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ABSTRACT 

Geographically, Hong Kong is not located in a region with frequent attacks from 

destructive earthquakes, and historically, there is no provision for seismic design of 

building structures. However, several previous studies and publications suggest that 

Hong Kong should be regarded as a region with moderate seismic risk. The main 

objective of the present study is to investigate the seismic vulnerability of existing 

wind-designed tall buildings in Hong Kong, for which very often transfer systems and 

asymmetric structural plans are used. It remains a big issue on how such non-seismic- 

designed high-rise buildings will perform under the strike of earthquakes. 

In this study, the seismic vulnerability of an asymmetric 21-story building in 

Hong Kong with transfer plate is assessed through conducting shaking table tests. A 

1:25 scaled model was designed according to the “additional-mass-similarity-law” 

and fabricated using micro-concrete, steel wires and meshes. The completed model 

was tested on the MTS seismic shaking table at The Hong Kong Polytechnic 

University, subjected to compressed waves of five past earthquakes with scaled peak 

accelerations of 0.05, 0.1, 0.15, 0.2 and 0.3g. The test results reveal that the transfer 

plate and stories above are most vulnerable and susceptible to severe damages under 

the attack of earthquakes. An asymmetric rocking motion and failure pattern of the 

upper structure above the transfer plate are observed for the first time in our tests. 

The damages of the model were evaluated quantitatively through various 

seismic damage indices, including the ductility, inter-story drift ratio, frequency ratio, 
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final softening, and Park and Ang damage index. A new but simple algorithm was 

developed to estimate the overall Park and Ang damage index of the whole structure 

from measured acceleration and displacement data by idealizing one story as one 

equivalent element. Utilizing the Park and Ang damage index as a benchmark, the 

other damage indices are correlated explicitly with various damage states (i.e. slight 

damage, minor damage, moderate damage, severe damage and collapse) for the first 

time. This correlation provides a practical approach to assess seismic damages rapidly 

and is expected to be applicable to other similar buildings in Hong Kong. 

In addition to direct damages to individual buildings, earthquakes may also 

induce damages to buildings through seismic pounding of adjacent structures, 

especially in metropolitan regions such as Hong Kong. In this thesis, seismic torsional 

pounding is studied from both theoretical and experimental aspects. 

Theoretically, seismic pounding is modeled using the nonlinear Hertz contact. 

Numerical simulations are conducted to study the torsional pounding between two 

flexible single-story towers as well as between a flexible tower and a neighboring 

barrier. An analytical solution is also obtained for the latter case. The results show 

torsional pounding is much more complex than translational pounding. Possible 

chaotic impacts make torsional pounding more difficult to be predicted.  

The more complex torsional pounding between adjacent multi-story buildings is 

studied through conducting shaking table tests. Two 1:45 steel models were fabricated 

to simulate two adjacent 21-story buildings with both transfer plates and asymmetric 

plans. Pounding tests were conducted between the two models as well as between a 
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flexible model and a nearly rigid wall. The observed pounding can be periodic, group 

periodic (i.e. a group of non-periodic impacts repeating themselves periodically) or 

chaotic. Energy may be transferred through pounding from the more massive and 

rigid structure to the lighter and more flexible one, which causes abnormal large 

responses and damages to the lighter structure. When the separation distance is zero, 

the two models respond like a new system, which may have a different dynamic 

characteristic from those of the individual structures. Thus, pounding may induce an 

unplanned period shift to existing buildings, which makes their seismic responses 

more unpredictable than a stand-alone-building. 

 

 

 iv



LIST OF PUBLICATIONS 

Chau, K.T., Wang, L.X. and Wei, X.X., 2004. Nonlinear Seismic Torsional Poundings 

between Two Adjacent Structures. 2004 HKSTAM (The Hong Kong Society of 

Theoretical and Applied Mechanics) Annual Conference, March 6, 2004, City 

University of Hong Kong, Hong Kong. 

Wang, L.X., Wen, Z.P. and Chau, K.T., 2004. Vibrations of Assymetric Wall-Frame 

Structures with Varying Mass and Stiffness along the Height. 2004 ANCER Annual 

Meeting, July 28-30, 2004, Hawaii, USA (full paper in CD-ROM). 

Chau, K.T., Wei, X.X. and Wang, L.X., 2004. Experimental and theoretical 

simulations of seismic torsional poundings between two adjacent structures. 

Proceedings of the 13th World Conference on Earthquake Engineering (13WCEE), 

August 1-6, 2004, Vancouver, Canada, Paper No. 2176, pp. 284 (full paper in 

CD-ROM). 

Wang, L.X., Chau, K.T., Meng, Q.L. and Wei, X.X., 2005. Earthquake-induced 

Poundings between Two Asymmetric Tall Buildings: The results of shaking table 

tests. 2005 HKSTAM (The Hong Kong Society of Theoretical and Applied 

Mechanics) Annual Conference, March 12, 2005, The Hong Kong Polytechnic 

University, Hong Kong, pp. 14. 

Chau, K.T., Wang, L.X., Wei, X.X. and Meng, Q.L., 2005. Shaking table simulations 

of torsional poundings between two 20-story asymmetric buildings in Hong Kong. 

2005 ANCER Annual Meeting, November 10-13, 2005, Jeju, Korea (full paper in 

CD-ROM). 

Chau, K.T., Wang, L.X. and Wei, X.X., 2006. Torsional poundings between two 

adjacent asymmetric structures. The 4th International Conference on Earthquake 

Engineering (4ICEE), October 12-13, 2006, Taipei, Taiwan, Paper No. 105, pp. 66 

 v



(full paper in CD-ROM). 

Wang, L.X. and Chau, K.T., 2006. Rocking failure of a multi-storey building model at 

transfer plate on shaking table. Proceedings of the 7th National Conference on 

Earthquake Engineering, November 16-19, 2006, Guangzhou, China, Vol.2, pp. 

1293-1302. 

Wang, L.X., Chau, K.T. and Wei, X.X., 2008. Numerical simulations of nonlinear 

seismic torsional pounding between two single-story structures. Advances in 

Structural Engineering (in press). 

Wei, X.X., Wang, L.X. and Chau, K.T., 2008. Nonlinear seismic torsional pounding 

between an asymmetric tower and a barrier. Earthquake Spectra (in press). 

Wang, L.X. and Chau, K.T., 2008. Seismic vulnerability of asymmetric tall buildings 

in Hong Kong, Part I: Shaking table tests. Journal of Structural Engineering, ASCE 

(under review). 

Chau, K.T. and Wang, L.X., 2008. Seismic vulnerability of asymmetric tall buildings 

in Hong Kong, Part II: Damage assessments. Journal of Structural Engineering, 

ASCE (under review). 

 vi



ACKNOWLEDGEMENTS 

First of all, I am deeply indebted to my chief supervisor, Prof. K.T. Chau, for his 

patient, persistent and beneficial guidance during my whole Ph.D. study period. His 

open, critical and creative thinking as well as high efficiency all left me deep 

impressions. I also benefited a lot from his prudent attitude to research. I would like to 

express my sincere gratitude to Prof. Y. Chen from China Earthquake Administration, 

chief supervisor of my M.Sc. degree, for his introduction and kind encouragement to 

my study in Hong Kong. Special thanks also go to my co-supervisor, Prof. Z.P. Wen 

from Institute of Geophysics, China Earthquake Administration, for his instructive 

guidance and passionate encouragement to my study. 

I am truly grateful to Prof. X.X. Wei for her beneficial discussion and guidance on 

my research of seismic pounding. Her smart thinking and hardworking also left me a 

deep impression. Thanks also go to Dr. S.Z. Wu and Dr. R.H.C. Wong for their help 

and encouragement to me during the study. 

The assistances to my experimental work from Dr. Q.L. Meng and Mr. H.B. 

Zhang are highly appreciated. Without their help, the accomplishment of the 

experiments will be impossible. Same thanks also go to the technicians in Light 

Structures & Dynamics Laboratory and Concrete Laboratory at The Hong Kong 

Polytechnic University, especially Mr. T.T. Wai, M.C. Ng, C.S. Liu, C.F. Cheung, 

K.H. Wong and W.K. Ho, and also Mr. C.P. Chow, a final-year undergraduate student, 

for their generous help and collaboration during the experiment procedure. The 

 vii



instructive advice and guidance on manipulation of experimental data from Prof. S. 

Zhan are also much appreciated. 

Appreciation is extended to the financial support to my study and research from 

The Hong Kong Polytechnic University, which makes the experiments and other 

related work become possible. 

I also would like to thank my colleagues and friends in CSE Department at The 

Hong Kong Polytechnic University in the past several years, especially to Dr. M.R. 

Jiao, J.D. Zhao, D. Wu, Y.W. Jiang, G.F. Zhu, F.L. Hua, L. Yu, and Mr. H.Y. Lin, for 

their warm friendship and generous help to my study and life in Hong Kong. 

Last but not least, I am greatly indebted to my family and Ms. X.Y. Li for their 

persistent support and encouragement throughout the whole study period. 

 

 

 viii



TABLE OF CONTENTS 

Certificate of Originality .............................................................................................. i 

Abstract.........................................................................................................................ii 

List of Publications ...................................................................................................... v 

Acknowledgements .................................................................................................... vii 

Table of Contents ........................................................................................................ ix 

List of Tables ............................................................................................................. xiv 

List of Figures............................................................................................................ xvi 
 
 
Chapter 1 Introduction................................................................................................ 1 

1.1 Background....................................................................................................... 1 
1.2 Motivations and Objectives .............................................................................. 6 

1.2.1 Seismic vulnerability .............................................................................. 6 
1.2.2 Seismic torsional pounding................................................................... 10 

1.3 Outline of the Thesis....................................................................................... 13 
 
 
Part A  Seismic Vulnerability Using Shaking Table Tests ................................... 19 
 
Chapter 2 Dynamic Characteristics of Building Model from Finite Element 
Analyses ...................................................................................................................... 20 

2.1 Introduction..................................................................................................... 20 
2.2 Building Selected for Investigation ................................................................ 22 
2.3 FEM Analyses................................................................................................. 25 

2.3.1 Model set-up ......................................................................................... 26 
2.3.2 Modal characteristics ............................................................................ 27 
2.3.3 Time history analyses ........................................................................... 29 

2.3.3.1 Input earthquake wave ................................................................................30 
2.3.3.2 Dynamic responses .....................................................................................30 
2.3.3.3 Stress concentration ....................................................................................33 

 
Chapter 3 Similarity Law and Model Design.......................................................... 50 

3.1 Introduction to Model Tests on Shaking Tables ............................................. 50 
3.1.1 Shaking table tests on structure vulnerability ....................................... 50 
3.1.2 Shaking table tests conducted in Hong Kong ....................................... 54 
3.1.3 Objectives of the present shaking table test.......................................... 55 

 ix



3.2 Similarity Law for Structural Dynamics......................................................... 58 
3.2.1 Similarity law from the Buckingham Pi Theorem................................ 58 
3.2.2 Similarity law from governing equations ............................................. 62 

3.3 Model Design Constrained by Similarity Law ............................................... 66 
3.3.1 Model dimensions................................................................................. 67 
3.3.2 Mechanical properties of micro-concrete ............................................. 68 
3.3.3 Reinforcements ..................................................................................... 72 

3.4 Fabrication of Model ...................................................................................... 74 
3.4.1 Fabrication of the base slab .................................................................. 74 
3.4.2 Fabrication of the upper structure......................................................... 75 
3.4.3 Actual micro-concrete used .................................................................. 78 
3.4.4 Demoulding and repairing .................................................................... 80 
3.4.5 Installation of additional mass .............................................................. 81 

3.5 Instrumentation Strategy................................................................................. 82 
3.5.1 Accelerometers and displacement transducers ..................................... 83 
3.5.2 Strain gauges......................................................................................... 85 

3.6 Summary of the Model Design....................................................................... 86 
 
Chapter 4 Shaking Table Tests I: Damage Observations .....................................115 

4.1 Input Earthquake Waves ................................................................................115 
4.1.1 Earthquake waves selection .................................................................115 
4.1.2 Earthquake waves after soil amplification...........................................118 

4.2 Dynamic Characteristics of Model ................................................................123 
4.2.1 Natural frequencies ..............................................................................123 
4.2.2 Damping ratios.....................................................................................125 

4.3 Maximum Dynamic Responses .....................................................................126 
4.3.1 Actual inputs generated by the shaking table ......................................126 
4.3.2 Maximum strains .................................................................................128 
4.3.3 Maximum accelerations at the roof .....................................................129 
4.3.4 Maximum rotations at the roof ............................................................130 

4.4 Crack Patterns ................................................................................................133 
4.4.1 Internal cracking interpreted from strain signals .................................133 
4.4.2 Cracks caused by 0.3g El Centro earthquake ......................................136 
4.4.3 Cracks caused by 0.3g Kobe earthquake .............................................138 
4.4.4 Cracks caused by 0.3g Chi-Chi earthquake .........................................139 

 
Chapter 5 Shaking Table Tests II: Damage Evaluations ......................................182 

5.1 Literature Review of Seismic Damage Indices..............................................182 
5.1.1 Classification of seismic damage states...............................................182 
5.1.2 Seismic damage indices .......................................................................184 
5.1.3 Park and Ang damage index ................................................................188 

5.1.3.1 Definition ..................................................................................................189 
5.1.3.2 Advantages................................................................................................190 
5.1.3.3 Limitations ................................................................................................191 

 x



5.1.4 Damage indices adopted in the present study......................................193 
5.2 Damage Quantifications ................................................................................195 

5.2.1 Inter-story drift ratio ............................................................................196 
5.2.2 Estimated ductility ...............................................................................197 
5.2.3 Deterioration of natural frequency.......................................................200 
5.2.4 Method of estimating Park and Ang damage index.............................201 
5.2.5 Damages caused by energy dissipation ...............................................205 
5.2.6 Damage quantification using Park and Ang index ..............................207 

5.3 Correlations between Different Damage Indices...........................................210 
 
Chapter 6 Discussions on Model Testing.................................................................232 

6.1 Summary of Model Tests..............................................................................232 
6.2 Comparison with FEM Analysis Results......................................................233 
6.3 Interpretation on Prototype Seismic Performance ........................................236 

6.3.1 Beam ...................................................................................................236 
6.3.2 Column................................................................................................239 
6.3.3 Wall.....................................................................................................241 
6.3.4 Discussion and Recommendation.......................................................242 

 
 
Part B  Seismic Torsional Poundings ....................................................................254 
 
Chapter 7 Numerical Simulation and Analytical Solution for Torsional Pounding

.............................................................................................................................255 
7.1 Introduction....................................................................................................255 

7.1.1 Previous studies on seismic poundings................................................255 
7.1.1.1 Pounding hazard........................................................................................256 
7.1.1.2 Pounding hazard mitigation ......................................................................257 
7.1.1.3 Previous studies on seismic poundings .....................................................269 

7.1.2 Motivation of the present study ...........................................................264 
7.2 Numerical Simulation of Pounding between Two Flexible Towers..............265 

7.2.1 Formulation..........................................................................................265 
7.2.1.1 Equations of motion..................................................................................265 
7.2.1.2 Calculation of impact force.......................................................................269 
7.2.1.3 Method of solution....................................................................................273 
7.2.1.4 Validation of the solving method..............................................................275 

7.2.2 Numerical simulations and discussions ...............................................275 
7.2.2.1 Comparison of translational and torsional poundings...............................275 
7.2.2.2 Effect of separation distance .....................................................................279 
7.2.2.3 Effect of damping ratio .............................................................................279 
7.2.2.4 Effect of eccentricity.................................................................................282 
7.2.2.5 Maximum stand-off distance ....................................................................282 

7.3 Analytical Solution for a Special Case: Torsional Pounding on Rigid Barrier
......................................................................................................................283 

 xi



7.3.1 Formulation or rigid barrier pounding and method of solution ...........284 
7.3.1.1 Equations of motion..................................................................................284 
7.3.1.2 Boundary conditions for periodic impact..................................................287 
7.3.1.3 General solution for free flight motion between impacts..........................289 
7.3.1.4 Determination of unknown parameters.....................................................290 

7.3.2 Results and discussions........................................................................296 
7.3.2.1 Comparison of translational and torsional poundings...............................296 
7.3.2.2 Effect of separation distance .....................................................................298 
7.3.2.3 Effect of contact stiffness and force exponent ..........................................300 
7.3.2.4 Effect of damping ratio .............................................................................301 
7.3.2.5 Case 2 conditions ......................................................................................302 
7.3.2.6 Effect of eccentricity.................................................................................304 
7.3.2.7 Maximum stand-off distance ....................................................................305 

7.4 Conclusions and Discussions.........................................................................306 
 
Chapter 8 Shaking Table Tests for Torsional Pounding.......................................342 

8.1 Introduction....................................................................................................342 
8.2 Model Design and Construction ....................................................................345 

8.2.1 Two selected adjacent buildings in Hong Kong ..................................345 
8.2.1.1 Prototypes .................................................................................................345 
8.2.1.2 FEM analyses of the prototypes................................................................347 

8.2.2 Model design and construction............................................................348 
8.2.2.1 Design of two steel models .......................................................................348 
8.2.2.2 Model construction ...................................................................................352 

8.2.3 Dynamic characteristics of the two models .........................................353 
8.3 Pounding Tests between Two Flexible Models .............................................355 

8.3.1 Experimental setups.............................................................................355 
8.3.1.1 Location of contactors...............................................................................355 
8.3.1.2 Instrumentations........................................................................................356 

8.3.2 Maximum stand-off distances..............................................................357 
8.3.3 Poundings under harmonic excitations ................................................358 

8.3.3.1 Phase diagrams and velocity time histories ..............................................359 
8.3.3.2 Energy transfer through pounding ............................................................360 
8.3.3.3 Maximum responses .................................................................................361 
8.3.3.4 Maximum pounding forces .......................................................................363 

8.3.4 Poundings under real earthquake excitations.......................................364 
8.3.5 Comparison with theoretical study ......................................................365 

8.4 Pounding Tests between One Flexible Model and a Nearly Rigid Wall .......367 
8.4.1 Experimental setups.............................................................................368 

8.4.1.1 Details of the nearly rigid wall..................................................................368 
8.4.1.2 Instrumentations........................................................................................369 

8.4.2 Poundings under harmonic excitations ................................................370 
8.4.2.1 Zero separation distance ...........................................................................371 
8.4.2.2 Non-zero separation distance ....................................................................372 

 xii



8.4.2.3 Maximum responses .................................................................................373 
8.4.2.4 Maximum pounding forces .......................................................................374 

8.4.3 Comparison with theoretical study ......................................................375 
8.5 Conclusions and Discussions.........................................................................377 

 
Chapter 9 Conclusions..............................................................................................421 

9.1 Main Conclusions and Implications ..............................................................421 
9.1.1 Seismic vulnerability ...........................................................................421 
9.1.2 Seismic torsional pounding..................................................................423 

9.2 Recommendations for Further Studies ..........................................................424 
 
 
Appendices.................................................................................................................426 
 
References ..................................................................................................................434 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xiii



LIST OF TABLES 

Table 2.1 The story heights and slab areas of different stories of the prototype. ........35 

Table 2.2 Natural periods and frequencies of the first six modes of the model with and 
without additional mass.. .....................................................................................35 

Table 2.3 Lateral stiffness of different stories of the model from FEM analysis.. ......35 

Table 3.1 Additional mass similarity law for shaking table tests derived from both the 
Buckingham Pi Theorem and governing equations.. ...........................................87 

Table 3.2 Typical dimensions of the model and the prototype (length scale lλ = 1/25)
..............................................................................................................................88 

Table 3.3 Two extreme cases of additional mass added for purpose of estimating the 
target strength of micro-concrete used.................................................................89 

Table 3.4 Test results of samples of micro-concrete. The mix proportion of cement, 
sand and water is measured by weight and Eλ  denotes the Young’s modulus 
ratio between the sample and the prototype.........................................................89 

Table 3.5 Strength of the micro-concrete used in construction of various stories.......90 

Table 4.1 Earthquake records used in the shaking table tests....................................144 

Table 4.2 Soil profiles and estimated shear wave speeds using two empirical formulae.
............................................................................................................................144 

Table 5.1 Comparison of various seismic damage indices. .......................................213 

Table 5.2 Change of the first three natural frequencies of the model after various 
earthquake inputs, where inif  and damf  denote the initial and changed 
frequencies after damage respectively. ..............................................................215 

Table 5.3 The maximum deformation (δm), dissipated energy (E) and estimated Park 
and Ang index (DPA) of each story under the shaking of 0.3g Chi-Chi earthquake 
after soil amplification. ......................................................................................216 

Table 5.4 Park and Ang damage indices and overall drift ratios corresponding to the 
onset of various damage states...........................................................................216 

 xiv



Table 5.5 Maximum strain, rotation, drift ratio and amplification factor for various 
earthquake inputs. ..............................................................................................217 

Table 5.6 The natural frequency ratio (fdam/fini), final softening index (DF), ductility 
(μ ), and Park and Ang damage index (DPA) caused by various earthquake inputs.
............................................................................................................................218 

Table 5.7 Threshold values for various damage indices corresponding to the onset of 
various damage states. .......................................................................................219 

Table 6.1 Estimated shear capacity (Vu) of several columns and beams of the model 
and prototype, where φ  means diameter, the subscript ‘p’ means the prototype, 
‘m’ means the model and ‘md’ means the desired values for the model. ..........244 

Table 8.1 Natural frequencies of the first six modes of the prototype, the target model, 
the model from FEM analysis, and actual fabricated models. ...........................380 

Table 8.2 Dimensions of columns of the two steel models. ......................................381 

Table 8.3 Story heights, areas and mass of various stories of the EH and GS models.
............................................................................................................................382 

Table 8.4 Summary of responses during the inputs of three earthquakes when the 
separation distance between GS and EH is 0 and 3.2 mm respectively. In the 
table, Amax and Vmax are the maximum acceleration and velocity at the roof of GS, 
duration and Ni represent the time duration and number of impacts occurred, and 
Fmin and Fmax denote the minimum and maximum impact forces......................383 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xv



LIST OF FIGURES 

Figure 1.1 Damages caused by past major earthquakes in China: (a), (b) structures 
damaged in the 1976 Tangshan earthquake (Qi and Jiang, 1999); (c) history 
record of the 1556 Shanxi earthquake which killed more than 830,000 people 
(Chen, 2000); (d) influence range of the 1556 Shanxi earthquake (State 
Seismological Bureau, 1995). ..............................................................................16 

Figure 1.2 Seismic intensity zonation of Guangdong Province, China (after State 
Seismological Bureau, 1991). ..............................................................................17 

Figure 1.3 Photographs showing several typical high-rise buildings in Hong Kong 
with transfer systems: (a) Sorrento Tower (residential); (b) May House; (c) 
Conrad International Hotel; (d) Four Seasons Place. The latter three buildings are 
for commercial uses. Note that asymmetric plans are used for the latter two 
structures. .............................................................................................................18 

Figure 2.1 Photographs of the 21-story Empire Hotel (EH) building situated on Hong 
Kong Island: (a) the location map (the attached small sketch showing its story 
plan); (b) left-side view; (b) right-side view........................................................36 

Figure 2.2 Floor plans for (a) 1st-2nd stories; (b) typical (3rd-21st) stories of the EH 
building. The small sketch attached shows the elevation view of the building, 
where TP denotes the transfer plate. ....................................................................37 

Figure 2.3 The 1:25 FEM model of the EH building used in SAP 2000: (a) 3D 
perspective view; (b) plan view from the top; (c) front view; (d) back view. .....38 

Figure 2.4 The first six mode shapes of the EH model................................................39 

Figure 2.5 Normalized mode shapes of the first six modes at Corner II of the EH 
model....................................................................................................................40 

Figure 2.6 (a) The acceleration time history of the 1995 Kobe earthquake and (b) its 
Fourier spectrum. Note that the duration has been compressed using a factor of 
0.2 and the peak acceleration has been scaled to 0.1g. ........................................41 

Figure 2.7 The time history of responses in the x direction at Corner II at the roof 
(21/F) and the transfer plate (2/F) respectively: (a) accelerations; (b) 
displacements. The input is the 0.1g Kobe earthquake wave given in Figure 
2.6(a). ...................................................................................................................42 

 xvi



Figure 2.8 The maximum inter-story drift ratios at the four corners along the x- and y- 
directions for the 0.1g Kobe earthquake input. The results are from elastic FEM 
analysis.................................................................................................................43 

Figure 2.9 The maximum rotation angles calculated from the translational 
displacements of each pair of corners. In the figure, l  denotes the distance 
between two corners. The input is given in Figure 2.6(a). ..................................44 

Figure 2.10 The maximum (a) shear forces and (b) bending moments at columns and 
beams subjected to the 0.1g Kobe earthquake input. The arrows indicate the 
locations of the maximum shear forces and bending moments. The details can be 
referred in Figures 2.12 and 2.13 later. ................................................................45 

Figure 2.11 The maximum (a) normal stress 11σ ; (b) normal stress 22σ ; (c) shear 
stress 12σ ; (d) shear stress 13σ  of wall elements for the 0.1g Kobe earthquake 
input. It is clearly seen that the maximum stresses concentrate on the two 
diagonal corners (Corners I and III) just above the transfer plate level. The local 
coordinate system of wall elements is sketched by the 1, 2, 3 axes in the figure.
..............................................................................................................................46 

Figure 2.12 The maximum bending stresses (unit: MP) on walls and bending 
moments (unit: N.mm) at columns between G/F and 1/F for the 0.1g Kobe 
earthquake input. The filled or not-filled diamonds on the surfaces of walls or 
columns denote the strain gauges that are installed in our later shaking table tests. 
The not-filled diamonds represent those strain gauges which are out of sight from 
this view angle. ....................................................................................................47 

Figure 2.13 The maximum bending stresses (unit: MPa) on walls and bending 
moments (unit: N.mm) at columns between 1/F and 2/F for the 0.1g Kobe 
earthquake input. The filled diamonds on the surfaces of walls or columns denote 
the strain gauges that are installed in our later shaking table tests. .....................48 

Figure 2.14 The maximum bending stresses (unit: MPa) on walls between 2/F and 3/F 
for the 0.1g Kobe earthquake input. The filled or not-filled diamonds on the 
surfaces of walls denote the strain gauges that are installed in our later shaking 
table tests. The not-filled diamonds represent those strain gauges which are out 
of sight from this view angle. ..............................................................................49 

Figure 3.1 Photograph of the completed 1:20 scaled model of a 42-story reinforced 
concrete residential building in Hong Kong (Lam et al., 2002). .........................91 

Figure 3.2 Elevation view and story height of the model. Those typical floors which 
are not specified in the figure are all 120 mm height. .........................................92 

 xvii



Figure 3.3 Cross section of the model between 1/F and 2/F. Circular columns not 
specified are all of 48 mm diameter and walls not specified are all of 12 mm 
thick. The small sketch shows the elevation view of the model, where TP means 
the transfer plate...................................................................................................93 

Figure 3.4 Cross section of the model at a typical floor. Walls not specified are all of 8 
mm thick. The small sketch shows the elevation view of the model, where TP 
means the transfer plate. ......................................................................................94 

Figure 3.5 Photographs of finished micro-concrete samples: (a) 70.7×70.7×70.7mm 
cube samples; (b) φ 100×200 mm (φ  means diameter) cylinder samples with 
strain gauges attached on their surface. ...............................................................95 

Figure 3.6 Strain-stress curves of the three samples of set No. 4 in Table 3.4 and their 
corresponding Young’s modulus values (Ec).......................................................96 

Figure 3.7 Sketch showing the positions of the model and the base slab on the 
3m×3m shaking table. The six circles on the base slab denote screw holes which 
are used to fix it onto the shaking table. ..............................................................97 

Figure 3.8 Construction of the base slab: (a) connection of reinforcements; (b) the 
base slab after concreting.....................................................................................98 

Figure 3.9 Various instruments used in the model construction: (a) concrete mixer; (b) 
micro-vibrator; (c) electrically-heated-wire cutter for cutting EPS; (d) EPS 
blocks used to build the inner formwork. ............................................................99 

Figure 3.10 Construction procedure of the first story: (a) installation of stirrups; (b) 
installation of EPS blocks and beam reinforcements; (c) attachment of slab 
reinforcements and outer formwork; (d) casting of micro-concrete. .................100 

Figure 3.11 Construction of the transfer plate: (a) reinforcements of core walls and 
transfer beams as well as the timber and EPS foam formwork; (b) continuation of 
reinforcements of the upper walls above the transfer plate. ..............................101 

Figure 3.12 Construction of typical stories: (a) reinforcements of beams, walls and 
slab; (b) casting of concrete, and the two small photographs on the left show the 
micro-vibrator and concrete mixer used. ...........................................................102 

Figure 3.13 Demoulding of EPS formwork after the completion of concreting. ......103 

Figure 3.14 Different types of defects found in the model after demoulding............104 

 xviii



Figure 3.15 Photographs of the completed model: (a) without additional mass; (b) 
with additional mass installed............................................................................105 

Figure 3.16 Plan view showing the locations of the additional mass (dashed rectangles) 
placed on 1/F. The small sketch shows the elevation view of the model, where 
TP means the transfer plate................................................................................106 

Figure 3.17 Plan view showing the locations of the additional mass (dashed rectangles) 
placed on 2/F. The small sketch shows the elevation view of the model, where 
TP means the transfer plate................................................................................107 

Figure 3.18 Plan view showing the locations of the additional mass (dashed rectangles) 
placed on a typical floor. The small sketch shows the elevation view of the 
model, where TP means the transfer plate. ........................................................108 

Figure 3.19 Sketch of the model and locations of accelerometers and displacement 
transducers. ........................................................................................................109 

Figure 3.20 Accelerometer, amplifiers and displacement transducers and their 
locations on the model. ......................................................................................110 

Figure 3.21 Experimental set-ups and data loggers of (a) accelerometers and 
displacement transducers; (b) strain gauges. .....................................................111 

Figure 3.22 Sketch showing the distribution of strain gauges between G/F and 1/F. 
The strain gauges were denoted by the black rectangles attached on the surfaces 
of walls or columns. The gray filled rectangles denoted the strain gauges located 
on the opposite sides. .........................................................................................112 

Figure 3.23 Sketch showing the distribution of strain gauges between 1/F and 2/F. 
The strain gauges were denoted by the black rectangles attached on the surfaces 
of walls or columns. The gray filled rectangles denoted the strain gauges located 
on the opposite sides. .........................................................................................113 

Figure 3.24 Sketch showing the distribution of strain gauges between 2/F and 3/F. 
The strain gauges were denoted by the black rectangles attached on the surfaces 
of walls or columns. The gray filled rectangles denoted the strain gauges located 
on the opposite sides. Those listed in the upper right-hand corner were five strain 
gauges located at the same locations of upper stories........................................114 

Figure 4.1 The input waves of El Centro earthquake before and after soil 
amplification and their corresponding Fourier spectra, where fini and fdam denote 
the initial and final natural frequencies of the model respectively. ...................145 

 xix



Figure 4.2 The input waves of Kobe earthquake before and after soil amplification 
and their corresponding Fourier spectra, where fini and fdam denote the initial and 
final natural frequencies of the model respectively. ..........................................146 

Figure 4.3 The input waves of Northridge earthquake before and after soil 
amplification and their corresponding Fourier spectra, where fini and fdam denote 
the initial and final natural frequencies of the model respectively. ...................147 

Figure 4.4 The input waves of Loma Prieta earthquake before and after soil 
amplification and their corresponding Fourier spectra, where fini and fdam denote 
the initial and final natural frequencies of the model respectively. ...................148 

Figure 4.5 The input waves of Chi-Chi earthquake before and after soil amplification 
and their corresponding Fourier spectra, where fini and fdam denote the initial and 
final natural frequencies of the model respectively. ..........................................149 

Figure 4.6 Soil profiles beneath the site of the prototype structure. ..........................150 

Figure 4.7 Set-up of modal test: (a) sketch of the three hammer impact points (a, b 
and c) and accelerometers at the top floor, where CM means the center of mass; 
(b) photograph showing hammer impact at the point a. ....................................151 

Figure 4.8 Fourier spectra of the accelerations at the roof for determining the natural 
frequencies of the model. ...................................................................................152 

Figure 4.9 Damping ratios of the first mode of the model: (a) before all shaking tests; 
(b) after all shaking tests. ...................................................................................153 

Figure 4.10 Comparison of Fourier spectra of actual inputs generated by the shaking 
table and the target input for Chi-Chi earthquake without soil amplification. ..154 

Figure 4.11 Comparison of Fourier spectra of actual inputs generated by the shaking 
table and target input for Chi-Chi earthquake after soil amplification. .............155 

Figure 4.12 Maximum strains vs. input PGAs for various earthquakes before and after 
soil amplification respectively. ..........................................................................156 

Figure 4.13 Maximum accelerations at the roof vs. input PGAs for various 
earthquakes before and after soil amplification respectively.............................157 

Figure 4.14 Maximum acceleration amplification factors at the roof vs. input PGAs 
for various earthquakes before and after soil amplification respectively. .........158 

 xx



Figure 4.15 Maximum rotation angles at the roof vs. input PGAs for various 
earthquakes before and after soil amplification respectively.............................159 

Figure 4.16 Strain time histories of 13ε  during 0.05, 0.2g and 0.3g PGA El Centro 
earthquakes after soil amplification. Small tension for 13ε  occurred during 0.2g 
El Centro earthquake after soil amplification and implies invisible cracks had 
occurred above the column. ...............................................................................160 

Figure 4.17 Strain time histories of 21ε  and 22ε during 0.05, 0.2g and 0.3g PGA El 
Centro earthquakes after soil amplification. The variations of the two strain 
gauges changed from in-phase to out-of-phase. The photo below shows their 
locations. ............................................................................................................161 

Figure 4.18 The out-of-phase strains of two strain gauges on the opposite sides of a 
core wall during 0.05g and 0.3g Chi-Chi earthquakes. This phenomenon was also 
found for all other tests, which implies the floors slabs were not absolutely rigid. 
The small tension for 22ε  in 0.3g Chi-Chi earthquake was due to cracks 
occurred..............................................................................................................162 

Figure 4.19 Cracks at Corner I of the transfer plate caused by the 0.3g El Centro 
earthquake at soil site.........................................................................................163 

Figure 4.20 Cracks at Corner III of the transfer plate caused by the 0.3g El Centro 
earthquake at soil site.........................................................................................164 

Figure 4.21 Cracks at the transfer plate caused by the 0.3g El Centro earthquake at 
soil site: (a) crack at Corner II; (b) diagonal cracks...........................................165 

Figure 4.22 Horizontal cracks at the upper stories caused by the 0.3g El Centro 
earthquake at soil site.........................................................................................166 

Figure 4.23 Sketches of two deform patterns observed in the tests: (a) higher mode 
deformed shape observed when the input PGA was greater than 0.2g. The two 
stories below the transfer plate have much smaller deformation compared to the 
upper stories; (b) the shear forces occurred in the lintel beams between core 
walls induced a number of cracks at the ends of these beams. These phenomena 
were observed when the input PGA was greater than 0.3g. ..............................167 

Figure 4.24 Cracks at the transfer plate during the 0.3g Kobe earthquake at soil site.
............................................................................................................................168 

Figure 4.25 Widening and lengthening of existing cracks at Corner III of the transfer 
plate caused by the 0.3g Kobe earthquake at soil site........................................169 

 xxi



Figure 4.26 Cracks at the ends of lintel beams at the upper floors caused by the 0.3g 
Kobe earthquake at soil site. ..............................................................................170 

Figure 4.27 Severe damages caused by the 0.3g Chi-Chi earthquake at soil site: (a) the 
opening due to uplift of the transfer plate as wide as 2.9 mm; (b) the crashing 
down following the uplift. .................................................................................171 

Figure 4.28 3D sketches and photographs of three severely damaged walls between 
2/F and 4/F. ........................................................................................................172 

Figure 4.29 Sketches of cracks on the beams of the transfer plate which suffered 
severe damages during the 0.3g Chi-Chi earthquake input. ..............................173 

Figure 4.30 3D sketches of cracks on the core walls above the transfer plate caused by 
the 0.3g Chi-Chi earthquake at soil site. ............................................................174 

Figure 4.31 Sketches of cracks occurred at the story above the transfer plate caused by 
the 0.3g Chi-Chi earthquake at soil site. ............................................................175 

Figure 4.32 Sketch showing the diagonal rocking of the whole structure, which 
induced severe damage to the transfer plate as well as several walls above it (see 
attached photos) during the input of 0.3g Chi-Chi earthquake at soil site.........176 

Figure 4.33 Photos and sketches of different crack patterns on the lintel beams 
between the two core walls. Some cracks were connected with each other, such 
as those at 12/F, whereas some were separated, such as those at 11/F. Similar 
phenomena were also found at other stories. .....................................................177 

Figure 4.34 Sketches of all the cracks on the front surfaces of the model. ...............178 

Figure 4.35 Sketches of all the cracks on the right surfaces of the model.................179 

Figure 4.36 Sketches of all the cracks on the rear surfaces of the model. .................180 

Figure 4.37 Sketches of all the cracks on the left surfaces of the model. ..................181 

Figure 5.1 Damage degrees classified by Park et al. (1985) and their corresponding 
descriptions and representative photographs. ....................................................220 

Figure 5.2 Comparison of various damage classifications (Okada and Takai, 2004).
............................................................................................................................221 

Figure 5.3 Calibration of Park and Ang damage indices with observed damage levels 
(adapted from Park et al., 1985).........................................................................222 

 xxii



Figure 5.4 Comparison of displacements obtained from interpolation of recorded 
displacements (dashed line) and that from integration of recorded accelerations 
(solid line) at 15/F and 9/F as well as the displacements recorded by the LED 
transducer at 3/F under the 0.2g Kobe earthquake input at rock site.................223 

Figure 5.5 Maximum overall drift ratios vs. input PGAs for various earthquakes 
before and after soil amplification respectively.................................................224 

Figure 5.6 Maximum inter-story drift ratios vs. input PGAs for various earthquakes 
before and after soil amplification respectively.................................................225 

Figure 5.7 Estimation of the yield deformation when: (a) the model is taken as a 
uniform structure; (b) the model is divided into two segments at the transfer plate 
(‘TP’) level.........................................................................................................226 

Figure 5.8 Maximum ductility vs. input PGA for various earthquakes before and after 
soil amplification respectively. ..........................................................................227 

Figure 5.9 (a)-(e) Load-deformation curves of the story between 2/F and 3/F during 
the inputs of Chi-Chi earthquake without soil amplification of different PGAs, 
where E denotes the energy dissipated by the story and f1 is the first natural 
frequency of the structure; (f) sketch of the load-deformation curve within one 
cycle, with the shaded area representing the dissipated energy.........................228 

Figure 5.10 (a)-(e) Load-deformation curves of the story between 2/F and 3/F during 
the inputs of Chi-Chi earthquake after soil amplification of different PGAs, 
where E denotes the energy dissipated by the story and f1 is the first natural 
frequency of the structure; (f) sketch of the load-deformation curve within one 
cycle, with the shaded area representing the dissipated energy.........................229 

Figure 5.11 Park and Ang damage indices vs. input PGAs for various earthquakes 
before and after soil amplification respectively.................................................230 

Figure 5.12 Park and Ang damage indices (DPA) vs. overall drift ratios (IDRoverall) for 
various earthquakes before and after soil amplification respectively. ...............231 

Figure 6.1 Comparison of the mode shapes of the first six modes at the initial state 
from both experimental measurements (solid lines) and FEM analyses (dashed 
lines)...................................................................................................................245 

Figure 6.2 Comparison of time histories from FEM analyses and shaking table tests 
during the input of 0.1g Kobe earthquake at rock site: (a) the inputs; (b) 
acceleration and (c) displacement responses at Corner II of the roof................246 

 xxiii



Figure 6.3 Theoretical moment-curvature determination for rectangular sections 
[modified from Fig. 6.5 of Park and Paulay (1975)]. ........................................247 

Figure 6.4 Theoretical moment-curvature curves for beams of the model and 
prototype (where φ  means diameter and @ means spacing). .........................248 

Figure 6.5 Theoretical moment-curvature curves for rectangular columns (in the 
dashed circle) of the model and prototype (where φ  means diameter and @ 
means spacing)...................................................................................................249 

Figure 6.6 Theoretical moment-curvature determination for circular sections 
[modified from Fig. 6.5 of Park and Paulay (1975)]. ........................................250 

Figure 6.7 Theoretical moment-curvature curves for circular columns (in the dashed 
circle) of the model and prototype (where φ  means diameter and @ means 
spacing). .............................................................................................................251 

Figure 6.8 Ultimate moment-axial force curves for walls (in the dashed circle) of the 
model and prototype. .........................................................................................252 

Figure 6.9 Theoretical moment-curvature curves for beams of the model and 
prototype (where φ  means diameter). .............................................................253 

Figure 7.1 Pounding hazard: (a) serious structural damages caused by pounding 
during the 1999 Chi-Chi earthquake (Naeim et al., 2000); (b) closely spaced 
buildings in Hong Kong (potential pounding problem).....................................310 

Figure 7.2 Sketches of single-degree-of-freedom (SDOF) and multi-degree-of- 
freedom (MDOF) systems used to model seismic poundings (Anagnostopoulos, 
1994). .................................................................................................................311 

Figure 7.3 Pounding of two adjacent buildings modeled as Hertzian impact of two 
SDOF oscillators (Chau and Wei, 2001). ..........................................................312 

Figure 7.4 Sketches of possible eccentric poundings between structures with 
symmetric floor slabs [i.e. the center of mass (CM) coincides with the center of 
stiffness (CS)]: (a) accumulated hard debris may induce torsional pounding 
between symmetrically aligned floor slabs; (b) possible torsional pounding 
between asymmetrically aligned floor slabs (after Leibovich et al., 1996). ......313 

Figure 7.5 Sketch of two asymmetric rectangular towers separated by a distance a′ . 
Both towers are supported by four identical square columns (with a lateral 
stiffness of k) at their four corners. The eccentricities between the center of 

 xxiv



stiffness (CS) and the center of mass (CM) are denoted by e′ix and e′iy (i=A, B) 
respectively. .......................................................................................................314 

Figure 7.6 Sketch of thirteen different cases [(i)-(xiii)] of pounding between Tower A 
and Tower B, where A and B are the centers of mass of the two towers, and C, D, 
E and F are four corners along the adjacent edges. Boxes in bold lines represent 
towers without any rotation (θ = 0) whereas boxes in thin lines represent towers 
having rotation (θ ≠ 0).......................................................................................315 

Figure 7.7 Sketch of three different cases of pounding between Tower A and Tower B, 
where A and B are the centers of mass of the two towers, and C, D, E and F are 
four corners along the adjacent edges. The right three sketches show the forces 
on each tower caused by pounding. ...................................................................316 

Figure 7.8 Validation of the solving method by comparing the steady pounding phase 
diagrams when the Tower A has opposite eccentricities: (a) eAy/l = +0.1; (b) eAy/l 
=-0.1. Other parameters are eBy/l = 0, / AxT T = 0.7, 1.5, /Ax BxT T =

Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0. ................................................317 

Figure 7.9 Comparison of relative impact velocity spectra versus / AxT T  for torsional 
(eAy/l = 0.1) and translation (eAy/l = 0.0) pounding ( 1.5, /Ax BxT T =

Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0). The two attached diagrams are: 
(a) impact velocity spectra for translational pounding when eAy/l = 0 [i.e. Figure 5 
in Chau and Wei (2001)]; (b) impact velocity spectra during the 80-88th 
excitation cycles for the same torsional pounding problem (eAy/l = 0.1), whereas 
for the other two diagrams the impact velocities during the 40-48th excitation are 
plotted. The phase diagrams for one of the group pounding ( 0.7) are 
shown in Figure 7.11..........................................................................................318 

/T TAx =

Figure 7.10 Comparison of (a) relative impact velocity spectrum (same as Figure 7.9); 
(b) impact force spectrum for torsional pounding when a = 1.0 and eAy/l = 0.1 
( 1.5, /Ax BxT T = Ax Bxζ ζ= = 0.03 and A Bθ θζ ζ= = 0.03). The small diagram 
shows the entire force spectrum, whereas the diagram (b) is the enlargement of 
the part I. ............................................................................................................319 

Figure 7.11 Phase diagrams and relative impact velocity time history within one cycle 
(28-28.7 s) after 40 excitation cycles when the input period is 0.7. The 
three impacts (①-③) shown in the figure repeat themselves every excitation 
cycle and demonstrate a kind of group pounding. Other parameters are eAy/l = 0.1, 

1.5, 

/ AxT T =

/Ax BxT T = Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0.........................320 

Figure 7.12 Relative impact velocity spectra versus / AxT T
/Ax BxT T

 for torsional pounding 
when a = 0.5 and 4.0 respectively (eAy/l = 0.1, = 1.5, Ax Bxζ ζ= = 0.03 

 xxv



and A Bθ θζ ζ= =0.03). The impact velocity spectra for torsional pounding when 
a = 1.0 shown in Figure 7.9 are also plotted for comparison.............................321 

Figure 7.13 Relative impact velocity spectra versus / AxT T  for torsional pounding 
when eAy/l = 0.1 and Ax Bxζ ζ= = 0.10 ( /Ax BxT T = 1.5, A Bθ θζ ζ= =

Ax

0.03 and a = 
1.0). The impact velocity spectrum for torsional pounding when Bxζ ζ= = 0.03 
shown in Figure 7.9 is also plotted for comparison. ..........................................322 

Figure 7.14 Relative impact velocity spectra versus / AxT T  for torsional pounding 
when eAy/l = 0.1 m and A Bθ θζ ζ= =0.10 ( /AxT BxT = 1.5, Ax Bxζ ζ= = 0.03 and a 
= 1.0). The impact velocity spectrum for torsional pounding when 

A Bθ θζ ζ= =

/ BxT T =

0.03 shown in Figure 7.9 is also plotted for comparison................323 

Figure 7.15 Comparison of relative impact velocity spectra for eAy/l = 0.1 and 0.2 
( 1.5, Ax Ax Bx = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0). .....................324 ζ ζ=

Figure 7.16 Relative impact velocity spectra versus / AxT T  for torsional pounding 
when Tower B has different eccentricities (eBy/l = +0.1, 0, -0.1). The case when 
eBy/l = 0.0 has been shown in Figure 7.9. Other parameters are eAy/l = 0.1, 

1.5, /Ax BxT T = Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0.........................325 

Figure 7.17 Comparison of normalized maximum stand-off distances for different 
eccentricities of Tower A (eAy/l = 0.0, 0.1 and 0.2). Other parameters are eBy/l = 
0.0, /Ax BxT T = 1.5, Ax Bxζ ζ= = 0.03 and A Bθ θζ ζ= =0.03. .............................326 

Figure 7.18 Sketch of an asymmetric tower and a neighboring barrier. With an 
eccentricity e′y between its center of stiffness (CS) and center of mass (CM), 
Tower A is supported by four identical columns (each with a lateral stiffness of k) 
at its four corners. As shown by the dashed line in the plan view, torsional 
impact may occur at either Corner C or Corner D when the separation distance is 
not adequate even under unidirectional ground excitations...............................327 

Figure 7.19 Comparison of normalized impact velocity for torsional (ey/l = 0.1) and 
translational (ey/l = 0.0) pounding. The results are both analytical solutions and 
the solid lines are modified based on Figure 11 of Davis (1992). Other 
parameters are xζ = 0.10, θζ = 0.10, a = 1.0, β = 1000 and n=1 (case 1). Note 
that for torsional pounding there is a sudden jump between 0.74 and 
0.75, which is caused by the impact point changing from Corner D to Corner C 
as sketched in the figure.....................................................................................328 

/ xT T =

Figure 7.20 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding ( xζ = 0.10, θζ = 0.10, a 
= 1.0, 1000, n=1 and case 1 condition): (a) translational pounding when ey/l β =

 xxvi



= 0.0 [modified from Figure 11 of Davis (1992)]; (b) torsional pounding when 
ey/l = 0.1. The four small diagrams show the translational analytical solution and 
the enlarged views of the parts I, II and III........................................................329 

Figure 7.21 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding when a = 1.5 ( xζ = 0.10, 

θζ = 0.10, β = 1000, n=1 and case 1 condition): (a) translational pounding when 
ey/l = 0.0; (b) torsional pounding when ey/l = 0.1. .............................................330 

Figure 7.22 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding when a = 0.5 ( xζ = 0.10, 

θζ = 0.10, β = 1000, n=1 and case 1 condition): (a) translational pounding when 
ey/l = 0.0 [modified from Figure 7(c) of Davis (1992)]; (b) torsional pounding 
when ey/l = 0.1. ..................................................................................................331 

Figure 7.23 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding when a = 0.5 and 
β = 100 ( xζ = 0.10, θζ = 0.10, n=1 and case 1 condition): (a) translational 
pounding when ey/l = 0; (b) torsional pounding when ey/l = 0.1. ......................332 

Figure 7.24 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding when a = 0.5 and β = 1 
( xζ = 0.10, θζ = 0.10, n=1 and case 1 condition): (a) translational pounding 
when ey/l = 0.0; (b) torsional pounding when ey/l = 0.1. ...................................333 

Figure 7.25 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding when β = 1 and 
χ = 5.0 (a = 0.5, xζ = 0.10, θζ = 0.10, n=1 and case 1 condition): (a) 
translational pounding when ey/l = 0.0; (b) torsional pounding when ey/l = 0.1.
............................................................................................................................334 

Figure 7.26 Comparison of analytical and numerical solution of relative impact 
velocity spectra for translational and torsional pounding when a = 1.0 and 

xζ = 0.05 ( θζ = 0.10, β = 1000, n=1 and case 1 condition): (a) translational 
pounding when ey/l = 0.0 [modified from Figure 10 of Davis (1992)]; (b) 
torsional pounding when ey/l = 0.1. ...................................................................335 

Figure 7.27 Comparison of analytical and numerical solution of relative impact 
velocity spectra for translational and torsional pounding when a = 1.0 and 

θζ = 0.05 ( xζ = 0.10, β = 1000, n=1 and case 1 condition): (a) translational 
pounding when ey/l = 0.0 [modified from Figure 11 of Davis (1992)]; (b) 
torsional pounding when ey/l = 0.1. ...................................................................336 

 xxvii



Figure 7.28 Comparison of relative impact velocity spectra for torsional (ey/l = 0.1) 
pounding when a = 1.0 ( xξ = 0.10, θξ = 0.10, β = 1000 and n=1): (a) case 1 vs. 
case 2 conditions; (b) an enlarged view.............................................................337 

Figure 7.29 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding when a = 0.2 ( xξ = 0.10, 

θξ = 0.10, β = 1000, n=1 and case 2 condition): (a) translational pounding when 
ey/l = 0.0 [modified from Figure 12(a) of Davis (1992)]; (b) torsional pounding 
when ey/l = 0.1. ..................................................................................................338 

Figure 7.30 Comparison of analytical and numerical solutions of relative impact 
velocity spectra for translational and torsional pounding when a = 0.0 ( xξ = 0.10, 

θξ = 0.10, β = 1000, n=1 and case 2 condition): (a) translational pounding when 
ey/l = 0.0 [modified from Figure 12(b) of Davis (1992)]; (b) torsional pounding 
when ey/l = 0.1. ..................................................................................................339 

Figure 7.31 Comparison of (a) analytical and numerical solutions of impact velocity 
spectra for torsional pounding when ey/l = 0.2; (b) numerical results of impact 
velocity spectra when ey/l = 0.1 [refer to Figure 7.19(b)] and 0.2 respectively. 
Other parameters are a = 1.0, xζ = 0.10, θζ = 0.10, β = 1000, n=1 and case 1 
condition. ...........................................................................................................340 

Figure 7.32 Comparison of analytical and numerical predictions of maximum 
stand-off distance for translational and torsional pounding: (a) translational 
pounding when ey/l = 0.0 [modified from Figure 13 of Davis (1992)]; (b) 
torsional pounding when ey/l = 0.1. Other parameters are xξ = 0.10, θξ = 0.10, 
n=1 and case 2 condition. Each dot in the numerical solutions represents an 
impact occurring at a particular frequency / xω ω  and a stand-off distance a. 
............................................................................................................................341 

Figure 8.1 Photograph of shaking table tests of seismic torsional pounding between 
two asymmetric steel towers conducted by Chau et al. (2004). The close-up view 
showed the additional masses at the top of the towers which can be off-set along 
railing systems to change the eccentricities of the towers. ................................384 

Figure 8.2 The location and photographs of the two selected 21-story adjacent 
prototype buildings in Wanchai on the Hong Kong Island. The L-shaped building 
is Empire Hotel (EH) and the other one which is more regular in shape is a 
residential and commercial building called Golden Star (GS). Transfer systems 
are used for both the two structures. ..................................................................385 

Figure 8.3 FEM model of the EH building and its first three mode shapes. .............386 

 xxviii



Figure 8.4 FEM model of the GS building and its first three mode shapes...............387 

Figure 8.5 Two different floor plans of the EH model. The floor slabs were fabricated 
using 30 mm-thick steel plates and the dimensions of columns and walls were 
listed in Table 6.1. The open rectangles represented the columns added for the 
purpose of adjusting the model frequencies.......................................................388 

Figure 8.6 Two different floor plans of the GS model. The floor slabs were all 
fabricated using 30 mm-thick steel plates and the dimensions of columns are 
listed in Table 6.1...............................................................................................389 

Figure 8.7 FEM model of the EH model and its first three mode shapes..................390 

Figure 8.8 FEM model of the GS model and its first three mode shapes. .................391 

Figure 8.9 Photographs of the completed models for (a) EH and (b) GS, during the 
construction, the continuous steel bars serving as columns and walls were 
installed through the specified holes drilled on the steel plate slabs and welding 
was used to fix them; (c) EH and GS put together with different colors for those 
floors below and above the transfer plates; (d) slots at the base of GS allowing 
for change of separation distances between the two models. ............................392 

Figure 8.10 Sketch of elevation view of the two building models showing the relative 
elevations of their different floors and the locations of contactors. The floor slabs 
were all 30 mm-thick steel plates. The crossed steel bars as shown in the photo 
above 1/F of EH were used to adjust the story heights......................................393 

Figure 8.11 The mode shapes and natural frequencies of the first several modes of EH 
and GS model, where f1 and f2 were the first two frequencies in x direction, and 
fT1 and fT2 denoted the first two frequencies in θ  direction.............................394 

Figure 8.12 Sketches of the first several mode shapes and natural frequencies of the 
GS and EH models, where 1

GSf  and 2
GSf  were the first and second 

translational natural frequencies of GS respectively, GS
Tf  was its first torsional 

frequency; similarly, 1
EHf  and EH

Tf  were the first translational and torsional 
natural frequencies of EH respectively. .............................................................395 

Figure 8.13 Estimation of the damping ratios of the first modes of GS and EH 
respectively using half-power method. The shown diagrams were the Fourier 
spectra of displacements at the roofs of the two models. ..................................396 

Figure 8.14 Plan view from the top of the two building models showing their relative 
locations as well as the two pairs of contactors installed between 20/F of EH and 

 xxix



21/F of GS. The attached photo showed the strain gauge attached and the rubber 
used to reduce the impact forces........................................................................397 

Figure 8.15 3D sketches of the EH and GS models and the locations of contactors and 
transducers. The two close-up photographs showed the details of the contactors.
............................................................................................................................398 

Figure 8.16 Maximum stand-off distances between GS and EH versus input 
frequencies. The five vertical arrows represented the first several natural 
frequencies of the two structures; they take the following values respectively 

3.83 Hz, 5.615 Hz, 1f =GS GS GS
Tf = 2f = 11.597 Hz and 8.362 Hz, 

10.315 Hz................................................................................................399 
1f =EH

EH
Tf =

Figure 8.17 Different patterns of phase diagrams at the roof of GS in pounding tests 
between GS and EH when Δ=0 mm and Ag=0.07g. The graphs listed were in 
different scales, that is, in the Translation 1 and 2 columns, the solid and dashed 
horizontal lines denoted 1 and 2 mm and the solid and dashed vertical lines 
denoted 0.05 and 0.2 m/s respectively. In the Rotation columns, the solid and 
dashed horizontal lines corresponded to 3.5×10-3 and 3.5×10-3 rad while the 
solid and dashed vertical lines corresponded to 0.17 and 0.7 rad/s respectively.
............................................................................................................................400 

Figure 8.18 Four different phase diagrams selected from Figure 8.17 and time 
histories of velocity at the roof of GS for different input frequencies during 
pounding tests between GS and EH when Δ = 0 mm and Ag = 0.07g. The arrows 
attached indicated where pounding occurred.....................................................401 

Figure 8.19 Comparison of the responses of GS and EH when the inputs were similar 
(Ag = 0.1g, fg = 5.0 Hz) but the separation distances were 0 and 4 mm 
respectively. Pounding occurred at zero separation distance and no pounding for 
4 mm distance. It was clear seen that the responses of GS were much larger when 
pounding occurred due to the energy transfer from EH. ...................................402 

Figure 8.20 The maximum (a) velocities and (b) accelerations spectra at the roof of 
GS in the pounding tests between GS and EH when the separation distances were 
0 mm. The five vertical arrows represented the first several natural frequencies of 
the two structures; they took the following values respectively 3.54 Hz, 

5.493 Hz, 11.353 Hz and 
1f =GS

GS GS EH
Tf = 2f = 1f = 8.118 Hz, EH

Tf = 10.315 Hz. .403 

Figure 8.21 Photographs of the two models locked together to measure the natural 
frequency of the new system as sketched below. Also shown were the Fourier 
spectrum of the acceleration at the roof and the first two frequencies. .............404 

 xxx



Figure 8.22 The maximum (a) velocities and (b) accelerations spectra at the roof of 
GS in the pounding tests between GS and EH when the separation distances were 
4.0 mm. The five vertical arrows represented the first several natural frequencies 
of the two structures; they took the following values respectively 3.601 
Hz, 5.554 Hz, 11.353 Hz and 

1f =GS

GS GS EH
Tf = 2f = 1f = 7.996 Hz, 10.315 Hz.

