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Abstract 

 

Computation and networking resources in mobile operating environments are much 

scarcer and more dynamic than in desktop operating environments.  Mobile 

applications can use adaptive computing to optimize the quality-of-service (QoS) 

delivery based on dynamic contextual situations.  Fuzzy control models have been 

successfully applied to various distributed network QoS management systems.  

However, existing models are either application-specific or limited to abstract 

modeling and simple conceptual scenarios that do not take into account the overall 

scalability of these models.  Specifically, the large number of QoS parameters in a 

mobile operating environment causes the rule-explosion problem, in which an 

exponential increase in the number of rules correspondingly increases the demand 

for processing power to infer the rules.  Hierarchical fuzzy systems were 

introduced to reduce the number of rules using hierarchical fuzzy control, in which 

correlated linguistic variables are hierarchically inferred and grouped into abstract 

linguistic variables.  In this thesis, we propose a mobile QoS management 

framework that uses a hierarchical fuzzy control model to support a highly 

extensible and structured adaptation paradigm.  The proposed framework 

integrates several levels of QoS abstractions derived from user-perceived 

requirements.  It also maps these abstractions to appropriate QoS resources that 

drive the development of mobile services that mitigate the effects of varying mobile 

environments.  This framework provides an optimal overall service by 

synergistically balancing the QoS requirements of users and applications with the 

dynamic allocation of resources and chaining of services.  Our proposal is novel in 

that it looks at QoS from a holistic, systematic, and pragmatic perspective.  This 

thesis demonstrates the flexibility and efficiency of our QoS management 

framework in adapting to different users, applications, and platforms operating in 

wireless environments that are characterized by dynamic and constrained resources. 
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Chapter 1  

Introduction 

Wireless mobile computing operates in a paradigm where resources (dimensions of 

devices, power, CPU speed and memory) are not only constrained but are often not 

reliably available or vary dynamically and as a result .connection may have high 

service costs and error rates and suffer temporary disconnections.  System 

designers have usually responded to such resource-constraint or quality of service 

(QoS) challenges by simply compromising performance, usually by operating 

under the threshold of some presumed level of resources.  But such protocols and 

services, operating on a resources-stable, hard-guaranteed reservation scheme, i.e., 

“best effort” delivery networks based on a TCP/IP protocol, are not suitable for 

mobile environments as they do not allow any adaptation, either in the case of 

deterioration or improvement in resource availability or stability.  Some 

TCP/IP-based QoS mechanisms, such as diffServ [DiffServ08] and IntServ 

[Evans07], do support differentiating and integrating different types of network 

streams, but these mechanisms still require relatively stable fixed network 

environments.   

 

These traditional reservation-based QoS management mechanisms cannot 

effectively deal with the scarcity and dynamic variation of resources, such as abrupt 

changes, that is characteristic of mobile environments.  The focus of mobile QoS 

management has thus shifted to providing adaptive and optimized mobile services 

which provide augmented services and optimize protocols to match the available 

resources and operating context of the network.  For example, a mobile Web 
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browser retrieving a graphic-rich Web site can ask the middleware service to 

progressively degrade the picture quality if it detects a drastic drop in the bandwidth 

availability.  In this thesis, we identify and address the challenges in mobile QoS 

management and propose a QoS management framework that adopts a hierarchical 

fuzzy control model [Raju91] [Ronald98] to support a highly extensible and 

structured adaptation paradigm. 

1.1 Motivations 

To optimize service delivery under constrained environment, a primary objective of 

mobile QoS management is to facilitate appropriate resources allocation and, if 

necessary, make tradeoffs between QoS parameters.  The ultimate goal is to 

maximize the user’s perceived quality of service.  The following describes the 

major difficulties in maximizing this perceived QoS, that is, in mobile QoS 

management. 

1.1.1 Wireless Network Connectivity 

Mobile devices typically connect to the internet via wireless links, which do not 

offer either the capacity or stability of wired connectivity, notwithstanding the 

higher bandwidth and lower error rates now being  provided by wireless 

technologies like Bluetooth 2.0 [Bluetooth08], WiMax [WiMax08] and IEEE 

802.20 [MBWA08]  The lower bandwidth of wireless connectivity puts limits on 

the quality of multimedia application, such as video streaming and video 

conferencing as the QoS manager is required to negotiate with the application on a 

minimum maintainable bandwidth while supporting levels of prioritization and 

error detection/correction for different packet types within the same data stream and 
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at the same time dealing with arbitrary wireless connectivity degradation.  

Mobility can make wireless connectivity hard to maintain and this must be taken 

into account in mobile QoS management.  Base station handoff, for example, 

when a mobile device accessing a wireless network moves from one base station to 

another, can result in the suspension of network availability.  There has been a lot 

of work on reducing this disruption [Pahlavan00] [Campbell02], mostly focusing 

on the network and data link layers.  Bandwidth variation, error rate variation, and 

even temporary disconnection can be addressed by applying QoS adaptation and by 

involving the application in the adaptation strategy.  This would mean that rapid 

but mild changes in the network resources would be handled by an automated QoS 

adaptation mechanism but drastic changes would be handled by the mobile 

application, which would choose a strategy based on its execution and usage 

context.  Similarly, improvements in network performance must also be taken into 

consideration so that a QoS management system must be able to re-negotiate with 

an application to use the newly available bandwidth, For example, when a better 

bandwidth situation is detected, a video streaming application can change its codec 

from high compression ratio- CPU intensive to moderate compression ratio less 

CPU intensive, freeing up CPU cycles and lengthening the battery life.  This kind 

of capability is not present in reservation-based QoS systems 

1.1.2 System Limitation 

Mobile devices are made to be portable; however, portability comes at the cost of 

compromised functionality [Imielinski94] [Katz94] [Davies96] and power.  

PDA-sized handheld computers can now run Windows XP but their processors are 

limited by the limits of battery power., as are the display size and resolution.  
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Batteries are also stressed by wireless connectivity itself, as using typical WiFi 

connectivity can halve a PDA’s power up time.  A more efficient mobile QoS 

management system should not only efficiently allocate and utilize battery 

resources but enable the mobile device to shift part of its processing and networking 

duties to the wired side.  The QoS system might also provide media transcoding 

services that convert the media stream into different formats, such that the network 

and CPU processing requirements for the mobile device could be minimized, and 

optimal presentation quality can be achieved by the mobile application.  

Interestingly, transcoding services usually degrades the media content in some 

aspects, e.g. resolution, frame rate and clarity, however it does not necessarily 

degrade the presentation quality of the media, sometime it could even improves the 

user-perceived presentation quality.  E.g. streaming a mpeg2 video clip to a PDA is 

unlikely to have a satisfactory playback quality, as the bandwidth, jitter and 

insufficient decoding speed of PDA is unable to catch up with the requirement of 

the streamed media; however, before streaming to the mobile device, if there is a 

transcoding service that converts the stream based on the available bandwidth, 

processing power and display capacity, a significantly improved presentation 

quality can be realized. 

1.1.3 Context Awareness 

Context-awareness is another important issue for mobile operating environment.  

The mobility of the mobile device causes various coarse grain changes to the 

system, from lower level resource changes to high level user requirement changes.  

E.g. a battery operated mobile device is docked onto its docking device, such that 

battery life is no longer a limitation.  Another example could be that the screen 
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brightness of a mobile device is tuned down when the user moves from an outdoor 

sunny area to an indoor, softly lighted area.  Coarse gain changes usually have 

significant effect on mobile QoS, it is thus essential for the QoS management 

system to be able to capture these changes, and be able to dynamically readjust it 

QoS adaptation scheme accordingly, and communicate the changes in context to 

mobile applications. 

1.1.4 Deducing Cost Functions and Formulating an Optimization Model  

Any QoS model that seeks to effectively manage service and protocol adaptations 

must integrate many QoS parameters from different resources, contexts and 

operating systems.  This makes it difficult to deduce cost functions that would 

allow meaningful comparisons and, consequently, formulate analytical 

optimization model for mobile QoS management.  Mobile devices operating 

across diverse environments are subject to significant variation of three different 

types.  First, quantization levels and quantitative scales may vary significantly 

across different system resources.  Even within the same resource type, different 

benchmark and scale factors may be used to quantify a resource.  This can lead to 

difficulties in producing appropriate scalings and mappings that would enable a 

consistent interpretation of quality of resources.  Second, infrastructure support 

will also significantly vary across different execution contexts.  Different 

connectivity technologies may be employed across different locations, the wireless 

coverage area and density of nodes may vary, the computation and networking 

limitations imposed by different power saving modes, and so on.  Third, different 

mobile devices will differ in their capabilities, in terms of processor speeds, 

memory, storage, and operating systems, and in other ways.   
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1.1.5 Varying User and Application QoS Requirements 

Under limited and varying resources conditions, different user can have very 

different preferences towards the same application, e.g. a user listening streamed 

audio would prefer better clarity, while another user would prefer shorter delay.  

Likewise, a user’s preferences toward different encoding profiles of media of the 

same application could be very different too, e.g. a user prefers high frame-rate in 

watching sport video, but prefers high fidelity while watching travel video.  

Moreover, even for the same application and the same media, user’s satisfaction 

level on a specific QoS parameter is not proportional, e.g. to the perception of many 

users, the effect of a frame-rate increase from 15 frame per second (fps) to 20 fps is 

more significant than increasing frame-rate from 25 fps to 30 fps.  This makes it 

difficult to predefine static adaptation rules or policies that can continuously 

optimize user-perceived QoS and implies an adaptation selection process that is 

itself adaptive to changing user and application requirements and mandates 

personalized QoS profiles. 

1.1.6 Balancing the Use of Resources in a Responsive Adaptation Model 

While responsive adaptation is highly desirable, the limited computation resources 

available in mobile environments and devices make it necessary to make the 

process of interpretation and adaptation resource-efficient.  Pervasive computing 

operating across diverse network domains and contexts requires a mobile QoS 

model that is able to uniformly represent the diverse characteristics of different QoS 

parameters while being scalable in supporting complex and evolving QoS 

requirements. 
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1.2 Research Challenges 

The current need of mobile and pervasive computing is for a flexible and adaptive 

mobile QoS management model that is able to uniformly represent the diverse 

characteristics of different QoS parameters while being scalable so as to support 

complex and evolving QoS requirements.  In the following, we organized the 

relevant real-world design problems in terms of four distinct issues: abstraction 

versus generality, QoS mapping, policy configuration, and application 

involvement. 

 

Abstraction versus generality.  A high level of abstract modeling across all QoS 

parameters is commonly applied in designing a generic QoS model that can 

accommodate issues of variation, flexibility, scalability and adaptability.  However, 

the mathematical complexity of such models can lead to loss of generality when 

they are applied to actual QoS parameters.  On the other hand, reducing this 

complexity by placing constraints on the number of QoS parameters to be modeled 

presents scalability problems when increased number of contexts is considered.   

 

QoS mapping.  Mapping the current resource QoS parameters and user-perceived 

QoS parameters to an adaptation, has been proposed as a way to obtain the most 

favorable QoS profile as specified in the user and application QoS requirements.  

However, QoS mapping is not a trivial task as it involves the prediction of the 

effects of adaptation options on the resource QoS parameters and the 

user-perceived QoS parameters under the current execution context.  Moreover, 

many adaptation options are both discrete and have coarse ranges of application.  

Take for example the situation in which an audio streaming application 
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experiences a 30% drop in bandwidth.  It would be ideal to have an adaptation 

option that could cope with this by downsampling the audio stream from 16-bit to 

11.2-bit.  But such an ideal option would not normally be available so the most 

appropriate adaptation is to downsample to 8-bit.  This, however, would lower the 

bandwidth requirement by 50% and result in underusing the available bandwidth.  

Thus, an over-reactive adaptation mechanism can, instead of improving QoS, 

produce oscillations that may further degrade QoS. 

 

Policy configuration.  The configuration of QoS policies, the control rules and 

parameters that govern the adaptation decision process, are specified in usage 

scenarios where one set of policies is associated with a specific mobile application.  

The QoS management system uses this set of policies to enforce adaptation based 

on the prescribed environment dynamics for the mobile application.  However, in 

real world situations and under various differing application scenarios, a mobile 

application may enlist differing QoS profiles.  For example, a video streaming 

application can have alternative profiles for video using a range of other encoding 

schemes and bit rates.  Moreover, it is not uncommon for a user to change his/her 

preferences and priorities regarding various aspects of QoS performance.  Ideally, 

a QoS policing framework should be dynamically reconfigurable to match changes 

in user and application preferences during runtime. 

 

Application involvement.  Adaptation can take place either at the middleware layer 

or within the application.  When it takes place at the middleware layer, the 

application is relieved of the need to monitor the environment or make adaptation 

decisions.  This is an application-transparent approach.  The middleware provides 
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best effort adaptation to general mobile computing and context information is 

completely hidden from the application.  The drawback of this approach is that it 

significantly limits the amount of adaptation space available to the QoS middleware 

to optimize processing given that  in the event of adverse conditions, the 

application itself is in the best position to make critical decisions on operating 

conditions and, hence, on the adaptation strategy.   

1.3 Contributions 

This thesis presents MobiPADS, a mobile QoS management framework that adopts 

a hierarchical fuzzy control model [Raju91] [Ronald98] to support a highly 

extensible and structured adaptation paradigm.  Architecturally, the MobiPADS 

system uses edge proxies that are strategically placed along communication paths 

that may suffer from significant contextual changes and resource fluctuations.  

This often involves deploying MobiPADS across wireless links to facilitate 

adaptation processes that counteract the detrimental effects of contextual changes 

and resource fluctuations.  The proxy structure of MobiPADS promotes rapid 

deployment over existing Internet architecture without the need to engage changes 

to routing protocols or operating systems.  In order to achieve optimal 

user-perceived QoS, MobiPADS supports composition and reconfiguration of 

mobile services to mitigate the effects of adverse mobile operating environments 

and to support adaptation to dynamic QoS requirements.  The major contributions 

of MobiPADS are as follows: 

 

Allows Service composition and reconfiguration.  Adaptive computing is 

fundamental to MobiPADS approach to achieving agile and optimized QoS 
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delivery in the hostile operating environments.  This requires service composition 

and reconfiguration that can match the system dynamics and optimize the QoS 

perceived by user.  To mitigate the effects of adverse conditions in a wireless 

environment, MobiPADS configures services, called mobilets, as chained service 

objects to provide augmented services and protocols to the underlying mobile 

applications.  Each mobilet provides a specific functionality so a mixed 

combination of mobilets is often composed to provide added services that match 

different QoS requirements and contextual environments.  By adding and 

removing mobilets, it is possible to dynamically reconfigure service chains during 

runtime to adapt to changes in QoS requirements and to the operating environment.  

Moreover, each mobilet can have a variety of modes of operation (profiles) to 

support finer adaptation levels.  This mobilet service model enables flexible QoS 

support for rapid changing mobile environments, extending from the system 

resource level up to the user level. 

 

Provides an extensible and comprehensive Hierarchical Fuzzy QoS Model.  To 

integrate various services requirements and specifications across diverse entities 

requires a model that unifies the representation and characteristics of diverse QoS 

parameters.  Because our QoS model forms a hierarchical QoS graph directly, it is 

able to incorporate and represent any QoS parameter by describing its relationship 

with other QoS parameters.  Further, it also supports the addition of new QoS 

parameters to the existing QoS hierarchy, such that the number and variety of 

managed QoS parameters will not be bound by the original design.  This also 

supports the reuse of existing QoS policies and allows updating of only the direct 

parent node of the new QoS factor within the hierarchy.  This obviates the need to 
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review all the QoS policies when new input is added.   

 

Allows meta-level QoS policy configuration.  One of the challenges of regulating 

and enforcing quality of service provisions in mobile applications is the need to 

formulate robust policies that accurately captures the requirements and 

specifications of QoS.  At the same time, they should provide a level of abstraction 

that is intuitive, measurable and concise enough to help and guide resource 

management.  This is a particular advantage of the MobiPADS approach.  In 

running a mobile application, it is not uncommon to encounter situations where the 

operating contexts have changed to such a degree that no reasonable adaptation can 

be exercised without a change in underlying QoS policy.  A unique contribution of 

MobiPADS is the provision of meta-level adaptation mechanisms to support 

dynamic changes in user and application policy requirements at runtime.  Both the 

user and application can affect the QoS policy by specifying the desired priorities 

and values of QoS parameters.  The Membership Function Adaptation mechanism 

automatically adapts the fuzzy membership functions to these values while the Rule 

Weight Adaptation mechanism dynamically changes various rule weights to reflect 

the changed priorities.  A very important benefit of this approach is that these two 

mechanisms are abstracted to a level that requires minimum input from the user or 

application to select favorable QoS policies.  There is no need for the user or the 

application developer to understand and manipulate the underlying low level 

adaptation mechanisms. 

 

Allows middleware-driven and application-participation adaptation.  Adaptation 

can be applied and exercised across two extreme spectrums; one relying solely on 
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middleware and another where applications can drive adaptation decisions.  

MobiPADS supports flexible handling of adaptation decisions that promote 

synergized middleware-driven and application-participation adaptation.  From a 

software engineering perspective, it is highly desirable to separate the process of 

adaptation to the middleware because it allows modularized handling of concerns 

and frees application developer from having to make adaptation decisions.  

However, this may result in the middleware making adaptation decisions that 

provide generalized configurations of services that aim to optimize QoS across all 

applications.  MobiPADS differs from this in that applications are allowed some 

level of participation in formulating the overall adaptation policy so as to enable 

underlying application or even the end user to provide reflective adaptation of QoS 

requirements under changing contextual environments.  Specifically, applications 

may participate in QoS parameter monitoring, QoS adaptation triggering, and QoS 

policing through a set of Reflective API.  MobiPADS provides a reflective API for 

applications to inspect (through reflection) and to adapt (through reification) the 

behavior of the underlying system components, adaptation rules, and actions.  

While the dynamic adaptation of QoS middleware offers some degree of context 

adaptation, there are nonetheless times when mobile applications are in the best 

position to make critical decisions about the operating context and the associated 

adaptation strategy.  For this reason, MobiPADS provides the mobile application 

with an extensive set of APIs and reflective interfaces.  Through the meta-level 

object representation of the internal event system and service reconfiguration, a 

mobile application can access the contextual information, service configuration, 

QoS model and QoS policies of the QoS middleware, and modify these entities to 

obtain optimal service provision from middleware. 
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We have demonstrated the feasibility and efficiency of MobiPADS through 

extensive simulations and a prototype implementation on WinCE and shown that 

MobiPADS is able to adapt to the dynamics in the wireless environment by 

selecting the best possible mobile service combinations and maintain an optimal, 

balanced user perceived QoS.  The results also show that the mechanisms of 

dynamic QoS policy configuration are effective.  The middleware is able to use 

user/application supplied priorities and the preferred values of QoS parameters to 

dynamically redistribute the underlying resources to support the desired levels of 

perceived QoS.  Our prototype implementation shows that the fuzzy based 

inference and adaptation engine is compact enough for the computation, memory, 

and battery limitations of a typical PDA device.  In a typical usage setup consisting 

of 32 QoS parameters and 775 QoS policies (fuzzy rules), each inference takes 

about 0.5 second to execute with a 10-second execution interval.  The overall 

battery life drops only by 8.4%, which is promising given the benefits of the 

adaptation capacity of MobiPADS. 

1.4 Organization of Thesis 

The rest of the thesis is organized as follows.  Chapter 2 describes the four main 

stages in the operation of QoS management of Adaptive Mechanisms.  We follow 

this by providing examples of a number of adaptive mechanisms that are 

well-suited to satisfying changing requirements during runtime.  We describe these 

adaptive mechanisms and how they can be utilized to adapt to the dynamic QoS 

requirements of mobile operating environment. 
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Chapter 3 presents an overview to the MobiPADS middleware. In Chapter 4, we 

illustrated and evaluated the hierarchical fuzzy control model of MobiPADS.  

