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Abstract 

 

Polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] is a well-known 

ferroelectric polymer.  As it is easily processed, lightweight, mechanically flexible and 

can conform to any shapes and surfaces, it has been studied for nearly three decades for 

applications in electromechanical devices.  In recent years, irradiation treatment in 

polymeric materials has attracted considerable interest as it can change both the 

structures and properties of the materials significantly and makes them useful for 

specific applications.   

 

In this project, proton irradiation with doses of 10-50 Mrad was carried out to 

investigate the potential for modifying the properties of P(VDF-TrFE).  Copolymer 

films with VDF contents of 56 mol% were prepared by hot pressing.  The effects of 

irradiation on both structures and properties of the copolymer were investigated by 

studying the change in lattice spacing, phase transitional behaviour, relative permittivity 

and electric field induced strain.  It was found that irradiation can convert the 

copolymer from a ferroelectric to a relaxor material and the improved electrostrictive 

coefficients M33 made the proton irradiated P(VDF-TrFE) a potential candidate for 

sensor and actuator applications. 

 

The application of P(VDF-TrFE) films in the fabrication of 

microelectromechanical systems (MEMS) devices was investigated.  56/44 mol% 
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P(VDF-TrFE) was spin-coated on a silicon wafer containing a layer of thermally 

oxidized silicon dioxide.  The SiO2/Si was back-etched to produce a membrane 

structure.  Some of the 56/44 mol% P(VDF-TrFE) MEMS were also subjected to 

proton irradiation with doses of 10-50 Mrad and their effective electrostrictive 

coefficient M33 was compared with that of free bulk P(VDF-TrFE) thick films.  The 

clamping effect of substrate reduces the M33 but the bending effect of the Si membrane 

enhances the mechanical properties.   

 

Micromachined piezoelectric 70/30 mol% P(VDF-TrFE) MEMS for air transducer 

application was prepared.  The mechanical behaviour of the MEMS was analysed by 

means of a laser vibrometer.  The resonance frequency was found to depend on the 

structure and the thickness of the membrane.  Both the transmitting and receiving 

acoustic responses of the copolymer MEMS were studied.  The result suggested that the 

piezoelectric P(VDF-TrFE) has potential applications as actuators and in monitoring 

ultrasound emission. 
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Chapter 1 

Chapter 1 

Introduction 

 

1.1 Motivation 

 

Airborne ultrasonic transducers are widely used in many measurement tasks in 

automation, surveillance, gas flow measurement, and distance measurement [Manthey 

et al., 1992].  Recently, silicon micromachining technology has been explored to 

fabricate various ultrasonic devices based on microelectromechanical systems (MEMS) 

as it has the following advantages: potentially low cost due to the batch processing 

nature, possibility of integrating transducers and circuits on a single chip, amenable to 

size miniaturization, etc. 

 

In existing ultrasonic measurement systems for industrial purposes, piezoelectric 

ceramics, such as lead zirconate titanate (PZT) and zinc oxide are often used.  However, 

some distinct properties of the piezoelectric polymers (Table 1.1) make them uniquely 

qualified when ceramics is incapable of performing as effectively, for example, use 

polymer to fill hollow areas.  As noted in Table 1.1, for polymers such as 

polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene 

[P(VDF-TrFE)], the piezoelectric strain coefficient d31 is lower than that of piezoelectric 

ceramics.  However, piezoelectric polymers have much higher piezoelectric voltage 
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coefficient g31 indicating that they are much better receiving sensors than ceramics.  

Piezoelectric polymeric sensors and actuators offer the advantage of processing 

flexibility because they are lightweight, tough and can be readily manufactured into 

large area and complex shapes.  Polymers also feature in low dielectric constant, low 

elastic stiffness, and low density, giving rise to a high voltage sensitivity (excellent 

sensor characteristics), and low acoustic and mechanical impedance (crucial for medical 

and underwater applications).  Polymers also typically possess a high dielectric 

breakdown and high operating field strength, which means that they can withstand a 

much higher driving field than ceramics.  Hence, there is an interest in extending the 

study to modified P(VDF-TrFE) and attempt to incorporate the copolymer into MEMS 

devices. 
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Table 1.1 Comparison of some properties in PVDF, P(VDF-TrFE) and PZT 

[Ohigashi et al., 1984; Manthey et al., 1992; Ito, Y. et al., 1999; 

Furukawa, T. et al., 1990]. 

 
75/25 mol% 

P(VDF-TrFE) 
PVDF PZT-4 

Piezoelectric coefficient d31 (pC/N) 12.5 25 -123 

Piezoelectric coefficient g31 (Vm/N) 0.24 0.24 0.011 

Piezoelectric coefficient d33 (pC/N) 33 39 289 

Piezoelectric coefficient g33 (Vm/N)  0.38 0.32 0.025 

Elastic constant Dc33  (109 N/m2) 11.3 9.1 159 

Electrostrictive coefficient Q33 (m4/C2) -2.5 * -2.4 + 0.03 

* 65/35 mol% P(VDF-TrFE), + drawn PVDF 

 

1.2 Background 

 

Piezoelectric and electrostrictive materials are important constituents of 

electromechanical sensors and actuators.  Actuators make use of the strain response of 

ferroelectric materials under high electric fields.  Hence, a short introduction to 

piezoelectricity and electrostriction will be given. 
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1.2.1 Piezoelectricity and Electrostriction 

 

Piezoelectricity was discovered by the brothers Pierre Curie and Paul-Jacques 

Curie in 1880.  

 

Piezoelectric materials can become electrically charged when subjected to a 

mechanical stress.  These materials also show the converse piezoelectric effect and 

undergo mechanical deformation upon the application of an electric field.  The 

discovery of electromechanical properties in piezoelectric materials allowed for their 

utilization in transducer applications.   

 

In transducer applications, the direct piezoelectric effect which relates polarization 

to stress is used in sensors while the converse piezoelectric effect which relates strain to 

electric field is used in actuators. 

 

For a piezoelectric disc of a given thickness t, the voltage V generated across the 

electrodes of the disc when subjected to a stress T is: 

 

  gtTV �   (1. 1) 

 

where g is the piezoelectric voltage coefficient, which shows the ability of the material 

to generate a charge or electric field when subjected to a stress.  Piezoelectric sensing is 



 
Introduction 

 
        THE HONG KONG POLYTECHNIC UNIVERSITY 
 

LAM Tin Yan                                                                                        5 
 

Chapter 1 

mostly used in sensors such as pressure sensors, force sensors, velocity and 

accelerometers, hydrophones, microphones, etc. [Jones et al., 1996].   

 

In actuator applications, the converse piezoelectric effect is utilized.  For a 

piezoelectric disc with a polarization direction along the thickness direction of the disc, 

the change in diameter (�Ddisc) under a given applied voltage V is expressed as follows: 

 

 
t

D
VdD disc

disc 31��  (1. 2) 

 

where d is the piezoelectric coefficient denoted by the change in strain of the 

piezoelectric material as a function of the applied electric field.  These changes in 

dimension can be utilized in actuators, underwater transducer, air transducer, ink jet 

printers, etc.  

 

The electrostrictive effect is, as with piezoelectricity, a means by which an 

electrical input can be converted into a mechanical output.  Electrostriction is present in 

all solid state substances.   

 

The main difference between electrostrictive and piezoelectric material is that 

piezoelectric materials display a strain which is directly proportional to the applied field.  

Piezoelectricity is a third-rank tensor that relates strain and electric field.  In 

electrostrictive materials, the strain is proportional to the square of the applied field.   
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Electrostriction is a fourth-rank tensor that relates strain to the square of electric field, 

and is defined by the following relationship:   

 

 nmijmnij EEMx �  (1. 3) 

 

or  nmijmnij PPQx �  (1. 4) 

 

where EmEn and PmPn are components of the electric field and polarization, respectively.  

Mijmn are elements of the fourth rank field related electrostriction tensor, and Qijmn are 

elements of the fourth rank polarization related electrostriction tensor.  Conversion 

between the two coefficients are carried out using the field polarization relationships 

nmnm EP ��  and mmnn PE 	�  where �mn is the dielectric susceptibility tensor, and 	mn 

is the inverse dielectric susceptibility tensor.   

The M coefficient is defined in unit of m2/V2.  Their values range from about 10-24 

m2/V2 in low-permittivity materials to 10-16 m2/V2 in high-permittivity actuator 

materials including relaxor ferroelectrics such as lead magnesium niobate-lead titanate.  

Q coefficients are defined in units of m4/C2.  Q ranges from 10-3 m4/C2 in relaxor 

ferroelectrics to greater than the order of 103 m4/C2 in polyurethane films [Newnham et 

al., 1997].   
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1.2.2 Microelectromechanical Systems (MEMS) 

 

1.2.2.1 Background 

 

Success in the semiconductor industry has introduced a new type of sensor and 

actuator based on the microelectromechanical systems (MEMS) technology.  The term 

MEMS has become synonymous with many types of micro-fabricated devices.  It is 

fabricated like integrated circuits with micro-mechanical structures which can act as 

sensing and actuating components.   

 

1.2.2.2 Classification of MEMS Devices 

 

Before the realization of adapted user-defined designs, the technological feasibility 

is usually demonstrated by making some generic structures, which can be modeled by 

analytical methods.  The most common MEMS structures are cantilever beams 

(clamped only at one side), bridges (clamped at two sides) and the diaphragms (clamped 

on all the periphery) as shown in Figure 1.1.  The square diaphragm is easy to make on 

anisotropic silicon, especially by wet etching.  Each structure has its own displacement 

pattern and resonance frequency.  Each mode type may have several higher order 

resonance frequencies.   
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Figure 1.1 The 3 generic structures for MEMS [Stemme, 1991] and their 

fundamental flexural resonance frequencies, where E is the Young’s 

modulus, � the density and � is the Poisson’s ratio.   