............................................................................................................................405 

EH

GS

Tf =

Figure 8.23 Comparisons of the maximum pounding forces in the pounding tests 
between GS and EH when the separation distances were 0 and 4 mm respectively. 
The symbol ‘NP’ meant no pounding occurring. The five vertical arrows 
represented the first several natural frequencies of the two structures; they take 
the following values respectively 1f = 3.601 Hz, 5.554 Hz, 

11.353 Hz and 

GS

GS EH
Tf =

2f = 1f = 7.996 Hz, EH
Tf = 10.315 Hz. .............................406 

Figure 8.24 Time histories of input, acceleration and pounding force at the roof of GS 
during the input of El Centro earthquake in pounding tests between GS and EH 
when 0 and 3.2 mm respectively................................................................407 Δ =

Figure 8.25 Time histories of input, acceleration and pounding force at the roof of GS 
during the input of Loma Prieta earthquake in pounding tests between GS and 
EH when 0 and 3.2 mm respectively. ........................................................408 Δ =

Figure 8.26 Time histories of input, acceleration and pounding force at the roof of GS 
during the input of Northridge earthquake in pounding tests between GS and EH 
when 0 and 3.2 mm respectively................................................................409 Δ =

Figure 8.27 Photographs of the nearly rigid wall (RW) and Golden Star (GS) as well 
as the close-up views of RW. The below Fourier spectrum from hammer tests on 
RW showed that the first natural frequency of RW was much higher than that of 
GS, which justified the assumption of rigid wall...............................................410 

Figure 8.28 Dimensions of the nearly rigid wall (RW). ............................................411 

Figure 8.29 3D sketch of the GS and RW structures and the locations of contactors 
and transducers. The upper photo on the right side showed the details of the 
impact points and the lower photo showed the overall experiment sets............412 

Figure 8.30 Different patterns of phase diagrams at the roof of GS in the pounding 
tests between GS and RW when Δ=0 mm and Ag=0.05g. The graphs listed were 
in different scales, that is, the horizontal lines in the 2nd, 3rd, 4th and 5th columns 
denoted 0.5 mm, 0.025 m/s, 3.5×10-4 rad and 0.087 rad/s respectively, while the 
vertical lines in the four columns represented 0.05 m/s, 0.5g, 0.087 rad/s and 17 
rad/s2 respectively. .............................................................................................413 

 xxxi



Figure 8.31 Four different phase diagrams shown in Figure 8.30 and time histories of 
velocity at the roof of GS for different input frequencies during pounding tests 
between GS and RW when Δ = 0.0 mm and Ag = 0.05g. The arrows attached 
indicated where pounding occurred. ..................................................................414 

Figure 8.32 Different patterns of phase diagrams at the roof of GS in the 
non-pounding tests between GS and RW when Δ=3.0 mm and Ag=0.05g. The 
graphs listed were in different scales, that is, the horizontal lines in the 2nd, 3rd, 
4th and 5th columns denoted 2 mm, 0.1 m/s, 3.5×10-3 rad and 0.17 rad/s, while 
the vertical lines in the four columns represented 0.1 m/s, 1g, 0.17 rad/s and 34.9 
rad/s2 respectively. .............................................................................................415 

Figure 8.33 Different patterns of phase diagrams of GS in the pounding tests when 
=3.0 mm. The graphs listed were in different scales, that is, the horizontal lines 

in the 2nd, 3rd, 4th and 5th columns denoted 2 mm, 0.1 m/s, 3.5×10-3 rad and 0.17 
rad/s, while the vertical lines in the four columns represented 0.1 m/s, 1g, 0.17 
rad/s and 34.9 rad/s2 respectively.......................................................................416 

Δ

Figure 8.34 Four different phase diagrams selected from Figure 8.33 and time 
histories of velocity at the roof of GS for different input frequencies during 
pounding tests between GS and RW when Δ = 3.0 mm. The arrows attached 
indicated where pounding occurred. ..................................................................417 

Figure 8.35 Comparisons of the maximum roof velocities of GS in the pounding tests 
between GS and RW when the separation distances were 0, 3 and 4.7 mm 
respectively. The horizontal axis was the frequencies of input sine waves and the 
magnitudes of the inputs were all 0.05g. The three vertical arrows represented 
the first three natural frequencies of GS, i.e. the first translational natural 
frequency 3.693Hz, the first torsional frequency 1f =GS GS

Tf = 5.615Hz and the 
second translational frequency 2f

GS = 11.475Hz. .............................................418 

Figure 8.36 Comparisons of the maximum roof accelerations of GS in the pounding 
tests between GS and RW when the separation distances were 0, 3 and 4.7 mm 
respectively. The horizontal axis was the frequencies of input sine waves and the 
magnitudes of the inputs were all 0.05g. The three vertical arrows represented 
the first three natural frequencies of GS, i.e. the first translational natural 
frequency 3.693Hz, the first torsional frequency 1f =GS GS

Tf = 5.615Hz and the 
second translational frequency 2f

GS = 11.475Hz. .............................................419 

Figure 8.37 Comparisons of the maximum pounding forces in the pounding tests 
between GS and RW when the separation distances were 0, 3 and 4.7 mm 
respectively. The symbol ‘NP’ meant no pounding occurring. The three vertical 

 xxxii



arrows represented the first three natural frequencies of GS, i.e. the first 
translational natural frequency 1f

GS = 3.693Hz, the first torsional frequency 
5.615Hz and the second translational frequency GS GS

Tf = 2f = 11.475Hz. .......420 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xxxiii



 xxxiv

 
 
 
 
 
 
 
 
 
 



CHAPTER 1  INTRODUCTION 

 

1.1 Background 

 

Earthquake has been one of the main natural hazards, causing tremendous loss 

to both human lives and properties in the world. According to the information from 

the website of USGS (the United States Geological Survey) Earthquake Hazards 

Program (http://earthquake.usgs.gov/), a catastrophic earthquake of magnitude 8.2 

occurred on September 1, 1923 in Kwanto area in Japan, near Tokyo. The earthquake 

and the subsequent fires and tsunami of up to 11 meters high killed 143,000 persons 

and ravaged many cities within Kwanto area, including Tokyo and Yokohama. The 

great 1960 Chile earthquake with a moment magnitude of 9.5 was the largest 

earthquake recorded since the invention of modern seismographs in the world, and 

killed more than 2,000 and injured 3,000. The damage in southern Chile was up to 

$550 million. Huge tsunami was induced, causing 61 deaths and $75 million damage 

in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the 

Philippines; and $500,000 damage to the west coast of the United States. The 1964 

Alaska Earthquake of a moment magnitude of 9.2 and the subsequent tsunami took 

125 lives and caused about $311 million of property loss. More recently, on December 

26, 2004, an earthquake with a moment magnitude of 9.1 occurred off the west coast 

of northern Sumatra, Indonesia. The earthquake and the induced tsunami killed more 
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than 157,577 people. All the above data are abridged from the website of USGS 

(http://earthquake.usgs.gov/). 

According to USGS (http://neic.usgs.gov/neis/eqlists/eqstats.html), annually 

there is 1 earthquake of magnitude 8 or higher, 17 earthquakes of magnitude 7-7.9, 

134 earthquakes of magnitude 6-6.9, and 1319 earthquakes of magnitude 5-5.9. Most 

of those earthquakes occurred along the boundaries between tectonic plates (called 

inter-plate earthquakes). For example, earthquakes occurring where plate boundaries 

converge, such as at trenches, contribute more than 90 percent of the world’s release 

of seismic energy (Bolt, 2004). 

However, shallow-focus earthquakes may also take place within plates (called 

intra-plate earthquakes) (Bolt, 2004). The well-known examples were the great 

earthquakes that struck the New Madrid area of Missouri in 1811 and 1812, which 

caused heavy damage in the area and were felt as far away as Washington D.C., New 

England, and Montreal, Canada (Bolt, 2004). A number of disastrous intra-plate 

earthquakes also occurred in the mainland of China, for example, on July 27, 1976, an 

earthquake of magnitude 7.5 hit Tangshan, which was not considered as a strong 

seismic region traditionally. The earthquake caused a death toll of 255,000 and severe 

damages to structures as illustrated in Figures 1.1(a) and (b). 

Historically, China has suffered more seismic damages and human losses than 

the other regions of the world. As early as 1556, the great Shanxi earthquake occurred 

in the central part of China and killed more than 830,000 people (Figure 1.1(c)), 

which was the deadliest earthquake in human history (Chen, 2000). As shown in 
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Figure 1.1(d), the regions that were heavily damaged covered an area of 280,000 km2 

and crossed several provinces. In the twentieth century, besides the 1976 Tangshan 

earthquake, the 1920 Gansu earthquake and the 1927 Tsinghai earthquake both killed 

more than 200,000. 

Situated at the south coast of China, Hong Kong is not located in a region with 

frequent attacks from destructive earthquakes and no serious damage has ever been 

caused by earthquakes. Therefore, there has been no provision for seismic design of 

building structures in Hong Kong. However, although the nearest active tectonic plate 

boundary (i.e., the boundary between the Philippine Sea plate and the Eurasia plate) is 

about 680 km away from Hong Kong, historic records have indicated that Hong Kong 

did experience strong earthquake shaking in the last 400 years. 

In 1605, an earthquake of magnitude 7.5 happened at Qiongshan, Guangdong 

Province (now belonging to Hainan Province); in 1874, an earthquake of magnitude 5 

3/4 occurred at Dangan Island, only 30 km south of Hong Kong, which is the largest 

earthquake observed within 100 km of Hong Kong in the past 500 years and caused 

an earthquake intensity of V-VI in Hong Kong; the biggest earthquake recorded 

within 300 km of Hong Kong even reached a magnitude of 7.4, which happened in 

Shantou area in 1918; on Sept. 16, 1994, buildings on the reclamation areas of Hong 

Kong experienced a strong far field earthquake of magnitude 7.3 occurred in the 

vicinity of Dongsha Island, about 450 km away from Hong Kong. Thousands of 

people felt the ground shaking and left their office buildings. This is the strongest 

earthquake shaking felt by the public in Hong Kong since 1918. 
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More recently, the public in Hong Kong felt several earthquake shaking within 

four months in 2006. On September 14, 2006, an earthquake of magnitude 3.7 

occurred at Dangan Island. Dangan Island area, situated about 35 km southeast of 

Hong Kong Observatory, is definitely a potential seismic source region that can 

generate earthquakes affecting Hong Kong. Actually it is believed that the maximum 

credible earthquake magnitude at Dangan Island area may be up to 7.5 (Chau et al., 

2002). As mentioned above, in 1874 an earthquake of magnitude 5¾ did occur in this 

region and led to an earthquake intensity of V-VI on the Modified Mercalli Scale in 

Hong Kong. On December 26, 2006, two earthquakes struck off the southern coast of 

Taiwan (of magnitudes 7.1 and 6.9 respectively), and thousands of people in Hong 

Kong felt the ground shaking and left their homes. Another serious consequence of 

the earthquakes was that several major international undersea optical fibre cables 

were broken and Internet services of Asia (including Hong Kong) were slowed down. 

According to CNN (Cable News Network) reports, data transfer in Hong Kong was 

slowed down up to 50% (http://www.cnn.com/2006/WORLD/asiapcf/12/27/internet.- 

asia.reut/index.html). Financial transactions, particularly in the currency market, were 

also affected. Therefore, although the earthquakes did not cause direct human loss or 

building collapse in Hong Kong, the economy was affected significantly since Hong 

Kong is one of the world financial centers and its economy depends greatly on 

international communication. This may be a new type of financial losses to modern 

society caused by earthquakes. 

In recent years, realizing the potential risk or consequences caused by 
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earthquakes, many researches have been carried out to quantify the seismicity level of 

Hong Kong. Studies conducted by Lee et al. (1996) have concluded that the Hong 

Kong region has a probability of exceedance of 10% over a return period of 50 years 

to experience a peak acceleration of 75-115 gal on bedrock. The seismic level of the 

Hong Kong is rated as seismic intensity VII with a return period of 475 years. This 

finding is consistent with those indicated on the seismic zoning map (as shown in 

Figure 1.2) published by China Earthquake Administration (State Seismological 

Bureau, 1991). In 1998, Wong et al. (1998a, b) completed a comprehensive seismic 

hazard analysis based on up-to-date earthquake records with more extensive 

geographical coverage. Similar conclusions have been reached in that Hong Kong is a 

region of moderate seismic hazard. Recently the new Chinese code for seismic design 

of buildings (GB 50011-2001, 2001) has classified Hong Kong as an area of seismic 

intensity VII with a return period of 475 years and a maximum ground shaking of 

0.15g may be encountered in Hong Kong at least once in every 475 years. Therefore, 

based on all the above studies and publications, Hong Kong should be regarded as a 

region with moderate seismic risk (Chau et al., 1998). 

On the other hand, as Hong Kong is now a major financial centre and one of the 

most densely populated cities in the world, any interruption to critical facilities and 

business operations may have serious social and economical consequences. This plus 

the recent earthquake disasters in Kobe, Taiwan, India and Turkey has raised an 

increasing concern in local researchers, engineers and the public to the possibility of 

Hong Kong experiencing a strong earthquake shaking. 
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In fact, a working group on “seismic design of building in Hong Kong” has been 

established by the Buildings Department of Hong Kong SAR Government in 1998, and 

will make appropriate recommendation to the government on the possibility of 

incorporating the seismic design in the Hong Kong codes. At present, a large number of 

researches need to be carried out to study the seismic vulnerability of existing 

wind-designed tall buildings in Hong Kong. 

 

 

1.2 Motivations and Objectives 

 

1.2.1 Seismic vulnerability 

 

As mentioned before, buildings in Hong Kong were designed according to wind 

code but not seismic code. Actually, it remains a big issue on how 

non-seismic-designed buildings will perform under the strike of earthquakes 

worldwide (Balendra et al., 1999), in the view of the fundamental differences between 

wind and seismic designs (Nordenson, 1989). 

The vulnerability of tall buildings is rather uncertain since the existing loss 

estimation methodology, such as ATC-13 (ATC, 1985) and HAZUS99 (FEMA, 1999), 

only classify buildings of more than 8 stories as high-rise. This criterion obviously is 

not applicable in Hong Kong, where most of the newly constructed buildings, whether 

for residential or commercial uses, are much more than only 8 stories. The fragility 
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curves or damage probability matrices for taller buildings are obviously quite 

different from those of 8-story buildings, for higher modes will play more important 

roles in the taller structures than for the lower ones. 

An distinct characteristic of buildings in Hong Kong is that transfer systems are 

widely used for both residential and commercial buildings (as shown in Figure 1.3), to 

satisfy different functions above and below transfer systems; typically the upper parts 

are employed for residential purposes while the lower parts used for shopping centers, 

restaurants or car parks. However, from the aspect of seismic vulnerability, the 

transfer systems are not recommended according to Chinese code for seismic design 

of buildings (GB 50011-2001, 2001), as they introduce abrupt changes of stiffness 

along the heights. 

The other notable characteristic of buildings in Hong Kong is that very often 

asymmetric plan layouts are used for aesthetic or functional needs, or constrained by 

the shape of the usable land. Figure 1.3 (c) and (d) showed two examples of this kind 

of buildings. The asymmetric structural plans usually result in eccentricity between 

the centers of mass and the centers of stiffness, making those structures prone to 

torsional responses even under unidirectional ground shaking. According to Chinese 

code for seismic design of buildings (GB 50011-2001, 2001), the asymmetric plan 

layouts should also be avoided. 

Obviously, to study the seismic vulnerability of wind-designed tall buildings in 

Hong Kong, the above two distinct characteristics should be included and considered. 

However, none local research has been attempted to include both the two factors in 
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assessing the seismic vulnerability in the past. 

Wen et al. (2002) studied the seismic vulnerability of a 21-story reinforced 

concrete frame-shear wall building in Hong Kong and the combined effects of the soil 

condition and epicentral distance on the seismic vulnerability were investigated. The 

equivalent lateral force method was adopted to analyze the seismic responses and 

forces. And the resulting story shear forces were compared with the story yield shear 

forces to estimate the ductility, and subsequently the damage states of the building. 

One big advantage of this simple method is that the computational effort 

required is much less than those of nonlinear dynamic analyses. However, it is a 

rather approximate and simplified method, for by applying the equivalent lateral force 

method, each story of a building is modeled by only one lateral degree of freedom 

along the shaking direction. The higher mode effects can only be approximately 

accounted for whereas the effects of torsional motions were not considered. 

Su et al. (2002) assessed seismic performance of transfer structures using 

various seismic assessment methodologies. A hypothetical 35-story reinforced 

concrete structure was developed to be studied based on Hong Kong design practice. 

The structure had a transfer plate of 2.5 m thick at the 6th story level, with the upper 

structure above the transfer plate supported by coupled shear walls whereas the 

structure below the transfer plate supported by “mega-columns” (of 2.5 m diameter). 

The results indicated that the mega-columns supporting the transfer plate and the 

coupling beams at higher zones (higher than the 18th floor) were the most vulnerable 

components under earthquake shaking. Again, the model studied was symmetric and 
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torsional vibrations were not significant. 

From experimental aspect, Lam et al. (2002) and Li et al. (2006) conducted a 

shaking table test for a 1:20 scaled model of a typical 42-story building with transfer 

system in Hong Kong. The results showed that the story above the transfer plate is the 

weakest story and is prone to severe damages under the shaking of earthquakes. 

Recommendations are proposed for future seismic provisions, such as reducing any 

change in stiffness at the transfer zone. However, the building was generally 

symmetric and torsional response has not been significant. 

Therefore, there is a need to study the seismic vulnerability of typical buildings 

in Hong Kong with both asymmetric plan and transfer system, either theoretically or 

experimentally. Therefore, the first objective of this study is to study the seismic 

vulnerability of such buildings through conducting model testing on shaking table. 

Although it is difficult that the performance of the reduced-scale model can accurately 

reflect that of the actual building, it is hoped that the model testing can still provide 

some valuable insights into the seismic vulnerability of this kind of buildings. More 

specifically, a 1:25 scaled model will be designed and fabricated for a selected 

21-story building in Hong Kong, and then tested on the shaking table under the 

shaking of different earthquake with different peak accelerations. The damages of the 

model during the tests will be assessed through both visual inspections and various 

seismic damage indices, including the ductility, inter-story drift ratio, frequency ratio, 

final softening index, and Park and Ang damage index (Park and Ang, 1985). 

A FEM (Finite Element Method) model will be set up using commercial 

 9



package Sap2000 for the same scaled model before the shaking table tests. The 

obtained modal properties, dynamic responses and stress concentrations under 

earthquake excitations from FEM analyses will provide guidance for the shaking table 

tests. The FEM prediction will also be compared with the experimental results. 

 

1.2.2 Seismic torsional pounding 

 

During real earthquakes, sometimes the seismic vulnerability of a building 

structure is not only determined by the dynamic characteristics of the structure itself, 

but also influenced by vibrations of adjacent buildings through pounding. Pounding 

hazard may be especially severe in metropolitan regions like Hong Kong, where many 

buildings are very closely distributed due to limited land and separation distances 

between buildings are insufficient to avoid impacts under earthquake excitations. The 

second part of the thesis will concentrate on the seismic pounding issue. 

Seismic pounding (i.e. earthquake induced collisions between adjacent 

structures) has been frequently observed in past strong earthquakes, for example, in 

the 1964 Alaska earthquake (Anagnostopoulos, 1994), the 1968 Tokachi-Oki 

earthquake (Wakabayashi, 1986), the 1976 Tangshan earthquake (Liu et al., 1993), 

and the 1999 Chi-Chi earthquake (Naeim et al., 2000). 

The 1985 Mexico City earthquake may have the largest number of buildings 

severely damaged due to pounding effects in the recorded history of earthquake 

damages (Bertero, 1986). According to the statistic by Rosenblueth and Meli (1986), 
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out of a total of 330 collapsed or severely damaged multi-story buildings in the 1985 

Mexico City earthquake, pounding occurred in over 40% of all the cases and led to 

collapse in 15% cases. 

Based on the survey on damages caused by pounding in the San Francisco Bay 

area during the 1989 Loma Prieta earthquake, Kasai et al. (1992) found more than 200 

pounding occurrences involving more than 500 structures; in 21% cases pounding 

caused major structural damages and in the other 79% cases pounding induced 

architectural and/or minor structural damages. 

A considerable amount of research has been conducted on the modeling of 

pounding phenomenon between structures, based on either single degree-of-freedom 

(SDOF) models or multi-degree-of-freedom (MDOF) models. Among them, the 

pounding model by Davis (1992), which utilizes the nonlinear Hertzian contact to 

model the impact force, is considered to be more realistic because actual poundings 

are seldom linear. Chau and Wei (2001) extended the model of Davis (1992) to 

consider pounding as nonlinear Hertz impact between two SDOF oscillators. Shaking 

table tests have also been performed by Chau et al. (2003) to verify the nonlinear 

impact model. 

However, as indicated previously, buildings with asymmetric plans, which are 

common in Hong Kong, will in general undergo torsional vibrations in addition to 

lateral responses when subjected to earthquake shaking. Torsional responses may 

result in torsional pounding between adjacent structures, which is much more 

complicated than unidirectional pounding. Actually pounding induced by torsional 
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response of building has been observed during earthquakes. For example, during the 

1985 Mexico City earthquake, torsional poundings were observed between corner 

buildings (building at the corner of an intersection of two perpendicular roads) and 

caused severe local damages (Bertero, 1986). The torsional responses of those corner 

buildings resulted from their asymmetrically distributed stiffness. During the 1989 

Loma Prieta earthquake, poundings induced by torsional behaviors of buildings were 

also observed for corner buildings in San Francisco Marina district as well as the 

Oakland City Center (Kasai and Maison, 1997). Seismic torsional pounding may even 

occur in rather symmetric buildings (Leibovich et al., 1996). However, there are 

relatively few theoretical and experimental research conducted on this topic. 

Therefore, the second objective of this thesis is to study the torsional pounding 

phenomena between both simplified theoretical models and complex physical models 

of actual buildings. 

Extending the models by Davis (1992) and Chau and Wei (2001), the torsional 

pounding between two flexible single-story towers as well as between a flexible tower 

and a neighboring barrier will be studied using the nonlinear Hertz contact law. 

Numerical integrations will be used to solve the equations of motion. For the torsional 

pounding between an asymmetric single-story tower and a rigid barrier, an analytical 

solution is also obtained and compared with the numerical results. Parametric studies 

will be conducted to investigate the influences of various parameters, such as the 

excitation frequency, damping ratio, eccentricity and separation distance. 

In addition to the theoretical study on torsional pounding between single-story 
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structures, more complicated seismic poundings between real adjacent multi-story 

buildings will be studied through conducting shaking table tests. More specifically, 

two 1:45 scale steel models are fabricated to simulate two real 21-story asymmetric 

buildings with transfer systems in Hong Kong. Pounding tests are conducted between 

the two flexible models as well as between one flexible model and one nearly rigid 

wall on the shaking table. The experimental results will also be compared with the 

theoretical studies. 

 

 

1.3 Outline of the Thesis 

 

The seismic vulnerability of buildings in Hong Kong will be investigated 

through experimental and analytical modeling in this study from the following two 

aspects: the seismic vulnerability and torsional pounding hazard. Accordingly, the 

thesis will be organized in two main parts: Chapters 2-6 will concentrate on 

experimental studies of the seismic vulnerability of a selected 21-story building in 

Hong Kong; whereas Chapters 7 and 8 will concentrate on the theoretical and 

experimental studies on seismic torsional poundings between adjacent structures. 

More specifically, Chapter 2 focuses on the FEM analyses of a 1:25 scaled 

model of the selected 21-story asymmetric building with transfer plate in Hong Kong. 

The modal characteristics of the model as well as the dynamic responses and stress 

concentrations under earthquake excitations are investigated using FEM. The results 
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will guide the conduct of the shaking table tests. 

Chapter 3 introduces the design and fabrication of the physical scaled model for 

the shaking table tests. The similarity law for structural dynamics, which is the basis 

of the model design, will be briefly introduced first. The model design is then carried 

out according to it. Finally the fabrication procedure and instrumentations of various 

transducers and sensors are described. 

Chapter 4 describes the procedure of the shaking table tests by applying various 

earthquakes of various peak accelerations. Modal test is conducted after each set of 

tests to monitor the change of natural frequencies of the model due to potential 

damages. The dynamic responses of the model during various earthquake inputs are 

investigated. The crack patterns induced are examined through visual inspection. 

Chapter 5 focuses on quantitative evaluations of damages of the model using 

various seismic damage indices, including the ductility, inter-story drift ratio, 

frequency ratio, final softening, and Park and Ang damage index. Using the estimated 

Park and Ang damage index as a benchmark, the correlations between other damage 

indices with various damage states (i.e. slight damage, minor damage, moderate 

damage, severe damage and collapse) are finally established. 

Chapter 6 summarizes the model testing described in Chapters 3-5, then makes 

some comparisons between the experimental results and the finite element analysis 

results described in Chapter 2, and finally compares the structural features between 

the model and the actual building, including beams, columns and walls. Discussions 

and recommendations are made on the future model testing. 
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Chapter 7 concentrates on the theoretical studies on torsional pounding between 

adjacent structures. First, literature reviews on pounding hazard, pounding modeling 

and mitigation are given. Then, the torsional pounding between two flexible 

single-story towers will be numerically simulated using the nonlinear Hertz contact 

law. Finally, an analytical solution is obtained for the torsional pounding between a 

tower and a rigid barrier, and the results are compared with the numerical simulations. 

Chapter 8 introduces the experimental studies on seismic pounding between real 

multi-story buildings. Two scaled steel models are designed and fabricated to model 

two adjacent 21-story asymmetric buildings with transfer systems in Hong Kong. 

Pounding tests are conducted between the two flexible models as well as between one 

flexible model and one nearly rigid wall on the shaking table. The phase diagrams, 

maximum dynamic responses and maximum impact forces are investigated. The 

experimental results will also be compared with the theoretical studies. 

Chapter 9 summarizes the main conclusions of the whole thesis and indicates 

the implications of the results. The limitations of the present study are also discussed 

and recommendations are made for further studies. 

 

 

 

 

 

 

 15



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) (a) 

More than 
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Figure 1.1 Damages caused by past major earthquakes in China: (a), (b) structures 
damaged during the 1976 Tangshan earthquake (Qi and Jiang, 1999); (c) historical 

record of the 1556 Shanxi earthquake which killed more than 830,000 people (Chen, 
2000); (d) the influence zone of the 1556 Shanxi earthquake (State Seismological 

Bureau, 1995). 
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Figure 1.2 Seismic intensity zonation of Guangdong Province, China (after State 
Seismological Bureau, 1991). 
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Figure 1.3 Photographs showing several typical high-rise buildings in Hong Kong 
with transfer systems: (a) Sorrento Tower (residential); (b) May House; (c) Conrad 

International Hotel; (d) Four Seasons Place. The latter three buildings are for 
commercial uses. Note that asymmetric plans are used for the latter two structures. 
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CHAPTER 2  DYNAMIC CHARACTERISTICS OF 

BUILDING MODEL FROM FINITE ELEMENT 

ANALYSES 

 

2.1 Introduction 

 

As mentioned in Chapter 1, previous studies and investigations have suggested 

that Hong Kong should be regarded as a region with moderate seismic risk (Chau et 

al., 1998). In recent years, local researchers, engineers and the general public have 

begun to concern the possibility of a strong earthquake attack in the vicinity of Hong 

Kong. For example, it has been believed that the maximum credible earthquake 

magnitude at Dangan Island area, which is only 30 km south of Hong Kong, may be 

up to 7.5 (Chau et al., 2002). On the other hand, due to historical reasons, most Hong 

Kong buildings are constructed according to wind code with no seismic provision. It 

remains an unsettled issue on how these buildings will perform under the strike of 

earthquakes (Balendra et al., 1999), in view of the fundamental differences between 

wind and seismic designs (Nordenson, 1989). 

Moreover, the vulnerability of tall buildings is rather uncertain since the existing 

loss estimation methodologies, such as ATC-13 (ATC, 1985) and HAZUS99 (FEMA, 

1999), only classify buildings of more than 8 stories as high-rise. Obviously, such 

classification is not applicable for the case of Hong Kong, where most of newly 
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constructed buildings are more than 30 stories. The seismic vulnerability for taller 

buildings is obviously different from that of 8-story buildings, for higher modes will 

play more important roles for taller structures. 

To make things more complicated, transfer system and asymmetric structural 

plan are commonly used in high-rise buildings in Hong Kong as descried in Chapter 1. 

Transfer system normally introduces abrupt changes to stiffness along the building 

height, whereas asymmetric plan makes the center of stiffness offset from the center 

of mass and normally induces torsional responses under earthquake shaking. To assess 

the seismic vulnerability for such irregular structures, proper and accurate methods 

are needed.  

At present, the widely-used methodologies for seismic assessment include the 

equivalent static force method, the modal response spectrum method, and the linear or 

nonlinear time history method (Saatcioglu and Humar, 2003). Among them, the 

dynamic time history analysis method is normally considered as the most accurate 

approach. Actually as Tso and Meng (1982) concluded, that for eccentrically set-back 

buildings dynamic analysis may be the only reliable procedure for estimating the 

torsional loading on these buildings. 

In this study, the seismic vulnerability of a 21-story asymmetric building with 

transfer plate in Hong Kong is considered through a model test on shaking table. To 

guide our model design, a FEM (Finite Element Method) analysis of the model is 

conducted using the commercial package SAP2000. In particular, dynamic time 

history analyses will be conducted to study the model’s responses and vulnerability 
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under earthquake excitations. Through the FEM analyses, modal characteristics of the 

model as well as dynamic stress concentration of the model are also obtained. This 

information provides us the guidance to determine the locations of strain gauges, 

accelerometers and displacement transducers in our shaking table tests. 

In this chapter, the building selected for investigation will be described first. 

Then a FEM model will be set up for a scaled model of the building. The modal 

characteristics are obtained through FEM analysis. Finally dynamic responses of the 

model as well as stress concentration in the model under earthquake excitation will be 

obtained through time history analysis. 

 

 

2.2 Building Selected for Investigation 

 

As indicated in Chapter 1, the two most distinct characteristics of high-rise 

buildings in Hong Kong are the use of transfer systems and the use of asymmetric 

structural plans. Therefore, this study attempts to investigate the seismic vulnerability 

of such kind of tall buildings. Thus, a structure with these features was selected 

among over 100,000 buildings in Hong Kong. 

After extensive field investigations, a 21-story reinforced concrete frame-shear 

wall building situated in Wanchai on Hong Kong Island was selected. The building is 

called the Empire Hotel, which has a plan of “L-shape” as well as a transfer plate 

between the lower and upper floors. As shown in Figure 2.1(a), the building locates in 
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one of the most crowded areas in Hong Kong densely filled with high-rise buildings 

and skyscrapers. The detailed structural design diagrams of the building are obtained 

from the Buildings Department of the Hong Kong Government. 

One of the most noticeable characteristics of the Empire Hotel (referred to as 

EH hereafter) building is its L-shaped plan, as shown by the small sketch in Figure 

2.1(a). From the photographs in Figures 2.1(b) and (c), it can be noticed that the two 

sides of the building have different numbers of guest rooms (i.e. different dimensions). 

This unsymmetrical structural form is conducing to torsional responses when 

subjected to earthquake excitations. 

Another distinct feature of the EH building is the employment of a transfer plate 

of 1.5 m thick at the 2nd floor (see the small sketch in Figure 2.2). This kind of transfer 

system is commonly used in Hong Kong. In this thesis, the story number is defined in 

the following way: the n-1th floor plus the space between nth floor and n-1th floor is 

defined as the nth story. For example, the ground floor (G/F) plus the space between 

1/F and G/F is called the 1st story. From the plan views shown in Figures 2.2(a) and 

(b), it is clearly seen that the building has totally different structural forms below and 

above the transfer plate. In particular, the first two stories below the transfer plate 

mainly consist of columns, core walls and limited shear walls (see Figure 2.2(a)), 

whereas the typical floors above the transfer plate consist of shear walls and core 

walls (see Figure 2.2(b)). 

As shown in Figure 2.2(a), the columns in the first two stories below the transfer 

plate include 16 circular columns of either 1.0 m or 1.2 m in diameters and 4 
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rectangular ones (of 1.2×0.8 m, 1.5×0.685 m and 1.5×0.55 m in dimensions), and 

core walls of mostly 300 mm thick. In Figure 2.2(b), the shear walls of the typical 

stories are normally of 200 mm thick. The slab thicknesses of the first and second 

floors are 150 mm and 200 mm respectively whereas the typical floor has a slab 

thickness of 125 mm. The concrete of grade C30 (corresponding to a cubic 

compressive strength of 30 MPa) is used. 

The structural forms adopted in the upper and lower stories are determined by 

their various functional requirements. In the present hotel building, the first two 

stories serve as the reception lobby, bar and restaurant, where large clearance and 

open spaces are needed, so column-beam system is adopted. The typical stories are for 

guest rooms, so shear walls are adopted to provide resistance to vertical and lateral 

loads for the upper part of the structure. 

The story heights and floor areas of each story are listed in Table 2.1. The 

building has a total height of 69.65 m and the upper typical story has a height of 3 m. 

Larger story heights are designated for the first two stories, the third story and the roof 

story. The first two stories are for lobby mezzanine, whereas the third story serves as a 

business center and the roof story consists of a swimming pool and a health club. 

Geographically, the EH building is situated in a reclamation area. A soil layer of 

about 50 m thick is found beneath the ground surface. The soil profile mainly consists 

of fill material, marine deposit and completely decomposed granite and the details can 

be referred to Section 3.3.1. The soil profile has an equivalent shear wave speed of 237 

m/s and belongs to Site Classification II according to “Chinese Code for Seismic 
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Design of Buildings” (GB50011-2001, 2001). However, only the super structure 

above the ground level is considered in this study and the complication due to 

soil-pile-structure interaction is not considered. Potential soil-pile and soil-pile- 

structure interactions have been discussed by Koo et al. (2003), Chau and Yang (2002) 

and many others, but they are out of the scope of the present study. 

 

 

2.3 FEM Analyses 

 

In this study, a 1:25 scaled physical model of the EH building will be fabricated 

and tested on the shaking table to investigate the seismic vulnerability of typical 

buildings in Hong Kong The length scale of 1:25 is determined primarily by the 

headroom clearance of our laboratory and the load capacity of the MTS shaking table 

at the Hong Kong Polytechnic University (see Chapter 3 for further details). To design 

our physical model test, FEM analysis of the 1:25 scaled model is conducted first. The 

results of FEM analysis provide the dynamic characteristics of the model as well as 

the locations of stress concentration in the model when it is subjected to seismic 

excitation. This information provides us the guidance to determine the locations of 

strain gauges, accelerometers and displacement transducers. 

However, it should be borne in mind that FEM analysis is for idealized model 

(such as line element concept for beam and column and rigid floor assumption). The 

results of FEM may not necessarily reflect the true behavior of the model, and special 
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care must be taken in interpreting the results. Nevertheless, FEM analysis should 

provide insightful information for the design of the monitoring system in our shaking 

table tests. 

 

2.3.1 Model set-up 

 

The FEM model set-up is based on the detail drawings of the building obtained 

from the Buildings Department of the Hong Kong SAR Government. All dimensions 

are scaled down according to the 1:25 length scale (i.e. the length scale 1/ 25lλ = ). 

The micro-concrete with a Young’s modulus of 7.09 GPa is used. Note that the 

micro-concrete is a concrete mix with a reduced aggregate size (Noor, 1991) and is 

obtained by mixing cement, sand and water in our shaking table tests. The detailed 

design for the micro-concrete is given in Chapter 3. 

The commercial computer package, SAP2000 v.8.1.2, is used in the FEM 

analysis in the present study. Nonlinear dynamic response of the model is highly 

sensitive to the choice of the constitutive model used in modeling the damage process 

of the micro-concrete, but reliable constitutive model is not available for the material. 

Therefore, only elastic analysis will be conducted. 

Figure 2.3 shows various views of the building model used in SAP 2000. It is 

clearly seen that the first two stories have different structural scheming from the upper 

typical stories. In the FEM model, frame elements are used to model beams and 

columns, and shell elements are used to model walls and floor slabs. Rigid diaphragm 
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action is assumed for all the floor slabs (i.e. the slabs are considered to be rigid in 

their own planes). However, as will be seen in later Chapter 4, this assumption may 

not be appropriate for the present structure. The nodes at the ground level are all 

assumed to be fixed, as no soil interaction is considered here. 

 

2.3.2 Modal characteristics 

 

First, modal analysis is conducted to determine the modal characteristics of the 

model. As additional mass (of 4.43 ton weight totally) is added to the scaled model to 

better fulfill the similarity law (see Chapter 3 for details), the model with additional 

mass is considered in the FEM analysis. For comparison purpose, a model with no 

additional mass is also analyzed using FEM. 

The spatial distribution of the additional mass is given in Chapter 3. In the real 

physical model, the additional mass is in the form of cast-iron plates inserted into each 

story, whereas in the FEM model the additional mass is modeled through the increase 

of the densities of the floor slabs. Note that the stiffness of the structure will not 

change by this adjusted density. 

For comparison, the natural periods and frequencies of the first six modes of the 

model and the model with additional mass are given in Table 2.2. As can be seen, the 

natural frequencies reduce when the additional mass is added. This is expected 

because the added mass increases the total weight but does not change the stiffness of 

the model (recall that k mω =  for single degree of freedom oscillator, where ω  
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is the circular frequency,  is the stiffness and  is the mass of the oscillator). The 

first six natural frequencies of the model with additional mass are all below 20 Hz and 

are within the working frequency range of the MTS shaking table (1-50 Hz) used in 

the present study. 

k m

The corresponding three-dimensional mode shapes of the first six modes for the 

model with additional mass are shown in Figure 2.4. From the diagrams, it can be 

seen that the first three modes roughly correspond to the first modes in the x, y and θ  

(torsional) directions respectively. It should be emphasized that there are not pure 

modes because the two translational vibrations are all coupled with the torsional 

motions. The latter three modes represent the higher modes with very distinct 

vertically variations of responses. 

Figure 2.5 shows the normalized mode shapes of the first six modes at Corner II 

of the model (i.e. the translational displacements of Corner II at different floors). Note 

that all displacements have been normalized with respect to the maximum 

displacement of each mode. As can be seen, the maximum responses of all the six 

modes occur at the roof, but for the latter three modes the middle-level (6/F-9/F) 

responses of the model are also not negligible. Moreover, it is clearly seen that there 

are sudden changes in the mode shapes at 2/F for the latter three modes. This is 

probably due to the abrupt change of stiffness across the transfer plate. 

To further investigate the stiffness changes, the statically lateral stiffness of each 

story is also estimated using FEM analysis. For the nth story, its lateral stiffness is 

estimated through the following approach: (i) first all degrees of freedom of all 
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vertical elements of the story are fixed at the bottom (i.e. above the th floor slab); 

(ii) a horizontal force  is then applied at the center of mass of the nth floor slab; (iii) 

the lateral stiffness of the nth story can be estimated as 

1n −

n

nF

/n nk F δ=  (where nδ  is the 

resulting horizontal displacement of the center of mass of the nth floor slab). 

The results of estimated lateral stiffness of different stories are listed in Table 

2.3. Also shown are the ratios of lateral stiffness of different stories with respect to the 

stiffness of the typical stories (4th-20th). Note that the first two stories (consisting of 

frames and core walls) have a smaller lateral stiffness than the above typical stories 

(consisting of shear walls and core walls). The top (or 21st) story has the same 

structural form as the typical stories and its smaller stiffness is due to its higher story 

height (see Table 2.1). 

According to “Chinese Code for Seismic Design of Buildings” (GB50011-2001, 

2001), if the lateral stiffness of one story is less than 70% of the stiffness of the story 

above it, the building should be considered to be vertically irregular and special 

measures should be adopted for the weak story. It is clear that the transfer plate 

system induces severe vertically irregular to the present building. More importantly, 

this kind of structural irregularity is not favorable in seismic design of buildings. 

Therefore, the study of the seismic performance of such building is of paramount 

importance for regions of moderate seismicity with no seismic provisions in building 

regulation, like Hong Kong. 

 

2.3.3 Time history analyses 
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2.3.3.1 Input earthquake wave 

For the dynamic time history analysis, real earthquake records have been 

employed. In particular, the 1995 Kobe earthquake (with a moment magnitude of 6.9 

and a peak acceleration of 0.821g) is selected as the input. The earthquake record is 

first compressed using a time scale of t lλ λ= = 0.2 according to the requirement of 

the similarity law (refer to Chapter 3 for details). Figure 2.6(a) shows the time history 

of Kobe earthquake after time compression, where the peak acceleration has been 

scaled down to 0.1g. The earthquake excitation will be input along the x direction as 

shown in Figure 2.3. The Fourier spectrum of the earthquake wave after time 

compression is shown in Figure 2.6(b), from which it is found that the predominant 

frequency is about 7.243 Hz. The frequency range corresponding to 70% peak of the 

Fourier amplitude is 4.870-14.299 Hz. Referring to Table 2.2, it can be seen that the 

predominant frequency range of the selected earthquake is close to the first six natural 

frequencies of the model, thus relatively large responses and subsequent damages may 

be expected. Therefore, the 1995 Kobe earthquake is a reasonable choice for the 

proposed model. Actually, as will be described in Chapter 3, the same earthquake 

record will also be selected as one of the inputs in our shaking table tests. 

 

2.3.3.2 Dynamic responses 

The compressed Kobe earthquake wave with a 0.1g peak acceleration shown in 

Figure 2.6(a) was used in our FEM time history analysis. Figure 2.7 shows the 
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acceleration and displacement time histories in the direction of excitation (i.e. the x 

direction) at Corner II (see Figure 2.5 for definition) at the roof (21/F) and the transfer 

plate level (2/F) respectively. The peak acceleration responses at 21/F and 2/F are 

0.262g and 0.105g respectively. That is, the response of the part below the transfer 

plate is at about the same level with the ground acceleration, whereas the response is 

amplified significantly at the roof (about 262% of the input level). As shown in Figure 

2.7(b), the peak displacement at the roof reaches 2.936 mm, which is more than 14 

times of that at the transfer plate of 0.208 mm. 

To further investigate potential story damage, the inter-story drift ratios (IDR) 

are calculated for each story as a function of time. The inter-story drift at the nth story 

is defined as the displacement at the nth floor subtracting that at the n-1th floor, and the 

inter-story drift ratio equals to the inter-story drift divided by the story height. 

A maximum IDR value is selected for each story over the entire time history, 

and the results at the four corners (I-IV) along the x and y directions are plotted in 

Figure 2.8 respectively. As can be seen, due to rigid floor slabs assumed in our FEM 

analysis, Corners I and II have the same IDR values along the x direction at every 

floor, whereas Corners III and IV have different IDR values since the translational 

responses appear to couple with the torsional responses. In particular, Corners III and 

IV have different distances to the center of rotation. Similarly along the y direction, 

Corners I and IV as well as Corners II and III have the same IDR values respectively. 

Results of FEM analysis suggests that the maximum inter-story drift ratios along the x 

direction occur at 17/F-18/F and the parts below the transfer plate (2/F) have 
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relatively small IDR values. 

The maximum inter-story drift ratios along the y direction show more 

complicated patterns. Since only unidirectional (i.e. the x direction) earthquake input 

is used in this study, the structural vibrations along the y direction are totally induced 

by the torsional responses, resulting in much smaller IDR values than those along the 

x direction. For this case, the IDR values at Corners I and IV for upper stories are 

more uniform than those along the x directions. The maximum IDR values along the y 

direction occur at 4/F for Corners I and IV, and at 15/F for Corners II and III. The IDR 

curves at Corners II and III along the y direction contain more drastic changes than 

that along the x direction. A lower IDR value occurs at the 3rd story for Corners II and 

III. Note, however, that those IDR values plotted in Figure 2.8 do not necessarily 

occur at the same time (since a maximum value has been picked over the entire time 

history). 

To investigate the rotational responses, the maximum absolute rotation angles at 

every floor are plotted along the building height in Figure 2.9. The rotation is given in 

the unit of degree and is computed from the difference of translational displacements 

at two selected corners divided by the distance between them, as shown by the 

equations in the figure. Since the floor slabs are assumed rigid, the rotations 

calculated using four different methods are all the same (see Figure 2.9). From those 

curves, the maximum rotation occurs at the roof, suggesting that the first rotational 

mode dominates. However, the curve is not a completely straight line, probably due to 

the higher mode responses. 
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2.3.3.3 Stress concentration 

Besides the maximum responses, the maximum forces and stress in structural 

elements are also investigated. The results will help to decide the locations of strain 

gauges used in our shaking table tests to be described in Chapters 3 and 4. Figure 2.10 

shows the maximum shear forces and bending moments at columns and beams when 

the model is subjected to the input of 0.1g Kobe earthquake. The maximum values 

occur at columns below the transfer plate as indicated in the figure. 

Figure 2.11 shows the maximum normal and shear stress values of wall 

elements during the input time history. The maximum stresses appear at the bottom of 

walls just above the transfer plate. Moreover, the maximum stresses concentrate at 

those walls situated at two diagonal corners of the building (Corners I and III in the 

figure). This suggests that there may be diagonal rocking of the whole structure. 

Actually, this phenomenon has been observed and validated in our shaking table tests 

later and the details can be referred in Chapter 4. 

To show the exact locations of the maximum bending stresses and bending 

moments, sketches for the first three stories are given in Figures 2.12-2.14. The 

distribution of those maximum stresses will be used as a reference on deciding where 

to install strain gauges in our shaking table tests later. Note that the strain gauges will 

not be placed totally according to the FEM results due to the possible uncertainty in 

FEM analyses. As described in Chapter 3, by taking the FEM results as reference, the 

32-channel strain gauges (as sketched by the black or gray filled rectangles on the 
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surfaces of walls or columns shown in Figures 2.12-2.14) will be distributed as evenly 

as possible within the whole building plan. 
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Table 2.1 The story heights and floor areas of different stories of the EH building. 
Story Height (m) Area (m2)
1 4.95 796.98
2 3.7 849.7
3 4 622.2
4-20 3 622.2
21 4.5 622.2
Total 69.65 

 
 
 
 
 

Table 2.2 Natural periods and frequencies of the first six modes of the model with and 
without additional mass. 

Without additional mass With additional mass 
Mode 

Period (s) Frequency (Hz) Period (s) Frequency (Hz) 
1 0.109 9.174 0.316 3.165  
2 0.096 10.417 0.276 3.623  
3 0.092 10.870 0.255 3.922  
4 0.028 35.714 0.078 12.821  
5 0.025 40.000 0.071 14.085  
6 0.023 43.478 0.063 15.873  

 
 
 
 
 

Table 2.3 Lateral stiffness of different stories of the model from FEM analysis. 
Story Stiffness (×108 N/m) Ratio 

1 2.30 0.31 
2 2.29 0.31 
3 7.60 1.03 

4-20 7.39 1.00 
21 4.78 0.65 
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Figure 2.1 Photographs of the 21-story Empire Hotel (EH) building situated on Hong 
Kong Island: (a) the location map (the attached small sketch showing its story plan); 

(b) left-side view; (b) right-side view. 
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Figure 2.2 Floor plans for (a) 1st-2nd stories; (b) typical (3rd-21st) stories of the EH 
building. The small sketch attached shows the elevation view of the building, where 

TP denotes the transfer plate. 
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Figure 2.3 The 1:25 FEM model of the EH building used in SAP 2000: (a) 3D 
perspective view; (b) plan view from the top; (c) front view; (d) back view. 
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Figure 2.4 The first six mode shapes of the EH model. 
Mode 4, T=0.078 s Mode 6, T=0.063 s Mode 5, T=0.071 s 
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Figure 2.5 Normalized mode shapes of the first six modes at Corner II of the EH model. 
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Figure 2.6 (a) The acceleration time history of the 1995 Kobe earthquake and (b) its 
Fourier spectrum. Note that the duration has been compressed using a factor of 0.2 

and the peak acceleration has been scaled to 0.1g. 
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Figure 2.7 The time history of responses in the x direction at Corner II at the roof 
(21/F) and the transfer plate (2/F) respectively: (a) accelerations; (b) displacements. 

The input is the 0.1g Kobe earthquake wave given in Figure 2.6(a). 
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Figure 2.8 The maximum inter-story drift ratios at the four corners along the x- and y- directions for the 0.1g Kobe earthquake input. The results 

are from elastic FEM analysis. 
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Figure 2.9 The maximum rotation angles calculated from the translational 
displacements of each pair of corners. In the figure,  denotes the distance between 

two corners. The input is given in Figure 2.6(a). 
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Figure 2.10 The maximum (a) shear forces and (b) bending moments at columns and 
beams subjected to the 0.1g Kobe earthquake input. The arrows indicate the locations 

of the maximum shear forces and bending moments. The details can be referred in 
Figures 2.12 and 2.13 later. 
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Figure 2.11 The maximum (a) normal stress 11σ ; (b) normal stress 22σ ; (c) shear 
stress 12σ ; (d) shear stress 13σ  of wall elements for the 0.1g Kobe earthquake input. 
It is clearly seen that the maximum stresses concentrate on the two diagonal corners 
(Corners I and III) just above the transfer plate level. The local coordinate system of 

wall elements is sketched by the 1, 2, 3 axes in the figure. 
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Figure 2.12 The maximum bending stresses (unit: MP) on walls and bending moments (unit: N.mm) at columns between G/F and 1/F for the 
0.1g Kobe earthquake input. The filled or not-filled diamonds on the surfaces of walls or columns denote the strain gauges that are installed in 

our later shaking table tests. The not-filled diamonds represent those strain gauges which are out of sight from this view angle. 
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Figure 2.13 The maximum bending stresses (unit: MPa) on walls and bending moments (unit: N.mm) at columns between 1/F and 2/F for the 
0.1g Kobe earthquake input. The filled diamonds on the surfaces of walls or columns denote the strain gauges that are installed in our later 

shaking table tests. 
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Figure 2.14 The maximum bending stresses (unit: MPa) on walls between 2/F and 3/F for the 0.1g Kobe earthquake input. The filled or 
not-filled diamonds on the surfaces of walls denote the strain gauges that are installed in our later shaking table tests. The not-filled diamonds 

represent those strain gauges which are out of sight from this view angle. 
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CHAPTER 3  SIMILARITY LAW AND MODEL 

DESIGN 

 

The seismic vulnerability of the building selected in Section 2.2 will be assessed 

through conducting shaking table tests on a physical scaled model. The shaking table 

tests and results will be introduced in Chapter 4 and this chapter will concentrate on 

the design and fabrication of the scaled model. A brief review is first given for 

previous model tests on shaking tables. Then the similarity law for structural 

dynamics, which is the basis of model design, will be introduced. The model design 

will be carried out accordingly. Finally the model fabrication and instrumentations 

will be discussed and presented. 

 

 

3.1 Introduction to Model Tests on Shaking Tables 

 

3.1.1 Shaking table tests on structure vulnerability 

 

Shaking table test has been a helpful modern means for studying seismic 

responses and damages of buildings, especially for those with complex plan layouts or 

discontinuous elevation configuration. It would be difficult to accurately analyze and 

predict their seismic responses using theoretical methods. In practice, shaking table 
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tests can also be used to verify theoretical methods and hypotheses, and to test 

aseismic performance of various kinds of structural systems. 

In recent years, several large shaking tables have been developed, providing the 

probability of large-scale or even full-scale structural model tests, such as the Large 

High Performance Outdoor Shake Table (LHPOST) in USA and the E-Defense shake 

table in Japan. The LHPOST, which has a dimension of 7.6 m×12.2 m and a load 

capacity of 2000 ton, is developed at The University of California, San Diego 

(http://nees.ucsd.edu/). The E-Defense shake table, developed by National research 

Institute for Earth science and Disaster prevention in Japan (NIED), is of 20 m×15 m 

size and 1200 ton load capacity (http://www.bosai.go.jp/hyogo/ehyogo/index.html). 

However, in most cases, reduced-scale model tests are preferred, due to limited 

sizes and loading capacities of most existing shaking tables as well as economic 

reasons. In order that model test results can reflect actual responses of prototype 

structures, the similarity law for structural dynamics should normally be abided in 

model design, which will be explained in Section 3.2. 

A number of scaled model tests have been conducted in the world in the past 

few decades. For example, Bertero et al. (1983) conducted a shaking table test on a 

1:5 scaled model of a 7-story reinforced concrete structure; Moehle and Alarcon 

(1986) tested two scaled models on shaking table to study responses of irregular 

structures; Hosoya et al. (1995) tested two 1:7 scaled models for a reinforced concrete 

11-story frame structure; Filiatrault et al. (1998) conducted a shaking table test to 

study seismic performance of ductile and nominally ductile reinforced concrete 
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moment resisting frames. 

However, the largest number of scaled model tests for real building structures 

may have been conducted in China. That is because in China there are some 

specialized requirements from national codes or specifications for special structures. 

These special structures may include those very tall or complex buildings beyond the 

code specifications, including Code for Seismic Design of Buildings (GB 50011-2001, 

2001) and Technical Specification for Concrete Structures of Tall Building (JGJ 

3-2002, 2002), or those adopting very special forms of structures. For these special 

structures, when there is no similar design experience, model tests are advised to be 

conducted to examine their seismic responses (Ministry of Construction, 2003, 2006). 

Therefore, shaking table tests have been conducted for most of special buildings 

newly constructed in China. For example, structures tested on the shaking table at the 

State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University, 

Shanghai include the Shanghai TV Tower, the Kaixuanmen high-rise building in 

Shanghai, the Tianwang Tower in Guangzhou, and the Futong Tower in Haikou (Lu et 

al., 1999). Recently, a shaking table test has been conducted for the 610 m high New 

Guangzhou TV Tower at Earthquake Engineering Research & Test Center of 

Guangzhou University (http://eertc.gzhu.edu.cn/). 

To simulate various forms of structures in the world, models tested on shaking 

table can be made of various materials, including wood, stone, masonry, steel, 

reinforced concrete and composite materials. Some recently-conducted tests using 

various materials are briefly reviewed below. 

 52



For wooden structures, Seo et al. (1999) tested two 1:4 scaled models for a 

typical Korean wooden house; Shimizu et al. (2001) tested a full-size two-story 

wooden frame with braces on shaking table; more recently, Hirano and Ando (2003) 

conducted a full-scale shaking table test for a two-story Japanese post and beam 

wooden house. 

For stone or masonry structures, Tomazevic and Klemenc (1997) tested two 1:5 

scaled models of a typical three-story confined masonry building (masonry walls 

confined by vertical reinforced-concrete or reinforced-masonry elements along their 

vertical edges); Kim and Ryu (2003) constructed a full-scale model for a five-story 

stone pagoda; Cohen et al. (2004) tested two half-scale single-story reinforced 

masonry buildings with flexible roof diaphragms. 

As for steel structures, Yao and Chang (1995) subjected a 1:5 scaled steel gable 

frame to earthquake ground motions; Akiyama (2000) conducted full-scale shaking 

table tests on the fundamental structural elements of steel moment frames; Xu and 

Chen (2004) conducted shaking table tests on a three-story steel shear building. 

Beside those materials mentioned above, reinforced concrete (RC) may be the 

most popular material for building models in shaking table tests. For example, 

Skjaerbaek et al. (1998) tested three 1:5 scaled RC frame models; Lu et al. (1999) 

carried out a shaking table test on 1:20 scaled model of a 7-story “U-shaped” RC 

structure in Shanghai; Lam et al. (2002) conducted a shaking table test on a 1:20 

scaled model of a 42-story RC building in Hong Kong; Ma et al. (2003) tested a 1:5 

scaled frame RC model on shaking table to study damage to building structures due to 
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underground blast-induced ground motions. 

Different from those tests of whole structures mentioned above, some other 

studies concentrate on seismic performance of individual structural elements on 

shaking tables, such as beams, columns and walls. For instance, based on US and 

Japan seismic design respectively, Park et al. (2003) tested three 1:6 scaled models of 

a reinforced concrete bridge column on shake table for their seismic performance. Lin 

et al. (2004) and Bairrao et al. (2005) constructed reinforced concrete beams and 

vibrated them on shaking tables respectively. 

 

3.1.2 Shaking table tests conducted in Hong Kong 

 

As mentioned previously in Chapter 1, since seismic hazard in Hong Kong has 

traditionally been considered to be low, local building structures have been designed 

with no seismic provisions. No shaking table test has ever been carried out to study 

seismic vulnerability of wind-designed buildings in Hong Kong before 2000. In recent 

years, realizing the potential risk of earthquake shaking, a shaking table test was 

conducted in 2001 on a 1:20 scaled model of a 42-story building with transfer system 

in Hong Kong (Lam et al., 2002; Li et al, 2006). The purpose is to understand the 

seismic resistance of existing high-rise buildings in Hong Kong and provide 

guidelines for the future seismic provisions. 

To be specific, the selected prototype is a 42-story reinforced concrete 

residential building with a transfer plate of 2.7 m thick at the 4th story level. The 
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typical floors above the transfer plate consist of shear walls and a central core, 

whereas for the stories below the transfer plate, columns are used to support the upper 

structure. The authors believed that the selected building can reflect the main features 

of typical wind-designed buildings in Hong Kong (Lam et al., 2002; Li et al., 2006). 

As shown in Figure 3.1, a 1:20 scaled model of the prototype was fabricated 

using fine wires (typically of 2.5, 6 and 8 mm diameters) and micro-concrete (a 

mixture of cement, sand and water). The model was subjected to earthquake shakings 

of various peak accelerations on the shaking table (of 5 m×5 m size and 6 degrees of 

freedom) at the Institute of Engineering Mechanics (IEM), China Earthquake 

Administration. 

The test results show that the building was moderately damaged after 

earthquake excitation with peak acceleration of 0.15-0.20g, but was still repairable. 

According to Chinese Code for Seismic Design of Buildings (GB 50011-2001, 2001), 

a maximum ground shaking of 0.15g at rock site is expected in Hong Kong at least 

once in every 475 years. The building was severely damaged and beyond repair after 

earthquake shaking of peak acceleration at 0.25-0.34g. It was recommended that the 

structural walls above the transfer plate should be strengthened and any change in 

stiffness at the transfer zone should be avoided as far as possible (Lam et al., 2002). 

 

3.1.3 Objectives of the present shaking table test 

 

The present shaking table test is distinguished from the test conducted by Lam 
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et al. (2002) in several aspects. First the model studied by Lam et al. (2002) is a 

residential building whereas the prototype in the present study is a hotel building. 

