition for a-forward continuous wave with phase
¢ = Bz — wr if the Fourier transform is defined as Eq. (1.3), where § is the propagating
constant and z is the distance. The dispersion coefficient D = dr/d\ is the change of
time delay among different wavelength A. In the following, we shall use the transfer matrix

method to study the properties of both uniform and non-uniform fiber gratings.
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Figure 3.4: Magnitude of the reflectivity versus normalized detuning [16]. Solid line
represents a weak grating (.. L = 2) while dashed line represents a strong grating (x,.L =
8). The effective refractive index is 1.55, the Bragg wavelength is 1.55 um, and the grating

length is 10 mm.

3.2.1 Uniform Bragg Gratings

The simplest type of fiber Bragg gratings is uniform gratings. The parameters of the
refractive index variation, such as the period, amplitude, and average refractive index,
are constant along the length of the gratings. In this case, the couple mode equations
can be solved exactly. Figure 3.4 shows the reflectivity spectra of a strong, x.,.L = 8,
(dashed line) and a weak, k.. L = 2, (solid line) uniform Bragg gratings. Both of them are
10 mm long. The parameters k., = #An/Ag [49] is the ac coupling constant, where An
is the amplitude of the refractive index variation, L is the grating length, Ay is the Bragg

wavelength, and A is the wavelength of the optical signal. The Bragg wavelength for the
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Figure 3.5: Phase of the reflectivity versus normalized detuning. The notation and pa-

rameters are the same as that in Figure 3.4.

gratings is 1.55 um which is slightly smaller than the wavelength at maximum reflectivity,
about 1.550395 urﬁ. The shift in the wavelength of the maximum reflectivity is due to the
change in the average refractive index. The sidelobes of the reflectivity spectra are caused
by the sudden and sharp changes in refractive indices at the beginning and the end of
the fiber gratings. From Figure 3.4, a stronger grating has a larger reflectivity bandwidth
and higher reflectivity magnitude at the Bragg w:'welength. It can be shown that the
reflectivity bandwidth narrows as the grating length increases if «,. is kept unchanged.
In Figure 3.5, we plot the phase of the reflectivity spectra of the same gratings studied
in Figure 3.4. The notation is the same as that in Figure 3.4. The phase variation is
almost linear near the Bragg wavelength. The discontinuities occur at the zeroes of the
reflectivity spectra and also when the phase extends beyond the principle period. The

time delay and dispersion characteristics of the two gratings are shown in Figures 3.6 and
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Figure 3.6: Time delay of uniform fiber gratings versus normalized detuning. The notation

and parameters are the same as that in Figure 3.4.

3.7 respectively. The time delay 7 is given by —(\2/2nc)d¢/d), where c is the speed of
light. From Figure 3.7, the dispersion at the Bragg wavelength is zero and is significant
only at the edges of the central reflectivity band. The dispersion values fluctuate inside
the sidelobes. From Figure 3.7, the magnitude of the out-of-band dispersion fluctuation
is larger for stronger gratings.

Obviously, uniform Bragg gratings in reﬂeci;ion mode are not good dispersion com-
pensating devices. The usable bandwidth of dispersion compensation is very narrow and

the third-order dispersion is large. The sidelobes can induce crosstalk between adjacent

channels of WDM systems.
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Figure 3.7: Lumped dispersion of uniform fiber gratings versus normalized detuning. The

notation and parameters are the same as that in Figure 3.4.

3.2.2 Non-uniform Bragg Gratings

In non-uniform Bragg gratings, the amplitude and/or period of the refractive index fluc-
tuation vary along the length of the fiber gratings, or the phase shifts abruptly in a
refractive index variation cycle. Fiber gratings in which the refractive index amplitudes
fluctuate are called apodized fiber gratings. Those in which the period of the refractive
index fluctuations vary are called chirped fiber gratings.

Apodization [16] is a process that can reduce the sidelobes of the reflectivity spec-
trum. This process is ‘very important in communication applications of gratings because
the sidelobes will induce frequency mixing between the out-of-band frequencies and the
central frequency through four-wave mixing. The sidelobes induced crosstalk will limit

the channel spacing in DWDM systems.
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As the sidelobes are the results of sudden changes in the refractive index at both ends
of a grating, a straightforward way to reduce the sidelobes is to smooth the change of the
refractive index. One smoothing method is to reduce the power of UV beam at both ends
of a grating during fabrication. The key is to ensure that the tail of the refractive index
profile at both ends is close to the effective index of the fiber core. The consequence of the
unevenly distributed UV power is that sidelobes still appear at one side of the reflectivity
spectrum. The Bragg wavelength is also slightly shifted owing to the changing in the
average refractive index within the refractive index cycle along the grating.

Alternatively, the remaining sidelobes on one side of the reflectivity spectrum can be
removed by exposing the grating twice to diffracted UV beam [16]. After exposing the
grating to an apodization profile of UV light as described in the previous paragraph, we
expose the grating to UV light again using a lens that has an inversion of the apodization
profile used at the first exposure. As a result, the average refractive index along the
apodized fiber grating is constant. Only the envelope of the refractive index amplitude is
changing as shown in Figure 3.8. This process can remove all the sidelobes beyond the
reflectivity bandwidth. Similar to uniform gratings, apodized gratings induce different
time delay at different spectral components and the dispersion at the carrier frequency
is zero. While apodization can remove sidelobes in the reflectivity spectrum, it does not

affect the dispersion property of the gratings.

Chirped Fiber Gratings

In a chirped fiber grating, the period of the refractive index varies along the length of

the grating [16]. Consequently, a range of Bragg wavelengths can be reflected. Recall
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Figure 3.8: Apodization profile of a positive hyperbolic tangent function, x,(z) =
Fac tanh(8|z|/L) for z < L/2 and k. (2) = &a tanh(8[L — z|/L) for z > L/2, where
Kac = 0.8 is maximum coupling coefficient of apodization profile and L=50 mm is grating

length. The coupling coeflicient &, is proportional to the amplitude of refractive index

fluctuation.
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that the Bragg wavelength is proportional to the period of the refractive index in the
grating. The variation in the reflective index period allows different Bragg wavelengths
to be reflected at different locations of the grating. Thus the different Bragg wavelengths
have different time delay. Pulse compression can be achieﬁed by giving more time delay
to shorter wavelength and less time delay to longer wavelength for propagation in normal
dispersion fiber. So, decreasing the period of refractive index in the grating at the pulse
input end will result in a large lumped normal dispersion. The reflectivity, time delay
and dispersion of an unapodized chirped fiber grating are shown in Figures 3.9, 3.10 and
3.11 respectively. The length of the chirped grating is 50 mm. The rate of change of the

period [48] is given by

dé¢ z—L/2
a_zp( . )

where ¢ is the phase of refractive index fluctuation, and z is the distance from the pulse
input end of the grating. We let z = 0 at the pulse input end and z = L at the other end of
the grating. The parameter F is called the chirp parameter and F' = 600 in the Figures 3.9,
3.10, and 3.11. The Bragg wavelength at the mid-point of the grating is 1.55 um and the
shift of maximum reflectivity wavelength is the same as that in uniform Bragg gratings.
The maximum wavelength of reflectivity is obtained by setting kg = ~AS/2, where A =
- 2 —2n/A is the difference in the propagation constants between the forward propagating
wave and the reflected wave. In the phase matching case, k4 = 2k, = 2nAn/Ag. The
value of kgc = 1.6, negr = 1.55, and A = Ag/2n.g = 5 x 107" mm. The wavelength of
maximum reflectivity is 1.5504 um.