 

These three structures provide some feasible designs for microsensors and 

actuators which can perform the desired task in most smart structures.  Bulk 

micromachined pressure sensors represent one of the most successful silicon sensors on 

the market.  They are usually fabricated using a simple membrane.  Microphones are a 

particular type of MEMS pressure sensor designed to convert acoustic signals into 

electrical output.  The distinction between various types of microphones is typically 

based upon the sensing technology used to detect the membrane displacements.  They 

can be classified into capacitive [Kronast et al., 2001], electret [Hsieh et al., 1997], 

piezoresistive [Kälvesten et al., 1995] and piezoelectric microphones. 

 

Piezoelectric microphones utilize a thin-film piezoelectric layer deposited on the 

top surface of a structure sensitive to acoustic pressure.  The strain obtained in a 

piezoelectric material is relatively small (with strain of ~ 0.1-0.2 % in one direction).  
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With the use of a flexible backing plate, it can generate a considerable displacement, 

especially at resonance.  The principle of operation is as follows: If the piezoelectric 

material is driven by an electrical signal, it expands and contracts in the rhythm of the 

driving signal, if it is free.  As the piezoelectric material is attached to a backing plate, it 

exerts forces and moments, which bends and elongates or contracts the plate.  For 

example, the transverse extension of the piezoelectric material (using d31 mode) 

generates a flexing movement in the structure, allowing a contribution to the induced 

charge through strain in the membrane.  If it is driven at the fundamental resonance 

frequency of the diaphragm, the output signal becomes very large.   

 

Microphones can be designed based on piezoelectric sensing techniques.  In recent 

years, there is increased interest in integrating ferroelectric films on silicon substrates for 

potential applications in MEMS.  Ko et al. [2003] fabricated a membrane based device 

containing a bulk etched silicon nitride membranes with thin film ZnO and Al electrodes.  

Bernstein et al. [1997] fabricated a micromachined ferroelectric transducer using a 

boron-doped etch stop defined diaphragm coated with a sol-gel layer of PZT.  For 

piezoelectric polymer, Schellin et al. [1994] used a spin-coating technique to fabricate a 

membrane-based P(VDF-TrFE) microphone. 
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1.3 Literature Review 

 

A piezoelectric thin film is at the heart of the piezoelectric MEMS sensor or 

actuator.  An understanding of the development of the properties of the P(VDF-TrFE) 

copolymer is necessary. 

 

In 1969 Professor Kawai reported a large piezoelectric effect in stretched 

polyvinylidene fluoride (PVDF), [Kawai, 1969] which is a well-known semicrystalline 

polymer with approximately equal proportions of random stacks of amorphous and 

crystalline lamellae.  The crystal structure of PVDF is dependent on the molecular 

conformation and packing mode.  Four types of crystal structures designated as forms 


,�, � and � (or forms I, II, IIp and III) were found (as shown in Figure 1.2), where T and 

G denote the trans planar isomer and gauche non-planar isomer, respectively.  

Melt-crystallization of PVDF produces the most stable structure: nonpolar � phase 

which consists of GTGT  molecules packed in an antiparallel fashion.  The 

morphology of �-PVDF consists of crystallites dispersed within amorphous regions as 

shown in Figure 1.3.  Mechanical orientation, thermal annealing and high voltage 

treatments have shown to be effective in inducing crystalline phase transformations.  

For example, polar 
-PVDF which contains all-trans conformation and exhibits 

ferroelectric behaviour, can be induced by mechanical stretching [Furukawa, 1989].   
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Figure 1.2 A schematic diagram of transformations among the crystalline phases of 

PVDF due to electrical, mechanical and thermal treatments [Furukawa, 

1989; Tashiro et al., 1981]. 
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Figure 1.3 Schematic illustration showing random stacks of amorphous and 

crystalline lamellae in PVDF polymer. (a) morphology of �-PVDF 

consists of crystallites dispersed within amorphous regions after the film 

is melt cast; (b) orientation of the film by mechanical stretching to 

several times its original length aligns the amorphous strands in the plane 

of the film; (c) electrical poling is accomplished by applying an electric 

field across the thickness of the polymer to effect crystalline orientation 

[Harrison et al., 2001]. 
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As PVDF must be mechanically drawn in order to achieve a piezoelectric polar 

structure, hence it cannot be used in thin film fabrication using the spin-coating 

technique.  Lando et al. [1968] reported in their early work that the introduction of 93 

mol% TrFE in PVDF can induce direct crystallization with a somewhat expanded 
 cell.  

Later on, Yagi et al. [1980] synthesized P(VDF-TrFE) copolymers over the entire range 

of compositions.  Because of similarity in the size of hydrogen and fluorine atoms, 

VDF and TrFE units are randomly distributed along the molecular chain to form a 

random copolymer and cocrystallized into a single crystalline phase analogous to 


-PVDF without mechanical drawing.  A ferroelectric to paraelectric phase transition 

exists in copolymers containing 50-85 mol% VDF.  The structures and behaviours of 

these copolymers are strongly influenced by the mol% of VDF.  Figure 1.4 shows the 

phase diagram of P(VDF-TrFE) copolymer.   

 

 

Figure 1.4 Phase diagram of P(VDF-TrFE) copolymer, where Tm and Tc are the 

melting temperature and ferroelectric to paraelectric (F-P) phase 

transition temperature, respectively [Cheng et al., 2001]. 
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Electrostriction of P(VDF-TrFE) has been reported by Furukawa et al. [1990], who 

has revealed that electrostriction is the origin of piezoelectricity and it is the most 

fundamental mechanism for electromechanical coupling phenomena.  Under high field 

measurement, a butterfly-shape strain-E loop with a D-E hysteresis loop of PVDF and 

65/35 mol% P(VDF-TrFE) are observed and shown in Figure 1.5 and Figure 1.6, 

respectively.  The mechanical strain S in the direction of the applied field E and the 

electric displacement D are described in terms of S against D2, where Q is the 

electrostrictive coefficient.  From Figure 1.7, the slope gives an electrostrictive 

coefficient Q33 of -2.4 m4/C2 for drawn PVDF and -2.5 m4/C2 for undrawn 65/35 

copolymer.  It has been shown that piezoelectricity arises from the electrostriction 

coupled with the remnant polarization. 

 

 rPQg 3333 2�  (1. 5) 

 

 rPQd 3333 2��  (1. 6) 

 

The origin of piezoelectricity in electrostriction enables us to control the 

piezoelectric coefficients by an external electric field.  Hence, the giant electrostriction 

in the relaxor ferroelectric copolymers stimulated our interest in the investigation of 

electric-field-induced piezoelectric activity in the irradiated P(VDF-TrFE) copolymer.   
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Figure 1.5 Strain-E and D-E hysteresis loops of uniaxially drawn PVDF [Furukawa, 

1990]. 
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Figure 1.6 Strain-E and D-E hysteresis loops of undrawn 65/35 mol% P(VDF-TrFE) 

copolymer [Furukawa, 1990]. 
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Figure 1.7 Plots of strain S as a function of D2 for PVDF and 65/35 mol% 

P(VDF-TrFE) copolymer [Furukawa, 1990]. 

 

The discovery of electron-induced structural transformation in P(VDF-TrFE) 

copolymers was reported by Lovinger [1985].  Several research groups have studied the 

influence of high energy electron or �-ray irradiation on P(VDF-TrFE) copolymers 

[Legrand et al., 1995; Bharti et al., 1998; Welter et al., 2003; Tang et al., 2000].  This 

unique irradiated P(VDF-TrFE) copolymer actuator material has been described in 

detail in two recent review papers [Cheng et al. 2000; Zhang et al., 1998].  It shows that 

suitable high-energy electron irradiation treatment can change the polarization as 

demonstrated in Figure 1.8.  The associated longitudinal electrostrictive strain, which 

accompanies the polarization is shown in Figure 1.9.  The resulting material is no 

longer piezoelectric but rather exhibits a large electric field-induced strain (4% strain) 

due to electrostriction.  The cause of such large electrostriction is the large change in 
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the lattice constant as the polymer changes from a ferroelectric to a paraelectric phase 

and because of field-induced expansion and contraction of the polar regions.  After 

irradiation, the material exhibits behaviour analogous to that of a relaxor ferroelectric 

system in inorganic materials.  Dispersion observed in the dielectric response followed 

the Vogel-Fulcher relation analogous to that in inorganic relaxor systems (Figure 1.10).  

By drawing the analogy with the structures of the relaxor systems in inorganic materials, 

Zhang et al. [1998] suggested that electron irradiation introduced defects in the 

copolymer and broke up the coherent macro-polar regions (the all trans conformation) in 

the normal ferroelectric phase into nano-polar regions, thereby transforming the 

copolymer into a relaxor ferroelectric material.   

 

 

Figure 1.8 The polarization hysteresis loops of P(VDF-TrFE) 50/50 copolymer 

measured at room temperature: (a) before irradiation and (b) after 

irradiation with 4 � 105 Gy at 120 oC.  P is the polarization and E is the 

electric field [Zhang et al., 1998].   

(a) (b) 
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Figure 1.9 (a) The strain-field dependence of P(VDF-TrFE) 50/50 copolymer after 

irradiation with  4 � 105 Gy at 120 oC. (b) The electrostrictive relation 

between the strain and polarization, where the strain at P>0 and P<0 

regions are overlapped as a result of the dependence of P2 on the strain.  

The deviation of the data from a straight line at strain near zero is due to 

the zero point uncertainty of the measuring set-up [Zhang et al., 1998].   

