

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

Department of Computing

A MOBILE MIDDLEWARE FOR

QUALITY OF SERVICE ADAPTATIONS

CHUANG SIU NAM

A thesis submitted in partial fulfillment of the requirements for

 the degree of Doctor of Philosophy

Initial Submission: August 2008

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

1

Abstract

Computation and networking resources in mobile operating environments are much

scarcer and more dynamic than in desktop operating environments. Mobile

applications can use adaptive computing to optimize the quality-of-service (QoS)

delivery based on dynamic contextual situations. Fuzzy control models have been

successfully applied to various distributed network QoS management systems.

However, existing models are either application-specific or limited to abstract

modeling and simple conceptual scenarios that do not take into account the overall

scalability of these models. Specifically, the large number of QoS parameters in a

mobile operating environment causes the rule-explosion problem, in which an

exponential increase in the number of rules correspondingly increases the demand

for processing power to infer the rules. Hierarchical fuzzy systems were

introduced to reduce the number of rules using hierarchical fuzzy control, in which

correlated linguistic variables are hierarchically inferred and grouped into abstract

linguistic variables. In this thesis, we propose a mobile QoS management

framework that uses a hierarchical fuzzy control model to support a highly

extensible and structured adaptation paradigm. The proposed framework

integrates several levels of QoS abstractions derived from user-perceived

requirements. It also maps these abstractions to appropriate QoS resources that

drive the development of mobile services that mitigate the effects of varying mobile

environments. This framework provides an optimal overall service by

synergistically balancing the QoS requirements of users and applications with the

dynamic allocation of resources and chaining of services. Our proposal is novel in

that it looks at QoS from a holistic, systematic, and pragmatic perspective. This

thesis demonstrates the flexibility and efficiency of our QoS management

framework in adapting to different users, applications, and platforms operating in

wireless environments that are characterized by dynamic and constrained resources.

2

Acknowledgements

There are a lot of people I would like to thank, for they influenced me and supported

me in completing this thesis, a difficult yet rewarding process.

First of all, I would like to thank my supervisor, Dr. Alvin Chan, for taking me as a

graduate student. It was really good fortune for me to become his student. He has

been an ideal supervisor in every aspect, both in terms of technical advice on my

research and in terms of professional advice. I hope I can live up with his high

standards in my future career.

I would also like to thank Martin Kyle, for his help in the preparation of this thesis.

Thanks are also due to Ms. Miu Tai and Ms. Rosa Kwan, for their friendliness and

approachability in solving the administrative problems on my study. I appreciate

the supports provided by the departmental tech team, for their prompt responds to

my frequent request for equipments, software and other resources.

My special thanks are due to my family for their continuous love, encouragement

and patience. Most of all, I would like to thank my lovely fiancée, for her patience

and sacrifice throughout my study. Without her support, this dissertation would

never have been completed.

3

Table of Contents

Abstract………………………….……………….……………..…..….

1

Acknowledgements……………….……………….……………..…..

… . 2

Table of Contents.......……………..…………………………......……3

List of Figures……..…………………………………………...…...…6

List of Tables……..…………………………………………...…...…7

Chapter 1 Introduction ... 8

1.1 Motivations... 9

1.1.1 Wireless Network Connectivity ... 9

1.1.2 System Limitation .. 10

1.1.3 Context Awareness ... 11

1.1.4 Deducing Cost Functions and Formulating an Optimization Model 12

1.1.5 Varying User and Application QoS Requirements ... 13

1.1.6 Balancing the Use of Resources in a Responsive Adaptation Model 13

1.2 Research Challenges ... 14

1.3 Contributions .. 16

1.4 Organization of Thesis ... 20

Chapter 2 Background.. 22

2.1 QoS Management Framework .. 22

2.1.1 QoS Abstractions .. 23

2.1.2 QoS Interaction Overview .. 24

2.1.3 QoS Specification and Interpretation ... 25

2.1.4 Admission Control ... 26

2.1.5 QoS Control ... 27

2.2 Adaptive Mechanisms .. 30

2.2.1 Aspect Oriented Programming (AOP) ... 30

2.2.2 Reflective Dynamic Adaptation ... 34

2.2.3 Fuzzy Control for QoS Management ... 35

2.2.4 Hierarchical Fuzzy Control .. 36

2.3 Summary .. 38

4

Chapter 3 MobiPADS: A QoS Middleware for Context-aware for
Mobile Computing ... 39

3.1 The MobiPADS Framework ... 40

3.2 Mobilet Service Model ... 42

3.3 System Components ... 43

3.4 Dynamic Service Reconfiguration.. 44

3.4.1 Service Policies .. 44

3.4.2 Service Chain Reconfiguration .. 45

3.4.3 Mobilet Reconfiguration .. 46

3.5 Adaptation Mechanisms ... 47

3.6 Summary .. 50

Chapter 4 Mobile QoS Management Based on Hierarchical Fuzzy
Control .. 51

4.1 The Hierarchical Fuzzy Control Model .. 51

4.2 Hierarchical Inference Engines .. 54

4.2.1 Resource-oriented QoS Parameters .. 54

4.2.2 Contextual QoS Factors ... 55

4.2.3 User-oriented QoS Parameters ... 56

4.2.4 User satisfaction QoS Factors .. 56

4.2.5 Adaptation Importance ... 58

4.3 Mobilets .. 58

4.3.1 Mobilet Service .. 58

4.3.2 Mobilet Service Profile .. 59

4.3.3 Affected QoS Factor .. 59

4.4 Fuzzy-controlled Service Reconfiguration ... 61

4.5 Performance Results and Analysis ... 65

4.5.1 Experimental Setup .. 65

4.5.2 The Fuzzy Rules... 68

4.5.3 Experimental Results ... 71

4.6 Performance Scalability ... 75

4.6.1 QoS Parameter Scalability ... 75

4.6.2 Fuzzy Rule Scalability ... 76

4.6.3 Mobilet and Profile Scalability .. 78

4.7 Summary .. 79

5

Chapter 5 Meta-level Adaptation ... 81

5.1 Membership Function Adaptation .. 84

5.1.1 Normal Point Shifting .. 85

5.1.2 Experimental Results ... 88

5.1.3 Discussion .. 93

5.2 Importance Weight Adaptation ... 93

5.2.1 Importance Weight for QoS Factors ... 94

5.2.2 Experimental Results ... 95

5.2.3 Discussion .. 96

5.3 Computational Reflection ... 97

5.3.1 Reflective API .. 98

5.3.2 A Case Example ... 101

5.4 Summary .. 103

Chapter 6 Related Works .. 105

6.1 OMEGA ... 105

6.2 QoS-A .. 107

6.3 QuO .. 108

6.4 HQML .. 109

6.5 OWL-S ... 110

6.6 QML ... 112

6.7 SLAng .. 113

6.8 Comparisons ... 114

6.9 Other QoS Middleware .. 115

6.10 Summary .. 119

Chapter 7 Conclusions and Future Work ... 120

7.1 Results .. 124

7.2 Future work .. 125

7.2.1 Contextual Coverage .. 125

7.2.2 Mobilet Service Profile Probing ... 126

7.2.3 Inter-Application Adaptation .. 126

7.2.4 Security .. 127

7.3 Publications .. 128

Chapter 8 References ... 129

6

List of Figures

Figure 2.1 Flow of QoS Activities .. 23

Figure 2.2 QoS Abstraction Layering from User Level to System Resource Level 24

Figure 2.3 The Layered QoS Interaction Sequence .. 25

Figure 2.4 Aspect Weaving of Crosscutting Concerns into Context-Independent Mobile

Services ... 34

Figure 3.1 The MobiPADS System Architecture .. 41

Figure 3.2 Establishment Of The Meta-Chains And Initial Service Chain 46

Figure 3.3 Service Reconfiguration Process ... 46

Figure 4.1 Control Flow of the Hierarchical Fuzzy Control Model ... 52

Figure 4.2 Contextual QoS Factor Hierarchy ... 56

Figure 4.3 User Satisfaction QoS Factor Hierarchy ... 57

Figure 4.4 Sorted Decision Scores Using The Implication Operator .. 64

Figure 4.5 An Adaptive Mobile Video Streaming Application ... 66

Figure 4.6 Network Quality Function Inferred by Bandwidth and Error Rate 69

Figure 4.7 Network Priority Inferred by Network and Presentation Quality 70

Figure 4.8 Clarity Performance of Static Services Versus Fuzzy QoS Adapted Services 71

Figure 4.9 Smoothness Performance of Static Services Versus Fuzzy QoS Adapted Services 72

Figure 4.10 Packet Drop Rate of Static Services Versus Fuzzy QoS Adapted Services 72

Figure 4.11 Parameter Size, Rule Size and Memory Usage ... 76

Figure 4.12 Performance Scalability of Fuzzy Rules ... 77

Figure 5.1 Visual Effect M-JPEG Enncoding with Packet Lost ... 83

Figure 5.2 Visual Effect of LC Encoding with Packet Lost .. 83

Figure 5.3 Generic Fuzzy Sets for A Qos Parameter .. 87

Figure 5.4 Proportional Shifting of Fuzzy Sets .. 87

Figure 5.5 Reverse-proportional Shifting of Fuzzy Sets ... 87

Figure 5.6 Relative-scaled Shifting of Fuzzy Sets .. 88

Figure 5.7 Clarity Performance with Clarity Normal Point Shifted ... 89

Figure 5.8 Smoothness Performance with Clarity Normal Point Shifted 89

Figure 5.9 Packet Drop Rate with Clarity Normal Point Shifted .. 90

Figure 5.10 Clarity Performance of Clarity or Smoothness Normal Point Shifted 91

7

Figure 5.11 Smoothness Performance of Clarity Or Smoothness Normal Point Shifted 92

Figure 5.12 Packet Drop Rate of Clarity or Smoothness Normal Point Shifted 92

Figure 5.13 Performance of Clarity with Importance Weight Adaptations 95

 List of Tables

Table 3.1 Five Layers of Adaptation Mechanisms .. 48

Table 4.1 The Network Quality Rule Base ... 69

Table 4.2 The Adaptation Rule Base ... 70

Table 5.1 Relationships between Adaptation Initiators and Reconfiguration Entities 98

Table 5.2 Reflective MobiPADS API for Context-Aware Mobile Applications 99

Table 5.3 Sample Context-aware Mobile Application .. 102

Table 6.1 Comparisons among Different QoS Frameworks ... 114

8

Chapter 1

Introduction

Wireless mobile computing operates in a paradigm where resources (dimensions of

devices, power, CPU speed and memory) are not only constrained but are often not

reliably available or vary dynamically and as a result .connection may have high

service costs and error rates and suffer temporary disconnections. System

designers have usually responded to such resource-constraint or quality of service

(QoS) challenges by simply compromising performance, usually by operating

under the threshold of some presumed level of resources. But such protocols and

services, operating on a resources-stable, hard-guaranteed reservation scheme, i.e.,

“best effort” delivery networks based on a TCP/IP protocol, are not suitable for

mobile environments as they do not allow any adaptation, either in the case of

deterioration or improvement in resource availability or stability. Some

TCP/IP-based QoS mechanisms, such as diffServ [DiffServ08] and IntServ

[Evans07], do support differentiating and integrating different types of network

streams, but these mechanisms still require relatively stable fixed network

environments.

These traditional reservation-based QoS management mechanisms cannot

effectively deal with the scarcity and dynamic variation of resources, such as abrupt

changes, that is characteristic of mobile environments. The focus of mobile QoS

management has thus shifted to providing adaptive and optimized mobile services

which provide augmented services and optimize protocols to match the available

resources and operating context of the network. For example, a mobile Web

9

browser retrieving a graphic-rich Web site can ask the middleware service to

progressively degrade the picture quality if it detects a drastic drop in the bandwidth

availability. In this thesis, we identify and address the challenges in mobile QoS

management and propose a QoS management framework that adopts a hierarchical

fuzzy control model [Raju91] [Ronald98] to support a highly extensible and

structured adaptation paradigm.

1.1 Motivations

To optimize service delivery under constrained environment, a primary objective of

mobile QoS management is to facilitate appropriate resources allocation and, if

necessary, make tradeoffs between QoS parameters. The ultimate goal is to

maximize the user’s perceived quality of service. The following describes the

major difficulties in maximizing this perceived QoS, that is, in mobile QoS

management.

1.1.1 Wireless Network Connectivity

Mobile devices typically connect to the internet via wireless links, which do not

offer either the capacity or stability of wired connectivity, notwithstanding the

higher bandwidth and lower error rates now being provided by wireless

technologies like Bluetooth 2.0 [Bluetooth08], WiMax [WiMax08] and IEEE

802.20 [MBWA08] The lower bandwidth of wireless connectivity puts limits on

the quality of multimedia application, such as video streaming and video

conferencing as the QoS manager is required to negotiate with the application on a

minimum maintainable bandwidth while supporting levels of prioritization and

error detection/correction for different packet types within the same data stream and

10

at the same time dealing with arbitrary wireless connectivity degradation.

Mobility can make wireless connectivity hard to maintain and this must be taken

into account in mobile QoS management. Base station handoff, for example,

when a mobile device accessing a wireless network moves from one base station to

another, can result in the suspension of network availability. There has been a lot

of work on reducing this disruption [Pahlavan00] [Campbell02], mostly focusing

on the network and data link layers. Bandwidth variation, error rate variation, and

even temporary disconnection can be addressed by applying QoS adaptation and by

involving the application in the adaptation strategy. This would mean that rapid

but mild changes in the network resources would be handled by an automated QoS

adaptation mechanism but drastic changes would be handled by the mobile

application, which would choose a strategy based on its execution and usage

context. Similarly, improvements in network performance must also be taken into

consideration so that a QoS management system must be able to re-negotiate with

an application to use the newly available bandwidth, For example, when a better

bandwidth situation is detected, a video streaming application can change its codec

from high compression ratio- CPU intensive to moderate compression ratio less

CPU intensive, freeing up CPU cycles and lengthening the battery life. This kind

of capability is not present in reservation-based QoS systems

1.1.2 System Limitation

Mobile devices are made to be portable; however, portability comes at the cost of

compromised functionality [Imielinski94] [Katz94] [Davies96] and power.

PDA-sized handheld computers can now run Windows XP but their processors are

limited by the limits of battery power., as are the display size and resolution.

11

Batteries are also stressed by wireless connectivity itself, as using typical WiFi

connectivity can halve a PDA’s power up time. A more efficient mobile QoS

management system should not only efficiently allocate and utilize battery

resources but enable the mobile device to shift part of its processing and networking

duties to the wired side. The QoS system might also provide media transcoding

services that convert the media stream into different formats, such that the network

and CPU processing requirements for the mobile device could be minimized, and

optimal presentation quality can be achieved by the mobile application.

Interestingly, transcoding services usually degrades the media content in some

aspects, e.g. resolution, frame rate and clarity, however it does not necessarily

degrade the presentation quality of the media, sometime it could even improves the

user-perceived presentation quality. E.g. streaming a mpeg2 video clip to a PDA is

unlikely to have a satisfactory playback quality, as the bandwidth, jitter and

insufficient decoding speed of PDA is unable to catch up with the requirement of

the streamed media; however, before streaming to the mobile device, if there is a

transcoding service that converts the stream based on the available bandwidth,

processing power and display capacity, a significantly improved presentation

quality can be realized.

1.1.3 Context Awareness

Context-awareness is another important issue for mobile operating environment.

The mobility of the mobile device causes various coarse grain changes to the

system, from lower level resource changes to high level user requirement changes.

E.g. a battery operated mobile device is docked onto its docking device, such that

battery life is no longer a limitation. Another example could be that the screen

12

brightness of a mobile device is tuned down when the user moves from an outdoor

sunny area to an indoor, softly lighted area. Coarse gain changes usually have

significant effect on mobile QoS, it is thus essential for the QoS management

system to be able to capture these changes, and be able to dynamically readjust it

QoS adaptation scheme accordingly, and communicate the changes in context to

mobile applications.

1.1.4 Deducing Cost Functions and Formulating an Optimization Model

Any QoS model that seeks to effectively manage service and protocol adaptations

must integrate many QoS parameters from different resources, contexts and

operating systems. This makes it difficult to deduce cost functions that would

allow meaningful comparisons and, consequently, formulate analytical

optimization model for mobile QoS management. Mobile devices operating

across diverse environments are subject to significant variation of three different

types. First, quantization levels and quantitative scales may vary significantly

across different system resources. Even within the same resource type, different

benchmark and scale factors may be used to quantify a resource. This can lead to

difficulties in producing appropriate scalings and mappings that would enable a

consistent interpretation of quality of resources. Second, infrastructure support

will also significantly vary across different execution contexts. Different

connectivity technologies may be employed across different locations, the wireless

coverage area and density of nodes may vary, the computation and networking

limitations imposed by different power saving modes, and so on. Third, different

mobile devices will differ in their capabilities, in terms of processor speeds,

memory, storage, and operating systems, and in other ways.

13

1.1.5 Varying User and Application QoS Requirements

Under limited and varying resources conditions, different user can have very

different preferences towards the same application, e.g. a user listening streamed

audio would prefer better clarity, while another user would prefer shorter delay.

Likewise, a user’s preferences toward different encoding profiles of media of the

same application could be very different too, e.g. a user prefers high frame-rate in

watching sport video, but prefers high fidelity while watching travel video.

Moreover, even for the same application and the same media, user’s satisfaction

level on a specific QoS parameter is not proportional, e.g. to the perception of many

users, the effect of a frame-rate increase from 15 frame per second (fps) to 20 fps is

more significant than increasing frame-rate from 25 fps to 30 fps. This makes it

difficult to predefine static adaptation rules or policies that can continuously

optimize user-perceived QoS and implies an adaptation selection process that is

itself adaptive to changing user and application requirements and mandates

personalized QoS profiles.

1.1.6 Balancing the Use of Resources in a Responsive Adaptation Model

While responsive adaptation is highly desirable, the limited computation resources

available in mobile environments and devices make it necessary to make the

process of interpretation and adaptation resource-efficient. Pervasive computing

operating across diverse network domains and contexts requires a mobile QoS

model that is able to uniformly represent the diverse characteristics of different QoS

parameters while being scalable in supporting complex and evolving QoS

requirements.

14

1.2 Research Challenges

The current need of mobile and pervasive computing is for a flexible and adaptive

mobile QoS management model that is able to uniformly represent the diverse

characteristics of different QoS parameters while being scalable so as to support

complex and evolving QoS requirements. In the following, we organized the

relevant real-world design problems in terms of four distinct issues: abstraction

versus generality, QoS mapping, policy configuration, and application

involvement.

Abstraction versus generality. A high level of abstract modeling across all QoS

parameters is commonly applied in designing a generic QoS model that can

accommodate issues of variation, flexibility, scalability and adaptability. However,

the mathematical complexity of such models can lead to loss of generality when

they are applied to actual QoS parameters. On the other hand, reducing this

complexity by placing constraints on the number of QoS parameters to be modeled

presents scalability problems when increased number of contexts is considered.

QoS mapping. Mapping the current resource QoS parameters and user-perceived

QoS parameters to an adaptation, has been proposed as a way to obtain the most

favorable QoS profile as specified in the user and application QoS requirements.

However, QoS mapping is not a trivial task as it involves the prediction of the

effects of adaptation options on the resource QoS parameters and the

user-perceived QoS parameters under the current execution context. Moreover,

many adaptation options are both discrete and have coarse ranges of application.

Take for example the situation in which an audio streaming application

15

experiences a 30% drop in bandwidth. It would be ideal to have an adaptation

option that could cope with this by downsampling the audio stream from 16-bit to

11.2-bit. But such an ideal option would not normally be available so the most

appropriate adaptation is to downsample to 8-bit. This, however, would lower the

bandwidth requirement by 50% and result in underusing the available bandwidth.

Thus, an over-reactive adaptation mechanism can, instead of improving QoS,

produce oscillations that may further degrade QoS.

Policy configuration. The configuration of QoS policies, the control rules and

parameters that govern the adaptation decision process, are specified in usage

scenarios where one set of policies is associated with a specific mobile application.

The QoS management system uses this set of policies to enforce adaptation based

on the prescribed environment dynamics for the mobile application. However, in

real world situations and under various differing application scenarios, a mobile

application may enlist differing QoS profiles. For example, a video streaming

application can have alternative profiles for video using a range of other encoding

schemes and bit rates. Moreover, it is not uncommon for a user to change his/her

preferences and priorities regarding various aspects of QoS performance. Ideally,

a QoS policing framework should be dynamically reconfigurable to match changes

in user and application preferences during runtime.

Application involvement. Adaptation can take place either at the middleware layer

or within the application. When it takes place at the middleware layer, the

application is relieved of the need to monitor the environment or make adaptation

decisions. This is an application-transparent approach. The middleware provides

16

best effort adaptation to general mobile computing and context information is

completely hidden from the application. The drawback of this approach is that it

significantly limits the amount of adaptation space available to the QoS middleware

to optimize processing given that in the event of adverse conditions, the

application itself is in the best position to make critical decisions on operating

conditions and, hence, on the adaptation strategy.

1.3 Contributions

This thesis presents MobiPADS, a mobile QoS management framework that adopts

a hierarchical fuzzy control model [Raju91] [Ronald98] to support a highly

extensible and structured adaptation paradigm. Architecturally, the MobiPADS

system uses edge proxies that are strategically placed along communication paths

that may suffer from significant contextual changes and resource fluctuations.