The fluctuation of the reflectivity outside the main reflection band is due to the sudden

change of the refractive index at both ends of the grating. The change in the refractive
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Figure 3.9: Reflectivity spectrum versus the wavelength of the signal in an unapodized
chirped fiber grating. The grating length is 50 mm. The chirp parameter F' is 600, the
effective index is 1.55, the dc coupling coefficient is 1.6, and the period of refractive index
fluctuation is 5 x 107! mm. The Bragg wavelength is shifted from 1.55 pm to near 1.5504

pum due to the change in average refractive index An. The segment length used in the

transfer matrix method is 0.1 mm.
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Figure 3.10: Time delay in an unapodized chirped fiber grating as a function of wave-

length. The parameters are the same as that in Figure 3.9.
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Figure 3.11: Lumped dispersion in an unapodized chirped fiber grating as a function of

wavelength. The parameters are the same as that in Figure 3.9.
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Figure 3.12: Reflectivity versus wavelength in a chirped fiber grating which use a positive
hyperbolic tangent apodization profile. The segment length used in the transfer matrix

method is 0.1 mm. The parameters are the same as that in Figure 3.9.

index at both ends also induces fluctuation in the time delay because of the multiple
reflections within the grating [16]. The large magnitude of time c‘lelay variation will
result in large magnitude of dispersion variation which can significantly affect the signal
spectrum [51, 52]. Apodization and long grating length can solve the problems of chirped
fiber gratings. Figures 3.12, 3.13, and 3.14 show the reflectivity, time delay, and dispersion
spectrum of a chirped fiber grating. The parameters of the chirped grating is the same
as that used in Figures 3.9, 3.10, and 3.11, exce.pt that the grating is now apodized by the
profile function shown in Figure 3.8. The average refractive index is equal to the effective
index of the fiber core. There are substantial improvements in the reflectivity spectrum
and time delay ripples. The average dispersion value within the wavelength range from

1.54968 pm to 1.55032 pm is —378.959 ps/nm. The amplitude of dispersion fluctuation
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Figure 3.13: Time delay variation in an apodized chirped fiber grating as a function of

wavelength. The parameters are the same as that in Figure 3.12.
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Figure 3.14: Lumped dispersion in an apodized chirped fiber grating as a function of
wavelength. The average dispersion is about —378.959 ps/nm. The parameters are the

same as that in Figure 3.12.
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Figure 3.15: Reflectivity versus wavelength of a chirped fiber grating. The grating length
is 100 mm, the chirp parameter F is 2,400, and the maximum &, is 0.8. The segment

length used in the transfer matrix method is 0.1 mm.

is about 320 ps/nm at the central frequency.

The amplitude of the time delay ripples and dispersion fluctuation can be reduced by
increasing the length of the apodized gratings. A long grating will have the additional
benefit of a broader reflectivity bandwidth. The reflectivity spectrum of a grating with
twice the length, i.e., 100 mm, is shown in Figure 3.15. The chirp parameter F' is chosen
to be 2,400 because the chirp parameter is approximately proportional to the square
of the grating length [49]. The time delay and dispersion spectrum of the grating is
shown in Figures 3.16 and 3.17 respectively. The reflection bandwidth is double and the
amplitude of the time delay ripples is smaller when compared to that of Figure 3.13. The
mean amplitude of the dispersion fluctuation over the reflectivity bandwidth is reduced

to about 150 ps/nm from about 320 ps/nm.
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- Figure 3.16: Time delay versus wavelength of the grating discussed in Figure 3.15.
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Figure 3.17: Lumped dispersion versus wavelength of the grating discussed in Figure 3.15.

The mean lumped dispersion is about —320 ps/nm.

62
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By increasing the grating length, the dispersion of the chirped gratings can be made
nearly constant and thus can be used to compensate for the dispersion of optical fibers.
Chirped fiber gratings can also compensate third-order dispersion by combining a parabolic
shape of time delay on a slanted straight line [19, 50]. This results in a linear dispersion
variation across the reflectivity bandwidth.

The length of a grating is negligible when compared to that of dispersion-compensating
fibers (DCF), a feature that makes modifications to system configurations and storage of
system devices much easier. An additional advantage of gratings over DCF's as dispersion
compensation devices is that the reflectivity spectrum can be used as a filter to remove
crosstalk in WDM systems. Chirped fiber gratings are not without drawbacks, however.
The dispersion outside of the reflectivity bandwidth is large in amplitude and rapidly
fluctuating which will affect the performance of DWDM systems using cascaded chirped

fiber gratings for dispersion compensation.

3.3 Solitons in Dispersion Managed Systems using

Ideal Gratings

In this Section, we study dispersion managed systems using chirped fiber gratings for
dispersion compensation. We assume that the grating is an ideal compensator such that
there is no dispersion fluctuation and the reflectivity bandwidth of the grating is much
larger than the signal bandwidth. The grating is then modeled by Eq. (1.1). The effect

of the grating on an input pulse is given by

Gout (2, W) = Gin(z,w) exp(iDgw?/2), (3.10)
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where o (2, w) is spectrum of the output from the chirped fiber grating, §in(z,w) is
the spectrum of the input pulse, and D, is the lumped dispersion of the grating. The
derivation of the above equation is based on the solutions of Eq. (1.1).

The equation governing the pulse propagation in a dispersion managed systems uti-

lizing fiber Bragg gratings for dispersion compensation is given in normalized units by

G0 _[[@ P o
G [ 5 }6152 + |gl“g =0, (3.11)

where f(z) is a constant with periodic compensation carried out as described in Eq. (3.10).
We apply the numerical averaging method discussed in Chapter 2 and find that periodic
numerical solutions indeed exist in grating compensated dispersion managed systems.

We choose a dispersion map in which the normalized dispersion coefficient of the
anomalous fiber is —81 which corresponds to —8.1 ps?/km. The normalized fiber length
is 0.0777 which corresponds to 100 km when the average dispersion is —0.1 ps?/km and
the time normalization constant is {20/1.763) ps. The dispersion length is 1,287.3 km.
The normalized lumped grating dispersion is 6.216 which corresponds to 800 ps? in real
world units.

The DM system starts from the mid-point of the anomalous fiber segment. Figures 3.18
and 3.19 show the chirp-width dynamics and the pulse width at the end of each map as a
function of distance. The initial pulse is 3.5sech(¢). In the chirp-width plane, the motion
converges to a fixed point indicating the existence of a periodic solution. Figure 3.19 shows
that the pulse width is constant after z = 20. Similar to DM systems using DCF, the
pulse at the mid-point of the anomalous dispersion fiber is chirp free. The chirp is the
largest just before and just after the grating. The minimum normalized pulse width of

the DM soliton is 1.93 at the mid-point of the anomalous dispersion fiber. The maximum
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Figure 3.18: Chirp-width dyné.mics. The chirp and pulse width are taken at the end

of each map. The initial pulse is 3.5sech(t). The averaging distance is 1,000 dispersion

maps. The map length is 100 km, the dispersion coefficient of the fiber is —8.1 ps®/km,

and the average dispersion coefficient is —0.1 ps®/km.
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Figure 3.19: FWHM at the end of each map as a function of distance. The parameters

are the same as that in Figure 3.18.

normalized pulse width is 4.48571 at the input and output of the grating. The chirp-
width dynamics within a dispersion map is shown in Figure 3.20. The crosses represent
numerical results. The pulse width variation in 5 dispersion map distance is shown in
Figure 3.21.

