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Abstract

Over the last decade, the rapid advances in wireless communication technology
and enhancement of portable computers have led to an evolution of mobile database
applications. Typically, a mobile environment is built upon a cellular network which
is a combination of a back-bone wired network and a set of small wireless cells. In the
wired network, the database servers and the base stations are fixed in their locations.
In the wireless cell, the mobile clients dynamically make connections to the base
stations. To access information, a client queries one or more database servers via any
connected base station. The relationship among these three enfities could be roughly
viewed as a three-tier client/server architecture. The base station works as a middle-
tier to serve the other two entities. In this thesis, we generalize such an architecture
into a framework of Mobile Warehousing System (MoWS) and investigate issues
for improving the performance of client query processing in this new environment.

Very often, the population of mobile clients is huge compared with that of database
servers in the mobile environment. A server being accessed by numerous clients will
be overloaded. The query processing performance could not be guaranteed. In order
to enhance the performance, a common approach is to replicate data in distributed
hosts, from where clients can access information. In our research, we propose to
maintain useful information pertaining to a subset of databases, which is of common
interest to a handful of clients, in a form of materialized database view in the base
stations. We intend to equip with the base stations ability to help answering client
queries instead of merely directing the requests to the server; thus the server loading
can be relieved to a large degree. We term each base station, which serves as a data
repository for clients, mobile data warehouse.

One of the most important issues regarding data replication is data consistency
maintenance. The replicated data becomes stale when the source is updated. In

the scope of MoWS, we study a pull-based view update scheme for a mobile data
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warehouse to request differential changes from the source database servers. In order
to demonstrate the capability of addressing the view update anomaly problem due to
server autonomy and asynchronous database updates, the correctness and complexity
of our pull-based update scheme are studied.

In addition, we address the client query processing limitation over a narrow band-
width and unreliable wireless channel. Accessing remote database server over a wire-
less channel will make it suffer from a lot of communication overhead. The narrow
bandwidth amplifies data transfer latency while the unrelability causes a client oc-
casionally disconnected. To cater for this problem, client caching is recommended.
Most conventional caching schemes, such as page-based or record-based, are unable
to assist clients to determine if there is sufficient cached data to answer their queries,
thus forcing them to contact the server for possibly missing data. In this thesis, we
‘suggest the use of a serﬂantic caching scheme in which every query result associated
with a semantic description is cached in a mobile client as a data block. By reasoning
with the specification of an initiated query and the semantic description of the cached
data block, a client becomes intelligent to assert whether the cache can contribute to
answering the query completely and deduce what is missing from the cache. The main
drawback of our scheme is an introduction of dynamic cache granularity that compli-
cates the cache manipulation. We propose several cache management techniques for
our semantic caching scheme.

Shortly concluded, MoWS is a hierarchical data replication framework in which in-
formation in database servers is replicated in the base stations and the mobile clients
as materialized view and cache respectively. The strength of this design is that it
enables mobile clients to answer their queries with little dependency on the wireless
channel. In addition, mobile data warehouses are able to serve a mass of mobile
clients, thus sharing the server loading. To quantify the performance of MoWS, we

implement a prototype. We conduct a series of experiments based on the prototype,
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along side with the appropriate quantitative analysis. From the results, we identified
scenarios where our approach is beneficial, resulting in shorter response time, bet-
ter cache hit, smaller transmission cost and lower storage overhead. These results

demonstrate the effectiveness of our proposed schemes and the suitability of MoWS.
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Chapter 1

Introduction

Over the past decade, the advances in wireless communication technology and im-
- provement of low-cost portable computers have caused the emergence of a mobile
computing paradigm {24, 37]. In this paradigm, users can communicate with each
other with their portable computers while they are not required to stay in fixed posi-
tions and plug their computers to the network. This concept fosters a new direction
of personal computing development which is proposed by the consortium of several
world-wide I'T companies in Bluetooth specification [31]. The objective of Bluetooth
is to provide a standardized open platform to develop wireless network applications.
Those applications will enable users to access, or even control remote resources with
their hand-held computers (or probably the third generation mobile phone handset).
The most important feature is that users will be able to retrieve up-to-date informa-
tion anywhere at any time. Now, we are going to investigate the potential problems
brought about the mobile computing paradigm in remote resources manipulation and

research a new set of solutions.
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1.1 What Is Mobile Database?

Within the context of the newly emerged mobile computing paradigm, users are free to
roam about and are able to access remote database information over a wireless chan-
nel. In addition, the introduction of mobility capability has fostered and witnessed
the development of a new class of database applications. An underlying database sys-
tem supporting these database applications is called “Mobile Database”. There are
several motivative application examples. An investor can obtain timely up-to-date
stock information, vital for his/her investment decision in the rapid changing financial
market. Connectivity to a corporate database would allow a salesperson to demon-
strate and inquire product information and stock level during traveling. Navigational
data as well as traffic information could assist en route drivers in route planning and
route selection, as in the Intelligent Transportation Systems (ITS) [16, 40].

The network configuration typically adopted in the mobile database is outlined in
Figure 1.1. It consists of two main components [37]: a large back-bone wired network
and a collection of small wireless networks. The wired network connects database
servers and base stations, while an individual wireless network connects one base
station and a set of mobile clients. In the wired network, both database servers and
base stations are resided in fixed locations and communicate via a high speed data
transmission link with rate varying from 10 Megabits per second (Mbps) in Ethernet
to over 100 Mbps in ATM [24]. In a wireless network, a base station connects several
mobile clients with a wireless channel of several kilobits per second, typically 19.2
kbps, data transmission rate. T

Between wired network and wireless network are base stations which serve both
database servers and mobile clients as middle-wares. They could convey messages
from the wireless network to the wired network and vice versa. Because of decreasing
signal strength along the distance away from the base station, the coverage of a

wireless network is very limited. The area covered by a wireless network is referred



CHAPTER 1. INTRODUCTION 3

.’/""ﬁ-"\_.‘.‘
/[ Mobile ™,
i Client

-

7 (Miobile
Client N

| ( Mobile
Y Client
S

Database
Server

. Database
. Server

e

R

/’/.. \ W

Database
Server

Base
Station

Database

L Mobite B Gl |(“Mobite

I

L ((Mobile )/ , 4 ;
~ _ Client J / qullc Vi
y Client % S

i_sonne_ck:'a - .
(D --------- ) {Disonnected) A s

Figure 1.1: The Cellular Network Architecture

to as a cell. This network configuration, therefore, gains its name “Celiular Network”
as a number of cells are tightly packed together. The overall coverage of the cellular
network is expansible by incorporating more number of cells. This expansibility
feature provides a very strong foundation to large-scale mobile database applications
as well as world-wide mobile telephony services. For instance, GSM, TDMA and
CDMA support a telephony service around the world by their underlying cellular
structure.

Regardless of the presence of base stations, the infrastructure seems closely similar
to a conventional client/server database architecture. Database servers provide infor-
mation to clients. A client initiates a query to a database server, and the database

server evaluates the query and replies an answer to the initiated client. Then one
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would ponder, “Does it mean we can just reuse the existing mechanisms adopted in
the conventional environment in this new environment?” The answer is absolutely
“no”. Unlike the conventional architecture, the interaction of clients and servers is
now loosely coupled due to the clients being weakly connected in the wireless networks.
Moreover, the population of mobile clients would be very huge compared to that of
database servers. Imagine that a database server would be potentially queried by a

million of clients around the world through GSM. Such high network overhead and

an explosion of client population demands a set of new solutions.

1.2 Challenges in the Mobile Databases

The new issues of the mobile environment such as the large client population and the
underlying network constraints, dictate the needs of new techniques in the system
design and implementation. First of all, the database servers will be overloaded
as a mass of clients query them. This will greatly affect the server response and
hence the performance of client query processing cannot be guaranteed. Replicating
data in distributed sites is a feasible and practical solution. To a certain degree,
client querying secondary site instead of the server will relieve server loading. In the
mobile environment, base stations will be appropriate candidiate to have replicated
data since they are located in the reasonably beneficial position between clients and
servers. They can answer some of the client queries and reduces the amount of queries
forwarded to server. Then the issue to organize the replicated data in the base stations
and the way to maintain replicated data consistency becomes challenging. We will
discuss these issues in this thesis.

Secondly the network constraints in the mobile environment refers to the band-
width limitation and the unreliability of the wireless channel which imposes a lot of

communication overhead in remote client query processing. Narrow bandwidth leads
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to a long transmission latency. This, in turn, prolongs the response time. Unreliabil-
ity causes clients occasionally disconnected. It forces all communication activities to
be suspended and even terminated. Those low bandwidth and low relability factors
are the main bottleneck of system performance and they are not so influential in con-
ventional client/server environment. To improve the query processing performance,
the degree of network dependency of clients should be minimized. Client caching can
alleviate the problem by providing certain amount of data for local query processing,
However, most conventional caching schemes are item-based, that is, using a page or
a record as a caching unit. They lack semantic information about the data. Every
time when a query is initiated, a client itself cannot assert whether the cache can
provide sufficient data to answer the query; this will force the client to contact the
server for possibly missing data. This cripples the function of client caching. A new
caching scheme is highly desirable. In this thesis, we will discuss a new semantic
caching scheme which relates data according to its semantics into a data block.

In addition to those mentioned above, the emergence of the mobile database raises
other issues such as client battery power limitation, communication asymmetry and
client mobility. Client battery power limitation discourages clients to stay in an active
mode for a long period. Clients would have only to operate in a doze mode most of
the time in order to save power. The effect of battery power limitation contributes
to an asymmetric communication infrastructure in this environment. The bandwidth
of downlink from base stations to clients is always much larger than that of uplink in
the reverse direction. It favors client tuning, not transmitting. It, in turn, encourages
the use of broadcast to disseminate information of common interest. Moreover, client
mobility requires client location information management and it fosters a class of
location-dependent applications. Not all those issues are addressed in our study but

we consider them as a future enhancement of our existing works.
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1.3 Objectives of the Research

In our research, our focus is on addressing the two main problems mentioned in
Section 1.2. In order to alleviate server overloading problem, we propose to have
a database view derived from an arbitrary number of database servers, and it is
materialized in base stations. We call those base stations with materialized views
mobile data wf;rehouses. The warehouse can process queries initiated by clients within
the cell it serves. To maintain views updated properly, we derive a pull-based view
update scheme for the warehouses. The warehouse requests differential changes from
source database servers. We demonstrate the effectiveness and correctness of our
scheme in the presence of a view update anomaly problem, which arises due to server
autonomy and asynchronous database updates.

In order to relax the contention on the wireless channel and to equip mobile clients
the capability to process queries locally when they are disconnected, we investigate
the feasibility of a semantic query caching scheme. The benefit of the scheme is
that it can relate individual cached data blocks, each of which is associated with
a semantic description. Through reasoning with the specification of an initiated
query and the semantic description of a cached data block, a client becomes able to
examine if the query can be entirely answered using the cached data. We demonstrate
mechanisms for transforming queries to reuse cached data and to fetch missing data
from the server. However, our scheme induces the dynamic granularity of cached data
blocks that complicates cache manipulation. We propose several cache management -
techniques to deal with it.

Strictly speaking, materialized view and client caching are two different forms of
data replication. We apply these two forms in the mobile environment in a framework
of Mobile Warehouse System (MoWS). In the following chapters, we are going
to discuss the system design and the implementation of the prototype of MoWS.

To justify the suitability of MoWS, we evaluate the performance of each individual
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proposed scheme based on the prototype and the appropriate quantitative analysis.

1.4 - Thesis Organization

The remainder of this thesis is organized in 7 chapters. Chapter 2 will review previ-
ous literatures about mobile data management techniques, caching schemes and view
management techniques. In Chapter 3, we shall describe an overall picture of MoWS
with the detail system and operational specifications. In Chapter 4, we shall derive a
scheme for a warehouse to request differential changes to its materialized view which
is derived from single relation by giving its definition and its last update time. Fur-
thermore the scheme is generalized to handle a view derived from multiple relations,
no matter whether the relations are located in one database server or scattered in
multiple servers. In Chapter 5, we shall discuss the semantic caching scheme. We shall
outlinte how a query can be answered using the semantic cache, and discuss a new set
of cache management techniques. In Chapter 6, we shall describe the implementation
methodology and optimization techniques realized in MoWS. Next, in Chapter 7, we
shall present an experimental evaluation with our prototype to show the suitability
of the MoWS. Finally we shall summarize our work, conclude our contributions, and

state our future plan in Chapter 8.



Chapter 2

Related Work

2.1 The WIND Project

MoWS is one of the major components in our research group’s WIND (Wlreless
Networked Database) project. The objective of WIND is to investigate a series
of data management schemes, and to integrate those feasible schemes into a unified
framework in order to enhance the effectiveness and efficiency of query processing (or
even transaction processing) in the mobile database. The communication paradigms
studied include pure server data broadcasting [51, 52, 54] and mobile client/server
point-to-point communication [14, 49]. In broadcast schemes, clients are responsible
to tune required data from a broadcast channel that is shared among different clients.
Usually the broadcast carries information of common client interests. Over a broad-
cast channel, how data can be securely accessed by an appropriate client [70] and how
a client evaluates its query [69, 72| were studied. Besides, in point-to-point schemes,
the studies of two different client data replication schemes such as data caching in the
context of OODB [14, 53, 55, 71] and maintenance of materialized database views [49]
were conducted. Over a point-to-point wireless channel, clients access the database

server for their particular interests. The issues of maintaining replicated data con-
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sistency were discussed in [14, 71]. To avoid unnecessary message to confirm data
expiry, we adopt an adaptive refresh time estimation based on database update fre-
quency; that concept is borrowed from the idea proposed in Leases file [26]. Each
data is associated with a server estimated refresh time. When a refresh time of a
data expires, accessing that cached data would pay for the risk of reading stale data.
Extending from study of materialized database views in [48, 49], the issue about how
a client becomes able to self answer queries, and the support of query processing and

view maintenance for multiple database servers are our focus in MoWS.

2.2 Related Work in Mobile Data Management

The differences between mobile database and conventional distributed database were
discussed in [22], and the important impacts to mobile data management were also
discussed in [36]. Mainly, the problems are the narrow bandwidth, limited mobile
client power supply, client mobility and disconnection. They dictate the need of new
data management schemes, including broadcasting strategies, efficient data caching
and location management.

Data broadcast strategies include broadcast disk [1], broadcast indexing [68] and
broadcast organization [35]. Clients listen to a broadcast to capture their interested
information. Usually the broadcast is composed of information favored by majority, so
not all required information can be obtained. Supplementary to a broadcast is an on-
demand channel, or so-called a back channel which is a point-to-point channel. Over
the back channel, clients’ particular interests are obtained. In a practical environment,
the allocation of channels for data broadcasting and for on-demand access becomes
a key factor to the performance. This kind of channel allocation issue was studied
in [2].

Scanning an entire broadcast or accessing over a dedicated back channel to pick up
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required information would be time-consuming due to the lengthy data transmission
latency in the mobile environment. Client caching is highly recommended. One of
the earlier work studying the mobile data caching is [9]. Mobile clients maintain data
in their caches and listen to the broadcast to invalidate or refresh the stale cache.
The signature-based schemes has been proposed in [46, 50]. Besides, our research
group proposed an alternative cache management scheme [14] based on refresh time
estimation which can reduce communication overhead.

Location information management of mobile clients is another important issue. Ini-
tially it is emphasized for an efficient lookup mechanism in the mobile phone system.
To yield faster client position lookup, a hierarchical cellular network with location
register was suggested in [7]. It finds a client position by traversing the hierarchical
location registers, in which the register of each level maintains location information
of clients in a particular geographical zone, and the zone represented by each level
subsumes that represented by all its child level. Also the issue of querying the spa-
tial information in a mobile environment was discussed in [34]; example queries like
“finding a close neighbor and who is a doctor?” are considered.

To enable operations to be performed during client disconnection period is another
research issue in a mobile environment. With cached data in the client local storage,
some of the queries can still be processed even when a client is disconnected. In
Coda file system [42], version control is adopted during disconnected operation and a
reintegration of updates is performed upon reconnection. Supporting file access in a
mobile environment in the presence of weak connectivity has been introduced in later
version of Coda through a new “write disconnected” state of operation [58]. Coda,

however, is focused on file access rather than database record access.



CHAPTER 2. RELATED WORK 11

2.3 Related Work in Caching Schemes

Over the last few years, caching in client-server database system has been studied
quite extensively, mainly in the context of data-shipping model on which item-base
caching schemes operate. A client loads a set of data items from a server by explicitly
submitting an identifier list. As clients are equipped with powerful processors and
large storage devices, the query-shipping database rétrieva,l technologies have been
improved. A client passes a query of a predefined syntax like ANSI SQL [80] to a
server to gain the query result it wants. Hence, semantic-based caching becomes more

feasible. The survey of data-shipping and guery-shipping can be found in [10).

2.3.1 Navigational and Associative Query

A query is referred to as “navigational’ if its retrieval mechanisms is from one data
item related to another and so on. Usually it is common in the context of QODB.
For a query accessing different pieces of information, it first accesses from an object
and traverses one object’s pointers to other objects recursively until the réquired
information is obtained.

Totally different to the navigational query is the associative query. The associative
query models user requirement in a predicate. The predicate is usually expressed as a
set of boolean expressions. Bach boolean expression could be a comparison between
an attribute value and a constant, or between two attribute values. All retrieved

records are related and they should fulfill the predicate.

2.3.2 Item-based Caching

In item-based caching schemes [14], all data items are of fixed size, which are often
pages or records. Each item is a basic unit with a unique identifier. A page (record) is

assigned with a page (record) identifier. Storage, retrieval and maintenance operates
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at the client side based on those identifiers. Very often, those identifiers do not bear
any meaning to the corresponding items. Therefore a client cannot make use of it to
determine whether the local cache is sufficient to answer queries because the cache
contains a subset of a database. Without contacting the server, the client can assert

if there is missing result from cache.