Secondly, although transfer system has been used in the building of Lam et al. (2002), 

their model is essentially symmetric and torsional response is not significant. 

However, the selected building in this study has both a transfer plate and an 

asymmetric plan, and it is believed that torsional response will play a more important 

role in its seismic behavior. 

Torsion caused by the non-coincidence of the center of mass and the center of 

stiffness on the floor plan has been identified as one of the potential causes of 

damages during earthquakes (Wakabayashi, 1986). Seismic damages caused by 

torsional responses have been found in a number of past earthquakes, for example, in 

the 1964 Alaska earthquake in USA, the 1972 Managua earthquake in Nicaragua (Liu, 

1993), and the 1978 Miyagiken-Oki earthquake in Japan (Wakabayashi, 1986). 

Torsional vibrations induced especially severe damages in the 1985 Mexico City 

earthquake. Rosenblueth and Meli (1986) reported that 42% of the buildings that 

suffered collapse or severe damages were on corner sites. The authors argued that the 

poor performance of those buildings was due to their asymmetric layouts, since most 

of those corner buildings had wider open facades to the streets than the corresponding 

facades at the rear. Their centers of stiffness were likely to be eccentric from their 

centers of mass, and thus significant torsional responses would be resulted. 

As indicated in Chapter 1, besides transfer system, asymmetric plan has also 

been widely adopted in Hong Kong building structures. So it is needed to study 
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seismic vulnerability of tall buildings which have both asymmetric plans and transfer 

systems. That is the reason why the present building was selected to be studied (refer 

to Section 2.2). 

Another important difference between the present test and that of Lam et al. 

(2002) may consist in the damage evaluation methods. Lam et al. (2002) only assess 

damages qualitatively through visual inspection, inter-story drift ratio and reduction of 

natural frequency; whereas in this study, structural damages will be evaluated 

quantitatively through various damage indices, including ductility, inter-story drift 

ratio, variation of natural frequency as well as Park and Ang damage index. 

To summarize, the present shaking table test was carried out with the following 

main objectives: 

(1). The selected prototype building is a reinforced concrete frame-shear wall 

structure with a transfer plate as well as a “L-shaped” plan, which means that torsional 

vibrations will play a more important role in its seismic responses. Therefore, it will 

provide a good means and opportunity to investigate effects of both asymmetric plan 

and transfer system on seismic vulnerability of non-seismic-designed buildings. 

(2). In the present model test, the structural damages under the excitations of 

different earthquakes will be quantitatively evaluated using various seismic damage 

indices, including ductility, inter-story drift ratio, variation of natural frequency and 

Park and Ang damage index. A simple algorithm will be developed to estimate Park 

and Ang damage index from the measured response data. Using Park and Ang index 

as a benchmark, the correlations between other damage indices with various damage 
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levels (i.e. slight damage, minor damage, moderate damage, severe damage and 

collapse) will be established. 

(3). In this study, the test results will be compared with the predictions from FEM 

analyses conducted in Chapter 2, with the purpose of verifying the assumptions used 

in FEM study. 

 

 

3.2 Similarity Law for Structural Dynamics 

 

As mentioned in previous Section 3.1.1, due to limited sizes of most existing 

shaking tables and economic reasons, very often reduced-scale models rather than 

full-scale models are tested on shaking tables to simulate seismic responses of real 

structures. To assure models can reflect actual responses of prototypes, scaled models 

should be designed and fabricated according to the similarity law, which puts certain 

requirements on ratios of various physical parameters between models and prototypes, 

and will first be introduced. 

 

3.2.1 Similarity law from the Buckingham Pi Theorem 

 

The Buckingham Pi Theorem is the basis of dimensional analyses, which asserts 

that any complete physical relationship can be expressed in terms of a set of 

independent dimensionless products composed of the relevant physical parameters 
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(Baker et al., 1991). Or in more mathematical discussement, the Pi Theorem says, 

“If the equation 1 2( , , ) 0nF q q q =L

)n k

 is complete, the solution has the 

form 1 2( , ,f π π Lπ − 0= , where the π  terms are independent products of the 

parameters , etc., and are dimensionless in the fundamental dimension.” 

(pp.19, Baker et al., 1991) 

1,q q2

The number of π  terms in the solution equations is less than the number of 

parameters ( ) by a factor ; usually  equals to the number of fundamental 

dimensions (such as length, mass and time). A physical phenomenon should be 

independent of the unit of measurement of the involved parameters. Therefore, two 

systems are similar only if all the corresponding 

n k k

π  terms are equal in the two 

systems (Buckingham, 1914). For our shaking table tests, the Buckingham Pi 

Theorem requires that all the corresponding π  terms should be equal in the model 

and the prototype. 

To be specific, in linear elastic range, all related parameters involved in shaking 

table tests can be presented by an equation as (Zhang, 1997): 

( , , , , , , , , , )f l E t x v a gσ ρ= ω ξ                     (3.1) 

where σ  is the stress, l is the dimension, E is the elastic modulus, ρ  is density, t is 

time, x, v and a denote the displacement, velocity and acceleration respectively, g is 

the gravity acceleration, ω  is the structural circular natural frequency, and ξ  is the 

damping ratio. Note that the damping ratio was not included in Zhang (1997) and has 

been included here for completeness. It should be borne in mind that using those 

parameters in the above equation, only elastic behaviors are considered and inelastic 
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behaviors (such as structural damage) can not be reflected. This is one limitation of 

the present study. 

If , l E , ρ  are selected to be the fundamental dimensions, the dimensions of 

all the other parameters can be expressed by the products of , l E , ρ and the 

dimensionless π  terms can be obtained (Zhang, 1997). 

E/0 σπ =                               )/( 5.05.0
4 ρπ −= lEt

     5 /x lπ =                                  0.5 0.5
6 /( )v Eπ −= ρ

)/( 11
7

−−= ρπ Ela                          )/( 11
8

−−= ρπ Elg

          )/( 5.05.01
9

−−= ρωπ El 10π ξ=                    (3.2) 

All these dimensionless π  terms should be equal in the prototype and the 

model according to the Buckingham Pi Theorem. If a parameter A is denoted by pA  

in the prototype and is  in the model system, the ratio between the model and the 

prototype for A is denoted by 

mA

/A m pA Aλ = . To make these π  terms given in 

Equation (3.2) the same in the model and the prototype, the ratios of various 

parameters should satisfy (Zhang, 1997): 

Eσλ λ=            /v E ρλ λ λ=                         

/t l ρ Eλ λ λ λ=      /( )a E l ρ gλ λ λ λ λ= =                       

 x lλ λ=       / /Eω ρ lλ λ λ λ=       1ξλ =               (3.3) 

However, it is hard for all the similarity requirements in Equation (3.33) to be 

satisfied simultaneously in real experiments. The main difficulty consists in that all 

experiments are conducted on the earth, and thus the gravity acceleration remains the 

same for both the prototype and the model, that is, 1a gλ λ= = . From Equation (3.3), 
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we can easily know that this requirement equals to E l ρλ λ λ= . This means that the 

three ratios Eλ , lλ  and ρλ  should not be assigned arbitrarily, which brings much 

difficulties in the model design. Especially for small scaled models which have a 

relatively smaller lλ  than Eλ , and thus a rather large value of ρλ  is needed. That is 

to say, the material density of the model must be much larger than that of the 

prototype, which is usually hard to be achieved in real tests. 

The usual way to solve this problem is to attach additional masses to the model 

to increase the equivalent density ratio ρλ  (Baker, 1991). This method increases the 

total mass of the model but will not influence the stiffness of the model. From the 

requirement E l ρλ λ λ= , we can get: 

  3
m l Eρ

2
lλ λ λ λ λ= =                           (3.4) 

where mλ  is the mass ratio between the total mass of the model ( ) and the mass of 

the prototype ( m ) (i.e. 

tm

p
2/m t p Em mλ lλ λ= = ). The total mass of model  is the 

summation of the mass of the model itself  and the additional mass  (i.e. 

). Thus, the similarity law can be satisfied through the introduction of 

additional mass. This is called the additional mass law (Zhang, 1997) (Note: Zhang 

(1997) called it the “artificial mass law”; here the word “additional” is used since the 

word “artificial” may be somewhat confusing). From the above formulae, it is easy to 

know the required additional mass is: 

tm

mmm a

t m amm m= +

                     (3.5) 2
a t m E lm m m mλ λ= − = p mm−

Following this method, all the requirements of the similarity law based on Equation 

(3.3) are summarized and listed in the second column of Table 3.1. 
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This method can properly scale gravity forces and accelerations, however, 

several difficulties still exist. For example, attached mass is hard to truly model 

distributed mass even if the total mass is correct, and centers of mass of components 

and hence moments may be changed; stress distribution may be affected; attachment 

can be difficult under severe dynamic load conditions (Baker, 1991). Therefore, 

enough attention should be paid in adopting this method, for example, the additional 

mass should be attached firmly on the model and the distribution of additional mass 

should resemble the actual mass distribution in the prototype as far as possible. 

 

3.2.2 Similarity law from governing equations 

 

The more traditional and usual method of developing similarity law is via the 

Buckingham Pi Theorem as described above. This method does not require that the 

complete governing equations of the studied phenomenon are provided, but only 

requires that the complete set of physical parameters involved in the problem is given. 

However, if the adopted physical parameters are not complete for the problem studied, 

the obtained results may be incorrect. 

The other possible method of developing similarity law is via the governing 

equations which describe the dynamic process of the studied problem (Baker et al., 

1991). This method avoids the above shortcoming of the Pi Theorem, but it requires 

that you must know enough about the physics of your problem and be able to write 

down a complete set of governing equations to describe the physics. 
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Using this method, the complete governing equations for individual problem 

must be given, however, to develop the similarity law we do not need to solve them. 

In this section, we will develop the similarity law for our shaking table tests from the 

equations of motions directly and the results will be compared with the previous 

results from the Pi Theorem. 

The equations of motions of the model and the prototype under earthquake 

excitations can be written as: 

m m m m m m m gmm x c x k x m x+ + = −&& & &&                     (3.6) 

p p p p p p p gpm x c x k x m x+ + = −&& & &&                      (3.7) 

where ,  and  represent the mass, damping and stiffness respectively, the 

subscripts  and 

m c

m

k

p  correspond to the model and the prototype respectively, x  is 

the displacement response, and gx  is the input ground motion. Similar as in Section 

3.2.1, only elastic responses are considered here, and the stiffness and damping are 

taken as constants. 

First the following ratios of the corresponding parameters between the model and 

the prototype are defined. 

m
m

p

m
m

λ = , m
t

p

t
t

λ = , m
l

p p

l x
l x

λ = = m                    (3.8) 

m
k

p

k
k

λ = , m
c

p

c
c

λ =                           (3.9) 

where  is time and  is the length. Take the differentials of displacement once and 

twice respectively, and we can easily get the ratios of velocity, acceleration and 

gravity acceleration as. 

t l
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λλ λ
λ

= = =
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&&
          (3.10) 

Then all the parameters of the model can be expressed by that of the prototype 

plus those ratios defined, such as m mm mpλ= , m l px xλ= , 2
l

m
t

px xλ
λ

=&& && . After that, all 

of them are substituted into Equation (3.6), and we get: 

2 2
l l l

m p p c p p k l p p m p
t t t

m x c x k x m xgp
λ λ λλ λ λ λ λ
λ λ λ

+ + = −&& & &&           (3.11) 

Since the above formula and Equation (3.7) should be valid at the same time, by 

comparing the two equations, we can easily get the following similarity requirements. 

2
l l

m c
t t

k l
λ λλ λ λ
λ λ

= = λ                         (3.12) 

From the above procedure, it can be easily seen that if and if only the above 

equation is satisfied, the structural responses of the model and the prototype will be 

similar, and the model can be used to simulate and further to predict the seismic 

behavior of the prototype. Therefore, Equation (3.12) is the base of our similarity law. 

Using this basic equation, if we select ,  and  as the fundamental 

parameters as general, the other ratios can all be expressed in terms of them. 

m l t

2
m

k
t

λλ
λ

= , m
c

t

λλ
λ

=                          (3.13) 

3
m

l
ρ

λλ
λ

= , 2
k m

l l t
σ

λ λλ
λ λ λ

= = , 2
m

E
l t

σ
λλ λ
λ λ

= =              (3.14) 

where ρλ , σλ  and Eλ  are the ratios of the density, stress and Young’s modulus 

respectively. If we define the circular natural frequency as k mω =  and the 

damping ratio as (2 )c mξ ω= , we can further get: 
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1k

m t
ω

λλ
λ λ

= =                            (3.15) 

1c

m
ξ

ω

λλ
λ λ

= =                             (3.16) 

In the above analysis, we did not require the gravity ratio 2( )g l tλ λ λ=  to be 

unity. However, as discussed in Section 3.2.1, since all shaking table tests are 

conducted on the earth and the gravity should be the same for the model and prototype. 

That is to say, 2 1g a l tλ λ λ λ= = = , so we have 1/t lλ λ= . Based on this relation, 

we can rewrite some of the above requirements in new forms, such as: 

2
m

E
l

σ
λλ λ
λ

= = , v lλ λ= , 1

l
ωλ λ
=                  (3.17) 

From the above equations, we can get a requirement on the mass ratio 2
m E lλ λ λ= , 

which is obviously equivalent to E l ρλ λ λ=  obtained in the previous Pi Theorem 

method in view of the relation 3
m lρλ λ λ= . As mentioned before, this requirement is 

hard to be satisfied especially for small scaled models and the mass of the model is 

usually insufficient. To overcome this problem, additional mass ( ) should be added 

to increase the total mass of the model. From the relationship 

am

2
m E lλ λ λ=  and 

( ) /m m am m mpλ = + , the amount of the additional mass needed can be determined as: 

2
a E l pm mλ λ= − mm                         (3.18) 

where  and  are the masses of the model and the prototype respectively. 

Comparing Equation (3.18) with Equation (3.5), we can find that the result here is 

identical with the additional mass law developed from the Buckingham Pi Theorem. 

mm pm

The requirements of the additional mass law developed from the governing 

equations were summarized in the third column of Table 3.2, based on the three 
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fundamental parameters ,  and . In the table, if we change the fundamental 

parameters to ,  and 

m l t

l E ρ , and express all others parameters in terms of them, we 

can easily find that the scale requirements in the third column of Table 3.1 are 

identical with those in the second column obtained from the Buckingham Pi Theorem, 

which means that for this case the two methods are equivalent. 

In the present study, the additional mass similarity law as listed in the third 

column of Table 3.1 is adopted and cast-iron plates are used to serve as the additional 

mass. But due to the limited load capacity of our shaking table as well as the limited 

spaces within each story of the model to accommodate the additional mass, the actual 

additional mass achieved is slightly insufficient. The details will be introduced in the 

following sections. 

 

 

3.3 Model Design Constrained by Similarity Law 

 

As introduced in Chapter 2, the 21-story Empire Hotel building with a “L- 

shaped” plan and a transfer plate in Hong Kong was selected for investigation in this 

study, and its location, photographs and typical floor plan have been shown previously 

in Chapter 2. The detailed structural design drawings of the building were collected 

from the Buildings Department of Hong Kong SAR Government. The full details of 

the design procedure will be introduced in this section. 
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3.3.1 Model dimensions 

 

The tests are performed on a MTS uniaxial seismic shaking table of size 

3m×3m at the Hong Kong Polytechnic University (see Figure 3.15). It is capable of 

producing a maximum horizontal acceleration of 1g at the maximum load of 10 tons.  

The maximum velocity and displacement can be up to 0.5 m/s and 10 cm respectively. 

The actuator is controlled by a 469DU digital seismic table controller, and the 

working frequency of the table ranges from 1 to 50 Hz. The shaking table can 

simulate motions with control in displacement, velocity or acceleration (i.e. a three- 

variable-control). The displacement control is primarily for low frequency range, 

velocity control for middle frequency range, and acceleration control for high 

frequency range. The maximum overturning moment that can be restrained by the 

bearing of the table is 10 ton•m. 

As shown in Chapter 2, the total height of the prototype is 69.65 m and its 

horizontal dimension is 35.75 m×31.675 m. Since the clearance between the shaking 

table and the crane at the ceiling of our laboratory is fixed (3.3 m), the length scale of 

the model is constrained. The size of the current shaking table is 3 m×3 m. These 

factors determined the maximum possible dimension of the model. On the other hand, 

the length scale should be as large as possible under those constraints to reduce the 

distortion between the model and the prototype. After considering all these factors, a 

1/25 length scale is adopted in the present study (i.e. lλ = 0.04). 

With this length scale, the model has a height of 2.786 m and a plan dimension 
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of 1.43 m×1.267 m. As shown by the elevation view given in Figure 3.2, typical 

stories have a height of 120 mm whereas the lower three stories and the roof story are 

of higher story heights, varying from 160 mm to 208 mm. Those stories need large 

open spaces for their different functions from typical stories (serving as guest rooms) 

in the hotel. For example, the first two stories are used as the reception lobby, bar and 

restaurant, the third story for a business center, and the top story for a swimming pool 

and a health club. Some typical structural dimensions of both the model and the 

prototype are listed in Table 3.2. 

After the length scale is determined, the geometrical configurations of all 

structural elements in the model, including beams, columns, walls and slabs, are 

determined accordingly. As shown in Figure 3.2, the deep beams at the transfer plate 

have a depth of 60 mm. From the cross-sections at various levels shown in Figures 

3.3-3.4, it is clear that the building adopts totally different structural forms below and 

above the transfer plate. The first two stories below the transfer plate mainly consist 

of columns and core walls (see Figure 3.3), whereas only shear walls and core walls 

are used for typical stories above the transfer plate (see Figure 3.4). 

 

3.3.2 Mechanical properties of micro-concrete 

 

The scaled model to be tested in our shaking table tests will be fabricated using 

micro-concrete, steel wires and steel meshes. Micro-concrete is a concrete mix with a 

reduced aggregate size and has been widely used in small scale modeling of concrete 
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structures (Noor, 1991). In this study the micro-concrete is mixed using cement, water 

and sand, similar as in the tests of Lu et al. (1999) and Lam et al. (2002). Compared to 

concrete, micro-concrete has comparatively smaller elastic modulus (i.e. Young’s 

modulus) but similar density, which provides an obvious advantage in the design and 

fabrication of reduced-scale models following the additional mass similarity law. 

According to Equation (3.18), the smaller value of Eλ , the less additional mass  

will be needed to satisfy the similarity requirement. 

am

First the target elastic modulus of the micro-concrete used in the model 

fabrication is estimated. According to the descriptions in Chapter 2, the areas of the 1st, 

2nd and typical floor (3rd-21st) of the prototype are 810.2, 825.3 and 628.2 m2 

respectively. The elastic modulus of the concrete is pE = 30 GPa. The total mass ( ) 

is estimated to be 16285.56 ton by assuming a design load density of 1.2 ton/ m2. 

Since the density of micro-concrete is close to that of concrete, we assumed 

temporarily the density ratio to be unity (i.e. 

pm

1ρλ = ). Then the mass of the model can 

be estimated as 3
m p lm m λ= = 1.04 ton with 0.l 04λ = . 

To estimate the target material strength, let’s consider two extreme cases first. 

The first one is that no additional mass is added and only the micro-concrete is used 

(i.e. 1ρλ = ). Then from the relation E l ρλ λ λ= , we can get E lλ λ= = 0.04. This 

means Young’s modulus of the micro-concrete must be mE = 1.2 GPa when 30 

GPa, which is a value too small to be achieved for realistic micro-concrete. In another 

words, the similarity law can not be satisfied if no additional mass is added. The 

values of other related parameters for this extreme case are listed in the second 

pE =
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column of Table 3.3. 

The second case considered is the maximum additional mass added within the 

load capacity of the shaking table. As introduced previously, our shaking table has a 

load capacity of 10 ton and an overturning moment capacity of 10 ton•m. For a rough 

estimation, we assume the center of mass of the model situates at the mid-height 

(i.e.  1.393 m, where / 2H = H = 2.786 m is the total height of the model). Then the 

maximum dead load on the shaking table should be 10/1.393 = 7.18 ton, considering 

the overturning moment capacity of 10 ton•m. But since the model is constructed and 

situated on a reinforced concrete base slab of 200 mm thick (refer to Section 3.4.1), 

which has a weight of about 2 ton. Minus 2 ton from 7.18 ton, we get the maximum 

total weight of the model plus the additional mass is 5.18 ton (i.e. 5.18 

ton). Recall 1.04 ton, and we get the maximum amount of the additional mass is 

4.14 ton. 

m am m+ =

mm =

am =

Using Equation (3.18), we can get 2
m a

E
p l

m m
m

λ
λ
+

= = 0.199 and m E pE Eλ= =  

5.97 GPa. This is the target Young’s modulus of the micro-concrete. For comparison, 

various parameter ratios for this case are also listed in the third column of Table 3.3. 

With the above target strength, material tests were carried out to determine the 

appropriate mix proportion of cement, sand and water for the micro-concrete. Totally, 

six sets of micro-concrete specimens of six different mix proportions have been 

fabricated and tested. Each set of specimens consisted of three test cubes of dimension 

70.7×70.7×70.7 mm and three cylinders of φ 100×200 mm (φ  means diameter 

here) (see Figure 3.5); the test cubes were used to measure the cube strength whereas 
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the cylinders for obtaining Young’s modulus of the micro-concrete. All the specimens 

were fabricated simultaneously and the moulds were removed after 24 hours, and then 

the specimens were cured under room temperature for 28 days before testing. Note 

that during the curing period, the specimens were not immersed in water in order to 

reflect the actual strength of the model, since the model was also not immersed in 

water during fabrication. 

The results of the cube strength and Young’s modulus together with the mixing 

proportion, density and Young’s modulus ratio between the model and the prototype 

( Eλ ), are compiled and listed in Table 3.4. The mixing proportion of cement, sand and 

water is measured by weight. Note that all of the results are the average values of test 

results of three specimens in each group. According to Chinese standard for test 

method of mechanical properties of ordinary concrete (GB/T 50081-2002, 2003), if 

the difference between the strength of one specimen and the middle value of the group 

is larger than 15%, the maximum and minimum values will be abandoned and the 

middle value will be selected to be the strength of the group. 

Considering the target Young’s modulus ratio discussed above ( Eλ = 0.199), the 

mixing proportion of specimen set No.4 was selected to be used in the model 

fabrication, which has a mix proportion of cement, water and sand of 1: 1.65: 7.95 by 

weight. The strain-stress curves of the three specimens in set No.4 as well as their 

corresponding Young’s modulus values are shown in Figure 3.6. From Table 3.4, the 

average Young’s modulus ratio of this specimen set is Eλ = 0.176 and this value is 

slightly smaller than the target value (0.199), which means less additional mass will 
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be needed. According to Equation (3.18), now the required additional mass should be 

3.55 ton. 2
a E l p mm m mλ λ= −

y

=

Small cast-iron plates will be used to serve as the additional mass in the test. 

Note that Young’s modulus of the actual micro-concrete used in the model fabrication 

was not exactly the same as the design value, for the quality control was not good 

enough. So the amount of additional mass needed should be determined according to 

the strength of the micro-concrete actually used after the model was completed. The 

details will be discussed in Section 3.4.5. 

 

3.3.3 Reinforcements 

 

The reinforcements of micro-concrete in the model are determined according to 

the reinforcement ratio of the prototype. In the actual building, walls are reinforced 

using two layers of steel bars of T20-150, where 20 and 150 denote the bar diameter 

and the spacing in unit of mm respectively, and T means high yield steel (with a yield 

strength of f = 410 MPa); slabs are reinforced with two layers of steel bars of 

T12-200 or T16-200; beams and columns are reinforced using the same high yield 

steel with a reinforcement ratio of about 4% and 5% respectively. 

The reinforcements in the model are designed in such a way that all structural 

elements have similar reinforcement ratios as the prototype. The columns in the first 

two stories are reinforced using 6 or 8 steel bars of 4 mm diameter ( yf = 302 MPa) 

and the stirrups are made of 1.2 mm steel wires ( yf = 121 MPa) at 40 mm spacing 
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[see Figure 3.10(a)]. Steel bars of 6 mm ( yf = 623 MPa) and 4 mm ( yf = 302 MPa) 

diameters are used for reinforcement of deep beams at the transfer plate (see Figure 

3.11), and steel wires of 2 mm diameter ( yf = 240 MPa) are used as the main 

reinforcements of beams in the upper typical stories (see Figure 3.10). As shown in 

the top close-up attached in Figure 3.10, the stirrups for beams in the typical floors are 

fabricated utilizing grids cut from steel meshes of appropriate size (of 1.2 mm wire 

diameter and 12.7 mm spacing, yf = 121 MPa). This new method of fabricating the 

reinforcement not only accelerates construction greatly, but also makes the resulting 

beams firmer and more suitable for fixing into the model. 

The wall reinforcement consists of two layers of steel mesh of 1.2 mm wire 

diameter ( yf = 121 MPa) and 12.7 mm spacing [see Figure 3.11(b)], whereas the floor 

slabs (typical of 5 mm thick) are reinforced using one layer of the same steel wire 

mesh [see Figure 3.12(a)] except for the 2/F slab (of 8 mm thick) at the transfer floor, 

which consists of two layers of the same steel mesh [see Figure 3.11(b)]. 

Note that the strengths of concrete and steel of the actual building are not scaled 

down exactly by proportions in the model. Actually both reinforcement strength and 

the concrete strength of the model differ from that of the actual building. In addition, 

it is impossible that the micro-concrete used in the model have completely similar 

stress-strain characteristics with that of the actual building. Although we cannot 

accurately scale down the strength of concrete and steel in the model, keeping the 

reinforcement ratio appears to be a wise choice, and this strategy has been adopted by 

other researchers as well, for example, adopted in the ASCE paper by Li et al. (2006) 
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for modeling a 40-story RC building. The structural features of elements will be 

further compared in details between the model and the prototype in Section 6.3. 

 

3.4 Fabrication of Model 

 

The model fabrication includes the following main steps: a base slab was first 

fabricated, then the upper structure was built on it story by story using micro-concrete; 

after the whole model was completed, the formworks were demoulded and any 

honeycomb in the concrete was repaired; finally the completed model was hoisted 

onto the shaking table and the additional mass was mounted. This section will 

summarize the whole procedure in details step by step. 

 

3.4.1 Fabrication of the base slab 

 

The structure model will be built on a reinforced concrete base slab, which 

provides a solid base for hoisting the model onto the shaking table without inducing 

unwanted damage. The reinforcements of the first story are fixed onto the 

reinforcements in the base slab to provide a sufficient band length. The base slab must 

be stiff enough to resist any bending deflection during construction and hoisting of the 

model onto the shaking table. 

Constrained by the plan dimension of the first story of the model (1620×1253 

mm) and the spacing (400 mm) between bolt holes on the shaking table, the 
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dimension of the base slab was designed to be 2300×1900 mm. Figure 3.7 shows the 

dimensions of the model and the base slab as well we their relative positions on the 

shaking table. To fulfill the stiffness requirement, the thickness of the base slab was 

set to 200 mm. The cube strength of the concrete used is 37 MPa; and steel bars of 20 

mm diameter were installed at a spacing of 200 mm at both the top and bottom of the 

slab [Figure 3.8(a)]. 

Figure 3.8 shows the construction stages of the base slab. As shown in Figure 

3.8(a), the reinforcements of columns and walls of the first story of the model were 

tied onto the reinforcements embedded in the base slab. To assure the reinforcements 

were in the right locations, an additional thin timber board with pre-drilled holes was 

used to fix them and to keep them vertical during concreting [Figure 3.8(a)]. Figure 

3.8(b) shows the completed base slab, indicating the reinforcements of the ground 

floor columns and walls. This photograph also shows the hooks for hoisting the model 

and the screw holes through which the model will be fixed onto the shaking table. 

 

3.4.2 Fabrication of the upper structure 

 

After the base slab was completed, the upper structure was built on it story by 

story. Micro-concrete made of cement, water and sand in a mixing proportion of 1: 

1.65: 7.95 by weight was used as the main construction material. The concrete mixer 

in mixing the micro-concrete is shown in Figure 3.9(a). 

Figure 3.9(b) shows an electrical micro-vibrator used during our concreting to 
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ensure the filling of columns and walls with micro-concrete. The vibrator was 

necessary here. Without the vibrator, it is difficult to fill the walls of 8 mm thick. In 

fact, as we will show later that honeycomb is found on some of the 8 mm-thick walls 

even the vibrator has been used. On the other hand, however, the micro-vibrator 

should be used with caution because too much vibration will segregate the sand from 

the cement paste and reduce the strength of the micro-concrete. 

Timber boards of 12.7 mm thick were used to build the external formwork 

whereas foam plastic or more precisely expanded polystyrene (EPS) was used as the 

inner formwork to separate structural elements. The EPS was chosen because it can be 

cut easily into various shapes. Figure 3.9(c) shows a custom-made electrically- 

heated-wire machine used for cutting the EPS blocks and Figure 3.9(d) displays some 

shaped EPS blocks with grooves for fixing the beams. The softness of the EPS also 

facilitates easy removal of the interior formwork after concreting. Even if some of 

them were difficult to be removed after the construction, such as those in the core 

walls, their existence will have little effect on both the mass and stiffness of the whole 

model. 

The construction sequence of the first story are as follows: (a) stirrups were 

attached onto the main reinforcements of columns at a spacing of 40 mm [Figure 

3.10(a)]; (b) the EPS blocks were inserted as the inner formwork [Figure 3.10(b)]; (c) 

reinforcements of beams and slabs were fixed to the grooves and the surface of the 

EPS blocks respectively; (d) these reinforcements were also tied to those of columns 

using fine wires [Figure 3.10(b)]; (e) timber boards were attached onto the outer 
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surface of the model to act as the external formwork [Figure 3.10(c)]; (f) finally, 

micro-concrete was poured and the story was finished [Figure 3.10(d)]. The top 

photographs attached in Figure 3.10 show the close-up views of beam reinforcements. 

Note that this construction procedure is very labor intensive. The connection of 

reinforcements of the beams, slabs and columns is particularly difficult due to the 

limited working space. In the future, other more efficient methods may be proposed 

for fixing the reinforcement. 

The construction of the upper stories was similar to that of the first story. Note 

that at the transfer plate beams are much wider and deeper (typically of 60 mm depth) 

than those used in other floors (typically of 24 mm depth) [Figure 3.11(a)]. An 

enlarged view of the deep beam was also shown in the figure. Note that only shear 

walls were used above the transfer plate (refer to the scheming plan shown in Figure 

2.2) and the steel meshes of those walls must be attached onto the reinforcements of 

the transfer beams as shown in Figure 3.11(b). 

Above the transfer plate level, all upper floors are of the same floor plan. As 

shown in Figure 3.12, the construction procedure was similar to those of the first story 

except that structural walls were used here instead of columns. The main difficulty in 

the construction lies on the alignment of walls along different stories. The cumulation 

of errors occurred in the alignment of the walls may result in serious distortion. 

Therefore, a thin timber board with pre-drilled holes prescribing the location of wall 

reinforcements has been used to ensure the alignment [e.g. see Figure 3.8(a)]. 
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3.4.3 Actual micro-concrete used 

 

During construction, test cubes and cylinders of micro-concrete were made for 

various stories to check the consistency of material strength. Normally three cubes of 

70.7×70.7×70.7 mm and three cylinders of φ 100×200 mm were made for one 

story during concrete casting. The results of average strength of various stories are 

listed in Table 3.5. The variations of both cube strength and Young’s modulus are 

unexpectedly high. The average ratio of Young’s modulus ( Eλ = 0.236) was about 

34% larger than the design value ( Eλ = 0.176, as discussed in Section 3.3.2). The 

average cube strength ( cuf ) was 5.31 MPa, which was about 39% larger than the 

expected value ( cuf =3.83 MPa, i.e. the strength of specimen set No.4 in Table 3.4). 

The large variation in the material strength at different stories was partly due to 

the difficulties in controlling the water-cement ratio used during the construction. The 

water content of sand was affected by the daily humidity fluctuation and, therefore, 

may affect our water-cement ratio. The strength of concrete is by large governed by 

the water-cement ratio (MacGregor and Wight, 2006). In addition, our model is 

completed in almost 16 months, and thus the daily humidity and temperature during 

curing of specimens of various stories may fluctuate significantly. The development of 

concrete compressive strength is also strongly affected by the moisture and 

temperature conditions during curing (MacGregor and Wight, 2006). The large 

variations of the micro-concrete strength may also be partly due to the size effect 

(Neville, 1995), since the higher scatter of results tends to be resulted for the smaller 
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specimens (test cubes of 70.7×70.7×70.7 mm and cylinders of φ 100×200 mm are 

used in this study).  

For the micro-concrete material, relatively large portions of water and sand are 

used in the present design to fulfill the relatively low strength requirement (recalling 

the design mixing proportion of cement, water and sand is 1: 1.65: 7.95 by weight as 

discussed in Section 3.3.2). Thus, sand is easy to segregate from the cement paste 

during concreting, and this will also result in variations of the micro-concrete strength. 

Actually, relatively large variations of strength for the micro-concrete material have 

also been found in other shaking table tests, such as those by Lu et al. (1999) and Lam 

et al. (2002). For example, in the 8-story building model tested by Lu et al. (1999), the 

cube strength of one story may be as large as 2.7 times of that of another story 

whereas the two stories have the same design strength. 

Besides the cube strength and Young’s modulus, the splitting tensile strength 

and the Poisson’s ratio of the micro-concrete used were also measured. The splitting 

tensile strength was estimated from the split tests of three cylinders (φ 100×200 mm) 

(i.e. by placing the test cylinder on its side and loading in compression along a 

diameter). The average splitting tensile strength was 0.44 MPa, which was about 1/12 

of the average cube strength. The Poisson’s ratio was estimated from the ratio 

between the transversal strain and the longitudinal strain in compression test of three 

cylinder specimens, and the resulting Poisson’s ratio of the micro-concrete used was 

0.16. This value falls in the usual range (0.15-0.20) of the Poisson’s ratios for concrete 

(MacGregor and Wight, 2006). 
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3.4.4 Demoulding and repairing 

 

After the final set of the micro-concrete at the roof floor, the external timber 

formworks were detached and the internal EPS blocks were removed [Figure 3.13(a)]. 

This procedure should be carried out carefully to assure structural elements embedded 

in the EPS were not damaged. After demoulding, some EPS remains on the inner 

surface of structural members as shown in Figure 3.13(b). As indicated before, these 

remains were considered to have little influence on the overall structural response due 

to their much smaller density and Young’s modulus. 

Defects and honeycombs on structural elements were inevitable in the model 

due to the small size of the present model. So, after the demoulding of each story, the 

surface of the structure was checked to identify the locations of defects. The defects 

found were then repaired immediately using the same micro-concrete. 

Figure 3.14 shows four different types of defects found in the model. Type I 

defect was the most critical to the overall structural stability, since reinforcements of 

structural elements were exposed and micro-concrete was missing for a large portion 

of the structural elements. Fortunately, this kind of defect was found only at five 

structural walls between 18/F and 19/F, one wall between 2/F and 3/F, and one wall 

between G/F and 1/F. The second and third kinds (II and III) of defects, corresponding 

to small cavities and the exposure of reinforcement meshes respectively, were much 

more common, because concrete was found hard to fill the formworks completely. 
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Type IV defect was induced during the removal of the internal EPS formworks. 

All defects were repaired carefully using the same micro-concrete as used in the 

model fabrication. After that, the model was hoisted by the crane in the laboratory and 

installed onto the shaking table. Then additional mass was installed onto the model. 

 

3.4.5 Installation of additional mass 

 

After the model was installed on the shaking table, additional mass was 

mounted onto it to better fulfill the requirement of similarity law as discussed in 

Section 3.2.1. But since the actual strength of micro-concrete used in the model 

construction was larger than the design value as given in Table 3.5, more additional 

mass was needed according to similarity law. From Table 3.5, the average Young’s 

modulus ratio ( Eλ ) of the actual micro-concrete was 0.236. So according to Equation 

(3.18), the required additional mass should be 2
a E l p mm m mλ λ= − = 5.11 ton, where 

lλ = 0.04, 16285.56 ton and pm = mm = 1.04 ton. This value was much larger than 

the design value ( 3.55 ton, as discussed in Section 3.3.2). a =m

However, the total mass which can be installed onto the model was constrained 

by the limited internal space available in the model. In the present study, cast-iron 

plates of 200×160×35 mm and 200×70×70 mm were used to serve as additional mass 

as shown in Figure 3.15. The average weights of them were about 8.3 kg and 7.6 kg 

respectively. The locations of the additional mass on various floors are shown in 

Figures 3.16-3.18. The total mass of cast-iron plates installed on the model was 
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eventually 4.43 tons, and is about 87% of the required value. Although the additional 

mass is not sufficient, 13% difference is still considered acceptable in engineering 

applications. 

The distribution of additional mass at different stories was designated 

proportional to the distribution of structural weights in the prototype. Within each 

story, the additional mass was distributed evenly over the floor slab as far as possible 

(refer to Figures 3.16-3.18). The installation of additional mass was carried out from 

the lower stories to the upper ones. Either micro-concrete or glass cement was used to 

glue or fix the iron plates onto the slabs. Figure 3.15(b) showed the model with all 

additional mass mounted. After that, transducers were installed onto the model. 

 

 

3.5 Instrumentation Strategy 

 

Before the shaking table tests were carried out, various transducers were 

installed. However, limited by the availability of data acquisition channels (a total of 

53), the location for instrumentation needs special consideration. 

In our shaking table test, acceleration and displacement responses of the 

structure under various earthquake inputs were measured, and they were used to 

estimate other parameters, such as structural modal characteristic, inter-story drift 

ratio, ductility and Park and Ang damage index. Strain gauges were installed on some 

selected elements to identify localized stresses and damages. In short, 53 channels 
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were used to record data from 15 accelerometers, 6 displacement transducers and 32 

strain gauges. The detailed layout of the instrument is given below. 

 

3.5.1 Accelerometers and displacement transducers 

 

Higher mode vibrations are expected to be important for the 21-story model. 

Guided by preliminary finite element analysis (see Section 2.3.2), accelerometers 

were installed on the 1/F, 2/F, 3/F, 9/F, 15/F and 21/F as shown in Figure 3.19. We 

expect that variations of higher modes can be captured at these levels. It is also 

obvious that the present asymmetric model is conducive to torsional vibrations even 

under unidirectional excitation of our shaking table. To capture the torsional responses, 

at least two accelerometers were installed along the y-direction on the 1/F, 2/F, 3/F, 

9/F, 15/F and 21/F (see Figure 3.19). 

Another two accelerometers were installed in the y-direction on the 21/F and 2/F 

respectively (Figure 3.19) to measure the responses caused by torsion in the direction 

perpendicular to the ground shaking. In addition, one accelerometer was installed on 

the surface of the shaking table in the direction of shaking to record the actual input 

earthquake waves generated by the shaking table. 

The accelerometers used in this study are Brüel & Kjær high sensitivity 

products, including three types: 4370, 4371 and 4382. Accelerometer type 4370 has a 

maximum operational peak value of 2000g and a residual noise level of 0.02mg. Its 

working frequency ranges from 0.1 Hz to 4800 Hz. The maximum operational peak 
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values and residual noise levels of types 4371 and 4382 are 6000g, 2000g and 0.24mg, 

0.06mg respectively. Their working frequency ranges are 0.1-12600 Hz and 0.1-8400 

Hz. 

Both Brüel & Kjær amplifier type 2635 (single-channel) and NEXUS 

conditioning amplifiers (4-channel) were used to amplifier acceleration signals. The 

signals after amplification were connected to the 24-channel shielded connector block 

BNC-2115 from National Instruments before they were recorded in the computer. The 

accelerometers, amplifiers, laser and LED displacement transducers are all shown in 

Figure 3.20. 

The displacement transducers used include four ultra-accurate CCD laser 

displacement sensors of type KEYENCE LK 503, which has a measuring range of 

±100 mm and a resolution of 10 mμ , and two LED (Light-Emitting Diode) sensors of 

type SUNX LH-512, which has a measuring range of ±30 mm and a resolution of 

20 . However, it was found when the vibration level was small, noise level will be 

comparable with the signal for the LED measurements. For such cases, frequencies 

above a cutoff frequency of 15 Hz will be filtered out to identify the real signal, which 

will be explained again in Section 4.3.4. 

mμ

Due to the limitation of available transducers, displacements were not measured 

at every story. As shown in Figure 3.19, two laser sensors were installed on the roof 

level, one laser sensor on the surface of the shaking table, and one on the transfer 

plate at 2/F. In addition to the laser sensors, one LED transducer was installed on the 

transfer plate and one on the 3/F (see Figure 3.19). 
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Before used in experiment, all these transducers were calibrated to assure they 

were in good working conditions. In experiment, data were collected at a sampling 

rate of 500 Hz. The computer program LabVIEW v7.0 from National Instruments was 

used for signal acquisition and data presentation. 

 

3.5.2 Strain gauges 

 

Strain gauges of 5 mm length were attached to some selected structural elements 

of the model. As shown in Figure 3.21(b), strain data were collected by SCXI modules 

1000 with 4-slot SCXI-1314 terminal blocks from National Instruments and a 

maximum of 32 channels were available. 

Since it is impossible to measure strains for all of the structural elements of the 

model, only those elements which were assumed to be critical and susceptible to 

damages in earthquake were selected. In this study, the results of FEM analyses as 

discussed in Chapter 2 were taken as a reference for selecting the locations of strain 

gauges. According to FEM predictions, the largest stresses are likely to concentrate at 

the lower three stories (see Section 2.3.3.3), so 27 out of 32 strain gauges were 

attached on columns or walls in these three stories. 

But due to uncertainty involved in FEM analyses, the placements of strain 

gauges in this study were not totally relying on the FEM results. Within each story, the 

strain gauges were distributed as evenly as possible, as sketched in Figures 3.22-3.24. 

The other five strain gauges installed at the upper stories (i.e. at the 4th, 5th and 10th 
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stories) were shown in Figure 3.24. 

Among all of the 32 strain gauges, the strain gauges of No. 19, 20, 27 and 28 

were placed horizontally (refer to Figure 3.24) for the purpose of measuring the 

tension and compression caused by torsional deformation. All other strain gauges 

were attached vertically to record strains caused by flexural vibrations. 

 

 

3.6 Summary of the Model Design 

 

In this chapter, preparations for the shaking table test are described, including 

model design, fabrication and instrumentation. Constrained by similarity law, the 

model design was carried out, including determinations of the length scale, material 

strength and reinforcements. Then the 21-story model was fabricated story by story 

using micro-concrete, steel wires and steel meshes. After the model was completed 

and installed on the shaking table, cast-iron plates were installed onto the model to 

serve as the additional mass. Finally various transducers, including accelerometers, 

displacement transducers and strain gauges, were installed to make preparations for 

the shaking table test. The detailed procedure and results of the shaking table test will 

be introduced and discussed in the next chapter. 
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Table 3.1 Additional mass similarity law for shaking table tests derived from both the 
Buckingham Pi Theorem and governing equations. 

Item From the Buckingham Pi Theorem From governing equations 

Length lλ  lλ  

Density ρλ  3
m lρλ λ λ−=  

Elastic modulus Eλ  2
E m lλ λ λ−=  

Stress Eσλ λ=  Eσλ λ=  

Time 0.5
t lλ λ=  0.5

t lλ λ=  

Displacement x lλ λ=  x lλ λ=  

Velocity 0.5
v lλ λ=  0.5

v lλ λ=  

Acceleration 1aλ =  1aλ =  

Gravity 1gλ =  1gλ =  

Frequency 0.5
lωλ λ−=  0.5

lωλ λ−=  

Damping ratio 1ξλ =  1ξλ =  

Mass 2
m E lλ λ λ=  2

m E lλ λ λ=  

Additional mass 2
a E l pm mλ λ= − mm mm 2

a E l pm mλ λ= −  
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Table 3.2 Typical dimensions of the model and the prototype (length scale lλ = 1/25). 
Item Prototype   Model         
Height (m) 69.65 2.786 
Width along the x direction (m) 35.75 1.43 
Width along the y direction (m) 31.675 1.267 
Story height (m) 3 0.12 
200 mm shear wall (mm) 200 8 
300 mm shear wall (mm) 300 12 
Column diameter (mm) 1200 48 
Slab thickness (mm) 125 5 

Remark: 
x-y directions are given in Figure 3.2. 
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Table 3.3 Two extreme cases of additional mass added for purpose of estimating the 
target strength of micro-concrete used. 

Item None additional mass Maximum additional mass 

Length scale lλ  0.04 0.04 

Density ratio ρλ  1.0 4.975 

Young’s modulus ratio Eλ  0.04 0.199 

Young’s modulus  (GPa) cE 1.2 5.97 

Mass ratio mλ  0.64×10-4 3.18×10-4 

Model mass  (ton) mm 1.04 1.04 

Prototype mass  (ton) pm 16285.56 16285.56 

Additional mass  (ton) am 0 4.14 

 
 
 
 

Table 3.4 Test results of micro-concrete specimens. The mix proportion of cement, 
sand and water is measured by weight and Eλ  denotes the Young’s modulus ratio 

between the specimen and the prototype. 

Specimen 
set 

Cement Water Sand
Density
(kg/m3)

Cube strength 
(MPa) 

Young’s 
modulus 

(GPa) 
Eλ  

1 1 1.34 5.44 1806 6.18 7.851 0.262 
2 1 1.36 5.87 1780 6.66 7.333 0.244 
3 1 1.82 7.27 1766 3.51 3.159 0.105 
4 1 1.65 7.95 1718 3.83 5.294 0.176 
5 1 1.59 8.71 1776 3.21 3.943 0.131 
6 1 1.82 9.60 1747 2.67 3.622 0.121 
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Table 3.5 Strength of the micro-concrete used in construction of various stories. 

Story Density (kg/m3) Cube strength (MPa)
Young’s modulus 

(GPa) Eλ

1 1966.53 4.40 6.979 0.233
2 1976.90 4.05 5.085 0.169
3 1869.10 3.86 7.260 0.242
4 1860.53 3.14 5.608 0.187
5 1785.49 3.22 4.795 0.160
6 1775.52 2.72 - -

7 1896.30 3.45 5.399 0.180
8 2049.89 8.53 11.631 0.388
9 2067.37 8.77 9.196 0.307
10 2002.03 8.42 9.166 0.306
11 2031.95 7.42 10.776 0.359
14 1946.63 6.06 - -

15 1930.75 5.43 7.802 0.260
16 1917.35 5.48 8.045 0.268
17 1906.32 7.76 8.751 0.292
18 1926.17 4.02 5.285 0.176
19 1893.56 4.90 4.650 0.155
20 1891.52 4.56 4.600 0.153
21 1902.68 4.77 5.561 0.185
Average 1926.14 5.31 7.093 0.236
Standard 
deviation 

78.55 1.96 2.226 0.074

Remark:  
“-” denotes no cylinder specimen (used for measuring Young’s modulus) is made for that story. 
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Figure 3.1 Photograph of the completed 1:20 scaled model of a 42-story reinforced 
concrete residential building in Hong Kong (Lam et al., 2002). 
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Figure 3.2 Elevation view and story height of the model. Those typical floors which 
are not specified in the figure are all 120 mm height. 
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Figure 3.3 Cross section of the model between 1/F and 2/F. Circular columns not specified are all of 48 mm diameter and walls not specified are 

all of 12 mm thick. The small sketch shows the elevation view of the model, where TP means the transfer plate. 
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Figure 3.4 Cross section of the model at a typical floor. Walls not specified are all of 8 mm thick. The small sketch shows the elevation view of 
the model, where TP means the transfer plate. 
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strain gauges 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Photographs of finished micro-concrete specimens: (a) cubes of 70.7×70.7
×70.7mm; (b) cylinders of φ 100×200 mm (φ  means diameter) with strain gauges 

attached on their surface. 
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Figure 3.6 Strain-stress curves of the three specimens of set No. 4 in Table 3.4 and 
their corresponding Young’s modulus values (Ec). 
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Figure 3.7 Sketch showing the positions of the model and the base slab on the 3m×3m shaking table. The six circles on the base slab denote 
screw holes which are used to fix it onto the shaking table. 
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Figure 3.8 Construction of the base slab: (a) connection of reinforcements; (b) the 
base slab after concreting. 
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Figure 3.9 Various instruments used in the model construction: (a) concrete mixer; (b) 
micro-vibrator; (c) electrically-heated-wire cutter for cutting EPS; (d) EPS blocks 

used to build the inner formwork. 
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Figure 3.10 Construction procedure of the first story: (a) installation of stirrups; (b) 
installation of EPS blocks and beam reinforcements; (c) attachment of slab 

reinforcements and outer formwork; (d) casting of micro-concrete. 
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Figure 3.11 Construction of the transfer plate: (a) reinforcements of core walls and 
transfer beams as well as the timber and EPS foam formwork; (b) continuation of 

reinforcements of the upper walls above the transfer plate. 
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Figure 3.12 Construction of typical stories: (a) reinforcements of beams, walls and 
slab; (b) casting of concrete, and the two small photographs on the left show the 

micro-vibrator and concrete mixer used. 
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Figure 3.13 Demoulding of EPS formwork after the completion of concreting. 
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Figure 3.14 Different types of defects found in the model after demoulding. 
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Figure 3.15 Photographs of the completed model: (a) without additional mass; (b) with additional mass installed. 
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Figure 3.16 Plan view showing the locations of the additional mass (dashed rectangles) placed on 1/F. The small sketch shows the elevation 
view of the model, where TP means the transfer plate. 
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Figure 3.17 Plan view showing the locations of the additional mass (dashed rectangles) placed on 2/F. The small sketch shows the elevation 
view of the model, where TP means the transfer plate. 
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TP 

Figure 3.18 Plan view showing the locations of the additional mass (dashed rectangles) placed on a typical floor. The small sketch shows the 
elevation view of the model, where TP means the transfer plate. 
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 Figure 3.19 Sketch of the model and locations of accelerometers and displacement 
transducers, where “A” denotes accelerometers and “D” denotes displacement 

transducers. 
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Figure 3.20 Accelerometer, amplifiers and displacement transducers and their locations on the model. 
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Figure 3.21 Experimental set-ups and data loggers of (a) accelerometers and displacement transducers; (b) strain gauges. 
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Figure 3.22 Sketch showing the distribution of strain gauges between G/F and 1/F. The strain gauges were denoted by the black rectangles 
attached on the surfaces of walls or columns. The gray filled rectangles denoted the strain gauges located on the opposite sides. 
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Figure 3.23 Sketch showing the distribution of strain gauges between 1/F and 2/F. The strain gauges were denoted by the black rectangles 
attached on the surfaces of walls or columns. The gray filled rectangles denoted the strain gauges located on the opposite sides. 
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Figure 3.24 Sketch showing the distribution of strain gauges between 2/F and 3/F. The strain gauges were denoted by the black rectangles 
attached on the surfaces of walls or columns. The gray filled rectangles denoted the strain gauges located on the opposite sides. Those listed in 

the upper right-hand corner were five strain gauges located at the same locations of upper stories. 
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CHAPTER 4  SHAKING TABLE TESTS I: DAMAGE 

OBSERVATIONS 

 

4.1 Input Earthquake Waves 

 

4.1.1 Earthquake waves selection 

 

In the present study, the time history records of five major earthquakes were 

selected as the inputs in our shaking table tests, including (i) El Centro earthquake, 

Imperial Valley, California, May 19, 1940; (ii) Kobe earthquake, Jan. 16, 1995; (iii) 

Northridge earthquake, Jan. 17, 1994; (iv) Loma Prieta earthquake, Oct. 18, 1989; and 

(v) Chi-Chi earthquake, Sept. 20, 1999. These five earthquake records have been 

widely used in other shaking table studies in the past. Their moment magnitudes ( wM ) 

and peak ground accelerations (PGA) are compiled in Table 4.1. The digital wave data 

used here are obtained either from PEER (Pacific Earthquake Engineering Research 

Center) Strong Motion Database (http://peer.berkeley.edu/smcat/index.html) or from 

COSMOS (The Consortium of Organizations for Strong-Motion Observation Systems) 

Virtual Data Center (http://db.cosmos-eq.org/scripts/default.plx). 

Before used as the inputs of the shaking table, the time histories of the five 

earthquake records should be compressed with respect to time according to a time 

ratio tλ  to fulfill the requirement of similarity law, as discussed in Section 3.2.1. The 
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time ratio between the model and the prototype and is equal to 1/ 5t lλ λ= =  for 

the present model (refer to Table 3.1). That is to say, the durations of these seismic 

records should be compressed by five times. The upper two diagrams in Figure 4.1 

show the time history and Fourier spectrum of El Centro earthquake record after time 

compression. Note that in this figure the peak acceleration of the record has been 

scaled down to 0.1g for convenience of future manipulation. Similarly, the scaled time 

histories and Fourier spectra of the other four earthquakes after time compression are 

shown in Figures 4.2-4.4 respectively. 

From the frequency corresponding to the maximum amplitude of Fourier 

spectrum shown in Figures 4.2-4.4, we can get the predominant frequency of each 

earthquake record. The results are listed in the fifth column of Table 4.1. Note that the 

predominant frequencies after time compression increased by five times compared to 

the original values, 

The predominant frequencies of all of the earthquakes except Northridge 

earthquake are close to the first natural frequency of the model before damage (6.348 

Hz, as will be shown in Section 4.2.1). Thus, relatively large responses and damages 

may be expected under the excitations of these earthquakes. And this is why they were 

selected as the inputs here. Another reason why Chi-Chi earthquake was selected is 

that Taiwan is not far away from Hong Kong in the southeast of China and Hong 

Kong may be affected by similar earthquakes occurred in her neighboring regions. 

Northridge earthquake wave has a relatively higher predominant frequency (14.486 

Hz, see Table 4.1), and it was selected mainly for comparison purposes. 
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The peak accelerations of the five earthquake records were adjusted based on 

Chinese code for seismic design of buildings (GB 50011-2001, 2001), which adopts a 

three-level design philosophy as followings. When a building is subjected to 

frequently occurring earthquakes (with a return period of 50 years), it should not 

suffer or only slightly suffer damages, and remain elastic. When subjected to 

earthquakes of basic design intensity (with a return period of 475 years), the building 

may suffer damages, but they should be repairable. Under the attack of rare 

earthquakes (with a return period of about 2000 years), the building may suffer severe 

and irreparable damage, but collapse and loss of human lives should not occur. 

According to Appendix A in Chinese code for seismic design of buildings (pp. 

158, GB 50011-2001, 2001), Hong Kong has a basic design intensity of VII and a 

maximum ground shaking of 0.15g at rock site is expected at least once in every 475 

years. In this study the peak accelerations of frequent and rare earthquakes were set as 

0.05g and 0.30g respectively. Since there is no unique relation between seismic 

intensity and peak ground acceleration, in order to study seismic responses of the 

model under earthquakes of different peak accelerations, earthquakes of 0.10g and 

0.20g PGA were also used as inputs. 

Therefore, totally five levels of the five earthquakes mentioned previously were 

used as inputs in the shaking table tests in the present study, with increasing PGAs 

from 0.05g, 0.10g, 0.15g, 0.20g to 0.30g. For each PGA level, the five earthquakes 

were input one by one. Note that tests were not carried out for the 0.3g Northridge and 

Loma Prieta earthquakes (see Table 5.5), since after the shaking of 0.3g El Centro, 
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Kobe and Chi-Chi earthquakes, the model suffered very severe damages and was not 

suitable for further tests for safety reasons (refer to Section 4.4.4 for details). 

 

4.1.2 Earthquake waves after soil amplification 

 

Soil layers beneath building structures may have significant effects on both intensity 

and response spectrum of earthquake. For example, on September 16, 1994, an 

earthquake of magnitude 7.3 occurred 470 km east of Hong Kong, which caused notable 

vibrations of buildings in reclamation areas in Hong Kong, such as Central, Wanchai, 

Tsim Sha Tsui, corresponding to an intensity of V; whereas for most of buildings founded 

on rock site, the shaking was much smaller and the intensity was probably only 

comparable to those of ambient vibrations caused by wind and traffic (Chau, 2000). This 

case suggests that the soil amplification effects may be extremely severe in Hong Kong 

where many buildings are built on reclamation sites. In fact, similar phenomena are well 

known, and were also observed in the 1985 Mexico City earthquakes (Chau, 2000). 

The building studied here is situated at one of reclamation areas in Hong Kong, 

so the soil amplification effects are also taken into account in this study. The soil 

condition under the site of the selected building was collected from the Buildings 

Department of Hong Kong SAR Government. As shown by the soil profile in Figure 

4.6, there are nine different layers of soil beneath the building with a total depth of 50 

meters. The soil changes from fill materials at the top to marine deposits in the middle, 

and to completely decomposed granite at the bottom. 
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The computer program SHAKE91 (Schnabel et al., 1972) was used in this study 

to estimate the soil amplification effects, which considers the problem of vertical 

propagation of shear waves through a system of multiple horizontal soil layers from 

underlying bed rock. Each layer is assumed to be homogeneous, visco-elastic and 

extending to infinity in the horizontal direction. The vertical propagation of shear 

waves through such a system will cause only horizontal displacements , which 

satisfy the following wave equation: 

( , )u x t

2 2
*

2

u G
t x

ρ 2

u∂ ∂
=

∂ ∂
                          (4.1) 

where * (1 2 )G G i η= + ,  is the shear modulus, G η  is the damping ratio, ρ  is the 

density of each soil layer, and 1i = − . A harmonic solution can be found and the 

unknown constants of the solution are determined through the compatibility boundary 

conditions at the interfaces between neighboring soil layers plus the free boundary 

condition at the ground surface. The detailed solution procedure can be referred to 

Schnabel et al. (1972) and Chau (2000). 

In the above analysis, the dynamic shear modulus of soil, or equivalently the shear 

wave speed in soil, has to be known. Since there is no systematic field or experimental 

effort in establishing a data base for Hong Kong soils, two approximate formulae from 

other regions of the world were used to estimate the shear wave speeds of soil in this 

study. The first one is the empirical formula suggested by State Seismological Bureau 

(SSB) of China, which estimates the shear wave speed of a soil layer at a depth of h 

below the ground as (Chau, 2000): 

v ahs
b=                               (4.2) 
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where h is measured in meter and is the depth between the ground surface and the centre 

line of the soil layer as shown in Figure 4.6. The parameters a and b are empirical 

constants depending on types of soils and their values can be determined according to 

Table 1 in Appendices. The second empirical formula is proposed by Ohta and Goto of 

Japan in 1978 (Chau, 2000): 

0.312
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        (4.3) 

where h is the depth of soil layer in meter and k is a constant depending on soil types. 

