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Abstract of thesis  

“One-dimensional Sonomyography (SMG) for Skeletal Muscle Assessment and 

Prosthetic Control” 

Submitted by Jing-Yi Guo 

for the Degree of Doctor of Philosophy 

at The Hong Kong Polytechnic University 

in May 2010 

As indicators of torque output and motor unit recruitment, both electromyography 

(EMG) and mechanomyography (MMG) have been widely used to assess muscle      

fatigue, muscle pathology, control over prosthetic devices, etc. On the other hand,      

ultrasound imaging has been suggested as a method for viewing muscular architectural 

changes during contractions. Sonomyography (SMG) is the signal we previously termed 

to describe muscle contraction using real-time muscle morphological changes extracted 

from ultrasound images or signals.  

With the advantages of being less expensive, more compact, A-mode ultrasound was 

introduced to detect the dynamic thickness change of skeletal muscles during            

contraction, named as one-dimensional sonomyography (1D SMG). The 1D SMG     

signal was extracted from the ultrasound signal by automatically tracking the shift of 

echoes from tissue interfaces and the muscle thickness change was calculated.        

Compared with surface EMG, 1D SMG could discriminate activity of deep muscles 

from more superficial muscles. It was also found that 1D SMG signal linearly correlated 

with the wrist extension angle.  
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Moreover, the least squares support vector machine (LS-SVM) and artificial neural 

networks (ANN) were used to predict dynamic wrist angles from 1D SMG signals.  

Synchronized wrist angle and SMG signals from the extensor carpi radialis muscles of 

nine normal subjects were recorded during the process of wrist extension and flexion at 

rates of 15, 22.5, and 30 cycles/min, respectively. An LS-SVM model together with 

back-propagation (BP) and radial basis function (RBF) ANN was trained using the data 

sets collected at the rate of 22.5 cycles/min for each subject. It was concluded that the 

wrist angle could be precisely estimated from the thickness changes of the extensor 

carpi radialis using LS-SVM or ANN models. 

In this thesis, the potential of 1D SMG in prosthetic control was also investigated. The 

performances of SMG and surface EMG (SEMG) signal in tracking the guided patterns 

of wrist extension were evaluated and compared. The subjects (n=16) were instructed to 

perform the wrist extension under the guidance of displayed sinusoidal, square and 

triangular waveforms at the movement rates of 20, 30, 50 cycles/min. It was showed 

that the RMS errors of SMG tracking were significantly smaller than those of SEMG. 

Significant differences in RMS tracking error of SMG among the three movement rates 

(p<0.01) for all the guiding waveforms were also observed using one-way analysis of 

variance (ANOVA). The results suggest that SMG signal has great potential to be an 

alternative method to SEMG to evaluate muscle function and control prostheses.  

We further compared subjects’ performance using 1D SMG and surface EMG in a 

series of discrete tracking tasks, both with and without a concurrent auditory attention 

task. The performances of subjects (n=10) were evaluated under isometric contraction 

and wrist extension using the extensor carpi radiali muscle. Using SMG generated 

significantly lower numbers of “E” wrongly canceled than using EMG for both 
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isometric contraction and wrist extension (p<0.001) controls. It also demonstrated that 

there was no significant difference of performances of canceling “E” between the single 

and dual tasks by using any of the control signals (p=1.0). The SMG control provided 

more consistent performances under the single and dual tasks in comparison with EMG 

control.  

In addition, the feasibility of using 1D SMG signal for controlling a powered prosthesis 

was investigated by evaluating the performances of subjects (n=16) in tracking guided 

motion patterns of wrist extension. The RMS tracking error between the guiding 

waveform and the signal representing the degree of the prosthetic hand’s open-close 

level, which was measured by an electronic goniometer, was calculated to evaluate the 

control performance. The results suggest that SMG signal, based on further 

improvement, has potentials to be an alternative method for prosthetic control. 

Finally, an amputee subject was recruited to perform the tasks of tracking the guided 

patterns of wrist extension, discrete tracking task and controlling a powered prosthesis. 

The performance of the subject using 1D SMG and EMG signals were evaluated to see 

whether 1D SMG signal could really used by the amputee. The feasibility of using 1D 

SMG by the amputee was demonstrated. 

To sum up, we have successfully demonstrated that SMG (related to muscle 

architectural properties) can provide complementary information about muscle function 

in comparison with EMG (related to muscle bioelectrical properties), which has been 

commonly used for muscle activity assessment and prosthetic control.  

Keywords: Skeletal muscles, Ultrasound, Sonomyography, SMG, Electromyography, 

EMG, Mechanomyography, MMG, Wrist angle prediction, Support vector machine, 

Artificial neural network, Cognition, Muscle, Prosthetic control.
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CHAPTER 1 INTRODUCTION 

1.1 Background and Significance 

Ultrasonography as an effective method has been employed to evaluate the 

morphological changes in muscle thickness or displacement (Nogueira et al., 2009; 

Suzana et al., 2008; Matsubayashi et al., 2008; Bojsen-Moller et al., 2003; Springer and 

Gill, 2007; Mannion et al., 2008; Lee et al., 2007; Lee et al., 2009), muscle fibre (Okita 

et al., 2009; Ichinose et al., 1997; Maganaris, 2001), pennation angle (Kawakami et al., 

1993; Mahlfeld et al., 2004), and cross-sectional areas (Kanehisa et al., 1995; Narici et 

al., 1996). The ultrasound parameters have also been suggested to characterize muscular 

pain, injuries and disfunction (Botteron et al., 2009; Diaz et al., 2008; Chester et al., 

2008; Bernathova et al., 2008; Sikdar et al., 2008). Moreover, ultrasound has been used 

along with EMG to provide more comprehensive information on the activities and 

properties of skeletal muscles (Andrade et al., 2009; Hides et al., 1994; Ishikawa et al., 

2006; Hodges et al., 2003; Ferreira et al., 2004).  

In a previous study, Zheng et al., (2006) used sonomyography (SMG) to describe the 

real time signal about the muscle thickness change detected with B-mode ultrasound 

images during its contraction. A system was developed to record and analyze ultrasound 

images, force, joint angle and surface EMG simultaneously. The system has been 

successfully used for the analysis of muscle fatigue and it was found that the muscle 

thickness increased during the fatigue process (Shi et al., 2007). The correlation 

between EMG and SMG of muscles during isometric contraction has also been 

investigated (Shi et al., 2007).  
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The real-time change of muscle thickness detected using ultrasound, namely SMG, 

could be used for monitoring the muscle morphological changes and has the potential 

for prosthetic control (Xie et al., 2009b; Zheng et al., 2006). In contrast to these studies, 

which used 2 dimensional (2D) SMG, our most recent studies have shown that the 

muscle thickness change can also be measured with A-mode (one-dimensional or 1D) 

SMG. Compared to 2D SMG, 1D SMG provides a more portable, compact, 

inexpensive, and practical solution to detect muscle thickness changes (Guo et al., 2008, 

2009). A-mode ultrasound transducers appear to be easily attached to the skin during 

dynamic activities of muscles and can be made to be sufficiently small to potentially be 

embedded in prosthetic sockets. In this study, we used A-mode ultrasound signal 

collected using a system equipped with a single element ultrasound transducer, named 

as 1D SMG, to detect the thickness changes of forearm muscles. The relationships 

between the surface EMG and wrist angle and between the 1D SMG and wrist angle 

were quantitatively studied. The results were used to assess the potential of 1D SMG 

signals as a non-invasive method for the detection of skeletal muscle activities in vivo. 

After successfully detecting the dynamic thickness change of skeletal muscles during 

contraction using 1D SMG, the performance of using 1D SMG was compared with that 

of surface EMG in tracking guided patterns of wrist extension and in series of discrete 

tracking tasks. We then investigated the potential of using 1D SMG for controlling a 

single degree of freedom (DOF) prosthesis in real-time. The control performance was 

evaluated by tracking guided patterns of wrist extension. The comparison of 

performance of 1D SMG and EMG were tested on both healthy and amputee subjects. 

The study demonstrated that SMG signal could be potentially used for the control of 

powered prosthesis. 
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1.2 Objectives of This Study 

The overall aim of this study is to assess the skeletal muscle function and control the 

prosthesis using 1D SMG signals. 

The specific objectives of this study are: 

1. To investigate the relationship between 1D SMG signals and wrist angle during the 

movement of wrist extension and explore whether the SMG signal is a reliable non-

invasive method for detecting skeletal muscle activities in vivo; 

2. To examine the feasibility of 1D SMG-based wrist angle prediction using support 

vector machine (SVM) and artificial neural network (ANN); 

3. To compare the performances of subjects using 1D SMG and surface EMG signal in 

tracking the waveforms being displayed during the guided movement of wrist 

extension in terms of tracking accuracy; 

4. To compare the performances of subjects using 1D SMG and surface EMG signal in 

terms of accuracy and cognitive requirements in series of discrete tracking task; and 

5. To control a prosthesis with function of open and close using 1D SMG signal in real 

time. 
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1.3 Outline of the Dissertation  

Following the introduction chapter, Chapter 2 presents a literature review on the 

fundamentals physiology of skeletal muscle and the technology utilized for muscular 

assessment and prosthetic control. 

In Chapter 3, the methods used in this study are introduced. The experimental protocols 

are presented in detail. 1D SMG was used to monitor the wrist angle changes during 

wrist extension and the 1D SMG based wrist angle prediction was realized by using 

SVM and ANN. In addition, the performances of subjects using 1D SMG were 

evaluated in both the wrist extension tracking task and series of discrete tracking task. 

Finally, 1D SMG signal was utilized to control a single DOF prosthesis with open and 

close function and the related data processing and data analysis methods are included. 

In Chapter 4, the results of the corresponding studies in Chapter 3 are reported, 

including the linear relationship between 1D SMG and wrist extension angle; the 

accuracy of SMG-based wrist angle estimation; the performances of the subjects using 

SMG in wrist extension tracking task, series of discrete tracking task and in a real 

prosthesis control task. 



CHAPTER 1                                                                                  Introduction 

5 

Chapter 5 presents discussion on the experimental set-ups and the results. The 

discussion about the experiments described in Chapters 3 and 4 are divided into two 

parts according to their purposes, i.e. skeletal muscle evaluation and prosthetic control. 

The results of this study are compared with the results of related previous studies and 

the explanations for our findings are given.  

Chapter 6 summarizes the findings of this study and the potentials of using 1D SMG as 

an alternative signal to EMG in skeletal muscle assessment and prosthetic control. 

Suggestions on future research directions are highlighted. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents a review of literature on skeletal muscle physiology and its 

assessment methods including EMG, mechanomyography (MMG) and SMG. There are 

two major parts. The first part (Section 2.1) addresses the anatomy of skeletal muscle, 

motor units and fibre type. The second part (Sections 2.2) presents the currently 

available technology used for skeletal muscle assessment and prosthetic control. 

2.1 Skeletal Muscle Physiology 

2.1.1 Anatomy of Skeletal Muscle  

A skeletal muscle is regarded as an organ of the muscular system, consisting of nerve, 

blood, vascular or connective tissue besides skeletal muscle tissue. As shown in Fig. 2. 

1, an individual skeletal muscle is made up of many muscle fibres bundled together and 

wrapped in a connective tissue covering. Each muscle is surrounded by a connective 

tissue sheath, which is called the epimysium. Each compartment contains a bundle of 

muscle fibres, which is called fasciculus and is surrounded by a layer of connective 

tissue called permysium. Within the fasciculus, each individual muscle cell, called 

muscle fibres, is surrounded by connective tissue called endomysium. Each skeletal 

muscle fibre is a single cylindrical muscle cell (Macintosh et al., 2006). A tendon is a 

tough band of fibrous connective tissue that connects muscle to bone, or muscle to 

muscle and is designed to withstand tension. There is an abundant supply of blood 

vessels and nerves in skeletal muscle. The structure described above is directly related 

to the primary function of skeletal muscle, contraction (David et al., 2004). 
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Fig. 2. 1 Structure of a skeletal muscle (from http://training.seer.cancer.gov/). 

2.1.2 Motor Units 

The smallest part of a muscle, which can be controlled, is called motor unit (MU). It 

includes a single motor neuron and all of the corresponding muscle fibres that it 

innervates (Fig. 2. 2). A great number of motor units often work together to coordinate 

the contraction of a single muscle. One muscle has a certain number of motor units, 

each of which is controlled by a separate nerve ending. 
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Fig. 2. 2 Structure of motor unit (from http://ecampus.wsc.edu/). 

When it is activated by an action potential from the neuron, a muscle fibre depolarizes 

as the signal propagates along its surface and the fibre twitches. An electrode located 

near this field can detect the electric field induced by the depolarization. The electrode 

can be either a surface one or the one that can be inserted into the muscle. The resulting 

signal is called the muscle fibre action potential. The combination of muscle fibre action 

potentials from all the muscle fibres is the motor unit action potential (MUAP) and the 

sum of electrical activity generated by each active motor unit is EMG signal (De Luca 

1979).  

2.1.3 Skeletal Muscle Fibre Type 

It is well known that the skeletal muscle fibres could be categorized into type I (slow 

twitch fibre) and type II (fast twitch fibre) according to their metabolic and 

electrophysiological properties. Fast twitch fibres can be further classified into type IIa, 
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type IIx and type IIb fibres. The distribution of muscle fibre types varies in different 

human skeletal muscles, for example, fast and slow twitch fibres are almost evenly 

distributed in deep biceps brachhi while there are faster twitch fibres in rectus femoris 

muscles (Johnson et al., 1973). The different composition of muscle fibre types 

influences how muscles respond to training or physical activity. Table 2. 1 describes the 

most obvious differences among various muscle fibre types. 

Table 2. 1 List of properties of type I and type II muscle fibres 

(http://en.wikipedia.org/wiki/Skeletal_muscle). 

Fibre Type Type I fibres Type IIa fibres Type IIx fibres Type IIb fibres 

Contraction time Slow Moderately Fast Fast Very fast 

Size of motor neuron Small Medium Large Very large 

Resistance to fatigue High Fairly high Intermediate Low 

Activity Used for Aerobic 
Long-term 
anaerobic 

Short-term anaerobic 
Short-term 
anaerobic 

Maximum duration  
of use 

Hours <30 minutes <5 minutes <1 minute 

Power produced Low Medium High Very high 

2.1.4 Muscle Motor Control Strategy: Size Principle 

According to the size principle, motor units are recruited in the order of their 

recruitment thresholds and firing rates which results in a continuum of voluntary force 

(Henneman 1981). Motor-neurons with slow conduction velocity and small action 

current are recruited first, depending on the calibre of the axons. Correspondingly, 

slower units (fatigue resistant) are recruited before faster (fatigue susceptible) ones. The 

motor units from different regions of the same muscle may also separately involve in 
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different movement patterns (Cope and Pinter, 1995).  

As the index of torque and the indicator of the firing rates of recruited motor units 

during muscle contraction (Orizio, 1993; Jaskolska et al., 2006), EMG and MMG 

signals can each provide information on various aspects of muscle function. Recently, 

many studies have been performed using EMG and MMG to identify the motor control 

strategies involved in force/torque production during isometric ramp increasing or step 

contraction, in which the force/torque is alternately linearly increased or steadily 

maintained (Bilodeau et al., 1997). Investigating the differences between various muscle 

contraction protocols may guide exercise testing and training (Bader et al., 1999). The 

amplitude and frequency of EMG and MMG were examined with torque during ramp 

increasing or step contraction (Akataki et al., 2001; Ryan et al., 2008a; Akasaka et al., 

1997; Beck et al., 2005, 2004). For example, EMG has been used to illustrate the 

different characteristics of ramp increasing vs step contractions (Bilodeau et al., 1991; 

Lariviere et al., 2001; Nadeau et al., 1993; Sanchez et al., 1993), and the relationship 

between MMG and force/torque has also been compared (Ryan et al., 2008b).  

2.1.5 Morphological Parameters 

2.1.5.1 Pennation Angle and Fascicle Length 

Pennation angle is defined as the angle between fascicles and aponeurosis. Aponeuroses 

are membranes separating muscles from each other. The propagation velocity of action 

potentials is correlated with the fibre length (Arendt-Nielsen et al., 1992). Fukunaga et 

al., (1997) used ultrasound images to detect the pennation angle and fascicle length of 

vastus lateralis muscle (Fig. 2. 3).  
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Fig. 2. 3 Pennation angle and fascicle length of vastus lateralis muscle (Fukunaga et al., 

1997). 
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2.1.5.2 Cross-sectional Areas 

The cross-sectional area (CSA) of a muscle is the sum of the CSA of all the fibres. The 

maximal force that a muscle can generate is closely correlated with its CSA (Morris 

1948; Ikai et al., 1970). Maughan et al., (1983) studied the relationship between the 

CSA and the maximal voluntary isometric strength of knee extensor muscles. As shown 

in Fig. 2. 4, computerised axial tomography (CT) scanning was used to produce a cross-

sectional image of the leg at the mid-thigh level (the half way between the greater 

trochanter and the upper border of the patella). The researchers reported that a 

significant positive correlation exists between the CSA of the knee extensor muscles 

and the maximal voluntary isometric force.  

 

Fig. 2. 4 CT scan obtained from an untrained healthy subject. The knee extensor muscle: 

A-adductors, G-gracilis, H-hamsstrings, Q-quadriceps, S-sartorius (Maughan et al., 

1983). 

2.1.6 Muscle Contraction Pattern 

The function of skeletal muscle is to generate force or to produce movement. During the 

normal activities, the locomotor muscles produce the force by various contractions, such 
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as isometric, isokinetic, isotonic, concentric and eccentric contractions (Lindstedt et al., 

2002). The maximal voluntary contraction (MVC) was defined as the highest value of 

torque recorded during the entire isometric contraction (Hakkinen and Hakkinen, 1991). 

During isometric contraction, the muscle is held at a constant length. Two common 

isometric contractions are step and ramp. During the step contraction, the subject is 

required to produce a stable sub-maximal MVC torque while during the ramp increasing 

and decreasing, the subject is instructed to produce torques increasing from 0 to his/her 

MVC (or some percentage of MVC) and then decreasing back to zero linearly. 