Chapter 5 introduces the meta-level adaptation mechanisms for supporting 

application participations of QoS management at various adaptation stages, 

including membership function adaptation, importance weight adaptation and 

computation reflection.  Chapter 6 offers a comparative review of related work.  

Finally, Chapter 7 concludes this thesis and outlines some directions for future 

work. 
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Chapter 2   

Background 

In this chapter, we present an overview of a generic QoS management framework, 

its essential components and their interactions.  Particularly, we discuss the impact 

of mobile environments on the design of various components of a generic QoS 

management framework.  Then, we exemplify a number of adaptive mechanisms 

that are well-suited for fulfilling changing requirements during runtime.  We look 

into these adaptive mechanisms to see how these mechanisms work and how they 

can be utilized to adapt to the dynamic QoS requirements of mobile operating 

environment. 

2.1 QoS Management Framework 

In this section, we first describe the flow of the four main QoS activities, QoS 

specification, QoS interpretation, admission control, and QoS control and then in 

the following subsections we consider this same material in greater detail, 

explaining the interaction sequences of these activities at four layers of the 

computational hierarchy, application level, middleware level, and system resource 

level. 

 

Figure 2.1 shows the flow of concepts and corresponding operations.  The QoS 

specification stage uses an abstract representation of QoS requirements to 

communicate to the lower level.  The QoS interpretation stage compiles the 

high-level QoS representation and translates it to lower level QoS parameters that 
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map and distribute the available resources of the system based on the desired 

specifications and context so as to maximize the QoS availability under constrained 

and varying contextual environments.  Admission control has three tasks: to check 

the QoS requirements against the available resource level; when needed, to 

negotiate with the application; and, if the application is admitted, to reserve 

resources.  The final QoS activity is QoS control, in which system ensures that the 

QoS provision and consumption parameters follow the agreement or, if the 

parameters are violated, take action to adapt. 

 

 

Figure 2.1 Flow of QoS Activities 

2.1.1 QoS Abstractions 

QoS abstractions are used to represent QoS requirements at different system levels 

so that there can be efficient communication between those levels.  These QoS 

abstractions refer to requirements and parameters at every level of the 

computational hierarchy, from the user level down to operating system and network 

level.  Figure 2.2 shows four layers of QoS abstraction from the user level through 

to the system resource level.  At the user level, users can specify parameters like 

the responsiveness of the application, the presentation quality of the media, and the 

price that the user is willing to pay.  At the application level, an application can 
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specify its bandwidth requirement, timeliness of the packet transmission, reliability 

and security requirements of the network channel.  At the middleware level, there 

are QoS parameters that specify the usage of a variety of middleware services, such 

as filters, transcoders and different types of network channels.  At the system 

resource level, there are QoS parameters that specify low level resource 

requirements, such as parameters of the TCP/IP protocol stack, CPU clock cycle, 

power consumption, and memory size.   

 

 
Figure 2.2 QoS Abstraction Layering from User Level to System Resource Level 

2.1.2 QoS Interaction Overview 

QoS management is comprised of a collection of interacting tasks that support QoS 

provision at four levels.  Figure 2.3 shows the QoS interaction sequences in a 

typical QoS management framework.  Note that the four QoS processes – QoS 

specification, QoS interpretation, admission control and QoS control --are involved 

in activity sequences are each of the four layers of abstraction user level, 

application level, middleware level, and system resource level.  The gray 
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backgrounds indicate inter-level interactions.  The white backgrounds indicate 

processes that are intra-level activities. The following subsections explain the 

interaction sequences in detail. 

 

 

Figure 2.3 The Layered QoS Interaction Sequence 

2.1.3 QoS Specification and Interpretation 

The interaction sequences of QoS specification and interpretation are very closely 

related and so here we consider them together.  Now, before an application is 

started, a user’s preferences in relation QoS requirements are collated so as to 

define the user’s quantitative and qualitative expectation of the service provided by 

the application under varying contextual environment.  At the application level, 

the application then maps abstract user’s preferences to application specific 
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requirements that may fulfill the required QoS.  For example, a video clarity level 

required by the user can be translated into parameters for video resolution and color 

depth at the application level. 

 

The application then communicates its mapped QoS specifications to a QoS-aware 

middleware, which uses the specifications to manage resources and services and 

satisfy the requested QoS.  This process can be done in various ways, e.g. using 

API oriented specifications, which have the flexibility to allow the application to 

change its specification, or using language paradigms to decouple the specification 

from application development.  Language paradigms can be developed locally or 

by extending existing standard languages, and can be either declarative or 

instructive.  The middleware is tasked with mapping the QoS requirements to the 

middleware services level and resource level requirements.  These translated 

middleware service requirements and resource requirements will at later stages 

form important parameters for decision making involving admission control and 

QoS management  

2.1.4 Admission Control 

Depending on the translated requirements and the currently available services and 

resources, the middleware can admit the application unconditionally or through a 

process of QoS negotiation.  This process takes place between the application and 

the middleware, which follows the QoS specification and interpretation paradigm, 

and  the application is admitted once they agree upon a mutually acceptable QoS 

specification.  Upon admission, between the application and the middleware make 

a QoS agreement wherein the middleware has to configure corresponding services 
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and allocate sufficient resources.  Service configuration can be in two forms, 

private service which pertains only to the admitted application or shared service 

which applies to all suitable applications.  The choice between the two forms is 

based on the framework design, the QoS specification, and the characteristics of the 

individual service, e.g. whether the data are sharable or whether there are any 

privacy issues.   

 

There are three types of resource allocation: 1) complete reservation, in which the 

system attempts to reserve a guaranteed amount of resources exclusively for the 

application; 2) partial reservation, also known as shared or dynamic/adaptive 

reservation.  Partial reservation reserves only a portion of guaranteed resources, 

using statistical analysis and heuristics to estimate future resource consumption 

patterns but being mindful that it should be highly likely that of the guaranteed QoS 

level will be  attained; 3) applying best effort delivery, which in fact means no 

reservation is required at all.  The best effort approach does not try to reserve 

resources but instead applies mechanisms to control resource consumption levels so 

as to avoid or alleviate situations where resource availability is severely low.   

2.1.5 QoS Control 

Once the application is admitted and services and resources allocated, the 

middleware has to manage the QoS provision level and QoS consumption level so 

that both the application and the middleware behave so as to avoid violation of the 

QoS agreement during runtime.  This involves applying four mechanisms: 

monitoring, maintenance, adaptation, and policing.  The purpose of QoS 

maintenance is to maintain a level of resource availability and service performance 
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that will support the QoS agreement.  This is typically done by turning service 

parameters, e.g. adjusting the buffer size to minimize delay and jitter in a data 

stream.  Qos adaptation can be regarded as a more dynamic form of QoS 

maintenance.  It takes place when there is a significant change in the operating 

environment that may severely affect the QoS provision level, so that the 

middleware has to reconfigure itself to adapt to the changes.  For example, the 

network bandwidth may experience an abrupt decrease in availability during a Web 

browsing session, which significantly affects the user perceived response time.  

On detecting such a situation, the middleware can insert a text compression service 

in between the data stream to reduce the data volume of the Web pages, which 

reduces the response time but with the tradeoff of higher CPU usage for data 

compression and de-compression.  The purpose of QoS policing is to ensure that 

and enforce that the overall consumption level is in accordance with follow the 

agreed QoS if the resource consumption pattern of the application is violated 

partially and temporarily.  The available mechanisms include throttling the 

resource consumption, penalties on resource consumption, and notifying the 

violating application.  QoS policing is important because it guarantees the fairness 

of resource allocation among the applications running on the same platform, and it 

also prevents poorly behaved applications affecting the execution of other well 

behaved applications.   

 

Resource monitoring and management refer to the mechanisms that measure, report 

and control the physical resources’ availability and consumption.  Typical physical 

resources include memory, storage, bandwidth and CPU clock cycle.  Resource 

monitoring and management is the level that tradition QoS middleware focused on, 
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where the attached applications have to specify the low-level QoS parameters.  

The recent trend in QoS middleware is to support high level application-oriented 

QoS specification, as it is not necessary for the majority of applications to be aware 

of the low-level issues.  Application developers could spend more effort on what 

would be the desired QoS level, rather than thinking how to achieve the desired 

QoS level. 

 

In the event that the operating environment no longer conforms to the limitations of 

the QoS agreement, the middleware is responsible for notifying the application by 

issuing an application alert..The middleware should not issue such alerts unless the 

middleware is unable to compensate for the effects of changes and their impact on 

the application.  Whether an application alert is issued depends on the stability of 

the operating environment and the effectiveness of QoS management, but also on 

the rigidness of the QoS agreement.  A rigid QoS agreement is expensive as it will 

trigger alerts more frequently for QoS sensitive applications as well as degrading 

the overall system performance, due to overheads introduced by the alert messaging 

and interruptions of the application for alert handling.  On the other hand, alerts 

can also be used for middleware event notifications that the application can 

subscribe to.  The application can thereby be more aware of the status of service 

configurations, resource availability and consumption, and adaptation behavior that 

are regulated by the middleware.   

 

Depending on the type of application alert being sent from the middleware, the 

application may need to respond to do things to optimize its performance.  If the 

alert is a subscribed event update that is relatively insignificant, e.g. battery level 
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drops below 50%, then the application can use this information as a reference to 

adjust its operation to reduce power consumption, e.g. switching off some 

non-critical visual effects.  If the alert is indicating a violation of the QoS 

agreement in that it is no longer attainable by the middleware, the application will 

have to downgrade its QoS requirements and carry out a QoS re-negotiation with 

the middleware.  If there is an abrupt and transient downgrading of the QoS 

resulting in service changes and adaptation that could push the user’s experience 

below an acceptable service level, the application alerts and consults the user 

through a user alert, informing .the user of the situation and requesting a 

re-specification of the QoS preferences within the currently achievable ranges of 

QoS parameters, taking us back to the beginning of the entire process. 

2.2 Adaptive Mechanisms 

In this section, we provide examples of a number of adaptive mechanisms that are 

well-suited to satisfying changing requirements during runtime.  We describe how 

these adaptive mechanisms work and how they can be utilized to support adaptation 

to the dynamic QoS requirements of mobile operating environments. 

2.2.1 Aspect Oriented Programming (AOP) 

Software engineers decompose software into smaller, more manageable and 

comprehensible parts according to certain criteria or “concerns”, which might 

include requirements, use cases, features, data structures, and many other issues, 

Concerns can range from high-level abstractions like security and QoS to low-level 

functionalities such as caching, and failure handling.  They can also be functional, 

such as business logics, or non-functional, such as availability and compatibility.  
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Some concerns, such as compatibility, usually couple with a few entities that handle 

the I/O of the system, yet achieve good solidity.  Other concerns, such as failure 

handling, will interleave with many highly unrelated entities within the system.   

 

Software developers manage software complexity by applying the principle of 

separation of concerns [Dijkstra76].  Programming languages support separation 

of concerns by using different sections for specifying the data structure and the 

operations that manipulate the data.  Software designers also separate concerns in 

software design notations.  UML [UML08] for example, provides different types 

of diagrams for separately specifying structural and functional aspects of the 

system.  AOP separates concerns at the source code level.   

 

Traditional object-oriented programming (OOP) captures attributes and behaviors 

of related entities in a class hierarchy.  However, OOP faces difficulties when 

capturing concerns that do not fit naturally into a single class hierarchy, or even a 

composition of interrelated class hierarchies.  In contrast, AOP supports the 

addressing of crosscutting issues that affect many unrelated entities, captures 

attributes and behaviors of these issues in a new software layer, in which an aspect 

module addresses a particular issue across classes of different domains within the 

system, thus enhances the modularity of the system beyond that of OOP. 

 

AOP is not a replacement for OOP.  Rather, it is an additional software 

development technique that helps solve complex problems.  Unlike OOP, which 

has been well studied and practiced for many years, AOP is still young that lacks 

formal rules in identifying and isolating an aspect.  As such, developers must rely 
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on their own judgment to model the aspect effectively and carefully.  A 

fundamental principle in differentiating between an object-orient component and an 

aspect is stated in an early aspect paper [Kiczales97] by Kiczales et al.: 

“… a property that must be implemented is: 

A component, if it can be cleanly encapsulated in a generalized 

procedure (i.e.  object, method, procedure, API).  By cleanly, we mean well 

localized, and easily accessed and composed as necessary.  Components 

tend to be units of the system’s functional decomposition, such as image filters, 

bank accounts and GUI widgets. 

An aspect, if it can not be cleanly encapsulated in a generalized 

procedure.  Aspects tend not to be units of the system’s functional 

decomposition, but rather to be properties that affect the performance or 

semantics of the components in systemic ways.  Examples of aspects include 

memory access patterns and synchronization of concurrent objects.” 

 

Aspects provide crosscutting modularity that cut across various objects of a 

program.  By writing a single aspect module, a developer can address a specific 

concern that affects many parts of the program, rather than searching all over the 

program to find and update the related parts.  In general, AOP allows developers to 

write code addressing crosscutting concerns once and apply it on wherever place 

needed within the program.  References to an aspect are added at interested join 

points, which are specified by a pointcout designator.  Specific code written to 

address the aspect is called an advice.  An AOP complier can follow the references 

and weave the advice into the appropriate locations of the program.  AOP 

eliminates a large amount of scattered code that addresses different concerns, so 

that it is much easier to maintain and upgrade a program.  The following 

subsections explore the essential elements of AOP specifically. 
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The manageability and extensibility of AOP is particularly valuable for 

configurable systems that crosscutting concerns make up a significant part of the 

whole system.  AOP provides an open and generic interface to nonfunctional 

aspects.  Aspect configuration can be controlled and changed at run-time with an 

immediate effect on desired objects.  AOP is also indispensable in supporting new 

aspects such that it allows implementations of an aspect module to be dynamically 

replaced in order to fulfill a new aspect configuration. 

 

In the context of mobile middleware, traditional object-oriented programming 

techniques does not help much in managing nonfunctional properties and 

crosscutting issues of mobile services that are not confined to a single mobile 

service, but affect all the services within the current service composition.  In 

particular, the adaptation mechanism for a specific context is not bounded to a 

single service, but involves the whole service composition.  When developing 

mobile services, we can leverage AOP for weaving the crosscutting issues – 

contextual changes on context adaptation.  As shown in figure 4, the concept is to 

define and supply a rich set of context-independent mobile services that serves 

different types of functionalities.  Then, by using AOP, a mobile application can 

inject any dimensions of new adaptation behaviors into the mobile services, such 

that the services serving the mobile application can always adapt precisely to the 

changing environment.   
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Figure 2.4 Aspect Weaving of Crosscutting Concerns into Context-Independent Mobile 

Services 

2.2.2 Reflective Dynamic Adaptation 

Computational reflection [Smith84] is a unique approach to achieving adaptation 

and re-configuration in a mobile middleware system.  In general, computational 

reflection is a computer process involving self-awareness.  Just as with humans, 

reflection depends on the capacity for independent reasoning, and particularly, 

reason about one's own processes.  A reflective program has the ability to 

metaprogram [Cordy92] - it can write programs on itself.  Specifically, reflection 

characteristic refers to the ability of a system to monitor its computation and 

possibly change the semantics of the way it is performed.  In other words, a 

reflective middleware possesses the unique ability to model itself through 

self-representation, such that manipulation of its behavior may be changed 

through introspection and interception [Parlavantzas00].  In this case, 

introspection refers to the ability of the system to observe and therefore reason 

about its own state, while interception is the ability of the system to modify its 

own execution state or its own interpretation or meaning.  A middleware system 

with self-representation is causally connected if changes made to the 
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self-representation directly affect the implementation of the middleware.  The 

opposite is true if changes to the middleware implementation will change the 

self-representation.   

 

While the dynamic adaptation of QoS middleware offers some degree of context 

adaptation, at times mobile applications are still in the best position to make 

critical decisions on the operating context and hence the adaptation strategy.  For 

this reason, it is desirable for a QoS middleware to provide the mobile application 

with an extensive set of APIs and reflective interfaces.  Through the meta-level 

object representation of the internal event system and service reconfiguration 

mechanism, a mobile application can access the contextual information, service 

configuration and adaptation strategy of the QoS middleware, and modify these 

entities to obtain optimal service provision from middleware. 

2.2.3 Fuzzy Control for QoS Management 

Fuzzy control has been successfully applied to various application-specific network 

QoS management systems [Tsang98] [Pitsillides97] [Chemouil95].  Fuzzy control 

models [Li99] [Koliver02] have been formulated to address QoS management at 

high levels of abstraction.  These models are limited, however, to abstract 

modeling and simple conceptual scenarios that do not consider the overall 

scalability of the model.  Specifically, an increase in the number of QoS 

parameters not only leads to an exponential increase in the number of rules that an 

area expert must input, it also requires more computational resources to process 

them.  Another concern when applying fuzzy control on mobile QoS management 

systems is rule reusability.  Studies have been done on applying fuzzy control on 

specific applications, such as video streaming [Tsang98], flow control 
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[Pitsillides97], and routing [Chemouil95].  However, the sets of fuzzy rules used in 

these applications were very specific to their corresponding scenarios.  We would 

have to use an entirely different set of fuzzy rules for every new application.  Even 

modifying an existing application requirement to add input or output QoS 

parameters would require a major revision of the entire set of fuzzy rules.  This 

issue significantly hinders the use of fuzzy control for a mobile QoS management 

system that is required to support evolving adaptive services and to serve new 

applications.   

2.2.4 Hierarchical Fuzzy Control 

Hierarchical fuzzy systems [Raju91] [Ronald98] have been introduced to reduce 

the number of rules by hierarchically inferring and grouping correlated linguistic 

variables into abstract linguistic variables for the input of higher-level fuzzy rules.  

A mobile QoS management system can leverage the hierarchical structuring of 

fuzzy rules to decouple the interwoven inference of user satisfaction, resource 

availability, service provision, and adaptation decisions.  Each of these categories 

of parameter forms an independent fuzzy rule hierarchy, so that changes in the 

parameters in one category do not affect the fuzzy rules of other categories.  Using 

hierarchical fuzzy control also promotes the fuzzy rule reusability of a mobile QoS 

management system, in which only minimal changes of the corresponding rule 

hierarchy are required to support new applications, services, and resource 

parameters. 

 

As an example of hierarchical fuzzy control, assume that there is a CPU intensive 

mobile application that has a limited battery capacity but must run for a certain 

period.  Adaptation decisions have to be made to balance four QoS parameters.  
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Assuming that each parameter has five linguistic values, with a plain fuzzy rule 

structure, the rule pattern is as follows:  

IF (CPU_Performance is ai) AND (CPU_Availability is bi) AND (Battery_Level is ci) AND 

(Power_Conservation is di) THEN (action ei).            (1)  

This fuzzy system must maintain as many as 54
 = 625 rules.   

 

Alternatively, by using hierarchical fuzzy control, the system can be modeled using 

three rule bases:  

IF (Battery_Level is ci) AND (Power_Conservation is di) THEN (Battery_Life is fi);   (2) 

IF (CPU_Performance is ai) AND (CPU_Availability is bi) THEN (CPU_preferred is gi);  (3) 

IF (Battery_Life is fi) AND (CPU_preferred is gi) THEN (action ei).         (4) 

At most, there will be 52 + 52 + 52 = 75 rules to be built.  As a result, the number of 

rules to be managed and inferred is greatly reduced by using hierarchical fuzzy 

control.  Notably, hierarchical fuzzy control reduces the maximum number of 

possible adaptation actions from 54 to 52.  However, considering the significant 

saving in the number of rules to be managed and inferred, we believe that this 

drawback is insignificant, as the reduced number of possible adaptation actions is 

still adequate for mobile QoS management. 