For the whole multi-layered soil system, an equivalent shear wave speed seV  can be 

estimated as: 
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∑
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where  and iH ,s iV  are the thickness and shear wave speed of the ith soil layer 

respectively, and N is the total number of soil layers above the bed rock. 

Both of these two formulae were applied to estimate the shear wave speed of the soil 

profile given in Figure 4.6. The values of parameters a, b and k used as well as the 

resulting shear wave speeds of each soil layer obtained are summarized in Table 4.2. As 

shown in the table, the equivalent shear wave speeds estimated through the two 

approaches are close to each other (236.99 m/s from SSB’s formula and 248.43 m/s from 

Ohta and Goto’s formula). According to Chinese code for seismic design of buildings 
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(GB 50011-2001, 2001), the current soil profile belongs to Soil Type II (soil of 3-50 m 

thick with an equivalent shear wave speed between 140 and 250 m/s). In this study, the 

shear wave speeds estimated from SSB’s formula were used, since Hong Kong is a part of 

China and it is assumed that the formula proposed by SSB of China is more appropriate 

for Hong Kong. 

With the shear wave speeds estimated in Table 4.2, the five earthquake records 

described in Section 4.1.1 can be used as input to calculate the soil site response at the 

ground level using SHAKE91. The resulting time histories and their Fourier spectra 

are shown in the lower two diagrams in Figures 4.1-4.5. Again the peak accelerations 

of these time histories have been scaled to 0.10g. Compared to the rock site time 

histories and Fourier spectra (the upper two diagrams in Figures 4.1-4.5), the time 

durations of these soil site responses increase whereas the predominant frequencies 

reduce significantly. 

For simplicity, earthquake records before and after soil amplifications sometimes 

are referred as earthquakes at rock and soil sites respectively in this thesis. The 

predominant frequencies and soil amplification factors of PGA of the five earthquakes 

after soil amplification are summarized in the sixth and seventh columns of Table 4.1 

respectively. The soil amplification factors range from 1.016 for El Centro earthquake 

to 1.368 for Kobe earthquake. 

The soil amplification factors obtained here are comparable to results from other 

studies at similar regions in Hong Kong. For example, Chau (2000) analyzed the soil 

amplification at twelve locations in Hong Kong, among them the Central and 
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Causeway Bay site are close to the current site. The soil profile at Central is of 33.1 m 

depth and has an equivalent shear wave speed of 247.48 m/s. The resulting soil 

amplification factor for rare (with a return period of 2000 years) near and far field 

earthquakes are 1.47 and 1.85 respectively. The soil profile at Causeway Bay is of 

36.75 m thick with an equivalent shear wave speed of 270.72 m/s, and the soil 

amplification factor for rare near and far field earthquakes are 1.34 and 1.58 

respectively. The soil amplification factors obtained in this study are slightly smaller 

and this may be due to the firmer soil beneath the current site. As shown in the soil 

profile in Figure 4.6, there is only one layer of sandy clay of 2 m thick within the 

whole soil profile and all of the other layers consist of either sand or gravel. 

To summarize, our shaking table tests were conducted in the following schedule. 

Totally 28 sets of tests were carried out, with the input peak accelerations increasing 

from 0.05g, 0.10g, 0.15g, 0.20g to 0.30g (refer to Table 5.5). For each set of tests, the 

time histories of one earthquake before and after soil amplifications were input in 

sequence. After the input of each set of tests, a modal test was performed to monitor 

the change of natural frequencies due to potential damages (refer to Section 4.2.1).  

Note that in Table 5.5 the 0.3g PGA El Centro and Kobe earthquakes at both rock 

and soil sites were all input twice (i.e. test sets No. 21, 22, 26 and 27). This is because 

during the first time inputs of these earthquakes, strain overflow occurred. After 

enlarging the amplification factors of strain gauges, these earthquake inputs were 

repeated. The test sets No. 23-25 were conducted for recalibration of strain signals. 
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4.2 Dynamic Characteristics of the Model 

 

4.2.1 Natural frequencies 

 

Measurements of structural characteristics during experiments provide a unique 

way to monitor structural damages (Williams and Sexsmith, 1995; Ndambi et al., 

2000). During our shaking table tests, modal testing was used after each shaking table 

experiment to evaluate the potential damage in the model. 

Excitation signals used to determine the modal properties can be input as 

periodic, random and transient (Ewins, 2000). Among them, sine wave sweep testing, 

white noise testing and hammer blow testing are three widely used methods in 

practice (Ndambi et al., 2000; Reynolds and Pavic, 2000). Relatively longer time is 

needed for the former two test methods (Ewins, 2000). In addition, resonant responses 

during these tests may cause undesirable damage to the model. Compared to the first 

two methods, the hammer blow testing is relatively simple and quick, and damages 

are less likely to be induced (Ewins, 2000; Reynolds and Pavic, 2000). Therefore, the 

hammer blow testing was adopted for modal tests in this study. 

As shown in Figure 4.7(a), hammer blow tests were applied at three different 

points (a, b and c) at the roof of the model to measure both the translational natural 

frequencies in the x- and y- directions and the torsional frequency. The points a and b 

were approximately aligned to the center of mass of the floor slab, and the point c was 
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selected in order to induce larger torsional vibrations. After each pair of earthquake 

shakings (including inputs of one earthquake on rock and soil sites), three hammer 

blow tests were applied at points a, b and c. 

Figure 4.7(b) shows an example photograph of hammer blow at point a along the 

x direction. To increase the frequency resolution, responses were recorded for about 

60 seconds when hammer blows were applied every 2-3 seconds. Data was collected 

at a sampling rate of 500 Hz and the frequency resolution was about 0.015 Hz. 

The three accelerometers installed at the roof [refer to Figure 3.19 and 4.7(a)] 

provide data for modal analysis. Among them, the accelerometers A1 and A2 are in the 

shaking direction whereas A13 is installed perpendicular to the shaking direction. 

Similar to the method adopted by Li et al. (2006), the Fourier spectra of recorded data 

are utilized to determine the first six natural frequencies of the model. More 

specifically, the first peak in the Fourier spectrum of A1 [Figure 4.8(a)] when hammer 

impacts at point a was deemed as the first natural frequency in the x direction ( 1f ). 

Similarly, the first peak in the spectrum of A13 [Figure 4.8(b)] when hammer impacts 

at point b was taken as the second natural frequency in the y direction ( 2f ). The first 

peak in the spectrum of A1-A2 [Figure 4.8(c)] when hammer impacts at point c was 

taken as the third natural frequency which has vibrations in the θ  direction (i.e. 

torsional frequency, 3f ). Note that here the spectrum of A1 minus A2 instead of a 

single acceleration was used in order to detect torsional vibrations. The second peaks 

in Figures 4.8(a-c) correspond to the 4th-6th mode frequencies of the model ( 4f - 6f ) 

which are all between 20 and 30 Hz. 
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4.2.2 Damping ratios 

 

Damping ratio was also measured for the model in this study. But since the basic 

energy-loss mechanisms in most systems are seldom fully understood and structural 

damping is very sensitive and difficult to be measured (Clough and Penzien, 1993; 

Ndambi et al., 2000), only the damping ratio of the first mode in the x direction were 

estimated in the present study. More specifically, free vibration test was performed by 

first pushing the model in the x direction by hand and then releasing it. The damping 

ratio can be estimated from the logarithmic decrement of the free vibrations (Clough 

and Penzien, 1993). 

Figure 4.9 shows two examples of free vibration tests before and after all the 

shaking tests. From this figure, it is seen that the free decay vibration before damage 

[Figure 4.9(a)] is much smoother and more regular than the curve after repeated 

shaking experiments [Figure 4.9(b)]. This may be due to the fact that the model had 

suffered severe damages and nonlinear behaviors become more dominant. 

Exponential curves were fitted to the free decay vibrations as shown in Figure 

4.9. Assume the curve has a equation of bty ae−= , where y and t are the displacement 

and time, and a and b are two constants, and we have (Clough and Penzien, 1993) 

D bξω =                                 (4.5) 

where 2
1 1Dω ω ξ≡ −  is nearly equal to the first circular frequency 1ω  of the 

structure for low damping values ( 20%ξ < ), which are typical for most practical 
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structures (Clough and Penzien, 1993). Thus the damping ratio can be estimated as: 

1 12
b b

f
ξ

ω π
≈ =                             (4.6) 

where 1f  is the first natural frequency of the model. 

As shown in Figure 4.9, the damping ratios before and after all the shaking tests 

are estimated to be 1.63% and 4.91% respectively. This was consistent with the fact 

that damping is expected to increase with damages (Williams and Sexsmith, 1995). 

Similar results have also been observed in previous shaking table tests, such as that by 

Lee and Woo (2002). 

 

 

4.3 Maximum Dynamic Responses 

 

4.3.1 Actual inputs generated by the shaking table 

 

As described in Section 4.1, the target input waves include five earthquake 

records of five different levels of peak accelerations (i.e. 0.05g, 0.1g, 0.15g, 0.2g and 

0.3g). However, the response of the model (of about 7.5 tons) can interfere with target 

motion of the shaking table, so that the excitation generated (i.e. the actual input to the 

model) may not be exactly the same as the target input, especially when the input 

PGA was small. Therefore, an accelerometer has been installed on the shaking table in 

the shaking direction to record the actual shaking generated (refer to Figure 3.19). 

For example, the first three diagrams in Figure 4.10 shows the Fourier spectra of 

 126



actual inputs recorded on the shaking table for Chi-Chi earthquake at rock site. The 

recorded peak accelerations were actually 0.035g, 0.1g and 0.22g instead of the target 

PGAs of 0.05g, 0.15g and 0.3g. One probable reason may be that the feedback loop 

for short-duration-shaking with high frequency (i.e. rapid reversal of shaking direction 

in short time) is not easy to control. 

In the frequency domain, the Fourier spectrum of the 0.05g PGA input shown in 

Figure 4.10(a) is completely different from the target spectrum [Figure 4.10(d)]. For 

the 0.05g PGA input, high-frequency noises appear to be dominant. But as the input 

PGA increased, the control of the shaking table becomes better and the high frequency 

noises become less dominant. For example, the Fourier spectrum of the 0.3g PGA 

input shown in Figure 4.10(c) resembles the target spectrum quite well. 

Similarly, Figure 4.11 shows the actual Fourier spectra as well as the target one 

for 0.05g, 0.15g and 0.3g Chi-Chi earthquake after soil amplification. It can be seen 

the Fourier spectra of achieved signals are much close to the target spectrum. And the 

actual recorded peak accelerations were 0.067g, 0.16g and 0.32g respectively, 

equivalent to 134%, 107% and 107% of the target ones. This result reveals that the 

generated signals by the shaking table for earthquakes after soil amplification were 

closer to the target signals than those without soil amplification. Again it may be due 

to the fact that higher frequency contents were filtered out by the soil layers (refer to 

Figures 4.1-4.5). 

In the following analyses, all of the tests of 0.05g target PGA will not be 

included, as the generated signals were distorted significantly from the target inputs. 
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In fact, the 0.05g PGA inputs do not induce any measurable or observable damages to 

the model. For example, a typical overall drift ratio of the model is about 1/2311. The 

model, therefore, can be regarded as elastic and undamaged. 

 

4.3.2 Maximum strains 

 

The maximum values of the 32 strain gauge records are summarized in Table 5.5 

for various inputs. The maximum strains always occurred at columns ( 2ε  and 25ε ) or 

walls ( 11ε ) at the first story (see Figure 3.22). Numerically the maximum strains 

recorded for 0.1g, 0.15g, 0.2g and 0.3g PGA inputs are 452, 1147, 2743 and 5152 με  

respectively (note that με  means 10-6 strain). As an example of typical test record, 

the time histories of all the 32 strain gauges as well as all the displacements and 

accelerations recorded during the soil site input of 0.2g Kobe earthquake (see the test 

set No. 17 in Table 5.5) are shown in Figures A-1 to A-7 in the Appendices. In this 

section, the maximum responses of the model are investigated.  

To compare the strain levels caused by different earthquakes, the maximum 

strains listed in Table 5.5 are plotted with the actual input PGAs in Figure 4.12. Each 

curve in the figure represents an earthquake, and rock and soil site records are plotted 

separately in Figures 4.12(a) and (b). It is clear that the maximum strain increases 

with the input PGA, but the increase rate is not a constant. More specifically, the 

slopes of strain increment of the curves of El Centro, Kobe and Chi-Chi earthquakes 

at rock site decrease for PGA>0.15g [Figure 4.12(a)]. This is due to the fact that the 
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natural frequency of the model decreases significantly after the 0.2g Chi-Chi 

earthquake experiment (see Table 5.2) and becomes farther from the predominant 

frequencies of these three input earthquakes at rock site (refer to the Fourier spectra 

shown in Figures 4.1, 4.2 and 4.5). 

On the contrary, the slopes of strain increment for El Centro, Kobe and Chi-Chi 

earthquakes after soil amplification increase with the input PGA, as shown in Figure 

4.12(b). This is also due to the reduction of natural frequency of the model, which 

becomes closer to the predominant frequencies of soil site input of these three 

earthquakes (refer to Figures 4.1, 4.2 and 4.5). 

For Northridge and Loma Prieta earthquakes, since the natural frequency of the 

model did not change significantly after the 0.2g PGA earthquake inputs and 

experiments for 0.3g PGA inputs were not conducted (see Table 5.5), the rate of strain 

increment of these two earthquakes on either rock or soil site remains almost constant 

[Figures 4.12(a) and (b)]. 

The predominant frequency of both soil and rock site shaking of Northridge 

earthquake is far away from the first natural frequency of the model, and thus, as 

shown in Figure 4.12, the strain value is relatively small. However, Loma Prieta 

earthquake after soil amplification causes the largest strains among all the earthquakes 

of similar PGAs [Figure 4.12(b)] because of the rich spectrum contents around the 

natural frequency of the model (see Figure 4.3). 

 

4.3.3 Maximum accelerations at the roof 
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As described in Section 3.5.1, fourteen accelerometers were installed at different 

stories of the model to measure the acceleration responses. The test results show that 

the roof experiences the maximum accelerations for all earthquake inputs. Figure 4.13 

shows that plots of maximum roof acceleration are similar to those for maximum 

strain shown in Figure 4.12. Therefore, there is a good correlation between the strain 

and acceleration data. 

An acceleration amplification factor Aβ  is introduced to quantify the response 

of the model relative to the ground motion as: 

r
A

g

A
A

β =                             (4.7) 

where Ar and Ag are the peak values of the roof acceleration and the input acceleration 

respectively. This amplification factor for each experiment is summarized in Table 5.5 

and is also plotted in Figure 4.14. 

The amplification factors of El Centro, Kobe and Chi-Chi earthquakes decrease 

significantly for PGA>0.15g for rock site inputs [Figure 4.14(a)], but increase with 

the input PGA for soil site inputs [Figure 4.14(b)]. Similar to plots of maximum strain 

shown in Figure 4.12, this is probably because of the deterioration of the natural 

frequency (i.e. yielding) of the model, which becomes farther from the predominant 

frequencies of rock site inputs but closer to the frequencies of soil site inputs of these 

three earthquakes. 

 

4.3.4 Maximum rotations at the roof 
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To measure rotation, two displacement transducers were installed at the 2/F (the 

transfer plate level) and 21/F (the roof level) respectively (see Figure 3.19). If we 

assume the floor slab is rigid within its plan, the rotation angle of the floor slab can be 

easily computed as the displacement difference between the two transducers divided 

by the distance between them (equal to 1145 mm). 

We find that the rotation at the roof level can easily be identified from data 

recorded by the two laser transducers, whereas the rotation at the transfer plate level 

can hardly be recognized from data recorded by one laser and one LED transducers 

installed at 2/F. This may be due to two reasons. First, the torsional response at 2/F is 

much smaller than that at the roof, which makes it harder to be measured; and second, 

the accuracy of the LED transducer installed at 2/F is lower than that of the laser 

transducer as described in Section 3.5.1. Thus, only the recognized rotations at the 

roof level are discussed below. 

The maximum rotations (θ ) at the roof for various earthquake inputs are 

summarized in Table 5.5 and plotted in Figure 4.15. From the table, the maximum 

rotation angle occurred during all the tests is 0.1°, which corresponds to a maximum 

difference of about 2 mm between displacements at the points A1 and A2 in Figure 

4.7(a). Figure 4.15 shows that the roof rotation angle increases with the input PGA. 

This is because the reduction of the torsional natural frequency of the model ( 3f  in 

Table 5.2) makes it closer to the predominant frequencies of input earthquakes. Again, 

Northridge earthquake at rock site induces the minimum rotation, because of the 
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difference between its predominant frequency and that of the model. 

To summarize, the maximum responses (including strain, acceleration and 

rotation) of the model increase as the input PGA increases, but the rate of increase is 

not linear. The nonlinear rate of increases reflects the amount of damage the model 

suffered. The responses of the model are clearly controlled by the proximity of the 

natural frequency of the model to that of the input earthquake. 

As shown by Wen et al. (2002), site effect can be detrimental to seismic 

vulnerability of high-rise buildings. Our experimental results also show that the model 

responses differ significantly for shaking without and with soil amplification. In 

general, soil both amplifies the magnitude and changes the frequency content of an 

earthquake shaking. For the present soil condition, the largest amplification is 

observed for the Loma Prieta earthquake input. Similar amplifications have also been 

observed in past earthquakes, such as the 1906 San Francisco, the 1985 Mexico City, 

the 1967 Caracas, the 1976 Tangshan, the 1989 Loma Prieta, the 1994 Northridge and 

the 1995 Kobe earthquakes (Wen et al., 2002). A local example in Hong Kong is the 

earthquake occurred on Sept. 16, 1994 in the South China Sea, which caused notable 

vibrations to buildings in reclamation areas of Hong Kong, but buildings founded on 

rock stratum suffered almost no vibrations (Chau, 2000). 

In this section, it has been shown that the responses of the model are influenced 

by its damaged state, since damage may change the modal characteristics of the model. 

In the next section, the damages of the model will be assessed through visual 

inspections. Quantitative damage analysis using seismic damage indices will be given 
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in the next chapter. 

 

 

4.4 Crack Patterns 

 

After the model is subjected to the input of each earthquake shaking (including 

both rock and soil sites), visual inspection was conducted to identify observable 

cracks on surfaces of structural elements. Lamps and magnifying glasses were used to 

identify those fine cracks. Note that only cracks on external surfaces of structural 

elements can be observed in the tests, because most of internal spaces in the model 

were filled with cast-iron plates (the additional mass) [see Figure 3.15(b)]. 

In our tests, no visible crack was observed on the external surface of the model 

before the input of the second time 0.3g El Centro earthquake. However, modal tests 

did reveal that the first natural frequency of the model had already dropped to 74% of 

its original value before the input of that earthquake (refer to Table 5.2). Although no 

visible crack was observed, stiffness degradation of the model is evident. The value of 

recorded strain also provides additional evidence of cracking in micro-concrete. 

 

4.4.1 Internal cracking interpreted from strain signals 

 

The strain gauges installed on surfaces of structural elements experienced tension 

and compression during vibrations, and abnormal change of strain signals can be used 
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as an indicator of local damage. For example, abnormal small tension was observed at 

some locations during the tests. Figure 4.16 shows the variations of the strain gauge 

13ε  during the inputs of 0.05g, 0.2g and 0.3g PGA El Centro earthquake at soil site. 

In the figure, positive strains correspond to tension and negative strains correspond to 

compression. As sketched in Figure 4.16, 13ε  was located at the upper end of a 

column situated between 1/F and 2/F (i.e. beneath the transfer plate). 

For PGA=0.05g, the strain gauge experienced both tension and compression 

[Figure 4.16(a)]. However, compared to the compression signals, much smaller 

tension was observed during the 0.2g and 0.3g inputs [Figures 4.16(b) and (c)]. This 

implies that cracks might have already appeared above the column or the local 

reinforcements have begun to loss the force transfer, which reduced the tension of the 

strain gauge drastically but had little influence on the compression. These damages 

may either be too small to be visible or exist in the interior of the model. In fact, 

cracks as sketched in the lower photo of Figure 4.16 did occur at the transfer plate 

above the column after the excitation of 0.3g Kobe earthquake at soil site. 

This phenomenon of abnormal small tension was also observed for strain gauges 

at other locations, including 1ε  at a column between G/F and 1/F and 22ε  at a core 

wall just above the transfer plate (see Figures 3.22 and 3.24). All these phenomena 

suggest the existence of local damages. 

Out-of-phase vibrations between two neighboring strain gauges also suggest 

local cracking. For example, 21ε  and 22ε  are two neighboring strain gauges as 

shown in Figures 4.17 and 3.24, and their vibrations during the inputs of 0.05g, 0.2g 
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and 0.3g PGA El Centro earthquake after soil amplification are plotted in Figure 4.17. 

For 0.05g and 0.2g PGA inputs [Figures 4.17(a) and (b)], the two strain gauges 

are in phase (i.e. compressive and tensile simultaneously). This is expected since both 

strain gauges are situated on one side to the center of stiffness of the model and the 

forces they suffered should be always in the same direction due to the constraint of 

floor slabs. However, during the input of 0.3g El Centro earthquake, the variations of 

21ε  and 22ε  become out of phase as shown in Figure 4.17(c). That is, one strain 

gauge was in tension, while the other was in compression. This may imply the 

existence of cracks between these two strain gauges. Actually, the strain gauge 21ε  

did experience a permanent deformation of about 250 με  during this test [Figure 

4.17(c)]. 

Figure 4.18 shows that the strain gauges on a same core wall may also be out of 

phase. As shown, 3ε  and 22ε  are two strain gauges located on the opposite sides of 

one core wall at different heights, with 3ε  situated just above the ground level and 

22ε  above the transfer plate. If the floor slabs were infinitely rigid, the two sides of 

the core wall should suffer tension or compression at the same time (i.e. the two strain 

gauges should be in phase), since the entire core wall situated on one side to the center 

of stiffness of the structure. However, the recorded data reveal that they were out of 

phase for all of the tests conducted. Figures 4.18(a) and (b) show two examples of the 

out-of-phase variations of the two strain gauges during the 0.05g and 0.3g PGA 

Chi-Chi earthquake inputs. This suggests that the core wall has undergone local 

bending and the constraint from floor slabs was not strong enough. In other words, the 
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rigid slab assumption appears to be invalid for the present model. Stress outputs in our 

SAP2000 analysis show the two strain gauges 3ε  and 22ε  are in phase at a same 

time, i.e. they suffered tension and compression at the same time. In the FEM analysis, 

rigid diaphragm has been assumed. 

Therefore, rigid slab assumption, which is commonly adopted in FEM program, 

may be questionable in the present case. Actually as Garcia and Sozen (2004) 

discussed, the infinitely rigid diaphragm approach may be reasonable only for those 

reinforced concrete structures with floor plans approximately square or rectangular of 

long to short side ratio less than 3 and with no large openings. For the present 

L-shaped model, it seems that the rigid slab assumption can not accurately describe, at 

least, part of its actual behaviors. 

The small value tensile 22ε  shown in Figure 4.18(b) again suggests that 

horizontal crack might have occurred above the strain gauge. As sketched in the figure, 

horizontal cracks were actually found on the core wall and tension from the upper 

structure can not be transferred to the lower part. The details of these cracks will be 

described in the following sections. 

 

4.4.2 Cracks caused by 0.3g El Centro earthquake 

 

Although both modal properties and strain signals suggest the model suffered 

damage, visible cracks were actually observed for the first time after the input of 

0.30g PGA El Centro earthquake at soil site. In fact, similar problem about visual 
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inspection of damage has also been found in shaking table tests by others. For 

example, Lee and Woo (2002) tested a 1:5 scale model of a 3-story non-seismic- 

designed reinforced concrete frame. The model did not show severe damage even 

after the test of 0.4g PGA input, although the increases of natural period and damping 

of the model were apparent (Lee and Woo, 2002). Skjaerbaek et al. (1998) conducted 

shaking table tests on three 1:5 scale models of a 6-story reinforced concrete frame. 

For one of the models, the visual inspection only indicated light damage even though 

the structure was considered to be in a moderate damage state through other damage 

estimation methods. The authors argued that this shows the limited reliability of visual 

inspection methods even under laboratory conditions (Skjaerbaek et al., 1998). 

As shown in Figures 4.19-4.20, cracks induced by the 0.3g El Centro earthquake 

at soil site (denoted by “E0.3g” in the photographs) mainly concentrate at the two 

diagonal corners (i.e. Corners I and III) of the transfer plate. Most of the cracks are 

close to the upper edge of the transfer plate and were apparently caused by the pull 

from the upper structure. In addition to these horizontal cracks, two fine vertical 

cracks were also found near Corner I [Figure 4.21(b)]. 

The other two corners of the transfer plate suffered much less damage. The crack 

found at Corner II as shown in Figure 4.21(a) is finer than those at Corners I and III, 

and no crack was observed at Corner IV. This diagonal distribution of cracks on the 

transfer plate is clearly related to the asymmetric plan of the model, and more even 

distribution of damage would be expected if the model was symmetric. In fact, a 

diagonal rocking of the upper model above transfer level was observed during our 
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tests, which is responsible for the severe cracking at Corners I and III and will be 

discussed in details later. 

Besides the cracks on the transfer plate, two fine horizontal cracks were also 

found at the 10/F and 11/F as showed in Figures 4.22(a) and (b). This kind of crack 

may be induced by higher mode vibrations of the model. Figure 4.23(a) sketches the 

second mode deformation shape of the model observed for experiments with PGA 

greater than 0.2g and the location of 10/F. Note that the two stories below the transfer 

plate experience much smaller vibrations than the upper stories [see Figure 4.23(a)]. 

This phenomenon has also been found in the FEM analyses discussed in Section 

2.3.3.2 (refer to Figure 2.7). 

 

4.4.3 Cracks caused by 0.3g Kobe earthquake 

 

Figure 4.24 shows the cracks caused by the 0.3g Kobe earthquake (represented 

by “K0.3g” in the photographs) can be divided into two categories. The first category 

of crack is the development of existing cracks, that is, lengthening and widening of 

the cracks caused by the previous 0.3g El Centro earthquake. As shown in Figure 

4.24(a), the cracks at Corner I of the transfer plate became longer and wider and 

spalling of concrete was also found near the corner. Figures 4.25(a) and (b) shows the 

lengths of cracks at Corner III also increase and the cracks on the two sides become 

connected throughout the corner. 

The second category of crack involves several newly developed cracks. Figure 
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4.24(b) shows a new horizontal crack occurred at Corner II. New cracks were also 

found at the ends of lintel beams connecting the two core walls at the 10/F and 11/F, 

as shown in Figure 4.26. From the two enlarged photographs in the figure, fine 

vertical cracks occurred at the ends of beams and almost cut through the beam depth. 

This kind of crack on the lintel beams between core walls has also been reported 

in the shaking table test conducted by Lam et al. (2002). Actually, the two core walls 

in our model are more like a coupled shear wall system in the direction of shaking. As 

sketched in Figure 4.23(b), when the two walls deflect under earthquake excitation, 

the ends of the lintel beams are forced to rotate and deform vertically. This bending in 

double curvature of these beams helps to resist the free bending of the walls (Smith 

and Coull, 1991). This kind of bending of beams was observed in our tests when the 

input PGA was larger than 0.3g. The resulting shear forces, which reach the largest 

value at the ends of beams, induced the cracks on the lintel beams shown in Figure 

4.26. A large number of similar cracks were found during the shaking of the following 

0.3g Chi-Chi earthquake which will be summarized next 

 

4.4.4 Cracks caused by 0.3g Chi-Chi earthquake 

 

The 0.3g Chi-Chi earthquake at soil site is the last experiment being conducted 

(see Table 5.5), which caused the severest damages to the model. In this test, Corner I 

of the transfer plate was torn open by the uplift of the upper structure above the 

transfer plate and the whole process was captured by a video camera. From the 
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captured video, the opening reached a maximum width of about 2.9 mm as shown in 

Figure 4.27(a). After the uplift, the upper structure crashed down [Figure 4.27(b)] 

producing a thundering sound and caused concrete spalling and severe damages to the 

transfer plate as well as walls above. The rocking motion of the upper structure is 

apparent. Figure 4.28 shows the photographs and sketches of three severe damaged 

walls, two of them situated above the transfer plate and one situated between 3/F and 

4/F. In these walls, concrete spalled and reinforcements were exposed and buckled. 

Interestingly, the cracks in these three walls were almost aligned on a tilted straight 

line at an angle of about 18° with the horizontal direction as shown in Figure 4.28. 

Besides the severe damage at Corner I, cracks developed almost throughout the 

two lateral sides (perpendicular to the direction of shaking) of the transfer plate as 

shown in Figure 4.29. Horizontal cracks spread close to the upper edge of both the 

A-A′ and B-B′ sides, and vertical and diagonal cracks also appeared on the B-B′ side. 

In the tests, the transfer plate suffered large tension due to the rocking of the upper 

stories. The cracks on the transfer plate may be due to its inadequate detailing for 

seismic load. Transfer systems normally introduce abrupt changes of stiffness to 

structures, which is not recommended from the aspect of seismic design. But 

traditionally seismic load is not considered in the design of buildings in Hong Kong. 

As a whole, the story just above the transfer plate suffered the severest damages. 

Besides the two broken walls shown in Figure 4.28, the core walls at this story were 

also damaged. As sketched in Figure 4.30, cracks occurred almost throughout the two 

rectangular core walls (C1 and C2) and exposed reinforcements were also observed. 
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The severe damages of these core walls may be related to the two broken walls at this 

story (as shown in Figure 4.28) as well as the damaged transfer plate on this side of 

the model (Figure 4.29). All of these made the two core walls suffered very large 

tensile and compressive forces from the upper structure due to rocking motions. The 

damage of the other core wall C3 was also shown in Figure 4.30. Different from the 

cracks on C1 and C2, here cracks only concentrated at one corner. All of the cracks at 

the story above the transfer plate are summarized by the sketches given in Figure 4.31. 

Three horizontal cracks (①-③) were found on the floor slab of 2/F, and these cracks 

may be caused by the pull from the upper walls. 

Summarizing the above observations, most of the severe cracks concentrated at 

the two diagonal corners (i.e. Corners I and III) of the model. This can be explained 

by a diagonal rocking of the upper structure above the transfer plate. In fact, this 

asymmetric rocking can be seen visually from a distance in our tests and is sketched 

in Figure 4.32. Probably due to the asymmetric layout of the present model, rocking 

developed at an angle to the shaking direction, resulting in the uneven distribution of 

cracks. This asymmetric failure pattern and rocking are observed for the first time in 

this study. To the best of our knowledge, this rocking mechanism has never been 

reported in other shaking table tests as well as in field investigations after earthquake. 

Besides the cracks on walls, a large amount of cracks were also observed at the 

ends of lintel beams at the upper stories. Figure 4.33 displays two different patterns of 

these cracks. The first kind is a single crack cutting through the beam depth, such as 

those observed at the 12/F, and the second kind involves several separate cracks which 
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are not connected with each other, such as those observed at the 11/F. The cause of 

these cracks on the lintel beams is the same as that discussed in Section 4.4.3, but the 

amount of cracks caused by the 0.3g Chi-Chi earthquake was much more than that by 

the 0.3g Kobe earthquake. As shown by sketches in Figures 4.34-4.37, this kind of 

cracks were found at beams almost from 3/F to 20/F on both the front (Figure 4.34) 

and rear (Figure 4.36) sides of the model. 

To summarize, all of the cracks on the external surfaces of the model occurred 

during the inputs of the 0.3g El Centro, Kobe and Chi-Chi earthquakes are sketched 

using different colors in side views in Figures 4.34-4.37. As a whole, cracks induced 

by the 0.3g El Centro and Kobe earthquakes concentrated mainly on the transfer plate, 

whereas the 0.3g Chi-Chi earthquake not only caused severe damages to the transfer 

plate and the two stories above, but also induced cracks almost all over the model. 

After the shaking of 0.3g Chi-Chi earthquake, the damage of the model was 

considered to be irrepairable, and the model is close to the verge of total collapse and 

is therefore judged not suitable for any further test. 

According to the observations in our tests, transfer plate and stories above are 

most vulnerable and susceptible to severe seismic damage under the attack of 

earthquakes. Transfer system normally introduces an abrupt change of stiffness in the 

transfer zone. Asymmetric building layout may induce asymmetric rocking, which 

may cause especially severe damage to corner elements. Therefore, both abrupt 

change of stiffness and asymmetric building plan should be avoided as far as possible. 

This chapter described the damage observations for the model during various 
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shaking table tests. However, it is still unknown how severe these damages are. To 

quantitatively evaluate the damages of the model, various seismic damage indices will 

be used. The detailed damage evaluations will be discussed in the next chapter. 
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Table 4.1 Earthquake records used in the shaking table tests. 
Predominant frequency 

Earthquake Date wM  PGA 
(g) Before soil 

amplification
After soil 

amplification 

Soil 
amplification 

factor 

El Centro 1940-05-19 6.9 0.357 7.305 1.374 1.016 
Kobe 1995-01-16 6.9 0.821 7.243 2.997 1.368 
Northridge 1994-01-17 6.7 1.779 14.486 5.682 1.170 
Loma Prieta 1989-10-18 6.9 0.644 6.993 3.497 1.242 
Chi-Chi 1999-09-20 7.6 0.968 6.057 2.997 1.314 

Remark: soil profile is given in Table 4.2. 
 
 
 
 
 

Table 4.2 Soil profiles and estimated shear wave speeds using two empirical formulae. 

Depth (m) SSB’s formula 
Ohta and Goto’s 

formula 

From To h 
Soil type 

a b vs (m/s) k vs (m/s) 

0 2.7 1.35 Medium dense fine to coarse sand 
with gravel 120 0.28 130.52 1.282 111.19 

2.7 3.4 3.05 Boulder 140 0.243 183.57 1.255 140.37 
3.4 3.95 3.675 Loose fine to coarse sand 80 0.28 115.18 1.282 151.97 

3.95 4.7 4.325 Cobbles 140 0.243 199.84 1.255 156.53 
4.7 9 6.85 Medium dense fine to coarse sand 120 0.28 205.67 1.282 184.56 

9 12 10.5 Loose clayey coarse sand with shell 
fragment 80 0.28 154.53 4.422 727.36 

12 14 13 Loose sandy clay 70 0.3 151.11 1.000 175.82 

14 32 23 Medium dense silty fine sand with 
fine gravel 120 0.243 257.09 1.260 264.70 

32 50 41 Dense to very dense slightly silty 
fine to coarse sand with fine gravel 331 0 331.00 1.260 317.01 

Equivalent shear wave speed (m/s) 236.99  248.43  

Remark: 
Two formulae for estimating the shear wave speed of soil [adopted from Chau (2000)]: 
SSB’s formula:  b

sv ah=
Ohta and Goto’s formula:  0.31278.98sv kh=
where h is the depth between the ground level and the centre line of a soil layer measured in meter. 
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Figure 4.1 The input waves of El Centro earthquake before and after soil 
amplification and their corresponding Fourier spectra, where fini and fdam denote the 

initial and final natural frequencies of the model respectively. 
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Figure 4.2 The input waves of Kobe earthquake before and after soil amplification 
and their corresponding Fourier spectra, where fini and fdam denote the initial and final 

natural frequencies of the model respectively. 
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Figure 4.3 The input waves of Northridge earthquake before and after soil 
amplification and their corresponding Fourier spectra, where fini and fdam denote the 

initial and final natural frequencies of the model respectively. 
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Figure 4.4 The input waves of Loma Prieta earthquake before and after soil 
amplification and their corresponding Fourier spectra, where fini and fdam denote the 

initial and final natural frequencies of the model respectively. 
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Figure 4.5 The input waves of Chi-Chi earthquake before and after soil amplification 
and their corresponding Fourier spectra, where fini and fdam denote the initial and final 

natural frequencies of the model respectively. 
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Figure 4.6 Soil profiles beneath the site of the prototype structure. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 4.7 Set-up of modal test: (a) sketch of the three hammer impact points (a, b 
and c) and accelerometers at the top floor, where CM means the center of mass; (b) 

photograph showing hammer impact at the point a. 
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(a) Fourier spectrum of A1 when the hammer hits at the point a; 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Fourier spectrum of A13 when the hammer hits at the point b; 

 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Fourier spectrum of A1-A2 when the hammer hits at the point c. 
 

Figure 4.8 Fourier spectra of the accelerations at the roof for determining the natural 
frequencies of the model. 
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(a) before all shaking tests, ξ = 1.63%; 
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(b) after all shaking tests, ξ = 4.91%. 

 

Figure 4.9 Damping ratios of the first mode of the model: (a) before all shaking tests; 
(b) after all shaking tests. 
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Figure 4.10 Comparison of Fourier spectra of actual inputs generated by the shaking 
table and the target input for Chi-Chi earthquake without soil amplification. 
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Figure 4.11 Comparison of Fourier spectra of actual inputs generated by the shaking 
table and target input for Chi-Chi earthquake after soil amplification. 
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(b) after soil amplification. 
 

Figure 4.12 Maximum strains vs. input PGAs for various earthquakes before and after 
soil amplification respectively. 
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(b) after soil amplification. 
 

Figure 4.13 Maximum accelerations at the roof vs. input PGAs for various 
earthquakes before and after soil amplification respectively. 
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(b) after soil amplification. 
 

Figure 4.14 Maximum acceleration amplification factors at the roof vs. input PGAs 
for various earthquakes before and after soil amplification respectively. 
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Figure 4.15 Maximum rotation angles at the roof vs. input PGAs for various 
earthquakes before and after soil amplification respectively. 

 

 159



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1/F

7 8 9 10 11 12 13
-50

0

50
ε 13

 (μ
ε )

0.05g, El Centro earthquake, soil site

4 5 6 7 8 9 10
-200

0

200

ε 13
 (μ

ε )

0.2g, El Centro earthquake, soil site

4 5 6 7 8 9 10
-500

0

500

t (s)

ε 13
 (μ

ε )

0.3g, El Centro earthquake, soil site

Crack
y 

x 
Transfer plate 

(b) 

(c) 

(a) 

13ε

Ground shaking 

Figure 4.16 Strain time histories of 13ε  during 0.05, 0.2g and 0.3g PGA El Centro 
earthquakes after soil amplification. Small tension for 13ε  occurred during 0.2g El 

Centro earthquake after soil amplification and implies the existence of local damages. 
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Figure 4.17 Strain time histories of 21ε  and 22ε during 0.05, 0.2g and 0.3g PGA El 
Centro earthquakes after soil amplification. The variations of the two strain gauges 

changed from in-phase to out-of-phase. The photo below shows their locations. 
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Figure 4.18 The out-of-phase strains of two strain gauges on the opposite sides of a 
core wall during 0.05g and 0.3g Chi-Chi earthquakes. This phenomenon was found 

for all other tests, impling the floors slabs were not absolutely rigid. The small tension 
for 22ε  in 0.3g Chi-Chi earthquake was probably due to the cracks occurred. 
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Figure 4.19 Cracks at Corner I of the transfer plate caused by the 0.3g El Centro 
earthquake at soil site. 
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Figure 4.20 Cracks at Corner III of the transfer plate caused by the 0.3g El Centro 
earthquake at soil site. 
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Figure 4.21 Cracks at the transfer plate caused by the 0.3g El Centro earthquake at 
soil site: (a) crack at Corner II; (b) diagonal cracks. 
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Figure 4.22 Horizontal cracks at the upper stories caused by the 0.3g El Centro 
earthquake at soil site. 
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Figure 4.23 Sketches of two deform patterns observed in the tests: (a) higher mode 
deformed shape observed when the input PGA was greater than 0.2g. The two stories 

below the transfer plate have much smaller deformation compared to the upper stories; 
(b) the shear forces occurred in the lintel beams between core walls induced a number 
of cracks at the ends of these beams. These phenomena were observed when the input 

PGA was greater than 0.3g. 
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(b) new cracks occurred at Corner II. 
 

Figure 4.24 Cracks at the transfer plate during the 0.3g Kobe earthquake at soil site. 
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(b) Hammer excitation at point a. 

III 

2/F 

 
 
 

Figure 4.25 Widening and lengthening of existing cracks at Corner III of the transfer 
plate caused by the 0.3g Kobe earthquake at soil site. 
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Figure 4.26 Cracks at the ends of lintel beams at the upper floors caused by the 0.3g Kobe earthquake at soil site. 
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Figure 4.27 Severe damages caused by the 0.3g Chi-Chi earthquake at soil site: (a) the 
opening due to uplift of the transfer plate as wide as 2.9 mm; (b) the crashing down 

following the uplift. 
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Figure 4.28 3D sketches and photographs of three severely damaged walls between 2/F and 4/F. 

 172



 

IIII
Ground shaking 

B'

B

A

A A' 

A'

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B B'  
Figure 4.29 Sketches of cracks on the beams of the transfer plate which suffered severe damages during the 0.3g Chi-Chi earthquake input. 
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Figure 4.30 3D sketches of cracks on the core walls above the transfer plate caused by the 0.3g Chi-Chi earthquake at soil site. 
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Figure 4.31 Sketches of cracks occurred at the story above the transfer plate caused by the 0.3g Chi-Chi earthquake at soil site. 
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Figure 4.32 Sketch showing the diagonal rocking of the whole structure, which induced severe damage to the transfer plate as well as several 
walls above it (see attached photos) during the input of 0.3g Chi-Chi earthquake at soil site. 
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Figure 4.33 Photos and sketches of different crack patterns on the lintel beams between the two core walls. Some cracks were connected with 
each other, such as those at 12/F, whereas some were separated, such as those at 11/F. Similar phenomena were also found at other stories. 
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Figure 4.34 Sketches of all the cracks on the front surfaces of the model. 
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Figure 4.35 Sketches of all the cracks on the right surfaces of the model. 
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Figure 4.36 Sketches of all the cracks on the rear surfaces of the model. 
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Figure 4.37 Sketches of all the cracks on the left surfaces of the model. 
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CHAPTER 5  SHAKING TABLE TESTS II: DAMAGE 

EVALUATIONS 

 

In addition to visual inspections of cracks described in the last chapter, the 

damages of the model should better be quantitatively evaluated through seismic 

damage indices, as will be done in this chapter. Various damage indices proposed in 

the past will be first briefly reviewed. 

 

 

5.1 Literature Review of Seismic Damage Indices 

 

5.1.1 Classification of seismic damage states 

 

There is little published information on methods to classify seismic damage 

states available to use by engineers (Williams and Sexsmith, 1995). The guidance 

given by ATC (Applied Technology Council) in ATC-20 (1989) essentially assesses 

structures as safe or unsafe based on a wide range of structural criteria, such as crack 

size, extent of spalling and number of leaning columns. 

In assessing the damages of nine reinforced concrete buildings damaged in the 

1971 San Fernando earthquake and 1978 Miyagiken-Oki earthquake, Park et al. (1985) 

adopted a 5-degree damage state classification based on physical appearance as: 
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 Slight – Sporadic occurrence of cracking. 

 Minor – Minor cracks throughout building. Partial crashing of concrete in columns. 

 Moderate – Extensive large cracks. Spalling of concrete in weaker elements. 

 Severe – Extensive crashing of concrete. Disclosure of buckled reinforcements. 

 Collapse – Total or partial collapse of building. 

The representative photographs showing the damages of the nine buildings 

corresponding to the 5 degrees of damage states are shown in Figure 5.1 (after Park et 

al., 1985). According to the authors, the first three degrees of damages are considered 

to be repairable whereas the latter two degrees correspond to damages beyond 

repairing. 

Okada and Takai (2004) summarized several damage scales and visualized them 

in graphical format as shown in Figure 5.2. From the figure, both EMS-98 (European 

Macroseismic Scale 1998) and AIJ-1980 (Architectural Institute of Japan) ranked 

damage into 5 degrees according to visual distresses of buildings after earthquakes, 

whereas Okada and Takai (2000) classified damage into 3 ranks only (i.e. moderate, 

heavy and major damages). 

Some other methods try to relate damage to repairability of buildings. For 

example, Bracci et al. (1989) and Stone and Taylor (1993) used the following 

classifications: undamaged or minor damage, repairable, irrepairable, and collapsed. 

These classifications may be more helpful in retrofit decision-making. 

Most of classification methods mentioned above concentrate on damages of 

structural elements in buildings. However, although protection of structural element is 
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obviously crucial to structural behavior and life safety, non-structural components 

represent a rather large proportion of building investment and should also be given 

some considerations in seismic damage assessments. For example, EERI (Earthquake 

Engineering Research Institute) (1994) adopts a damage scale which includes 

consideration of non-structural damages (Williams and Sexsmith, 1995). 

Since only structural members are modeled in our shaking table tests, the 

damage classification used by Park et al. (1985) was adopted to rank the damage 

states of the model in this study. This classification method is relatively simple and 

directly defined. More important is that Park and Ang (1985) damage index, which is 

widely used (Williams and Sexsmith, 1995), has been well calibrated to this 5-degree 

damage state classification. 

 

5.1.2 Seismic damage indices 

 

Seismic damage indices provide a quantitative way to assess damages of 

structures caused by earthquake in terms of numerical values. They play an important 

role in post-earthquake assessment. For example, they can help people to decide 

whether a building is safe to enter immediately for rescue after an earthquake and 

whether it is safe to be used in the future or what kind of retrofit is needed. In addition, 

damage indices help in disaster planning before earthquakes — they can help us to 

estimate the likely damages of buildings when subjected to certain levels of 

earthquake shaking. 
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Different damage indices have been proposed in the past several decades and 

generally they can be categorized into two main classes: local indices and global 

indices. Local indices assess damage of any individual element or joint whereas 

global indices assess damage states of the whole structures. Various damage indices 

proposed in the past will be briefly reviewed below. 

Park and Ang (1985) suggested that damages in reinforced concrete elements 

may be induced by: (i) excessive deformations under monotonic loading; and (ii) 

accumulated damages caused by repeated cyclic loading. Therefore, to evaluate the 

damage state of an element or structure, a damage index should include the effects of 

both the maximum deformation and repeated cyclic loading. 

Two primitive and simple forms of damage indices are ductility and inter-story 

drift. Ductility is defined as the ratio of the maximum deformation of an element 

during earthquake to the deformation value when the element first yields. Inter-story 

drift (ID) is the displacement of one story relative to the story below whereas 

inter-story drift ratio (IDR) is the ratio of the inter-story drift to the story height. 

Despite both of them fail to include the cumulative damage caused by repeated cyclic 

loading, ductility and inter-story drift remains widely used for their simplicity and 

ease of interpretation (Williams and Sexsmith, 1995). 

Other damage indices which consider only the maximum deformation effects 

include the Damage Ratio (Lybas and Sozen, 1977), and the Flexural Damage Ratio 

(Banon et al., 1981), and the damage index proposed by Khashaee (2005). These 
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indices not only fail to include the cumulative damages caused by cyclic loading, but 

also need to be well calibrated against observed damage levels. 

A number of cumulative damage indices have also been proposed to include 

cyclic loading effects. The cumulative damage is measured as a function of either 

accumulated plastic deformation or hysteretic energy absorbed during cyclic loading 

(Williams and Sexsmith, 1995). This kind of damage index includes the normalized 

cumulative rotation (NCR) (Banon et al., 1981) and the indices proposed by Gosain et 

al. (1977), Krawinkler and Zohrei (1983), Stephens and Yao (1987), Wang and Shah 

(1987), Chung et al. (1987), Kratzig et al. (1989), and Hindi and Sexsmith (2001), etc. 

Park and Ang (1985) proposed a damage index which combined the normalized 

maximum deformation and energy absorption in cyclic loading through a linear 

summation. This damage index has been widely used for its simplicity and its well 

calibration against a large amount of observed seismic damages (Williams and 

Sexsmith, 1995), and will be introduced in detail in Section 5.1.3. 

Global damage index measures the overall damage state of a structure, which 

depends on the severity as well as the distribution of local damages of its constituting 

members (Williams and Sexsmith, 1995). Thus, naturally the global damage index 

can be derived by taking the weighted average of the local indices. The most widely 

used approach is to take an average of the local indices weighted by the local energy 

absorptions as (Park et al., 1985; Chung et al., 1989; Kunnath et al., 1992): 

i i

i

D E
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E
= ∑
∑

                            (5.1) 
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where  and  are the local damage index and energy absorbed at the ith element, 

and D is the global index of the structure. 

iD iE

Another method for evaluating global damage is to compare overall dynamic 

characteristics of a structure before and after damage, such as natural period and 

damping. This kind of damage assessment method originates from a basic idea that 

damage normally causes stiffness degradation and energy dissipation to structures, 

which results in change of structural dynamic characteristics, such as increase of 

natural period and damping. Usually change of natural period is used to estimate 

overall damage state of a structure whereas change of mode shape is used to locate the 

position of damage (Williams and Sexsmith, 1995). 

DiPasquale and Cakmak (1987) proposed a series of softening indices based on 

change of structural fundamental period. First, the time-varying fundamental period of 

a structure was estimated from the response time history. Then, the change in the 

fundamental period was used to calculate different softening indices, including the 

maximum softening 
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the plastic softening 
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and the final softening 
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where  and  are the fundamental periods of the structure before and after 

damage respectively, and  is the maximum period during the whole time history. 

undT damT
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From the definitions, the response time history of a structure during earthquake 

is needed to determine the maximum and the plastic softening indices. However, the 

final softening can be computed directly from the results of post-earthquake testing, if 

the initial natural period is known. In this sense, the final softening index is especially 

useful when no detailed response data is available. 

According to Rodriguez-Gomez and Cakmak (1990), the final softening is 

related to the global stiffness degradation. Actually, for a SDOF system, utilizing the 

relation 2T mπ= k  (where m, k and T are the mass, stiffness and natural period 

respectively), the final softening given in Equation (5.4) becomes 

1 dam
F

und

kD
k

= −                            (5.5) 

where  and  are the stiffness of the system before and after damage. It is 

easy to know that the final softening DF has a zero value at the initial state and a unity 

value at failure. However, little information is available to correlate the final softening 

to intermediate damage levels between elastic state and failure. 

undk damk

The main limitation of the softening indices is that they can provide only an 

assessment of global damage state of a structure but little information about the 

distribution of damage within the structure is available. The location of damages can 

be determined using detailed mode shape information. This is a large and rapidly 

developing subject currently (Williams and Sexsmith, 1995), but beyond the scope of 

the present study. 

 

5.1.3 Park and Ang damage index 

 188



 

5.1.3.1 Definition 

The most widely used damage index may be the one proposed by Park and Ang 

(1985). Its popularity partly is due to its simplicity – it consists of a simple linear 

combination of normalized maximum deformation and energy absorption in cyclic 

loading as: 

m

u y u

D
Q

dEδ β
δ δ

= + ∫                         (5.6) 

where uδ  is the ultimate deformation of a member under monotonic loading, mδ  is 

the maximum deformation under earthquake,  is the calculated yield force,  

is the incremental absorbed hysteretic energy, and 

yQ dE

β  is a non-negative constant 

coefficient for cyclic loading effect determined from experiments. In this definition, 

mδ  and  depend on the applied loading history, whereas the other three 

parameters 

dE

u

∫
δ ,  and yQ β  are structural parameters. 

Through trial and error analyses of a large set (261) of cyclic test data of beams 

and columns, Park and Ang (1985) gave regression equations for the optimal values 

of β , which depends on shear span ratio, axial stress, longitudinal steel ratio and 

confinement ratio of the element. A large scatter was observed between the calculated 

values of β  through the regression equations and experimental results. Park et al. 

(1987) performed a regression analysis based on test data of 402 reinforced concrete 

components of rectangular cross-sections and 132 steel specimens of H-shaped 

sections and proposed a new minimum-variance solution for β . They suggested 
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β = 0.05 for reinforced concrete components and β = 0.025 for steel components. 

Therefore, β = 0.05 was adopted in the present study. 

 

5.1.3.2 Advantages 

The advantages of Park and Ang damage index are based on its simplicity and 

that it takes into account of both the maximum deformation effect and the cumulative 

damage caused by cyclic loading. In addition, compared to other seismic damage 

indices, Park and Ang index has been well calibrated against a large amount of 

observed damages in both experiments and real earthquakes. 

The earliest calibration work was carried out by Park et al. (1985), who carried 

out thorough analyses for nine reinforced concrete buildings damaged during the 1971 

San Fernando earthquake in USA and the 1978 Miyagiken-Oki earthquake in Japan. 

Based on the observed damages from post-earthquake investigations, the damages 

states of the nine buildings were ranked into five degrees (i.e. slight, minor, moderate, 

severe damages and collapse) as described in Section 5.1.1. 

In order to calculate Park and Ang damage indices for these buildings, Park et al. 

(1985) used a hybrid model to idealize reinforced concrete buildings by extending the 

conventional shear-beam model. Elastic bending columns were added between floors, 

connected by inelastic rotational springs. The overall damage index was estimated as 

the weighted average of the local damage indices of its constituting members. The 

resulting Park and Ang damage indices were then compared to the designated damage 
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states from post-earthquake investigations as shown in Figure 5.3, where the symbols 

A-I represented the nine buildings studied. 

Using this calibration results, Park et al. (1985) concluded that an overall damage 

index of  corresponds to repairable damage,  represents damage 

beyond repair, and  corresponds to collapse. More recently, Ang et al. (1993) 

recommended that a global damage index of 0.8 may be considered as the value to 

cause collapse. Based on these two calibration work as well as Figure 5.3, we drew 

the following conclusions between the values of Park and Ang damage indices and 

damage degrees as well as building repairabilities: 

0.4D ≤ 0.4D >

1.0D ≥

0.12D <     None or slight damage (repairable) 

0.12 0.25D≤ <   Minor damage (repairable) 

0.25 0.4D≤ <    Moderate damage (repairable) 

0.4 0.8D≤ <    Severe damage (irrepairable) 

0.8D ≥        Collapse (irrepairable) 

These correlations are similar to conclusions drawn by other authors (e.g. Williams 

and Sexsmith, 1995; Ghobarah et al., 1999; Vacareanu et al., 2004), except for the 

borderline value between none and minor damages, which was set to 0.1 by previous 

studies (e.g. Williams and Sexsmith, 1995) but was set to 0.12 here (the middle value 

between the overall damage indices of H and D buildings in Figure 5.3). 

 

5.1.3.3 Limitations 
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Although Park and Ang damage index has been widely used since it was 

proposed in 1985, several limitations still exist. A major problem is the determination 

of the ultimate deformations uδ  and the constant coefficient β  (Williams and 

Sexsmith, 1995). The estimations of β  given by different researchers (Park et al., 

1987; Kunnath et al., 1992; Cozenza et al., 1993) seem to be scattered. Park and Ang 

(1985) gave regression expressions for the optimal values of β  as function of shear 

span ratio, axial stress, longitudinal steel ratio and confinement ratio. Park et al. (1987) 

suggested β =0.05 for reinforced concrete components and β =0.025 for steel 

components. Kunnath et al. (1992) used a default value of 0.1 and suggested that it 

should normally not exceed 0.5 in the computer program IDARC (Inelastic Damage 

Analysis of Reinforced Concrete Structures). Cozenza et al. (1993) suggested the 

value β  have a median of 0.15 and with this value Park and Ang damage index 

correlated well with the results of other damage models proposed by Banon and 

Veneziano (1982) and Krawinkler and Zohrei (1983). 

The second drawback is that according to the definition in Equation (5.6), the 

value of Park and Ang damage index may be greater than zero for elastic response 

and greater than unity when the structure reaches its maximum deformation capacity 

under monotonic loading (Bozorgnia and Bertero, 2003). Several modifications have 

been proposed to overcome this drawback. For example, Park and Ang index can be 

slightly modified by removing the recoverable deformation from the first term in its 

definition as following: 
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Kunnath et al. (1992) used a similar expression in IDARC by replacing force and 

displacement with moment and curvature. More recently, Bozorgnia and Bertero 

(2003) proposed two improved damage indices which overcome the drawback of Park 

and Ang index. Both the two indices will be zero for elastic response and be unity at 

failure. However, two constant coefficients are involved in their definitions, which are 

not straightforward to be determined. 

Finally, the definition of Park and Ang damage index is directly applicable only 

for a single structural element and the global damage index of a building can only be 

obtained from the weighted average of local indices. This weighted average method is 

acceptable in numerical simulations, but is difficult to be applied to structures in 

experiments or real earthquakes. Even in laboratory environments, it is very difficult, 

if not impossible, to directly measure the force and response of each element. 

Normally structural responses (accelerations and/or displacements) are measured at 

every one or several floors rather than for each element. Therefore, how to estimate 

Park and Ang damage index for a building structure from recorded data in 

experiments or earthquakes remains an unsettled issue. To solve this problem, a 

simple approach was proposed in this study, and will be discussed in Section 5.2.4. 

 

5.1.4 Damage indices adopted in the present study 

 

All of the seismic damage indices discussed above are summarized in Table 5.1, 

where the term “Member level” means the damage index can be applied to individual 
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members, and the term “Structural level” means the damage index can be applied 

directly to structures. Among them, some indices, such as the normalized cumulative 

rotation (Banon et al., 1981) and the indices proposed by Krawinkler and Zohrei 

(1983), Chung et al. (1987), Kratzig et al. (1987), and Hindi and Sexsmith (2001), are 

too demanding to be applied in our tests where the structural responses are measured 

only at some selected floors. Some indices are not well calibrated with observed 

damages, such as the damage ratio, the flexural damage ratio, and the indices 

proposed by Gosain et al. (1977), Krawinkler and Zohrei (1983), Kratzig et al. (1989), 

and Khashaee (2005). Some indices involve extra parameters which are not 

straightforward to be determined, such as those proposed by Krawinkler and Zohrei 

(1983), Stephens and Yao (1987), Wang and Shah (1987), and Khashaee (2005). 