This often involves deploying MobiPADS across wireless links to facilitate

adaptation processes that counteract the detrimental effects of contextual changes

and resource fluctuations. The proxy structure of MobiPADS promotes rapid

deployment over existing Internet architecture without the need to engage changes

to routing protocols or operating systems. In order to achieve optimal

user-perceived QoS, MobiPADS supports composition and reconfiguration of

mobile services to mitigate the effects of adverse mobile operating environments

and to support adaptation to dynamic QoS requirements. The major contributions

of MobiPADS are as follows:

Allows Service composition and reconfiguration. Adaptive computing is

fundamental to MobiPADS approach to achieving agile and optimized QoS

17

delivery in the hostile operating environments. This requires service composition

and reconfiguration that can match the system dynamics and optimize the QoS

perceived by user. To mitigate the effects of adverse conditions in a wireless

environment, MobiPADS configures services, called mobilets, as chained service

objects to provide augmented services and protocols to the underlying mobile

applications. Each mobilet provides a specific functionality so a mixed

combination of mobilets is often composed to provide added services that match

different QoS requirements and contextual environments. By adding and

removing mobilets, it is possible to dynamically reconfigure service chains during

runtime to adapt to changes in QoS requirements and to the operating environment.

Moreover, each mobilet can have a variety of modes of operation (profiles) to

support finer adaptation levels. This mobilet service model enables flexible QoS

support for rapid changing mobile environments, extending from the system

resource level up to the user level.

Provides an extensible and comprehensive Hierarchical Fuzzy QoS Model. To

integrate various services requirements and specifications across diverse entities

requires a model that unifies the representation and characteristics of diverse QoS

parameters. Because our QoS model forms a hierarchical QoS graph directly, it is

able to incorporate and represent any QoS parameter by describing its relationship

with other QoS parameters. Further, it also supports the addition of new QoS

parameters to the existing QoS hierarchy, such that the number and variety of

managed QoS parameters will not be bound by the original design. This also

supports the reuse of existing QoS policies and allows updating of only the direct

parent node of the new QoS factor within the hierarchy. This obviates the need to

18

review all the QoS policies when new input is added.

Allows meta-level QoS policy configuration. One of the challenges of regulating

and enforcing quality of service provisions in mobile applications is the need to

formulate robust policies that accurately captures the requirements and

specifications of QoS. At the same time, they should provide a level of abstraction

that is intuitive, measurable and concise enough to help and guide resource

management. This is a particular advantage of the MobiPADS approach. In

running a mobile application, it is not uncommon to encounter situations where the

operating contexts have changed to such a degree that no reasonable adaptation can

be exercised without a change in underlying QoS policy. A unique contribution of

MobiPADS is the provision of meta-level adaptation mechanisms to support

dynamic changes in user and application policy requirements at runtime. Both the

user and application can affect the QoS policy by specifying the desired priorities

and values of QoS parameters. The Membership Function Adaptation mechanism

automatically adapts the fuzzy membership functions to these values while the Rule

Weight Adaptation mechanism dynamically changes various rule weights to reflect

the changed priorities. A very important benefit of this approach is that these two

mechanisms are abstracted to a level that requires minimum input from the user or

application to select favorable QoS policies. There is no need for the user or the

application developer to understand and manipulate the underlying low level

adaptation mechanisms.

Allows middleware-driven and application-participation adaptation. Adaptation

can be applied and exercised across two extreme spectrums; one relying solely on

19

middleware and another where applications can drive adaptation decisions.

MobiPADS supports flexible handling of adaptation decisions that promote

synergized middleware-driven and application-participation adaptation. From a

software engineering perspective, it is highly desirable to separate the process of

adaptation to the middleware because it allows modularized handling of concerns

and frees application developer from having to make adaptation decisions.

However, this may result in the middleware making adaptation decisions that

provide generalized configurations of services that aim to optimize QoS across all

applications. MobiPADS differs from this in that applications are allowed some

level of participation in formulating the overall adaptation policy so as to enable

underlying application or even the end user to provide reflective adaptation of QoS

requirements under changing contextual environments. Specifically, applications

may participate in QoS parameter monitoring, QoS adaptation triggering, and QoS

policing through a set of Reflective API. MobiPADS provides a reflective API for

applications to inspect (through reflection) and to adapt (through reification) the

behavior of the underlying system components, adaptation rules, and actions.

While the dynamic adaptation of QoS middleware offers some degree of context

adaptation, there are nonetheless times when mobile applications are in the best

position to make critical decisions about the operating context and the associated

adaptation strategy. For this reason, MobiPADS provides the mobile application

with an extensive set of APIs and reflective interfaces. Through the meta-level

object representation of the internal event system and service reconfiguration, a

mobile application can access the contextual information, service configuration,

QoS model and QoS policies of the QoS middleware, and modify these entities to

obtain optimal service provision from middleware.

20

We have demonstrated the feasibility and efficiency of MobiPADS through

extensive simulations and a prototype implementation on WinCE and shown that

MobiPADS is able to adapt to the dynamics in the wireless environment by

selecting the best possible mobile service combinations and maintain an optimal,

balanced user perceived QoS. The results also show that the mechanisms of

dynamic QoS policy configuration are effective. The middleware is able to use

user/application supplied priorities and the preferred values of QoS parameters to

dynamically redistribute the underlying resources to support the desired levels of

perceived QoS. Our prototype implementation shows that the fuzzy based

inference and adaptation engine is compact enough for the computation, memory,

and battery limitations of a typical PDA device. In a typical usage setup consisting

of 32 QoS parameters and 775 QoS policies (fuzzy rules), each inference takes

about 0.5 second to execute with a 10-second execution interval. The overall

battery life drops only by 8.4%, which is promising given the benefits of the

adaptation capacity of MobiPADS.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 describes the four main

stages in the operation of QoS management of Adaptive Mechanisms. We follow

this by providing examples of a number of adaptive mechanisms that are

well-suited to satisfying changing requirements during runtime. We describe these

adaptive mechanisms and how they can be utilized to adapt to the dynamic QoS

requirements of mobile operating environment.

21

Chapter 3 presents an overview to the MobiPADS middleware. In Chapter 4, we

illustrated and evaluated the hierarchical fuzzy control model of MobiPADS.

Chapter 5 introduces the meta-level adaptation mechanisms for supporting

application participations of QoS management at various adaptation stages,

including membership function adaptation, importance weight adaptation and

computation reflection. Chapter 6 offers a comparative review of related work.

Finally, Chapter 7 concludes this thesis and outlines some directions for future

work.

22

Chapter 2

Background

In this chapter, we present an overview of a generic QoS management framework,

its essential components and their interactions. Particularly, we discuss the impact

of mobile environments on the design of various components of a generic QoS

management framework. Then, we exemplify a number of adaptive mechanisms

that are well-suited for fulfilling changing requirements during runtime. We look

into these adaptive mechanisms to see how these mechanisms work and how they

can be utilized to adapt to the dynamic QoS requirements of mobile operating

environment.

2.1 QoS Management Framework

In this section, we first describe the flow of the four main QoS activities, QoS

specification, QoS interpretation, admission control, and QoS control and then in

the following subsections we consider this same material in greater detail,

explaining the interaction sequences of these activities at four layers of the

computational hierarchy, application level, middleware level, and system resource

level.

Figure 2.1 shows the flow of concepts and corresponding operations. The QoS

specification stage uses an abstract representation of QoS requirements to

communicate to the lower level. The QoS interpretation stage compiles the

high-level QoS representation and translates it to lower level QoS parameters that

23

map and distribute the available resources of the system based on the desired

specifications and context so as to maximize the QoS availability under constrained

and varying contextual environments. Admission control has three tasks: to check

the QoS requirements against the available resource level; when needed, to

negotiate with the application; and, if the application is admitted, to reserve

resources. The final QoS activity is QoS control, in which system ensures that the

QoS provision and consumption parameters follow the agreement or, if the

parameters are violated, take action to adapt.

Figure 2.1 Flow of QoS Activities

2.1.1 QoS Abstractions

QoS abstractions are used to represent QoS requirements at different system levels

so that there can be efficient communication between those levels. These QoS

abstractions refer to requirements and parameters at every level of the

computational hierarchy, from the user level down to operating system and network

level. Figure 2.2 shows four layers of QoS abstraction from the user level through

to the system resource level. At the user level, users can specify parameters like

the responsiveness of the application, the presentation quality of the media, and the

price that the user is willing to pay. At the application level, an application can

24

specify its bandwidth requirement, timeliness of the packet transmission, reliability

and security requirements of the network channel. At the middleware level, there

are QoS parameters that specify the usage of a variety of middleware services, such

as filters, transcoders and different types of network channels. At the system

resource level, there are QoS parameters that specify low level resource

requirements, such as parameters of the TCP/IP protocol stack, CPU clock cycle,

power consumption, and memory size.

Figure 2.2 QoS Abstraction Layering from User Level to System Resource Level

2.1.2 QoS Interaction Overview

QoS management is comprised of a collection of interacting tasks that support QoS

provision at four levels. Figure 2.3 shows the QoS interaction sequences in a

typical QoS management framework. Note that the four QoS processes – QoS

specification, QoS interpretation, admission control and QoS control --are involved

in activity sequences are each of the four layers of abstraction user level,

application level, middleware level, and system resource level. The gray

25

backgrounds indicate inter-level interactions. The white backgrounds indicate

processes that are intra-level activities. The following subsections explain the

interaction sequences in detail.

Figure 2.3 The Layered QoS Interaction Sequence

2.1.3 QoS Specification and Interpretation

The interaction sequences of QoS specification and interpretation are very closely

related and so here we consider them together. Now, before an application is

started, a user’s preferences in relation QoS requirements are collated so as to

define the user’s quantitative and qualitative expectation of the service provided by

the application under varying contextual environment. At the application level,

the application then maps abstract user’s preferences to application specific

26

requirements that may fulfill the required QoS. For example, a video clarity level

required by the user can be translated into parameters for video resolution and color

depth at the application level.

The application then communicates its mapped QoS specifications to a QoS-aware

middleware, which uses the specifications to manage resources and services and

satisfy the requested QoS. This process can be done in various ways, e.g. using

API oriented specifications, which have the flexibility to allow the application to

change its specification, or using language paradigms to decouple the specification

from application development. Language paradigms can be developed locally or

by extending existing standard languages, and can be either declarative or

instructive. The middleware is tasked with mapping the QoS requirements to the

middleware services level and resource level requirements. These translated

middleware service requirements and resource requirements will at later stages

form important parameters for decision making involving admission control and

QoS management

2.1.4 Admission Control

Depending on the translated requirements and the currently available services and

resources, the middleware can admit the application unconditionally or through a

process of QoS negotiation. This process takes place between the application and

the middleware, which follows the QoS specification and interpretation paradigm,

and the application is admitted once they agree upon a mutually acceptable QoS

specification. Upon admission, between the application and the middleware make

a QoS agreement wherein the middleware has to configure corresponding services

27

and allocate sufficient resources. Service configuration can be in two forms,

private service which pertains only to the admitted application or shared service

which applies to all suitable applications. The choice between the two forms is

based on the framework design, the QoS specification, and the characteristics of the

individual service, e.g. whether the data are sharable or whether there are any

privacy issues.

There are three types of resource allocation: 1) complete reservation, in which the

system attempts to reserve a guaranteed amount of resources exclusively for the

application; 2) partial reservation, also known as shared or dynamic/adaptive

reservation. Partial reservation reserves only a portion of guaranteed resources,

using statistical analysis and heuristics to estimate future resource consumption

patterns but being mindful that it should be highly likely that of the guaranteed QoS

level will be attained; 3) applying best effort delivery, which in fact means no

reservation is required at all. The best effort approach does not try to reserve

resources but instead applies mechanisms to control resource consumption levels so

as to avoid or alleviate situations where resource availability is severely low.

2.1.5 QoS Control

Once the application is admitted and services and resources allocated, the

middleware has to manage the QoS provision level and QoS consumption level so

that both the application and the middleware behave so as to avoid violation of the

QoS agreement during runtime. This involves applying four mechanisms:

monitoring, maintenance, adaptation, and policing. The purpose of QoS

maintenance is to maintain a level of resource availability and service performance

28

that will support the QoS agreement. This is typically done by turning service

parameters, e.g. adjusting the buffer size to minimize delay and jitter in a data

stream. Qos adaptation can be regarded as a more dynamic form of QoS

maintenance. It takes place when there is a significant change in the operating

environment that may severely affect the QoS provision level, so that the

middleware has to reconfigure itself to adapt to the changes. For example, the

network bandwidth may experience an abrupt decrease in availability during a Web

browsing session, which significantly affects the user perceived response time.

On detecting such a situation, the middleware can insert a text compression service

in between the data stream to reduce the data volume of the Web pages, which

reduces the response time but with the tradeoff of higher CPU usage for data

compression and de-compression. The purpose of QoS policing is to ensure that

and enforce that the overall consumption level is in accordance with follow the

agreed QoS if the resource consumption pattern of the application is violated

partially and temporarily. The available mechanisms include throttling the

resource consumption, penalties on resource consumption, and notifying the

violating application. QoS policing is important because it guarantees the fairness

of resource allocation among the applications running on the same platform, and it

also prevents poorly behaved applications affecting the execution of other well

behaved applications.

Resource monitoring and management refer to the mechanisms that measure, report

and control the physical resources’ availability and consumption. Typical physical

resources include memory, storage, bandwidth and CPU clock cycle. Resource

monitoring and management is the level that tradition QoS middleware focused on,

29

where the attached applications have to specify the low-level QoS parameters.

The recent trend in QoS middleware is to support high level application-oriented

QoS specification, as it is not necessary for the majority of applications to be aware

of the low-level issues. Application developers could spend more effort on what

would be the desired QoS level, rather than thinking how to achieve the desired

QoS level.

In the event that the operating environment no longer conforms to the limitations of

the QoS agreement, the middleware is responsible for notifying the application by

issuing an application alert..The middleware should not issue such alerts unless the

middleware is unable to compensate for the effects of changes and their impact on

the application. Whether an application alert is issued depends on the stability of

the operating environment and the effectiveness of QoS management, but also on

the rigidness of the QoS agreement. A rigid QoS agreement is expensive as it will

trigger alerts more frequently for QoS sensitive applications as well as degrading

the overall system performance, due to overheads introduced by the alert messaging

and interruptions of the application for alert handling. On the other hand, alerts

can also be used for middleware event notifications that the application can

subscribe to. The application can thereby be more aware of the status of service

configurations, resource availability and consumption, and adaptation behavior that

are regulated by the middleware.

Depending on the type of application alert being sent from the middleware, the

application may need to respond to do things to optimize its performance. If the

alert is a subscribed event update that is relatively insignificant, e.g. battery level

30

drops below 50%, then the application can use this information as a reference to

adjust its operation to reduce power consumption, e.g. switching off some

non-critical visual effects. If the alert is indicating a violation of the QoS

agreement in that it is no longer attainable by the middleware, the application will

have to downgrade its QoS requirements and carry out a QoS re-negotiation with

the middleware. If there is an abrupt and transient downgrading of the QoS

resulting in service changes and adaptation that could push the user’s experience

below an acceptable service level, the application alerts and consults the user

through a user alert, informing .the user of the situation and requesting a

re-specification of the QoS preferences within the currently achievable ranges of

QoS parameters, taking us back to the beginning of the entire process.

2.2 Adaptive Mechanisms

In this section, we provide examples of a number of adaptive mechanisms that are

well-suited to satisfying changing requirements during runtime. We describe how

these adaptive mechanisms work and how they can be utilized to support adaptation

to the dynamic QoS requirements of mobile operating environments.

2.2.1 Aspect Oriented Programming (AOP)

Software engineers decompose software into smaller, more manageable and

comprehensible parts according to certain criteria or “concerns”, which might

include requirements, use cases, features, data structures, and many other issues,

Concerns can range from high-level abstractions like security and QoS to low-level

functionalities such as caching, and failure handling. They can also be functional,

such as business logics, or non-functional, such as availability and compatibility.

31

Some concerns, such as compatibility, usually couple with a few entities that handle

the I/O of the system, yet achieve good solidity. Other concerns, such as failure

handling, will interleave with many highly unrelated entities within the system.

Software developers manage software complexity by applying the principle of

separation of concerns [Dijkstra76]. Programming languages support separation

of concerns by using different sections for specifying the data structure and the

operations that manipulate the data. Software designers also separate concerns in

software design notations. UML [UML08] for example, provides different types

of diagrams for separately specifying structural and functional aspects of the

system. AOP separates concerns at the source code level.

Traditional object-oriented programming (OOP) captures attributes and behaviors

of related entities in a class hierarchy. However, OOP faces difficulties when

capturing concerns that do not fit naturally into a single class hierarchy, or even a

composition of interrelated class hierarchies. In contrast, AOP supports the

addressing of crosscutting issues that affect many unrelated entities, captures

attributes and behaviors of these issues in a new software layer, in which an aspect

module addresses a particular issue across classes of different domains within the

system, thus enhances the modularity of the system beyond that of OOP.

AOP is not a replacement for OOP. Rather, it is an additional software

development technique that helps solve complex problems. Unlike OOP, which

has been well studied and practiced for many years, AOP is still young that lacks

formal rules in identifying and isolating an aspect. As such, developers must rely

32

on their own judgment to model the aspect effectively and carefully. A

fundamental principle in differentiating between an object-orient component and an

aspect is stated in an early aspect paper [Kiczales97] by Kiczales et al.:

“… a property that must be implemented is:

A component, if it can be cleanly encapsulated in a generalized

procedure (i.e. object, method, procedure, API). By cleanly, we mean well

localized, and easily accessed and composed as necessary. Components

tend to be units of the system’s functional decomposition, such as image filters,

bank accounts and GUI widgets.

An aspect, if it can not be cleanly encapsulated in a generalized

procedure. Aspects tend not to be units of the system’s functional

decomposition, but rather to be properties that affect the performance or

semantics of the components in systemic ways. Examples of aspects include

memory access patterns and synchronization of concurrent objects.”

Aspects provide crosscutting modularity that cut across various objects of a

program. By writing a single aspect module, a developer can address a specific

concern that affects many parts of the program, rather than searching all over the

program to find and update the related parts. In general, AOP allows developers to

write code addressing crosscutting concerns once and apply it on wherever place

needed within the program. References to an aspect are added at interested join

points, which are specified by a pointcout designator. Specific code written to

address the aspect is called an advice. An AOP complier can follow the references

and weave the advice into the appropriate locations of the program. AOP

eliminates a large amount of scattered code that addresses different concerns, so

that it is much easier to maintain and upgrade a program. The following

subsections explore the essential elements of AOP specifically.

33

The manageability and extensibility of AOP is particularly valuable for

configurable systems that crosscutting concerns make up a significant part of the

whole system. AOP provides an open and generic interface to nonfunctional

aspects. Aspect configuration can be controlled and changed at run-time with an

immediate effect on desired objects. AOP is also indispensable in supporting new

aspects such that it allows implementations of an aspect module to be dynamically

replaced in order to fulfill a new aspect configuration.

In the context of mobile middleware, traditional object-oriented programming

techniques does not help much in managing nonfunctional properties and

crosscutting issues of mobile services that are not confined to a single mobile

service, but affect all the services within the current service composition. In

particular, the adaptation mechanism for a specific context is not bounded to a

single service, but involves the whole service composition. When developing

mobile services, we can leverage AOP for weaving the crosscutting issues –

contextual changes on context adaptation. As shown in figure 4, the concept is to

define and supply a rich set of context-independent mobile services that serves

different types of functionalities. Then, by using AOP, a mobile application can

inject any dimensions of new adaptation behaviors into the mobile services, such

that the services serving the mobile application can always adapt precisely to the

changing environment.

34

Transcoding Compression Rate Control Error Control

Crosscutting
Concerns

+ aspectMethod1 () + aspectMethod1 () + aspectMethod1 () + aspectMethod1 ()

+ aspectMethod2 () + aspectMethod2 () + aspectMethod2 () + aspectMethod2 ()

+ aspectMethod3 () + aspectMethod3 () + aspectMethod3 () + aspectMethod3 ()

+ aspectMethod4 () + aspectMethod4 () + aspectMethod4 () + aspectMethod4 ()

Mobile Services Managed by the Middleware

Aspect
Synthesizer + attribute

+ attribute
+ method ()
+ method ()

+ attribute
+ attribute

+ method ()
+ method ()

+ attribute
+ attribute

+ method ()
+ method ()

+ attribute
+ attribute

+ method ()
+ method ()

CPU Utilization

Network Performance

Battery Level

Display

Figure 2.4 Aspect Weaving of Crosscutting Concerns into Context-Independent Mobile

Services

2.2.2 Reflective Dynamic Adaptation

Computational reflection [Smith84] is a unique approach to achieving adaptation

and re-configuration in a mobile middleware system. In general, computational

reflection is a computer process involving self-awareness. Just as with humans,

reflection depends on the capacity for independent reasoning, and particularly,

reason about one's own processes. A reflective program has the ability to

metaprogram [Cordy92] - it can write programs on itself. Specifically, reflection

characteristic refers to the ability of a system to monitor its computation and

possibly change the semantics of the way it is performed. In other words, a

reflective middleware possesses the unique ability to model itself through

self-representation, such that manipulation of its behavior may be changed

through introspection and interception [Parlavantzas00]. In this case,

introspection refers to the ability of the system to observe and therefore reason

about its own state, while interception is the ability of the system to modify its

own execution state or its own interpretation or meaning. A middleware system

with self-representation is causally connected if changes made to the

35

self-representation directly affect the implementation of the middleware. The

opposite is true if changes to the middleware implementation will change the

self-representation.

While the dynamic adaptation of QoS middleware offers some degree of context

adaptation, at times mobile applications are still in the best position to make

critical decisions on the operating context and hence the adaptation strategy. For

this reason, it is desirable for a QoS middleware to provide the mobile application

with an extensive set of APIs and reflective interfaces. Through the meta-level

object representation of the internal event system and service reconfiguration

mechanism, a mobile application can access the contextual information, service

configuration and adaptation strategy of the QoS middleware, and modify these

entities to obtain optimal service provision from middleware.