 

Importantly, hierarchical fuzzy control naturally promotes the ease of managing 

rule reusability by hierarchically grouping related QoS parameters and expressing 

their relationships through directed graph connections.  Changes in user and 

application needs or even the addition of new QoS parameters only require changes 

in the corresponding fuzzy rules of the affected rule level, rather than changes to all 

of the rules as would be required in a flat fuzzy rule structure.  For example, if we 
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have a new application that makes different demands on battery life, only the rules 

of (4) will have to be modified.  Using a flat fuzzy rule structure, all of the rules in 

(1) would have to be revised. 

 

A potential difficulty of employing hierarchical fuzzy control is the categorizing of 

different variables, as not all input parameters have clear associations with other 

input parameters.  The inferred abstract linguistic variables must also have 

physical meanings; otherwise, it would be impossible to build the next level of 

fuzzy rules using these abstract linguistic variables as the input.  Importantly, using 

hierarchical fuzzy control for mobile QoS management does not cause these 

problems, since many low-level QoS parameters are closely related, which 

provides us with the opportunities to model the QoS parameter as a tree structure.  

Along with a well-designed hierarchy, each inferred abstract linguistic variable can 

have meaningful representations and is suitable for inferring composite fuzzy rules.   

2.3 Summary 

In this chapter, we have illustrated the research background for this thesis.  Due to 

the adverse effects bring by the dynamic characteristics of mobile environment, 

mobile QoS management is essential for mobile application to function efficiently.  

These dynamic characteristics have various impacts on the design of different QoS 

processes of a mobile QoS management system.  Significantly, the QoS adaption 

process has become the major concern of Mobile QoS to manage the system and 

environmental dynamics.  We have looked into different adaptive mechanisms to 

study how these mechanisms can be utilized to support QoS adaptation in mobile 

environment. 
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Chapter 3   

MobiPADS: A QoS Middleware for 

Context-aware for Mobile Computing 

An important requirement of a middleware system to support mobile computing 

applications is the provision of a highly configurable and adaptive execution 

environment that dynamically reacts to changes in operating context.  This 

requirement translates to the need for middleware to organize and implement its 

system components as a collection of services that are highly configurable and 

robust enough to enable the system itself to respond to the varying conditions in 

the environment.  In addition, mobile applications are presented with open 

programming interfaces to enable application introspection and, if required, to 

re-configure the underlying services to adapt to changes in the environment. 

 

In this chapter, we introduce the Mobile Platform for Actively Deployable 

Service (MobiPADS) system.  MobiPADS is designed to support context-aware 

processing by providing an executing platform to enable re-configuration of the 

service mix in response to an environment where the context varies.  Unlike 

most mobile middleware, MobiPADS supports dynamic adaptation at both the 

middleware and application layers to provide flexible configuration of resources 

to optimize the operations of mobile applications.  Within the MobiPADS system, 

services (known as mobilets) are configured as chained service objects to provide 

augmented services and protocols to the underlying mobile applications so as to 

alleviate the adverse conditions of a wireless environment.   
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3.1  The MobiPADS Framework 

Figure 3.1 shows the MobiPADS system architecture.  It is composed of two 

agents: a MobiPADS server at the wired network and a MobiPADS client at a 

mobile device attached to the Internet through wireless or cellular networks.  The 

two agents marshal the traffic over the wireless link and provide an optimal 

operating environment for mobile applications.  The MobiPADS server is located 

at or close to the network of the wireless access point, to which the mobile device 

is connected.  The MobiPADS server is designed to support multiple MobiPADS 

clients and is responsible for most of the optimization computations.  The 

MobiPADS client is an intermediary that provides a comprehensive set of network 

and system services for mobile applications.  These services enable ease of 

introduction of context-awareness and adaptation for mobile applications, so that 

the mobile application can adaptively react to varying context environments. 

 

Each MobiPADS agent is composed of two parts: the system components and the 

MobiPADS service space.  The system components provide essential services for 

the reconfiguration and management of user service pairs – the mobilet pairs, 

which form the units of service for execution under a MobiPADS environment.  

The system components also provide common facilities that serve mobilets, which 

in turn provide value-added services to the wireless environment.  These 

mobilets can be added, updated and removed dynamically.   

 

In the MobiPADS service space, a series of mobilets is linked together to form a 

processing chain – the service chain, which allows mobile applications to benefit 

from the aggregated functionalities of a collection of mobilets.  Mobilets access 



41 

 

the services of the system components though the mobilet API, which also 

provides interfaces to allow the system components to communicate and 

configure the mobilets.  To monitor the contextual changes, the MobiPADS 

employs composable event objects that report any contextual change to entities 

that subscribe to them.  The composition of events can be initiated at start-up 

time, and also allows runtime modification of the event compositions.  At the top 

level of the service space, there is a set of meta-objects that reflects the 

configuration of the composite events and service chain, as well as the adaptation 

policies.  Both the middleware and the mobile application can use the 

meta-objects to inspect and reconfigure the event compositions and service chain 

when adaptation is needed. 

 

 

Figure 3.1 The MobiPADS System Architecture 
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3.2 Mobilet Service Model 

A Mobilet is a service entity that can be downloaded, pushed or migrated to a 

MobiPADS platform for execution within an environment.  Mobilets are named 

after applets, which are active codes executed within Web browsers.  Mobilets 

are active mobile codes that run within the MobiPADS environment. 

 

Mobilets exist in pairs: a master mobilet resides at the MobiPADS client and a 

slave mobilet resides at the MobiPADS server.  A pair of mobilets cooperates to 

provide a specific service.  A typical case would be for a slave mobilet to share 

the majority of processing burden.  A master mobilet instructs the slave mobilet 

on what actions to take and presents the processed output to the MobiPADS client. 

 

The mobilets are chained together on the client in a specified order, and the 

corresponding peer mobilets are chained together in a nested order on the 

server-side.  The service chaining model of mobilets supports a general service 

composition paradigm that enables the utmost flexibility in deploying service 

aggregation while providing ease of re-configuration in response to the varying 

characteristics of a wireless environment.  A consistent synchronization and data 

flow model can be established through the abstraction of channel objects and the 

employment of data encapsulation between services. 

 

In order to support a robust service configuration, all mobilets can be dynamically 

deployed across a MobiPADS client and server.  In other words, it is possible for 

a mobile node to carry with it relevant mobilets as it travels across foreign 

domains.  As the need arises, mobilets from the client can be dynamically 
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pushed to a MobiPADS server and configured to operate in a coordinated manner.  

Conversely, it is possible for a MobiPADS server to push mobilets to a 

MobiPADS client to actively install new services to operate across a wireless link. 

3.3 System Components 

The components of the MobiPADS system are briefly described as follows: 

 

Configuration Manager: The configuration manager is responsible for negotiating 

the connection between the client and the server.  It also has a service controller 

for initializing, interconnecting and managing the mobilets. 

 

Hierarchical Fuzzy Inference Engines: These engines give generalized 

hierarchical representations – called QoS factors, which captures the overall 

operating environment and user perceived quality of service.  These QoS factors 

are cascaded and further inferred to decide the importance of QoS factors that are 

critical to the current application and operating context. 

 

Reconfiguration Engine: The reconfiguration engine matches the importance 

values of the QoS factors with the mobile profiles, such that the optimal 

combination of mobilets can be discovered and selected for reconfiguration. 

 

Service Migration Manager: The service migration manager manages the process 

of importing and exporting mobilets between the MobiPADS server and the 

MobiPADS client.  It also cooperates with the service directory to activate, store 

and keep track of the changes made to the active mobilets. 
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Service directory: The service directory records all the known mobilet service 

types.  The object codes are stored in a service repository, which is used for 

service activation and service migration. 

 

Channel Service: The channel service provides virtual channels which the 

mobilets use to communicate.  Instead of opening separate TCP connections for 

each message, messages are multiplexed into a single persistent TCP connection, 

which then eliminates the overheads of opening new TCP connections and avoids 

the slow-start effect on overall throughput [Liljeberg95]. 

3.4 Dynamic Service Reconfiguration 

To adapt dynamically to changes in an environment, MobiPADS employs the 

environment monitor and event system to monitor and communicate changes.  

After changes have been detected, the MobiPADS system can respond in two 

ways.  The first way it can respond is by reconfiguring the current service chain.  

By adding and removing mobilets within the service chain, the optimum set of 

mobilets can be selected based on the constrained environment.  The second way 

it can respond is by communicating the changes in the environment to each of the 

mobilets so that they can readjust their service provision to adapt to the mobile 

environment.   

3.4.1 Service Policies 

Figure 3.2 shows the conceptual initialization procedures of the service chain.  

When a MobiPADS client starts executing, the service controller (of the 

configuration manager) invokes the profile parser, which will then load and 
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process the system profile from which the default meta-chain and a number of 

alternative meta-chains are created.  The list of meta-chains is returned to the 

service controller, which will then deploy the default service chain and the event 

monitors of the meta-chains.  Each meta-chain is attached to an environment 

monitor, which regulates the time and conditions that determine when the 

reconfiguration is to take place.  When all of the conditions of a specific 

environment monitor are fulfilled, the corresponding meta-chain will be reflected 

onto the current service chain, and reconfiguration will take place. 

3.4.2 Service Chain Reconfiguration 

Service chain reconfiguration takes place when the context environment changes 

to a state that fulfills all of the conditions of a specific environment monitor.  The 

corresponding meta-chain will then be reflected onto the current service chain to 

best adapt to the changes.  Figure 3.3 shows the procedures of service chain 

reconfiguration when an environment monitor EnvMonitor_C is qualified for 

reconfiguration.  First, the eligible meta-chain will be compared to the active 

meta-chain (of the current service chain), so that a list of instructions is generated 

to perform the actual operations needed for reconfiguring the current service chain.  

As shown in Figure 3.3, the active meta-chain consists of mNodes_A, mNodes_B, 

and mNodes_C, while the new meta-chain consists of mNode_B, mNode_C and 

mNode_D.  The configuration manager compares each mNode in the active 

meta-chain to the new meta-chain, and any unmatched mNode in the active 

meta-chain will be marked for deletion.  In this case, the mNode_A is not found 

in the new meta chain, thus the instruction remove(A) is generated.  After all 

mNode in the active meta-chain are compared, a suspension instruction 
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suspendAll() is added.  Then the comparison is repeated but reversed: Each 

mNode in the new meta-chain is compared to the active meta-chain, and any 

unmatched mNode in the new meta-chain will be marked for addition.  

Subsequently, the instruction insert(D, 2) is generated, where the argument 2 is 

the insert index position in the current service chain.  Last, the list of the 

instructions is passed to the service controller, in which the actual service chain 

reconfiguration operations are carried out. 

 

 

Figure 3.2 Establishment Of The Meta-Chains And Initial Service Chain 

 

 

 

Figure 3.3 Service Reconfiguration Process 

 

3.4.3 Mobilet Reconfiguration 

Simply adding or removing mobilets within the service chain is not a sufficiently 

adaptive response to changes in a wireless environment.  To allow a finer- 

grained adaptation, the MobiPADS programming platform should allow 
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reconfiguration at the level of individual mobilets.  To develop a reconfigurable 

mobilet, the service object can leverage and dynamically extend the event system 

and environment monitor.  In particular, the mobilet can subscribe to an event 

and allow it to react to the event messages by adjusting its internal parameters to 

best adapt to the changes in the environment.  If necessary, the mobilet may 

change the subscription of EnvMonitor to adapt to the changing requirements of 

context monitoring.  An example is an image transcoding mobilet that provides 

different levels for the compression ratio.  It can use a different compression 

ratio based on the reported bandwidth from an event source that monitors the 

bandwidth.  However, it is not desirable to have the mobilet adapt to the 

contextual changes implicitly.  Rather, a set of operation modes should be 

defined, which will allow external entities to override the adaptation logic of the 

mobilet, and enforce a specific mode of operation. 

3.5 Adaptation Mechanisms 

In order to answer the call for multi-dimensional adaptation needs raised by the 

diversity and dynamics of operating environments, mobile devices, users, 

applications and usage scenarios (see Table 1), MobiPADS has introduced five 

layers of adaptation mechanisms that flexibly support adaptation needs at different 

service layers. 

 

QoS Factor Hierarchy Extension allows the addition of new QoS dimensions to 

the existing QoS factor hierarchy, such that the number and variety of managed 

QoS parameters will not be bound by the original design.  Importantly, this 

mechanism is designed to cause minimum disruption to the entire fuzzy rule base 
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but to update only the direct parent node of the new QoS factor within the hierarchy.  

This obviates the effort required for a non-hierarchical fuzzy rule base to review the 

whole rule base when new input is added. 

 

Table 3.1 Five Layers of Adaptation Mechanisms 

Mechanism Objective Service Layer Operation 

Reflection 

QoS Factor 
Hierarchy 
Extension 

Adding new QoS 
dimensions to the 
existing QoS Factor 
hierarchy 

Middleware 
initialization 

Adding and changing the fuzzy rules of 
the direct parent node of the new QoS 
factor within the hierarchy 

Membership 
Function 
Adaptation 

Adapting to the 
specifications on 
individual QoS factors 

Service session 
initialization during 
application startup, 

Adjusting the membership functions of 
the linguistic values of the concerned 
QoS factors 

Importance 
Weight 
Adaptation 

Adapting to the 
specifications on overall 
QoS factor priorities 

and 
run-time response 
to user's adjustment 

Changing the importance weights of 
different concerned QoS factors to reflect 
the user and application specific priorities 

Fuzzy 
Control 
Output 

Adapting to the system 
dynamics and 
optimizing the QoS 
perceived by user 

Real-time response 
to the system 
dynamics 

Selecting the optimal set of service 
profiles 

 

Allowing applications to 
access control states 
and adaptation 
behaviors through 
meta-representations 

Application initiated 
real-time meta-level 
adaptation 

Providing Reflective API for applications 
to inspect (through reflection) and to 
adapt (through reification) the behavior of 
the underlying system components, 
adaptation rules and actions 

 

Membership Function Adaptation allows ad-hoc adaptation to the specifications 

of a new application.  This is done by dynamically adjusting the membership 

functions of the linguistic values of the involved QoS factors.  Traditionally, each 

set of application specification requires a custom-made set of fuzzy membership 

functions and fuzzy rule base to support the specific application requirements.  

However, it is undesirable for an application to specify its own set of membership 

functions and fuzzy rules, which are too low-level and fuzzy domain specific for 

typical application developers to handle.  The membership function adaptation 

mechanism is much simpler that it automatically adapts the fuzzy membership 

functions of concerned QoS factors to the desired formulations specified by user 

and application. 
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Importance Weight Adaptation supports ad-hoc user based QoS specification.  

Based on a similar requirement as in Membership Function Adaptation, this 

mechanism tries to avoid a redesign of the fuzzy rule base and fuzzy membership 

functions when a set of new user requirements has emerged.  This is done by 

dynamically changing the importance weights of different QoS factors to reflect the 

priorities of different QoS factors as specified in the user requirements. 

 

Fuzzy Control Output adapts to the system dynamics and optimizing the QoS 

perceived by user.  This mechanism responds to the system dynamics in real-time 

by selecting the optimal set of service profiles periodically. 

 

Reflection provides Reflective API for applications to inspect (through reflection) 

and to adapt (through reification) the behavior of the underlying system 

components, adaptation rules and actions.  While the dynamic adaptation of QoS 

middleware offers some degree of context adaptation, at times mobile applications 

are still in the best position to make critical decisions on the operating context and 

hence the adaptation strategy.  For this reason, it is desirable for a middleware to 

provide the mobile application with an extensive set of APIs and reflective 

interfaces.  Through the meta-level object representation of the internal event 

system and service reconfiguration mechanism, a mobile application can access the 

contextual information, service configuration and adaptation strategy of the 

middleware, and modify these entities to obtain optimal service provision. 

 

Chapter 4 will describe the extension of QoS factor hierarchy and fuzzy control 

output and Chapter 5 will present membership function adaptation, rule weight 
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adaptation and reflection. 

3.6 Summary 

The growing importance of mobile computing has given rise to a need to re-visit 

the design requirements of future middleware to cope with the diverse challenges 

of operating over a dynamic context.  The fundamental assumption of a static 

operating environment, which resulted in a monolithic “black-box” approach to 

implementing existing middleware, is invalidated in a mobile computing 

environment.  An important requirement in the formulation of a context-aware 

middleware is the need to devise suitable control mechanisms that allow 

applications to directly participate in resource adaptation in response to the 

dynamic operating environment.  In this chapter, we have presented the overall 

architectural design of the MobiPADS system.  The MobiPADS represents a 

reflective-based mobile middleware that is designed to support the dynamic 

reconfiguration of augmented services for mobile computing.  The underlying 

MobiPADS is implemented as a collection of active-service entities, known as a 

mobilets, which are constructed as a series of primitive services that form a 

service-chain composition.  The reflective model provides meta-interfaces for 

applications to directly participate in computation adaptation in response to the 

changing context.  Through the meta-level object representation of the internal 

event system and service reconfiguration mechanism, a mobile application can 

access contextual information, the service configuration and adaptation strategy of 

MobiPADS, and examine and modify these entities to obtain optimal service 

provision from the MobiPADS. 
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Chapter 4  Mobile QoS Management Based on 

Hierarchical Fuzzy Control 

The control model of a fuzzy control system is typically modeled by domain 

experts.  Our proposed fuzzy QoS organizes the model into a hierarchical control 

granularity.  This management framework reduces the effort that mobile 

application developers would otherwise have to put into understanding and 

controlling every detail of the contextual environment.  A mobile application 

developer using this framework need be aware only of contextual details down to a 

level sufficient for making adaptation decisions.  This obviates the need to manage 

low-level contextual parameters.  The hierarchical fuzzy control model supports a 

systematic approach that helps application developers easily specify desired 

adaptation policies.  This model can also efficiently, flexibly, and accurately map 

these application specifications into the adaptation behaviors of the management 

framework.   

4.1 The Hierarchical Fuzzy Control Model 

Figure 4.1 provides an overview of the hierarchical fuzzy control model.  Unlike 

typical fuzzy systems, which usually have only a single inference engine, our model 

is composed of three fuzzy inference engines and one reconfiguration engine, each 

with its own basic set of fuzzy rules.  When there is a large number of QoS 

parameters, the fuzzy rule hierarchy can greatly reduce the number of fuzzy rules to 

be managed and inferred, thereby avoiding the rule explosion problem.   
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Figure 4.1 Control Flow of the Hierarchical Fuzzy Control Model 

 

The hierarchical fuzzy control model contains four core engines.  The contextual 

inference engine in the upper left of Figure 4.1 is responsible for processing and 

summarizing contextual information.  It provides a generalized representation of 

the overall operating environment in terms of abstract contextual factors such as 

CPU availability, battery level and network delay.  The user-based inference 

engine in the lower left handles the user satisfaction factors, generalizing the 

overall user satisfaction in terms of abstract user satisfaction factors such as cost of 

network connection fee, media fidelity and media smoothness.  The adaptation 

inference engine in the middle is responsible for inferring a set of adaptation 

importance values based on the abstract user satisfaction factors and the abstract 

contextual factors.  These importance values describe priorities of different aspects 

of the middleware services that need adaptation.  The reconfiguration engine on 
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the right reacts to the adaptation objectives by reconfiguring the service chain while 

preserving overall user’s satisfaction and resource consumption.   

 

The QoS management framework is designed to support context-aware processing 

by providing an executing platform to enable mobile services to be actively 

deployed and reconfigured in response to an environment where the context varies.  