2.3.3 Ttem-based Associative Caching

'To support the client self-answering the queries, index-based associative caching is
proposed that it supports the associative access by the item-based caching schemes.
The schemes require a client to maintain an index page (or for short, index) that
is a mapping between attribute values of data items to their corresponding item
identifiers. When an associative query is initiated, the client examines the predicate,
looks through an index to fetch local cached items and determine what data items
are missing. Then it requests the server for the missing items if any. This mechanism
1$ a comprehensive way to reuse the existing item-based caching schemes and support
assoclative query evaluation in the chient side. However, it has severe drawbacks.
First, it is only applicable for the exectition of an associative query whose predicates
are with indexed attributes. Second, the maintenance of index consistency will suffer

from very high index update overhead.

2.3.4 Semantic Query Caching

To improve the self-answering capability, cached data is collected and associated with
the semantics. Then cache retrieval and manipulation are based on the semantics.
Such new caching schemes are called semantic-based. One example is semantic query
caching {47]. In semantic query caching schemes, every query result is cached as a
unit with the description about what data is within that unit. Unlike index-based

associative caching, semantic query caching does not need to maintain an index as well
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as a huge number of identifiers. It maintains a relatively small amount of semantic
descriptions instead. Therefore, it does not pay for the overhead of maintaining index
consistency. To check whether a query can be answered entirely using the local cache,
query reasoning that examines the semantic of the cache and the requirement of the
query is used rather than index lookup.

The origin of semantic query caching is query reasoning in query optimization, espe-
cially multiple query plan optimization. Redundant database access and computation
are minimized as the common intermediate results are identified and evaluated [23]
as early as possible. Based on the similar concept, a query can reuse the result of
another query as its intermediate result to improve the efficiency. Techniques to de-
termine whether the result of one “conjunctive query” can be reused include query

containment and query equivalence [38, 56, 73].

Semantic Query Caching in a Centralized Environment

Semantic query caching schemes in centralized database systems [15] store query
results in primary memory to reduce disk access. Caching record pointers was shown
to yield better performance than caching the whole records. Obviously since a small
volume of cache storage can keep more record pointers than data records, it allows fast
record lookup. The idea is similar to index-based associative caching but the index
is dynamically created. However, caching record pointers might not be profitable in
a distributed environment, especially in the mobile environment when the network
bandwidth is low. This is simply because saving a remote pointer in a client’s cache,
be it in memory or storage, does not help in reducing the transmission overhead of
the remote records. Furthermore, the absence of data record in the cache will render

the cache almost useless in the event of a network disconnection.
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Semantic Query Caching in a Distributed Environment

Semantic caching schemes in a distributed database system were discussed in [20, 21].
In [21], records of a relation are dynamically clustered and stored according to client’s
interest. Tuples are mapped into a multidimensional semantic space. Each cluster of
tuples is cached as a unit and is described by a restricted condition. Comparing the
predicate of a query with the restrict condition of a cache, a client becomes able to
check what tuples are available and what are missing. Similarly, a relation is divided
along tuples statically into several chunks [20], according to some predefined ranges
on certain attributes. A query is processed by retrieving a set of chunks covering
those required tuples. The hierarchical indexing structure of chunks improves query
transformation efficiency. However, unnecessary overhead wouid be resulted especially
when only a small portion of chunk is used. Also we note that, very often, clients
will only request a certain subset of attributes rather than a whole tuple. This
restriction on projecting selected attributes were not addressed in [20, 21]. In a mobile
environment, the project operator is very useful in pruning unnecessary attributes
from incurring extra communication overhead and response time. In MoWS, we
extend the caching model proposed in [20] to cater for the conjunctive projection-
selection-join queries derived from multiple relations and multiple database servers.
In additional to those mentioned, the most related works include ADMS+: [64] and
A*Cache [10]. In [64], a ViewCache scheme that uses the notions of extended logical
access p;sztiz and tncremental access methods was proposed. Based on the ViewCache
scheme, query result cached in a client was discussed in [65]. Updates are logged
in the server. Any client initiated query reusing cache would explicitly call for cache
refreshment from the server. The server then computes and propagates the differential
changes to the client. Next, the A*Cache is using query results as caching units and
several optimization techniques were used in [10]. The cache refreshment is by server

eager updates notification.
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Furthermore, authors in [66] discussed the design of an intelligent cache manager,
named WATCHMAN, for caching query results in a data warehouse environment.

However, it is limited in the read-only environment.

2.4 Related Work in View Management

By associating a semantic description with each caching unit in a client cache, the
entire cache, in effect, can be regarded as a repository of materialized views in mobile
clients [77]. It is therefore natural to apply view management techniques to manip-
ulate the cache. Also in the warehouse, there are mainly a collection of materialized
views. 'To handle view management, two aspects need to be addressed. First, a stale
materialized view must get updated correctly and efficiently. Second, storage should

be efficiently utilized.

2.4.1 View Updating

Existing view update mechanisms include view recomputation and incremental view
update [49]. View recomputation regenerates a new view; overwrites the stale one
every time. Incremental view update incorporates the differential changes to a view
since it is Jast updated. Usually, database update in the mobile environment is quite
infrequent [33], thus the latter approach is more favorable since the transmission
overhead of small view ch-anges should be less than that of an entire new view. Every
time a view needs to be refreshed, a client will send the view definition to the server
to compute and deliver the changes.

View update mechanisms could be roughly classified into immediate, deferred and
snapshot [18]. An immediate view is one that is updated at once when there is a
change at the server. Very often, maintaining an immediate view requires a source

to notify a client whenever modifications are performed [12]. A deferred view is one
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that is updated on demand when there is a need {17], say, a query accessing the view.
Finally, a snapshot view is one that is updated periodically [57], such as hourly or
daily. In the mobile environment, maintaining an immediate view is difficult because
it is difficult for a client continuously listening to the database server to keep track
of all updates, and for a server to contact those disconnected clients. There might be
some updates missed {9]. A deferred or snapshot view is, therefore, more appropriate.
In MoWS, we intend to maintain the materilized view when there is a need, so deferred
approach is chosen.

Recently, there have been many algorithms proposed for incremental view updat-
ing [8, 29, 39, 45, 61|, addressing a relational database model. The idea of incremental
recomputation of a relational expression is proposed and the notions of insertion set
and deletion set for efficient view updating are defined in [61] and supplemented
by [27]. In [8], each tuple of a relation is associated with a tag, whose value is either
“ves” or “no”, indicating whether a tuple of a relation participates in deriving a par-
ticular view. The objective of using tags is to eliminate unnecessary message passing
in a distributed environment if the database updates only involve the tuples with a
“no” tag. The problem with this approach is that for each relation, it dedicates one
extra tag attribute for each view derived from that relatioﬁ. However, it is inflexible
when there is a redefinition of views [28] and a change in the number of views that
will lead to the modification of the database schema. In [39], the changes in a relation
are determined with the help of a timestamp and a backlog relation. A timestamp
is associated with each tuple. Its value is set to the transaction time of an update |
operation. A backlog relation is a file containing the operation detail on each tuple.
A vacuum facility is provided to prevent the backlog relation from infinite growth.

The use of a count attribute associated with every resultant tuple of a view, indi-
cating the number of tuples in the deriving relations that produce the same tuple in

the view is mentioned in {29]. A modified union operator, “&”, is also provided to
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operate on two sets of count associated tuples. The count attribute together with the
W operator ensures the correctness of a materialized view. In our algorithm, we will
also make use of the count attribute and the & operator.

The differential log file to handle updates on a materialized view is proposed in [67].
A log file is similar to the backlog relation in [39]. It records the types of operations
and the changes on a tuple. During view updating, the file is scanned and the view
changes are calculated. This work, however, only focuses on a restricted set of view
definitions and it requires that tuples are assigned unique identifiers. Similar log
scanning techniques for view updating can be found in [45].

In a warehouse, queries and view updates can be carried out at the same time.
To resolve the conflict and maintain the correctness of the query results, an on-line

warehouse view maintenance is proposed {62].

2.4.2 View Update Anomaly Problem

The view update anomaly problem was first addressed by [83] and subsequently inves-
tigated in {4, 84] and they discussed their algorithims in the context of five coherence
requirements, namely, convergence, weak consisiency, consistency, strong consistency
and completeness in the order of increasing strictness. The anomaly problem emerges
owing to server autonomy and concurrent asynchronous database updates. All these
proposed approaches are applied in a situation where the database server has to no-
tify every client whenever modifications are performed. Then each client formulates
a query to ask for relative changes to the view [12]. In this environment, the database
server has to be aware of which views are derived from it, and it has to be always
connected to.

In [83], the ECA is proposed. When there is a pending request not yet replied from
the server, a client formulates a query to ask for view change with compensation which

cancels out the effect contributed by the last update. Extended from the single server
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model, a family of Strobe algorithms are discussed in [84] for a view derived from
multiple servers. Then in [4], the SWEEP algorithm is proposed to do compensation
in the client side; an improved algorithm called Nested SWEEP buffers database
acknowledgement and carries out view updating satisfying strong consistency. The
detail discussion and comparison of those proposed algorithms is in {82]. Unlike these
works, our approach to update a view derived from multiple servers needs to ask
for changes from individual servers and performs a sequence of propagation, to be

discussed in Chapter 4.

2.4.3 Storage Management

As discussed in [30, 41, 81], a set of sub-views are selected to be maintained instead
of their final complete views. Obviously, admitting all views independently (full
materialization} can provide the best performance in processing queries. However,
there is a high possibility that there exists substantive overlapping sub-views among
different views. Full materialization will thus incur a high storage overhead. With
any materialized view updating, redundant data transmission is required.

By contrast, there is a cost saving alternative by separately storing overlapping sub-
views and non-overlapping sub-views termed semi-materialization [41]. Original views
become virtually defined on the materialized portions. The mixture of materialized
and virtual views are arranged in a hierarchical structure [18]. Existing heuristic
approacheé to decide which views to be materialized [30, 81} are based on a static
environment where all queries and views are predefined and access probability is
known. They are inappropriate in a mobile environment, since they do not consider
any storage capacity constraint which is a critical limitation of many mobile clients.
Researches in the WATCHMAN project [66] studied their scheme including cache
replacement algorithm and cache admission algorithm. It showed that their approach

outperforms traditional LRU replacement scheme. In [20], replacement scheme is
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extended to cater for the mobility of the mobile clients. However, both of them did
not address cache update in their contexts. In our work, we consider the effect of
storage capacity on caching and quantify the effect of applying replacement policy

for cache management.

2.5 Related Work in Other Areas

Besides those issues discussed before, we considered others that are related to our work
such as data replication, relation fragmentation and allocation, as well as concurrency
control in the distributed database and multidatabase query optimization and query

caching.

2.5.1 Data Replication

In a distributed database system, data could be replicated in several sites to reduce
communication traffic cost. Very often, the decision made on data allocation is based
on historical access information. In a rapid changing environment, an adaptive data
replication scheme was proposed in [78]. The algorithm dynamically changes the data
replication and data allocation during run time. The cost model of the algorithm
considers overall read-write access in the whole system. When the frequency of read
access gets higher than that of write access, more data replica is preferred, otherwise
less replica is desirable. In addition, the concurrent data replica access is controlled bjf

means of some algorithms like typical majority consensus [75] and quorum voting [5].

2.5.2 Relation Fragmentation and Fragment Allocation

Relation fragmentation is to partition a relation into sub-relations such that the por-

tion of the relation could be separately allocated in sites where there are a lot of
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accesses initiated. That intends to reduce communication traffic between the op-
eration site and data allocation site. The way to make a fragment along tuples is
called “horizontal” while along attributes, the fragmentation is named “vertical”.
Very often, we use both together and call it “hybrid” fragmentation. For semantic
cache management in MoWS, a coarse query result would be partitioned into smaller
pieces, that is similar to the idea of fragmentation but in our approach, partitioning

is dynamically performed.

2.5.3 Concurrency Control

In our current work, we assume query processing and view updating are operating
concurrently in the warehouse, the conflict and the inconsistency problem are resolved
by using the scheme proposed by [62] that employs the ideas of two phase locking
mechanisms and multi-version control protocols [59] in the distributed database. Be-
sides, in the distributed database, other concurrency control protocols have been
proposed and proved to produce serializable histories. The two well-known protocols
are strict two phase locking and timestamp ordering [44]. To enhance concurrency,
relaxed serializability and multi-versioning were suggested. One of the proposed re-
laxed forms of serializability is epsilon serializability (63, 79]. The way to isolate the
two main related issues, multiversion control and concurrency contro! in distributed

databases, was discussed in [6)].

2.5.4 Multidatabase Query Optimization and Query Caching

Integrating multidatabases is a popular trend in a distributed database environ-
ment [76]. Since the data organization among the databases might be different,
to provide a unified access interface, an additional middle-ware called mediator is
provided [60]. Through the mediators of different servers, client application accesses

information as if from one single database. When a query is posed, a mediator for-
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mulates query plans for executions [32]. On the multidatabase access model, query
caching is proposed in [3, 25} and we borrow the idea in client query processing with

semantic caching and mobile data warehouse performs like a mediator in MoWS.



Chapter 3

System Model

The MoWS is developed upon the cellular network configuration. Mobile clients ini-
tiate queries to a base station which maintains a materialized database view derived
from multiple databases, serving as a mobile data warehouse. Each client also main-
tains a cache for self query processing. This forms a hierarchy of data replication. We
term this a framework of ‘Mobile Warehouse Systern’ (MoWS). Before exploring
much detail, we would like to outline the picture illustrating the system and operation

models in this chapter.

3.1 The MoWS Environment

In the MoWS, there are three types of entities: mobile clients, base stations and
database servers. Each mobile client has processing power and non-volatile memory
for query processing and caching. Each base station maintains a copy of client inter-
ested paft of database from database servers in form of a materialized view and it
serves numerous mobile clients. We refer this base station as a “mobile data ware-
house”. Each database server provides remote information access. The following

describes the characteristics of the environment.

22
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Autonomy: Mobile clients, warehouses and database servers are assumed to be au-
tonomous. FEach database server operates independently from one another.
We assume there is no global update transaction operating on two or more
servers [4]. Any update operation does effect on one server only. On the other
hand, mobile clients are neither aware of other mobile clients nor of the cache
contents of other clients. Each mobile client contacts solely with a local ware-
house via a dedicated wireless channel in a wireless cell. In addition, the re-
sponsibility of a warehouse ié to serve mobile clients and to contact server for
view updating. The materialized view of each warehouse is independent from

that of others.

Global Clock Synchronization: Although all database servers are independent,
we assume all their activities are synchronized using various global clock syn-

chronization algorithms [19].

Database Model: We assume that in the environment, all database are of the rela-
tional model. In addition, we do not make any assumption on the concurrency
control or recovery mechanism in database access from a database server. We
just require that when accessing a database server or a warehouse, the consis-

tency of database state must be guaranteed.

Query Evaluation Capability: The mobile clients, warechouses and database
servers are each assumed to possess query evaluation capabilities. When data
is not available, query could be passed from clients to the warehouses and from
the warehouses to the database servers. This feature exploits the utilization
of resources of clients and warehouses, and parallel query executions. To a
certain extent, workload from database servers is shared among mobile clients

and warehouses. The overall performance can, therefore, be naturally enhanced.
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Stateless Database Servers and Data Warehouses: The data warehouses and
database servers are assumed to be stateless. Database servers do not keep
information about from which a materialized view is derived. Warehouses do
not maintain information about what data is cached in mobile clients and where
the clients are currently located. This property reduces the mobile client state
information storage and management overhead in the warehouses. It minimizes
the cost in maintaining the state information consistency after clients recover

from disconnection.

FIFO Message Passing: The message delivery follows the first-in-first-out disci-
pline. The requests submitted by a given entity first are expected to be arrived
at the destination first. Also the replies received by a given entity is in the same
order as the corresponding requests it submitted. These characteristics can be
achieved by associating a sequence number in all request/reply messages, or by

means of logical clock or vector clock.

Sequential Client Query Initiation: Of a client, a new query initiation is permit-
ted only after the previous one was finished. Each client query is supposed to
be atomic, i.e., two consecutive queries are supposed to be independent. This
assumption does not mean that there is no concurrent query initiation in the
environment. Queries originated from multiple clients can reach a warehouse

nearly at the same time.

Disconnection: We assume that wireless network disconnection does not oceur
when a client query is being processed. This assumption will be relaxed in
future but not in this thesis. We also assume that the disconnection between a
warehouse and database servers in the wired network seldom happens or even

the disconnection in the wired network lasts for only a neglectable short period.
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3.2 Formal Specification

3.2.1 Workgroup

In the mobile environment, there is a set of database servers, DS = {DS§,,DS,, -,
DSipsi}, a set of base stations, working as warehouses, W = {W, Wy, “Wiw} to-
gether with a set of mobile clients, MC = {MC, MCs, - -, MClac}. We consider
an abstraction of a cooperation among multiple database serves, one warehouse and
a pool of multiple clients as a workgroup w. Formally w is represented as a triple
<MC,,,W,,, DS, > in which MC,, (€ MC) is a set of mobile clients who are served by
warehouse W, in a wireless cell, while W, maintains a materialized view derived from
DS, (€ DS) which is a set of database servers. Notice that in one workgroup, there
is only a warehouse. Without loss of generality, we will focus on the an operation of

a workgroup in the following discussion.