 

(a) 

(b) 
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Figure 1.10 The dielectric constant (solid lines) and dielectric loss (dashed lines) as a 

function of temperature for P(VDF-TrFE) 50/50 copolymer after 

irradiation with 4 � 105 Gy at 120 oC.  The frequency is (from top to 

bottom curves for dielectric constant and from bottom to top curves for 

dielectric loss): 100 Hz, 1 kHz, 10 kHz, 100 kHz, 300 kHz, 600 kHz and 

1 MHz.  The inset shows the fitting of the Vogel-Fulcher law, where the 

solid line is the fit and the circles are the data [the horizontal axis in the 

inset is temperature (in Kelvin), and f is the frequency] [Zhang et al., 

1998]. 

 

The widely available 70/30 mol% P(VDF-TrFE) is quite difficult to soften under 

irradiation [Cheng, 2000].  Irradiation is typically accomplished in a nitrogen 

atmosphere at elevated temperatures with irradiation doses up to 120 Mrad.  Cheng et al. 

found that it was difficult to change the properties of P(VDF-TrFE) copolymers with 
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VDF content higher than 70 mol%.  Lau et al. [2002, 2003, 2004] have shown that 

protons are more effective than electrons and �-rays since irradiation with protons in the 

MeV range at room temperature can readily convert a copolymer with 70 mol% or 

higher VDF content into a ferroelectric relaxor.  Some results on the structural changes 

in 56/44 mol% P(VDF-TrFE) upon proton irradiation at doses from 43 to 200 Mrad have 

been reported.  It was observed that even at a low dose of 43 Mrad, the 56/44 mol% 

copolymer was almost completely converted to a relaxor.  This shortened the expensive 

and time-consuming irradiation step in preparing the polymer.   

 

It has been shown that the field-induced piezoelectricity in the relaxor ferroelectric 

P(VDF-TrFE) copolymer is enhanced in comparison to the normal ferroelectric 

copolymer and the effective piezoelectric coefficients can be tuned by the applied dc 

biasing field as shown in Figure 1.11.  Such tunable piezoelectricity may provide useful 

technological applications in smart structures.  
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Figure 1.11 Effective piezoelectric coefficient d31 versus EDC in the 

electron-irradiated P(VDF-TrFE) copolymer.  The typical d31 value (20 

pm/V) for the normal 50/50 mol% P(VDF-TrFE) is shown for 

comparison [Ma et al., 2005]. 
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1.4 Scope of Thesis 

 

The objectives of this work are to study the potential for modifying the properties 

of 56/44 mol% P(VDF-TrFE) with low proton doses of 10-50 Mrad, and to use a Si 

membrane structure to fabricate a micromachined acoustic transducer.   

 

Following the introduction in this chapter, there are five chapters including: 

� Characterization of Proton Irradiated 56/44 mol% P(VDF-TrFE) Copolymer 

� Fabrication of P(VDF-TrFE) MEMS 

� Performance of P(VDF-TrFE) MEMS 

� Study of Clamping Effect on the Electrostrictive Coefficient of 56/44 mol% 

P(VDF-TrFE) 

� Conclusions 

 

In Chapter 2, the fabrication process of 56/44 mol% P(VDF-TrFE) thick film is 

first introduced.  The structural and ferroelectric properties of proton-irradiated 

copolymers are then described.  X-ray diffraction (XRD) technique is used to confirm 

the crystalline phase of the copolymer.  The phase transition behaviour is studied by 

differential scanning calorimetry (DSC).  The ferroelectric and dielectric properties of 

copolymer are measured and discussed.  Also, the investigation of electrostrictive strain 

response in proton-irradiated copolymer is reported.   
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The fabrication process of polymer micro-electromechanical systems (MEMS) is 

presented in Chapter 3.  Bulk micromachining has been used to fabricate the 

deformable membrane, which oscillates in response to acoustic signals. 

 

Performance of 70/30 mol% P(VDF-TrFE) copolymer MEMS at 40 kHz is 

described in Chapter 4.  A Mach-Zehnder type heterodyne laser interferometer has been 

used to measure the displacement of the membrane.  Acoustic responses of both the 

transmitting and receiving sensitivity of the copolymer MEMS has been studied. 

 

In Chapter 5, the clamping effect of proton irradiated 56/44 mol% P(VDF-TrFE) 

copolymer thin film spin-coated on silicon membrane are studied by comparing their 

effective electrostrictive coefficient M33 and the M33 of free bulk P(VDF-TrFE) thick 

films. 

 

Conclusions and suggestions for future work are given in Chapter 6. 
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Chapter 2 

Characterization of Proton Irradiated 56/44% 

P(VDF-TrFE) Copolymer 

 

2.1 Introduction 

 

As mentioned in Chapter 1, there are some preliminary results reported on the 

structural changes in 56/44 mol% poly(vinylidene fluoride-trifluoroethylene) 

P(VDF-TrFE) upon proton irradiation at doses ranged from 43 to 200 Mrad [Lau et al., 

2004].  It was reported that at a proton dose of ~ 75 Mrad, 56/44 mol% copolymer has 

completely converted to a relaxor.  However, it was observed that even at a low dose of 

43 Mrad, the 56/44 mol% copolymer was almost completely converted to a relaxor.  

Hence, it is of interest to find out what is the minimum proton dose that could induce this 

conversion. 

 

In this Chapter, 56/44 mol% P(VDF-TrFE) thick films were fabricated and 

undergone proton irradiation treatment.  The present work studied the variation of 

properties in the copolymer irradiated with proton doses of 10-50 Mrad.  Changes of the 

polarization hysteresis loop, relative permittivity, XRD spectra, DSC thermograms and 

electrostrictive coefficient with proton dosage were studied.   

 



Characterization of Proton Irradiated 
56/44 mol% P(VDF-TrFE) Copolymer 

 
        THE HONG KONG POLYTECHNIC UNIVERSITY 
 

LAM Tin Yan                                                                                        26 
 

Chapter 2 

2.2 Fabrication of P(VDF-TrFE) Copolymer Films 

 

2.2.1 Film Fabrication 

 

P(VDF-TrFE) copolymer pellets with 56 mol% of VDF, supplied by Piezotech Co., 

Saint Louis, France, were used in the present study.  Films of thickness of ~ 30 
m and 

diameter of ~ 25 mm were fabricated by hot compression moulding.  The copolymer 

pellets were placed in a circular steel mould (Constant Thickness Film Maker, SPECAC 

P/N 15620), on which two pieces of polyimide films were placed between the 

copolymer pellets and the steel mould.  The use of polyimide film was to prevent the 

copolymer film from sticking on the mould after the hot pressing process and also to 

produce a smoother surface.  The mould was then placed on a hot-press machine 

(CARVER 2699-127) set at a temperature of 210 �C.  After 10 min of preheating, a 

pressure of ~50 MPa was applied for 15 min.  The mould was then taken out and cooled 

naturally to room temperature in air.  The films were then annealed at 120 �C for 2 h to 

achieve higher crystallinity and then slowly cooled to room temperature.   
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2.2.2 Proton Irradiation Process on P(VDF-TrFE) Copolymer 

Films 

 

In order to quantify the irradiation energy deposited on a material, the dose is 

measured by a unit called Gray (Gy).  In terms of energy relationship, one Gray equals 

to one joule of energy deposited per kilogram of material being irradiated, which can be 

expressed in terms of eV: 

 

 1 Gy = 6.24 � 1018 eV/kg (2. 1) 

 

However, in most of the studies involving irradiation process on P(VDF-TrFE) 

copolymer, the unit of rad was used to describe the dose:   

 

 1 Gy =100 rad (2. 2) 

 

In this study, the proton irradiation treatment was carried out in an accelerator 

(High Voltage Engineering Europa B.V., Netherlands) at ambient temperature with a 3 

MeV proton (H+ ion) beam at the Department of Electronic Engineering, The Chinese 

University of Hong Kong.  The linear energy transfer (LET) for 3 MeV proton 

irradiation of P(VDF-TrFE) copolymer, which is generally used to describe the energy 

deposition by a charge particle per unit length of trajectory, is ~ 20 eV/nm.  According 

to the effect of energy on the penetration depth for different ions, which is examined 
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using a Monte Carlo simulation code ‘Transport of Ions in Matter’ (TRIM) [Ziegler et al., 

1985], the penetration depth for a 3 MeV H+ proton ion is 92.1 
m.  Thus, all thick 

copolymer films were fabricated with thickness of ~30 
m to ensure that the protons 

could pass through instead of implanting in the copolymer film.   

 

The proton fluence applied to the sample was in the range of 0.59 to 6.35 � 1017 

ions/m2.  The irradiation dose (rad) was the product of the fluence (ions/m2) and the 

LET (eV/nm) divided by the density (~ 1900 kg/m3) of the copolymer, and using the 

conversion factors shown in Eqs. (2.1) and (2.2).  The proton dose was calculated to be 

in the range of 10 to 50 Mrad. 

 

During irradiation, the beam current was set at a low level of ~ 3.8 nA to prevent 

excessive temperature increase in the films.  After irradiation treatment, aluminum 

electrodes with thickness of ~ 0.1 
m were sputtered on the surfaces of both the 

unirradiated and irradiated samples for subsequent electrical measurements.   
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2.3 Structure Characterization of Proton-irradiated P(VDF-TrFE) 

Copolymer 

 

2.3.1 XRD Characterization 

 

X-ray diffractometry (XRD) is a common method to reveal information about the 

physical structure of various materials, such as crystalline phases in materials, the extent 

of crystallinity and crystallite structures.  In this study, the X-ray diffraction pattern of 

the copolymer was obtained at room temperature using an X-ray diffractometer (X’pert 

System, Philips Electronic Instruments) equipped with nickel-filtered CuK� radiation.  