Isokinetic contraction is used to describe exercises performed through the range of 

motion of a joint at a constant velocity. In an isotonic contraction, tension remains 

unchanged and the skeletal muscle’s length changes. Contractions that permit the 

muscle to shorten are referred to as concentric contractions. Even though the muscle 

may be fully activated, it is forced to lengthen due to the high external load. This is 

referred to as an eccentric contraction (Macintosh et al., 2006).  

2.1.7 Muscle Dysfunction 

Dysfunction of skeletal muscles, for instance, myotonic dystrophy (Nitz et al., 1999), 

amyotrophia or even the lost of body part, will not only result in physical handicap but 

also cause social deprivation. Amputation is the removal of a body extremity in accident 

or to prevent the disease process in the affected limb 

(http://en.wikipedia.org/wiki/Amputation). Amputations at the wrist and forearm (below 

the elbow) remain one of the oldest surgical procedures. Details of the operation vary 

slightly depending on what part is to be removed. All amputations consist of a two-fold 

surgical procedure: 1) to remove diseased tissue so that the wound will heal cleanly, and 

2) to construct a stump that will allow the attachment of a prosthesis or artificial 
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replacement part. The diseased part is removed, and the bone is smoothed. A flap is 

constructed of muscle, connective tissue, and skin to cover the raw end of the bone. 

Often, a rigid dressing or cast is applied about two weeks (Baumgartner 2001). The 

prosthetic designs and the patient emotional, physical, and vocational background must 

be considered carefully. The design of the hand prosthesis to substitute the natural one 

has become an important research area and drawn increasing attentions in recent years. 
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2.2 Technology for Muscle Assessment and Prosthetic Control   

2.2.1 Electromyography  

Electromyography (EMG), the electrical signal collected by the electrodes during 

muscle contractions, represents the neuromuscular and bioelectrical properties of 

skeletal muscles and demonstrates the physiological process for the muscle contraction. 

There are two types of EMG: needle and surface EMG. Needle EMG is collected from a 

needle containing two fine-wire electrodes which are inserted into the muscle by a 

trained professional. It is used to reflect the information of certain muscle fibres’ MUP 

and therefore can be used to detect the neuromuscular disorders and diseases 

(http://en.wikipedia.org/wiki/Electromyography). On the other hand, surface EMG 

signal, collected from the electrodes attached to skin surface, is a complex signal, which 

is the summation of individual MUAP trains, generated by irregular discharges of active 

MUs during the muscle activation. Compared with the needle EMG, it provides the 

information of the overall muscle function rather than a single muscle fibre. In addition, 

surface EMG is non-invasive and non-painful to the patient. Therefore, surface EMG is 

widely used in both clinical diagnosis and research. 

EMG is a direct reflection of muscle activities and various analyses have been carried 

out to investigate the relationship between the features of EMG patterns and muscle 

forces (Liu et al., 1999), joint angles (Sepulveda et al., 1993), joint moments (Wang and 

Buchanan, 2002), and joint torques and trajectory (Hahn, 2007; Koike and Kawato, 

1995). Moreover, it has been widely used for the evaluation of muscle functions in the 

areas of biomechanics and kinesiology (Benoit and Dowling, 2006; Paavolainen et al., 

2006), muscle pathology (Labarre, 2006), muscle fatigue (Masuda et al., 1999; 
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MacIsaac et al., 2006), and prosthetic device control (Kermani et al., 1995; Kuiken et 

al., 2004).  

During the past decade, lots of efforts have been made to develop different algorithms 

to process EMG signals, such as time-frequency representation (Engelhart et al., 1999; 

Karlsson and Gerdle, 2001), wavelet analysis (Englehart et al., 2001; Al-Assaf 2006), 

fractal method (Talebinejad et al., 2009). In addition, various signal processing 

techniques have been reported for EMG control strategy, including classification of 

EMG using artificial network (Karlik et al., 2003) and fuzzy logic (Chan et al.,2000), 

pattern recognition for multi-channel EMG (Ajiboye and Weir, 2005), and 

decomposition of EMG signals using Bayesian method (wheeler et al., 2006). All these 

efforts aim to provide efficient EMG signal features which represent the skeletal muscle 

physiological characteristics and to improve the multifunctional performances of EMG 

control along with the reduction of control complexity for users.  

Powered prostheses have been used for decades to provide an artificial extension of 

amputees (Muzumdar 2004). They can be used to replace parts of human body lost or to 

supplement defective body parts. A typical powered prosthesis is comprised of 

mechanical and electrical components, capable of extracting features or patterns from 

the electrophysiological signal (such as signals from muscle and brain) and mapping 

them into movement functions of the mechanical actuators. 

By far the most commonly used upper-limb externally powered prosthetic devices is the 

myoelectric prosthesis, controlled by the EMG signal. In a myoelectric prosthesis EMG 

is detected from the remaining musculature of the residual limb and, the processed 

signal is used for control of the prosthesis motor(s). By using such devices, amputees 
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regain a degree of upper limb function. Although controlled studies suggest that expert 

users of current prostheses can perform a wide range of tasks with the devices, the 

reported rejection rates (Biddiss and Chau, 2007) and the high incidence of overuse 

injuries in the contralateral arm of unilateral amputees (Gambrell, 2008), both suggest 

that the additional functionality is often not fully exploited in every day life.  

An effective and reliable prosthesis should have multiple DOFs, provide the user with 

the ability to perform task with a high degree of accuracy, yet be intuitive and simple to 

control (Shenoy et al., 2008; Cipriani et al., 2008). Learning to use the prosthesis should 

require little training and, once proficient, the user should be able to take advantage of 

the additional functionality in everyday situations with little cognitive effort (Cipriani et 

al., 2008). Researchers have made efforts to achieve these goals using various 

approaches. For example, Miller et al., (2008) utilized the targeted muscle reinnervation 

(TMR) method to increase the number of controllable DOFs. In another study, 

vibrotactile or electrotactile simulation was employed to provide biofeedback (Cipriani 

et al., 2008). To simplify the multiple DOFs control problem, a number of computing 

approaches have been proposed to recognize various movement patterns from one or 

more EMG channels (for example Kelly et al., 1990; Hincapie and Kirsch, 2009; Karlik 

et al., 2003; Englehart et al., 2001; Englehart and Hudgins, 2003).  

However, researchers still face from the challenges of some inherent limitations of 

EMG control. For example, it is difficult to provide a natural control of the prosthesis 

with multiple DOFs based on multi-channel EMG signals. Intensive conscious effort is 

needed to control the prosthesis and fatigue easily occurs after long time utilization 

(Cipriani et al., 2008). Although many efforts have been made for the classification of 

multi-channel EMG signals, most of the current commercially available hand prostheses 
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still use two-channel EMG inputs to provide one or two DOF(s). In addition, EMG is an 

inherently random, non-stationary and non-linear signal whose measurement from 

socket-located transducers is susceptible to interference from socket movement and 

sweat-related skin impedance changes (Besio and Prasad, 2006; Alemu et al., 2003).  It 

is also difficult, using surface EMG, to discriminate activity of deep muscles from 

activity of more superficial muscles due to muscle cross talk (De Luca, 2002), limiting 

the potential for multi-DOF control. Furthermore, the characteristics of the EMG signals 

associated with performing a particular task vary considerably between individuals 

(Balogh et al., 1999). Of most importance, various investigators have suggested that 

multi-DOF EMG-based prostheses require a very high level of concentration to control 

(Cipriani et al., 2008; Loeb, 2009).  

Alternative signals have been searched for better assessment of muscle functions, 

including MMG (Orizio 1993), SMG (Zheng et al., 2006), electroencephalographic 

(EEG) (Chang et al., 2003; Svoboda et al., 2002), myokinemetric (MK) (Kenney et al., 

1999), and magnetic resonance imaging (MRI) (Kinugas et al., 2006). They are 

introduced in the following sections. 

2.2.2 Mechanomyography  

Mechanomyography (MMG) is the sound generated by a muscle during its contraction 

and has been used as a measure of muscle mechanical changes during contractions 

(Orizio et al., 2003). As the “mechanical counterpart” of the MU electrical activity 

measured by EMG, MMG is a recording of mechanical oscillation that is detected from 

the body surface overlying the muscle (Gordon and Holbourn, 1948; Beck et al., 2004). 

It has been advised that the lateral oscillations detected by MMG could be decomposed 
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to three parts: (1) a gross lateral movement at the beginning of a muscle contraction (2) 

smaller subsequent lateral oscillations produced at the resonant frequency of the muscle, 

(3) dimensional changes of the muscle fibre (Beck et al., 2004; Orizio, 1993).  

The features of MMG signals have been used to reflect the kinematic and physiological 

characters during postural control (Kouzaki and Fukunaga, 2008), concentric muscle 

contractions (Ebersole et al., 1999), and cycle ergometry (Housh et al., 2000; Perry et 

al., 2001), to detect various muscular disorders, including cerebral palsy (Akataki et al., 

1996), myotonic dystrophy (Orizio et al., 1997), low back pain (Yoshitake et al., 2001), 

and muscle fatigue (Mamaghani et al., 2002), etc. Furthermore, studies have been 

conducted with EMG and MMG simultaneously to exam the skeletal muscle 

characteristics. For example, EMG and MMG were used to investigate the difference in 

agonist and antagonist muscles between old and young women (Jaskolska et al., 2006); 

and to estimate the influence of torque changes during relaxation from MVC of elbow 

flexors at different joint angles (Jaskolska et al., 2003). Additionally, complementary 

information was provided by collecting EMG and MMG during concentric, isometric 

and eccentric contractions at different MVC (Madeleine et al., 2001).  

As an alternative to EMG, MMG signal, representing the mechanical vibrations that 

result from muscle contraction, has shown promise for the control of powered 

prostheses (Silva et al., 2005). Researchers suggested that MMG signal had the potential 

to be an alternative control input for powered prosthesis more than two decades ago 

(Barry et al., 1984; Barry et al., 1986). Another research group recently designed and 

implemented a novel self-contained MMG-driven prosthesis for below-elbow amputees 

(Silva et al., 2005). However, despite significant advances, the signal transduction 

challenges remain. MMG signals are prone to being contaminated by low frequency 
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noise during muscle contraction. This is believed to result from the low frequency 

movement at the beginning or the end of an isometric contraction and throughout 

dynamic contractions. In addition, the high frequency components could be 

contaminated by nearby vibrating muscle fibres or other physical vibrations (Torres et 

al., 2005; Silva et al., 2003; Xie et al., 2009a; Silva and Chau, 2003). MMG could also 

be affected by many other factors, such as muscle temperature (Orizo, 1993), skinfold 

thickness (Jaskolska et al., 2004). These factors together with the challenges in sensor 

attachment and low-frequency noise elimination would affect the stability and reliability 

of the MMG signal, thus limit its applications in prosthesis control. 

2.2.3 Sonomyography  

Due to its advantages of being stable, easy to use, non-ionizing and able to record 

activities from deep muscles without cross talks from adjacent ones (Hodges et al., 

2003), ultrasonography is a widely used method to measure the morphological changes 

of skeletal muscles. It has been used to detect the changes of muscle thickness or 

displacement (Nogueira et al., 2009; Suzana et al., 2008; Matsubayashi et al., 2008; 

Bojsen-Moller et al., 2003; Springer and Gill, 2007; Mannion et al., 2008; Muller et al., 

2000; Farella et al., 2003; Sallinen et al., 2008), pennation angle (Kawakami et al., 

1993; Mahlfeld et al., 2004), cross-sectional areas (Kanehisa et al., 1995; Narici et al., 

1996; Reeves et al., 2004), and muscle fascicle length (Fukunaga et al., 2001; Ichinose 

et al., 1997; Griffiths, 1987). The ultrasound parameters were also suggested to be able 

to characterize muscular pain, injuries and disfunction (Botteron et al., 2009; Diaz et al., 

2008; Chester et al., 2008; Bernathova et al., 2008; Sikdar et al., 2008). However, most 

of these measurements were in static and quasi-static conditions. 
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Since skeletal muscle architecture is closely correlated with its function (Lieber and 

Friden, 2000), ultrasound has been used together with EMG to provide more 

comprehensive information about the muscle activities and properties (Andrade et al., 

2009; Hides et al., 1994; Ishikawa et al., 2006; Hodges et al., 2003; Ferreira et al., 2004; 

Whittaker et al., 2007). It has been reported that the relationship between EMG and the 

muscle morphological changes extracted from ultrasound is almost linear in lower range 

of forces, but not in higher range of forces for tibialis anterior (Hodges et al., 2003), 

biceps brachii (Hodges et al., 2003; Shi et al., 2008), transversus abdominis (Hodges et 

al., 2003; McMeeken et al., 2004), masseter muscle (Georgiakaki et al., 2007), etc. 

In a previous study, Zheng et al. (2006) used sonomyography (SMG) to describe the 

real time signal about the muscle thickness change detected using B-mode ultrasound 

images during its dynamic contraction. A system was developed to record and analyze 

ultrasound images, force, joint angle and surface EMG simultaneously. The system has 

been successfully used for the analysis of muscle fatigue and it was found that the 

muscle thickness increased during the fatigue process (Shi et al., 2007). The correlation 

between EMG and SMG of muscles during isometric contraction has also been 

investigated (Shi et al., 2007). It was proposed that the real-time muscle morphological 

change detected by ultrasound, i.e., SMG, would have potential for prosthetic control 

(Zheng et al., 2006), assessment of isometric muscle contraction (Shi et al., 2008, 2007; 

Zhou et al., 2008) and isotonic contraction (Xie et al., 2009). It has been demonstrated 

in these studies that SMG appears to have a close relationship with the change of the 

corresponding joint angle and most importantly it could be potentially used for the 

control of powered prosthesis.  
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However, the ultrasound imaging system employed is not suitable for the control 

purpose, as the system is too expensive and the ultrasound probe is too large for 

practical use. On the other hand, A-mode ultrasound with a more portable and compact 

transducer should be a less expensive and more practical alternative to detect muscle 

thickness changes during its contraction. A-mode ultrasound transducers may be easily 

attached to the skin during dynamic activities of muscles and can be small enough to be 

embedded in prosthetic sockets. 

2.2.4 Other Physiological Signals  

Some other alternative approaches have also been investigated to generate signals for 

control purposes, including surface electroencephalogram (EEG) (Heasman et al., 2002; 

Brunner et al., 2010; Shyu et al., 2010), collected using embedded neurochip implants 

(Nicolelis 2001; Taylor et al., 2002; Schalk et al., 2010); muscle dimensional change 

(Almstrom and Kadefors 1972; Kenney et al., 1999; Bu et al., 2008; Wininger et al., 

2008), etc. These methods each have their own advantages and shortcomings and 

researchers in this field are still working hard to achieve signals for a better prosthetic 

control, so as to reduce the cognitive effort required from users, to provide direct 

feedback when performing movement, and to increase the number of DOFs. 

Brain activity is an electrophysiological signal that can be potentially used for the 

prosthetic control. This control approach is often termed as brain-machine interface 

(BMI), human-machine interface (HMI), or neuroprothesis in literature (Nicolelis 

2001). EEG and magnetoencephalography (MEG) are two non-invasive methods to 

measure the electrical activity in brain (Kauhanen et al., 2006; Mellinger et al., 2007; 

Waldert et al., 2008). However, both methods can only provide relatively low 
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information rate, which is not sufficient to control a dexterous prosthesis (Tonet et al., 

2008). Electrocorticography (ECoG) signal is invasively collected from the exposed 

surface of the brain, and has much higher spatial resolution than EEG, because there is 

no signal attenuation from skull (Wilson et al., 2006; Pistohl et al., 2008). The cortical 

neural signal is the most direct recording of the brain activity, and has great potential to 

provide dexterous control (Mussa-Ivaldi and Miller 2003; Lebedev and Nicolelis 2006). 

Since the original demonstration that electrical activity generated by ensembles of 

cortical neurons can be employed directly to control a robotic manipulator (Chapin et 

al., 1999), researches on neuroprosthetic developments have experienced an impressive 

growth (Wessberg et al., 2000; Taylor et al., 2002; Chapin 2004; Hochberg et al., 2006). 

Various linear and nonlinear algorithms were suggested to extract movement 

information from ensembles of neurons (Schwartz et al., 2001). However, it is an 

invasive technique and there still exist many conceptual and technological obstacles 

before developing neuroprosthetic devices for clinical applications. 

Other signals that have shown potentials for prosthetic control include the dynamic 

pressure and shape changes at specific sites on amputees’ residual muscles for multi-

finger prosthesis (Abboudi et al., 1999; Curcie et al., 2001) and the myokinemetric 

(MK) signal i.e., the measurement of muscle dimensional change from a socket-located 

displacement transducer (Kenney et al., 1999). Attachment of the sensors is also a 

challenge for these signals in prosthetic control.  

2.3 Models Used to Predict Joint Angle 

2.3.1 Artificial Neural Network 
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Artificial neural network (ANN) is the most popular method used to map the 

relationship in previous studies. Sepulveda et al. (1993) first made use of a three-layer 

feed-forward neural network model with the back-propagation (BP) algorithm in a 

supervised manner to map transformations between EMG and joint angle and joint 

moment. Similar approaches with different improvements have been adopted by 

researchers for studying the relationships between EMG and muscle force (Liu et al., 

1999), arm movement (Koike and Kawato 1995), and elbow joint torque (Luh et al., 

1999). Some other ANN architectures have also been proposed for the muscle system 

investigation in neurophysiology and biomechanics, such as Levenberg–Marquardt 

algorithm (Hahn 2007), time-delayed ANN (Au and Krisch 2000), and BP through time 

algorithm (Dipietro et al., 2003). 