3.2.2 Relational Database Model

Qur research considers a relational database model. In a database DB, we assume
there is a set of base relations, i.e., DB = {R,Ry, - -,Rjpg/}. Each base relation R;
is a collection of tuples defined by a scheme A; of n arbitrary attributes, i.e., 4; =
{@i1,0i2," - ain}. A group of attributes called key attribute, K; C A;, is used to
identify a tuple in the relation. Correqunding to each attribute of all tuples the
value domain D;; of an attribute a;; denotes a set of valid values. Given a tuple r
of a relation Rj, its value denoted by r{a;;] should be within D; ;, i.e., r[a;;] € D; ;.
Intuitively each tuple of a relation R; can be regarded as a point in an n-dimensional
space, D;; x Dj -+~ x D;,, in which D; ; will constitute the £ orthogonal dimen-
sion. Then a subset of relation forms a smaller n-dimensional space, which is called

the semantic subspace.
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3.2.3 View Definition and Query Specification

In this stage, we consider the definition of a materialized view maintained in a ware-
house to be of a conjunctive projection-selection-join expression {43] (that operand
relations could be located in different database servers). Its formal expression is as

follows:

v o Tay (Ocond, (B1 M Ry X - M R,,))

where Ay Is a subset of attributes from all relations, i.e., 4y C A where A = U™ A;.
The Condy is a list of predicates in a conjunctive normal form; (v(a;) € dvq) A
(v{az) € dvz) A (v(aga) € dv4), generalized as A (v(a;) € dv;) in which v{a;) is
a value of an attribute a; and dv; is a sub-domain of D;. Therefore, the values r[a;)
of a retrieved tuple r should be equal to one of elements in dy;. Unless specified,
otherwise each dy;; is defaulted to D;. A condition Condy is said to be satisfiable if
all value domains are non-null sets. A view defined with a non-satisfiable condition
results in no tuple. Here, the join operation is supposed to operate on a chain of
different relations. No cyclic nor tree join is taken into current consideration but we
will study these kinds of join arrangements in our extension work.

Further, we consider the specification of a client query @ which is evaluated on the
materialized view in the warehouse, is expressed in a conjunctive selection-projection

format, too:

Q = WAVQO-CondQ (V)

where Ag is a subset of attributes of the view, i.e., Ag C Ay, Condg is a condition of

generalized expression, /\E’:‘{l(v(ai) € dg;) and its operand is the materialized view,

V in the warechouse.
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3.2.4 Database Update

Not only specifying the view definition and the query specification, we also concern
the specification of database update operations. Each database update makes changes
to a relation in a database server. It could be in general an insertion, a deletion or
a modification. First, for an insertion, /ns, a new tuple is added into a relation R;,

that is,

R; « R, U {{value, value,, - - -, value 4, }}

in which each value, (1 < z < |A4,|} is a value within default value domain of an
attribute a,, that is, value, € D;;. Second, for a deletion, Del, a set of tuples
are removed from a relation R; as they fulfill a certain selection condition and it is

expressed as

Hri — R: - (UCondpeg(&))

[Ag

i=1(v(ai;) € dpe;) and dpe; € D;. Third, for a modification,

where Condpe 1s A
Mod, certain attribute values of some tuples in a relation R; satisfying certain criteria

are altered. The operation is

ﬂilj::.lgjg]A.-]:ai,ijaluej (UCOndMod (Rl)) :

where 9 is an update operator and condition Cond s,y is /\L’l‘i (v{aij) € daoaj)-

3.3 Workgroup Architecture and Operatioh

3.3.1 Overview

The overview of a workgroup architecture is shown in Figure 3.1. Within a wireless
cell, a mass of mobile clients are served by the warehouse providing them a material-
ized view, which contains common client interested database items, derived from mul-

tiple database servers. Conceptually, the workgroup architecture can be regarded as
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two coupling parts: a warehouse cooperates with multiple deriving database servers
to maintain a materialized view in the wired network, and mobile clients initiates
query to the warehouse, through which clients access the materialized view as if they
retrieve information from the servers via a dedicated point-to-point wireless channel.
When a client query arrives, the warehouse serve it with the view. To update the
cache contents, we utilize the view maintenance mechanism proposed in warehouse
view maintenance. In addition, client cache enables self query processing. In the
following, we will outline the operation model of these two parts in two subsequent

subsections respectively.

"\ Warehouse

View Update View Update
Request f x Request

Change Change

Database Database . . . Database Database
Server 1 Scrver2 Server n-1 Servern

Figure 3.1: Workgroup Architecture
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3.3.2 Warehouse View Maintenance

We assume that the warehouse materializes a view from several stateless database
servers. Due to the autonomy of servers and asynchronous concurrent database up-
dates, a view update anomaly problem arises [83]. To address it, existing view update
mechanisms are based on server-push technology that requires the warehouse always
listening to the server notification. They syﬁchronize the updates and view update
events based on the order of server notifications in FIFQ channels. However, we
have considered that database servers could be stateless; they do not know which
warehouse maintains a view derived from them. They could not actively inform any
entities about the database changes. Thus, complementing these push-based mech-
anisms, we derived a pull-based view update mechanism, in which a warehouse asks
the servers about the changes. The initiation of the requests can be carried out on
demand basis or periodically. Our pull-based view update relies on timestamps and
it is based on an assumption that there is some clock synchronization algorithm to
order the database activities. Before detail discussion of our approach in Chapter 4,

we consider the following example to illustrate the view update anomaly problem.

Example # 3.1
We consider at the very beginning, there are three database servers, )5,, DS, and

D53 having relations Ry, Ry and Rj respectively. The contents of the relations are:

R R, R;

Gi,1 412 Gz, (22 @31 Q32 0G33
1 3 3 7 ) 6 3
2 3 4 ) 7 8 8
3 4 0 1 6 4 8

The materialized view, V', maintained in a warehouse at time ¢ is defined as

Tar .32 (Fla(arn€{1,2))A((as2€(5,00}) (Ri Moy a=asy R2 Moy p=ay, fs)). Its content
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should be:
v
Q az das
1 7 8
2 7 8

Notice that this initial view content is correct as it can }eﬂéct the current content
of database servers. Suppose at another time t” (¢’ < t"), the warehouse contacts all
servers for view updating, but there is only one database DS) that has been changed,
it notifies the changes as a deletion of a tuple {2, 3} plus an insertion of tuple {2,4}.

At that time, the contents of all relations are:

R, R, R
a1 Q12 Q21 Qa22 G311 G32 Q33
1 3 3 7 ) 6 3
3 4 4 9 7 8 8
2 4 0 1 6 4 8

Based on the DS)’s notification, the warchouse sends two queries to DS;: Ry M
{{2,3}} and R, X {{2,4}} to determine the corresponding changes. Then DS, evalu-
ates the queries and delivers the answers: {{2,3,3,7}} and {{2,4,4,5}} to the ware-
house. With same mechanism, the warehouse poses the queries Ry X {{2,3,3,7}}
and Ry ™ {2,4,4,5}} to DS;. Unfortunately, before the queries are arrived at DSs,

the contents of DS, and DS; are changed individually. Their new contents become:

R, I 37 R
a1 Q12 Q21 G22 Q31 Gz2 Q33
1 3 3 7 7 3 8
3 4 0 1 6 4 8
2 4 4 6 6 7 3
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Thus DS3 determine the results as {{2,3,3,7,8,8}} and {} respectively. After pro-
jecting out the required attributes, the net change of deletion of {{2,7.8}} and an
insertion of nothing is determined and incorporated into the current view. Then an

incorrect view content is resulted:

v
; daz a4z
1 7 8

Notice that the correct view corresponding to the contents of all relations at time ",

that means the correct view content, should be:

V
a, a2 Q3
1 7 8
2 5 6

The main causes of the problem is asynchronous database updates in DS; occurring

during view updating.

3.3.3 Client Caching

Next we discuss how the processing of a client queries performed, and we briefly
describe the idea of a semantic query caching scheme in MoWS. Every time after a
query is processed, the result is cached. Since it covers a portion of the materialized
view in the warehouse from which it is derived, the stored result is referred to as a
“cache fragment”, which is the basic caching unit. To describe the data contained
therein, each cache fragment is associated with a semantic description that is exactly
the expression of a query yielding the result as it is evaluated. Most of the time,

the description of the entire cache (cache description), in turn, is a collection of
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semantic description of all cache fragments. In addition, for management purpose,
each cache fragment 1s associated with a summarized profile of access pattern, control
information, such as the size of the cache fragment and its last update time. Usually
the profile is condensed into a single value as replacement score for the sake of cache
replacement.

When a wireless network is temporarily not available, no query of the client will-
be submitted for evaluation. The client cannot conduct any communication activities
and has to evaluate queries using local cache only. When the client examines that
all required data for a query is available in the cache, it answers the query locally
and the query is said to be completely self-answerable. However, when only a portion
of a query can be locally evaluated, the query is said to be partielly self-answerable.
Sometimes, if the data requirement of user applications is not so strict, partially seif-
answerable queries would be regarded acceptable. For example, looking a restaurant
near the current location pf a mobile client does not dictate complete result, but only
"reasonable” results.

When the wireless connection is available, the mobile client can initiate a query to
the warehouse together with the cache description. The purpose of sending a cache
description is to inform the warehouse what data is in the client cache. Based on the
cache description, the warehouse transforms a query into a semantically equivalent
construct of sub-queries, some of which could be evaluated in the client and some

-are required to be executed in the warehouse. Also, the warehouse determines the
updates to the client cache so as to maintain cache consistency. Meanwhile when the
query is being processed in the warehouse, the client pre-loads some possibly required
cache fragments from the local cache. After the completion of query evaluation in the
warehouse, the information of query transformation, cache miss results and changes
to cache fragments are delivered back to the client. The changes to cache fragments

are the differential changes to be incorporated in the corresponding cache fragments.
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The cache miss results are the required data for the query that are not available in
the cache. The information of query transformation is a piece of control information,
which guides the client to construct a complete query result from the existing cache
fragments that are loaded from the local cache and the cache miss results. Having
received the reply, the client refreshes all cache fragments and then constructs the
query result. Next, certain cache miss results are cached for later use requiring the
cache to accommodate them. The important issues in the semantic query caching
scheme like query transformation, cache coherence and cache storage management

will be discussed in Chapter 5.

3.4 Chapter Summary

In this chapter, we gave an outline of the characteristics of MoWS environment and
stated our assumptions. We then formalized the system model in several aspects,
the definition of a workgroup, relation database model on which view definition, and
query specification as well as database update were discussed. Further we briefly
described the operation of a workgroup and outlined the idea of several important

issues to be explored in next 2 chapters.



Chapter 4

Warehouse View Maintenance

View maintenance is a very important issue in MoWS. In our model, the database
servers are assumed to be stateless; they are not aware of existence of a warehouse and
of its view contents. So to update a materialized view, we will discuss a pull-based
view update approach in this chapter. When there is a need, say, a new query that
demands the most recent results is evaluated on the view or periodically, a warehouse
sends its view definition to servers for determining differential change.

In the following, we will first outline how to enable a database server to determine
the change to a materialized view provided that a view definition and a last view
update time are available. We will then discuss the way to update a materialized
view derived from more than one relations in a single server. We will further extend
the basic mechanism to our WAVE algorithm catering for updating a view derived

from multiple servers.

4.1 Stateless Server

All database servers are assumed to be stateless. They do not maintain warchouse

information. In order to equip a server with a capability to determine the change of

34
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the underlying database with respect to a materialized view definition, a special view
update scheme is required. In this section, we will discuss the use of two time tags,
creation time tag and deletion time tag in relation change determination.

In the database server, a pair of relations are used instead of a single base relation.
They are called currency relation and history relation. The currency relation contains
tuples describing the current database state while the history relation collects deleted
tuples removed from the currency relation. Remember, all client queries are evaluated
only on the currency relation. The function of the history relation is to reconstruct
the past database state, that is useful in the context of a temporal database [74]. The
currency relation is derived from the base relation whose schema has n attributes.
It has appended an extra attribute called creation time tag, ¢r, which records the
msertion time of the associated tuple into the currency relation. The new schema
could become {a;;.a;3, - -,0,r,c7}. For notational convenience, we retain R&; and A,
representing the currency relation and its schema respectively. Corresponding to
the currency relation, a history relation denoted by R; has similar schema A; with
yet another one extra attribute called deletion time fag, dr, so the schema becomes
{@i1,0i2, - 6in,c7,d7}. The deletion time tag is to record the deletion time of the
associated tuple removed from the currency relation into the history relation. To
limit the growth of a history relation, a vacuuming facility is employed to purge the

old tuples periodically [39].

Example # 4.1

As shown in Example # 3.1, relations are stored in separate database servers. Each
of them is substituted by a pair of currency relation and history relation. We assume
that the creation time tags of all tuples in the currency relations are set to # and all
history relations are initially empty. Then the contents of the currency relations and

the history relations of individual servers are presented:
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DS, : R, R
@11 G CT ajy ap cr dr
13 [Empty]
2 3t
3 4 1

DS, : R, R
a) G2 CT as) Gz2 cT dr
37T i [Empty]
4 5 1
0 1t

DS; . Rj Ry
@31 a3z G333 CT az,) G3z2 a3z cT dT
5 6 3 & [Empty]
7 8 8 &
6 4 8 &

O

Updates in a database server could be either an insertion, Ins, a deletion, Del, or
a modification, Mod on individual currency relations. Insertion causes a tuple to be
added into a currency relation whereas deletion causes a tuples to be removed from a
currency relation to the history relation. In our approach, modification of a tuple is
considered as a deletion of the tuple instantly followed by an insertion of a new tuple
with modified values. Therefore we concentrate the discussion on the insertion and
deletion operations. Each such operation transforms the database from one state to
another. For notational convenience, we denote the content of a relation R;, at time
t as Rf, while R; will refer to the relation at the most current time now, i.e., RI%.

A tuple inserted into R; is denoted as r;,;. The creation time tag of rj,, is au-

tomatically set to timestamp of the insertion, tyn;, i.¢. Trns[cT] = trns. Similarly, a
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tuple deleted from R; is denoted as rp.. The deleted tuple, 7 p.;, will be removed
from R; into the corresponding history relation R; and the deletion time tag is taken
from the timestamp of the deletion, tpe, i.€., Tpa[d7] = tpey- As modifying a tuple
is treated as a deletion-insertion pair, modifying any attribute of a tuple rpoq of R;
into 7,4 results in moving . to f{,-, followed by inserting a new tuple 7, , with

the new attribute values into R;.

Example # 4.2
Suppose there are three update transactions T, at time ¢;, 73, at t» and T3, at
{3 performed in three database servers where ty < ¢| < tp < t3. They are
Begin Transaction 77, on DS,

Ry & Ry~ (0y(a;.)ef2)rvtar2)eia (R1));
Rl - Rl U {2,4},

End Transaction 73 ;

Begin Transaction 75, on DS,
Ry « Ry~ (0y(az)e(a) (R2));
Ry + RoU {4,6},

End  Transaction T,

Begin Transaction T3, on DS;

19&3.1 —6,a3 247 (Uu(a;;.l)E{5}/\1:(03,2)E{ﬁ}/\v(a3l3)e{3} (R3))1
End  Transaction 13,
After the transactions are executed, the contents of the currency relations and the

history relations are changed. The contents of the relations become:
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DS, : Ry R,
a1 Q12 CT i1 @ cr dT
1 3t 2 3t 4
3 4
2 4 4

DS, : R, | R,
a1 Q23 CT Gy Q29 cT dr
3 7Tt 4 2 ty t2
0 1 %
4 6 53

DSy : R; Rs
031 Q32 a3z CT az) 4azz Q33 cT dT

7 8 8 o 2 6 3 to iy

4.2 View Updating for a Single Relation

To update a materialized view, we should first study how to deduce the change of a
relation in a database server since the view was created/lastly updated. Above all,
we first introduce two terms called insertion set and deletion set with respect to a
particular reference time, {,.;. The insertion set of a relation R;, denoted as At,.c;Rig
is a set of tuples currently remaining in R; and inserted into R; after {,.;. Similarly,

the deletion set of a relation, R;, since t,.s is denoted as 7., f;. It is defined as

ref

A
the set of tuples created before ¢,y but removed from the relation after t..;. Tuples

belonging to these two sets could be easily identified by the creation time tag and
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deletion time tag:
R; = {r € Ri|r[cr] > t,ef}, and

VI“EJ’Ri = ﬂ-/j:;'f{dT} ({T € R’i|T[CT] < trgf A T[dT] > tref})-

Atre}'
‘The tuples belonging to the deletion set do not contain the deletion time tag. However,
for clarity, we will leave out the outer projection operation on (4; — {dr}) in the
following discussion. With definitions of A, R; and 7, , Ri, we can derive the

relationship between Ii; at a particular time, ¢, and R; at time ¢,.5, where t > t,, 7 by

t tre
Rip = RI' f_ vtrefR’: J AtrefRi? or
Lre ]
Ry = R UNL, R -, R since A, R; N7y, R; = 0.