The scanning speed was 0.005 o/s 

Figure 2.1 shows the X-ray diffraction patterns for the copolymers irradiated with 

various proton doses at room temperature.  For the unirradiated film, two 

closely-spaced peaks associated with the (200) and (110) reflections are observed, which 

suggests a distortion from the hexagonal type lattice [Tashiro et al., 1983; Davis et al., 

1982].  Upon irradiation, the two peaks are shifted to lower angles, indicating the 

expansion of the crystal lattice presumably due to the presence of double-bonds and 

crosslinkings caused by the irradiation. [Welter et al., 2003; Daudin et al., 1991]  These 

defects lead to a decrease in the dipole concentration of VDF and TrFE monomers, 

thereby giving rise to a reduced ferroelectric ordering.  With further increase in the 

irradiation dose, the two peak merges into a single peak at 2� = 18.2o, corresponding to a 

lattice spacing of 4.87 Å which is close to that of the high-temperature phase 
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(paraelectric phase) of the unirradiated copolymer [Tashiro et al., 1983].  This XRD 

result indicates that the normal ferroelectric (polar) phase has been transformed to a 

paraelectric-like (non-polar) phase by the proton irradiation.  

 

 

Figure 2.1 X-ray diffraction patterns of 56/44 mol% P(VDF-TrFE) copolymer films 

irradiated with different proton doses measured at room temperature.  

Data of the 107 Mrad irradiated copolymer were taken from Lau et al. 

[2004]. 
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2.3.2 DSC Thermal Analysis 

 

Differential scanning calorimetry (DSC) is a technique widely used to study the 

transitions in the sample material such as melting, glass transitions, solid-state 

transitions or crystallization.  DSC based on measuring the energy involved between a 

sample and a reference material, so as to keep identical temperature in an environment 

while heated or cooled at a controlled rate.  The continuous adjustment of the heater 

power provides a varying electrical signal equivalent to the varying thermal behaviour of 

the sample.  In this study, the thermal measurement was performed using a differential 

scanning calorimeter (Perkin Elmer DSC 7) at a scanning rate of 10 �C/min from 0 oC to 

200 oC under a nitrogen atmosphere.  About 10 mg of sample was encapsulated in an 

aluminum pan and an empty aluminum pan served as the reference.  

 

The DSC data in Figure 2.2 shows an obvious change in the phase transition 

behaviour as the proton dose increases.  For the unirradiated film, two well-defined 

peaks are observed, one at 156.3 oC and the other at 64.3 oC, corresponding to the 

melting and ferroelectric-paraelectric (F-P) phase transition in the crystalline regions, 

respectively [Tanska et al., 1987].  The peak associated with the F-P transition becomes 

very broad and diffuse and almost disappears when the dose is increased to 40 Mrad, but 

the change in the melting peak is not significant.  This indicates that the polar ordering 

is more seriously affected than the crystal ordering upon the irradiation treatment.  

When the dose is further increased to 107 Mrad (data taken from Lau et al. [2004]), the 
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melting peak broadens and shifts to a lower temperature, indicating a broad distribution 

of crystallite sizes.  The melting enthalpy decreases substantially, indicating a 

significant decrease in crystallinity.   

 

 

Figure 2.2 DSC thermogram of copolymer films irradiated with different proton 

doses. Data of the 107 Mrad irradiated copolymer were taken from Lau 

et al. [2004]. 
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2.4 Properties of Proton-irradiated 56/44 mol% P(VDF-TrFE) 

Copolymer 

 

2.4.1 Polarization-Electric Field (P-E) Hysteresis 

 

The behaviour of polarization reversal can be described by a hysteresis loop, and 

the P-E loop can be measured using a Sawyer-Tower circuit [Sawyer et al., 1930] .  In 

this study, the hysteresis loops were obtained by a computer-controlled system based on 

a modified Sawyer-Tower circuit as shown in Figure 2.3.  A sinusoidal electric voltage 

V at a frequency of 10 Hz, supplied by a function generator (HP 8116A) and then 

amplified 100 times by a power amplifier (KEPCO BOP1000) was applied to the sample 

at room temperature.  The voltage V across the sample was connected to the horizontal 

plate of an oscilloscope, from which the electric field E applied to the sample was 

calculated.  The polarization charge Q generated on the sample was transferred to a 

reference capacitor Cref connected in series with the sample.  Thus, by measuring the 

voltage across the reference capacitor Vref, which is connected to the vertical plate of the 

oscilloscope, the electric displacement D of the sample could be calculated by: 

 

 refref CVQ �  (2. 3) 

 
A

CV

A
Q

D refref��  (2. 4) 
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where A is the area of the electrode.  In order to ensure the full application of V across 

the sample, a 1 
F reference capacitor which is much larger than the capacitance of the 

sample, was used in the measurement. 

 

 

Figure 2.3 Schematic diagram of a modified Sawyer-Tower circuit. 

 

The polarization hysteresis loops for the copolymer films irradiated with different 

proton doses measured at room temperature and 10 Hz are presented in Figure 2.4.  All 

the hysteresis loops were obtained under an a.c. electric field of �100 MV/m.  The 

unirradiated sample exhibits a well-defined square hysteresis loop with a maximum 

induced polarization Ps of 6.0 
C/cm2, remanent polarization Pr of 5.0 
C/cm2 and 

coercive field Ec of 59 MV/m.  Such a large hysteresis loop observed in a normal 

ferroelectric copolymer is caused by the high nucleation barrier for the polarization 

switching in coherent macroscopic domains.  P(VDF-TrFE) is a semicrystalline 
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polymer which consists of about 70 % of crystalline region embedded in an amorphous 

matrix.  Ferroelectric domains exist only in the crystalline regions and the polarization 

response reflects the cooperative switching of the dipoles in the domains.  Although the 

crystalline and amorphous regions are linked by some chains, the amorphous regions 

probably contribute very little to the polarization response.  After irradiation, even at a 

low proton dose of 10 Mrad, the hysteresis loop becomes slimmer and the polarization 

level as well as the coercive field drops significantly.  At higher proton doses (e.g. 30 

Mrad), not all the microscopic ferroelectric domains have been converted into 

nano-regions.  Therefore, the observed hysteresis loop is the combined behaviour of the 

ferroelectric domains (square loop) and nano-regions (almost a line), and so 

superficially looks like the loop of an antiferroelectric material.  As the proton dose 

increases to 50 Mrad, Ps decreases slightly to 4.5 
C/cm2, while Pr and Ec drop nearly to 

zero (Figure 2.5).  At 107 Mrad (data taken from Lau et al. [2004]), the hysteresis loop 

becomes very slim, which indicates that the normal ferroelectric phase has disappeared 

because the proton irradiation has broken up the macroscopic domains into nano-polar 

regions. [Cheng et al., 2000] 

 



Characterization of Proton Irradiated 
56/44 mol% P(VDF-TrFE) Copolymer 

 
        THE HONG KONG POLYTECHNIC UNIVERSITY 
 

LAM Tin Yan                                                                                        36 
 

Chapter 2 

 

 

 

Figure 2.4 Polarization hysteresis loops measured at room temperature and 10 Hz 

for 56/44 mol% P(VDF-TrFE) copolymer films irradiated with different 

proton doses.  Data of the 107 Mrad irradiated copolymer were taken 

from Lau et al. [2004]. 
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Figure 2.4 (Continued). 
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Figure 2.4 (Continued). 
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Figure 2.4 (Continued). 
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Figure 2.5 Variation of the maximum induced polarization Ps, remanent 

polarization Pr, and coercive field Ec of the copolymer films with the 

proton dose.  Data of the 107 Mrad irradiated copolymer were taken 

from Lau et al. [2004]. 

 

2.4.2 Relative Permittivity and Dielectric Loss 

 

The relative permittivity and dielectric loss are important practical parameters for 

most applications of ferroelectric materials and studies of the dielectric properties 

provide information on the structure and phase transition of ferroelectric materials.   

 

The permittivity � describes the ability of a material to resist the flow of electrical 

charge.  It is defined as the ratio of the electric displacement in the medium to the 

electric field strength: 
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E
D

��  (2. 5) 

 

In defining the permittivity of a medium, a dimensionless relative permittivity �r, 

normalized to the absolute vacuum permittivity 1210854.8 ���o�  F/m is used 

(
o

r �
�

� � ).  For a parallel plate capacitor containing a dielectric medium, the relative 

permittivity �r is given by:  

 

 
o

r A
Cd
�

� �  (2. 6) 

where C is the capacitance of the sample, d the thickness of the sample and A is the area 

of the electrode.  In general, realistic materials are lossy to some extent and the relative 

permittivity is usually defined in a complex form: 

 

 "'
rrr i��� ��  (2. 7) 

 

The loss factor tan� used to express dielectric loss is given by: 

 

 
'

"

tan
r

r

�
�

� �  (2. 8) 
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In this study, the capacitance and the dielectric loss were determined by an 

HP4194A impedance/gain-phase analyzer equipped with a temperature chamber 

(ESPEC SU-240).  The sample was first cooled to -20 oC and the permittivity was 

measured up to 120 oC and then down to -20 oC at a rate of ~ 1 oC/min as a function of 

temperature at frequencies varying from 1 kHz to 5 MHz.   

 

The temperature dependence of the relative permittivity �r and dielectric loss 

measured at 1 kHz for the unirradiated and irradiated copolymer films in the first heating 

run is shown in Figure 2.6.  The unirradiated sample exhibits a 

ferroelectric-paraelectric transition peak at Tm ~ 70 �C with a maximum value of the 

relative permittivity �r(max) of 64.  After irradiation, the peak broadens and shifts to a 

lower temperature.  The value of �r(max) also decreases with increasing proton dose.  

Moreover, the irradiated copolymer shows a feature common to all relaxor ferroelectrics, 

namely that the peak amplitude decreases and the peak temperature Tm shifts 

progressively towards higher temperature with increasing frequency f (Figure 2.7).  