2.3.2 Support Vector Machine  

Support vector machine (SVM), also a machine-learning algorithm, was developed by 

Vapnik (1982). The SVM implements the structural risk minimization (SRM) principle 

rather than the empirical risk minimization principle implemented by most traditional 

ANN models. It seeks to minimize the upper bound of the generalization error rather 

than minimizing the training error (Burges 1998; Smola and Scholkopf 2004). SVM 

achieve an optimum network structure by striking a correct balance between the 

empirical error and the Vapnik Chervonenkis (VC)-confidence interval which is the 

function of the number of training samples and the capacity of a learning machine, etc 

(Vapnik 1982), resulting in better generalization performance in comparison with neural 

network models. Although SVM was developed for pattern recognition problems 

(Burges 1998), it has been applied to EMG-related neuromuscular disease diagnosis 

(Guler and Kocer 2005; Xie et al., 2003), sonography-based decision making in the 
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diagnosis of breast cancer (Huang and Chen 2005), and in many other fields (Mohandes 

et al., 2004; Shin et al., 2005; Tay and Cao 2001; Vonga et al., 2006; Yu and Liong 

2007). In most of these cases, the performance of SVM modelling either matched or 

was significantly better than that of ANN approaches. 

2.4 Summary 

This chapter has mainly reviewed the previous studies for the skeletal muscle 

assessment and prosthetic control. SMG signal refers to the ultrasound signal recording 

the skeletal muscle morphological changes in real time which differs from most of the 

previous studies using static or quasi-static ultrasound parameters. In comparison with 

EMG and MMG, SMG has the advantages of being stable, and able to record activities 

from deep muscles without cross talks from adjacent ones. In addition, SMG is 

inexpensive and therefore relatively easy accessible when compared with other imaging 

methods, such as CT and MRI. Furthermore, 1D SMG provides a more portable, 

compact, inexpensive, and practical solution to detect muscle thickness changes than 2D 

SMG. A-mode ultrasound transducers can be easily attached to the skin during dynamic 

activities of muscles and can be sufficiently small to potentially be embedded in 

prosthetic sockets. Therefore, 1D SMG signal has great potential to be used in skeletal 

muscle assessment and prosthetic control. 

In previous studies, the relationship between EMG and force (or the related joint angle) 

has been systematically investigated and it was found that the relationship is nonlinear 

and affected by many factors, such as the length of the muscle (Onishi et al., 1999) and 

the type of muscle studied. On the other hand, the muscle thickness change detected 

using B-mode ultrasound images during its contraction has been proposed to control 
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prosthesis (Zheng et al., 2006) and used for the analysis of muscle fatigue (Shi et al., 

2007). However, no studies have been reported to investigate the relationship between 

1D SMG and the external physiological signals, such as force, and joint angle. 

EMG based force/joint angle predictions have been mostly made by ANN on animal or 

human models (Liu et al., 1999, Mobasser et al., 2005, Hou et al., 2007). ANN has been 

widely used to map the nonlinear relationships between EMG, muscle force, and torque. 

Another machine-learning algorithm, SVM, has also been used for the diagnosis of 

EMG-related neuromuscular diseases (Güler and Kocer 2005, Xie et al 2003) and for 

pattern recognition (Lucas et al 2008, Yan et al 2008). Some other ANN architectures 

have also been proposed for the muscle system investigation in neurophysiology and 

biomechanics, such as Levenberg–Marquardt algorithm (Hahn 2007), time-delayed 

ANN (Au and Kirsch 2000), and BP through time algorithm (Dipietro et al., 2003). In 

contrast to the tremendous amount of research on torque predictions using EMG, there 

are fewer similar studies using SMG, in spite of its great potentials in representing 

muscle outputs. 

An effective prosthesis should be intuitive and simple, requiring little effort to control. 

Different muscle activity signals, such as EMG and SMG, may have quite distinct 

relationships to the muscle activities. Therefore, it is possible to suggest that, for 

different signals, the different relationships between the neural activity and measured 

signal may have an effect on both the control accuracy and the degree of attention 

required. Few studies have been reported to comprehensively investigate the differences 

between two muscle signals for control purposes (Canderle et al., 2004). Therefore, in 

this thesis, we attempted to compare the performances of 1-D SMG signal and surface 

EMG signal in terms of accuracy and cognitive requirements. We hypothesized that 
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using the 1-D SMG signal measured from the extensor carpi radialis muscle would 

result in a better performance on both tracking guided patterns of wrist extension and 

series of discrete tracking tasks when compared with surface EMG measured from the 

same muscle, based on our findings in earlier studies (Zheng, et al., 2006; Shi et al., 

2007; 2008). Furthermore, we hypothesized that using SMG signals may require less 

attentional effort than using EMG signals when performing the tracking tasks.  

Previous studies demonstrated that SMG signal could be potentially used for the control 

of powered prosthesis. However, the ultrasound imaging system is not suitable for the 

purpose of control, as the system is too expensive and the ultrasound probe is too large 

for practical use. Recently, a system was developed to collect and analyze A-mode 

ultrasound, force, joint angle, and surface EMG (sEMG) simultaneously (Huang et al. 

2007). Therefore, we attempted to investigate the potential of using 1-D SMG for 

controlling prosthetic hand with one DOF. The SMG signal extracted from A-mode 

ultrasound signal was used to control the powered prosthesis in real-time.  
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CHAPTER 3 METHODS 

This chapter systematically introduces the methodology of this study including the 

skeletal muscle measurement system, experimental protocols and data statistical 

analysis. The main experiments are listed as follows. 

1. Monitoring of forearm muscles using 1D SMG; 

2. 1D SMG based wrist angle prediction; 

3. Performance of 1D SMG and surface EMG in tracking guided patterns of wrist 

extension; 

4. Comparison of 1D SMG and surface EMG in visuomotor “E” cancellation test; 

5. Control prosthesis by 1D SMG and surface EMG; 

6. Case study on amputee. 

3.1 Skeletal Muscle Measurement System  

3.1.1 System Description 

As shown in Fig. 3. 1, an ultrasound pulser/receiver (model 5052 UA, GE Panametrics, 

Inc. West Chester, OH, USA) was used to drive a 10 MHz single element ultrasound 

transducer (model V129, GE Panametrics, Inc., West Chester, OH, USA), and amplify 

the received signals. The A-mode ultrasound signal was digitized by a high speed A/D 

converter card using a sampling rate of 100 MHz (Gage CS82G, Gage Applied 

Technologies, Inc, Canada). The angle signal during the wrist extension was measured 

by an electronic goniometer (XM110, Penny & Giles Biometrics, Inc. UK). The surface 

EMG signal was captured from the EMG bipolar Ag-AgCl electrodes (Noraxon U.S.A. 

Inc.,USA) and pre-amplified with a gain of 100 using a circuit located near the 

electrodes. The signal was further amplified with another factor of 10 by the custom-
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designed EMG amplifier and filtered by a 10-400 Hz band-pass analog filter within the 

EMG amplifier. The surface EMG and wrist angle signals were digitized by a 12 bits 

data acquisition card (NI-DAQ 6024E, National Instruments Corporation, Austin, TX, 

USA) with a sampling rate of 4 KHz. The surface EMG sampling was synchronized 

with the collection of ultrasound signals. Each frame of A-mode ultrasound signal 

contained 8K reflected ultrasound echo data, equivalent to a depth of approximately 6 

cm, accompanied by an EMG epoch of 64 ms and a value of wrist angle. The frame rate 

of A-mode ultrasound was approximately 17Hz, which was also applied to the data rates 

of SMG. The A-mode ultrasound signal was saved frame by frame along with the 

surface EMG and wrist angle signals for subsequent analysis in a PC with 2.8GHz 

Pentium IV microprocessor and 512 MB RAM. 

 

Fig. 3. 1 The diagram of data collection system. 

The A-mode ultrasound, surface EMG and wrist angle signals were collected, stored 

and analyzed by the software for ultrasound measurement of motion and elasticity 

(UMME, http://www.sonomyography.org) developed using Visual C++. The time delay 

between different data collection systems was calibrated using a method similar to that 

described by Huang et al., (2005, 2007). As the transducer moved cyclically up and 
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down in a water tank, the two signals representing A-mode ultrasound, and simulated 

EMG respectively were collected and stored. The time delay between the data sets was 

calculated using a cross-correlation algorithm. The details can be found in our earlier 

study (Huang et al., 2007).  

3.2 Skeletal Muscle Evaluation by 1D SMG 

3.2.1 Subjects 

Nine healthy subjects (7 male and 2 female) aged from 24 to 35 years were recruited in 

the experiment. The human subject ethical approval was obtained from the ethics 

committee of the Hong Kong Polytechnic University and informed consents were 

obtained from all subjects prior to the experiment. All the participants were right-hand-

dominant without any known neuromuscular disorders. 

3.2.2 Monitoring of Forearm Muscles Using 1D SMG 

3.2.2.1 Measurement of Wrist Angle, 1D SMG and Surface EMG 

The 10 MHz single element ultrasound transducer (diameter=5 mm) was selected 

because this frequency could satisfy the required resolution and the scanning depth in 

this study. It was inserted into a custom-made holder (diameter 26 mm) which was 

made of silicone gel in order to attach the transducer to the skin. Before the experiment, 

a portable B- mode ultrasound scanner (180 Plus, Sonosite Inc., Washington, USA) was 

used to identify where the extensor carpi radialis was and the subject was asked to 

perform several wrist extensions, through which the most prominent bulge of the 
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extensor carpi radialis belly was found. The single element ultrasound transducer was 

then positioned on the skin of the identified prominent bulge of the extensor carpi 

radialis belly and fixed by double-sided adhesive tape to measure the muscle’s thickness 

change (Fig. 3. 2). Ultrasound gel was filled between the transducer and the skin to aid 

acoustic coupling. The EMG bipolar Ag-AgCl electrodes were also attached to the skin 

surface of the extensor carpi radialis belly near the ultrasound transducer and with a 

distance of approximately 1 cm to avoid the potential effects from the ultrasound 

coupling gel (DeLuca, 1997). The distance between the two electrodes was 20 mm and 

their orientation was parallel to the extensor carpi radialis muscle fibres. An additional 

electrode for providing the reference electrical signal was placed near the head of ulna. 

The electronic goniometer was placed at the middle of posterior hand to measure the 

wrist angle during wrist extension. 
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Fig. 3. 2 The Placement of the 1D SMG transducer, surface EMG electrodes and 

electronic goniometer on the forearm. Ultrasound coupling gel was applied between the 

ultrasound transducer and skin. 

The right forearms of the subjects were chosen for testing, which were the dominant 

ones for all subjects. The subject was seated on a comfortable chair with his/her forearm 

resting on the table. After skin preparation with alcohol swabs and several warm-up 

contractions, the subject was asked to perform wrist extension guided by a metronome 

(MT-40, Wittner, Germany) at three extension rates of 15, 22.5, 30 cycles/min, 

respectively. For each extension rate, three repeated tests were performed with a rest of 

3 minutes between two adjacent trials and there were three wrist extension cycles in 

each trial. During the experiment, the subjects were given continuous encouragement to 

try their best to reach their largest wrist extension angle and most of the subjects could 

achieve the largest wrist extension angle of 80 to 90 degrees.  
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3.2.2.2 Cross-Correlation Algorithm to Calculate the Muscle Thickness Change (1D 

SMG) 

A cross-correlation algorithm was employed to track the displacements of upper and 

lower boundaries of extensor carpi radialis muscle during the wrist extension. The 

muscle deformation signal, i.e. SMG, was extracted from the A-mode ultrasound using 

this algorithm (Fig. 3. 3). The equation used to calculate the normalized one-

dimensional cross-correlation is as follow: 

      
                                                       (3-1) 
  
 
 
 

where X and Y  are the means ( )x i of ( )y i  and, respectively. It requires a reference 

signal from an initial frame and would search for the signal most similar to the reference 

signal for estimating the object position in the updated frame.  
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Fig. 3. 3 The demonstration of using the cross correlation algorithm to find the position 

change of ultrasound echoes  due to the thickness changes of skeletal muscle during 

movement (a) The signal within the red window (x(i)) was chosen as the reference 

signal at the fist frame. (b) In the second frame, the red window was searching 500 data 

points right and left (search range =500) from the position in the first frame and 

calculating a cross-correlation value once moving a data point. Finally, the echo with 

the maximal cross correlation value was selected and the corresponding position was 

regarded as the current position of the selected signal y(i). 

In this study, the A-mode ultrasound echoes reflected from the fat-muscle and muscle-

bone interfaces were our interested signals. When the muscle was contracting, its 

dimensional changes induced the variations of distance between these two interfaces, 
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which in turn caused the A-mode ultrasound echoes to shift for a certain distance. The 

A-mode ultrasound signals were selected by two tracking windows and the correlation 

tracking algorithm was implemented to track the movement of the selected echoes 

frame by frame automatically. The width of the tracking window was selected manually 

to include enough features of the echo for a reliable tracking. On the other hand, the 

tracking window should not be too large, for example including the neighbouring 

echoes, thus increasing the calculation time, which may affect the real-time control.  

This manual selection of the tracking window slightly affected the value of the muscle 

deformation (with a high intraclass correlation coefficient (ICC) value) and its effect on 

the percentage change could be negligible. However, the automatic selection should be 

utilized in the real clinic application to reduce this effect caused by manual operation. 

The distance between the fat-muscle and muscle-bone interfaces was calculated for each 

frame. The percentage deformation of the muscle was defined as  

%100
)(

0

0 



d

dd
D          (3- 2) 

Where d0 is the initial distance between the two echoes and d  is the distance when the 

muscle was contracting. 

Since the distance between the fat-muscle interface and the ultrasound transducer, i.e. 

the thickness of the fat layer, did not change during the movement, the displacement of 

the echo from muscle-bone interface was calculated and regarded as the muscle 

thickness change. The correlation based method for tracking displacements of upper and 

lower boundaries of extensor carpi radialis muscle during wrist extension could be 

affected by decorrelation resulting from tissue motion in all three spatial directions. 

Three-dimensional ultrasound scanning will definitely increase the tracking accuracy. 

However, the complexity and expense of the system will be accordingly increased. In 
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the current experiment situation, data collected by the one dimensional ultrasound 

systems was with a high intraclass correlation coefficient (ICC) and therefore could be 

used for control purpose. Further study should be performed to reduce the effect caused 

by tissue motion in three spatial directions. 

3.2.2.3 Statistical Analysis 

To investigate the reliability of using A-mode ultrasound signal to describe the 

movement of wrist, the relationship between 1D SMG and wrist angle signal was 

studied by a linear regression. One-way ANOVA was used to analyze the angle-

deformation ratios among trials with different extension rates. Intraclass correlation 

coefficient (ICC) was calculated using SPSS (SPSS Inc., Chicago, IL, USA) for the 

repeated trials under each rate. Statistical significance was set at the 5% probability 

level. 

3.2.3 1D SMG Based Wrist Angle Prediction 

3.2.3.1 Wrist Angle Prediction Models  

Artificial neural networks 

BP network is a feed-forward network with an error BP algorithm, one of the simplest 

ANN implementations. It has an input layer of source nodes, one or more layers of 

hidden neurons and an output layer. The BP training algorithm involves two phases. 

During the forward phase, the neural nodes’ output is specified, and the input signal is 

propagated through the network layer by layer. This phase finishes with the 
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computation of an error signal between the desired response (measured muscle 

activation) and the actual output (predicted muscle activation) produced by the network. 

During the backward phase, the error signal is propagated through the network in the 

backward direction. It is during this phase that adjustments are applied to the free 

parameters of the network so as to minimize the error in a statistical sense. In spite of 

many applications of BP ANN (Hornik et al., 1989), it suffers from a main drawback of 

low convergence speed (Haykin 1999). For detailed tutorials on the mathematical 

descriptions, the readers can refer to previous publications (Hornik et al., 1989; Haykin 

1999; Kasabov 1996).  

Radial basis function (RBF) network is a member of the feed-forward neural network, 

which has both unsupervised and supervised training phases (Kasabov 1996; Powell 

1992). It was developed aiming at the defects of BP network with an improved 

convergence rate and better initial weights determination (Haykin 1999). In the 

unsupervised phase, the input data are clustered and cluster details are sent to the hidden 

neurons, where RBF of the inputs is computed by making use of the center and the 

standard deviation of the clusters. The learning between hidden layer and output layer is 

of supervised learning type where ordinary least squares technique is used. As a 

consequence, the weights of the connections between the kernel layer (also called 

hidden layer) and the output layer are determined. Thus, it comprises a hybrid of 

unsupervised and supervised learning. 

Support vector machine 

Modeling by SVM has been effectively and widely used for torque and angle 

predictions (Song et al., 2006, Shi et al., 2007, Xie et al., 2009) and pattern recognition 

(Cui et al., 2007, Maaoui et al., 2008). In general, an SVM uses a training data set to 
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build a model between input and output and then uses test data to predict a target. 

Readers can refer to literature for detailed descriptions of SVM (Vapnik 1982, Burges 

1998). Here we give a simple description of the SVM used in this thesis. For example, 

we used a labeled training sample: 

,{( )}N
i i iS x y           (3- 3) 

Where ix is the input data, iy is the output data, and N is the number of the total training 

data points. 

The SVM can reach a better generalized performance, compared with ANN models, and 

is based on results from statistical learning theory proposed by Vapnik (1995). The 

SVM transfers input data ix  into a high dimensional feature space by contracting a 

nonlinear mapping: 

( ) ( )Ty x w x b           (3- 4) 

where  ( )x  is a nonlinear function, and w and b are the weight vector and bias term, 

respectively. 

The following optimization problem is considered: 

2

1

1 1

2 2
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T

k
k

J w w e


            (3- 5) 

where  is the regularization parameter for determining the trade-off between 

minimizing training errors and minimizing model complexity, and  ke is the random 

error. 

With these constraints： 

( )T
i i iy w x b e            (3- 6) 

The Lagrangian equation is defined as follows: 
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            (3- 7) 

Where k is a multiplier. 

Kernels have the form: 

( , ) ( ) ( )k j k jK x y x y           (3- 8) 

Then, the least-squares SVM (LS-SVM) is as follows: 
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          (3- 9) 

where   and b are the solutions of (3-7) . 

The kernel function can be chosen by Mercer’s theory (Smola and Scholkopf, 2004). 

We used a Gaussian kernel as the kernel function in this study. 