Inversely, the relationship could be

ref i3

fre ¢
Ri L Rip U vtrefRi — AtrefRi'

R = R = D RiU VR, or

Example # 4.3
Suppose at time t” (where t; < ' < t; < 1" < {3 such that only T}, was executed
and view was created at ¢'), the change of individual relations in different database

servers with respect to time ¢ are:

DSy : ApRy = {244}
vely = {23t}

DSy: AyRy = 0
Vely = 0

DS;: NyRBy = D
veRs = 0
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To enable a server to determine the change, each view V7 should be associated with
a timestamp, V.tirne, to remark the creation/last update time. Thus, when refreshing
the view, the definition as well as the timestamp should be supplied to the server.
For the view V derived from a relation R; with a definition, 74, (Condy(R;}), to be

refreshed at time ¢,,440., We can have an updated view definition:

Viepdate = 74 (0condy (RY"™ — VviimeRi U Dvgime Ri))

in which R; = RY""™ — v jime Ri U Dvigime Ri. By distributing the relational algebra

operations over the expression, the view definition can be changed to :

Vtupdate = TrAV (JCOndv (R:/'ttme)) — TFAV (UCondV (VtheR:))U

Ta,y, (UCondv (/—\'V.limeRi))-

By associating the count attribute with every distinct tuple of each the above rela-

tional algebra expression, i.e., Ay U {count}, we obtain a simplified form:

Vipdate — VV.tzm& W vv.timev Y AV.iimeV:

where the VY%7 ig the current view maintained in the warehouse, i.e., the view was
created/lastly updated at time V.time. Notice that the definition of V¥4™¢ corre-
sponds to WAV(aCondv(R}“i’f"e)). The remaining two terms, VvymeV and AvgimeV,
define respectively two sets of tuples to be removed from and inserted into the current
view. The former corresponds to the relational algebra expression: T ay (Ccond,
(Vv.simefl;)) while the later corresponds to the expression: Tay (Tcondy (DvitimeRs))-
The additional count attribute is important in maintaining the correctness of a
view. This is because multiple tuples having the same values of Ay in R; will con-
tribute to one single tuple in the view, V; deleting one such tuple in R; will result

1n removing the only tuple in the view without the count attribute. The value of
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the count attribute in 7ym.V is negative since it represents the sets of tuples to
be removed. Further notice that we have replaced the operators “—” and “U” with
assoclative “@” operator defined in [29]. The W operator works on two relations, R,
and Fy. Both K, and R, have same set, of attributes, A, as well as the count attribute.
R, W [ results in a new relation, Rp, g, which has same set of attributes, A and the

count attribute. Its content is defined by:

Reour, =

{ 7| ((Fre € By A3ry € RyA
r[A} = rofA] A r[A] = 74[A] A rlcount] = r4[count] + ry[count])Vv
((Fra € Ry AVry € By Ar[A] = 14[A] A r[A] # 1y [A] A rcount] = rq[count])v
(Vra € Ry ATy € By A1[A] = 15[A] A 7[A] # r,[A] A rlcount] = ryfcount]))A
(rlcount] # 0)). }

Even though the currency relation and the history relation do not include the count
attribute, in processing W operation, an implicit count value 1 is assumed. Since

V¥:eme is the current view before the update. The server only needs to compute and

tupdate
V.itime

to transmit VviimeV # Avime V', collectively denoted by § V', to the warehouse.

This entity defines the net change that needs to be incorporated into the current

ROW

view. For clarity, 677,V is just represented as dymeV . After the view is updated,

Vitime is set to typdate-

Example # 4.4

Recalling from the previous example, 2 view derived from the relation relations is
refreshed. The view definition V is first rewritten into three single-server definitions
V1, V2 and V3. Bach component change with respect to the time #' is determined at

time ¢".
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Vi = {{2>4}[+1]’{2:3}['1]}
6y1[/2 = @
SV = 0

4.3 View Update for Multiple Relations

It is easy to generalize our algorithm for a view derived from multiple relations.
We assume that there are m relations resided in one single database server and an
order 15 imposed among relations where we considered an operand relation to be a
predecessor of another relation when that relation is stated on the left side of another
in the join chain. The view, V is defined as 74, (0¢ona, (/21 M Ry M Ry ™M --- X
R.,)). We assume that the view was lastly updated at time V.time and the view
updating is performed at time fypgare (V.time < typgae). Reordering the relational
operations, we could rewrite the definition into: V'™ = m,, (w4, (0Condy, (R1))
M T ay, (Tcondy, (R2)) W Tay (Fcondy, (Ra)) M -+ M 74, (0Condy, (Rm))). Denoting
Tav, (oc(mdvj (R;)) by V}"#me  the view definition could be transformed into: V¥-tme
= ma, (V7€ W Vtime pq Ytime pg . opq Y timey yVtme could be considered as
the j** component of the view derived from the currency relation R; at time V.time.

Next, we discuss the way to determine the overall change to a materialized view
derived from multiple relations in a single database server. Corresponding to V;,
Ov.time V; can be determined as previously discussed. The newly updated view becomes
a projection of (V{9 8y 1ime Vi) M (V47 W 817y Vo) X (V"1™ W Gy 1ime Va) ™
s MV YEmE W 8y imeVin)) on Ay, Bach entry, VYH™e W Gy imeVj, 1S equivalent to
Vj, the content of the 7** component of the view derived from the current content of

currency relation K;. The updated view content is simply the projection on Ay of



CHAPTER 4. WAREHOUSE VIEW MAINTENANCE 43

[ SvumeVs M Vi X Vs X e X, )
W VYT 6y Ve MV SEE A
o Vl‘l/.time b4 I/Q\".time M Sy imeVa M - MV
H
W VYtme  pqyVtime g VVEme b NSy e Vi
\ W VYtime  pq | Viime g pitime s LN VVitime J

The last entry constitutes the existing view content before the updating, i.e.,
yV-time The rest of the entries constitute the net change of the view, 8y meV. Each
entry represents the net change on a component of the view, 8y yim.V;, accumulating
the change by joining other components. Starting from Vi, évyimeV) joins with V5,
V3 and so on, until all changes are accumulated. We denote each such entry, the
accumulated component net change on a component V; by av_timer. Each entry can

be expressed in a unified form:

r=j

o
OviimeV; = (W] VIV97€) M bypime V; X (ML, V).

It is important to state the result of joining two relations, 12, and R,, with the count

attribute by multiplying the count values. Detail specification of Rg_ g, is stated as:

Rﬁ'amgb = { TBTQ € R, A 3ry € RyN
Ta[Ja] = To[Jo] A T[As] = To[Ad] A 7[As] = rfAs)A
((rolcount] > 0 A rycount] > 0 A r[count] = r,{count] x ryfcount])v

(rlcount] = —|ry[count] x ry[count]|)) }

where J, and J, are the join attributes. When joining two tuples, either one with a
count of negative value would produce a resultant tuple with a negative count value.

From above, the overall change is represented as
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SvimeV = WL 0vimeV;-

The net change of the view, dy.yimeV will be determined by performing a & operation
on the individual accumulated net change. The net change of the view will then be
incorporated into the existing materialized view in the warechouse and the last view

update time is set to new update time, ,p4at.-

4.4 View Update for Multiple Servers

In the previous sections, we have outlined how to determine the change of a view
derived from a single relation as well as multiple relations in a single server. Extending
the result again, we discuss here how to update a materialized view derived from
more than one database servers. To update a view, the view definition is rewritten
into sub-view definitions. For the sake of simplicity, we assume that each database
server has only one relation. The problem, thus, becomes similar in nature to that
for multiple relations within a single database server but with a distributed control.
There are m database servers, DS,, DS;, DS;, ---, DS, and each DS; contains
a currency relatio'n,-Ri.and a history relation R;. V is defined as : Tay (OCondy
(R W Ry M Ry M --- X R, )).

To record the creation/last update time, the timestamp of a view is expressed
in a vector, that is Vitime = < &, ty0,8p,,-t,  >. Each element tp; of V.iiime

refers to the creation/last update time at the database server DS;. For VVime =

Tay (Ocona, ( RY' X RP* X RY® X .- X RZm)), we could rewrite it: V/V4me
¢ ! f
= ﬂ’AV ( ?TAVI (UCandvl (Rlpl)) N ﬂ-sz (aCondVZ (R292)) N ’;TAVS (JCOndVB (R3p3)) M R M

I N . .
Ty, (OCondy,, (R%™))). Substituting Tay, (UCondvj (R,7)) with V;™, the view definition
could be transformed into : VV#™e = 7y (V{1 M V372 ) V37 M - .- ) VaP™). Every

V;pj could be considered as the j* component derived from the database server DS;.



CHAPTER 4. WAREHQUSE VIEW MAINTENANCE 45

Now, assume that a warehouse intends to refresh its view. The new update time
V.time' is another vector of time, <tgystgoitess  tq,, > in which tp; < tq,. For each
V;, the warechouse obtains 6;;;1{7 The time te; helps to freeze the database state
even there is an update occurring at time after ty;- The updated view should be
equal to a projection on Ay of (V" HJ(S::]‘V}) ba (V;” T 6:::1/}_) M (V" o (5f:§1/;3) M

S (Vi 6:;: V). Alternatively, each (Vjt"" W Jz:jVJ) corresponds to I@-””, ie.,
the content of the sub-view definition derived from database server DS; at tg;- To

simplify, we obtain the expression

([ &V MV MV wo ks )
WOV MY, MVT K WY
WOVt MV M, M KV
W
" Vlcpl sztp«‘, NVJ” M. Né::ZVm

NI AR SR~ B 7R S RPN VR VL

The last entry, Vf’“ X V;"z i V;” M .- 5 V™ constitutes the view content at
Vitime = <ty ,tpotps.- - tp, >. The rest of the entries constitute the net change of the
view, 8VEme'V . Notice that each entry again constitutes the accumulated component

to, . . .
net change of a component V;, 8,7 V;, and can be unified into a generalized form:
g Jr Oty Vi &

ta; _ F—1 4t to;
9, V; = (Mo V™)™ O, V3 D (L5

Vi),

The overall net change, §775m¢' V| should be W < cm stj’ V. The mechanism for up-
dating a view derived from multiple database servers is similar to that derived from a
single server with multiple relations. The only difference is that in the latter case, all
dV; could be determines at one database server, since all relations reside in a single

server. However, in this situation, determining 0V; requires the warehouse sending
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extra messages to the database servers, because the relations come from different

SCIvers.

4.5 The WAVE Algorithm

Based on the mechanism described in Section 4.4, we derive an algorithm called WAVE
for the purpose. The algorithm earns its name since we regard each 7** component of
a view V' as a computation pulse starting at DS;, spreading towards DS, and DS,,
along the join chain of relations. The direction of the i** computation pulse from i
to 1 is said to be left while that from 7 to n is said to be right, assuming that the
Join chain of relation from R; to R,, is enumerated as a linear form arranged from
left hand side to right hand side. To ensure the correctness, a vector of timestamps

is used.

4.5.1 Basic WAVE Algorithm

The simplest version of WAVE algorithm is the basic WAVE algorithm. The implemen-
tation of the basic WAVE algorithm in database servers and a warehouse are depicted
in Figure 4.1 and Figure 4.2 respectively. The presentation follows an object-oriented
program style. The interaction between them is through object method invocation.
Implementation of each remote method invocation is supposed to involve a pair of
messages, 1.e., a request from the caller to the callee and a response from the callee
to the caller.

When there is a need to refresh a view, the warehouse function ViewUpdate accepts
two parameters, V% of type ViewDefinition and T declared as an array of CLOCK
respectively. They represent the view definition and the creation/last update time.
Next, the definition is rewritten into n sub-view definitions and stored in an array

of definitions, v. To each database server presented by DatabaseServer[z], vli] is sent
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MODULE DatabaseServer

GLOBAL R : CURRENCY RELATION;
R : HISTORY RELATION;
clock: CLOCK; /* CURRENT DATABASE SERVER TIME =/

PROCEDURE Update(u : DatabaseUpdate)
perform u on R and R;
END PROCEDURE

FUNCTION LocalChange(T:Clock) — ViewChange
RETURN 75 (o, 4y (OdrsThcr<T ()
) TA_{er} (OersT (R));
END FUNCTION

FUNCTION AccumulateChange(V%/ : VieuwDefinition,
T : Clock,dév : ViewChange) — ViewChange
/* TO FREEZE THE DATABASE STATE AT TIME T,
THE CHANGES SINCE T IS REMOVED */
RETURN  (Evaluate(V9f z A-{er}R)
l« —Evaluate(Vdef,LocalChange (T))) ™ bv;
END FUNCTION

FUNCTION EvaluateLocalChange(V9f:ViewDefinition, T:Clock)
— ViewChange,Clock
RETURN  Evaluate(V?/ LocalChange(T)),clock;
END FUNCTION

END MODULE

Figure 4.1: The Implementation of the WAVE Algorithm (Database Server)
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MODULE Warehouse
GLOBAL V : View;
vief . VieuwDefinition;
V.time : array of CLOCK;

FUNCTION ViewUpdate(V%/ : vVieuwDefinition, T : array of CLOCK)
— ViewChange,array of CLOCK
VAR v : array of ViewDefinition;
1,{,7,n : INTEGER;
{ + array of Clock;

dv : array of ViewChange;
8V : ViewChange;
8V « §;

v,n + Decompose(V®/);
PARALLEL FOR i «+ 1 TO n

duli], t[i] < DatabaseServer[:i].EvaluateLocalChange(v[i], T[i]);
END PARALLEL FOR

PARALLEL FOR z < 1 TO =
FOR ! + 72— 1 DOWNTO 1 /+ LEFT DIRECTION =/
dv[i] + DatabaseServer [{].AccumulateChange (v{l],dv[i], T{]);
END FOR
FOR v <~ 1+1 T0 n /+» RIGHT DIRECTION =/
du[i] + DatabaseServer(r].AccumulateChange (v[r],dv(i],[r]);
END FOR
END PARALLEL FOR

FOR: «< 1 TO n
SV — 6V wduli];
END FOR

RETURN 74, (0V),t;
END FUNCTION

PROCESS ViewMaintenance

VAR 4V : ViewChange;
T : array of CLOCK;

8V, T + ViewUpdate (VS V time)
V « V u dV;
V.itime « T,

END PROCESS

END MODULE

Figure 4.2: The Implementation of the WAVE Algorithm (Warchouse)
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together with corresponding last update time ¢[7] for the server through an invocation
of remote object function EvaluateLocalChange. After completion of the function, the
local change and the most current database time are returned and stored in variable
dvli] and tfi] respectively. To determine the net effect, Jv[i] is further propagated
to other servers by calling function AccumulateChange along two directions. Finally
the net change is accumulated by performing W on those individual changes and is
maintained in 6V'. Analyzing the implementation, the number of message passing
is simply the twice of total number of object methods invoked, that is 2 x (total
number of EvaluateLocalChange called + total number of AccumulateChange called).
The total number of times of calling EvaluateLocalChange is just n while that of calling
AccumulateChange is n X (n — 1). Thus total number of messages is exactly 2 x n?.

The message complexity is therefore O(n?).

4.5.2 Optimized WAVE Algorithm

Observation from the basic WAVE algorithm tells us that there could be a lot of ways
to improve the efficiency in terms of the number of messages and transmission volume
by exploring the parallelism and the use of semi-join reducer. It is possible to group
certain computation pulses in one direction since all pulses should visit all database
servers once. The optimized WAVE algorithm is devised and shown in Figure 4.3
and Figure 4.4 (any function that is not stated is assumed to be identical as that
in the basic WAVE algorithm). After determining all local database changes, the
computation pulses start from both ends, 1% database server and the n'* database
server. For instance, to accumulate net change along right propagation. The ware-
house first contacts the 2"¢ database server and propagates the join attributes of the
local change 9f[1], together with the sub-view definition f[2] and #[2]. Then, the ac-
cumulated component net change is determined and stored in dR[1}. Next to contact

the 3" database server, the join attributes of the local change of 8f[2] and that of
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JR[1] are propagated with f[3] and ¢[3]. Then the change are eventually stored in
AOR[1] and 9R[2]. This procedure goes on until the n** database server is reached.
At the end, all R elements store parts of the accumulated component net change
after the right direction propagation. Similarly, all JL elements store parts of the
accumulated component net change after the left direction propagation originated at
n'" database server. Finally the net change to a view is computed by performing W on
all dL[7] X Jf[¢] W @R[z). In the optimization, the number of messages is reduced a
lot. The total number of times of calling EvaluatelLocalChange remains at n. However
the function OptimizedAccumulateChange is invoked (n—1)+(n —1) times since there

are two propagation directions. Finally the message complexity is O(n).