In Figure 3.20, the evolution starts on the horizontal axis. The chirp as well as the
pulse width increases as the pulse propagates along the anomalous dispersion fiber. The
grating reverses the sign of the chirp parameter without changing its magnitude. The
chirp and the width then return to their initial values along a path that is a mirror image
of the first half of its evolution.

The averaging is taken for 1,000 dispersion maps. The pulse is then propagated for 100
dispersion maps to check the stability of the solution. The maximum amplitude difference

between the initial pulse and the final pulse is 107°. The pulse amplitude in the time
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Figure 3.20: Chirp-width dynamics within a dispersion map. The soliton obtained from
numerical averaging method is propagated for 100 dispersion maps. The figure shows the

variation at the 100th dispersion map. The crosses represent the data point within the
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map. The parameters are the same as that in Figure 3.18.
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Figure 3.21: Variation of the FWHM of the soliton for 5 dispersion maps. The parameters

are the same as that in Figure 3.18.

domain and the frequency domain is shown in Figures 3.22 and 3.23 respectively. The
solid line represents the pulse at the mid-point of the anomalous dispersion fiber and the
dotted line is taken at boundary location. The spikes of pulse spectrum in Figure 3.23

are due to numerical errors of the split-step Fourier method [39] and it can be reduced by

decreasing the step size.
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Figure 3.22: Intensity-time plot of the DM soliton. Solid line represents the pulse profile

at the mid-point of the anomalous dispersion fiber and dotted line represents that before

and after the grating. The parameters are the same as that in Figure 3.18.
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Figure 3.23: The spectra of the DM soliton shown in Figure 3.22.



Chapter 4

Design of Dispersion Maps

4.1 Introduction

In Chapter 2, we discuss dispersion managed soliton systems using dispersion compensat-
ing fibers (DCFs). DM solitons have many advantages over conventional solitons, one of
which is the energy enhancement. The higher energy required to launch a soliton in a DM
system when compared to a conventional soliton system with the same average dispersion
and pulse width results in a higher signal-to-noise ratio. In Chapter 3, we discuss DM
systems using in-line fiber Bragg gratings (FBGs) for dispersion compensation and we
show that solitons can also propagate in these systems. For the purpose of dispersion
compensation, a fiber Bragg grating can be considered as a DCF with zero length and a
lumped dispersion.

The design of a dispersion map for a dense wavelength division multiplexing system is
a multi-parameter optimization problem. The overall performance of the system is deter-

mined by the bit error rate (BER) which is affected by a large number of factors including

70
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the Gordon-Haus timing jitters (36], collisional induced timing jitters [27], polarization
effects [4], etc. Energy enhancement is an important property that determines the choice
of dispersion managed systems.” N. J. Doran et al. [11] gave an empirical formula of
the energy enhancement as a function of the map strength and map depth for two-step
dispersion maps in which the two pieces of fibers are of equal length. There are indica-
tions that dispersion maps consist of mostly normal dispersion fibers have higher energy
enhancement than that of equal length maps [15]. To our knowledge, a comprehensive
study on the dependence of energy enhancement on the ratio of the lengths of the two fiber
segments has not been carried out. In Section 4.2, we compare the energy enhancement
of dispersion managed systems using DCFs with different fiber length ratio. The average
dispersion is chosen to be anomalous. We show that for a dispersion map with a fixed
map length, average dispersion, and cumulated absolute dispersion, the energy enhance-
ment increases when the length of the normal dispersion fiber segment increases. The
energy enhancement reaches a maximum when the length of the anomalous dispersion
segment is zero. Dispersion compensation in this case is carried out by FBGs. On the
other hand, if the length of the normal dispersion fiber decreases, the energy enhancement
decreases and reaches a minimum when its length beéomes zero. In Section 4.3, we repeat
the study for DM systems -with zero average and normal average dispersion. The results
are qualitatively similar to that of Section 4.2. Similar to DCF compensated systems,
DM solitons in FBG compensated systems exist for zero average dispersion and normal

average dispersion. In Section 4.4, we discuss design issues in DM soliton systems.
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4.2 Anomalous Average Dispersion

In a conventional soliton system, the energy of a soliton depends on the GVD coefficient,
the Kerr coefficient, and the pulse width. Since the Kerr coefficient does not change in
a fiber, when the GVD coefficient and the pulse width are specified, one can determine
the energy of the soliton. In a DM system using a two-step dispersion map, the soliton
energy depends on the pulse width and the dispersion map parameters, i.e., the dispersion
coeficients §; and the lengths &, i = 1,2, of each fiber segment. One can characterize a
two-step dispersion map using another set of parameters. They are the map length L,
the fraction of the first fiber segment length to the map length R, the average dispersion
coefficient B,,, and the cumulated absolute dispersion . The relationship between the

two sets of parameters are

L = L +1,,
R = ll/L,
Bav = (1131 + 5252) /L, (4.1)

v = LlB = Bl + La|Bs = Bavl-

The energy enhancement for a equal length two-step map DM system, i.e., ) = Iy, is
shown to depend on the map strength S = /72 and map depth & = (|61| + 152])/|Bavl
(11] only, where 7 is the minimum pulse width within a dispersion map. In the following,
we study the dependence of the energy enhancement on the length ratio R when the
parameters L, fB.., and v are fixed. We note that when the lengths of the fiber segments
vary, the cumulated absolute deviation from the average dispersion in each segment ;| B —

Bavl = La|B1 — Ba|/L, i = 1,2, remains constant. For each length ratio R, we find the
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Figure 4.1: Energy enhancement versus map strength S for different values of length ratio
R. Curve a (diamonds), b (crosses), ¢ (solid line), d (dashed line), e (dotted line), and
f {circles) represent R = 0,0.5,0.8,0.9,0.95, and 1 respectively. Each data point corre-
sponds to a different puise energy. The map length L is 200 km, the average dispersion
Bav is =0.1 ps?/km, and the cumulated absolute dispersion 7v is 1,600 ps? in all curves.
Esq1 1s the energy of the DM solitons and Ej is the energy of the fundamental soliton with

the same average dispersion and pulse width as the DM soliton.

DM soliton solutions by solving Eqs. (2.1l) and (2.2) and applying the numerical averaging
technique discussed in Section 2.2.1. Energy enhancement depends on the map strength,
v/7?%, and the pulse width 7 related to pulse energy. We vary the input pulse energy in
order to obtain different values of map strength. The process is then repeated for different
values of . The energy enhancement for different values of R are éhown in Figure 4.1.
The map length L is 200 km, the average dispersion coefficient fJ;a‘, = —0.1 ps?/km and

the cumulated absolute dispersion value in a dispersion map v is 1,600 ps?. The results
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are qualitative the same for other choices of the parameters L, 7, and Bav < 0. In the
following, we have chosen 51 > 0 and ﬁg < 0. Thérefore, [, is the length of the normal
dispersion fiber segment and [ is the length of the anomalous dispersion fiber segment.
The length ratio R varies from 0 to 1 corresponding to DM systems with only anomalous
dispersion fibers and only normal dispersion fibers respectively. The results shown in

Figure 4.1 are obtained using the following numerical parameters: Az = 7.8 X 1074,

number of points in time axis = 4,096 or 8,192, computation window size = 1,800 ps or
6,500 ps. The prolpagation distance is 100,000 km (500 dispersion maps). The numerical
error in the pulse amplitude in the time domain is 1078 to 107, The initial pulse width
is 20 ps.