3.2.3.2 Data Analysis 

The LS-SVM, BP and RBF ANN models of each subject were designed and 

implemented using Matlab software (Version 6.5, MathWorks, Inc., MA, USA). The 

SMG features and the actual wrist angle measured by the goniometer were employed to 

construct input–output pairs to train the models. The dimension of input vector was five, 

which was formed by the current and past four SMG values. The dimension of input 

vector was five, which was formed by the current and past four SMG values. If the 

vector was too large, more training time will be required, if the vector was too small, 

their will be not enough features to train the model. A similar feature vector constitution 

method had been used in several previous EMG-based kinematic models (Liu et al., 

1999; Suryanarayanan et al., 1995). Data for each subject obtained at the extension rate 

of 22.5 cycles/min was selected to train the models to determine the relations between 

the SMG and wrist angles. The data from the remaining trials with extension rates of 15 
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cycles/min and 30 cycles/min were used for cross-validation tests. 

The BP network used in this study had 20 nodes in hidden layer and one node in the 

output layer. The maximal training epoch was 10,000. The learning rate was set to be 

0.1 and the momentum term was 0.7. The hidden nodes used the sigmoid transfer 

function and the output node used the linear transfer function. The RBF network 

architecture used in this study was a single hidden layer with Gaussian RBF. The 

maximal number of hidden unit was set based on the number of the training sample and 

the spread parameter of RBF, which determined the smoothness of the function 

approximation. It was selected to be 40 in this study. 

Evaluation of the wrist angle predictions from the SMG signals was made by 

calculating the root mean square difference (RMSD) and the correlation coefficients 

(CC) of the measured wrist angles and estimated values. The value of RMSD and CC 

was obtained as follows: 

' 2
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

                 (3-10) 

where ( )i  is the measured wrist angle, and the '( )i  is the estimated wrist angle.  
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where X(n) is the actual wrist angle recorded during test. Y(n) is the wrist angle 

predicted. ( )X n and ( )Y n  are the means of X(n) and Y(n), respectively.  
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The prediction result was assessed by both RMSD and CC. Predictions were considered 

excellent if the coefficient of cross-correlation was greater than 0.9 and the RMSD error 

was smaller than 15% (Liu et al., 1999). Two-way repeated measure ANOVA with 

Least Significant Difference (LSD) pair-wise comparisons were used to demonstrate the 

effects of different movement rates [15 cycles/min vs 30 cycles/min], models [LS-SVM 

vs BP ANN vs RBF ANN] on the CC and RMSD. All the data were analyzed using 

SPSS (Version 15.0, SPSS Inc. Chicago, IL, USA) and statistical significance was set at 

5% probability level. 

3.3 Comparisons of 1D SMG and Surface EMG for Prosthetic Control 

3.3.1 Performances of 1D SMG and Surface EMG in Tracking Guided Patterns of Wrist 

Extension  

3.3.1.1 Subjects  

Sixteen healthy adults, including eight males (mean±SD age= 26.3±3.4 years; body 

weight = 70.3±11.9 kg; height =172.9 ± 8.5 cm) and eight females (mean±SD age =23.5 

±1.2 years; body weight = 50.4±4.1 kg; height = 160.3±1.7 cm), volunteered to 

participate in this study. 

3.3.1.2 Experimental Protocol 

Before the experiment, all the subjects were trained for two or three trials to make sure 

they were familiar with the experimental protocol. None of subjects had been trained 

before. Both 1D SMG and surface EMG signals were tested for their accuracy in 

following the displayed waveform patterns. The subject was seated comfortably on an 
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adjustable chair with his/her trunk fixed by a strap onto the back of the chair to prevent 

posture change during the test and the right forearm resting on the table with pronation. 

The elbow was flexed at approximately 140 degree between the upper arm and forearm. 

The angle between the upper arm and trunk was approximately 30 degrees. The healthy 

subject was instructed to perform wrist extension under the guidance of displayed 

sinusoidal (Fig. 3. 4a), square (Fig. 3. 4d) and triangular waveforms (Fig. 3. 4e) 

respectively. The order of the experiments was randomly selected for each subject by 

lucky draw. For the SMG test, the subject was required to perform several wrist 

extensions before each experiment in order to determine the amplitude of the muscle 

deformation signal extracted from A-mode ultrasound (i.e. 1D SMG), and the 

amplitudes of the guiding waveforms were adjusted based on the obtained muscle 

deformation range. During the experiments, the subjects were encouraged to try their 

best to produce real-time muscle deformation signal, i.e. SMG, the same as the 

waveform being displayed on the screen by adjusting the range of their wrist movement 

in response to the visual feedback from the guiding waveforms. If the muscle 

deformation signal generated did not follow the guiding waveform well, the subjects 

could adjust the strength of their muscles in order to match the two waveforms better. 

The wrist extension rates were set to be 20, 30, 50 cycles/min for each guiding 

waveform. Therefore, each subject totally performed nine tasks of wrist extension for 

the three different movement patterns (sinusoidal, square and triangular waveforms) for 

SMG tests (Fig. 3. 4).  
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Fig. 3. 4 The software interface used to simultaneously collect 1D SMG and, surface 

EMG signals; (a) The sinusoidal waveform with a rate of 20 cycles/min was used to 

guide the wrist extension movement. The subject used 1D SMG signal to track the 

sinusoidal pattern; (b) Surface EMG was also collected for reference; (c) The SMG 

signal was measured by detecting the distance change between the A-mode ultrasound 

echoes reflected from the fat-muscle and muscle-bone interfaces, which were selected 

by the two tracking windows. A cross-correlation algorithm was employed to track the 

movements of the echoes during the wrist extension. The SMG signal was calculated 

using the change of the time interval between the echoes and displayed along with the 

guiding waveform for tracking; (d) 1D SMG signal was tracking the square waveform 

at a rate of 30 cycles/min; (e) 1D SMG signal was tracking the triangular waveform at a 

rate of 50 cycles/min.  
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The subjects were also instructed to perform another set of wrist extension tasks, using 

the RMS of their surface EMG signals to follow the reference waveforms. Similar 

testing protocol was adopted as that in the SMG test. To make the results comparable, 

during the EMG test, the A-mode ultrasound signals were collected and analyzed in 

real-time but the SMG signal was not displayed, as shown in Fig. 3. 5. The subjects 

could adjust the range of wrist movement according to the real-time display of their 

EMG RMS signals to better fit the reference signal. Totally nine tasks of wrist extension 

for surface EMG test under the same three wrist extension rates (20, 30, 50 cycles/min) 

for the three different waveforms were performed by each subject. Fig. 3. 5 shows the 

interface of the software to collect the data of EMG RMS and the three types of guiding 

waveforms. 
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Fig. 3. 5 The software interface used to collect the surface EMG and A-mode ultrasound 

signals. (a) Surface EMG signal was collected; (b) The sinusoidal waveform with a rate 

of 20 cycles/min was used to guide the wrist extension movement; SEMG RMS was 

calculated to track the sinusoidal pattern; (c) A-mode ultrasound signal was also 

collected for reference; (d) Surface EMG RMS was tracking the square waveform at a 

rate of 30 cycles/min; (e) Surface EMG RMS was tracking the triangular waveform at a 

rate of 50 cycles/min. 
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3.3.1.3 RMS Tracking Error 

The SMG and EMG RMS data were respectively normalised by expressing measures as 

a percentage of the largest SMG and EMG RMS signals detected any time during the 

testing procedure. The RMS tracking error between SMG/EMG RMS and the 

corresponding guiding waveforms were calculated separately according to the following 

equation: 

RMS tracking error = 2
1 2

1

1
( ( ) ( ))

N

n

Sig n Sig n
N 

                         (3-12) 

where 1 2( ), ( )Sig n Sig n  are signals with N points of values. 

The performances of SMG and EMG RMS to follow the three guiding waveform 

patterns were compared using paired t-test. One-Way ANOVA was also used to 

determine whether there were any differences in the performances of the SMG signals 

under the three different movement rates. All the data were calculated using Minitab 

(Minitab Inc., Pennsylvania, USA). Statistical significance was set at the 5% probability 

level. 

3.3.2 Comparison of 1D SMG and Surface EMG in Visuomotor “E” Cancellation Test  

3.3.2.1 Subjects  

Ten healthy adults, five males and five females (age: 29.5±5.6 (mean±SD) years; 

body weight: 60.6±16.6 kg; height: 166.6 ± 8.0 cm), volunteered to participate in this 

study. 
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3.3.2.2 SMG-EMG Compound Sensor 

As it is described earlier, an ultrasound pulser/receiver (model 5052 UA, GE 

Panametrics, Inc. West Chester, OH, USA) was used to drive a 10 MHz single element 

ultrasound transducer (model 10C6SJ, Shantou Institute of Ultrasonic Instruments Ltd., 

Shantou, Guangdong, China), and to amplify the received signals. The A-mode 

ultrasound signal was digitized by a high speed A/D converter card with a sampling rate 

of 100 MHz (Gage CS82G, Gage Applied Technologies, Inc, Canada). The surface 

EMG signal, captured from the EMG bipolar Ag-AgCl electrodes (Noraxon U.S.A. 

Inc.,USA), was amplified by a custom-designed EMG amplifier with a gain of 2000 and 

filtered by a 10-400 Hz band-pass analog filter within the amplifier.  

The ultrasound transducer with a diameter of 7.0 mm was firmly fixed by silicone gel 

onto a 5.8 cm long custom-designed printed circuit board. The EMG electrodes were 

attached, one to each end of the circuit board. The ultrasound-EMG compound sensor 

was positioned on the skin over the belly of extensor carpi radialis (Fig. 3. 6). Before 

the attachment of the sensors, hair in the affected area was shaved using a razor and 

alcohol was applied to clean the skin. Ultrasound gel was imposed between the A-mode 

transducer and skin and an additional reference EMG electrode was placed near the 

head of ulna.  

An electrical goniometer (model XM110, Penny & Giles Biometrics, Ltd., Gwent, 

United Kingdom) was employed to collect the wrist angle signal (Fig. 3. 6). The 

isometric force was detected by a custom-made force sensor with a strain gauge (model 

KFG-6-120-C1-11, Kyowa Electronic Instruments Co. Ltd., Japan) on one of its arms 

(Fig. 3. 7). EMG, angle and force signals were digitized with a 12-bit data acquisition 
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card (NI-DAQ 6024E, National Instruments Corporation, Austin, TX, USA) with a 

sampling rate of 1 KHz in a PC with two 2.33 GHz Intel quad-core processors and 3.25 

GB RAM.  

 

Fig. 3. 6 (a) The ultrasound-EMG compound sensor (1D ultrasound transducer, SEMG 

electrodes) placed on the extensor carpi radialis muscle of the subject during the wrist 

extension. A goniometer was placed across the wrist joint; (b) The length between the 

centres of the EMG sensors was 4.3 cm; (c) The diameter of A-mode ultrasound sensor 

was 0.7cm.  
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Fig. 3. 7 The ultrasound-EMG compound sensor placed on the belly of the extensor 

carpi radialis muscle when the subject was performing the force control task. The force 

of the hand was detected using a custom-made force sensor. 

3.3.2.3 Protocol in the Visuomotor “E” Cancellation Test 

A similar protocol to that reported by Canderle (2004) was adopted. The protocol 

comprised a series of one-dimensional visuomotor cancellation tests presented on a 

computer screen. The set of tests contained two elements, a study of motor control alone 

and a dual-task study, in which a cognitive load was also explicitly imposed. The 

cognitive load task was based on the Elevator Counting subset of the Test of Everyday 

Attention (TEA) (Robertson et al., 1994). Therefore, each subject performed a total of 

12 trials, 6 with and 6 without the concurrent TEA test. The 6 trials included using 2 

reference signals and SMG and EMG signal under both wrist extension and isometric 

contraction tests:  

- isometric force  

- wrist extension  
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- SMG (during wrist extension) 

- SMG (during isometric contraction) 

- EMG (during wrist extension) 

- EMG (during isometric contraction) 

 The order of these tasks was randomized prior to the start of each testing session by 

lucky draw.  

In each test, the subject was asked to either perform a wrist extension movement (Fig. 3. 

6) or, by using the thumb and fingers in opposition, to apply an isometric, compressive 

force to a purpose-built force transducer (Fig. 3. 7). In addition to measuring both the 

wrist movement and applied force directly, muscle activities (either EMG or SMG) 

during both wrist extension and force application were also collected via a compound 

EMG-ultrasound sensor located over the easily-accessible extensor carpi radialis 

muscle. Performances on the visuomotor cancellation tests when using force (isometric 

contraction) or wrist angle (wrist extension) were considered to be “reference” data, 

against which subjects’ performance when using each of the other 2 signals (SMG and 

EMG) as control inputs were judged. 

Each test was divided into three parts, including calibration, practice and test (Fig. 3. 8). 

During the calibration, the system would record the respective maximal and minimal 

values of the relevant signals (force/angle and EMG or SMG) when the subject was 

performing either the isometric contraction or wrist extension. As demonstrated in Fig. 

3. 9, the minimal value corresponded to the lowest icon (“NEXT”) while 90% of 

maximum corresponded to the highest icon (“E”). The choice of 90% of maximal value 

was to reduce the effort required to reach the top icon, thereby avoiding muscle fatigue 
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during the 90 seconds test. After calibration, the subject could go to the practice part to 

examine the results of the calibration. If he/she was satisfied with the results of the 

calibration, the testing would begin; otherwise calibration would be repeated to reset the 

maximal and minimal values.  

 

Fig. 3. 8 The diagram of the experimental protocol. Each motor control test was divided 

into calibration, practice and test. During the calibration, the system recorded the 

maximal and minimal values of each signal during movements. Then, the subject could 

go to practice stage to exam the result of calibration. If satisfied with the calibration 

result, they could begin the test; otherwise, they had to go back to calibration part to 

reset the maximal and minimal values. There were repeated trials in a test session of 90s.  
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In both the practice and test sessions, the wrist angle, force, EMG and SMG collected 

from the extensor carpi radialis muscle were separately used to control the cursor 

moving on a series of five letters displayed on the computer screen (Fig. 3. 9). The task 

was to control the cursor to cancel the letter “E”, whenever it appeared on the screen. 

For example, for the test of SMG control during wrist extension, the vertical position of 

the cursor was determined by a linear scaling of the SMG signal generated during the 

wrist extension.  Upon appearance of a letter “E”, the subject was asked to move the 

cursor to the position of this letter and, once the position was reached, a button held in 

the other hand of the subject was pressed. As a result of the combination of these 

actions, the letter “E” was cancelled from the screen. After all of the “E”s was 

cancelled, the cursor was moved to “NEXT” as illustrated in Fig. 3. 9 and a new set of 

letters appeared on the computer screen. The participants were asked to correctly cancel 

the letter “E” as many times as possible within a session of 90 seconds. At any time 

during the test, the subject could select “NEXT”, thereby “skipping” any remaining 

target letters and moving on to another set of letters. During each test, the number of 

“E”s correctly cancelled by the subject and the number of letters wrongly cancelled or 

skipped were recorded automatically by the software. 
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Fig. 3. 9 (a) The software interface used to collect 1D SMG signal. The muscle 

deformation signal (i.e. SMG) extracted from A-mode ultrasound was displayed for 

controlling the cursor to cancel the letters. The muscle deformation was measured 

according to the echo movement reflected from the muscle-bone interface. Window was 

selected to include the ultrasound echoes. (b) The EMG signal collected from the 

extensor carpi radialis muscle and EMG RMS was used to control the cursor. (c) The 

force collected from force sensor or angle detected by electrical goniometer was used to 

control the cursor.  

The set of tests were also repeated while the subjects were asked to concurrently focus 

on a secondary, sustained attention task, to allow comparison between signals in terms 

of their cognitive demands. In this test, the subject was presented with a quasi-random 
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number of sound “bleeps”. The time interval between two neighboring bleeps varied in 

the range of 3-6 s and was automatically set by the software. The subjects were required 

to perform the TEA test and letter cancellation test at the same time and the sets of 

bleeps occurred asynchronously to the letter cancellation task. At the end of the 

sequence of bleeps, the subject was asked to respond to a question asking how many 

“bleeps” were given in the previous sequence, the researcher recorded the number, and 

the next series of bleeps was initiated. The cognitive requirement of each signal was 

investigated through comparing the results between the dual task and single task 

(cancellation task alone). The decrement between force/angle signals (the reference) and 

SMG/EMG in the number of “bleeps” estimated was compared between SMG and 

EMG signal to demonstrate the different cognitive requirements of the two signals. A 

greater decrement in counting bleeps was indicative of an increased demand on 

cognitive resources. 

3.3.2.4 Selection of Sampling Rate and Number of Epoch of EMG 

Since the sampling rate of 1D SMG for control was 17 Hz, limited by the current 

system configuration, we used 17 Hz data rate for EMG RMS signal for comparison. 

The RMS value of the EMG signal was calculated from data points collected over a 

short time window. A pilot study with 10 healthy subjects was carried out to investigate 

the effects of different window sizes and sampling rates on the performance in the letter 

cancellation task using EMG RMS. The effect on the number of letters correctly 

cancelled was investigated under the sampling rates of 10, 20, 30, 40, 50Hz. The result 

of the pilot study showed that there was no significant difference in the number of 

letters correctly cancelled among various sampling rates (one-way ANOVA, p=0.966). 

In addition, the performance based on a 0.2 sec epoch was compared with other epochs. 
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According to the oral report of the subjects, they could feel an obvious delay when 

controlling the cursor position using the epochs higher than 0.2 sec to calculate RMS 

values, such as 0.25 sec and 0.3 sec. On the other hand, it was observed that the number 

of letters correctly cancelled was significantly higher when using 0.2 sec epoch, 

compared to 0.1 sec and  0.15 sec epochs, to calculate the EMG RMS (one-way 

ANOVA, p=0.016). Therefore, in our study the 0.2 sec epoch was used to calculate 

RMS values, which were sampled at 17Hz.  