MODULE DatabaseServer

FUNCTION AccumulateChange(v%/:ViewDefinition,T:array of CLOCK,
dv:array of ViewChange,j:INTEGER)
— array of ViewChange
VAR Jv : array of ViewChange;
i : INTEGER;
RT : RELATION;

RT « (Evaluate(vdef,wA_{CT}R)
W —Evaluate (v@e/ ,LocalChange (T[z])})
FOR i « 1 TO j
wli] + RT w 6v[i]; /» SEMI-JOIN=/
END FOR

RETURN dv;
END FUNCTION

END MODULE

Figure 4.3: The Implementation of the Optimized WAVE Algorithm (Database Server)
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MODULE Warehouse

FUNCTION ViewUpdate(V?f : vVieuwDefinition,T : array of CLOCK)

— ViewChange, array of CLOCK
VAR v : array of ViewDefinition;
i,7,L,r,n : INTEGER; ¢ : array of Clock; 4V : ViewChange;

dv,0L,0l,0R,0r : array of ViewChange;

v,n « Decompose(V%/);

PARALLEL FOR ¢ + 1 to n
duli], t[i] « DatabaseServer[:].EvaluateLocalChange (v[i],T[{]};

END PARALLEL FOR

FOR 2 « 1 to n
/* ANY RELATION “R”* JOIN WITH IDENTITY, RESULT “R" */

8L[i] « IDENTITY; OR[i] « IDENTITY;

END FOR

PARALLEL
FOR j < n—1 DOWNTO 1 /+ LEFT DIRECTION =/

FOR! « 1 TOn—j—1
Ol[l] < woinau(@L[n — I +1]); END FOR
alfn — j] — Troinan(dv[j +1]);
0l « DatabaseServer[j].AccumulateChange(v{;], T[j],0l,n— 7);
FOR [ « j+1T0 n
OL[l] « Olfl — /)M BL[l]; END FOR
END FOR
FOR i ¢ 2 TO n /* RIGHT DIRECTION */
FOR r « 1 TO ¢ —2
ar[rl « 7soinau(OR[r]); END FOR
Br[z — 1] — WJO,'nAgt(aU[i - 1]);
Or + DatabaseServer[i].AccumulateChange(u[i],t[é],dr,i —1);
FOR r « 1 T0 ¢ —1
8R[r] « OR[r]| ™ dr[r]; END FOR
END FOR
END PARALLEL

FOR i + 1 TO n
5V «— 6V @ (OL{i] W dufi] M AR[:]) ;
END FOR
RETURN 74, (6V),;
END FUNCTION

END MODULE

Figure 4.4: The Implementation of the Optimized WAVE algorithm (Warehouse)
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4.5.3 Correctness of WAVE Algorithms

We have discussed basic WAVE and optimized WAVE algorithms and we showed the
message complexity accordingly. Now we would like to discuss what level of coherence
requirement our algorithms can fulfill. In [83], five coherence requirements are stated
namely convergence, weak consistency, consistency, strong consistency and complete-
ness in the order of increasing strictness. Let the state (content) of a database source
at any time ¢ be denoted by ss, and the state (content) of a materialized view at
any time ¢ be denoted by mu,. Convergence requires that at a final time ¢;, the
time when ail finite database updates finished, muv, ; should reflect the corresponding
database state, i.e., s5,,. In the meantime, the requircment of weak consistency is
stricter than that of convergence. It requires that the set of states of the materi-
alized view should reflect a certain set of states of the database source. Next, the
conéistency requires that any pair of materialized view states is in the same order as
the corresponding pair of database states, that means mu, < muy = 88y, < 88,
(+ < J Az <y) where “a < §" means a partial order between state a and b, more
specific, a before b, and where muv,, and muy; reflect ss;, and ss;, respectively. Strong
consistency requires both consistency and convergence. Finally, completeness requires
every change database state is reflected by that of materialized view and in the exact
order. IHowever, this requirement is too strong and might not be necessary in most
practical applications. In accordance with those requirements, our WAVE is able to
{ulfilt strong consistency. Our algorithms is based on the use of timestamps to resolve
the update anomaly problem. The timestamps are incrementally updated every time
a warehouse asks database sources for their local changes. Therefore, a materialized
view state must reflect a database state in the same temporal order. That satisfies
the consistency requirement. Using our algorithm, the warehouse repeatedly asks the
database sources for the changes even the database update are being performed or

all database updates have finished such that the warehouse can eventually capture
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the final state of the database source. That satisfies the convergence requirement.
Therefore our algorithm guarantees the strong consistency requirement. To end up
this section, we demonstrate with an example how our optimized WAVE algorithm

can do view updating and fulfill the strong consistency requirement.

Example # 4.5

Using the optimized WAVE algorithm, the update anomaly problem can be resolved.
We demonstrate the running of the algorithm based on Example 3.1. V.time is
initiated to < ¢/, ¢',¢' >. Just as before, the warehouse gets the change and the time
from DS;: {<2,4>[1],<2,3>[-1]} with ¢”, the current database times of DS; while
those from DS, and DSy are empty and ¢ for the first contact with servers. Those
local changes and times are stored in the array dv and ¢.

Then the warehouse propagates changes in both left and right directions. For the
right propagation, the warehouse first sends the join attributes {<4>,<3>} together
with the definition of V5 stored in v[2] and time ¢ in ¢[2] to DS;. Notice that the
Join attribute does not require attachment of count since they are used to get the
quantified tuples. Then DS, replies with {<4,5>[1],<3,7>[1]} which is stored in
R[1). To perform further propagation, the join attributes {<5>,<7>} from R[1] and
that of dv[2] (that is empty) are sent along with the sub-view definition, f[3] and
time ¢[3] to D.S5. Suppose at that time, T3 is executed before request arrives. After
DS; computation (the effect of database updates are compensated by R < R —
Ap RUw R), the tuples {<5,6>[1},<7,8>[1]} are returned. At last, the accumulated
change {<4,5,5,6>(1],<3,7,7,8>[1]} are stored in R[1], and R[2] remains empty.

Since the local changes of V. and Vj stored in 8f[2] and 9f[3] are empty, the
left propagation would result in empty L[2] and L[3]. After all, the accumulated
change due to the local change of DS, is just {<2,4[1]>,<2,3>[-1]} M {<4,5,5,6>[1],
<3,7,7,8>[1]}. At the end, the final result after the projection of required attributes
of the joined result is {<2,5,6>[1],<2,7,8>[-1}}. After incorporating the change to
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V', the content becomes:

11 Q31 G32

1 7 8

and the V.time is set to < t",t",t" >.

4.6 Chapter Summary

In this chapter, we discussed how a stateless server becomes able to determine the
change of a view when a view definition and a last update time are provided. Based
on this idea, we extended the mechanism to determine the change to a view derived
from multiple relations even l_;he relations are located in one or more servers. The
implementation of the mechanism is called WAVE, which propagates local changes
at each server to other servers to gather the accumulated net change. Further, we
discussed fhe optimized version of the algorithm in which the propagation of all
pulses in one direction are grouped. And we showed that the optimized version is

more efficient in terms of less number of messages.



Chapter 5

Semantic Query Caching

Semantic query caching scheme uses semantic information to manage and manipulate
the entire cache. To exploit the cache semantics, each cache fragment {cached previous
query result) is associated with a semantic description, which is exactly the expression
of the deriving query. Based on query reasoning, it is capable for a client to determine
how to reuse the cache fragments in answering queries and to examine what is missing
from the cache. To reuse a cache fragment and to represent the missing data, a query
is rewritten into a probe query, extracting data from the cache fragment, and a
supplementary query submitted for the warehouse evaluation. This query rewriting
procedure is referred to as query transformation.

In semantic query caching scheme, the sizes of all cache fragments are not fixed.
This dynamic cache granularity property renders cache accommodation more compli-
cated. Cache replacefnent is no longer as simple as discarding one fragmeﬁt to admit
a new one. In addition, a cache fragment might contain data of different access fre-
quency. To efficiently utilize the cache storage, portion of a cache fragment of higher
access frequency is preferred for retainment while that of lower access frequency is
needed to be discarded. This issue raises a need of cache decomposition that divides

a cache fragment into several smaller ones such that the divided fragments contain

ab
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data of same access frequency. To maintain the cache coherence, the cache description
is sent to the warehouse every time a query is initiated. In MoWS, the mechanism
of determining the differential change from the warehouse is similar to warehouse
view maintenance against a database server, so we will not discuss this issue in this
chapter.

In the following sections, we focus the issue of query transformation and cache ac-
commodation which are based on the assumption that the query and cache fragments

are all derived from the same view in the warchouse.

5.1 Relationship between a Cache Fragment and a

Query

Query transformation is a mechanism to rewrite a query into a semantically equiva-
lent construct of sub-queries. Evaluation of such equivalent construct of sub-queries
yields an identical result as that of original query. Some sub-queries are evaluated in
the warehouse while others are evaluated in the mobile client. This query rewriting
mechanism is implemented in both warehouse and mobile clients. In client connec-
tion mode, a mobile client sends a query together with a cache description to the
warehouse where query transformation is carried out. In disconnection mode, query
transformation is forced to run in the client.

For notational convenience, we denote the céche of a mobile client, MC by C,
which consists of a set of cache fragments, i.e. C = {F},F},---,Fi¢i}. Upon defining
the cache, we are now at the position to discuss how to make use of cache fragments in
answering a query. As there is a cache fragment available, query transformation could
now be started as identifying the required data from each cache fragment that could
satisfy a query and defining the semantics of the data missing from the fragments.

There exists various relationships between the content of a cache fragment, ¥}, and
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the result of a query (or simply query), @, when both of them are defined on the
same operand. These relationships are depicted in Figure 5.1. In the figure, the
white and dark grey blocks represent a cache fragment and a query respectively,
while the light grey block represents the data common both to cache fragment and
query. Any horizontal sub-block represents a collection of tuples while any vertical

sub-block denotes a set of attribute values.

Cache Cache Fragment Cache Fragment
Fragment SRR
. Query -
Scenario 1 Scenario 2 Scenario 3 Scenario 4
Cache Cache
Fragment S e Fragment
ST 2t 'Cajc‘l‘le: N . - - N
B Fragment® '} ' '
' o
Scenario 5 Scenario 6 Scenario 7 Scenario 8

Figure 5.1: Relationships between a Cache Fragment and a Query

The possible relationships between them can be categorized into eight scenarios :

Scenario 1: A query and a cache fragment are disjoint. This implies that the cache

fragment contains no data required by the query.

Scenario 2: A query is fully enclosed within a cache fragment, implying that the

required result are completely available in the cache fragment.
Scenario 3: A horizontal sub-block of a query is covered by a cache fragment.
Scenario 4: A vertical sub-block of a query is covered by a cache fragment.

Scenario 5: This is a more generic case as a combination of Scenarios 3 and 4.
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Scenario 6: This is a complementary case to Scenario 2. A cache fragment is fully
enclosed within a query. Since tuples and attributes are unordered, by moving
all tuples belonging to the top sub-block to the bottom and moving all attributes
belonging to the left sub-block to the right, this scenario could be reduced to

Scenario 3.

Scenario 7: This is a complementary case to Scenario 3. Again, attributes are un-

ordered; the vertical sub-block could be re-arranged, reducing to Scenario 5.

Scenario 8: This final case is complementary to Scenario 4. Rearranging the hori-

zontal sub-block, it also reduces to Scenario 5.

In all scenarios, except Scenario 1, a cache fragment can be used to answer a query
to a certain degree. We generalize all eight scenarios by transforming a query, @, into
two sub-queries: a probe query, @7, and a supplementary query, Q°. A probe query
is responsible for retrieving data from a cache fragment that is the light grey block.
A supplementary query, by contrast, is responsible for retrieving data from the server

which is the dark grey block.

Example # 5.1

‘To make the presentation easier to understand, we illusirate an example where a
warehouse maintains a view V. The schema A of V contains 7 attributes, i.e.,
A = {a1, ag, a3, a4, as, as, ar}, each of which is of type integer and the do-
main is ranging from {—oo, --,00} and we assume a; is the key of the schema.
At the very beginning, the mobile client initiates a query, @, where expression is
Tay as5a6 (T (v(ar ) {12 Aw(as )e (5,00} (V). Alter evaluation, the result of the query is
cached as a cache fragment, Fy and its semantic description is set to the specification

of Qg. Subsequently, F, could be reused to answer client initiated queries.
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5.2 Query Transformation

5.2.1 Query Transformation with One Cache Fragment

To determine how a cache fragment can be used in answering a query, let us first
examine the concept of query intersection between two queries, @, and @, on the
samme operand view V' with a schema A. The intersection between them, denoted by
Qa N s, defines the common projection attributes of those tuples that are shared by

the two queries. Formally, the specification of @, N @, is

WAQar‘lAQb (JConan ~Condg, (V))

where the projection attributes Ag, N Ag, refers to the common projection attributes

while Condg, A Condg, defines the combined condition. It means ((v(ay) € dg, 1)
A (v(@) € dgy)) A (v(a) € doua) A (v(az) € day2)) A -+ A ((v{ajar) € daan)
in short, /\1—2'1 (v(a;) € (dg,:Ndg,s)), according to which common tuples from both
queries are qualified. With the definition of query intersection, all the above eight

scenarios can be handled with a uniform framework.

Scenario 1: In the first scenario, the result of query @ is disjointed from the content
of cache fragment F;. The result of the probe query, @, should be an empty
set, @, while the supplementary query is set to the original query, i.e., @° = Q.
‘The way to determine the disjointness of ¢ and Fj is based on the testing of the
emptiness of their intersection. The intersection is empty when either the set
of common attributes {except key attributes) is empty, (Ap — K) N Ar, = 0,
or the resultant condition, Condg A Condp,, is not satisfiable that means they

never reason 'true’ by all means.
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Example # 5.2

Based on Example # 5.1, suppose a query )1 = 4, 45 a6 (Jv(al ye{1,2,3}Av(ag)E{ —00, 4}
(V)), is issued and the previous result of query @)y is maintained as a cache frag-
ment Fp in the cache which description is Q. Using Fp, 2, is examined whether
it 1s self-answerable. After the examination of the query intersection, @, cannot
reuse Ip since the combined condition is not satisfiable even though there are

common projection attributes. a

Scenario 2: The second scenario represents the situation where query @ is com-
pletely self-answerable. This scenario occurs when the intersection between @
and F; is the query itself, i.e., @ N F; = ) and one additional constraint must
be fulfilled that involved attributes in all predicates of Condg should appear
in the cache fragment projection or the value domain is exactly equal to that
of corresponding predicate in the cache fragment, i.e., Y(v(a;) € dg,) appears
in Condg : a; € Ar, V dg; = dp,j. This condition ensures that the tuples
extracted from the cache fragment are exactly what Q requires. In case the
constraint does not hold, the projection of key attributes of those tuples satis-
fying combined condition, Condg A Condp,, from the server should be required
to filter out the unwanted tuples from the probe query using semi-join opera-
tor. Finally, the result of the supplementary query, Q°, is empty, and the probe
query, QF, is set to TAgnAp, (Uconde (F;)) where Condy, is a condition in which
the predicates of those attributes absent in the cache fragment projection are

removed. Formally, Condy = Av(u(a;)edo ;) appear in Condone;ea p,-(aj € do;)

Example # 5.3

Next, we consider another query, ¢J», which is stated as :

Taras (Tluler)e{1,2))A(0las )€ =00y 8)A(u(as }e{5,-00}) (V')). The non-empty intersec-
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tion of Fo and Q2 8s Ta; a5 (O(u(ar)e{1,2))A(w(as)e{-o00r-5})A(s(ac)E{5-00)) (V) 1S
examined. Then the probe query is produced as g, o, (O(v(as)e{-oc0,-5n (Fo)),
in which the predicate corresponding to @, and @ is omitted since the do-
mains restricted in a; and ag of @), are exactly matched to that of Fy. Also,
the presence of as in the fragment supports the evaluation of the predicate
(v(as) € {—o0,---,5}). The tuples retrieved from Fy are exactly what Q, re-
quired, no extra projection of key attributes from server are demanded. So, @,

1s completely self-answerable. 0

Scenario 3: In this scenario, some tuples required by query @ could be found in the
cache fragment F;. The probe query, QF, and the supplementary query Q°,
represent two disjoint horizontal portions of the complete query result. We call
the supplementary query, a horizontal supplementary query, @". Queries of
this category will have a non-empty intersection @M F; such that the projection
attributes of the query Ag N Ag, = Ag and Condg A Condp, is satisfiable but
Condg # Condg,. The probe query, @F, and the horizontal supplementary
query, Q¥ are defined as T ag(OCondgncondr, (Fi}) and a4, (0condga-cCondr, (V)
respectively. Since the negation of a predicate in a conjunctive form, ~Condp,,
produces another predicate in a disjunctive form that violates our initial con-
sideration on conjunctive projection-selection query, we use another method to
evaluate this negation. For the operand, V, with a schema, A, we should have
|A| horizontal supplementary sub-queries (that is recursive bisection of | A}
dimensional semantic space). Collectively, a horizontal supplementary query,
Q" is the union of all sub-queries, i.e., Q = Ulsfl:llQHﬁ. The condition Condgu.,
of each Q¥ (1 < y < |Al) is expressed as A}_} (a; € (dgNdE,)) Alay € (doy—
dry)) /\LﬂyH(ar € dgr). Thus the expression of each Q7 is g (OCondgu,, (V)
Finally the results to the original query @ will thus be the union of both queries

ie., QF uQY.
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Example # 5.4

Comparing with Fy, a new query, (3, is examined with specification m,, o
(Ou(an)eft.2.3)Avtas)e (4,00} (V). A non-empty intersection, Q3 N Fy,

Tay.as (Tu(ar)e{1,2}Av(as)els, o0} (V) 1s resulted. The probe query, QF, is m,, o,
(Fy) while the horizontal supplementary query @4 contains 7 sub-queries (since
there are totally 7 attributes) but only two of them have satisfiable conditions.

They are 74, 05 (F(@)eENAwes)e{,0op) (V) and 7o, oy (T(uar)e{1,21)A(w(as)e4})
(V). ]

Scenario 4: Here, only certain attributes required by query @ could be found in Fj.

The probe query, QF, and the supplementary query, @°, represent two disjoint
vertical portions of the complete query result. We call the supplementary query,
a vertical supplementary query, QY. Queries of this type will have a non-empty
intersection Q N F; such that (Ag N (Ag — K)) C Ag (excluding equality) and
Condg ACondp, = Condg, ie.,Vj:1<j<|A| = (dg;Ndr ) =do,.
The vertical supplementary query, @, is defined as 74, A )UK (FCondg (V))-
The probe query, QF, is defined as Ta,na F‘_(actmdb(ﬂ-)) that is closely similar
to Scenario 2. Then the results to the original query, @, will be defined by
QF M QY.

Example # 5.5

Another query, (4, is specified as 05,05 (Tu(a1)e{1,2)A0(a6)€ (5,00} (V). A non-
empty intersection, Q4 M Fy, Ta, 05 (Tu(er)e{1,2}r0(as)e{5, 00} (V) s yielded. The
probe query, QF, is m,, o, (Fo) while the vertical supplementary query QY is

Tayea (O(v(ar)e{1.2})A(u(as ) (5,00} (V) a

Scenario 5: In this generalized scenario (including Scenario 6 to 8), the original

query (J needs to be transformed twice into a vertical and a set of horizontal
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supplementary queries so as to identify precisely what data needs to be obtained
from the server. The horizontal supplementary query, Q@ is defined in the same
way as in Scenario 3, while the vertical supplementary query QV, is defined
similar to Scenario 4. The result of the original query Q is defined as (QF ™y

Q") U Q. 1t is shown in Figure 5.2.