2.2.3 Fuzzy Control for QoS Management

Fuzzy control has been successfully applied to various application-specific network

QoS management systems [Tsang98] [Pitsillides97] [Chemouil95]. Fuzzy control

models [Li99] [Koliver02] have been formulated to address QoS management at

high levels of abstraction. These models are limited, however, to abstract

modeling and simple conceptual scenarios that do not consider the overall

scalability of the model. Specifically, an increase in the number of QoS

parameters not only leads to an exponential increase in the number of rules that an

area expert must input, it also requires more computational resources to process

them. Another concern when applying fuzzy control on mobile QoS management

systems is rule reusability. Studies have been done on applying fuzzy control on

specific applications, such as video streaming [Tsang98], flow control

36

[Pitsillides97], and routing [Chemouil95]. However, the sets of fuzzy rules used in

these applications were very specific to their corresponding scenarios. We would

have to use an entirely different set of fuzzy rules for every new application. Even

modifying an existing application requirement to add input or output QoS

parameters would require a major revision of the entire set of fuzzy rules. This

issue significantly hinders the use of fuzzy control for a mobile QoS management

system that is required to support evolving adaptive services and to serve new

applications.

2.2.4 Hierarchical Fuzzy Control

Hierarchical fuzzy systems [Raju91] [Ronald98] have been introduced to reduce

the number of rules by hierarchically inferring and grouping correlated linguistic

variables into abstract linguistic variables for the input of higher-level fuzzy rules.

A mobile QoS management system can leverage the hierarchical structuring of

fuzzy rules to decouple the interwoven inference of user satisfaction, resource

availability, service provision, and adaptation decisions. Each of these categories

of parameter forms an independent fuzzy rule hierarchy, so that changes in the

parameters in one category do not affect the fuzzy rules of other categories. Using

hierarchical fuzzy control also promotes the fuzzy rule reusability of a mobile QoS

management system, in which only minimal changes of the corresponding rule

hierarchy are required to support new applications, services, and resource

parameters.

As an example of hierarchical fuzzy control, assume that there is a CPU intensive

mobile application that has a limited battery capacity but must run for a certain

period. Adaptation decisions have to be made to balance four QoS parameters.

37

Assuming that each parameter has five linguistic values, with a plain fuzzy rule

structure, the rule pattern is as follows:

IF (CPU_Performance is ai) AND (CPU_Availability is bi) AND (Battery_Level is ci) AND

(Power_Conservation is di) THEN (action ei). (1)

This fuzzy system must maintain as many as 54
 = 625 rules.

Alternatively, by using hierarchical fuzzy control, the system can be modeled using

three rule bases:

IF (Battery_Level is ci) AND (Power_Conservation is di) THEN (Battery_Life is fi); (2)

IF (CPU_Performance is ai) AND (CPU_Availability is bi) THEN (CPU_preferred is gi); (3)

IF (Battery_Life is fi) AND (CPU_preferred is gi) THEN (action ei). (4)

At most, there will be 52 + 52 + 52 = 75 rules to be built. As a result, the number of

rules to be managed and inferred is greatly reduced by using hierarchical fuzzy

control. Notably, hierarchical fuzzy control reduces the maximum number of

possible adaptation actions from 54 to 52. However, considering the significant

saving in the number of rules to be managed and inferred, we believe that this

drawback is insignificant, as the reduced number of possible adaptation actions is

still adequate for mobile QoS management.

Importantly, hierarchical fuzzy control naturally promotes the ease of managing

rule reusability by hierarchically grouping related QoS parameters and expressing

their relationships through directed graph connections. Changes in user and

application needs or even the addition of new QoS parameters only require changes

in the corresponding fuzzy rules of the affected rule level, rather than changes to all

of the rules as would be required in a flat fuzzy rule structure. For example, if we

38

have a new application that makes different demands on battery life, only the rules

of (4) will have to be modified. Using a flat fuzzy rule structure, all of the rules in

(1) would have to be revised.

A potential difficulty of employing hierarchical fuzzy control is the categorizing of

different variables, as not all input parameters have clear associations with other

input parameters. The inferred abstract linguistic variables must also have

physical meanings; otherwise, it would be impossible to build the next level of

fuzzy rules using these abstract linguistic variables as the input. Importantly, using

hierarchical fuzzy control for mobile QoS management does not cause these

problems, since many low-level QoS parameters are closely related, which

provides us with the opportunities to model the QoS parameter as a tree structure.

Along with a well-designed hierarchy, each inferred abstract linguistic variable can

have meaningful representations and is suitable for inferring composite fuzzy rules.

2.3 Summary

In this chapter, we have illustrated the research background for this thesis. Due to

the adverse effects bring by the dynamic characteristics of mobile environment,

mobile QoS management is essential for mobile application to function efficiently.

These dynamic characteristics have various impacts on the design of different QoS

processes of a mobile QoS management system. Significantly, the QoS adaption

process has become the major concern of Mobile QoS to manage the system and

environmental dynamics. We have looked into different adaptive mechanisms to

study how these mechanisms can be utilized to support QoS adaptation in mobile

environment.

39

Chapter 3

MobiPADS: A QoS Middleware for

Context-aware for Mobile Computing

An important requirement of a middleware system to support mobile computing

applications is the provision of a highly configurable and adaptive execution

environment that dynamically reacts to changes in operating context. This

requirement translates to the need for middleware to organize and implement its

system components as a collection of services that are highly configurable and

robust enough to enable the system itself to respond to the varying conditions in

the environment. In addition, mobile applications are presented with open

programming interfaces to enable application introspection and, if required, to

re-configure the underlying services to adapt to changes in the environment.

In this chapter, we introduce the Mobile Platform for Actively Deployable

Service (MobiPADS) system. MobiPADS is designed to support context-aware

processing by providing an executing platform to enable re-configuration of the

service mix in response to an environment where the context varies. Unlike

most mobile middleware, MobiPADS supports dynamic adaptation at both the

middleware and application layers to provide flexible configuration of resources

to optimize the operations of mobile applications. Within the MobiPADS system,

services (known as mobilets) are configured as chained service objects to provide

augmented services and protocols to the underlying mobile applications so as to

alleviate the adverse conditions of a wireless environment.

40

3.1 The MobiPADS Framework

Figure 3.1 shows the MobiPADS system architecture. It is composed of two

agents: a MobiPADS server at the wired network and a MobiPADS client at a

mobile device attached to the Internet through wireless or cellular networks. The

two agents marshal the traffic over the wireless link and provide an optimal

operating environment for mobile applications. The MobiPADS server is located

at or close to the network of the wireless access point, to which the mobile device

is connected. The MobiPADS server is designed to support multiple MobiPADS

clients and is responsible for most of the optimization computations. The

MobiPADS client is an intermediary that provides a comprehensive set of network

and system services for mobile applications. These services enable ease of

introduction of context-awareness and adaptation for mobile applications, so that

the mobile application can adaptively react to varying context environments.

Each MobiPADS agent is composed of two parts: the system components and the

MobiPADS service space. The system components provide essential services for

the reconfiguration and management of user service pairs – the mobilet pairs,

which form the units of service for execution under a MobiPADS environment.

The system components also provide common facilities that serve mobilets, which

in turn provide value-added services to the wireless environment. These

mobilets can be added, updated and removed dynamically.

In the MobiPADS service space, a series of mobilets is linked together to form a

processing chain – the service chain, which allows mobile applications to benefit

from the aggregated functionalities of a collection of mobilets. Mobilets access

41

the services of the system components though the mobilet API, which also

provides interfaces to allow the system components to communicate and

configure the mobilets. To monitor the contextual changes, the MobiPADS

employs composable event objects that report any contextual change to entities

that subscribe to them. The composition of events can be initiated at start-up

time, and also allows runtime modification of the event compositions. At the top

level of the service space, there is a set of meta-objects that reflects the

configuration of the composite events and service chain, as well as the adaptation

policies. Both the middleware and the mobile application can use the

meta-objects to inspect and reconfigure the event compositions and service chain

when adaptation is needed.

Figure 3.1 The MobiPADS System Architecture

42

3.2 Mobilet Service Model

A Mobilet is a service entity that can be downloaded, pushed or migrated to a

MobiPADS platform for execution within an environment. Mobilets are named

after applets, which are active codes executed within Web browsers. Mobilets

are active mobile codes that run within the MobiPADS environment.

Mobilets exist in pairs: a master mobilet resides at the MobiPADS client and a

slave mobilet resides at the MobiPADS server. A pair of mobilets cooperates to

provide a specific service. A typical case would be for a slave mobilet to share

the majority of processing burden. A master mobilet instructs the slave mobilet

on what actions to take and presents the processed output to the MobiPADS client.

The mobilets are chained together on the client in a specified order, and the

corresponding peer mobilets are chained together in a nested order on the

server-side. The service chaining model of mobilets supports a general service

composition paradigm that enables the utmost flexibility in deploying service

aggregation while providing ease of re-configuration in response to the varying

characteristics of a wireless environment. A consistent synchronization and data

flow model can be established through the abstraction of channel objects and the

employment of data encapsulation between services.

In order to support a robust service configuration, all mobilets can be dynamically

deployed across a MobiPADS client and server. In other words, it is possible for

a mobile node to carry with it relevant mobilets as it travels across foreign

domains. As the need arises, mobilets from the client can be dynamically

43

pushed to a MobiPADS server and configured to operate in a coordinated manner.

Conversely, it is possible for a MobiPADS server to push mobilets to a

MobiPADS client to actively install new services to operate across a wireless link.

3.3 System Components

The components of the MobiPADS system are briefly described as follows:

Configuration Manager: The configuration manager is responsible for negotiating

the connection between the client and the server. It also has a service controller

for initializing, interconnecting and managing the mobilets.

Hierarchical Fuzzy Inference Engines: These engines give generalized

hierarchical representations – called QoS factors, which captures the overall

operating environment and user perceived quality of service. These QoS factors

are cascaded and further inferred to decide the importance of QoS factors that are

critical to the current application and operating context.

Reconfiguration Engine: The reconfiguration engine matches the importance

values of the QoS factors with the mobile profiles, such that the optimal

combination of mobilets can be discovered and selected for reconfiguration.

Service Migration Manager: The service migration manager manages the process

of importing and exporting mobilets between the MobiPADS server and the

MobiPADS client. It also cooperates with the service directory to activate, store

and keep track of the changes made to the active mobilets.

44

Service directory: The service directory records all the known mobilet service

types. The object codes are stored in a service repository, which is used for

service activation and service migration.

Channel Service: The channel service provides virtual channels which the

mobilets use to communicate. Instead of opening separate TCP connections for

each message, messages are multiplexed into a single persistent TCP connection,

which then eliminates the overheads of opening new TCP connections and avoids

the slow-start effect on overall throughput [Liljeberg95].

3.4 Dynamic Service Reconfiguration

To adapt dynamically to changes in an environment, MobiPADS employs the

environment monitor and event system to monitor and communicate changes.

After changes have been detected, the MobiPADS system can respond in two

ways. The first way it can respond is by reconfiguring the current service chain.

By adding and removing mobilets within the service chain, the optimum set of

mobilets can be selected based on the constrained environment. The second way

it can respond is by communicating the changes in the environment to each of the

mobilets so that they can readjust their service provision to adapt to the mobile

environment.

3.4.1 Service Policies

Figure 3.2 shows the conceptual initialization procedures of the service chain.

When a MobiPADS client starts executing, the service controller (of the

configuration manager) invokes the profile parser, which will then load and

45

process the system profile from which the default meta-chain and a number of

alternative meta-chains are created. The list of meta-chains is returned to the

service controller, which will then deploy the default service chain and the event

monitors of the meta-chains. Each meta-chain is attached to an environment

monitor, which regulates the time and conditions that determine when the

reconfiguration is to take place. When all of the conditions of a specific

environment monitor are fulfilled, the corresponding meta-chain will be reflected

onto the current service chain, and reconfiguration will take place.

3.4.2 Service Chain Reconfiguration

Service chain reconfiguration takes place when the context environment changes

to a state that fulfills all of the conditions of a specific environment monitor. The

corresponding meta-chain will then be reflected onto the current service chain to

best adapt to the changes. Figure 3.3 shows the procedures of service chain

reconfiguration when an environment monitor EnvMonitor_C is qualified for

reconfiguration. First, the eligible meta-chain will be compared to the active

meta-chain (of the current service chain), so that a list of instructions is generated

to perform the actual operations needed for reconfiguring the current service chain.

As shown in Figure 3.3, the active meta-chain consists of mNodes_A, mNodes_B,

and mNodes_C, while the new meta-chain consists of mNode_B, mNode_C and

mNode_D. The configuration manager compares each mNode in the active

meta-chain to the new meta-chain, and any unmatched mNode in the active

meta-chain will be marked for deletion. In this case, the mNode_A is not found

in the new meta chain, thus the instruction remove(A) is generated. After all

mNode in the active meta-chain are compared, a suspension instruction

46

suspendAll() is added. Then the comparison is repeated but reversed: Each

mNode in the new meta-chain is compared to the active meta-chain, and any

unmatched mNode in the new meta-chain will be marked for addition.

Subsequently, the instruction insert(D, 2) is generated, where the argument 2 is

the insert index position in the current service chain. Last, the list of the

instructions is passed to the service controller, in which the actual service chain

reconfiguration operations are carried out.

Figure 3.2 Establishment Of The Meta-Chains And Initial Service Chain

Figure 3.3 Service Reconfiguration Process

3.4.3 Mobilet Reconfiguration

Simply adding or removing mobilets within the service chain is not a sufficiently

adaptive response to changes in a wireless environment. To allow a finer-

grained adaptation, the MobiPADS programming platform should allow

47

reconfiguration at the level of individual mobilets. To develop a reconfigurable

mobilet, the service object can leverage and dynamically extend the event system

and environment monitor. In particular, the mobilet can subscribe to an event

and allow it to react to the event messages by adjusting its internal parameters to

best adapt to the changes in the environment. If necessary, the mobilet may

change the subscription of EnvMonitor to adapt to the changing requirements of

context monitoring. An example is an image transcoding mobilet that provides

different levels for the compression ratio. It can use a different compression

ratio based on the reported bandwidth from an event source that monitors the

bandwidth. However, it is not desirable to have the mobilet adapt to the

contextual changes implicitly. Rather, a set of operation modes should be

defined, which will allow external entities to override the adaptation logic of the

mobilet, and enforce a specific mode of operation.

3.5 Adaptation Mechanisms

In order to answer the call for multi-dimensional adaptation needs raised by the

diversity and dynamics of operating environments, mobile devices, users,

applications and usage scenarios (see Table 1), MobiPADS has introduced five

layers of adaptation mechanisms that flexibly support adaptation needs at different

service layers.

QoS Factor Hierarchy Extension allows the addition of new QoS dimensions to

the existing QoS factor hierarchy, such that the number and variety of managed

QoS parameters will not be bound by the original design. Importantly, this

mechanism is designed to cause minimum disruption to the entire fuzzy rule base

48

but to update only the direct parent node of the new QoS factor within the hierarchy.

This obviates the effort required for a non-hierarchical fuzzy rule base to review the

whole rule base when new input is added.

Table 3.1 Five Layers of Adaptation Mechanisms

Mechanism Objective Service Layer Operation

Reflection

QoS Factor
Hierarchy
Extension

Adding new QoS
dimensions to the
existing QoS Factor
hierarchy

Middleware
initialization

Adding and changing the fuzzy rules of
the direct parent node of the new QoS
factor within the hierarchy

Membership
Function
Adaptation

Adapting to the
specifications on
individual QoS factors

Service session
initialization during
application startup,

Adjusting the membership functions of
the linguistic values of the concerned
QoS factors

Importance
Weight
Adaptation

Adapting to the
specifications on overall
QoS factor priorities

and
run-time response
to user's adjustment

Changing the importance weights of
different concerned QoS factors to reflect
the user and application specific priorities

Fuzzy
Control
Output

Adapting to the system
dynamics and
optimizing the QoS
perceived by user

Real-time response
to the system
dynamics

Selecting the optimal set of service
profiles

Allowing applications to
access control states
and adaptation
behaviors through
meta-representations

Application initiated
real-time meta-level
adaptation

Providing Reflective API for applications
to inspect (through reflection) and to
adapt (through reification) the behavior of
the underlying system components,
adaptation rules and actions

Membership Function Adaptation allows ad-hoc adaptation to the specifications

of a new application. This is done by dynamically adjusting the membership

functions of the linguistic values of the involved QoS factors. Traditionally, each

set of application specification requires a custom-made set of fuzzy membership

functions and fuzzy rule base to support the specific application requirements.

However, it is undesirable for an application to specify its own set of membership

functions and fuzzy rules, which are too low-level and fuzzy domain specific for

typical application developers to handle. The membership function adaptation

mechanism is much simpler that it automatically adapts the fuzzy membership

functions of concerned QoS factors to the desired formulations specified by user

and application.

49

Importance Weight Adaptation supports ad-hoc user based QoS specification.

Based on a similar requirement as in Membership Function Adaptation, this

mechanism tries to avoid a redesign of the fuzzy rule base and fuzzy membership

functions when a set of new user requirements has emerged. This is done by

dynamically changing the importance weights of different QoS factors to reflect the

priorities of different QoS factors as specified in the user requirements.

Fuzzy Control Output adapts to the system dynamics and optimizing the QoS

perceived by user. This mechanism responds to the system dynamics in real-time

by selecting the optimal set of service profiles periodically.

Reflection provides Reflective API for applications to inspect (through reflection)

and to adapt (through reification) the behavior of the underlying system

components, adaptation rules and actions. While the dynamic adaptation of QoS

middleware offers some degree of context adaptation, at times mobile applications

are still in the best position to make critical decisions on the operating context and

hence the adaptation strategy. For this reason, it is desirable for a middleware to

provide the mobile application with an extensive set of APIs and reflective

interfaces. Through the meta-level object representation of the internal event

system and service reconfiguration mechanism, a mobile application can access the

contextual information, service configuration and adaptation strategy of the

middleware, and modify these entities to obtain optimal service provision.

Chapter 4 will describe the extension of QoS factor hierarchy and fuzzy control

output and Chapter 5 will present membership function adaptation, rule weight

50

adaptation and reflection.

3.6 Summary

The growing importance of mobile computing has given rise to a need to re-visit

the design requirements of future middleware to cope with the diverse challenges

of operating over a dynamic context. The fundamental assumption of a static

operating environment, which resulted in a monolithic “black-box” approach to

implementing existing middleware, is invalidated in a mobile computing

environment. An important requirement in the formulation of a context-aware

middleware is the need to devise suitable control mechanisms that allow

applications to directly participate in resource adaptation in response to the

dynamic operating environment. In this chapter, we have presented the overall

architectural design of the MobiPADS system. The MobiPADS represents a

reflective-based mobile middleware that is designed to support the dynamic

reconfiguration of augmented services for mobile computing. The underlying

MobiPADS is implemented as a collection of active-service entities, known as a

mobilets, which are constructed as a series of primitive services that form a

service-chain composition. The reflective model provides meta-interfaces for

applications to directly participate in computation adaptation in response to the

changing context. Through the meta-level object representation of the internal

event system and service reconfiguration mechanism, a mobile application can

access contextual information, the service configuration and adaptation strategy of

MobiPADS, and examine and modify these entities to obtain optimal service

provision from the MobiPADS.

51

Chapter 4 Mobile QoS Management Based on

Hierarchical Fuzzy Control

The control model of a fuzzy control system is typically modeled by domain

experts. Our proposed fuzzy QoS organizes the model into a hierarchical control

granularity. This management framework reduces the effort that mobile

application developers would otherwise have to put into understanding and

controlling every detail of the contextual environment. A mobile application

developer using this framework need be aware only of contextual details down to a

level sufficient for making adaptation decisions. This obviates the need to manage

low-level contextual parameters. The hierarchical fuzzy control model supports a

systematic approach that helps application developers easily specify desired

adaptation policies. This model can also efficiently, flexibly, and accurately map

these application specifications into the adaptation behaviors of the management

framework.

4.1 The Hierarchical Fuzzy Control Model

Figure 4.1 provides an overview of the hierarchical fuzzy control model. Unlike

typical fuzzy systems, which usually have only a single inference engine, our model

is composed of three fuzzy inference engines and one reconfiguration engine, each

with its own basic set of fuzzy rules. When there is a large number of QoS

parameters, the fuzzy rule hierarchy can greatly reduce the number of fuzzy rules to

be managed and inferred, thereby avoiding the rule explosion problem.

52

Figure 4.1 Control Flow of the Hierarchical Fuzzy Control Model

The hierarchical fuzzy control model contains four core engines. The contextual

inference engine in the upper left of Figure 4.1 is responsible for processing and

summarizing contextual information. It provides a generalized representation of

the overall operating environment in terms of abstract contextual factors such as

CPU availability, battery level and network delay. The user-based inference

engine in the lower left handles the user satisfaction factors, generalizing the

overall user satisfaction in terms of abstract user satisfaction factors such as cost of

network connection fee, media fidelity and media smoothness. The adaptation

inference engine in the middle is responsible for inferring a set of adaptation

importance values based on the abstract user satisfaction factors and the abstract

contextual factors. These importance values describe priorities of different aspects

of the middleware services that need adaptation. The reconfiguration engine on

53

the right reacts to the adaptation objectives by reconfiguring the service chain while

preserving overall user’s satisfaction and resource consumption.

The QoS management framework is designed to support context-aware processing

by providing an executing platform to enable mobile services to be actively

deployed and reconfigured in response to an environment where the context varies.

To alleviate the adverse conditions of a wireless environment, services (called

mobilets) are configured as chained service objects (a service chain) to provide

augmented services and protocols to the underlying mobile applications. Each

mobilet provides a specific functionality. Different combinations of mobilets are

chosen to fulfill different QoS requirements and to suit different contextual

environments. Service chains can be reconfigured during runtime to adapt to

changes in QoS requirements and to the operating environment by adding and

removing mobilets. Moreover, each mobilet can have various modes of operation

(profiles) to support finer adaptation levels, the details of which are discussed in

Section 4.3.2. The mobilet service model enables QoS support for mobile

environments, extending from the system resource level up to the user level.