3.3.2.5 Data Analysis 

Three-way repeated measure ANOVAs with Least Significant Difference (LSD) pair-

wise comparisons were used to demonstrate the effects of different signals [Force / 

Angle vs SMG vs EMG], movement patterns [isometric control vs wrist extension] and 

types of task [single vs dual] on the number of “E” correctly and wrongly cancelled, i.e., 

either missed or incorrectly selected letters. The percentage differences of performance 

were also reported. Linear correlations were used to study the relationship between the 

performances under single and dual tasks for using SMG and EMG signals.  All the data 

were analyzed using SPSS (Version 15.0, SPSS Inc. Chicago, IL, USA) and statistical 

significance was set at 5% probability level. 

3.3.3 Prosthesis Control by 1D SMG and Surface EMG 

3.3.3.1 Subjects  

Nine healthy adults, seven males and two females (age: 31±4 years; weight: 67.9±16.7 

kg; height: 170.1 ± 9.4 cm), volunteered to participate in the study of prosthetic control 

by SMG and EMG. 
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3.3.3.2 Experimental Setup 

Hardware Setup  

An ultrasound pulser/receiver (model 5052 UA, GE Panametrics, Inc. West Chester, 

OH, USA) was used to drive a 10 MHz single element ultrasound transducer (model 

V129, GE Panametrics, Inc., West Chester, OH, USA), and to amplify the received 

signals. The A-mode ultrasound signal was digitized by a high speed A/D converter 

card (Gage CS82G, Gage Applied Technologies, Inc, Canada) with a sampling rate of 

100 MHz. A prosthetic hand (MH11, Shanghai Kesheng Prostheses Co., Shanghai, 

China) was controlled to open and close by the analog pulse outputted from an NI DAQ 

card (NI-DAQ 6024E, National Instruments Corporation, Austin, TX, USA). The 

prosthetic opening-closure degree, defined by the angle between the middle finger and 

the back of the hand, was measured by an electronic goniometer (model XM110, Penny 

& Giles Biometrics, Ltd; Gwent, United Kingdom) attached on the back of the 

prosthesis (Fig. 3. 10). The collected angle signal was also digitized by the NI DAQ 

card using the same sampling rate as the frame rate of A-mode ultrasound (17 Hz). The 

surface EMG signal, captured from the EMG bipolar Ag-AgCl electrodes (Noraxon 

U.S.A. Inc., USA), was amplified by a custom-designed EMG amplifier with a gain of 

1000 and filtered by a 10-400 Hz band-pass analog filter within the amplifier, and then 

digitized by the same NI DAQ card with a sampling frequency of 1 KHz. 
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Fig. 3. 10 An illustration of the SMG prosthesis control experiment. 

Software Design 

The signal acquisition, synchronization, analysis, display, as well as prosthetic control 

tasks were achieved using custom-designed software UMME developed in Microsoft 

VC++6.0 platform. Fig. 3. 11 shows the interface of the software developed to capture 

and process the ultrasound signals. A-mode ultrasound signal was captured frame by 

frame according to the trigger output of the pulser/receiver. The A-mode ultrasound 
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echoes reflected from the muscle-bone interfaces were selected by the tracking windows 

in the first frame. When muscle contracted, the dimensional change induced variations 

in the distance between the interface of fat-muscle and that of muscle-bone, causing the 

A-mode ultrasound echo to shift by a certain distance-dependent time-of-flight. To 

estimate the echo shift in the subsequent frames, we utilized the cross-correlation 

algorithm to search the segment of signal most similar to the reference echo signal in 

each frame.  

SMG signal was then applied to open and close the prosthesis. The amplitude of the 

SMG signal was linearly correlated with the opening position of the prosthesis. Once an 

instantaneous SMG value was extracted from muscle contraction in wrist extension, 

pulse commands were sent to the prosthetic hand through a DAQ card to drive the hand 

to the corresponding opening position. The metacarpophalangeal (MCP) joint angle of 

the middle finger of the prosthesis was measured by a goniometer to evaluate the 

opening position of the prosthetic hand. Both the angle signal and a pre-designed target 

track were plotted on the computer screen to give the subject a visual feedback, through 

which the subject could adjust his/her wrist movements to track the target as accurately 

as possible (Fig. 3. 11). The software can also collect continuous EMG signal and 

control the prosthesis with similar interface as shown in Fig. 3. 11. The RMS value was 

extracted from the EMG signal to control the prosthesis in the same manner as SMG 

control. 
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Fig. 3. 11 An illustration of the software interface used to simultaneously collect 1D 

SMG and goniometer signal and to control prosthesis. (a) The top window illustrates the 

sinusoidal waveform used to guide the wrist extension movement along with the 

goniometer signal which represents the prosthesis open-close level. The bottom window 

shows the ultrasound signal with the selected reference echo used for tracking the 

muscle thickness change; (b) A typical sinusoid waveform with a rate of 10 cycles/min; 

(c) A typical square waveform with a rate of 10 cycles/min. 

3.3.3.3 Experimental Protocol 

The subject sat on a comfortable chair with his/her forearm rested on the table. The 

computer screen was also placed on the table in front of the subject. Ultrasound-EMG 
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compound sensor was positioned on the belly of extensor carpi radialis. Double-sided 

adhesive tape was used to fix the compound sensor, and ultrasound gel was applied 

between the transducer and skin for better coupling.  

Before experiment, the subject was asked to perform several wrist extensions in order to 

determine prosthetic open-close range according to the maximal and minimal values of 

muscle deformation. For each task, five repeated trials were performed. The first two 

were used for training, in which the amplitude of waveform was designed to 

proportionally correspond to the fully open and close position of prosthetic hand, and 

the data of the last three trials was collected for further analysis to evaluate the 

performance. 

During the test, the subject was instructed to perform wrist extension and try to match 

the prosthetic angle signal with the pre-designed guiding waveform. They could adjust 

the speed of wrist movement to match the prosthetic angle signal with the waveform, 

i.e., sinusoid or square, which performed as a standard to assess the control performance 

of SMG and SEMG signals. The sinusoid waveform was employed to investigate the 

subject’s ability to continuously control the prosthesis; while the square waveform was 

used to study the ability of maintaining the prosthesis at two different stationary levels. 

The wrist extension movement rates were set to be 4, 6, 10 cycles/min for each guiding 

waveform. Therefore, each subject performed a total of six tasks (3 x 2) of wrist 

extension. The accuracy of SMG and surface EMG control was quantified using the 

RMS tracking error between the guiding waveform and the prosthetic angle.  
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3.4 Case Study on Amputee 

3.4.1 Subject 

One male amputee subject (age: 47 years; body weight: 64 kg; height: 168 cm) with 

bilateral wrist amputation was recruited to validate whether 1D SMG signal was 

applicable to the limb-deficient person for prosthetic control. 

3.4.2 Experimental Protocol 

Similar experiment protocol for healthy subjects was applied to the amputee. He was 

instructed to intend extending his phantom wrist in the tracking guided patterns of wrist 

extension, visuomotor “E” cancellation, and prosthetic control test as follows. 

3.4.2.1 Performances of 1D SMG and Surface EMG in Tracking Guided Patterns of 

Wrist Extension 

The amputee was asked to follow the waveform patterns (sinusoid, square, and triangle) 

using 1D SMG or surface EMG by intending extending his phantom wrist at the rate of 

5 cycles/min and 10 cycles/min. The reason for choosing the slower movement rates 

was that the amputee has difficulty in following the high rates as used by healthy 

subjects. Three repeated trials were performed for each task and there was a rest of 3 

minutes between two adjacent trials to avoid muscle fatigue. The ultrasound-EMG 

compound sensor was attached on the extensor carpi radialis muscle of the amputee. 
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Both 1D SMG and surface EMG signals were tested for their accuracy in following the 

displayed waveform patterns using RMS tracking error. 

3.4.2.2 Comparison of 1D SMG and Surface EMG in Visuomotor “E” Cancellation Test  

The amputee as instructed intended extending his phantom wrist to control the cursor in 

4 trials including using 1D SMG and surface EMG signal with and without TEA tests:  

- 1D SMG  

- 1D SMG (with TEA test) 

- EMG  

- EMG (with TEA test) 

 The order of these tasks was randomized. Because the amputee is with bilateral wrist 

amputation, a pedal foot switch was used instead of a button (Fig. 3. 12). 
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Fig. 3. 12 A pedal foot switch was utilized for the amputee with bilateral wrist 

amputation to make decision during visuomotor “E” cancellation test. 

3.4.2.3 Prosthesis Control by 1D SMG and Surface EMG 

During the test, the amputee was instructed to intend extending his phantom wrist and 

try to match the prosthetic angle signal with the pre-designed guiding waveform. 

Compared with the healthy subjects, the amputee has difficulty in following the pattern 

at the rate of 10 cycles/min. Therefore, only 4, 6 cycles/min were tested in this study. 

During the trial, the amputee could adjust the speed of wrist movement to match the 

prosthetic angle signal with the waveform, i.e., sinusoid or square. Therefore, there were 

a total of 6 tasks (2 x 2 x 2). The accuracy of SMG and surface EMG control was 

quantified using the RMS tracking error between the guiding waveform and the 

prosthetic angle.  
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CHAPTER 4 RESULTS 

In this chapter, the main findings are presented, including the linear relationship 

between 1D SMG and wrist extension angle; SMG -based wrist angle prediction; the 

comparisons of the control performances of the subjects using 1D SMG and surface 

EMG in tracking guided patterns of wrist extension, visuomotor “E” cancellation and 

prosthetic control tasks. Finally, the result of the control performance of the amputee 

using 1D SMG signal is given.  

4.1 Muscle Thickness Change Detected by 1D SMG 

4.1.1 The Relationship between Muscle Deformation (SMG) and Wrist Angle  

Fig. 4. 1 shows the muscle deformation and the wrist extension angle of a typical trial 

obtained from subject C at the rate of 30 cycles/min. The three cycles indicated the three 

repeated wrist extension cycles in a single trial. The ascending part of each cycle 

corresponded to the muscle contracting action and the descending portion corresponded 

to the muscle relaxing stage. It was found that on subject C the muscle deformation 

correlated very well with the wrist extension angle with the correlation coefficient r = 

0.940 using a linear regression in Fig. 4. 2. The experimental data obtained from the 

other subjects showed a similar trend and the overall mean r value for the nine subjects 

was 0.907±0.077 (mean± S.D.).  
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Fig. 4. 1 The muscle deformation and the wrist extension angle of a typical trial with 

three cycles of wrist extension of subject C at the rate of 30 cycles/min. 
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Fig. 4. 2 The relationship between the percentage of muscle deformation and wrist 

extension angle of the trial shown in Fig. 4. 1. The linear regression was used to 

represent the correlation between the two signals. 

The relationship between the wrist extension angle and the corresponding muscle 

deformation was further studied using their ratio, i.e. the slope of the linear regression in 
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Fig. 4. 2. The overall mean value of the angle-deformation ratio was 0.130±0.058% per 

degree. One-way ANOVA revealed that the ratios were significantly (P<0.001) different 

among the subjects but not among the trials under different extension rates for each 

subject (P=0.9). Fig. 4. 3 and Table 4. 1 show the summary of the ratios of the muscle 

deformation and the wrist angle for individual subjects at different extension rates. The 

intraclass correlation coefficient (ICC) for the three repeated trials was 0.87, indicating 

a good repeatability.  
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Fig. 4. 3 The ratios between the muscle deformation and the wrist angle for the nine 

subjects (1-9) under different extension rates. The error bar represents the standard 

deviation of the results of the three trials for each subject at each rate. The last bar 

(mean) represents the overall mean and standard deviation of the results of the nine 

subjects. 
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Table 4. 1 The mean and standard deviations (STDEV) of the ratio between muscle 

deformation and wrist extension angle among the nine subjects. The results were 

calculated from the data obtained under three different rates of wrist extension.  

Subject No. 1 2 3 4 5 6 7 8 9 

Mean of ratio (%/degree) 0.224 0.152 0.159 0.095 0.190 0.079 0.140 0.090 0.043 

STDEV of ratio (%/degree) 0.011 0.021 0.056 0.014 0.017 0.016 0.004 0.010 0.010 

 

4.1.2 Relationship between Surface EMG RMS and Wrist Angle 

 Fig. 4. 4 shows a typical relationship between the EMG RMS and the wrist angle 

obtained from subject C at the extension rate of 30 cycles/min. The relationship could 

also be represented by a linear regression with the correlation coefficient r = 0.832 (Fig. 

4. 5). The results obtained from the other subjects showed a similar trend. The mean r 

value of the tests for all the subjects was 0.864± 0.071. The relationship between the 

EMG RMS and the wrist angle showed poorer correlation in comparison with that 

between the SMG and the wrist angle.  
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Fig. 4. 4 The EMG RMS and the wrist extension angle of a typical trial with three 

cycles of wrist extension of subject C at the extension rate of 30 cycles/min. 
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Fig. 4. 5 The relationship between the EMG RMS and the wrist extension angle of the 

trial shown in Fig. 4. 4. The two signals were also found to be linearly correlated. 
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4.2 SMG-Based Wrist Angle Estimation 

4.2.1 RMSD and CC of SVM, BP and RBF ANN 

The examples of measured wrist angle signal and the signal predicted by SVM, BP 

ANN and RBF ANN for subject C at the extension rates of 15, 30 cycles/min were 

displayed in Fig. 4. 6 and Fig. 4. 7, respectively.  
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Fig. 4. 6 Comparison of the predicted and measured wrist angles at the extension rate of 

15 cycles/min by LS-SVM, BP ANN and RBF ANN. 
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Fig. 4. 7 Comparison of the predicted and measured wrist angles under the extension 

rate of 30 cycles/min by LS-SVM, BP ANN and RBF ANN.  

 
The averaged RMSD and CC among the nine subjects for different extension rates were 

shown in Fig. 4. 8 and Fig. 4. 9. 
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Fig. 4. 8 The mean and standard deviation of prediction RMSD of the nine subjects at 

extension rates of 15, 30 cycles/min, by LS-SVM, BP ANN and RBF ANN. 

 

Fig. 4. 9 The mean and standard deviation of prediction CC of the nine subjects at 15, 

30 cycles/min extension rate by LS-SVM, BP ANN and RBF ANN.  
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It was found that the mean of CC of the three models for each test condition was all 

larger than 0.9, with LS-SVM having the highest CC among all test conditions, 

followed by RBF and BP ANN. Moreover, the mean of RMSD of LS-SVM at the three 

different extension rates was smaller than those of BP and RBF ANN. The results 

revealed that LS-SVM had better generalization power compared with BP and RBF 

ANN for the wrist angle prediction, though they all showed good learning power during 

the training. It was also demonstrated that the models established for the rate of 22.5 

cycles/min could be used for the prediction of wrist angle from SMG data set obtained 

under other rates. Statistical analysis showed that only different models affected the 

RMSD and CC significantly (p =0.018 and p=0.021). Both LS-SVM and RBF ANN 

achieved significantly higher prediction accuracy in term of RMSD and CC as 

compared with BP ANN (both p<0.05), while no significant difference between BP 

ANN and LS-SVM methods was observed (p=0.05). 

4.3 Performance of 1D SMG and Surface EMG in Tracking Guided Patterns of 

Wrist Extension 

4.3.1 Comparison in RMS Tracking Error between 1D SMG and Surface EMG among 

Various Guiding Waveforms 

Totally 432 data sets were recorded from the sixteen subjects. Table 4. 2 summarizes 

the RMS tracking error of 1D SMG and surface EMG for the three guiding waveform 

patterns under different movement rates. The overall mean RMS tracking error of SMG 

under the three movement rates was 18.9±2.6% (mean± S.D.), 18.3±4.5%, and 

17.0±3.4% for the sinusoid, square, and triangle guiding waveforms, while the 

corresponding value for EMG was 30.3±0.4%, 29.0±2.7%, and 24.7±0.7%, 
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respectively. Paired t-test revealed that the overall mean RMS tracking error of SMG 

was significantly (P<0.01) smaller than that of EMG for all the three guiding waveforms 

(Fig. 4. 10). 

 

Fig. 4. 10 The RMS tracking error (%) of 1D SMG and surface EMG for the different 

guiding waveforms. The error bar represents the standard deviation of the results 

obtained at three different movement rates. 
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Table 4. 2 The RMS tracking error (%) between 1D SMG/surface EMG and the guiding 

waveforms at the three movement rates (Mean ± S.D.) and the mean RMS tracking error 

averaged over the three movement rates for sinusoid, square, and triangle guiding 

waveforms. 

Rate 

(Cycles/min)

SMG 
 

Surface EMG 
 

sinusoid square triangle sinusoid square triangle 

20 16.3±7.8 14.6±1.7 14.0±1.9 30.5±4.7 27.0±4.2 24.2±4.4 

30 19.0±3.0 17.1±1.6 16.3±2.5 29.9±6.4 27.8±3.0 24.4±6.3 

50 21.5±3.2 23.3±3.7 20.7±3.1 30.6±5.5 32.1±4.1 25.4±4.8 

Mean 18.9±2.6 18.3±4.5 17.0±3.4 30.3±0.4 29.0±2.7 24.7±0.7 
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4.3.2 RMS Tracking Error of 1D SMG/surface EMG for Three Guiding Waveforms 

under Different Movement Rates 

One-way ANOVA showed that there were significant differences in the RMS tracking 

error of 1D SMG among the three wrist extension rates (all p<0.01) for all the three 

guiding waveforms as demonstrated in Fig. 4. 11. An apparent increasing trend of the 

RMS tracking error using SMG was observed with the increase of the movement rate 

for all the different guiding patterns. However, for EMG, statistical analysis revealed 

that the RMS tracking error was significantly different among the three movement rates 

only for the square waveform (P=0.001), but not for sinusoid (P=0.921) and triangle 

(P=0.762) waveforms. As shown in Fig. 4. 12, the RMS tracking error for EMG 

generally showed smaller variations under different rates of wrist extension. 