In Figure 4.1, the curves labeled a (diamonds), b (crosses), ¢ (solid line), d (dashed
line), e (dotted line), and f (circles) correspond to R = 0, 0.5, 0.8, 0.9, 0.95, and 1
respectively. We oibserved that the energy enhancement versus map strength curve for B =
1, i.e., a dispersion maﬁ consisting of normal dispersion fibers and a FBG for dispersion
compensation, is different from that of other values of R. Recall that the minimum pulse
width in a dispersion map is used in the calculation of the energy enhancement and the
map strength. For a DM soliton, the pulse width reaches the minimum at the mid-point
of the anomalous dispersion fiber and the maximum at the junction of the two fibers
as shown in Figure 2.4. In other words, the pulse width changes from the minimum
value to maximum the value and back to the minimum value when it propagates through
the anomalous dispersion fiber segment. As R increases from 0 to 1, the length of the
anomalous dispersion segment decreases but the GVD coefficient increases such that the

absolute cumulated deviation from the average dispersion, ly|Bs — .|, in that segment
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remains constant. The pulse goes through similar variations from the minimum value
to the maximum value and back to the minimum value inside the shortening anomalous
dispersion fiber. When a fiber grating is used in place of the DCF for the R =1 case, the
pulse width inside the anomalous dispersion portion of the map is not available. Only the
pulse widths before and after the fiber grating can be measured as shown in Figure 3.21.
The grating reverses the sign of the chirp coefficient but does not affect the puise width.
As a result, in a grating compensated dispersion map, the apparent minimum pulse width
is at the mid-point of the normal dispersion fiber. If this pulse width is used to calculate
the energy enhancement and map strength, we obtain curve f in Figure 4.1. The apparent
“shift” of the energy enhancement versus map strength curve at R = 1 when compared to
that of other values of R is therefore due to the change in the location where the minimum
pulse width is measured, i.e., from the mid-point of the anomalous dispersion fiber to the
mid-point of the normal dispersion fiber. As seen in Figure 4.2, the shift cannot be
removed by plotting DM soliton energy instead of the energy enhancement because the
map strength also depends on the pulse width. If the pulse width at the mid-point of the
normal dispersion fiber is used, the curves converge smoothly to the R = 1 case as seen in
Figure 4.3. There are two energy enhancement for the same map strength in Figure 4.3
because two DM solitons with different energy can have the same pulse width at the
mid-point of the normal dispersion fiber as shown in Figure 4.4. However, the R = 0 case
is not defined then. The ambiguity lies in the definition of the pulse width inside a zero
length fiber segment, i.e., the fiber grating. For discussion purpose, it is better to use the
limit of the minimum pulse widths of DCF compensated DM systems when the length of

the anomalous dispersion fiber segment decreases to zero as the minimum pulse width of
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Figure 4.2: Normalized pulse energy Eg, versus map strength S for different values of

length ratio . The parameters and notation are the same as that in Figure 4.1.

grating compensated DM systems.

Figure 4.1 shows that the energy enhancement for different values of R increases
as the map strength increases. For S < 3, the energy enhancement are almost the
same for all values of length ratio. When the map strength increases beyond 3, the
energy enhancement for dispersion maps with larger proportion of normal dispersion fiber
increases faster. Figure 4.5 shows the dependence of the DM soliton energy as a function
of R for different values of the map strength. As +y is fixed, each map strength corresponds
to a pulse width. So, the fundamental soliton energy Ej is the same in each of the curve
in Figure 4.5. In all cases, the energy enhancement is minimum at R = 0 and maximum
at R = 1. That is, grating compensated DM systems form the upper and lower limit of
the energy enhancement when L, 5’3‘,, and -y are fixed. For § = 3, the increase in DM

soliton energy is very small, but for S = 5, the DM soliton energy of a DM map made up
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Figure 4.3: Energy enhancement versus map strength S. The pulse width is measured at
the mid-point of the normal dispersion fiber segment. Curve i (crosses), ii (solid line), iii
(dashed line), iv (dotted line), and v (circles) correspond to R = 0.5, 0.8, 0.9, 0.95, and

1 respectively. The map parameters are the same as that in Figure 4.1.
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Figure 4.4: Normalized FWHM at the mid-point of the normal dispersion fiber segment
versus normalized pulse energy Ey,. The parameters and notation are the same as that

in Figure 4.3.
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Figure 4.5: Normalized pulse energy FE,, versus length ratio R at map strength S = 3
(crosses), 3.5 (triangles), 4 (diamonds), 4.5 (squares), and 5 (asterisks). The parameters

of the dispersion map are the same as that in Figure 4.1.

of all normal dispersion fibers is about 2 times larger than that of a DM map made up of
all anomalous dispersion fibers.

Figure 4.6 plots the variation of the pulse width with R for a normalized energy of
50. The pulse widths at the mid-point of the anomalous dispersion fiber (solid line), the
mid-point of the normal dispersion fiber {(dashed line), and the junction of the two fibers
(dotted line) are shown. The crosses represent actual simulation results. The pulse width
at the mid-points of the fiber segments remain nearly constant when R increase from 0
to 1 but the maximum pulse width increases by almost 50%. Figure 4.7 plots the pulse
width stretching factor, i.e., the difference between the maximum pulse width and the
minimum pulse width, of the DM solitons as a function of R. We observed that the

DM solitons stretch more as R increases. As a result, the nonlinear effect is weakened
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Figure 4.6: Normalized pulse width as a function of the length ratio R at the mid-point
of the anomalous dispersion fiber (solid line), the mid-point of the normal dispersion fiber
(dashed line), and the junction of the two fibers (dotted line). The normalized pulse

energy is 50. The map parameters are the same as that in Figure 4.1.

when the length of the normal dispersion fiber increases. For the same pulse width, more
energy is therefore needed to launch a DM soliton. This explains why energy enhancement
increases when R increases. Figure 4.8 plots the maximum chirp coefficient (solid line)
and the chirp coefficient at the junction of the two fibers (dashed line) as a function of R.

In both cases, the chirp coeflicients increase slightly when R increases.

4.3 Zero and Normal Average Dispersion

In this Section, we study the effect of the relative proportion of the normal dispersion

fiber segment in a two-step dispersion map on the soliton energy for zero average and
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Figure 4.7: The pulse width stretching factor as a function of the length ratio R. The

parameters of the dispersion map are the same as that in Figure 4.1.

normal average dispersion systems, i.e., S, > 0. As conventional solitons do not exist
for these dispersion values, energy enhancement are not applicable here. For comparison
with the results in the previous Section, the map length L is set to 200 km and the
cumulated absolute dispersion is 1,600 ps?. Similar to DM systems using DCFs, we found
that soliton solutions exist for DM systems using FBG for both zero and normal average
dispersion.