In order to support reusability and scalability, it is essential for the control model to

achieve a separation of concerns that would decouple different aspects of the

system. This would allow the rules of individual rule bases to be created and

updated independently during different phases of development without causing

interference between rule bases and without requiring revisions to the rules of other

rule bases. New applications are supported through the runtime service adaptation

of the QoS factors – namely – the contextual factors and user satisfaction factors.

54

New mobilets can be added to the system without the need to revise other fuzzy rule

bases or the profiles of other mobilets. This design allows the QoS management

framework to be flexibly customized to adapt to the characteristics of different

mobile devices.

4.2 Hierarchical Inference Engines

This section describes in detail the composition of components and their

interactions in the fuzzy control hierarchy. These components drive the inference

engines described in Section 4.1.

4.2.1 Resource-oriented QoS Parameters

To support a specific application, a number of system resource QoS parameters are

involved. Each represents a measured value of a resource type. The set of

resource parameters is denoted by:

E = {e1, e2, …, ep}, (5)

where p is the number of parameters involved. Examples of these parameters

might be network delay, CPU utilization, and battery life. To avoid extreme

dynamicity of the resource parameters, preprocessing should be applied to control

the update frequency, unit conversion, and calibration of the raw measured value.

This will ensure that the primitive resource parameters represent normalized values

associated with the corresponding aspects. For example, raw CPU utilization

measurements can be as precise as the number of occupied CPU cycles within the

period of 1 ms. However, it would be more appropriate to normalize this raw

measurement to a percentage scale and update it every second, and input this

information to the control model. For simplicity, we assume that all parameters in

55

E of the model have been preprocessed and normalized.

4.2.2 Contextual QoS Factors

Contextual QoS factors are direct or recursive fuzzifications of the resource QoS

parameters, which act as input fuzzy variables to the hierarchical fuzzy control

model. The set of contextual factors that are relevant to supporting the application

is denoted by:

C = {c1, c2, …, cr | r ≥ p}. (6)

The set C consists of two subsets: C1 and C2. The subset C1 holds primitive

contextual QoS factors and it is denoted by:

C1 = {c1, c2, …, cp}, (7)

whose elements ci are a direct fuzzification of the corresponding ei in E. The

subset C2 is comprised of abstract contextual QoS factors and it is denoted by:

C2 = {cp+1, cp+2, …, cr}, (8)

which are generated from the nested fuzzification of elements in C1. C2 represents

high-level descriptions of the contextual environment. For example, “battery life

is good” or “network performance is poor.”

As shown in Figure 4.2, we organize contextual information of different levels of

abstraction into a tree hierarchy. Fuzzy rules in the contextual rule base can be

defined using both primitive contextual factors and abstract contextual factors as

input linguistic variables. For example,

IF(Battery_Level is normal) AND (Power_Conservation is good) THEN (Battery_Life is good);

IF (CPU_Availability is normal) AND (Battery_Life is poor) THEN (CPU_Preferred is poor).

56

Figure 4.2 Contextual QoS Factor Hierarchy

4.2.3 User-oriented QoS Parameters

Typical mobile application users are not concerned about the low-level resource

parameters or the contextual factors. They are concerned with what they can

perceive about the performance of the application in terms of quantifiable quality of

service, for example, responsiveness, smoothness, and clarity. To define these

abstract concepts, however, we need to obtain concrete user-oriented measurable

QoS parameters. The set of concerned user-oriented QoS parameters in a specific

application is denoted by:

U = {u1, u2, …, uq}. (9)

Each parameter represents a measured value of a primitive user-oriented QoS

parameter, where q is the number of parameters. Examples are resolution, frame

rate, and air-time charge per minute.

4.2.4 User satisfaction QoS Factors

Like contextual QoS factors, user’s satisfaction QoS factors are the fuzzy variables

57

that directly or recursively fuzzify user-oriented QoS parameters, as shown in

Figure 4.3. The set of user satisfaction QoS factors is denoted by:

S = {s1, s2, …, st | t ≥ q}. (10)

Similarly, S = {S1, S2}. The subset S1 is defined as primitive user satisfaction QoS

factors that are the fuzzification of the corresponding si in U, which is denoted by:

S1 = {s1, s2, …, sq}. (11)

The subset S2 consists of abstract user satisfaction QoS factors that represent the

high-level user satisfaction factors. It is denoted by:

S2 = {sq+1, sq+2, …, st}. (12)

Examples of abstract user satisfaction QoS factors might be media presentation

quality and application availability. Like the contextual rule base, the user

satisfaction rule base contains fuzzy rules that are defined with the user satisfaction

factors of both S1 and S2. For example,

IF (Transmission_Responsiveness is poor) THEN (Responsiveness is poor);

IF (Synchronization is normal) AND (Fidelity is good) AND (Smoothness is normal) AND

(Responsiveness is good) THEN (Quality is good).

Figure 4.3 User Satisfaction QoS Factor Hierarchy

58

4.2.5 Adaptation Importance

The adaptation inference engine will make use of the user satisfaction factors and

contextual factors to deduce a set of adaptation importance values for the next

service reconfiguration cycle. The fuzzy rules in the adaptation rule base seek to

determine the user satisfaction factors that may need the most improvement, and

the extent to which the user satisfaction factors should be improved given the

current contextual situation. Such decision output is represented by a list of

relative importance values of each QoS factor, whose usage for adaptation will be

further discussed in Section 4.4.2 and exemplified in Table 4.2 of Section 4.5.

4.3 Mobilets

In the QoS management framework, a mobilet is a service object that performs a

single task. A number of mobilets are selected to form a service chain that

provides an integrated set of services to the mobile application. Each mobilet can

have a number of operational modes, denoted by mobilet service profiles, which

clearly describe the usages, the usable situations, and the impact of the each of the

operational modes.

4.3.1 Mobilet Service

Let M = {m1, m2, …, mv} be the set of mobilet services that can be used to support

the application, where v is the total number of mobilets in the set.

A mobilet is characterized by a collection of three lists: input types, output types,

and service profiles:

m = {IN(m), OUT(m), F(m)}. (13)

59

The input and output types are used for matching the object types to support the

application requirements. Each mobilet can support multiple input and output

types. For example, a mobilet accepts raw AVI video format as input and produces

H.264 video as output. A mobilet chain template is generated to specify the

mapping of compatible mobilets to be selected and chained, while ensuring that

input and output types between the connecting mobilets are fully compatible.

4.3.2 Mobilet Service Profile

A mobilet service profile represents a mode of operation that the mobilet can

support, e.g. a compression mobilet can have a maximum speed profile, a

maximum compression profile, and a balanced profile. The set of profiles of the

mobilet mi can be denoted by:

F(mi) = {fi
1, fi

2, …, fi
h(i) | i ∈[1,v]}, (14)

where h(i) is the total number of profiles of mi. The reconfiguration engine selects

a list of profiles from F(M) as its output, which optimizes the QoS and resource

usage under the current operating context. The output of the reconfiguration

engine is denoted by:

Foptimize(M) = { fα
a, fβ

b, …, fδ
d | 1≤α<β<δ≤v, a∈[1,h(α)], b∈[1,h(β)], d∈[1,h(δ)]}. (15)

A profile is denoted by

f = {A(f)}, (16)

where A(f) denotes a list of QoS factors that will be affected if the profile is

activated.

4.3.3 Affected QoS Factor

An affected QoS factor is a three-element tuple: the parameter label, adjustment,

60

and modifier, which is denoted by:

A i(f) = {ci, α, x, | ci ∈[C1 ∪ S1] , α ∈[-1,1], x∈{0,1}}. (17)

Each tuple describes the effect on a specific QoS factor when the profile is activated.

ci is a primitive contextual QoS factor or a primitive user satisfaction QoS factor.

α is the modification value and x is the modifier, which can be either 0 or 1,

indicating whether the corresponding adjustment α is either absolute or relative.

As an example, if a QoS factor, smoothness, is currently defuzzified to a crisp value

of 0.5, then the tuple {smoothness, -0.2, 1} implies that the new smoothness value

is (-0.2) + (0.5)(1) = 0.3. In other words, if the profile is activated, the smoothness

factor will be affected and changed to a crisp value of 0.3. With reference to (6)

and (10), the list of affected QoS factors A(f) is defined as

A(f) = {A 1(f), A2(f), …, Ak(f) | 1≤k≤p+q }. (18)

As an example of a complete mobilet service profile, one of the profiles for an

MPEG4 encoding mobilet can be

fMPEG4
High_Quality = {Power_conservation,-0.2,1, CPU_Availability,-0.2,1,

Net_Bandwidth_Availability,0.2,1, Fidelity,0.8,0}.

The adjustment of an activated profile to a QoS factor can be defined in two ways:

deterministic and probed. deterministic adjustment represents an absolute casting

of the specific QoS factor, which is enforced by the mobilet. For example, a video

transcoding mobilet enforces its video output to be in QVGA resolution, thus

restricting the media fidelity factor to a specific value.

A mobilet can intentionally or unintentionally affect a QoS factor so that the extent

of the effect is uncertain during the design phase, in which case probing during the

testing and deployment phase is required to determine the actual effect. This is

61

called probed adjustment. Due to its nondeterministic characteristic, probed

adjustment is best characterized based on relative representations. For example, a

text compression mobilet can reduce HTTP traffic by 30% on average, but as a side

effect, it also increases the CPU loading by 10% on average. These relative

changes must be probed since they cannot be determined during the design phase.

A developer of a mobilet with probed adjustments should implement active testing

functions that can be invoked when the mobilet is first installed, to determine the

initial values of the probed adjustments. Passive probing functions should also be

implemented, which can be invoked when the mobilet is activated for adaptation.

This calibrates and updates the values of the probed adjustments adaptively, so that

the values can accurately reflect the adjustments to the current operating platform

and environment. The probing of service performance [Cherkasova02]

[Obraczka98] is a research topic on its own, yet for simplicity of illustration we

again assume that the probed adjustments for every profile are accurate and

up-to-date.

4.4 Fuzzy-controlled Service Reconfiguration

A large variety of algorithms and techniques [Al-bar99] [Chalmers99] have been

developed to provide mobile-enhanced services. Typically, these services have

been designed to optimize operations in restricted contexts and for specific

applications. Hence, the selection of services becomes a process that is crucial to

the efficiency of a mobile operating environment. In this section, we describe a

generalized scheme for mobile service selection that uses fuzzy sets.

Given a contextual environment and a set of measured QoS factors, the middleware

62

have to select the mobilet combination and the mobilet profile that will optimize the

QoS factors of specific applications and maintain the optimal level of user

satisfaction.

The set of optimization objectives represents all of the contextual QoS factors and

user satisfaction factors, which can comprise of both primitive and abstract factors

as in (6) and (10),

Ooptimization (C1 ∪ S1) = {o1, o2, …, ok | k=p+q}, where oi =




>
≤

pis

pic

i-p

i

),(O

),(O

onoptimizati

onoptimizati

. (19)

Each QoS factor is mapped to an objective. The decision function G, is defined by

the intersection (to find the minimum) of all optimization objectives

G = o1 ∩ o2 ∩ … ∩ ok. (20)

A decision scoring of an objective for a profile is determined by the relative

importance of the objective and the degree of satisfaction achieved by the profile.

Although the QoS management framework can support the simultaneous

reconfiguration of multiple mobilets in a service chain, the control model limits the

change to one mobilet per reconfiguration. This is to facilitate the probing and

updating of the affected QoS factors of each mobilet profile. This in turn leads to a

simpler design for mobilet selection. In order to select the optimal mobilet profile,

we adopt a decision calculus introduced in [Yager81], which is based on ordinal

information, as the input for weightings of importance. There are a large variety of

fuzzy methods [Fuller96] for multiple-criteria decision making. The decision

calculus of Yager [Yager81] is the most suitable method for selecting mobilet

profiles because of the simplicity of its model and low computational complexity.

More importantly, this method supports our aim of identifying profiles with the

63

least amount of compromise in the concerned QoS factors, rather than selecting

profiles with uneven performances among the concerned QoS factors. This is vital

to our system, since a high score in a specific QoS factor is of little value when it

reaches a certain level, e.g. a video of 60 frames per second (fps) is

indistinguishable in most cases from a video of 30fps. On the other hand, small

improvements in any disadvantaged QoS factor can improve user perceived quality

notably. In short, the system optimizes the overall performance by improving the

worst performing QoS factor one at a time.

Let δ(fj, oi) be the decision score of a profile fj in objective oi; then, the set of

decision scores for fj is denoted by:

D(fj) = {δ(fj, o1), δ(fj, o2), …, δ(fj, ok)} → [0, 1]. (21)

The overall decision score of fj is then denoted by:

δ(fj, G) = min[D(fj)], (22)

where the optimal profile f* is denoted by:

δoptimal (f
*) =

)(
max

MFf ∈
[δ(f, G)]. (23)

As described in section 3.2.5, the importance of an objective oi is denoted by wi,

which can be determined by the adaptation inference engine. The set of

importance values of corresponding objectives in Ooptimization (C1 ∪∪∪∪ S1) is denoted

by:

W = {w1, w2, …, wk} → [0, 1]. (24)

The degree of satisfaction of objective oi for a profile f is denoted by oi(f) and can be

computed through profile testing. As shown in the top and bottom part of Figure

4.1, the reconfiguration engine tests the profile f by affixing all of its affected QoS

factors onto the primitive QoS factors that will subsequently reflect the changes

64

onto the abstract QoS factors. The testing measurements of the primitive and

abstract QoS factors are then taken as degrees of satisfaction.

Let N(oi, wi) denote the new decision score of the objective oi that has an

importance of wi. The decision function in (19) becomes

G = N(o1, w1) ∩ N(o2, w2) ∩ … ∩ N(ok, wk). (25)

By using the Kleene-Dienes implication operator [Park92], where IKD(x, y) =

max(1-x, y), the decision score of an objective oi for a mobilet profile fj is defined

as

δ(fj, oi) = N(oi(fj), wi) = wi → δ(fj, oi) = oi(fj) ∨
iw , where

iw = (1- wi). (26)

Figure 4.4 illustrates how the implication operation assigns a score to each of the

objectives based on their importance and satisfaction. The lowest score represents

the bottleneck of a profile, which is the most representative QoS performance

measurement of the profile.

Figure 4.4 Sorted Decision Scores Using The Implication Operator

Based on (25) and (26), the decision function for finding an overall decision score

for all objectives becomes

G = (o1 ∪
1w) ∩ (o2 ∪

2w) ∩ … ∩ (ok ∪
kw). (27)

Then, the optimal profile can be found by expanding (23):

δoptimal (f
*) =

)(
max

MFf ∈
{ k

i 1min = [max(oi(f), iw)]}. (28)

65

If two conflicting profiles have the same overall decision score, their

second-smallest decision score representing their second bottleneck, can be

compared. If a conflict persists, the comparison can be repeated.

4.5 Performance Results and Analysis

To test the performance and functionality of the system, we have developed an

emulated wireless video streaming application based on the implementation of the

QoS management framework. This simulation allows us to study the performance

of a generic wireless application running on top of the QoS management framework.

The video streaming application exercises and adapts to multiple QoS parameters,

including network bandwidth, network error rate, video smoothness, video fidelity,

and video noise. The video application also incorporates the coexistence of

multiple adaptation options, including the frame rate, resolution, and codec

selection. The actual adaptation decisions are made based on the current wireless

environment and pre-assigned application preferences, and are assisted by the

hierarchical fuzzy control model.

4.5.1 Experimental Setup

Figure 4.5 shows the logical flow of the experimental setup. At the top of Figure

4.5, the data flow of the wireless video streaming application begins with the

streaming of a video into a service chain that is composed of a number of

mobile-enhanced mobilets. There are three tiers of mobilets along the service

chain: the frame rate adaptation mobilet, the resolution adaptation mobilet, and the

codec mobilets. These mobilets are dynamically reconfigurable to best adapt to

the current contextual environment. They do this by appropriately transcoding

66

the streamed video into an optimized form to be transmitted over the emulated

wireless network. There is a video receiver at the other end of the emulated

network, which measures the quality of the received video stream and feeds these

QoS measurements back to the QoS monitors.

Figure 4.5 An Adaptive Mobile Video Streaming Application

The lower left of Figure 4.5 shows twelve mobilet profiles that can be selected from

five mobilet profile sets. The frame rate adaptation mobilet has five profiles: 30,

24, 20, 15, and 10 frames per second. The resolution adaptation mobilet has four

resolution scaling profiles: 100%, 75%, 50%, and 25%. There are three codec

mobilets, each with just one profile: ordinary M-JPEG, layered coding (LC) [Li97],

and multiple description coding (MDC) [Goyal01]. LC has been developed for

scalable video delivery, in which the signal is separated into components of varying

levels of detail. MDC breaks the data into several streams with some

redundancies between the streams. When partial streams are received, the quality

of the reconstruction degrades gracefully. In this simulation, we adopt the

characteristics and measurements of LC (with ARQ on the base layer) and MDC

from [Singh00]. These profile descriptions are submitted to the reconfiguration

67

engine for a decision as to what profile should be selected. This is done

dynamically to reflect the projected effects of the profiles in the existing contextual

situation.

The middle of Figure 4.5 shows the control flow of the simulation. The QoS

monitors gather the QoS measurements from the operating environment and the

video receiver. These measurements are then normalized and input into

correspondingly to the contextual inference engine and user-based inference engine.

These two inference engines infer the local importance values of their QoS factors,

and also the overall quality of their QoS factor hierarchy. The adaptation inference

engine then infers the global adaptation importance values for each QoS factor by

making use of these measurements of overall quality and local importance values.

Once there is a set of global adaptation importance values for each QoS factor and

the set of profiles describing the effect of the profiles on each of the QoS factors, it

becomes a straightforward task for the reconfiguration engine to decide which

profile is the best for the current contextual situation. After an optimal profile set

is selected, the reconfiguration engine reconfigures the current service chain to

provide an optimal transcoding service for the video streaming application. The

whole adaptation control flow is carried out dynamically and periodically so that

the current service chain can always match the QoS demands of the application in a

dramatically changing wireless operating environment.

We have carried out a series of experiments with the wireless video streaming

application. The detailed environmental setup is as follows: A Motion-JPEG

encoded video stream with a frame size of 640x480 pixels and a speed of 30 frames

68

per second is streamed over a wireless network, from a fixed-network server to a

wireless client. The QoS management framework is running on both the server

and the client, providing transcoding and adaptation services to the video streaming

application. The maximum bandwidth of the wireless network is 150% of the

video stream, the average round trip time (RTT) of the wireless network is 600 ms,

and the average error rate is 10%. At the transport layer, the User Datagram

Protocol (UDP) is used for the packet transfer. The packet size is fixed at 100

bytes to minimize the adverse effect due to lost packets. The maximum allowed

packet delay is 2000 ms, and each lost packet can be retransmitted only once at

most, to prevent unbounded delays.

4.5.2 The Fuzzy Rules

To give a concise illustration of the model so that it can be better appreciated, the

number of QoS factors involved in the hierarchical fuzzy control is trimmed down

to six: fidelity, smoothness, presentation quality, bandwidth, error rate, and network

quality. Table 4.1 shows the fuzzy rules of the network quality rule base. The

contextual inference engine uses these rules to generate the relative importance of

bandwidth and error rate, and also an abstract QoS factor – network quality.

Figure 4.6 shows the function surface plot for network quality. We use symmetric

Gaussian membership functions for all of the fuzzy rules in this simulation. The

user satisfaction rule base and the user-based inference engine work in a similar

manner, generating the importance of fidelity and smoothness. An abstract QoS

factor – presentation quality, is also inferred by the user-based inference engine.

The relative importance values generated by the user-based inference engine and

the contextual inference engine are only valid within their corresponding scopes.

69

However, we need a global set of importance values to allow quantitative

comparisons among all QoS objectives. This is provided by the adaptation

inference engine. As shown in Table 2, network priority (netPriority),

representing the relative weightings of the contextual QoS factors compared to the

user satisfaction QoS factors, is inferred using presentation quality (userQoS) and

network quality (netQoS). The function surface plot of network priority is shown

in Figure 4.7.