 

Fig. 4. 11 The tracking errors of SMG for the three guiding waveforms under different 

movement rates. The error bar represents the standard deviation of the results of the 

sixteen subjects. 
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Fig. 4. 12 The RMS tracking error of surface EMG under the three different wrist 

extension rates for various guiding waveforms. The error bar represents the standard 

deviation of the results obtained from the sixteen subjects. 

4.4 Comparison of 1D SMG and Surface EMG in Visuomotor “E” Cancellation 

Test  

Table 4. 3 shows the result of “E” canceling for the single and dual tasks together with 

the number of bleeps counted by the subjects during the dual task test. It was found that 

only the signal type had significant effect on the number of “E” successfully and 

wrongly cancelled (all p <0.001) and that the force/angle signals in the corresponding 

tests provided significantly better performance than SMG and EMG signals for both 

single and dual task tests, in terms of the number of “E” successfully cancelled (all p 

<0.001), and there was no significant difference in the performance of successfully 

cancelling “E” between SMG and EMG (P=0.081). However, a significant increase in 

the number of “E” wrongly  cancelled was observed when using the EMG signal in 
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comparison with using force/angle and SMG signals in both the single and dual task 

tests (both p<0.001) and no such significance was found between using SMG and 

force/angle signals (p=0.791). 

Table 4. 3 The number of “E” correctly cancelled or that of letters wrongly cancelled in 

a period of 90 sec using different signals and under conditions of wrist movement and 

isometric contraction for both single and dual tasks. The number of bleeps counted by 

the subjects during the dual task test was also included.  

 Isometric force control 
 

Wrist extension 

 Force  SMG  EMG Angle  SMG  EMG 

Task Item C W  C W  C W  C W  C W  C W 

Single 
task 

E cancel mean 48 7  35 7  29 18  44 8  34 7  30 23 

SD 7 4  10 5  13 6  10 5  9 4  13 14 

Dual 
task 

E cancel mean 47 8  34 8  30 23  45 6  32 7  31 21 

SD 10 5  9 7  9 7  8 3  9 3  8 10 

Bleep count 16 1  15 1  17 1  13 1  16 1  15 1 

SD 3 1  3 1  2 1  2 1  2 2  3 1 

* C represents the number of “E” correctly cancelled or the number of bleeps correctly 

counted. W represents the number of the letters wrongly cancelled, either “E” was 

skipped or a wrong letter was cancelled, or the number of bleeps wrongly counted.  

The result of the single task showed that the number of successfully cancelled “E” using 

SMG decreased by 27±15% and 21±11% in isometric contraction and wrist extension 

tests, in compared with using force and angle signal, while the corresponding reduction 

recorded by using EMG was 37±29% and 31±23%, respectively, but the difference in 

decrements between the two signals was not significant (p=0.15). Meanwhile, using 

SMG generated significantly lower number of “E” wrongly canceled than using EMG 
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for both isometric contraction (p=0.0005) and wrist extension (p=0.006) controls. 

Similar result was obtained in the dual task test (Table 4. 3).  

Statistical analysis also revealed that there was no significant difference in the 

performances of cancelling “E” between the single and dual tasks among the control 

signals, i.e. force/angle, SMG and EMG signals (all p>0.2). In addition, it was found 

that the number of bleeps correctly counted by the subjects was very close (15.3±1.4 

bleeps) in all the tests. As shown in Table 4. 3, the number of wrongly counted bleep 

was very small (5±1%) with small variations among different situations using different 

signals. The result tended to show that the signals tested had similar control 

performance in the TEA test in this study. Further analysis revealed that there was no 

significant difference between SMG and EMG regarding the percentage reduction in the 

number of “E” correctly cancelled (p=0.07) or the percentage increase of the number of 

“E” wrongly cancelled (p=0.17) caused by the change from the single to dual task. We 

further studied the correlation between the numbers of “E” correctly cancelled in the 

single and dual task tests for both SMG and EMG control. As shown in Fig. 4. 13, the 

numbers of “E” correctly cancelled by using SMG under the single and dual tasks 

showed a much higher correlation in comparison with those using EMG.  



CHAPTER 4                                                                                    Results 

79 

 

Fig. 4. 13 Correlations between the numbers of “E” correctly cancelled in 90s under the 

single and dual tasks when (a) SMG and (b) EMG were used as control signals, 

respectively. 
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4.5 Comparison of 1D SMG and Surface EMG in Prosthetic Control  

Table 4. 4 summarizes the RMS tracking error of 1D SMG and surface EMG for the 

two guiding waveform patterns under three different movement rates. The overall mean 

RMS tracking error of SMG under the three movement rates was 12.8±3.2% 

(mean±S.D) and 14.8±4.6% for the sinusoid and square guiding waveforms, while the 

corresponding values for EMG were 24.1±4.9% and 22.9±5.5%, respectively. The 

overall mean RMS tracking error of each subject for all the movement rates and 

waveform patterns are shown in Fig. 4. 14. Paired t-test showed that the RMS tracking 

error by SMG control was significantly smaller than that of surface EMG control (p < 

0.05). For SMG control, it was observed that both the wrist extension rate and the 

guiding waveform pattern had significant effects (p = 2.0*10-6 for extension rate and p = 

0.007 for guiding waveform pattern) and their interaction effect was also significant (p 

= 0.02).  However for EMG control, neither the factor had significant effect (p = 0.059) 

for extension-flexion rate and p = 0.27 for guiding waveform pattern).  
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Table 4. 4 The RMS percentage tracking errors of 1D SMG and surface EMG between 

the prosthesis angle and the guiding waveform at the three movement rates (Mean ± 

S.D.) and the mean RMS tracking error averaged over the three movement rates for 

sinusoid and square guiding waveforms. 

Rate 

(Cycles/min) 

SMG 

 

EMG 

sinusoid square sinusoid square 

4 11.2±2.4 10.9±2.2 21.1±3.5 22.2±6.9 

6 13.5±3.4 15.3±4.0 25.6±6.0 22.2±4.6 

10 13.8±3.0 18.3±3.8 25.6±3.3 24.2±4.3 

Mean 12.8±3.2 14.8±4.6 24.1±4.9 22.9±5.5 
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Fig. 4. 14 The overall mean RMS tracking error of SMG and surface EMG for each 

subject for all the movement rates and waveforms. The error bar represents the standard 

deviation from the mean. 
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Fig. 4. 15 illustrates a typical data set of the 1D SMG signal and the angle signal in one 

trial (the movement rate or input signal frequency is 4 cycles/min). The left Y-axis 

represents the SMG signal, i.e. the muscle deformation in percentage, while the right Y-

axis indicates the prosthesis angle normalized to the maximal angle at full opening 

position. The X-axis indicates the measurement time in seconds. The input-output 

relationship was constructed by plotting the instantaneous angle values as the function 

of SMG values. Linear regression was applied and R2 coefficient was obtained to 

characterize the linearity of the relationship (Fig. 4. 16). Fig. 4. 17 shows the R2 

coefficients of all the nine subjects under different movement rates, with the error bar 

representing the standard deviation (S.D.) of the three trials for each subject, and the 

relationship between R2 and movement rate was further plotted in Fig. 4. 18. One-way 

ANOVA was used to test the effect of movement rate on the linearity. It was found that 

the rate had significant effect (p = 4.7×10-8 ). There was an obvious trend of decrease 

of R2 value with the increase of movement rate. 
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Fig. 4. 15 Plots of muscle deformation (SMG) and angle curves as function of time in 

one trial. The left Y-axis indicates the SMG signal, while the right Y-axis represents the 

prosthesis angle normalized to the maximal angle at full opening position. 
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Fig. 4. 16 The input-output relationship of the prosthetic control system where the input 

was the SMG signal, and the output was the prosthesis opening position represented by 

goniometer angle. Linear regression was applied to indicate their relationship. 
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Fig. 4. 17 The R2 values of linear regression for each subject under three movement 

rates. The error bar represents the standard deviation from the mean of the three trials. 

For all the subjects, higher movement rate resulted in lower R2 value. 
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Fig. 4. 18 The relationship between R2 value and movement rate. The error bar 

represents the standard deviation from the mean of the nine subjects.  

Totally 162 data sets were obtained from the nine subjects. For each data set, the RMS 

tracking error between the target waveform and prosthesis angle was calculated 

according to Eq. (3-11) to evaluate the control performance. Typical tracking result is 

shown in Fig. 4. 19 (movement rate of 4 cycles/min), in which the angle value was 

normalized to the maximal angle at full opening position. Fig. 4. 19 (A) and (B) 

illustrates the prosthesis angle trajectories in tracking the sinusoid target and square 

target respectively. The overall mean RMS tracking error of each subject for all the 

movement rates is shown in Fig. 4. 20. The overall mean RMS tracking error of SMG 

under three movement rates was 12.8±3.2% and 14.8±4.6% for sinusoid and square 

tracking, respectively. Two-way repeated ANOVA was used to test the effects of both 

the movement rate and the track patterns on the RMS tracking error. It was observed 

that both factors had significant effects (p = 2.0×10-6 for movement rate and p = 0.007 
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for target track pattern) and their interaction effect was also significant (p = 0.02). Fig. 

4. 21 illustrates the increasing trend of RMS tracking error for both sinusoid and square 

targets with the increase of the movement rate.  
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Fig. 4. 19 The tracking result of a typical trial under the movement rate of 4 cycles/min. 

Good consistency is shown between the target and the prosthesis response. (A) Tracking 

result of sinusoid target; (B) Tracking result of square target, RMSTE indicates the 

RMS tracking error. 
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Fig. 4. 20 The overall mean RMS tracking error of each subject for all the movement 

rates. The error bar represents the standard deviation from the mean. 
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Fig. 4. 21 The RMS tracking error of for the two target tracks under three different 

movement rates. The error bar represents the standard deviation from the mean of the 

nine subjects. An increasing trend of RMS tracking error for both sinusoid and square 

targets was observed with the increase of the movement rate. 
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4.6 The Performance of Amputee using 1D SMG and Surface EMG Signals for 

Control Purpose 

4.6.1 Performances of 1D SMG and Surface EMG in Tracking Guided Patterns of Wrist 

Extension 

Table 4. 5 summarizes the RMS tracking error of using 1D SMG and surface EMG for 

tracking the three guiding waveform patterns under different movement rates by the 

amputee. The overall mean RMS tracking error of 1D SMG under the two movement 

rates was 17.2±4.0% (mean± S.D.), 16.5±2.1%, and 15.0±0.9% for the sinusoid, square, 

and triangle guiding waveforms, while the corresponding value for EMG was 

22.4±2.3%, 22.1±1.1%, and 15.5±3.3%, respectively. Fig. 4. 22 shows that the averaged 

RMS tracking errors of SMG were smaller than those of EMG for all the three 

waveforms. Furthermore, as shown in Fig. 4. 23, the RMS tracking error for SMG was 

generally smaller under the slower rate. 

Table 4. 5 The RMS tracking error (%) between 1D SMG/surface EMG and the guiding 

waveforms at the two movement rates (Mean ± S.D.) and the mean RMS tracking error 

averaged over the two movement rates for the three guiding waveforms. 

Rate 

(Cycles/min) 

SMG 
 

Surface EMG 
 

sinusoid square triangle sinusoid square triangle 

5 14.4±2.6 15.0±3.4 14.3±1.8 24.0±4.2 22.9±4.2 13.2±1.0 

10 20.1±1.8 18.0±2.0 15.7±3.0 20.8±4.1 21.3±2.9 17.9±4.3 

Mean 17.2±4.0 16.5±2.1 15.0±0.9 22.4±2.3 22.1±1.1 15.5±3.3 
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Fig. 4. 22 The RMS tracking error (%) between 1D SMG/surface EMG and the guiding 

waveforms. The error bar represents the standard deviation of the results of two 

different movement rates. 
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Fig. 4. 23 The tracking errors of SMG for different guiding waveforms under the two 

movement rates. The error bar represents the standard deviation of the three repeated 

trials. 

4.6.2 Comparison of 1D SMG and Surface EMG in Visuomotor “E” Cancellation Test  

Table 4. 6 shows the result of “E” cancelling for the single and dual tasks of amputee 

together with the number of bleeps counted during the dual task test. It was observed 

that the number of “E” wrongly cancelled greatly increased when using the EMG signal 

instead of SMG signal in both the single and dual task tests. Moreover, there was a 50% 

drop in the number of “E” correctly cancelled in using EMG in dual task when 

compared with single task and no such result was found in using SMG. 
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Table 4. 6 The number of “E” correctly cancelled and that of letters wrongly cancelled 

using 1D SMG and surface EMG signals for both single and dual tasks. The number of 

bleeps counted during the dual task test was also included. 

Task Item 
SMG EMG 

Correct Wrong Correct Wrong 

Single task E cancel 11 4 12 13 

Dual task 
E cancel 16 5 6 11 

Bleep count 15 5 11 1 

 

4.6.3 Prosthesis Control by 1D SMG and Surface EMG 

The RMS tracking error of 1D SMG and surface EMG for the two guiding waveform 

patterns under two different movement rates is shown in Table 4. 7. The overall mean 

RMS tracking errors of SMG under the two movement rates were 21.3±1.6% 

(mean±S.D) and 23.0±1.3% for the sinusoid and square guiding waveforms, while the 

corresponding values for EMG were 26.8±2.0% and 27.4±1.8%, respectively. It was 

observed that the mean RMS tracking error of SMG control was smaller than that of 

surface EMG control for both the waveforms (Fig. 4. 24). For SMG control, it was also 

observed that the RMS tracking error under 4 cycles/min extension rate was smaller 

than that under the rate of 6 cycles/min for the sinusoid waveform. However, reverse 

result was obtained for the square waveform (Fig. 4. 25). 
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Table 4. 7 The RMS tracking errors in percentage of 1D SMG and surface EMG 

between the prosthesis angle and the guiding waveforms at the two movement rates 

(Mean ± S.D.) and the mean RMS tracking error averaged over the two movement rates 

for sinusoid and square guiding waveforms. 

Rate 

(Cycles/min) 

SMG 
EMG 

sinusoid square sinusoid square 

4 
20.1±2.4 24.0±1.9 25.4±5.5 28.7±3.3 

6 
22.4±1.8 22.1±0.9 28.2±6.8 26.1±2.0 

Mean 21.3±1.6 23.0±1.3 26.8±2.0 27.4±1.8 
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Fig. 4. 24 The overall mean RMS tracking error of using 1D SMG and surface EMG for 

control by the amputee for the two guiding waveforms. The error bar represents the 

standard deviation from two different movement rates. 
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Fig. 4. 25 The overall mean RMS tracking errors of using 1D SMG to control prosthesis 

by the amputee under the two extension rates. The error bar represents the standard 

deviation from three repeated trials. 
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CHAPTER 5 DISCUSSION 

In this chapter, the performance of the subjects using 1D SMG to evaluate the muscle 

contraction and to control prosthesis is discussed in separate sections. The possible 

reasons are given to explain the advantages of 1D SMG signal in skeletal muscle 

assessment and in prosthetic control.  

5.1 Skeletal Muscle Evaluated by 1D SMG  

5.1.1 The Relationship between 1D SMG and Wrist Angle  

A-mode ultrasound signal with a single element ultrasound transducer, named as 1D 

SMG, was used to detect the thickness change of forearm muscle during wrist 

extension. It was found that there was a good linear correlation (r = 0.907±0.077) 

between the 1D SMG signal and the corresponding wrist extension angle for the healthy 

subjects tested (n=9), demonstrating that the morphological changes of forearm muscles 

were significantly correlated to the motion of the related joint. The deformation-angle 

ratio was also calculated to further study the relationship between the muscle thickness 

change and wrist extension angle. This ratio was found to be significantly different 

among the nine subjects. The results were calculated from the data obtained in three 

different rates of wrist extension. However, for each subject, no significant difference 

was observed among the ratios for different wrist extension rates. Therefore, it was 

possible to use a single ratio to describe the relationship between the muscle 

deformation and the wrist angle signal for one subject. More experiments on subjects 

with different ages and genders are required to better understand the factors that affect 

the deformation-angle ratio. The surface EMG as a reference signal was collected 
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simultaneously and the result demonstrated that there was also a linear correlation 

between the EMG RMS and the wrist angle (r = 0.864± 0.071). Since surface EMG has 

been widely used to assess muscle function and prosthesis control, we suggested that 1D 

SMG could also be used in this area to provide more information by detecting muscle 

thickness changes. 

Recently, the change of muscle thickness has been used as a parameter to characterize 

muscle fatigue process (Shi et al., 2007), evaluate the effect of resistance training (Abe 

et al., 2000), and reveal muscle morphological decline of the supraspinatus muscle due 

to a shoulder injury (Hasegawa et al., 2003). Ultrasound measurement can be more 

spatially localized in comparison with surface EMG. The diameter of the ultrasound 

sensor used in this study was only 5 mm. The muscle thickness changes were calculated 

through detecting the shift of the reflected ultrasound echoes from the fat-muscle and 

muscle-bone interfaces. Therefore, the 1D SMG signal provided the potential advantage 

of being able to detect the thickness changes of muscles at different depths or locations 

with single-element ultrasound transducers non-invasively, which would effectively 

avoid adjacent muscle cross talk. Compared with the MMG signal, the 1D SMG signal 

was more stable as it would not be influenced by external noises, such as movement 

artefact or power line noise. In addition, the magnitudes of both surface EMG and 

MMG can be significantly affected by changes of coupling conditions between the skin 

surface and the electrodes / sensors. And the body motion can easily induce the change 

of the coupling condition resulting in the distortion of surface EMG or MMG signals. In 

the case of 1D SMG, the coupling between the ultrasound transducer and the skin may 

also be affected by the body motion. However, such effects may only affect the 

magnitude of ultrasound echoes but not the time between echoes, which represents 
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muscle thickness. For this reason, 1D SMG may be more robust to motion artifacts in 

comparison with surface EMG. Therefore, it was expected that the 1D SMG signal 

could be used as complementary information tool for surface EMG and MMG during 

various contractions for the assessment of muscle function, muscle fatigue and 

pathology, and for the control of prosthesis. However, the advantages of 1D SMG 

should be further verified together with other factors that may affect the collection and 

extraction of this signal. 