With all these considerations, four indices were selected to analyze damages for 

our shaking table tests, including the ductility, inter-story drift ratio, final softening 

index and Park and Ang damage index. Ductility and inter-story drift ratio were 

selected for their simplicity, wide adoption and ease of interpretation. The final 

softening index was selected since it is easy to be obtained, and it was used to assess 

the change of natural frequency of the model. In this study, the variation of natural 

frequency will also be expressed directly by the frequency ratio of the model after and 

before damage. 

Park and Ang damage index was selected for their wide adoption and its well 

calibration against observed damages. In this study, a simple algorithm is proposed to 

estimate the overall Park and Ang damage index for our model from recorded 
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acceleration and displacement data in the tests. The damage states of the model will 

be determined based on the resulting Park and Ang indices. This damage information 

will be used to establish correlations between damage states and other damage indices, 

including the ductility, inter-story drift ratio, final softening index, and frequency ratio. 

The details will be discussed further in Section 5.3. 

 

 

5.2 Damage Quantifications 

 

In this section, the damages of the model during various earthquake inputs will 

be quantitatively assessed in terms of the selected damage indices as discussed in 

Section 5.1.4. These damage indices include the inter-story drift ratio, ductility, final 

softening, natural frequency ratio, and Park and Ang damage index. The results of 

these indices will be discussed one by one in this section. 

 

5.2.1 Inter-story drift ratio 

 

Both the inter-story drift ratio and overall drift ratio at the roof are studied in our 

tests. The inter-story drift ratio (IDR) is the relative drift between two neighboring 

stories divided by the story height, whereas the overall drift ratio ( ) is the 

total drift at the roof relative to the ground divided by the total height of the building. 

Note that before calculation, all the displacement data with frequency higher than 15 

overallIDR
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Hz were filtered out to eliminate high frequency noises. The noise may come from the 

vibration of the shaking table or the noise of the displacement transducers, especially 

those LED transducers as described in Section 3.5.1. 

Due to the limited number of transducers available in our laboratory, the 

displacement responses are available only at the ground, 2/F, 3/F and 21/F as shown 

in Figure 3.19. To compute the inter-story drift ratios at other stories, linear 

interpolation method was used to estimate the displacement responses at other floors. 

More specifically, the displacement on 1/F was estimated from the linear interpolation 

between the ground motion and the displacement on 2/F. The displacements at the 

floors above 2/F were estimated from the interpolation between the recorded 

displacements on 21/F and 2/F. Note that the displacement data on 2/F instead of 3/F 

was used because the laser transducer on 2/F has a higher accuracy than the LED 

transducer on 3/F (refer to Section 3.5.1). Since there is no abrupt change of structural 

form and stiffness for those typical floors above the transfer plate (2/F) and the first 

mode dominates in the vibrations, the linear interpolation method is considered to be 

appropriate for most of our experiments, if not all. 

To check the validity of the linear interpolation method, comparisons were made 

between measured data and interpolation results. Figure 5.4 shows the displacement 

responses at 15/F, 9/F and 3/F respectively during the input of 0.2g Kobe earthquake 

at rock site. The dashed lines are the estimated displacements from the linear 

interpolation of recorded displacement data, whereas the solid lines denote either the 

displacements obtained from the double integration of recorded acceleration data at 
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15/F and 9/F [Figures 5.4(a) and (b)], or the displacements directly measured by the 

LED transducer at 3/F [Figures 5.4(c)]. It is seen that these results agree quite well 

except for some minor discrepancies, suggesting the interpolation method is adequate 

to be used for most of our tests, if not all. 

Based on the estimated displacement data, the inter-story drift ratios can be 

easily computed. The resulted overall and maximum story drift ratios for various 

earthquake inputs are summarized in Table 5.5 and plotted with the input PGAs in 

Figures 5.5 and 5.6 respectively. From the two figures, it is seen that both the overall 

drift ratio and inter-story drift ratio increases almost linearly with the increase of input 

PGA for all the earthquakes at rock site, except for the maximum IDR curve of El 

Centro earthquake. The curves for Northridge and Loma Prieta earthquakes almost 

coincide with each other, and their drift ratios are the smallest compared to the results 

of the other three earthquakes. As discussed in Section 4.3.2, it is because their 

dominant frequencies do not coincide with that of the model (see Figures 4.3 and 4.4). 

For earthquakes after soil amplification, Figures 5.5(b) and 5.6(b) show that the 

drift ratio increases with the input PGA, and the increase rate becomes larger for 

PGA>0.2g. Again it is due to the deteriorated natural frequency becomes closer to the 

predominant frequencies of the soil site shaking inputs (see Figures 4.1-4.5). 

 

5.2.2 Estimated ductility 

 

By definition, ductility is the ratio of the maximum deformation of a structure 
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during earthquake ( mδ ) to the deformation when it first yields ( yδ ). The maximum 

deformation of the model can be readily obtained from displacement time history 

records. However, the yield deformation can not be measured directly from 

experiments and need to be estimated through other methods. 

As suggested by the Structural Engineers Association of California (SEAOC, 

1999), buildings with a transient drift ratio not greater than 0.2% (i.e. 1/500) can be 

considered to be fully operational (i.e. negligible damage). The wind code of Hong 

Kong also requires that the maximum top floor drift to height ratio must be limited to 

within 1/500 in the wind design (Koo et al., 2003). Therefore, in this study the yield 

drift ratio was set to 1/500. That is to say, the yield deformation ( yδ ) at the roof was 

1/500 of the total height, which was equal to 5.57 mm. 

However, since the present model had a transfer plate at 2/F and the stories 

below and above the transfer plate adopted totally different structural forms (refer to 

Section 2.2), a uniform yield drift ratio of 1/500 seems inappropriate for all the stories. 

Thus, as sketched in Figure 5.7(b) the structure was further divided into two segments: 

one above and one below the transfer plate (with heights of mm and 

mm respectively). The ratio between the yield drifts of the two segments 

were estimated from the displacement records in the hammer blow tests conducted at 

the beginning of tests. During the hammer tests, the average ratio of the maximum 

deformations of the two segments at a same time [

1 406H =

2

2 2380H =

2 1/ 7.6d d =  as shown in Figure 

5.7(b)] can be obtained. The model was far from yielding under hammer blow 

excitation. But since up to yielding elastic responses should hold, this ratio is taken as 
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the ratio between the yield drifts of the two segments. Thus, while the total yield drift 

at the roof remains to be 1/500 of the total height, the yield drifts of the two segments 

can be determined proportionally according to this ratio (see the equations in Figure 

5.7). As a result, a 1/628 yield drift ratio was assumed for the two stories below the 

transfer plate and a 1/483 yield drift ratio for the upper typical stories. After the yield 

drift ratios of the two segments were determined, the yield deformation of each story 

( yiδ ) can be easily obtained by multiplying the yield drift ratio with the story height. 

Therefore, ductility can be estimated for each story provided that the 

displacements at those stories were estimated through linear interpolation of available 

data (as described in Section 5.2.1). Once the displacement at each story was obtained, 

the relative deformation of each story with respect to the story below can be easily 

computed. Then, the maximum deformation ( mδ ) within the time history record was 

used to calculate the ductility at that story. Finally, a maximum ductility was selected 

among all the stories with the most severe damage. 

The maximum ductility values caused by various earthquakes are listed in Table 

5.6. Ductility was found larger than 1.0 for the first time during the shaking of 0.2g 

Kobe earthquake at soil site, which means the structure began to yield at that time. 

The maximum ductility 8.519 occurred in the last test (i.e. the input of 0.3g Chi-Chi 

earthquake at soil site) and the model was considered nearly collapse. The ductility 

values during various earthquake inputs are also plotted with the input PGAs in 

Figure 5.8. It can be seen that the curves of ductility are very similar to those of 

overall drift ratios shown in Figure 5.5 and can be explained in a similar way. 
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5.2.3 Deterioration of natural frequency 

 

As described in Section 4.2.1, modal test was carried out after each set of 

earthquake excitations to check the change of natural frequency of the model. The 

natural frequencies of the first three modes after various earthquake excitations are 

summarized in Table 5.2. Also shown in the table are the ratios of the damaged natural 

frequency damf  to the initial value inif . The frequency ratios and the final softening 

indices (DF) of the first natural frequency are also listed in Table 5.6. 

From the two tables, the frequency ratio decreases from 100% to 45.5% with 

increasing PGA and the final softening increases from zero to 0.794. The natural 

frequency drops more drastically during the shaking of 0.3g PGA inputs. For example, 

the 0.3g Chi-Chi earthquake alone induces over 19% reduction of the first natural 

frequency. As described in Section 4.4.4, this earthquake caused the most severe 

damage to the structure. Note also that during some tests the frequency shows small 

increase instead of decrease, such as those in the 0.1g Northridge earthquake and 

0.15g El Centro earthquake. But this kind of abnormal increase is all very small (less 

than 1.7%) and may be caused by the uncertainty in the modal testing. 

From Table 5.2, it is also seen that the first natural frequency reduced to 45.4% 

of the initial value, whereas the second and third natural frequencies remained to be 

about 75% of the initial values. For the present model, the first vibration mode is in 

the x direction (i.e. the shaking direction), and the second and third modes are in the y 
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and θ  directions respectively (refer to Section 4.2.1). Thus, the large frequency 

reduction in the x direction implies that the model was most damaged in the excitation 

direction. 

The reduction of natural frequency observed in this study is consistent with the 

fact that damage usually causes decrease in frequency due to the stiffness degradation 

(DiPasquale and Cakmak, 1987; Williams and Sexsmith, 1995). The frequency 

deterioration has been widely observed in other shaking table tests, for example, those 

of Lee and Woo (2002) and Li et al. (2006). 

However, little information is available on what damage states those frequency 

reductions represent. In the shaking table test of a 42-story building model by Li et al. 

(2006), it was concluded that a 40% reduction of frequency will occur for severe 

damage and a 60% reduction of frequency occur for collapse. This conclusion is close 

to the finding in the present experiments (33% for severe damage and 55% for 

collapse respectively, as shown in Table 5.6). However, the damage states in Li et al. 

(2006) were determined through the visual observations in the tests, whereas the 

reliability of visual inspections is still arguable (Skjaerbaek et al., 1998). In this study, 

the damage states of the model are determined through the well calibrated Park and 

Ang damage index, and through this approach the frequency change can also be 

related to damage states. The details of this analysis will be discussed in Section 5.3. 

 

5.2.4 Method of estimating Park and Ang damage index 
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In order to use the well calibrated Park and Ang damage index, a simple 

algorithm was developed in this study to estimate it from the measured acceleration 

and displacement data in our experiments. First a N-story building is modeled as a 

lumped mass system and each story is idealized as one equivalent element. Each story 

has a lumped mass jm  and recorded absolute acceleration ( )ix t&&  and displacement 

( )ix t , i=1, 2, …, N. The inter-story relative deformations (i )tδ  can be obtained from 

the displacement of each story with respect to the story below: 

1( ) ( ) ( )i i it x t x tδ −= −     i=1, 2, …, N              (5.8) 

where 0 ( )x t  is the recorded ground motion. The total resisting force for all the 

structural elements between the ith and i-1th floors can be computed as the summation 

of the inertial forces of the ith story and all the stories above it. 

( ) ( )
N

i k
k i

F t m x t
=

= −∑ &&k      i=1, 2, …, N              (5.9) 

Then this resisting force  and the inter-story deformation iF iδ  constitute the 

hysteretic load-deformation relation of each story, from which the dissipated 

hysteretic energy can be computed through integration. For the discrete data measured 

in our tests, the integration is replaced by direct summation. For example, the 

dissipated energy ( ) by the ith story is calculated as: iE

1( )[ ( ) ( )]i i i i j i j i j
j

E F d F t t tδ δ δ −= = −∑∫               (5.10) 

where jt  denotes the jth time step. As sketched in Figure 5.9(f), the above integration 

in one cycle equals the closed area in the load-deformation curve and represents the 

energy dissipated. Finally the story-wise as well as building-wise Park and Ang 

damage indices can be calculated according to Equations (5.6) and (5.1). 
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The resisting force estimating from Equation (5.9) include both the spring force 

and damping force. Thus, at least a part of the dissipated hysteretic energy calculated 

using the above method is dissipated by damping, which should not be included in 

estimating structural damages. However, as Toussi and Yao (1983) demonstrated, 

damping does not have significant effects on responses of structures when subjected 

to earthquake excitations. In fact, most actual structures have a rather low damping 

value, typically lower than 20% (Clough and Penzien, 1993), and the present model 

has a damping lower than 5% (see Section 4.2.2). In addition, for the small value of 

the constant β  [ β = 0.05 for reinforced concrete components according to Park et al. 

(1987)], the second term in the definition of Park and Ang damage index, which takes 

account of hysteretic energy effects, is much smaller than and negligible comparing to 

the first term (Rodriguez-Gomez and Cakmak, 1990). Therefore, we asserted that the 

estimation of Park and Ang damage index using Equations (5.9-5.10) is accurate for 

practical applications. 

According to the definition in Equation (5.6), the ultimate deformation uδ  and 

the yield force  need to be determined for each story to calculate the story-wise 

Park and Ang damage index. In this study, the two parameters were estimated from 

experimental results and FEM analyses respectively. 

yQ

There appears to be no reliable method for determining the ultimate deformation 

of reinforced concrete components (Park and Ang, 1985). Stephens and Yao (1987) 

assumed the ultimate deformation of a story to be 10% of the story height for 

cast-in-place concrete frames, but it was also pointed out that this value required 
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further verification. In this study, the maximum deformation at the roof during the last 

shaking table test (i.e. the 0.3g Chi-Chi earthquake input at soil site) was assumed to 

be the ultimate deformation of the model, which was 42.87 mm and equal to about 

1/65 of the total height. During this test, the model was severely damaged and was 

close to the state of nearly collapse (refer to Section 4.4.4 for details). This will 

underestimate the model stiffness, since the model did not collapse during this test. 

But since there is no available reliable method for determining the ultimate 

deformations, it is believed that this value provides an acceptable approximation to 

the ultimate deformation of the model. This ultimate deformation at the top floor was 

then distributed to each story to estimate the story ultimate deformation in the same 

way of distributing the story yield drift as discussed in Section 5.2.2. 

The story yield force  was computed through FEM analyses based on the 

yield inter-story drift 

yiQ

yiδ  estimated in Section 5.2.2. Using the FEM model built in 

SAP2000 (refer to Section 2.3.1 for details), the yield strength  of the ith story 

was estimated in the following way: (a) all translational and rotational degrees of 

freedom of all the vertical elements of that story are fixed at the bottom (i.e. above the 

th floor slab); (b) a horizontal force  was applied at the center of mass of the ith 

floor slab; (c) recording the lateral displacement of the center of mass 

yiQ

1i − iF

iδ ; and (d) the 

story yield strength  is estimated by: yiQ

yi
yi i

i

Q F
δ
δ

=                            (5.11) 

The present simple algorithm for estimating Park and Ang damage index for 

structures from limited experimental data was developed independently in this study. 
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When our calculations were finished, we found similar idea of finding story-wise Park 

and Ang index has been proposed by Toussi and Yao (1983) and adopted by Stephens 

and Yao (1987). They utilized recorded acceleration data to calculate Park and Ang 

damage index for two 10-story reinforced concrete models. In their approach, first the 

recorded acceleration was integrated once and twice respectively to get the velocity 

and displacement. The spring and damping force were assumed to depend solely on 

the relative displacement and velocity respectively. The whole time history was 

divided into a set of time intervals so that the displacement and velocity changed 

monotonically within each interval. Then the spring and damping forces were 

recognized from the total resisting force within each interval by expressing them in 

forms of polynomials of the relative velocity and displacement. Finally the obtained 

spring force was used to estimate the dissipated energy and thus Park and Ang 

damage index. 

There exist some problems with this algorithm. We found that the recognized 

spring force from this method may be discontinuous between two consecutive time 

intervals, since there was no measure to ensure the continuity of both the spring and 

damping forces. In addition, the single and double integrations of acceleration data to 

obtain the velocity and displacement may also introduce additional errors. In 

comparison, our algorithm appears to be simpler to use in estimating Park and Ang 

damage index from experimental data. 

 

5.2.5 Damages caused by energy dissipation 
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Before we discuss the results of Park and Ang damage indices, the energy 

dissipation during various earthquake inputs is first studied. Figures 5.9(a)-(e) show 

typical hysteretic load-deformation behavior of the story between 2/F and 3/F (i.e. the 

story above the transfer plate) during the inputs of Chi-Chi earthquake at rock site, 

with PGA increasing from (a) to (e). This story suffered the severest damages in our 

tests. It is seen that the slopes of these load-deformation curves generally decrease 

with the input PGA, especially during the 0.216g PGA input [Figure 5.9(e)]. This 

reflects stiffness degradation and softening of the structure after the shaking of 

various earthquakes. In addition, the hysteretic curves of the 0.216g PGA input shown 

in Figure 5.9(e) appear to be more nonlinear and irregular than others. 

As sketched in Figure 5.9(f), the dissipated energy was calculated as the closed 

area in the load-deformation curve, and the resulting energy dissipation E during each 

input is also marked in the figure. It is seen that the dissipated energy increase with 

the input PGA from (a) to (d), but decrease when the input PGA increase from 0.134g 

to 0.216g. This final drop is probably again caused by stiffness degradation of the 

model such that the resisting force F drops drastically. 

Similarly, Figures 5.10(a)-(e) plot the load-deformation curves of the same story 

during the inputs of Chi-Chi earthquake with soil amplification of different input 

PGAs. In addition to the general softening of the structure found with the increase of 

input PGA, a “soft-to-stiff” type of behavior was observed during the 0.32g PGA 

input [Figure 5.10(e)]. Similar phenomenon has also been reported by Toussi and Yao 
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(1983). 

In contrast to the results given in Figure 5.9, Figure 5.10 shows that the 

dissipated energy increase monotonically with the input PGA. This is because the 

degraded natural frequency of the model becomes closer to the predominant 

frequency (2.997 Hz) of Chi-Chi earthquake with soil amplification. Thus, larger 

response and energy dissipation were resulted. 

 

5.2.6 Damage quantification using Park and Ang index 

 

In this section, the damage states of the present model will be assessed using 

Park and Ang damage index estimated through the proposed simple approach. As an 

illustration, Table 5.3 shows the energy dissipation and Park and Ang damage index of 

each story during the shaking of 0.3g Chi-Chi earthquake after soil amplification. The 

overall Park and Ang damage index of the model in the table was calculated from the 

weighted average of all the story indices. Recalling the calibration result for Park and 

Ang damage index, the model was considered close to collapse state after the shaking 

of this earthquake. 

From Table 5.3, the first two stories below the transfer plate had smaller Park 

and Ang indices than the upper stories. This is consistent with the observations in the 

tests that almost no visible cracks were found at the first two stories and most of 

cracks occurred at the upper stories (refer to Section 4.4.4). Similar failure pattern was 

also reported by Li et al. (2006) in the shaking table test of a 42-story building model 
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with transfer system. Table 5.3 also reveals that the 3rd story which was just above the 

transfer plate dissipated the largest energy. This agrees well with the experimental 

observations that the severest damage occurred at this story (refer to Section 4.4.4). 

The fourth column p2/p1 in Table 5.3 is the ratio between the second term and the 

first term in the definition of Park and Ang damage index shown in Equation (5.6) [i.e. 

p1=δm/δu and p2=βʃdE/(Qyδu)]. It is found that the maximum damage caused by the 

hysteretic dissipated energy is only 2.1% of that caused by the maximum deformation 

effect. This suggests that here the value of Park and Ang damage index is largely 

determined by the maximum deformation in stead of the hysteretic energy. This will 

be further discussed later. 

The overall Park and Ang damage indices of the structure during various 

earthquake inputs are summarized in Table 5.6. The peak ground acceleration (PGA), 

maximum response at the roof ( mΔ ), energy dissipation (E), natural frequency ratio 

( /dam inif f ), the final softening index (DF), and ductility (μ ) are also listed. In the 

table, the damage states of the model are determined based on the overall Park and 

Ang damage indices according to the calibration results described in Section 5.1.3. 

It is seen that the structure began to have minor and moderate damages from the 

inputs of 0.2g and the first time 0.3g Kobe earthquake at soil site respectively. Severe 

and irrepairable damage began to occur under the shaking of the second time 0.3g El 

Centro earthquake at soil site. The last input earthquake (i.e. 0.3g Chi-Chi earthquake 

at soil site) induced the largest Park and Ang damage index of 1.102, indicating the 

structure was in the state of nearly collapsed. 
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Note that in Table 5.6 the 0.3g El Centro and Kobe earthquakes were input twice, 

due to strain overflow occurred during the first time input of these earthquakes (refer 

to Section 4.1.2). The second time input of an earthquake of similar PGA may induce 

quite larger damages to the model because the damages are cumulative. For example, 

the first and second times 0.3g soil site Kobe earthquake inputs have similar PGA 

values (0.30g and 0.29g respectively), but the ductility and Park and Ang damage 

index caused by the second time 0.3g Kobe earthquake (3.983 and 0.519) are much 

larger than that by the first time input (2.438 and 0.315). 

In addition, several other earthquakes were input (including the 0.25g and 0.2g 

Kobe earthquake at soil site and the second time 0.3g El Centro earthquake), which 

have induced considerable damages to the model. The cumulative damages reduce 

both the stiffness and natural frequency of the model. The damaged natural frequency 

actually becomes closer to the predominant frequencies of the 0.3g soil site Kobe 

earthquake. And this tends to result in even larger responses and damages. 

The overall Park and Ang damage indices during various earthquake inputs are 

plotted with the input PGAs in Figure 5.11. The variations of these curves are very 

similar to that of the overall drift ratio curves shown in Figure 5.5, and thus can be 

explained in a similar way. This suggests that here Park and Ang damage indices are 

largely determined by the maximum deformation in stead of the hysteretic dissipated 

energy, similar to the finding given in Table 5.3. 
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5.3 Correlations between Different Damage Indices 

 

Several damage indices have been discussed above, including the inter-story drift 

ratio, ductility, natural frequency ratio, final softening index, and Park and Ang 

damage index. The results of all these damage indices for various earthquake inputs 

are summarized in Tables 5.5 and 5.6. Each of these indices provides an estimation of 

the damage state of the structure. In this section, the results from different damage 

indices are compared and discussed. 

First the maximum overall drift ratios (IDR) are plotted versus Park and Ang 

damage indices for various earthquake inputs in Figure 5.12. It is clearly seen that for 

each site condition they are highly linearly correlated and almost fall onto a straight 

line with R2≥0.998 (R is the correlation coefficient). As discussed in Section 5.2.6, 

this linear relation implies that here the hysteretic dissipated energy term in the 

definition of Park and Ang damage index [Equation (5.6)] plays a less significant role 

compared to the first term of the maximum deformation. 

Fitting a straight line in Figures 5.12(a) and (b) respectively, two linear equations 

are obtained between the overall drift ratio and Park and Ang damage index as: 

0.6535 0.0003PA overallD IDR= − , R2 =0.9993  (for earthquakes at rock sites)  (5.12) 

0.7018 0.0062PA overallD IDR= − , R2=0.9989  (for earthquakes at soil sites) (5.13) 

where IDRoverall denotes the overall drift ratio and DPA denotes Park and Ang damage 

index. The line slopes are slightly different for earthquakes at rock and soil sites. 

Since Park and Ang damage index has been well calibrated to observed seismic 
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damages, the above two regression equations can be used to predict the values of 

overall drift ratio corresponding to different damage states of structures. The results 

are shown in Table 5.4. It is estimated that an overall drift ratio larger than 1/543- 

1/556 indicates the initiation of minor damage (slightly smaller than the assumed 

1/500 yield drift ratio), IDR larger than 1/261-1/274 corresponds to moderate damage, 

IDR larger than 1/163-1/173 corresponds to severe and irrepairable damage, and IDR 

greater than 1/82-1/87 represents collapse of structures. 

The Structural Engineers Association of California (SEAOC) suggests that the 

transient drift ratios corresponding to the onset of light, moderate, severe damages and 

collapse are 1/500, 1/200, 1/67 and 1/40 respectively (pp.326 in SEAOC, 1999). The 

threshold drift ratios estimated in this study (Table 5.4) suggests that moderate 

damage, severe damage and collapse states may appear earlier than that recommended 

by SEAOC. In particular, relatively large differences are found for the criteria 

corresponding to severe damage and collapse. This implies that the behaviors of 

severely damaged structures tend to be highly dependent on the types of building. 

Therefore, indiscriminate use of recommendation from SEAOC should be avoided.  

Li et al. (2006) concluded from a shaking table test on a 42-story building model 

that the drift ratios corresponding to slight, moderate and severe damages are 1/1000, 

1/300-1/700 and 1/80-1/200 respectively. The drift ratios corresponding to slight and 

moderate damages are smaller than our results, whereas the ranges of drift ratios for 

other damage states are far too large for practical interpretations. Note that the 

damage states of the model in Li et al. (2006) were determined through visual 
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observations as mentioned previously. Thus, it would not be surprising there are some 

discrepancies between the two studies. We believe that our values of IDR for various 

damage states are much more reliable.  

Finally, utilizing the damage states determined from Park and Ang damage 

indices, the values of other indices (including the ductility, overall and inter-story drift 

ratios, frequency ratio and final softening index) corresponding to the onset of various 

damage states can be established as shown in Table 5.7. To date little work has been 

done to provide clear relations between these damage indices and damage states, 

therefore, the present study provides the first correlation of this kind. These threshold 

values provide a useful reference for similar studies in the future. Strictly speaking, 

this correlation is, of course, limited to the studied building, however, it is speculated 

that the results are also applicable to other similar buildings in Hong Kong and is 

extremely useful for practical purposes in rapid damage assessment. 

The ductility values corresponding to various damage states obtained in this 

study show a good agreement with the empirical conclusion drawn by Yin (1995). For 

frame structures with shear walls, Yin (1995) proposed the threshold ductility factors 

for the onset of slightly, moderately, extensively, and completely damaged states are 

1.0, 1.5, 3.0, and 5.0 respectively, based on statistic studies on a great number of 

building structures. Comparing these values with the ductility thresholds of 1.11, 1.97, 

3.09 and 8.52 given in Table 5.7, we conclude that different threshold ductility factors 

should be established for different kinds of structures. The present result should 

provide the first data set for asymmetric buildings with transfer system. 



Table 5.1 Comparison of various seismic damage indices (To be continued). 

Damage index Definition Member level Structural level Reference 
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y

δμ
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√ √ Park, 1986 
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Damage index Definition Member level Structural level Reference 

Krawinkler and Zohrei index 
1

( )
n

c
pi

i

D C δ
=

= Δ∑  √ × Krawinkler and Zohrei, 1983 

Gosain et al. index ∑=
i yy

ii
e F

FD
δ
δ  √ × Gosain et al, 1977 

Kratzig et al. index ∑
∑∑

++

++
+

+

+
=

if

iip

EE
EE

D ,  −+−+ −+= DDDDD √ × Kratzig et al, 1989 

Hindi and Sexsmith index 0

0

n
n

A AD
A
−

=  √ × Hindi and Sexsmith, 2001 

Park and Ang index m

u y u

D dE
Q

δ β
δ δ

= + ∫  √ × Park and Ang, 1985 

Softening indices 
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Table 5.1 Comparison of various seismic damage indices (Continued). 

m

und
m T

TD −=1  
2

2

1 dam
pl T

TD −=
m

  
2

2

1 und
F T

TD −=
dam

× √ DiPasquale and Cakmak, 1987 

Remark: the term “Member level” in the table means the damage index can be applied to individual members, and the term “Structural level” denotes the damage 
index can be applied directly to whole structures 

 



 
 
 

Table 5.2 Change of the first three natural frequencies of the model after various 
earthquake inputs, where inif  and damf  denote the initial and changed frequencies 

after damage respectively. 

1 ( )f Hz  (%)dam

ini

f
fTarget (g) Earthquake 2 ( )f Hz (%)dam

ini

f
f

 
3 ( )f Hz  (%)dam

ini

f
f

Initial  6.348 100.0 7.141 100.0 7.599 100.0 
El Centro 6.287 99.0 7.080 99.1 7.507 98.8 
Loma Prieta 6.012 94.7 6.989 97.9 7.324 96.4 
Kobe 6.012 94.7 6.805 95.3 7.294 96.0 
Northridge 5.997 94.5 6.897 96.6 7.278 95.8 

0.05 

Chi-Chi 5.981 94.2 6.821 95.5 7.263 95.6 
El Centro 5.936 93.5 6.790 95.1 7.248 95.4 
Kobe 5.920 93.3 6.760 94.7 7.217 95.0 
Northridge 6.027 95.0 6.882 96.4 7.278 95.8 
Loma Prieta 5.875 92.5 6.805 95.3 7.233 95.2 

0.10 

Chi-Chi 5.844 92.1 6.775 94.9 7.202 94.8 
El Centro 5.920 93.3 6.790 95.1 7.248 95.4 
Kobe 5.859 92.3 6.775 94.9 7.233 95.2 
Northridge 5.890 92.8 6.805 95.3 7.202 94.8 
Loma Prieta 5.936 93.5 6.805 95.3 7.141 94.0 

0.15 

Chi-Chi 5.920 93.3 6.867 96.2 7.156 94.2 
El Centro 5.814 91.6 6.744 94.4 7.065 93.0 
Kobe 5.631 88.7 6.622 92.7 7.034 92.6 
Northridge 5.585 88.0 6.668 93.4 7.019 92.4 
Loma Prieta 5.753 90.6 6.638 92.9 7.065 93.0 

0.20 

Chi-Chi 5.615 88.5 6.622 92.7 6.989 92.0 
El Centro 5.127 80.8 6.424 90.0 6.729 88.6 0.30 
Kobe 4.807 75.7 6.180 86.5 6.470 85.1 

0.25 Kobe       
0.2 Kobe       
0.2 Chi-Chi 4.684 73.8 6.149 86.1 6.363 83.7 

El Centro 4.234 66.7 5.898 82.6 6.274 82.6 
Kobe 4.114 64.8 5.716 80.0 5.760 75.8 

0.30 

Chi-Chi 2.884 45.4 5.356 75.0 5.722 75.3 
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Table 5.3 The maximum deformation (δm), dissipated energy (E) and estimated Park 
and Ang index (DPA) of each story under the shaking of 0.3g Chi-Chi earthquake 

after soil amplification. 

Story 
mδ  (mm) E (N.m) 

2 1/ (%)p p  PAD  

1 1.21  36.45 1.65 0.507  
2 1.27  34.20  1.41  0.506  
3 2.82  217.84  1.54  1.125  
4 2.12  157.88  2.10  1.131  
5 2.12  152.08  2.02  1.130  
6 2.12  145.97  1.94  1.129  
7 2.12  139.56  1.86  1.128  
8 2.12  132.85  1.77  1.127  
9 2.12  125.83  1.68  1.126  

10 2.12  118.50  1.58  1.125  
11 2.12  110.77  1.47  1.124  
12 2.12  102.64  1.37  1.123  
13 2.12  94.11  1.25  1.122  
14 2.12  85.18  1.13  1.120  
15 2.12  75.84  1.01  1.119  
16 2.12  66.10  0.88  1.117  
17 2.12  56.01  0.75  1.116  
18 2.12  45.56  0.61  1.114  
19 2.12  34.75  0.46  1.113  
20 2.12  23.58  0.31  1.111  
21 3.17  18.09  0.17  1.109  

Overall Park and Ang damage index 1.102   

Remark: 
The term p2/p1 in the fourth column denotes the ratio between the second term and the first term in the 

definition of Park and Ang damage index shown in Equation (4.13) [i.e. p1=δm/δu and p2=βʃdE/(Qyδu)]. 
 
 
 

Table 5.4 Park and Ang damage indices and overall drift ratios corresponding to the 
onset of various damage states. 

Overall drift ratio 
Damage 

Park and Ang damage 
index Before soil amplification After soil amplification

Minor 0.12 1/543 1/556 
Moderate 0.25 1/261 1/274 
Severe 0.4 1/163 1/173 
Collapse 0.8 1/82 1/87 
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Table 5.5 Maximum strain, rotation, drift ratio and amplification factor for various earthquake inputs. 

No. Target 
(g) Earthquake Site PGA (g) Strain ( )θ o  overallIDR maxIDR Aβ Damage 

1 Rock 0.040 131* 0.007 1/3693 1/3524 4.66  None 
 

El Centro 
Soil 0.055 217* 0.007 1/2692 1/1745 3.02   

2 Rock 0.043 55* 0.004 1/13303 1/8463 2.38   
 

Loma Prieta 
Soil 0.046 183* 0.008 1/2621 1/2407 3.52   

3 Rock 0.037 132* 0.006 1/4194 1/3425 3.12   
 

Kobe 
Soil 0.053 253* 0.008 1/2262 1/2038 3.61   

4 Rock 0.030 53* 0.004 1/10270 1/9027 2.68   
 

Northridge 
Soil 0.049 212* 0.010 1/2783 1/2618 3.25   

5 Rock 0.035 172* 0.005 1/3104 1/2836 4.17   
 

0.05 

Chi-Chi 
Soil 0.067 212 0.004 1/2311 1/2280 2.67   

6 Rock 0.08 229* 0.010 1/1914 1/887 5.06   
 

El Centro 
Soil 0.10 411* 0.013 1/1294 1/501 2.89   

7 Rock 0.06 327* 0.014 1/1561 1/1455 5.04   
 

Kobe 
Soil 0.09 443* 0.018 1/1066 1/750 3.55   

8 Rock 0.09 179 0.005 1/3755 1/3190 2.88   
 

Northridge 
Soil 0.09 381* 0.016 1/1381 1/1282 3.40   

9 Rock 0.07 143 0.010 1/4467 1/3362 2.39   
 

Loma Prieta 
Soil 0.09 435 0.016 1/1058 1/989 4.53   

10 Rock 0.07 398* 0.011 1/1257 1/1171 4.37   
 

0.10 

Chi-Chi 
Soil 0.11 452 0.007 1/1127 1/639 2.35   

11 Rock 0.10 351 0.015 1/1315 1/637 4.72   
 

El Centro 
Soil 0.15 774 0.020 1/824 1/370 2.90   

12 Rock 0.1 472 0.017 1/972 1/902 4.92   
 

Kobe 
Soil 0.14 944 0.022 1/686 1/498 3.17   

13 Rock 0.12 340 0.007 1/2438 1/2261 2.43   
 

Northridge 
Soil 0.13 671 0.022 1/930 1/866 2.78   

14 Rock 0.12 359 0.014 1/2650 1/2312 2.52   
 

Loma Prieta 
Soil 0.12 970 0.017 1/695 1/648 4.81   

15 Rock 0.10 702 0.016 1/796 1/743 4.44   
 

0.15 

Chi-Chi 
Soil 0.16 1147 0.007 1/708 1/414 2.47   

16 Rock 0.13 742 0.015 1/1011 1/429 4.44   
 

El Centro 
Soil 0.18 1309# 0.022 1/593 1/305 3.27   

17 Rock 0.13 971# 0.020 1/663 1/611 5.43   
 

Kobe 
Soil 0.18 1591 0.019 1/447 1/369 3.42  Minor

18 Rock 0.16 447 0.007 1/1768 1/1569 2.14  None 
 

Northridge 
Soil 0.19 982# 0.024 1/732 1/360 2.34   

19 Rock 0.15 476 0.013 1/1696 1/1456 2.70   
 

Loma Prieta 
Soil 0.16 1483 0.017 1/462 1/444 4.14  Minor

20 Rock 0.13 1132# 0.016 1/546 1/507 4.63  None 
 

0.20 

Chi-Chi 
Soil 0.22 1670 0.012 1/444 1/371 2.48 Minor

21 Rock 0.22 1223 0.021 1/624 1/313 3.17 None 
 

El Centro 
Soil 0.32 1817 0.030 1/270 1/145 3.21 

22 Rock 0.25 1301 0.031 1/478 1/440 2.38 
Minor 

 

0.30 

Kobe 
Soil 0.30 1825 0.030 1/208 1/166 2.91 

23 0.25 Kobe Soil 0.24 3234 0.027 1/207 1/178 3.44 
24 0.20 Kobe Soil 0.19 2894 0.028 1/225 1/210 3.93 
25 0.20 Chi-Chi Soil 0.24 2743 0.028 1/254 1/207 3.03  

Moderate 

  

  

26 Rock 0.22 1064 0.035 1/579 1/321 3.28  None 
 

El Centro 
Soil 0.28 3868 0.058 1/169 1/121 4.16  Severe

27 Rock 0.27 1908 0.048 1/315 1/295 2.57  Minor
 

Kobe 
Soil 0.29 4947 0.065 1/128 1/101 3.93  Severe

28 Rock 0.22 1234# 0.059 1/276 1/247 3.15  Minor

 

0.30 

Chi-Chi 

Soil 0.32 5152 0.100 1/64 1/56 4.03  Collapse 

Remarks: for the maximum strain values, the symbol * means the maximum strain occurred at the strain gauge 2ε , 
# means at 25ε , and those not specified means at 11ε . 
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Table 5.6 The natural frequency ratio (fdam/fini), final softening index (DF), ductility 
(μ ), and Park and Ang damage index (DPA) caused by various earthquake inputs. 

No. Target 

 (g) 
Earthquake Site 

PGA 

(g) 
( )m mmΔ E(Nm) (%)dam

ini

f
f FD μ  

PAD  Damage 

1 Rock 0.040 0.75 2.57 0.137 0.017 
 

El Centro 
Soil 0.055 1.06 12.78 99 0.019 0.282 0.025 

2 Rock 0.043 0.19 0.26 0.035 0.004 
 

Loma Prieta 
Soil 0.046 1.07 4.16 95 0.103 0.192 0.025 

3 Rock 0.037 0.64 1.59 0.125 0.015 
 

Kobe 
Soil 0.053 1.22 9.10 95 0.103 0.221 0.028 

4 Rock 0.030 0.27 0.21 0.049 0.006 
 

Northridge 
Soil 0.049 0.99 7.59 94 0.108 0.181 0.023 

5 Rock 0.035 0.89 5.35 0.162 0.021 
 

0.05 

Chi-Chi 
Soil 0.067 1.15 3.44 94 0.112 0.208 0.027 

6 Rock 0.08 1.44 11.01 0.259 0.034 
 

El Centro 
Soil 0.1 2.19 60.24 94 0.126 0.483 0.052 

7 Rock 0.06 1.77 9.01 0.327 0.041 
 

Kobe 
Soil 0.09 2.58 35.12 93 0.130 0.465 0.061 

8 Rock 0.09 0.72 1.19 0.134 0.017 
 

Northridge 
Soil 0.09 2.00 29.98 95 0.098 0.367 0.047 

9 Rock 0.07 0.62 2.14 0.115 0.014 
 

Loma Prieta 
Soil 0.09 2.60 28.56 93 0.144 0.481 0.061 

10 Rock 0.07 2.21 23.56 0.406 0.052 
 

0.10 

Chi-Chi 
Soil 0.11 2.46 15.26 92 0.152 0.456 0.058 

11 Rock 0.1 2.11 21.86 0.382 0.049 
 

El Centro 
Soil 0.15 3.35 135.96 93 0.130 0.725 0.080 

12 Rock 0.1 2.83 20.65 0.527 0.066 
 

Kobe 
Soil 0.14 4.03 77.99 92 0.148 0.735 0.094 

13 Rock 0.12 1.13 2.40 0.208 0.026 
 

Northridge 
Soil 0.13 2.97 62.62 93 0.139 0.549 0.070 

14 Rock 0.12 1.00 3.72 0.185 0.024 
 

Loma Prieta 
Soil 0.12 3.96 65.86 94 0.126 0.720 0.093 

15 Rock 0.1 3.46 51.31 0.639 0.081 
 

0.15 

Chi-Chi 
Soil 0.16 3.89 36.90 93 0.130 0.790 0.092 

16 Rock 0.13 2.72 41.11 0.497 0.064 
 

El Centro 
Soil 0.18 4.79 275.20 92 0.161 0.992 0.115 

17 Rock 0.13 4.16 39.17 0.777 0.097 

None 

 
Kobe 

Soil 0.18 6.16 144.18 89 0.213 1.111 0.145 Minor
18 Rock 0.16 1.83 3.85 0.563 0.041 
 

Northridge 
Soil 0.19 4.31 83.00 88 0.226 1.252 0.098 

19 Rock 0.15 1.58 6.18 0.306 0.037 

None 

 
Loma Prieta 

Soil 0.16 6.01 132.85 91 0.179 1.094 0.140 Minor
20 Rock 0.13 5.04 93.89 0.937 0.118 None
 

0.20 

Chi-Chi 
Soil 0.22 6.13 89.62 88 0.217 1.103 0.144 Minor

21 Rock 0.22 4.46 77.52 0.804 0.105 None
 

El Centro 
Soil 0.32 10.46 737.01 81 0.348 1.911 0.249 

22 Rock 0.25 5.96 86.50 1.093 0.140 
Minor 

 

0.30 

  

  
Kobe 

Soil 0.3 13.32 521.06 76 0.427 2.438 0.315 
23 0.25  Kobe Soil 0.24 13.31 443.79 2.436 0.315 
24 0.20  Kobe Soil 0.19 12.28 353.00 2.263 0.289 
25 0.20  Chi-Chi Soil 0.24 10.83 310.77 74 0.455 1.972 0.255 

Moderate 

  

  

26 Rock 0.22 4.94 65.79 0.895 0.116 None
 

El Centro 
Soil 0.28 16.84 1465.11 67 0.555 3.085 0.405 Severe

27 Rock 0.27 8.74 86.33 1.611 0.204 Minor
 

Kobe 
Soil 0.29 21.70 1038.94 65 0.580 3.983 0.519 Severe

28 Rock 0.22 10.00 48.52 1.930 0.239 Minor

 

0.30 

Chi-Chi 

Soil 0.32 44.46 1973.79 45 0.794 8.519 1.102 Collapse 
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Table 5.7 Threshold values for various damage indices corresponding to the onset of 
various damage states. 

Damage PAD  μ  overallIDR  maxIDR  (%)dam

ini

f
f

 
FD  

Minor 0.145 1.111 1/447 1/369 89 0.213 
Moderate 0.255 1.972 1/254 1/207 74 0.455 
Severe 0.405 3.085 1/169 1/121 67 0.555 
Collapse 1.102 8.519 1/64 1/56 45 0.794 
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Degree of damage Photograph Description 

Slight 

 

Sporadic occurrence of 
cracking 

Minor 

 

Minor cracks throughout 
building. Partial crashing 
of concrete in columns. 

Moderate 

 

Extensive large cracks. 
Spalling of concrete in 
weaker elements. 

Severe 

 

Extensive crashing of 
concrete. Disclosure of 
buckled reinforcements. 

Collapse 

 

Total or partial collapse of 
building. 

 

Figure 5.1 Damage degrees classified by Park et al. (1985) and their corresponding 
descriptions and representative photographs. 
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Damage grade scale 

Damage 
rank 
after AIJ (1980) 

Damage rank scale 

Damage 
Pattern 
 
after Okada and 
Takai (2000) [4] 
 
 
 
 
after Takai and 
Okada (2001) [6] 

Damage statistics Moderate damage Major damage 

0.0       0.1       0.2       0.3       0.4        0.5      0.6       0.7       0.8 

Heavy damage

Rank 5 Rank 4 Rank 3Rank 2Rank 1 

Grade 5 Grade 4 Grade 2 Grade 1 Grade 3 

Damage Index 

Damage 
grade 
 

 

after EMS-98 [5] 

0.2               0.4              0.6               0.8  

 

Figure 5.2 Comparison of various damage classifications (Okada and Takai, 2004). 
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Maximum story damage index
Overall damage index 

A* 

0.2 0.4 0.6 0.8 1.0 1.2 

H (* Subsequently demolished) 
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 Collapse 
 
 

Severe  
 
 

Moderate  
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Slight  
 
 
 Damage Index 
 

Damage Level  Collapse 
 
 
Figure 5.3 Calibration of Park and Ang damage indices with observed damage levels 

(adapted from Park et al., 1985). 
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Figure 5.4 Comparison of displacements obtained from interpolation of recorded 
displacements (dashed line) and that from integration of recorded accelerations (solid 
line) at 15/F and 9/F as well as the displacements recorded by the LED transducer at 

3/F under the 0.2g Kobe earthquake input at rock site. 
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Figure 5.5 Maximum overall drift ratios vs. input PGAs for various earthquakes 
before and after soil amplification respectively. 
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Figure 5.6 Maximum inter-story drift ratios vs. input PGAs for various earthquakes 
before and after soil amplification respectively. 
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Figure 5.7 Estimation of the yield deformation when: (a) the model is taken as a 
uniform structure; (b) the model is divided into two segments at the transfer plate 

(‘TP’) level. 
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Figure 5.8 Maximum ductility vs. input PGA for various earthquakes before and after 

soil amplification respectively. 
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Figure 5.9 (a)-(e) Load-deformation curves of the story between 2/F and 3/F during the inputs of Chi-Chi earthquake without soil amplification 

of different PGAs, where E denotes the energy dissipated by the story and f1 is the first natural frequency of the structure; (f) sketch of the 
load-deformation curve within one cycle, with the shaded area representing the dissipated energy. 
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 PGA = 0.110g,  E = 1.39 Nm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10 (a)-(e) Load-deformation curves of the story between 2/F and 3/F during the inputs of Chi-Chi earthquake after soil amplification of 

different PGAs, where E denotes the energy dissipated by the story and f1 is the first natural frequency of the structure; (f) sketch of the 
load-deformation curve within one cycle, with the shaded area representing the dissipated energy. 
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Figure 5.11 Park and Ang damage indices vs. input PGAs for various earthquakes 
before and after soil amplification respectively. 

 
 

 230



 
 
 
 

 231

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) at rock site 

0

0.4

0.8

1.2

0 0.4 0.8 1.2 1.6

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4

Pa
rk

 a
nd

 A
ng

 d
am

ag
e 

in
de

x 

DPA = 0.6535IDRoverall-0.0003 
R2

 = 0.9993 

0.12 
Elastic range 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) at soil site 
 
 

Figure 5.12 Park and Ang damage indices (DPA) vs. overall drift ratios (IDRoverall) for 
various earthquakes before and after soil amplification respectively. 
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CHAPTER 6  DISCUSSIONS ON MODEL TESTING 

 

6.1 Summary of Model Tests 

 

In the first part of this thesis, the entire procedure of a reduced-scale model test 

was introduced, including the design and fabrication of the model, the shaking table 

tests and the interpretation of experimental results. In addition to visual inspections of 

cracks, the damages of the model in the tests were quantitatively evaluated using 

various seismic damage indices.  

The 21-story building model suffered none or minor damage when subjected to 

earthquakes of 0.15g peak acceleration. Under the shaking of earthquakes of 0.3g 

peak acceleration, the model suffered severe and irrepairable damages, and is close to 

the verge of total collapse. The performance of this model is considered to satisfy the 

three-level design philosophy specified in Chinese Code for Seismic Design of 

Buildings (GB 50011-2001, 2001) as described in Section 4.1.1. From this aspect, the 

present test results are consistent with the previous shaking table test on a 42-story 

building model in Hong Kong conducted by Li et al. (2006). 

Most of damages occurred at the transfer plate and the upper stories above it. 

Similar failure pattern has also been observed in the test of Li et al. (2006). Thus, 

transfer system and the stories above it appear to be the weakest parts for this type of 

buildings, which are susceptible to severe damage under earthquakes attacks and 
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should be strengthened in design. Abrupt change of stiffness at the transfer zone 

should be avoided as far as possible. 

The asymmetric structural layout induced diagonal rocking in the model, which 

caused severe damages to corner elements. This rocking failure mechanism was found 

for the first time in this study and has not been reported in other shaking table tests, 

including that of Li et al. (2006). Therefore, asymmetric building layout should be 

used with caution in practice and much attention should be paid to the reinforcement 

detailings of corner elements. 

An approximate but simple algorithm is proposed to estimate Park and Ang 

damage indices for complex structures from limited measurement of responses in 

laboratory. Utilizing the well-calibrated Park and Ang damage index as a benchmark, 

several other damage indices, including the inter-story drift ratio, ductility, frequency 

ratio and final softening index, are correlated with various damage states. The present 

results provide a more reliable threshold values for various damage indices for the 

first time. This correlation is expected to be applicable to other similar buildings in 

Hong Kong and provides a practical approach to assess seismic damages rapidly. In 

this sense, the results of this study are of both academic and practical merits. 

 

6.2 Comparison with FEM Analysis Results 

 

In Chapter 2, a FEM model was established in SAP2000 for the same 1:25 

building model. Both modal analyses and time history analyses under the shaking of 
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0.1g Kobe earthquake without soil amplification were conducted. The predictions 

from the FEM analyses are comparable to the results from the shaking table tests in a 

number of aspects. For example, in the FEM analyses the maximum inter-story drift 

ratio occurred at the upper stories above the transfer plate (Figure 2.8), and the first 

two stories below the transfer plate had much smaller responses compared to the 

upper stories (Figure 2.7). In the shaking table tests, most of damages occurred at the 

upper stories and no visible crack was found at the first two stories. However, 

although the FEM model succeeds in predicting the stress concentration at the story 

just above the transfer plate, the locations of strain concentration found in the 

experiments do not agree completely with that of FEM predictions. 

The mode shapes of the first six modes at the initial state from both experiments 

and FEM analyses are compared in Figure 6.1. Note that the mode shape has been 

normalized with respect to the largest component along the two horizontal directions 

for each mode. It can be seen that the mode shapes given by the two studies fit fairly 

good except for some discrepancies for the higher modes. 

The acceleration and displacement responses at the roof during the shaking of 

0.1g Kobe earthquake are compared in Figure 6.2 for the FEM analyses and shaking 

table tests. Figure 6.2(a) shows the input generated by the shaking table is quite close 

to the FEM input. From Figure 6.2(b), the acceleration responses at the roof given by 

the two studies are quite similar except for one abnormally large negative peak 

occurring in the tests. Although the displacement responses at the roof from the FEM 

analyses are different from the recorded responses in the test, the maximum 
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displacements from the two studies are comparable [Figure 6.2(c)]. 

However, discrepancies also exist between the FEM predictions and the test 

results. For example, compared to the initial natural frequencies measured in the tests 

(see Table 5.2), the FEM predictions (see Table 2.2) are much smaller. Both the 

maximum inter-story drift ratios (1/680, see Figure 2.8) and rotation angle at the roof 

(0.054°, see Figure 2.9) given by the FEM analyses are larger than the test results 

(1/902 and 0.017° respectively) for the same earthquake input (the 0.1 PGA Kobe 

earthquake at rock site in Table 5.5).  

These discrepancies may be due to the uncertainties in the FEM analysis. As 

emphasized in Chapter 2, FEM analysis is for idealized model (such as line element 

concept for beam and column and rigid floor assumption). Inappropriate assumptions 

adopted may result in large deviations between FEM predictions and test results. 

Actually, as found in our tests, the rigid floor assumption may not be appropriate for 

the present structure (refer to Section 4.3.1). The discrepancies of the FEM analysis 

may also come from the deviations of material strength and element dimension in the 

FEM model with respect to the actual physical model. As discussed in Section 3.4.3, 

substantial amount of variations exists for the strength of micro-concrete at different 

stories in the physical model, whereas a uniform material was used in the FEM model.  

All these factors led to the discrepancies between the FEM predictions and the 

test results. To eliminate these discrepancies, proper adjustment and refinement of the 

FEM model, or called model updating, should be carried out by utilizing data 

acquired from the tests (Mottershead and Friswell, 1993). Model updating has been a 
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rapidly developing subject, but it is out of the scope of the present study. 

 

6.3 Interpretation on Prototype Seismic Performance 

 

Both the shaking table tests and FEM analysis described previously concentrate 

on the reduced-scale building model. It is important to know how the test results can 

be interpreted onto the seismic performance of the actual building, or in other words, 

to what extend the seismic behavior of the model can reflect that of the prototype. For 

this purpose, the structural features of elements between the model and the actual 

building are compared in this section. The analytical methods used in this section are 

mainly suggested by Prof. K. Kasai from Tokyo Institute of Technology. 

 

6.3.1 Beam 

Theoretical moment-curvature curves for reinforced concrete sections with 

flexural and axial load can be derived based on the plane section assumption (Park 

and Paulay, 1975). Figure 6.3 sketches the procedure of the determination of 

moment-curvature curve for a rectangular section with axial force and flexure. The 

stress-strain curves for steel and concrete are shown in Figures 6.3(a) and 6.3(b), 

where fy is the yield strength of steel and "
cf  is the strength of concrete. For a given 

concrete strain in the extreme compression fiber cmε  and neutral axis depth kd, the 

steel strains siε  of bar i at depth di can be determined from the strain diagram shown 

in Figure 6.3(c) as following (Park and Paulay, 1975): 
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         i
si cm

kd d
kd

ε ε −
=                            (6.1) 

Then, the steel stresses sif  can be determined from the steel stress-strain curve as 

shown in Figure 6.3(a), and the steel forces  can be found based on the stresses 

and the areas of bars as: 

iS

i siS f Asi=                              (6.2) 

The concrete strain over the compressed part of the section can be determined 

similarly from the strain diagram and then the corresponding concrete stress can be 

determined from the concrete stress-strain curve [Figure 6.3(b)]. As shown in Figure 

6.3(c), the concrete compressive force Cc acting at position kdγ  can be defined as 

(Park and Paulay, 1975): 

"
c cC f bkα= d                             (6.3) 

where α  and γ  are two parameters determined from the stress-strain relationship 

of the concrete. For rectangular sections, they can be written in the following forms: 

0
"

cm

c c

c cm

f d

f

ε
ε

α
ε

= ∫                            (6.4) 

0

0

1
cm

cm

c c c

cm c c

f d

f d

ε

ε

ε ε
γ

ε ε
= − ∫

∫
                        (6.5) 

where fc and cε  denote the stress and strain of the concrete [Figure 6.3(b)]. 

Then the force equilibrium equations can be written as (Park and Paulay, 1975): 

"

1

n

c
i

P f bkd f Aα
=

= +∑ si si                       (6.6) 

"

1
( ) (
2 2

n

c si
i

h )si i
hM f bkd kd f A dα γ

=

= − +∑ −               (6.7) 

And the curvature of the element is given as (Park and Paulay, 1975): 
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cm

kd
εϕ =                            (6.8) 

Thus the theoretical moment-curvature relation for a rectangular section can be 

determined by incrementing the concrete strain at the extreme compression fiber cmε . 

For each value of cmε , the neutral axis depth kd is found by adjusting kd until the 

force equilibrium in Equation (6.6) is satisfied.  

Figure 6.4 shows the obtained moment-curvature curve of a beam (of 12×22mm) 

at 1/F of the model (the solid line), where the dashed line is the moment-curvature 

curve of the corresponding beam in the prototype after scaled down according to the 

similarity law ( 3
M lσλ λ λ= ). The sections of the model and prototype beams are also 

shown in the figure (refer to Section 3.3.3 for steel strength). Note that the moment 

and curvature values in the figure have been normalized by bd2 and d respectively. It 

is seen that the moment capacity of the model beam is about 2.5 times of the desired 

value. The same calculation has been done for several other typical beams and the 

ratios range from 2.5 to 6 times. On the other hand, the model beams have a smaller 

ductility compared to the prototype elements, suggesting that they are over-reinforced.  

Although the beams of the model are over-designed from the aspect of bending, 

most of their damages occurring in our shaking table test are shear failures (see 

Figures 4.26, 4.33, 4.34 and 4.36). The shear capacities of beams have also been 

estimated using the formula from Chinese Code for Design of Concrete Structures 

(GB50010-2002, 2002) as following: 

         00.7 1.25 sv
u t yv

AV f bh f
s

= + 0h                     (6.9) 

where ft is the tensile strength, b and h0 are the width and effective depth of the 
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section, fyv is the yield strength of the hoop, Asv and s are the cross-sectional area and 

spacing of the hoop respectively. The results are listed in Table 6.1. It is seen that 

although deviations exist between the model and the prototype, their shear capacities 

are comparable. Thus from the aspect of shear resistance, the design of beams should 

be reasonable. 

 

6.3.2 Column 

Using the same method, the theoretical moment-curvature curves were obtained 

for rectangular columns in the model and prototype. Figure 6.5 shows an example, 

where the solid line is the moment-curvature curve of a column (of 27.4×60mm) at 

1/F of the model and the dashed line is the desired curve determined from the 

prototype. Similarly the column has an over 2 times larger moment capacity. 

The theoretical moment-curvature curves have also been obtained for circular 

columns in the model using a similar method as that of Park and Paulay (1975). As 

sketched in Figure 6.6, the determination procedure is similar as that described in 

Section 6.3.1 except for the determination of the concrete compressive force Cc and 

its acting position kdγ . Using the coordinate system shown in Figure 6.6(c), the 

concrete compressive force Cc can be obtained as: 

( )

0 ( ) 0
( ) ( ) 2 ( ) ( )

kd l y kd

c c c cl y
C f y dxdy dy f y dx l y f y dy

−
= = =∫∫ ∫ ∫ ∫         (6.10) 

where fc(y) is the concrete stress and 2 2( ) ( / 2) ( / 2 )l y h h kd y= − − + . Since from 

the strain diagram we have c
cm

kdy ε
ε

= , the concrete force Cc can be further written as: 
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0

2 ( ) ( )cm

c c c
cm

kdC l f
ε

c cdε ε ε
ε

= ∫                    (6.11) 

In a similar way, the moment of the compressed part of concrete about the neutral axis 

Mcn can be obtained as: 

2

0
2 ( ) ( )cm

cn c c c c c
cm

kdM l f d
ε

ε ε ε ε
ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫                (6.12) 

Thus the acting position kdγ  of the concrete compressive force Cc can be 

determined through (1 ) c McnkdCγ− =  as: 

0
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l f d

l f d

ε

ε

ε ε ε ε
γ

ε ε ε
= − ∫

∫ ε

si

                   (6.13) 

Similar as Equations (6.6) and (6.7), the force equilibrium equations can be 

written as: 

1

n

c si
i

P C f A
=

= +∑                        (6.14) 

1

( ) (
2 2

n

c si si
i

h )i
hM C kd f Aγ

=

= − + −∑ d               (6.15) 

Thus, with the curvature given by Equation (6.8), the theoretical moment-curvature 

relation for the circular section can be determined by incrementing the concrete strain 

at the extreme compression fiber cmε .  