Proton irradiation leads to the formation of double bonds and crosslinkings and breaks 

up the ferroelectric domains into nano-polar regions, thereby converting the normal 

ferroelectric copolymer into a relaxor ferroelectric material.   
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Figure 2.6 Relative permittivity �r measured at 1 kHz as a function of temperature 

for the 56/44 mol% P(VDF-TrFE) copolymer films irradiated with 

different proton doses in the first heating run.  Data of the 107 Mrad 

irradiated copolymer were taken from Lau et al. [2004]. 
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Figure 2.7 Relative permittivity �r as a function of temperature for the irradiated 

copolymer films in the first heating run.  The measuring frequencies are: 

1 kHz, 10 kHz, 100 kHz, 500 kHz, 1 MHz and 2.5 MHz. 
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Figure 2.7 (Continued). 
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Figure 2.7 (Continued). 
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Figure 2.7 (Continued). 

 



Characterization of Proton Irradiated 
56/44 mol% P(VDF-TrFE) Copolymer 

 
        THE HONG KONG POLYTECHNIC UNIVERSITY 
 

LAM Tin Yan                                                                                        48 
 

Chapter 2 

 

Figure 2.7 (Continued). 
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Figure 2.7 (Continued). 
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As shown in Figure 2.8, the relationship between Tm and f can be described by the 

Vogel-Fulcher (V-F) law that holds for relaxor ferroelectrics:  

 

 
�
�

�

�

�
�

�

�

�
�

�
)TT(k

U
expff

fm
o  (2. 9) 

 

where U is the activation energy, k the Boltzmann’s constant, Tf the freezing temperature 

and fo is the Debye frequency. [Cross et al., 1994; Viehland et al., 1990]  The 

parameters obtained by fitting the V-F law to the data for the copolymer films irradiated 

with different doses are summarized in Table 2.1.  The increasing value of U and fo 

indicates that the dielectric behaviour depends more strongly on frequency as the dose 

increases. [Cheng et al., 2002]   
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Figure 2.8 Fitting of the Vogel-Fulcher law to the relative permittivity data for 

irradiated copolymer film.  The symbols are the experimental data and 

the solid line is the fitted curve. 
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Figure 2.8 (Continued). 
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Figure 2.8 (Continued). 

 

Table 2.1 Fitting parameters in the Vogel-Fulcher law for proton irradiated 56/44 

mol% P(VDF-TrFE) copolymer films. 

Dosage  

(Mrad) 

fo 

(MHz) 

Tf  

(oC) 

U  

(10-3 eV) 

10 7.1 65.4 1.1 

20 9.8 61.6 1.6 

30 15.5 58.7 2.6 

40 57.5 48.4 6.9 

50 62.5 44.6 8.0 
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2.4.3 Electrostrictive Strain Response 

 

Electrostriction is a secondary coupling in which the relationship between an 

applied electric field and resulting strain in the material is quadratic.   

 

In a piezoelectric material, both the piezoelectric and electrostrictive responses will 

be present.  The total electromechanical strain, under an electric field E is expressed as: 

 

 lkijklkijkij EEMEdS ��  (2. 10) 

 

where the subscripts i, j, k and l can have values ranging from 1 to 3.  The first term in 

Eq. (2.10) represents the converse piezoelectric effect with piezoelectric coefficient d, 

and the second term corresponds to the electrostriction and M is the electrostrictive 

strain coefficient.  In this study, the electric field is applied in the thickness direction 

and the field-induced strain is also measured in this direction.  Thus, it can be simply 

written as: 

 

 2MEdES ��  (2. 11) 

 

For the signal of the sample attributed to the electrostrictive effect, the strain becomes: 

 

 2MES �  (2. 12) 
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When a sinusoidal field )cos( tEE o �� is applied, then the strain is given by: 

 

 2)]cos([ tEMS o ��  (2. 13) 

 

Expanding and regrouping Eq. (2.13) leads to: 

 

 )2cos(
2
1

2
1 22 tMEMES oo ���  (2. 14) 

 

where the first term is a constant and is compensated by the feedback arrangement used 

in the present interferometry technique.  Thus, the final expression of electrostrictive 

coefficient M (measured at a frequency of 2�) is: 

 

 
2

2

oE
S

M �  (2. 15) 

 

where the electrostrictive coefficient M can also be determined from the slope of a 

straight line plotting the strain S against the square of the applied field 2
oE . 

 

In this study, the electrostrictive coefficient M33 was measured using a 

Mach-Zehnder type heterodyne interferometer (SH-120 from B.M. Industries, France) 

for studying the electro-mechanical responses of the copolymer samples.  The 
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schematic diagram of the experimental setup is shown in Figure 2.9.  A function 

generator (HP8116A) was used to generate an a.c. voltage, which was then amplified by 

a high voltage amplifier (Trek 662) across the sample.   

 

 

Figure 2.9 Schematic diagram of the experimental setup for electrostrictive 

measurement. 

 

Refer to Figure 2.9, the linearly polarized laser beam L(t) with frequency fL and 

wavelength �L (632.8 nm) is delivered by a He-Ne laser to the Mach-Zehnder 

interferometer.  The complex amplitude of the laser beam can be written as: 

 

 tfi LLetL �2)( �  (2. 16) 
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where L is the amplitude of the laser beam. 

 

The beam L is then split into two paths (reference beam R and a measuring beam P) 

by the beam splitter.  The reference beam R, after propagating through the Dove prism 

and the polarizing beam splitter and reaches a photodetector, has a complex amplitude: 

 

 tfi LeRtR �2)( �  (2. 17) 

 

where R is the amplitude of the reference beam. 

 

The measuring beam P is transmitted by the beam splitters.  Its frequency is shifted by 

the Bragg cell fB (70 MHz), so that the frequency of the measuring beam is modulated to 

BL ff � .  The mechanical displacement of the sample surface generates a modulation 

of phase of the measuring beam by �(t), the measuring beam P reflected by the sample is 

then label as S: 

 

 )]()22[()( ttffi BLSetS ��� ���  (2. 18) 

 

where S is the amplitude of the phase modulated beam S(t) and 

 

 )2sin(
4

)( tfut u
L

�
�
�

� �  (2. 19) 
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where u is the amplitude of the displacement, and fu is the vibration frequency.   

 

The interference of the beams R and S on the photodetector delivers a current I beat 

signal at the frequency of the Bragg cell fB, phase modulation by the mechanical 

displacement of the sample to the spectrum analyzer: 

 

 )]2sin(
4

2cos[)( tfutftI u
L

B �
�
�

� ��  (2. 20) 

 

In this study, the current signal I was measured using a spectrum/network analyzer 

(HP3589A).  The current is expanded into a Bessel function series as follows: 

 

 )...]}4sin()
4

(2)2sin()
4
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4
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�
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�

�
�� ���  (2. 21) 

 

where Jn(x) is the Bessel function of order n, which can be represented in a frequency 

spectrum as shown in Figure 2.10.  The amplitudes of the sidebands represent the phase 

modulation of the carrier signal at frequency fB by the vibration at mfu, (m = 1, 2, 3……). 

 

For electrostrictive measurement, signal is attributed to 2fu.  Therefore, the 

displacement u can be approximately calculated from recording the ratio value R2 (in 

dBm) of the current component at fB and fB�2fu providing that u�� �: 
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where Jo and J2 are the Bessel functions of the zeroth and the second order, respectively.   

 

 

Figure 2.10 The current signal I in the frequency domain as represented in Eq. (2.21). 

 

In the present work, an a.c. field with a frequency of 5 kHz was applied to the 

sample, the field-induced longitudinal strain was then measured at 10 kHz and the 

results were plotted as a function of the square of the applied field E2 (Figure 2.11).  As 

expected, the strain is proportional to E2 according to Eq. (2.15).  Table 2.2 summarizes 

the electrostrictive response of the unirradiated and irradiated copolymer films, which 

shows that the copolymer has a higher electrostrictive coefficient M33 after irradiation.  
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The sample irradiated with a proton dose of 50 Mrad has an electrostrictive coefficient 

which is six times higher than that of the unirradiated sample.  As shown by X-ray 

diffraction, the crystalline regions in the irradiated sample are in a non-polar phase 

which has a lattice spacing quite different from that of the polar phase.  The 

transformation between the non-polar and polar phase induced by an electric field gives 

rise to a large lattice strain and hence a high electrostrictive coefficient.  However, as 

the dose is further increased to 107 Mrad, the crystallinity of the irradiated copolymer 

decreases, resulting in a reduction in the electrostrictive coefficient.  

 

 

Figure 2.11 Longitudinal strain as a function of the square of the applied field: (a) 10 

Mrad, (b) 20 Mrad, (c) 30 Mrad, (d) 40 Mrad, (e) 50 Mrad. 

Inset: 0 Mrad (for comparison). 
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Table 2.2 Electrostrictive coefficient M33 of proton irradiated 56/44 mol% 

P(VDF-TrFE) copolymer films. 