Cache Fragment

Figure 5.2: Query Transformation with a Cache Fragment

Example # 5.6

The specification of a new query, Qs, i Ta, 05,05 (Tu(as)ef2,3}n0(as)e(d,00) (V)
an intersection with Fy produces non-empty result. The probe query, QF, is
Fay,as (Ou(ar)e(2y (Fo)). The vertical supplementary query, QY is

Tay,as (Tuar)e2}Avlas)e(5, 00} (V') while two horizontal supplementary sub-queries
AIE & Tay 03,05 (Tofar)el2inotes)ed} (V) and Moy o505 (Tu(ar)e(3) avias)ed, 00} (V))-

d

In the remaining discussion, we use the generalized scenario (Scenario 5). A query
reusing a cache fragment is transformed into three main sub-queries, a probe query,

a vertical supplementary query and a horizontal supplementary query.
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5.2.2 Query Transformation with Multiple Cache Fragments

As there is a sufficient number of reusable cache fragments, a query could be trans-
formed repeatedly. We outline a function called QueryTransform in Figure 5.3. The
function is invoked with two parameters: @) of type Query and C of type Cachefrag-
mentDescription, both of which are representing the expressions of a query and a
collection of cache fragment descriptions respectively. First of all, a temporary result
for transformed query 7 is initialized to the original Q. In a condition that @ cannot
be rewritten, 7" remains equal to @ that implies no cache fragment could be used.
Next, to reduce the computation overhead, it must exclude those non-reusable cache
fragments by evaluating the intersection between a query and a cache fragment de-
scription. Then one cache fragment is picked up for iransforming a query into a probe
query, a vertical supplementary query and a collection of horizontal supplementary
queries with a function Transform whose logic has been discussed in Section 5.2. Fur-
thermore, the rest of the reusable cache fragments, U — {u}, are used to transform

the supplementary query by calling QueryTransform again.

Example # 5.7

To illustrate the recursive query transformation, let us consider there are two cache
fragments available in the cache. One is the result of Qq, Fy, from Example # 5.1
and another is the result of ), F1, from Example # 5.2. They are disjoint. We reuse _
the query @s from Example # 5.6 to be transformed with Fy first and then Fy, the
resultant transformed query should be
(a1 05 (Fu(ar)et2) molas)e (5,001 (F0)) M Tay g (Oufar e (2} Av(as)e 5,003 (V) U
(Tay 3,05 (Fufar Y 3} mu(as)e (5,001 (V) ) U
Tay 05 (To(ar e 2,3} Avlas)e {4) (F1)) X Ty o5 (Outaye (233 rues)e (2} (V))))
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Function QueryTransform(Q:Query,C:set of CacheFragmentDescription)
— TransformedQuery
VAR T : TransformedQuery;
U : set of CacheFragmentDescription;
u : CacheFragmentDescription;
QF, QY Query;
Q" : set of Query;
g : Query;
i,j : INTEGER;

T+ Q;
U« 0;

FOR ALL c€ C /* FILTER ALL REUSABLE CACHE FRAGMENT #/
IF (non-empty intersection between ) and ¢)
UeUu{c};
ENDIF
ENDFOR

IF U #( THEN
PICK u FROM U

Transform(Q,u) — @QF, QVY, QF;
/* USING A CACHE FRAGMENT TO TRANSFORM A QUERY
INTO A PROBE, A VERTICAL AND A HORIZONTAL SUBQUERY =*/

T.Q7 « QF;
T.QV ¢+ QueryTransform(QY,U — {u});
FOR ALL g€ Q¥
T.Q"* « QueryTransform(g,U — {u});
ENDFOR
ENDIF
RETURN T

EndFunction

Figure 5.3: Query Transformation Function
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5.3 Cache Management

In evaluating a continuous stream of queries, being able to retain frequently accessed
cached data in the cache is highly desirable. However, not all data in a cache fragment
has the same access frequency. Intuitively, blindly maintaining a whole cache fragment
would reduce the cache hit because of extra storage overhead incurred in keeping those
less frequently accessed data. Coarse cache gré.nularity thus decreases effective cache
space utilization. In our research, we intend to cater for the issue of identifying and
extracting accessed data in a portion from a cache fragment, subdividing a fragment
into smaller ones and discarding sub-fragments not being reused. This subdivision

mechanism is known as cache decomposition.

Horizontal
Sub-Cache Fragment

........ I

Vertical ! Rgﬁ;’fd

Sub-Cache : -

Fragment ! Cache ¥
g i Fragment 8

Figure 5.4: Decomposition of a Cache Fragment Reused by a Query

In detail, our cache decomposition scheme is similar to query transformation. Con-
sider Figure 5.4 that is our generalized scenario of query transformation, a cache
fragment, Fj, is reused by a query @. It can be then divided into three pieces. The
reused sub-cache fragment, FY, is simply the reused portion by a query. The hor-

izontal sub-cache fragment, F represents the non-reused tuples, while the vertical

sub-cache fragment, F;", refers to the remaining non-reused attributes of the reused
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tuples. Implementation of cache decomposition could be performed by migration of
data from the original cache fragment to the new sub-cache fragments and removal
of the old fragment. Migrating appropriate data from the original cache fragment to
the new sub-cache fragments is achieved through the evaluation of extracting queries
on the cache fragment. The nature of extracting queries are exactly the same as that
of the probe query. In the scenario, three different extracting queries will be posed.
An extracting query that extracts data from the original cache fragment to a reused
sub-cache fragment, FV, is the probe query, Q¥ = TAQnAF, (ac,mdb (F})). The remain-
ing extracting queries which extract data to a vertical sub-cache fragment F} and

Ar, o
lArlp ¥ are similar to those men-

to a horizontal sub-cache fragment F¥ that is Uyt F;

tioned in Scenario 5 in Section 5.2. Denoting predicates in Condg by (v(a)) € dy, ;)
A (v(ay) € dgy) A -y (”(G;Ar{i) € d’Q,IAr,-I)’ where af € Ap., an extracting query
of FY can be defined T(Ar, AQ]U,C(UCM%(F})) and an extracting query of each hor-

. . H . .
izontal extracting query, F; Y, is Ta, (0cond wy' (Fi)) where Condu, is equal to
1 F Al ‘

_ , ' Ap. , . .
N (v(a)) € (dr,y N dga)) A(v(a)) € (i, — dag)) Aresia (v(al) € dr,) in which

Sa By 1< a<f << Al (vlas) € doa), (vag) € doy) and (v(a,) € dg,)
appear in Condg A (a; = ax A ay = ag A a, = a,).

After a fragment is decomposed, each new sub-cache fragment becomes an indepen-
dent unit, with its own semantic description and access information. Its description is
defined by combining the selection condition of its corresponding extracting query and
that of original cache fragment. Therefore, the description of the reused sub-cache
fragment, FY| is TAqnAF, (oCondbACondFi(V)) while the description of the vertical
sub-cache fragment, FY, and horizontal sub-cache fragment, FiH’y, are M(ap, —Ag)uK
(UCOnd’QACondF'.(V)) and Tap - ag)uk (oﬁcondbACOndﬁ_(V)). The horizontal sub-cache
fragment, in turn, is a set of fragments whose predicates are of conjunctive form.
Each of them is expressed as w4 £ (JCondF 1y ACondp, (V)).

To select fragments to be discarded in order to free space for new fragments if
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needed, each cache fragment is assigned a replacement score in accordance with dif-
ferent replacement schemes. When a cache fragment is accessed, its score is updated.
After cache decomposition, new scores are assigned to individual sub-fragments. We
assign the reused sub-cache fragment a new score but other sub-cache fragments wiil

inherit the original score.

Example # 5.8

Recalling from Example # 5.6, a cache fragment, Fj is reused by a query, @s. The
three extracting queries of reused sub-cache fragment, vertical sub-cache fragment
and horizontal sub-cache fragment are m,; os (utar)efz} (F0))) Tarae (Tuae(zy (Fo))

and 74, a5.06 (Ouay)eqr} (Fo)). Finally the description of each sub-cache fragment are:

F§ ¢ Tap0s (e n(as)ets, oo} (V)

FY 0 TMayas (Ou(@)e(2)rves)e(s, oo} (V)

Ff' 0 Tapasas (Oo(ar)e{iiavias)e(s, o0} (V) .

However, over-decomposition is the drawback of cache decomposition. When a

coarse cache fragment is decomposed into a large number of finer sub-cache fragments,
cache utilization will be reduced since a lot of space is used up to store the descriptions
but not the data. The uncontrolied decomposition would cause the number of cache
fragments to grow indefinitely. To address this problem, we have considered two
possible approaches. One of them is to limit the degree of cache decomposition by
setting a decomposition threshold which is an indication of cache granularity. Here, it
is expressed as a ratio of the cache size. When its size is greater than the threshold,
the cache fragment is said to be coarse; otherwise it is fine. Therefore if the size of
a cache fragment is smaller than the threshold, decomposition of such fragment is
prohibited.

By the way, we prevent a cache fragment from getting smaller and smaller by
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setting decomposition threshold but this threshold has no effect in controlling the size
of incoming supplementary query results. To cater for this issue, we have considered
the second approach by combining several smaller cache fragments into one larger
cache fragment. This mechanism is called cache fusion. In our implementation,
when there is a query which reuses certain number of finer cache fragments and
supplementary query results, the final query result instead of the finer fragments are
maintained in the cache. For replacement score assignment, a new cache fragment
will be assigned a new score. Applying both cache decomposition and cache fusion

in cache accommodation is termed cache re-organization.

5.4 Chapter Summary

In this chapter, we discussed how to reuse a cache fragment to answer a query if there
exists an intersection between them. To extract the required data from a cache frag-
ment, a probe query is defined. The missing data is represented by a supplementary
query. When other cache fragments are available, the supplementary query could be
further transformed.

When admitting a new query result, certain cache fragments need to be replaced.
Owing to a variable cache granularity, cache replacement is not so straightforward
as one-to-one substitution. In addition to precisely maintaining frequently accessed
data in‘a cache, we propose two management techniques, namely, cache decompo-
sition and cache fusion. Cache decomposition divides a large cache fragment into
smaller ones that contain data of same access frequency. However, it will introduce
a problem of over-decomposition. On one hand we prevent a cache fragment from
being decomposed into a number of smaller and smaller pieces. On the other hand,
we use cache fusion to combine certain number of smaller cache fragments to a large

one to improve the query transformation efficiency and reduce the storage overhead of
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maintaining semantic information. With respect to the two techniques, we discussed

the replacement score assignment schemes to mark the scores.



Chapter 6

Prototype Implementation

6.1 Development Methodology

The MoWS is composed of three main classes of entities : mobile clients, base stations
and database servers. Bach of them is equipped with its individual separate software
module, namely, client subsystem, warehouse subsystem and server subsystem. They
are all developed using Microsoft Visual C4++ 5.0. Depicted in Figure 6.1 is the
prototype architecture.

A client subsystem has three components: a query processor, a query transfor-
mation logic and a cache manager. Every query initiated from user applications is
first input to the query processor. The query processor then processes the query
with either the warehouse subsystem in the connection mode or the query trans-
formation logic in the disconnection mode. The query transformation logic is to
transform a query reusing cache fragments. The cache manager is responsible to
manipulate the cache storage for keeping the cache fragments as well as their de-
scriptions and access control information. It implements both cache decomposition
and cache fusion. Linkage between a client subsystem and a warehouse subsystem is

through Digital RoamAbout Wireless LAN and the communication protocol used is

71
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Figure 6.1: Prototype Architecture

TCP/IP. To reduce the communication and storage overhead of a query or a cache
fragment description, we propose a representation to stand for a query, the pattern
of the representation is called bit-stream query representation and it will be discussed
in Section 6.2. Supported by the bit-stream representation, query transformation
can be efficiently performed. We will discuss the mechanism in Section 6.3 and the
implementation detail of storage management of the client subsystem in Section 6.4.

In a warehouse subsystem, there are a query transformation logic, a cache re-
freshment logic and a warehouse manager. The warehouse database storage used is
Microsoft SQL Server 6.5. The implementation of the query transformation logic is
same as that in the client subsystem. The cache refreshment logic is used to deter-
mine the changes to the client cache. Finally the warehouse manager is to keep the
materialized view updated. It implements our WAVE algorithm.

At last, a server subsystem is developed to implement our WAVE algorithm and
contains one database management system. The connection between a warehouse

subsystem and a server subsystem is through TCP/IP communication protocol over
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an Ethernet.

6.2 Bit-Stream Query Representation

In our prototype implementation, a query is represented in a form called bit-stream
query representation. It has two representation formats: normal form and compact
form. The normal form is mainly composed of three parts: a projection list, and a
value range list and an operand view identifier. For a schema of the operand view
containing n attributes, the projection list is associated with a binary list of n bits
long. The on-mode of i** bit indicates that the query requires the i** attribute to
become projected. The value domain list is a list of » min-max value pairs. Each
min-max value pair is composed of two integers, bounding the set of elements selected
within the whole sub-domain. This is based on an assumption that all attribute
values are ordinal or they could be ordered. Finally, the operand identifier refers to
the materialized view in the warehouse.

To show the format of the representation, we consider query, (g, defined in Example
# 5.1. It is defined as a projection on a,, as and ag and restriction on the value
range of a; from 1 to 2 and that of eg from 5 to co. At the end, the operand
identifier records the materialized view, V. Furthermore, shortening the bit-stream
query representation can be done by replacing a whole domain list with a summarized
domain list. Very often the domain list might be lengthy but there might be -no
constraint on a particular set of attributes in a typical query, and a typical domain list
might contain some default min-max pairs, i.e., unconstrained domains. A selection
summary is introduced to indicate precisely which attribute has a constrained domain,
i.e., non-default min-max pairs. The selection summary has the same size of the
projection list. If the :** attribute has a non-default min-max pair, the i** bit of

the selection summary will be turned on; otherwise, it is off. The domain list thus
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could only contain the min-max pairs for those non-default domains. This produces
a compact form. The normal form and compact form of @y are inter-changeable and

they are shown in Figure 6.2.

—00 | —co|—00|-0co|b5 | —x
Q0m1000110”1,2 ,00 | ,00 | ,00 | ,0 [0 ] ,00 1%
Operand
Projection List Value Domain List Identifier
5,
Q0100011010000101,200"V
Summarized
Domain  Operand
Projection List Selection Summary List Identifier

Normal Form (Above), Compact Form (Below).

Figure 6.2: Bit-Stream Query Representation of Query Q,

6.3 Query Transformation Using Bit-Stream Query
Representation

The bit-streamn query representation is not only compact in size but also is very
helpful in query transformation. In this section, we will present the way to use it
in query reasoning. First, with the normal form of bit-stream representation, the
process of determining if a cache fragment is reusable to a query, i.e., examining their
intersection, could be simplified into two simple steps: performing a bit-wise AND
operation on the two projection lists, followed by merging the range of the value
domain lists. The merging can be done by identifving the least upper bound and
the greatest lower bound of each min-max value pair of both lists. Then, once the
non-empty intersection is determined, the probe and supplementary queries can be

defined in the similar way. The resultant transformed queries of Qs (Example 5.6)
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reusing Fy are shown in Figure 6.3. The results of @y is cached as cache fragment Fy,.
To decide if Fy is reusable to @5, intersection (@5 N Fy needs to be determined. This
is achieved by performing a bit-wise AND operation on the two projection lists as
well as merging the ranges of the two value domain lists. As shown in Figure 6.3, the

intersection between Fy and Qs is non-empty.

Operand
Projection List Value Domain List Identifier
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Figure 6.3: Query Transformation using Bit-Stream Query Representation

The probe query, @f, is formulated by replacing the operand identifier of the
original query with the cache fragment. If the i** bit of the projection list from the
operand cache fragment Fj is turned off, removing the #** min-max value pair from

the original query Q5. For the vertical supplementary query, Q¢ its projection list is
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the difference of the projection lists, i.e., Ag, — Ag,, plus the key attribute(s), while
its domain list is equal to that of the intersection.

For each horizontal supplementary sub-query, Q;" *its projection list is the same
as the original query, i.e., Ag,, while its domain list is determined as follows. The
j* (5 < ¢) min-max value pair is equal to that of the intersection. The i min-max
value pair is determined from the intersection of the :** min-max value pair of Fy
and the negation of " min-max value pair of Q5. The negation of a min-max pair,
In our implementation, yields two pairs, they are ranged from the default domain
minimum to the greatest lower bound - 1 and from the least upper bound + 1 to the
default domain maximum. The 7 (§ > i) min-max value pair is just the original
7™ min-max value pair of Q5. The idea is depicted in Figure 6.3. Note that those

supplementary queries which condition are not satisfiable are not shown in the figure.

6.4 Cache Storage Management

In the earlier phase of our implementation, we had developed our prototype using
existing database management software packages like Microsoft Access as our cache
storage management. However, the overall performance is not satisfactory as we
expected in the preliminary feasibility studies. Although it offers a comprehensive
application programming interface, the underlying database system has involved too
much necessary overhead in computation and storage in the run time. It is all due
to the excessive system resources used in their internal database activities that we do
not require in the simple buffer management for caching data.