Figure 4.6 Network Quality Function Inferred by Bandwidth and Error Rate

Table 4.1 The Network Quality Rule Base

1. If (bandwidth is excellent) and (errorRate is excellent) then (networkQuality is excellent)
2. If (bandwidth is excellent) and (errorRate is good) then (networkQuality is excellent)
3. If (bandwidth is good) and (errorRate is excellent) then (networkQuality is excellent)
4. If (bandwidth is normal) and (errorRate is good) then (networkQuality is good)
5. If (bandwidth is good) and (errorRate is normal) then (networkQuality is good)
6. If (bandwidth is normal) and (errorRate is normal) then (networkQuality is normal)
7. If (bandwidth is poor) and (errorRate is normal) then (networkQuality is normal)
8. If (bandwidth is normal) and (errorRate is poor) then (networkQuality s normal)
9. If (errorRate is bad) then (networkQuality is bad)
10. If (bandwidth is bad) then (networkQuality is bad)
11. If (bandwidth is excellent) and (errorRate is normal) then (networkQuality is good)
12. If (bandwidth is excellent) and (errorRate is poor) then (networkQuality is normal)
13. If (bandwidth is good) and (errorRate is poor) then (networkQuality is normal)
14. If (bandwidth is normal) and (errorRate is excellent) then (networkQuality is good)
15. If (bandwidth is poor) and (errorRate is excellent) then (networkQuality is normal)
16. If (bandwidth is poor) and (errorRate is good) then (networkQuality is normal)
17. If (bandwidth is bad) then (bandwidthPriority is veryHigh)
18. If (bandwidth is poor) then (bandwidthPriority is high)
19. If (bandwidth is normal) then (bandwidthPriority is medium)
20. If (bandwidth is good) then (bandwidthPriority is low)
21. If (bandwidth is excellent) then (bandwidthPriority is veryLow)
22. If (errorRate is bad) then (errorRatePriority is veryHigh)

70

23. If (errorRate is poor) then (errorRatePriority is high)
24. If (errorRate is normal) then (errorRatePriority is medium)
25. If (errorRate is good) then (errorRatePriority is low)
26. If (errorRate is excellent) then (errorRatePriority is veryLow)

Figure 4.7 Network Priority Inferred by Network and Presentation Quality

Table 4.2 The Adaptation Rule Base

1. If (netQos is bad) and (userQos is bad) then (netPriority is medium)
2. If (netQos is bad) and (userQos is poor) then (netPriority is medium)
3. If (netQos is bad) and (userQos is normal) then (netPriority is high)
4. If (netQos is bad) and (userQos is good) then (netPriority is veryHigh)
5. If (netQos is bad) and (userQos is excellent) then (netPriority is veryHigh)
6. If (netQos is poor) and (userQos is bad) then (netPriority is low)
7. If (netQos is poor) and (userQos is poor) then (netPriority is low)
8. If (netQos is poor) and (userQos is normal) then (netPriority is medium)
9. If (netQos is poor) and (userQos is good) then (netPriority is high)
10. If (netQos is poor) and (userQos is excellent) then (netPriority is veryHigh)
11. If (netQos is normal) and (userQos is bad) then (netPriority is veryLow)
12. If (netQos is normal) and (userQos is poor) then (netPriority is veryLow)
13. If (netQos is normal) and (userQos is normal) then (netPriority is low)
14. If (netQos is normal) and (userQos is good) then (netPriority is medium)
15. If (netQos is normal) and (userQos is excellent) then (netPriority is high)
16. If (netQos is good) and (userQos is bad) then (netPriority is veryLow)
17. If (netQos is good) and (userQos is poor) then (netPriorty is veryLow)
18. If (netQos is good) and (userQos is normal) then (netPriority is veryLow)
19. If (netQos is good) and (userQos is good) then (netPriority is low)
20. If (netQos is good) and (userQos is excellent) then (netPriority is medium)
21. If (netQos is excellent) and (userQos is bad) then (netPriority is veryLow)
22. If (netQos is excellent) and (userQos is poor) then (netPriority is veryLow)
23. If (netQos is excellent) and (userQos is normal) then (netPriority is
veryLow)
24. If (netQos is excellent) and (userQos is good) then (netPriority is veryLow)
25. If (netQos is excellent) and (userQos is excellent) then (netPriority is low)

71

4.5.3 Experimental Results

Two scenarios are tested in this simulation. The first scenario uses a static service

chain without frame rate adaptation and resolution adaptation, while using LC as

the codec. The second scenario allows free adaptation on all three tiers of mobilets.

In these two scenarios, we varied the bandwidth from zero to 400 Kilobyte/s (KB/s),

and repeated the scenarios under different bit error rates of between 5% to 40%.

Figure 4.8 shows the results that capture the clarity performance of both scenarios,

while Figure 4.9 shows the smoothness performance and Figure 4.10 shows the

packet drop rate. The plot line labeled static 0.05 refers to the results for a

static-service-chain under a bit error rate of 5%, while the plot lines labeled

dynamic refer to the results for free-adaptation scenarios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000 350000 400000
Bandwidth

C
la

ri
ty

static, 0.05 dynamic, 0.05

static, 0.1 dynamic, 0.1

static, 0.2 dynamic, 0.2

static, 0.4 dynamic, 0.4

Figure 4.8 Clarity Performance of Static Services Versus Fuzzy QoS Adapted Services

72

0

5

10

15

20

25

30

0 50000 100000 150000 200000 250000 300000 350000 400000

Bandwidth

S
m

o
o

th
n

es
s

static, 0.05 dynamic, 0.05

static, 0.1 dynamic, 0.1

static, 0.2 dynamic, 0.2

static, 0.4 dynamic, 0.4

Figure 4.9 Smoothness Performance of Static Services Versus Fuzzy QoS Adapted

Services

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000 350000 400000
Bandwidth

P
ac

ke
t

d
ro

p
 r

at
e

static, 0.05 dynamic, 0.05

static, 0.1 dynamic, 0.1

static, 0.2 dynamic, 0.2

static, 0.4 dynamic, 0.4

Figure 4.10 Packet Drop Rate of Static Services Versus Fuzzy QoS Adapted Services

Figure 4.8 shows the results capturing the performance of both scenarios in terms of

73

clarity. It can be seen that free-adaptation results in significantly better clarity

performances when the bandwidth is below 160 KB/s, ranging from 7% to 15%.

The measurement is captured only for frames that are successfully transmitted and

decoded over the wireless link. In other words, dropped frames do not affect the

clarity measurement. Higher bandwidth conditions show similar clarity

performances for both free-adaptation and the static-service-chain. However,

when the bandwidth and bit error are both high, the static-service-chain is 9% better

than free-adaptation in terms of clarity. The main reason for this result is that

under the free adaptation scenario, the system aggressively reconfigures the

resolution adaptation mobilet to adapt to a high bit error rate, which leads to a more

conservative consumption of bandwidth and hence to a better overall quality of

presentation. The effect of the aggressive adaptation of resolution contributes

partially to the results shown in Figure 4.9.

Figure 4.9 shows the performance in terms of smoothness. Under high bandwidth

and a high bit error rate, free-adaptation offers a 60% higher frame rate than a

static-service-chain. In general, free-adaptation offers significantly better

smoothness performances than the static-service-chain. Under various bit error

rates, free adaptation achieves a markedly better frame rate than does a

static-service-chain, by 4.5 frame/s to 6.6 frame/s. Together, Figure 4.8 and Figure

4.9, show that free-adaptation consistently offers a more balanced performance

with regard to clarity and smoothness. Moreover, under various network

conditions, the individual performances of free-adaptation are usually on par with

or better than those of a static-service-chain.

74

Figure 4.10 shows the packet drop rates for the two scenarios. The packet drop

rate is directly affected by the bit error rate, the bandwidth, and the data rate. As

the bit error rate and bandwidth are controlled in the experiments, the packet drop

rate is the result of variations in the data rate:

when data rate > bandwidth * (1-bit error rate),

then the packet drop rate > bit error rate;

when data rate < bandwidth * (1-bit error rate),

then the packet drop rate = bit error rate.

Figure 4.10 further explains the benefits of free-adaptation. Under various

network conditions, the system is able to actively control the consumption of

bandwidth by reducing the frame rate and downscaling the transmitted video. This

prevents the channel from becoming congested when the bandwidth is low. In

contrast, the static-service-chain consistently creates congestions within the

network due to over-utilization of the available bandwidth, which results in

significantly higher packet drop rates of between 9% to 22% compared to

free-adaptation These high packet drop rates have a direct impact on the clarity and

smoothness of the static-service-chain. In short, the results have clearly

demonstrated the benefits of the QoS management framework in mapping and

adapting to variations in QoS parameters under varying contextual environments.

The experiments have also served to verify the operations of the framework and to

provide us with the opportunity to investigate complex interactions among the

components within the system.

75

4.6 Performance Scalability

Two important issues in the use of middleware are scalability and overheads. We

conducted a set of experiments to determine the impact of executing the

middleware on an off-the-shelve mobile device. We deployed the middleware

onto a HP iPAQ h4150 PDA, which features Windows® Mobile™ 2003, Intel

PXA255 400MHz, 64MB Ram, 32MB ROM and 1000mAh battery. We use

Mysaifu JVM Version 0.3.3 [Mysaifu08] as the java runtime environment, and the

middleware is deployed as a 1.1MB Java Archive (JAR).

4.6.1 QoS Parameter Scalability

As shown in Figure 4.11, we tested the platform using 8, 16, 32, 64 and 128 input

QoS parameters. By hierarchically inferencing these QoS parameters, the setups

contain 15, 31, 63, 127 and 255 primitive or abstract QoS factors correspondingly.

The total numbers of fuzzy rules in these setups are 175, 375, 775, 1575 and 3175

correspondingly, which shows a linear increase as the number of input QoS

parameters increases. The memory usage of the middleware shows an initial

linear increase, while tapering as the number of QoS parameters go beyond 64.

This is due to the effect of garbage collection of the JVM, which is able to free up

memory of unused objects when the memory consumption is high. The

corresponding memory usages are 11.16MB, 13.26MB, 18.11MB, 25.9MB and

31.99MB.

76

0

5

10

15

20

25

30

35

0

500

1000

1500

2000

2500

3000

3500

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

m
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

c
o

u
n

t

input QoS parameters

factors

rules

memory used

Figure 4.11 Parameter Size, Rule Size and Memory Usage

4.6.2 Fuzzy Rule Scalability

To further study the performance scalability of the middleware, each of the five

setups is further divided into 3 cases. Corresponding to the 3 cases, the inputs are

subjected to 50%, 25% and 12.5% of probability of change for each inference

iteration. The values of changed inputs are randomized. Each of the 15 cases has

been tested for extended times to achieve stabilized measurements in average

affected rule counts and average execution times. As shown in Figure 4.12, both

the execution time and the affected rule count are directly proportional to the

number of changed input. We leverage the tree-structured QoS factor hierarchy by

inferencing only the branch of rules whose inputs were changed since the last

update. This technique significantly reduces the execution time when the

operating environment is relatively stable.

77

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1400

1600

1800

2000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

e
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

)

a
ff

e
c

te
d

 r
u

le
 c

o
u

n
t

input QoS parameters

affected rule(.125)

affected rule(.25)

affected rule(.5)

execution time(.125)

execution time(.25)

execution time(.5)

Figure 4.12 Performance Scalability of Fuzzy Rules

The execution times vary from 46ms for 22 affected rules to 6225ms for 1996

affected rules. This implies a 2 to 3 ms execution time per each affected rule. The

execution time per rule is relatively shorter for smaller number of affected rules

since the corresponding rule hierarchy is shallower and involves lesser number of

intermediate abstract QoS factors. These QoS factors require extra

de-fuzzification and re-fuzzification steps in-between different levels of rule

hierarchies. The corresponding average execution time for 1996 rules is 3 ms on

an AMD Althlon64 2GHz machine. This implies a 400 times of per CPU clock

performance difference between the PDA and the AMD machine. This mainly due

to the existence of the floating point processing unit of the AMD machine, which

greatly accelerated the computation due to rules inference and de-fuzzification.

The battery life of the PDA is 4 hours and 7 minutes with maximum backlight under

idle situation. By running the middleware with 32 inputs, 775 fuzzy rules, 12.5%

78

of input change probability and inferencing every 10 seconds, the battery life drops

by 8.4% to 3 hours and 46 minutes.

4.6.3 Mobilet and Profile Scalability

The performance scalability of the number of mobilets and the number of mobilet

service profile is independent of the number of QoS parameters and fuzzy rules. In

terms of memory usage, each null mobilet consumes 15KB of memory, while

adding more profiles to an existing mobilet only increase its memory usage

marginally.

On the profile selection process, the computational overhead scales sub-linearly as

the number of profile increases. The average profile testing and decision time for

each profile is less than 1ms. Moreover, as a typical profile is only associated with

a subset of the QoS factors, so that only a portion of all the profiles will go through

profile testing to update their decision scores.

By running the middleware with 200 profiles, 32 inputs, 775 fuzzy rules and 12.5%

of input change probability, the average execution time for profile testing and

decision making is 83ms. Therefore, we consider the overhead caused by profile

selection process insignificant.

Service reconfiguration can be one of the major overheads of the system. This

process involves synchronizing the profile switching, insertion, and removal of

mobilets. All of this requires the coordinated initialization, suspension, and

termination of mobilet service objects at both ends of the wireless network

79

[Chuang05]. The latency of service reconfiguration caused by the middleware

varies between 80ms and 1000ms. This latency means the application level data

transmission is suspended for that period of time. E.g. an un-buffered audio clip

streaming from the wired part to the mobile device will experience a 80ms to

1000ms interruption during service reconfiguration. However, if there is no

application level data transmitting during the period of time, the application

utilizing the middleware will experience no interruption. As mentioned in Section

4.4.2, we have limited the service reconfiguration to one mobilet at a time. This

results in the service reconfiguration latency to be independent of the length of

service chain and available mobilets. On the other hand, no measureable latency is

found when the service reconfiguration only involves intra-mobilet profile

switching.

4.7 Summary

This chapter describes a novel fuzzy knowledge-based QoS middleware framework

for mobile and wireless environments. Special attention has been dedicated to the

issue of how to deal with the problems of fuzzy rule explosion and multiple QoS

objectives by employing the concepts of the fuzzy inference hierarchy and the

multi-objective decision-making process. This chapter demonstrates the

flexibility of our QoS management framework in adapting to different users,

applications, and platforms operating in wireless environments that are

characterized by dynamic and constrained resources. The proposed model

provides an optimal overall service by synergistically balancing the QoS

requirements of users and applications with the dynamic allocation of resources and

chaining of services. Our research is novel in that it looks at QoS from a holistic,

80

systematic, and pragmatic perspective. In the next chapter, we will extend the

framework to automatically and precisely map the preferences of the user and

application developer onto the fuzzy control system, but without the need to rebuild

membership functions or fuzzy rules.

81

Chapter 5

Meta-level Adaptation

The formulation of a fuzzy control model requires that the system designer

understands how different input parameters affect the specific application. In the

context of mobile applications, combing different users and applications bundles a

unique set of requirements that are maintained and managed by the underlying

system. However, these requirements often consist of runtime information that

will not be available to the QoS management system until the application

subscribes to the service of the QoS management system. Even worse, these

requirements can change as users change their preferences during runtime. This

is the reason why most existing fuzzy QoS control systems are application

specific and lack the extensibility for adapting to different users, different

applications, and different application usages. In contrast, MobiPADS is

designed to adapt to not only the dynamism of the operating environment, but also

to support the dynamic requirements of users, applications and application usages

during runtime.

The ultimate goal for a mobile QoS management system is to maximize

user-perceived QoS under a situation of limited computational resources.

However, the perceptions of different users regarding different QoS factors are

often subjective. For example, we can see in Figure 5.1 and Figure 5.2 two distinct

visual effects of the same original frame, after it has been encoded correspondingly

by MJPEG and LC codec mobilets and transferred through a network with a 5%

82

packet drop rate. In Figure 5.1, there are errors in the blue channel, which has

caused three-fourths of the blue channel to be dropped and most of the frame to be

dark and have a greenish tone. In Figure 5.2, there are errors in non-essential

layers, so that some fine details of the frame have been lost and some error dots

appear in the frame. Interestingly, under our simple fidelity measurement method,

these two frames have the same fidelity score, but they appear dramatically

different due to the behavior of the encoding scheme. Some users may prefer to

have the fine details preserved without noise, while others may not want to have

color shifting due to errors in a color channel. Therefore, to achieve a more

accurate and flexible presentation-quality model, it would be desirable to allow

users and application developers to control performance levels and to affect the

relative weightings of the concerned QoS factors during runtime. This can be

achieved by providing a set of QoS specification abstraction interfaces for users and

applications while isolating the complexity of the fuzzy rule hierarchy from users

and applications, such that the fuzzy rule bases can be easily and flexibly

customized to match all of the detailed requirements of the user and applications.

This translates to the need to support meta-level fuzzy model adaptation in

MobiPADS during runtime. In the following sections, we describe the three

meta-level adaptation mechanisms of MobiPADS, namely, membership function

adaptation, importance weight adaptation, and computational reflection.

83

Figure 5.1 Visual Effect M-JPEG Enncoding with Packet Lost

Figure 5.2 Visual Effect of LC Encoding with Packet Lost

84

5.1 Membership Function Adaptation

We have proposed an adaptive fuzzy control architecture that flexibly supports

new mobile applications. The architecture is comprised of a generic fuzzy QoS

control model that predefines all the possible QoS parameters and defines the

corresponding membership functions by heuristic approximation. All of the QoS

parameters are normalized to match a scale composed of five linguistic values.

The fuzzy rules are defined exhaustively to avoid the need for fuzzy rule

interpolation. Although there are a large number of QoS parameters, the number

of rules maintained by the system is limited because of the hierarchical

organization of the QoS parameters.

By using this design, our fuzzy control model is able to support typical

multimedia applications to react adaptively to the changes in the environment.

However, the adaptation provided by the fuzzy control model at this stage is often

sub-optimal since the membership functions of the QoS parameters are

pre-modeled and different applications can have very different interpretations of

the same QoS parameter.

In order to fully utilize the predefined fuzzy control model to support new

adaptive applications, we introduce a number of operations that adapt the

pre-defined membership functions to fulfill user and application requirements in a

wireless environment. These operations are called normal point shifting. The

idea behind normal point shifting is that, for each specific user and application

combination, the system allows appropriate adjustments to the predefined

membership functions to adapt to the corresponding interpretation on all the QoS

85

parameters, without the need to modify other parts of the generic fuzzy control

model.

Normal point shifting allows the user and application developer to dynamically

specify the normal position of a QoS parameter. As a result, the procedure eases

and simplifies the adjustment of the membership functions that model the QoS

parameters to more accurately reflect the interpretations of the user and

application developer on that QoS parameter.

5.1.1 Normal Point Shifting

Three approaches for normal point shifting have been defined: proportional

shifting, reverse-proportional shifting, and relative-scaled shifting. Figure 5.3

depicts the generic fuzzy sets of a QoS parameter before shifting, which typically

represent five linguistic values – bad, poor, normal, good, and excellent.

Different types of QoS parameters require different shifting methods.

Proportional shifting, which is shown in Figure 5.4, is suitable for QoS parameters

that seek to bound the left-hand side of the fuzzy sets. Examples are frame rate

and battery life, since these types of parameters are almost always interpreted as

critical when their values approach 0%. On the other hand, an input value of

100% for frame rate or battery life may not necessarily be interpreted as excellent

because users and applications may have different requirements. For instance,

100% for frame rate typically refers to 30 fps; however, when a user is viewing a

high-speed sports video clip, 30 fps may only be considered good or even normal.

Similarly, a user may plan to use a mobile device continuously for 3 hours, but the

86

device may have a maximum battery life of only 3.5 hours. In this case, a 100%

battery life would only be considered to be normal by the user.

Figure 5.5 shows the opposite form of proportional shifting, called

reverse-proportional shifting, which seeks to bound the right-hand side of the

fuzzy sets. This type of shifting is suitable for QoS parameters that are always

interpreted as excellent when the input approaches 100%, e.g., the connection cost

of 3G wireless and inter-media synchronization. A 100% input value means a

3G wireless connection that is free of charge or perfectly synchronized media,

which are always interpreted as excellent. On the other hand, when the input

value approaches 0%, this can be interpreted as an extremely expensive 3G

connection or media that are totally out of synchronization. In these cases, the

interpretation of an input value approaching 0% is more abstract and dependent on

the corresponding normalization functions and the requirements of users and

applications than in the cases mentioned earlier.

Figure 5.6 shows the combined form of the previous two shifting types, which is

called relative-scaled shifting. The interpretation of this type of QoS parameter

is more objective in that both ends are bounded. Examples for such a parameter

are CPU availability and network error condition. Since the raw measurements

are either directly or reversely used as the input value, in the former case, 0%

always means bad and 100% always means excellent for CPU availability; while

in the latter case, a 0% error rate always means excellent and a 100% error rate

represents the worst network condition, which means out-of-service.

87

Through the shifting of normal points of QoS parameters, users and application

developers can dynamically and easily alter the pre-modeled fuzzy membership

functions to better adapt to the requirements of users and applications.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
Input

D
eg

re
e

Figure 5.3 Generic Fuzzy Sets for A Qos Parameter

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
Input

D
eg

re
e

Figure 5.4 Proportional Shifting of Fuzzy Sets

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
Input

D
eg

re
e

Figure 5.5 Reverse-proportional Shifting of Fuzzy Sets

88

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
Input

D
eg

re
e

0.7

0.8

0.9

1

1.1

1.2

S
ca

lin
g

Fa
ct

or

scaling factor

Figure 5.6 Relative-scaled Shifting of Fuzzy Sets

5.1.2 Experimental Results

Based on the experimental setup in Section 4.6, we conducted two sets of

experiments to better understand the bahavior and impact of normal point shifting.

The first experiment was configured with the normal point of the clarity parameter

proportionally shifted to the right by 10%, while no normal point shifting was

applied in the control experiment. The network bit error rate was set to 40% and

the bandwidth was varied between 0 and 400 KB/s. The experiment exercised

free adaptation on the mobilets of the service chain.

Figure 5.7 shows the results of the clarity performance. Clarity normal point

shifting achieved an average of 3% better clarity than was found in the control

experiment. The effect of clarity differences only appeared beyond 20% clarity,

since the fuzzy sets of the clarity parameter were bounded at the left-hand side of

the input value range. Figure 5.8 shows the smoothness performance of the two

result sets. It is interesting to see that clarity normal point shifting did not

significantly worsen the smoothness performance. On average, the clarity

normal point shifting was only 0.16 fps worse than was seen in the control

experiment. Figure 5.9 shows a similar finding that clarity normal point shifting

89

raised the packet drop rate by only 1.05% compared to what was seen in the

control experiment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

C
la

ri
ty

Bandwidth (KB/s)

shifted, 0.4

dynamic, 0.4

Figure 5.7 Clarity Performance with Clarity Normal Point Shifted

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400

S
m

o
o

th
ne

ss
 (f

p
s)

Bandwidth (KB/s)

shifted, 0.4

dynamic, 0.4

Figure 5.8 Smoothness Performance with Clarity Normal Point Shifted

90

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400

P
ac

ke
t d

ro
p

ra
te

Bandwidth

shifted, 0.4

dynamic, 0.4

Figure 5.9 Packet Drop Rate with Clarity Normal Point Shifted

The second set of experiments was conducted with larger variations of normal

point shifting but with a lowered network bit error rate of 10%. In this

experiment, three result sets were collected. The first result set, labeled as

clarity shifted, was clarity driven with the clarity normal point shifted to the right

by 10% and the smoothness normal point shifted to the left by 10%. The second

result set, labeled as smoothness shifted, was smoothness driven and was collected

by reversing the previous setting – the clarity point was shifted to the left by 10%

and the smoothness point was shifted to the right by 10%. The third result set

was the control experiment with no normal point shifting. The corresponding

clarity, smoothness, and packet drop rate performances are shown in Figure 5.10,

Figure 5.11and Figure 5.12.