Proton Dose  

(Mrad) 

M33  

(10-18 m2/V2) 

0 0.30 

10 0.30 

20 0.43 

30 0.44 

40 0.58 

50 1.76 

75 1.53 * 

107 0.72 * 

150 0.40 * 

200 0.38 * 

* from Lau et al. [2004] 
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2.5 Summary 

 

In this Chapter, the structures and properties of 56/44 mol% P(VDF-TrFE) with 

low proton doses have been studied in detail.  The disappearing of ferroelectric 

behaviour and the well-fitted V-F law show that a dose of about 50 Mrad of proton 

irradiation is required to induce a relaxor behaviour without significantly decreasing the 

crystallinity in 56/44 mol% P(VDF-TrFE) copolymer.  Moreover, at a proton dose of 

50 Mrad, the copolymer exhibits the highest strain response with an electrostrictive 

coefficient of 1.76�10-18 m2/V2.  From the DSC and XRD data, it is suggested that the 

formation of defects induced by the irradiation leads to the break-up of the coherent 

macroscopic domains into nano-regions.  As the nano-regions are in the non-polar 

phase which has a lattice spacing significantly different from that of the polar phase, 

transformation between the non-polar and polar phase induced by an electric field gives 

rise to the high electrostrictive strain. 
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Fabrication of P(VDF-TrFE) MEMS 

 

This Chapter presents a brief description of the fabrication process of polymer 

microelectromechanical systems (MEMS).  A suspended silicon dioxide/silicon 

membrane was prepared by back-etching the silicon (Si) substrate using potassium 

hydroxide (KOH).  Both 70/30 mol% and 56/44 mol% P(VDF-TrFE) copolymer thin 

film with thickness of ~2.5 
m was spin-coated on the suspended membrane and poled 

in situ.  When an electric field was applied to the poled copolymer film, it produced 

displacements in the membrane.   

 

3.1 Membrane Fabrication 

 

3.1.1 Micromachining 

 

Micromachining is a technique for fabricating microstructures usually by silicon 

etching techniques.  There are two types of etching processes: isotropic and anisotropic.  

For isotropic etching, the etchant has no preferential etching direction and etches in all 

crystallographic directions at the same rate.  Hydrofluoric acid (HF) used for etching 

silicon dioxide (SiO2) and silicon nitride (Si3N4) is a typical etchant used for the 

isotropic etching process.   
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On the contrary, anisotropic etching is a process in which the etching rate in a 

particular direction is substantially higher than those in other directions.  Wet etching of 

silicon using KOH is commonly used for micromachining application, which slows 

down markedly along the (111) plane of silicon relative to the etch rates along other 

planes.  Figure 3.1 shows the difference between isotropic and anisotropic wet 

chemically etched cavity geometries using a (100) wafer.   

 

 

Figure 3.1 A summary of wet chemically etched cavity geometries which are 

commonly used in micromechanical devices.  (a) Anisotropic etching.  

(b) Isotropic etching with agitation [Petersen, 1982]. 

 

It is found that anisotropic etching is a more important technique to shape desired 

structures with perfectly-defined etched faces which meet at predictable angles in the 

fabrication of semiconductor devices.  The intersection angle � between (hkl) and 

(h1k1l1) can be found from: 
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For (100) and (111) planes, this angle is �7.54)2(tan 1  � . [Reed et al., 2001] 

 

Because of the slanted (111) planes, the size of the etch mask opening determines 

the final size of the etched cavity.  Figure 3.2 shows geometrically a membrane with 

side length xb and desired membrane thickness h.  The backside window opening length 

x, bounded on the four sloping sides by (111) can be calculated as: 

 

 �7.54cot)(2 hTxx Sib ���  (3. 2) 

 

where TSi is the thickness of wafer. 

 

 

Figure 3.2 Relationship between the dimension of the backside window and 

thickness of membrane. 
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3.1.2 Etch Mask 

 

The use of etch masks that can selectively prevent regions of silicon from being 

etched.  Silicon dioxide, silicon nitride, and some metallic thin films such as chromium 

and gold, provide good etch masks for typical anisotropic etchants.   

 

Kendall et al have interpolated KOH etch rates for (100) wafers (R100) from various 

data at different temperatures and KOH concentrations in terms of the hydration model 

of Glembocki et al. [Glembocki et al., 1991] to relate them by the following equation 

which applies to ~ 20% over the full range of temperature and KOH concentration 

[Kendall et al., 1997]: 

 

 )273(

)48.0
300

(

5.26
100 106.2 �

��

�� Tk

W

eWR  (3. 3) 

 

where R100 is the etch rate of (100) Si in micrometers per hour, W the actual wt% of KOH 

in water, k the Boltzmann’s constant (8.617�10-5 eV/K) and T is the temperature in 

degrees Celsius.   

 

Since KOH etches SiO2, an appropriate KOH solution concentration and 

temperature are chosen to produce an approximate membrane thickness of 20-50 
m 

and the SiO2 on the backside is thick enough so after the designated etching time, there is 

still some SiO2 left.  Kendall et al also examined various published data for KOH etch 
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rates of SiO2 at various temperatures and developed an empirical relation that is reported 

to be about 20% accurate over a very wide range of temperature and KOH 

concentration: 

 

 
)273(

)106795.0(
15.249

5.26

2
)1105.1(102.2 �

���
�

�

���� Tk
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SiO eWWR  (3. 4) 

 

where 
2SiOR  is the etch rate of SiO2 in micrometers per hour and the other variables are 

the same as before [Kendall et al, 1997]. 

 

Based on the fact that the etch rate for silicon dioxide (
2SiOR = 0.073 
m/h) is 

considerably smaller than that of silicon (R100 = 43.03 
m/h) using 35 wt% KOH etchant 

at 75 oC, a less costly wafer with a silicon dioxide layer as the protective layer during wet 

etching can be used.   
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3.1.3 Fabrication Process 

 

The fabrication started with silicon wafers covered with 1.3 
m thick silicon 

dioxide films.  A square backside window frame pattern was opened in the silicon 

dioxide by scratching (Figure 3.3(a)).  The patterned-oxide wafer was then 

anisotropically etched in aqueous 35 wt% KOH solution.  The sample was immersed in 

KOH solution with a water bath controlled at 75 oC to remove the Si from the backside 

to form the desired membrane structure (Figure 3.3(b)).  After anisotropic etching of 

the silicon substrate, the wafer was then thoroughly rinsed in deionized water.  Figure 

3.4 shows the results of the top view and cross-sectional view of the KOH etched 

membrane.   

 

3.2 Spin-Coating and Fabrication of Electrodes 

 

After releasing the membrane, a 0.1 
m thick aluminum (Al) bottom electrode was 

deposited by magnetron sputtering onto the top surface of the Si membrane at room 

temperature (Figure 3.3(c)).  Then, ~ 2.5 
m thick P(VDF-TrFE) copolymer (Piezotech 

Co., Saint Louis, France) film was spun on the top surface of the membrane using a 

spinner at a rotation speed of 1200 rpm for 30s (Figure 3.3(d)).  The copolymer solution 

used in the spin-coating was formed by dissolving P(VDF-TrFE) pellets in 

methyl-ethyl-ketone (MEK) solvent at room temperature.  The concentration of the 

solution was ~13 wt%.  In order to make contact to the bottom electrode, MEK was 
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used to remove a small area of the copolymer to expose the bottom electrode.  

Annealing at 120 oC for 2 h was necessary to increase the crystallinity of the copolymer.  

The sample was irradiated by 3 MeV protons at ambient temperature.  After the 

irradiation treatment, an Al top electrode was deposited by sputtering forming a 

capacitor structure (Figure 3.3(e)).   

 

Finally, two wires were bonded for subsequent measurements (Figure 3.3(f)).  

Besides the proton irradiated copolymer MEMS, the piezoelectric copolymer-based 

membrane has also been prepared.  P(VDF-TrFE) films were poled in-situ under an 100 

MV/m electric field at room temperature through the capacitor structure, so as to elicit 

the desired piezoelectric effect of in the copolymer thin films.  Figure 3.3 shows the 

process of MEMS fabrication.   
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Figure 3.3 Summary of the MEMS fabrication process. 
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Figure 3.4 (a) View of the backside of a membrane.  (b) The cross section of a 

MEMS diaphragm with a 54.7 o angle inclination between the (111) and 

(100) planes.

54.7 o 
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Chapter 4 

Performance of P(VDF-TrFE) MEMS 

 

4.1 Introduction 

 

State-of-the-art air-borne ultrasonic transducers radiating ultrasonic energy into air 

consist mainly of active piezoelectric elements in the form of a disc or ring.  The key 

problem in the design and construction of such transducers is the acoustical coupling of 

the vibrations from the driving element to the surrounding medium, i.e., air.  An 

obvious method for improving the radiation efficiency of an air-borne ultrasonic 

transducer is the use of impedance matching layers made of materials with low 

acoustical impedance.  An alternative approach to improve the transducer coupling to 

air is to use a vibrating membrane.   

 

4.2 Electro-Mechanical Measurements 

 

4.2.1 Laser Interferometer System 

 

To evaluate the performance of the membrane, the MEMS was driven by an 

electric field and its surface displacement was measured with a Polytec Laser Doppler 

Vibrometer (Controller: OFV-3001; Sensor: OFV-303).  Figure 4.1 shows a schematic 
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diagram of the experimental setup for the displacement measurement.  The signal from 

the vibrometer is connected to a digital oscilloscope for recording.  Vibration amplitude 

of the MEMS was detected by the OFV-303 sensor which could be decoded as a voltage 

signal by the controller and then recorded by the oscilloscope.   

 

 

Figure 4.1 Schematic diagram of the experimental setup for the displacement 

measurements. 

 

The peak displacement d of the vibrating object can be calculated from the equation 

for a harmonic vibration: 

 

 
f

sV
d p

�2
�  (4. 1) 

 

where f is the driving frequency, Vp the peak voltage recorded by the oscilloscope and s 

is the velocity range of the controller.   
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In the present study, the displacement of the MEMS was measured under different 

a.c. driving voltages.  The frequency response of the MEMS, which covers the 

resonance frequency and higher order frequency regions were measured, together with 

their displacement profiles.   

 

4.2.2 Identification of Resonance Frequency 

 

The resonance frequency of the membrane-type P(VDF-TrFE) MEMS can be 

estimated using the equation for a square plate under the mechanical boundary 

conditions that the four sides are fixed.  The fundamental mode frequency for flexural 

vibrations can be expressed as [Rossing et al., 1994]: 

 

 
)1(

654.1 22 !� �
�

Y
L
t

f r  (4. 2) 

 

where � is the density, t the thickness, L the length, Y the Young’s modulus and ! is the 

Poisson’s ratio.  Listed in Table 4.1 are properties of the thin-film materials of the 

membrane and their material properties. 