The results from zero average dispersion is qualitatively the same as that of anomalous
average dispersion. Figure 4.9 plots the DM soliton energy versus map strength. The
curves labeled a (diamonds), b (crosses), ¢ (solid line), d (dashed line), ¢ (dotted line),
and f (circles) correspond to length ratio R = 0, 0.5, 0.8, 0.9, 0.95, and 1. The numerical
parameters used in obtaining the results are Az = 7.8 x 10~*, number of points in the time

domain = 4,096, and computation window size = 2,000 ps. The propagation distance is
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Figure 4.8: The maximum chirp coefficient (solid line) and the chirp coefficient at the
segment boundary (dashed line) as a function of the length ratio R. The circle is the

maximum chirp coefficient at R = 1. The dispersion map parameters are the same as

that in Figure 4.1.
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100,000 km (500 dispersion maps) or 200,000 km (1,000 dispersion maps). The maximum
numerical error in the temporal pulse amplitude is 10~8. The initial pulse width is 20
ps. The curves are plotted using the minimum pulse widths in the dispersion maps, i.e.,
from the mid-point of the anomalous dispersion fiber in curves a to e, but from the mid-
point of the normal dispersion fiber for curve f, the all normal dispersion fiber case. In
Figure 4.10, the pulse widths at the mid-point of the normal dispersion fiber is used in all
cases. Similar to anomalous average dispersion systems, the shift in curve f of Figure 4.9
is due to the change in the location at which the minimum pulse width is measured. From
Figure 4.9, the threshold map strength for soliton solutions are about 3.8 for all values
of R. Figure 4.11 shows the normalized DM soliton energy versus the length ratio for
S = 4 (diamonds), 4.5 (squares), 5 (asterisks), 5.5 (pluses), and 6 (inverted triangles).
While the soliton energy is about the same for all values of R when S = 4, there is
a factor of 2 difference between the soliton energy at R = ( and that at R = 1 for
S = 6. The effect of the length ratio is larger for stronger map strength. We note that
for the same map strength, it takes less energy to launch a DM soliton in DM systems
with zero average dispersion than that with anomalous average dispersion. Figures 4.12
and 4.13 show the pulse width and the pulse width.stretching factor at the normalized
energy of 50 respectively. For the same energy, DM solitons with zero average dispersion
are stretched more as R increases from 0 to 1 when compared to that with anomalous
average dispersion. As a result, the relative increase in DM soliton energy is also larger.
The maximum chirp coefficient (solid line) and the chirp coefficient at the boundary of
the two fiber segments (dashed line) are plotted in Figure 4.14. In both cases, the chirp

coefficients increase slightly when R increases.
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Figure 4.9: Normalized pulse energy Fy, as a function of map strength S in zero average
dispersion DM systems. The minimum pulse width in the dispersion map is used in §.
The curve a (diamonds), b (crosses), ¢ (solid line), d (dashed line), e (dotted line), and
f {circles) correspond to length ratio R = 0, 0.5, 0.8, 0.9, 0.95, and 1 respectively. The

map length is 200 km and the cumulated absolute dispersion over a map is 1,600 ps?.
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Figure 4.10: Normalized pulse energy Fi, as a function of map strength S. The pulse
width is measured at the mid-point of the normal dispersion fibers. Curve i (crosses), ii
(solid line), iii (dashed line), iv {dotted line), and v (circles) correspond to R = 0.5, 0.8,

0.9, 0.95, and 1 respectively.
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Figure 4.11: Normalized pulse energy Fg, as a function of the length ratio R at map
strength S = 4 (diamonds), 4.5 (squares), 5 (asterisks), 5.5 (pluses), and 6 (inverted

triangles). The parameters are the same as that in Figure 4.9.
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Figure 4.12: Normalized pulse width (FWHM) as a function of the length ratio R for
zero average dispersion systems. Solid line represents the pulse widths measured at the
mid-point of the anomalous dispersion fiber, dashed line at the mid-point of the normal
dispersion fiber, and dotted line at the segment boundary. The normalized pulse energy

is 50. The map length L is 200 km, and the cumulated absolute dispersion in a dispersion

map is 1,600 ps?.
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Figure 4.13: Pulse width stretching factor as a function of the length ratio . The circle

represents the result at R = 1. The parameters of the DM systems are the same as that

in Figure 4.12.
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Figure 4.14: Chirp coefficient as a function of the length ratio R. Solid line represents
the maximum chirp coefficient and dashed line represents the chirp coefficient at the

boundary of the fiber segment. The parameters of the DM systems are the same as that

in Figure 4.12.
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For DM systems with normal average dispersion, solitons exist but only for a narrow
range of dispersion values. We have tried 8., = 0.1 ps®/km. We found that very high
energies are needed to form the solitons; the normalized energy must be larger than 170.
At this or higher energy, numerical errors are significant and appear as large spikes in the
frequency spectrum. The numerical errors of the pulse amplitudes in the time domain is
10~* to 1073 after 200,000 km of propagation using the numerical averaging technique.
Further propagation does not improve the accuracy of the solutions. Recall that the
numerical error of typical soliton solutions for anomalous average and zero average DM
systems are 107% to 107®. The numerical step size Az is 7.8 x 1072, the length of the
computation window is 2,000 ps, and 4,096 points are used for the FFT algorithm. The
numerical error can be reduced by reducing the numerical step size at the expense of
computation time. The computational time required in the above example is already 6
CPU hours in a PIII 500 MHz personal computer. Also as the map strength increases,
the DM soliton energies increase further, thus the numerical errors increase. We therefore
choose a smaller average dispersion value Bav = 0.01 ps®?/km in Figure 4.15. The error for
the pulse amplitudes in the time domain is 107%, 102, 10~%, and 10~7 for the four data
points at all values of R in order of increasing pulse energy. The solutions at lower energy
are therefore not very reliable.

Figure 4.15 plots the DM soliton energies versus the map strength for different length
ratio R. The map length is 200 km, and the cumulated dispersion is 1,600 ps?/km.
The curves a (diamonds), b (crosses), ¢ (solid line), d (dashed line), and e {dotted line)
correspond to R = 0, 0.5, 0.8, 0.9, and 0.95 respectively. The pulse width is measured at

the mid-point of the anomalous dispersion fiber. We observed that DM solitons exist, for
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Figure 4.15: Normalized pulse energy E as a function of map strength in normal average
dispersion systems. Curve a (diamonds), b (crosses), ¢ (solid line), d (dashed line), and
e (dotted line) correspond to R = 0, 0.5, 0.8, 0.9, and 0.95 respectively. The average dis-

persion is 0.01 ps?/km, the map length is 200 km, and the cumulated absolute dispersion

is 1,600 ps.
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a narrow range of map strength only; from about 4.4 to 4.7. The soliton energies vary
rapidly in this range, changing from a normalized value of 70 to 170. The threshold map
strength for DM solitons varies with R. For example, at a map strength equals to 4.5,
the all anomalous dispersion fiber case (R = 0) does not have DM solitons but the equal
map length systems R = 0.5 do. But at map strength about 4.48, the equal map length
systems also do not have solition solutions. Also contrary to DM systems with anomalous
average or zero average dispersion, there can be two DM solitons with different energies
at a given map strength.

It is difficult to draw quantitative conclusion because the solutions at low energies
are not reliable. But we observed that DM systems using FBGs still have the maximum
(R =1) and the minimum (R = 0) energy when R varies. The increase in energy betweeﬁ
R =0 and R =1 can be larger than a factor of 2. Figures 4.16 and 4.17 plot the pulse
width and the pulse width stretching ratio as a function of R for a pulse energy of .128.
We found that the change in both the pulse width and the stretch ratio is very small.

The variations in the chirp coefficients are also small as seen in Figure 4.18.

4.4 Discussions

From previous sections, we find that the relative proportion of normal dispersion fiber to
anomalous dispersion fiber in a two-step dispersion map affects the DM soliton properties
in anomalous average, zero average, and normal average dispersion systems. The total
map length, average dispersion, and curnulated absolute dispersion are kept constant. We
found that the DM solitons have the highest energy when the map is made up of all

normal dispersion fibers and a fiber Bragg grating. The solitons have the lowest energy
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Figure 4.16: Normalized pulse width at the mid-point of the anomalous dispersion fiber
segment, (solid line), the mid-point of the normal dispersion fiber segment (dashed line),
and the boundary between the fiber segments (dotted line), as a function of the length

ratio R. The normalized pulse energy is 128. The map parameters are the same as that

in Figure 4.15.
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Figure 4.17: Pulse width stretching factor as a function of length ratio R. The map

parameters are the same as that in Figure 4.15.

when the map is made up of all anomalous dispersion fibers and a fiber Bragg grating.
The ratio of the highest to the lowest energy can be 2 or higher. The minimum pulse
width increases only slightly when the normal dispersion fiber length to map leﬁgth R
varies from 0 to 1. However, the maximum pulse width can increase by more than 50%.
In other words, the DM solitons spread out more as the prpportion of normal dispersion
fiber increases, which explains why more energy is needed to form a soliton.