To alleviate the adverse conditions of a wireless environment, services (called 

mobilets) are configured as chained service objects (a service chain) to provide 

augmented services and protocols to the underlying mobile applications.  Each 

mobilet provides a specific functionality.  Different combinations of mobilets are 

chosen to fulfill different QoS requirements and to suit different contextual 

environments.  Service chains can be reconfigured during runtime to adapt to 

changes in QoS requirements and to the operating environment by adding and 

removing mobilets.  Moreover, each mobilet can have various modes of operation 

(profiles) to support finer adaptation levels, the details of which are discussed in 

Section 4.3.2.  The mobilet service model enables QoS support for mobile 

environments, extending from the system resource level up to the user level. 

 

In order to support reusability and scalability, it is essential for the control model to 

achieve a separation of concerns that would decouple different aspects of the 

system.  This would allow the rules of individual rule bases to be created and 

updated independently during different phases of development without causing 

interference between rule bases and without requiring revisions to the rules of other 

rule bases.  New applications are supported through the runtime service adaptation 

of the QoS factors – namely – the contextual factors and user satisfaction factors.  
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New mobilets can be added to the system without the need to revise other fuzzy rule 

bases or the profiles of other mobilets.  This design allows the QoS management 

framework to be flexibly customized to adapt to the characteristics of different 

mobile devices.   

4.2 Hierarchical Inference Engines 

This section describes in detail the composition of components and their 

interactions in the fuzzy control hierarchy.  These components drive the inference 

engines described in Section 4.1. 

4.2.1  Resource-oriented QoS Parameters 

To support a specific application, a number of system resource QoS parameters are 

involved.  Each represents a measured value of a resource type.  The set of 

resource parameters is denoted by: 

E = {e1, e2, …, ep},                   (5) 

where p is the number of parameters involved.  Examples of these parameters 

might be network delay, CPU utilization, and battery life.  To avoid extreme 

dynamicity of the resource parameters, preprocessing should be applied to control 

the update frequency, unit conversion, and calibration of the raw measured value.  

This will ensure that the primitive resource parameters represent normalized values 

associated with the corresponding aspects.  For example, raw CPU utilization 

measurements can be as precise as the number of occupied CPU cycles within the 

period of 1 ms.  However, it would be more appropriate to normalize this raw 

measurement to a percentage scale and update it every second, and input this 

information to the control model.  For simplicity, we assume that all parameters in 
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E of the model have been preprocessed and normalized. 

4.2.2  Contextual QoS Factors 

Contextual QoS factors are direct or recursive fuzzifications of the resource QoS 

parameters, which act as input fuzzy variables to the hierarchical fuzzy control 

model.  The set of contextual factors that are relevant to supporting the application 

is denoted by: 

C = {c1, c2, …, cr | r ≥ p}.                (6)  

The set C consists of two subsets: C1 and C2.  The subset C1 holds primitive 

contextual QoS factors and it is denoted by: 

C1 = {c1, c2, …, cp},                 (7)  

whose elements ci are a direct fuzzification of the corresponding ei in E.  The 

subset C2 is comprised of abstract contextual QoS factors and it is denoted by:  

C2 = {cp+1, cp+2, …, cr},                 (8) 

which are generated from the nested fuzzification of elements in C1.  C2 represents 

high-level descriptions of the contextual environment.  For example, “battery life 

is good” or “network performance is poor.”  

As shown in Figure 4.2, we organize contextual information of different levels of 

abstraction into a tree hierarchy.  Fuzzy rules in the contextual rule base can be 

defined using both primitive contextual factors and abstract contextual factors as 

input linguistic variables.  For example, 

IF(Battery_Level is normal) AND (Power_Conservation is good) THEN (Battery_Life is good); 

IF (CPU_Availability is normal) AND (Battery_Life is poor) THEN (CPU_Preferred is poor). 
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Figure 4.2 Contextual QoS Factor Hierarchy 

4.2.3  User-oriented QoS Parameters 

Typical mobile application users are not concerned about the low-level resource 

parameters or the contextual factors.  They are concerned with what they can 

perceive about the performance of the application in terms of quantifiable quality of 

service, for example, responsiveness, smoothness, and clarity.  To define these 

abstract concepts, however, we need to obtain concrete user-oriented measurable 

QoS parameters.  The set of concerned user-oriented QoS parameters in a specific 

application is denoted by:  

U = {u1, u2, …, uq}.                   (9) 

Each parameter represents a measured value of a primitive user-oriented QoS 

parameter, where q is the number of parameters.  Examples are resolution, frame 

rate, and air-time charge per minute. 

4.2.4 User satisfaction QoS Factors 

Like contextual QoS factors, user’s satisfaction QoS factors are the fuzzy variables 
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that directly or recursively fuzzify user-oriented QoS parameters, as shown in 

Figure 4.3.  The set of user satisfaction QoS factors is denoted by: 

S = {s1, s2, …, st | t ≥ q}.              (10) 

Similarly, S = {S1, S2}.  The subset S1 is defined as primitive user satisfaction QoS 

factors that are the fuzzification of the corresponding si in U, which is denoted by: 

S1 = {s1, s2, …, sq}.               (11) 

The subset S2 consists of abstract user satisfaction QoS factors that represent the 

high-level user satisfaction factors.  It is denoted by:  

S2 = {sq+1, sq+2, …, st}.              (12)  

Examples of abstract user satisfaction QoS factors might be media presentation 

quality and application availability.  Like the contextual rule base, the user 

satisfaction rule base contains fuzzy rules that are defined with the user satisfaction 

factors of both S1 and S2.  For example, 

IF (Transmission_Responsiveness is poor) THEN (Responsiveness is poor); 

IF (Synchronization is normal) AND (Fidelity is good) AND (Smoothness is normal) AND  

(Responsiveness is good) THEN (Quality is good). 

 

Figure 4.3 User Satisfaction QoS Factor Hierarchy 
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4.2.5 Adaptation Importance 

The adaptation inference engine will make use of the user satisfaction factors and 

contextual factors to deduce a set of adaptation importance values for the next 

service reconfiguration cycle.  The fuzzy rules in the adaptation rule base seek to 

determine the user satisfaction factors that may need the most improvement, and 

the extent to which the user satisfaction factors should be improved given the 

current contextual situation.  Such decision output is represented by a list of 

relative importance values of each QoS factor, whose usage for adaptation will be 

further discussed in Section 4.4.2 and exemplified in Table 4.2 of Section 4.5. 

4.3 Mobilets 

In the QoS management framework, a mobilet is a service object that performs a 

single task.  A number of mobilets are selected to form a service chain that 

provides an integrated set of services to the mobile application.  Each mobilet can 

have a number of operational modes, denoted by mobilet service profiles, which 

clearly describe the usages, the usable situations, and the impact of the each of the 

operational modes. 

4.3.1 Mobilet Service 

Let M = {m1, m2, …, mv} be the set of mobilet services that can be used to support 

the application, where v is the total number of mobilets in the set.   

A mobilet is characterized by a collection of three lists: input types, output types, 

and service profiles:  

m = {IN(m), OUT(m), F(m)}.               (13) 
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The input and output types are used for matching the object types to support the 

application requirements.  Each mobilet can support multiple input and output 

types.  For example, a mobilet accepts raw AVI video format as input and produces 

H.264 video as output.  A mobilet chain template is generated to specify the 

mapping of compatible mobilets to be selected and chained, while ensuring that 

input and output types between the connecting mobilets are fully compatible. 

4.3.2  Mobilet Service Profile 

A mobilet service profile represents a mode of operation that the mobilet can 

support, e.g. a compression mobilet can have a maximum speed profile, a 

maximum compression profile, and a balanced profile.  The set of profiles of the 

mobilet mi can be denoted by:  

F(mi) = {fi
1, fi

2, …, fi
h(i) | i ∈[1,v]},            (14) 

where h(i) is the total number of profiles of mi.  The reconfiguration engine selects 

a list of profiles from F(M) as its output, which optimizes the QoS and resource 

usage under the current operating context.  The output of the reconfiguration 

engine is denoted by: 

Foptimize(M) = { fα
a, fβ

b, …, fδ
d | 1≤α<β<δ≤v, a∈[1,h(α)], b∈[1,h(β)], d∈[1,h(δ)]}.    (15) 

A profile is denoted by 

f = {A( f)},                  (16) 

where A(f) denotes a list of QoS factors that will be affected if the profile is 

activated.   

4.3.3 Affected QoS Factor 

An affected QoS factor is a three-element tuple: the parameter label, adjustment, 
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and modifier, which is denoted by: 

A i(f) = {ci, α, x, | ci ∈[C1 ∪ S1] , α ∈[-1,1], x∈{0,1}}.         (17) 

Each tuple describes the effect on a specific QoS factor when the profile is activated.  

ci is a primitive contextual QoS factor or a primitive user satisfaction QoS factor.  

α is the modification value and x is the modifier, which can be either 0 or 1, 

indicating whether the corresponding adjustment α is either absolute or relative.  

As an example, if a QoS factor, smoothness, is currently defuzzified to a crisp value 

of 0.5, then the tuple {smoothness, -0.2, 1} implies that the new smoothness value 

is (-0.2) + (0.5)(1) = 0.3.  In other words, if the profile is activated, the smoothness 

factor will be affected and changed to a crisp value of 0.3.  With reference to (6) 

and (10), the list of affected QoS factors A(f) is defined as  

A(f) = {A 1(f), A2(f), …, Ak(f) | 1≤k≤p+q }.           (18) 

As an example of a complete mobilet service profile, one of the profiles for an 

MPEG4 encoding mobilet can be  

fMPEG4
High_Quality = {Power_conservation,-0.2,1, CPU_Availability,-0.2,1, 

Net_Bandwidth_Availability,0.2,1, Fidelity,0.8,0}.   

The adjustment of an activated profile to a QoS factor can be defined in two ways: 

deterministic and probed.  deterministic adjustment represents an absolute casting 

of the specific QoS factor, which is enforced by the mobilet.  For example, a video 

transcoding mobilet enforces its video output to be in QVGA resolution, thus 

restricting the media fidelity factor to a specific value.   

 

A mobilet can intentionally or unintentionally affect a QoS factor so that the extent 

of the effect is uncertain during the design phase, in which case probing during the 

testing and deployment phase is required to determine the actual effect.  This is 
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called probed adjustment.  Due to its nondeterministic characteristic, probed 

adjustment is best characterized based on relative representations.  For example, a 

text compression mobilet can reduce HTTP traffic by 30% on average, but as a side 

effect, it also increases the CPU loading by 10% on average.  These relative 

changes must be probed since they cannot be determined during the design phase.  

A developer of a mobilet with probed adjustments should implement active testing 

functions that can be invoked when the mobilet is first installed, to determine the 

initial values of the probed adjustments.  Passive probing functions should also be 

implemented, which can be invoked when the mobilet is activated for adaptation.  

This calibrates and updates the values of the probed adjustments adaptively, so that 

the values can accurately reflect the adjustments to the current operating platform 

and environment.  The probing of service performance [Cherkasova02] 

[Obraczka98] is a research topic on its own, yet for simplicity of illustration we 

again assume that the probed adjustments for every profile are accurate and 

up-to-date. 

4.4 Fuzzy-controlled Service Reconfiguration 

A large variety of algorithms and techniques [Al-bar99] [Chalmers99] have been 

developed to provide mobile-enhanced services.  Typically, these services have 

been designed to optimize operations in restricted contexts and for specific 

applications.  Hence, the selection of services becomes a process that is crucial to 

the efficiency of a mobile operating environment.  In this section, we describe a 

generalized scheme for mobile service selection that uses fuzzy sets. 

 

Given a contextual environment and a set of measured QoS factors, the middleware 
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have to select the mobilet combination and the mobilet profile that will optimize the 

QoS factors of specific applications and maintain the optimal level of user 

satisfaction. 

 

The set of optimization objectives represents all of the contextual QoS factors and 

user satisfaction factors, which can comprise of both primitive and abstract factors 

as in (6) and (10),  

Ooptimization (C1 ∪ S1) = {o1, o2, …, ok | k=p+q}, where oi = 


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Each QoS factor is mapped to an objective.  The decision function G, is defined by 

the intersection (to find the minimum) of all optimization objectives 

G = o1 ∩ o2 ∩ … ∩ ok.              (20) 

A decision scoring of an objective for a profile is determined by the relative 

importance of the objective and the degree of satisfaction achieved by the profile. 

 

Although the QoS management framework can support the simultaneous 

reconfiguration of multiple mobilets in a service chain, the control model limits the 

change to one mobilet per reconfiguration.  This is to facilitate the probing and 

updating of the affected QoS factors of each mobilet profile.  This in turn leads to a 

simpler design for mobilet selection.  In order to select the optimal mobilet profile, 

we adopt a decision calculus introduced in [Yager81], which is based on ordinal 

information, as the input for weightings of importance.  There are a large variety of 

fuzzy methods [Fuller96] for multiple-criteria decision making.  The decision 

calculus of Yager [Yager81] is the most suitable method for selecting mobilet 

profiles because of the simplicity of its model and low computational complexity.  

More importantly, this method supports our aim of identifying profiles with the 
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least amount of compromise in the concerned QoS factors, rather than selecting 

profiles with uneven performances among the concerned QoS factors.  This is vital 

to our system, since a high score in a specific QoS factor is of little value when it 

reaches a certain level, e.g. a video of 60 frames per second (fps) is 

indistinguishable in most cases from a video of 30fps.  On the other hand, small 

improvements in any disadvantaged QoS factor can improve user perceived quality 

notably. In short, the system optimizes the overall performance by improving the 

worst performing QoS factor one at a time. 

 

Let δ(fj, oi) be the decision score of a profile fj in objective oi; then, the set of 

decision scores for fj is denoted by:  

D(fj) = {δ(fj, o1), δ(fj, o2), …, δ(fj, ok)} → [0, 1].          (21) 

The overall decision score of fj is then denoted by:  

δ(fj, G) = min[D(fj)],                (22) 

where the optimal profile f* is denoted by:  

δoptimal (f
*) = 

)(
max

MFf ∈
[δ(f, G)].               (23)  

As described in section 3.2.5, the importance of an objective oi is denoted by wi, 

which can be determined by the adaptation inference engine.  The set of 

importance values of corresponding objectives in Ooptimization (C1 ∪∪∪∪ S1) is denoted 

by:  

W = {w1, w2, …, wk} → [0, 1].               (24)  

The degree of satisfaction of objective oi for a profile f is denoted by oi(f) and can be 

computed through profile testing.  As shown in the top and bottom part of Figure 

4.1, the reconfiguration engine tests the profile f by affixing all of its affected QoS 

factors onto the primitive QoS factors that will subsequently reflect the changes 
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onto the abstract QoS factors.  The testing measurements of the primitive and 

abstract QoS factors are then taken as degrees of satisfaction.   

 

Let N(oi, wi) denote the new decision score of the objective oi that has an 

importance of wi.  The decision function in (19) becomes  

G = N(o1, w1) ∩ N(o2, w2) ∩ … ∩ N(ok, wk).           (25) 

By using the Kleene-Dienes implication operator [Park92], where IKD(x, y) = 

max(1-x, y), the decision score of an objective oi for a mobilet profile fj is defined 

as 

δ(fj, oi) = N(oi(fj), wi) = wi → δ(fj, oi) = oi(fj) ∨ 
iw , where 

iw  = (1- wi).   (26) 

 

Figure 4.4 illustrates how the implication operation assigns a score to each of the 

objectives based on their importance and satisfaction.  The lowest score represents 

the bottleneck of a profile, which is the most representative QoS performance 

measurement of the profile.   

 

Figure 4.4 Sorted Decision Scores Using The Implication Operator 

 

Based on (25) and (26), the decision function for finding an overall decision score 

for all objectives becomes  

G = (o1 ∪ 
1w ) ∩ (o2 ∪ 

2w ) ∩ … ∩ (ok ∪ 
kw ).          (27)  

Then, the optimal profile can be found by expanding (23): 

δoptimal (f
*) = 

)(
max

MFf ∈
{ k

i 1min = [max(oi(f), iw )]}.            (28) 
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If two conflicting profiles have the same overall decision score, their 

second-smallest decision score representing their second bottleneck, can be 

compared.  If a conflict persists, the comparison can be repeated.   

4.5 Performance Results and Analysis 

To test the performance and functionality of the system, we have developed an 

emulated wireless video streaming application based on the implementation of the 

QoS management framework.  This simulation allows us to study the performance 

of a generic wireless application running on top of the QoS management framework.  

The video streaming application exercises and adapts to multiple QoS parameters, 

including network bandwidth, network error rate, video smoothness, video fidelity, 

and video noise.  The video application also incorporates the coexistence of 

multiple adaptation options, including the frame rate, resolution, and codec 

selection.  The actual adaptation decisions are made based on the current wireless 

environment and pre-assigned application preferences, and are assisted by the 

hierarchical fuzzy control model. 

4.5.1 Experimental Setup 

Figure 4.5 shows the logical flow of the experimental setup.  At the top of Figure 

4.5, the data flow of the wireless video streaming application begins with the 

streaming of a video into a service chain that is composed of a number of 

mobile-enhanced mobilets.  There are three tiers of mobilets along the service 

chain: the frame rate adaptation mobilet, the resolution adaptation mobilet, and the 

codec mobilets.  These mobilets are dynamically reconfigurable to best adapt to 

the current contextual environment.  They do this by appropriately transcoding 
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the streamed video into an optimized form to be transmitted over the emulated 

wireless network.  There is a video receiver at the other end of the emulated 

network, which measures the quality of the received video stream and feeds these 

QoS measurements back to the QoS monitors.   

 

Figure 4.5 An Adaptive Mobile Video Streaming Application 

 

The lower left of Figure 4.5 shows twelve mobilet profiles that can be selected from 

five mobilet profile sets.  The frame rate adaptation mobilet has five profiles: 30, 

24, 20, 15, and 10 frames per second.  The resolution adaptation mobilet has four 

resolution scaling profiles: 100%, 75%, 50%, and 25%.  There are three codec 

mobilets, each with just one profile: ordinary M-JPEG, layered coding (LC) [Li97], 

and multiple description coding (MDC) [Goyal01].  LC has been developed for 

scalable video delivery, in which the signal is separated into components of varying 

levels of detail.  MDC breaks the data into several streams with some 

redundancies between the streams.  When partial streams are received, the quality 

of the reconstruction degrades gracefully.  In this simulation, we adopt the 

characteristics and measurements of LC (with ARQ on the base layer) and MDC 

from [Singh00].  These profile descriptions are submitted to the reconfiguration 
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engine for a decision as to what profile should be selected.  This is done 

dynamically to reflect the projected effects of the profiles in the existing contextual 

situation. 

 

The middle of Figure 4.5 shows the control flow of the simulation.  The QoS 

monitors gather the QoS measurements from the operating environment and the 

video receiver.  These measurements are then normalized and input into 

correspondingly to the contextual inference engine and user-based inference engine.  

These two inference engines infer the local importance values of their QoS factors, 

and also the overall quality of their QoS factor hierarchy.  The adaptation inference 

engine then infers the global adaptation importance values for each QoS factor by 

making use of these measurements of overall quality and local importance values.  

Once there is a set of global adaptation importance values for each QoS factor and 

the set of profiles describing the effect of the profiles on each of the QoS factors, it 

becomes a straightforward task for the reconfiguration engine to decide which 

profile is the best for the current contextual situation.  After an optimal profile set 

is selected, the reconfiguration engine reconfigures the current service chain to 

provide an optimal transcoding service for the video streaming application.  The 

whole adaptation control flow is carried out dynamically and periodically so that 

the current service chain can always match the QoS demands of the application in a 

dramatically changing wireless operating environment. 