The shear strength of circular columns has been estimated using the ATC-40 

shear assessment equations as following (Kowalsky and Priestley, 2000): 

         ( )'
10.29 0.8 '

13.8 0.6
v yhe

u c g
g

A fPV k f A
A s

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
D             (6.16) 

where '
cf  is the compressive strength of concrete, fyh is the yield strength of the hoop, 

Av and s are the cross-sectional area and spacing of the hoop, Ag is the column gross 
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section area,  is the core diameter measured to the centerline of the hoop, Pe is the 

axial load, and the variable  equals 1 for a displacement ductility of 2 or less and 

equals 0 for a displacement ductility greater than 2. The results for two types of 

circular columns are also listed in Table 6.1. Note that here 

'D

1k

0eP =  and  have 

been assumed to compare the element features of the model and the actual building. 

1 1k =

Figure 6.7 shows an example of the obtained moment-curvature curves of a 

circular column of 48mm diameter. It is seen that the moment capacity of the model 

column is over 6 times of the desired value. However, although the bending capacity 

of the prototype is over-estimated, the shear capacities of the columns (rectangular or 

circular) between the model and prototype are more comparable (see Table 6.1). Since 

frame structures normally tend to deflect in a shear mode (Smith and Coull, 1991), the 

model appears to be more reasonable in reflecting the shear behavior of the prototype. 

 

6.3.3 Wall 

The ultimate strength of walls in compression and bending was determined using 

the idealized stress block method (Irwin, 1984). As shown in Figure 6.8, collapse 

occurs when the sketched plastic stress blocks are reached. The compressive 

resistance of the concrete is 0.4c cuN f tL=  and that of the total steel area (As) is 

' 0.72s yN = sf A

0.87

, where fcu and fy are the strength of the concrete and steel, t and L are 

the depth and length of the wall section respectively, and the tensile strength of the 

steel is s y sfN A=  (Irwin, 1984). In the presence of an axial load N, the neutral 

axis depth xp is given by equilibrium of concrete and steel stress blocks as: 
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         / ( ) /(p s u )sx L N N N N= + +                     (6.17) 

where  is the ultimate compressive strength of the wall in the absence 

of moment (Irwin, 1984). The ultimate moment that the wall can transfer is (Irwin, 

1984) 

'
u cN N N= + s

         ( )(
2

s u
u

u s

N N N NLM
N N

)+ −
=

+
                     (6.18) 

Figure 6.8 shows a normalized ultimate moment-axial load diagram of a wall 

above the transfer plate in the model and prototype. The wall in the model (t=14 mm, 

L=168 mm) uses 2 layers of steel mesh of 1.2 mm diameter wire at 12.7 mm spacing 

as reinforcements, whereas the prototype wall (t=350 mm, L=4200 mm) has the 

reinforcements of 2 layers of 20 mm diameter bars at 150 mm spacing. It is seen that 

the bending behaviors of the walls are comparable between the model and the 

prototype. There is an about 12% deviation on the ultimate bending moment capacity 

between the model and prototype. Since walls tend to deflect in a flexural 

configuration (Smith and Coull, 1991), the simulation of walls in the model is deemed 

to be reasonable. Actually no shear failure of walls has been observed in the test. 

Therefore the failure pattern of walls in the model may also happen to the actual 

building, for example, the crashing of walls above the transfer plate (see Figure 4.28), 

provided similar horizontal cracks occur at the transfer plate. 

 

6.3.4 Discussion and recommendation 

It is difficult to exactly satisfy the similarity law in reduced-scale modeling of 

reinforced concrete structures, especially in small-scale modeling. Due to technique 
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constraints, a small length scale ( 1/ 25lλ = ) was used in the present study. It remains 

a major challenge on how to satisfy the similarity law as much as possible using 

existing techniques and commercially available materials. 

Figure 6.9 shows such an example. In the figure the solid line is the desired 

moment-curvature curve for the 12×22mm beam (the beam shown in Figure 6.4) 

scaled from the prototype following the similarity law and the dashed lines are the 

moment-curvature curves of beams with different reinforcements, where the symbol 

m nφ  means m units of bars of nmm diameter. It is seen that the design of 4 1φ  

reinforcement has a lower bending capacity than the desired value. Although the other 

two designs with 1 2φ  and 2 2φ  reinforcements have more comparable bending 

capacities to the desired curve, it is questionable the behaviors of these sections with 

only 1 or 2 reinforcements can reflect the behavior of the actual element. Therefore, 

how to achieve an optimal design should be the primary task and paid much more 

attention to in the future reduced-scale modeling of reinforced concrete structures. 
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Table 6.1 Estimated shear capacity (Vu) of several columns and beams of the model 
and prototype, where φ  means diameter, the subscript ‘p’ means the prototype, ‘m’ 

means the model and ‘md’ means the desired value for the model. 
Item b (mm) h (mm) Vu,p (kN) Vu,md (kN) Vu,m (kN) Deviation (%)
Beam 12 22 482.22 0.18 0.22 −20.8 
Beam 12 20 319.06 0.12 0.19 −57.7 
Column 22 60 1793.14 0.68 0.81 −19.6 
Column 27.4 60 2154.05 0.81 0.90 −10.7 
Column 32 48 1947.03 0.74 0.76 −3.4 
Column φ 40 1318.24 0.50 0.88 −76.8 
Column φ 48 1826.43 0.69 1.24 −79.8 
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Figure 6.1 Comparison of the mode shapes of the first six modes at the initial state 
from both experimental measurements (solid lines) and FEM analyses (dashed lines). 
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Figure 6.2 Comparison of time histories from FEM analyses and shaking table tests 
during the input of 0.1g Kobe earthquake at rock site: (a) the inputs; (b) acceleration 

and (c) displacement responses at Corner II of the roof. 
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Figure 6.3 Theoretical moment-curvature determination for rectangular sections 
[modified from Fig. 6.5 of Park and Paulay (1975)]. 
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Figure 6.4 Theoretical moment-curvature curves for beams of the model and 

prototype (where φ  means diameter and @ means spacing). 
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Figure 6.5 Theoretical moment-curvature curves for rectangular columns (in the 

dashed circle) of the model and prototype (where φ  means diameter and @ means 

spacing). 
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Figure 6.6 Theoretical moment-curvature determination for circular sections 
[modified from Fig. 6.5 of Park and Paulay (1975)]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stress sf  
y 

cfStress  fs4 

Strain sε  

fy 

fs3 

fs1 

fs2 

1sε  2sε  

4sε  3sε  

(a) (b)

(d)
Elevation Section Strain Stress Internal 

forces 
External 
actions 

Strain cε  

cf

"
cf

cmε

cdε

h Neutral axis 

1 

2 

3 

4 

kd

cmε

1sε

2sε

3sε

4sε

ϕ

fs1

fs2

fs3

fs4

S1 

S2 

S3 

S4 

P 
M

h/2 
Cc 

kdγ  

kd
x

o 

(c) 

h/2
dy 

-l(y) l(y)

 250



 
 
 
 
 
 
 
 
 
 Model
 

φ 1.2@40 
 48 

8φ 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7 Theoretical moment-curvature curves for circular columns (in the dashed 

circle) of the model and prototype (where φ  means diameter and @ means spacing). 
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Figure 6.8 Ultimate moment-axial force curves for walls (in the dashed circle) of the 

model and prototype. 
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Figure 6.9 Theoretical moment-curvature curves for beams of the model and 

prototype (where φ  means diameter). 
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CHAPTER 7  NUMERICAL SIMULATION AND 

ANALYTICAL SOLUTION FOR TORSIONAL 

POUNDING 

 

7.1 Introduction 

 

Pounding between adjacent structures (such as buildings or bridges) or between 

different parts of a same structure during major earthquakes has been reported, and 

identified as one of the main causes of structural damages or complete collapse of 

structures (Berg and Degenkolb, 1973; Bertero and Collins, 1973; Bertero, 1986, 

1987; Davis, 1992; Filiatrault et al., 1994; Anagnostopoulos, 1988, 1994). For 

example, poundings between structures have been observed in the 1964 Alaska 

earthquake, the 1971 San Fernando earthquake, the 1985 Mexico City earthquake, the 

1989 Loma Prieta earthquake, the 1995 Kobe earthquake and the 1999 Chi-Chi 

earthquake. Both high-rise and low-rise adjacent structures are susceptible to 

pounding induced damage if they are not adequately separated. Pounding hazards may 

be especially severe in highly populated and crowded metropolis areas such as Hong 

Kong. Therefore, pounding induced hazards should also be considered when assessing 

the seismic vulnerability of buildings in Hong Kong. 

 

7.1.1 Review of previous studies on seismic poundings 
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7.1.1.1 Pounding hazard 

Seismic pounding means earthquake induced collision between adjacent 

structures, which have been identified as one of the causes of damages and, in some 

rare cases as, a primary cause for the initiation of collapse (Anagnostopoulos, 1994). 

Such collisions could be expected in city blocks, where buildings are in contact to 

each other, in case of buildings with external stairway towers or between units of 

interconnected complex structures such as hospitals, schools and industrial facilities 

(Anagnostopoulos, 1994). In essence, when adjacent structures having different 

dynamic characteristics are subjected to ground motion excitations, their vibrations 

will be out-of-phase and pounding will tend to occur when there are inadequate 

separations between them. 

Pounding between adjacent structures have been commonly observed during 

past earthquakes. Figure 7.1(a) shows an example of pounding induced severe 

damage during the 1999 Chi-Chi earthquake (Naeim et al., 2000). Previous 

investigations have revealed poundings may cause both architectural and structural 

damages. For example, pounding was observed in over 15% of the 330 collapsed or 

severely damaged structures during the 1985 Mexico City earthquake (Rosenblueth 

and Meli, 1986; Anagnostopoulos, 1996). During the 1989 Loma Prieta earthquake, 

there were over 200 pounding occurrences involving more than 500 buildings in San 

Francisco, Oakland, Santa Cruz, and Watsonville (Kasai and Maison, 1997). 
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Surveying nine earthquakes occurring from 1964 to 1989, Anagnostopoulos 

(1994) found that although pounding is frequently observed during strong earthquakes, 

most of the observed damages are local, non-structural, or minor structural damage. 

The severest damages occur when the columns of a building are hammered at 

mid-story by the roof or a floor slab of a stiff and massive building. Such column 

damages may even cause partial or total failure (Anagnostopoulos, 1994).  

At present, buildings in metropolis cities tend to be increasingly taller and closer 

to each other due to the shortage of land and the ever increasing population. Figure 

7.1(b) shows an example of two 21-story buildings in Hong Kong which are almost 

touching with each other, and this is not uncommon in other places of Hong Kong. 

Under such circumstance, pounding may be the main cause of seismic damages in 

buildings. 

 

7.1.1.2 Pounding hazard mitigation 

Various remedial measures have been used to mitigate the seismic pounding 

hazard. The most straightforward method is to provide adequate separation distance 

between adjacent buildings to completely preclude the occurrence of pounding during 

strong earthquakes. This requirement has been prescribed in many building codes, 

such as the Uniform Building Code (UBC) 1993, National Building Code of Canada 

(NBCC) 1990, Chinese Code for Seismic Design of Buildings (GB50011-2001) 2001, 

and the National Earthquake Hazards Reduction Program code (NEHRP) 1991 [see 

the summary by Chau and Wei (2001)]. 
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For instance, Chinese Code for Seismic Design of Buildings (GB50011-2001, 

2001) prescribes a gap of 70 mm for frame structures shorter than 15 m and the gap 

should increase by 20 mm for every 4 m increase of height when the fortification 

intensity of the region is VII. For frame-shear wall structures and shear wall structures, 

the gap can be reduced to 70% and 50% respectively of the values prescribed above, 

but the minimum width should not be less than 70 mm. 

However, there is no well-accepted approach for the estimation of adequate 

separation distance between adjacent structures and much more research remains to 

be done. For example, UBC 1993 and NEHRP 1991 recommended the use of the 

“absolute sum” (ABS) method in summing the maximum vibrations of two adjacent 

buildings to estimate the required separation between them, whereas more refined 

approaches include the use of the “spectral difference” (SPD) method (Kasai et al., 

1996) and the “complete-quadratic-combination” (CQC) method (Hahn and Valenti, 

1997; Penzien, 1997). 

To determine the separation distance requirement between two structures during 

earthquakes, other approaches have also been proposed. For example, Stavroulakis 

and Abdalla (1991) used the pseudo static method, Filiatrault and Cervantes (1995) 

employed the nonlinear time history analysis, and Lin (1997) proposed a stochastic 

method of random vibration. Despite all these different methods have been used, there 

is, however, a consensus that the existing building codes for seismic pounding 

separations are too conservative (Chau and Wei, 2001). 
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However, pounding hazard mitigation by providing adequate separation 

distance sometimes is constrained by the limited land available, especially in crowded 

cities. Other pounding mitigation techniques proposed include the use of beam 

linkages between adjacent structures (Westermo, 1989), strong collision walls in 

structures (Anagnostopoulos, 1996), and rubber bearing between superstructure 

segments of bridges (Jankowski et al., 1998). 

 

7.1.1.3 Previous studies on seismic poundings 

In the last few decades, many investigations have been carried out on modeling 

seismic poundings between structures (Jing and Young, 1991; Davis, 1992; Maison 

and Kasai, 1992; Papadrakakis et al., 1996; Pantelides and Ma, 1998; Hao and Zhang, 

1999; Chau and Wei, 2001; Jankowski, 2005). In general, these studies can be divided 

into two main categories: namely, theoretical studies and experimental studies. 

Review on experimental investigations on this topic will be introduced in the next 

chapter and this chapter will concentrate on theoretical studies on seismic poundings. 

Seismic pounding between adjacent structures is a very complex phenomenon, 

which may involve plastic deformation, local crushing as well as fracturing at the 

contact, and these nonlinear deformations are not easy to be incorporated into the 

modeling of pounding. Therefore, idealizations and simplifications have inevitably 

been used in previous theoretical models. For example, structures have been idealized 

as rigid barriers, single-degree-of-freedom (SDOF) oscillators or multi-degree-of- 

freedom (MDOF) oscillators, and pounding between structures has been modeled by 
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linear dashpot-spring system or nonlinear impact model. Despite these simplifications, 

theoretical analyses have been valuable in providing insight into the complex 

pounding mechanisms. 

In general, previous theoretical studies can be based on either SDOF systems or 

MDOF systems as shown in Figure 7.2. The collisions between adjacent buildings are 

simulated either by means of special contact elements or by applying the impact laws 

of mechanics, with a coefficient of restitution for plastic impacts (Anagnostopoulos, 

1994; Mouzakis and Papadrakakis, 2004).  

The problem of pounding between SDOF systems has been studied by 

Kobrinski (1969), Miller (1980), Jing and Young (1991), and Davis (1992). The case 

of several buildings standing in a row subjected to pounding has also been studied by 

Anagnostopoulos (1988). The results revealed that the exterior structures, which are 

subjected to impacts in a single direction, tend to experience larger response 

amplifications than the interior structures. 

Among those studies, the pounding model by Davis (1992), which incorporates 

the nonlinear Hertzian impact, deserves more deliberation. In particular, Davis (1992) 

considered impacts between a SDOF oscillator and a neighboring barrier. The impact 

forces were described by the Hertz contact law. An analytical solution was obtained 

for the case of rigid impact. This model is considered to be more realistic because 

nonlinear contact has been incorporated, which reflects the reality that seismic 

poundings are seldom linear. 
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Employing the model of Davis (1992), Pantelides and Ma (1998) examined 

poundings between a damped SDOF structural system and a stationary rigid structure. 

The structural behavior may be either elastic or inelastic. The results showed that for 

moderate damping levels the displacement response is larger in the inelastic structure, 

however, the peak velocity, acceleration and pounding force as well as the number of 

pounding occurrences of the inelastic structure are significantly smaller than those of 

the elastic structure. 

Chau and Wei (2001) extended the model of Davis (1992) to consider 

poundings between two SDOF oscillators (Figure 7.3). An analytical solution is 

obtained for the case of rigid impact, which agrees qualitatively with their numerical 

simulations. Parametric studies are conducted to examine the influences of stand-off 

distance, natural period, damping ratio and contact parameter on poundings. 

Jankowski (2005) compared the linear viscoelastic model and nonlinear elastic 

model used for simulating seismic pounding. A nonlinear viscoelastic model was 

proposed, which modified the Hertz contact law by introducing a nonlinear damper 

during the approach period of the collision in order to simulate energy dissipation. 

Comparisons between the numerical simulations and the results of previous impact 

experiments [including the shaking table test conducted by Chau et al. (2003)] 

suggested that the proposed model can provide a reliable simulation of structural 

pounding during earthquakes. 

More recently, Muthukumar and DesRoches (2006) compared various impact 

models in modeling the seismic pounding response of adjacent structures, including 
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the stereomechanical model, linear spring model, Kelvin model, Hertz model, and 

Hertz model with a nonlinear damper (referred to as the Hertzdamp model by the 

authors). The results suggest that the Hertz model provides adequate results at low  

PGA (0.1-0.3g) levels of ground shaking, and the Hertzdamp model performs better at 

moderate (0.4-0.6g) and high (0.7-0.9g) PGA levels, for energy loss during impact 

being more significant at higher levels of PGA. 

Most of these studies assume a two-dimensional behavior, and only translational 

pounding is considered. However, as indicated in Chapter 1, actual structures may 

undergo torsional vibrations when subjected to earthquake excitations due to 

structural or non-structural reasons (Sedarat, 1989). Even when the adjacent buildings 

are nominally symmetric and the vertical plane passing through the centers of 

stiffness of the two buildings is parallel to the direction of excitation, the impact 

between them, as indicated by Leibovich et al. (1996), is not likely to be symmetric. 

This is because the gap between the two colliding floor slabs may be closed or 

narrowed at arbitrary points by accumulated hard debris [Figure 7.4(a)], and thus is 

seldom of exact constant width. In addition, as sketched in Figure 7.4(b), the vertical 

plane through the centers of stiffness of the two buildings is, more often than not, at 

an angle to the direction of excitation (Leibovich et al., 1996). All these factors may 

result in eccentric impacts. Therefore, torsional pounding is more common in practice 

and should be taken into account in modeling. 

Maison and Kasai (1990) considered pounding at a single floor level between a 

multi-story building and a rigid adjacent structure. The contact was modeled using a 
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linear spring. Torsional response was included and eccentric impacts were considered. 

But the impacts were enforced to occur only at the assumed contact point, whereas in 

practice floor rotation can lead to pounding at some other points along the interface of 

the two floor slabs (Leibovich et al., 1996). 

Leibovich et al. (1996) studied possible eccentric pounding between two 

symmetric single-story systems under seismic excitation as sketched in Figure 7.4. 

Pounding rebounds were modeled using the coefficient of restitution. It was found 

that eccentric impact results in larger response amplification than symmetric impact, 

but the amplification does not increase with eccentricity for symmetrically aligned 

systems due to the mutual constraint of the adjacent slabs.  

Papadrakakis et al. (1996) developed a three-dimensional finite element model 

for the simulations of the pounding response of two or more adjacent buildings during 

earthquakes. The contact-impact problem was formulated using the Lagrange 

multiplier method. The structures were modeled as MDOF systems using finite 

elements and with the possibility of contact between slabs or between slabs and 

columns. The contact points were located through a searching procedure among the 

candidate contact surfaces. However, it will be difficult and time-consuming to set up 

reliable finite element models for actual complex buildings. 

More recently, Mouzakis and Papadrakakis (2004) investigated the three- 

dimensional pounding of two adjacent buildings with linear and nonlinear responses. 

The formulation took into account three-dimensional dynamic contact conditions for 

both velocities and accelerations based on the impulse-momentum relationship, using 
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the coefficient of restitution and the ratio of tangential to normal impulses. The 

proposed formulation is computationally more efficient and easy to be incorporated 

into commercial computer codes compared to the Lagrange multiplier approach 

(Papadrakakis et al., 1996). 

 

7.1.2 Motivation of the present study 

 

Although considerable amount of research have been conducted on seismic 

pounding, the more realistic Hertz contact law has not been used to model torsional 

pounding between asymmetrical structures. Therefore, this chapter is intended to 

extend the models of Davis (1992) and Chau and Wei (2001) to consider the seismic 

torsional pounding between two adjacent asymmetrical single-story towers using the 

nonlinear Hertz contact law. This proposed problem is the simplest earthquake- 

induced torsional pounding problem. The result of this problem should provide 

insights for more complicated torsional poundings between real buildings. The 

fourth-order Runge-Kutta integration algorithm with an adaptive step size control will 

be used to numerically solve the differential equations. The details will be introduced 

in Section 7.2. 

An analytical solution will be derived for periodic rigid single pounding 

between an asymmetrical single-story tower and a neighboring barrier under 

sinusoidal wave excitations. Parametric studies will be carried out to investigate the 
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influence of various parameters on torsional pounding. The details will be introduced 

in Section 7.3. 

 

 

7.2 Numerical Simulation for Pounding between Two Flexible Towers 

 

In this section, torsional pounding between two asymmetrical single-story 

towers under harmonic ground shaking is considered. The Hertz contact law is used to 

model the impact force. The equations of motion of the system are first formulated 

and calculation of impact forces is discussed. Then the governing equations are 

numerically solved. Finally parametric studies are carried out to investigate the effects 

of excitation frequency, damping ratio, separation distance and eccentricity on 

torsional pounding. 

 

7.2.1 Formulation 

 

7.2.1.1 Equations of motion 

As shown in Figure 7.5, two adjacent rectangular single-story towers (A and B) 

of equal height and separated by a distance of a′ are considered. Each tower is 

supported by four identical square columns at its four corners. For simplicity, the 

dimensions of the two towers are assumed to be equal in this study (i.e.  

and ). The letters ‘CM’ and ‘CS’ in the figure denote the center of mass 

A Bl l l′ ′ ′= =

A Bw w′ ′= = w
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and center of stiffness of each tower respectively. Since the four supporting columns 

are identical and symmetrically distributed, CS coincides with the geometric center of 

each tower. The position of CM, however, is assumed to be a variable. The 

eccentricities between CM and CS are denoted by ,ix iye e′ ′  ( ,i A B)=  along the x and 

y directions respectively. Without loss of generality, only eccentricity along the y 

direction and ground motion along the x direction are considered in the present study 

(i.e. ). In addition, the tower slabs are assumed to be rigid in their own 

planes and frictionless contact is assumed. 

0Ax Bxe e′ ′= =

The motion of each model is described by three degrees of freedom, that is, two 

translational displacements along the x and y directions, ( )iu τ  and ( )iv τ , and one 

rotation about CM, ( )iθ τ  ( ), where ,i A B= τ  is the time. Then the equations of 

motion of each tower can be written in matrix form as: 
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       (7.1) =

where  is the lumped mass, im iI ′  is the moment of inertia of each tower about a 

vertical axis through the center of mass,  and ic ic′  denote the translational and 

torsional damping respectively, ixF ′  and iyF ′  are the pounding forces acting on each 

tower along the x and y directions respectively, iTθ′  is the torqure caused by pounding, 

and ( ) sig gu A gA is the input ground motion, where τ nωτ=  and ω  are the 

amplitude and the circular frequency of the ground excitation. The matrix  is the 

stiffness matrix of each tower. For the model shown in Figure 7.5, it has the form 

K i%
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where  is the lateral stiffness of each supporting column of the ith tower. For 

simplicity, all of the columns of the two towers are assumed to be identical (i.e. each 

column has a lateral stiffness of k). Thus, if we define KA and KB are the lateral 

stiffness of the two towers respectively, we have 

ik

4A BK K k= = . The two parameters 

 in Equation (7.1) have the following forms: ( ,i A )i B′Δ =

A (
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                       (7.3) 

Dividing the first two equations in Equation (7.2) by  and the third equation 

by  respectively, we get 
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In the above equations, the following definitions have been used: 
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where ixω  and iθω  are the circular translational and rotational frequencies, and ixζ  

and iθζ  denote the translational and rotational damping ratios of the ith tower. Using 

these definitions, the stiffness matrix becomes 
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If we further normalize the dimensions with the excitation amplitude ( gA ) as 

/i i gx u A= ,   and normalize the time with the translational 

natural frequency (

/i iy v A= g ),( BAi =

Axω ) of Tower A as Axt τω= , Equation (7.4) can be written in a 

dimensionless form as: 

For Tower A, 

1 1

1

2

3

1

1 cos
2 0 0

0 2 0
0 0 2

sin
1 0
0 1

A
A Ax

A Ax A

A A A

A A
Ay Ax

Ax A Ay Ay

A A
A A

Ay Ax
A A

tx
p px

y y

tx
pe F

e y e
Tpm me e

I I p

θ

θ

ζ
ζ

θ ζ θ

θ

⎧ ⎫−⎪ ⎪⎧ ⎫ ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥+⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎪ ⎪

⎪ ⎪⎩ ⎭
⎡ ⎤ ⎧ ⎫⎢ ⎥ − + Δ⎪ ⎪

F
⎧ ⎫⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥+ − − =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪⎢ ⎥ ⎩⎛ ⎞ ⎪ ⎪⎢ ⎥− ⎜ ⎟ ⎪ ⎪⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦

&
&&

&& &
&& &

⎪ ⎪
⎭

          (7.7) 

For Tower B, 
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where , , /ix ix ge e A′= /iy iy ge e A′= /i i Ag′Δ = Δ , 2/i i gI I A′=  ),( BAi = , / ga a A′= , 

/ gl l′= A , / gw w A′= , 1 Axp T T/ /Axω ω= = , 2 Bxp T T/ /Bxω ω= = , 

3p T / /A AT θ θω ω= = , 4p T T/ /B Bθ θω ω T= = ,  is the period of the ground motion 

( i.e. 2 /T π ω= ), and /A Bmm m=

im

/(ix ix gF F A′=

 is the mass ratio between the two towers. Since 

the two towers are assumed to have identical lateral stiffness (i.e. ), 

recalling , we have . The impact forces have 

been normalized as  and 

4A BK K k= =

2 /ix iKω = 2
2 1) ( / )=

/( )iy g AxF F A k

2p p( /Bx Axm ω ω=

)Axk iy ′= , and the impact torques 

have been normalized as /( / )Ax i ik I mi iT Tθ θ′=  ), BA(i = .  

 

7.2.1.2 Calculation of impact force 

Following the models of Davis (1992) and Chau and Wei (2001), the pounding 

forces are modeled by the Hertz contact law (Goldsmith, 1960) in this study: 

0
0 0

d for
F

for d

χβ⎧ ′ ′ ′d⋅ >′ = ⎨ ′ ≤⎩
                (7.9) 

where  denotes the penetration depth between the two towers at the pounding 

point, 

d ′

β ′  is the impact stiffness parameter, which is a function of the elastic 

properties and geometry of the two contact bodies (Goldsmith, 1960), and χ  is the 

contact force exponent. The value 2/3=χ  corresponds to the Hertz contact law, 

whereas 1=χ  represents linear contact. After applying normalization as described 

above, Equation (7.9) becomes 

0
0 0

d for
F

for d

χβ⎧ ⋅
= ⎨

d >
≤⎩

                 (7.10) 
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where the penetration depth is normalized as / gd d A′=  and the impact stiffness is 

normalized as 1/( )Ax gk A χβ β −′= . 

Note that pounding does not necessarily occur between neighboring corners of 

the two towers due to the possible torsional responses in this problem. For example, 

Corner C of Tower A may impact onto an arbitrary point on the edge EF of Tower B 

[see Figure 7.6(ii)]. In our calculations, the relative locations of the two towers are 

checked at every step to determine whether pounding occurs or not. If any pounding 

occurs, the locations of the impact point and consequently the penetration depth  

are determined. Then the impact forces and torques on each tower can be calculated 

using Equation (7.10). 

d

Totally there are thirteen different cases [(i)-(xiii)] for the torsional pounding 

between the two towers, as sketched in Figure 7.6. In the figure, boxes in bold lines 

represent towers without any rotation (θ = 0) whereas boxes in thin lines represent 

towers having rotation (θ ≠ 0). The letters A and B denote the centers of mass, and C, 

D, E and F denote the four corners on the adjacent edges of the two towers (with C, D 

on Tower A and E, F on Tower B). Since the tower slabs are assumed to be rigid in 

their own planes, the coordinates of the four corners ( , )i ix y  (i = C, D, E, F) at any 

time can be calculated from the displacements and rotations of the two towers. For 

example, the coordinates of Corner C can be determined as 

( ) cos ( )sin
2 2
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2 2

A A
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w lx x e e
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Depending on the rotations of the two towers when impact occurs and the 

direction of the resultant impact force, the thirteen impact cases shown in Figure 7.6 

can be categorized into three types (I-III). For each type, the penetration depths as 

well as the impacts forces and torques on each tower are sketched in Figure 7.7. Since 

frictionless contact is assumed in this study, the penetration depth and the resultant 

impact force are always perpendicular to the edges CD or EF when they are impacted 

by a corner of the other tower (see Figure 7.7). The checking of pounding condition 

and the calculation of impact forces will be discussed in details for each type of 

impact as follows: 

Type I: no tower has rotation [i.e. 0A Bθ θ= = , Figure 7.7(a)]. That is to say, 

the edge CD of Tower A is parallel to the edge EF of Tower B when impact occurs. 

Thus, the problem can be simplified to translational pounding between two SDOF 

oscillators, the same as the problem studied by Chau and Wei (2001). The pounding 

condition is C Ex x>  and the penetration depth is Cd x xE= −

x d

. The impact forces 

along the x direction on the two towers are Ax BF F χβ= − = − ⋅ , whereas the impact 

forces along the y direction ( ,Ay ByF F ) and the impact torques ( ,A BTT θ θ ) are all zero. 

Type II: only one of the towers rotates and the resultant impact force is along 

the x direction [including the cases (ii)-(v) in Figure 7.6]. For example, when only 

Tower A rotates (i.e. 0Aθ ≠  and 0Bθ = ) and Corner C impacts onto Tower B [see 

Figure 7.7(b)], the pounding condition is 

C Ex x>  and E C Fy y y≥ ≥ .                   (7.12) 
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The penetration is , and the impact forces along the x direction on the two 

towers are 

Cd x x= −

BxF F

E

Ax d χβ= − ⋅= − . The impact forces along the y direction ( ,Ay ByF F ) 

are still equal to zero, but the torques ( ,A BT Tθ θ ) caused by pounding are not zero. 

( )A Ax C AT F y yθ = − − , ( )B Bx CT F y yθ B= − −              (7.13) 

Note that torque in the anticlockwise direction is defined to be positive in this study. 

The above procedure illustrates the calculation of pounding forces when Corner C of 

Tower A impacts onto Tower B. The calculation procedure is similar for the case 

when Corner D of Tower A impacts onto Tower B or for the case when Tower B 

rotates and Tower A has no rotation. 

Type III: the resultant impact force is not parallel to the x direction [including 

the cases (vi)-(xiii) in Figure 7.6]. Our checking criterion for this type of pounding is 

that only when one corner of one tower and the center of mass of the other tower are 

on the same side of the adjacent edge of the latter tower, pounding will occur. For 

example, for Corner C of Tower A [see Figure 7.7(c)], the pounding condition is the 

points C and B are on the same side (below or above) of the edge EF, or in 

mathematic form, 

( )E F
C E C E

E F

y yy y x
x x

−
> + −

−
x  and (E F

B E B E
E F

y y )y y x
x x

x−
> + −

−
          

or ( )E F
C E C E

E F

y yy y x
x x

−
< + −

−
x  and (E F

B E B E
E F

y y )y y x
x x

x−
< + −

−
   (7.14) 

When both Equation (7.14) and E C Fy y y≥ ≥  are satisfied, it is considered that 

Corner C impacts onto Tower B. Similar checking procedure is also applicable to the 

other three corners. 
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When Corner C impacts onto Tower B, the penetration depth d is equal to the 

perpendicular distance of Corner C to the edge EF, as sketched in Figure 7.7(c). The 

resultant impact force caused by this penetration is F d χβ= ⋅ . Decompose this force 

into the x and y directions, and we get 

cosAx BxF F F α= − = − , sinAy ByF F F α= − = −             (7.15) 

where α  is the angle between the resultant force and the x direction. Then the 

torques acting on each tower by pounding can be written as: 

F

( ) ( )A Ax C A Ay C AT F y y F x xθ = − − + − , ( ) (B Bx C B By CT F y y F x xθ )B= − − + −   (7.16) 

 

7.2.1.3 Method of solution 

After impact forces and torques are determined, the torsional pounding between 

the two towers can be solved through Equations (7.7) and (7.8), which comprise of six 

coupled second-order differential equations. Although analytical solutions have been 

obtained for translational poundings between a SDOF oscillator and a neighboring 

rigid barrier by Davis (1992) as well as between two SDOF oscillators by Chau and 

Wei (2001), however, it is very difficult to obtain an analytical solution for the present 

torsional pounding problem. Therefore, numerical integration is used here to solve the 

system of differential equations. First we define the following vector: 

{ }y A A A A A A B B B B B Bx x y y x x y yθ θ ′= & && & & &
%

θ θ      (7.17) 

where the symbol  means transpose of vector. Then Equations (7.7) and (7.8) are 

rewritten as a set of 12 first-order differential equations as: 

′

( ,y y)f t=&
% %

                         (7.18) 
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with a initial value of  representing the initial displacements and velocities 

of the two towers. Finally this set of differential equations is numerically solved using 

the fourth-order Runge-Kutta method with an adaptive step size control (Press et al., 

1992). For each time step, the next value ( ) is determined by the present value 

( ) plus the product of the size of the time interval (h) and an estimated weighted 

average slope. If the error is larger than a tolerance, a smaller time step will be tried 

automatically. The allowable error in the iterations was set to 0.1%. The initial time 

step was set by the program automatically, typically in the order of 0.01, but this 

change with the current values of the first derivatives of the displacement variables. 

0( )y t =
% %

0y

%

n+1y
%

ny

In the numerical calculations, we found at some excitation frequencies there are 

only one or several transient impacts occurring at the beginning of excitation, and no 

continuous impacts occur. However, our interest in this study will be the cases with 

continuous impacts. To search for continuous impacts, the approach used by Davis 

(1992) and Chau and Wei (2001) is adopted here. In particular, the numerical 

integrations are first performed for 40 excitation cycles and all impacts occurred in 

the next eight cycles are reported. Through extensive numerical simulations, we found 

this approach also appears to be reasonable for our problem of torsional pounding. 

Note that when chaotic impacts occur, there are no steady-state responses and the 

adopted approach can only record the continuous impacts during the selected eight 

cycles. Thus, for chaotic impacts the results may be quite different if we choose 

another eight cycles. This is the intrinsic property of chaotic impacts, and will be 

shown further in Section 7.2.2.1. 
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7.2.1.4 Validation of the solving method 

Since error control has been followed in the iterations by using the fourth-order 

Runge-Kutta method with an adaptive step size control, the results obtained using the 

method are deemed to be reliable. But studies have still been conducted to validate the 

method before torsional pounding phenomena are discussed.  

For translation pounding, the results given by the present method have been 

compared with the results published by Davis (1992) and Chau and Wei (2001), and 

they gave nearly the same results. For torsional pounding, the method was further 

validated through the following way: setting the normalized eccentricity of Tower A 

(eAy/l) to be +0.1 and -0.1 respectively while keeping the other parameters all the same 

(eBy/l=0, 0.7, 1.5, / AxT T = /Ax BxT T = Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0), 

and comparing the resulting steady pounding phase diagrams. As shown in Figure 7.8, 

when the eccentricity of Tower A is changed from +0.1 and -0.1, the translational 

phase diagrams at the CMs of the two towers remain unchanged whereas the rotation 

phase diagrams change to be opposite. The results are considered to be reasonable, 

suggesting the method used in this study is valid. 

 

7.2.2 Numerical simulations and discussions 

 

7.2.2.1 Comparison of translational and torsional poundings 

First, we set Tower A to be asymmetric ( /Aye l =0.1) and keep Tower B to be 
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symmetric ( /Bye l = 0.0). The contact force exponent is set as χ =3/2 representing the 

Hertz contact, and the impact stiffness is set as β = 1000 representing a relatively 

stiff contact (Davis, 1992). In Figure 7.9, we plot the normalized relative impact 

velocity spectrum /( )g AxV A ω  versus the normalized excitation period / AxT T  for 

1.5, /Ax BxT T = Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03, /w l = 0.55 and 1.0. Recalling a =

/A Bm m= m  and , we get 2 2)T( /Bx Axm ω ω= ) ( /Ax Bx= T /A Bm m = 2.25, which means 

Tower A is more massive than Tower B. Each dot in the figure represents an impact. 

The impact velocity spectrum for translational pounding when 0.0 [i.e. Figure 

5 in Chau and Wei (2001)] is also plotted for comparison. It is seen that the impact 

velocity spectra for translational and torsional poundings have similar patterns. For 

both cases, the maximum impact velocity occurs at an excitation period between the 

natural periods of the two towers. Compared to translational pounding, the excitation 

period corresponding to the maximum impact velocity for torsional pounding shifts 

slightly towards the natural period of the more massive tower (

/ l =Aye

AxT ). 

However, several differences still exist between translational and torsional 

poundings. First, more chaotic impacts occur for torsional pounding. For translational 

pounding [Figure 7.9(a)], chaotic impacts only occur at limited excitation periods and 

most of the impacts are periodic or group periodic [i.e. a group of non-periodic 

impacts repeating themselves periodically, as discussed in Chau et al. (2003)]. 

However, for torsional pounding, most of the impacts are chaotic and group periodic 

impacts only occur at a limited range of the excitation periods. For these chaotic 

impacts, the recorded impact velocities within eight excitation cycles appear to be 

 276



quite scattered. In addition, the maximum impact velocity of torsional pounding is 

almost three times of that of translational pounding. All of these suggest that torsional 

pounding appears to be more complex and severer than translational pounding. 

As shown in Figure 7.9, differing from the translational pounding spectrum, 

there appears to be a local peak of impact velocity around the torsional period of 

Tower A ( AT θ ). Finally, the excitation periods corresponding to the onset of 

continuous impacts are the same (i.e. / AxT T = 0.44) for both translational and 

torsional poundings, whereas the longest excitation period at which continuous 

impacts occur for torsional pounding (i.e. / AxT T =1.39) is slightly larger than that of 

translational pounding ( / AxT T = 1.32). This suggests that torsional pounding is 

possible to occur in a wider excitation period range. But the overall difference is not 

significant. 

As discussed in Section 7.2.1.3, the impact velocity spectra shown in Figure 7.9 

are obtained by recording all of the impacts during the next eight cycles after forty 

excitation cycles (i.e. the 40-48th cycles). For comparison, the velocity spectrum 

during the 80-88th cycles for the same problem ( /Aye l =0.1) is plotted in Figure 7.9(b). 

It is seen that the overall spectrum pattern remains unchanged, except for some 

excitation periods at which chaotic impacts evolve. The largest difference occurs at 

the excitation period of 1.1, where the chaotic impact velocities during the 

80-88th cycles may be more than 10 times of that during the 40-48th cycles. This 

illustrates the unpredictability of chaotic impacts. However, the overall difference can 

be considered as minor and the approach of reporting impacts within the 40-48th 

/ AxT T =
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excitation cycles can be considered as acceptable. 

In Figure 7.9, the relative impact velocities are investigated, however, damages 

induced by pounding may be related more directly to impact forces. For comparison, 

both the impact force and the impact velocity spectra for the same problem are plotted 

in Figure 7.10. Compared to the impact velocity spectrum, the impact force spectrum 

seems to be more scattered [see the small attached diagram in Figure 7.10(b)]. 

Especially around the excitation period of / AxT T =0.9, the maximum normalized 

impact forces reach almost 3000, whereas most of the forces are smaller than 500. 

Note that for such large impact force, the adopted Hertz impact may become invalid 

and plastic yielding or crushing must be incorporated into the contact law. However, 

as a whole the impact force and velocity spectra have a similar pattern, and normally 

large impact velocities correspond to large impact forces. Therefore, the impact 

velocities are considered to be able to describe the severity of pounding and will be 

shown instead of impact forces in the following sections. 

Figure 7.9 reveals group periodic impacts (Chau et al., 2003) occur at a few 

excitation periods (e.g. / AxT T = 0.68-0.77, 0.87, 0.93-0.95 and 1.3-1.39). As an 

example, Figure 7.11 shows the phase diagrams and impact forces within one 

excitation cycle for 0.70. From the impact force time history, there are three 

impacts within one excitation cycle, occurring at the corners C, F and C respectively. 

These three impacts were represented by three sudden jumps to both translational and 

torsional velocities as observed in the phase diagrams. 

/T TAx =
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7.2.2.2 Effect of separation distance 

All the previous figures are for a =1.0, which means the separation distance 

between the two towers is equal to the amplitude of the ground motion. Here the 

Figures 7.12(a) and (b) show the results when the normalized separation ( / ga A

a =

) is 

changed to 0.5 and 4.0. For comparison, the impact velocity spectrum for 1.0 

shown in Figure 7.9 is also plotted as “+” symbols. With the separation distance 

increasing from 0.5 to 1.0 and further to 4.0, fewer impacts are observed and the 

excitation period ranges during which impacts can occur become narrower. However, 

the magnitude of the maximum impact velocity does not necessarily decrease with the 

increasing separation. For example, in Figure 7.12 the maximum velocity occurs 

when 1.0 instead of 0.5. In general, the overall patterns of these velocity 

spectra are similar. 

a = a =

This suggests that the impact velocity spectra seem to be insensitive to the 

variation of separation distance between adjacent structures as long as pounding is 

developed. This finding for torsional pounding is consistent with the conclusion on 

translational pounding drawn by Chau and Wei (2001). But if we keep increasing the 

separation distance to a critical value, no pounding will occur. And this critical 

separation is called the maximum stand-off distance, which means the minimum 

distance needed to preclude the occurrence of pounding between adjacent structures. 

The maximum stand-off distance will be investigated in Section 7.2.2.5. 

 

7.2.2.3 Effect of damping ratio 
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In all the previous figures, both the translational and the rotational damping 

ratios ( ixζ  and iθζ , ) have been set as 0.03. In Figure 7.13, we increase the 

translational damping ratios of the two towers to 

,i A B=

Ax Bxζ ζ= = 0.10 and remain the 

rotational damping ratios at A Bθ θζ ζ= =0.03. The results for Ax Bxζ ζ= = 0.03 shown 

in Figure 7.9 have also been plotted as “+” symbols for comparison. 

With the increased translational damping ratios, the impact velocities normally 

decrease and the maximum velocity decreases to only 20% of the original value. The 

excitation period ( / AxT T ) corresponding to the onset of continuous impact increases 

from 0.44 to 0.47. In addition, with the higher damping, more group periodic impacts 

instead of chaotic impacts occur. All these findings suggest that the translational 

damping ratios may influence the impact velocity significantly. Higher damping tends 

to result in a lower impact velocity and a simpler pounding pattern. 

In Figure 7.14, the rotational damping ratios of the two towers are increased to 

A Bθ θζ ζ= =0.10 and the translational damping ratios are kept at Ax Bxζ ζ= = 0.03. 

When θζ  increases from 0.03 to 0.10, the shape of the velocity spectrum remains 

almost unchanged and the maximum impact velocity drops to about 63%. However, at 

some excitation periods (for example, two particular periods near the rotational period 

AT θ  of Tower A), even larger chaotic impact velocities are observed for larger 

rotational damping. This illustrates the complexity of chaotic torsional pounding. But 

on the whole, the rotational damping seems to have a less significant effect on 

pounding than the translational damping. 
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7.2.2.4 Effect of eccentricity 

In all of the above investigations on torsional pounding, an eccentricity of 0.1 

has been assumed for Tower A ( /Aye l =0.1) whereas Tower B has been assumed to be 

symmetric ( /Bye l = 0.0). To investigate the effect of eccentricity, we first double the 

eccentricity of Tower A (i.e. /Aye l =0.2) and keep all the other parameters the same 

as those used in Figure 7.9. The results are shown in Figure 7.15.  

Compared to the spectrum of /Aye l =0.1, the shape of the impact velocity 

spectrum of 0.2 remains almost unchanged, and the maximum velocity is 

about 20% smaller. But at some excitation periods (such as those periods near 

/Aye l =

AT θ  

and ), the maximum impact velocities of BxT /Aye l = 0.2 are larger than that of 

0.1. For 0.2, the excitation period range during which impact is 

developed extends to about 

/Aye l = /Aye l =

/ AxT T =1.5, suggesting pounding is possible to occur at 

longer excitation periods for large eccentricity. However, on the whole the impact 

velocity spectrum is not affected significantly by the doubling of eccentricity. This 

may be due to the mutual rotational constraint of the two towers. Similar phenomenon 

has also been observed by Leibovich et al. (1996). 

In Figure 7.16, we keep the eccentricity of Tower A to be 0.1 and change Tower 

B to be asymmetric. In particular, the impact velocity spectra for  and 

 are plotted in Figures 7.16(a) and (b) respectively. Both of them are 

compared with the spectrum of 

/ 0.Bye l = 1

.1

0

/ 0Bye l = −

/Bye l =  given earlier in Figure 7.9. It is seen that 

when Tower B is also asymmetric, the excitation period ( / AxT T ) corresponding to the 

onset of continuous impacts decreases to near 0.3 and impacts are developed around 
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the torsional period of Tower B ( BT θ ). However, on the whole the shapes of velocity 

spectra are similar to that of /e l 0By = . But the pounding between two asymmetric 

structures seems to be more complex and almost all the impacts are chaotic. 

For the maximum impact velocity among the three cases ( ), 

the largest impact velocity is found for the case 

/ 0.1, 0, 0.1Bye l = −

0.1/Aye l =  and 0.1, 

whereas the smallest velocity is found for the case 

/Bye l =

0.1/Aye l =  and . 

Thus, it seems that larger impact velocity may be resulted when the two structures 

have eccentricities in a same direction, and medium impact velocity may be resulted 

when one structure is asymmetric and the other is symmetric. 

/ 0Bye l = − .1

 

7.2.2.5 Maximum stand-off distance 

Figure 7.17 shows the maximum stand-off distances versus the normalized 

excitation period / AxT T  for three different eccentricities of Tower A (i.e. 0.0, 

0.1 and 0.2). Tower B is still set to be symmetric (

/Aye l =

/Bye l = 0). All the other parameters 

are the same as those in Figure 7.9. These curves are obtained in the following 

manner: the numerical calculations are done for all / AxT T  from 0.01 to 2.0 in steps 

of 0.05 and for all  from 0 to 20 in steps of 0.25; for each a / AxT T , the maximum 

value of  on which continuous pounding is developed is recorded. The physical 

meaning of these curves is that the separation distance between the two towers must 

be larger than those critical values of  to preclude the occurrence of pounding. 

a

a

The curves of the maximum stand-off distances for the three eccentricities have 

similar shapes. The maximum stand-off distances of all cases occur near the natural 
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period of the more massive tower ( AxT ) and the secondary peaks occur near the 

natural period of the other tower ( ). It is easy to understand since structures tend to 

have larger responses when the excitation period is close to their natural periods, and 

thus larger distance is needed to avoid pounding. For the large eccentricity 

( ), the excitation period corresponding to the maximum stand-off distance 

has a small shift towards a value larger than 

BxT

/ 0.Aye l = 2

AxT  (Figure 7.17). In addition, there is a 

local peak near the torsional period of Tower A ( AT θ ), although it is not very clear 

from the plots.  

 

7.3 Analytical Solution for a Special Case: Torsional Pounding on 

Rigid Barrier 

 

In the previous section, the torsional pounding between two asymmetric 

single-story towers is modeled using the nonlinear Hertz contact law. The resulting 

governing equations are numerically solved. It is very difficult to obtain any 

analytical solution for such a coupled system [see Equations (7.7) and (7.8)]. However, 

the analytical solution is possible for a less complicated system, that is, the periodic 

rigid pounding between an asymmetric single-story tower and a neighboring rigid 

barrier. In this section, the equations of motion of such a system are first formulated 

and then the method of solution is proposed. Finally parametric studies are carried out 

to investigate the effects of input frequency, damping ratio, separation distance and 

eccentricity on torsional poundings. The analytical solution will also be compared 
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with numerical simulations. Although the method of solution proposed here is 

modified from that of Davis (1992) and Chau and Wei (2001), the mathematical 

problem here becomes more challenging with the inclusion of θ  variable. 

 

7.3.1 Formulation of rigid barrier pounding and method of solution 

 

7.3.1.1 Equations of motion 

As shown in Figure 7.18, the torsional pounding between an asymmetric 

single-story tower (Tower A) and a neighboring barrier is considered. Tower A is 

supported by four identical square columns at its four corners. The center of mass 

(CM) of Tower A is offset from the center of stiffness (CS), which is also the 

geometric center of the tower. For simplicity, only eccentricity along the y  direction 

( ) is considered here. The ground motion is perpendicular to the direction of 

eccentricity so that torsional response can be triggered. The translation 

ye′

( )u τ  and 

rotation ( )θ τ  of CM are defined in Figure 7.18(b), where τ  is the time. 

In this study, two different cases of the neighboring rigid barrier are considered 

following Davis (1992), that is, 

Case 1: the barrier is stationary, representing a very flexible and long period 

neighboring structure. The input excitation is characterized by a constant 

displacement amplitude as sing gu A ωτ= ; 

Case 2: the barrier is locked to the ground motion, representing a very stiff and short 

period neighboring structure. The input excitation is characterized by a 
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constant acceleration amplitude as sing gu A ωτ=&& . 

In these excitations, gA  and ω  are the amplitude and circular frequency of the 

input respectively. These two cases represent limits of response which are possible in 

the actual neighboring structure (Davis, 1992). For both cases, the equations of 

motion of Tower A can be expressed as: 

2 2 2

4 4 [ ( )]

4 ( 4 )
y x g

y y

mu cu ku ke F G u

I c ke u l w e k Tθ

θ τ

θ θ θ

′ ′+ + + = +⎧⎪
⎨ ′ ′ ′ ′ ′ ′+ + + + + =⎪⎩

&& &

&& & ′
              (7.19) 

where  and m I ′  are the mass and moment of inertia of Tower A,  and  are 

the translational and rotational damping coefficients respectively, k  denotes the 

lateral stiffness of each column of the tower, 

c c′

l′  and w′  are the dimensions of the 

tower along the and y x  directions respectively, ye′  is the eccentricity, xF ′  and 

Tθ′  are the force and torque on Tower A caused by pounding, and [ (g )]G u τ  denotes 

the forcing function which takes different forms for the two cases, 

Case 1: [ ( )] 4 ( ) ( )g gG u ku cugτ τ τ= + &                  (7.20) 

Case 2: [ ( )] ( )gG u mugτ τ= − &&                        (7.21) 

Note that in the above three equations, the displacement ( )u τ  is the absolute 

displacement of the tower for Case 1 condition, and is the relative displacement of the 

tower to the ground motion for Case 2 condition. Following Davis (1992), the same 

symbol ( )u τ  is used for both Case 1 and Case 2 for their mathematical similarity. 

For both cases, the impact force between Tower A and the barrier can be 

represented as: 
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[ ( )] ( ) ( ,

2 2

0 (
2

i i

x

i

w wu a for u a i C D
F

w

)

) ( , )for u a i C D

χβ
′ ′⎧ ′ ′ ′− − + > + =⎪⎪′ = ⎨ ′⎪ ′≤ + =

⎪⎩

      (7.22) 

where  is the displacement of either Corner C or Corner D on the tower, 

 is the separation distance, 

( , )iu i C D=

a′ β ′  is the impact stiffness, and χ  is the impact force 

component, which is equal to 3 / 2χ =  when the Hertz contact is assumed. 

If we normalize the displacement as / gx u A=  and the time as xt τω= , where 

4 /x k mω =  is the translational natural frequency of Tower A along the x direction, 

Equation (7.19) can be rewritten in a dimensionless form as: 

2 [

2
x x

x

( )]gx x x F G x t

x T
θ

θ θ θ

ζ η θ

θ ζ θ λ γ θ

+ + + = +⎧⎪
⎨

+ + + =⎪⎩

&& &

&& &
                  (7.23) 

Note that the superimposed dots in the above equations denote the derivatives with 

respect to the normalized time . In addition, the following definitions have been 

used: 

t

/(2 )x xc mζ ω= , /(2 )xc Iθζ ω′ ′= , /y ge Aθη ′= , 2 2/ xθ θγ ω ω= , 2 2 2 2( 4 )yl w e k Iθω /′ ′ ′= + + ′ ,   

/gA Ix ymeλ ′ ′= , 2/( )x x g xmAF F ω′= , 2/( )xT T Iθ θ ω′ ′= , / /x xp T Tω ω= =  

/y ye e A′= g /, ga a A′= , / gl l A′= , / gw w A′= , 2/ gI I A′=       (7.24) 

where  and T xT  denote the periods of the input and of the tower respectively, and 

p  is the ratio between them. Note that all the displacement or length variables have 

been normalized with respect to the amplitude of the excitation gA . The impact 

stiffness is normalized as 1/( )Ax gk A χβ β −′= . After the normalization, the forcing 

function  becomes [ (gG x )]t

1 2[ ( )] sin( / ) cos( / )gG x t E t p E t p= +                  (7.25) 
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where 1 and 1E = 2 2 /xE pζ=  for Case 1 condition, and 1E = 1 and 0 for 

Case 2 condition. 

2E =

The torsional pounding between the tower and the barrier is fully described by 

Equations (7.22)-(7.25). Similar to the procedure described in Section 7.2.1, this 

system of equations can be numerically solved. However, analytic solution is possible 

for this problem when the impact is rigid [i.e. β ′→∞  in Equation (7.22)]. For rigid 

impact, the contact time can be assumed to be zero and the rebound velocity is exactly 

equal to the negative of the impact velocity. For this special case, a closed-form 

solution will be obtained for periodic pounding between the tower and the barrier 

following the solution procedure by Davis (1992) and Chau and Wei (2001). In 

particular, they have obtained analytic solutions for translational pounding between a 

SDOF oscillator and a rigid barrier as well as between two SDOF oscillators. Their 

solution method will be further extended to torsional pounding in this section.  

 

7.3.1.2 Boundary conditions for periodic impact 

First of all, we assume a periodic pounding exists between the tower and the 

barrier. The rigid impact between them is governed by the law of conservation of 

translational momentum as well as the law of conservation of angular momentum. 

Between two consecutive impacts, the tower is in free flight, and thus the impact force 

and the impact torque in Equation (7.23) are all zero. When periodic pounding occurs, 

we can assume 0t t=  is the time right after an impact (i.e. the beginning of the free 

flight motion) and 0 2t t n pπ= +  is the time just before the next impact to occur, 
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where 2n pπ  represents the normalized time duration of the free flight and  is a 

positive integer. Recalling that 

n

p  denotes the excitation period measured in units of 

the natural period of the tower ( / xp T T= ), the term 2n pπ  represents there are  

ground excitation cycles between two neighboring impacts. 

n

First, we assume the periodic impacts occur at Corner C of Tower A [Figure 

7.18(b)]. The boundary conditions for the free flight motion can be expressed as: 

0( ) / 2Cx t a w= +

)

                             (7.26) 

0( 2 /C 2x t n p a w= +                        (7.27) π+

0 0( 2t t( ) )n pθ θ π                           (7.28) = +

0 0( 2( ) )x t x t n pπ                          (7.29) = − +& &

0 0(t t 2 )n( ) pθ θ= − +& & π                          (7.30) 

xwhere  and θ  are the normalized translation and rotation of the center of mass 

respectively, and Cx  is the translation of Corner C, which can be expressed in the 

form of x  and θ  based on the following geometric relation: 

/ 2 (Cx / 2 )x w l ye θ−                       (7.31) = + −

And the boundary condition (7.26) and (7.27) means Corner C will touch on the 

neighboring barrier when impacts occur. If we define / 2 yh l e= −  and substitute 

Equation (7.31) into Equations (7.26) and (7.27), we can express all the boundary 

conditions in terms of the motion of the center of mass (i.e. x  and θ ): 

0 0( )( )x t h t aθ−

0 )

=                              (7.32) 

x 0( 2( 2 )t n p h t n p aπ θ π++ − =                 (7.33) 

Now Equations (7.28)-(7.30) and (7.32)-(7.33) constitute five independent boundary 
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conditions for the free flight of the torsional pounding problem. 

 

7.3.1.3 General solution for free flight motion between impacts 

By simply letting the impact force xF  and the torque Tθ  to be zero in 

Equation (7.23), we can get the equations of motion for the free flight of the tower. 