If the objective is to have the highest soliton energy in each wavelength in order to
maximum the signal-to-noise ratio (SNR), DM systems consist of all normal dispersion
fibers and FBGs are clearly the solution. However, since the pulse spread more, the bit
window in such systems may have to be increased in order to avoid interactions between
solitons in adjacent bit windows. How the DM soliton interaction depends on the length

ratio has yet to be determined. In any case, it may not be advantageous to use pulses
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Figure 4.18: Chirp coefficient as a function of the length ratio £. The solid line represents
the maximum chirp coefficient and the dashed line represents the chirp coefficient at the

boundary between the two fiber segments. The map parameters are the same as that in

Figure 4.15.



Design of Dispersion Maps 96

that are too strong in the wavelength channels because the nonlinear effects in a fiber also
depend on the total energy in fiber. Indeed, recent 1 tera bits per second transmission
experiments were achieved by using specially made fibers with large effective core area to
reduce the overall energy density in the fiber [1].

From our simulations, DM systems with average normal dispersion are not very attrac-
tive for communication systems. First the energy required to launch these solitons may
be too high. Second, these solitons are very sensitivity to map parameters and the puise
width. Slight deviation of the pulse width from the required value, due to source fluctu-
ations, may cause significant pulse distortion during transmission. Therefore, we expect

that DM soliton systems will use dispersion maps with average anomalous dispersion.



Chapter 5

Conclusion

The performance of an optical communication system is measured by the bandwidth dis-
tance product for error free transmission, i.e., a BER of 107° or less. The BER depends
on a large number of factors including chromatic dispersion, polarization mode dispersion,
gain flatness, amplifier noises, nonlinear effects, etc. In this thesis, we review a number
of methods that alleviate the effect of chromatic dispersion. We focus on the combi-
nation of dispersion management technique and soliton propagation format. Two-step
dispersion maps made up of equal length fiber segments are well studied in the literature.
An empirical formula for energy enhancement was derived which depends on only two
parameters; the map strength and the map depth. Although there are indications that
two-step dispersion maps made up of mostly normal dispersion fibers have higher energy
enhancement, there is no comprehensive study on the subject.

We investigate the properties of DM solitons in a two-step dispersion map made up
of unequal length fiber segments for average anomalous, average zero, and average nor-

mal dispersion systems. In particular, we study how the soliton energy depends on the

97
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proportion of the normal dispersion fiber in a dispersion map when the total map length,
average dispersion, and cumulated absolute dispersion are fixed. In all cases studied,
dispersion maps made up of normal dispersion fibers and fiber Bragg gratings have the
maximum soliton energy. Dispersion maps made up of anomalous dispersion fibers and
fiber Bragg gratings have the minimum soliton energy. The ratio of the maximum to the
minimum soliton energy can be more than a factor of two when the map strength is large.
We also observed that whilé the minimum pulse width of the DM solitons do not change
significantly when the proportion of the normal dispersion fiber changes, the maximum
pulse width can increase by more than 50%. Whether this increase in the maximum
pulse width results in larger soliton-soliton interaction has yet to be investigated, but
this observation does raise the possibility that the increase in soliton energy may come
at the expense of a larger bit window thus a decrease in the maximum transmission rate.
Also in a wavelength division multiplexing system, one do not want to single-mindedly
increase the energy of the signals in each wavelength channel in order to reduce the SNR.
Increase in the average energy of the fiber will give rise to scores of nonlinear effects that
will eventually degrade the BER.

The complex relationship between the soliton properties and dispersion map parame-
ters highlights the difficulties in finding the optimal dispersion map. Even in a two-step
dispersion map, the energy and pulse width of a DM soliton in general depends on four
parameters. In this investigation, we fix three of them to study the effect of the fourth.
A comprehensive study requires one to vary the other three paraméters as well which is a
computationally intensive task. Analytical techniques such as Lagrangian method give a

qualitative understanding of the system at best but they are not useful for choosing the
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parameters for real systems. Even when the above simulations are carried out, the results
may be of limited use because other factors such as amplifier spacing, amplifier noises,
and the presence of other channels may have significant impacts on the system design pa-
rameters. This is not to say that studies like the current one is not useful. They allow one
to build an understanding of the systems by studying the effects of the many parameters
at a time. The process is painfully slow but it complements the massive system simu-
lations that are favored by some researchers. System simulations are in effecf numerical
experiments. They are certainly much cheaper to carry out than real experiments but a
system contains so many variables that it is difficult to understand the relationship among
them. An optical communication system is so complex that no single method is sufficient
to determine the optimum design parameters. One will have to use every means available
including analytical analysis, numerical simulations of idealized systems, and full system

simulations to tackle the problem.



Appendix A

A.1 Solution of dispersion equation

We apply Fourier transform to Eq. (1.1),

2 [19] 20 _ gqu

ﬁf_o; %exl’(_m) dw — {%} /_ :(—z’w)zé(z,w) exp(—iwt) dw = 0(A.2)

where §{z,w) is the spectrum of the pulse ¢(z,t). Eq. (A.2) can be rewritten as,

/_: {iaquz,w) N [B(zgw:’]q(z,w)}em_m) .

Hence

Q) [B 9 ) = o

QLw) = §(0,w)exp [% [ dz] |

A.2 Evolution of a Gaussian pulse

For an initial Gaussian pulse,

—t2
Q(O:t) = Exp (5&?)}
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o0 t2
§(0,w) = /_ exp (-271,,; + zwt) dt.
By completing square and using [ exp (—az?) dz = /7 /a, we have

§0,w) = /Oo exp [2T12 ( z'wTOQ)2 - 2T2] dt,

= \/_Tgexp( 2T2)

2

From Appendix A.1, the solution of Eq. (1.1) at distance L is,

T22 zw
2

oL,t) = \/Q_ﬂ/ exp{[ 2/ dz}w —zwt}dw

Let a = —[TZ — i i B(2) d2]/2, we have

§(L,w) = MToexp[ A ﬂ(z) ]

exp [aw2 - iwt] dw
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The intensity of the pulse ¢(L, 1) is,

le(L, ) = q(L,t) x q"(L, 1),
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When f(z) is a constant value,
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Full width at exp(—1) normalized intensity = 2Tp/1 + (BL/T)?2.
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A.3 Relationship between GVD and group velocity

The group velocity delay £ is defined as

.df 1
)8 = d_ =
W v
where f is the propagation constant, w is the angular frequency, and v, is the group

velocity. Therefore, the group velocity dispersion g8 is

_d_ﬁ
B= =

o d {1

- E(E)’
1 { dyg
33

For negative dispersion, i.e., ﬂ < 0, so dvg/ dw > 0, the velocity increases as the frequency

1

increases.

A.4 The solution of SPM equation

Before solving Eq. (1.6), we show that |g|? is independent of z.