Based on these two sets of experimental results, we found that normal point

shifting does show effective inference on the concerned QoS aspects. However,

it is worth noting that the normal point shift does not affect the QoS performance

91

directly, while shifting the membership function during fuzzification. This effect

is cascaded through the various inference engines to the step for the selection of

mobilet profiles, where a QoS aspect that does not attain the quality level

specified in the normal point is given a higher weight. This leads the

reconfiguration engine to choose mobile profiles in favor of improving the

concerned QoS aspect. However, this does not guarantee the level of QoS

improvement, nor will this effect be proportional across different resource levels.

The reason for this is that, compared to the rate and level of changes in the

resource and QoS level, the adaptation options and profile switching actions are

relatively coarse-grained, so that the final adaptation effects will always fluctuate

more than the changes in resource levels.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300 350 400

C
la

ri
ty

Bandwidth (KB/s)

clarity shifted

dynamic, 0.1

smoothness shifted

Figure 5.10 Clarity Performance of Clarity or Smoothness Normal Point Shifted

92

5

10

15

20

25

30

50 100 150 200 250 300 350 400

S
m

o
o

th
ne

ss
 (f

p
s)

Bandwidth (KB/s)

clarity shifted

dynamic, 0.1

smoothness shifted

Figure 5.11 Smoothness Performance of Clarity Or Smoothness Normal Point Shifted

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300 350 400

P
ac

ke
t d

ro
p

 ra
te

Bandwidth

clarity shifted

dynamic, 0.1

smoothness shifted

Figure 5.12 Packet Drop Rate of Clarity or Smoothness Normal Point Shifted

.

93

5.1.3 Discussion

Normal Point Shifting is a simple approach that can vastly improve the accuracy of

the fuzzification process to closely model individual QoS factors based on the

perceptions of the user and the demands of the application. However, even when

all of the concerned QoS factors have been accurately modeled, users and

application developers can have another dimension of demand for prioritizing the

various concerned QoS factors, as seen in Section 5.1. In the following section,

we will present another mechanism to fulfill this requirement for prioritizing QoS

factors.

5.2 Importance Weight Adaptation

Attempting to impose and satisfy a hard-guarantee QoS contract operating in a

wireless environment is difficult, to say the least. This is due to the extreme

variations in the available resources and to the dynamic changing contexts of

mobile devices and operating conditions. An alternative is to use priority-based

approaches to differentiate between the different services in terms of importance,

which is able to provide better QoS when compared to best effort services. The

weighted priority approach introduces quantitative control of the CPU and network

utilization of different services. Similarly, our model features Importance Weight

Adaptation, which supports representing user and application requirements in the

form of relative weightings assigned to different user satisfaction factors.

In Section 4.4, we described the use of relative importance values for the concerned

QoS factors to support the selection of optimal mobilet profiles. This model

assumes equal weighting among all of the concerned QoS factors, which may not

94

lead to the achievement of an optimal level of QoS as perceived by the user. This

is because objective perspectives and different users are involved, as discussed in

Section 5.1. The adaptive fuzzy membership function discussed in Section 5.2

partially addressed this issue from a microscopic approach that fine-tunes the

normal point of fuzzy variables. In contrast, importance weight adaptation

addresses the remainder of the issue from a more macroscopic approach.

5.2.1 Importance Weight for QoS Factors

Based on the preferences of users and the requirements of applications, users and

application developers can assign a non-negative integral priority value to each of

the concerned QoS factors. Initially, all of the concerned QoS factors have a

priority value of 4, which is mapped to a weighting of 50%. Higher priorities will

be mapped to weightings ranging from 60% to 100%, while lower priorities will be

mapped to weightings ranging from 40% to 10%. By assigning different priorities

to different concerned QoS factors, the importance values of each QoS factors are

boosted or suppressed according to the requirements and preferences of users and

applications.

This priority value PV ranges from 0 (lowest) to 9 (highest), and is denoted by

PV = {pv1, pv2, …, pvk} → [0, 9]. (29)

The set of importance weights V representing the user-assigned and

application-assigned QoS factor priorities, which is directly mapped from priority

values, is denoted by:

V = {v1, v2, …, vk} → [0.1, 1], where vi = (pvi+1)(0.1) (30)

95

By augmenting the importance value w in (28), the optimal profile becomes

δoptimal (f
*) =

)(
max

MFf ∈
{ k

i 1min = [max(oi(f), ii wv)]}. (31)

5.2.2 Experimental Results

Based on the experimental setup of 4.6, we conducted an experiment to study the

bahavior and impact of the importance weight adaptation. The experiment was

configured with importance values for the clarity parameter of 90%, 70%, 50%,

30%, 10%, while the importance value for other QoS factor was kept at 50%.

The network bit error rate was 10% and the bandwidth varied between 0 and 400

KB/s. The experiment was configured to support adaptation of the mobilets

composed along a service chain. The results of the clarity performance are

shown in Figure 5.13.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300 350 400

C
la

ri
ty

Bandwidth (KB/s)

Importance weight 90%

Importance weight 70%

Importance weight 50%

Importance weight 30%

Importance weight 10%

Figure 5.13 Performance of Clarity with Importance Weight Adaptations

96

As shown in Figure 5.13, the clarity performance varied proportionally to the

changes in bandwidth under all importance weights. However, all of the five

importance weight settings showed fluctuations in the trends lines. This was for

the same reason as that discussed in Section 5.2.2, namely that compared to the

rate and level of changes in the resource and QoS levels, the adaptation options

and profile switching actions are relatively coarse-grained, so that the final

adaptation effects will always fluctuate more than the changes in resource levels.

The effect of a weight value higher than 50% results in a convex trend, while a

weight value lower than 50% leads to a concave trend. From Figure 5.13, we

can conclude that the larger the importance weight value of a QoS factor is, the

better is the performance level of that QoS factor under a given resource level.

5.2.3 Discussion

Importance weight adaptation, coupled with membership adaptation, provides a

concise set of adaptation mechanisms for users and application developers to

customize the interpretations of QoS factors of different abstraction levels and from

different perspectives. These two adaptation mechanisms virtually eliminate the

need to predefine specific fuzzy models for different application scenarios, which

generally requires expertise in fuzzy control and in the domain of applications.

Specifically, these two mechanisms support the adaptation of the generic fuzzy

model by referring to two sets of intuitive input parameters from the user and

application: preferred performance values for concerned QoS factors, e.g., 15 fps in

smoothness for video playback and 16-bit in fidelity for audio playback; and a list

of importance weight values for these QoS factors, e.g., 90% in smoothness and

40% in fidelity. As a result, these mechanisms greatly reduce the difficulties in

developing QoS-aware mobile applications that leverage the fuzzy control model.

97

5.3 Computational Reflection

While the adaptation mechanisms of MobiPADS offers a significant degree of

freedom to customize the interpretation of QoS that guides the adaptation

behaviors, at times mobile applications are still in the best position to make

critical decisions on the operating context and hence the adaptation behavior.

For this reason, MobiPADS provides the mobile application with an extensive set

of APIs and reflective interfaces. Through meta-level object representations, a

mobile application can gain access to the metadata of the internal fuzzy control

model, service reconfiguration mechanism, and dynamic adaptation mechanisms

of MobiPADS, and modify these entities to obtain optimal service provision from

MobiPADS.

To present a clearer picture of the capabilities and roles of each entity in the

MobiPADS platform in supporting adaptation, Table 2 shows the relationships

between adaptation initiators and reconfigurable entities. There are two entities

that can subscribe and react to changes in QoS factors: the mobile application and

the MobiPADS system itself. On the other hand, there are three entities that can

be reconfigured to adapt to the changes in the QoS factors: the mobile application,

the service chain of MobiPADS, and the mobilet within the service chain.

A mobile application can respond to the contextual changes by changing its

internal logic, or by changing the configuration of the service chain or even the

behavior of individual mobilets within the service chain. By contrast, the

MobiPADS cannot alter the internal logic of the mobile application, but may

supply the mobile application with the necessary contextual information. In this

98

case, the application may choose to perform intra-application adaptation in

reaction to the contextual information feed from the middleware.

Table 5.1 Relationships between Adaptation Initiators and Reconfiguration Entities

 Reconfigurable Entity

Adaptation
Initiator

Mobile Application Service Chain Mobilet

Mobile
Application

���� To adapt to the dynamic
wireless environment, a mobile
application can respond to the
QoS factor and adjust its
behavior accordingly.

���� Using the application profile, a
mobile application can specify the
service configurations under different
environments. The mobile application
can also change the current
configuration directly.

���� By supplying suitable parameters to a
mobilet, a mobile application can
fine-tune the subtle behavior of
individual mobilets, so that the most
suitable mode of operation is selected.

MobiPADS
System

The MobiPADS system cannot
reconfigure the mobile
application directly. It can
only supply the mobile
application with the context.

���� According to the MobiPADS system
profile, the configuration of the current
service chain is actively adjusted to suit
the existing environment.

���� If specified in the system profile, the
reconfiguration process can also switch
the mode of operation of an individual
mobilet by supplying suitable
parameters.

5.3.1 Reflective API

To support the development of context-aware mobile applications, the MobiPADS

exposes four meta-level objects that abstract the QoS interpretation, the service

characteristics, the service reconfiguration, and the adaptation mechanisms of the

system, which are shown in Table 3. Through these meta-objects, the mobile

application can subscribe to the contextual changes, and is highly flexible in

selecting and adjusting the service configuration and adaptation policy of the

MobiPADS. The four meta-objects are the ReConfigMeta, MobiletMeta,

AdaptationMeta, and QoSMeta. The respective roles of these meta-objects are

listed below.

� The ReConfigMeta meta-object reflects the configuration of the current

service chain that serves the mobile application. Through ReConfigMeta, a

mobile application can subscribe to reconfiguration events and actively

participate in the reconfiguration of the service chain.

� The MobiletMeta meta-object reflects the statuses and characteristics of

99

individual mobilet services. Through MobiletMeta, a mobile application

can change the operating profiles of individual active mobilets.

� The AdaptationMeta meta-object reflects the input and control parameters of

the fuzzy inferencing of MobiPADS. Through AdaptationMeta, a mobile

application can modify the list of concerned QoS factors and also the fuzzy

inference frequency among all inference engines. A mobile application can

also subscribe to QoS factor events by specifying the notification conditions,

e.g., by notifying the application when the QoS factor - battery level is less

than 20%.

� The QoSMeta meta-object reflects the status and characteristics of individual

QoS factors and, more importantly, it also reflects the key attributes of the

two meta-adaptation mechanisms described in Sections 5.2 and 5.3 –

membership function adaptation and importance weight adaptation.

Through QoSMeta, a mobile application can reify the membership function

adaptation mechanism by adjusting the value of the normal point and the

approach chosen for normal point shifting. A mobile application can also

reify the importance weight adaptation mechanism by modifying the relative

priority value or the absolute priority value of the QoS factor. Moreover, a

mobile application can also query the defuzzified value of the QoS factor.

Table 5.2 Reflective MobiPADS API for Context-Aware Mobile Applications

Interfaces Description
interface ReConfigMeta { // Meta-object that reflects service reconfiguration

 String[] listAvailableServiceNames(); // list the names of all available services

 String[] listActiveServiceNames(); // list the names of services in the service chain

 MobiletMeta[] listAvailableService(); // list all of the available services

 MobiletMeta[] listActiveService(); // list the services in the service chain

 MobiletMeta getService(String mobiletName); // get a mobilet service object by name

 MobiletMeta getFirstService(); // get the first mobilet service in the service chain

 MobiletMeta getLastService(); // get the last mobilet service in the service chain

 void insertService(int position, MobiletMeta newService); // insert a mobilet service into the service chain

 void removeService(String serviceName); // remove an active mobilet service from the service chain

100

 String getCurrentServiceProfile(String mobiletName); // get the current service profile of an active mobilet service

 void setCurrentServiceProfile(String mobiletName, String
mode);

// set the current service profile of an active mobilet service

 void reconfigure(MobiletMeta[] newServiceChain); // reconfigure the entire service chain

 int getMinimalTTL(); // get the minimal time-to-live (ms) of a service chain

 void setMinimalTTL(int timeToLive); // set the minimal time-to-live (ms) of a service chain

 int getCurrentTTL(); // get the current time-to-live (ms) of the service chain

 void setCurrentTTL(int timeToLive); // set the current time-to-live (ms) of the service chain

 void lockConfiguration(); // disallow reconfiguration of the service chain

 void unlockConfiguration(); // enable reconfiguration of the service chain

 void subscribeReconfiugration(ReconfigListener listener); // subscribe to the reconfiguration event

 void unscribe(ReconfigListener listener); // unsubscribe from the reconfiguration event

}

interface MobiletMeta { // Meta-object for mobilet

 String[] listServiceProfile(); // list the service profiles available to the mobilet

 String getCurrentServiceProfile(); // get the current service profile

 void setCurrentServiceProfile(String ServiceProfile); // set the current service profile

 String getName(); // get the name of the mobilet service

 String getDescription(); // get the description of the mobilet service

 boolean isActive(); // check if the mobilet is operating in the service chain

 int getServicePosition(); // get the position of the mobilet in the service chain

 void removeService(); // remove the mobilet from the service chain

 String[] getInputTypes(); // get the input media type of the mobilet

 String[] getOutputTypes(); // set the input media type of the mobilet

 int getMinimalTTL(); // get the minimal time-to-live (ms) of the mobilet

 void setgetMinimalTTL(int timeToLive); // set the minimal time-to-live (ms) of the mobilet

 int getCurrentTTL(); // get the current time-to-live (ms) of the mobilet

 void setCurrentTTL(int timeToLive); // set the current time-to-live (ms) of the mobilet

 void lockService(); // disallow reconfiguration of the mobilet

 void unlockService(); // enable reconfiguration of the mobilet

 Map<String,Double[]> getAffectedFactors(String profile); // get the affected QoS Factors of a service profile

 void setAffectedFactors(String profile, Map<String,Double[]>); // set the affected QoS Factors of a service profile
}

interface ReconfigListener { // Listener for reconfiguration events

 public abstract void notifyReconfig(Date triggerTime, String[]
oldChain, String[] oldProfiles, String[] newChain, String[]
newProfiles);

// invoked before reconfiguration. Inform the application about the
changes to be made in the service chain

}

interface AdaptationMeta { // Meta-object that reflect the adaptation mechanism

 QoSMeta[] listAllQoS(); // list all QoS factors

 QoSMeta[] listConcernedQoS(); // list the QoS factors concerned by the current application

 String[] listAllQoSNames(); // list the names all QoS factors

 String[] listConcernedQoSNames(); // list the names of the concerned QoS factors

 QoSMeta getQoS(String QoSName); // get a QoS factor meta-object by name

 QoSMeta getContextRootQoS(); // get the root node for contextual QoS factors

 QoSMeta getUserRootQoS(); // get the root node for user QoS factors

 int getInferInterval(); // get the inference interval of the whole fuzzy model

 void setInferInterval(int interval); // set the inference interval of the whole fuzzy model

 void subscribeQoS(QoSListener listener, String qosName,
String relation, double refValue);

// subscribe to a QoS event, with condition of notification

 void unsubscribeQoS(QoSListener listener); // unsubscribe a QoS event

}

interface QoSMeta { // Meta-object for QoS factor

 QoSMeta[] getQoSComposition(); // get the child QoS factors that this QoS factor is referring to

 boolean isLeaf(); // check if this is a leaf node

 boolean isContextRoot(); // check if this is the root node of contextual QoS factors

 boolean isUsertRoot(); // check if this is the root node of user QoS factors

 boolean isConcerned(); // check if this is a QoS factor concerned by user or application

 void setConcerned(boolean concernFlag); // set this as a QoS factor concerned by user or application

 String getName(); // get the name of the QoS factor

 String getDescription(); // get the description of the QoS factor

 double getValue(); // get the defuzzified QoS value of the QoS factor

101

 int getUpdateInterval(); // get the inference and update interval of the QoS factor

 void setUpdateInterval(int interval); // set the inference and update interval of the QoS factor

 double getNormalPoint(); // get the normal point of the QoS factor

 void setNormalPoint(double value); // set the normal point of the QoS factor

 String getNPShiftingType(); // get the type of normal point shifting approach

 void setNPShiftingType(String shiftingType); // set the type of normal point shifting approach

 int getPriority(); // get the priority value of the QoS factor

 void setPriority(int priority); // set the priority value of the QoS factor

 double getImportanceWeight(); // get the importance weight of the QoS factor

 void setImportanceWeight(double weight); // set the importance weight of the QoS factor

 int getRelativePriority(); // get the relative priority rank of the QoS factor among all concerned
QoS factors

 void setRelativePriority(int priority); // set the relative priority rank of the QoS factor among all concerned
QoS factors; the priority values of all concerned QoS factors will be
automatically adjusted

}

interface QoSListener { // Listener for QoS events

 public abstract void notifyQoS(Date triggerTime, String detail); // invoked when the predefined monitoring condition on the QoS factor
is fulfilled. Inform the application about the trigger

}

5.3.2 A Case Example

To present a clearer understanding of the meta-objects, we give an example in

Table 5.3 of how a mobile Web application can 1) adjust the adaptation

mechanisms of MobiPADS and 2) adjust its internal logic and the service chain of

MobiPADS, in response to environmental changes. Using the MobiPADS

reflective API, the sample application specifies two concerned QoS factors –

power availability and media fidelity, and configure their normal points and

priorities. As such, the adaptation mechanisms of MobiPADS will emphasize

these two QoS factors, while aiming to attain the specified normal point values for

these two QoS factors. The application also subscribes to a battery level QoS

event, through which MobiPADS will notify the application when the battery level

is below 20%. Upon being notified, and if the mobilet is deployed in the current

service chain, the application will enforce the removal of the multiple description

coding mobilet to reduce CPU loading, which correspondingly reduces power

consumption.

Table 5.3 shows the sample code of the mobile Web application. On lines 2-13,

102

the setAdaptation() method shows the way to specify concerned QoS factors to

the MobiPADS. Lines 4-7 add PowerAvailability as a concerned QoS factor and

specify the normal point and the priority of this QoS factor. Similarly, lines 8-11

specify MediaPriority as another concerned QoS factor. Line 12 subscribes to a

QoS factor – BatteryLevel – and specifies the notification condition of the battery

level if it falls below 20%.

Table 5.3 Sample Context-aware Mobile Application

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

public class SampleApp {
 public void setAdaptation() {
 AdaptationMeta adapt = MobiPADS.getAdaptationMeta();
 QoSMeta power = adapt.getQoS("PowerAvailability");
 power.setConcerned(true);
 power.setNormalPoint(0.5);
 power.setPriority(1);
 QoSMeta fidelity = adapt.getQoS("MediaFidelity");
 fidelity.setConcerned(true);
 fidelity.setNormalPoint(0.7);
 power.setPriority(2);
 adapt.subscribeQoS(MyListener, "BatteryLevel", "LESS_THAN", 0.2);
 }

 class MyListener implements QoSListener {
 public void notifyQoS(Date triggerTime, String detail) {
 ReConfigMeta cfg = MobiPADS.getReConfigMeta();
 MobiletMeta mdc = cfg.getService("MultipleDescriptionCoding");
 if (mdc.isActive) {
 mdc.removeService();
 mdc.lockService();
 }
 }
 }
}

Lines 15-24 defines the Listener class for the subscribed QoS event. On lines

16-23, the implementation of notifyQoS() specifies that once the condition for

this listener is fulfilled and the event is triggered, it will look up the mobilet

MultipleDescriptionCoding in the ReConfigMeta meta-object. If the mobilet

exist in the current service chain, it will be removed and prohibited from

re-entering the service chain again during the current application section.

103

5.4 Summary

The fuzzy control model of a fuzzy control system is typically modeled by

domain experts. Extending our previous works, our proposed fuzzy QoS control

model features membership function adaptation and importance weight

adaptation, which are designed to reduce the effort of mobile application

developers. Otherwise, mobile application developers would have to put much

more effort into understanding and controlling every detail of the contextual

environment. By using normal point shifting and importance weight, a mobile

application developer only needs to be aware of relevant contextual details down

to a level that is sufficient for making adaptation decisions. This alleviates the

need for developers to manage low-level contextual parameters. The

experimental results also showed that membership function adaptation and

importance weight adaptation can effectively tune the performance of individual

QoS parameters under a resource-limited environment to adapt to the needs of

different users and applications. However, although these two adaptation

mechanisms offer a significant degree of freedom with regard to QoS adaptations,

mobile applications are sometimes still in the best position to make critical

decisions on operating context and hence adaptation mechanisms. For this

reason, MobiPADS provides mobile applications with an extensive set of APIs

and reflective interfaces. Through the meta-level object representation of the

internal fuzzy control model and service reconfiguration mechanism, a mobile

application can access the QoS information, service configuration, and adaptation

mechanisms of MobiPADS, and modify these entities to obtain optimal service

provision from MobiPADS.

104

In this chapter, we have presented three meta-level adaptation mechanisms that

offer a principled approach to helping users and application developers to easily

specify and control desired adaptation policies from different perspectives. They

are: Membership Function Adaptation, Importance Weight Adaptation, and

Computational Reflection. Importantly, by coupling with each other, these three

mechanisms are able to accurately, efficiently, flexibly, and holistically map user

and application preferences and requirements into the adaptation behaviors of the

QoS control model.

105

Chapter 6

Related Works

This section presents a number of frameworks and architectures that provide QoS

management support for applications with QoS requirements. We summarize their

features and analyze their suitability for deployment over a mobile operating

environment.

6.1 OMEGA

The OMEGA architecture [Nahrstedt96] is a QoS architecture that provides

real-time guarantees in distributed multimedia systems. The research effort has

been focused on resource management from both local and global perspectives.