From the first equation in Equation (7.23), we have 

{ }[ ( )] 2 /g xG x t x x x θθ ζ η= − − −&& & .                   (7.34) 

Substituting it into the second formula in Equation (7.23), we can get 

1 2

2( ) (1 4 ) 2( ) ( )
sin( / ) cos( / )

x x x xx x x x
H t p H t p

θ θ θ θ θ θ xθζ ζ ζ ζ γ ζ γ ζ γ λ η+ + + + + + + + −
= +

&&&& &&& && &
     (7.35) 

where the two parameters H1 and H2 are equal to 

1 2
1 12 2E EH E

p pθ θζ γ= − − + , 2 1
2 22 2E EH E

p pθ θζ γ= − + + .       (7.36) 

To get the particular solution for Equation (7.35), first we assume the following 

solution form: 

 1 2sin( / ) cos( / )x D t p D t p= + .                   (7.37) 

After substituting it into Equation (7.35) and letting the right and left sides to be equal, 

finally we can get the expressions for  and  as: 1D 2D

1 3 2 4
1 2 2

3 4

H H H HD
H H

−
=

+
, 1 4 2 3

2 2 2
3 4

H H H HD
H H

+
=

+
             (7.38) 

where 

3 4 2

1 41 x
xH

p p
θ θ

θ θ
ζ ζ γ γ λ η+ +

= − + − , 4 3

2( ) 2( )x xH
p p

θ θ θζ ζ ζ γ ζ+ +
= −    (7.39) 

To get the homogeneous solution, we have to solve the following characteristic 
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equation: 

4 3 22( ) (1 4 ) 2( ) ( ) 0x x x xs s s sθ θ θ θ θ θζ ζ ζ ζ γ ζ γ ζ γ λ η+ + + + + + + + − =θ      (7.40) 

Assuming the roots of the above equation in the forms j js iα β= ±  (j=1, 2 and 

1i = − ), we can get the following general solution for Equation (7.35): 

[ ]
[ ]

1 0

2 0

( )
1 1 0 2 1 0

( )
3 1 0 4 1 0 1 2

sin ( ) cos ( )

sin ( ) cos ( ) sin( / ) cos( / )

t t

t t

x e c t t c t t

e c t t c t t D t p D t

α

α

β β

β β

−

−

= − + −

+ − + − + + p
  (7.41) 

where  (i=1, 2, 3, 4) are four unknown constants to be determined by boundary 

conditions. Substituting Equation (7.41) into Equation (7.34), we can get the 

following expression for the rotation (

ic

θ ) of the center of mass: 

[ ]
[ ]

1 0

2 0

( )
1 1 2 2 1 0 2 1 1 2 1 0

( )
3 3 4 4 1 0 4 3 3 4 1 0

5 6

( ) sin ( ) ( ) cos (

( )sin ( ) ( ) cos (
sin( / ) cos( / )

t t

t t

e c c t t c c t

e c c t t c c t t
t p t p

α

α

θ γ γ β γ γ β

γ γ β γ γ β
γ γ

−

−

= + − + − +

+ + − + − + −

+ +

)

)

t−

     (7.42) 

where 

2 2
1 1 1 12 1 /x θγ α β ζ α η⎡ ⎤= − − + +⎣ ⎦ , 2 1 12 ( ) /x θγ β α ζ η= +              

2 2
3 2 2 22 1 /x θγ α β ζ α η⎡ ⎤= − − + +⎣ ⎦ , 4 2 22 ( ) /x θγ β α ζ η= +              

2
5 1 1 2 1/ 2 / /xE D p D p D θγ ζ η⎡= + + −⎣ ⎤⎦                           

2
6 2 2 1 2/ 2 / /xE D p D p D θγ ζ η⎡= + − −⎣ ⎤⎦                     (7.43) 

 

7.3.1.4 Determination of unknown parameters 

Totally we have five unknowns to be determined, including  (i=1, 2, 3, 4) 

and  (the onset time of the periodic impacts). These five unknowns will be 

determined uniquely using the five independent boundary conditions in Equations 

(7.28)-(7.30) and (7.32)-(7.33). 

ic

0t

Substituting Equations (7.41) and (7.42) into Equation (7.32) and letting , 0t t=
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we get 

2 4 1 0 2 0 1 2 2 1 3 4 4 3

5 0 6 0

sin( / ) cos( / ) ( ) ( )
sin( / ) cos( / )

c c D t p D t p h c c h c c
h t p h t p a

γ γ γ γ
γ γ
+ + + − − − −

− − =
  (7.44) 

Substitution of Equations (7.41) and (7.42) into Equation (7.33) plus some 

simple transformations leads to 

1 1 2 2 3 3 4 4 5 1 0 6 2 0( )sin( / ) ( )cos( / )q c q c q c q c h D t p h D t p aγ γ+ + + = − + − +   (7.45) 

where  (i=1, 2, 3, 4) are defined as follows: iq

[ ] 12
1 1 1 2 1(1 )sin(2 ) cos(2 ) n pq h n p h n p e π αγ π β γ π β= − +                   

[ ] 12
2 1 1 2 1(1 )cos(2 ) sin(2 ) n pq h n p h n p e π αγ π β γ π β= − −                   

[ ] 22
3 3 2 4 2(1 )sin(2 ) cos(2 ) n pq h n p h n p e π αγ π β γ π β= − +                  

[ ] 22
4 3 2 4 2(1 ) cos(2 ) sin(2 ) n pq h n p h n p e π αγ π β γ π β= − −            (7.46) 

Similarly substitution of Equation (7.42) into Equation (7.28) leads to 

5 1 6 2 7 3 8 4 0q c q c q c q c+ + + =                        (7.47) 

where 

[ ] 12
5 2 1 1 2 1sin(2 ) cos(2 ) n pq n p n p e π αγ γ π β γ π β= + −                    

[ ] 12
6 1 2 1 1 1sin(2 ) cos(2 ) n pq n p n p e π αγ γ π β γ π β= − + +                   

[ ] 22
7 4 3 2 4 2sin(2 ) cos(2 ) n pq n p n p e π αγ γ π β γ π β= + −                   

[ ] 22
8 3 4 2 3 2sin(2 ) cos(2 ) n pq n p n p e π αγ γ π β γ π β= − + +            (7.48) 

Then, by differentiating Equation (7.41) and substituting it into Equation (7.29), 

we obtain 

9 1 10 2 11 3 12 4 1 0 2 02 cos( / ) / 2 sin( / ) /q c q c q c q c D t p p D t p p+ + + = − +      (7.49) 

where 

[ ] 12
9 1 1 1 1 1sin(2 ) cos(2 ) n pq n p n p e π αβ α π β β π β= + +                   
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[ ] 12
10 1 1 1 1 1sin(2 ) cos(2 ) n pq n p n p e π αα β π β α π β= + − +                  

[ ] 22
11 2 2 2 2 2sin(2 ) cos(2 ) n pq n p n p e π αβ α π β β π β= + +                  

[ ] 22
12 2 2 2 2 2sin(2 ) cos(2 ) n pq n p n p e π αα β π β α π β= + − +           (7.50) 

Similarly differentiating Equation (7.42) and substituting it into Equation (7.30), 

we have 

13 1 14 2 15 3 16 4 5 0 6 02 cos( / ) / 2 sin( / ) /q c q c q c q c t p p t p pγ γ+ + + = − +      (7.51) 

where 

[ ] 12
13 1 2 1 1 1 1 1 2 1 1 2 1 1 1( ) sin(2 ) ( )cos(2 ) n pq n p n p e π αα γ β γ α γ β γ π β α γ β γ π β= − + + + + − +   

[ ] 12
14 1 1 1 2 1 2 1 1 1 1 1 1 2 1( ) sin(2 ) ( ) cos(2 ) n pq n p n p e π αα γ β γ α γ β γ π β α γ β γ π β= + + − + +      

[ ] 22
15 2 4 2 3 2 3 2 4 2 2 4 2 3 2( ) sin(2 ) ( ) cos(2 ) n pq n p n p e π αα γ β γ α γ β γ π β α γ β γ π β= − + + + + − +  

[ ] 22
16 2 3 2 4 2 4 2 3 2 2 3 2 4 2( )sin(2 ) ( ) cos(2 ) n pq n p n p e π αα γ β γ α γ β γ π β α γ β γ π β= + + − + +   

         (7.52) 

Rearranging Equation (7.44), the following equation is obtained:  

17 1 18 2 19 3 20 4 5 1 0 6 2 0( )sin( / ) ( ) cos( / )q c q c q c q c h D t p h D t p aγ γ+ + + = − + − +   (7.53) 

where 

17 2q hγ= , 18 11q hγ= − , 19 4q hγ= , 20 31q hγ= −             (7.54) 

Subtracting Equation (7.45) from Equation (7.53) leads to 

17 1 1 18 2 2 19 3 3 20 4 4( ) ( ) ( ) ( )q q c q q c q q c q q c 0− + − + − + − =          (7.55) 

Finally, Equations (7.55), (7.47), (7.49) and (7.51) constitute a system of linear 

equations for  (i=1, 2, 3, 4), and these four equations can be expressed in a matrix 

form as: 

ic

=Qc b
% %%

                           (7.56) 
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where 

17 1 18 2 19 3 20 4

5 6 7 8

9 10 11 12

13 14 15 16

q q q q q q q q
q q q q
q q q q
q q q q

− − − −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q
%

                    

 

1

2

3

4

c
c
c
c

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

c
%

      01 2

5 0 6 0

0
0

2 cos 2 sin

2 cos 2 sin

t tD D 0

p p p p

t t
p p p p
γ γ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎛ ⎞ ⎛ ⎞⎪ ⎪− += ⎨ ⎜ ⎟ ⎜ ⎟⎬

⎝ ⎠ ⎝ ⎠⎪ ⎪
⎪ ⎪⎛ ⎞ ⎛ ⎞
⎪ ⎪− +⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

b
%

          (7.57) 

Let  to be the determinant of the matrix . Then, according to Cramer’s 

rule, if , Equation (7.56) has an unique solution with the following form: 

Δ

0Δ ≠

Q
%

i
ic Δ
=
Δ

     (i=1, 2, 3, 4)                  (7.58) 

where  is the corresponding determinant obtained by replacing the th column of 

 by the vector . Since the first two elements of vector  are zeros, we can 

further rewrite  as: 

iΔ i

Δ b
%

b
%

iΔ

0 0 5 0 61 2
3 4

2 22 2cos sin cos sini i i
t t tD D 0t

p p p p p p p p
γ γ⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

Δ = Δ − + + Δ − +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎦

 (7.59) 

where  and  are the cofactors of the entries (3, i) and (4, i) in the determinant 

 respectively (Strang, 2003). For example, 

3iΔ 4iΔ

iΔ 1Δ , 31Δ  and 41Δ  have the following 

forms: 

18 2 19 3 20 4

6 7 8

0 01 2
10 11 121

5 0 6 0
14 15 16

0
0

2 2cos sin

2 2cos sin

q q q q q q
q q q

t tD D q q q
p p p p

t t q q q
p p p p
γ γ

− − −

⎛ ⎞ ⎛ ⎞
− +Δ = ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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18 2 19 3 20 4
3 1

31 6 7 8

14 15 16

( 1)
q q q q q q

q q q
q q q

+

− − −
Δ = −                   

18 2 19 3 20 4
4 1

41 6 7 8

10 11 12

( 1)
q q q q q q

q q q
q q q

+

− − −
Δ = −              (7.60) 

Using this notation, Equation (7.58) can be rewritten as: 

3 0 0 4 5 0 61 2 2 22 2cos sin cos sini i
i

t t tD Dc 0t
p p p p p p p p

γ γ⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ
= − + + − +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎦

 (7.61) 

Substituting the above formula into Equation (7.45), we obtain an equation for 

: 0t

0 0
1 2sin cost tW W

p p
⎛ ⎞ ⎛ ⎞

a+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                   (7.62) 

where 
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Δ∑ )iγ                     
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2 (i i
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W D h q D
p

γ
=

= − − Δ + Δ
Δ∑ )iγ               (7.63) 

Finally, the unknown  can be solved from Equation (7.62) as: 0t

10 2
2 2

11 2

sin tant Wa 1

p WW W
−
⎛ ⎞ ⎛ ⎞
⎜ ⎟= − ⎜⎜ ⎟+ ⎝ ⎠⎝ ⎠

−
⎟                (7.64) 

From this equation, the first condition that is required to ensure the existence of valid 

solution is 2
1a W W≤ + 2

2 , which implies the normalized separation distance must be 

equal or smaller than a certain value if pounding are to occur. Since multiple branches 

exist for both the sin-1 and tan-1 functions, attention should be paid to the selection of 

appropriate solutions. Only those solutions for which  lies between 0 and 0 /t p 2nπ  

and for which the velocity of the impact point is positive should be accepted. 
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The obtained value of  then can be used to calculate the other four unknown 

constants  through Equation (7.61), and further to find the translation (

0t

ic x ) and 

rotation (θ ) of the center of mass from Equations (7.41) and (7.42). The translational 

and rotational velocities can be obtained from the differentials of the corresponding 

displacements. Thus the problem is completely solved. 

Note that the above solution procedure is for the case when Corner C impacts 

onto the neighboring barrier. Similar procedure is also applicable for the other case 

when Corner D impacts periodically onto the barrier and the details will not be shown 

here due to mathematical similarity. In this study, impacts at both Corner C and 

Corner D will be tried for any specified input parameters and the corner which bring 

out valid solutions will be deemed as the actual impact point.  

Note that the proposed analytical solution only provides a possible solution for 

pounding which occurs periodically at one single corner of the tower. The actual 

torsional pounding between the asymmetric tower and the neighboring barrier may be 

much more complicated. As already shown in our numerical simulations in Section 

7.2.2.1, the pounding may be group periodic or chaotic, and may happen at the two 

corners consecutively. To capture these phenomena, more sophisticated mathematical 

models are needed, but these are out of the scope of the present analytical study. 

Strictly speaking, the present analytical solution and the numerical simulation can not 

be compared. But comparisons are still made in the following sections for qualitative 

comparisons to show that this quite simple analytical model does provide some 

valuable insights into the complex torsional pounding phenomena. 
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7.3.2 Results and discussions 

 

7.3.2.1 Comparison of translational and torsional poundings 

Based on the analytical solution obtained above, parametric studies have been 

conducted to investigate effects of input parameters, structural characteristics and 

separation distances on torsional pounding between the asymmetric tower and the 

barrier. Numerical simulations will also be carried out using the fourth-order 

Runge-Kutta method as described in Section 7.2.1 and the numerical results will be 

compared with the analytical solution. Without loss of generality, only positive 

eccentricities (i.e. the center of mass of the tower is situated closer to Corner C than to 

Corner D as shown in Figure 7.18) are considered in all of the following studies. 

Figure 7.19 shows the normalized impact velocity spectra /( )g xV A ω  versus the 

excitation periods  for both translational (/ xT T /ye l = 0) and torsional ( 0.1) 

poundings under Case 1 condition. The other parameters are 

/ye l =

xζ = 0.10, θζ = 0.10, 

0.55, 1.0 and 1 (i.e. one impact per cycle). The curves of translational 

pounding (the solid lines) are modified from Figure 11 of Davis (1992). The 

difference is that all the invalid solutions are eliminated from these curves. Actually 

Davis (1992) has pointed out that at some excitation periods, multiple impacts occur 

and the trajectories given by the analytical solution exceed the position of the 

neighboring barrier at least once in mid-flight (i.e. impacts happen during the free 

flight period). Since there can not be any impact during the free flight period in the 

/w l = a = n =
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analytical solution, obviously those solutions are invalid and should be removed. 

Note that the impact velocity of torsional pounding shown in Figure 7.19 (the 

dashed lines) is the velocity of the impact point, which may be either Corner C or 

Corner D. Compared to the spectrum of translation pounding, there is an abrupt jump 

in the impact velocity spectrum of torsional pounding. This abrupt jump is caused by 

the transition of the impact point from Corner D to Corner C as sketched in the figure. 

This unique characteristic suggests that torsional pounding tend to be more complex 

than translational pounding. Small changes of excitation periods may induce very 

different impact patterns, especially near the jump. 

Except for the abrupt jump, the impact velocity spectra of translational and 

torsional poundings have similar patterns and similar impact-occurring excitation 

period ranges around 1.0. The impact-occurring excitation period range 

means the range of excitation period during which impact is developed, which is 

0.53-1.43 for torsional pounding and 

/ xT T =

/ xT T = / xT T = 0.57-1.45 for translational 

pounding. However, for longer excitation periods ( 1.5), solutions exist for 

translational pounidng whereas no valid solution exists for torsional pounding. 

/T Tx >

The analytical solutions for both translational and torsional poundings shown in 

Figure 7.19 are compared to the numerical simulations (with β = 1000 and χ =3/2) 

in Figures 7.20(a) and (b) respectively. The numerical results are denoted by solid 

dots and each dot denotes one impact occurring within the 40-48th excitation cycles as 

discussed in Section 7.2.1.3. Figure 7.20(a) is modified from Figure 11 of Davis 

(1992). The three small diagrams I, II and III show the enlarged views of three 
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selected period ranges. Comparing the numerical results in Figures 7.20(a) and (b), 

torsional pounding appears to be much more complex than translational pounding. 

Almost all the torsional impacts are either multiple impacts (i.e. group periodic 

pounding) or chaotic impacts (for example, those around / xT T = 1.5). The diagram 

III shows an example of the transition between periodic impacts and chaotic impacts. 

The analytical solutions agree well with the numerical results for translational 

pounding [Figure 7.20(a)], whereas the fit is not so good for torsional pounding 

[Figure 7.20(b)]. This shows the insufficiency of the simple analytical solution for the 

complex torsional pounding phenomenon. Most of the torsional poundings are 

multiple impacts (either group periodic or chaotic), whereas single periodic impact is 

assumed in our analytical solution.  

However, although large differences exist between the analytical solution and 

numerical simulation for torsional pounding, they have similar overall patterns within 

the excitation range of  0.53-1.43. What is more important is that the 

analytical solution succeeds in predicting the abrupt jump in the numerical results as 

shown in the diagram II. As discussed previously, this abrupt jump is caused by the 

transition of the impact points from one corner to the other. Therefore, although this 

simple analytical solution can not predict the exact impact velocities of torsional 

pounding, it does provide some useful insights into this complicated problem. 

/ xT T =

 

7.3.2.2 Effect of separation distance 

a =1.0 is assumed, that is, the separation distance In Figures 7.19 and 7.20, 
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between the tower and the neighboring barrier is equal to the amplitude of the ground 

excitation. In Figure 7.21, the separation distance is increased to be 1.5 and all of the 

other parameters are the same as those in Figure 7.20. With the increased separation, 

the impact-occurring excitation period ranges decrease drastically for both 

translational and torsional poundings, implying fewer impacts occur. However, the 

maximum impact velocities only decrease slightly comparing to that of a 1.0. 

Similar as that in Figure 7.20(b), although the analytical solution can not predict the 

exact impact velocities of multiple torsional pounding, the overall patterns of the 

analytical solution and numerical results are similar. 

=

The impact velocity spectra of both translational and torsional poundings for 

0.5 are plotted in Figure 7.22. Compared to that of a = a =1.0, the spectra tend to be 

more complex and more chaotic impacts occur, especially at longer excitation periods. 

But the maximum torsional impact velocity remains close to that of 1.0. The 

analytical solutions only exist within the excitation period (

a =

/ xT T ) range of 0.53-1.26 

for translational pounding and 0.49-1.26 for torsional poundings. 

To summarize, with the increasing separation distances, fewer impacts are 

observed and the impact-occurring excitation period ranges become narrower. In 

addition, the impact velocity spectra tend to be less complex, implying the interaction 

between the two structures becomes weaker. However, the maximum impact velocity 

appears to be not too sensitive to the variation of the separation distance as long as 

pounding occurs. Similar phenomena have been found for translational pounding 

between two SDOF oscillators (Chau and Wei, 2001) as well as torsional pounding 
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between two flexible structures as discussed in Section 7.2.2.2. 

 

7.3.2.3 Effect of contact stiffness and force exponent 

In the previous figures, the normalized contact stiffness (β ) have been set to be 

1000, which represents a relatively stiff contact (Davis, 1992). In Figure 7.23, the 

contact stiffness is reduced to 100 and the other parameters are the same as those used 

in Figure 7.22. Note that the analytical solutions shown in Figure 7.23 are exactly the 

same as shown in Figure 7.22. Comparing the numerical results in the two figures, it 

is seen that reducing the contact stiffness by an order of magnitude has little effect on 

the spectrum of translational pounding, whereas the maximum chaotic impact velocity 

of torsional pounding increases by as large as 74% for the softer contact (β = 100). 

We further reduce the contact stiffness to 1.0 in Figure 7.24 and all of the other 

parameters remain unchanged. Comparing to the spectra shown in Figures 7.22 and 

7.23 for stiffer contact, the maximum velocities occur at the excitation periods closer 

to 1.0 for both translational and torsional pounding. In addition, both spectra 

become much less complex. This implies that for very soft contact the effect of the 

barrier diminishes and the impact velocity spectrum becomes similar to that of a 

non-impacting structure (for which the maximum response occurs at 1.0). 

Similar phenomenon has been found by Davis (1992). For this soft contact, the 

analytical solutions are quite different from the numerical results. This is expected 

since rigid impact is assumed in the analytical solution. 

/ xT T =

/ xT T =

The Hertz contact ( χ =3/2) is assumed in all of the previous figures. In Figure 
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7.25, this force component is increased to 5.0 and all of the other parameters are the 

same as those in Figure 7.24. It is seen that the spectrum of translational pounding is 

similar to that of χ =3/2, except for an abrupt discontinuity occurred [Figure 7.25(a)], 

which is probably caused by the highly nonlinear nature of the contact law (Davis, 

1992). The overall pattern of torsional pounding spectrum [Figure 7.25(b)] does not 

change significantly, but the maximum velocity resulted from chaotic impacts is 

larger than that of the Hertz contact. 

To summarize, the change of the contact stiffness and force component (i.e. the 

details of the contact law) appears to have little effect on the maximum impact 

velocity of translational pounding. This is consistent with the conclusions by Davis 

(1992) and Chau and Wei (2001). However, the maximum impact velocity of chaotic 

torsional pounding [see Figures 7.23(b) and 7.25(b)] may change significantly for 

different contact stiffness and force component. Thus, chaotic torsional pounding 

appears to be more sensitive to the details of the contact law. For soft contact, the 

effect of the neighboring barrier diminishes and the impact velocity spectrum appears 

to be less complex and more closely resembles that of a non-impacting structure. 

 

7.3.2.4 Effect of damping ratio 

In all the previous figures, both the translational and rotational damping ratios 

( xζ  and θζ ) of Tower A have been set to be 0.10. In Figure 7.26, the translational 

damping ratio is reduced to 0.05 and all the other parameters are the same as those in 

Figure 7.20. For smaller translational damping, the maximum impact velocities 
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increase as expected for both translational and torsional pounding. In addition, the 

velocity spectra at longer excitation periods are more complex and more chaotic 

impacts occur. However, the overall patterns of those spectra remain similar to that 

given in Figure 7.20. The analytical solution provides a better prediction for those 

single translational pounding than for those multiple torsional pounding. 

In Figure 7.27, we reduce the rotational damping ratio ( θζ ) to 0.05 and remain 

the translational damping at 0.10. Note that Figure 7.27(a) is exactly the same as 

Figure 7.20(a). Comparing Figure 7.27(b) with Figure 7.20(b), it is seen that again 

more complex responses are found, however, reducing the rotational damping ratio by 

half only results in a slight increase of the maximum velocity. Therefore, the 

rotational damping appears to have a less significant effect on pounding than the 

translational damping, similar to the conclusion on torsional pounding between two 

flexible structures as discussed in Section 7.2.2.3. 

 

7.3.2.5 Case 2 conditions 

All previous figures are for Case 1 condition, that is, the neighboring barrier is 

stationary and absolute displacement is used in analysis. As discussed in Section 7.3.1, 

Case 2 condition can also be considered in this study, which means the barrier is 

locked to the ground motion and relative displacement is used in analysis. For 

translational pounding, Davis (1992) has shown that the results for Case 1 condition 

remain almost the same as those for Case 2 condition, as long as the relative motion 

rather than the absolute motion of the structure is used to interpret the results. 
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Actually as Davis (1992) discussed, the only difference of Case 1 and Case 2 

conditions in the governing equations is the forcing function , in which [ ( )]gG x t

2 2 /xE pζ=  for Case 1 condition and 2E = 1 for Case 2 [see Equation (7.25)]. Thus, 

the forcing function changes very slightly for the two cases as long as the damping 

xζ  is small and the excitation period / xp T T=  is not small (Davis, 1992). 

In Figure 7.28(a), the impact velocity spectra of torsional pounding ( 0.1) 

are compared for Case 1 and Case 2 conditions. The input parameters are the same as 

those used in Figure 7.20. Figure 7.28(b) shows an enlarged view within the range of 

0.6-1.5. Note that in this figure the impact velocity should be interpreted as 

the absolute velocity for Case 1 condition and as the relative velocity for Case 2 

condition. It can be seen that the velocity spectra are very similar for these two cases. 

The only bigger differences occur for several chaotic impacts within the excitation 

period range of 1.0-1.1. 

/ye l =

/ xT T =

/ xT T =

Figures 7.29 and 7.30 show two additional examples of both translational and 

torsional pounding of Case 2 condition for a =0.2 and 0.0 respectively. The other 

parameters are the same as those in Figure 7.20. Note that the impact velocity is 

plotted versus the normalized excitation frequency / xω ω  rather than the excitation 

period / xT T  in order to make the short-period response more visible. As discussed 

above, the difference of the forcing functions for Case 1 and Case 2 conditions can 

become relatively large for short frequency excitations. The analytical solutions for 

1, 2 and 3 are also plotted in the figures. The number n represents there are n 

ground excitation cycles between two neighboring impacts. 

n =
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Comparing the numerical results in Figures 7.29 and 7.30, the maximum impact 

velocity of chaotic torsional pounding is almost double that of translation pounding. 

In addition, torsional pounding appears to be much more complex and chaotic. The 

analytical solutions provide close estimations to the numerical results in those ranges 

where single impacts occur. The discrepancy becomes large when group periodic or 

chaotic impacts occur, especially for torsional pounding. 

 

7.3.2.6 Effect of eccentricity 

In all the previous figures on torsional pounding, an eccentricity of 0.1 has been 

assumed for Tower A (i.e. /ye l = 0.1). In Figure 7.31(a), we change the eccentricity 

to 0.2 and keep all the other parameters the same as those used in Figure 

7.20(b). It is seen the analytical solution provides a fairly good estimation to the 

maximum impact velocities in those ranges where single or group periodic impacts 

occur. In addition, the analytical solution succeeds in predicting the abrupt jump of 

impact velocity at the short excitation periods in the numerical results. 

/ye l =

In Figure 7.31(b), the impact velocity spectrum of /ye l = 0.2 is compared to 

that of 0.1. The two spectra have similar overall patterns. But the chaotic 

impacts within the excitation period range of 

/ye l =

/ xT T = 1.0-2.0 yield much larger 

impact velocities for 0.2. Except for these chaotic impacts, the doubled 

eccentricity does not change the impact velocity spectrum significantly. This is 

consistent with the conclusion on torsional pounding between two flexible structures 

(refer to Section 7.2.2.4). As discussed previously, this may be due to the rotational 

/ye l =
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constraint from the neighboring barrier. 

 

7.3.2.7 Maximum stand-off distance 

As shown in Section 7.3.1, the 1sin−  function has been used to calculate the 

unknown  (the onset time of the periodic impacts) in the analytical solution [see 

Equation (7.64)]. To make the argument of the 

0t

1sin−  function lie between -1.0 and 

+1.0, we have to constrain the separation distance a as: 

2
1a W W≤ + 2

2                          (7.65) 

where  is the normalized separation distance, and W1 and W2 are defined in 

Equation (7.63). The above equation is the first condition required to ensure the 

existence of valid analytical solution. Note that this is a necessary but not sufficient 

condition. In other words, Equation (7.65) provides an upper bound on the value of a, 

only under which impact is possible. The upper bounds obtained in this way are 

plotted versus the excitation frequencies 

a

/ xω ω  for both translational ( 0.0) 

and torsional ( 0.1) pounding of Case 2 condition in Figure 7.32. All the other 

parameters are the same as those used in Figure 7.20. 

/ye l =

/ye l =

The numerical results for the maximum stand-off distances between the tower 

and the barrier are also plotted as solid dots in Figure 7.32. The numerical calculations 

are done for all / xω ω  from 0.01 to 3.0 in steps of 0.05 and for all  from 0 to 10 

in steps of 0.25. If continuous impacts occur at a particular frequency 

a

/ xω ω  and 

stand-off distance , a dot is plotted in the figure. Note that Figure 7.32(a) is 

modified from Figure 13 in Davis (1992). 

a

 305



For frequencies lower than 2.0, the analytical bound provides a close upper limit 

to the numerical results for both translational and torsional pounding. But large 

discrepancies exist for frequencies close to and higher than 2.0, implying the 

insufficiency of the condition in Equation (7.65) at higher excitation frequency. 

Comparing the numerical results for translational [Figure 7.32(a)] and torsional 

pounding [Figure 7.32(b)], the maximum stand-off distance both occurs at the natural 

frequency of the structure ( xω ), but a local peak occurs at the torsional natural 

frequency ( θω ) of the structure for torsional pounding. This is a unique characteristic 

of torsional pounding and has also been found in the torsional pounding between two 

flexible structures (refer to Section 7.2.2.5). This local peak can not be predicted by 

the analytical solution [Figure 7.32(b)]. To summarize, the upper bound from the 

analytical solution estimate provides a conservative estimation to the maximum 

stand-off distance, except for those frequencies near the torsional frequency of the 

structure. 

 

7.4 Conclusions and Discussions 

 

In this chapter, the torsional pounding between two flexible asymmetric 

single-story structures as well as pounding between an asymmetric single-story 

structure and a neighboring barrier were investigated through numerical simulations. 

The impacts were modeled using the nonlinear Hertz contact law. The resulting 

governing equations were integrated numerically using the fourth-order Runge-Kutta 
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method with error control. An analytical solution was obtained for periodic rigid 

impacts between an asymmetric single-story tower and a neighboring barrier under 

sinusoidal wave excitations. The following main conclusions are reached. 

Generally, torsional pounding tends to be much more complex than translational 

pounding and chaotic poundings become more common than periodic poundings, 

which are the dominant impact mode in translational poundings (e.g. see Fig. 5 of 

Chau and Wei 2001). The maximum relative impact velocity of torsional pounding 

can be up to three times of that of translational pounding. An important feature of the 

present model is that periodic group pounding observed in shaking table tests by Chau 

et al. (2003) was simulated and replicated numerically for the first time by 

incorporating torsional responses (e.g. see the phase diagrams of a periodic group of 

three impacts per excitation cycle shown in Figure 7.11), which cannot be explained 

through numerical simulations for translational poundings alone. 

For pounding between an asymmetric structure and a neighboring barrier, the 

maximum impact velocity occurs at excitation period near half the natural period of 

the structure, except for cases of very soft contact. This is similar to the conclusion on 

translational pounding by Davis (1992). For pounding between two flexible towers, 

the maximum impact velocity occurs at excitation period between the natural periods 

of the two structures. As argued by Chau and Wei (2001), this is not unexpected since 

pounding on a flexible neighboring structure is similar to the case of soft contact. 

However, different from translational pounding, the maximum impact velocity 

between the asymmetric structure and the barrier may also occur at other periods 
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where chaotic impacts occur (e.g. when ey/l = 0.2 in Figure 7.31). For translational 

pounding, Davis (1992) found that the velocity in the chaotic regions appears to be 

bounded, and thus it is believed that the chaotic response is of limited interest from an 

earthquake engineering standpoint. However, this conclusion does not always hold for 

torsional pounding, for which the chaotic impacts seem not to be bounded and in 

some cases may yield the maximum impact velocity in the velocity spectrum. 

Therefore, torsional pounding seems to be more unpredictable for its possible chaotic 

responses. 

The maximum torsional impact velocity appears to be insensitive to the change 

of the separation distance as long as impact is developed, consistent with the 

conclusions on translation pounding by Davis (1992) and Chau and Wei (2001). More 

group periodic impacts and less chaotic impacts were observed when damping ratio 

increases. Therefore, increasing of damping ratio appears to be an effective way to 

alleviate torsional pounding problems. The translational damping has a more 

significant effect on torsional pounding than the rotational damping. In addition, 

torsional pounding appears not to be significantly influenced by the change of 

eccentricity, and larger impact velocity may be resulted when the two structures have 

eccentricities on the same side of their centers of stiffness. The maximum stand-off 

distance envelopes do not strongly depend on whether torsional responses are 

included in the analysis. 

Although the present model is highly idealized comparing to actual asymmetric 

multi-story structures, we believe that the present results can capture the essence of 
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nonlinear seismic torsional pounding phenomenon with the minimum number of 

parameters involved. The results of this semi-analytical study do provide valuable 

insights into this unknown domain of seismic torsional pounding, and can serve as a 

benchmark for future more complicated models. Therefore, this study should provide 

the first order approximation to this highly nonlinear phenomenon. More importantly, 

group periodic poundings have been numerically simulated for the first time using this 

simplified model, although their existence in real structures has been demonstrated 

experimentally by Chau et al. (2003) in shaking table tests. 

The proposed analytical solution provides a possible solution for periodic single 

impacts between the asymmetric tower and the neighboring barrier. Although it fails 

to accurately predict impact velocity of periodic group torsional pounding, this simple 

solution does provide an accurate and useful upper bound for the maximum stand-off 

distance that can preclude pounding occurrence between adjacent structures. In 

addition, although the present analytical solution is only for rigid impacts, the results 

obtained here can provide a useful mean to validate and guide future numerical 

simulations especially for seismic torsional pounding, because it is a highly nonlinear 

phenomenon and the determination of contact stiffness between adjacent structures is 

also not straightforward.  

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 
 
 

Figure 7.1 Pounding hazard: (a) serious structural damages caused by pounding during 
the 1999 Chi-Chi earthquake (Naeim et al., 2000); (b) closely spaced buildings in Hong 

Kong (potential pounding problem). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 310



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) SDOF system (b) MDOF system 
 
 

Figure 7.2 Sketches of single-degree-of-freedom (SDOF) and multi-degree-of-freedom 
(MDOF) systems used to model seismic poundings (Anagnostopoulos, 1994). 
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Figure 7.3 Pounding of two adjacent buildings modeled as Hertzian impact of two SDOF 

oscillators (Chau and Wei, 2001). 
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Figure 7.4 Sketches of possible eccentric poundings between structures with symmetric 
floor slabs [i.e. the center of mass (CM) coincides with the center of stiffness (CS)]: (a) 
accumulated hard debris may induce torsional pounding between symmetrically aligned 
floor slabs; (b) possible torsional pounding between asymmetrically aligned floor slabs 

(after Leibovich et al., 1996). 
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Figure 7.5 Sketch of two asymmetric rectangular towers separated by a distance a′ . 
Both towers are supported by four identical square columns (with a lateral stiffness of k) 

at their four corners. The eccentricities between the center of stiffness (CS) and the center 
of mass (CM) are denoted by e′ix and e′iy (i=A, B) respectively. 
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 C E Type I: (i) (no tower has rotation).
y 

 
 
 
 
 
 
 
 
 
 
Figure 7.6 Sketch of thirteen different cases [(i)-(xiii)] of pounding between Tower A and 
Tower B, where A and B are the centers of mass of the two towers, and C, D, E and F are 
four corners along the adjacent edges. Boxes in bold lines represent towers without any 

rotation (θ = 0) whereas boxes in thin lines represent towers having rotation (θ ≠ 0). 
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Figure 7.7 Sketch of three different cases of pounding between Tower A and Tower B, 
where A and B are the centers of mass of the two towers, and C, D, E and F are four 

corners along the adjacent edges. The right three sketches show the forces on each tower 
caused by pounding. 
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Figure 7.8 Validation of the solving method by comparing the steady pounding phase 
diagrams when the Tower A has opposite eccentricities: (a) eAy/l = +0.1; (b) eAy/l =－0.1. 

Other parameters are eBy/l = 0, / AxT T =0.7, /Ax BxT T = 1.5, Ax Bxζ ζ= = 0.03, 

Aθ Bθζ ζ= =0.03 and a = 1.0. 
 
 
 
 

eBy/l=0 
(b) eAy/l=－0.1 

Au  

Aθ  

Bu

Bθ  

Au  
Aθ  

 

Bu

BθA 
Bu (m) Au (m) 

B 

Rotation

A 
B 

Au (m) 

Au& (m/s) 

Bu (m) 

Bu& (m/s) 

Aθ (°) 

Aθ& Bθ&(°/s) (°/s) 

(°) Bθ

Translation

Rotation

Aθ (°) 

Aθ& Bθ&(°/s) (°/s) 

(°) Bθ

 317



 
 
 
 
 
 
 
 
 /( )g AxV A ω  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.9 Comparison of relative impact velocity spectra versus / AxT T  for torsional 

(eAy/l = 0.1) and translation (eAy/l = 0.0) pounding ( /Ax BxT T = 1.5, Ax Bxζ ζ= = 0.03, 

A Bθ θζ ζ= =0.03 and a = 1.0). The two attached diagrams are: (a) impact velocity 
spectra for translational pounding when eAy/l = 0 [i.e. Figure 5 in Chau and Wei (2001)]; 

(b) impact velocity spectra during the 80-88th excitation cycles for the same torsional 
pounding problem (eAy/l = 0.1), whereas for the other two diagrams the impact 

velocities during the 40-48th excitation are plotted. The phase diagrams for one of the 
group pounding ( / AxT T =0.7) are shown in Figure 7.11. 
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Figure 7.10 Comparison of (a) relative impact velocity spectrum (same as Figure 7.9); 

(b) impact force spectrum for torsional pounding when a = 1.0 and eAy/l = 0.1 
( 1.5, /Ax BxT T = Ax Bxζ ζ= = 0.03 and A Bθ θζ ζ= =0.03). The small diagram shows the 

entire force spectrum, whereas the diagram (b) is the enlargement of the part I. 
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Figure 7.11 Phase diagrams and relative impact velocity time history within one cycle 
(28-28.7 s) after 40 excitation cycles when the input period is 0.7. The three 

impacts (①-③) shown in the figure repeat themselves every excitation cycle and 
demonstrate a kind of group pounding. Other parameters are eAy/l = 0.1, 1.5, 

/ AxT T =

/Ax BxT T =

Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0. 
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Figure 7.12 Relative impact velocity spectra versus / AxT T

Bx

 for torsional pounding 
when a = 0.5 and 4.0 respectively (eAy/l = 0.1, /AxT T = 1.5, Ax Bxζ ζ= = 0.03 and 

A Bθ θζ ζ= =0.03). The impact velocity spectra for torsional pounding when a = 1.0 
shown in Figure 7.9 are also plotted for comparison. 
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Figure 7.13 Relative impact velocity spectra versus / AxT T  for torsional pounding 
when eAy/l = 0.1 and Ax Bxζ ζ= = 0.10 ( /Ax BxT T = 1.5, Aθ Bθζ ζ= =

Ax

0.03 and a = 1.0). 
The impact velocity spectrum for torsional pounding when Bxζ ζ= = 0.03 shown in 

Figure 7.9 is also plotted for comparison. 
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Figure 7.14 Relative impact velocity spectra versus / AxT T  for torsional pounding 
when eAy/l = 0.1 m and A Bθ θζ ζ= =0.10 ( /Ax BxT T = 1.5, Ax Bxζ ζ= =

Aθ

0.03 and a = 1.0). 
The impact velocity spectrum for torsional pounding when Bθζ ζ= =0.03 shown in 

Figure 7.9 is also plotted for comparison. 
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Figure 7.15 Comparison of relative impact velocity spectra for eAy/l = 0.1 and 0.2 
( 1.5, /Ax BxT T = Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0). 
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Figure 7.16 Relative impact velocity spectra versus / AxT T  for torsional pounding 
when Tower B has different eccentricities (eBy/l = +0.1, 0, -0.1). The case when eBy/l = 

0.0 has been shown in Figure 7.9. Other parameters are eAy/l = 0.1, 1.5, /Ax BxT T =

Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0. 
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Figure 7.17 Comparison of normalized maximum stand-off distances for different 
eccentricities of Tower A (eAy/l = 0.0, 0.1 and 0.2). Other parameters are eBy/l = 0.0, 

1.5, /Ax BxT T = Ax Bxζ ζ= = 0.03 and A Bθ θζ ζ= =0.03. 
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Figure 7.18 Sketch of an asymmetric tower and a neighboring barrier. With an 
eccentricity e′y between its center of stiffness (CS) and center of mass (CM), Tower A is 
supported by four identical columns (each with a lateral stiffness of k) at its four corners. 

As shown by the dashed line in the plan view, torsional impact may occur at either 
Corner C or Corner D when the separation distance is not adequate even under 

unidirectional ground excitations. 
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Figure 7.19 Comparison of normalized impact velocity for torsional (ey/l = 0.1) and 
translational (ey/l = 0.0) pounding. The results are both analytical solutions and the 
solid lines are modified based on Figure 11 of Davis (1992). Other parameters are 

xζ = 0.10, θζ = 0.10, a = 1.0, β = 1000 and n=1 (Case 1). Note that for torsional 
pounding there is a sudden jump between / xT T = 0.74 and 0.75, which is caused by 

the impact point changing from Corner D to Corner C as sketched in the figure. 
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Figure 7.20 Comparison of analytical and numerical solutions of relative impact velocity 
spectra for translational and torsional pounding ( xζ = 0.10, θζ = 0.10, a = 1.0, β = 1000, 

n=1 and Case 1 condition): (a) translational pounding when ey/l = 0.0 [modified from 
Figure 11 of Davis (1992)]; (b) torsional pounding when ey/l = 0.1. The four small 

diagrams show the translational analytical solution and the enlarged views of the parts I, 
II and III. 
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Figure 7.21 Comparison of analytical and numerical solutions of relative impact velocity 

spectra for translational and torsional pounding when a = 1.5 ( xζ = 0.10, θζ = 0.10, 
β = 1000, n=1 and Case 1 condition): (a) translational pounding when ey/l = 0.0; (b) 

torsional pounding when ey/l = 0.1. 
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Figure 7.22 Comparison of analytical and numerical solutions of relative impact velocity 

spectra for translational and torsional pounding when a = 0.5 ( xζ = 0.10, θζ = 0.10, 
β = 1000, n=1 and Case 1 condition): (a) translational pounding when ey/l = 0.0 

[modified from Figure 7(c) of Davis (1992)]; (b) torsional pounding when ey/l = 0.1. 
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Figure 7.23 Comparison of analytical and numerical solutions of relative impact velocity 
spectra for translational and torsional pounding when a = 0.5 and β = 100 ( xζ = 0.10, 

θζ = 0.10, n=1 and Case 1 condition): (a) translational pounding when ey/l = 0; (b) 
torsional pounding when ey/l = 0.1. 
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Figure 7.24 Comparison of analytical and numerical solutions of relative impact velocity 

spectra for translational and torsional pounding when a = 0.5 and β = 1 ( xζ = 0.10, 

θζ = 0.10, n=1 and Case 1 condition): (a) translational pounding when ey/l = 0.0; (b) 
torsional pounding when ey/l = 0.1. 
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Figure 7.25 Comparison of analytical and numerical solutions of relative impact velocity 

spectra for translational and torsional pounding when β = 1 and χ =5.0 (a = 0.5, 

xζ = 0.10, θζ = 0.10, n=1 and Case 1 condition): (a) translational pounding when ey/l = 
0.0; (b) torsional pounding when ey/l = 0.1. 
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Figure 7.26 Comparison of analytical and numerical solution of relative impact velocity 
spectra for translational and torsional pounding when a = 1.0 and xζ = 0.05 ( θζ = 0.10, 

β = 1000, n=1 and Case 1 condition): (a) translational pounding when ey/l = 0.0 
[modified from Figure 10 of Davis (1992)]; (b) torsional pounding when ey/l = 0.1. 
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Figure 7.27 Comparison of analytical and numerical solution of relative impact velocity 
spectra for translational and torsional pounding when a = 1.0 and θζ = 0.05 ( xζ = 0.10, 

β = 1000, n=1 and Case 1 condition): (a) translational pounding when ey/l = 0.0 
[modified from Figure 11 of Davis (1992)]; (b) torsional pounding when ey/l = 0.1. 
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Figure 7.28 Comparison of relative impact velocity spectra for torsional (ey/l = 0.1) 
pounding when a = 1.0 ( xξ = 0.10, θξ = 0.10, β = 1000 and n=1): (a) Case 1 vs. Case 2 

conditions; (b) an enlarged view. 
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Figure 7.29 Comparison of analytical and numerical solutions of relative impact velocity 

spectra for translational and torsional pounding when a = 0.2 ( xξ = 0.10, θξ = 0.10, 
β = 1000, n=1 and Case 2 condition): (a) translational pounding when ey/l = 0.0 

[modified from Figure 12(a) of Davis (1992)]; (b) torsional pounding when ey/l = 0.1. 
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Figure 7.30 Comparison of analytical and numerical solutions of relative impact velocity 

spectra for translational and torsional pounding when a = 0.0 ( xξ = 0.10, θξ = 0.10, 
β = 1000, n=1 and Case 2 condition): (a) translational pounding when ey/l = 0.0 

[modified from Figure 12(b) of Davis (1992)]; (b) torsional pounding when ey/l = 0.1. 
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Figure 7.31 Comparison of (a) analytical and numerical solutions of impact velocity 
spectra for torsional pounding when ey/l = 0.2; (b) numerical results of impact velocity 
spectra when ey/l = 0.1 [same as Figure 7.20(b)] and 0.2 respectively. Other parameters 

are a = 1.0, xζ = 0.10, θζ = 0.10, β = 1000, n=1 and Case 1 condition. 
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Figure 7.32 Comparison of analytical and numerical predictions of maximum stand-off 
distance for translational and torsional pounding: (a) translational pounding when ey/l = 
0.0 [modified from Figure 13 of Davis (1992)]; (b) torsional pounding when ey/l = 0.1. 
Other parameters are xξ = 0.10, θξ = 0.10, n=1 and Case 2 condition. Each dot in the 

numerical solutions represents an impact occurring at a particular frequency / xω ω  and 
a stand-off distance a. 
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CHAPTER 8  SHAKING TABLE TESTS FOR 

TORSIONAL POUNDING 

 

8.1 Introduction 

 

As introduced in Section 7.1.1, extensive theoretical studies have been carried 

out on seismic pounding in the past few decades. However, only few experiments 

have been performed to check the validity of those theoretical models. Inevitably, 

theoretical models are always formulated with various assumptions and 

simplifications. Therefore, it is essential to conduct experiments in verifying or 

disapproving their validity. 

Among the several shaking table tests done on this topic, Papadrakakis and 

Mouzakis (1995) performed shaking table experiments on pounding between two 

two-story reinforced concrete frames with zero separation, subject to sinusoidal and 

random motions, and their experimental results were compared to the analytical 

predictions by using the Lagrange multiplier method.  

Filiatrault et al. (1995) conducted another shaking table test for poundings 

between two adjacent building of three- and eight-story steel frames subject to the 

time history of the 1940 El Centro earthquake, and the experimental results were 

compared to the predictions from results of pounding analysis by two programs 

SLAM-2 and PC-ANSR. The results showed that when elastic gap elements were 
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used in these two programs, accurate displacement and impact force were obtained, 

but the displacement and force for the case of short acceleration pulses were not well 

predicted. Relative rotations between adjacent floors were observed and these 

rotations induce grinding contacts that cannot be captured by uniaxial gap elements in 

numerical modeling. 

The experiments by Papadrakakis and Mouzakis (1995) are for zero separation, 

whereas those by Filiatrault et al. (1995) are for either zero or 15 mm separation. Thus, 

none of these tests provide the estimation of maximum stand-off distance between 

adjacent structures that precludes the occurrence of pounding. In addition, torsional 

vibrations are not significant in both of these two experimental studies. However, as 

discussed in Section 7.1.1.1, torsional pounding may be more commonly observed 

than unidirectional pounding during real earthquakes. 

Chau et al. (2003) conducted shaking table tests to investigate the pounding 

between two single-story steel towers of different natural frequencies and damping 

ratios, subject to different excitations. The experimental observations were compared 

with both analytical and numerical predictions of the pounding model proposed by 

Chau and Wei (2001). For most of the cases, the theoretical predictions are found 

comparable with the experimental results. A type of group periodic poundings (i.e. a 

group of non-periodic poundings repeating themselves periodically) was observed for 

the first time in their tests, which have not been considered by theoretical models. 

To further study the torsional pounding, Chau et al. (2004) conducted pounding 

tests between two asymmetric single-story steel towers. As shown in Figure 8.1, 
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additional masses can be moved along railing systems at the top of the two towers so 

that their eccentricities can be changed. Similar to the shaking table tests for 

translational pounding (Chau et al., 2003), the torsional pounding can be periodic, 

group periodic, or chaotic. 

However, it remains questionable whether these idealized models can accurately 

simulate the seismic pounding between real multi-story asymmetric buildings, for 

which higher modes may play a more important role. In addition, as remarked in 

Chapter 1, transfer systems are widely used for both residential and commercial 

buildings in Hong Kong. But to date none experiments have been conducted to study 

the effects of transfer system on seismic pounding between real multi-story buildings. 

Therefore, in this study shaking table tests will be conducted to investigate 

torsional poundings between two adjacent asymmetrical multi-storey building models 

with transfer systems. More specifically, two 1:45 scale steel models were designed 

and fabricated first to simulate two selected adjacent buildings in Hong Kong. Then, a 

number of shaking table tests with different excitations and separation distances were 

conducted between the two flexible models as well as between a flexible model and a 

nearly rigid wall. The maximum stand-off distances, dynamic responses and pounding 

forces were investigated. The experimental results will be compared to the theoretical 

studies proposed in Chapter 7. The detailed experimental setups, pounding tests and 

results will be summarized in this chapter. 
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8.2 Model Design and Construction 

 

In this study, the torsional pounding between two asymmetric adjacent 

multi-story buildings in Hong Kong is investigated through conducting shaking table 

tests on scaled models. The model design and fabrication will be introduced in this 

section. First the two selected buildings are described and analyzed using FEM 

models. Then the model design philosophy is presented. The members of these two 

steel models are joined by applying welding. Finally, the dynamic properties of the 

models are measured.  

 

8.2.1 Two selected adjacent buildings in Hong Kong 

 

8.2.1.1 Prototypes 

As discussed in Section 7.1, this study will concentrate on seismic torsional 

pounding between asymmetric buildings with transfer system in Hong Kong. Through 

extensive field investigations, two adjacent 21-story reinforced concrete buildings in 

Wanchai on the Hong Kong Island, which is one of the most crowded areas in Hong 

Kong, were selected for the present study. As shown in Figure 8.2, the L-shaped 

building is a hotel (called Empire Hotel which will be referred as EH hereafter), 

which is highly asymmetric; and the other smaller one is a residential building (called 

Gold Star which will be referred as GS hereafter), which is more regular in shape. The 

two buildings are built nearly touching each other (see the photograph in the upper 
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right-hand corner of Figure 8.2), probably with a nominal separation of 25 mm (i.e. 

the thickness of a typical wooden formwork used in Hong Kong). Actually due to the 

limited land and dense population, this situation is very common in Hong Kong. Note 

that the seismic vulnerability of the EH building has been studied through shaking 

table tests in the first part of this thesis. 

The two buildings are of similar heights, but they adopt quite different structural 

forms. The EH building is a frame-shear wall structure, with the upper 19 typical 

stories supported by a transfer plate through which vertical loads were transferred to 

the two lower stories. A typical stories consists of shear walls (typically of 200 mm 

thick), whereas for the two stories below the transfer plate, 20 columns (typically of 

1200 mm diameter) are used to support the upper structure. A typical story has a 

height of 3.0 m whereas the first two stories and the top story have heights varying 

from 3.7 m to 4.95 m. The more detailed information of this building can be referred 

to Section 2.2. 

The GS building is a 21-story frame structure. A transfer plate is situated on the 

4th floor. For the four stories below the transfer plate, the floor plan consists of 20 

rectangular columns of five different sizes (ranging from 460×380 mm to 838×610 

mm); whereas for the upper stories, the floor plan consists of 12 rectangular columns 

of sizes from 533×330 mm to 686×457 mm. The first story has a height of 5.6 m and 

the other stories have a height of 3.0 m. The concrete of grade C30 (corresponding to 

a cubic compressive strength of 30 MPa) is used in both buildings. 

The different structural forms of the two buildings result in their different 
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dynamic characteristics, such as natural frequencies and damping ratios. Thus, under 

earthquake excitations, their vibrations will be out of phase and pounding is likely to 

occur since there is no adequate separation between them. In addition, due to the 

asymmetric distribution of mass and stiffness, especially for the EH structure, it is 

expected that even under unidirectional ground shaking, torsional responses will be 

induced and, in turn, torsional pounding will. 

 

8.2.1.2 FEM analyses of the prototypes 

After the two buildings were selected, their detailed design diagrams were 

obtained from the Buildings Department of the Hong Kong SAR Government. Based 

on the detailed technical drawings, FEM models were set up using the commercial 

package SAP2000 Nonlinear version 8.1.2. Frame elements were used to model 

columns and beams whereas shell elements were used to model walls and floor slabs. 

All the floor slabs were assumed to be rigid in their planes. 

Figure 8.3(a) shows the 3D view of the FEM model for EH and the other three 

diagrams show the mode shapes of the first three modes at the top floor. It is clear that 

torsional motions are highly coupled with translational vibrations. These torsional 

motions are induced by the asymmetric arrangement of the structural elements. 

Similarly, the FEM model and mode shapes of the first three modes of the GS 

building are given in Figure 8.4. The first mode shape is mainly translational, but 

torsional responses are coupled with translational motions for the second and third 

modes. The natural frequencies of the first six modes of the two buildings are 
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summarized in the second column of Table 8.1. Note that the natural frequencies of 

GS are much lower than that of EH. 

 

8.2.2 Model design and construction 

 

8.2.2.1 Design of two steel models 

Similar with the model design discussed in Chapter 3, the design of the two 

pounding models here was also carried out according to the similarity law. The main 

difference is that steel is used here to build the models although the actual buildings 

are built of reinforced concrete. The main reason of using steel material is to allow us 

to repeat pounding tests on the two models at various shaking magnitudes, input 

frequencies and separation distances, without suffering substantial damages. The other 

reason is that the structural elements have rather small dimensions in the scaled model 

and it is hard to control the quality of micro-concrete used for constructing the 

models. 

The size and weight of our models are constrained by the 3.3 m headroom of the 

laboratory, shaking table size of 3 m×3 m, and the 10 ton load capacity of the MTS 

shaking table at the Hong Kong Polytechnic University. Therefore, a length scale of 

1:45 was adopted in the present study (i.e. lλ = 1/45). The plan dimensions and story 

heights of the models were all scaled down using the same lλ , so that the shape of the 

buildings is preserved. 
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To guide our design, similarity law will be considered next. In our shaking table 

tests, the equations of motion of the model and the prototype under earthquake 

excitations can be written as: 

m m m m m m m gmm x c x k x m x+ + = −&& & &&                     (8.1) 

p p p p p p p gpm x c x k x m x+ + = −&& & &&                      (8.2) 

where ,  and  represent the mass, damping and stiffness matrices respectively, 

the subscripts  and 

m c k

m p  correspond to the model and the prototype respectively, x  

is the displacement response, and gx  is the input ground motion. 

Since in our tests pounding occurs when the model is still undergoing elastic 

deformation, to simplify the problem the damping effect was ignored in the model 

design. Actually as will be shown later, the damping ratios of the two steel models are 

both less than 1% and are considered negligible. Thus, the above two equations can be 

simplified as: 

m m m m m gmm x k x m x+ = −&& &&                       (8.3) 

p p p p p gpm x k x m x+ = −&& &&                        (8.4) 

Dividing the above two equations with  and  respectively and using mm pm

2 k mω = , we have 

2
m m m gmx x xω+ = −&& &&                          (8.5) 

2
p p p gpx x xω+ = −&& &&                          (8.6) 

where mω  and pω  are the circular natural frequencies of the model and prototype 

respectively. Note that the ratio of displacement is equal to the length scale (i.e. 

/m px x lλ= ). For the present 1-g environment of shaking table test, we have 
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/ /m p gm gpx x x x=&& && && && 1= . It is straightforward to show from Equations (8.5) and (8.6) that 

the following equation must be satisfied: 

1m

p l

ω
ω λ

=                            (8.7) 

Since Equations (8.5) and (8.6) are similar mathematically and so do their solutions. 

Since steel (with a Young’s modulus of 210 GPa) was used to build the present 

models and the ratio of Young’s modulus between the model and the prototype equals 

7 (i.e. Eλ = 7), the required model mass ( ) plus additional mass ( ) will be 57.6 

and 18.5 ton for EH and GS models respectively according to the additional mass 

similarity law [using Equation (3.18), we have , where 

mm am

p
2

m a E lm m mλ λ+ = lλ = 1/45 

and the total masses  of the prototypes EH and GS are 16656.2 and 5343.4 tons 

respectively]. These two weights are much heavier than the load capacity of out 

shaking table of 10 tons. Therefore, the additional mass similarity law can not be used 

here and thus further simplification is needed. To simplify the problem, we will only 

consider the similarity of the natural frequencies between the model and prototype. 

That is, we will only enforce Equation (8.7). Despite this simplification, we expect 

that the seismic responses of the model and prototype should remain similar. 

pm

Since the natural frequencies of the two prototypes have been given by FEM 

analysis in Section 8.2.1, the natural frequencies of target models can be determined 

as / 1/m p lf f λ= ≈ 6.7. The results of the first six modes for both models are listed 

in the third columns of Table 8.1. The target frequencies of the first six modes of the 

models are all within the working frequency range (1-50 Hz) of the shaking table. 

Then, FEM analysis was used to determine the locations of the structural 

 350



members of the two models such that the target natural frequencies can be achieved. 

The mass distributions among different floors of each model are designed according 

to that of actual buildings. As far as possible, the locations of walls and columns in the 

models are the same as those of the real buildings, except for some minor tuning of 

the target frequencies. For easiness of construction, circular columns were mainly 

used in the model, although nearby all columns and walls in the real buildings are 

rectangular. 

After a number of trial and error in choosing the column locations, the detailed 

structural forms of the two steel models were fixed as shown in Figures 8.5 and 8.6. 

For EH model, the structural plans for floors below and above the transfer plate are 

given in Figures 8.5(a) and 8.5(b) respectively. All columns are either circular (8 and 

10 mm in diameter) or rectangular (typical of 20×6.5 mm and 12.5×6.5 mm) steel 

bars, and the detailed dimension of these vertical elements are listed in Table 8.2. 

Steel plates of 30 mm thick were used as the floor slabs. Rectangular holes were cut 

from the slabs to simulate the stair cases in the EH prototype (see Figure 8.5). The 

story heights, floor areas and weights of the model are summarized in Table 8.3. The 

first two floors and the upper typical floors have weights of 104.09 kg and 76.58 kg 

respectively.  The total weight of the model is about 1.66 ton.  

For GS model, the structural plans for floors below and above the transfer plate 

are given in Figures 8.6(a) and (b) respectively. The first four stories below the 

transfer plate take a rectangular shape whereas the typical floors above transfer plate 

have a more irregular form [Figure 8.6(b)]. Four rectangular steel bars of dimension 
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12.5×6.5 mm were welded at the corners of 1st-4th story and all other columns are 

circular bars of 6 mm diameter (see also Table 8.2). Table 8.3 also lists the story 

heights, floor areas and weights of the GS model. The weights of the first four floors, 

the typical floors and the whole model are 36.82, 22.43 and 528.51 kg respectively. 

Therefore, the GS model was much lighter than the EH model. 