* @ 2 _
g (zaz+|q| q) = 0, (A.3)
* _Q{{ 2 ) - '
[q (zaz+|q| q)] -0 (A4)

Subtracting Eqs. (A.3) from (A.4), we have

0 . {8\’ '
(s + 1) - [-ia (52) +1a] = o
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q@z qaz -
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Hence, |g|? is constant. Eq. (1.6) can then be solved directly, we have

Oq
‘92

o rL ] aq _ L 5
?,/0 -q'(é;dz) = -—/0 |q| dz,

g(L,t) = q(0,t)exp(ilg(0,t)|°L).

+lgl’q = 0

We use |¢(0,t)| in the exponent because |¢|? is unchanged as distance increases.

A.5 Higher order z-derivatives of the solutions of the

NLS equation

Assume ¢(z, t) is continuous and differentiable at z and ¢.

/1
g = Z(Eq:ﬁlqlzq)-

! .
Gzz: = 1 (5‘1&:: + 2|Q|2Qz + qz‘Iz) )

10 r1 , 9 . 1,5,
= iy5 (t§qm +1i2]q[%q + %ngt) — lal*qe — lal*q + quqn,

1 *
= —Efmu - 2|f1|2Q‘tt - 2]Qt|2q - qu - |Q|4Q-

1 .
Gzzz: = 1 (59‘“2 + QIQIZQZ + q2qz) y
z

Nl 9 . ) . 9
= ziqtzztt + 23qu + 23"?z|2q + 23|Q|2(Izz + 27“?"}'2'2 + %qzqzz,
_ 1 1 2 2 2 * 4 9 li 1 2\ .
= i- [ ——que — 2lo*qu — 2|a)e — ;¢ — lal*q) +2i )i zqu+lal°¢)| ¢
2 4 it 2
+2 - 1 2 - 1 * 2 % 2% 2 1 ) 2 9 2
2i{ 50+ lal*q )| |—% 3%+ lal*¢" )| ¢ + 2ela)* ( — 7 uue = l7|°qee — 2]q:l%q

. [ /1 (1, . _ 1, ,

—atq" — lgl'q) + 2ig {z (ﬁqu + |Q|2Q)J [—z (5% + lgl*q )] + ig” [-—unu - 2lql*q;,
2 x *42 4 %

~2la.l’q" - ()2 q - lal'a"]

1 1 . . . . *
= 75 {—Zq‘mm - (24’:9’“(] + q?qt)t - (2¢:9"9u + 294, 9 + 2|9 qut), — (29’519’5[2
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x_x 1 x - .
+2qqu; + 200:02), — [3¢°0: (¢") +2°0°¢}] } - i5qnq" — 2igulal® - 2ilal’q
+z§|qn|2q +i|q’ a5, + ilql g + 2i]g|%q - %§|q|2qmz ~ 2ilq|%qlq" — 4ilg|*qu

. 2 2 -t 16 . 1 2 1 2 % 1 2 & B 1 2 x
—dig|ql®|q|® — 2dlq|°q + 2iq Z[Qttl + §|q| qqy, + §Iql g o +lgl”) — 179 G

—ig® (q7)* — 2i¢’|ql’ql, — 2ilal’qlal* — ilal’q,
. ]‘ 5 x 2 * 2
= -1 g%tntt + 5‘] @5 + 3G @ Gue + 7G| “que +

L, 11 3 1
+5(g)%g*g? + 3Iql4qu + §Iq|2qtm + 12]q)%qlq.)? + 2¢° (¢7)° + |9’ dqs, + 19 Qtttt]

5 * * *
§Q¢2qtt + 2Q’|Qtt|2 + 399 it + 999y + IQPQ

A.6 Numerical Error of the split-step Fourier algo-

rithm

Let D(Az)q = expli(Az/2)8?/842]q and N(Az)g = exp(iAz|g|*)g. By expanding the

exponential series, exp(z) = 1 + z + z2/2! + - - -, we have

ex i(é—z) i DL C0 R CX) P
p 1/ 92 g=4q 1 Qut 32 Qeeet 384 Qrerent :

Let § = exp(AzD/2)q. So, N(Az)D(Az/2) becomes exp(iAz|§|?)§, where

() ()

exp(iDr2li )i = [1+i/-\zlril2 X MG P4
y Az (Az)? (Az)3 . Az, (Az)?
I‘I|2 = IQ|2_3TQQu ) "y, T 1 384 QQttttM_{_?’Tq Gt + 16 I‘Ittlz
(AZ) (Az)? , (Az)® (Az)3
-1 178 S G Bitee — 39 = Gire T 128 Qe Qreee — 384 ——q" Querse +
2 e Az , ., (A2)? ,, Az Az) (Az)?
|QI2Q’ = |Q|2 ZTQQ% ( 32) qzqam +%-§—|QI2‘1¢¢ + (—S—QIQu|2 - Tlﬂzt]mz
(Az)? |
— 16 q;zt+....
4 x Az . 3Az
lgl'd = |Q|4Q—'&7q2|Q|2qu+ZTIQ|4Qu+"‘-

3% = lal®q+---
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By substituting |§|%d, |§|*d, and |§|3§, we have
e ians | 1 1 1 1., 1
exp(iAz{g*)d = g+iAz (IQI2q + _Qtz) - (Az)” (_Qtttt + ~qulgl* — =qhd* + —|QI4Q)
1 gp it T g duldl T g 2
. 1 1,, 1 1 1,
+?-(/-\Z)3 (—@%t:m - ‘3—2“'?2%& + §Q|Qtt|2 - ‘IEIQPQcm - Eq Qi
1 20 12, * 3 4 1 8 )
+14 lq] g 8Iql Gut 6Iql q)+-
Let § = N(A2)D(Az/2)q. Then,
- Az (z) a2 N (Az)2 1 (2)2 g N (Az)3 1 (z)-" Foxd -
s \2/az " \2/) 2\z) s "\ /) 31\2) a5 |?

. i 1 . 1 '
@ = ¢ +iAz (ZQttt + 2|q|%q: + Q2Q¢) + (Az)z “'3—2€Imu

D(Az/2)

1, 1,, 1 ., 1, 1 ., 3
+5049n + 79 G ~ 599 T ~ 5% 9 ~ 5!(1[ Qus — -z—lql @

—lal*gq;) + .

\ . 1 * *
qu = qu+ilz (Z(Rttt +2¢}q" + gl [* + 2lg|%qn + quhz)

1 1 . . 1 . 1,
+(Az)? (_3_2Qtttttt + 5‘];2% + GGt Qy, + ZQQsz - 5‘1 A AL

2 % 2

] * 1
—q QtQeet — 449 Qe — §|QI2Q'm¢ —-3lg|*q 4 — 6|9|QQ|‘1£|2

3
- §IQ| G

~¢*(g)* - lalg’q] + -

Gt = Qu +1i02 (‘i“i’tam + 64 qugu + 6¢elqe* + 6907 qu + 69aeq;, + 219) g
+gq) +
Guir = Guu +1Az (ifhum + 24|qel*qu + 60" g5, + 8¢ quawe + 1247}, + 12qiqu’
+8q4; qut + 8aqy + 2ql*quen + qzq;ttt) +-
Quaner =  Gueatte-

By substituting ¢, gy, u, and Gy, the solution of the split-step Fourter method for

propagation of one step Az is

- . . 1 1 1,. 1
D(Az/2)¢ = g+ 1Az (Iqlgq + '2'Qu) — (Az)® (g‘?tttt + lal*qu + |a:f*q + §qfq + §|ql4q)
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| 1 1 1 3., 3 1
“E(AZ)S [nghmu + ZQIQttlz + ZIQIz‘?Mt + gq Qg?z + ZIQI4Qtt + glqlsq

1,, 1, 1 ., 3, 5,.,.3
+79 90 + 10l gn + 50°0gum + 590 9w + 0’0" a] + Slal*alad’

15 .
] oo

A.7 Procedures to obtain the local error at Az% of a

fundamental solution of NLS

The followings are the procedures in Maple V (Release 4). By substituting the results

of gi, Qsty Que, and gy, into Eq. (1.13). We can plot the coefficient of the (A2)* term for

q(t) = sech(t).
> restart;
> q:=sech(t);
g := sech(t)
> qt:=diff(q,t);
gt := —sech(?) tanhtt)
> qtt:=diff(qt,t);
gtt := sech(t) tanh(t)® — sech(t) (1 — tanh(t)?)