The QoS Broker [Nahrstedt95] is the core component of OMEGA. It is a

middleware responsible for the negotiation of QoS levels to be delivered to the

application by the underlying system. The QoS Broker translates the requirements

specified by the application, which then negotiates the resource allocations with the

operating system and the network.

QoS Broker employs a set of translation relations for each media type, translates the

application-level parameters specified by the user into lower-level QoS

requirements. Subsequently, the QoS Broker follows these low level requirements

and reserves resource based on QoS parameters associated with network and

operation system resources, both local and remote. The translation is

bi-directional, such that changes in resource reservations can be dynamically

106

reported to the user as application-level QoS parameters. A local QoS Broker

aiming to perform reservations of remote resources, called a buyer, is responsible

for interacting with other remote QoS Brokers, known as sellers. The architecture

employs a buyer/seller protocol to allow sellers to advertise their services and

buyers to contact sellers and reserve resources of sellers.

The QoS Broker provides orchestration service for balancing resource usage. The

orchestration service utilizes information stored in resource databases to adjust the

balances among resources of multimedia devices, operating systems, and the

network. The architecture assumes the underlying operating system to have

real-time capabilities, which allows the QoS Broker to predict and leverage the

temporal behaviors of the OS for performing the orchestration of resources.

The OMEGA Architecture adopts a communication model that consists of two

protocols at application and network levels. The Real-Time Application Protocol

(RTAP) implements functions for call management, device management,

synchronization, and media delivery at the application level. The Real-Time

Network Protocol (RTNP) is responsible for connection management, error

correction, rate control, and network access at the transport level. By using these

two protocols, the OMEGA architecture provides guaranteed communication

services over specified communication channels to applications.

The OMEGA architecture supports resources reservations at the operating system

and network levels. It also provides a complete QoS translation mechanism that

makes the underlying low level resources transparent to the application.

107

6.2 QoS-A

QoS-A [Campbell96], developed by the Distributed Multimedia Research Group at

Lancaster University, is a QoS Architecture for specifying and implementing

performance properties of multimedia applications over ATM-based networks.

The architecture provides QoS mechanisms that span across all architectural layers,

including end-systems, communications systems, and networks.

The architecture incorporates the notions of flows, service contracts and flow

management to an ATM networked environment. Flows characterize the

production, transmission and eventual consumption of single media streams,

service contracts are binding agreements between users and providers and flow

management provides for the monitoring and maintenance of the contracted QoS

levels.

QoS-A aims to provide data flows with an associated level of QoS through tight

coupling of devices, end-systems, and networks. QoS-A provides a

QoS-configurable communication mechanism by using an augmented layers and

planes structure integrating the existing layers and planes of the ATM architecture.

It also employs thread-scheduling algorithms based on QoS constraints to achieve

desired behaviors at system level. Devices are also built with QoS capabilities to

support both scheduling and communication mechanisms.

The QoS-A architecture is composed by three planes, protocol, QoS maintenance

and flow management. The protocol plane is responsible for data transfer. It

consists of a user plane for transmitting media data and a control plane for carrying

108

control data. The QoS maintenance plane is responsible for monitoring and

maintaining the QoS levels specified in the service contract that has been

established among the user and the architecture. The flow management plane is

responsible for admission control resource reservation, flow establishment, QoS

renegotiation, QoS mapping and translation, and QoS adaptation.

The protocol and QoS maintenance planes are subdivided into four layers,

distributed systems platform, orchestration layer, transport layer and lower layer.

The distributed systems platform is responsible for providing services for QoS

specification and multimedia communication. The orchestration layer supports

media synchronization and jitter correction. The transport layer provides

QoS-configurable communication service. The lower layers, which include

network, data link and physical layer, provide low level communication services.

QoS-A is implemented on top of the Chorus open microkernel architecture, which

focused on deploying multimedia protocols for local ATM network. Similar to

OMEGA, QoS-A also supports translation between different levels of QoS

requirements and resource reservations. However, QoS-A supports transparent

QoS adaptation dynamically while OMEGA can only notify the application when

QoS changes.

6.3 QuO

The Quality of Service for CORBA Objects (QuO) architecture [Quo08] provides

QoS abstractions that can be utilized by distributed CORBA objects. QuO

supports a QoS Description Language (QDL) by extending the Interface

109

Description Language (IDL) of CORBA.

The QDL language encapsulates QoS representations into object abstractions.

QDL supports the description of resource requirements of CORBA objects. The

language can also express the resources available in the system and their statuses.

QDL also supports QoS contracts between a client and a server object, which

includes the requested level of service, the level of service that is achievable, and

actions to be taken when the QoS level changes. QDL supports the notions of QoS

regions that allow the application to adapt to changing network conditions by

changing from one QoS region to another. The architectural components of QDL

are regular CORBA objects that are synthesized using IDL and QDL descriptions.

These architectural components are responsible for QoS enforcement, QoS

measurement, and QoS adaptation.

Although the design of a QoS specification framework should logically separate

from QoS provision, the lack of knowledge of available QoS mechanisms hinders

the practical feasibility of existing QoS specification languages. QuO integrates

AQuA [Kuhns99] for dependability and TAO [Cukier98] for real-time support

allowing for the provision of various QoS properties. This provides a concrete link

between QoS requirements and QoS provision, pragmatically strengthening the

usability of QuO.

6.4 HQML

The Hierarchical QoS Markup Language (HQML) [Gu01], developed by the

MONET research group at the University of Illinois at Urbana-Champaign, is an

110

XML-based QoS language for supporting distributed multimedia applications.

Hierarchical refers to the three levels of specification in HQML, which are the user

level, application level, and system resource level. The MONET group has also

conducted an extensive survey [Jin04] of existing QoS specification languages.

HQML supports adaptive middleware for improving QoS provision through

application layer tags including ReconfigRule, Condition, and Action. When

adaptation occurs, HQML allows feedback to and from the user through the

Notification and Feedback tags.

The system resource level in HQML includes parameters from network, CPU,

memory, and disk. However, application developers are not required to directly

deal with these parameters. Instead, HQML provides a visual programming

environment for developers to generate HQML files and a compiler that maps

application level specifications resource level. A boundary symbol relational

grammar named ConfigG, is used to check for formal consistency on visual QoS

specification and automatic HQML generation. Unlike most of the QoS

middleware, which focuses on communication models and low-level resource

management, the strength of HQML is the inclusion of user-level QoS

specifications.

6.5 OWL-S

OWL-S [DAML08], is an OWL ontology aims at incorporating Semantic Web

techniques for unambiguously describing Web Service semantics in machine

111

interpretable representations. These descriptions can be used for dynamic service

composition based on formally specified service QoS specification.

In OWL, resources with similar characteristics were grouped using the abstraction

of classes. The OWL-S ontology is structured on top of the Service class. A

Service class contains three properties, which are ServiceProfile, ServiceModel and

ServiceGrounding. ServiceProfile describes what resources the service provides

and requires. ServiceModel describes how the service works. ServiceGrounding

describes how to use the service. The ServiceProfile class is composed of contact

information and functional descriptions including preconditions, inputs, outputs

and effects. Each ServiceProfile class is also associated with feature descriptions

including service category, quality rating and parameter list. However, OWL-S

does not provide nor adopt any specific scheme for both service category and

quality rating. Therefore, it is up to the provider and user to ensure the adoption of

the same categorization and rating scheme. Parameter list is unbound and can

carry any information. This provides the flexibility for extending the

ServiceProfile class in an unstructured manner.

DAML-QoS [Zhou04] leverages the OWL-S Service class to specifically provide

QoS representation. This is done by extending the ServiceProfile class with

QoSProfile class to provide a QoS ontology complementing OWL-S. QoS

metrics and property constraints have been added to support the matching

between service and service user. DAML-QoS has also introduced a

matchmaking algorithm for supporting different matching degrees based on the

constraints. However, the multidimensional QoS constraints can hardly be

112

utilized in a dynamic mobile environment, since the constraints can be easily

violated under the fluctuating QoS resource availabilities. The effect of fluctuating

QoS resource levels is thus amplified by the temporary unavailability of services

due to unmatched constraints. This can result in a user perceived QoS that is

significantly poorer than unmanaged best effort services.

6.6 QML

The QoS Modeling Language (QML) [Frølund98], developed by Hewlett Packard,

is a general-purpose language for describing the QoS properties of software

components. The research focus of QML is on QoS specifications and does not

deal with other aspects of QoS management.

QML is designed to specify multiple QoS aspects such as reliability, performance,

security, and timing. QML uses the abstractions of contract type, contract and

profile. Contract type defines the properties associated with a specific QoS aspect.

For example, the performance contract type is defined by the delay and throughput

properties. Each property is bounded to a domain of values that may be specified

numerically, as a set or as an enumeration. The favorable ordering of a property

value, whether greater is better or smaller is better, is specified by the increasing

and decreasing keyword. A contract is an instance of contract type, specifying the

constraints on all the properties. A profile is a composition of contracts for a

service, specifying the requirements on properties of all QoS aspects for utilizing

the service.

QML supports refinements of contacts and profiles. A refinement is similar to

113

inheritance in object-oriented programming, in which a child refines a parent by

inheriting the property constraints of the parent. However, a child contact or

profile can modify the constraints of its parent by further tighten these constraints,

or adding more constraints, but not loosen them.

QML lacks the ability for specifying the relationships, dependencies or tradeoffs

among the properties of a contact. This greatly limits the flexibility for the

language to support dynamic adaptation. When some of the requirements cannot

be fulfilled during runtime, it would be useful to have the interdependency

information for supporting decision making on adapting the services to the

variations in QoS resource levels.

6.7 SLAng

SLAng [Lamanna03] is an XML-based language for describing service level

agreements (SLA). SLAng focuses on providing a language model for supporting

QoS negotiation and contract specification.

SLAng provides different levels of QoS service level abstraction, including

application level, middleware level and the underlying resource level. SLAng also

introduced another dimension of expressiveness called for Horizontal and Vertical

SLAs. Horizontal SLAs are contracted between different parties providing the

same kind of service. Horizontal SLAs govern the interaction between these

coordinated peers. For example, two container providers can collaborate for

replicating components. On the other hand, vertical SLAs are contracted between

subordinated pairs. Vertical SLAs regulate the support parties get from their

114

underlying infrastructure. For example, a container provider can specify an

agreement with an ISP for network services. The structure of an SLA in SLAng

begins with an indication of horizontal or vertical agreement type. The SLA then

specifies responsibilities in three sections: client, server, and mutual. In each of

these sections, parameters specific to the SLA type are defined and therefore

limited to those defined in the language itself.

SLAng not only supports QoS specification on application, middleware and

resource levels, it also provides SLA for service peers as well as subordinated pairs.

This makes SLAng a suitable input for QoS-aware adaptive middleware and

automated reasoning systems.

6.8 Comparisons

Table 3.1 summarized the features of the reviewed QoS specifications and

compared them against MobiPADS. Note that what is listed in the table is only an

approximation; different projects have different focuses and are presented

differently and it is difficult to measure the degree of completeness of a feature

provide by a framework.

Table 6.1 Comparisons among Different QoS Frameworks

 User

Specification

Application

Specification

Resource

Specification

Dynamic

Adaptation
Negotiation

Specification

Translation

OMEGA No Yes Yes Yes Yes Yes

QoS-A No Yes No Yes No Yes

QuO No Yes Yes Yes No No

HQML Yes Yes Yes Yes No Yes

OWL-S No Yes Yes No Yes No

115

QML No Yes Yes No No No

SLAng No Yes Yes No Yes No

MobiPADS Yes Yes Yes Yes No Yes

Among all of the frameworks reviewed, MobiPADS supports all dimensions of

specifications and is able to adapt to these specifications dynamically and

effectively. Even though MobiPADS does not support explicit QoS negotiation,

this is not considered a major drawback. This is because in a mobile operating

environment with dynamic and unpredictable resource levels, the underlying QoS

framework is simply unable to guarantee the resource allocation and thus defeats

the objective of the QoS negotiation to reserve resources for a specific application

session.

6.9 Other QoS Middleware

XQoS [Exposito02] is an XML-based language for QoS specification that applies

mainly to multimedia systems, one of its main observations being the need for both

intra and inter-flow QoS specifications. The basis of the language is the Time

Stream Petri Network (TSPN) model. This model is particularly suitable for

modeling synchronization issues in concurrent streams or processes. The

concentration on stream-based QoS limits its flexibility for operating in a mobile

environment.

The Quality Assurance Language (QuAL) in QoSME [Florissi96] is similar to

XQoS in that it is based upon the Time Stream Petri Network (TSPN) formal model.

It facilitates optimal QoS mapping from application level requirements to

underlying communications service specifications.

116

Service Level Specifications (SLS) [TEQUILA08] are being standardized as part of

the TEQUILA project. In this context an SLS refers to network QoS in a public IP

network and applies to a uni-directional traffic flow.

The need to create a more robust and configurable middleware system is realized in

the development of the Open ORB [Blair01]. The design and implementation of

Open ORB is based on a reflective middleware platform. Access to the underlying

platform is achieved through the meta-interface, which exposes the meta-space that

represents the support environment for the component. The Open ORB

architecture is designed as a general middleware that supports system

re-configurations by allowing applications to inspect (through reflection) and to

adapt (through reification) the behavior of the underlying system components.

The architecture does not have specific mechanisms to support mobile computing

applications so that context awareness can be seamlessly integrated into the

programming model to facilitate the dynamic configuration and deployment of

mobile services.

CARISMA [Capra03] makes use of reflection to support the interactions between a

mobile application and the middleware. Each application has a profile installed in

the middleware, which contains policies that specify how contextual changes

should be handled by the middleware. In case of conflict, CARISMA leverages a

microeconomic approach that performs a "closed-bid" action to decide its

adaptation action. CARISMA requires an application code to dynamically update

its corresponding policies through reflection to manage QoS.

117

Work carried out at Illinois has led to the development of the Universal

Interoperable Core (UIC) [Roman01], which is a reflective middleware platform

designed for handheld devices. The platform can adopt different middleware

personalities, e.g., a SOAP server and a CORBA server.

The Reflective Middleware for Mobile Computing (ReMMoC) [Grace03] platform

demonstrates a similar approach that adapts an asynchronous middleware design

and heterogeneous discovery protocols.

The Mobiware toolkit [Angin98] is built on CORBA and Java distributed object

technology. Mobiware can run on mobile devices, wireless access points, and

mobile-capable switches and routers. Mobiware provides API and algorithms for

adaptive mobile network services, including QoS controlled handoffs, soft-state

mobile QoS reservations, and flow bundling.

In the Rover toolkit [Kaashoek97], the middleware supports the development of

both mobile-transparent and mobile-aware applications. Based on client-server

architecture, the Rover toolkit provides a distributed object system for the

development of mobile or distributed applications. Rover client applications

typically run on mobile hosts, but can also run on fixed hosts. Server applications

run on fixed hosts and maintain the long-term state of the system. The key idea of

Rover is the introduction of the relocatable object (RDO) and the queued remote

procedure call (QRPC). Object codes extending from RDO can be easily relocated

from the server to the mobile client (or vice-versa) to allow for disconnected

118

operations. On the other hand, QRPC permits applications to perform remote

procedural calls even when a connection is unavailable, by queuing the calls locally

and serving as the connection is reestablished.

CARMEN [Bellavista03] supports context-dependent services for the wireless

Internet. CARMEN uses profiles to describe the characteristics of any resource

modeled in the system, including the user, service, device, and operating platform.

By integrating different types of high-level metadata, CARMEN hides low-level

mechanisms and implementation details from service developers and system

administrators, while providing management configurability.

The EgoSpaces [Julien06] middleware provides information on context to

applications in an abstract form. It adapts an agent-based approach that allows

agents to define their own operating context and adaptation actions in response to a

change in content.

The EasyLiving project [Brumitt00] focuses on the development of intelligent

environments. The project identifies several research aspects, including

middleware, geometric world modeling, sensing capabilities, and service

description.

The Gaia project [Roman02] is a distributed middleware infrastructure that

provides support for ubiquitous computing. The main intended application

domain of Gaia is restricted to fixed intelligent environments and lacks the support

for nomadic scenarios.

119

6.10 Summary

Mobile middleware show encouraging results in both performance improvements

and value-added services for mobile applications. However, the lack of flexibility

in the QoS models of current middleware systems limits their adaptability when

facing dynamic requirements from user and mobile applications. In contrast,

MobiPADS looks at QoS from a holistic, systematic, and pragmatic perspective.

This thesis demonstrates the flexibility and efficiency of our QoS management

framework in adapting not only to a dynamic operating environment and

constrained resources, but also to the dynamic QoS requirements of user and

application during runtime.

120

Chapter 7

Conclusions and Future Work

Existing Internet protocols and traditional reservation-based QoS management

mechanisms were designed under the assumptions of high bandwidth and stable

connectivity, provided when using a fixed network environment. These

assumptions are invalidated when users move to mobile connectivity, where the

operating environment is far more hostile. Mobile QoS management is hindered

by the problems of highly variable connection quality, the high cost of connections,

limited computational power, and a short battery life on portable systems.

The major task of mobile QoS management is thus to balance and make tradeoffs

between various QoS parameters. However, mobile operating environments

involve a large number of QoS parameters, and the characteristics of different

system resources and user-perceivable aspects can be very diverse. This makes it

difficult to deduce cost functions and to formulate an analytical optimization model

for mobile QoS management. On the other hand, the combination of different

users and different applications form a specific unique set of requirements.

However, these requirements are often runtime information that will not be

available to the QoS management system until the application subscribes to the

service of the QoS management system. Moreover, these requirements can be

subject to change as users change their preferences during runtime.

In order to answer the call for multi-dimensional adaptation needs raised by the

diversity and dynamics of operating environments, mobile devices, users,

121

applications, and usage scenarios, we introduced the MobiPADS system. In this

thesis, we described the design and implementation of the hierarchical fuzzy

control model, upon which the adaptation mechanisms of MobiPADS were built.

The MobiPADS system abstracted and organized contextual-based and

user-perception-based QoS parameters within the hierarchy of a fuzzy model.

This allowed all QoS inputs to be inferred and contribute to the adaptation decisions.

Moreover, the hierarchical organization of fuzzy inputs not only avoided the

rule-explosion problem, but also allowed new QoS inputs to be efficiently added to

the hierarchy, without the need to review the entire fuzzy rule base in the process.

The MobiPADS system introduced the following five adaptation mechanisms for

flexibly supporting adaptation needs at different service levels.

� Fuzzy Based Mobile Service Reconfiguration adapts to the system

dynamics and optimizes the QoS perceived by the user by reconfiguring a

chain of mobilet services. Based on the inferencing of the fuzzy QoS factor

hierarchy, this mechanism responds to the system dynamics in real-time by

periodically selecting the optimal set of mobilet service profiles. Mobilet

services are chained to provide an assortment of services to a mobile

application. To adapt to vigorous changes in the QoS requirements,

MobiPADS supports intra-mobilet reconfiguration that changes the mode of

operation internally, as well as inter-mobilet reconfiguration that adds or

removes mobilets on demand.

� QoS Factor Hierarchy Extension allows new QoS dimensions to be added to

the existing QoS factor hierarchy, such that the number and variety of

122

managed QoS parameters will not be bound by the original design.

Traditionally, adding a new fuzzy input to an existing fuzzy model meant that

the whole model needed to be revamped. In contrast, under this extension

mechanism, adding a new QoS factor will only cause local changes to be made

to the overall QoS factor hierarchy. Importantly, this mechanism only causes

a minimum amount of disruption to the entire fuzzy rule base, and updates

only the direct parent node of the new QoS factor within the hierarchy. This

makes unnecessary much of the effort required for a non-hierarchical fuzzy

rule base to review the whole rule base when new input is added.

� Membership Function Adaptation allows ad-hoc adjustment on the

interpretation of QoS factors to align with the specifications of a new

application. This is done by using a single normal point value to dynamically

adjust the membership functions of the linguistic values of a specific QoS

factor. Typically, each set of application specifications requires a

custom-made set of fuzzy membership functions and a fuzzy rule base to

support the specific application requirements, which are too low-level and

fuzzy domain specific for typical application developers to handle. The

membership function adaptation mechanism is much simpler for application

developers and even users to use to adjust the fuzzy membership functions of

various concerned QoS factors to the desired forms.

� Importance Weight Adaptation supports ad-hoc modification of the

inter-QoS factor prioritization. Based on a similar requirement as in

membership function adaptation, this mechanism tries to avoid a redesigning

123

of the fuzzy rule base and fuzzy membership functions when a set of new user

requirements has emerged. This is done by dynamically changing the

importance weight values of QoS factors of different abstraction levels to

reflect the priorities of different QoS factors as specified in the user and

application requirements. This mechanism avoids the typical yet significant

effort that application developers need to make to implicitly embed the priority

preferences into the fuzzy rules. By coupling the membership function

adaptation that supports the intra-QoS factor adjustment with the importance

weight adaptation that supports inter-QoS factor prioritization, MobiPADS

provides a comprehensive yet simple set of mechanisms for users and

applications to dynamically specify their interpretation of QoS factors of

different abstraction levels.

� Computational Reflection provides Reflective API for applications to

inspect (through reflection) and to adapt (through reification) the behavior of

the underlying system components, adaptation rules, and actions of

MobiPADS. While MobiPADS offers automated and robust mechanisms for

context adaptation and service reconfiguration, at times mobile applications

are still in the best position to make critical decisions on the operating context

and hence the adaptation strategy. Through the meta-level object

representation of the hierarchical fuzzy QoS model and service

reconfiguration mechanism, a mobile application can access the contextual

information, service configuration, and adaptation strategy of the QoS

middleware, and modify these entities to obtain optimal service provision

during runtime.

124

7.1 Results

The complete framework has been successfully implemented using Java as the

execution platform, which supports a highly portable system to operate across

heterogeneous environments. Extensive experiments have been conducted on a

PC platform and a PDA platform with the MobiPADS system. These experiments

have revealed promising results that demonstrate the effectiveness, robustness, and

the ease of leveraging the QoS management framework for new mobile services

and applications in a mobile environment.