 

 

 

 



 
Performance of P(VDF-TrFE) MEMS 

 
        THE HONG KONG POLYTECHNIC UNIVERSITY 
 

LAM Tin Yan                                                                                        75 
 

Chapter 4 

Table 4.1 Materials properties of thin films in the P(VDF-TrFE) MEMS [Wang et 

al., 1993; Kim, 1996; Bharti et al., 1998; Xu et al., 1999; Cheeke, 2002; 

Setter et al., 2002; Lau, 2004]. 

Materials ith layer 
Thickness 

(�m) 
Y (GPa) � (kg/m3) !!!! 

Aluminum (top) 1 0.1 68 2700 0.36 

PVDF-TrFE 2 2.5 0.7 1900 0.43 

Aluminum (bottom) 3 0.1 68 2700 0.36 

Silicon dioxide 4 1.3 70 2200 0.17 

Silicon 5 50 150 2500 0.172 

 

Assume that the various layers are mechanically connected in series and perfectly 

bonded, the effective Young’s modulus, density and Poisson’s ratio can be expressed as: 

 

 
"
"�

i

ii

t

tY
Y  (4. 3) 
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where ti is the thickness of the ith layer. 
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According to Eq. (4.2), the resonance frequency of the membrane can be decreased 

to the audible range (<20 kHz) by either increasing the size of the membrane or 

decreasing the thickness.  The resonance frequency depends heavily on the membrane 

thickness.  For a 3.2 mm square membrane, if the thickness of the membrane is 

decreased from 60 
m to 40 
m, the resonance frequency will decrease from 75 kHz to 

50 kHz as shown in Figure 4.2. 

 

Results of measured values are compared with the value calculated by Eqs. 

(4.2-4.5).  It is found that the measured values are quite close to the calculated values 

(Figure 4.2).   
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Figure 4.2 Fundamental mode resonance frequency of a 3.2 mm square membrane 

versus Si membrane thickness.  Solid line are values calculated using 

Eqs. (4.2-4.5).  The symbols are measured data. 

 

4.2.3 Measurement of Vibrational Amplitude Patterns 

 

4.2.3.1 Study of Frequency Response 

 

70/30 mol% P(VDF-TrFE) MEMS samples with different dimensions have been 

prepared as listed in Table 4.2.  Figure 4.3 shows the displacement at the centre of the 

membrane as a function of frequency measured using a laser vibrometer.  Each MEMS 

has been driven by a 10 V sinusoidal signal.  The vibrational profile depends on the 

membrane size and thickness.  It has been observed that the thicker the membrane, the 
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higher the resonance frequency, but the smaller the vibration displacement, and it needs 

higher driving voltage to excite the membrane.  The larger the membrane, the easier to 

drive the membrane, but the resonance frequency becomes lower.  For example, the 

resonance characteristics of sample S6_30 as shown in Figure 4.3(b) has the largest and 

thinnest membrane, resulting in the lowest resonance frequency. 

 

After the fundamental resonance peak, the MEMS becomes much less efficient at 

higher frequency resonances.  These higher frequency peaks are much weaker.  The 

MEMS thus becomes relatively less efficient at higher frequency regions, especially in a 

thicker membrane.   

 

Table 4.2 Dimensions of the 70/30 mol% P(VDF-TrFE) MEMS. 

Sample 
Square membrane size 

L2 (mm ���� mm) 

Si membrane 

thickness t5 (



m) 

Calculated fundamental 

response frequency fr (kHz) 

S40 2.3 � 2.3 18 45 

S6_30 6 � 6 30 11 

S6_50 5.8 � 5.8 50 19 

S3_50 3.2 � 3.2 50 63 

S3_90 3.2 � 3.2 90 111 
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Figure 4.3 Variation of vibrational amplitude with frequency at the centre of 

membranes with different membrane sizes and thicknesses: (a) S40, (b) 

S6_30, (c) S6_50, (d) S3_50 and (e) S3_90. 
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Figure 4.3 (Continued). 
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Figure 4.3 (Continued). 

 

4.2.3.2 Study of Displacement Profiles 

 

Figure 4.3(a) shows a fundamental resonance peak of sample S40 at 40.8 kHz.  

The excitation voltage is 10 V.  Distribution of the vertical (or out-of-plane) 

displacement amplitude across the membrane of S40 has been studied at different 

resonance peaks corresponding to the fundamental resonance (at 40.8 kHz) and the 

second and third harmonics (92.9 kHz and 140 kHz), respectively (Figure 4.4).   

 

A.c. voltages were used to excite the membrane.  At each frequency, the amplitude 

of the a.c. voltage increased from 4 V to 10 V.  It is clearly seen that the displacement 

increases quite linearly with increasing voltage as shown in Figures 4.5 and 4.6.  The 

centre displacements per unit voltage are 110 nm/V, 0.8 nm/V and 5 nm/V at 40.8 kHz, 
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92.9 kHz and 140 kHz, respectively.  The displacement at the centre of the membrane at 

92.9 kHz becomes very small as the centre is a displacement antinode at the second 

harmonic resonance. 

 

 

Figure 4.4 Vibration of amplitude profiles on membrane S40 at (a) 40.8 kHz, (b) 

92.9 kHz and (c) 140 kHz. 
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Figure 4.4 (Continued). 
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Figure 4.5 Vibration in amplitude of the MEMS as a function of excitation voltage 

at 40.8 kHz. 

 

 

Figure 4.6 Vibration in amplitude of the MEMS as a function of excitation voltage 

at (a) 92.9 kHz and (b) 140 kHz. 
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4.2.4 Acoustic Pressure Transmitted by the P(VDF-TrFE) MEMS 

 

The acoustic pressure transmitted by the MEMS was studied using a B&K 

microphone (Type 4135) having an outer diameter of 6.35 mm (1/4 in) with a known 

sensitivity of 3.8 mV/Pa (supplied by the manufacturer).  The microphone was 

connected to a B&K measuring preamplifier (Type 2633).  The MEMS and the 

microphone were positioned to face one another on an optical bench. 

 

Variation of acoustic pressure with frequency has been studied at a far field axial 

point z of the MEMS: 

 

 
�

2a
z �  (4. 6) 

and 
2
L

a �  (4. 7) 

 

where z marks the transition between the near and the far zones, L is the length of the 

MEMS and � is the wavelength at the operating frequency.  For the sample S40 with 

2.3 mm square membrane, it is calculated that the transition between the near and the far 

zones operating at 40.8 kHz is at 0.16 mm.  The acoustic pressure vs frequency of S40 

at an axial distance of 13 mm is shown in Figure 4.7.  The MEMS, driven by 10 V, 

produces the maximum pressure at 40.8 kHz, which is consistent with that obtained in 

the displacement pattern.  Electro-mechanical response of the MEMS agrees with the 
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pressure in giving a maximum response at resonance.  The peak pressure level 

generated as a function of excitation voltage at an axial distance of 13 mm from the 

MEMS surface shows a linear relationship as shown in Figure 4.8.  From the slope of 

the line, it is found that the transmitting response of the MEMS at 40.8 kHz is ~ 0.1 

Pa/V. 

 

In the far field, the intensity of the acoustic waves along the axis varies as the 

inverse of the square of the distance from the transducer.  Axial variation of acoustic 

pressure generated by the MEMS is shown in Figure 4.9.  It is found that the pressure 

falls with distance following the inverse square law (shown by the solid line).   

 

 

Figure 4.7 Acoustic pressure of the MEMS driven by 10 V at an axial distance of 13 

mm. 
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Figure 4.8 Acoustic pressure generated at 40.8 kHz under different excitation 

voltages measured with a B&K microphone at 13 mm from the MEMS. 

 

 

Figure 4.9 Axial distribution of acoustic pressure (symbols) of the MEMS driven by 

a 10 V sinusoidal source (the solid line corresponds to the inverse square 

law). 
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4.3 Receiving Sensitivity of the P(VDF-TrFE) MEMS 

 

Characteristics of the output voltage of the S40 MEMS when used as a receiver and 

subjected to an input ultrasonic acoustic pressure has been studied.  Sensitivity of the 

copolymer based MEMS as an ultrasonic sensor can then be evaluated. 

 

The receiving response of the MEMS is measured by a comparison method using a 

B&K microphone (Type 4135) having an outer diameter of 6.35 mm (1/4 in) with a 

known sensitivity of 3.8 mV/Pa (supplied by the manufacturer).  The microphone was 

connected to a B&K measuring preamplifier (Type 2633).  Figure 4.10 shows the test 

equipment of the MEMS mounted on an optical bench facing an air-borne ultrasonic 

transducer. 
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Figure 4.10 Schematic setup of the MEMS (right) facing the air-borne ultrasonic 

transducer (left) aligned on an optical bench. 

 

The air-borne ultrasonic transducer has a resonance frequency of ~ 40 kHz and was 

used as the emitter.  It is driven by a 5 cycle tone burst signal of 10 ms duration with a 

driving voltage of 10V at 40.8 kHz provided by an HP8116A function generator to 

produce an acoustic pressure.  The B&K microphone was placed in front of the 

ultrasonic transducer at 4 cm, where the variation of acoustic pressure as a function of 

input voltage was recorded and shown in Figure 4.11.   
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Figure 4.11 Acoustic pressure of the ultrasonic transducer (source) driven at 40.8 

kHz and under different voltages at an axial distance of 4 cm. 

 

With the above setup, acoustic pressure at 40.8 kHz on the axis of the MEMS 4 cm 

from the microphone was measured.  The response of the MEMS transducer at different 

input acoustic pressure was tested.   