5.1.2 1D SMG Based Wrist Angle Estimation  

In the present work, it was demonstrated that the models established for the rate of 22.5 

cycles/min could be used for the prediction task of 1D SMG data sets obtained under 

other rates and within different trials. Erfanian et al. (1994) reported the use of EMG 

signals obtained from surface electrodes to determine the knee joint angle in paraplegic 

subjects when the quadriceps muscle was electrically stimulated using percutaneous 

intramuscular electrodes. They found that the peak amplitude of the evoke EMG signal 

and its power spectrum increased as the joint angle increased. Suryanarayanan et al. 

(1995) developed a neural network model to estimate joint angle at the elbow using the 

EMG signal of biceps as an input. However, there was only one subject in their trials 

and the prediction RMS error was as large as 20%. Compared with these EMG-based 

modelling, the present 1D SMG-based joint angle prediction models demonstrated 

better performances. Moreover, the EMG-angle relationship in the literature remained 

controversial and unsolved. For example, some previous studies (Leedham and 

Dowling, 1995; Vredenbregt and Rau, 1973) claimed that the EMG activity was the 

same at different joint angles under maximal contraction of biceps brachii muscle. This 

was not consistent with the EMG-elbow joint angle prediction model reported by 



CHAPTER 5                                                                                    Discussion 

99 

Suryanarayanan et al. (1995). Joint angle models reportedly heavily relied on the EMG 

inputs to ‘drive’ them. It has been demonstrated that the EMG relates more to the input 

of muscle contraction, i.e. the intension of an action, while the muscle architecture is a 

primary determination of muscle function (Shi et al., 2007). As the architectural 

changes of skeletal muscle were claimed to correlate more with the output of muscle 

contraction, and could be detected using ultrasound (Shi et al., 2007; Zheng et al., 2006; 

Hodges et al., 2003), thus SMG had the potential to be a better candidate to describe the 

relationship between joint angle patterns and the activities of corresponding muscles 

during the human movement.  

The previous studies on non-parameter modelling for muscle systems were mostly 

based on ANN. This study investigated the feasibility of using LS-SVM method for 

wrist angle prediction. The result indicated that the LS-SVM model performed better in 

comparison with the ANN models in terms of prediction accuracy and correlation 

coefficient. This was in line with the findings of previous studies that the LS-SVM 

model outperformed the ANN in predicting the joint angle from the EMG or SMG 

signals (Suryanarayannan et al., 1995; Shi et al., 2006). 

In the present study, several factors, such as the location of ultrasound sensor, signal 

resolution, tracking algorithm and the frame rate of the ultrasound, may contribute to 

the prediction error. To improve the estimation accuracy, ultrasound frame rate and 

imaging resolution should be increased and other algorithms for tracking the two 

interfaces (muscle-skin, muscle-bone) should be explored. In addition, multiple 

channels of 1D SMG signal could be utilized to improve the control accuracy.  
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5.2 Comparisons of 1D SMG and Surface EMG for Prosthetic Control 

5.2.1 1D SMG in Tracking Guided Patterns of Wrist Extension 

In this study, the performances of surface EMG and 1D SMG, i.e. real-time muscle 

thickness change detected using A-mode ultrasound, in tracking three different 

movement patterns of the wrist extension were assessed, guided by waveforms shown 

on the PC screen. It was found that the RMS tracking error of SMG under different 

wrist extension rates (ranged from 14.0±1.9% to 23.3±3.7%) was statistically 

significantly (P<0.01) smaller than the corresponding value of surface EMG (ranging 

from 24.2±4.4% to 32.1±4.1%) for all the movement patterns studied, indicating that 

SMG performed better than surface EMG in following the given movement patterns in 

terms of tracking accuracy.  

It was interesting to explore why 1D SMG could perform significantly better than 

surface EMG in tracking different given movement patterns of the joint under different 

movement rates. It has been reported that there is an exponential relationship between 

EMG magnitudes and the strengths generated by different skeletal muscles (Deluca 

1997; Hodges et al., 2003; Zheng et al., 2006; Shi et al., 2008). Previous studies 

reported  that SMG signals of a skeletal muscle have approximately linear relationships 

with the strengths generated by this muscle, represented either by torques for isometric 

contractions (Shi et al., 2008) or by joint angles for isotonic contractions (Zheng et al., 

2006). It appears that SMG and the corresponding joint angle follow a relatively simple 

relationship in comparison with the relation between EMG and joint angle. The results 

of this study and previous ones appear to imply that the architectural changes during 

muscle contraction relate more directly to the actuation achieved (mechanical output), 
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while the EMG is a measure of activation intended (electrical input). In relation to the 

findings of the present study, we may interpret that our motor control and visual 

feedback system could perform better when the control signal has a linear relationship 

with the target signal to control, which was the wrist angle in this case. This may 

probably reduce the training efforts when the SMG signal was used for the prosthetic 

control. Further studies are required to study how many training efforts can be saved 

when using 1D SMG for control instead of surface EMG. And more normal and 

residual limbs should be tested to ensure a solid conclusion.  

As expected, it was found that as the movement rates increased, the RMS tracking error 

of SMG increased (Fig. 4. 11). When the movement rates increased, the subjects were 

required to perform the same movement in a shorter time period. Furthermore, 

according to subjects’ verbal reports, the visual feedback used to provide instantaneous 

performance indication during the test slightly distracted their attention. Thus, as the 

movement rates increased, the possibility for SMG to “move away” from the guiding 

waveform may also increase, resulting in higher tracking errors. However, this 

increasing trend in tracking error with the increase of movement rate was not observed 

in EMG RMS. It was also noted that the performance of SMG tracking at the highest 

rate was still better than the best performance of the EMG tracking among all the tests. 

This difference between the two signals may result from a number of potential reasons. 

First, the frame rate of A-mode ultrasound (approximately 17 Hz), which also 

determines how fast the data points of SMG signal are given, was relatively low in the 

study. With the increase of the wrist flexion-extension rate, the SMG data collected in 

each cycle would be reduced. Therefore, the subject had fewer data points to refer to for 

following the given waveform. Since we also controlled the data rate of EMG RMS to 
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17 Hz during the test, this effect should have affected the performance of EMG tracking 

as well when the movement speed was increased, however, it was not observed in this 

study. A higher frame rate could be used to further investigate the effect of data 

collection speed in future studies. The second possible reason was that SMG is a signal 

not only related to the bioelectrical properties of muscles, i.e. how muscles are 

activated, but also dependent on the mechanical properties of muscle-tendon complex, 

i.e. viscoelastic properties. With the increase of the muscle contraction speed, the 

hysteresis of SMG signal may also increase. This made it more challenging for the 

subjects to follow the given movement patterns using SMG signals. However, EMG 

signal would not be affected by this effect, as it is more related to bioelectrical 

properties of muscles. Again, further studies are needed to better understand the effect 

of the viscoelasticity of muscles and other tissues on the generation and applications of 

SMG signal. 

5.2.2 1D SMG in Visuomotor “E” Cancellation Test 

We compared the control performances of force/angle, 1D SMG, and surface EMG 

signals during both isometric force contraction and wrist extension. These signals were 

used to proportionally control a cursor’s vertical location on PC screen so as to cancel 

letter “E” from a sequence of vertically arranged letters. The number of “E”s correctly 

cancelled and the number of letters wrongly cancelled were recorded to allow the 

comparison of control performances of subjects using various signals. It was found that 

the percentage of “E” correctly cancelled was the highest when using either force or 

wrist angle as the control signal. Using the performance of force/angle signal as 

reference, the performances of using both SMG and EMG signals dropped significantly 

(p<0.001). The performance reduction when using surface EMG was observed to be 
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10% larger than that observed when using SMG for both the isometric contraction 

(37±29% vs 27±15%) and wrist extension tests (31±23% vs 21±11%). Although the 

number of “E” correctly cancelled using SMG and EMG did not show significant 

differences, the numbers of “E” wrongly cancelled using EMG was significantly larger 

than that using SMG under both the isometric contraction and wrist extension tests 

(p<0.001). These findings supported our hypothesis that 1D SMG signal could provide 

the user with an improved degree of control compared to surface EMG.  

Two signal processing parameters were believed to have potential effect on the control 

performance using surface EMG signal. One was the sampling rate of EMG RMS used 

to perform the control task. The other was the number of data points used for the 

calculation of EMG RMS. The sampling rate determined the rate at which the signal 

controlled the cancelling task. In this study, comparison of the performance among 

various sampling rates (10~50Hz) showed no significant difference. As the sampling 

rate of 1D SMG was 17 Hz in our current system, the same sampling rate was also 

adopted for EMG RMS to allow for a better comparison between the two signals. It may 

be worthwhile to further study whether the sampling rate of SMG would affect its 

performance, by using a faster ultrasound measurement system and an improved real-

time tracking algorithm. Meanwhile, the number of data points was found to 

significantly affect the performance of EMG (p=0.016). Some subjects verbally reported 

a delay when using the data points larger than 200 and the number of letters correctly 

cancelled was significantly higher when using 0.2 sec epoch, compared to 0.1 and  0.15 

sec epochs, to calculate the EMG RMS (one-way ANOVA, p=0.016). Therefore, 200 

data points (equivalent to 0.2 sec) for each epoch, which was observed to be associated 

with the highest accuracy, was chosen to calculate EMG RMS in this study.  
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In the dual task test, the control performances of using all the signals were not 

significantly decreased in comparison with the corresponding results of the single task 

test under both the isometric contraction and wrist extension (p>0.05). It appeared that 

the disturbance to the subject’s attention on “E” cancelling task caused by the TEA test 

was not significant. According to the verbal reports from some of the subjects, they 

became more alert upon hearing the sound of bleeps, encouraging them to react more 

quickly than without sound. In this study, the sample size (n=10) was relatively small, 

and hence a study with a larger subject number would be required to better understand 

this effect. It was also worth noting that the results were based on a specific auditory 

attentional task and hence could not be generalized to other cognitive tasks, such as a 

visual attentional task. Visual attentional task in which subjects could do concurrently 

with the visual cancelling task should be devised to further explore the generalisability 

of the results reported here.  

We originally hypothesized that using 1D SMG signal to perform a visuo-motor 

tracking task may require less attentional effort than using surface EMG signal, i.e. we 

expected that the performance drop when using EMG for control would be significantly 

serious than that using 1D SMG. This hypothesis was not verified in this study. 

However, we found the correlation between the numbers of “E” correctly cancelled in 

the single and dual tests using 1D SMG (R2 = 0.73) was much higher than that using 

surface EMG (R2 = 0.36), implying that using SMG could generate a more consistent 

control performance in comparison with using EMG under different cognitive 

requirements. Such a consistency is important for real prosthesis control. Again, this 

finding needs to be further confirmed with a large sample size and tests with different 

types of secondary tasks.  
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5.2.3 Evaluation of 1D SMG for Prosthetic Control 

The study also investigated the feasibility of controlling powered prosthesis by 1-D 

SMG signal and compared the performances of SMG and EMG in tracking the guided 

patterns of wrist extension. The statistical analysis showed that the RMS tracking error 

of SMG control was significantly smaller than that of EMG control, indicating that 

SMG could have better performance than EMG in controlling the prosthesis. This result 

confirmed our hypothesis that SMG had the potential to be an alternative signal to 

surface EMG for control purpose. The finding from this part of the study was consistent 

with those from the tracking guided patterns. The performance of SMG was 

significantly better than EMG in tracking different given movement patterns under 

different movement rates. One potential reason was that these two signals had different 

relationship with the joint movement. In the guided pattern tracking test, we have 

demonstrated that SMG signals of the extensor carpi radialis had linear relationships 

with the joint angles while the relationship between muscle architectural parameters 

measured from the ultrasound images and EMG was nonlinear (Hodges et al., 2003). In 

the part of study, it was further confirmed that 1D SMG and the corresponding joint 

angle follow a relatively simple relationship in comparison with the relation between 

surface EMG and joint angle. During the experiment, the subjects controlled the 

prosthesis with the function of open-close by the wrist joint movement. This simpler 

relationship of SMG may help to reduce the conscious efforts of the subject and in turn 

increase the control accuracy. Moreover, surface EMG signal is the summation of 

asynchronous electrical pulses from many muscle fibres; therefore it is difficult to 

decode the joint movement from one-channel EMG signal.  
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This study utilized an open-loop control system with input of 1D SMG signal and 

output of prosthesis angle. Since a linear control algorithm was used, theoretically the 

input-output relationship was expected to be linear. However, according to Fig. 4. 18, 

we observed an obvious decrease of linearity which was significantly affected by the 

frequency of input signal (p <0.005). The main reason for this frequency-dependent 

property is due to the intrinsic mechanical deficiency of the prosthesis which has a 

nonlinear response upon quick movement. Subjects may still be able to control the 

system even if the input-output property is nonlinear, although the subject may have to 

make more effort in control and the performance is unlikely to be optimal. 

The visual pursuit tracking task was applied in the study to test the 1D SMG control 

performance which was similar to the study in tracking guided patterns of wrist 

extension. The RMS tracking error of SMG control under different movement rates in 

Table 4. 4 ranged from 10.9±2.2% to 18.3±3.8%, while in the guided pattern tracking 

study the range was from 14.0±1.9% to 23.3±3.7% (Table 4. 2). Two factors may 

contribute to the difference between the two data sets. The first possible reason was the 

lower wrist extension rates used in this prosthesis study (4-10 cycles/minute), taking 

into account the motion speed of the prosthesis. The maximal motion speed of the 

prosthesis was less than 15 cycles/min, limiting the maximal wrist movement rate. As 

shown in Table 4. 4, lower movement rates would decrease the RMS tracking error 

which has also been proved in the previous work. The second possible reason was that 

the limited motion resolution of the prosthesis might have negative effect on the 

performance. The prosthesis could control only 20 positions in its full motion range. 

Thus, when the subject performed wrist extension, SMG signal could follow muscle 

deformation in a smooth manner, while the prosthesis was only able to move one step at 
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a time (Fig. 4. 19). This resolution limitation might cause a decrease of the control 

accuracy compared with the guided pattern study. Moreover, this stepwise trajectory in 

visual feedback might increase the subject’s conscious effort during the tracking 

process. The guided pattern tracking study has shown that the 1D SMG signal has a 

better performance than the surface EMG signal in tracking the guided patterns of wrist 

extension when linearly recruited. In the current study, we focused on the real time 

control of the prosthetic hand by the 1D SMG signal to further demonstrate the potential 

of SMG as a control signal. However, further studies should be carried out to evaluate 

the performance using multiple channels of EMG and SMG with more efficient 

methods in the future.  

Two-way ANOVA showed that the wrist extension movement rate had the most 

significant effect (p<0.005) on the RMS tracking error. An increasing trend of tracking 

error was observed with the increase of the movement rate for both sinusoid and square 

waveforms. When the movement rate increased, the subject was required to perform the 

tracking task in a shorter time period which in turn required more conscious effort from 

the subject. Hence, with the increase of movement rate, the possibility for the subject to 

make errors may also increase, resulting in larger tracking errors. The target track 

pattern also had a significant effect (p<0.005) on the RMS tracking error. As shown in 

Fig. 4. 21, although the tracking error increased for both sinusoid and square tracks with 

the increase of movement rate, it tended to increase faster for the square track in 

comparison with the sinusoid track. The major possible reason might come from the 

nature of square track, which included stable-state (high level and low level) and 

transient-state (changes between two levels) in its waveform (Fig. 3. 11). The transient-

state part contributed most of the errors because it was quite difficult for subject to 
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follow this quick change. The proportion of transition-state parts was larger in square 

waveforms with higher rates, thus causing a larger tracking error. 

Compared with surface EMG control, the major advantage of 1D SMG control is that it 

is more suitable to provide an intuitive control, because it is directly extracted from the 

morphological changes of muscle, which is originally closely correlated to the joint 

motion. Intuitiveness relieves the mental burden on a user during long-term operation 

and natural daily work. In the guided pattern tracking study, we found that the SMG 

signal of skeletal muscle had an approximate linear relationship with the corresponding 

joint angle. In this study, a simple linear algorithm was used to map the magnitude of 

SMG signal to the prosthesis opening position. Therefore the relationship between the 

control signal, namely the wrist angle, and the target signal of prosthesis position was 

approximately linear. This intuitive control method helped subjects to perform better in 

using SMG in comparison with EMG. To achieve similar performances in EMG control 

much more complex algorithm should be applied and more training efforts were 

required (Cipriani et al. 2008). Another advantage of the 1D SMG control is its potential 

of detecting contraction of individual muscles at neighbouring locations and different 

depths, providing the feasibility of fine control in multi-function artificial hands. Due to 

the challenges in surface EMG signals generated by different neighbouring muscles, 

i.e., cross talk, the commercially available prostheses controlled by surface EMG could 

only provide limited number of DOF. We employed only one channel SMG from 

forearm extensor muscle to control the prosthesis in the present work. To provide 

multiple DOF prosthetic control, multi-channel SMG signals from different groups of 

muscles are required to predict the motions of individual joint. Further experiments are 

being planned to explore the potential of controlling multiple DOF prosthesis using 
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multi-channel SMG signals. Furthermore, as mentioned above, the performance of the 

prosthesis can affect the control accuracy to some degree. Therefore, more dexterous 

prostheses with higher reaction speed and motion resolution should be utilized in further 

study. In this study, 90% of the maximal wrist extension was selected as the maximal 

open position that the prosthesis can reach which could cover most of the wrist range 

and also purposely prevent muscle fatigue. In addition, it would be very interesting to 

explore the prosthetic performance using the subject’s strength, for example, using 80% 

of the maximal voluntary contraction (MVC) as the maximal open position of the 

prosthesis. Further studies are needed to systematically test the effects of the prosthetic 

performance. Moreover, the ability to control the prosthesis using different degrees of 

extension should also be tested by using stepwise waveforms in a future study. 