The natural frequencies and mode shapes of these two modes were estimated 

from FEM analysis and are shown in fourth column of Table 8.1 and Figures 8.7-8.8 

respectively. The natural frequencies of the first six modes predicted by FEM are 

fairly close to that of the target models given in the third column. From Figures 

8.7-8.8, the mode shapes of the designed models resembled closely that of the 

prototypes given in Figures 8.3-8.4. Similar to the prototype buildings, the 

translational responses were also coupled with torsional vibrations. Therefore, the 

current design is considered acceptable. 

 

8.2.2.2 Model construction 

Circular holes were drilled in advance on the 30 mm-thick steel plate slabs at 

the locations of columns as shown in Figures 8.5-8.6; continuous circular steel bars 

were installed through the drilled holes and welding was used to fix the columns to 

the slabs [Figures 8.9(a) and (b)]; and additional rectangular bars were added to the 

edges of lower floors.  

Figures 8.9(a) and (b) show the completed models of EH and GS respectively. 

Note that the steel columns were continuous from the roof to the ground. Figure 8.9(c) 
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was a photograph of the two models putting together on the shaking table. Note that 

the floor slabs below and above the transfer plates were painted with different colors 

for easy identification. As shown in Figure 8.9(d), the EH model was fixed to the base 

slab whereas the GS model was bolted down into slots at the base slab such that fine 

adjust separation distance can be made. 

The elevation views of the two models were illustrated in Figure 8.10. Note that 

steel webs of 60 mm long (refer to the close-up photograph) were welded at the base 

of each vertical column between 1/F and 2/F of the EH model to adjust the heights of 

the upper floors, so that the neighboring floor slabs of the two models are nearly 

situated at the same heights to avoid pounding between floor slabs and columns.  

 

8.2.3 Dynamic characteristics of the two models 

 

To verify the target natural frequencies of our models, modal tests were 

conducted using hammer blow excitations. Fourier spectra of measured data were 

then utilized to determine their natural frequencies, mode shapes and damping ratios. 

For this purpose, seven accelerometers were installed on 21/F, 18/F, 15/F, 12/F, 9/F, 

7/F, 5/F and 4/F of the GS model, and 21/F, 18/F, 15/F, 12/F, 9/F, 7/F, 5/F and 2/F of 

the EH model respectively. The measured natural frequencies of both EH and GS are 

listed in the last columns of Table 8.1. The actual frequencies are found smaller than 

the predictions by FEM analysis. Subsequently, additional rectangular steel bars had 
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been added for the EH model (indicated by the open rectangles in Figure 8.5) to tune 

the natural frequencies.  

The obtained mode shapes are plotted in Figure 8.11. More specifically, the 

shapes of the first two translational motion along the x direction as well as the first 

two torsional modes of the two models are shown in Figure 8.11. For all four modes, 

the roofs of both models possess the largest responses are at the roof level. However, 

te higher modes are evident from the modes of 2
GSf , 2

GS
Tf , 2

EHf  and 2
EH

Tf . 

In the following study, only the first several modes of each model were 

measured, including the first translational ( 1
EHf ) and torsional ( EH

Tf ) modes of EH, 

the first and second translational modes ( 1
GSf  and 2

GSf ) and the first torsional mode  

( GS
Tf ) of GS. To visualize the mode shape, the five modes considered are illustrated 

by 3D sketches in Figure 8.12, where the solid lines represent the original forms of the 

models and the dashed lines show the deformed shapes. And the main direction of 

motion for each mode was also marked on the sketches. 

The damping ratio of each modes was estimated using the half-power method 

based on the Fourier spectra of recorded displacement data at the roof of each model 

during the hammer blow testing. Figure 8.13 illustrates the estimation procedure of 

the half-power method for the damping ratios of the first translation modes of the two 

models ( 1
GSf  and 1

EHf ) and the results are 0.36% and 0.23% for GS and EH 

respectively. The damping ratios of the torsional mode ( GS
Tf ) and second translation 

mode ( 2
GSf ) of GS are 0.18% and 0.17%, and the torsional mode of EH ( EH

Tf ) has a 

damping ratio of 0.19%. The obtained damping values seem to be rather small 
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compared to that of reinforced concrete structures (normally 5%), which is not 

unexpected for the present steel models fabricated by welding. 

 

 

8.3 Poundings Tests between Two Flexible Models 

 

In this section, pounding experiments between the two asymmetric steel models 

are reported. First, the installation of contactors and instrumentation are discussed. 

The maximum stand-off distances between the two models are investigated as a 

function of excitation frequency. Pounding phenomena will be studied at different 

separation distances under the shaking of both sine waves and real earthquake records. 

Finally, the phase diagrams, maximum responses, and the maximum impact forces are 

presented for different inputs. 

 

8.3.1 Experimental setups 

 

8.3.1.1 Location of contactors 

The locations of contactors where pounding take place are decided according to 

the mode shapes obtained earlier. Since the roofs of the two models always have the 

maximum displacements (see Figure 8.11), a pair of contactor was installed between 

the roof of GS and 20/F of EH, which were almost at the same heights as shown in 

Figure 8.10. In order to record potential pounding caused by higher mode vibrations, a 
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pairs of contactor was also installed on 9/F of the more flexible GS model. This is 

because 9/F of GS has the largest 2nd mode response other than for the roof (see 

Figure 8.11). From the elevation view shown in Figure 8.10, impacts may take place 

between 9/F of GS and 8/F of EH. 

To record torsional pounding, two pairs of contactors were installed on both the 

roof and the middle (9/F) levels as shown in Figure 8.14. Thus, totally there are four 

possible contact points in between the two models. 

The close-up photograph in Figure 8.14 shows the details of a contactor, which 

consists of a circular steel bar of 16 mm diameter on the EH model and a rectangular 

steel plate of 90×90×15 mm on the GS model. The relatively large area steel plate is 

used to allow for the possibility of torsional impacts. Two strain gauges of 2 mm 

length were installed at the upper and below surfaces of the circular steel bar. The 

average strains recorded by the two strain gauges will be used to calculate the impact 

forces. Also shown in the photo, a rubber pad of 5 mm thick was attached at the end 

of the steel bar in order to reduce damage to the models induced by pounding, so that 

repeated tests can be conducted. 

 

8.3.1.2 Instrumentations 

In addition to the strain gauges, Figure 8.15 shows the location of displacement 

transducers, velocity transducers and accelerometers installed on the roofs of both GS 

and EH. Since the steel floor slabs are relatively rigid, the torsional response of a slab 

can easily be determined through two off-set measurements on it. Accelerations are 
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measured using Brüel & Kjær accelerometers of types 4370, 4371 and 4382, whereas 

velocities are obtained through converting the acceleration data using Brüel & Kjær 

amplifier of type 2635 or NEXUS conditioning amplifiers. The four displacement 

transducers used are the KEYENCE LK 503 laser displacement sensor. The details of 

these transducers can be referred to Section 3.5.1. Two accelerometers installed on 8/F 

of EH and 9/F of GS were designed to capture pounding induced by higher modes. 

Accelerometers installed on 2/F and 3/F of EH and on 4/F and 5/F of GS can capture 

the sudden change of responses across the transfer plates. Finally, one accelerometer 

and one LED sensor (SUNX LH-512) were installed on the surface of the shaking 

table to record the actual shaking generated. 

All these transducers were calibrated to assure they were in good working 

conditions. LabVIEW v7.0 from National Instruments was used for signal acquisition 

and data presentation. The data were collected at a sampling rate of 2000 Hz. 

 

8.3.2 Maximum stand-off distances 

 

Shaking table tests were conducted to estimate the maximum stand-off distance 

between the two models under sine wave excitations. In these experiments, the two 

models were set apart for about 40 mm to assure that no impact will occur. Then, sine 

waves of different frequencies were input. Finally, the maximum responses of two 

models were added to yield the maximum stand-off distance. 
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Figure 8.16 shows the maximum stand-off distances versus the input 

frequencies. The natural frequencies of the two models are indicated by arrows. The 

stand-off distances are at maximum when the excitation frequency coincides with the 

1
GSf  and  1

EHf . This result was consistent with the findings in the translational 

pounding tests by Chau et al. (2003) and the theoretical simulations by Chau and Wei 

(2001). The maximum stand-off distance is about 9.8 mm, equivalent to a stand-off of 

0.441 m for the actual buildings by recalling the 1:45 length scale. According to 

Chinese Code for Seismic Design of Buildings (GB50011-2001, 2001), the 

anti-seismic gap between this two buildings is 0.323 m. Therefore, the Chinese Code 

is not conservative enough for the present models. Note also that there are peaks in 

Figure 8.16 at frequency equal to GS
Tf  and 2

GSf , but no peak is observed near the 

torsional frequency of EH. This is probably because torsional response of the more 

rigid EH model was much smaller compared to that of GS. Note that for the whole 

range of input frequency (1-12 Hz), the maximum stand-off distances are always 

larger than 1.2 mm. Therefore, if the separation is smaller than this value, pounding 

will always occur. The equivalent value for the prototypes is 54 mm, which is larger 

than the actual separation between the two buildings. Thus, these two buildings may 

be subject to rather high risk of seismic pounding. 

 

8.3.3 Poundings under harmonic excitations 
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After the “non-pounding” tests, pounding tests under sine wave excitations were 

conducted by reducing the separation distance between the two models to 0 and 4 mm 

respectively. The magnitudes of the sine wave inputs varies from 0.05g to 0.1g and 

the excitation frequencies changes from 3 Hz to 12 Hz with a step of 0.5 Hz. 

 

8.3.3.1 Phase diagrams and velocity time histories 

Different types of phase diagrams of steady state responses at the roof of the 

more flexible GS model are summarized in Figure 8.17. The separation distance is 

zero and the input magnitude is 0.07g. The input frequencies are also given in the 

figure. These phase diagrams are plotted using displacement as the horizontal axis and 

velocity as the vertical axis. The “Translation 1” and “Translation 2” phase diagrams 

corresponding to the two independent measurements at the roof of GS (see Figure 

8.15). The rotation phase diagrams plots the rotation angles versus the rotation 

velocities at the top of GS.  

When the input frequency is 3 Hz, no pounding occurs. The response is periodic 

and the rotation is relatively small. When the input frequencies are higher than 4 Hz, 

impacts occur and the phase diagrams become much more complex. A total of nine 

classes (PI-PXI) of phase diagrams are categorized in Figure 8.17. The pounding 

responses can be simply periodic (such as PI and PII), a big cycle of oscillation 

containing smaller ones (such as PVIII), or group periodic (such as PIX). The group 

periodic impacts mean a group of non-periodic impacts repeating themselves 
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periodically, and this unique pounding phenomenon has also been found in 

translational pounding tests by Chau et al. (2003). 

As shown in Figure 8.17, the torsional responses are much larger when 

pounding occurs. They can also be periodic, group periodic or chaotic. In addition, the 

translation phase diagrams at the two corners of GS (Translations 1 and 2 in Figure 

8.17) may be quite different, such as the cases of PVI, PVII, PIX and PX. This reflects 

strong torsional responses in these cases. 

The velocity time histories within two input cycles are plotted in Figure 8.18 for 

the pounding types PI, PVII, PVIII and PIX. The locations where pounding occurs are 

marked in the figure. The phase diagram for PI is the simplest, whereas those for PVII 

and PVIII reflect smaller oscillations within the bigger oscillation cycle. The phase 

diagram for PIX demonstrates the case of group periodicity. 

 

8.3.3.2 Energy transfer through pounding 

Energy transfer from the more rigid and massive structure (EH) to the lighter 

and more flexible one (GS) through pounding is observed in our shaking table 

experiments. Figure 8.19 shows such an example, where the pounding and 

non-pounding responses of the two models in two different tests with similar 

excitations are plotted and compared. More specifically, at zero separation distance, 

pounding occurred, whereas no pounding occurred when the separation distance was 

increased to 4 mm. 
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As shown in Figures 8.19(g) and (h), the excitations of the two cases are almost 

identical. However, the responses of GS when impact occurred (the dashed lines) are 

much larger than that of non-pounding experiments (the solid lines) [refer to Figures 

8.19(a), (c) and (e)]. The velocity plots for these two cases demonstrate completely 

different responses. On the contrary, the changes in responses of EH caused by 

impacts are much smaller and negligible [refer to Figures 8.19 (b), (d) and (f)] The 

stiffer and more massive EH model is not very responsive to pounding; whereas, the 

lighter GS model is very responsive to pounding. Clearly, most of the vibration in GS 

is gained from energy transferred from the poundings. Thus, the energy transfer 

induced by pounding may cause severer damages to the lighter and more flexible 

buildings, but would has little influence on those more massive and rigid structures. 

 

8.3.3.3 Maximum responses 

The maximum responses and pounding forces under harmonic sine wave 

excitations are also investigated. Figure 8.20 plots the maximum velocity and 

accelerations spectra at the roofs of GS and EH respectively when the separation 

distance is zero and the input magnitude is 0.05g. The symbols ⊙ represent the 

pounding cases.  

Impacts occurred for all the input frequencies higher than 4.5 Hz. Because of the 

energy transfer by poundings, the responses of the more flexible GS model are much 

larger. In addition, the response spectrum for the GS model is not symmetric with 

respect to the x-axis [Figure 8.20(b)]. That is, the positive responses are much larger 
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than the negative responses. As sketched in the figure, these abnormal large positive 

responses are caused by impacts whereas the negative responses were constrained by 

the adjacent rigid EH model. 

In Figure 8.20, the maximum responses do not occur at the natural frequencies 

of the two models, but at a frequency (about 6.5 Hz) between these two first natural 

frequencies. Similar phenomenon was also observed in translational pounding tests by 

Chau et al. (2003). This implies that when the separation distance is zero (i.e. the 

adjacent structures are touching with each other), the two models may vibrate together 

as a new system, which may have a quite different dynamic property from the 

individual structures. 

To further investigate this phenomenon, the two models were locked together 

(as shown in the photographs of Figure 8.21) and hammer blow testing was conducted 

to measure the natural frequency of the new system. From the resulting Fourier 

spectrum plotted in Figure 8.21, it is found that this system has a first torsional natural 

frequency of 6.378 Hz and a translational frequency of 8.026 Hz. This finding 

explains the abnormal large responses at about 6.5 Hz in Figure 8.20. Note that the 

translational frequency is close to that of the EH model (8.118 Hz), which is expected 

since EH is much more massive and rigid than GS. 

Similarly, the maximum velocities and accelerations of GS and EH are also 

plotted with the input frequencies in Figure 8.22 when the separation distance is 4 mm 

and the input magnitude is 0.05g. It can be seen that less impacts occur with the 

increased separation distance and impacts only occur when the input frequency is near 
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the first translational and torsional frequencies of GS as well as the first translational 

frequency of EH. In addition, the maximum responses always occur at excitation 

frequency near the natural frequencies of the two models. This observation is quite 

different from that of zero separation, implying that the two models respond more 

individually when separated by a distance. The unsymmetrical responses with respect 

to x-axis of the more flexible GS model are again caused by pounding (similar to that 

in Figure 8.20). 

 

8.3.3.4 Maximum pounding forces 

Figure 8.23 shows the maximum pounding forces recorded for various 

excitation frequencies when the input magnitude is 0.05g and the separation distances 

are zero and 4 mm respectively. It is found that for 4 mm separation, the maximum 

forces occur near the translational frequencies of GS and EH: whereas for zero 

separation, the maximum force again occurs at about 6.5 Hz which is between the 

natural frequencies of the two models. As discussed previously, this is because the 

two models behavior as a new system when touching with each other.  

In addition, the maximum force of zero separation distance is much larger than 

that of 4 mm separation. This is probably due to larger energy transfer when the two 

structures are touching with each other. This implies severer pounding hazard would 

be expected in Hong Kong, where many buildings are very closely spaced due to the 

limited land (such as the two prototype buildings studied here). Note that pounding 

also occurred at the middle level (9/F of GS) both at zero and 4 mm separation 
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distances, due to higher mode responses. But for all the cases, the forces at the roof 

are larger than that at the middle level. 

 

8.3.4 Poundings under real earthquake excitations 

 

All the results discussed above are for harmonic  sine wave excitations. 

However, real earthquakes may be much more complicated than sine waves. In this 

study, pounding tests under the shaking of real earthquakes were also conducted at 

zero and 3.2 mm separation distances respectively. The time histories of three past 

earthquakes were used as inputs, including the 1940 El Centro earthquake, the 1989 

Loma Prieta earthquake and the 1994 Northridge earthquake. As discussed in Section 

4.1, the duration of these time histories were all compressed according to the 

similarity law ( /m p lt t λ= ≈ 0.15) before used as inputs.  

The peak ground accelerations (PGA) of these earthquake inputs, the maximum 

acceleration and velocity responses at the roof of the GS model are summarized in 

Table 8.4. The time histories of the inputs, the acceleration responses at the roof of 

GS as well as the pounding force for the three earthquake inputs at two separation 

distances are shown in Figures 8.24-8.26. In these figures, extremely large 

acceleration responses caused by pounding are clearly seen. For example, when the 

peak acceleration of El Centro earthquake input is only 0.229g, the maximum 

response of GS can reach 13.37g when pounding occurred. 
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The duration and numbers of impacts as well as the minimum and maximum 

pounding forces for different earthquake inputs are also summarized in Table 8.4. It is 

found that with the separation distance increasing from zero to 3.2 mm, both the 

number of impacts and the magnitudes of impact forces reduced significantly. For 

example, for zero separation distance, 35 impacts occurred within 3.6s under the 

excitation of Northridge earthquake and the maximum pounding force reached 8.27 

kN; when the separation distance was increased to 3.2 mm, only 6 impacts occurred 

and the maximum forces reduce to 2.73 kN. This again suggests that the closely 

spaced buildings may suffer from much heavier pounding damages under the attack of 

earthquake. And this is consistent with the conclusion drawn from the sine wave 

excitation tests (see Figure 8.23).  

 

8.3.5 Comparison with theoretical study 

 

In Section 7.2, torsional pounding between two flexible single-story towers 

under harmonic excitations has been studied through numerical simulations. Although 

the theoretical model is much simpler than the present 21-story building models, the 

results from the two studies are briefly compared here. 

The maximum stand-off distance spectra from the theoretical prediction (Figure 

7.16) and the experiments (Figure 8.16) are similar. For both cases, the maximum 

stand-off distances occur when the input frequency is near the translational natural 

frequencies of the two structures. In addition, a local peak occurs near the torsional 
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frequency of the long-period structure (the GS model in the test and Tower A in the 

numerical study). This shows that even quite simple theoretical models can provide 

useful insight into the complex torsional pounding phenomenon. 

Comparing the phase diagrams shown in Figure 7.9 and Figure 8.18, it is found 

that for both cases, impacts always result in sudden change of velocities. The 

difference is that in the tests, the impact-induced reduction of velocity appears to be 

much smaller than that in the theoretical study and displacement does not remain 

constant during impacts (Figure 8.18). This means in the experiment the impact 

duration may not be short, and within the duration of impact the two structures are 

locked and vibrate together. In the theoretical study, since relatively stiff contact is 

assumed, the impact duration is close to zero and thus displacement appears to be 

constant during impacts (see Figure 7.9). 

In addition, both group periodic and chaotic pounding observed in the shaking 

table tests have also been found in the theoretical study (see Figures 7.8 and 7.9).  

For the impact velocity spectra from the numerical study (Figures 7.8 and 7.11), 

the maximum velocities all occur at excitation frequency between the translational 

natural frequencies of the two structures. Similar phenomenon is also observed in the 

tests when the separation distance between the two structures is zero (refer to Figures 

8.20 and 8.23). However, when the separation distance increases to 4.0 mm in the 

experiments, the maximum response (Figure 8.22) and impact forces (Figure 8.23) all 

occur at excitation frequency near the natural frequencies of the two structures. This 

observation can not be captured by the theoretical model. 
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It should be borne in mind that the theoretical simulation models are close to 

SDOF systems whereas the models in the experiments are MDOF systems. Strictly 

speaking, the two results can not be compared together. The comparisons were made 

just to show some common characteristics between the pounding phenomena of the 

idealized SDOF model and the MDOF systems in the experiments. It is shown that 

even this quite simple theoretical model can provide valuable insights into the highly 

nonlinear pounding phenomena between actual multi-story structures. For example, 

periodic group and chaotic poundings were observed in both theoretical simulations 

and experiments. In this sense, the present theoretical study is of considerable merits 

and provides guidance for future researches in this area.  

 

 

8.4 Pounding Tests between One Flexible Model and a Nearly Rigid 

Wall 

 

In the previous section, seismic poundings between two asymmetric high-rise 

steel models were investigated and the results showed that the more flexible GS 

model was subject to more serious damage due to energy transfer from the more 

massive and more rigid EH model through pounding. Motivated by this results, it is of 

fundamental interest and importance to investiagte how the more flexible GS model 

will response when it impacts with an even more massive and rigid structure. In 

Chapter 4, an analytical solution has been obtained for torsional pounding between a 
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two degree-of-freedom tower and a rigid barrier. In this section, torsional pounding 

experiments will be conducted between the high-rise GS structure and a nearly rigid 

wall, and the observed results will be compared with the analytical solution discussed 

in Chapter 4. 

 

8.4.1 Experimental setups 

 

8.4.1.1 Details of the nearly rigid wall 

In this study, a massive steel wall shown in the photographs of Figure 8.27 was 

utilized as a nearly rigid wall. The wall was designed and built at the Hong Kong 

Polytechnic University before the commencement of the present PhD study, but the 

massive wall has never been used until the present study. As shown in Figure 8.28, 

the wall has a rectangular front elevation view of 2394 mm high and 1706 mm wide 

and a triangular side elevation plan (see also Figure 8.27). It mainly consists of five 

steel H-section columns and a set of support steel bars transferring horizontal loads to 

the inclined channels, and a rectangular steel plate of 1706×650×30 mm was welded 

to the top portion of the wall in connecting all five steel columns together (see the 

front view photo in Figure 8.27). The detailed dimensions and structural forms were 

given in Figure 8.28. All the connections are made by welding. 

Modal tests were carried out through hammer excitation tests in determining the 

dynamic characteristics of the wall. The Fourier spectrum of the measured 

acceleration response at the top was shown in the lower plot in Figure 8.27. As can be 
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seen, the natural frequencies of first three modes of the wall were 39.734, 59.937 and 

74.768 Hz respectively. Recall that the natural frequencies of the first three modes of 

GS are all less than 12 Hz. Considering these big differences, the steel wall shown in 

Figures 8.27 and 8.28 can be reasonably assumed to be nearly rigid and will be 

referred as RW (short form for Rigid Wall) hereafter. 

 

8.4.1.2 Instrumentations 

The instrumentations used in the pounding tests between the GS model and RW 

were illustrated by a sketch in Figure 8.29, together with some actual photographs of 

the models. Similar to the previous experimental settings in the tests between GS and 

EH (refer to Figure 8.8), two set of contactors were installed between the roof of the 

GS model and RW. To estimate the impact forces between these two structures, two 

strain gauges were attached onto the surface of each of the steel bars at the contact 

points. To avoid excess damages to the GS model during parametric studies, a circular 

rubber pad of about 5 mm was glued to the contact surface of the contact bars. This 

rubber padding, in effect, also reduces pounding forces between these two steel 

models. Note that impacts are only allowed at the top level, and consequently 

mid-level impacts between actual buildings, if there is any, can not be accounted for 

in this particular experimental set-up. It is equivalent to assuming that the higher 

mode deformation of the GS model is not significant during impacts. 

As shown in Figure 8.29, laser displacement transducers, velocity and 

acceleration accelerometers were all installed on the far end of the floor slab of the GS 
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model, away from the pounding side next to RW.  The velocities data were obtained 

through converting the acceleration data using amplifiers as discussed earlier. Two 

accelerometers were installed on the 4/F and 5/F of the GS model to record the 

probable changes in responses below and above the transfer plate, if there is any. 

Another four accelerometers were installed on the 9/F to measure the velocities and 

accelerations, such that any potential second mode deformation of GS can be captured. 

Finally, two remaining accelerometers were installed on the 15/F, which is about 

half-way between the accelerometers at the roof and those at 9/F.  To ensure the 

validity of our rigid wall assumption, one accelerometer was installed at the top of 

RW behind the pounding portion of the wall. One accelerometer and a laser 

displacement sensor were installed on the surface of the shaking table to record the 

actual inputs generated. Again LabVIEW v7.0 from National Instruments was used 

for signal acquisition and the data collection rate was set to 2000 Hz to record the 

instantaneous responses caused by short-duration impacts. 

 

8.4.2 Poundings under harmonic excitations 

 

Pounding tests between GS and RW were conducted under the excitations of 

sine wave at two different separation distances: 0 mm and 3 mm. The magnitudes of 

the sine wave inputs vary from 0.05g to 0.08g and the excitation frequencies range 

from 2 Hz to 12 Hz. The results of phase diagrams and time history responses of our 
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shaking tabe experiments will be presented separately for the two different separation 

distances as follows. 

 

8.4.2.1 Zero separation distance 

Figure 8.30 plots four different types (PI-PIV) of phase diagrams of responses at 

the roof of GS when the separation distance is zero and the input magnitude is 0.05g. 

The first two columns of Figure 8.30 show the phase diagrams of displacement versus 

velocity and velocity versus acceleration respectively; whereas the third and fourth 

columns show the phase diagrams corresponding to rotations. As can be seen, because 

of the higher frequency contents, the phase diagrams between velocity and 

acceleration are much more complex than that between displacement and velocity. 

Similar to the patterns found previously in the tests between GS and EH, here 

the phase diagrams can be classified as: (i) periodic (PI); (ii) periodic cycle of 

oscillations with smaller oscillation cycles (PII); (iii) group periodic pounding (PIII); 

and (iv) chaotic (PIV). To further illustrate these pounding phenomena, the velocity 

time histories within two input cycles are plotted in Figure 8.31, together with the 

phase diagrams. The locations of pounding occurrence are marked by arrows in the 

figure. 

Theoretically, pounding can be seen from a sudden change of velocity at the 

same displacement. However, some of impacts cannot be seen clearly from Figure 

8.31. From these plots, the following conclusions can be drawn. For PI, impact 

occurred once during each input cycle. For PII, two impacts happened within one 
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input cycle but the response was still periodic and impacts occurred at the same two 

places during each input cycle. For PIII, there were still two impacts in one input 

cycle, but the tracks of phase diagram did not coincide with that the previous cycle, 

and the pounding occurred at different locations during two consecutive input cycles. 

This pattern repeated itself every two cycles and formed a group periodic pounding as 

found in the tests between GS and EH. Finally, for PIV, the response was chaotic 

because no periodic tracks can be found from one cycle to the other. 

 

8.4.2.2 Non-zero separation distance 

When the separation distance increased from zero to 3 mm, the response of GS 

differs significantly from that for zero separation. For the cases of no poundings (or 

called non-pounding tests), Figure 8.32 shows three different patterns of response.  

The case of NPI showed a highly periodic response, NPII showed a more complex 

response with smaller oscillations within a bigger cycle of oscillations, and NPIII 

represented a rather chaotic response. These different patterns depended on the 

excitation frequencies of sine wave inputs. 

When pounding did occur, the phase diagrams are also quite different from that 

of zero separation distance. As shown in Figure 8.33, a total of eight different patterns 

of responses were identified. The responses can be periodic, such as PI-PIII and 

PV-PVII; group periodic, such as PVIII; or completely chaotic, such as PIV. To 

illustrate different responses, velocity time histories of four distinguished patterns (PI, 

PIV, PVII and PVIII) are selected and plotted in Figure 8.34.  
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The case PI showed a highly periodic oscillation; PVII was also roughly 

periodic but the tracks and the locations of impacts varies from cycle to cycle; PVIII 

represented a group periodic response repeating itself every two input cycles; whereas 

PIV was chaotic and no periodic pattern can be found. All these cases are having a 

impact per excitation cycle. 

Comparing the impact patterns showed in Figures 8.31 and 8.34, it can be 

concluded that more impacts occur within one input cycle for the case of zero 

separation; whereas there is only one impact during one cycle for 3 mm separation 

distance. Therefore, more impacts were expected to occur for smaller separations.  

To further investigate seriousness of these impacts, and spectrum of maximum 

responses will be discussed next. 

 

8.4.2.3 Maximum responses 

Figure 8.35 plots the maximum velocities at the roof of GS with respect to the 

input frequencies for separation distances of 0, 3 and 4.7 mm. The responses spectra 

for 3 and 4.7 mm separations are similar in shape, with the peak responses occur at 

excitation frequencies very close to the natural frequencies of the first three modes of 

GS.  The spectrum for zero separation distance is completely from the two former 

cases.  Only one maximum response occurred at a frequency between those of the 

first two translational modes, but is very close that of the first torsional mode of GS. It 

appears that when the separation distance was zero, the two structures GS and RW 
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respond as a new system, which had a totally different dynamic characteristic from 

those of individual models. 

Figure 8.36 plots the maximum accelerations at the roof of GS with respect to 

the input frequencies for separation distances of 0, 3 and 4.7 mm. Note that the 

magnitudes of positive maximum acceleration is much smaller than that of the 

negative acceleration probably because of the constraint posed by RW in the forward 

direction, as illustrated by the small sketch in Figure 8.36. 

One main difference between Figures 8.35 and 8.36 is that the spectra in Figure 

8.35 are roughly symmetric with response to the horizontal axis whereas those in 

Figure 8.36 do not.  This demonstrates that impacts cause much more drastic 

changes to acceleration in comparison with velocity. This can also be reflected in 

Figures 8.30 and 8.33 discussed earlier. 

 

8.4.2.4 Maximum pounding forces 

Finally, the maximum pounding forces recorded during the inputs of different 

frequencies are plotted in Figure 8.37 when the input magnitudes are 0.05g and the 

separation distances are 0, 3 and 4.7 mm respectively. It can be seen that the 

maximum pounding forces for cases of 3 and 4.7 mm separations are abut the same 

(about 1.2 kN). This observation agrees with the conclusion by Chau and Wei (2001) 

on translational pounding that the maximum impact velocity appears to be not too 

sensitive to the change of separation distance as long as the impact is developed.  

Note that the maximum pounding forces occurred near the first translational natural 
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frequency of GS. For excitation freqncury close to the second translational natural 

frequency of GS, pounding occurs only for Δ = 3 mm but not for Δ = 4.7 mm.  

However, the force spectrum is quite different for Δ = 0. As discussed earlier for 

Figure 8.35, the two structures behave as a new system and impacts occur at 

frequencies between the first and second translational natural frequencies of GS. As a 

whole, the magnitudes of impact forces are much smaller than that of 3 and 4.7 mm 

separation distances. This is quite different from the patterns found in the pounding 

tests between GS and EH in Figure 8.23. The reason may be that the adjacent RW 

structure was much more rigid than EH and it moves almost together with the ground. 

Thus, unlike the situation of pounding between GS and EH, little vibration energy is 

transferred from the barrier to the more flexible GS model when the separation 

distance was zero, resulting in the smaller impact forces here. 

 

8.4.3 Comparison with theoretical study 

 

Above torsional pounding between an asymmetric 21-story building model and 

a nearly rigid wall are studied through shaking table tests. In previous Section 7.3, 

pounding between an asymmetric single-story tower and a rigid barrier was studied 

theoretically through both analytical solution and numerical simulation. In this section, 

we attempt to compare the earlier theoretical results with experimental observations. 

In earlier numerical simulations, group periodic and chaotic pounding occur at 

different excitation periods [refer to Figures 7.20(a) and 7.29(b)]. Similar pounding 
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phenomena have also been found in the shaking table tests. For example, the 

pounding type PIII in Figure 8.30 and the type PVIII in Figure 8.33 belong to group 

periodic pounding, and the pounding type PIV in these two figures belong to chaotic 

pounding. 

It is found in the theoretical study that change of separation distance will not 

influence the maximum impact velocity significantly (Figures 7.19, 7.21 and 7.22). 

The same phenomenon was observed in our experiments reported in this chapter. 

More specifically, as shown in Figure 8.37, the maximum impact forces at separation 

distance of 3.0 and 4.7 mm are very close to each other. These findings suggest the 

severity of pounding seems insensitive to separation distance as long as pounding 

develops at that distance. This is also consistent with the conclusions on translational 

pounding by Davis (1992) and Chau and Wei (2001). 

However, there are some experimental findings that can not be explained by our 

simple theoretical model. For example, the observed structural responses and 

measured impact forces are quite different when the separation distance is zero and 

when it is larger than zero (see Figures 8.35-8.37). In addition, when the separation 

distance is 3.0 or 4.7 mm, the maximum responses and impact forces occur at 

excitation frequency near the natural frequencies of the GS structure (Figures 

8.35-8.37), whereas the maximum impact velocity is not found at the excitation period 

of 1.0 in the numerical simulation (Figure 7.20). These facts show that our 

simple single-story theoretical model using Hertz contact may be not enough in 

/ xT T =
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accurately predicting torsional pounding between multi-story buildings (i.e. our steel 

models) and more sophisticated models are needed. 

 

 

8.5 Conclusions and Discussions 

 

In this chapter, seismic torsional poundings between two adjacent 21-story 

building models as well as between a building model and a nearly rigid wall were 

studied through shaking table tests. Two steel models were designed and fabricated to 

simulate two adjacent 21-story buildings with transfer systems and asymmetric plans. 

A great number of tests were conducted on shaking table at different separation 

distances and subjected to different harmonic inputs and real earthquake inputs. 

Pounding induced responses and impact forces were investigated. The following main 

conclusions are obtained. 

Torsional pounding phenomena between real multi-story buildings are more 

complex than the predictions from the simple theoretical models. Experiments show 

that seismic poundings can manifest as periodic, group periodic or chaotic responses, 

depending on dynamic characteristics of the model, separation distance between the 

models, frequency content and magnitude of ground shakings. For adjacent 

multi-story asymmetric buildings, pounding may occur at both corners of buildings 

due to torsional responses, and may occur at the middle heights due to higher mode 

vibrations. This is for the first time those phenomena of torsional and higher-mode 
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poundings are observed and verified in torsional pounding experiments between 

actual structural models.  

Energy may transfer from the more massive and rigid building to the lighter and 

more flexible building through pounding. And this energy transfer may cause 

abnormal large responses and damages to the lighter building, which when stand 

alone would not suffer any damages under similar ground shakings. We expect the 

same energy transfer will happen between real buildings in earthquakes. This also 

implies that when two stand-alone structures behave satisfactorily under certain 

ground excitations, they may behave quite differently when pounding occurs due to 

the proximity of the two structures. Therefore, special consideration must be made 

when a new building is proposed to be constructed right next to a pre-existing 

building, like many cases in Hong Kong. 

When separation distance is zero (i.e. adjacent buildings are touching with each 

other), two adjacent structures may behave as one unit, with their response linked by 

periodic impacts. The new system can have a totally different dynamic characteristic 

from that of individual structures. The process is highly nonlinear, involving frequent 

energy transfer between adjacent structures through impacts, and thus makes 

pounding phenomena more unpredictable.  

When two buildings impacts with each other, larger responses and pounding 

forces may be resulted for zero separation distance than for non-zero separations due 

to the energy transfer; whereas the case is opposite for pounding between one flexible 

building and a rigid wall, where larger impacts occur when they are separated by a 

 378



distance. But for both cases, impacts appear to be insensitive to change of separation 

distance as long as pounding is developed. Similar phenomena have been observed in 

our theoretical simulations and also by Davis (1992) and Chau and Wei (2001). 

The analytical simulations described in the last chapter and the pounding 

experiments described in this chapter are intended to study the seismic torsional 

pounding from two different aspects. We hope both the two studies will contribute to 

our knowledge of this highly nonlinear phenomenon. In Sections 8.3.5 and 8.4.3, 

preliminary comparisons have been made between the idealized single-story 

analytical models and the multi-story experimental models. As discussed previously, 

although the theoretical models can provide some valuable insights into the complex 

pounding phenomenon between actual structures, strictly speaking they are not 

comparable. Special techniques are needed to extrapolate the results of SDOF systems 

to the MDOF systems. To simulate the real poundings between actual multi-story 

structures more accurately, more sophisticated models are needed. All of these may be 

the aims of future studies. 
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Table 8.1 Natural frequencies of the first six modes of the prototype, the target model, 

the model from FEM analysis, and actual fabricated models.  
 
Empire Hotel 

Mode Prototype 
(FEM, Hz) 

Target model (Hz) Model 
(FEM, Hz) 

Actual model (Hz)

1 1.712 11.471 12.029 8.80 
2 2.079 13.929 15.947 9.07 
3 2.399 16.074 20.667 10.54 
4 4.616 30.930 36.453 27.89 
5 5.081 34.040 47.817 28.97 
6 5.934 39.760 61.048 33.48 

 
 
Golden Star 

Mode Prototype 
(FEM, Hz) 

Target model (Hz) Model 
(FEM, Hz) 

Actual model (Hz)

1 0.633 4.242 5.259 3.45 
2 0.783 5.247 5.867 4.00 
3 0.822 5.508 7.423 6.05 
4 1.736 11.631 14.364 12.11 
5 2.209 14.798 17.278 16.34 
6 2.261 15.149 21.227 18.13 
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Table 8.2 Dimensions of columns of the two steel models. 
 
Empire Hotel 

Columns Form Dimensions (mm) 
C1-C4, C9-C10, C17, C21-C22 Circular ø8 
C5-C8, C11-C16, C18-C20 Circular ø10 
W1 Rectangular 20×6.5 
W2 Rectangular 25×6.5 
W3 Rectangular 30×6.5 
W4 Rectangular 12.5×6.5 

 
 
Golden Star 

Columns Form Dimensions (mm) 
C6-C8, C10-C13, C15, C17-C18 Circular ø6 
C1, C5, C16, C20 Rectangular 12.5×6.5 

 
 
Remark: 
ø8 means 8 mm in diameter. 
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Table 8.3 Story heights, areas and mass of various stories of the EH and GS models. 
 
Empire Hotel 

Floor Height (mm) Area (m2) Mass (kg)
1 135 0.4420 104.09
2 180 0.4420 104.09
3 130 0.3252 76.58
4-20 102 0.3252 76.58
21 155 0.3252 76.58
Total 2334 1663.29

 
 
Golden Star 

Floor Height (mm) Area (m2) Mass (kg)
1 145 0.1563 36.82 
2-4 102 0.1563 36.82 
4-20 102 0.0952 22.43 
21 117 0.0952 22.43 
Total 2200 528.51 
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Table 8.4 Summary of responses during the inputs of three earthquakes when the 
separation distance between GS and EH is 0 and 3.2 mm respectively. In the table, 

Amax and Vmax are the maximum acceleration and velocity at the roof of GS, duration 
and Ni represent the time duration and number of impacts occurred, and Fmin and Fmax 

denote the minimum and maximum impact forces. 
 

Δ  
(mm) 

Earthquake 
PGA 
(g) 

Amax 
(g) 

Vmax 
(m/s)

Duration 
(s) 

Ni 
Fmin 
(kN) 

Fmax 
(kN) 

El Centro 0.229 13.37 34.14 4.62 36 0.49 7.95 
Loma Prieta 0.228 8.16 24.11 2.80 27 0.48 5.04 

0 

Northridge 0.354 11.97 23.79 3.60 35 0.49 8.27 
El Centro 0.229 10.45 26.30 4.45 13 0.51 4.29 
Loma Prieta 0.230 9.46 26.73 2.23 9 0.49 2.62 

3.2 

Northridge 0.380 9.50 24.71 1.21 6 0.78 2.73 
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GS 
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Figure 8.1 Photograph of shaking table tests of seismic torsional pounding between 
two asymmetric steel towers conducted by Chau et al. (2004). The close-up view 
showed the additional masses at the top of the towers which can be off-set along 

railing systems to change the eccentricities of the towers. 
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Golden Star 

 

EH 

GS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.2 The location and photographs of the two selected 21-story adjacent 
prototype buildings in Wanchai on the Hong Kong Island. The L-shaped building is 
Empire Hotel (EH) and the other one which is more regular in shape is a residential 

and commercial building called Golden Star (GS). Transfer systems are used for both 
the two structures. 
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(a) 3D view of FEM model;           (b) 1st mode, f=1.712 Hz; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 2nd mode, f=2.079 Hz;           (d) 3rd mode, f=2.399 Hz. 
 

Figure 8.3 FEM model of the EH building and its first three mode shapes. 
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(a) 3D view of FEM model;          (b) 1st mode, f=0.633 Hz; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 2nd mode, f=0.783 Hz;           (d) 3rd mode, f=0.822 Hz. 
 

Figure 8.4 FEM model of the GS building and its first three mode shapes. 
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Figure 8.5 Two different floor plans of the EH model. The floor slabs were fabricated 
using 30 mm-thick steel plates and the dimensions of columns and walls are listed in 

Table 8.2. The open rectangles represented the columns added for the purpose of 
adjusting the model frequencies. 
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(b) 5th – 21st floors. 
 

Figure 8.6 Two different floor plans of the GS model. The floor slabs were all 
fabricated using 30 mm-thick steel plates and the dimensions of columns were listed 

in Table 8.2. 
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(a) 3D view of FEM model;          (b) 1st mode, f=12.029 Hz; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 2nd mode, f=15.947 Hz;          (d) 3rd mode, f=20.677 Hz. 
 

Figure 8.7 FEM model of the EH model and its first three mode shapes. 
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(a) 3D view of FEM model;           (b) 1st mode, f=5.259 Hz; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 2nd mode, f=5.867 Hz;            (d) 3rd mode, f=7.423 Hz. 
 

Figure 8.8 FEM model of the GS model and its first three mode shapes. 
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Figure 8.9 Photographs of the completed models for (a) EH and (b) GS, during the 
construction, the continuous steel bars serving as columns and walls were installed 

through the specified holes drilled on the steel plate slabs and welding was used to fix 
them; (c) EH and GS put together with different colors for those floors below and 

above the transfer plates; (d) slots at the base of GS allowing for change of separation 
distances between the two models. 

 

 392



 393

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.10 Sketch of elevation view of the two building models showing the relative 
elevations of their different floors and the locations of contactors. The floor slabs were 
all 30 mm-thick steel plates. The crossed steel bars as shown in the photo above 1/F of 

EH were used to adjust the story heights. 
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Figure 8.11 The mode shapes and natural frequencies of the first several modes of EH and GS model, where f1 and f2 were the first two 
frequencies in x direction, and fT1 and fT2 denoted the first two frequencies in θ  direction. 
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Figure 8.12 Sketches of the first several mode shapes and natural frequencies of the 
GS and EH models, where 1

GSf  and 2
GSf  were the first and second translational 

natural frequencies of GS respectively, GS
Tf  was its first torsional frequency; 

similarly, 1
EHf  and EH

Tf  were the first translational and torsional natural 
frequencies of EH respectively. 
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Figure 8.13 Estimation of the damping ratios of the first modes of GS and EH 
respectively using half-power method. The shown diagrams were the Fourier spectra 

of displacements at the roofs of the two models. 
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Figure 8.14 Plan view from the top of the two building models showing their relative locations as well as the two pairs of contactors installed 
between 20/F of EH and 21/F of GS. The attached photo showed the strain gauge attached and the rubber used to reduce the impact forces. 
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Figure 8.15 3D sketches of the EH and GS models and the locations of contactors and 
transducers. The two close-up photographs showed the details of the contactors. 
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Figure 8.16 Maximum stand-off distances between GS and EH versus input 
frequencies. The five vertical arrows represented the first several natural frequencies 

of the two structures; they take the following values respectively 3.83 Hz, 
5.615 Hz, 11.597 Hz and 

1
GSf =

GS
Tf = 2

GSf = 1
EHf = 8.362 Hz, EH

Tf = 10.315 Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 399



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.17 Different patterns of phase diagrams at the roof of GS in pounding tests between GS and EH when Δ =0 mm and Ag=0.07g. The graphs listed were in 

different scales, that is, in the Translation 1 and 2 columns, the solid and dashed horizontal lines denoted 1 and 2 mm and the solid and dashed vertical lines denoted 
0.05 and 0.2 m/s respectively. In the Rotation columns, the solid and dashed horizontal lines corresponded to 3.5×10-3 and 3.5×10-3 rad while the solid and dashed 

vertical lines corresponded to 0.17 and 0.7 rad/s respectively. 
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Figure 8.18 Four different phase diagrams selected from Figure 8.17 and time 
histories of velocity at the roof of GS for different input frequencies during pounding 

tests between GS and EH when Δ = 0 mm and Ag = 0.07g. The arrows attached 
indicated where pounding occurred. 
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Figure 8.19 Comparison of the responses of GS and EH when the inputs were similar 
(Ag = 0.1g, fg = 5.0 Hz) but the separation distances were 0 and 4 mm respectively. 

Pounding occurred at zero separation distance and no pounding for 4 mm distance. It 
was clear seen that the responses of GS were much larger when pounding occurred 

due to the energy transfer from EH. 
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Figure 8.20 The maximum (a) velocities and (b) accelerations spectra at the roof of 
GS in the pounding tests between GS and EH when the separation distances were 0 
mm. The five vertical arrows represented the first several natural frequencies of the 

two structures; they took the following values respectively 3.54 Hz, 
5.493 Hz, 11.353 Hz and 

1
GSf =

GS
Tf = 2

GSf = 1
EHf = 8.118 Hz, EH

Tf = 10.315 Hz. 
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Figure 8.21 Photographs of the two models locked together to measure the natural 
frequency of the new system as sketched below. Also shown were the Fourier 

spectrum of the acceleration at the roof and the first two frequencies. 
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Figure 8.22 The maximum (a) velocities and (b) accelerations spectra at the roof of 
GS in the pounding tests between GS and EH when the separation distances were 4.0 
mm. The five vertical arrows represented the first several natural frequencies of the 

two structures; they took the following values respectively 3.601 Hz, 
5.554 Hz, 11.353 Hz and 

1
GSf =

GS
Tf = 2

GSf = 1
EHf = 7.996 Hz, EH

Tf = 10.315 Hz. 
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Figure 8.23 Comparisons of the maximum pounding forces in the pounding tests 
between GS and EH when the separation distances were 0 and 4 mm respectively. The 

symbol ‘NP’ meant no pounding occurring. The five vertical arrows represented the 
first several natural frequencies of the two structures; they take the following values 
respectively 1

GSf = 3.601 Hz, GS
Tf = 5.554 Hz, 2

GSf = 11.353 Hz and 7.996 
Hz, 

1
EHf =

EH
Tf = 10.315 Hz. 
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Figure 8.24 Time histories of input, acceleration and pounding force at the roof of GS 
during the input of El Centro earthquake in pounding tests between GS and EH when 

0 and 3.2 mm respectively. Δ =
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Figure 8.25 Time histories of input, acceleration and pounding force at the roof of GS 

during the input of Loma Prieta earthquake in pounding tests between GS and EH 
when 0 and 3.2 mm respectively. Δ =
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Figure 8.26 Time histories of input, acceleration and pounding force at the roof of GS 
during the input of Northridge earthquake in pounding tests between GS and EH when 

0 and 3.2 mm respectively. Δ =
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Figure 8.27 Photographs of the nearly rigid wall (RW) and Golden Star (GS) as well 
as the close-up views of RW. The below Fourier spectrum from hammer tests on RW 

showed that the first natural frequency of RW was much higher than that of GS, 
which justified the assumption of rigid wall. 
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Figure 8.28 Dimensions of the nearly rigid wall (RW). 
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Figure 8.29 3D sketch of the GS and RW structures and the locations of contactors 
and transducers. The upper photo on the right side showed the details of the impact 

points and the lower photo showed the overall experiment sets. 
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Figure 8.30 Different patterns of phase diagrams at the roof of GS in the pounding 
tests between GS and RW when Δ=0 mm and Ag=0.05g. The graphs listed were in 

different scales, that is, the horizontal lines in the 2nd, 3rd, 4th and 5th columns denoted 
0.5 mm, 0.025 m/s, 3.5×10-4 rad and 0.087 rad/s respectively, while the vertical lines 
in the four columns represented 0.05 m/s, 0.5g, 0.087 rad/s and 17 rad/s2 respectively. 
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Figure 8.31 Four different phase diagrams shown in Figure 8.30 and time histories of 

velocity at the roof of GS for different input frequencies during pounding tests 
between GS and RW when Δ = 0.0 mm and Ag = 0.05g. The arrows attached 

indicated where pounding occurred. 
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Figure 8.32 Different patterns of phase diagrams at the roof of GS in the 
non-pounding tests between GS and RW when Δ=3.0 mm and Ag=0.05g. The graphs 

listed were in different scales, that is, the horizontal lines in the 2nd, 3rd, 4th and 5th 
columns denoted 2 mm, 0.1 m/s, 3.5×10-3 rad and 0.17 rad/s, while the vertical lines 
in the four columns represented 0.1 m/s, 1g, 0.17 rad/s and 34.9 rad/s2 respectively. 
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Figure 8.33 Different patterns of phase diagrams of GS in the pounding tests when 
=3.0 mm. The graphs listed were in different scales, that is, the horizontal lines in 

the 2nd, 3rd, 4th and 5th columns denoted 2 mm, 0.1 m/s, 3.5×10-3 rad and 0.17 rad/s, 
while the vertical lines in the four columns represented 0.1 m/s, 1g, 0.17 rad/s and 

34.9 rad/s2 respectively. 
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Figure 8.34 Four different phase diagrams selected from Figure 8.33 and time 
histories of velocity at the roof of GS for different input frequencies during pounding 
tests between GS and RW when Δ = 3.0 mm. The arrows attached indicated where 

pounding occurred. 
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Figure 8.35 Comparisons of the maximum roof velocities of GS in the pounding tests 
between GS and RW when the separation distances were 0, 3 and 4.7 mm respectively. 
The horizontal axis was the frequencies of input sine waves and the magnitudes of the 

inputs were all 0.05g. The three vertical arrows represented the first three natural 
frequencies of GS, i.e. the first translational natural frequency 3.693Hz, the 

first torsional frequency 
1
GSf =

GS
Tf = 5.615Hz and the second translational frequency 

2
GSf = 11.475Hz. 
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Figure 8.36 Comparisons of the maximum roof accelerations of GS in the pounding 
tests between GS and RW when the separation distances were 0, 3 and 4.7 mm 

respectively. The horizontal axis was the frequencies of input sine waves and the 
magnitudes of the inputs were all 0.05g. The three vertical arrows represented the first 

three natural frequencies of GS, i.e. the first translational natural frequency 
3.693Hz, the first torsional frequency 1

GSf = GS
Tf = 5.615Hz and the second 

translational frequency 2
GSf = 11.475Hz. 
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Figure 8.37 Comparisons of the maximum pounding forces in the pounding tests between GS and RW when the separation distances were 0, 3 
and 4.7 mm respectively. The symbol ‘NP’ meant no pounding occurring. The three vertical arrows represented the first three natural 

frequencies of GS, i.e. the first translational natural frequency 1
GSf = 3.693Hz, the first torsional frequency GS

Tf = 5.615Hz and the second 
translational frequency 2

GSf = 11.475Hz. 
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CHAPTER 9  CONCLUSIONS 

 

9.1 Main Conclusions and Implications 

 

This thesis contains two main parts. In the first part (Chapters 2-6), the seismic 

vulnerability of an asymmetric 21-story building model with transfer system in Hong 

Kong was studied through conducting shaking table tests. In the second part (Chapters 

7 and 8), the seismic torsional pounding between adjacent structures was investigated 

both theoretically and experimentally. The main conclusions drawn in the preceding 

chapters are summarized below. 

 

9.1.1 Seismic vulnerability 

 

Guided by the similarity law, a 1:25 scale model was fabricated for an 

asymmetric 21-story reinforced concrete building with a transfer system found in 

Hong Kong. Shaking table tests were conducted by inputting the time history of five 

past earthquakes with various adjusted peak accelerations. The damages of the model 

were quantitatively evaluated using various seismic damage indices. The following 

main conclusions are reached. 

Both visual observations and damage evaluations suggest the transfer plate and 

stories above are most vulnerable and susceptible to severe damages under the attack 
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of earthquake. Transfer system normally introduces an abrupt change of stiffness in 

the transfer zone. Asymmetric building layout may induce asymmetric rocking of the 

upper structure above transfer system, which may cause especially severe damages to 

corner elements; and this rocking is likely to cause the total collapse of this kind of 

buildings. This asymmetric failure pattern and rocking mechanism are observed for 

the first time in this study. According to our test results, both abrupt change of 

stiffness in the transfer zone and asymmetric building layout should be avoided as far 

as possible. However, these two forms of structures are commonly adopted in 

non-seismic- designed buildings in Hong Kong. Thus, severe damages would be 

expected for these buildings under the attack of strong earthquakes. 

A simple algorithm is proposed to evaluate Park and Ang damage indices for real 

structures from measured responses in our experiments. The proposed method is also 

applicable to real structures with limited instrumentations under the attack of 

earthquakes. The damage states of the model were quantitatively evaluated through 

the well-calibrated Park and Ang index. Based on the estimated damages, other 

seismic damage indices, including the inter-story drift ratio, ductility, frequency ratio 

and final softening index, are correlated with various damage states (i.e. slight 

damage, minor damage, moderate damage, severe damage and collapse). This 

correlation will be very valuable to damage assessments of other similar buildings in 

Hong Kong and provides a practical and efficient approach to assess seismic 

damages.  
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9.1.2 Seismic torsional pounding 

 

Besides the damages caused by insufficient seismic resistance of a building, 

considerable damages may also be induced through pounding between adjacent 

structures, especially in crowded metropolitan cities such as Hong Kong. In the 

second part of this thesis, seismic torsional poundings are studied through both 

theoretical simulations and shaking table tests. 

Theoretically, pounding is modeled as the nonlinear Hertz contact. Numerical 

simulations are conducted to study the torsional pounding between two flexible single 

story towers as well as between a flexible tower and a neighboring barrier. An 

analytical solution is obtained for the latter case. The results show torsional pounding 

is much more complex than translational pounding. Possible chaotic impacts make 

torsional pounding difficult to be predicted. The proposed analytical solution succeeds 

in providing us useful insights into the complex torsional pounding phenomenon. 

The more complex torsional pounding between adjacent multi-story buildings is 

studied through conducting shaking table tests. Two steel models were fabricated to 

simulate two adjacent 21-story buildings found in Hong Kong with transfer plates and 

asymmetric plans. A number of pounding tests were conducted for various separation 

distances and inputs. The observed pounding can be periodic, group periodic or 

chaotic. Through pounding, energy may be transferred from the more massive and 

rigid structure to the lighter and more flexible one, which causes abnormal large 

responses and damages to the lighter structure. When the separation distance is zero, 
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the two models respond like a new system, which has a totally different dynamic 

characteristic from those of the individual structures. In other words, pounding may 

induce an unplanned period shift to existing structures, which makes their seismic 

responses more unpredictable than stand alone building. 

Although the theoretical models are much simpler than the 21-story building 

models in the shaking table tests, it succeeds in providing us some useful insights into 

the highly nonlinear torsional pounding phenomenon. Group periodic and chaotic 

impacts are observed in both the numerical simulations and experiments. Both studies 

suggest the torsional pounding seems to be not too sensitive to the change separation 

distance as long as pounding is developed, consistent with the conclusions on 

translational pounding by Davis (1992) and Chau and Wei (2001). 

 

 

9.2 Recommendations for Further Studies 

 

In this thesis, the seismic vulnerability and torsional pounding of asymmetric 

buildings with transfer system are studied. The selected buildings are situated at one 

of the reclamation areas in Hong Kong. But soil-pile-structure interaction has not 

been taken into account in either the shaking table tests or theoretical studies, which 

may be incorporated in the future studies. 

In the pounding experiments, the transfer systems in the prototypes are not well 

simulated in the designed models due to the small length scale. In addition, only 
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impacts between floor slabs of adjacent structures are considered, whereas impacts 

between floor slabs and vertical elements (such as walls or columns) may be more 

dangerous in damaging adjacent structures. All these problems should be taken into 

consideration in the future research. 

Last but not least, the proposed analytical solution in this thesis for torsional 

pounding between an asymmetric tower and a rigid barrier provides a possible 

solution for periodic single impacts. But, as shown in both of our numerical 

simulations and pounding tests, the torsional pounding between real multi-story 

structures may be far more complex. More sophisticated or MDOF models are needed 

to better understand this highly nonlinear torsional pounding phenomenon. 
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Table A-1 Determination of constant values of a and b for estimating shear wave 
speeds in soil layer using SSB’s formula (Chau, 2000). 

Soil types 
Rock and soil Constant

Clay 
Silt and 

fine sand 
Medium and 
coarse sand 

Cobble, gravel 
and detritus 

Consolidated plastic or low 
plastic clay, loose or 
moderately dense crushed 
rock fill 

a 
 

b 

70 
 

0.300 

90 
 

0.243 

80 
 

0.280 

— 
 

— 

Low plastic or plastic clay, 
medium or moderately 
dense sand, gravel, cobble, 
fine rock fill 

a 
 

b 

100 
 

0.300 

120 
 

0.243 

120 
 

0.280 

170 
 

0.243 

High plastic clay, dense 
sand, cobble, fine rock fill 

a 
 

b 

130 
 

0.300 

150 
 

0.243 

150 
 

0.280 

200 
 

0.243 

More dense sand, gravel, 
cobble, fine rock fill, 
weathered rock 

a 
 

b 

300-500 
 

0.000 
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Figure A-1 Acceleration records during the soil site input of 0.2g Kobe earthquake. 
The locations of these accelerations can be referred to Figure 3.19. 
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Figure A-2 Acceleration records during the soil site input of 0.2g Kobe earthquake. 
The locations of these accelerations can be referred to Figure 3.19. 
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Figure A-3 Displacement records during the soil site input of 0.2g Kobe earthquake. 
The locations of these accelerations displacement can be referred to Figure 3.19. 
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Figure A-4 Strain records during the soil site input of 0.2g Kobe earthquake. The 
locations of strain gauges can be referred to Figures 3.22-3.24. 
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Figure A-5 Strain records during the soil site input of 0.2g Kobe earthquake. The 
locations of strain gauges can be referred to Figures 3.22-3.24. 
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Figure A-6 Strain records during the soil site input of 0.2g Kobe earthquake. The 
locations of strain gauges can be referred to Figures 3.22-3.24. 
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Figure A-7 Strain records during the soil site input of 0.2g Kobe earthquake. The 
locations of strain gauges can be referred to Figures 3.22-3.24. 
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