 

Figure 4.12 shows the voltage output of the membrane as a function of acoustic 

pressure generated by the transducer at 40.8 kHz.  As acoustic pressure increases from 

10 Pa to 48 Pa, the voltage output increases from about 0.8 mV to 3.6 mV.  Figure 4.13 

shows the unamplified output voltage from the S40 MEMS acoustic sensor and the 

corresponding frequency spectrum.  It shows that the ringdown time of the MEMS is 

quite long and the frequency of the signal is predominantly 40.8 kHz. 
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Figure 4.12 Voltage output of the S40 MEMS as a function of acoustic pressure 

generated by a transducer at 40.8 kHz at an axial distance of 4 cm. 
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Figure 4.13 (a) Temporal response and (b) frequency domain response of the S40 

MEMS when the transmitting transducer is subjected to a 5-cycle 

tone-burst signal at 40.8 kHz. 
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The B&K microphone was first used to measure the acoustic pressure generated by 

the transducer.  The S40 MEMS transducer was then substituted for the microphone, 

with the acoustic centre placed in the field exactly at the position of the microphone.  

The unamplified output voltage of the S40 MEMS, corresponding to the known acoustic 

pressure, is then measured, and the acoustic transducer sensitivity is calculated and 

shown in Figure 4.14.  It is noted that the response is quite linear under various acoustic 

pressure.  At the resonance frequency of 40.8 kHz, sensitivity of the S40 MEMS 

transducer under different pressure is ~ 84 
V/Pa.   

 

 

Figure 4.14 Receiving sensitivity of the S40 MEMS under various acoustic pressure 

at 40.8 kHz. 
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Study of Clamping Effect on the Electrostrictive 

Coefficient of 56/44 mol% P(VDF-TrFE) 

 

A film mounted on a substrate is constrained in the plane of the substrate.  Due to 

this clamping effect, the strain in the thickness direction is reduced and thus the 

measured M33 is smaller than the true value of the bulk material.   

 

Unirradiated and irradiated 56/44 mol% P(VDF-TrFE) copolymer thin films 

deposited on Si substrates were studied to reveal the effect of clamping.  Following the 

process described in Chapter 3 on MEMS Fabrication, a set of 6 MEMS were 

spin-coated with ~ 2.1 
m copolymer thin film on silicon substrates and by back-etching 

a 3 mm � 3 mm square Si membrane was formed in each MEMS.  The thickness of the 

Si left on the membrane was controlled to ~ 55 to 60 
m for all the MEMS samples and 

the calculated resonance frequency using Eqs. (4.2-4.5) is ~ 80 to 87 kHz.  In order to 

ensure the consistency for direct comparison between the unclamped and clamped M33, 

the irradiation conditions were identical to those of bulk film samples studied in Chapter 

2.  The proton doses were in the range of 10 to 50 Mrad. 

 

Similar to the measurement in bulk samples, a Mach-Zehnder type heterodyne laser 

interferometer (SH-120 from B.M. Industries, France), as shown in Figure 2.9, was used 
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to measure the electrostrictive strain of the thin films.  The field-induced longitudinal 

strain was measured at 10 kHz with an a.c. driving voltage of 5 kHz applied to the 

copolymer thin film.  The effective electrostrictive coefficient M33 was calculated 

according to Eq. (2.15), which can be determined by 2 times the slope of the straight line 

plotting the strain S against the square of the applied filed E2.   

 

For the measurement of the electrostrictive coefficient M33 of thin films one has to 

keep in mind that the film is clamped to a substrate.  Therefore, the ratio of strain S and 

electric field E does not represent the M33 of the free sample but gives only an effective 

coefficient (effective M33).   

 

Effective M33 was measured as a function of frequency at the centre of the 

membrane Mmembrane and at the side on the silicon substrate MSi as shown in Figure 5.1.  

Near the centre of the membrane, some Si has been etched away, hence Mmembrane 

represents a partially clamped boundary condition while MSi represents a state in which 

the P(VDF-TrFE) thin film is completely clamped. 
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Figure 5.1 Schematic diagram of (a) side view and (b) top view, showing the 

measurement of effective MSi and Mmembrane with the Mach-Zehnder type 

heterodyne laser interferometer.   
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Figure 5.2 shows the displacement at the centre of the unirradiated 56/44 mol% 

P(VDF-TrFE) membrane as a function of applied frequency f.  For electrostrictive 

measurement, signal is attributed to 2f.  The amplitude of the driving a.c. voltage is 20 

V.  It is found that the displacements remain almost unchanged as the applied frequency 

f increases from 5 kHz to 20 kHz at 20 V excitation voltage.  At f ~ 40 kHz, the 

displacement reaches a maximum value of 0.54 nm.  It may be due to the resonance of 

the membrane at 2f ~ 80 kHz, and the bending of membrane amplifying the ‘measured’ 

effective M33.  To stay away from the resonance frequency of the membrane, the 

electrostrictive strain was measured at 5 kHz which is far below the resonance frequency.  

Figure 5.3 shows the electrostrictive strain S as a function of the square of the applied 

field E2 obtained in the unirradiated and irradiated 56/44 mol% P(VDF-TrFE) MEMS 

sample.  The MSi and Mmembrane are calculated by 2 times the slope. 
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Figure 5.2 The displacement at the centre of the unirradiated sample as a function of 

frequency at 20 V excitation voltage.   
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Figure 5.3 Longitudinal strain as a function of the square of the applied field of (a) 

unirradiated, (b) 10 Mrad, (c) 20 Mrad, (d) 30 Mrad, (e) 40 Mrad and (f) 

50 Mrad proton irradiated 56/44 mol% P(VDF-TrFE) at position (I) at 

the centre of the membrane and (II) at the side on the Si substrate. 
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Figure 5.3 (Continued). 
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Figure 5.3 (Continued). 
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The M33 of the free bulk samples and the effective M33 of MEMS of unirradiated 

and irradiated copolymers are summarized in Figure 5.4.  It is observed that Mmembrane is 

increased by about an order magnitude when the Si substrate is thinner.  It can be 

observed that Mmembrane increases gradually as proton dose increases, but does not exhibit 

significant increases at 50 Mrad as in the bulk free sample.  This may probably be due 

to the existence of a thin layer (~ 50 to 60 
m) of Si substrate, which imposes partial 

clamping to the soft copolymer film and impedes the free vibration of the membrane.  

Although the applied field is in the thickness direction, the film movement in the 

thickness direction also causes bending of the membrane.  In this case, the bending of 

the membrane may dominate the substrate clamping effect.   

 

Therefore, MSi reveals the actual strain response in the thickness direction, as the Si 

substrate is fixed to the holder of the electrostrictive measurement setup.  Comparing 

the effective MSi with the M33 of the free bulk films, the MSi is reduced by one order of 

magnitude, as one face of the film is rigidly clamped to a thick Si substrate.  This 

constraint limits the movement of the copolymer layer as it attempts to expand or 

contract when a voltage is applied.   
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Figure 5.4 Comparison of the values of clamped and free bulk M33.  (Remark: The 

unusual behaviour at 30 Mrad may be due to the variation in irradiation 

dose received by the two samples.) 
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Conclusions 

 

The effect of 3 MeV proton irradiation at a low proton dose range from 10 to 50 

Mrad on the structure and property of 56/44 mol% poly(vinylidene 

fluoride-trifluoroethylene) copolymers [P(VDF-TrFE)] have been studied.  At low 

doses, the high energy proton irradiation has already induced changes on the relative 

permittivity, polarization hysteresis, electrostrictive strain response and phase transition 

behaviour. 

 

The proton irradiation, even at a low proton dose of 10 Mrad, changes the 

polarization hysteresis loop of the copolymer from one with a large hysteresis to a 

slimmer loop.  Also, the well-fitted V-F law showed that a low dose (10 Mrad) of 

proton irradiation is sufficient to induce a partial relaxor behaviour without significantly 

decreasing the crystallinity in 56/44 mol% P(VDF-TrFE) copolymer.   

 

From the DSC and XRD data, it is suggested that the formation of defects induced 

by the irradiation leads to the break-up of the coherent macroscopic domains into 

nano-regions.  As the nano-regions are in the non-polar phase which has a lattice 

spacing significantly different from that of the polar phase, transformation between the 

non-polar and polar phase induced by an electric field gives rise to the high 
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electrostrictive strain.  In previous work [Lau et al., 2004], the maximum M33 obtained 

at a dose of 75 Mrad is 1.53 � 10-18 m2/V2.  Hence, 50 Mrad is the optimum proton dose 

as it can produce an electrostrictive strain of 1.76 � 10-18 m2/V2, which is higher than that 

reported in the previous work.   

 

The substrate clamping effect of 56/44 mol% P(VDF-TrFE) copolymers irradiated 

with proton doses ranged from 10 to 50 Mrad films was investigated.  The effective M33 

of copolymer spin-coated on the substrate shows an order of magnitude reduction 

compared with the free bulk thick film.  At the centre of the freely vibrated membrane, 

the effective Mmembrane becomes higher than the MSi for P(VDF-TrFE) film on a Si 

substrate.  This is because in the Si membrane, only a thin layer of Si substrate is left 

which greatly reduces the clamping on the soft copolymer film.  

 

As the copolymer possesses a high degree of flexibility, with the use of a thin Si 

backing plate, it can generate a considerable displacement, especially at resonance.  In 

this work, suspended membrane-type MEMS has been fabricated and studied.  

Micromachined piezoelectric 70/30 mol% P(VDF-TrFE) MEMS for air transducer 

application is reported.  The mechanical behaviour of the MEMS has been analysed by 

means of a laser vibrometer.  The resonance frequency and the amplitude of vibration 

depend on the membrane size and thickness.  The larger and the thinner the membrane, 

the easier it is to drive the membrane and the lower the resonance frequency. 
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