 

We have carried out a series of experiments with the wireless video streaming 

application.  The detailed environmental setup is as follows: A Motion-JPEG 

encoded video stream with a frame size of 640x480 pixels and a speed of 30 frames 
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per second is streamed over a wireless network, from a fixed-network server to a 

wireless client.  The QoS management framework is running on both the server 

and the client, providing transcoding and adaptation services to the video streaming 

application.  The maximum bandwidth of the wireless network is 150% of the 

video stream, the average round trip time (RTT) of the wireless network is 600 ms, 

and the average error rate is 10%.  At the transport layer, the User Datagram 

Protocol (UDP) is used for the packet transfer.  The packet size is fixed at 100 

bytes to minimize the adverse effect due to lost packets.  The maximum allowed 

packet delay is 2000 ms, and each lost packet can be retransmitted only once at 

most, to prevent unbounded delays.   

4.5.2 The Fuzzy Rules 

To give a concise illustration of the model so that it can be better appreciated, the 

number of QoS factors involved in the hierarchical fuzzy control is trimmed down 

to six: fidelity, smoothness, presentation quality, bandwidth, error rate, and network 

quality.  Table 4.1 shows the fuzzy rules of the network quality rule base.  The 

contextual inference engine uses these rules to generate the relative importance of 

bandwidth and error rate, and also an abstract QoS factor – network quality.  

Figure 4.6 shows the function surface plot for network quality.  We use symmetric 

Gaussian membership functions for all of the fuzzy rules in this simulation.  The 

user satisfaction rule base and the user-based inference engine work in a similar 

manner, generating the importance of fidelity and smoothness.  An abstract QoS 

factor – presentation quality, is also inferred by the user-based inference engine. 

 

The relative importance values generated by the user-based inference engine and 

the contextual inference engine are only valid within their corresponding scopes.  
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However, we need a global set of importance values to allow quantitative 

comparisons among all QoS objectives.  This is provided by the adaptation 

inference engine.  As shown in Table 2, network priority (netPriority), 

representing the relative weightings of the contextual QoS factors compared to the 

user satisfaction QoS factors, is inferred using presentation quality (userQoS) and 

network quality (netQoS).  The function surface plot of network priority is shown 

in Figure 4.7. 

 

Figure 4.6 Network Quality Function Inferred by Bandwidth and Error Rate 

 

Table 4.1 The Network Quality Rule Base 

1.  If (bandwidth is excellent) and (errorRate is excellent) then (networkQuality is excellent)  
2.  If (bandwidth is excellent) and (errorRate is good) then (networkQuality is excellent)  
3.  If (bandwidth is good) and (errorRate is excellent) then (networkQuality is excellent)  
4.  If (bandwidth is normal) and (errorRate is good) then (networkQuality is good)  
5.  If (bandwidth is good) and (errorRate is normal) then (networkQuality is good)  
6.  If (bandwidth is normal) and (errorRate is normal) then (networkQuality is normal)  
7.  If (bandwidth is poor) and (errorRate is normal) then (networkQuality is normal)  
8.  If (bandwidth is normal) and (errorRate is poor) then (networkQuality s normal)  
9.  If (errorRate is bad) then (networkQuality is bad) 
10.  If (bandwidth is bad) then (networkQuality is bad)  
11.  If (bandwidth is excellent) and (errorRate is normal) then (networkQuality is good)  
12.  If (bandwidth is excellent) and (errorRate is poor) then (networkQuality is normal)  
13.  If (bandwidth is good) and (errorRate is poor) then (networkQuality is normal)  
14.  If (bandwidth is normal) and (errorRate is excellent) then (networkQuality is good)  
15.  If (bandwidth is poor) and (errorRate is excellent) then (networkQuality is normal)  
16.  If (bandwidth is poor) and (errorRate is good) then (networkQuality is normal)  
17.  If (bandwidth is bad) then (bandwidthPriority is veryHigh)  
18.  If (bandwidth is poor) then (bandwidthPriority is high)  
19.  If (bandwidth is normal) then (bandwidthPriority is medium)  
20.  If (bandwidth is good) then (bandwidthPriority is low)  
21.  If (bandwidth is excellent) then (bandwidthPriority is veryLow)  
22.  If (errorRate is bad) then (errorRatePriority is veryHigh)  
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23.  If (errorRate is poor) then (errorRatePriority is high) 
24.  If (errorRate is normal) then (errorRatePriority is medium)  
25.  If (errorRate is good) then (errorRatePriority is low)  
26.  If (errorRate is excellent) then (errorRatePriority is veryLow) 

 

 

Figure 4.7 Network Priority Inferred by Network and Presentation Quality 

 

Table 4.2 The Adaptation Rule Base 

1.  If (netQos is bad) and (userQos is bad) then (netPriority is medium)  
2.  If (netQos is bad) and (userQos is poor) then (netPriority is medium)  
3.  If (netQos is bad) and (userQos is normal) then (netPriority is high)  
4.  If (netQos is bad) and (userQos is good) then (netPriority is veryHigh) 
5.  If (netQos is bad) and (userQos is excellent) then (netPriority is veryHigh)  
6.  If (netQos is poor) and (userQos is bad) then (netPriority is low)  
7.  If (netQos is poor) and (userQos is poor) then (netPriority is low)  
8.  If (netQos is poor) and (userQos is normal) then (netPriority is medium)   
9.  If (netQos is poor) and (userQos is good) then (netPriority is high)  
10.  If (netQos is poor) and (userQos is excellent) then (netPriority is veryHigh)  
11.  If (netQos is normal) and (userQos is bad) then (netPriority is veryLow)  
12.  If (netQos is normal) and (userQos is poor) then (netPriority is veryLow)  
13.  If (netQos is normal) and (userQos is normal) then (netPriority is low)  
14.  If (netQos is normal) and (userQos is good) then (netPriority is medium)  
15.  If (netQos is normal) and (userQos is excellent) then (netPriority is high)  
16.  If (netQos is good) and (userQos is bad) then (netPriority is veryLow)  
17.  If (netQos is good) and (userQos is poor) then (netPriorty is veryLow)  
18.  If (netQos is good) and (userQos is normal) then (netPriority is veryLow)  
19.  If (netQos is good) and (userQos is good) then (netPriority is low)  
20.  If (netQos is good) and (userQos is excellent) then (netPriority is medium)  
21.  If (netQos is excellent) and (userQos is bad) then (netPriority is veryLow)  
22.  If (netQos is excellent) and (userQos is poor) then (netPriority is veryLow)  
23.  If (netQos is excellent) and (userQos is normal) then (netPriority is 
veryLow)  
24.  If (netQos is excellent) and (userQos is good) then (netPriority is veryLow)  
25.  If (netQos is excellent) and (userQos is excellent) then (netPriority is low) 
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4.5.3 Experimental Results 

Two scenarios are tested in this simulation.  The first scenario uses a static service 

chain without frame rate adaptation and resolution adaptation, while using LC as 

the codec.  The second scenario allows free adaptation on all three tiers of mobilets.  

In these two scenarios, we varied the bandwidth from zero to 400 Kilobyte/s (KB/s), 

and repeated the scenarios under different bit error rates of between 5% to 40%.  

Figure 4.8 shows the results that capture the clarity performance of both scenarios, 

while Figure 4.9 shows the smoothness performance and Figure 4.10 shows the 

packet drop rate.  The plot line labeled static 0.05 refers to the results for a 

static-service-chain under a bit error rate of 5%, while the plot lines labeled 

dynamic refer to the results for free-adaptation scenarios.   
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Figure 4.8 Clarity Performance of Static Services Versus Fuzzy QoS Adapted Services 
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Figure 4.9 Smoothness Performance of Static Services Versus Fuzzy QoS Adapted 

Services 
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Figure 4.10 Packet Drop Rate of Static Services Versus Fuzzy QoS Adapted Services 

 

Figure 4.8 shows the results capturing the performance of both scenarios in terms of 



73 

 

clarity.  It can be seen that free-adaptation results in significantly better clarity 

performances when the bandwidth is below 160 KB/s, ranging from 7% to 15%.  

The measurement is captured only for frames that are successfully transmitted and 

decoded over the wireless link.  In other words, dropped frames do not affect the 

clarity measurement.  Higher bandwidth conditions show similar clarity 

performances for both free-adaptation and the static-service-chain.  However, 

when the bandwidth and bit error are both high, the static-service-chain is 9% better 

than free-adaptation in terms of clarity.  The main reason for this result is that 

under the free adaptation scenario, the system aggressively reconfigures the 

resolution adaptation mobilet to adapt to a high bit error rate, which leads to a more 

conservative consumption of bandwidth and hence to a better overall quality of 

presentation.  The effect of the aggressive adaptation of resolution contributes 

partially to the results shown in Figure 4.9. 

 

Figure 4.9 shows the performance in terms of smoothness.  Under high bandwidth 

and a high bit error rate, free-adaptation offers a 60% higher frame rate than a 

static-service-chain.  In general, free-adaptation offers significantly better 

smoothness performances than the static-service-chain.  Under various bit error 

rates, free adaptation achieves a markedly better frame rate than does a 

static-service-chain, by 4.5 frame/s to 6.6 frame/s.  Together, Figure 4.8 and Figure 

4.9, show that free-adaptation consistently offers a more balanced performance 

with regard to clarity and smoothness.  Moreover, under various network 

conditions, the individual performances of free-adaptation are usually on par with 

or better than those of a static-service-chain.   
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Figure 4.10 shows the packet drop rates for the two scenarios.  The packet drop 

rate is directly affected by the bit error rate, the bandwidth, and the data rate.  As 

the bit error rate and bandwidth are controlled in the experiments, the packet drop 

rate is the result of variations in the data rate:  

when data rate > bandwidth * (1-bit error rate),  

then the packet drop rate > bit error rate; 

when data rate < bandwidth * (1-bit error rate),  

then the packet drop rate = bit error rate. 

 

Figure 4.10 further explains the benefits of free-adaptation.  Under various 

network conditions, the system is able to actively control the consumption of 

bandwidth by reducing the frame rate and downscaling the transmitted video.  This 

prevents the channel from becoming congested when the bandwidth is low.  In 

contrast, the static-service-chain consistently creates congestions within the 

network due to over-utilization of the available bandwidth, which results in 

significantly higher packet drop rates of between 9% to 22% compared to 

free-adaptation These high packet drop rates have a direct impact on the clarity and 

smoothness of the static-service-chain.  In short, the results have clearly 

demonstrated the benefits of the QoS management framework in mapping and 

adapting to variations in QoS parameters under varying contextual environments.  

The experiments have also served to verify the operations of the framework and to 

provide us with the opportunity to investigate complex interactions among the 

components within the system. 
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4.6 Performance Scalability 

Two important issues in the use of middleware are scalability and overheads.  We 

conducted a set of experiments to determine the impact of executing the 

middleware on an off-the-shelve mobile device.  We deployed the middleware 

onto a HP iPAQ h4150 PDA, which features Windows® Mobile™ 2003, Intel 

PXA255 400MHz, 64MB Ram, 32MB ROM and 1000mAh battery.  We use 

Mysaifu JVM Version 0.3.3 [Mysaifu08] as the java runtime environment, and the 

middleware is deployed as a 1.1MB Java Archive (JAR). 

4.6.1 QoS Parameter Scalability 

As shown in Figure 4.11, we tested the platform using 8, 16, 32, 64 and 128 input 

QoS parameters.  By hierarchically inferencing these QoS parameters, the setups 

contain 15, 31, 63, 127 and 255 primitive or abstract QoS factors correspondingly.  

The total numbers of fuzzy rules in these setups are 175, 375, 775, 1575 and 3175 

correspondingly, which shows a linear increase as the number of input QoS 

parameters increases.  The memory usage of the middleware shows an initial 

linear increase, while tapering as the number of QoS parameters go beyond 64.  

This is due to the effect of garbage collection of the JVM, which is able to free up 

memory of unused objects when the memory consumption is high.  The 

corresponding memory usages are 11.16MB, 13.26MB, 18.11MB, 25.9MB and 

31.99MB. 
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Figure 4.11 Parameter Size, Rule Size and Memory Usage 

 

4.6.2 Fuzzy Rule Scalability 

To further study the performance scalability of the middleware, each of the five 

setups is further divided into 3 cases.  Corresponding to the 3 cases, the inputs are 

subjected to 50%, 25% and 12.5% of probability of change for each inference 

iteration.  The values of changed inputs are randomized.  Each of the 15 cases has 

been tested for extended times to achieve stabilized measurements in average 

affected rule counts and average execution times.  As shown in Figure 4.12, both 

the execution time and the affected rule count are directly proportional to the 

number of changed input.  We leverage the tree-structured QoS factor hierarchy by 

inferencing only the branch of rules whose inputs were changed since the last 

update.  This technique significantly reduces the execution time when the 

operating environment is relatively stable.   
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Figure 4.12 Performance Scalability of Fuzzy Rules 

 

The execution times vary from 46ms for 22 affected rules to 6225ms for 1996 

affected rules.  This implies a 2 to 3 ms execution time per each affected rule.  The 

execution time per rule is relatively shorter for smaller number of affected rules 

since the corresponding rule hierarchy is shallower and involves lesser number of 

intermediate abstract QoS factors.  These QoS factors require extra 

de-fuzzification and re-fuzzification steps in-between different levels of rule 

hierarchies.  The corresponding average execution time for 1996 rules is 3 ms on 

an AMD Althlon64 2GHz machine.  This implies a 400 times of per CPU clock 

performance difference between the PDA and the AMD machine.  This mainly due 

to the existence of the floating point processing unit of the AMD machine, which 

greatly accelerated the computation due to rules inference and de-fuzzification.   

 

The battery life of the PDA is 4 hours and 7 minutes with maximum backlight under 

idle situation.  By running the middleware with 32 inputs, 775 fuzzy rules, 12.5% 
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of input change probability and inferencing every 10 seconds, the battery life drops 

by 8.4% to 3 hours and 46 minutes. 

4.6.3 Mobilet and Profile Scalability 

The performance scalability of the number of mobilets and the number of mobilet 

service profile is independent of the number of QoS parameters and fuzzy rules.  In 

terms of memory usage, each null mobilet consumes 15KB of memory, while 

adding more profiles to an existing mobilet only increase its memory usage 

marginally.   

 

On the profile selection process, the computational overhead scales sub-linearly as 

the number of profile increases.  The average profile testing and decision time for 

each profile is less than 1ms.  Moreover, as a typical profile is only associated with 

a subset of the QoS factors, so that only a portion of all the profiles will go through 

profile testing to update their decision scores.   

 

By running the middleware with 200 profiles, 32 inputs, 775 fuzzy rules and 12.5% 

of input change probability, the average execution time for profile testing and 

decision making is 83ms.  Therefore, we consider the overhead caused by profile 

selection process insignificant. 

 

Service reconfiguration can be one of the major overheads of the system.  This 

process involves synchronizing the profile switching, insertion, and removal of 

mobilets.  All of this requires the coordinated initialization, suspension, and 

termination of mobilet service objects at both ends of the wireless network 
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[Chuang05].  The latency of service reconfiguration caused by the middleware 

varies between 80ms and 1000ms.  This latency means the application level data 

transmission is suspended for that period of time.  E.g. an un-buffered audio clip 

streaming from the wired part to the mobile device will experience a 80ms to 

1000ms interruption during service reconfiguration.  However, if there is no 

application level data transmitting during the period of time, the application 

utilizing the middleware will experience no interruption.  As mentioned in Section 

4.4.2, we have limited the service reconfiguration to one mobilet at a time.  This 

results in the service reconfiguration latency to be independent of the length of 

service chain and available mobilets.  On the other hand, no measureable latency is 

found when the service reconfiguration only involves intra-mobilet profile 

switching. 

4.7 Summary 

This chapter describes a novel fuzzy knowledge-based QoS middleware framework 

for mobile and wireless environments.  Special attention has been dedicated to the 

issue of how to deal with the problems of fuzzy rule explosion and multiple QoS 

objectives by employing the concepts of the fuzzy inference hierarchy and the 

multi-objective decision-making process.  This chapter demonstrates the 

flexibility of our QoS management framework in adapting to different users, 

applications, and platforms operating in wireless environments that are 

characterized by dynamic and constrained resources.  The proposed model 

provides an optimal overall service by synergistically balancing the QoS 

requirements of users and applications with the dynamic allocation of resources and 

chaining of services.  Our research is novel in that it looks at QoS from a holistic, 
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systematic, and pragmatic perspective.  In the next chapter, we will extend the 

framework to automatically and precisely map the preferences of the user and 

application developer onto the fuzzy control system, but without the need to rebuild 

membership functions or fuzzy rules. 
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Chapter 5   

Meta-level Adaptation 

The formulation of a fuzzy control model requires that the system designer 

understands how different input parameters affect the specific application. In the 

context of mobile applications, combing different users and applications bundles a 

unique set of requirements that are maintained and managed by the underlying 

system.  However, these requirements often consist of runtime information that 

will not be available to the QoS management system until the application 

subscribes to the service of the QoS management system.  Even worse, these 

requirements can change as users change their preferences during runtime.  This 

is the reason why most existing fuzzy QoS control systems are application 

specific and lack the extensibility for adapting to different users, different 

applications, and different application usages.  In contrast, MobiPADS is 

designed to adapt to not only the dynamism of the operating environment, but also 

to support the dynamic requirements of users, applications and application usages 

during runtime.   

The ultimate goal for a mobile QoS management system is to maximize 

user-perceived QoS under a situation of limited computational resources.  

However, the perceptions of different users regarding different QoS factors are 

often subjective.  For example, we can see in Figure 5.1 and Figure 5.2 two distinct 

visual effects of the same original frame, after it has been encoded correspondingly 

by MJPEG and LC codec mobilets and transferred through a network with a 5% 
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packet drop rate.  In Figure 5.1, there are errors in the blue channel, which has 

caused three-fourths of the blue channel to be dropped and most of the frame to be 

dark and have a greenish tone.  In Figure 5.2, there are errors in non-essential 

layers, so that some fine details of the frame have been lost and some error dots 

appear in the frame.  Interestingly, under our simple fidelity measurement method, 

these two frames have the same fidelity score, but they appear dramatically 

different due to the behavior of the encoding scheme.  Some users may prefer to 

have the fine details preserved without noise, while others may not want to have 

color shifting due to errors in a color channel.  Therefore, to achieve a more 

accurate and flexible presentation-quality model, it would be desirable to allow 

users and application developers to control performance levels and to affect the 

relative weightings of the concerned QoS factors during runtime.  This can be 

achieved by providing a set of QoS specification abstraction interfaces for users and 

applications while isolating the complexity of the fuzzy rule hierarchy from users 

and applications, such that the fuzzy rule bases can be easily and flexibly 

customized to match all of the detailed requirements of the user and applications.  

This translates to the need to support meta-level fuzzy model adaptation in 

MobiPADS during runtime. In the following sections, we describe the three 

meta-level adaptation mechanisms of MobiPADS, namely, membership function 

adaptation, importance weight adaptation, and computational reflection.  
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Figure 5.1 Visual Effect M-JPEG Enncoding with Packet Lost 

 

 
Figure 5.2 Visual Effect of LC Encoding with Packet Lost 
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5.1 Membership Function Adaptation 

We have proposed an adaptive fuzzy control architecture that flexibly supports 

new mobile applications. The architecture is comprised of a generic fuzzy QoS 

control model that predefines all the possible QoS parameters and defines the 

corresponding membership functions by heuristic approximation.  All of the QoS 

parameters are normalized to match a scale composed of five linguistic values.  

The fuzzy rules are defined exhaustively to avoid the need for fuzzy rule 

interpolation.  Although there are a large number of QoS parameters, the number 

of rules maintained by the system is limited because of the hierarchical 

organization of the QoS parameters.   