The results of the experiments in Chapter 5 have clearly demonstrated the

effectiveness of fuzzy controlled adaptation and service chaining in mapping and

adapting to variations in QoS parameters under varying contextual environments.

Importantly, the adaptation mechanism is able to effectively reconfigure the service

chain to maximize the QoS under a dynamic and constrained resources situation.

As the resource level improves, the adaptation mechanism is also able to react to

this by reconfiguring the service chain to fully utilize the extra resources.

The results of another set of experiments conducted on a PDA device have

demonstrated the highly scalable characteristic of MobiPADS with respect to a

number of QoS parameters, fuzzy rules, mobilet services, and mobilet profiles.

These aspects have demonstrated linear computational complexities and sub-linear

memory requirements. Moreover, a typical MobiPADS setup with 32 QoS inputs

and 775 fuzzy rules decreased the battery life of the PDA by only 8.4%, which is

promising given the benefits of the adaptation capacity of MobiPADS.

125

The experimental results in Chapter 6 have shown that membership function

adaptation can easily adjust the forms of the membership functions of a QoS factor

to match the interpretation of the user and application on that QoS factor.

Subsequently, the adjustment is effectively reflected on the reconfiguration

behavior of MobiPADS, while the resultant QoS performance can match the

requirements of the user and application. The results also showed that importance

weight adaptation can effectively adjust the priorities among concerned QoS

factors, such that MobiPADS is able to make proper trade-offs among the QoS

factors to match the preferences of different users and applications.

7.2 Future work

The nature of progress frequently dictates that a solution to one problem uncovers

several new and interesting directions for exploration. In this section, we present

several directions for future work that are motivated by our existing work. Many

of the directions discussed in this section directly extend our work by addressing

the remaining problems. Other directions focus on interesting components within

the architecture, and these motivate research in directions that are independent of

the dissertation topic.

7.2.1 Contextual Coverage

One of the future directions is to expand the contextual coverage. In this thesis, we

have experimented with local QoS parameters only, and it is desirable to extend the

system to support external contexts. This involves the management of external

contexts, which include discovery, binding, suspension, rebinding, and detachment.

On discovering a new external context, the middleware should be able to

126

autonomously map the contextual changes to the affected QoS factors, new rules,

and new mobilets to be migrated to the mobile device. The system will also have

to support various handling schemes for orphan fuzzy rules and mobilets when their

associated external contexts are unreachable or expired.

7.2.2 Mobilet Service Profile Probing

A mobilet can intentionally or unintentionally affect a QoS factor so that the extent

of the effect is uncertain during the design phase, in which case probing during the

testing, deployment, and execution phases is required to determine the actual

effects of each of its profiles. The probing of service performance is a research

topic on its own, yet for simplicity of illustration we have assumed that the probed

adjustments for every mobilet profile discussed in this thesis are static, accurate,

and up-to-date. It is desirable for the MobiPADS system to provide a unified

probing framework, such that a new mobilet service can be easily and accurately

profiled. A developer of a mobilet with probed adjustments should implement an

active probing function that can be invoked when the mobilet is first installed, to

determine the initial values of the probed adjustments. A passive probing function

should also be implemented, which can be invoked when the mobilet is activated

for adaptation. This calibrates and updates the values of the probed adjustments

adaptively, so that the values can accurately reflect the adjustments to the current

operating platform and environment.

7.2.3 Inter-Application Adaptation

This thesis has generally focused on supporting only one mobile application at a

time. It is a natural extension to study the impact of providing concurrent service

sessions for multiple applications. This will require the introduction of several

127

new mechanisms. First, another layer of prioritization among all active mobile

applications will have to be added. Second, individual fuzzy QoS factor

hierarchies are needed for each application. This will give rise to the problem of

redundancy, and new techniques will be needed tackle this redundancy. Third,

during the reconfiguration of the service chain, MobiPADS will have to consider

not only the impact of new mobilet profiles on the application that it serves, but also

the impact of the other applications that rely on the shared resources.

7.2.4 Security

Security has not been our focus in the current framework. There are several issues

that should be addressed in this area. First, authentication of the mobilets must be

guaranteed. One approach is to digitally sign the mobilets to assure their

authenticity. Second, the MobiPADS system should exploit the Java security

features [Garms01], so that the MobiPADS platform presents a protected

environment for a mobilet. Third, a common objection to real-time transcoders is

that they are incompatible with encrypted sessions. A service chain is unable to

understand an encrypted session because it would have to allow for the decrypting

of data in the middle of the connection, which is potentially hazardous to overall

security. An interesting research problem is to consider whether an encryption

scheme could be developed to permit the services provided by a mobilet without

compromising the security of the session.

128

7.3 Publications

Segments of this research have been presented in the following publications:

� Siu-Nam Chuang and Alvin T.S. Chan, "Dynamic QoS Adaptation for Mobile Middleware",

IEEE Transactions on Software Engineering, Vol. 34, No. 6, November 2008, pp. 738-752.

� Siu-Nam Chuang and Alvin T.S. Chan, "MobiPADS: A Mobile QoS Middleware based on

Hierarchical Fuzzy Control", Proceedings of the 2006 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE 2006), 16-21 July 2006, Vancouver, BC, Canada, pp. 2223-2230.

� Siu-Nam Chuang and Alvin T.S. Chan, "Fuzzy Based Mobile QoS management", Proceedings

of the 7th ACM Postgraduate Research Day, 25 March, 2006, Hong Kong, China.

� Siu-Nam Chuang and Alvin T.S. Chan, "Active Service for Mobile Middleware", WWW:

Internet and Web Information Systems Journal, Kluwer Academic Publishers, Vol. 8, No. 2,

2005, pp. 127-157.

� Alvin T.S. Chan, Peter Y.H. Wong, Siu-Nam Chuang, "A Context-aware Request Language for

Mobile Computing", Proceedings of the Second International Symposium on Parallel and

Distributed Processing and Applications (ISPA 2004), Lecture Notes on Computer Science,

Springer-Verlag, 13-15 December 2004, Hong Kong, China, pp. 529-533.

� Siu-Nam Chuang, Alvin T.S. Chan, Jiannong Cao, Ronnie Cheung, "Actively Deployable

Mobile Services for Adaptive Web Access", IEEE Internet Computing, Vol. 8, No. 2, 2004, pp.

26-33.

� Alvin T.S. Chan, Siu-Nam Chuang, Jiannong Cao, Hong-Va Leong, "An Event-driven

Middleware for Mobile Context Awareness", The Computer Journal, Oxford University Press,

U.K., Vol. 47, No. 3, 2004, pp. 278-288.

� Alvin T.S. Chan and Siu-Nam Chuang, "MobiPADS: A Reflective Middleware for

Context-Aware Computing", IEEE Transactions on Software Engineering, Vol. 29, No. 12,

December 2003, pp. 1072-1085.

129

References

[Al-bar99] A. Al-bar and I. Wakeman. "A Survey of Adaptive Applications in Mobile

Computing", ICDCS 2001, pp. 246-251.

[Angin98] O. Angin, A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao,"The Mobiware

Toolkit: Programmable Support for Adaptive Mobile Networking", IEEE Personal

Communications Magazine, Special Issue on Adaptive Mobile Systems, August

1998.

[Bellavista03] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, "Context-Aware

Middleware for Resource Management in the Wireless Internet", IEEE Trans.

Software Eng., 29(12): 1086-1099 (2003)

[Blair01] G.S. Blair, et al. "The Design and Implementation of Open ORB version 2", IEEE

Distributed Systems Online Journal, 2(6), 2001.

[Bluetooth08] "The Official Bluetooth Wireless Info Site", Web link, http://www.bluetooth.com,

2008.

[Braden97] R. Braden et al, "Resource Reservation Protocol: Version 1 Functional

Specification", IETF RFC2205, Sept. 1997.

[Brumitt00] B. Brumitt, B. Meyers, et al. "EasyLiving: Technologies for Intelligent

environment", Handheld and Ubiquitous Computing, September, 2000.

[Campbell02] A.T. Campbell , J. Gomez , S. Kim , Z. R. Turányi , A. G. Valkó , C. Wan,

“Internet Micromobility", Journal of High Speed Networks, v.11(3-4), p.177-198,

2002.

[Campbell96] A.T. Campbell, and G. Coulson, "Implementation and Evaluation of the QoS-A

Transport System", Proc. 5th IFIP International Workshop on Protocols for High

Speed Networks (PfHSN'96), Sophia Antipolis, France, October 1996.

[Capra03] L. Capra, W. Emmerich, and C. Mascolo. "CARISMA: Context-aware reflective

middleware system for mobile applications", IEEE Transactions on Software

Engineering, 29(10): 929–945, 2003.

[Chalmers99] D. Chalmers and M. Sloman, "A survey of Quality of Service in mobile

130

computing environments", IEEE Communications Surveys and Tutorials 2(2),

1999.

[Chan03] Alvin T.S. Chan and Siu-Nam Chuang, "MobiPADS: A Reflective Middleware for

Context-Aware Computing", IEEE Transactions on Software Engineering, Vol.

29, No. 12, December 2003, pp. 1072-1085.

[Chan04] Alvin T.S. Chan, Peter Y.H. Wong, S.N. Chuang, "A Context-aware Request

Language for Mobile Computing", Proceedings of the Second International

Symposium on Parallel and Distributed Processing and Applications (ISPA 2004),

Lecture Notes on Computer Science, Springer-Verlag, 13-15 December 2004,

Hong Kong, China, pp. 529-533.

[Chan04-2] Alvin T.S. Chan, S. N. Chuang, J. Cao, H.V. Leong, "An Event-driven

Middleware for Mobile Context Awareness", The Computer Journal, Oxford

University Press, U.K., Vol. 47, No. 3, 2004, pp. 278-288.

[Chemouil95] P. Chemouil, J. Khalfet, M. Lebourges, "A fuzzy control approach for adaptive

traffic routing", IEEE Communications Magazine 33 (7), 1995, pp. 70-76.

[Cherkasova02] Y. Fu, L. Cherkasova, W. Tang, and A. Vahdat, "EtE: Passive End-to-End Internet

Service Performance Monitoring", In USENIX Conference Proceedings, 2002.

[Chuang04] S.N. Chuang, Alvin T.S. Chan, J. Cao, R. Cheung, "Actively Deployable Mobile

Services for Adaptive Web Access", IEEE Internet Computing, Vol. 8, No. 2,

2004. pp. 26-33.

[Chuang05] S.N. Chuang and Alvin T.S. Chan, "Active Service for Mobile Middleware",

WWW: Internet and Web Information Systems Journal, Kluwer Academic

Publishers, Vol. 8, No. 2, 2005, pp. 127-157.

[Chuang06] S.N. Chuang and Alvin T.S. Chan, "MobiPADS: A Mobile QoS Middleware

based on Hierarchical Fuzzy Control", Proceedings of the 2006 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE 2006), 16-21 July 2006,

Vancouver, BC, Canada, pp. 2223-2230.

[Chuang06-2] S.N. Chuang and Alvin T.S. Chan, "Fuzzy Based Mobile QoS management",

Proceedings of the 7th ACM Postgraduate Research Day, 25 March, 2006, Hong

Kong, China.

131

[Chuang08] S.N. Chuang and Alvin T.S. Chan, "Dynamic QoS Adaptation for Mobile

Middleware", IEEE Transactions on Software Engineering, Vol. 34, No. 6,

November 2008, pp. 738-752.

[Clayton98] P. Clayton, A. Poulton, "Internet quality of service", In Proceedings of the 1st

South African Telecommunications, Networks and Applications Conference

(SATNAC 98), University of Cape Town, South Africa, 1998.

[Cordy92] J. R. Cordy , M. Shukla, "Practical metaprogramming", Proceedings of the 1992

conference of the Centre for Advanced Studies on Collaborative research,

Toronto, Ontario, Canada, November 09-12, 1992.

[Cukier98] M. Cukier, J. Ren, C. Sabnis, W.H. Sanders, D.E. Bakken, M.E. Berman, D.A.

Karr, and R. Schantz. "AQuA: An Adaptive Architecture that Provides

Dependable Distributed Objects", In Proceedings of the IEEE 17th Symposium on

Reliable Distributed Systems, pp. 245-253, October 1998.

[DAML08] "DAML Services", Web link, http://www.daml.org/services/owl-s/, 2008.

[Davies96] N. Davies, "The impact of mobility on distributed systems platforms",

Proceedings of the IFIP/IEEE Int'l Conf. on Distributed Platforms, Dresden,

Chapman & Hall, 1996, pp. 1825. 1996.

[DiffServ08] "Differentiated Services (diffserv)", Web link,

http://www.ietf.org/html.charters/OLD/diffserv-charter.html, 2008.

[Dijkstra76] E. Dijkstra. A Discipline of Programming, Prentice Hall, 1976.

[Evans07] J. Evans, C. Filsfils, Deploying IP and MPLS QoS for Multiservice Networks:

Theory and Practice, Morgan Kaufmann, 2007

[Exposito02] E. Exposito, M. Gineste, R. Peyrichou, P. Sénac, M. Diaz , S. Fdida, "XML QoS

specification language for enhancing communication services", Proceedings of the

15th International Conference on Computer Communication, Mumbai,

Maharashtra, India, pp. 76 - 90, 2002.

[Florissi96] P. G. S. Florissi, "QoSME: QoS Management Environment", Ph.D. thesis,

Columbia Univ., 1996.

[Frølund98] S. Frølund, J. Koistinen, "QML: A Language for Quality of Service

Specification", Software Technology Laboratory, Hewlett-Packard Company,

132

Report: HPL-98-10, pp. 63, 1998.

[Fukuda97] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahar, "QoS Mapping between

User’s Preference and Bandwidth Control for Video Transport", In Proceeding of

the Fifth International Workshop on Quality of Service (IWQoS’97), New York,

NY, May. 1997.

[Fuller96] R. Fuller and C. Carlsson, Fuzzy multiple criteria decision making: Recent

developments". Fuzzy Sets and Systems, 78(1996) 139-153.

[Garms01] J. Garms. Professional Java security. Birmingham, Wrox Press, 2001

[Goyal01] V. K Goyal, "Multiple description coding: Compression meets the network", IEEE

Signal Processing Magazine, Vol. 8, No. 5, September 2001, pp. 74-93.

[Grace03] P. Grace, and G. Blair. "Interoperating with Services in a Mobile Environment."

Proceedings of ACM/IFIP International Middleware Conference, Rio de Janeiro,

Brazil, June 2003.

[Gu01] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu. An XML-based Quality

of Service Enabling Language for the Web. Technical report, University of

Illinois, April 2001.

[Huard97] J.F. Huard and A.A. Lazar. "On QoS Mapping in Multimedia Networks", In 21th

IEEE Annual International Computer Software and Application Conference

(COMPSAC’97), Washington DC, Aug. 1997.

[Imielinski94] T. Imielinski and B. R. Badrinath, "Mobile wireless computing: challenges in data

management", Commun. of the ACM, vol. 37(10), pp. 1828, 1994.

[Jin04] J. Jin, K. Nahrstedt, QoS Specification Languages for Distributed Multimedia

Applications: A Survey and Taxonomy, IEEE Multimedia Magazine, Vol. 11, No.

3, pp. 74-87, July, 2004.

[Julien06] C. Julien and G.-C. Roman. "EgoSpaces: Facilitating Rapid Development of

Context-Aware Mobile Applications," IEEE Transactions on Software

Engineering. 2006.

[Kaashoek97] F. Kaashoek. "Mobile computing with the Rover toolkit." IEEE Transactions on

Computers, pp. 337-352, March 1997.

133

[Katz94] R. H. Katz, "Adaptation and Mobility in Wireless Information Systems", IEEE

Personal Communications, vol. 1(1), pp. 617, 1994.

[Kiczales97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, et al. "Aspect-Oriented

Programming." In Proceedings of European Conference on Object-Oriented

Programming, Springer, LNCS, vol.1241, pp. 220-242, June 1997.

[Koliver02] C. Koliver, K. Nahrstedt, J.M. Farines, J.S. Fraga, A.S. Sandri, "Specification,

Mapping and Control for QoS Adaptation", Real-Time Systems Journal 23 (2002),

pp. 143-174.

[Kuhns99] F. Kuhns, C. O'Ryan, D. C. Schmidt, O. Othman, and J. Parsons."The design and

performance of a Pluggable Protocols Framework for Object Request Broker

middleware". In Proceedings of the IFIP Sixth International Workshop on

Protocols For High-Speed Networks, pp. 81-98, Salem, MA, August 1999.

[Lamanna03] D.D. Lamanna, J. Skene, W. Emmerich, "SLAng: a language for defining service

level agreements", Proceedings of the Ninth IEEE Workshop on Future Trends of

istributed Computing Systems, London, UK, 28-30 May 2003, pp. 100-106, 2003.

[Li97] X. Li, S. Paul, P. Pancha and M. Ammar, "Layered Video Multicast with

Retransmission ({LVMR}): Evaluation of Error Recovery Schemes", in

Proceedings of the Sixth International Workshop on NOSSDAV, 1997.

[Li99] B. Li and K. Nahrstedt. "A control-based middleware framework for quality of

service adaptations", IEEE Journal of Selected Areas in Communications, 17(9),

September 1999.

[Liljeberg95] M. Liljeberg, T. Alanko, M. Kojo, H. Laamanen and K. Raatikainen. "Optimizing

Word-Wide Web for Weakly Connected Mobile Workstations: An Indirect

Approach". Proceeding of the Second International Workshop on Services in

Distributed and Networked Environments, 1995, pp. 132 -139, 1995.

[MBWA08] "IEEE 802.20 Mobile Broadband Wireless Access (MBWA)", Web link,

http://grouper.ieee.org/groups/802/20/, 2008.

[Mysaifu08] "Mysaifu JVM", Web link, http://www2s.biglobe.ne.jp/~dat/java/project/jvm/,

2008.

[Nahrstedt95] K. Nahrstedt, J. M. Smith,"The QOS Broker", IEEE Multimedia, Vol. 2(1), pp.

134

53-67, 1995.

[Nahrstedt96] K. Nahrstedt and J. Smith, "Design, Implementation and Experiences of the

OMEGA End-Point Architecture", IEEE Journal on Selected Areas in

Communications, Vol. 2, No. 7, pp. 1263-1279, September 1996.

[Obraczka98] K. Obraczka and G. Gheorghiu, "The performance of a service for network-aware

applications", in Proceedings of the SIGMETRICS symposium on Parallel and

distributed tools, Welches, Oregon, United States, 1998, pp. 81-91.

[Pahlavan00] K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J.P. Makela, R.J.

Vallstron, "Handoff in hybrid mobile data networks", IEEE Personal

Communications, Vol 7(2).pp 34-47, 2000.

[Park92] D. Park, Z. Cao, and A. Kandel, "Investigations on the applicability of fuzzy

inference," Fuzzy Sets System, vol. 49, pp. 151–169, 1992.

[Parlavantzas00] N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair, "Towards a Reflective

Component Based Middleware Architecture," Workshop on Reflection and

Metalevel Architectures, Sophia Antipolis and Cannes, France. June 13, 2000.

[Passino98] K. M. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, CA: Addison

Wesley Longman, 1998.

[Pitsillides97] A. Pitsillides, Y. A. Sekercioglu, and G. Ramamurthy,"Effective Control of

Traffic Flow in ATM Networks using Fuzzy Explicit Rate Marking," IEEE

Journal of Selected Areas in Communications, Vol. 15, No. 2, 1997, pp. 209-225.

[Qbone08] "QBone Bandwidth Broker Architecture", Web link,

http://qbone.internet2.edu/bb/bboutline2.html, 2008.

[Quo08] "Quality Object Project", Web link, http://quo.bbn.com, 2008.

[Raju91] G.V.S. Raju, J. Zhou, R.A. Kisner, "Hierarchical fuzzy control", Int. J. Control 54

(5), 1991, pp. 1201-1216.

[Roman01] M. Roman, F. Kon, and R. H. Campbell. "Reflective Middleware: From Your

Desk to Your Hand." IEEE DS Online (Special Issue on Reflective Middleware),

2001.

[Roman02] M. Roman, C. K. H., R. Cerqueira, A. Ranganathan, Roy H. Campbell, and K.

135

Nahrstedt. "Gaia: A Middleware Infrastructure to Enable Active Spaces." IEEE

Pervasive Computing, Oct-Dec, pp.74-83, 2002.

[Ronald98] R. Ronald, "On the construction of hierarchical fuzzy systems models", IEEE

Trans. Systems Man Cybernet, 28 (1), 1998, pp. 55-66.

[Ross04] T. J. Ross, Fuzzy Logic with Engineering Applications. Hoboken, NJ, Wiley,

2004.

[Singh00] R. Singh, A. Ortega, L. Perret, and W. Jiang, "Comparison of multiple description

coding and layered coding based on network simulations," VCIP, January 2000.

[Smith84] B.C. Smith. "Reflection and semantics in Lisp", In Conference record of POPL,

pp. 23-35, 1984.

[TEQUILA08] "IST TEQUILA", Web link, http://www.ist-tequila.org/, 2008.

[Tsang98] D.H.K. Tsang, B. Bensaou, S.T.C. Lam, "Fuzzy-based rate control for real-time

MPEG video", IEEE Transactions on Fuzzy Systems, Vol. 6, No. 4, November

1998, pp. 504-516.

[UML08] "UML resource page of the Object Management Group", Web link,

http://www.uml.org, 2008.

[WiMax08] "The WiMax Forum", Web link, http://www.wimaxforum.org, 2008.

[Yager81] R.R. Yager. "A new methodology for ordinal multiobjective decisions based on

fuzzy sets". Decision Sciences, Vol. 12, 1981, pp. 589-600.

[Zhou04] C. Zhou, L. Chia, B. Lee, "DAML-QoS Ontology for Web Services", Proceedings

of the IEEE International Conference on Web Services (ICWS'04), June 6-9, 2004,

San Diego, California, USA, pp. 472-479, 2004.