> qttt:=diff(qtt,t);

gttt := —sech(t) tanh(¢)® + 5sech(t) tanh(¢) (1 — tanh(t)?)
> qttt:=diff(qttt,t);

gitt := sech(t) tanh(¢)* — 18 sech(t) tanh(¢)® (1 — tanh(¢)?) + 5sech(¢) (1 — tanh(t)?)?

> qttt:=diff(qtt,t);

gttt := —sech(t) tanh(t)® + 5sech(t) tanh(t) (1 — tanh(¢)?)
> gtttt:=diff(qttt,t);

gtttt := sech(t) tanh(¢)! — 18sech(?) tanh(z)® (1 — tanh(z)%) + 5sech(t) (1 — tanh(t)?)?
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> err:=I*x(-(1/6)*(qt~2)*qtt-(1/12) *q*qtt*qtt-(1/24) *q*qtt*qtt

> -(1/6)*qt*qt*qtt-(1/6)*q*qt*qttt-(1/24)*q*q*qtttt-(l/s)*(q“4)*qtt
> -(1/2)*(q"3) *qt*qt-(1/12)*(q"3) *qt*qt-(1/6)*(q"4) *qtt

> ~(1/12)*(q~3) *qt*qt-(1/6)*(q"7)+(1/6)*(q"9));

err ;= I(—% sech(t)? tanh(z)2 %1 — %sech(t) %12

+ %Sech(t)z tanh(t) (~sech(t) tanh(t)® + 5sech(t) tanh(t) (1 — tanh(t)?)) —

isech(t)z (sech(¢) tanh(t)* — 18 sech(z) tanh(£)? (1 — tanh(£)?) + 5 sech(t) (1 — tanh(£)?)?)
- %sech(t)" %1 — gsech(t)f’tanh(t)z - ésech(tf + ésech(t)g)

%1 := sech(t) tanh(¢)? — sech(t) (1 — tanh(t)?)

> p:=plot(abs(err),t=-5..5):

A.8 Solution of the couple mode equations for uni-

form Bragg gratings

From Eq. (3.1), we set d ¢(2)/dz = 0 for gratings with constant period,

e () (L) s o] ns
9 o ()R (D) s hian)

Substitution of Eq. (A.5) into Eq. (3.2), we have

2 2
SR, [( +22) | R=0 (A6)

dz?

Let exp(Az) be a solution of Eq. (A.6) and given that § = xgc + (1/2)[AF — d $(2)/dz].

AB\*
(Fﬁdc + ?) - |Kaclg} = 0,

A= [nac|2—r52,

AZ +

Al,'z = =+ lfﬂa‘;lg—éz.
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Let a = 1/|kac|? = 2. The general solution of R{z2) is :

R(z) = Ciexp{Mz)+ Coexp(laz),

= Cexp(az) + Cyexp(—az).
Substitution of R(z) into Eq. (A.5), we have

S = (ﬁ) [Ciaexp(az) — Craexp(—az)] — (-f—gl—) (ch + —Az—ﬂ) [C) exp(ae2)

ac

. +Ch exp(—az)],

- [(;_f) exp(az) — (%) exp(az)J C - [(;—:’) exp(—az) + (%) exp(—az)J Cy.

At z = L, the equations become

( R(L)J B ( exp(aL) exp(—aL) )
S(L) ) [~icexp(al) — Sexp(al)] [ke — [~iaexp(—aL) + & exp(—aL)] /ra
G,
(o)

C, i exp(al) exp(—al)
Cy [—ixexp(al) — Sexp(al)] /ka — [—iaexp(—al) + & exp(—al)] /Ka.

At z =0, we have

R(0) ( ] 1 V(e
5(0) \ (=i = 6) [hae — (=i +6) [k ) Cs

( 1 1 )

\ (—ia = 8) [itae — (=i +6) [muc |

-1
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exp(aL) | exp(—al)
[—ia exp(

al) - Sexp(al)] /ka —[—taexp(—alL)+ dexp(—al)]/Kac

R(L)
X .
S(L)

Therefore, the transfer matrix [T] in Eq. (3.7) is :

where

Ty =

Ty =

RN

—ta — 8) [kae — (—tx + 8) /Kac

X ( ~ [-iaexp(—al) + dexp(—al)| /ka —exp(—al) )

[ivexp(al) + d exp(al)] /Kac exp(al)
T Th
Ty Ty

exp(-al) +exp(al) (ﬁ) [exp(aL) — exp(—al)
2 o 2 ’

cosh(aL) — id sinh(al)/c.

(;:;) [~ exp(-aL) + exp(al)]

—iKac sinh(alL)/ca.

(Eiam ) {(ic + §) [—iaexp(—aL) + dexp(—al)] + (ta — J) [t exp(aL)+

dexp(al)]},

2
) (a 90 ) sinh(alL),
Qe

ik, sinh{aL)/a.

(i) [6 exp(—alL) +iaexp(-al) + taexp(al) — dexp(al)],

cosh(aL) + id sinh(al)/c.

|

-1
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A.9 Concatenation of two uniform Bragg gratings

Assume that a uniform Bragg grating has two sections with length 2z, and 2, where

z; # z3. Let [T1], [T2), and [T] be the transfer matrices of first section, second section,

and the whole grating respectively.
1 r

R(0) R(z1)
= [TI] 3
5(0) S()
R(z) - — R(z)
= (T3] ,
S() | ES
R(0) R
N - mim |
S(0) | - 5(z)
T = cosh (az) — i sinh(az )/ —1iKa sinh(az)} /o
ik, sinh{az )/ o cosh{az;) + 14 sinh(az )/«
cosh {az;) — i sinh(az;)/a —iKae Sinh(azg) fo
X
ik:. sinh{az,) /o cosh(azg) + 28 sinh(az,)/a
Because,
Ty, = cosh(az;)cosh(az,) + sinh(az) sinh(az;) — i(d/a)[sinh{az;) cosh(wz;)

+ sinh(c:zp) cosh(az1))],
= coshja(z + 2,)] — i sinhla(z + 2)]/c
Tis = (—#a/e)[isinh(cz;) cosh(az) + dsinh(az ) sinh(az;)/a + isinh(az) cosh(az,)
—§sinh(az,) sinh(azz) /o],
= —ikgsinh[a(z + z))/c.

Ty = ik, [sinh(az;) cosh(az;) + sinh(az,) cosh(az)]/a,
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= ik} sinh[a(z + 22)]/c.
Tos = (|kac|® — 6%)[sinh(az)) sinh(az;) + cosh(az,) cosh{az;)]/a? + i§[sinh(az; ) cosh(ez,)
+ cosh(az;) sinh{az)]/a,

= cosh[a(2; + 22)] + 6 sinh[a(z + 23)]/0.

Therefore, [T] [T3] = [T).
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