 

By using this design, our fuzzy control model is able to support typical 

multimedia applications to react adaptively to the changes in the environment.  

However, the adaptation provided by the fuzzy control model at this stage is often 

sub-optimal since the membership functions of the QoS parameters are 

pre-modeled and different applications can have very different interpretations of 

the same QoS parameter. 

 

In order to fully utilize the predefined fuzzy control model to support new 

adaptive applications, we introduce a number of operations that adapt the 

pre-defined membership functions to fulfill user and application requirements in a 

wireless environment.  These operations are called normal point shifting.  The 

idea behind normal point shifting is that, for each specific user and application 

combination, the system allows appropriate adjustments to the predefined 

membership functions to adapt to the corresponding interpretation on all the QoS 
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parameters, without the need to modify other parts of the generic fuzzy control 

model.   

 

Normal point shifting allows the user and application developer to dynamically 

specify the normal position of a QoS parameter.  As a result, the procedure eases 

and simplifies the adjustment of the membership functions that model the QoS 

parameters to more accurately reflect the interpretations of the user and 

application developer on that QoS parameter. 

5.1.1 Normal Point Shifting 

Three approaches for normal point shifting have been defined: proportional 

shifting, reverse-proportional shifting, and relative-scaled shifting.  Figure 5.3 

depicts the generic fuzzy sets of a QoS parameter before shifting, which typically 

represent five linguistic values – bad, poor, normal, good, and excellent.   

 

Different types of QoS parameters require different shifting methods.  

Proportional shifting, which is shown in Figure 5.4, is suitable for QoS parameters 

that seek to bound the left-hand side of the fuzzy sets.  Examples are frame rate 

and battery life, since these types of parameters are almost always interpreted as 

critical when their values approach 0%.  On the other hand, an input value of 

100% for frame rate or battery life may not necessarily be interpreted as excellent 

because users and applications may have different requirements.  For instance, 

100% for frame rate typically refers to 30 fps; however, when a user is viewing a 

high-speed sports video clip, 30 fps may only be considered good or even normal.  

Similarly, a user may plan to use a mobile device continuously for 3 hours, but the 
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device may have a maximum battery life of only 3.5 hours.  In this case, a 100% 

battery life would only be considered to be normal by the user. 

 

Figure 5.5 shows the opposite form of proportional shifting, called 

reverse-proportional shifting, which seeks to bound the right-hand side of the 

fuzzy sets.  This type of shifting is suitable for QoS parameters that are always 

interpreted as excellent when the input approaches 100%, e.g., the connection cost 

of 3G wireless and inter-media synchronization.  A 100% input value means a 

3G wireless connection that is free of charge or perfectly synchronized media, 

which are always interpreted as excellent.  On the other hand, when the input 

value approaches 0%, this can be interpreted as an extremely expensive 3G 

connection or media that are totally out of synchronization.  In these cases, the 

interpretation of an input value approaching 0% is more abstract and dependent on 

the corresponding normalization functions and the requirements of users and 

applications than in the cases mentioned earlier. 

 

Figure 5.6 shows the combined form of the previous two shifting types, which is 

called relative-scaled shifting.  The interpretation of this type of QoS parameter 

is more objective in that both ends are bounded.  Examples for such a parameter 

are CPU availability and network error condition.  Since the raw measurements 

are either directly or reversely used as the input value, in the former case, 0% 

always means bad and 100% always means excellent for CPU availability; while 

in the latter case, a 0% error rate always means excellent and a 100% error rate 

represents the worst network condition, which means out-of-service. 
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Through the shifting of normal points of QoS parameters, users and application 

developers can dynamically and easily alter the pre-modeled fuzzy membership 

functions to better adapt to the requirements of users and applications. 
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Figure 5.3 Generic Fuzzy Sets for A Qos Parameter 
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Figure 5.4 Proportional Shifting of Fuzzy Sets 
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Figure 5.5 Reverse-proportional Shifting of Fuzzy Sets 
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Figure 5.6 Relative-scaled Shifting of Fuzzy Sets 

5.1.2 Experimental Results 

Based on the experimental setup in Section 4.6, we conducted two sets of 

experiments to better understand the bahavior and impact of normal point shifting.  

The first experiment was configured with the normal point of the clarity parameter 

proportionally shifted to the right by 10%, while no normal point shifting was 

applied in the control experiment.  The network bit error rate was set to 40% and 

the bandwidth was varied between 0 and 400 KB/s.  The experiment exercised 

free adaptation on the mobilets of the service chain. 

 

Figure 5.7 shows the results of the clarity performance.  Clarity normal point 

shifting achieved an average of 3% better clarity than was found in the control 

experiment.  The effect of clarity differences only appeared beyond 20% clarity, 

since the fuzzy sets of the clarity parameter were bounded at the left-hand side of 

the input value range.  Figure 5.8 shows the smoothness performance of the two 

result sets.  It is interesting to see that clarity normal point shifting did not 

significantly worsen the smoothness performance.  On average, the clarity 

normal point shifting was only 0.16 fps worse than was seen in the control 

experiment.  Figure 5.9 shows a similar finding that clarity normal point shifting 
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raised the packet drop rate by only 1.05% compared to what was seen in the 

control experiment. 
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Figure 5.7 Clarity Performance with Clarity Normal Point Shifted 
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Figure 5.8 Smoothness Performance with Clarity Normal Point Shifted 
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Figure 5.9 Packet Drop Rate with Clarity Normal Point Shifted 

 

The second set of experiments was conducted with larger variations of normal 

point shifting but with a lowered network bit error rate of 10%.  In this 

experiment, three result sets were collected.  The first result set, labeled as 

clarity shifted, was clarity driven with the clarity normal point shifted to the right 

by 10% and the smoothness normal point shifted to the left by 10%.  The second 

result set, labeled as smoothness shifted, was smoothness driven and was collected 

by reversing the previous setting – the clarity point was shifted to the left by 10% 

and the smoothness point was shifted to the right by 10%.  The third result set 

was the control experiment with no normal point shifting.  The corresponding 

clarity, smoothness, and packet drop rate performances are shown in Figure 5.10, 

Figure 5.11and Figure 5.12. 

 

Based on these two sets of experimental results, we found that normal point 

shifting does show effective inference on the concerned QoS aspects.  However, 

it is worth noting that the normal point shift does not affect the QoS performance 
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directly, while shifting the membership function during fuzzification.  This effect 

is cascaded through the various inference engines to the step for the selection of 

mobilet profiles, where a QoS aspect that does not attain the quality level 

specified in the normal point is given a higher weight.  This leads the 

reconfiguration engine to choose mobile profiles in favor of improving the 

concerned QoS aspect.  However, this does not guarantee the level of QoS 

improvement, nor will this effect be proportional across different resource levels.  

The reason for this is that, compared to the rate and level of changes in the 

resource and QoS level, the adaptation options and profile switching actions are 

relatively coarse-grained, so that the final adaptation effects will always fluctuate 

more than the changes in resource levels. 
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Figure 5.10 Clarity Performance of Clarity or Smoothness Normal Point Shifted 
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Figure 5.11 Smoothness Performance of Clarity Or Smoothness Normal Point Shifted 
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Figure 5.12 Packet Drop Rate of Clarity or Smoothness Normal Point Shifted 

.   
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5.1.3 Discussion 

Normal Point Shifting is a simple approach that can vastly improve the accuracy of 

the fuzzification process to closely model individual QoS factors based on the 

perceptions of the user and the demands of the application.  However, even when 

all of the concerned QoS factors have been accurately modeled, users and 

application developers can have another dimension of demand for prioritizing the 

various concerned QoS factors, as seen in Section 5.1.  In the following section, 

we will present another mechanism to fulfill this requirement for prioritizing QoS 

factors. 

5.2 Importance Weight Adaptation 

Attempting to impose and satisfy a hard-guarantee QoS contract operating in a 

wireless environment is difficult, to say the least.  This is due to the extreme 

variations in the available resources and to the dynamic changing contexts of 

mobile devices and operating conditions.  An alternative is to use priority-based 

approaches to differentiate between the different services in terms of importance, 

which is able to provide better QoS when compared to best effort services.  The 

weighted priority approach introduces quantitative control of the CPU and network 

utilization of different services.  Similarly, our model features Importance Weight 

Adaptation, which supports representing user and application requirements in the 

form of relative weightings assigned to different user satisfaction factors.   

 

In Section 4.4, we described the use of relative importance values for the concerned 

QoS factors to support the selection of optimal mobilet profiles.  This model 

assumes equal weighting among all of the concerned QoS factors, which may not 
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lead to the achievement of an optimal level of QoS as perceived by the user.  This 

is because objective perspectives and different users are involved, as discussed in 

Section 5.1.  The adaptive fuzzy membership function discussed in Section 5.2 

partially addressed this issue from a microscopic approach that fine-tunes the 

normal point of fuzzy variables.  In contrast, importance weight adaptation 

addresses the remainder of the issue from a more macroscopic approach.   

5.2.1 Importance Weight for QoS Factors 

Based on the preferences of users and the requirements of applications, users and 

application developers can assign a non-negative integral priority value to each of 

the concerned QoS factors.  Initially, all of the concerned QoS factors have a 

priority value of 4, which is mapped to a weighting of 50%.  Higher priorities will 

be mapped to weightings ranging from 60% to 100%, while lower priorities will be 

mapped to weightings ranging from 40% to 10%.  By assigning different priorities 

to different concerned QoS factors, the importance values of each QoS factors are 

boosted or suppressed according to the requirements and preferences of users and 

applications.   

 

This priority value PV ranges from 0 (lowest) to 9 (highest), and is denoted by  

PV = {pv1, pv2, …, pvk} → [0, 9].               (29) 

 

The set of importance weights V representing the user-assigned and 

application-assigned QoS factor priorities, which is directly mapped from priority 

values, is denoted by: 

V = {v1, v2, …, vk} → [0.1, 1], where vi = ( pvi+1)(0.1)                (30) 
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By augmenting the importance value w in (28), the optimal profile becomes 

δoptimal (f
*)  = 

)(
max

MFf ∈
{ k

i 1min = [max(oi(f), ii wv )]}.               (31) 

5.2.2 Experimental Results 

Based on the experimental setup of 4.6, we conducted an experiment to study the 

bahavior and impact of the importance weight adaptation.  The experiment was 

configured with importance values for the clarity parameter of 90%, 70%, 50%, 

30%, 10%, while the importance value for other QoS factor was kept at 50%.  

The network bit error rate was 10% and the bandwidth varied between 0 and 400 

KB/s.  The experiment was configured to support adaptation of the mobilets 

composed along a service chain.  The results of the clarity performance are 

shown in Figure 5.13.   
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Figure 5.13 Performance of Clarity with Importance Weight Adaptations 
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As shown in Figure 5.13, the clarity performance varied proportionally to the 

changes in bandwidth under all importance weights.  However, all of the five 

importance weight settings showed fluctuations in the trends lines.  This was for 

the same reason as that discussed in Section 5.2.2, namely that compared to the 

rate and level of changes in the resource and QoS levels, the adaptation options 

and profile switching actions are relatively coarse-grained, so that the final 

adaptation effects will always fluctuate more than the changes in resource levels.  

The effect of a weight value higher than 50% results in a convex trend, while a 

weight value lower than 50% leads to a concave trend.  From Figure 5.13, we 

can conclude that the larger the importance weight value of a QoS factor is, the 

better is the performance level of that QoS factor under a given resource level.   

5.2.3 Discussion 

Importance weight adaptation, coupled with membership adaptation, provides a 

concise set of adaptation mechanisms for users and application developers to 

customize the interpretations of QoS factors of different abstraction levels and from 

different perspectives.  These two adaptation mechanisms virtually eliminate the 

need to predefine specific fuzzy models for different application scenarios, which 

generally requires expertise in fuzzy control and in the domain of applications.  

Specifically, these two mechanisms support the adaptation of the generic fuzzy 

model by referring to two sets of intuitive input parameters from the user and 

application: preferred performance values for concerned QoS factors, e.g., 15 fps in 

smoothness for video playback and 16-bit in fidelity for audio playback; and a list 

of importance weight values for these QoS factors, e.g., 90% in smoothness and 

40% in fidelity.  As a result, these mechanisms greatly reduce the difficulties in 

developing QoS-aware mobile applications that leverage the fuzzy control model.   
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5.3 Computational Reflection 

While the adaptation mechanisms of MobiPADS offers a significant degree of 

freedom to customize the interpretation of QoS that guides the adaptation 

behaviors, at times mobile applications are still in the best position to make 

critical decisions on the operating context and hence the adaptation behavior.  

For this reason, MobiPADS provides the mobile application with an extensive set 

of APIs and reflective interfaces.  Through meta-level object representations, a 

mobile application can gain access to the metadata of the internal fuzzy control 

model, service reconfiguration mechanism, and dynamic adaptation mechanisms 

of MobiPADS, and modify these entities to obtain optimal service provision from 

MobiPADS. 

 

To present a clearer picture of the capabilities and roles of each entity in the 

MobiPADS platform in supporting adaptation, Table 2 shows the relationships 

between adaptation initiators and reconfigurable entities.  There are two entities 

that can subscribe and react to changes in QoS factors: the mobile application and 

the MobiPADS system itself.  On the other hand, there are three entities that can 

be reconfigured to adapt to the changes in the QoS factors: the mobile application, 

the service chain of MobiPADS, and the mobilet within the service chain. 

 

A mobile application can respond to the contextual changes by changing its 

internal logic, or by changing the configuration of the service chain or even the 

behavior of individual mobilets within the service chain.  By contrast, the 

MobiPADS cannot alter the internal logic of the mobile application, but may 

supply the mobile application with the necessary contextual information.  In this 
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case, the application may choose to perform intra-application adaptation in 

reaction to the contextual information feed from the middleware. 

 

Table 5.1 Relationships between Adaptation Initiators and Reconfiguration Entities 

  Reconfigurable Entity  

Adaptation 
Initiator 

Mobile Application Service Chain Mobilet 

Mobile 
Application 

���� To adapt to the dynamic 
wireless environment, a mobile 
application can respond to the 
QoS factor and adjust its 
behavior accordingly. 

���� Using the application profile, a 
mobile application can specify the 
service configurations under different 
environments.  The mobile application 
can also change the current 
configuration directly. 

���� By supplying suitable parameters to a 
mobilet, a mobile application can 
fine-tune the subtle behavior of 
individual mobilets, so that the most 
suitable mode of operation is selected. 

MobiPADS 
System 

The MobiPADS system cannot 
reconfigure the mobile 
application directly.  It can 
only supply the mobile 
application with the context. 

���� According to the MobiPADS system 
profile, the configuration of the current 
service chain is actively adjusted to suit 
the existing environment. 

���� If specified in the system profile, the 
reconfiguration process can also switch 
the mode of operation of an individual 
mobilet by supplying suitable 
parameters. 

 

5.3.1 Reflective API 

To support the development of context-aware mobile applications, the MobiPADS 

exposes four meta-level objects that abstract the QoS interpretation, the service 

characteristics, the service reconfiguration, and the adaptation mechanisms of the 

system, which are shown in Table 3.  Through these meta-objects, the mobile 

application can subscribe to the contextual changes, and is highly flexible in 

selecting and adjusting the service configuration and adaptation policy of the 

MobiPADS.  The four meta-objects are the ReConfigMeta, MobiletMeta, 

AdaptationMeta, and QoSMeta.  The respective roles of these meta-objects are 

listed below. 

� The ReConfigMeta meta-object reflects the configuration of the current 

service chain that serves the mobile application.  Through ReConfigMeta, a 

mobile application can subscribe to reconfiguration events and actively 

participate in the reconfiguration of the service chain.   

� The MobiletMeta meta-object reflects the statuses and characteristics of 
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individual mobilet services.  Through MobiletMeta, a mobile application 

can change the operating profiles of individual active mobilets. 

� The AdaptationMeta meta-object reflects the input and control parameters of 

the fuzzy inferencing of MobiPADS.  Through AdaptationMeta, a mobile 

application can modify the list of concerned QoS factors and also the fuzzy 

inference frequency among all inference engines.  A mobile application can 

also subscribe to QoS factor events by specifying the notification conditions, 

e.g., by notifying the application when the QoS factor - battery level is less 

than 20%. 

� The QoSMeta meta-object reflects the status and characteristics of individual 

QoS factors and, more importantly, it also reflects the key attributes of the 

two meta-adaptation mechanisms described in Sections 5.2 and 5.3 – 

membership function adaptation and importance weight adaptation.  

Through QoSMeta, a mobile application can reify the membership function 

adaptation mechanism by adjusting the value of the normal point and the 

approach chosen for normal point shifting.  A mobile application can also 

reify the importance weight adaptation mechanism by modifying the relative 

priority value or the absolute priority value of the QoS factor.  Moreover, a 

mobile application can also query the defuzzified value of the QoS factor. 