In summary, we developed the 1-D SMG prosthetic control system to realize the control 

of prosthesis with one DOF, and then evaluated the performance of prosthetic control in 

tracking different opening-closure patterns by SMG in this study. The results indicated 

that the continuous change of prosthetic hand could be well controlled by SMG. It 

suggests that SMG provides an alternative method to surface EMG for prosthetic 

control. It is very natural for us to conduct experiments on amputee subjects as a next 

step. 
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5.2.4 Amputee’s Performance using 1D SMG to Control  

5.2.4.1 Performances of 1D SMG and Surface EMG in Tracking Guided Patterns of 

Wrist Extension 

Similar with the result of the healthy subject, the test on the amputee showed that the 

RMS tracking error of 1D SMG under different wrist extension rates were smaller than 

the corresponding values of surface EMG for all the movement patterns studied, 

indicating that SMG performed better than surface EMG in following the given 

movement patterns in term of tracking accuracy. Moreover, the RMS tracking error 

increased with the increase of the movement rate under all the movement patterns. 

These results were consistent with those obtained from the healthy subjects. However, 

we also noticed that the amputee subject showed great difficulties in following the 

movement rate used by healthy subject, i.e. 20, 30, 50 cycles/min and he could only 

follow the rate of 5, 10 cycles/min, instead. The main reason maybe that during the 

hypothetical movement of intending extension of the phantom wrist, there was little 

feedback for the amputee to regulate his strength. Unlike the healthy subject, the 

amputee could not adjust his strength according to the wrist angle change. In this 

situation, far more effort was required in order to better follow the predesigned 

waveform for the amputee and once the movement rate increased, the effort required 

was beyond the amputee’s ability.   

5.2.4.2 Comparison of 1D SMG and Surface EMG in Visuomotor “E” Cancellation Test 

As expected, it was found that the number of “E” correctly cancelled of amputee subject 

greatly decreased when compared with that of healthy subjects using both 1D SMG and 
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surface EMG (Table 4. 3 and Table 4. 6) mainly because of the greater effort required 

for the amputee. The number of “E” wrongly cancelled was greatly increased in using 

the EMG signal in comparison with using SMG signals in both the single and dual task 

tests. This finding supported our hypothesis that the 1D SMG signal may provide the 

user with an improved degree of control compared to that offered through use of surface 

EMG. A drop of 50% in the number of “E” correctly cancelled in using EMG in dual 

task may indicate a greater cognitive requirement. No such a great drop in the number 

of “E” correctly cancelled in using 1D SMG may indicate that 1D SMG is a better 

alternative of EMG for prosthetic control, especially when performing two tasks at the 

same time. 

5.2.4.3 Control Prosthesis by 1D SMG and Surface EMG 

RMS tracking error of 1D SMG control was smaller than that of EMG control, 

indicating that SMG had better performance than EMG in controlling the prosthesis. For 

the square waveform, as the movement rate increased, the RMS tracking error tended to 

be smaller. The reason maybe that there is no significant difference between these two. 

However, it is difficult to make a solid conclusion as only one amputee was recruited in 

this study and the two movement rates tested, i.e. 4 and 6 cycles/min are close. A 

statistically significant result should be obtained by recruiting more amputees.  

In summary, the case study on the amputee showed the consistent result with healthy 

subject that 1D SMG is a promising alternative signal for prosthetic control with smaller 

RMS tracking error and better performance in all the three tests in comparison with 

EMG. However, more amputees should be recruited in future studies in order to form a 

solid conclusion. More consideration should be given if we want to make the SMG 
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control method suitable for amputees. In a previous study (Zheng, et al, 2006), SMG 

signals were successfully collected from 3 amputees to demonstrat that the SMG signal 

had the potential for prosthetic control. In this thesis, we used SMG signal from both 

normal subjects and an amputee to control a prothesis. Although encouraging results 

were achieved, there are three major differences between our experiment setup and the 

clinical setup. First, our experiment used computer-based control system instead of 

microcontroller-based one. Second, clinical setup uses patient-specific socket to fit the 

prosthetic hand with residual limb and to mount the EMG electrode. Third, the training 

processes are different. In clinical application, a patient should be trained for a long time 

to learn to control the prosthesis to accomplish various specific functions such as 

grasping and holding objects. With training, failure to perform adequately in the initial 

stages can be overcome. In our experiment, the subjects were trained only for the 

specific task in a short time. The RMS tracking error is the quantitative evaluation of the 

task performance in the experiment. However, it is hard to assess the subject’s ability to 

control the prosthesis just according to this parameter. We can only conclude that the 

smaller RMS tracking error, the higher possibility that the subject can successfully 

control the prosthesis. To put this SMG control technique in clinical use in the future, 

further developments work are needed such as integrating the computer-based control 

system into a microcontroller-based control system, as well as finding out the best way 

of mounting the ultrasound transducer into the prosthetic socket. Further more, the 

thermal effect of ultrasound should be carefully considered in the development. The 

ultrasound technology of our method belongs to the category of diagnostic ultrasound. 

Guidelines for the safe use of diagnostic ultrasound equipment would need to be 

followed (such as the safety guidelines of the British Medical Ultrasound Society, see 
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http://www.bmus.org). The future ultrasound control equipment should be designed to 

meet the requirement of the Thermal Index (TI) in the guidelines for long time use. 

In this chapter, discussions were made on the results of investigating the morphological 

changes of skeletal muscle during various movements, assessed by 1D SMG signal and 

the possibility of using 1D SMG in prosthetic control compared with surface EMG. 

Possible reasons leading to those results were explored in details. Important findings 

obtained in this study, limitations for each test and, suggested future works are 

introduced in the next chapter. 
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5.2.5 Summary 

According to the above discussion, this thesis clearly demonstrated that 1D SMG has 

the potential to be an alternative signal for skeletal muscle assessment and prosthetic 

control. It was further confirmed in this thesis that SMG has a more linear relationship 

with muscle outputs in comparison with EMG signals. Using proper modeling 

techniques, such as SVM, the joint angle can be precisely predicted using the SMG 

signal of corresponding muscles. The performance of SMG in guided motion pattern 

tracking, visuomotor “E” cancellation test, and prosthetic control test all showed that the 

SMG control has a better performance in comparison with the EMG control. The 

feasibility of the SMG control has also been demonstrated by the test of the amputee 

subject. Despite of these encouraging findings, the current experimental setup still have 

various limitations and future works are needed before SMG can be clinically applicable.  

Important findings obtained in this study, limitations for each test and, suggested future 

works are introduced in the next chapter. 
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CHAPTER 6 CONCLUSIONS AND FUTURE STUDIES 

6.1 Conclusions  

In this thesis, the relationship between 1D SMG and wrist extension angle was 

investigated and the wrist extension angle was predicted by the morphological changes 

of skeletal muscle using ultrasound, i.e., 1D SMG signal. And the potential of using 1D 

SMG as a control signal further explored by comparison with surface EMG. The 

findings of this study are summarized as follows. 

1. 1D SMG- EMG compound sensor 

In this study, 1D SMG and surface EMG signals were collected simultaneously by a 

custom-made compound sensor, which make it possible to fix the A-mode ultrasound 

transducer in the middle and at the same time to minimize the size of the sensor.  We 

then further evaluate this sensor by comparing subjects’ performance in a series of 

tracking task. It is showed that 1-D SMG provides a more portable, compact, 

inexpensive, and practical solution to detect muscle thickness changes than 2-D SMG. 

Moreover, A-mode ultrasound transducers may be easily attached to the skin during 

dynamic activities of muscles and are of a sufficiently small size to potentially be 

embedded in prosthetic sockets. 
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2. Linear relationship between the 1D SMG and the wrist angle signals 

Compared with surface EMG signal, 1D SMG signal provided the potential advantages 

of being able to detect the thickness changes of muscles at different depths or locations 

with a single ultrasound transducer non-invasively, which effectively avoids adjacent 

muscle cross talk. In addition, the results of our experiments demonstrated a significant 

linear relationship between the 1D SMG and the wrist angle signals. Based on this 

simple linear relationship, we expect that the 1D SMG could be used along with the 

surface EMG signal to provide more comprehensive information of skeletal muscle 

contractions.  

3. 1D SMG based wrist angle prediction by LS- SVM and ANN models 

It was investigated that the wrist angle could be accurately estimated from the muscle 

deformation signal, i.e.1D SMG, using the LS-SVM and ANN models. The results also 

revealed that the estimation performance of LS-SVM model was significantly better 

than that of ANN models. Accurate joint angle prediction is crucial for human-computer 

interface devices in many different areas. There have been growing interests in 

determining the joint angles in different areas, such as functional electrical stimulation 

(FES), prosthesis control, virtual reality, telerobotics and medical hand function 

assessment (Crago et al., 1998; Hart et al., 1998). Therefore, the models developed in 

the current study could potentially offer a feedback signal of the wrist joint extension 

angle for wrist position control in these areas. 
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4. 1D SMG could result in a smaller RMS tracking error compared with surface EMG 

It was demonstrated in this study that 1D SMG signal obtained using A-mode 

ultrasound could provide better performance of wrist extension in comparison with 

surface EMG in tracking different given patterns under different wrist extension rates. 

The use of single element transducer in A-mode image allowed great flexibility in 

designing SMG sensor, thus, it is practically feasible to attach such a probe on the skin 

surface for the purposes of control or muscle function evaluation, similar to the use of 

surface EMG.  

5. The control performance using 1D SMG was better than that using surface EMG 

Our study found that the control performance using the single channel of 1D SMG 

signal, obtained using A-mode ultrasound was better than using surface EMG signal 

under both the isometric contraction and the wrist extension conditions. Furthermore, it 

was demonstrated that introducing the additional task of counting bleeps tends to have 

insignificant effects to the control performance for all the signals. The results also 

showed that 1D SMG provided more consistent performance under the single and dual 

task tests in comparison with surface EMG.  

6. 1D SMG showed potential for prosthetic control 

The 1D SMG prosthetic control system was conducted to realize the control of a single 

DOF prosthesis, and the performance of prosthetic control in tracking different wrist 

extension patterns by 1D SMG was evaluated in this study. It was indicated that the 

prosthetic hand could be better controlled by 1D SMG with lower RMS tracking error in 
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comparison with EMG. It suggests that 1D SMG provides an alternative method to 

surface EMG for prosthetic control. 

7. The similar performance of amputee using 1D SMG to control with that of healthy 

subjects 

The case study on amputee showed the consistent result with healthy subject that 1D 

SMG is a promising alternative signal for prosthetic control with smaller RMS tracking 

error and better performance when compared with surface EMG. However, more 

amputees should be recruited in order to acquire a solid conclusion. 
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6.2 Further Studies 

Based on the findings of the present study, it is necessary to propose several further 

experiments to comprehensively assess skeletal muscle function and to control 

prosthesis by 1D SMG. 

1. The relationship between 1D SMG and wrist angle signal should be further tested 

with various movement patterns and muscle groups  

Although the current experiment showed that 1D SMG was a promising method for 

muscle assessment, it had some limitations. In this study, the 1D SMG signal was found 

to be significantly correlated with wrist extension angle when there was no external 

resistance during the wrist extension movement, which, however, needs further 

investigation for the condition when external resistance exists in future studies. In 

addition, skeletal muscles usually work as a group to perform certain movement. In this 

experiment, only the extensor carpi radialis muscle was studied during the wrist 

extension movement. Future investigations may hope to detect co-activated muscles by 

using a multiple SMG sensoring system. Finally, we found that it was difficult to place 

both SMG and surface EMG sensors on their optimal sites when the superficial area of 

the muscle is small. This problem should also be addressed in further studies for the 1D 

SMG signal. 

2. Multi-channels of 1D SMG and other bio-signals should be utilized to improve the 

prediction accuracy  

Only the single channel of SMG signal obtained from the extensor carpi radialis muscle 
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was used to predict the limited wrist extension movement using the LS-SVM and ANN 

models. To improve the wrist angle prediction performance, SMG signal extracted from 

the flexor carpi ulnaris and other forearm muscles may be added to the model input in 

the future work. With multi-channel SMG data, it is believed that the predication 

performance can be improved, as the information of different muscles contributing to 

the same action can be combined. Moreover, other biomedical or biomechanical signals 

such as mechanomyography (MMG) may be employed to provide complementary 

information of muscle movement behaviors. Thus, combination of SMG and MMG 

could potentially offer richer input features for identifying the relationship between 

muscle activity and arm kinematics during the execution of motor tasks. In addition, 

further studies are required to investigate whether the findings in this study could be 

applied to the movements of other joints. 

3. Comparison of 1D SMG and surface EMG in tracking extension test should be 

verified with different muscles and conditions 

It was demonstrated in this study that SMG signal obtained using A-mode ultrasound 

could provide better performance of wrist extension in comparison with surface EMG in 

tracking different given patterns under different wrist extension rates. However, further 

studies are required to verify the performances of 1D SMG signal on different muscles 

under different conditions. The mechanism of how the increasing movement rate of 

wrist extension affects the SMG tracking performances should also be further 

investigated. Further studies are required to demonstrate these advantages 

quantitatively. It would also be very interesting to further investigate whether the good 

performance of 1D SMG on the extensor carpi radialis muscle for wrist control 

observed in this study can be applied to other skeletal muscles.  
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4. 1D SMG in the Visuomotor “E” Cancellation Test should be tested with more muscle 

and movement pattern 

Our study found that the control performance using the single channel of 1D SMG 

signal, obtained using A-mode ultrasound was better than using surface EMG signal 

under both the isometric contraction and the wrist movement conditions. The results of 

the present study tend to support that the control of either an isometric or dynamic task 

could be performed better when the control signal has a linear relationship with the 

muscle strength signals. Further studies are required to evaluate whether this 

observation would also lead to a reduction in the training required to use 1D SMG for 

control instead of surface EMG. The current study only evaluated the control 

performance of the signals measured over the extensor carpi radialis muscle of able-

bodied subjects and one amputee subject. Therefore, the performance using 1D SMG 

from other skeletal muscles is still unknown. Further, only one isometric setup and one 

type of movement at one joint were examined. Thus, further work examining 

performance with other muscles and different test scenarios should be carried out to 

reach a final conclusion. 

5. Multi-channels of 1D SMG to control prosthesis 

We used only one channel of 1D SMG from forearm extensor muscle to control 

prosthesis in the present work. To provide multiple DOF prosthetic control, multi-

channel SMG signals from different groups of muscles are required to predict the 

motions of individual joints. One major advantage of multi-channel SMG control is that 

there is no cross talk among SMG signals from different channels, because 

ultrasonography can individually detect the morphological changes of muscles in 
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neighboring locations.  Further experiments should be planned to explore the potential 

of controlling multiple DOF prosthesis using multi-channel SMG signals. Furthermore, 

as mentioned above, the performance of the prosthesis can affect the control accuracy to 

some degree. Therefore, more dexterous prostheses with higher reaction speed and 

motion resolution should be utilized in further study. In addition, more amputees with 

wrist amputation should be recruited to test the performance of control prosthesis using 

1D SMG signals. 

6. More amputee subjects should be recruited  

In this study, several healthy subjects and one amputee were recruited to test the control 

performance 1D SMG compared with that of surface EMG. More amputee subjects with 

residual forearm muscles should be recruited to give a solid conclusion on the 1D SMG 

control. 
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APPENDIX  

I. Information Sheet 

Project Title:                          Sonomyography 

Principle Investigator:  Prof. Yongping Zheng 

    Department of Health Technology and Informatics 

    The Hong Kong Polytechnic University 

                                                Contact number: (852) 27667664 

This aim of this project is to develop a new method using ultrasound to evaluation 

muscle functions and to provide control signals for artificial arms. The development can 

help to provide better rehabilitation approaches for the problems related to muscles.  

The contraction of forearm muscles of subjects will be monitored using ultrasound, 

electromyography, and wrist angle. An ultrasound sensor, three electrodes, and an 

electro-goniometer will be attached on the skin of the forearm. Ultrasound gel will be 

used between the ultrasound probe and the skin. The subject will feel no pain, and the 

attachment of the sensors will have no hurt to the body.  

During the experiment, the subject will be asked to contract the forearm muscles and to 

flex and extend the wrist joint. The data will be collected for analysis. The subject can 

stop the experiment any time if they do not want to continue. 

 



Appendix 

156 

實驗指引 

項目名稱： 超聲波肌肉的研究 

項目負責人：鄭永平教授 

醫療科技及資訊學系 

香港理工大學 

  聯絡電話：(852) 27667664 

本實驗的目的是利用一維超聲波評估肌肉功能，為假肢控制提供一種新的信號。

本實驗的開展可為肌肉康復提供更好的方法。 

在前臂肌肉收縮的試驗中，超聲波圖像，肌電信號，手腕關節的角度信號都會被

檢測到。 超聲波探測器，3 個肌電電極，和角度測量器都會被固定在前臂。超聲

波探測器和皮膚之間會被填滿超聲波耦合劑。受驗者將不會有任何的痛楚的感覺

， 所有固定在受驗者身上的儀器都是無害的。 

在實驗中，受驗者會被要求做腕關節的彎屈和伸展運動已達到肌肉收縮的目的。

實驗中的數據將會被用作以後的分析用。如果他們有任何不適，受驗者可以在任

何時間提出終止實驗的要求。 
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II Consent Form 

I, ___________________(name), hereby consent to participate in as a subject for the 

research project entitled “Sonomyography”. I understand the effect and details of the 

experimental procedures which have been explained to me.  

I understand that I have the right to discontinue, with no reason given, my participation 

anytime, even during the experiment. I realize that any findings of the study will only be 

used for research purpose and will be properties of the Department of Health 

Technology and Informatics, The Hong Kong Polytechnic University.  

Signed  _________________________ 

Date  _________________________ 

In Witness _________________________ 

Date  _________________________ 
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同意書 

我___________________（受試者姓名），在此同意作為受驗者參加“超聲波肌

肉的研究”。我已經明白該測試的具體步驟以及可能造成的影響。 

我已經知道我可以在任何時間，甚至是在測試中而終止測試，無需給予任何理由

。我已經知道測試的結果只能用作科學研究，並且屬於香港理工大學，醫療科技

及資訊學系。 

受試者姓名 _________________________ 

日期  _________________________ 

作證人姓名 _________________________ 

日期  _________________________ 