Instead, we implemented our own buffering system to maintain cache fragments and
cache control information. First, each cache fragment is maintained in an individual
binary file. A cache fragment is stored as a sequence of tuples, each of which is

a collection of attributes. The space required in storing a cache fragment in the
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buffer should be ZVtEtuples of cache fragment Zb’aeattributes of t (Size of a’)' SGCOIld, cache
fragment information and its control information are maintained as an entry in a

specific file named ‘CacheSummary’. The structure of a typical entry is shown in

Figure 6.4.
Name Data Type | Size Description
CachelD Long 4 bytes | Cache fragment identifier (unique)
SummarySize Short 2 bytes | Size of the CacheSummary entry

Cache fragment description in a compact Form:

Projectionlist ~ Bytes 8 bytes | Projection list

SelectionSummary Bytes 8 bytes | Selection summary

Summarized value domain list (repeated for n Min-Max Pairs):

MinValue Long 4 bytes | Minimum value of a min-max pair
MaxValue Long 4 bytes | Maximum Value of a min-max pair
OperandRelation Long 4 bytes | Operand relation identifier
NumAttributes Short 2 bytes | Number of projection attributes
NumTuples _ Long 4 bytes | Number of tuples

FragmentSize Long 4 bytes | Cache fragment size

UpdateTime Long 4 bytes | Database server update time
LastRefTime Long 4 bytes | Last cache fragment reference time
ReplacementScore Long 4 bytes | Replacement score

Figure 6.4: Structure of a CacheSummary Entry

Each entry is composed of a cache identifier, a cache fragment description, con-
trol information such as fragment size, last update time, number of tuples, number
of attributes, last reference time and replacement score. Since the cache fragment

description is in a compact size that depends on the selection summary, the size of
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each entity is not fixed. To facilitates file fetching in CacheSummary, each entry has
been associated with a ‘SummarySize’ stating the entry length. It can be, in turn,
interpreted as the offset to next cache fragment summary from the start of current
entry. Collectively, a single entry requires 56 bytes for a cache fragment derived from

a single-attribute selection query.



Chapter 7

Performance Evaluation

To justify the suitability of MoWS, we conduct performance evaluation based on the
prototype, and quantitative analysis. The following 2 sections present the experiment
result of our proposed semantic caching scheme, and the quantitative analysis of our

pull-based view update mechanism.

7.1 Performance Study on Semantic Query Caching

7.1.1 Experiment Setup

In evaluating the performance of semantic query caching scheme, we employ one
mobile client and one warehouse connected through a wireless channel of typical
19.2kbps. The hardware configuration of these entities is shown in Table 7.1.

We measure the performance of the caching scheme using a modified Wisconsin
benchmark [11]. The original benchmark offers a relation schema containing 13 4-
byte-long integers and 3 52-byte-long character strings. In order to make sure that
all queries will have results of the same size where there are fixed number of tuples
selected and fixed number of attributes projected, the benchmark schema is modified

with 52 4-byte-long integers only. The number of tuples selected and the number
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of attributes projected consitute the selectivity and projectivity respectively. Now,
the warehouse contains one materialized view which is a pair of benchmark relations,
WIS and a corresponding history relation, WIS. The relation WIS contains 10,000
tuples. We intend to keep the warehouse and mobile client storage small, in order to
make it feasible to run a large number of experiments. The schema of WIS contains
52 integers of 4-byte long plus a creation time tag of 4-byte. Each tuple of WIS has
a size of 212 bytes. The schema of WIS contains 52 integers of 4-bytes long plus a
creation time tag and a deletion time tag, both of them are 4-byte long. The size of
each tuple of WIS is 216 bytes. Other benchmark properties are kept unchanged,
ie., Unique2 is perfectly cluster-indexed; Uniguel is the key attribute and is indexed
but non-clustered. Altering selectivity and projectivity varies the query size in the

experiments.

Item Mobile Client Warehouse

CPU Speed Intel Pentium 133MHz | Intel Pentium-II 450MHz
Memory: RAM 32 MBytes 128 MBytes
Harddisk 3.2GBytes 9.1GBytes

Table 7.1: Hardware Configuration

A stream of client queries is generated according to 80/20 rule such that 80% of
queries will access 20% of the tuples and 20% of the attributes, while 20% of the
query will access the remaining 80% of the tuples and 80% of the attributes. The two
sets of data items are termed hot region and cold region ! respectively. We follow the
skewed hot access pattern and the changing skewed hot access pattern. We model the-

skewed hot access pattern by fixing the hot region for all queries while we model the

! Although the center-point of a hot query is mostly confined within the hot region [14], certain
portion of a large query might touch the cold region. This renders a large number of hits in that

region adjacent to the hot region
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changing skewed hot access pattern by progressively shifting the hot region towards
other set of tuples along the stream of queries. We have considered three replacement
schemes in our experiment, namely LRU (Least Recently Used), MRU (Most Recently
Used), LSR (Largest Size Remains) and considered the case where no cache is used
NoCaching (no query result cached). Each experiment is carried out for several times
by supplying a query stream consisting of 50 warm-up queries followed by 300 queries
based on which the result is collected.

The selection criteria of each query will involve the attribute Unigque2 only, while
the set of projection attributes contains p attributes, including the key and selection
attribute; they are Uniquel and Unigue2. The projectivity of a query ranges from
8, 12 to 16, while the selectivity ranges from 1000, 1500 to 2000 tuples. The cache
storage size at a client is fixed at 128K. For the largest query with a selectivity of 2000
tuples and a projectivity of 16 attributes, nearly 98% storage space is used to store the
result. To cater for a dynamic cache granularity, techniques like cache decomposition
and cache fusion discussed in Chapter 5 are used. In the following experiments, we
vary the decomposition threshold from 100%, 10%, 1% and 0.1%. Also we fuse small
cache fragments into a large one when a certain number of small cache fragments are
reused. That number is called fusion threshold. In the experiment, it is set to 1, 5
and 10.

'To be conservative, we only consider all database updates to be modifications in
our experiment. When a set of tuples in the warehouse are being modified, the values
of key attributes and selection attributes are kept unchanged such that this will not
affect the query selectivity, and the database size can be maintained invariant. Also we
are concerned that updates are usually infrequent and each time only a small number
of tuples are modified. To investigate the effect of database updates in MoWS, we
specify a guery/update ratio which is a ratio between the number of queries and the

number of updates. For instance, a ratio of 10:1 means that there would be on
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average 1 update for every 10 queries. To conclude this subsection, we summarize all

parameters in Table 7.2.

Parameter Values
Size of a Database Relation 10000
Cache Storage Size 128k bytes
Number of Projection Attributes (Projectivity) 8, 12, 16
Number of Tuples Selected (Selectivity) 1000, 1500, 2000
Number of Tuples Updated (U-Selectivity) 50, 100
Query/Update Ratio 10:0, 10:1, 10:2, 10:3
Access Pattern CSH (Changing Skewed Hot),

SH (Skewed Hot)

Size of Hot Region 20% of tuples and 20% of attributes
Decomposition Threshold 100%, 10%, 1%, 0.1%
Fusion Threshold 1, 10, 100
Replacement Scheme LRU, MRU, LSR, NoCaching
Wireless Network Bandwidth 19.2Kbps

Table 7.2: Parameters and Values

7.1.2 Performance Metrics

To quantify the performance, we mainly focus on four performance metrics. The first
and the most important one is the elapsed time, that is, the duration taken from
the time a query is initiated to the time a query result is completely obtained and
the cache are completely updated. r]A."he second metric is the bandwidth consumption
that measures how much the bandwidth of the wireless channel is used to process a
query. The third one is the cache hit ratio that is targeted to explore how much of a

query can be answered by the mobile client. The last metric is the answerability rate
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which is used to indicate how many queries are considered locally answerable during
disconnection as a certain expected cache hit is fulfilled, that is supposing a minimum
required hit ratio of 2, we measure the number of queries which have a hit ratio of at

least h as the answerability rate.

7.1.3 Experiment Result
Experiment #1. Study on different replacement schemes

In the first experiment, we investigate the benefit of semantic query caching for no
database update, i.e., query/update ratio is set to 10:0. We differentiate the perfor-
mance among two classes of queries, namely SH (Skewed Hot) and CSH (Changing
Skewed Hot) with four different replacement schemes, namely, NoCaching, LRU, MRU
and LSR. The results are presented in Figure 7.1 and Figure 7.2. The effect of cache
decomposition is not studied in this experiment. Recall that decomposing a cache
fragment into sub-fragments is performed only when the size of a cache fragment is
larger than the defined threshold. A decomposition threshold of 100% will prohibit
decomposition from occurring. Therefore, the decomposition threshold is set to 100%
here. The effect of the decomposition threshold will be studied in Experiment #2.
Also, no cache fusion is studied here.

We measure three performance metrics, including elapsed time, bandwidth consump-
tion, and cache hit ratio. The results are depicted in Figure 7.1 and Figure 7.2, each
arranged as an array of graphs. The first row depicts the elapsed time, the second
row the hit ratio and the third the bandwidth consumption. The different columns
depicts the measurements of the metrics with different projectivity. In the figures,
‘the elapsed time of semantic caching completely outperforms NoCaching irrespective
of the query class and replacement scheme. It performs the worst because all query
results should be loaded from the warehouse. So, a higher bandwidth consumption

and zero cache hit is explainable. Regardless of replacement schemes, SH produces a
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Figure 7.1: Experiment #1 Result (Skewed Hot)

better performance than CSH. The SH queries yield a shorter elapsed time since most
of the result can be loaded from the cache that is reflected in cache hit ratio. Also
less bandwidth consumption is obviously expected.

With 'reSpect to each access pattern, we discover that among three replacement
schemes, LRU performs very well, next is LSR and the worst is MRU in all metrics for
CSH. But for SH, MRU performs a little bit better, next are LSR and LRU, both per-
forming more or less the same. Besides, we observe that as the query size increases for
CSH, ie., when selectivity increases for same projectivity, the cache hit ratio greatly
drops. The main reason is that a coarse cache granularity prevents the cache from

adapting to the changes in access patterns. Accommodation of new cache fragments
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Figure 7.2: Experiment #1 Result{Changing Skewed Hot)

becomes less flexible, but for SH, no such phenomenon is observed.

Experiment #2. Effect of cache decompostion

In the second experiment, we study the effect of the cache decomposition only on
the performance for no database update, i.e, query/update ratio is set to 10:0. We
restrict the selectivity of queries to 2000 and the projectivity of queries to 16. From
the results of Experiment #1, we are performing a worst-case study here. Notice that
NoCaching does not have any effect with respect to our approach, so we do not show
its result here.

We experiment with the decomposition threshold ranging from 100%, 10%, 1%
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and 0.1% of the cache size. Notice that with a threshold set to 100%, no cache
decomposition is performed. In this experiment, it is used as a reference to illustrate
the effect of cache decomposition. Here, we only illustrate the elapsed time as well
as the cache hit ratio, since users probably are more interested in these two metrics.
The results are depicted in Figure 7.3 and Figure 7.4. Notice that we compare LRU
and MRU since they perform better than LSR observed from Experiment #1.
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Figure 7.3: Experiment #2 Result (Skewed Hot)
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Figure 7.4: Experiment #2 Result (Changing Skewed Hot)

We observe from Figure 7.3 with for SH, the application of cache decomposition,
longer elapsed time is resulted. The reason is that cache decomposition would produce
smaller fragments. Enhancement of the cache adaptability does not benefit for such
stable access pattern. Rather, it introduces the additional overhead in processing

cache decomposition. Also from the figure, we can see that the hit ratio drops when
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extra storage space is used to maintain the semantic information and the pfesence of
duplicated key attributes.

However, from Figure 7.4, we observe that in general for CSH, LRU performs better
than MRU for all decomposition thresholds. And the performance is improved by
applying cache decomposition. The elapsed time is shorter and the cache hit ratio
is higher when the threshold is at 10% and 1% (with a 10% threshold yielding the
best performance). Further decomposition (threshold at O.l%) will lead to a higher
elapsed time and a lower cache hit. Indeed, cache decomposition will produce too
many overly fine cache fragments, resulting in extra processing overhead in cache
management, query transformation, result construction, extra storage overhead and
transmission overhead. We discover that there are duplication of key attributes due

to vertical decomposition of the cache at a smaller threshold.

Experiment #3. Study of self-answerability

We would like to study the answerability of queries as cache decomposition is em-
ployed in Experiment #2. In this experiment, we only test the CSH with varying
decomposition thresholds since no decompostion produces the best performance for
SH. The query selectivity and projectivity are fixed at 2000 and 16 respectively. Given
a degree of self-answerability, h, we measure the number of queries which have a hit
ratio over or equal to h. The degree is set to 50%+, 60%+, 70%+ and 80%+. The
results are shown in Figure 7.5.

From the figure, we can observe that for LRU, when decomposition is disabled, i.e.,
with a threshold of 100%, only less than half (42%) of the queries can be answered
with a hit ratio of at least 50%. This means that the cache content contains a lot
of non-reusable data. In the figure, the best result is observed when the threshold is
10%. With a requirement that a partial result of over 70% should be found in the

cache, almost 40% of the queries can be served. With a decomposition threshold of
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Figure 7.5: Experiment #3 Result

1% and 0.1%, more than 60% of the queries can be answered at a self-answerability of
60% or above but around 20% of the queries can be answered for self-answerability of
70%. In general, decomposition threshold set to 10% would increase self-answerability
rate during disconnection, with more queries answerable at a higher designated cache
hit ratio. For MRU, the same phenomenon could be observed and explained, but the

overall performance is not so satisfactory as that for LRU.

Experiment #4. Effect of cache fusion

From the previous 2 experiments, we learned that the decomposition could enhance
the performance of the cache in terms of all performance metrics. However, it intro-
duces the problem of over-decomposition. To address this issue, we have discussed
the cache fusion mechanism. When a query reuses certain number of small cache
fragments, the final query result is admitted to the cache and replaces those reused
fragments. We experiment the cache fusion with a threshold set to 1, 5 and 10. Also
we restrict the experimental scope on CSH access with the qﬁery selectivity and pro-
jectivity fixed at 2000 and 16 respectively. The replacement scheme used is LRU.
Also we vary the decomposition threshold, 10%, 1% and 0.1%. The result is shown
in Figure 7.6.
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Figure 7.6: Experiment #4 Result

From the figures, we can see that using cache fusion for selected fusion threshold
can yield a better performance compared with no cache fusion. With fusion threshold
set to 1, the performance is the best in terms of the elapse time, the hit ratio and
the bandwidth consumption. As the fusion threshold further increases to 5 and 10,
the performance drops accordingly. The reason is that the larger fusion threshold
would allow more number of smaller cache fragments to remain in the cache. Thus,

the problem of over-decomposition does exist in such cases.

Experiment #5. Effect of database update

In the fifth experiment, we experiment the cache refreshment when a query is eval-
uated. In this experiment, we select three set of queries: the first is with selectivity
of 1000 and projectivity of 8, the second is with selectivity of 1500 and projectivity
of 12 and the third is with selectivity of 2000 and projectivity of 16. They represent
three different classes of query sizes. Specific to the third one, we use cache decom-
position with threshold set to 10% and cache fusion with threshold set to 1 in this
experiment. This setting has been shown to yield the best performance previously.
To study the effect of update in the source data, we vary the query/update ratio as
well as the update selectivity. The query/update ratio is varied among 10:0, 10:1,
10:2, and 10:3, while the update selectivity is controlled at 50 and 100. Notice that

when query/update ratio is set to 10:0, there is no database update. We contrast
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the results against that of NoCaching to explore the suitability of our caching scheme
for different update rates. In this experiment, we examine the elapsed time and
bandwidth consumption. We do not show the cache hit ratio which is presented in

Experiment #1.

Elapsed Time : Etapsed Time Elapsed Time
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Figure 7.7: Experiment #5 Result

The result is depicted in Figure 7.7. From the figure, we observe that in general, for
the update selectivity is 50, as a query/update ratio rises, the elapsed time increases
slightly. However, for update selectivity is 100 and same rising of query/update ratio
would cause a dramatic increase in the elapsed time. The reason is that when the
update selectivity is small, the possibility of having a stale cache fragment will be low
as expected. The overhead to maintain cache consistency will be less. However, when
the update selectivity increases, the cached data will probably become invalidated
quickly and it will suffer from more cache update overhead.

Also we observe from the figure that when the query size is small (selectivity =
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1000, projectivity = 8), with high update selectivity and high query/update ratio,
NoCaching produces a relatively good performance in terms of both elapsed time and
bandwidth consumption. It is because NoCaching does not spend any overhead in
maintaining cache consistency. It is not worth to mainatin the cache as it is always not
valid. From the observation of the results, we can conclude that our scheme is suitable
in the environment where update seldom occurs and the database usually undergoes
relatively small changes. That matches the feature in the mobile environment that

the update is infrequent and the degree of change in database is very small [33].

7.2 Performance Study on Pull-based View Up-
date Mechanism

In this section, we will evaluate the performance of WAVE (optimized WAVE) and
compare it with that of some previous approaches, in the context of pull-based view
update environment, based on quantitative analysis. In our evaluation, we focus on
the amount of data transferred (transmission overhead) between the database server
and the warehouse as well as the storage overhead. For the ease of presentation, the
projection and selection are assumed to be performed when all the tuples are received
at the warehouse before sending to the mobile client. The evaluation parameters and
their values are shown in Table 7.3,

The join factor, J represents the expected number of tuples of a relation that will
be joined with one tuple in preceding relation. The degree of update is expressed
as p. Each update is either an insertion, a deletion, or a modification. The degree
of modification is expressed in term of g, which is the operation out of the number
of updates that modify a tuple. We assume that each update operates on a distinct

tuple.
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Parameter Symbol Value
Size of a database relation C 10000
Size of a tuple B, 208 bytes
Size of a “count” attribute B, 1 bytes
Size of a time tag ' B; dbytes
Size of a join attribute B; dbytes
Size of a sub-view description B 36 bytes
Number of database servers m 1,2,3,---,20
Join factor J 0.5,1,1.5,2, 25
Degree of update p 0.5%, 1%, 1.5%, 2%, 2.5%
Degree of modification m 20%,40%.,60%,80%,100%

Table 7.3: Parameters and Values

Evaluation #1. Study of WAVE performance varying the number of database

servers and join factor

In the first evaluation study, we would like to compare the transmission overhead, in
terms of number of bytes transferred in WAVE, with that in the base case, recomputa-
tion. The recomputation just involves issuing the view definition for evaluation again
and the new view replaces the old view content. Intuitively, WAVE should perform
better than recomputation since it involves only incremental computation while in
recomputation, the whole view is re-evaluated and transmitted for each update re-
quest from the warehouse. With 100% degree of modification, all tuples updated are
modified. In recomputation, in response to a request from a warehouse, each database
server sends qualified tuples to the warehouse. With m database servers, the amount
of data transferred is mCB, + mD;.