 
 

Table 5.2 Reflective MobiPADS API for Context-Aware Mobile Applications 

Interfaces Description 
interface ReConfigMeta { // Meta-object that reflects service reconfiguration  

 String[] listAvailableServiceNames(); // list the names of all available services 

 String[] listActiveServiceNames(); // list the names of services in the service chain 

 MobiletMeta[] listAvailableService(); // list all of the available services 

 MobiletMeta[] listActiveService(); // list the services in the service chain 

 MobiletMeta getService(String mobiletName); // get a mobilet service object by name 

 MobiletMeta getFirstService(); // get the first mobilet service in the service chain 

 MobiletMeta getLastService(); // get the last mobilet service in the service chain 

 void insertService(int position, MobiletMeta newService); // insert a mobilet service into the service chain 

 void removeService(String serviceName); // remove an active mobilet service from the service chain 
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 String getCurrentServiceProfile(String mobiletName); // get the current service profile of an active mobilet service 

 void setCurrentServiceProfile(String mobiletName, String 
mode); 

// set the current service profile of an active mobilet service 

 void reconfigure(MobiletMeta[] newServiceChain); // reconfigure the entire service chain 

 int getMinimalTTL(); // get the minimal time-to-live (ms) of a service chain 

 void setMinimalTTL(int timeToLive); // set the minimal time-to-live (ms) of a service chain 

 int getCurrentTTL(); // get the current time-to-live (ms) of the service chain 

 void setCurrentTTL(int timeToLive); // set the current time-to-live (ms) of the service chain 

 void lockConfiguration(); // disallow reconfiguration of the service chain 

 void unlockConfiguration(); // enable reconfiguration of the service chain 

 void subscribeReconfiugration(ReconfigListener listener); // subscribe to the reconfiguration event 

 void unscribe(ReconfigListener listener); // unsubscribe from the reconfiguration event 

}   

interface MobiletMeta { // Meta-object for mobilet 

 String[] listServiceProfile(); // list the service profiles available to the mobilet 

 String getCurrentServiceProfile(); // get the current service profile 

 void setCurrentServiceProfile(String ServiceProfile); // set the current service profile 

 String getName(); // get the name of the mobilet service 

 String getDescription(); // get the description of the mobilet service 

 boolean isActive(); // check if the mobilet is operating in the service chain 

 int getServicePosition(); // get the position of the mobilet in the service chain 

 void removeService(); // remove the mobilet from the service chain 

 String[] getInputTypes(); // get the input media type of the mobilet 

 String[] getOutputTypes(); // set the input media type of the mobilet 

 int getMinimalTTL(); // get the minimal time-to-live (ms) of the mobilet 

 void setgetMinimalTTL(int timeToLive); // set the minimal time-to-live (ms) of the mobilet 

 int getCurrentTTL(); // get the current time-to-live (ms) of the mobilet 

 void setCurrentTTL(int timeToLive); // set the current time-to-live (ms) of the mobilet 

 void lockService(); // disallow reconfiguration of the mobilet 

 void unlockService(); // enable reconfiguration of the mobilet 

 Map<String,Double[]> getAffectedFactors(String profile); // get the affected QoS Factors of a service profile 

 void setAffectedFactors(String profile, Map<String,Double[]>); // set the affected QoS Factors of a service profile 
}   

interface ReconfigListener { // Listener for reconfiguration events 

 public abstract void notifyReconfig(Date triggerTime, String[] 
oldChain, String[] oldProfiles, String[] newChain, String[] 
newProfiles); 

// invoked before reconfiguration.  Inform the application about the 
changes to be made in the service chain 

}   

interface AdaptationMeta { // Meta-object that reflect the adaptation mechanism  

 QoSMeta[] listAllQoS(); // list all QoS factors 

 QoSMeta[] listConcernedQoS(); // list the QoS factors concerned by the current application 

 String[] listAllQoSNames(); // list the names all QoS factors 

 String[] listConcernedQoSNames(); // list the names of the concerned QoS factors 

 QoSMeta getQoS(String QoSName); // get a QoS factor meta-object by name 

 QoSMeta getContextRootQoS(); // get the root node for contextual QoS factors 

 QoSMeta getUserRootQoS(); // get the root node for user QoS factors 

 int getInferInterval(); // get the inference interval of the whole fuzzy model 

 void setInferInterval(int interval); // set the inference interval of the whole fuzzy model 

 void subscribeQoS(QoSListener listener, String qosName, 
String relation, double refValue); 

// subscribe to a QoS event, with condition of notification 

 void unsubscribeQoS(QoSListener listener); // unsubscribe a QoS event 

}   

interface QoSMeta { // Meta-object for QoS factor 

 QoSMeta[] getQoSComposition(); // get the child QoS factors that this QoS factor is referring to 

 boolean isLeaf(); // check if this is a leaf node 

 boolean isContextRoot(); // check if this is the root node of contextual QoS factors 

 boolean isUsertRoot(); // check if this is the root node of user QoS factors 

 boolean isConcerned(); // check if this is a QoS factor concerned by user or application 

 void setConcerned(boolean concernFlag); // set this as a QoS factor concerned by user or application 

 String getName(); // get the name of the QoS factor 

 String getDescription(); // get the description of the QoS factor 

 double getValue(); // get the defuzzified QoS value of the QoS factor 
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 int getUpdateInterval(); // get the inference and update interval of the QoS factor 

 void setUpdateInterval(int interval); // set the inference and update interval of the QoS factor 

 double getNormalPoint(); // get the normal point of the QoS factor 

 void setNormalPoint(double value); // set the normal point of the QoS factor 

 String getNPShiftingType(); // get the type of normal point shifting approach 

 void setNPShiftingType(String shiftingType); // set the type of normal point shifting approach 

 int getPriority(); // get the priority value of the QoS factor 

 void setPriority(int priority); // set the priority value of the QoS factor 

 double getImportanceWeight(); // get the importance weight of the QoS factor 

 void setImportanceWeight(double weight); // set the importance weight of the QoS factor 

 int getRelativePriority(); // get the relative priority rank of the QoS factor among all concerned 
QoS factors 

 void setRelativePriority(int priority); // set the relative priority rank of the QoS factor among all concerned 
QoS factors; the priority values of all concerned QoS factors will be 
automatically adjusted  

}   

interface QoSListener { // Listener for QoS events 

 public abstract void notifyQoS(Date triggerTime, String detail); // invoked when the predefined monitoring condition on the QoS factor 
is fulfilled.  Inform the application about the trigger 

}   

5.3.2 A Case Example 

To present a clearer understanding of the meta-objects, we give an example in 

Table 5.3 of how a mobile Web application can 1) adjust the adaptation 

mechanisms of MobiPADS and 2) adjust its internal logic and the service chain of 

MobiPADS, in response to environmental changes.  Using the MobiPADS 

reflective API, the sample application specifies two concerned QoS factors – 

power availability and media fidelity, and configure their normal points and 

priorities.  As such, the adaptation mechanisms of MobiPADS will emphasize 

these two QoS factors, while aiming to attain the specified normal point values for 

these two QoS factors.  The application also subscribes to a battery level QoS 

event, through which MobiPADS will notify the application when the battery level 

is below 20%.  Upon being notified, and if the mobilet is deployed in the current 

service chain, the application will enforce the removal of the multiple description 

coding mobilet to reduce CPU loading, which correspondingly reduces power 

consumption.   

 

Table 5.3 shows the sample code of the mobile Web application.  On lines 2-13, 
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the setAdaptation() method shows the way to specify concerned QoS factors to 

the MobiPADS.  Lines 4-7 add PowerAvailability as a concerned QoS factor and 

specify the normal point and the priority of this QoS factor.  Similarly, lines 8-11 

specify MediaPriority as another concerned QoS factor.  Line 12 subscribes to a 

QoS factor – BatteryLevel – and specifies the notification condition of the battery 

level if it falls below 20%.   

 

 

Table 5.3 Sample Context-aware Mobile Application 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

public class SampleApp { 
  public void setAdaptation() { 
    AdaptationMeta adapt = MobiPADS.getAdaptationMeta(); 
    QoSMeta power = adapt.getQoS("PowerAvailability"); 
    power.setConcerned(true); 
    power.setNormalPoint(0.5); 
    power.setPriority(1); 
    QoSMeta fidelity = adapt.getQoS("MediaFidelity"); 
    fidelity.setConcerned(true); 
    fidelity.setNormalPoint(0.7); 
    power.setPriority(2); 
    adapt.subscribeQoS(MyListener, "BatteryLevel", "LESS_THAN", 0.2); 
  }  
 
  class MyListener implements QoSListener { 
    public void notifyQoS(Date triggerTime, String detail) { 
      ReConfigMeta cfg = MobiPADS.getReConfigMeta(); 
      MobiletMeta mdc = cfg.getService("MultipleDescriptionCoding"); 
      if (mdc.isActive) { 
        mdc.removeService(); 
        mdc.lockService(); 
      } 
    } 
  } 
} 

 

Lines 15-24 defines the Listener class for the subscribed QoS event.  On lines 

16-23, the implementation of notifyQoS( ) specifies that once the condition for 

this listener is fulfilled and the event is triggered, it will look up the mobilet 

MultipleDescriptionCoding in the ReConfigMeta meta-object.  If the mobilet 

exist in the current service chain, it will be removed and prohibited from 

re-entering the service chain again during the current application section. 
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5.4 Summary 

The fuzzy control model of a fuzzy control system is typically modeled by 

domain experts.  Extending our previous works, our proposed fuzzy QoS control 

model features membership function adaptation and importance weight 

adaptation, which are designed to reduce the effort of mobile application 

developers.  Otherwise, mobile application developers would have to put much 

more effort into understanding and controlling every detail of the contextual 

environment.  By using normal point shifting and importance weight, a mobile 

application developer only needs to be aware of relevant contextual details down 

to a level that is sufficient for making adaptation decisions.  This alleviates the 

need for developers to manage low-level contextual parameters.  The 

experimental results also showed that membership function adaptation and 

importance weight adaptation can effectively tune the performance of individual 

QoS parameters under a resource-limited environment to adapt to the needs of 

different users and applications.  However, although these two adaptation 

mechanisms offer a significant degree of freedom with regard to QoS adaptations, 

mobile applications are sometimes still in the best position to make critical 

decisions on operating context and hence adaptation mechanisms.  For this 

reason, MobiPADS provides mobile applications with an extensive set of APIs 

and reflective interfaces.  Through the meta-level object representation of the 

internal fuzzy control model and service reconfiguration mechanism, a mobile 

application can access the QoS information, service configuration, and adaptation 

mechanisms of MobiPADS, and modify these entities to obtain optimal service 

provision from MobiPADS. 
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In this chapter, we have presented three meta-level adaptation mechanisms that 

offer a principled approach to helping users and application developers to easily 

specify and control desired adaptation policies from different perspectives.  They 

are: Membership Function Adaptation, Importance Weight Adaptation, and 

Computational Reflection.  Importantly, by coupling with each other, these three 

mechanisms are able to accurately, efficiently, flexibly, and holistically map user 

and application preferences and requirements into the adaptation behaviors of the 

QoS control model. 
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Chapter 6  

Related Works 

This section presents a number of frameworks and architectures that provide QoS 

management support for applications with QoS requirements.  We summarize their 

features and analyze their suitability for deployment over a mobile operating 

environment. 

6.1 OMEGA 

The OMEGA architecture [Nahrstedt96] is a QoS architecture that provides 

real-time guarantees in distributed multimedia systems.  The research effort has 

been focused on resource management from both local and global perspectives. 

 

The QoS Broker [Nahrstedt95] is the core component of OMEGA.  It is a 

middleware responsible for the negotiation of QoS levels to be delivered to the 

application by the underlying system.  The QoS Broker translates the requirements 

specified by the application, which then negotiates the resource allocations with the 

operating system and the network. 

 

QoS Broker employs a set of translation relations for each media type, translates the 

application-level parameters specified by the user into lower-level QoS 

requirements.  Subsequently, the QoS Broker follows these low level requirements 

and reserves resource based on QoS parameters associated with network and 

operation system resources, both local and remote.  The translation is 

bi-directional, such that changes in resource reservations can be dynamically 
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reported to the user as application-level QoS parameters.  A local QoS Broker 

aiming to perform reservations of remote resources, called a buyer, is responsible 

for interacting with other remote QoS Brokers, known as sellers.  The architecture 

employs a buyer/seller protocol to allow sellers to advertise their services and 

buyers to contact sellers and reserve resources of sellers.  

 

The QoS Broker provides orchestration service for balancing resource usage. The 

orchestration service utilizes information stored in resource databases to adjust the 

balances among resources of multimedia devices, operating systems, and the 

network.   The architecture assumes the underlying operating system to have 

real-time capabilities, which allows the QoS Broker to predict and leverage the 

temporal behaviors of the OS for performing the orchestration of resources.   

 

The OMEGA Architecture adopts a communication model that consists of two 

protocols at application and network levels.  The Real-Time Application Protocol 

(RTAP) implements functions for call management, device management, 

synchronization, and media delivery at the application level.  The Real-Time 

Network Protocol (RTNP) is responsible for connection management, error 

correction, rate control, and network access at the transport level.  By using these 

two protocols, the OMEGA architecture provides guaranteed communication 

services over specified communication channels to applications.   

 

The OMEGA architecture supports resources reservations at the operating system 

and network levels.  It also provides a complete QoS translation mechanism that 

makes the underlying low level resources transparent to the application.   
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6.2 QoS-A 

QoS-A [Campbell96], developed by the Distributed Multimedia Research Group at 

Lancaster University, is a QoS Architecture for specifying and implementing 

performance properties of multimedia applications over ATM-based networks.  

The architecture provides QoS mechanisms that span across all architectural layers, 

including end-systems, communications systems, and networks. 

 

The architecture incorporates the notions of flows, service contracts and flow 

management to an ATM networked environment.  Flows characterize the 

production, transmission and eventual consumption of single media streams, 

service contracts are binding agreements between users and providers and flow 

management provides for the monitoring and maintenance of the contracted QoS 

levels. 

 

QoS-A aims to provide data flows with an associated level of QoS through tight 

coupling of devices, end-systems, and networks.  QoS-A provides a 

QoS-configurable communication mechanism by using an augmented layers and 

planes structure integrating the existing layers and planes of the ATM architecture.  

It also employs thread-scheduling algorithms based on QoS constraints to achieve 

desired behaviors at system level.  Devices are also built with QoS capabilities to 

support both scheduling and communication mechanisms. 

 

The QoS-A architecture is composed by three planes, protocol, QoS maintenance 

and flow management.  The protocol plane is responsible for data transfer.  It 

consists of a user plane for transmitting media data and a control plane for carrying 
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control data.  The QoS maintenance plane is responsible for monitoring and 

maintaining the QoS levels specified in the service contract that has been 

established among the user and the architecture.  The flow management plane is 

responsible for admission control resource reservation, flow establishment, QoS 

renegotiation, QoS mapping and translation, and QoS adaptation. 

 

The protocol and QoS maintenance planes are subdivided into four layers, 

distributed systems platform, orchestration layer, transport layer and lower layer.  

The distributed systems platform is responsible for providing services for QoS 

specification and multimedia communication.  The orchestration layer supports 

media synchronization and jitter correction.  The transport layer provides 

QoS-configurable communication service.  The lower layers, which include 

network, data link and physical layer, provide low level communication services. 

 

QoS-A is implemented on top of the Chorus open microkernel architecture, which 

focused on deploying multimedia protocols for local ATM network.  Similar to 

OMEGA, QoS-A also supports translation between different levels of QoS 

requirements and resource reservations.  However, QoS-A supports transparent 

QoS adaptation dynamically while OMEGA can only notify the application when 

QoS changes.   

6.3 QuO 

The Quality of Service for CORBA Objects (QuO) architecture [Quo08] provides 

QoS abstractions that can be utilized by distributed CORBA objects.  QuO 

supports a QoS Description Language (QDL) by extending the Interface 
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Description Language (IDL) of CORBA. 

 

The QDL language encapsulates QoS representations into object abstractions.  

QDL supports the description of resource requirements of CORBA objects.  The 

language can also express the resources available in the system and their statuses.  

QDL also supports QoS contracts between a client and a server object, which 

includes the requested level of service, the level of service that is achievable, and 

actions to be taken when the QoS level changes.  QDL supports the notions of QoS 

regions that allow the application to adapt to changing network conditions by 

changing from one QoS region to another.  The architectural components of QDL 

are regular CORBA objects that are synthesized using IDL and QDL descriptions.  

These architectural components are responsible for QoS enforcement, QoS 

measurement, and QoS adaptation.  

 

Although the design of a QoS specification framework should logically separate 

from QoS provision, the lack of knowledge of available QoS mechanisms hinders 

the practical feasibility of existing QoS specification languages. QuO integrates 

AQuA [Kuhns99] for dependability and TAO [Cukier98] for real-time support 

allowing for the provision of various QoS properties. This provides a concrete link 

between QoS requirements and QoS provision, pragmatically strengthening the 

usability of QuO. 

6.4 HQML 

The Hierarchical QoS Markup Language (HQML) [Gu01], developed by the 

MONET research group at the University of Illinois at Urbana-Champaign, is an 
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XML-based QoS language for supporting distributed multimedia applications.  

Hierarchical refers to the three levels of specification in HQML, which are the user 

level, application level, and system resource level. The MONET group has also 

conducted an extensive survey [Jin04] of existing QoS specification languages. 

 

HQML supports adaptive middleware for improving QoS provision through 

application layer tags including ReconfigRule, Condition, and Action.  When 

adaptation occurs, HQML allows feedback to and from the user through the 

Notification and Feedback tags. 

 

The system resource level in HQML includes parameters from network, CPU, 

memory, and disk.  However, application developers are not required to directly 

deal with these parameters.  Instead, HQML provides a visual programming 

environment for developers to generate HQML files and a compiler that maps 

application level specifications resource level.  A boundary symbol relational 

grammar named ConfigG, is used to check for formal consistency on visual QoS 

specification and automatic HQML generation.  Unlike most of the QoS 

middleware, which focuses on communication models and low-level resource 

management, the strength of HQML is the inclusion of user-level QoS 

specifications. 

 

6.5 OWL-S 

OWL-S [DAML08], is an OWL ontology aims at incorporating Semantic Web 

techniques for unambiguously describing Web Service semantics in machine 
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interpretable representations.  These descriptions can be used for dynamic service 

composition based on formally specified service QoS specification. 

 

In OWL, resources with similar characteristics were grouped using the abstraction 

of classes.  The OWL-S ontology is structured on top of the Service class.  A 

Service class contains three properties, which are ServiceProfile, ServiceModel and 

ServiceGrounding.  ServiceProfile describes what resources the service provides 

and requires.  ServiceModel describes how the service works.  ServiceGrounding 

describes how to use the service.  The ServiceProfile class is composed of contact 

information and functional descriptions including preconditions, inputs, outputs 

and effects.  Each ServiceProfile class is also associated with feature descriptions 

including service category, quality rating and parameter list.  However, OWL-S 

does not provide nor adopt any specific scheme for both service category and 

quality rating. Therefore, it is up to the provider and user to ensure the adoption of 

the same categorization and rating scheme.  Parameter list is unbound and can 

carry any information.  This provides the flexibility for extending the 

ServiceProfile class in an unstructured manner.  

 

DAML-QoS [Zhou04] leverages the OWL-S Service class to specifically provide 

QoS representation. This is done by extending the ServiceProfile class with 

QoSProfile class to provide a QoS ontology complementing OWL-S.  QoS 

metrics and property constraints have been added to support the matching 

between service and service user.  DAML-QoS has also introduced a 

matchmaking algorithm for supporting different matching degrees based on the 

constraints.  However, the multidimensional QoS constraints can hardly be 
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utilized in a dynamic mobile environment, since the constraints can be easily 

violated under the fluctuating QoS resource availabilities. The effect of fluctuating 

QoS resource levels is thus amplified by the temporary unavailability of services 

due to unmatched constraints.  This can result in a user perceived QoS that is 

significantly poorer than unmanaged best effort services. 

6.6 QML 

The QoS Modeling Language (QML) [Frølund98], developed by Hewlett Packard, 

is a general-purpose language for describing the QoS properties of software 

components.  The research focus of QML is on QoS specifications and does not 

deal with other aspects of QoS management. 

 

QML is designed to specify multiple QoS aspects such as reliability, performance, 

security, and timing.  QML uses the abstractions of contract type, contract and 

profile.  Contract type defines the properties associated with a specific QoS aspect.  

For example, the performance contract type is defined by the delay and throughput 

properties.  Each property is bounded to a domain of values that may be specified 

numerically, as a set or as an enumeration.  The favorable ordering of a property 

value, whether greater is better or smaller is better, is specified by the increasing 

and decreasing keyword.  A contract is an instance of contract type, specifying the 

constraints on all the properties.  A profile is a composition of contracts for a 

service, specifying the requirements on properties of all QoS aspects for utilizing 

the service. 

 

QML supports refinements of contacts and profiles.  A refinement is similar to 
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inheritance in object-oriented programming, in which a child refines a parent by 

inheriting the property constraints of the parent.  However, a child contact or 

profile can modify the constraints of its parent by further tighten these constraints, 

or adding more constraints, but not loosen them. 

 

QML lacks the ability for specifying the relationships, dependencies or tradeoffs 

among the properties of a contact.  This greatly limits the flexibility for the 

language to support dynamic adaptation.  When some of the requirements cannot 

be fulfilled during runtime, it would be useful to have the interdependency 

information for supporting decision making on adapting the services to the 

variations in QoS resource levels. 

6.7 SLAng 

SLAng [Lamanna03] is an XML-based language for describing service level 

agreements (SLA).  SLAng focuses on providing a language model for supporting 

QoS negotiation and contract specification.  

 

SLAng provides different levels of QoS service level abstraction, including 

application level, middleware level and the underlying resource level.  SLAng also 

introduced another dimension of expressiveness called for Horizontal and Vertical 

SLAs.   Horizontal SLAs are contracted between different parties providing the 

same kind of service. Horizontal SLAs govern the interaction between these 

coordinated peers.  For example, two container providers can collaborate for 

replicating components.  On the other hand, vertical SLAs are contracted between 

subordinated pairs. Vertical SLAs regulate the support parties get from their 
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underlying infrastructure.  For example, a container provider can specify an 

agreement with an ISP for network services.  The structure of an SLA in SLAng 

begins with an indication of horizontal or vertical agreement type.  The SLA then 

specifies responsibilities in three sections: client, server, and mutual.  In each of 

these sections, parameters specific to the SLA type are defined and therefore 

limited to those defined in the language itself.  

 

SLAng not only supports QoS specification on application, middleware and 

resource levels, it also provides SLA for service peers as well as subordinated pairs.  

This makes SLAng a suitable input for QoS-aware adaptive middleware and 

automated reasoning systems. 

6.8 Comparisons 

Table 3.1 summarized the features of the reviewed QoS specifications and 

compared them against MobiPADS.  Note that what is listed in the table is only an 

approximation; different projects have different focuses and are presented 

differently and it is difficult to measure the degree of completeness of a feature 

provide by a framework.   

 

Table 6.1 Comparisons among Different QoS Frameworks 

 User 

Specification 

Application 

Specification 

Resource 

Specification 

Dynamic 

Adaptation 
Negotiation 

Specification 

Translation 

OMEGA No Yes Yes Yes Yes Yes 

QoS-A No Yes No Yes No Yes 

QuO No Yes Yes Yes No No 

HQML Yes Yes Yes Yes No Yes 

OWL-S No Yes Yes No Yes No 
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QML No Yes Yes No No No 

SLAng No Yes Yes No Yes No 

MobiPADS Yes Yes Yes Yes No Yes 

 

Among all of the frameworks reviewed, MobiPADS supports all dimensions of 

specifications and is able to adapt to these specifications dynamically and 

effectively.  Even though MobiPADS does not support explicit QoS negotiation, 

this is not considered a major drawback.  This is because in a mobile operating 

environment with dynamic and unpredictable resource levels, the underlying QoS 

framework is simply unable to guarantee the resource allocation and thus defeats 

the objective of the QoS negotiation to reserve resources for a specific application 

session. 

6.9 Other QoS Middleware 

XQoS [Exposito02] is an XML-based language for QoS specification that applies 

mainly to multimedia systems, one of its main observations being the need for both 

intra and inter-flow QoS specifications.  The basis of the language is the Time 

Stream Petri Network (TSPN) model.  This model is particularly suitable for 

modeling synchronization issues in concurrent streams or processes.  The 

concentration on stream-based QoS limits its flexibility for operating in a mobile 

environment. 

 

The Quality Assurance Language (QuAL) in QoSME [Florissi96] is similar to 

XQoS in that it is based upon the Time Stream Petri Network (TSPN) formal model.  

It facilitates optimal QoS mapping from application level requirements to 

underlying communications service specifications. 
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Service Level Specifications (SLS) [TEQUILA08] are being standardized as part of 

the TEQUILA project.  In this context an SLS refers to network QoS in a public IP 

network and applies to a uni-directional traffic flow. 

 

The need to create a more robust and configurable middleware system is realized in 

the development of the Open ORB [Blair01].  The design and implementation of 

Open ORB is based on a reflective middleware platform.  Access to the underlying 

platform is achieved through the meta-interface, which exposes the meta-space that 

represents the support environment for the component.  The Open ORB 

architecture is designed as a general middleware that supports system 

re-configurations by allowing applications to inspect (through reflection) and to 

adapt (through reification) the behavior of the underlying system components.  

The architecture does not have specific mechanisms to support mobile computing 

applications so that context awareness can be seamlessly integrated into the 

programming model to facilitate the dynamic configuration and deployment of 

mobile services.   

 

CARISMA [Capra03] makes use of reflection to support the interactions between a 

mobile application and the middleware.  Each application has a profile installed in 

the middleware, which contains policies that specify how contextual changes 

should be handled by the middleware.  In case of conflict, CARISMA leverages a 

microeconomic approach that performs a "closed-bid" action to decide its 

adaptation action.  CARISMA requires an application code to dynamically update 

its corresponding policies through reflection to manage QoS.   
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Work carried out at Illinois has led to the development of the Universal 

Interoperable Core (UIC) [Roman01], which is a reflective middleware platform 

designed for handheld devices.  The platform can adopt different middleware 

personalities, e.g., a SOAP server and a CORBA server.   

 

The Reflective Middleware for Mobile Computing (ReMMoC) [Grace03] platform 

demonstrates a similar approach that adapts an asynchronous middleware design 

and heterogeneous discovery protocols. 

 

The Mobiware toolkit [Angin98] is built on CORBA and Java distributed object 

technology.  Mobiware can run on mobile devices, wireless access points, and 

mobile-capable switches and routers.  Mobiware provides API and algorithms for 

adaptive mobile network services, including QoS controlled handoffs, soft-state 

mobile QoS reservations, and flow bundling. 

 

In the Rover toolkit [Kaashoek97], the middleware supports the development of 

both mobile-transparent and mobile-aware applications.  Based on client-server 

architecture, the Rover toolkit provides a distributed object system for the 

development of mobile or distributed applications.  Rover client applications 

typically run on mobile hosts, but can also run on fixed hosts.  Server applications 

run on fixed hosts and maintain the long-term state of the system.  The key idea of 

Rover is the introduction of the relocatable object (RDO) and the queued remote 

procedure call (QRPC).  Object codes extending from RDO can be easily relocated 

from the server to the mobile client (or vice-versa) to allow for disconnected 
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operations.  On the other hand, QRPC permits applications to perform remote 

procedural calls even when a connection is unavailable, by queuing the calls locally 

and serving as the connection is reestablished.   

 

CARMEN [Bellavista03] supports context-dependent services for the wireless 

Internet.  CARMEN uses profiles to describe the characteristics of any resource 

modeled in the system, including the user, service, device, and operating platform.  

By integrating different types of high-level metadata, CARMEN hides low-level 

mechanisms and implementation details from service developers and system 

administrators, while providing management configurability.   

 

The EgoSpaces [Julien06] middleware provides information on context to 

applications in an abstract form.  It adapts an agent-based approach that allows 

agents to define their own operating context and adaptation actions in response to a 

change in content. 

 

The EasyLiving project [Brumitt00] focuses on the development of intelligent 

environments.  The project identifies several research aspects, including 

middleware, geometric world modeling, sensing capabilities, and service 

description.   

 

The Gaia project [Roman02] is a distributed middleware infrastructure that 

provides support for ubiquitous computing.  The main intended application 

domain of Gaia is restricted to fixed intelligent environments and lacks the support 

for nomadic scenarios. 
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6.10 Summary 

Mobile middleware show encouraging results in both performance improvements 

and value-added services for mobile applications.  However, the lack of flexibility 

in the QoS models of current middleware systems limits their adaptability when 

facing dynamic requirements from user and mobile applications.  In contrast, 

MobiPADS looks at QoS from a holistic, systematic, and pragmatic perspective.  

This thesis demonstrates the flexibility and efficiency of our QoS management 

framework in adapting not only to a dynamic operating environment and 

constrained resources, but also to the dynamic QoS requirements of user and 

application during runtime. 
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Chapter 7  

Conclusions and Future Work 

Existing Internet protocols and traditional reservation-based QoS management 

mechanisms were designed under the assumptions of high bandwidth and stable 

connectivity, provided when using a fixed network environment.  These 

assumptions are invalidated when users move to mobile connectivity, where the 

operating environment is far more hostile.  Mobile QoS management is hindered 

by the problems of highly variable connection quality, the high cost of connections, 

limited computational power, and a short battery life on portable systems. 

 

The major task of mobile QoS management is thus to balance and make tradeoffs 

between various QoS parameters.  However, mobile operating environments 

involve a large number of QoS parameters, and the characteristics of different 

system resources and user-perceivable aspects can be very diverse.  This makes it 

difficult to deduce cost functions and to formulate an analytical optimization model 

for mobile QoS management.  On the other hand, the combination of different 

users and different applications form a specific unique set of requirements.  

However, these requirements are often runtime information that will not be 

available to the QoS management system until the application subscribes to the 

service of the QoS management system.  Moreover, these requirements can be 

subject to change as users change their preferences during runtime. 

 

In order to answer the call for multi-dimensional adaptation needs raised by the 

diversity and dynamics of operating environments, mobile devices, users, 
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applications, and usage scenarios, we introduced the MobiPADS system.  In this 

thesis, we described the design and implementation of the hierarchical fuzzy 

control model, upon which the adaptation mechanisms of MobiPADS were built.  

The MobiPADS system abstracted and organized contextual-based and 

user-perception-based QoS parameters within the hierarchy of a fuzzy model.  

This allowed all QoS inputs to be inferred and contribute to the adaptation decisions.  

Moreover, the hierarchical organization of fuzzy inputs not only avoided the 

rule-explosion problem, but also allowed new QoS inputs to be efficiently added to 

the hierarchy, without the need to review the entire fuzzy rule base in the process.  

The MobiPADS system introduced the following five adaptation mechanisms for 

flexibly supporting adaptation needs at different service levels. 

 

� Fuzzy Based Mobile Service Reconfiguration adapts to the system 

dynamics and optimizes the QoS perceived by the user by reconfiguring a 

chain of mobilet services.  Based on the inferencing of the fuzzy QoS factor 

hierarchy, this mechanism responds to the system dynamics in real-time by 

periodically selecting the optimal set of mobilet service profiles.  Mobilet 

services are chained to provide an assortment of services to a mobile 

application.  To adapt to vigorous changes in the QoS requirements, 

MobiPADS supports intra-mobilet reconfiguration that changes the mode of 

operation internally, as well as inter-mobilet reconfiguration that adds or 

removes mobilets on demand. 

 

� QoS Factor Hierarchy Extension allows new QoS dimensions to be added to 

the existing QoS factor hierarchy, such that the number and variety of 
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managed QoS parameters will not be bound by the original design.  

Traditionally, adding a new fuzzy input to an existing fuzzy model meant that 

the whole model needed to be revamped.  In contrast, under this extension 

mechanism, adding a new QoS factor will only cause local changes to be made 

to the overall QoS factor hierarchy.  Importantly, this mechanism only causes 

a minimum amount of disruption to the entire fuzzy rule base, and updates 

only the direct parent node of the new QoS factor within the hierarchy.  This 

makes unnecessary much of the effort required for a non-hierarchical fuzzy 

rule base to review the whole rule base when new input is added.   

 

� Membership Function Adaptation allows ad-hoc adjustment on the 

interpretation of QoS factors to align with the specifications of a new 

application.  This is done by using a single normal point value to dynamically 

adjust the membership functions of the linguistic values of a specific QoS 

factor.  Typically, each set of application specifications requires a 

custom-made set of fuzzy membership functions and a fuzzy rule base to 

support the specific application requirements, which are too low-level and 

fuzzy domain specific for typical application developers to handle.  The 

membership function adaptation mechanism is much simpler for application 

developers and even users to use to adjust the fuzzy membership functions of 

various concerned QoS factors to the desired forms. 

 

� Importance Weight Adaptation supports ad-hoc modification of the 

inter-QoS factor prioritization.  Based on a similar requirement as in 

membership function adaptation, this mechanism tries to avoid a redesigning 
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of the fuzzy rule base and fuzzy membership functions when a set of new user 

requirements has emerged.  This is done by dynamically changing the 

importance weight values of QoS factors of different abstraction levels to 

reflect the priorities of different QoS factors as specified in the user and 

application requirements.  This mechanism avoids the typical yet significant 

effort that application developers need to make to implicitly embed the priority 

preferences into the fuzzy rules.  By coupling the membership function 

adaptation that supports the intra-QoS factor adjustment with the importance 

weight adaptation that supports inter-QoS factor prioritization, MobiPADS 

provides a comprehensive yet simple set of mechanisms for users and 

applications to dynamically specify their interpretation of QoS factors of 

different abstraction levels. 

 

� Computational Reflection provides Reflective API for applications to 

inspect (through reflection) and to adapt (through reification) the behavior of 

the underlying system components, adaptation rules, and actions of 

MobiPADS.  While MobiPADS offers automated and robust mechanisms for 

context adaptation and service reconfiguration, at times mobile applications 

are still in the best position to make critical decisions on the operating context 

and hence the adaptation strategy.  Through the meta-level object 

representation of the hierarchical fuzzy QoS model and service 

reconfiguration mechanism, a mobile application can access the contextual 

information, service configuration, and adaptation strategy of the QoS 

middleware, and modify these entities to obtain optimal service provision 

during runtime. 
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7.1 Results 

The complete framework has been successfully implemented using Java as the 

execution platform, which supports a highly portable system to operate across 

heterogeneous environments.  Extensive experiments have been conducted on a 

PC platform and a PDA platform with the MobiPADS system.  These experiments 

have revealed promising results that demonstrate the effectiveness, robustness, and 

the ease of leveraging the QoS management framework for new mobile services 

and applications in a mobile environment.   

 

The results of the experiments in Chapter 5 have clearly demonstrated the 

effectiveness of fuzzy controlled adaptation and service chaining in mapping and 

adapting to variations in QoS parameters under varying contextual environments.  

Importantly, the adaptation mechanism is able to effectively reconfigure the service 

chain to maximize the QoS under a dynamic and constrained resources situation.  

As the resource level improves, the adaptation mechanism is also able to react to 

this by reconfiguring the service chain to fully utilize the extra resources. 

 

The results of another set of experiments conducted on a PDA device have 

demonstrated the highly scalable characteristic of MobiPADS with respect to a 

number of QoS parameters, fuzzy rules, mobilet services, and mobilet profiles.  

These aspects have demonstrated linear computational complexities and sub-linear 

memory requirements.  Moreover, a typical MobiPADS setup with 32 QoS inputs 

and 775 fuzzy rules decreased the battery life of the PDA by only 8.4%, which is 

promising given the benefits of the adaptation capacity of MobiPADS. 
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The experimental results in Chapter 6 have shown that membership function 

adaptation can easily adjust the forms of the membership functions of a QoS factor 

to match the interpretation of the user and application on that QoS factor.  

Subsequently, the adjustment is effectively reflected on the reconfiguration 

behavior of MobiPADS, while the resultant QoS performance can match the 

requirements of the user and application.  The results also showed that importance 

weight adaptation can effectively adjust the priorities among concerned QoS 

factors, such that MobiPADS is able to make proper trade-offs among the QoS 

factors to match the preferences of different users and applications. 

7.2 Future work 

The nature of progress frequently dictates that a solution to one problem uncovers 

several new and interesting directions for exploration.  In this section, we present 

several directions for future work that are motivated by our existing work.  Many 

of the directions discussed in this section directly extend our work by addressing 

the remaining problems.  Other directions focus on interesting components within 

the architecture, and these motivate research in directions that are independent of 

the dissertation topic. 

7.2.1 Contextual Coverage 

One of the future directions is to expand the contextual coverage.  In this thesis, we 

have experimented with local QoS parameters only, and it is desirable to extend the 

system to support external contexts.  This involves the management of external 

contexts, which include discovery, binding, suspension, rebinding, and detachment.  

On discovering a new external context, the middleware should be able to 
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autonomously map the contextual changes to the affected QoS factors, new rules, 

and new mobilets to be migrated to the mobile device.  The system will also have 

to support various handling schemes for orphan fuzzy rules and mobilets when their 

associated external contexts are unreachable or expired. 

7.2.2 Mobilet Service Profile Probing 

A mobilet can intentionally or unintentionally affect a QoS factor so that the extent 

of the effect is uncertain during the design phase, in which case probing during the 

testing, deployment, and execution phases is required to determine the actual 

effects of each of its profiles.  The probing of service performance is a research 

topic on its own, yet for simplicity of illustration we have assumed that the probed 

adjustments for every mobilet profile discussed in this thesis are static, accurate, 

and up-to-date.  It is desirable for the MobiPADS system to provide a unified 

probing framework, such that a new mobilet service can be easily and accurately 

profiled.  A developer of a mobilet with probed adjustments should implement an 

active probing function that can be invoked when the mobilet is first installed, to 

determine the initial values of the probed adjustments.  A passive probing function 

should also be implemented, which can be invoked when the mobilet is activated 

for adaptation.  This calibrates and updates the values of the probed adjustments 

adaptively, so that the values can accurately reflect the adjustments to the current 

operating platform and environment.   

7.2.3 Inter-Application Adaptation 

This thesis has generally focused on supporting only one mobile application at a 

time.  It is a natural extension to study the impact of providing concurrent service 

sessions for multiple applications.  This will require the introduction of several 
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new mechanisms.  First, another layer of prioritization among all active mobile 

applications will have to be added.  Second, individual fuzzy QoS factor 

hierarchies are needed for each application.  This will give rise to the problem of 

redundancy, and new techniques will be needed tackle this redundancy.  Third, 

during the reconfiguration of the service chain, MobiPADS will have to consider 

not only the impact of new mobilet profiles on the application that it serves, but also 

the impact of the other applications that rely on the shared resources. 

7.2.4 Security 

Security has not been our focus in the current framework.  There are several issues 

that should be addressed in this area.  First, authentication of the mobilets must be 

guaranteed.  One approach is to digitally sign the mobilets to assure their 

authenticity.  Second, the MobiPADS system should exploit the Java security 

features [Garms01], so that the MobiPADS platform presents a protected 

environment for a mobilet.  Third, a common objection to real-time transcoders is 

that they are incompatible with encrypted sessions.  A service chain is unable to 

understand an encrypted session because it would have to allow for the decrypting 

of data in the middle of the connection, which is potentially hazardous to overall 

security.  An interesting research problem is to consider whether an encryption 

scheme could be developed to permit the services provided by a mobilet without 

compromising the security of the session. 
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7.3 Publications 

Segments of this research have been presented in the following publications: 

� Siu-Nam Chuang and Alvin T.S. Chan, "Dynamic QoS Adaptation for Mobile Middleware", 

IEEE Transactions on Software Engineering, Vol. 34, No. 6, November 2008, pp. 738-752. 

 

� Siu-Nam Chuang and Alvin T.S. Chan, "MobiPADS: A Mobile QoS Middleware based on 

Hierarchical Fuzzy Control", Proceedings of the 2006 IEEE International Conference on Fuzzy 

Systems (FUZZ-IEEE 2006), 16-21 July 2006, Vancouver, BC, Canada, pp. 2223-2230. 

 

� Siu-Nam Chuang and Alvin T.S. Chan, "Fuzzy Based Mobile QoS management", Proceedings 

of the 7th ACM Postgraduate Research Day, 25 March, 2006, Hong Kong, China. 

 

� Siu-Nam Chuang and Alvin T.S. Chan, "Active Service for Mobile Middleware", WWW: 

Internet and Web Information Systems Journal, Kluwer Academic Publishers, Vol. 8, No. 2, 

2005, pp. 127-157. 

 

� Alvin T.S. Chan, Peter Y.H. Wong, Siu-Nam Chuang, "A Context-aware Request Language for 

Mobile Computing", Proceedings of the Second International Symposium on Parallel and 

Distributed Processing and Applications (ISPA 2004), Lecture Notes on Computer Science, 

Springer-Verlag, 13-15 December 2004, Hong Kong, China, pp. 529-533. 

 

� Siu-Nam Chuang, Alvin T.S. Chan, Jiannong Cao, Ronnie Cheung, "Actively Deployable 

Mobile Services for Adaptive Web Access", IEEE Internet Computing, Vol. 8, No. 2, 2004, pp. 

26-33. 

 

� Alvin T.S. Chan, Siu-Nam Chuang, Jiannong Cao, Hong-Va Leong, "An Event-driven 

Middleware for Mobile Context Awareness", The Computer Journal, Oxford University Press, 

U.K., Vol. 47, No. 3, 2004, pp. 278-288. 

 

� Alvin T.S. Chan and Siu-Nam Chuang, "MobiPADS: A Reflective Middleware for 

Context-Aware Computing", IEEE Transactions on Software Engineering, Vol. 29, No. 12, 

December 2003, pp. 1072-1085.  
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