To compute the transmission overhead in WAVE, we divide the traffic into two
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types, uplink traffic from the warehouse to the database servers and downlink traffic
from the servers to the warehouse. We first calculate the number of tuples sent in the
downlink from the database server to the warchouse. To determine the changes of a
view, the warehouse will need to send its last update time and a sub-view description
to a database server. This constitutes a total of By + By bytes. With the degree of
update p, the number of tuples modified at a database server since the cache was
last updated is pC'. Assuming that all tuples being modified are distinct, the size of
the changes in the relation is 2pC since there are pC tuples deleted and pC tuples
created.

Consider the situation when database server i receives a request from a warehouse.
It will send 2pC" tuples to the warehouse. After projecting the 2pC tuples on the
join attributes, the projected tuples will be forwarded to server ¢ — 1 and 7 + 1 in two
directions. Server i—1 will perform a semi-join operation between the projected tuples
and its relation, resulting in 2pCJ tuples which will be sent back to the warehouse.
Similarly, server 241 also sends back 2pCJ tuples. This is repeated until server 1 and
m are reached. The number of tuples transmitted over the downlink, D; for server i

is therefore:
D; = 20C+ Y1 20CT + ™, ., 2pC T

= 200+ T+ D I
Since the warehouse will send an update request to all m database servers, the

total number of tuples transmitted over the downlink will be:

m 2pC mo__ _ 2 ;
DD, LTI~ 1) —m(J? —1)] i J £1
i=1 2pCm? otherwise.

. Each tuple has a size of B, + B, bytes. This results in a total of D(B, + B.) bytes.
The first reply from each database server will contain a time of B, bytes. Since there
are m such messages, this constitutes a total of mB; bytes.

Now, consider the data being transferred over the uplink from the warehouse to

the database servers. Consider again a request to a database server 7. It will receive
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2pC tuples from server 7. After projecting on the join attributes, the 2oC entries are
sent to server ¢ — 1 and ¢+ 1. Similarly, 2pCJ projected tuples will be sent to server
i — 2 and 7 + 2 and so on. The number of tuples sent is therefore:
Uiy = ZiZ120CT + o0, 20C T
= 20C(Tisi ST+ T I,

The total number of tuples sent over the m sources will be:

U:iUi = (Ji%[(Jm—l)—m(J_l)] if J#1
i=1 2pCm(m — 1) otherwise.

Since each join attribute has a size of B; bytes, this results in UB; bytes. In
addition to the join attributes, each message to a database server contains a time and
the sub-view description. There are m first round message and 2(m - 1) subsequent
messages for two propagation directions. So totally there are (3m —2)( B, + B;) bytes

. Summing all these up, the total amount of data transferred is:

( 200BB [y j( g7 — 1) — m(J2 — 1)]+
el = 1) = m(J ~ 1]+
< (4m — 2)B, + (3m — 2) B, it J£1
20Cm?*(B, + B} + 2pCm(m — 1) B;+
{ (4m — 2)B, + (3m - 2) B otherwise.

We will investigate the effect of three parameters on the number of bytes trans-
ferred, namely, m, p and J. The results are shown in Figure 7.8 and Figure 7.9.
Figure 7.8 shows the transmission overhead against the number of database servers,
m. Figure 7.9 depicts the number of bytes transferred against the join factor, J. For
comparison purpose, we also depict the transmission overhead for recomputation.

In Figure 7.8, J is maintained at 1, as a point of reference. We study the perfor-
mance of WAVE on different rates of relation update, with p ranging from 0.5 to 2.5

with 0.5% interval. We also vary m from 1 to 20. The number of bytes transferred



CHAPTER 7. PERFORMANCE EVALUATION

45000

40000

35000

25000

30006 +——

i —B-Degree of update = 0.5%

i —o—Degree of update = $.0%
i —&—Degree ol update = 1.5%

1 —8—Degree of update = 2.0%
| % Degree of update = 2.5%

! = Recomputation

3
2

15000

Transmission Overhead (x1000 bytes)}

10000

5000

Figure 7.8: Transmission Overhead against Number of Database Servers

25000

8
g

15000

10000

Transmission Ovehead (x1000 bytes)

g

-] 9 10 11 12 13

Number of Database Servers

-8~ Degree of update = 0.5%
-0~ Degree of update = 1.0%
-4 Degree of update = 1.5% /
-~ Degree of update = 2.0%
~»-Degree of update = 2.5%
“— Recamputation /‘
i
0.5 1 15 25
Join Factor

Figure 7.9: Transmission Overhead against Join Factor



CHAPTER 7. PERFORMANCE EVALUATION 96

is found to be directly proportional to the degree of update. With respect to m, the
number of bytes transferred rises gradually as m increases in recomputation, but the
growth is more rapid in WAVE. However, WAVE performs slightly worse than recom-
putation only when there are more than 19 data sources with a degree of update over
2.5%.

In Figure 7.9, m is fixed at 5. We compute the performance of WAVE with respect
to different join factors from 0.5% to 2.5%. Since the same relations are transferred
from the database servers to the base station, the number of bytes transferred in
recomputation is independent of the join factor for the fixed number of servers. In
contrast, the number of bytes transferred increases exponentially in WAVE. It can
be observed that WAVE performs better than recomputation when the join factor is
less than 2. As a result, an incremental cache refreshment would not be appropriate
for relations and queries with a large join factor. However, for practical database
applications, most of queries will only lead to a small join factor, especially when join

operation is performed via foreign keys.

Evaluation #2. Comparing WAVE with T-Strobe in terms of transmission

overhead

In the second evaluation, we would like to compare the transmisson overhead in WAVE
with other incremental update mechanisms. Since apart from this work, we are not
ware of any similar algorithm specifically designed for the pull-based view update
environment, we decide to compare WAVE with T-Strobe [84] because T-Strobe is
shown to be space and time efficient. Notice that T-Strobe and WAVE are designed
for different environments, and thus, the comparison could only be used as a reference.

We fix m to 5 and compare the transmission overhead in terms of the number of
bytes transferred in T-Strobe with WAVE when p ranges from 0.5% to 2.5%. Again,

we assume a 100% degree of modification. We also vary J from 0.5 to 2.5. The results
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Figure 7.10: Comparison of WAVE and T-5trobe

are shown in Figure 7.10. We could observe that the number of bytes transferred in

the two approaches are almost identical with only non-observable differences.

Evaluation #3. Comparing WAVE with other algorithms in terms of storage

overhead

In our last evaluation, we would like to quantify the storage overhead imposed by
WAVE. We specifically compare the storage overhead of WAVE with the differential
file approach (differential) proposed in [67] since both approaches are based on logging
update information applied on a relation and will require extra storage overhead. We
also compare with T-Strobe because T-Strobe is quite space efficient.

For differential, each entry in the log file includes an updated tuple, an operation
code and two timestamps. In addition to our notations in the previous evaluations,
we denote the size of an operation code as B,, of 1 byte. The size of each entry in the

log file is thus By,, = B, + By, + 2B,. The size of a log file depends on the number
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of entries in the log file which in turn, depends on the number of update operations.
Assuming that we have the same number of insert and delete operations, the number
of insert and delete operations is therefore 1—? pC. Since each modification operation
will constitute two entries in the log file, we compute the total number of entries in
the log file, Cjpy = 2pCpu + 1_?5[,0 + 5#pC = (1 + p)pC. The size of the log file will
therefore be CiogBiog = (1 + p)(B; + By, + 2B,)pC.

T-Strobe requires storage for holding all the updated tuples within a transaction.
If we assume the degree of update p within a transaction, the storage required to hold
the updated tuples will be equal to pCB,.

The storage overhead in WAVE includes the time tag of the currency relation as
well as history relation. The storage overhead of the time tag in the currency relation
is CB,. The size of each tuple in the history relation is equal to B, + 2B,. Again,
we assume the same insert and delete operations, percentage of delete operations
will be equal to I—E’i The number of entries in the history relation is thus equal to
pCu+ *52) = pCLE2 giving a total size of 1pC(1 + p)(B, + 2B,).

Figure 7.11 depicts the storage overhead when the degree of update, p, ranges from
0.5% to 2.5% of C, i.e., the number of update operations, pC, ranges from 50 to 250.
The percentage of modification operations, y, ranges from 20% to 100% of pC.

As shown in Figure 7.11, all three algorithms require extra storage which increases
linearly with the degree of modifications and the degree of update. However, the
storage requirement of WAVE increases much less rapidly than that of differential.
The saving of storage in WAVE is mainly due to the fact that our history relation
only maintains one tuple for every modification while in differential, two entries will
be maintained in the log file for each modification.

Push-based algorithms usually require minimal storage as updated information
are pushed to the client. Therefore, T-Strobe requires less storage than WAVE in

general. However, we observe that when the degree of update reaches 2.5% and the
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degree of modification reaches 80%, WAVE becomes more space efficient. This is
because T-Strobe only requires storage for holding update information within a single
transaction. When the degree of update and modification is small, it requires less
storage than WAVE because WAVE requires extra storage to hold the time tags of each
tuple. However, when the degree of update increases, WAVE outperforms T-Strobe
because T-Strobe will require the same amount of extra storage for each inserted
tuple, just like any kind of updated tuple. In WAVE, no extra storage is needed for

an inserted tuple, except for the creation time tag information.

7.3 Discussion

In the first part of this chapter, we demonstrate the effectiveness of our semantic
query caching scheme through a set of experiments. It has a good performance in

terms of the elapse time, the cache hit ratio and the bandwidth consumption. In
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a read-only environment where there is no database update, for a changing skewed
hot access pattern, LRU performs the best while for a skewed hit access pattern,
MRU 1s shown a little superior to others. Catering for a “large” cache fragment,
cache decomposition with suitable threshold settings can enhance the performance
of the cache to the changes in the access pattern. This could be observed from the
self-answerability rate. Further, to alleviate the problem of over decomposition, cache
fusion is used to coalesce smaller fragments to a larger one. That further increases the
cache hit ratio and reduces bandwidth consumption and shortens elapsed time. The
performance of semantic query caching scheme is satisfactory when update rate and
update selectivity is low. This is a typical characteristic of the mobile environment,.
Using a quantitative analysis, our proposed WAVE algorithm is shown to be effective
and efficient. For a small join factor among different relations, low degree of update
but with a higher degree of modifications, our WAVE performs efficiently in terms of
less transmission overhead and small storage overhead compared with differential log

and T-Strobe.



Chapter 8

Conclusion

8.1 Contribution of the Thesis

We proposed a pull-based view update mechanism in which the warehouse requests
the differential changes from the stateless servers. Based on the use of creation time
tag and deletion time tag in two relations: a currency relation and a history relation,
a stateless server becomes able to determine the respective changes of a relation.
We derived a mechanism to deduce the respective changes to a view, as long as the
changes of a relation can be determined. Then we elaborated the mechanism from a
single relation to multiple relations resident in one database server. Based on a similar
idea, we extended the mechanism to our WAVE algorithm to handle view updating
over multiple relations in different database servers. We demonstrated the correctnéss
of our algorithm in the presence of view update anomaly problem which arises due
to autonomy of servers and concurrent updates. To reduce number of messages,
we developed an optimized version of WAVE algorithm in which all individual view
accumulation change requests are grouped according to propagation directions to
reduce number of messages.

We discussed our semantic query caching scheme. Every time a query result is

101
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maintained in the client cache as a data block that we call cache fragment. The cache
fragment is a basic caching unit. Each cache fragment is associated with a description
that is the specification of the deriving query. We then discussed the idea of query
intersection, which helps us to reason whether a query can be answered using a cache
fragment, and illustrated the scenarios of reusing cache fragment to answer a query.
We described the query transformation mechanism that rewrites a query into a probe
query and a supplementary query when a cache fragment is reusable. The probe
query retrieves required data from the cache fragment and the supplementary query
represents the missing data. Then the complete query result can be constructed from
both query results. If there is another fragment reusable, the supplementary query
can be further transformed.

We proposed two cache manipulation techniques, namely, cache decomposition and
cache fusion to handle cache management, which is complicated by a dynamic cache
granularity. Usually a coarse cache fragment might contain data of different access
frequency. To enhance the cache hit, those data items of lower access frequency
need to be extracted from the cache fragment and to be disposed. In the thesis, our
cache decomposition mechanism is used to divide a large cache fragment into several
smaller sub-fragments. The idea of cache decomposition is similar to that of query
transformation. To avoid a smaller cache fragment from being further decomposed,
which induces excessive overheads in storing semantic information and processing
query transformation and result construction, we suggested the use of decomposition
threshold as an indicator. When the size of a cache fragment is smaller than the
threshold, and the decomposition of the cache fragment is prohibited. In constrast to
cache decomposition, our cache fusion mechan.ism is to fuse smaller fragment into one
larger fragment. In our implementation, we use the final query result to substitute
for the reused smaller cache fragments.

In the thesis, we described the implementation methodology of our prototype.
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To precisely represent a query, we introduced a bit-stream pattern of two forms:
normal form and compact form. Using the bit-stream query representation, query
transformation can be performed in a structural way. Besides, we discussed our
cache storage management by storing a cache fragment in a binary file in an existing
file system.

Finally, to demonstrate the feasibility of our MoWS, a set of experiments was
conducted and the representative sets of results were presented. Our experimental

results clearly showed the suitability of MoWS in the mobile environment.

8.2 Future Work

Many important issues related to MoWS remain unexplored in the thesis. There
are interesting questions that give rise to several implementation alternatives and
performance optimizations. Below, we discuss a few such issues and outline directions

for future research.

Semantic Data Broadcast: In MoWS, the caching model is based on point-to-
point communication paradigm. If server data broadcast with semantics is
available, that is, data being broadcast is described by means of semantic infor-
mation, a part of a query result can be obtained from the broadcast. Then our
query transformation mechanism can be further extended to rewrite a query
into several sub-queries which load data from the cache, fetch data from the’
server and capture required data from the broadcast. It will make our work

sound and complete.

Query Transformation Optimization: In the thesis, we did not consider how to
transform a query in an optimized way. When a number of cache fragments are
used to transform a query in different orders, the resulting transformed query

could be so different. In the worst case, a query could be transformed into a
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collection of overly fine sub-queries. To admit all those sub-query results, the
cache would contain a lot of cache fragments. Also the construction of a query
result from overly fine sub-query results incurs more computation overhead. So
an optimization technique needs to be incorporated in the transformation mech-
anism. Currently we are studying some strategies focusing on the minimization
of the number of sub-queries, less computation overheads in result construction

and so on.

Cache Maintenance: Cache update mechanism is used to refresh those stale cache
fragments. However, updating a cache fragment by incorporating differential
changes might not be absolutely beneficial, as a large portion of a cache fragment
1s outdated. Then reusing this stale cache fragments is not recommended. In
this case, query transformation mechanism should be supplemented with a filter

to invalidate those stale fragments instead of refreshing them.

Besides, a fragment is decornposed when a query reuses it. This immediate ap-
proach might not be effective to locate the portion of a cache fragment with a
higher access frequency. If sufficient access history of a cache fragment is main-
tained to conclude a suitable way to decompose the cache fragment, a better
decomposition decision can be made. This will be one of the enhancements in

our cache management.

Versioned Cache: In current work, the entire cache is refreshed every time a query
1s initiated. When disconnection occurs, a query entirely answered using the
cache fragments can still be considered correct even the cache fragments may

not be most up-to-date but they all belong to one consistent database state.

However, updating all cache fragments no matter whether they are reused by
a query would incur high update overheads. Optimization can be acheived by

selectively refreshing those reused cache fragments. Updating those required



CHAPTER 8. CONCLUSION 105

cache fragments of a query will reasonably incur less overhead. Then another
serious problem will arise that some fragments are updated and some remain
stale. So, the cache will become a collection of cache fragments of different
versions. A query reusing those cache fragments of different versions might not

be guaranteed to be correct again if the choice of the version is not judicial.

If it is not a strict data requirement for user applications, relaxed consistency
criteria could be considered. For example, some of alternatives are Divergence
Control [13, 79]. In a cache, the version difference among cache fragments should
be bounded. The checking based on timestamps of data items is discussed
in {13]. So even though a query reuses those cache fragments of different version,
the incorrectness is limited in a certain degree. Sometimes, inconsistency could
be open-bounded depending on the nature of the application domains. If the
data is used to indicate general information rather than to support critical

decision making, the less accurate result can be accepted.

Heterogeneous Databases: Currently we assume all databases are of relational
model. In a practical environment, it is not a must. An extension would be
concentrated on different database models. Then the query processing and the

view update mechanism would be very different and complicated

Complicated Query Specification and View Definition: Currently, we have
only considered the view definition of a conjunctive projection-selection with
a chain join of operand relations while the query is specified as a projection-
selection on the materialized view. Besides a basic construct, we would like to
study other complicated features such as involving aggregation functions and
a recursive query (view), which is very common in ordinary database applica-
tions. Examples of aggregation functions include sum, average and maximum

of certain attributes as well as a group-by function. A recursive query (view) is
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one whose operand is another query (view). Catering for those kinds of features,
query transformation and view update mechanism will definitely become more

complicated.
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